

Copyright © 2024 Packt Publishing.

All rights reserved. No part of this book may be reproduced,
stored in a retrieval system, or transmitted in any form or by
any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to
ensure the accuracy of the information presented. However, the
information contained in this book is sold without warranty,
either express or implied. Neither the authors, nor Packt
Publishing or its dealers and distributors, will be held liable for
any damages caused or alleged to have been caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark
information about all of the companies and products
mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of
this information.

Publisher: Vishal Bodwani

Product Manager: Sathya Mohan

Lead Development Editor: Afzal Shaikh

Development Editor: Rhea Gangavkar

Copy Editor: Safis Editing

Proofreader: Safis Editing

Project Coordinator: Yash Basil

Production Designer: Deepak Chavan

Production reference: 2230824

Published by Packt Publishing Ltd.

Grosvenor House, 11 St Paul’s Square, Birmingham, B3 1RB, UK.

ISBN 978-1-83588-676-2

www.packtpub.com

Contributors

http://www.packtpub.com/

About the authors

Marko Aleksendrić, Ph.D., is an analyst, a scientist, and a
freelance self-taught web developer with over 20 years of
experience. Marko authored the books Modern Web
Development with the FARM Stack and Mastering MongoDB 7.0,
published by Packt Publishing. With a keen interest in backend
and frontend development, he has been an avid MongoDB user
for the last 15 years for various web and data analytics-related
projects and has built numerous Python and JavaScript web
applications and tools.

Shrey Batra is the founder of Cosmocloud, a MongoDB
Champion, and a software developer by passion. As a tech start-
up founder building a no-code backend with MongoDB, he
combines his passion for both MongoDB and building
applications at scale. Working in the industry for over eight
years, he is also an active contributor to the technical
community, speaks at various world conferences and meetups,
and writes his own newsletter, System Design and Architecture,
which has 50K+ subscribers. He is also a distributed algorithm
patent holder for his work at LinkedIn on its Search and
Discovery platform.

Rachelle Palmer is the Product Leader for Developer Database
Experience and Developer Education at MongoDB, overseeing
the driver client libraries, documentation, framework
integrations, and MongoDB University. She has built sample
applications for MongoDB in Java, PHP, Rust, Python, Node.js,
and Ruby. Rachelle joined MongoDB in 2013 and was previously
the Director of the Technical Services Engineering team,
creating and managing the team that provided support and
CloudOps to MongoDB Atlas.

Shubham Ranjan is a Product Manager at MongoDB for Python
and a core contributing member to AI initiatives at MongoDB.
He is also a Python developer and has published over 700
technical articles on topics ranging from data science and
machine learning to competitive programming. Since joining
MongoDB in 2019, Shubham has held several roles, progressing
from software engineer to product manager for multiple
products.

About the reviewer

Rea Rustagi is a technical writer who is interested in developer
productivity and educational tools. She maintains technical
documentation for the client libraries of MongoDB, as well as
language frameworks, tools, and integrations. She writes

tutorials, reference materials, and sample applications in a
variety of languages, including Rust, PHP, Go, and JVM
languages. She is passionate about using different
methodologies to help developers adapt to and learn about new
technologies. Rea also has experience as the editor of a literary
journal and as an academic researcher in physical
oceanography. Some of her other interests include
environmental health, literature, and sustainability.

Note from Author

As someone who began their journey through web
development in what were considered the early days of yore, I
first learned pure HTML. I remember using tables for layouts
and animated GIF banners popping up everywhere. My own
development career started with Java and C at university. Like
many, I found these languages to be complex, unwieldy, and
difficult to be excited about. Later, I made half-hearted attempts
at learning Ruby and JavaScript. I resigned myself to not being a
software engineer because I hated writing code.

And then I discovered Python.

I watched a single course on YouTube, plunking along with each
lesson, and it just made sense. I fell headlong in love with how

easy, simple, and fast everything was. It was fast to learn and
fast to write and flexible enough to use with sysadmin tasks,
and excel at analysis and web development. As my confidence
grew, I jumped head-first into Bash and Linux networking,
distributed systems, and tracing. Even now, years later, having
tried Rust, C#, and PHP, there is no programming language as
fun as Python was in those early years. Because of that
experience, and all the years after, I have been able to easily
acclimate to the new world of AI/ML, building generative AI
applications. Due to that, I owe Python and its community a
great debt. My career as it is would not have been the same
without Python.

