

Django 5 for the Impatient
Copyright © 2024 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Kaustubh Manglurkar

Publishing Product Manager: Bhavya Rao

Senior Content Development Editor: Feza Shaikh

Technical Editor: Simran Ali

Copy Editor: Safis Editing

Project Coordinator: Aishwarya Mohan

Indexer: Subalakshmi Govindhan

Production Designer: Ponraj Dhandapani

Marketing Coordinators: Anamika Singh

First published: June 2022

Second edition: September 2024

Production reference: 1250724

https://epic.packtpub.services/index.php?module=Users&action=DetailView&record=1da4c94d-b71b-cb28-3541-60a768f4ce10

Published by Packt Publishing Ltd.

Grosvenor House 11 St Paul’s Square Birmingham B3 1RB, UK

ISBN 978-1-83546-155-6

www.packtpub.com

http://www.packtpub.com/

To my mother, my ultimate hero.

– Daniel Correa

To my awesome wife for taking such good care of our family and children so that I could embark
on my writing journey. She and our family are the very reason why I write books like this. Thank
you so much, dear.

– Greg Lim

Contributors

About the authors
Daniel Correa is a researcher, software developer, and author of programming books. Holding a PhD
in computer science, he also serves as a professor at Universidad EAFIT in Colombia. His interests
lie in software architectures, frameworks, web development, and clean code.

I want to thank Greg for inspiring me to write books. Greg is one of the best programming book
authors I have known. Thanks to my wife, family, colleagues, and friends for all the support.
Finally, thanks to Miguel Sosa for his assistance with code revision, and thanks to the entire
Packt team for the meticulous work to publish this book.

Greg Lim is a technologist and the author of several books on programming. He has taught
programming in tertiary institutions for many years and places a strong emphasis on learning by
doing.

I want to thank Daniel, my talented co-author; without him, this book wouldn’t have been
possible. Thanks also to everyone on the Packt team who helped us so much.

About the reviewers
Daniel Mitsuo Siena Hirata is a Brazilian full-stack engineer with over half a decade of experience,
always up for solving problems, diving into games, and hunting for great food. He is on a journey
through the ever-changing tech world, driven by curiosity and a love for learning new things. With
years of Django experience and a solid grip on Python, he always add a creative touch to projects. He
loves a good challenge and is always on the lookout for innovative solutions, making him a
passionate and dynamic professional.

Nilton Pimentel is a Brazilian Python developer. He has more than 4 years of experience in the field
of web development. He has developed many projects for companies using Django.

He is passionate about technology, soccer, games, music, and movies, and is always in search of
knowledge and trying to evolve every day. His mission is to solve problems and deliver maximum
value in people’s lives using Python.

I’d like to thank my mother (Ivanir Pimentel) and my dog (Bolinha) for all their support and
love throughout my career, and all the people who have helped me in some way to get here.
THANK YOU!

Table of Contents

Preface

1

Install ing Python and Django, and Introducing the
Movies Store Application

Technical requirements

Introducing and installing Python

Introducing and installing Django

Creating and running a Django project

Understanding the Movies Store application

Introducing the Django MVT architecture

Summary

2

Understanding the Project Structure and Creating Our
First App

Technical requirements

Understanding the project structure

The moviesstore folder

manage.py

db.sqlite3

Creating our first app

Creating a home page

Configuring an URL

Creating an about page

Configuring the about URL

Defining about function

Creating about template

Summary

3

Designing a Base Template

Technical requirements

Creating a base template with Bootstrap

Introducing Bootstrap

Introducing Django template language (DTL)

Creating a base template

Registering the base template

Updating the home page to use the base template

Creating the new index template

Creating a custom CSS file

Storing an image

Serving the static fi les

Updating the base template to use the custom CSS and load
static fi les

Updating the views index function

Updating the About page to use the base template

Creating the new About template

Storing the about.jpg image

Updating the views about function

Adding a header section

Updating the base template

Storing the logo image

Updating the style.css

Adding a footer section

Updating the base template

Updating the style.css

Summary

4

Creating a Movies App with Dummy Data

Technical requirements

Creating the movies app

Creating the movies app

Adding the movies app to settings

Including the movies URL file in the project-level URL file

Listing movies with dummy data

Configuring the movies URL

Defining the views index function

Creating a movies index template

Listing individual movies

Configuring individual movies URLs

Defining the views show function

Creating a movies show template

Adding individual movie links on the movies page

Adding a link in the base template

Summary

5

Working with Models

Technical requirements

Creating our first model

Creating a Movie model

Installing Pillow

Managing migrations

Applying the default migrations

Creating custom migrations

Applying custom migrations

Accessing the Django admin interface

Creating a superuser

Restoring your superuser password

Accessing the admin panel

Configuring image upload

Serving the stored images

Adding a movie model to the admin panel

Adding the Movie model to the admin panel

Summary

6

Collecting and Displaying Data from the Database

Technical requirements

Removing the movies’ dummy data

Updating the movie listings page

Updating index function

Updating the movies.index template

Adding a custom CSS class

Updating the listing of an individual movie page

Updating show function

Updating the movies.show template

Adding a custom CSS class

Implementing a search movie functionality

Updating the movies.index template

Updating index function

Summary

7

Understanding the Database

Technical requirements

Understanding the database viewer

Customizing the Django admin panel

Ordering movies by name

Allowing searches by name

Switching to a MySQL database

Configuring the MySQL database

Configuring our project to use the MySQL database

Running the migrations

Summary

8

Implementing User Signup and Login

Technical requirements

Creating an accounts app

Creating an accounts app

Adding the accounts app to the settings file

Including the accounts URL file in the project-level URL file

Creating a basic signup page

Configuring a signup URL

Defining the signup function

Creating accounts signup template

Adding the signup link to the base template

Improving the signup page to handle POST actions

Customizing UserCreationForm

Creating CustomUserCreationForm

Updating the signup function to use CustomUserCreationForm

Customizing the way errors are displayed

Creating a login page

Configuring a login URL

Defining login function

Creating accounts login template

Adding the link to the base template

Redirecting a registered user to the login page

Implementing a logout functionality

Configuring a logout URL

Defining the logout function

Adding the link to the base template

Summary

9

Letting Users Create, Read, Update, and Delete Movie
Reviews

Technical requirements

Creating a review model

Create the review model

Apply migrations

Add the review model to the admin panel

Creating reviews

Updating the movies.show template

Defining the create_review function

Configuring the create review URL

Reading reviews

Updating the movies.show template

Updating the show function

Updating a review

Updating movies.show template

Creating the movies edit_review template

Defining the edit_review function

Configuring the edit_review URL

Deleting a review

Updating the movies.show template

Defining the delete_review function

Configuring the delete_review URL

Summary

10

Implementing a Shopping Cart System

Technical requirements

Introducing web sessions

HTTP protocol limitations

Web sessions

Django login scenario

Django sessions

Creating a cart app

Adding cart app in settings

Including the cart URL file in the project-level URL file

Adding movies to the cart

Configuring the add_to_cart URL

Defining add_to_cart function

Updating the movies.show template

Listing movies added to the cart

Configuring cart index URL

Defining a utils fi le

Defining a filter

Defining an index function

Creating the cart.index template

Updating the add_to_cart function

Adding a link in the base template

Removing movies from the cart

Configuring clear URL

Defining clear function

Updating the cart.index template

Summary

11

Implementing Order and Item Models

Technical requirements

Analyzing store invoices

Creating the order model

Creating the Order model

Applying migrations

Adding the order model to the admin panel

Creating the Item model

Creating the Item model

Applying migrations

Adding the item model to the admin panel

Recapping the Movies Store class diagram

Summary

12

Implementing the Purchase and Orders Pages

Technical requirements

Creating the purchase page

Configuring the purchase URL

Defining the purchase function

Updating cart.index template

Creating cart.purchase template

Creating the orders page

Configuring the orders URL

Defining the orders function

Creating accounts.orders template

Adding a link in the base template

Recapping the Movies Store MVT architecture

Summary

13

Deploying the Application to the Cloud

Technical requirements

Managing GitHub and Git

Understanding Git and GitHub

Creating a GitHub repository

Uploading our code to GitHub

Cloning your code onto PythonAnywhere

Configuring virtual environments

Setting up your web app

Configuring static fi les

Summary

Index

Other Books You May Enjoy

Preface
Django is a high-level Python web framework that encourages rapid development and clean,
pragmatic design. Django is used for building modern Python web applications and it’s free and open
source.

Learning Django can be a tricky and time-consuming activity. There are hundreds of tutorials, loads
of documentation, and many explanations that are hard to digest. However, this book enables you to
use and learn Django in just a few days.

In this book, you’ll go on a fun, hands-on, and pragmatic journey to learn about Django full-stack
development. You’ll start building your first Django app within minutes. You’ll be provided with
short explanations and a practical approach that cover some of the most important Django features,
such as Django’s structure, URLs, views, templates, models, CSS inclusion, image storage, forms,
session, authentication and authorization, and the Django admin panel. You’ll also learn how to
design Django model-view-template (MVT) architectures and how to implement them.
Furthermore, you’ll use Django to develop a Movies Store application and deploy it to the internet.

By the end of this book, you’ll be able to build and deploy your own Django web applications.

Who this book is for
This book is for Python developers at any level of experience with Python programming who want to
build full-stack Python web applications using Django. The book is for absolute Django beginners.

What this book covers
Chapter 1, Installing Python and Django, and Introducing the Movies Store Application, covers
Python and Django installation, and introduces the Movies Store application, showcasing
functionalities, class diagrams, and MVT architecture.

Chapter 2, Understanding the Project Structure and Creating our First App, explores Django’s
project structure and app creation, and demonstrates how to use Django’s URLs, views, and
templates for creating pages.

Chapter 3, Designing a Base Template, explores how Django base templates can be used to reduce
duplicated code and improve the look and feel of the Movies Store application.

Chapter 4, Creating a Movies App with Dummy Data, builds a movies app displaying a list of movies
using dummy data.

Chapter 5, Working with Models, discusses the fundamentals of Django models and how to work
with databases.

Chapter 6, Collecting and Displaying Data from the Database, discusses how to collect and display
data from the database.

Chapter 7, Understanding the Database, shows how to inspect the database information and how to
switch between database engines.

Chapter 8, Implementing User Signup and Login, discusses the Django authentication system and
enhances the Movies Store application with some features to allow users to sign up and log in.

Chapter 9, Letting Users Create, Read, Update, and Delete Movie Reviews, enhances the Movies
Store application with standard CRUD (Create, Read, Update, Delete) operations on reviews for
movies.

Chapter 10, Implementing a Shopping Cart System, covers the use of Django sessions, and how web
sessions can be used to implement a shopping cart system.

Chapter 11, Implementing Order and Item Models, explores how invoices work, and creates an Order
and Item model to manage the purchase information.

Chapter 12, Implementing the Purchase and Orders Pages, creates purchase and orders pages, and
concludes with a recap of the Movies Store’s architecture.

Chapter 13, Deploying the Application to the Cloud, shows how to deploy Django applications on the
cloud.

To get the most out of this book
You will need Python 3.10+ installed, pip, and a good code editor such as Visual Studio Code. The
last chapter requires the use of Git to deploy the application code to the cloud. All the software
requirements are available for Windows, macOS, and Linux.

Software/hardware covered in the book Operating system requirements

Python 3.10+ Windows, macOS, or Linux

Pip Windows, macOS, or Linux

Visual Studio Code Windows, macOS, or Linux

Git Windows, macOS, or Linux

If you are using the digital version of this book, we advise you to type the code yourself or
access the code from the book’s GitHub repository (a link is available in the next section).
Doing so will help you avoid any potential errors related to the copying and pasting of code.

Download the example code fi les
You can download the example code files for this book from GitHub at
https://github.com/PacktPublishing/Django-5-for-the-Impatient-Second-Edition. If there’s an update
to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Code in Action
The Code in Action videos for this book can be viewed at https://packt.link/L3S8S.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “The
db.sqlite3 file is the default SQLite database file that Django uses for development purposes.”

https://github.com/PacktPublishing/Django-5-for-the-Impatient-Second-Edition
https://github.com/PacktPublishing/
https://packt.link/L3S8S

A block of code is set as follows:

from django.contrib import admin

from django.urls import path

urlpatterns = [

 path('admin/', admin.site.urls),

]

When we wish to draw your attention to a particular part of a code block, the relevant lines or items
are set in bold:

from django.shortcuts import render

def index(request):

 return render(request, 'home/index.html')

Any command-line input or output is written as follows:

python3 --version

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words
in menus or dialog boxes appear in bold. Here is an example: “For Windows, you must select the
Add python.exe to PATH option.”

TIPS OR IMPORTANT NOTES
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at
customercare@packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you have found a mistake in this book, we would be grateful if you would report this to us.
Please visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would be
grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Share Your Thoughts

mailto:customercare%40packtpub.com?subject=
http://www.packtpub.com/support/errata
mailto:copyright%40packt.com?subject=
http://authors.packtpub.com/

Once you’ve read Django 5 for the Impatient, we’d love to hear your thoughts! Please click here to
go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free
content in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781835461556

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/r/1835461557
https://packt.link/free-ebook/9781835461556

1

Install ing Python and Django, and Introducing the
Movies Store Application
Welcome to Django 5 for the Impatient! This book focuses on the key tasks and concepts to help you
learn and build Django applications quickly. It is designed for those of you who don’t need all the
details about Django, except for those that you really need to know. By the end of this book, you will
be confident in creating your own Django projects.

So, what’s Django? Django is a free, open-source web framework for building modern Python web
applications. Django helps you quickly build web apps by abstracting away many of the repetitive
challenges involved in building a website, such as connecting to a database, handling security,
enabling user authentication, creating URL routes, displaying content on a page through templates
and forms, supporting multiple database backends, and setting up an admin interface.

This reduction in repetitive tasks allows developers to focus on building a web application’s
functionality, rather than reinventing the wheel for standard web application functions.

Django is one of the most popular frameworks available and is used by established companies such
as Instagram, Pinterest, Mozilla, and National Geographic. It is also easy enough to be used by start-
ups and to build personal projects.

There are other popular frameworks, such as Flask in Python and Express in JavaScript (for more
information on Express, see Beginning Node.js, Express & MongoDB Development by Greg Lim:
https://www.amazon.com/dp/B07TWDNMHJ/). However, these frameworks only provide the
minimum required functionality for a simple web page, and developers have to do more foundational
work, such as installing and configuring third-party packages on their own for basic website
functionality.

In this chapter, we are going to get acquainted with the application we are going to build, using
Django 5, and get ready to develop our project by installing and setting up everything we need. By
the end of the chapter, you will have successfully created your development environment.

In this chapter, we will be covering the following topics:

Introducing and installing Python

Introducing and installing Django

Creating and running a Django project

https://www.amazon.com/dp/B07TWDNMHJ/

Understanding the Movies Store application

Introducing Django MVT architecture

Technical requirements
In this chapter, we will use Python 3.10+.

The code for this chapter is located at https://github.com/PacktPublishing/Django-5-for-the-
Impatient-Second-Edition/tree/main/Chapter01/moviesstore.

The CiA video for this chapter can be found at https://packt.link/ygUpr

Introducing and install ing Python
Python is a high-level programming language (https://www.python.org/), created in the late 1980s by
Guido van Rossum. The name Python comes from the creator’s affection for the British comedy
group Monty Python and not the “snake,” as is commonly believed.

Python has an open-source license, meaning that developers can modify, use, and redistribute its code
for free without paying the original author.

Python is characterized as a friendly and easy-to-learn programming language. Python can be used to
develop a wide range of applications, including web development, data analysis, artificial
intelligence, scientific computing, and automation.

For now, let’s check whether we have Python installed and, if so, what version we have.

If you are using a Mac, open your Terminal. If you are using Windows, open Command Prompt. For
convenience, we will refer to both the Terminal and Command Prompt as Terminal throughout the
book.

We will need to check whether we have at least Python 3.10 in order to use Django 5. To do so, go to
your Terminal and run the following commands:

For macOS, run this:

python3 --version

For Windows, run this:

python --version

This shows the version of Python you have installed. Make sure that the version is at least 3.10. If it
isn’t, get the latest version of Python by going to https://www.python.org/downloads/ and installing
the version for your OS. For Windows, you must select the Add python.exe to PATH option (to

https://github.com/PacktPublishing/Django-5-for-the-Impatient-Second-Edition/tree/main/Chapter01/moviesstore
https://packt.link/ygUpr
https://www.python.org/
https://www.python.org/downloads/

ensure that the Python interpreter can be accessed from any directory in the command prompt or
Terminal), as shown in Figure 1.1:

Figure 1.1 – Installing Python on Windows

After the installation, run the command again to check the version of Python installed.

The output should reflect the latest version of Python, such as Python 3.12.2 (at the time of writing),
as shown in Figure 1.2:

Figure 1.2 – Checking the Python version on Windows

Now that we have Python installed, let’s move on to introducing and installing Django.

Introducing and install ing Django
Django is a high-level Python web framework that encourages rapid development and clean,
pragmatic design (https://www.djangoproject.com/). Django makes it easier to build better web apps
more quickly and with less code.

There are several ways to install Django; we will use pip to install Django in this book. pip is the
standard package manager for Python to install and manage packages not part of the standard Python
library. pip is automatically installed if you downloaded Python from https://www.python.org/.

First, check whether you have pip installed by going to the Terminal and running the following
commands:

For macOS, run this:

pip3

For Windows, run this:

pip

If you have pip installed, the output should display a list of pip commands, as shown in Figure 1.3:

Figure 1.3 – Checking whether pip is installed on Windows

Next, to install Django, run the following commands:

For macOS, run this:

pip3 install django==5.0

For Windows, run this:

pip install django==5.0

The preceding command will retrieve the Django 5.0 code version and install it on your machine.
Note that there may be newer versions available when you’re reading this book. However, we

https://www.djangoproject.com/
https://www.python.org/

recommend continuing to use Django 5.0 to ensure that the code in this book will function correctly.
After installation, close and reopen your Terminal.

To check whether you have installed Django, run the following commands.

For macOS, run this:

python3 -m django

For Windows, run this:

python -m django

Now, the output will show you all the Django commands you can use, as shown in Figure 1.4:

Figure 1.4 – The Django module commands on macOS

Over the course of the book, you will progressively be introduced to some of the preceding
commands.

NOTE
It is also common to use virtual environments (such as the venv module) to manage your Python and Django projects
and dependencies. For now, we will not use venv to get started quickly on Django. We will learn how to use and configure
venv at the end of this book.

We have all the tools we need to create a Django project. Now, let’s move on to doing that.

Creating and running a Django project
Now that we have Django installed, we are ready to create our Django project.

There are several ways to create Django projects. In this book, we will use django-admin. django-
admin is Django’s command-line utility for administrative tasks. It provides various commands to
help you create, manage, and interact with Django projects, applications, and other related
components.

In the Terminal, navigate to the folder where you want to create your project and run the following
command:

django-admin startproject moviesstore

This will create a moviesstore folder in your current directory. This folder contains our Django
application code. We will discuss its contents later. For now, let’s run our first website on the Django
local web server.

In the Terminal, run the cd command to move into the created folder:

cd moviesstore

Then, run the following command:

For macOS, run this:

python3 manage.py runserver

For Windows, run this:

python manage.py runserver

When you run the aforementioned commands, you start the local web server on your machine (for
local development purposes). There will be a URL link – http://127.0.0.1:8000/ (equivalent to

http://localhost:8000). Open this link in a browser, and you will see the default landing page, as
shown in Figure 1.5:

Figure 1.5 – The landing page of the Django project

This means that your local web server is running and serving the landing page. Sometimes, you will
need to stop the server in order to run other Python commands. To stop the local server, press Ctrl +
C in the Terminal.

We executed our first Django project successfully. Now, it is time to introduce the application we will
develop in this book.

Understanding the Movies Store application
The use of running examples is a prevalent approach found in programming literature. The running
example serves as a means to illustrate the principles of a methodology, process, tool, or technique.
In this book, we will define a Movies Store running example. We will revisit this running example
throughout the book to explain many of the Django concepts and elements in a practical way.

The Movies Store will be a web-based platform where users access information about movies and can
place orders to purchase them.

Now, let’s outline the application’s scope for this particular app:

The Home page will feature a welcoming message.

The About page will provide details about the Movies Store.

The Movies page will exhibit information on available movies and include a filter to search movies by name. Additionally, users
can click on a specific movie to view its details and post reviews.

The Cart page will showcase the movies added to the cart, along with the total price to be paid. Users can also remove movies
from the cart and proceed with purchases.

The Register page will present a form enabling users to sign up for accounts.

The Login page will present a form allowing users to log in to the application.

The Orders page will display the orders placed by the logged-in user.

The Admin panel will encompass sections to manage the store’s information, including creating, updating, deleting, and listing
information.

The Movies Store will be developed using Django (Python), with a SQLite database and Bootstrap (a
CSS framework). Further details about these components will be covered in the forthcoming
chapters.

In Figure 1.6, you’ll find a class diagram outlining the application’s scope and design. The user class
is depicted with its associated data (such as an id, username, email, and password) and is capable of
placing orders. Each order consists of one or more items, which are linked to individual movies. Each
movie will possess its respective data (including an id, name, price, description, and image). Lastly,
users have the ability to create reviews for movies.

Figure 1.6 – The Movies Store class diagram

This book does not delve into the intricacies of class diagrams; hence, we won’t elaborate on
additional details within the diagram (you can refer to this link for additional information about class
diagrams: https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-
diagram-tutorial/). As you progress through the book, you’ll notice the correlation between code and
this diagram. Serving as a blueprint, this diagram guides the construction of our application.

NOTE
Creating a class diagram before commencing coding aids in comprehending the application’s scope and identifying crucial
data points. Additionally, it facilitates understanding the interconnections among various elements of the application. This
diagram can be shared with team members or colleagues for feedback, allowing for adjustments as necessary. Due to its
nature as a diagram, modifications can be implemented quickly. Otherwise, once the project has been coded, the cost of
relocating data from one class to another increases significantly. Check the following statement from the book Building
Microservices by Newman, S. (2015): “I tend to do much of my thinking in the place where the cost of change and the cost
of mistakes is as low as it can be: the whiteboard.”

Based on the previous scope, we will build a Movies Store app that will allow users to view and
search for movies, as shown in Figure 1.7:

https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial/

Figure 1.7 – The movies page with search functionality

Users will be able to sign up, as shown in Figure 1.8:

Figure 1.8 – The Sign Up page

Users will be able to log in, add movies to the cart, and make purchases, as shown in Figure 1.9:

Figure 1.9 – The shopping cart page

Users will also be able to list, create, edit, and delete movie reviews, as shown in Figure 1.10:

Figure 1.10 – A specific movie page with its reviews

Many other functionalities will be developed and explained across the book. Now, let’s see the
architecture we will use to construct the Movies Store application.

Introducing the Django MVT architecture
There are various methodologies and approaches to design and code web applications. One approach
involves consolidating all code into a single file to construct the entire web application. However,
finding errors within such a file, often comprising thousands of lines of code, can be incredibly
challenging. Alternatively, other strategies distribute code across different files and directories.
Additionally, some approaches segment an application into multiple smaller applications dispersed
across several servers, although managing the distribution of these servers presents its own set of
challenges.

Organizing your code effectively presents challenges. This is why developers and computer scientists
have created software architectural patterns. Software architectural patterns offer structural
frameworks or layouts to address common software design issues. By leveraging these patterns, start-

ups and inexperienced developers can avoid reinventing solutions for every new project. Various
architectural patterns exist, including Model-View-Controller (MVC), Model-View-Template
(MVT), layers, service-oriented, and microservices. Each pattern comes with its own set of pros and
cons. Many frameworks, such as Django, adhere to specific patterns in constructing their
applications.

In the case of Django, Django is based on the MVT pattern. This pattern is similar to MVC but with
some differences in the responsibilities of each component:

Models: The model represents the data structure. In Django, models are Python classes that define the structure of the data and
how it interacts with the database. Models handle tasks such as querying a database, performing CRUD (Create, Read, Update,
Delete) operations, and enforcing data validation. In the case of the Movies Store app, Movie, Review, Order and the other classes
from our class diagram will be coded as Django models.

Views: Views in Django are responsible for processing user requests and returning appropriate responses. Views typically receive
HTTP requests from clients, fetch data from the database using models, and render templates to generate HTML responses. In
Django, views are Python functions or classes that accept HTTP requests and return HTTP responses. In the case of the Movies
Store app, we will create views and functions to handle the movies, accounts, and cart, among others.

Templates: Templates are used to generate HTML dynamically. They contain the application’s user interface and define how data
from the views should be displayed to the users. In the case of the Movies Store app, we will create a template to allow users to
log in, a template to list movies, and a template to display the shopping cart, among others.

The MVT pattern offers several benefits such as enhanced code separation, facilitated collaboration
among multiple team members, simplified error identification, increased code reusability, and
improved maintainability. Figure 1.11 illustrates the software architecture of the Movies Store, which
we will develop throughout this book. While it may seem overwhelming now, you will understand
the intricacies of this architecture by the book’s conclusion. We will delve deeper into the architecture
in the final chapters.

Figure 1.11 – The Movies Store software architecture diagram

Let’s briefly analyze this architecture:

Positioned on the left are the clients, which are the users of our application, who use browsers on mobile or desktop devices.
These clients establish connections with the application via the Hypertext Transfer Protocol (HTTP), providing users with a
means to interact with our web application.

On the right side, we have the server, which hosts our application code.

All client interactions first pass for a project-level URL file called urls.py. This file is located in the main project folder called

moviesstore/. URLs will be explored in Chapter 2. This project folder also contains a templates/ folder in which we will

design a reusable base template. Base templates will be explored in Chapter 3.

The project-level URL file passes the interaction to an app-level URL file. For this project, we will design and implement four
Django apps – home, movies, cart, and accounts. Django apps will be explored in Chapter 2.

Each app-level URL file passes the interaction to a views.py file. Views will be explored in Chapter 2.

Views communicate with models, if required, and pass information to the templates, which are finally delivered to the clients as
HTML, CSS, and JS code. Templates will be explored in Chapter 2, and models will be explored in Chapter 5.

In Figure 1.11, the Model, View, and Template layers are highlighted in gray, representing the
common architectural pattern used in Django, which will be utilized throughout this book. We have

four models corresponding to the classes defined in our class diagram (as previously shown in Figure
1.6). The user model does not appear in this diagram because we will reuse a built-in Django user
model.

Therefore, as mentioned earlier, there are different approaches to implementing web applications
with Django. There are even different ways to implement a Django MVT architecture. In the
following chapters, we will see the advantages of adopting an MVT architecture, as presented in
Figure 1.11.