In 2022, my team and I conducted a survey of MongoDB users.
We asked them the basics, such as their role, their preferred
programming language, and what tasks they conducted. The
results astounded me, particularly when I learned that 83% of
MongoDB users were developers, followed by 10% being
DevOps engineers. Just 5% were database administrators. We
also learned that of all the programming language cohorts, the
engineers who took on the most jobs were Python developers.

72% of Python developers who consider themselves
software engineers take on tasks that are not software
development, such as data science, sysadmin, data

cleansing, data migrations, and, of course, web
development.

This was not true for any other language, and it speaks to the
versatility of the programming language itself that it can enable
its users to do so many different things. Those survey results
were not a surprise, at least not to me, because I’d already lived
that experience.

If you are reading this book, I imagine that you are in the
beginning stages of this journey. You’re somewhat new,
perhaps, to web development with Python. It is (maybe) the
start of your own career, your own adventure. This book will
teach you the simplest and fastest way to build a modern web
application with Python, which, in my opinion, is the FARM
stack. You’ll learn about FastAPI, React, and MongoDB as you go
along, and by the end, you’ll have your own working
application. I hope that you will be just as thrilled to build as we
were to write this book.

I’m excited for you to turn the page and begin.

Rachelle Palmer

Director, Product Management

MongoDB, Inc.

Table of Contents

Prefacexiii

How this book will help you

Who this book is for

What this book covers

To get the most out of this book

Download the example code files

Download the color images

Conventions used

Get in touch

Download a free PDF copy of this book

1

Web Development and the FARM
Stack 1

Technical requirements

What is the FARM stack?

Why the FARM stack?

Why use MongoDB?

Why use FastAPI?

Python and REST APIs

The frontend – React

Why use React?

Summary

2

Setting Up the Database with
MongoDB13

Technical requirements

The structure of a MongoDB database

Documents

Supported data types in MongoDB

Collections and databases

Options to install the MongoDB database

Installing MongoDB and related tools

Installing MongoDB and Compass on Windows

Installing the MongoDB Shell (mongosh)

MongoDB Database Tools

Installing MongoDB and Compass on Linux:
Ubuntu

Setting up Atlas

Creating an Atlas cluster

Getting the connection string of your Atlas
Cluster

Connecting to the Atlas cluster from Compass

MongoDB querying and CRUD operations

Querying in MongoDB

Projection

Creating new documents

Updating documents

Deleting documents

Summary

3

Python Type Hints and Pydantic43

Technical requirements

Python types

Type hinting

Implementing type hints

Advanced annotations

Pydantic

Pydantic basics

Deserialization

Model fields

Pydantic types

Pydantic fields

Serialization

Custom data validation

Model validators

Nested models

Pydantic Settings

Summary

4

Getting Started with FastAPI69

Technical requirements

Python setup

Virtual environments

Code editors

Terminal

REST clients

Installing the necessary packages

FastAPI in a nutshell

Starlette

Asynchronous programming

Standard REST API operations

How does FastAPI speak REST?

Automatic documentation

Building a showcase API

Retrieving path and query parameters

FastAPI response customization

Summary

5

Setting Up a React Workflow97

Technical requirements

Creating a React app using Vite

Tailwind CSS and installation

Components and building blocks of JSX

Recap

Components

Creating dynamic components

Events and state

React Hooks with events and state

Communicating with APIs and the outside
world using useEffect

Exploring React Router and other useful
packages

Summary

6

Authentication and
Authorization119

Technical requirements

Understanding JSON Web Token

What is JWT?