Summary
In this chapter, we learned how to install and use Python, pip, and Django. We also learned how to
create a new Django project and run a Django local web server. Then, we explained the scope of the
Movies Store project. We also illustrated the application data and its relationships through a class
diagram. Additionally, we presented an architecture diagram that showed the main components and
elements of the Movies Store. These diagrams will serve as a blueprint to codify the Movies Store
project in the upcoming chapters.

In the next chapter, we will look inside the project folder that Django has created for us to understand
it better, and we will create our first Django app.

2

Understanding the Project Structure and Creating Our
First App
Django projects contain a predefined structure with some key folders and files. In this chapter, we
will discuss the Django project structure and how some of those folders and files are used to
configure our web applications. Furthermore, Django projects are composed of one or more apps. We
will learn how to create a “home” app, composed of “home” and “about” sections, and how to
register it inside our Django project.

In this chapter, we will cover the following topics:

Understanding the project structure

Creating our first app

Creating a home page

Creating an about page

With all of these topics completed, you will know how to create Django apps and web pages.

Technical requirements
In this chapter, we will be using Python 3.10+. Additionally, we will be using the Visual Studio (VS)
Code editor in this book, which you can download from https://code.visualstudio.com/.

The code for this chapter is located at https://github.com/PacktPublishing/Django-5-for-the-
Impatient-Second-Edition/tree/main/Chapter02/moviesstore.

The CiA video for this chapter can be found at https://packt.link/rzU25

Understanding the project structure
Let’s look at the project files that were created for us in Chapter 1, in the Creating and running a
Django project section. Open the moviesstore project folder in VS Code. You will see the elements
shown in Figure 2.1:

https://code.visualstudio.com/
https://github.com/PacktPublishing/Django-5-for-the-Impatient-Second-Edition/tree/main/Chapter02/moviesstore
https://packt.link/rzU25

Figure 2.1 – The MOVIESSTORE directory structure

Let’s learn about each of these elements.

The moviesstore folder

As you can see in Figure 2.1, there is a folder with the same name as the folder we opened in VS
Code originally – moviesstore. The moviesstore folder contains a set of files to configure the Django
project. Figure 2.2 shows the content of the moviesstore folder:

Figure 2.2 – The moviesstore folder content structure

Let’s briefly look at all the elements under the moviesstore folder:

__pycache__: This folder stores compiled bytecode when we generate our project. You can largely ignore this folder. Its

purpose is to make your project start up a little faster by caching the compiled code, which can then be readily executed.

__init__.py: This file indicates to Python that this directory should be considered a Python package. We can ignore this file.

asgi.py: Django, being a web framework, needs a web server to operate. And since most web servers don’t natively speak

Python, we need an interface to make that communication happen. Django currently supports two interfaces – Web Server
Gateway Interface (WSGI) and Asynchronous Server Gateway Interface (ASGI). The asgi.py file contains an entry point

for ASGI-compatible web servers to serve your project asynchronously.

settings.py: The settings.py file is an important file that controls our project’s settings. It contains several properties;

let’s analyze some of them:

BASE_DIR: Determines where on your machine the project is situated.

SECRET_KEY: This is a secret key for a particular Django project. It is used to provide cryptographic signing and

should be set to a unique, unpredictable value. In a production environment, it should be replaced with a securely
generated key.

DEBUG: Our site can run in debug mode or not. In debug mode, we get detailed information on errors, which is very

useful when we develop our applications. For instance, if we try to run http://localhost:8000/123 in the

browser, we will see a Page not found (404) error (see Figure 2.3):

Figure 2.3 – Accessing an invalid application route

INSTALLED_APPS: This setting specifies the list of all Django applications that are enabled for this project. Each string in the

list represents the Python path to a Django application. By default, Django includes several built-in applications, such as admin,
auth, contenttypes, and sessions. We will see later in this chapter how to create our own applications and how to include them in
this configuration.

MIDDLEWARE: Middleware in Django intercepts and manages the request and response processing flow. The listed middleware is

provided by Django and handles various aspects of request/response processing, including security, session management,
authentication, and more.

ROOT_URLCONF: Specifies the Python path to the root URL configuration for the Django project.

TEMPLATES: Defines the configuration for Django’s template system. It includes information regarding the list of directories that

the system should look in for template source files and other specific template settings.

There are some other properties in settings.py, such as DATABASES, LANGUAGE_CODE, and TIME_ZONE, but we focused

on the more important properties in the preceding list. We will later revisit this file and see how relevant it is when developing our
site.

urls.py: This file contains the URL declarations for this Django project. It could link specific URL paths to functions, classes,

or other URL files to generate a response, or to render a page in response to a browser or URL request. We will later add paths to

this file and better understand how it works.

wsgi.py: This file contains an entry point for WSGI-compatible web servers to serve your project. By default, when we run the

server with the python manage.py runserver command, it uses the WSGI configuration.

manage.py

The manage.py file seen in Figure 2.1 and Figure 2.2 is a crucial element that we will extensively use
throughout this book. This file provides a command-line utility that lets you interact with a Django
project and perform some administrative operations. For example, we earlier ran the following
command in Chapter 1, in the Creating and running a Django project section:

python manage.py runserver

The purpose of the command was to start the local web server. We will later illustrate more
administrative functions, such as one to create a new app – python manage.py startapp.

db.sqlite3

The db.sqlite3 file is the default SQLite database file that Django uses for development purposes.
SQLite is a lightweight, serverless, and self-contained SQL database engine that doesn’t require a
separate server process to operate. It stores an entire database (including tables, indexes, and data) as
a single file (into the db.sqlite3 file). We will not use this file for now; however, we will discuss it in
Chapter 5.

We have learned about the Django project structure and some of its main elements. Now, let’s create
our first Django app.

Creating our first app
A Django app is a self-contained package of code that performs a specific functionality or serves a
particular purpose within a Django project.

A single Django project can contain one or more apps that work together to power a web application.
Django uses the concept of projects and apps to keep code clean and readable.

For example, on a movie review site such as Rotten Tomatoes, as shown in Figure 2.4, we can have
an app for listing movies, an app for listing news, an app for payments, an app for user
authentication, and so on:

Figure 2.4 – The Rotten Tomatoes website

Apps in Django are like pieces of a website. You can create an entire website with one single app, but
it is useful to break it up into different apps, each representing a clear function.

Our Movies Store site will begin with one app. We will later add more as we progress. To add an app,
in the Terminal, stop the server by pressing Cmd+ C. Navigate to the top moviesstore folder (the one
that contains the manage.py file) and run the following in the Terminal:

For macOS, run the following command:

python3 manage.py startapp home

For Windows, run the following command:

python manage.py startapp home

A new folder, home, will be added to the project (see Figure 2.5). As we progress in the book, we will
explain the files that are inside the folder.

Figure 2.5 – The MOVIESSTORE project structure containing the home app

Although our new home app exists in our Django project, Django doesn’t recognize it till we explicitly
add it. To do so, we need to specify it in settings.py. So, go to /moviesstore/settings.py, under
INSTALLED_APPS, and you will see six built-in apps already there.

Add the app name, as highlighted in the following (this should be done whenever a new app is
created):

…

INSTALLED_APPS = [

 'django.contrib.admin',

 'django.contrib.auth',

 'django.contrib.contenttypes',

 'django.contrib.sessions',

 'django.contrib.messages',

 'django.contrib.staticfiles',

 'home',

]

…

We have successfully created our first app and included it in our Django settings project. Now, we are
going to create and serve two pages inside this app.

Creating a home page
Creating a simple page or section in Django usually involves three steps:

1. Configure a URL.

2. Define a view function or class.

3. Create a template.

Let’s see how to apply those steps to create a simple “home” page that will display a “welcome”
message to the final user.

Configuring an URL

Django URLs (Uniform Resource Locators) are patterns used to map incoming HTTP requests to
the appropriate view functions or classes that handle those requests. They define the routing
mechanism for your Django project, specifying which views should be called for different URLs.

There is a main URL configuration file located at /moviesstore/urls.py that currently has the
following code:

…

from django.contrib import admin

from django.urls import path

urlpatterns = [

 path('admin/', admin.site.urls),

]

When a user types a URL (related to our Django application) in the browser, a request first passes
through the /moviesstore/urls.py file, and it will try to match a path object in urlpatterns – for
example, if a user enters http://localhost:8000/admin into the browser, the URL will match the
admin/ path. The server will then respond with the Django admin page (as shown in Figure 2.6),
which we will explore later:

Figure 2.6 – The /admin route – the admin page

Conversely, if a user enters localhost:8000/hello, Django will return a 404 not found page because
there aren’t any matching paths in the URL configuration file.

Creating a path for the home page
There are two ways to create a custom path for a page:

Create the path in the project-level URL file (in /moviesstore/urls.py)

Create the path in a urls.py file, defined at the app level (in /home/urls.py).

We will use the second option in this book, since it allows us to keep our URLs separate and
organized.

In /home/, create a new file called urls.py. This file will contain the path relating to the URLs of the
home app. For now, fill it in with the following:

from django.urls import path

from . import views

urlpatterns = [

 path('', views.index, name='home.index'),

]

Let’s explain the previous code:

We import the path function, which is used to define URL patterns in Django.

We import the views file. In the next section, we will implement an index function inside the views file. That function will

render a template that contains a “welcome” message.

We define the urlpatterns for the home app. In this case, inside the urlpatterns list, we add a new path object with three

arguments:

The first argument, '', represents the URL pattern itself. In this case, it’s an empty string, indicating the root URL.

This means that when the root URL of the application is accessed (localhost:8000/), it will match this path.

The second argument, views.index, refers to the view function that will handle the HTTP request. Here,

views.index indicates that the index function in the views file is responsible for processing the request.

The third argument, name='home.index', is the name of the URL pattern. This name is used to uniquely identify

the URL pattern and can be referenced in other parts of the Django project, such as templates or other URL patterns.

Now, let’s proceed to define the views.index function code.

Defining a view function
Django views are Python functions or classes that receive web requests and return web responses.
They contain the logic to process HTTP requests and generate appropriate HTTP responses, typically
in the form of HTML content to be rendered in the user’s web browser.

Our home app already includes a views.py file; let’s take advantage of it and make a simple
modification. In /home/views.py, add the following in bold:

from django.shortcuts import render

def index(request):

 return render(request, 'home/index.html')

Let’s explain the previous code:

By default, the views file imports the render function, which is used to render templates and return an HTTP response with

the rendered content.

We define an index function. This function takes one parameter, request, which represents the HTTP request received by the

server.

Finally, the index function returns a rendered template. The render function takes the request as the first argument, and the

second argument ('home/index.html') represents the path to the template file to be rendered. In the next section, we will

create that template.

We have now connected the '' path with the proper views.index function, but we are missing the
connection between the views.index function and the 'home/index.html' template. So, let’s
implement the template.

Creating a template
Django templates are text files containing HTML, along with Django template language (DTL)
syntax, which describes the structure of a web page. Django templates allow you to dynamically
generate HTML content by inserting variables, loops, conditionals, and other logic into the HTML
markup.

Our “home” app doesn’t include a location to store templates, so let’s create it. In /home/, create a
templates folder. Then, in /home/templates/, create a home folder.

Now, in /home/templates/home/, create a new file, index.html. This will be the full HTML page for
the “home” page. For now, fill it in with the following:

<!DOCTYPE html>

<html>

<head>

 <title>Home page</title>

</head>

<body>

 <h1>Welcome to the Home Page</h1>

</body>

</html>

This file contains a simple HTML code with a “welcome” message.

NOTE
We suggest storing your app templates under the next directory structure –
app_name/templates/app_name/my_template.html. Sometimes, different apps can contain templates with the

same name, which could lead to potential name conflicts in template resolution. By using the previous strategy, you can
define templates with the same name in different Django apps without any potential name conflict.

We have completed the connection between the URL, view function, and template. However, Django
doesn’t know how to use our /home/urls.py file. So, let’s connect this file to our main URL
configuration file, and then we will have completed the puzzle.

Connecting a project-level URL file with an app-level URL file

In /moviesstore/urls.py, add the following in bold:

…

from django.contrib import admin

from django.urls import path, include

urlpatterns = [

 path('admin/', admin.site.urls),

 path('', include('home.urls')),

]

Let’s explain the previous code:

We modify the code to also import the include function, which is used to include URLs from other URL configuration files.

We add a new path object to the urlpatterns list. The empty string, '', represents the base URL to include the URLs from

the home.urls file.

Now, save those files, run the server, and go back to http://localhost:8000; you should see the
home page displayed (Figure 2.7):

Figure 2.7 – The home page

NOTE
When we make changes to a file and save it, Django observes the file changes and reloads the server with them.
Therefore, we don’t have to manually restart the server each time there is a code change.

Now that we have our “home” page up and running, let’s repeat the process to create the “about”
page.

Creating an about page
Now that we learned how to create a simple page, let’s repeat the process to create the about page.
We will follow these three steps:

1. Configure the about URL.

2. Define the about function.

3. Create the about template.

Let’s start.

Configuring the about URL

In /home/urls.py, add the following path in bold:

from django.urls import path

from . import views

urlpatterns = [

 path('', views.index, name='home.index'),

 path('about', views.about, name='home.about'),

]

So, if a URL matches the /about path, it will execute the about function defined in the views file.

Defining about function

In /home/views.py, add the following in bold:

from django.shortcuts import render

def index(request):

 return render(request, 'home/index.html')

def about(request):

 return render(request, 'home/about.html')

The about function is similar to the index function. This function renders the 'home/about.html'
template, which will be implemented next.

Creating about template

Now, in /home/templates/home/, create a new file, about.html. This file contains the HTML for the
about page. For now, fill it in with the following:

<!DOCTYPE html>

<html>

<head>

 <title>About page</title>

</head>

<body>

 <h1>Welcome to the About Page</h1>

</body>

</html>

Save the files, and when you navigate to localhost:8000/about, it will show the about page (Figure
2.8):

Figure 2.8 – The about page

NOTE
When we executed the command to create the home app, some folders and files were automatically created for us. For
the home app, we won’t use many of them. So, you can optionally delete the following folders and files to keep your
application clean and simple – migrations/, admin.py, models.py, and tests.py.

We quickly created our second page, “about.” Now, we hope you have a better understanding of how
URLs, views, and templates connect.

Summary
In this chapter, we discussed the Django project structure. We analyzed some of the most important
project folders, files, and their functionalities. We saw how a web project can be composed of several
applications, and we learned how to create a Django app. We also learned how URLs, views, and
templates connect to create web pages. We created a couple of pages and loaded them into our local
web server. In the next chapter, we will see how to improve the look and feel of our Django
applications by using base templates and a CSS framework.

3

Designing a Base Template
Django projects can consist of dozens or hundreds of template files. Sometimes, these files can
contain duplicated HTML and CSS code, which affects the project’s maintainability. In this chapter,
we introduce the concept of base templates and how they can be used to reduce duplicated template
code. We will also improve the look and feel of our application by designing a base template that
includes a header and a footer, as well as links to different pages.

In this chapter, we will be covering the following topics:

Creating a base template with Bootstrap

Updating the Home page to use the base template

Updating the About page to use the base template

Adding a header section

Adding a footer section

In the end, you will learn the importance of base templates and how they can be used to reduce
duplicated code and improve the look and feel of your web applications.

Technical requirements
In this chapter, we will be using Python 3.10+. Additionally, we will be using the VS Code editor in
this book, which you can download from https://code.visualstudio.com/.

The code for this chapter is located at https://github.com/PacktPublishing/Django-5-for-the-
Impatient-Second-Edition/tree/main/Chapter03/moviesstore.

The CiA video for this chapter can be found at https://packt.link/psU29

Creating a base template with Bootstrap
We currently have two templates (index.html and about.html) that duplicate the structure of the site
and some HTML tags. Currently, it doesn’t seem like a serious issue. However, once the application
starts growing, we will have a lot of duplicated HTML code spread over dozens of template files. To
avoid this issue, we will create a base template that contains the main structure of the site over a
single file, and the other templates will extend this base template.

https://packt.link/psU29

Introducing Bootstrap

Bootstrap is the most popular CSS framework for developing responsive and mobile-first websites
(see Figure 3.1). Bootstrap provides a set of HTML, CSS, and JavaScript components and utilities
that developers can use to build modern user interfaces quickly. For Django projects, a developer can
design the user interface from scratch if they want to. However, as this book is not about user
interfaces, we will take advantage of CSS frameworks (such as Bootstrap) and use some of their
elements and examples to create something that looks professional. You can find out more about
Bootstrap at https://getbootstrap.com/.

Figure 3.1 – The Bootstrap site

Introducing Django template language (DTL)

We will build the base template as a combination of Bootstrap, HTML, CSS, JavaScript, and DTL.

DTL is a templating language used within the Django web framework for building dynamic web
pages (https://docs.djangoproject.com/en/5.0/topics/templates/). It is designed to separate the
presentation layer from the business logic of an application, promoting clean and maintainable code.

Some Django template language key features include the following:

Double curly braces: Variables, expressions, and template tags are enclosed within double curly braces. For example, {{

variable }}.

https://getbootstrap.com/
https://docs.djangoproject.com/en/5.0/topics/templates/

Template tags: Control structures and logic are defined within template tags, which are enclosed within {% %}. Template tags

allow for loops, conditionals, and other control flow statements. For example, {% if condition %} ... {% endif %}.

Comments: Comments in DTL are enclosed within {# #} and are not rendered in the final output HTML.

Template inheritance: Django templates support inheritance, allowing for the creation of base templates that define the overall
structure and layout of a page, with child templates inheriting and overriding specific blocks or sections.

Creating a base template

The base template will serve as a “global” template (which will be used across all pages and apps).
So, we will add it to our main project folder. In the moviesstore/ folder (the directory that contains
the settings.py file), create a folder called templates. In that folder, create a file called base.html.
For now, fill it in with the following:

<!DOCTYPE html>

<html>

 <head>

 <title>{{ template_data.title }}</title>

 <link href=

 "https://cdn.jsdelivr.net/npm/bootstrap@5.3.3/

 dist/css/bootstrap.min.css" rel="stylesheet"

 crossorigin="anonymous">

 <link rel=

 "stylesheet" href="https://cdnjs.cloudflare.com/

 ajax/libs/font-awesome/6.1.1/css/all.min.css">

 <link href=

 "https://fonts.googleapis.com/

 css2?family=Poppins:wght@300;400;500;600;700&display=

 swap" rel="stylesheet">

 <script src=

 "https://cdn.jsdelivr.net/npm/bootstrap@5.3.3/dist/

 js/bootstrap.bundle.min.js"crossorigin="anonymous">

 </script>

 <meta name="viewport" content="width=device-width,

 initial-scale=1" />

 </head>

 <body>

 <!-- Header -->

 <!-- Header -->

 <div>

 {% block content %}

 {% endblock content %}

 </div>

 <!-- Footer -->

 <!-- Footer -->

 </body>

</html>

The previous file contains a base HTML structure for our site. Let’s review some important aspects
of the previous code:

The head tag contains the title tag, which uses DTL double curly braces to display the information of a variable ({{

template_data.title }}). Later, we will see how to pass that variable from views to this template. It also contains some

links and a script to include Bootstrap and some fonts for our site. We take some of those links from this site:
https://getbootstrap.com/docs/5.3/getting-started/introduction/#cdn-links.

The body tag contains an HTML comment indicating the location of the header (we will later include the header in that position)

and div, which includes a couple of DTL template tags. {% block %} and {% endblock %} are template tags used for

template inheritance. This is a template tag that defines a block named content. Blocks are placeholders in the template that can

be overridden by child templates. The content within this block will be replaced by the content defined in a child template that
extends this template (we will see it later in action). It also contains an HTML comment indicating the location of the footer (we
will later include the footer in that position).

Registering the base template

Finally, we need to register the moviesstore/templates folder in our application settings. We need to
import the os module and include the new template path in our /moviesstore/settings.py file. In
/moviesstore/settings.py, add the following in bold:

…

import os

from pathlib import Path

…

ROOT_URLCONF = 'moviesstore.urls'

TEMPLATES = [

 {

 'BACKEND': 'django.template.backends.django.

 DjangoTemplates',

 'DIRS': [os.path.join(BASE_DIR,

 'moviesstore/templates')],

 'APP_DIRS': True,

 …

Now that we have defined our base template structure, let’s update the Home and About pages to
extend this template.

Updating the home page to use the base template
The new home page will extend the base template; it will include a background with an image and it
will include custom CSS. Let’s create the new home page.

Creating the new index template

In /home/templates/home/index.html, replace the entire template code with the following:

{% extends 'base.html' %}

{% block content %}

<header class="masthead bg-index text-white text-center

 py-4">

 <div class="container d-flex align-items-center flex-

 column pt-2">

 <h2>Movies Store</h2>

 <p>Your Ticket to Unlimited Entertainment!</p>

 </div>

</header>

<div class="p-3">

 <div class="container">

 <div class="row mt-3">

 <div class="col mx-auto text-center mb-3">

 <h4>Welcome to the best movie store!!</h4>

 </div>

 </div>

 </div>

</div>

{% endblock content %}

Let’s explain the previous code:

The new index.html file now extends the base.html template.

The code that is inside {% block content %} {% endblock content %} will be injected inside div of the

base.html template file. This code defines a couple of messages and uses some custom CSS classes that will be defined next.

Creating a custom CSS file

In the moviesstore/ folder (the directory that contains the settings.py file), create a folder called
static. In that folder, create a subfolder called css. Then, in moviesstore/static/css/ create a file
called style.css. For now, fill it in with the following:

.bg-index{

 background: url("/static/img/background.jpg") no-repeat

 fixed;

 background-size: 100% auto;

}

The previous code defines a CSS class called bg-index, which will be used to display an image as a
background on the home page.

Storing an image

Let’s also include the background.jpg image in our project. In moviesstore/static, create a folder
called img. Then, in moviesstore/static/img/, download and store the background.jpg image from
this link: https://github.com/PacktPublishing/Django-5-for-the-Impatient-Second-
Edition/blob/main/Chapter03/moviesstore/moviesstore/static/img/background.jpg (as shown in
Figure 3.2).

https://github.com/PacktPublishing/Django-5-for-the-Impatient-Second-Edition/blob/main/Chapter03/moviesstore/moviesstore/static/img/background.jpg

Figure 3.2 – Including a background image under the project structure

Serving the static fi les

We have defined a couple of static files, a CSS file, and a JPG file. To be able to use them or display
them in our application, we need to register the folder that contains them. Add the following code in
bold at the end of the /moviesstore/settings.py file:

…

DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField'

STATICFILES_DIRS = [

 BASE_DIR / 'moviesstore/static/',

]

Updating the base template to use the custom CSS and
load static fi les

We also need to update the base template to link the custom CSS we previously created, and we need
to use a custom DTL tag to load the static files. In /moviesstore/templates/base.html, add the
following in bold:

<!DOCTYPE html>

<html>

 {% load static %}

 <head>

 <title>{{ template_data.title }}</title>

 …

 <link rel="stylesheet" type="text/css"

 href="{% static 'css/style.css' %}">

 <meta name="viewport"

 content="width=device-width, initial-scale=1" />

 </head>

 …

In the previous code, the load static template tag is used to load the static files in the base.html
template. Once we have used this tag, we can use the static template tag to refer to specific static
files to be loaded. It will search for the static files based on the STATICFILES_DIRS folder location.

Now, save those files, run the server, and go back to http://localhost:8000; you should see the new
home page displayed (Figure 3.3). Check that the tab title doesn’t appear, as we need to send the
template_data.title variable from the view function to the template (which is carried out next).

Figure 3.3 – The new home page with the missing tab title

NOTE
If you have problems loading the background image, we recommend you stop the server and run it again or clear the
browser cache. Also, try to access the image file directly from the browser to check whether the image was loaded
properly (http://localhost:8000/static/img/background.jpg).

Updating the views index function

Finally, let’s pass the title from the view function to the templates. In /home/views.py, add the
following in bold:

from django.shortcuts import render

def index(request):

 template_data = {}

 template_data['title'] = 'Movies Store'

 return render(request, 'home/index.html', {

 'template_data': template_data})

def about(request):

 return render(request, 'home/about.html')

Let’s explain the previous code:

We create a Python dictionary called template_data. We will always use this dictionary when we need to pass information

from view functions to templates.

We add a key called title to the template_data dictionary. title will be used to define the browser tab title. Remember

that template_data.title is used in the base.html template.

We modify the render function to pass a third argument. This time we pass the template_data variable, which will be

available across the home/index.html template or the templates that it extends.

Figure 3.4 displays the updated Home page with the proper browser tab title.

http://localhost:8000/static/img/background.jpg

Figure 3.4 – New home page with proper browser tab title

Updating the About page to use the base template
The new About page will also extend the base template, and it will include a dummy text about the
page and an image.

Creating the new About template

In /home/templates/home/about.html, replace the entire template code with the following:

{% extends 'base.html' %}

{% block content %}

{% load static %}

<div class="p-3">

 <div class="container">

 <div class="row mt-3">

 <div class="col-md-6 mx-auto mb-3">

 <h2>About</h2>

 <hr />

 <p>

 At Movies Store, we offer a vast digital library

 that spans across genres, ensuring there's

 something for every movie lover. Browse our

 extensive collection of films, including the

 latest releases, timeless classics, and hidden

 gems. With just a few clicks, you can rent or

 purchase your favorite titles and instantly

 stream them in high-definition quality.

 </p>

 <p>

 Discover the convenience of our digital platform,

 where you have the flexibility to watch movies

 on your preferred device, whether it's a smart

 TV, tablet, or smartphone. With our intuitive

 search and recommendation features, finding your

 next movie night pick has never been easier.

 </p>

 </div>

 <div class="col-md-6 mx-auto mb-3 text-center">

 <img src="{% static 'img/about.jpg' %}"

 class="max-width-100"

 alt="about" />

 </div>

 </div>

 </div>

</div>

{% endblock content %}

Let’s explain the previous code:

The new about.html file now extends the base.html template.

We use {% block content %} {% endblock content %} to inject the proper HTML code inside div of the

base.html template file. This code defines a paragraph about the page and displays an image that will be stored next.

We also use the {% load static %} tag since this template loads a custom image by using the static template tag.

Storing the about.jpg image

Let’s also include the about.jpg image in our project. In moviesstore/static/img/, download and
store the about.jpg image from this link: https://github.com/PacktPublishing/Django-5-for-the-
Impatient-Second-Edition/blob/main/Chapter03/moviesstore/moviesstore/static/img/about.jpg.

Updating the views about function

Finally, let’s pass the title from the view about function to the templates. In /home/views.py, add the
following in bold:

from django.shortcuts import render

…

def about(request):

 template_data = {}

 template_data['title'] = 'About'

 return render(request,

 'home/about.html',

 {'template_data': template_data})

Similar to the index function, we define the template_data dictionary and create the proper title key
with its value. Then, we pass the template_data variable to the templates.

Now, save those files, run the server, and go to http://localhost:8000/about; you should see the new
About page displayed (Figure 3.5).

https://github.com/PacktPublishing/Django-5-for-the-Impatient-Second-Edition/blob/main/Chapter03/moviesstore/moviesstore/static/img/about.jpg
http://localhost:8000/about

Figure 3.5 – New About page

Now that we have updated the home and About pages, let’s improve the base template by adding a
header section that includes the website menu options.

Adding a header section
To complete the base.html template, we need to include a header section and a footer section. Let’s
start with the header.

Updating the base template

In /moviesstore/templates/base.html, add the following in bold:

 …

 <body>

 <!-- Header -->

 <nav class="p-3 navbar navbar-dark bg-dark

 navbar-expand-lg">

 <div class="container">

 <a class="navbar-brand"

 href="{% url 'home.index' %}">

 <img src="{% static 'img/logo.png' %}" alt="logo"

 height="40" />

 <button class="navbar-toggler" type="button"

 data-bs-toggle="collapse"

 data-bs-target="#navbarNavAltMarkup"

 aria-controls="navbarNavAltMarkup"

 aria-expanded="false"

 aria-label="Toggle navigation">

 </button>

 <div class="collapse navbar-collapse"

 id="navbarNavAltMarkup">

 <div class="navbar-nav ms-auto navbar-ml">

 <a class="nav-link"

 href="{% url 'home.about' %}">About

 </div>

 </div>

 </div>

 </nav>

 <!-- Header -->

 …

We included a responsive navbar between the Header HTML comments. This responsive navbar
includes a logo.png file that links to the home.index URL, and includes an About text that links to the
home.about URL. Check that we used the url template tag, as this tag links to the specified URL
pattern name.

NOTE
The construction of the previous header section is inspired by the Bootstrap navbar component. You can take a look at

this component and its available options at this link: https://getbootstrap.com/docs/5.3/components/navbar/.

Storing the logo image

Let’s include the logo.png image in our project. In moviesstore/static/img/, download and store the
logo.png image from this link: https://github.com/PacktPublishing/Django-5-for-the-Impatient-
Second-Edition/blob/main/Chapter03/moviesstore/moviesstore/static/img/logo.png.

Updating the style.css

Finally, let’s include a couple of CSS classes in our custom CSS file. In
/moviesstore/static/css/style.css, add the following in bold at the end of the file:

…

.navbar a.nav-link {

 color: #FFFEF6 !important;

}

.bg-dark {

 background-color: #2E2E2E !important;

}

Now, save those files, run the server, and go to http://localhost:8000/; you should see the home page
with the new header section (Figure 3.6).

https://getbootstrap.com/docs/5.3/components/navbar/
https://github.com/PacktPublishing/Django-5-for-the-Impatient-Second-Edition/blob/main/Chapter03/moviesstore/moviesstore/static/img/logo.png
http://localhost:8000/

Figure 3.6 – The home page with the header section

This new header section is responsive. If you reduce the browser window width, you will see a
responsive navbar, thanks to the use of different Bootstrap classes (see Figure 3.7).

Figure 3.7 – Home page with a responsive navbar

The base template now includes a proper header section. Let’s finalize this template by adding a
footer section.

Adding a footer section
Let’s complete the website structure with the inclusion of a footer.

Updating the base template

In /moviesstore/templates/base.html, add the following in bold:

 …

 <!-- Footer -->

 <section class="p-3 ms-footer d-none d-md-block">

 <div class="container">

 <div class="row mt-3 text-white">

 <div class="col-md-6 col-lg-6 col-xl-6

 mx-auto mb-4">

 MOVIES STORE

 <hr />

 <p>

 Welcome to Movies Store, your premier online

 destination for a cinematic adventure like no

 other! Dive into the world of movies from the

 comfort of your own home with our user-

 friendly and immersive online movie store.

 </p>

 </div>

 <div class="col-md-3 col-lg-3 col-xl-3

 mx-auto mb-4">

 LINKS

 <hr />

 <p><a class="nav-link"

 href="{% url 'home.about' %}">

 About

 </p>

 </div>

 <div class="col-md-3 col-lg-3 col-xl-3 mx-auto

 mb-4">

 CONTACT

 <hr />

 <p><i class="fas fa-home me-2"></i>

 150-2345 Tokyo-to, Japan

 </p>

 <p><i class="fas fa-envelope me-2"></i>

 info@moviesstore.com

 </p>

 <p><i class="fas fa-phone me-2"></i>

 +81 03-3333-3333

 </p>

 </div>

 </div>

 </div>

 </section>

 <section class="p-3 ms-footer-bottom bg-dark">

 <div class="container d-flex

 justify-content-between">

 <div class="me-5 text-white">

 DESIGNED BY

 <a href="https://www.x.com/danielgarax"

 target="_blank">DANIEL CORREA &

 <a href="https://www.x.com/greglim81"

 target="_blank">GREG LIM

 </div>

 <div class="text-white">

 © Copyright - 2024

 </div>

 </div>

 </section>

 <!-- Footer -->

 …

We included a footer section with information on the website, some links, and the book’s author
names and links to their X accounts.

Updating the style.css

Finally, let’s include some custom CSS classes. In /moviesstore/static/css/style.css, add the
following in bold at the end of the file:

…

.ms-footer {

 background-color: #202020;

}

.ms-footer p {

 color: #7F7F7F;

 font-size: 13px;

}

.ms-footer a:hover {

 color: #6ab43e;

 text-decoration: none;

}

.ms-footer-bottom span{

 font-size: 13px;

 line-height: 38px;

}

.ms-footer-bottom a {

 color: #6ab43e;

 text-decoration: none;

}

.ms-footer-bottom a:hover {

 color: #fff;

}

Now, save those files, run the server, and go to http://localhost:8000/; you should see the home page
with the new footer section (Figure 3.8).

http://localhost:8000/

Figure 3.8 – The home page with the footer section

You can also click the About link, and you will see the About page with the same website structure.

Summary
In this chapter, we learned how to create base templates that reduce duplicated code. We improved
our application interface with the inclusion of a header and footer, and we learned how to manage
static files. We redesigned the home and About pages to extend the base template and created proper
links to those pages. In the next chapter, we’ll learn how to start managing movies.

4

Creating a Movies App with Dummy Data
Currently, our project contains a single application with a couple of sections that display static
information. Web applications are more complex. In this chapter, we will learn how to develop more
complex applications, such as the movies app. The movies app will serve to list movies and enable
users to click on them to display their data on a separate page. For now, we will use dummy data to
simulate the movie data.

In this chapter, we will be covering the following topics:

Creating the movies app

Listing movies with dummy data

Listing individual movies

Adding a link in the base template

By the end, we will know how to create more complex Django apps and how to manage information
inside those apps.

Technical requirements
In this chapter, we will be using Python 3.10+. Additionally, we will be using the VS Code editor in
this book, which you can download from https://code.visualstudio.com/.

The code for this chapter is located at https://github.com/PacktPublishing/Django-5-for-the-
Impatient-Second-Edition/tree/main/Chapter04/moviesstore.

The CiA video for this chapter can be found at https://packt.link/WmJR1

Creating the movies app
Currently, we have a home app that contains the logic to navigate between the Home and About
pages. Now, we are going to start designing and implementing the movies logic. We prefer to
separate this logic from the home app. So, let’s create a new Django app. We will follow the next
steps: (i) creating the movies app, (ii) adding the movies app to settings, and (iii) including the
movies URL file in the project-level URL file.

https://packt.link/WmJR1

Creating the movies app

Navigate to the top moviesstore folder (the one that contains the manage.py file) and run the
following in the Terminal:

For macOS, run the following command:

python3 manage.py startapp movies

For Windows, run the following command:

python manage.py startapp movies

Figure 4.1 shows the new project structure. Verify that it matches your current folder structure.

Figure 4.1 – The MOVIESSTORE project structure containing the movies app

Adding the movies app to settings

Remember that for each newly created app, we must register it in the settings.py file. In
/moviesstore/settings.py, under INSTALLED_APPS, add the following in bold:

…

INSTALLED_APPS = [

 'django.contrib.admin',

 'django.contrib.auth',

 'django.contrib.contenttypes',

 'django.contrib.sessions',

 'django.contrib.messages',

 'django.contrib.staticfiles',

 'home',

 'movies',

]

…

Including the movies URL fi le in the project-level URL
file

In /moviesstore/urls.py, add the following in bold:

…

from django.contrib import admin

from django.urls import path, include

urlpatterns = [

 path('admin/', admin.site.urls),

 path('', include('home.urls')),

 path('movies/', include('movies.urls')),

]

Similar to the inclusion of the home.urls file, we include the movies.urls file, which will contain the
URLs with respect to the movies app. All the URLs defined in the movies.urls file will contain a
movies/ prefix (as defined in the previous path). We will create the movies.urls file later.

Now that we have created and included the movies app, we are ready to code the functionalities of
this app. Let’s start by listing movies.

Listing movies with dummy data
Listing movies involves a series of steps similar to those followed when we implemented the Home
and About pages. We will follow the next steps: (i) configuring the movies URL, (ii) defining the
views index function, and (iii) creating a movies index template.

Configuring the movies URL

In /movies/, create a new file called urls.py. This file will contain the path regarding the URLs of
the movies app. For now, fill it in with the following:

from django.urls import path

from . import views

urlpatterns = [

 path('', views.index, name='movies.index'),

]

We defined a '' path, but remember that the project-level URLs file defined a /movies prefix for this
file. So, if a URL matches the /movies path, it will execute the index function defined in the views
file. We will implement the index function next.

Defining the views index function

In /movies/views.py, add the following in bold:

from django.shortcuts import render

movies = [

 {

 'id': 1, 'name': 'Inception', 'price': 12,

 'description': 'A mind-bending heist thriller.'

 },

 {

 'id': 2, 'name': 'Avatar', 'price': 13,

 'description': 'A journey to a distant world and

 the battle for resources.'

 },

 {

 'id': 3, 'name': 'The Dark Knight', 'price': 14,

 'description': 'Gothams vigilante faces the Joker.'

 },

 {

 'id': 4, 'name': 'Titanic', 'price': 11,

 'description': 'A love story set against the

 backdrop of the sinking Titanic.',

 },

]

def index(request):

 template_data = {}

 template_data['title'] = 'Movies'

 template_data['movies'] = movies

 return render(request, 'movies/index.html',

 {'template_data': template_data})

Let’s explain the previous code:

We defined a variable called movies. This variable is a list of dictionaries, where each dictionary represents information about a

particular movie. For example, at index 0, we have the movie with id=1 (the Inception movie). We have four dummy

movies. We will retrieve movie data from a SQLite database in upcoming chapters.

We also have an index function. This function will render the movies/index.html template, but first, it passes a page title

and the complete list of movies to that template.

Creating a movies index template

In /movies/, create a templates folder. Then, in /movies/templates/, create a movies folder.

Now, in /movies/templates/movies/, create a new file, index.html. For now, fill it in with the
following:

{% extends 'base.html' %}

{% block content %}

{% load static %}

<div class="p-3">

 <div class="container">

 <div class="row mt-3">

 <div class="col mx-auto mb-3">

 <h2>List of Movies</h2>

 <hr />

 </div>

 </div>

 <div class="row">

 {% for movie in template_data.movies %}

 <div class="col-md-4 col-lg-3 mb-2">

 <div class="p-2 card align-items-center pt-4">

 <img src="{% static 'img/about.jpg' %}"

 class="card-img-top rounded">

 <div class="card-body text-center">

 {{ movie.name }}

 </div>

 </div>

 </div>

 {% endfor %}

 </div>

 </div>

</div>

{% endblock content %}

Let’s explain the previous code:

We extend the base.html template.

We define a heading element with the text List of Movies.

We use the DTL for template tag to iterate through each movie, and we display the movie name. For now, we are showing a

default image for all movies; we will upload and display proper images for each movie in upcoming chapters.

NOTE
We used the Bootstrap card component as a base to design the way movies are displayed. You can find more information
here: https://getbootstrap.com/docs/5.3/components/card/.

Now, save those files, run the server, and go to http://localhost:8000/movies; you should see the new
List of Movies page (Figure 4.2).

https://getbootstrap.com/docs/5.3/components/card/
http://localhost:8000/movies

Figure 4.2 – The List of Movies page

We are able to see the information of all movies together. Now, let’s implement a functionality to list
individual movies.

Listing individual movies
To list individual movies, we will follow these steps: (i) configuring individual movies URLs, (ii)
defining the views show function, (iii) creating a movies show template, and (iv) adding individual
movie links on the movies page.

Configuring individual movies URLs

In /movies/urls.py, add the next path in bold:

from django.urls import path

from . import views

urlpatterns = [

 path('', views.index, name='movies.index'),

 path('<int:id>/', views.show, name='movies.show'),

]

This path is a little different from the previously defined paths. The <int:id> part indicates that this
path expects an integer value to be passed from the URL and that the integer value will be associated
with a variable named id, which will be used to identify which movie data to show. For example, if
we access movies/1, the application will display the data of the movie with id=1. Finally, that path
will execute the show function defined in the views file. You can learn more about Django URLs here:
https://docs.djangoproject.com/en/5.0/topics/http/urls/.

https://docs.djangoproject.com/en/5.0/topics/http/urls/

Defining the views show function

In /movies/views.py, add the following in bold at the end of the file:

…

def show(request, id):

 movie = movies[id - 1]

 template_data = {}

 template_data['title'] = movie['name']

 template_data['movie'] = movie

 return render(request, 'movies/show.html',

 {'template_data': template_data})

Let’s explain the previous code:

We define the show function. This function takes two parameters: request and id (id is collected from the URL).

Then, we extract the movie data with that ID. We subtract one unit since we stored the movie with id=1 in the movies list index

0, the movie with id=2 in the movies list index 1, and so on.

Finally, we pass the movie name and the individual movie to the movies/show.html template.

Creating a movies show template

In /movies/templates/movies/, create a new file, show.html. For now, fill it in with the following:

{% extends 'base.html' %}

{% block content %}

{% load static %}

<div class="p-3">

 <div class="container">

 <div class="row mt-3">

 <div class="col-md-6 mx-auto mb-3">

 <h2>{{ template_data.movie.name }}</h2>

 <hr />

 <p>Description: {{

 template_data.movie.description }}</p>

 <p>Price: ${{

 template_data.movie.price }}</p>

 </div>

 <div class="col-md-6 mx-auto mb-3 text-center">

 <img src="{% static 'img/about.jpg' %}"

 class="rounded" />

 </div>

 </div>

 </div>

</div>

{% endblock content %}

The previous code displays the individual movie information.

Adding individual movie links on the movies page

In /movies/templates/movies/index.html, add the following in bold:

 …

 {% for movie in template_data.movies %}

 <div class="col-md-4 col-lg-3 mb-2">

 <div class="p-2 card align-items-center pt-4">

 <img src="{% static 'img/about.jpg' %}"

 class="card-img-top rounded">

 <div class="card-body text-center">

 <a href="{% url 'movies.show' id=movie.id %}"

 class="btn bg-dark text-white">

 {{ movie.name }}

 </div>

 </div>

 </div>

 {% endfor %}

 …

We added a link from each movie name to each individual movie page. We used the url template tag
to link to the specified URL pattern name (movie.show). But we also specified a parameter to be
passed to the URL (id=movie.id). In this case, it’s setting the id parameter to the id attribute of the
movie object. This is useful for URLs that require dynamic parts, such as details for a specific movie.

Now, save those files, run the server, and go to http://localhost:8000/movies. You will see that
each movie name has become a button that can be clicked. Click on a movie name, and you will be
redirected to the individual movie page (Figure 4.3).

Figure 4.3 – Individual movie page

We can list all movies and navigate to individual movies; however, we haven’t added a link to the
movies section. Let’s implement this link in the next section.

Adding a link in the base template
Finally, let’s add the movies link in the base template. In /moviesstore/templates/base.html, in the
header section, add the following in bold:

 …

 <div class="collapse navbar-collapse"

 id="navbarNavAltMarkup">

 <div class="navbar-nav ms-auto navbar-ml">

 <a class="nav-link" href=

 "{% url 'home.about' %}">About

 <a class="nav-link" href=

 "{% url 'movies.index' %}">Movies

 </div>

 </div>

 …

Now, save those files, run the server, and go to http://localhost:8000/movies. You will see the new
Movies menu option in the header (Figure 4.4).

Figure 4.4 – Movies page updated

Summary

In this chapter, we recapped how to create a Django app. We created a movies app that allows listing
movies and individual movies. We learned how to pass information through the URLs, how to create
dummy data, how to use the for template tag, and how to link different pages. We hope this serves as
a solid foundation to move on to the next part of our project, where we will go through more
advanced topics such as models to make our site database-driven.

5

Working with Models
Storing data in a database is a common practice in most web applications. In a Django project, it
involves working with Django models. In this chapter, we will create a database model (for example,
a movie) and Django will turn this model into a database table for us. We will also explore a powerful
built-in admin interface that provides a visual way of managing all aspects of a Django project, such
as users and making changes to model data.

In this chapter, we will cover the following topics:

Creating our first model

Installing Pillow

Managing migrations

Accessing the Django admin interface

Configuring image upload

Serving stored images

Adding a movie model to admin

Technical requirements
In this chapter, we will be using Python 3.10+. Additionally, we will be using the VS Code editor in
this book, which you can download from https://code.visualstudio.com/.

The code for this chapter is located at https://github.com/PacktPublishing/Django-5-for-the-
Impatient-Second-Edition/tree/main/Chapter05/moviesstore.

The CiA video for this chapter can be found at https://packt.link/HEeUM

Creating our first model
A Django model is a Python class that represents a database table. Models are used to define the
structure and behavior of the data that will be stored in the database. Each model class typically
corresponds to a single database table, and each instance of the class represents a specific row in that
table. More information about Django models can be found here:
https://docs.djangoproject.com/en/5.0/topics/db/models/.

https://code.visualstudio.com/
https://github.com/PacktPublishing/Django-5-for-the-Impatient-Second-Edition/tree/main/Chapter05/moviesstore
https://packt.link/HEeUM
https://docs.djangoproject.com/en/5.0/topics/db/models/

We can create models such as Movie, Review, and Order, and Django turns these models into a
database table for us.

Here are the Django model basics:

Each model is a class that extends django.db.models.Model

Each model attribute represents a database column

With all of this, Django provides us with a set of useful methods to create, update, read, and delete (CRUD) model information
from a database

Creating a Movie model

Our first model will be a Movie. We can create models in each of the project apps. Movie seems to be
more related to the movies app, so we will create the Movie model there. In /movies, we have the
models.py file, where we create our models for the movies app. Open that file and place the following
lines of code:

from django.db import models

class Movie(models.Model):

 id = models.AutoField(primary_key=True)

 name = models.CharField(max_length=255)

 price = models.IntegerField()

 description = models.TextField()

 image = models.ImageField(upload_to='movie_images/')

 def __str__(self):

 return str(self.id) + ' - ' + self.name

Let’s explain the previous code:

First, we import the models module, which provides various classes and utilities for defining database models.

Next, we define a Python class named Movie, which inherits from models.Model. This means that Movie is a Django model

class.

Inside the Movie class, we define several fields:

id: This is an AutoField value that automatically increments its value for each new record that’s added to the

database. The primary_key=True parameter specifies that this field is the primary key for the table, uniquely

identifying each record.

name: This is a CharField value that represents a string field with a maximum length of 255 characters. It stores

the name of the movie.

price: This is an IntegerField value that stores integer values. It represents the price of the movie.

description: This is a TextField value that represents a text field with no specified maximum length. It stores

a textual description of the movie.

image: This is an ImageField value that stores image files. The upload_to parameter specifies the directory

where uploaded images will be stored. In this case, uploaded images will be stored in the movie_images/ directory

within the media directory of the Django project. The media directory is used to store user-uploaded files, such as

images, documents, or other media files. This directory is specified in your Django project’s settings (we will
configure it later in this chapter).

__str__: This is a special method in Python classes that returns a string representation of an object. It concatenates the movie’s

id value (converted into a string) with a hyphen and the movie’s name. This method will be useful when we display movies in the

Django admin panel later.

NOTE
Django provides many other model fields to support common types, such as dates, integers, and emails. To have complete
documentation of the kinds of types and how to use them, refer to the Model field reference in the Django documentation

(https://docs.djangoproject.com/en/5.0/ref/models/fields/).

Install ing Pillow
Because we’re using images, we need to install Pillow (https://pypi.org/project/pillow/), which adds
image-processing capabilities to our Python interpreter.

In the Terminal, stop the server and do the following:

For macOS, run the following command:

pip3 install pillow

For Windows, run the following command:

pip install pillow

Now that Pillow has been installed, let’s learn how to manage Django migrations.

Managing migrations
Django migrations is a feature of Django that allows you to manage changes to your database
schema – that is, changes to the structure of your database tables and the data within them – over
time, as your Django project evolves.

When you define models in Django, you’re essentially defining the structure of your database tables.
However, as your project grows and changes, you might need to make alterations to these models,
such as adding new fields, removing fields, or modifying existing fields. Django migrations provide a
way to propagate these changes to your database schema in a controlled and consistent manner (as a
version control system).

To work with migrations, we must apply the default migrations, create custom migrations, and apply
custom migrations.

Applying the default migrations

https://docs.djangoproject.com/en/5.0/ref/models/fields/
https://pypi.org/project/pillow/

Currently, note a message in the Terminal when you run the server:

You have 18 unapplied migration(s). Your project may not work properly until you apply

the migrations for app(s): admin, auth, contenttypes, sessions.

Run 'python manage.py migrate' to apply them.

As per the message instructions, stop the server and do the following (remember to be located in the
moviesstore folder that contains the manage.py file):

For macOS, run the following command:

python3 manage.py migrate

For Windows, run the following command:

python manage.py migrate

The migrate command creates an initial database based on Django’s default settings. Note that there
is a db.sqlite3 file in the project root folder. This file represents our SQLite database. It’s created the
first time we run migrate or runserver.

In the previous case, the migrate command applied 18 default migrations (as shown in Figure 5.1).
Those migrations were defined by some default Django apps – admin, auth, contenttypes, and
sessions. These apps are loaded in the INSTALLED_APPS variable in the moviesstore/settings.py file.

So, the migrate command runs the migrations of all the installed apps. Note that INSTALLED_APPS also
loads the movies app. However, no migrations were applied for the movies app. This is because we
haven’t generated the migrations for the movies app:

Figure 5.1 – Applying default Django migrations

Creating custom migrations

Currently, we’ve defined a Movie model inside the movies app. Based on that model, we can create
our own migrations. To create the migrations for the movies app, we need to run the makemigrations
command in the terminal:

For macOS, run the following command:

python3 manage.py makemigrations

For Windows, run the following command:

python manage.py makemigrations

The previous command creates migration files based on the models that we’ve defined in our Django
apps (see Figure 5.2):

Figure 5.2 – Executing the makemigrations command

The migrations are stored in the corresponding app-level migrations folder. For now, we have only
defined the Movie model inside the movies app. So, this command generates the migration file for the
Movie model inside the movies/migrations/ folder (see Figure 5.3):

Figure 5.3 – Generated migrations for the movies app

If we change the Movie model or create new models, we need to execute the makemigrations
command again. This command will create new migration files that will serve as a version control of
our database schema.

Note that the migration file was created, but the database hasn’t been updated yet.

Applying custom migrations

After running makemigrations, you typically need to run migrate to apply those migrations to the
database and make the corresponding changes. Now, execute the following in the Terminal:

For macOS, run the following command:

python3 manage.py migrate

For Windows, run the following command:

python manage.py migrate

As shown in Figure 5.4, we applied the movies app migrations:

Figure 5.4 – Applying the movies app migrations

In summary, each time you make changes to a model file, you have to do the following:

For macOS, run the following command:

python3 manage.py makemigrations

python3 manage.py migrate

For Windows, run the following command:

python manage.py makemigrations

python manage.py migrate

But how do we access our database and view what’s inside? For that, we use a powerful tool in
Django called the admin interface. We’ll discuss this in the next section.

Accessing the Django admin interface
To access our database, we have to go into the Django admin interface. Remember that there is an
admin path in /moviesstore/urls.py

…

urlpatterns = [

 path('admin/', admin.site.urls),

 path('', include('home.urls')),

 path('movies/', include('movies.urls')),

]

If you go to localhost:8000/admin, you’ll be taken to the admin site, as shown in Figure 5.5:

Figure 5.5 – Admin page

Django has a powerful built-in admin interface that provides a visual way of managing all aspects of
a Django project – for example, users, movies, and more.

With what username and password do we log in to the admin interface? For this, we have to create a
superuser in the Terminal.

Creating a superuser

Let’s create a superuser to access the admin panel. In the Terminal, stop the server and do the
following:

For macOS, run the following command:

python3 manage.py createsuperuser

For Windows, run the following command:

python manage.py createsuperuser

You will then be asked to specify a username, email, and password. Note that anyone can access the
admin path on your site, so make sure that your password is something secure. After creating the
superuser, you should get a message like this from the Terminal:

Superuser created successfully.

Restoring your superuser password

If you wish to change your password later, you can run the following commands:

Here’s the command for macOS:

python3 manage.py changepassword <username>

Here’s the command for Windows:

python manage.py changepassword <username>

Accessing the admin panel

Now, start the server again and log in to admin with the username you just created, as shown in
Figure 5.6:

Figure 5.6 – Site administration page

Under Users, you’ll see the user you’ve just created, as shown in Figure 5.7:

Figure 5.7 – The Users admin page

You can add additional user accounts here for your team.

Currently, our Movie model doesn’t show up in admin. We need to explicitly tell Django what to
display in it. Before adding our Movie model in admin, let’s configure our project so that images can
be uploaded.

Configuring image upload
We have to configure where we wish to store our images when we add them. First, in
/moviesstore/settings.py, add the following in bold at the end of the file:

…

MEDIA_ROOT = os.path.join(BASE_DIR, 'media')

MEDIA_URL = '/media/'

Let’s explain the previous code:

MEDIA_ROOT: This variable specifies the filesystem path to the directory where uploaded media files will be stored. Here,

BASE_DIR is a variable that represents the base directory of the Django project, and 'media' is the subdirectory within

BASE_DIR where media files will be stored. So, MEDIA_ROOT will be set to a path like /your_project_folder/media.