FastAPI backend with users and dependencies

User model for authentication

Authentication and authorization with
FastAPI: a walk-through

Authenticating the users in React

Persisting authentication data with
localStorage

Other authentication solutions

Summary

7

Building a Backend with FastAPI151

Technical requirements

Introducing the application

Creating an Atlas instance and a collection

Setting up the Python environment

Defining the Pydantic models

Scaffolding a FastAPI application

Creating a .env file to keep the secrets

CRUD operations

The POST handler

Handling the GET requests

Updating and deleting records

Uploading images to Cloudinary

Adding the user model

FastAPI middleware and CORS

Deployment to Render.com

Summary

8

Building the Frontend of the
Application187

Technical requirements

Creating a Vite React application

React Router

Installing and setting up React Router

React Router loaders

React Hook Form and Zod

Performing data validation with Zod

Authentication context and storing the JWT

Implementing the login functionality

Protecting routes

Creating the page for inserting new cars

Displaying single cars

Summary

9

Third-Party Services Integration
with FastAPI and Beanie219

Technical requirements

Project outline

Building the backend with FastAPI and
Beanie

Introduction to the Beanie ODM

Defining the models with Beanie

Connecting to the MongoDB database

Creating the FastAPI application

Background tasks with FastAPI

Integrating OpenAI with FastAPI

Summary

10

Web Development with Next.js 14247

Technical requirements

Introduction to Next.js

Creating a Next.js 14 project

Next.js project structure

Routing with Next.js 14

Data loading with server components

Authentication and Server Actions in Next.js

Creating protected pages

Implementing the new car page

Providing metadata

Deployment on Netlify

Pushing the changes to GitHub

Summary

11

Useful Resources and Project
Ideas277

MongoDB considerations

FastAPI and Python considerations

Testing FastAPI applications

React practices

Other topics

Authentication and authorization

Data visualization and the FARM stack

Relational databases

Some project ideas to get started

Old-school portfolio website

React-admin inventory

Plotly Dash or Streamlit to create
exploratory data analysis applications

A document automation pipeline

Summary

Index285

Why subscribe?

Other Books You May Enjoy290

Packt is searching for authors like you

Download a free PDF copy of this book

Preface

Full Stack FastAPI, React, and MongoDB, Second Edition, is a
fast-paced, concise, and hands-on beginner’s guide that aims to
boost the potential of web developers and help them stay ahead
in the rapidly evolving web development and AI fields with the
flexibility, adaptability, and robustness of the FARM stack. This
book introduces each element of the stack and then explains
how to make them work together to build a medium-sized web
application.

It demonstrates, with hands-on examples and real-world use
cases, how to set up a document store with MongoDB, build a
simple API with FastAPI, and create an application with React.
Furthermore, it delves into using Next.js, ensuring data
integrity and security with MongoDB, and integrating third-
party services with applications.

How this book will help you

This book takes a hands-on approach to demonstrating web
application development with real-world examples using the
FARM stack. By the end of the book, you will have the
confidence to use the FARM stack to develop fully functional
web applications at a fast pace.

Who this book is for

This book is for intermediate web developers with basic
JavaScript and Python knowledge who want to enhance their
developer skills, master a powerful and flexible stack, and write
better applications faster.

What this book covers

Chapter 1, Web Development and the FARM Stack, provides a
deep understanding of the web development landscape by
giving you a quick walk-through of the widely used
technologies available. It introduces the most popular option—
the FARM stack. It highlights the benefits of FARM stack
components, how they relate to each other, and why this
particular set of technologies is a great fit for web apps.

Chapter 2, Setting Up the Database with MongoDB, provides an
overview of MongoDB, and then shows how to set up the data
storage layer for a FARM application. It helps with exploring the
basics of creating, updating, and deleting documents.
Furthermore, this chapter details the aggregation pipeline
framework—a strong analytic tool.

Chapter 3, Python Type Hints and Pydantic, includes examples
that teach you about more web-specific aspects of FastAPI and
how to blend data seamlessly between MongoDB, Python data
structures, and JSON.

Chapter 4, Getting Started with FastAPI, focuses on introducing
the FastAPI framework, along with the standard REST API
practices and how they are implemented in FastAPI. It covers

very simple examples of how FastAPI achieves the most
common REST API tasks and the way it can help you by
leveraging modern Python features and libraries such as
Pydantic.

Chapter 5, Setting Up a React Workflow, shows how to design a
simple application with a few components using the React
framework. It discusses the tools needed to be able to explore
React and its various functionalities.

Chapter 6, Authentication and Authorization, details a simple yet
robust and extensible setup for your FastAPI backend, based on
JSON Web Tokens (JWTs). It demonstrates the integration of
JWT-based authentication methods into React, leveraging some
of React’s powerful features—namely, Hooks, Context, and
React Router.