MEDIA_URL: This variable specifies the URL prefix that will be used to serve media files from the web server. In this code, it’s

set to '/media/', meaning that media files uploaded to the Django application will be accessible via URLs starting with

/media/. For example, if you upload an image named example.jpg, it might be accessible at a URL like

http://localhost:8000/media/example.jpg.

With that, the server has been configured for image upload. So, let’s learn how to serve those images.

Serving the stored images
Next, to enable the server to serve the stored images, we have to modify the /moviesstore/urls.py
file and add the following in bold:

…

from django.conf.urls.static import static

from django.conf import settings

urlpatterns = [

 path('admin/', admin.site.urls),

 path('', include('home.urls')),

 path('movies/', include('movies.urls')),

]

urlpatterns += static(settings.MEDIA_URL,

 document_root=settings.MEDIA_ROOT)

With this, you can serve the media files stored in the MEDIA_ROOT directory when the MEDIA_URL URL
prefix is accessed.

NOTE
It’s important to stop the server and run the server again to apply the previous changes.

Now that the image configuration is done, let’s add movies to the admin panel.

Adding a movie model to the admin panel
We are now ready to create movies from the admin panel and store the images in our Django project.
We will add the Movie model to the admin panel, and we will create movies.

Adding the Movie model to the admin panel

To add the Movie model to the admin panel, go back to /movies/admin.py and register our model by
adding the following in bold:

from django.contrib import admin

from .models import Movie

admin.site.register(Movie)

When you save your file, stop the server, run the server, and go back to /admin. The Movie model will
now appear (as shown in Figure 5.8):

Figure 5.8 – Admin page with movies available

Try adding a movie object by clicking +Add. You will be brought to the Add movie form, as shown
in Figure 5.9:

Figure 5.9 – The Add movie form

Try adding a movie and hit Save. Your movie object will be saved to the database and reflected in the
admin page, as shown in Figure 5.10:

Figure 5.10 – Movies admin page

Note that the admin panel shows the movie’s information as a combination of the movie’s ID with a
hyphen and the movie’s name. That’s because we defined the Movie model’s __str__ method to work
like that.

You can also see the movie image in /moviesstore/media/movie_images/<image file>.jpg. Figure
5.11 shows an image called inception.jpg stored in the previous folder:

Figure 5.11 – Location of stored movie images

Whenever you upload a movie image, it will be stored in the previous folder. With that, we’ve
configured our project so that it can store and serve images.

Summary
Models are essential for working with databases in Django. In this chapter, we learned about the
fundamentals of Django models and created a Movie model. We also learned how to use the Django
admin interface and how to create movies. In the next chapter, we’ll learn how to extract and display
the movies stored in our database on our site.

6

Collecting and Displaying Data from the Database
In the previous chapters, movie information was gathered using dummy data implemented within a
Python list. While this approach served as a good initial attempt to display movie information, it
doesn’t scale well. If we want to add a new movie or edit an existing one, we will need to modify our
Python code. This chapter focuses on the process of refactoring both the movies and individual movie
pages to retrieve and present information directly from the database. With this approach, if we need
to add new movies or modify existing ones, we can simply access the admin panel without the need
to modify the Python code. Additionally, we will implement a new movie search functionality.

In this chapter, we will cover the following topics:

Removing the movies’ dummy data

Updating the movie listings page

Updating the listing of an individual movie page

Implementing a search movie functionality

By the end of this chapter, you will know how to collect and display information from the database.

Technical requirements
In this chapter, we will use Python 3.10+. Additionally, we will use the VS Code editor in this book,
which you can download from https://code.visualstudio.com/.

The code for this chapter is located at https://github.com/PacktPublishing/Django-5-for-the-
Impatient-Second-Edition/tree/main/Chapter06/moviesstore.

The CiA video for this chapter can be found at https://packt.link/mZUvA

Removing the movies’ dummy data
The first step to extract database data is to remove the movies’ dummy data. In /movies/views.py,
remove the movies variable, as shown in the following in bold:

from django.shortcuts import render

movies = [

 {

 'id': 1, 'name': 'Inception', 'price': 12,

 'description': 'A mind-bending heist thriller.'

 },

https://code.visualstudio.com/
https://github.com/PacktPublishing/Django-5-for-the-Impatient-Second-Edition/tree/main/Chapter06/moviesstore
https://packt.link/mZUvA

 {

 'id': 2, 'name': 'Avatar', 'price': 13,

 'description': 'A journey to a distant world and the battle for resources.'

 },

 {

 'id': 3, 'name': 'The Dark Knight', 'price': 14,

 'description': 'Gothams vigilante faces the Joker.'

 },

 {

 'id': 4, 'name': 'Titanic', 'price': 11,

 'description': 'A love story set against the backdrop of the sinking Titanic.',

 },

]

…

We don’t need this variable anymore, as we will extract the movie information from the database.
Also, remember to access the admin panel and create a few movie objects.

Now that we have removed the dummy data, let’s update the way we list movies.

Updating the movie listings page
Now, let’s update the code to extract movie information from the database. We will need to, first,
update the index function; second, update the movies.index template; and third, add a custom CSS
class.

Updating index function

In /movies/views.py, add the following in bold:

from django.shortcuts import render

from .models import Movie

def index(request):

 template_data = {}

 template_data['title'] = 'Movies'

 template_data['movies'] = Movie.objects.all()

 return render(request, 'movies/index.html',

 {'template_data': template_data})

…

Let’s explain the previous code:

We import the Movie model from the models file. We will use this model to access database information.

We collect all movies from the database by using the Movie.objects.all() method. Movie.objects is a manager in

Django that serves as the default interface to query the database table associated with the model. It provides various methods to
perform database operations such as creating, updating, deleting, and retrieving objects. The all() method fetches all objects

from the database table represented by the model. Remember that we previously collected the movie information by using the
movies variable; now, we use the Movie Django model.

NOTE

Django offers several methods to manipulate and access database information. You can find more of these methods here:
https://docs.djangoproject.com/en/5.0/topics/db/queries/.

Updating the movies.index template

In /movies/templates/movies/index.html, add the following in bold:

 …

 {% for movie in template_data.movies %}

 <div class="col-md-4 col-lg-3 mb-2">

 <div class="p-2 card align-items-center pt-4">

 <img src="{{ movie.image.url }}"

 class="card-img-top rounded img-card-200">

 <div class="card-body text-center">

 <a href="{% url 'movies.show' id=movie.id %}"

 class="btn bg-dark text-white">

 {{ movie.name }}

 </div>

 </div>

 </div>

 {% endfor %}

 …

We have removed the default image, and now we will show the specific image for each movie.
Therefore, we will include a custom CSS class to display the images with the same proportion. We
will add this CSS class next.

Adding a custom CSS class

In /moviesstore/static/css/style.css, add the following in bold at the end of the file:

…

.img-card-200 {

 width: fit-content;

 max-height: 200px;

}

Now, save those files, run the server, and go to http://localhost:8000/movies; you should see the
movies page, which extracts information from the database (Figure 6.1).

https://docs.djangoproject.com/en/5.0/topics/db/queries/
http://localhost:8000/movies

Figure 6.1 – The movies page

The movies page now lists movies from the database; let’s complete this process by modifying the
individual movie pages.

Updating the listing of an individual movie page
Now, let’s update the code to extract individual movie information from the database. We will need
to, first, update the show function; second, update the movies.show template; and third, add a custom
CSS class.

Updating show function

In /movies/views.py, add the following in bold:

…

def show(request, id):

 movie = Movie.objects.get(id=id)

 template_data = {}

 template_data['title'] = movie.name

 template_data['movie'] = movie

 return render(request, 'movies/show.html',

 {'template_data': template_data})

Let’s explain the previous code:

We use the Movie.objects.get(id=id) method to retrieve a specific movie based on its id. Remember that id is passed

by the URL and received as a parameter in the show function.

We now access movie.name as an object attribute. Previously, we accessed the name as a key (movie['name']), since the

dummy data variable stored dictionaries.

Updating the movies.show template

In /movies/templates/movies/show.html, add the following in bold:

 …

 <div class="col-md-6 mx-auto mb-3">

 <h2>{{ template_data.movie.name }}</h2>

 <hr />

 <p>Description: {{

 template_data.movie.description }}</p>

 <p>Price: ${{

 template_data.movie.price }}</p>

 </div>

 <div class="col-md-6 mx-auto mb-3 text-center">

 <img src="{{ template_data.movie.image.url }}"

 class="rounded img-card-400" />

 </div>

 …

Similar to the previous code, we now show the specific movie image and use a custom CSS class to
display movie images with the same proportion.

Adding a custom CSS class

In /moviesstore/static/css/style.css, add the following in bold at the end of the file:

…

.img-card-400 {

 width: fit-content;

 max-height: 400px;

}

Now, save those files, run the server, and go to a specific movie at http://localhost:8000/movies/1;
you should see the individual movie page, which extracts movie information from the database
(Figure 6.2).

http://localhost:8000/movies/1

Figure 6.2 – An individual movie page

We are now listing movies and individual movies from the database. Finally, let’s include a new
functionality to be able to search movies.

Implementing a search movie functionality
Let’s finalize this chapter by implementing a search movie functionality. We will need to, first,
update the movies.index template, and second, update the index function.

Updating the movies.index template

In /movies/templates/movies/index.html, add the following in bold:

 …

 <div class="col mx-auto mb-3">

 <h2>List of Movies</h2>

 <hr />

 <p class="card-text">

 <form method="GET">

 <div class="row">

 <div class="col-auto">

 <div class="input-group col-auto">

 <div class="input-group-text">

 Search</div>

 <input type="text" class="form-control"

 name="search">

 </div>

 </div>

 <div class="col-auto">

 <button class="btn bg-dark text-white"

 type="submit">Search</button>

 </div>

 </div>

 </form>

 </p>

 </div>

 </div>

 …

We have created an HTML form that allows users to perform a search operation. This form will direct
to the current URL route and send the search information by the URL. For example, if we search for
Avatar, it will direct us to http://localhost:8000/movies/?search=Avatar.

Updating index function

In /movies/views.py, add the following in bold:

…

def index(request):

 search_term = request.GET.get('search')

 if search_term:

 movies =

 Movie.objects.filter(name__icontains=search_term)

 else:

 movies = Movie.objects.all()

 template_data = {}

 template_data['title'] = 'Movies'

 template_data['movies'] = movies

 return render(request, 'movies/index.html',

 {'template_data': template_data})

The index function has changed. Now, it will retrieve all movies if the search parameter is not sent in
the current request, or it will retrieve specific movies based on the search parameter. Let’s explain the
previous code.

We retrieve the value of the search parameter by using the request.GET.get('search') method and assign that value

to the search_term variable. Here, we capture the search input value submitted through the form defined in the previous

section.

If search_term is not empty, we filter movies where the name contains search_term. The __icontains lookup is used

for a case-insensitive containment search.

If search_term is empty, we retrieve all movies from the database without applying any filters.

Finally, we pass the extracted movies to the template_data dictionary.

Now, save those files, run the server, go to http://localhost:8000/movies, enter a search term, and
submit the form; you should see the movies that match the search term (Figure 6.3).

Figure 6.3 – The movies page with a custom search

We have refactored our Movies Store code to work with the database instead of dummy data. This
strategy enables us to include new movies or edit existing ones without modifying our Python code.
Additionally, the addition of the search functionality has helped us understand how to filter different
data in Django and enhanced the project’s features.

Summary
In this chapter, we learned how to extract information from the database. We learned different Django
model methods, such as all, get, and filter, and how they can be used to retrieve different kinds of
information. We refactored the movies and individual movie pages to collect information from the
database and learned how to implement search functionality.

In the next chapter, we will go deeper into understanding how the database works.

7

Understanding the Database
The previous chapters showed us how to use Django models to persist and retrieve data from a
database. In this chapter, we will explore how databases work in Django. We will utilize a database
viewer to examine how Django manages various information and stores it. Additionally, we will learn
how to customize the Django admin panel and switch between database engines.

In this chapter, we will cover the following topics:

Understanding the database viewer

Customizing the Django admin panel

Switching to a MySQL database

By the end of this chapter, you will understand how the database works, how to visualize database
information, and how to switch to a different database engine.

Technical requirements
In this chapter, we will use Python 3.10+. Additionally, we will use the VS Code editor in this book,
which you can download from https://code.visualstudio.com/.

The code for this chapter is located at https://github.com/PacktPublishing/Django-5-for-the-
Impatient-Second-Edition/tree/main/Chapter07/moviesstore.

The CiA video for this chapter can be found at https://packt.link/wD2bK

Understanding the database viewer
Let’s take some time to understand how the database works. The objects are stored in the db.sqlite3
file. If you click on it, it is not very readable. However, you can view such SQLite files with a SQLite
Viewer; just google SQLite Viewer for a list of them. One example is https://inloop.github.io/sqlite-
viewer/.

Drag and drop your db.sqlite3 file into the previous link (over the SQLite Viewer), and you will see
the different tables in the database (as shown in Figure 7.1):

https://code.visualstudio.com/
https://github.com/PacktPublishing/Django-5-for-the-Impatient-Second-Edition/tree/main/Chapter07/moviesstore
https://packt.link/wD2bK
https://inloop.github.io/sqlite-viewer/

Figure 7.1 – Opening db.sqlite3 in SQLite Viewer

You can see the table of the model we have created – that is, movie. Note that the actual name of the
table is determined by combining the name of the app with the name of the model. For example, if
your app is named movies and your model is named Movie, the corresponding table name would be
movies_movie. This naming convention helps Django differentiate between tables belonging to
different apps and models within those apps.

There are also other tables, such as django_session, because of the different apps that are installed
for functions such as sessions and authentications.

Select a table (for example, movies_movie), and you should be able to see its rows (Figure 7.2).

Figure 7.2 – Selecting a table in SQLite Viewer

Hopefully, this lets you appreciate what goes on behind the scenes in a Django database. Currently,
we are using an SQLite database. However, what if we want to switch to some other database
engines? Django officially supports the following databases – PostgreSQL, MariaDB, MySQL,
Oracle, and SQLite.

NOTE
In addition to the officially supported databases, there are backends provided by third parties that allow you to use other
databases with Django, such as CockroachDB, Firebird, Google Cloud Spanner, Microsoft SQL Server, Snowflake, TiDB,
and YugabyteDB. You can find more information here: https://docs.djangoproject.com/en/5.0/ref/databases/#third-party-
notes.

To switch to another database engine, go to /moviereviews/settings.py and make changes to the
lines in bold:

…

DATABASES = {

 'default': {

 'ENGINE': 'django.db.backends.sqlite3',

 'NAME': BASE_DIR / 'db.sqlite3',

 }

}

…

https://docs.djangoproject.com/en/5.0/ref/databases/#third-party-notes

You can still create your models as normal, and the changes are handled by Django behind the
scenes.

In the book, we use SQLite because it is the simplest. Django uses SQLite by default, and it’s a great
choice for small projects. It runs off a single file and doesn’t require complex installation. In contrast,
the other options involve some complexity to configure them properly. We will see at the end of this
chapter how to configure a more robust database.

Customizing the Django admin panel
The Django admin panel is a powerful built-in feature of Django that automatically generates a user-
friendly interface to manage our application’s data models. This is a great feature of Django that
many other frameworks don’t offer.

Figure 7.3 shows the current movies admin page.

Figure 7.3 – The movies admin page

The admin panel may seem very rigid, but fortunately, Django allows us to customize it according to
our needs. Let’s apply two customizations to the movies admin page – first, ordering movies by
name, and second, allowing searches by name.

Ordering movies by name

In /movies/admin.py, add the following in bold:

from django.contrib import admin

from .models import Movie

class MovieAdmin(admin.ModelAdmin):

 ordering = ['name']

admin.site.register(Movie, MovieAdmin)

Let’s explain the previous code:

We created a MovieAdmin class that inherits from admin.ModelAdmin. This defines a custom admin class that allows you to

customize the behavior of the admin interface for the Movie model.

We set an ordering attribute. This attribute sets the default ordering of the movie objects in the admin interface. In our case, it

specifies that the movies should be ordered by their name field.

Finally, we registered the Movie model with the custom admin class, MovieAdmin. This tells Django to use the MovieAdmin

class to customize the admin interface for the Movie model.

Now, save your file, go back to /admin, and navigate to the movies page. You will see the movie
objects ordered by name (as shown in Figure 7.4):

Figure 7.4 – The movies admin page

Allowing searches by name

In /movies/admin.py, add the following in bold:

from django.contrib import admin

from .models import Movie

class MovieAdmin(admin.ModelAdmin):

 ordering = ['name']

 search_fields = ['name']

admin.site.register(Movie, MovieAdmin)

We added a search_fields attribute that specifies that only the name field of the Movie model is
searchable in the admin interface. This means that users can enter keywords into a search box
provided by the admin interface, and Django will filter the list of movie objects based on whether the
entered keywords match any part of the movie names.

Now, save your file, go back to /admin, and navigate to the movies page. You will see the new search
box available (as shown in Figure 7.5):

Figure 7.5 – The movies admin page with a search box

NOTE
As you saw, it is very easy to apply some customizations with very few lines of code. If you want to explore some
additional customization, check out this link: https://docs.djangoproject.com/en/5.0/ref/contrib/admin/.

Let’s finalize this chapter by understanding how to switch to a different database.

https://docs.djangoproject.com/en/5.0/ref/contrib/admin/

Switching to a MySQL database
As we earlier mentioned, we use SQLite throughout this book because it is the simplest. However,
we will explain how to switch to a more robust database engine called MySQL.

NOTE
The book code is based on SQLite, so the changes in this section are optional and won’t be reflected either in the GitHub
book repository or in upcoming chapters.

MySQL is a popular open source SQL database management system developed by Oracle. There are
several different ways to install MySQL. For this section, we will install MySQL and a MySQL
administration tool called phpMyAdmin. Both tools can be found in a development environment
called XAMPP, so let’s install that.

XAMPP is a popular PHP development environment. It is a free Apache distribution containing
MySQL, PHP, and Perl. As previously mentioned, XAMPP also includes phpMyAdmin. If you don’t
have XAMPP installed, go to https://www.apachefriends.org/download.html, download it, and install
it.

To switch to a MySQL database, we will need to follow these steps:

1. Configuring the MySQL database.

2. Configuring our project to use the MySQL database.

3. Running the migrations.

Configuring the MySQL database

Execute XAMPP, and then start the Apache module (1), start the MySQL module (2), and click the
MySQL Admin button (in the MySQL module) (3), which will take us to the phpMyAdmin
application (as shown in Figure 7.6):

https://www.apachefriends.org/download.html

Figure 7.6 – Starting the MySQL module in XAMPP

In the phpMyAdmin application, enter your username and password. The default values are root (for
the username) and an empty password (Figure 7.7):

Figure 7.7 – XAMPP phpMyAdmin application

Once you have logged in to phpMyAdmin, click the Databases tab (1), enter the database name
moviesstore (2), and click the Create button (3) (as shown in Figure 7.8).

Figure 7.8 – Database creation

Configuring our project to use the MySQL database

First, we need to install a package called PyMySQL. PyMySQL is an interface to connect to a
MySQL database from Python. Go to the terminal and run the following commands:

For macOS, run this:

pip3 install pymysql

For Windows, run this:

pip install pymysql

Then, we need to add the following bold lines to the moviesstore/__init__.py file:

import pymysql

pymysql.install_as_MySQLdb()

This __init__.py file will be executed when we run the Django project, and the previous two lines
import the PyMySQL package into the project.

Finally, we need to modify the database settings to switch to MySQL. In /moviesstore/settings.py,
modify the DATABASES variable to the following in bold:

…

DATABASES = {

 'default': {

 'ENGINE': 'django.db.backends.mysql',

 'NAME': 'moviesstore',

 'USER': 'root',

 'PASSWORD': '',

 'HOST': 'localhost',

 'PORT': '3306',

 }

}

…

Running the migrations

Since we have switched the database, the new database is empty. So, we need to run the migrations:

For macOS, run this:

python3 manage.py migrate

For Windows, run this:

python manage.py migrate

Then, we should see the tables in our phpMyAdmin application (as shown in Figure 7.9).

Figure 7.9 – The MySQL database

Finally, we repeat the process of creating a superuser and accessing the admin panel to create some
movies.

Summary
We hope that you now better understand how SQLite databases work, how Django supports database
management, and how you can customize the Django admin panel. In the next chapter, we will learn
how to allow a user to sign up and log in.

8

Implementing User Signup and Login
The next part of our app will concern user authentication, where we allow users to sign up and log in.
Implementing user authentication is famously hard. Fortunately, we can use Django’s powerful built-
in authentication system to take care of the many security pitfalls that could arise if we were to create
our own user authentication from scratch.

In this chapter, we will cover the following topics:

Creating an accounts app

Creating a basic signup page

Improving a signup page to handle POST actions

Customizing UserCreationForm

Creating a login page

Implementing the logout functionality

By the end of this chapter, you will know how to implement an authentication system and handle
common authentication actions.

Technical requirements
In this chapter, we will use Python 3.10+. Additionally, we will use the VS Code editor in this book,
which you can download from https://code.visualstudio.com/.

The code for this chapter is located at https://github.com/PacktPublishing/Django-5-for-the-
Impatient-Second-Edition/tree/main/Chapter08/moviesstore.

The CiA video for this chapter can be found at https://packt.link/XmYIk

Creating an accounts app
The complete user authentication system involves a set of functionalities such as a signup, a login, a
logout, and some validations. None of these functionalities seem to belong to our home app or movies
app, so let’s separate them inside a new app. This new app will be called accounts.

We will follow these steps to create and configure the new app:

1. Create an accounts app.

https://code.visualstudio.com/
https://github.com/PacktPublishing/Django-5-for-the-Impatient-Second-Edition/tree/main/Chapter08/moviesstore
https://packt.link/XmYIk

2. Add the accounts app to the settings file.

3. Include an accounts URL file in the project-level URL file.

Let’s go through each of these steps in detail in the next few sections.

Creating an accounts app

Navigate to the top moviesstore folder (the one that contains the manage.py file) and run the
following in the terminal:

For macOS, run the following command:

python3 manage.py startapp accounts

For Windows, run the following command:

python manage.py startapp accounts

Figure 8.1 shows the new project structure. Verify that it matches your current folder structure.

Figure 8.1 – The MOVIESSTORE project structure containing the accounts app

Now, let’s add the accounts app to the settings file.

Adding the accounts app to the settings fi le

Remember that we must register each newly created app in the settings.py file.

In /moviesstore/settings.py, under INSTALLED_APPS, add the following line in bold:

…

INSTALLED_APPS = [

 'django.contrib.admin',

 'django.contrib.auth',

 'django.contrib.contenttypes',

 'django.contrib.sessions',

 'django.contrib.messages',

 'django.contrib.staticfiles',

 'home',

 'movies',

 'accounts',

]

…

Now, let’s include the accounts URL file in our project.

Including the accounts URL fi le in the project-level
URL fi le

In /moviesstore/urls.py, add the following line that is in bold:

…

urlpatterns = [

 path('admin/', admin.site.urls),

 path('', include('home.urls')),

 path('movies/', include('movies.urls')),

 path('accounts/', include('accounts.urls')),

]

…

All the URLs defined in the accounts.urls file will contain an accounts/ prefix (as defined in the
previous path). We will create the accounts.urls file later.

Now that we have created the accounts app, let’s create the first functionality, the signup page.

Creating a basic signup page
The signup page has a complex functionality. We will need to consider many possible scenarios. For
now, let’s implement a basic signup page. We will refactor and improve this functionality in the
upcoming sections.

To implement a basic signup page, we will follow the following steps:

1. Configure a signup URL.

2. Define a signup function.

3. Create an accounts signup template.

4. Add a signup link to the base template.

Let’s look at these steps in detail next.

Configuring a signup URL

In /accounts/, create a new file called urls.py. This file will contain the path relating to the URLs of
the accounts app. For now, fill it in with the following code:

from django.urls import path

from . import views

urlpatterns = [

 path('signup', views.signup, name='accounts.signup'),

]

We defined a /signup path, but remember that the project-level URL file defined a /accounts prefix
for this urls.py file. So, if a URL matches the /accounts/signup path, it will execute the signup
function defined in the views file. Next, we will implement the signup function.

Defining the signup function

In /accounts/views.py, add the following lines that are in bold:

from django.shortcuts import render

from django.contrib.auth.forms import UserCreationForm

def signup(request):

 template_data = {}

 template_data['title'] = 'Sign Up'

 if request.method == 'GET':

 template_data['form'] = UserCreationForm()

 return render(request, 'accounts/signup.html',

 {'template_data': template_data})

Let’s explain the code:

We imported UserCreationForm, which is a built-in form class provided by Django. It is designed to facilitate the creation of

user registration forms, specifically to create new user accounts. In Django, we can create our own HTML forms, use some of
these Django forms, or even customize the Django forms. We will learn and use all these three approaches in this book.

We created our template_data variable and assigned it a title.

Then, we checked whether the current HTTP request method is GET. If it is a GET request, it means that it’s a user navigating to

the signup form via the localhost:8000/accounts/signup URL, in which case we simply send an instance of

UserCreationForm to the template. Finally, we rendered the accounts/signup.html template.

Now, let’s continue by creating the signup template.

Creating accounts signup template

In /accounts/, create a templates folder. Then, in /accounts/templates/, create an accounts folder.

Now, in /accounts/templates/accounts/, create a new file, signup.html. For now, fill it in with the
following:

{% extends 'base.html' %}

{% block content %}

<div class="p-3 mt-4">

 <div class="container">

 <div class="row justify-content-center">

 <div class="col-md-8">

 <div class="card shadow p-3 mb-4 rounded">

 <div class="card-body">

 <h2>Sign Up</h2>

 <hr />

 <form method="POST">

 {% csrf_token %}

 {{ template_data.form.as_p }}

 <button type="submit"

 class="btn bg-dark text-white">Sign Up

 </button>

 </form>

 </div>

 </div>

 </div>

 </div>

 </div>

</div>

{% endblock content %}

Let’s explain this code:

We extend the base.html template.

We define a heading element with the text Sign Up.

We define form with its method as POST. This means that when the form is submitted, the data will be sent to the current server

URL using the HTTP POST method.

Inside the form, we use the DTL csrf_token template tag. It generates a Cross-Site Request Forgery (CSRF) token, which

helps prevent CSRF attacks. It ensures that the form submission originates from the same site where the form is rendered. You
should use this tag for all your Django forms.

Inside the form, we render template_data.form, which represents the UserCreationForm instance passed from the

view function. .as_p renders the form fields as HTML paragraphs (<p>), with each form field wrapped in its own paragraph. By

default, UserCreationForm contains three form fields – username, password, and password confirmation.

Inside the form, we include a submit button. This button will direct to the current URL using the HTTP POST method.

Currently, our signup view function only specifies the logic for a GET method. Later, we will implement the logic for the POST

method.

NOTE
In addition to form.as_p, there are other options to render form elements using different HTML tags. You can find more

information here: https://docs.djangoproject.com/en/5.0/ref/forms/api/#output-styles.

Now, let’s finalize by adding the signup link to the base template.

Adding the signup link to the base template

In /moviesstore/templates/base.html, in the header section, add the following lines that are in bold:

 …

https://docs.djangoproject.com/en/5.0/ref/forms/api/#output-styles

 <div class="collapse navbar-collapse"

 id="navbarNavAltMarkup">

 <div class="navbar-nav ms-auto navbar-ml">

 <a class="nav-link"

 href="{% url 'home.about' %}">About

 <a class="nav-link" href=

 "{% url 'movies.index' %}">Movies

 <div class="vr bg-white mx-2 d-none

 d-lg-block"></div>

 <a class="nav-link"

 href="{% url 'accounts.signup' %}">

 Sign Up

 </div>

 </div>

 …

Now, save those files, run the server, and go to http://localhost:8000/accounts/signup; you should see
the new signup page (Figure 8.2).

Figure 8.2 – The Sign Up page

Note that if you try to complete and submit the form, it will display an error. This is because we
haven’t completed the signup function.

Improving the signup page to handle POST actions

http://localhost:8000/accounts/signup

When a user submits the signup form, we will have to handle the request and create a user in admin.
To implement this, we will modify the signup function.

In /accounts/views.py, add the following lines that are in bold:

from django.shortcuts import render

from django.contrib.auth.forms import UserCreationForm

from django.shortcuts import redirect

def signup(request):

 template_data = {}

 template_data['title'] = 'Sign Up'

 if request.method == 'GET':

 template_data['form'] = UserCreationForm()

 return render(request, 'accounts/signup.html',

 {'template_data': template_data})

 elif request.method == 'POST':

 form = UserCreationForm(request.POST)

 if form.is_valid():

 form.save()

 return redirect('home.index')

 else:

 template_data['form'] = form

 return render(request, 'accounts/signup.html',

 {'template_data': template_data})

Let’s explain this code:

We import the redirect function, which is used to redirect the user to a different URL within the application.

We add an elif section. This section checks whether the HTTP request method is POST, indicating that the form has been

submitted.

Inside the elif section, we create an instance of the UserCreationForm class, passing the data from the request’s POST

parameters (request.POST) to populate the form fields. This initializes the form with the submitted data.

The if form.is_valid() checks whether the submitted form data is valid, according to the validation rules defined in the

UserCreationForm class. These validations include that the two password fields match, the password is not common, and the

username is unique, among others.

If the form data is valid, form.save() saves the user data to the database. This means creating a new user account

with the provided username and password. Also, we redirect the user to the home page based on the URL pattern

name.

If the form data is not valid, the else section is executed, and we pass the form (including the errors) to the template

and render the accounts/signup.html template again.

Now, run the server, and go to http://localhost:8000/accounts/signup. First, try to register a user with
two passwords that don’t match (Figure 8.3).

http://localhost:8000/accounts/signup

Figure 8.3 – The Sign Up page with errors

Then, try to register a user with proper information, and you should be redirected to the home page.
Then, go to http://127.0.0.1:8000/admin/, navigate to the users section, and you should see the new
user registered in the database (Figure 8.4).

http://127.0.0.1:8000/admin/

Figure 8.4 – The users admin page

We can now register users. Now, let’s customize UserCreationForm.

Customizing UserCreationForm
UserCreationForm currently shows quite a lot of additional help text (included by default) that is
cluttering our form. To remedy this, we can customize UserCreationForm (which is a big topic on its
own). Here, we will apply some simple modifications to improve the look and feel of our signup
page.

To implement these modifications, we will follow these steps:

1. Create CustomUserCreationForm.

2. Update the signup function to use CustomUserCreationForm.

3. Customize the way errors are displayed.

We will undertake each of these steps in detail in the next few subsections.

Creating CustomUserCreationForm

In /accounts/, create a new file called forms.py. This file will contain the custom forms of the
accounts app. For now, fill it in with the following code:

from django.contrib.auth.forms import UserCreationForm

class CustomUserCreationForm(UserCreationForm):

 def __init__(self, *args, **kwargs):

 super(CustomUserCreationForm, self).__init__

 (*args, **kwargs)

 for fieldname in ['username', 'password1',

 'password2']:

 self.fields[fieldname].help_text = None

 self.fields[fieldname].widget.attrs.update(

 {'class': 'form-control'}

)

Let’s explain the code:

We import the UserCreationForm class from Django’s authentication forms.

We create a new class named CustomUserCreationForm, which inherits from UserCreationForm, making it a subclass

of Django’s built-in user creation form.

We define the class constructor (the __init__ method). The constructor calls the constructor of the parent class

(UserCreationForm) through the super method.

Then, we iterate through the fields provided by UserCreationForm. These are 'username', 'password1', and

'password2'. For each field specified in the loop, we set the help_text attribute to None, which removes any help text

associated with these fields. Finally, for each field specified in the loop, we add the CSS form-control class to the field’s

widget. This is a Bootstrap class that improves the look and feel of the fields.

Next, let’s use CustomUserCreationForm in our signup function.

Updating the signup function to use
CustomUserCreationForm

Let’s use the new form to improve the look and feel of the signup page.

In /accounts/views.py, add the following lines that are in bold:

from django.shortcuts import render

from .forms import CustomUserCreationForm

from django.shortcuts import redirect

def signup(request):

 template_data = {}

 template_data['title'] = 'Sign Up'

 if request.method == 'GET':

 template_data['form'] = CustomUserCreationForm()

 return render(request, 'accounts/signup.html',

 {'template_data': template_data})

 elif request.method == 'POST':

 form = CustomUserCreationForm(request.POST)

 if form.is_valid():

 form.save()

 return redirect('home.index')

 else:

 template_data['form'] = form

 return render(request, 'accounts/signup.html',

 {'template_data': template_data})

In the updated code, we removed the import of UserCreationForm and added the import of
CustomUserCreationForm. Then, we replaced the calls of UserCreationForm() with the calls of
CustomUserCreationForm().

Now, save those files, run the server, go to http://localhost:8000/accounts/signup, and try to register a
user with two passwords that don’t match (Figure 8.5); you will see that the look and feel have
improved.

Figure 8.5 – An improved Sign Up page with errors

We can improve the way errors are displayed. So, let’s customize this in the next section.

http://localhost:8000/accounts/signup

Customizing the way errors are displayed

Let’s customize the way Django forms display errors. In /accounts/forms.py, add the following lines
that are in bold:

from django.contrib.auth.forms import UserCreationForm

from django.forms.utils import ErrorList

from django.utils.safestring import mark_safe

class CustomErrorList(ErrorList):

 def __str__(self):

 if not self:

 return ''

 return mark_safe(''.join([

 f'<div class="alert alert-danger" role="alert">

 {e}</div>' for e in self]))

class CustomUserCreationForm(UserCreationForm):

 …

Let’s explain the code:

We import the ErrorList class, which is a default class used to store and display validation error messages associated with

form fields.

We import the mark_safe function, which is used to mark a string as safe for HTML rendering, indicating that it doesn’t

contain any harmful content and should be rendered as-is without escaping.

We define a new class named CustomErrorList, which extends Django’s ErrorList class. This will be the class to define

our custom error look and feel.

We override the __str__() method of the base ErrorList class. If the error list is empty (i.e., there are no errors), it returns

an empty string, indicating that no HTML should be generated. Otherwise, it defines a custom HTML code that uses <div>

elements and Bootstrap CSS classes to improve the way the errors are displayed. It also uses the mark_safe function to render

the code as-is.

Now that we have defined this CustomErrorList class, we just need to specify to our forms that we
will use it.

In /accounts/views.py, add the following in bold:

from django.shortcuts import render

from .forms import CustomUserCreationForm, CustomErrorList

from django.shortcuts import redirect

def signup(request):

 template_data = {}

 template_data['title'] = 'Sign Up'

 if request.method == 'GET':

 template_data['form'] = CustomUserCreationForm()

 return render(request, 'accounts/signup.html',

 {'template_data': template_data})

 elif request.method == 'POST':

 form = CustomUserCreationForm(request.POST,

 error_class=CustomErrorList)

 ...

We imported our CustomErrorList class, and we passed this class as an argument to
CustomUserCreationForm. This time, if an error is found when we submit the signup form, the form
will use our CustomErrorList class and display the errors with our custom HTML and CSS code.

Now, save those files, run the server, go to http://localhost:8000/accounts/signup, and try to register a
user with two passwords that don’t match (Figure 8.6); you will see that the look and feel have
improved.

Figure 8.6 – The Sign Up page with an improved error style

We have improved the look and feel of our errors. Now, let’s implement a login page.

Creating a login page

http://localhost:8000/accounts/signup

Let’s implement the login page. This time, we won’t use Django forms; we will create our own
HTML form (to learn a new approach). Let’s follow the following steps:

1. Configure a login URL.

2. Define the login function.

3. Create an accounts login template.

4. Add a link to the base template.

5. Redirect a registered user to the login page.

We’ll see these steps to create a login page, in depth, in the next few subsections.

Configuring a login URL

In /accounts/urls.py, add the following path in bold:

from django.urls import path

from . import views

urlpatterns = [

 path('signup', views.signup, name='accounts.signup'),

 path('login/', views.login, name='accounts.login'),

]

So, if a URL matches the /accounts/login path, it will execute the login function defined in the
views file.

Now that we have the new path, let’s define the login function.

Defining login function

In /accounts/views.py, add the following lines that are in bold:

from django.shortcuts import render

from django.contrib.auth import login as auth_login, authenticate

from .forms import CustomUserCreationForm, CustomErrorList

from django.shortcuts import redirect

def login(request):

 template_data = {}

 template_data['title'] = 'Login'

 if request.method == 'GET':

 return render(request, 'accounts/login.html',

 {'template_data': template_data})

 elif request.method == 'POST':

 user = authenticate(

 request,

 username = request.POST['username'],

 password = request.POST['password']

)

 if user is None:

 template_data['error'] =

 'The username or password is incorrect.'

 return render(request, 'accounts/login.html',

 {'template_data': template_data})

 else:

 auth_login(request, user)

 return redirect('home.index')

def signup(request):

 …

Let’s explain the code:

We import login and authenticate. These are used for user authentication. We import login with an alias

(auth_login) to avoid confusion with the login function name.

We create the login function. This function defines template_data and checks request.method.

For GET requests, the function renders the accounts/login.html template.

For POST requests, the function attempts to authenticate the user using the provided username and password. If

authentication fails, it renders the login template again with an error message. If authentication succeeds, it logs the user in and
redirects them to the home page.

Now, let’s create the template that requires the login function.

Creating accounts login template

In /accounts/templates/accounts/, create a new file, login.html. This file contains the HTML for
the login page. For now, fill it in with the following:

{% extends 'base.html' %}

{% block content %}

<div class="p-3 mt-4">

 <div class="container">

 <div class="row justify-content-center">

 <div class="col-md-8">

 <div class="card shadow p-3 mb-4 rounded">

 <div class="card-body">

 <h2>Login</h2>

 <hr />

 {% if template_data.error %}

 <div class="alert alert-danger" role="alert">

 {{ template_data.error }}

 </div>

 {% endif %}

 <form method="POST">

 {% csrf_token %}

 <p>

 <label for="username">Username</label>

 <input id="username" type="text"

 name="username" required

 autocomplete="username"

 class="form-control">

 </p>

 <p>

 <label for="password">Password</label>

 <input id="password" type="password"

 name="password" required

 autocomplete="current-password"

 class="form-control">

 </p>

 <div class="text-center">

 <button type="submit"

 class="btn bg-dark text-white">Login

 </button>

 </div>

 </form>

 </div>

 </div>

 </div>

 </div>

 </div>

</div>

{% endblock content %}

Let’s explain the code:

We extend the base.html template and define a heading element with the text Login.

We check whether there is an error and, if so, display it.

We create an HTML form with a POST method and the csrf_token token. This form contains two inputs, one for the

username and another for the password. It also contains a submit button.

Let’s continue by adding the login link to the base template.

Adding the link to the base template

Let’s add the login link in the base template. In /moviesstore/templates/base.html, in the header
section, add the following line that is in bold:

 …

 <div class="navbar-nav ms-auto navbar-ml">

 <a class="nav-link"

 href="{% url 'home.about' %}">About

 <a class="nav-link"

 href="{% url 'movies.index' %}">Movies

 <div class=

 "vr bg-white mx-2 d-none d-lg-block"></div>

 <a class="nav-link"

 href="{% url 'accounts.login' %}">Login

 <a class="nav-link"

 href="{% url 'accounts.signup' %}">Sign Up

 </div>

 …

Now, save those files, run the server, and go to http://localhost:8000/accounts/login; you will see the
new Login page (Figure 8.7).

http://localhost:8000/accounts/login

Figure 8.7 – The Login page

Now that we have a login page, let’s redirect the user to it when they create an account.

Redirecting a registered user to the login page

Let’s finalize this section by redirecting a user who just registered to the Login page. In
/accounts/views.py, add the following in bold:

…

def signup(request):

 template_data = {}

 template_data['title'] = 'Sign Up'

 if request.method == 'GET':

 template_data['form'] = CustomUserCreationForm()

 return render(request, 'accounts/signup.html',

 {'template_data': template_data})

 elif request.method == 'POST':

 form = CustomUserCreationForm(request.POST,

 error_class=CustomErrorList)

 if form.is_valid():

 form.save()

 return redirect('accounts.login')

 …

We just modified the redirection to the Login page. Try to create a new user, and they should be
redirected to the Login page.

Let’s finalize this chapter by implementing a logout functionality.

Implementing a logout functionality
We’ll follow the following steps:

1. Configure a logout URL.

2. Define the logout function.

3. Add a link to the base template.

We’ll undertake these steps in the upcoming sections.

Configuring a logout URL

In /accounts/urls.py, add the path that is in bold:

from django.urls import path

from . import views

urlpatterns = [

 path('signup', views.signup, name='accounts.signup'),

 path('login/', views.login, name='accounts.login'),

 path('logout/', views.logout, name='accounts.logout'),

]

Now, if a URL matches the /accounts/logout path, it will execute the logout function defined in the
views file.

Defining the logout function

In /accounts/views.py, add the following lines that are in bold:

from django.shortcuts import render

from django.contrib.auth import login as auth_login, authenticate, logout as auth_logout

from .forms import CustomUserCreationForm, CustomErrorList

from django.shortcuts import redirect

from django.contrib.auth.decorators import login_required

@login_required

def logout(request):

 auth_logout(request)

 return redirect('home.index')

def login(request):

 …

Let’s explain the code:

We import the logout function as auth_logout. This is used to log a user out.

We import login_required, which is a decorator to ensure that only authenticated users can access specific view functions. A

Django decorator is a function that wraps another function or method to modify its behavior. Decorators are commonly used for
things such as authentication, permissions, and logging.

We create the logout function, which uses the login_required decorator. This means that only authenticated users can

access this function.

The logout function calls auth_logout, which is used to log out the current user. Then, the function redirects the user to the

home page.

Next, let’s add the logout link to the base template.

Adding the link to the base template

In /moviesstore/templates/base.html, in the header section, add the following lines that are in bold:

 …

 <a class="nav-link"

 href="{% url 'home.about' %}">About

 <a class="nav-link"

 href="{% url 'movies.index' %}">Movies

 <div class=

 "vr bg-white mx-2 d-none d-lg-block"></div>

 {% if user.is_authenticated %}

 <a class="nav-link"

 href="{% url 'accounts.logout' %}">Logout ({{

 user.username }})

 {% else %}

 <a class="nav-link"

 href="{% url 'accounts.login' %}">Login

 <a class="nav-link"

 href="{% url 'accounts.signup' %}">Sign Up

 {% endif %}

 …

We use a Django template tag that checks whether the user is authenticated (logged in). This
validation comes from Django’s authentication system. If the user is authenticated, we display the
logout option (which includes the username). Otherwise, we display the login and sign up options.

Now, save those files, run the server, and go to http://localhost:8000/; you will see how the navbar
options change whether the user is logged in or not (Figure 8.8).

Figure 8.8 – The home page with the navbar updated

We have completed our user signup, login, and logout system.

http://localhost:8000/

Summary
In this chapter, we implemented a complete authentication system. Now, users can sign up, log in,
and log out. We also learned how to take advantage of some Django forms, how to create our own
HTML forms, and how to handle validations and errors.

In the next chapter, we will implement a movie review system.

9

Letting Users Create, Read, Update, and Delete Movie
Reviews
Having implemented the authentication system, it is now time to let logged-in users perform the
standard CRUD operations on reviews for movies. This chapter will teach you how to perform
complete CRUD operations and how to manage authorizations.

In this chapter, we will cover the following topics:

Creating a review model

Creating reviews

Reading reviews

Updating a review

Deleting a review

By the end of the chapter, you will have learned how to create CRUD operations for your models and
handle authorizations. You will also recap how to use forms and how to manage different HTTP
methods.

Technical requirements
In this chapter, we will be using Python 3.10 or above. Additionally, we will be using the VS Code
editor in this book, which you can download from https://code.visualstudio.com/.

The code for this chapter is located at https://github.com/PacktPublishing/Django-5-for-the-
Impatient-Second-Edition/tree/main/Chapter09/moviesstore.

The CiA video for this chapter can be found at https://packt.link/dsqdR

Creating a review model
To store the movies’ review information, we need to create a review Django model and follow the
next steps:

1. Create the review model.

2. Apply migrations.

3. Add the review model to the admin panel.

https://code.visualstudio.com/
https://github.com/PacktPublishing/Django-5-for-the-Impatient-Second-Edition/tree/main/Chapter09/moviesstore
https://packt.link/dsqdR

Create the review model

The review information is closely connected to movies. Therefore, we will include this model in the
movies app. In the /movies/models.py file, add the following parts that are highlighted in bold:

from django.db import models

from django.contrib.auth.models import User

class Movie(models.Model):

 …

class Review(models.Model):

 id = models.AutoField(primary_key=True)

 comment = models.CharField(max_length=255)

 date = models.DateTimeField(auto_now_add=True)

 movie = models.ForeignKey(Movie,

 on_delete=models.CASCADE)

 user = models.ForeignKey(User,

 on_delete=models.CASCADE)

 def __str__(self):

 return str(self.id) + ' - ' + self.movie.name

Let’s explain the preceding code:

We import the User model from Django’s django.contrib.auth.models module.

We define a Python class named Review, which inherits from models.Model. This means that Review is a Django model

class.

Inside the Review class, we define several fields:

id is an AutoField, which automatically increments its value for each new record added to the database. The

primary_key=True parameter specifies that this field is the primary key for the table, uniquely identifying each

record.

comment is a CharField, which represents a string field with a maximum length of 255 characters. It stores the

movie review text.

date is a DateTimeField , which is used for date and time data. The auto_now_add=True ensures that the

date and time are automatically set to the current date and time when the review is created.

movie is a foreign key relationship to the Movie model. A review is associated with a movie. The on_delete

parameter specifies how to handle the deletion of a movie that a review is associated with. In this case,
on_delete=models.CASCADE means that if the related movie is deleted, the associated review will also be

deleted.

user is another foreign key relationship but to the User model. A review is associated with a user (the person who

wrote the review). Similar to the movie attribute, on_delete=models.CASCADE specifies that if the related user

is deleted, the associated review will also be deleted.

__str__ is a method that returns a string representation of the review. In this case, it returns a string that is composed of the

review ID and the name of the movie associated with the review.

Apply migrations

Now that we have created the Review model, let’s apply those changes to our database by running the
following commands according to your operating system:

For macOS, run this:

python3 manage.py makemigrations

python3 manage.py migrate

For Windows, run this:

python manage.py makemigrations

python manage.py migrate

Now, you should see something like in Figure 9.1:

Figure 9.1 – Applying the review migration

Add the review model to the admin panel

To add the Review model to admin, go back to /movies/admin.py and register it by adding the
following parts that are highlighted in bold:

from django.contrib import admin

from .models import Movie, Review

class MovieAdmin(admin.ModelAdmin):

 ordering = ['name']

 search_fields = ['name']

admin.site.register(Movie, MovieAdmin)

admin.site.register(Review)

When you save your file, stop the server, run the server, and go back to /admin. The review model
will now show up (as shown in Figure 9.2):

Figure 9.2 – The admin page with reviews available

Now that we have created and applied our Review model, let’s create the functionality to create
reviews.

Creating reviews
To allow users to create reviews, we need to follow the next steps:

1. Update the movies.show template.

2. Define the create_review function.

3. Configure the create review URL.

Updating the movies.show template

We will include a form to allow authenticated users to create reviews. This form will be included in
the movies.show template. In the /movies/templates/movies/show.html file, add the following, as
presented in bold:

 …

 <p>Price: ${{ template_data.movie.price }}</p>

 {% if user.is_authenticated %}

 <div class="container mt-4">

 <div class="row justify-content-center">

 <div class="col-12">

 <div class="card shadow p-3 mb-4 rounded">

 <div class="card-body">

 <b class="text-start">Create a review

 <form method="POST" action=

 "{% url 'movies.create_review'

 id=template_data.movie.id %}">

 {% csrf_token %}

 <p>

 <label for="comment">Comment:</label>

 <textarea name="comment" required

 class="form-control"

 id="comment"></textarea>

 </p>

 <div class="text-center">

 <button type="submit"

 class="btn bg-dark text-white">

 Add Review

 </button>

 </div>

 </form>

 </div>

 </div>

 </div>

 </div>

 </div>

 {% endif %}

 </div>

 <div class="col-md-6 mx-auto mb-3 text-center">

 <img src="{{ template_data.movie.image.url }}"

 class="rounded img-card-400" />

 </div>

 …

{% endblock content %}

Let’s explain the preceding code:

We use the {% if user.is_authenticated %} DTL conditional statement that checks whether the user is authenticated

(logged in). If the user is authenticated, the block of HTML code within the if statement will be rendered and displayed.

We create an HTML form with the POST method and the csrf_token token. This form contains a single input named

comment. This input stores the review text. The form also contains a submit button.

The form is linked to the movies.create_review URL, and it also passes the movie ID to that URL. The movie ID will be

used to link the current comment with the movie that it represents.

Defining the create_review function

In /movies/views.py, add the following, as presented in bold:

from django.shortcuts import render, redirect

from .models import Movie, Review

from django.contrib.auth.decorators import login_required

def index(request):

 …

def show(request):

 …

@login_required

def create_review(request, id):

 if request.method == 'POST' and request.POST['comment']

 != '':

 movie = Movie.objects.get(id=id)

 review = Review()

 review.comment = request.POST['comment']

 review.movie = movie

 review.user = request.user

 review.save()

 return redirect('movies.show', id=id)

 else:

 return redirect('movies.show', id=id)

Let’s explain the preceding code:

We import the redirect function, which is used to redirect the user to a different URL.

We import the Review model, which will be used to create new reviews.

We import login_required, which is used to verify that only logged users can access the create_review function. If a

guest user attempts to access this function via the corresponding URL, they will be redirected to the login page.

We create the create_review function that handles creating a review.

The create_review takes two arguments: the request that contains information about the HTTP request, and the id, which

represents the ID of the movie for which a review is being created.

Then, we check whether the request method is POST and the comment field in the request’s POST data is not empty. If that is

TRUE, the following happens:

We retrieve the movie using Movie.objects.get(id=id) based on the provided id.

We create a new Review object.

We set the review properties as follows:

We set the comment based on the comments collected in the form

We set the movie, based on the retrieved movie from the database

We set the user, based on the authenticated user who submitted the form.

Finally, we save the review to the database and redirect the user to the movie show page.

In the else case, we redirect the user to the movie show page using the redirect('movies.show', id=id) code.

Configuring the create review URL

In /movies/urls.py, add the next path as highlighted in bold:

from django.urls import path

from . import views

urlpatterns = [

 path('', views.index, name='movies.index'),

 path('<int:id>/', views.show, name='movies.show'),

 path('<int:id>/review/create/', views.create_review,

 name='movies.create_review'),

]

Let’s analyze the new path. The <int:id> part indicates that this path expects an integer value to be
passed from the URL and that the integer value will be associated with a variable named id. The id
variable will be used to identify to which movie the review that we want to create is linked. For
example, if the form is submitted to movies/1/review/create, it indicates that the new review will be
associated with the movie with id=1.

Now save those files, run the server, and go to http://localhost:8000/movies. Click on a specific
movie and you will see the form to create reviews (Figure 9.3).

Figure 9.3 – A movie page with the review form

Then, enter a comment and click Add Review. A new review should be created, and you should be
redirected to the movie show page. Go to the admin panel, click Reviews, and you will see the new
review there (Figure 9.4).

Figure 9.4 – The reviews admin page

Let’s now include a functionality to read and list reviews from our web application.

Reading reviews
To be able to read and list reviews, we need to follow the steps that follow:

1. Update the movies.show template.

2. Update the show function.

Updating the movies.show template

We will list the reviews in the movies.show template. In the /movies/templates/movies/show.html
file, add the following, as highlighted in bold:

 …

 <p>Price: ${{ template_data.movie.price }}

 </p>

 <h2>Reviews</h2>

 <hr />

 <ul class="list-group">

 {% for review in template_data.reviews %}

 <li class="list-group-item pb-3 pt-3">

 <h5 class="card-title">

 Review by {{ review.user.username }}

 </h5>

 <h6 class="card-subtitle mb-2 text-muted">

 {{ review.date }}

 </h6>

 <p class="card-text">{{ review.comment }}</p>

 {% endfor %}

 {% if user.is_authenticated %}

 …

We have added a new section inside the template. This section iterates through the reviews and
displays the review date and comment, as well as the username of the user who created the review.

Updating the show function

In /movies/views.py, add the following, as highlighted in bold:

…

def show(request, id):

 movie = Movie.objects.get(id=id)

 reviews = Review.objects.filter(movie=movie)

 template_data = {}

 template_data['title'] = movie.name

 template_data['movie'] = movie

 template_data['reviews'] = reviews

 return render(request, 'movies/show.html',

 {'template_data': template_data})

…

Let’s explain the preceding code.

We retrieve all review objects that are associated with the movie that we are showing. To do this, we use the filter method to

limit the query to reviews related to the specific movie.

We add those reviews to the template_data dictionary, which is passed to the movies/show.html template.

Now, save those files, run the server, and go to http://localhost:8000/movies. Click on a specific
movie that contains reviews and you will see the movie information, including its corresponding
reviews (Figure 9.5).

Figure 9.5 – A movie page with reviews

Now, let’s move on to updating reviews.

Updating a review
To be able to update reviews, we need to follow these steps:

1. Update the movies.show template.

2. Create the movies edit_review template.

3. Define the edit_review function.

4. Configure the edit review URL.

Updating movies.show template

In /movies/templates/movies/show.html file, add the following bold text:

 …

 {% for review in template_data.reviews %}

 <li class="list-group-item pb-3 pt-3">

 <h5 class="card-title">

 Review by {{ review.user.username }}

 </h5>

 <h6 class="card-subtitle mb-2 text-muted">

 {{ review.date }}

 </h6>

 <p class="card-text">{{ review.comment }}</p>

 {% if user.is_authenticated and user ==

 review.user %}

 <a class="btn btn-primary"

 href="{% url 'movies.edit_review'

 id=template_data.movie.id

 review_id=review.id %}">Edit

 {% endif %}

 {% endfor %}

 …

We added a code snippet for each review that is displayed. That code checks whether a user is
authenticated and whether the user is the one who wrote a specific review. If both of these conditions
are true, it will render the Edit button, which links to the movies.edit_review URL.

Creating the movies edit_review template

Now, in /movies/templates/movies/, create a new file, edit_review.html. For now, fill it in with the
following:

{% extends 'base.html' %}

{% block content %}

<div class="p-3">

 <div class="container">

 <div class="row mt-3">

 <div class="col mx-auto mb-3">

 <h2>Edit Review</h2>

 <hr />

 <form method="POST">

 {% csrf_token %}

 <p>

 <label for="comment">Comment:</label>

 <textarea name="comment" required

 class="form-control" id="comment">{{

 template_data.review.comment }}</textarea>

 </p>

 <div class="text-start">

 <button type="submit"

 class="btn bg-dark text-white">Edit Review

 </button>

 </div>

 </form>

 </div>

 </div>

 </div>

</div>

{% endblock content %}

We have created a form to edit the review. This form is very similar to the review creation form. The
differences are as follows:

We removed the form action, which means that the form will be submitted to the current URL

We displayed the current review comment value inside the text area

We modified the button text

Defining the edit_review function

In /movies/views.py, add the following, as highlighted in bold:

from django.shortcuts import render, redirect, get_object_or_404

…

@login_required

def edit_review(request, id, review_id):

 review = get_object_or_404(Review, id=review_id)

 if request.user != review.user:

 return redirect('movies.show', id=id)

 if request.method == 'GET':

 template_data = {}

 template_data['title'] = 'Edit Review'

 template_data['review'] = review

 return render(request, 'movies/edit_review.html',

 {'template_data': template_data})

 elif request.method == 'POST' and

 request.POST['comment'] != '':

 review = Review.objects.get(id=review_id)

 review.comment = request.POST['comment']

 review.save()

 return redirect('movies.show', id=id)

 else:

 return redirect('movies.show', id=id)

Let’s explain the preceding code:

We import the get_object_or_404 function, which retrieves an object from the database or raises an HTTP 404 (Not Found)

error (if the object is not found).

We use the @login_required decorator to ensure that the edit_review function can only be accessed by authenticated

users. If an unauthenticated user tries to access this function, they will be redirected to the login page.

We define the edit_review function, which takes three parameters: the request, the movie ID, and the review ID.

We retrieve the Review object with the given review_id. If the review does not exist, a 404 error will be raised.

We check whether the current user (request.user) is the owner of the review to be edited (review.user). If the user does

not own the review, the function redirects them to the movie.show page.

Then, we check whether the request method is GET. In that case, the function prepares data for the template and renders the

edit_review.html template.

If the request method is POST and the comment field in the request’s POST data is not empty, the function proceeds to update

the review and redirects the user to the movie show page.

In any other case, the function redirects the user to the movie show page.

NOTE
You can improve the look and feel of these functionalities by including your own error messages. You can use the login

template and the login function, which uses and passes a template_data.error, as a base.

Configuring the edit_review URL

In /movies/urls.py, add the next path, as shown in bold:

from django.urls import path

from . import views

urlpatterns = [

 path('', views.index, name='movies.index'),

 path('<int:id>/', views.show, name='movies.show'),

 path('<int:id>/review/create/', views.create_review,

 name='movies.create_review'),

 path('<int:id>/review/<int:review_id>/edit/',

 views.edit_review, name='movies.edit_review'),

]

This path captures two integer values (the movie ID and review ID) from the URL and passes them to
the edit_review function as arguments.

Now, save those files, run the server, and go to http://localhost:8000/movies. Click on a specific
movie that contains a review you created, then click the Edit button (Figure 9.6).

Figure 9.6 – A movie page with reviews and an edit button

An edit form will be shown. Modify the review and click the Edit Review button (Figure 9.7).

Figure 9.7 – The Edit Review page

You will be redirected to the movie show page. The new review comment should appear.

We just learned how to update reviews and models in general, so let’s move to the final functionality
and learn how to delete information.

Deleting a review
To be able to delete reviews, we need to follow the ensuing steps:

1. Update the movies.show template.

2. Define the delete_review function.

3. Configure the delete review URL.

Updating the movies.show template

In the /movies/templates/movies/show.html file, add the following bolded code:

 …

 <h5 class="card-title">

 Review by {{ review.user.username }}

 </h5>

 <h6 class="card-subtitle mb-2 text-muted">

 {{ review.date }}

 </h6>

 <p class="card-text">{{ review.comment }}</p>

 {% if user.is_authenticated and user ==

 review.user %}

 <a class="btn btn-primary"

 href="{% url 'movies.edit_review'

 id=template_data.movie.id

 review_id=review.id %}">Edit

 <a class="btn btn-danger"

 href="{% url 'movies.delete_review'

 id=template_data.movie.id

 review_id=review.id %}">Delete

 {% endif %}

 …

We have added a new delete button. This button links to the movies.delete_review URL, and much
like the Edit button, it passes the movie ID and the review ID.

Defining the delete_review function

In /movies/views.py, add the following bold code at the end of the file:

…

@login_required

def delete_review(request, id, review_id):

 review = get_object_or_404(Review, id=review_id,

 user=request.user)

 review.delete()

 return redirect('movies.show', id=id)

Let’s explain the preceding code:

We use the @login_required decorator to ensure that the delete_review function can be only accessed by authenticated

users. If an unauthenticated user tries to access this function, they will be redirected to the login page.

We retrieve the Review object with the given review_id that belongs to the current user (request.user). If the review

does not exist, or if the user does not own the review, an HTTP 404 error will be raised.

We delete the review from the database using the Django model’s delete() method.

We redirect to the previous movie show page.

Configuring the delete_review URL

In /movies/urls.py, add the following path, as highlighted in bold:

…

urlpatterns = [

 …

 path('<int:id>/review/<int:review_id>/edit/',

 views.edit_review, name='movies.edit_review'),

 path('<int:id>/review/<int:review_id>/delete/',

 views.delete_review, name='movies.delete_review'),

]

This path captures two integer values (the movie ID and the review ID) from the URL and passes
them as arguments to the delete_review function.

Now, save those files, run the server, and go to http://localhost:8000/movies. Click on a specific
movie that contains a review that you created, then click the Delete button (Figure 9.8).

Figure 9.8 – A movie page with reviews and a Delete button

The review should be deleted, and you should be redirected to the movie show page.

Summary
In this chapter, we implemented a complete CRUD for movie reviews. With the tools we’ve
developed, we can now create various CRUD systems by applying the knowledge gained in this
chapter to other projects and models. As for the Movies Store project, users can now create, read,

update, and delete reviews. Additionally, we have acquired the skills to manage application
authorization, restricting access to certain routes and functions for non-logged-in users.

In the next chapter, we will learn how to create a shopping cart.

10

Implementing a Shopping Cart System
In this chapter, we’ll learn all about how to make a shopping cart for websites. To implement this
feature, we will need to learn how web sessions work and how to use Django sessions. Django
sessions will be used to store user-specific information as they navigate through the site.

In this chapter, we will be covering the following topics:

Introducing web sessions

Creating a cart app

Adding movies to the cart

Listing movies added to the cart

Removing movies from the cart

By the end of the chapter, you will have the knowledge to work with web sessions, implement
shopping cart systems, and track and maintain user information between requests from the same user.

Technical requirements
In this chapter, we will be using Python 3.10+. Additionally, we will be using the VS Code editor in
this book, which you can download from https://code.visualstudio.com/.

The code for this chapter is located at https://github.com/PacktPublishing/Django-5-for-the-
Impatient-Second-Edition/tree/main/Chapter10/moviesstore.

The CiA video for this chapter can be found at https://packt.link/mEcH8

Introducing web sessions
Do you understand how the login system functions? How does the application recognize my
connection status? How does it distinguish between displaying a logout button for a logged-in user
and a login button for a friend who is not connected? How long does the application retain my
connection status?

In this chapter, we’ll address these questions and explore the significance of web sessions in the
development of web applications. We will explore these elements in the following order:

1. HTTP protocol limitations

https://code.visualstudio.com/
https://github.com/PacktPublishing/Django-5-for-the-Impatient-Second-Edition/tree/main/Chapter10/moviesstore
https://packt.link/mEcH8

2. Web sessions

3. Django login scenario

4. Django sessions

HTTP protocol l imitations

Currently, our interaction with the Movies Store website relies on the HTTP protocol. For instance, to
access movie information, we utilize http://localhost:8000/movies, and for logging in, we use
http://localhost:8000/login. Each request we make utilizes the HTTP protocol as its
communication medium.

Nevertheless, the HTTP protocol has its limitations. It operates in a stateless manner, implying that
the server doesn’t retain any information (state) between successive requests. With each new request,
a fresh connection is established, removing any knowledge about previous interactions. Essentially, it
lacks memory of past actions.

However, when logged into the application, subsequent requests display a logout button, indicating
the application’s ability to identify users and maintain state data. This functionality is achieved
through Django sessions, which augment the capabilities of the HTTP protocol.

Web sessions

A web session comprises a sequence of continuous actions performed by a visitor on a website
within a specified period. Each framework offers its own method for implementing sessions to
monitor visitors’ activities. Figure 10.1 illustrates the functioning of Django sessions.

Figure 10.1 – An example of a Django session operation

Let’s analyze the previous scenario:

1. The user navigates to the login page at http://localhost:8000/login.

2. Django then sends an HTTP response to the user, containing the login form.

3. The user fills out the login form and presses the Login button. Django validates the user data, and if it’s accurate, creates session
data for the user, and assigns them an ID or a session key. By default, the session data is stored in the database (we will see it in
action in the next section).

4. Django sends a cookie to the user’s browser. This cookie contains a session ID, which is used to retrieve the user’s session data on
subsequent requests. After successful login, Django redirects the user to the home page.

5. Each subsequent request will render the navigation menu with the Logout button, as the session ID is included in the user’s
requests. This process continues until the user clicks on the Logout button (which removes the session data and the cookie), or
until the session expires, which defaults to two weeks.

Now that we have learned how Django sessions work, let’s replicate it with our Movies Store project.

Django login scenario

Let’s follow the next steps to see Django sessions in action:

1. Run the application in incognito mode, go to http://localhost:8000/login, and use the credentials of an already

registered user to log in.

2. Go to https://inloop.github.io/sqlite-viewer/, drag and drop your db.sqlite3 file onto the page, and then select the

django_session table. You will see a new session_key, session_data, and expire_date corresponding to the

user who just logged in (Figure 10.2).

https://inloop.github.io/sqlite-viewer/

Figure 10.2 – The django_session table

3. The previous Django session data comes with a cookie. Go to your browser, verify that you’re located on the Movies Store home
page, and open the developer console. For Google Chrome, you can open the developer console with Shift + Ctrl + J (on
Windows/Linux), or option + ⌘ + J (on macOS).

4. Then, navigate to the Application tab, click the Cookies | http://127.0.0.1:8000 option, and you will see the stored

cookie data, which includes a sessionid that matches with the session_key stored in the database (Figure 10.3).

Figure 10.3 – The Movies Store cookie data

That’s how Django tracks our website interactions; if you click the Logout button, all this data will
disappear.

NOTE
Session data is not only created during the login scenario or exclusively for logged-in users. If your application utilizes
Django’s session functionalities at any point, it will also generate the corresponding session and cookie data. We will see
this in action later when we implement the shopping cart system. You can find more information about Django sessions
here: https://docs.djangoproject.com/en/5.0/topics/http/sessions/.

Django sessions

Django sessions are a mechanism for persisting data across HTTP requests in a web application.
They allow Django to store and retrieve arbitrary data for a specific user across multiple requests.
Here are some key points about Django sessions:

Client-side cookies: By default, Django sessions are implemented using client-side cookies. Django commonly sets a unique
session ID in the user’s browser as a cookie.

Server-side storage: While the session ID is stored in the client’s browser, the actual session data is stored server-side. By
default, the session data is stored in the database.

https://docs.djangoproject.com/en/5.0/topics/http/sessions/

Configuration options: Django offers various configuration options for sessions, including the session engine (e.g., database-
backed, cached, file-based), session expiry time, and encryption of session data.

Integration with authentication: Django sessions often work with Django’s authentication system. For example, when a user
logs in, their authentication status is typically stored in the session, allowing Django to keep the user logged in across multiple
requests until they explicitly log out or the session expires.

Accessing session data: Developers can access session data in Django views using the request.session attribute. This

allows them to read, modify, and delete session data as needed during request processing.

Now that we´ve learned the fundamentals of web sessions and Django sessions, let´s start creating
the cart app.

Creating a cart app
All the shopping cart functionalities will be managed in their own application. So, let’s create a cart
app. Navigate to the top moviesstore folder (the one which contains the manage.py file) and run the
following in the Terminal:

For macOS, run the following command:

python3 manage.py startapp cart

For Windows, run the following command:

python manage.py startapp cart

Figure 10.4 shows the new project structure. Verify it matches your current folder structure.

Figure 10.4 – The MOVIESSTORE project structure containing the cart app

Adding cart app in settings

Remember that for each newly created app, we must register it in the settings.py file. In
/moviesstore/settings.py, under INSTALLED_APPS, add the following lines in bold:

…

INSTALLED_APPS = [

 …

 'movies',

 'accounts',

 'cart',

]

…

Including the cart URL fi le in the project-level URL fi le

In /moviesstore/urls.py, add the following lines in bold:

…

urlpatterns = [

 path('admin/', admin.site.urls),

 path('', include('home.urls')),

 path('movies/', include('movies.urls')),

 path('accounts/', include('accounts.urls')),

 path('cart/', include('cart.urls')),

]

…

All the URLs that are defined in the cart.urls file will contain a cart/ prefix (as defined in the
previous path). We will create the cart.urls file later.

Now that we have created the cart app, let’s allow the addition of movies to the cart.

Adding movies to the cart
To allow the addition of movies to the cart, we will follow the next steps:

1. Configure the add_to_cart URL.

2. Define the add_to_cart function.

3. Update the movies.show template.

Configuring the add_to_cart URL

In /cart/, create a new file called urls.py. This file will contain the path regarding the URLs of the
cart app. For now, fill it in with the following:

from django.urls import path

from . import views

urlpatterns = [

 path('<int:id>/add/', views.add, name='cart.add'),

]

We added a new path called cart/<int:id>/add (remember that the project-level URLs file defined a
/cart prefix for this file). The <int:id> part indicates that this path expects an integer value to be
passed from the URL and that the integer value will be associated with a variable named id. The id
variable will be used to identify which movie we want to add to the cart. For example, the cart/1/add
path indicates that we want to add the movie with id=1 to the cart.

Defining add_to_cart function

In /cart/views.py, add the following lines in bold:

from django.shortcuts import render

from django.shortcuts import get_object_or_404, redirect

from movies.models import Movie

def add(request, id):

 get_object_or_404(Movie, id=id)

 cart = request.session.get('cart', {})

 cart[id] = request.POST['quantity']

 request.session['cart'] = cart

 return redirect('home.index')

Let’s explain the previous code:

We import the redirect and get_object_or_404 functions. We also import the Movie model from the “movies” app.

We define the add function, which takes two parameters: the request and the movie ID.

We fetch the Movie object with the given id from the database (by using the get_object_or_404 function). If no such

object is found, a 404 (Not Found) error is raised.

We check the session storage for a key called 'cart'. If the key does not exist, a {} empty dictionary is assigned to the cart

variable.

We modify the cart variable. We add a new key to the cart dictionary based on the movie ID, and the corresponding value

based on the movie quantity the user wants to add to the cart (we will collect quantity through an HTML form later). For

example, if the user wants to add 2 movies with id=1, a new key/value such as this cart["1"] = "2" will be added to the

dictionary.

The updated cart dictionary is then saved back to the session using request.session['cart'] = cart.

After updating the cart, we redirect the user to the home page (home.index).

Now, let’s update the movies.show template to include a form to add movies to the cart.

Updating the movies.show template

In the /movies/templates/movies/show.html file, add the following lines in bold:

 …

 <p>Description: {{

 template_data.movie.description }}</p>

 <p>

 Price: ${{ template_data.movie.price }}

 </p>

 <p class="card-text">

 <form method="post"

 action="{% url 'cart.add'

 id=template_data.movie.id %}">

 <div class="row">

 {% csrf_token %}

 <div class="col-auto">

 <div class="input-group col-auto">

 <div class="input-group-text">Quantity

 </div>

 <input type="number" min="1" max="10"

 class="form-control quantity-input"

 name="quantity" value="1">

 </div>

 </div>

 <div class="col-auto">

 <button class="btn bg-dark text-white"

 type="submit">Add to cart</button>

 </div>

 </div>

 </form>

 </p>

 …

We added a new form to allow users to add movies to the cart. This form also includes an input field
to specify the quantity of the movie the user wishes to add to the cart. The form is linked to the
'cart.add' path and passes the movie id as part of the form action.

Now, save those files, run the server, go to http://localhost:8000/movies, click on a specific movie,
and you will see the Add to cart functionality available (Figure 10.5).

Figure 10.5 – Movie page with the Add to cart functionality

We successfully added a button to add movies to the cart. Now, let’s move on to listing the movies
added to the cart.

Listing movies added to the cart
To allow us to list movies added to the cart, we will follow the next steps:

1. Configure the cart index URL.

2. Define a utils file.

3. Define a filter.

4. Define an index function.

5. Creating the cart.index template.

6. Updating the add_to_cart function.

7. Adding a link in the base template.

Configuring cart index URL

In /cart/urls.py, add the next path by adding the lines in bold:

from django.urls import path

from . import views

urlpatterns = [

 path('', views.index, name='cart.index'),

 path('<int:id>/add/', views.add, name='cart.add'),

]

We defined a '' path but remember that the project-level URL file defined a /cart prefix for this file.
So, if a URL matches the /cart path, it will execute the index function defined in the views file. We
will implement the index function later.

Defining a utils fi le

Commonly, cart pages display the total amount to be paid. This is calculated by summing the prices
of the movies based on their corresponding quantities. We will define a calculate_cart_total
function to perform this process. However, it is not recommended to place this kind of function in
either the views file or the models file. Therefore, we will create a utilities (utils) file in which we
will place this function to be easily reused.

In /cart/, create a new file called utils.py. For now, fill it in with the following:

def calculate_cart_total(cart, movies_in_cart):

 total = 0

 for movie in movies_in_cart:

 quantity = cart[str(movie.id)]

 total += movie.price * int(quantity)

 return total

Let’s explain the previous code:

We define the calculate_cart_total function, which takes two parameters: cart and movies_in_cart. The cart

parameter is a dictionary that represents the user’s shopping cart. Remember that the keys are strings representing movie IDs, and
the values are strings representing the quantities of each movie in the cart. The movies_in_cart parameter is a list of Movie

objects representing the movies in the cart.

We initialize a total variable by 0.

We iterate through the list of movies in the cart. For each movie, we extract the corresponding quantity added to the cart and
multiply it by the movie’s price. Then, we add the total cost for the movie to the total variable.

Finally, we return the total variable.

In summary, calculate_cart_total calculates the total cost of the movies in the user’s cart by
iterating over each movie in the cart, multiplying the movie’s price by its quantity, and summing up
the total costs. This function will be used later in the views file.

Defining a fi lter

Django filters are a feature of the template engine that allows you to modify or format data in a
template. Filters are applied to variables using a pipe (|) character and are a powerful tool for
customizing the presentation of data in a template.

We want to list the movies added to the cart and display the quantity of each movie. This requires
accessing the cart session data and using each movie’s ID as a key to get the quantity value. While
this may not sound very complicated, Django templates are designed to be simple and primarily
focused on rendering data provided by views. Sometimes, Django templates don’t allow access to
data that depends on other variables or complex data structures. In such cases, you will need to create
a custom filter or tag. We will create a custom filter to access the quantity data for the movies in the
cart.

In /cart/, create a templatetags folder. Then, in /cart/templatetags/ create a new file called
cart_filters.py. For now, fill it in with the following:

from django import template

register = template.Library()

@register.filter(name='get_quantity')

def get_cart_quantity(cart, movie_id):

 return cart[str(movie_id)]

Let’s explain the previous code:

We import the template module, which provides utilities for working with Django templates.

We use the register = template.Library() code to create an instance of template.Library, which is used to

register custom template tags and filters.

We use the @register.filter(name='get_quantity') decorator to register the get_cart_quantity function as

a custom template filter named get_quantity. The name='get_quantity' argument specifies the name of the filter as it

will be used in templates.

We define the get_cart_quantity function, which takes two arguments: the cart session dictionary, and the ID of the

movie for which the quantity is needed.

We access the quantity value by using the cart dictionary and movie_id as the key. We convert movie_id to a string to

ensure compatibility with the cart keys.

Finally, we return the corresponding quantity value.

NOTE
Once the custom filter is defined and registered, you can use it in a Django template such as this: {{

request.session.cart|get_quantity:movie.id }}

In the preceding example, the get_quantity filter is applied to request.session.cart with the movie.id argument

to obtain the quantity of the specific movie in the cart.

You can find more information about custom filters and tags here: https://docs.djangoproject.com/en/5.0/howto/custom-
template-tags/.

We have designed all the elements we need to implement the cart index function.

Defining an index function

In /cart/views.py, add the following in bold:

from django.shortcuts import render

from django.shortcuts import get_object_or_404, redirect

from movies.models import Movie

from .utils import calculate_cart_total

def index(request):

 cart_total = 0

 movies_in_cart = []

 cart = request.session.get('cart', {})

 movie_ids = list(cart.keys())

 if (movie_ids != []):

 movies_in_cart =

 Movie.objects.filter(id__in=movie_ids)

 cart_total = calculate_cart_total(cart,

 movies_in_cart)

 template_data = {}

 template_data['title'] = 'Cart'

 template_data['movies_in_cart'] = movies_in_cart

 template_data['cart_total'] = cart_total

 return render(request, 'cart/index.html',

 {'template_data': template_data})

def add(request, id):

 …

Let’s explain the previous code:

We import the calculate_cart_total function from the utils file.

We define the index function.

We initialize the cart_total to 0, and movies_in_cart as an empty list.

We retrieve the cart information from the session using request.session.get('cart', {}).

We extract the movie IDs that were added to the cart based on the cart keys.

If there are any movie IDs in the cart, the function queries the database for movies with those IDs using
Movie.objects.filter(id__in=movie_ids). Additionally, we calculate the total cost of the movies in the cart using

the calculate_cart_total function, which updates the cart_total variable.

Finally, we prepare the template_data dictionary and render the cart/index.html template.

In summary, the index function is designed to render the cart page, showing the movies in the cart
and the total cost of those movies.

Creating the cart.index template

https://docs.djangoproject.com/en/5.0/howto/custom-template-tags/

In /cart/, create a templates folder. Then, in /cart/templates/, create a cart folder.

Now, in /cart/templates/cart/, create a new file, index.html. For now, fill it in with the following:

{% extends 'base.html' %}

{% block content %}

{% load static %}

{% load cart_filters %}

<div class="p-3">

 <div class="container">

 <div class="row mt-3">

 <div class="col mx-auto mb-3">

 <h2>Shopping Cart</h2>

 <hr />

 </div>

 </div>

 <div class="row m-1">

 <table class="table table-bordered table-striped

 text-center">

 <thead>

 <tr>

 <th scope="col">ID</th>

 <th scope="col">Name</th>

 <th scope="col">Price</th>

 <th scope="col">Quantity</th>

 </tr>

 </thead>

 <tbody>

 {% for movie in template_data.movies_in_cart %}

 <tr>

 <td>{{ movie.id }}</td>

 <td>{{ movie.name }}</td>

 <td>${{ movie.price }}</td>

 <td>{{

 request.session.cart|get_quantity:movie.id }}

 </td>

 </tr>

 {% endfor %}

 </tbody>

 </table>

 </div>

 <div class="row">

 <div class="text-end">

 Total

 to pay: ${{ template_data.cart_total }}

 </div>

 </div>

 </div>

</div>

{% endblock content %}

Let’s explain the previous code:

We use the {% load cart_filters %} tag, which loads custom template filters defined in the cart_filters file. In

our case, it includes the filter named get_quantity.

We create an HTML table.

We iterate through the movies in the cart. For each movie, we display its id, name, price, and quantity value in the cart. To

display the quantity in the cart, we use the get_quantity filter.

Finally, we display the cart_total value.

Updating the add_to_cart function

In /cart/views.py, add the following lines in bold:

…

def add_to_cart(request, id):

 get_object_or_404(Movie, id=id)

 cart = request.session.get('cart', {})

 cart[id] = request.POST['quantity']

 request.session['cart'] = cart

 return redirect('cart.index')

If a user adds a movie to the cart, they will now be redirected to the cart page.

Adding a link in the base template

Finally, let’s add the cart link in the base template. In /moviesstore/templates/base.html, in the
header section, add the following lines in bold:

 …

 <a class="nav-link"

 href="{% url 'home.about' %}">About

 <a class="nav-link"

 href="{% url 'movies.index' %}">Movies

 <a class="nav-link"

 href="{% url 'cart.index' %}">Cart

 …

Now, save those files, run the server, go to http://localhost:8000/movies, click on a couple of
movies, and add them to the cart. Then, go to the Cart section and you will see a Cart page with its
corresponding information (Figure 10.6).

Figure 10.6 – The Cart page

Now that we have learned how to implement a cart system, let’s finish this chapter by including the
functionality to remove movies from the cart.

Removing movies from the cart
To remove movies from the cart, we will follow the next steps:

1. Configure a clear URL.

2. Defining a clear function.

3. Updating the cart.index template.

Configuring clear URL

In /cart/urls.py, add the next path by adding the following lines in bold:

from django.urls import path

from . import views

urlpatterns = [

 path('', views.index, name='cart.index'),

 path('<int:id>/add/', views.add, name='cart.add'),

 path('clear/', views.clear, name='cart.clear'),

]

We define a cart/clear/ path that will execute the clear function defined in the views file. We will
implement the clear function later.

Defining clear function

In /cart/views.py, add the following lines in bold at the end of the file:

…

def clear(request):

 request.session['cart'] = {}

 return redirect('cart.index')

We just update the user’s cart session to an empty dictionary. This removes all previous movies added
to the cart, and we redirect the user to the cart page.

Updating the cart.index template

In the /cart/templates/cart/index.html file, add the following lines in bold:

 …

 <div class="row">

 <div class="text-end">

 Total

 to pay: ${{ template_data.cart_total }}

 {% if template_data.movies_in_cart|length > 0 %}

 <button class="btn btn-danger mb-2">

 Remove all movies from Cart

 </button>

 {% endif %}

 </div>

 </div>

 …

We added an if section to check whether there are any movies in the cart. If there are, we display a
button that allows the user to clear the cart.

Now, save those files, run the server, go to http://localhost:8000/movies, click on a couple of
movies, and add them to the cart. Then, go to the Cart section and click Remove all movies from
Cart (Figure 10.7). You will see an empty cart.

Figure 10.7 – The Cart page

Summary
In this chapter, we learned how web sessions and Django sessions work. We created a cart app that
allows us to add movies to the cart, list the movies added to the cart, and remove the movies from the
cart. We also learned that the utils file is useful for storing functions that can be reused across our
app. Additionally, we learned that filters allow us to modify or format the data displayed in the
templates, and we learned how to utilize some Django session functionalities. In the next chapter, we
will create the order and item models to enable users to purchase movies.

11

Implementing Order and Item Models
In the previous chapter, we implemented the shopping cart system and allowed users to add movies to
the cart. To enable users to purchase movies, we need to store additional information in the database,
specifically to store order and item information. In this chapter, we will implement the order and item
models and establish a connection between them.

In this chapter, we will be covering the following topics:

Analyzing store invoices

Creating the order model

Creating the item model

Recapping the Movies Store class diagram

By the end of the chapter, we will have the complete structure for storing purchase information.
Additionally, we will recap the class diagram and examine the relationship between the Django
models and the classes in the class diagram.

Technical requirements
In this chapter, we will be using Python 3.10+. Additionally, we will be using the VS Code editor in
this book, which you can download from https://code.visualstudio.com/.

The code for this chapter is located at https://github.com/PacktPublishing/Django-5-for-the-
Impatient-Second-Edition/tree/main/Chapter11/moviesstore.

The CiA video for this chapter can be found at https://packt.link/eQzNG

Analyzing store invoices
If you purchase something in a modern store, it is almost certain that you will receive an invoice.
Different stores manage invoices with varying information, but in most cases, you will find the same
essential information. Figure 11.1 shows a simple invoice. We will use this as a blueprint to design
and implement the Django models that we will use to store the purchase information.

https://code.visualstudio.com/
https://github.com/PacktPublishing/Django-5-for-the-Impatient-Second-Edition/tree/main/Chapter11/moviesstore
https://packt.link/eQzNG

Figure 11.1 – Example of a simple invoice

Let’s analyze the invoice shown in Figure 11.1 to understand the kind of information we need to store
for purchase (based on orders and items).

We must store the following information for the order:

ID: To uniquely identify each order. In the previous figure, it is represented by #1.

Date: To identify the date on which the order was completed. In the previous figure, it is represented by 2024-04-22.

Total: To identify the total amount of the order. In the previous figure, it is represented by $50.

User: To identify the user who made the purchase. In the previous figure, it is represented by 1 - daniel.

An order is composed of items, represented as the internal table in Figure 11.1. We must store the
following information for each item:

ID: To uniquely identify each item. In the previous figure, the ID of the first item is represented by 1.

Quantity: To specify the quantity of the movie the user wants to purchase. In the previous example, the quantity of the first item
is represented by 2.

Price: To specify the price of the movie at which the user purchased the item. In the previous example, the price of the first item is
represented by 12.

Movie: To specify the movie to which the item is linked. In the previous example, the linked movie of the first item is represented
by 1 - Inception.

Order: To specify the order to which the item is linked. In the previous example, the linked order of the first item is represented
by #1.

Now that we have grasped the functioning of these simple invoices, let’s proceed to create the
appropriate models.

Creating the order model
To store the purchase information, we need to start by creating an Order Django model. The
following are the three steps for storing the purchase information:

1. Create the Order model.

2. Apply migrations.

3. Add the order model to the admin panel.

Let’s go through them in detail.

Creating the Order model

We will start creating the Order model. We will create this model inside the cart app.

In /cart/models.py file, add the following in bold:

from django.db import models

from django.contrib.auth.models import User

class Order(models.Model):

 id = models.AutoField(primary_key=True)

 total = models.IntegerField()

 date = models.DateTimeField(auto_now_add=True)

 user = models.ForeignKey(User,

 on_delete=models.CASCADE)

 def __str__(self):

 return str(self.id) + ' - ' + self.user.username

Let’s explain the previous code:

We import the User model from Django’s django.contrib.auth.models module.

We define a Python class named Order, which inherits from models.Model. This means that Order is a Django model class.

Inside the Order class, we define several fields:

id: This is an AutoField, which automatically increments its value for each new record added to the database. The

primary_key=True parameter specifies that this field is the primary key for the table, uniquely identifying each

record.

total: This is a IntegerField, which represents the total amount of the order. It stores integer values.

date: This is a DateTimeField , which represents the date and time when the order was created.

auto_now_add=True ensures that the date and time are automatically set to the current date and time when the

order is created.

user: This is a foreign key relationship to the User model, which establishes a many-to-one relationship between

orders and users. It means that each order is associated with a single user, and each user can have multiple orders.
on_delete=models.CASCADE specifies that if the related user is deleted, the associated orders will also be

deleted.

__str__ is a method that returns a string representation of the order. In this case, it returns a string composed of the order ID

and the username of the user who placed the order.

Applying migrations

Now that we have created the Order model, let’s update our database by running one of the following
commands, depending on your operating system:

For macOS, run this:

python3 manage.py makemigrations

python3 manage.py migrate

For Windows, run this:

python manage.py makemigrations

python manage.py migrate

Now, you should see something like this:

Figure 11.2 – Applying the order migration

Adding the order model to the admin panel

To add the Order model to admin, go to /cart/admin.py and register it by adding the following in
bold:

from django.contrib import admin

from .models import Order

admin.site.register(Order)

When you save your file, stop the server, run the server, and go back to /admin. The order model will
now appear (as shown in Figure 11.3):

Figure 11.3 – Admin page with orders available

Now that we have created and applied our Order model, let’s create the Item model to complete the
information required to store purchases.

Creating the Item model
Let’s continue by creating an Item model and follow these steps:

1. Create the Item model.

2. Apply migrations.

3. Add the item model to the admin panel.

Creating the Item model

In /cart/models.py file, add the following in bold:

from django.db import models

from django.contrib.auth.models import User

from movies.models import Movie

class Order(models.Model):

 …

class Item(models.Model):

 id = models.AutoField(primary_key=True)

 price = models.IntegerField()

 quantity = models.IntegerField()

 order = models.ForeignKey(Order,

 on_delete=models.CASCADE)

 movie = models.ForeignKey(Movie,

 on_delete=models.CASCADE)

 def __str__(self):

 return str(self.id) + ' - ' + self.movie.name

Let’s explain the previous code:

We import the Movie model from the movies app.

We define a Python class named Item, which inherits from models.Model. This means that Item is a Django model class.

Inside the Item class, we define several fields:

id: This is an AutoField, which automatically increments its value for each new record added to the database. The

primary_key=True parameter specifies that this field is the primary key for the table, uniquely identifying each

record.

price: This is an IntegerField, which represents the price at which the item was purchased.

quantity: This is an IntegerField, which represents the desired quantity of the item to purchase.

order: This is a foreign key relationship with the Order model, which defines a foreign key relating each item to a

specific order.

movie: This is a foreign key relationship with the Movie model, which defines a foreign key relating each item to a

specific movie.

__str__ is a method that returns a string representation of the item. In this case, it returns a string composed of the item ID and

the name of the associated movie.

Applying migrations

Now that we have created the Item model, let’s update our database by running the following
commands based on your operating system.

For macOS, run this:

python3 manage.py makemigrations

python3 manage.py migrate

For Windows, run this:

python manage.py makemigrations

python manage.py migrate

Now, you should see something like this:

Figure 11.4 – Applying the item migration

Adding the item model to the admin panel

To add the Item model to admin, go to /cart/admin.py and register it by adding the following in
bold:

from django.contrib import admin

from .models import Order, Item

admin.site.register(Order)

admin.site.register(Item)

After saving your file, stop the server and then run the server again. Then, go back to /admin. The
item model will now appear (as shown in Figure 11.5):

Figure 11.5 – Admin page with items available

Now we have completed the data structure required to make purchases. But before proceeding with
the purchase process, let’s recap how our models relate to the project’s class diagram.

Recapping the Movies Store class diagram
The class diagram of the Movies Store that we designed in Chapter 1 served as a blueprint for
designing the code of the Movies Store. We have already implemented all the models required to

complete the project code. So, let’s quickly recap this relationship between models and classes.

Figure 11.6 shows the class diagram, highlighting the locations where we implemented the
corresponding Django models:

Figure 11.6 – Movies Store class diagram, highlighting model locations

Let’s analyze the previous figure:

The Movie and Review models were implemented inside the movies app.

The Order and Item models were implemented inside the cart app.

The User model was not implemented. Instead, we took advantage of the provided Django built-in model located in the

admin.contrib.auth app.

Finally, let’s review how a specific class relates to a model (Figure 11.7):

1: The Review class name became a Review Python class. We inherited from models.Model to define it as a Django model

class.

2: The id, comment, and date class attributes became Python class attributes. We utilized the models module to utilize

available field types similar to those defined in the class diagram.

3: The relationship between the Review and Movie classes became a Python class attribute. We utilized the

models.ForeignKey method to define a foreign key relationship between the two models.

4: The relationship between the Review and User classes became a Python class attribute. We utilized the

models.ForeignKey method to define a foreign key relationship between the two models.

Figure 11.7 – Relationship between a class and a model

We have completed all the connections between the class diagram and the Django models. Now, we
are ready to enable users to make purchases.

Summary
In this chapter, we learned how simple invoices work. We created a couple of models (Order and
Item). These models will allow us to store information about the users’ purchases. We recapitulated
the process of creating Django models and applying migrations. In the end, we reviewed how class
diagrams served as a blueprint to create our project models. In the next chapter, we will implement
purchase functionality and allow users to view their orders.

12

Implementing the Purchase and Orders Pages
During the previous chapter, we implemented the models required to store the purchase information.
In this chapter, we will implement the purchase functionality and finalize the Movies Store project
with an orders page. Users will be able to check their placed orders. Later, we will recap the Movies
Store MVT architecture to check the consistency between the Python code and the architecture
diagram.

In this chapter, we will be covering the following topics:

Creating the purchase page

Creating the orders page

Recapping the Movies Store MVT architecture

By the end of the chapter, we will have the complete code for our Movies Store project. We will also
be capable of relating architecture diagrams to the actual implemented code.

Technical requirements
In this chapter, we will be using Python 3.10+. Additionally, we will be using the VS Code editor in
this book, which you can download from https://code.visualstudio.com/.

The code for this chapter is located at https://github.com/PacktPublishing/Django-5-for-the-
Impatient-Second-Edition/tree/main/Chapter12/moviesstore.

The CiA video for this chapter can be found at https://packt.link/4NyAv

Creating the purchase page
Let’s improve our shopping cart page and include some functionalities to allow users to make
purchases. To achieve that, we need to follow these steps:

1. Configuring the purchase URL.

2. Defining the purchase function.

3. Updating the cart.index template.

4. Creating the cart.purchase template.

https://code.visualstudio.com/
https://github.com/PacktPublishing/Django-5-for-the-Impatient-Second-Edition/tree/main/Chapter12/moviesstore
https://packt.link/4NyAv

Configuring the purchase URL

In /cart/urls.py, add the next path as shown in bold:

from django.urls import path

from . import views

urlpatterns = [

 path('', views.index, name='cart.index'),

 path('<int:id>/add/', views.add, name='cart.add'),

 path('clear/', views.clear, name='cart.clear'),

 path('purchase/', views.purchase,

 name='cart.purchase'),

]

We defined a cart/purchase/ path that will execute the purchase function defined in the views file.
We will implement the purchase function later.

Defining the purchase function

In /cart/views.py, add the following lines of code in bold:

…

from movies.models import Movie

from .utils import calculate_cart_total

from .models import Order, Item

from django.contrib.auth.decorators import login_required

…

@login_required

def purchase(request):

 cart = request.session.get('cart', {})

 movie_ids = list(cart.keys())

 if (movie_ids == []):

 return redirect('cart.index')

 movies_in_cart = Movie.objects.filter(id__in=movie_ids)

 cart_total = calculate_cart_total(cart, movies_in_cart)

 order = Order()

 order.user = request.user

 order.total = cart_total

 order.save()

 for movie in movies_in_cart:

 item = Item()

 item.movie = movie

 item.price = movie.price

 item.order = order

 item.quantity = cart[str(movie.id)]

 item.save()

 request.session['cart'] = {}

 template_data = {}

 template_data['title'] = 'Purchase confirmation'

 template_data['order_id'] = order.id

 return render(request, 'cart/purchase.html',

 {'template_data': template_data})

The previous function is the largest one we have implemented in this book. Let’s explain this
function by breaking it down into parts:

from .models import Order, Item

from django.contrib.auth.decorators import login_required

Let’s analyze this piece of code:

We import the Order and Item models from the current app directory.

We import the login_required decorator.

@login_required

def purchase(request):

 cart = request.session.get('cart', {})

 movie_ids = list(cart.keys())

 if (movie_ids == []):

 return redirect('cart.index')

Let’s analyze this piece of code:

We use the login_required decorator to ensure that the user must be logged in to access the purchase

function.

We define the purchase function, which will handle the purchase process.

We retrieve the cart data from the user’s session. The cart variable will contain a dictionary with movie IDs as keys

and quantities as values.

We retrieve the movie IDs stored in the cart dict and convert them into a list named movie_ids.

We check if the movie_ids list is empty (which indicates the cart is empty). In this case, the user is redirected to the

cart.index page (here, the purchase function finalizes its execution).

 movies_in_cart = Movie.objects.filter(id__in=movie_ids)

 cart_total = calculate_cart_total(cart, movies_in_cart)

 order = Order()

 order.user = request.user

 order.total = cart_total

 order.save()

 for movie in movies_in_cart:

 item = Item()

 item.movie = movie

 item.price = movie.price

 item.order = order

 item.quantity = cart[str(movie.id)]

 item.save()

Let’s analyze this piece of code:

If the cart is not empty, we continue the purchase process.

We retrieve movie objects from the database based on the IDs stored in the cart using
Movie.objects.filter(id__in=movie_ids.

We calculate the total cost of the movies in the cart using the calculate_cart_total() function.

We create a new Order object. We set its attributes such as user (the logged-in user) and total (the cart total), and

save it to the database.

We iterate over the movies in the cart. We create an Item object for each movie in the cart. For each Item, we set its

price and quantity, link the corresponding movie and order, and save it to the database.

 request.session['cart'] = {}

 template_data = {}

 template_data['title'] = 'Purchase confirmation'

 template_data['order_id'] = order.id

 return render(request, 'cart/purchase.html', {'template_data':

template_data})

Let’s analyze this piece of code:

After the purchase is completed, we clear the cart in the user’s session by setting request.session['cart'] to

an empty dictionary.

We prepare the data to be sent to the purchase confirmation template. This data includes the title of the page and the
ID of the created order.

Finally, we render the cart/purchase.html template.

Now that we have finished the purchase function, let’s include a button that links to this function.

Updating cart.index template

In the /cart/templates/cart/index.html file, add the following lines in bold:

 …

 Total to pay: ${{ template_data.cart_total

 }}

 {% if template_data.movies_in_cart|length > 0 %}

 <a href="{% url 'cart.purchase' %}"

 class="btn bg-dark text-white mb-2">Purchase

 <button class="btn btn-danger mb-2">

 Remove all movies from Cart

 </button>

 {% endif %}

 …

We have added a button that links the shopping cart page with the purchase function. This button will
be only displayed if there are movies added to the cart.

Creating cart.purchase template

Now, in /cart/templates/cart/, create a new file, purchase.html. For now, fill it with the following:

{% extends 'base.html' %}

{% block content %}

<div class="p-3">

 <div class="container">

 <div class="row mt-3">

 <div class="col mx-auto mb-3">

 <h2>Purchase Completed</h2>

 <hr />

 <p>Congratulations, purchase completed. Order

 number is: #{{ template_data.order_id }}

 </p>

 </div>

 </div>

 </div>

</div>

{% endblock content %}

We have created a simple template that extends the base.html template and shows a congratulations
message to the user, including the order number of the current purchase.

Now, save those files, run the server, go to http://localhost:8000/movies, click on a couple of
movies, and add them to the cart. Then, go to the Cart section and click Purchase (you will need to
be logged in to execute the purchase action). Then, you will see a purchase confirmation message
(Figure 12.1):

Figure 12.1 – Purchase page

If you navigate to the admin panel, you will see a new order registered (linked to the user who made
the purchase) and a couple of items (linked to the previous order), as shown in Figure 12.2:

Figure 12.2 – Order and items in the admin panel

At this point, we are able to create orders and register the corresponding information into the
database. Now, let’s implement a page to see the orders.

Creating the orders page
Let’s finalize our Movies Store by allowing users to see their orders. To achieve that, we need to
follow these steps:

1. Configuring the orders URL.

2. Defining the orders function.

3. Creating the accounts.orders template.

4. Adding a link to the base template.

Configuring the orders URL

An order belongs to a specific user. Because of this, we will add the orders functionality inside the
accounts app. In /accounts/urls.py, add the next path in bold:

from django.urls import path

from . import views

urlpatterns = [

 path('signup', views.signup, name='accounts.signup'),

 path('login/', views.login, name='accounts.login'),

 path('logout/', views.logout, name='accounts.logout'),

 path('orders/', views.orders, name='accounts.orders'),

]

We defined an accounts/orders/ path, which will execute the orders function defined in the views
file. We will implement the orders function later.

Defining the orders function

In /accounts/views.py, add the following lines in bold:

…

from django.shortcuts import redirect

from django.contrib.auth.decorators import login_required

from django.contrib.auth.models import User

…

@login_required

def orders(request):

 template_data = {}

 template_data['title'] = 'Orders'

 template_data['orders'] = request.user.order_set.all()

 return render(request, 'accounts/orders.html',

 {'template_data': template_data})

Let’s explain the previous code:

We import the User model from Django’s authentication system.

We use the login_required decorator to ensure that the user must be logged in to access the orders function.

We define the orders function, which takes a request object as a parameter.

We define the template_data variable and assign it a title.

We retrieve all orders belonging to the currently logged-in user (request.user). The order_set attribute is used to access

the related orders associated with the user through their relationship (you can learn more about this type of relationship here
https://docs.djangoproject.com/en/5.0/topics/db/examples/many_to_one/). Remember that there is a ForeignKey relationship

between the User model and the Order model.

Finally, we pass the orders to the template and render it.

Creating accounts.orders template

https://docs.djangoproject.com/en/5.0/topics/db/examples/many_to_one/

Now, in /accounts/templates/accounts/, create a new file, orders.html. For now, fill it with the
following:

{% extends 'base.html' %}

{% block content %}

<div class="p-3">

 <div class="container">

 <div class="row mt-3">

 <div class="col mx-auto mb-3">

 <h2>My Orders</h2>

 <hr />

 {% for order in template_data.orders %}

 <div class="card mb-4">

 <div class="card-header">

 Order #{{ order.id }}

 </div>

 <div class="card-body">

 Date: {{ order.date }}

 Total: ${{ order.total }}

 <table class="table table-bordered

 table-striped text-center mt-3">

 <thead>

 <tr>

 <th scope="col">Item ID</th>

 <th scope="col">Movie</th>

 <th scope="col">Price</th>

 <th scope="col">Quantity</th>

 </tr>

 </thead>

 <tbody>

 {% for item in order.item_set.all %}

 <tr>

 <td>{{ item.movie.id }}</td>

 <td>

 <a class="link-dark"

 href="{% url 'movies.show'

 id=item.movie.id %}">

 {{ item.movie.name }}

 </td>

 <td>${{ item.movie.price }}</td>

 <td>{{ item.quantity }}</td>

 </tr>

 {% endfor %}

 </tbody>

 </table>

 </div>

 </div>

 {% endfor %}

 </div>

 </div>

 </div>

</div>

{% endblock content %}

Let’s explain the previous code:

We extend the base.html template.

We iterate over each order object stored in template_data.orders. For each order, we display its date and total.

Then, we iterate we iterate over each item in the current order. The order.item_set.all retrieves all related items

associated with the current order. For each of those items, we display its price and quantity, and the corresponding movie id

and name.

Adding a link in the base template

Let’s add the orders link in the base template. In /moviesstore/templates/base.html, in the header
section, add the following lines in bold:

 …

 {% if user.is_authenticated %}

 <a class="nav-link"

 href="{% url 'accounts.orders' %}">Orders

 <a class="nav-link"

 href="{% url 'accounts.logout' %}">Logout

 ({{ user.username }})

 {% else %}

 <a class="nav-link"

 href="{% url 'accounts.login' %}">Login

 <a class="nav-link"

 href="{% url 'accounts.signup' %}">Sign Up

 {% endif %}

 …

Now, save those files, run the server, and go to http://localhost:8000/accounts/orders. If you
made a purchase, you would see your corresponding orders (Figure 12.3):

Figure 12.3 – Orders page

We have completed the Movies Store project code. We have implemented all the functionalities
planned in Chapter 1. Now, let’s compare the implemented code with the architecture diagram.

Recapping the Movies Store MVT architecture
The architecture diagram of the Movies Store that we designed in Chapter 1 served as a blueprint for
designing the applications, layers, and code of the Movies Store. We have already implemented all
the applications and elements described in that diagram. So, let’s quickly recap what we have
accomplished so far.

Figure 12.4 displays the complete project tree directory structure and compares it with a simple
version of the project architecture. We have successfully implemented four apps (accounts, cart,
home, and movies), which contain most of the project’s functionalities.

Figure 12.4 – Project tree directory compared with simplified architecture

Figure 12.5 displays the complete architecture. We hope you understand each of the architectural
elements better and how they relate to each other.

Figure 12.5 – Movies Store architecture

Let’s make a last quick analysis:

We implemented a project-level folder named moviesstore. This folder contained the project-level URL file, which connected

with app-level URL files.

We implemented four Django apps. For each of those apps, we illustrated the communication between the three main layers:
models, views, and templates.

We learned how to divide the code across multiple apps to improve maintainability and separate responsibilities.

We practiced the implementation of those files and layers by implementing a set of functionalities for our Movies Store project.

What a journey! We’ve utilized numerous Django modules, libraries, functions, concepts, and
elements to implement this project.

Summary

In this chapter, we completed the Movies Store project. We implemented purchase functionality,
which took advantage of the Order and Item models. We created an orders page to allow users to view
their orders. We recapped our Movies Store architecture diagram and engaged in comparisons and
discussions with the actual project code. We have learned a lot since we started. Now, it’s time for the
final chapter. Let’s learn how to deploy our Movies Store project to the cloud.

13

Deploying the Application to the Cloud
Our project is currently running on our local machine. To make this project accessible to others, we
need to deploy it on a server on the internet. A popular way to do this is by deploying our Django
project on PythonAnywhere, as it is free to use for small websites. Let’s see how to deploy our
application to the cloud.

In this chapter, we will be covering the following topics:

Managing GitHub and Git

Cloning your code onto PythonAnywhere

Configuring virtual environments

Setting up your web app

Configuring static files

By the end of the chapter, you will have the knowledge and ability to deploy small Python
applications on the cloud.

Technical requirements
In this chapter, we will be using Python 3.10+. We will be using Git to upload our code to the cloud,
which you can download from https://git-scm.com/downloads. Finally, we will be using the VS Code
editor in this book, which you can download from https://code.visualstudio.com/.

The CiA video for this chapter can be found at https://packt.link/QXahe

Managing GitHub and Git
To get our code onto sites such as PythonAnywhere, first, we need our code to be on a code-sharing
platform such as GitHub or GitLab. In this chapter, we will use GitHub. If you are already familiar
with uploading your code to GitHub, please skip the following section and proceed to upload the
Movies Store code to a new GitHub repository. Otherwise, you can follow along.

To upload our code to GitHub, we will follow the next steps:

1. Understanding Git and GitHub.

2. Creating a GitHub repository.

https://git-scm.com/downloads
https://packt.link/QXahe

3. Uploading our code to GitHub.

Understanding Git and GitHub

Git is a distributed version control system designed to handle everything from small to very large
projects with speed and efficiency. It allows multiple developers to collaborate on projects by
tracking changes to files (https://git-scm.com/).

GitHub is a web-based platform built on top of the Git version control system. It provides hosting
for software development projects that use Git for version control (https://github.com/).

We’ll enhance our Movies Store project to function as a version control system by utilizing Git.
Then, we’ll host the Movies Store project code on the Cloud using GitHub.

Creating a GitHub repository

A GitHub repository is a central location where files and folders associated with a project are stored
and managed. It serves as a version-controlled hub for a project, allowing multiple collaborators to
contribute to the development process.

Let’s follow the next steps to create a GitHub repository:

1. Go to https://github.com/ and sign up for an account if you don’t have one. Then, create a new repository by clicking on + at the
top-right, and select New repository (Figure 13.1):

Figure 13.1 – GitHub – create a new repository option

2. Give your repository a name such as moviesstore. Select the Public radio box and hit Create repository (Figure 13.2):

https://git-scm.com/
https://github.com/
https://github.com/

Figure 13.2 – GitHub – creating a new repository

We have successfully created a GitHub repository. We will use it to store the Movies Store project
code. Keep your GitHub repository open; we will use that page in the next section.

Uploading our code to GitHub

We will begin to move our code onto GitHub. In your local machine’s Terminal, ensure you have Git
installed by running the following:

git

If you run the git command in the terminal and see Git usage and commands listed, it indicates that
you have Git installed (Figure 13.3):

Figure 13.3 – Executing the git command in the terminal

If you don’t see them, you will need to install Git. Visit the Git site (https://git-scm.com/downloads)
and follow the instructions to install Git. When Git is installed, you might need to close and reopen
the Terminal and type “git” in it to ensure that it is installed.

Now that we’ve installed Git, let’s proceed with the next steps to upload our Movies Store project
code to our GitHub repository:

1. Open your terminal in the top moviesstore folder (the one that contains the manage.py file). Then, run the following

command:

git init

The previous command marks your folder as a Git project, allowing you to start tracking changes.
A hidden folder named .git is added to the project directory. This folder stores all the metadata,
configuration files, and elements that Git needs to track changes and manage the project.

2. Next, run the following command:

git add .

The previous command adds everything (folders, subfolders, and files) in our project to the
staging area, preparing them to be included in the next commit.

3. Then, go ahead and commit the previous changes:

git commit -m "first version"

The previous command is used to record the changes and inclusions we made to the staging area.
When you run git commit, you’re essentially creating a snapshot of the current state of your
project. You can identify different commits by the descriptive messages you provide.

4. Next, run the following command:

git branch -M main

This creates a branch called main. This will be the place in which we store our application code.

5. Now, we want to save our Git project on GitHub. In the repository page in GitHub, copy the git remote add origin

<your-origin-path> command (Figure 13.4) and run it in the Terminal (remember to replace <your-origin-path>

with yours):

https://git-scm.com/downloads

Figure 13.4 – Locating your GitHub repository path

git remote add origin <your-origin-path>

The previous command is essentially telling Git to create a new remote repository with the name
origin and associate it with the URL or path you provide. This will allow you to push your local
changes to the remote repository later.

6. To move the code from your local computer to GitHub, run the following:

git push -u origin main

If the upload is successful, you should see a message like this (Figure 13.5):

Figure 13.5 – A successful git push to the GitHub repository

NOTE
If this is your first time uploading code to GitHub, you will probably see a prompt asking you to log in to GitHub. Please
complete that process.

Now, when you reload the GitHub repository page, you should see the Movies Store project structure
and files properly uploaded (as shown in Figure 13.6):

Figure 13.6 – GitHub repository containing the Movies Store project code

NOTE
Do note that there is much more to Git and GitHub. We have just covered the necessary steps to upload our code to
GitHub.

With this, we have now placed our code on GitHub. Next, we will clone it on PythonAnywhere.

Cloning your code onto PythonAnywhere
PythonAnywhere (https://www.pythonanywhere.com/) is a cloud-based platform that provides a
web hosting environment for Python applications. It allows users to write, edit, and run Python code
directly in their web browser without needing to install any software locally.

The steps to deploy an existing Django project on PythonAnywhere can be found at
https://help.pythonanywhere.com/pages/DeployExistingDjangoProject, but we’ll guide you through
them here.

https://www.pythonanywhere.com/
https://help.pythonanywhere.com/pages/DeployExistingDjangoProject

Now that our code is on GitHub, let’s proceed with the next steps to create a PythonAnywhere
account and move our code from GitHub to PythonAnywhere:

1. Go to https://www.pythonanywhere.com/registration/register/beginner/ and sign up for a beginner free account if you don’t have
one.

2. Then, click on Dashboard | New console | $ Bash (Figure 13.7):

Figure 13.7 – Creating a new console

3. The previous step will open a Bash console. Back in your GitHub repository, click on Code and copy the URL to clone (Figure
13.8):

https://www.pythonanywhere.com/registration/register/beginner/

Figure 13.8 – Copying repository URL

4. To clone the previous repository, go back to the PythonAnywhere Bash console and run the following command (replace the
<repo-url> part with yours, for example, git clone https://github.com/danielgara/moviesstore.git):

git clone <repo-url>

The previous command takes all of your code from the GitHub repository and clones it in
PythonAnywhere. Once the cloning process is complete, you can execute the ls command in
Bash, and you will see a folder with the repository name containing the repository code (refer to
Figure 13.9).

Figure 13.9 – Checking with the ls command that the repository was successfully cloned

We’ve successfully cloned our repository code into PythonAnywhere. Now, let’s configure a virtual
environment to be able to run our project.

https://github.com/danielgara/moviesstore.git

Configuring virtual environments
A virtual environment in Python is a self-contained directory that contains a specific Python
interpreter version, along with a set of libraries and packages. It allows you to create an isolated
environment for each of your Python projects, ensuring that dependencies are kept separate and do
not interfere with each other.

Next, we will create a virtual environment in our PythonAnywhere Bash console to isolate our
project code and dependencies. Let’s proceed with the following steps:

1. To create a virtual environment in the PythonAnywhere Bash console we have to execute something like this command:
mkvirtualenv -p python3.10 <environment-name>. For now, we will replace <environment-name> with

moviesstoreenv and run the following:

mkvirtualenv -p python3.10 moviesstoreenv

We will see the name of virtualenv in Bash, for example, (moviesstoreenv). This means we are in
the virtual environment (Figure 13.10):

Figure 13.10 – Bash located in virtualenv

2. Back in our virtualenv, we need to install django and pillow (as we did in development). So, run the following:

pip install django==5.0 pillow

The previous execution may take from a couple of minutes to ten minutes. PythonAnywhere has
very fast internet, but the filesystem access can be slow, and Django creates a lot of small files
during its installation. Thankfully, you only have to do it once. Once it’s completed, you should
see a message like the one shown in Figure 13.11:

Figure 13.11 – Django and pillow installed

We have already configured our virtual environment. For now, you can leave that Bash console open
or close it. Now, let’s create a web app that utilizes this virtual environment.

Setting up your web app
At this point, we need to be armed with three pieces of information:

The path to your Django project’s top folder (the folder that contains the manage.py file). For this project, it is commonly a

combination of /home and /<pythonanywhere-user> and /<github-repo-name>. In our case, it was

/home/danielgara/moviesstore.

The name of your main project folder (that’s the name of the folder that contains your settings.py file). In our case, it is

moviesstore.

The name of your virtualenv. In our case it is moviesstoreenv.

Now, follow the next steps to setting up your web app:

1. In your browser, open a new tab and go to the PythonAnywhere dashboard. Then, click on the Web tab and click Add a new web
app (Figure 13.12):

Figure 13.12 – PythonAnywhere Web tab

2. PythonAnywhere will ask you for Your web app’s domain name. Just click Next (Figure 13.13):

Figure 13.13 – PythonAnywhere domain name

3. In the Select a Python Web framework section, choose Manual configuration (Figure 13.14):

Figure 13.14 – Selecting Manual configuration

NOTE
Make sure you choose Manual configuration, not the Django option; that’s for new projects only.

4. Select the proper version of Python (the same one you used to create your virtual environment). In our case, it was Python

3.10 (Figure 13.15). Finally, when asked for Manual configuration, click Next (Figure 13.16).

Figure 13.15 – Selecting the right Python version

Figure 13.16 – Finalizing the web app

5. Once the web app is created, you need to enter the name of your virtualenv in the Virtualenv section (Figure 13.17). You can just
use its short name, moviesstoreenv, and it will automatically complete its full path in

/home/username/.virtualenvs/moviesstoreenv:

Figure 13.17 – Entering the virtualenv name

6. Next, enter the path to your username folder (/home/<your-username>/) in the Code section, both for Source code and

Working directory (Figure 13.18):

Figure 13.18 – Entering the path to your code

7. Click the wsgi.py file inside the Code section, not the one in your local Django project folder (Figure 13.19):

Figure 13.19 – Accessing the wsgi.py file

This will take you to an editor where you can make changes.

8. Delete everything except the Django section and uncomment that section. Your WSGI file will look something like the following:

+++++++++++ DJANGO +++++++++++

To use your own django app use code like this:

import os

import sys

path = '/home/danielgara/moviesstore'

if path not in sys.path:

 sys.path.append(path)

os.environ['DJANGO_SETTINGS_MODULE'] =

 'moviesstore.settings'

from django.core.wsgi import get_wsgi_application

application = get_wsgi_application()

Be sure to substitute the correct path to your project, the folder that contains the manage.py file:
path = '/home/danielgara/moviesstore'

Make sure you put the correct value for DJANGO_SETTINGS_MODULE (where the settings.py file is
located):

os.environ['DJANGO_SETTINGS_MODULE'] =

 'moviesstore.settings'

Finally, save the file.

9. Next, we need to add to the allowed hosts in settings.py. Go to the PythonAnywhere Files tab and navigate through the

source code directory until you find the settings.py file (Figure 13.20):

Figure 13.20 – Accessing the settings.py file

10. Click the settings.py file. In settings.py, modify the ALLOWED_HOSTS variable:

…

SECURITY WARNING: don't run with debug turned on in

 production!

DEBUG = True

ALLOWED_HOSTS = ['*']

…

Save the file.

11. Then, go to the Web tab and hit the Reload button for your domain (Figure 13.21):

Figure 13.21 – Reloading the web app

The ALLOWED_HOSTS settings represent which host/domain names our Django site can serve. This is a
security measure to prevent HTTP Host header attacks. We used the asterisk (*) wildcard to indicate
that all domains are acceptable. In your production projects, you can explicitly list which domains are
allowed.

12. Go to your project’s URL (it is the blue link in the previous screenshot, for example, danielgara.pythonanywhere.com),

and the home page should now appear (Figure 13.22):

NOTE
The home page will look strange because we need to configure our application to serve static files (such as images and
styles). We will fix it later.

Figure 13.22 – The PythonAnywhere web app link

We are almost there! Let’s fix the static images in the next section.

Configuring static fi les
Let’s fix the problem of our static and media images not appearing:

1. In PythonAnywhere, go back to the Files tab and navigate to the settings.py file. We need to add the following in bold:

…

STATIC_URL = 'static/'

STATIC_ROOT = os.path.join(BASE_DIR, 'static')

Default primary key field type

https://docs.djangoproject.com/en/4.0/ref/settings/

#default-auto-field

DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField'

MEDIA_ROOT = os.path.join(BASE_DIR,'media')

MEDIA_URL = '/media/'

…

The STATIC_ROOT variable defines a central location into which we collect all static files.

2. In PythonAnywhere, go to the Consoles tab, and click your Bash console. Then, connect to your virtual environment by
executing the following command:

workon moviesstoreenv

Then, go to the moviesstore folder (where the manage.py file is located) by running the following
command:

cd moviesstore/

Execute the following command (Figure 13.23):
python manage.py collectstatic

This command collects all your static files from each of your app folders (including the static
files for the admin app) and from any other folders you specify in settings.py and copies them
into STATIC_ROOT:

Figure 13.23 – Executing the python manage.py collectstatic command

You need to rerun this command whenever you want to publish new versions of your static files.

3. Next, set up a static file mapping to get our web servers to serve out your static files for you. In the Web tab on the
PythonAnywhere dashboard, under Static files, enter a new record. In URL, enter /static/. In Directory, enter your project

path plus static/, for example, /home/danielgara/moviesstore/static/ (Figure 13.24):

Figure 13.24 – Defining the static files

4. Then, in the Web tab, hit Reload, open your website, and your static images should appear now (Figure 13.25):

Figure 13.25 – The Movies Store – home page

We did it! Our Movies Store project has been deployed to the cloud. Now you can navigate between
the different sections of the website or share your website link with colleagues and friends.

Summary
We have gone through quite a lot of content to equip you with the skills required to create a full-stack
Django app. We have covered the major features of Django: templates, views, URLs, user
authentication, authorization, models, sessions, forms, and deployment. You now have the knowledge
to go and build your own websites with Django. The CRUD functionality in our Reviews app is
common in many web applications – for example, you already have all the tools to create a blog, to-
do list, or shopping cart web applications.

Hopefully, you have enjoyed this book and would like to learn more from us.

Index

As this ebook edition doesn't have fixed pagination, the page numbers below are hyperlinked for
reference only, based on the printed edition of this book.

A

About page

about.jpg image, storing 39

about function 26

About template, creating 38, 39

about URL, configuring 26

creating 26

used, for extending base template 38

views about function, updating 39, 40

accounts app

accounts URL file, including in project 97

adding, to settings file 97

creating 96, 97

accounts login template

creating 110, 112

admin interface

accessing 65-68

superuser, creating 66, 67

superuser password, restoring 67

admin panel

movie model, adding to 70-72

B

base template

creating 30

creating, with Bootstrap 31

extending, with About page 38

extending, with home page 33

link, adding 56

registering 33

updating, to use custom SS and load static files 36, 37

Bootstrap 30

base template, creating with 30-32

C
cart app

adding, in settings 143

creating 142

cart URL file

including, in project-level URL file 143

Create, Read, Update, Delete (CRUD) 12, 60

Cross-Site Request Forgery (CSRF) token 100

custom filters and tags

reference link 149

D
database viewer 83-86

db.sqlite3 file 19, 83

Django

about 1

installing 4, 6

local web server, running 6, 7

login scenario 140, 141

Django admin panel

customizing 86

movies by name, ordering 87

searches by name, allowing 88, 89

Django app

about page, creating 26

creating 19-21

home page, creating 21

Django decorator 115

Django filters 148

Django home page, URL

path, creating 22, 23

project-level URL file, connecting with app-level URL file 25

template, creating 24, 25

URL, configuring 21, 22

view function 23, 24

Django model

reference link 60

Django MVT architecture 11-14

models 12

templates 12

views 12

Django project

creating 6, 7

running 6

structure 16

Django project, structure

db.sqlite3 file 19

manage.py file 18

moviesstore folder 16-18

Django sessions 137, 141

client-side cookies 141

configuration options 142

integration, with authentication 142

reference link 141

server-side storage 141

session data access 142

Django template language (DTL) 31

features 31

F
footer section

adding 43

base template, updating 43, 44

style.css, updating 44, 45

G

Git 182

managing 182

reference link 182

GitHub

code, uploading 183-186

managing 182

reference link 182

GitHub repository

creating 182

H
header section

adding 40

base template, updating 40, 41

logo image, storing 41

style.css, updating 42

home page

custom CSS file, creating 34

image, storing 34

new index template, creating 33, 34

static files, serving 35

used, for extending base template 33

views index function, updating 37, 38

HTTP protocol

limitations 138

Hypertext Transfer Protocol (HTTP) 13

I

image upload

configuring 68, 69

individual movie page

custom CSS class, adding 78, 79

listing, updating 77

movies.show template, updating 77, 78

show function, updating 77

individual movies

links, adding on movie page 54, 55

listing 53

movies show template, creating 54

URLs, configuring 53

views show function, defining 53, 54

Item model

adding, to admin panel 163, 164

creating 162

migrations, applying 163

L
login page creation 109

accounts signup template, creating 110, 112

link, adding to base template 112, 113

login function, defining 109, 110

login URL, configuring 109

registered user, redirecting to login page 113

logout functionality implementation 114

link, adding to base template 115, 116

logout function, defining 114, 115

logout URL, configuring 114

M
manage.py file 18

migrations

custom migrations, applying 64, 65

custom migrations, creating 63, 64

default migrations, applying 62

managing 62

running 92, 93

model

basics 60

Model field reference

reference link 61

Model-View-Controller (MVC) 11

Model-View-Template (MVT) 11

movie listings page

custom CSS class, adding 76

index function, updating 74, 75

movies.index template, updating 75, 76

updating 74

movie model

adding, to admin panel 70-72, 120-163

creating 60, 61

movie reviews app 11

movies

dummy data, removing 74

listing, with dummy data 49

movies index template, creating 51, 52

views index function, defining 50, 51

movies added to cart, listing

add_to_cart function, updating 152

cart.index template, creating 150, 151

cart index URL, configuring 147

filter, defining 148

index function, defining 149, 150

link, adding in base template 152

steps 146

utils file, defining 147, 148

movies, adding to cart

add_to_cart function, defining 144, 145

add_to_cart URL, configuring 144

movies.show template, updating 145, 146

steps 143

movies app 48

adding, to settings 49

URL file, including in project-level URL file 49

movies, removing from cart

cart.index template, updating 154

clear function, defining 154

clear URL, configuring 153

steps 153

Movies Store application 7-11

About page 8

Admin panel 8

Cart page 8

Home page 8

Login page 8

Movies page 8

Orders page 8

Register page 8

Movies Store class diagram 164-166

moviestore folder 16-18

elements 17

Movies Store MVT architecture 178, 179

movies URL

configuring 50

MySQL 89

MySQL database

configuring 90, 91

project, configuring to use 91

switching to 89

O
Order model

adding, to admin panel 161

creating 159, 160

migrations, applying 160

orders function

defining 174

orders page

accounts.orders template, creating 175, 176

creating 173

link, adding in base template 176, 177

orders function, defining 174

orders URL, configuring 174

P

phpMyAdmin 89

Pillow

installation link 61

installing 61

pip 4

project

configuring, to use MySQL database 91

project-level URL file

cart URL file, including in 143

purchase function

defining 168-171

purchase page

cart.index template, updating 171, 172

cart.purchase template, creating 172, 173

creating 168

purchase function, defining 168-171

purchase URL, configuring 168

PyMySQL 91

Python

download link 3

installing 2, 3

URL 2, 4

PythonAnywhere

code, cloning 186-188

reference link 186

R
review model

adding, to admin panel 120

creating 118, 119

migrations, applying 119

reviews

create_review function, defining 122, 123

create review URL, configuring 124, 125

creating 121

delete_review function, deleting 133

delete_review URL, configuring 134

deleting 132

edit_review function, defining 129, 130

edit_review URL, configuring 131, 132

movies edit_review template, creating 128, 129

movies.show template, updating 121-133

reading 125

show function, updating 126, 127

updating 127, 128

S
search movie functionality

implementing 79

index function, updating 80, 81

movies.index template, updating 79

session key 139

signup page creation 98

accounts signup template, creating 99, 100

signup function, defining 98

signup function, modifying 102-104

signup link, adding to base template 101, 102

signup URL, configuring 98

software architectural patterns 11

SQLite 86

SQLite Viewer

reference link 83

static files

configuring 196-198

stored images

serving 69

store invoices

analyzing 158

T
templates 24, 99, 150, 175

U
Uniform Resource Locators (URL)

configuring 21, 22

UserCreationForm 104

customizing 104

CustomUserCreationForm, creating 105

CustomUserCreationForm, using in signup function 105-107

display errors, customizing 107-109

V
views index function

updating 37

virtual environments (venv) 6

configuring 189

W
web app

setting up 190-196

web sessions 137-139

X

XAMPP 89

reference link, for installation 89

www.packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packtpub.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.com for
more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range of
free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

http://www.packtpub.com/
http://packtpub.com/
mailto:customercare%40packtpub.com?subject=
http://www.packtpub.com/

Hands-On Microservices with Django

Tieme Woldman

ISBN: 978-1-83546-852-4

https://www.packtpub.com/en-us/product/hands-on-microservices-with-django-9781835468524

Understand the architecture of microservices and how Django implements it

Build microservices that leverage community-standard components such as Celery, RabbitMQ, and Redis

Test microservices and deploy them with Docker

Enhance the security of your microservices for production readiness

Boost microservice performance through caching

Implement best practices to design and deploy high-performing microservices

Django in Production

Arghya Saha

ISBN: 978-1-80461-048-0

https://www.packtpub.com/en-us/product/django-in-production-9781804610480

Write scalable and maintainable code like a Django expert

Become proficient in Docker for Django and experience platform-agnostic development

Explore intelligent practices for continuous integration

Leverage the power of AWS to seamlessly deploy your application in a production environment

Optimize unstable systems through effective performance monitoring

Effortlessly handle authentication and authorization issues

Automate repetitive tasks by creating custom middleware

Thoroughly test your code using factory_boy and craft comprehensive API tests

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and apply
today. We have worked with thousands of developers and tech professionals, just like you, to help
them share their insight with the global tech community. You can make a general application, apply
for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you’ve finished Django 5 for the Impatient, we’d love to hear your thoughts! If you purchased
the book from Amazon, please click here to go straight to the Amazon review page for this book and
share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free
content in your inbox daily

http://authors.packtpub.com/
https://packt.link/r/1835461557

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781835461556

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781835461556

	Django 5 for the Impatient
	Contributors
	About the authors
	About the reviewers
	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Code in Action
	Conventions used
	Get in touch
	Share Your Thoughts
	Download a free PDF copy of this book

	Chapter 1: Installing Python and Django, and Introducing the Movies Store Application
	Technical requirements
	Introducing and installing Python
	Introducing and installing Django
	Creating and running a Django project
	Understanding the Movies Store application
	Introducing the Django MVT architecture
	Summary

	Chapter 2: Understanding the Project Structure and Creating Our First App
	Technical requirements
	Understanding the project structure
	The moviesstore folder
	manage.py
	db.sqlite3

	Creating our first app
	Creating a home page
	Configuring an URL

	Creating an about page
	Configuring the about URL
	Defining about function
	Creating about template

	Summary

	Chapter 3: Designing a Base Template
	Technical requirements
	Creating a base template with Bootstrap
	Introducing Bootstrap
	Introducing Django template language (DTL)
	Creating a base template
	Registering the base template

	Updating the home page to use the base template
	Creating the new index template
	Creating a custom CSS file
	Storing an image
	Serving the static files
	Updating the base template to use the custom CSS and load static files
	Updating the views index function

	Updating the About page to use the base template
	Creating the new About template
	Storing the about.jpg image
	Updating the views about function

	Adding a header section
	Updating the base template
	Storing the logo image
	Updating the style.css

	Adding a footer section
	Updating the base template
	Updating the style.css

	Summary

	Chapter 4: Creating a Movies App with Dummy Data
	Technical requirements
	Creating the movies app
	Creating the movies app
	Adding the movies app to settings
	Including the movies URL file in the project-level URL file

	Listing movies with dummy data
	Configuring the movies URL
	Defining the views index function
	Creating a movies index template

	Listing individual movies
	Configuring individual movies URLs
	Defining the views show function
	Creating a movies show template
	Adding individual movie links on the movies page

	Adding a link in the base template
	Summary

	Chapter 5: Working with Models
	Technical requirements
	Creating our first model
	Creating a Movie model

	Installing Pillow
	Managing migrations
	Applying the default migrations
	Creating custom migrations
	Applying custom migrations

	Accessing the Django admin interface
	Creating a superuser
	Restoring your superuser password
	Accessing the admin panel

	Configuring image upload
	Serving the stored images
	Adding a movie model to the admin panel
	Adding the Movie model to the admin panel

	Summary

	Chapter 6: Collecting and Displaying Data from the Database
	Technical requirements
	Removing the movies’ dummy data
	Updating the movie listings page
	Updating index function
	Updating the movies.index template
	Adding a custom CSS class

	Updating the listing of an individual movie page
	Updating show function
	Updating the movies.show template
	Adding a custom CSS class

	Implementing a search movie functionality
	Updating the movies.index template
	Updating index function

	Summary

	Chapter 7: Understanding the Database
	Technical requirements
	Understanding the database viewer
	Customizing the Django admin panel
	Ordering movies by name
	Allowing searches by name

	Switching to a MySQL database
	Configuring the MySQL database
	Configuring our project to use the MySQL database
	Running the migrations

	Summary

	Chapter 8: Implementing User Signup and Login
	Technical requirements
	Creating an accounts app
	Creating an accounts app
	Adding the accounts app to the settings file
	Including the accounts URL file in the project-level URL file

	Creating a basic signup page
	Configuring a signup URL
	Defining the signup function
	Creating accounts signup template
	Adding the signup link to the base template

	Improving the signup page to handle POST actions
	Customizing UserCreationForm
	Creating CustomUserCreationForm
	Updating the signup function to use CustomUserCreationForm
	Customizing the way errors are displayed

	Creating a login page
	Configuring a login URL
	Defining login function
	Creating accounts login template
	Adding the link to the base template
	Redirecting a registered user to the login page

	Implementing a logout functionality
	Configuring a logout URL
	Defining the logout function
	Adding the link to the base template

	Summary

	Chapter 9: Letting Users Create, Read, Update, and Delete Movie Reviews
	Technical requirements
	Creating a review model
	Create the review model
	Apply migrations
	Add the review model to the admin panel

	Creating reviews
	Updating the movies.show template
	Defining the create_review function
	Configuring the create review URL

	Reading reviews
	Updating the movies.show template
	Updating the show function

	Updating a review
	Updating movies.show template
	Creating the movies edit_review template
	Defining the edit_review function
	Configuring the edit_review URL

	Deleting a review
	Updating the movies.show template
	Defining the delete_review function
	Configuring the delete_review URL

	Summary

	Chapter 10: Implementing a Shopping Cart System
	Technical requirements
	Introducing web sessions
	HTTP protocol limitations
	Web sessions
	Django login scenario
	Django sessions

	Creating a cart app
	Adding cart app in settings
	Including the cart URL file in the project-level URL file

	Adding movies to the cart
	Configuring the add_to_cart URL
	Defining add_to_cart function
	Updating the movies.show template

	Listing movies added to the cart
	Configuring cart index URL
	Defining a utils file
	Defining a filter
	Defining an index function
	Creating the cart.index template
	Updating the add_to_cart function
	Adding a link in the base template

	Removing movies from the cart
	Configuring clear URL
	Defining clear function
	Updating the cart.index template

	Summary

	Chapter 11: Implementing Order and Item Models
	Technical requirements
	Analyzing store invoices
	Creating the order model
	Creating the Order model
	Applying migrations
	Adding the order model to the admin panel

	Creating the Item model
	Creating the Item model
	Applying migrations
	Adding the item model to the admin panel

	Recapping the Movies Store class diagram
	Summary

	Chapter 12: Implementing the Purchase and Orders Pages
	Technical requirements
	Creating the purchase page
	Configuring the purchase URL
	Defining the purchase function
	Updating cart.index template
	Creating cart.purchase template

	Creating the orders page
	Configuring the orders URL
	Defining the orders function
	Creating accounts.orders template
	Adding a link in the base template

	Recapping the Movies Store MVT architecture
	Summary

	Chapter 13: Deploying the Application to the Cloud
	Technical requirements
	Managing GitHub and Git
	Understanding Git and GitHub
	Creating a GitHub repository
	Uploading our code to GitHub

	Cloning your code onto PythonAnywhere
	Configuring virtual environments
	Setting up your web app
	Configuring static files
	Summary

	Index
	Why subscribe?

	Other Books You May Enjoy
	Packt is searching for authors like you
	Share Your Thoughts
	Download a free PDF copy of this book