Chapter 7, Building a Backend with FastAPI, helps in working on
a simple business requirement and turning it into a fully
functional API deployed on the internet. It shows how to define
the Pydantic models, perform CRUD operations, build your
FastAPI backend, and connect to MongoDB.

Chapter 8, Building the Frontend of the Application, illustrates
the steps for building the frontend of a full stack FARM

application. It shows how to create a React application using a
modern Vite setup and implement the basic functionalities.

Chapter 9, Third-Party Services Integration with FastAPI and
Beanie, gives the basics of Beanie, a popular ODM library for
MongoDB, built on top of Motor and Pydantic. It shows how to
define models and Beanie documents that map to MongoDB
collections. You’ll see how to build another FastAPI application
and integrate third-party services with the help of background
tasks.

Chapter 10, Web Development with Next.js 14, gives a walk-
through of important Next.js concepts, such as Server Actions,
form handling, and cookies to help in creating a new Next.js
project. You’ll also learn how to deploy your Next.js application
on Netlify.

Chapter 11, Useful Resources and Project Ideas, provides some
practical advice when working with the FARM stack, along with
project ideas where the FARM stack, or very similar stacks,
could be applicable and helpful.

To get the most out of this book

You need to know the basics of JavaScript and Python. Having
prior knowledge of MongoDB is preferable but not essential.
You will require the following software:

Software/hardware covered
in the book

Operating system
requirements

MongoDB version 7.0 or later Windows, macOS, or
Linux

MongoDB Atlas Search Windows, macOS, or
Linux

MongoDB Shell 2.2.15 or later Windows, macOS, or
Linux

Node.js version 18.17 or later Windows, macOS, or
Linux

Python 3.11.7 or later Windows, macOS, or
Linux

Next.js 14 or later Windows, macOS, or
Linux

FastAPI 0.111.1 Windows, macOS, or
Linux

React 18 or later Windows, macOS, or
Linux

If you are using the digital version of this book, we advise you
to type the code yourself or access the code from the book’s
GitHub repository (a link is available in the next section). Doing
so will help you avoid any potential errors related to the
copying and pasting of code.

Download the example code files

You can download the example code files for this book from
GitHub at https://github.com/PacktPublishing/Full-Stack-
FastAPI-React-and-MongoDB-2nd-Edition. If there’s an update to
the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books
and videos available at https://github.com/PacktPublishing/.
Check them out!

https://github.com/PacktPublishing/Full-Stack-FastAPI-React-and-MongoDB-2nd-Edition
https://github.com/PacktPublishing/Full-Stack-FastAPI-React-and-MongoDB-2nd-Edition
https://github.com/PacktPublishing/

Download the color images

We also provide a PDF file that has color images of the
screenshots and diagrams used in this book. You can download
it here:
http://www.packtpub.com/sites/default/files/downloads/Bookna
me_ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this
book.

Code in text: Indicates code words in text, database table

names, folder names, filenames, file extensions, pathnames,
dummy URLs, user input, and Twitter handles. Here is an
example: “Optionally, you can create a middleware.js

function that will contain middleware that will be applied on
every (or only selected) request.”

A block of code is set as follows:

const Cars = () => {

http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf

 return (

 <div>Cars</div>

)

}

export default Cars

When we wish to draw your attention to a particular part of a
code block, the relevant lines or items are set in bold:

 <body>

 <Navbar />

 {children}

 </body>

Any command-line input or output is written as follows:

git push -u origin main

Bold: Indicates a new term, an important word, or words that
you see onscreen. For instance, words in menus or dialog boxes
appear in bold. Here is an example: “Select the Windows
version and click on Download.”

TIPS OR IMPORTANT NOTES

Appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of
this book, email us at customercare@packtpub.com and
mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the
accuracy of our content, mistakes do happen. If you have found
a mistake in this book, we would be grateful if you would report
this to us. Please visit www.packtpub.com/support/errata and
fill in the form.

Piracy: If you come across any illegal copies of our works in
any form on the internet, we would be grateful if you would
provide us with the location address or website name. Please
contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a
topic that you have expertise in and you are interested in either
writing or contributing to a book, please visit
authors.packtpub.com.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com/

Download a free PDF copy of this
book

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print
books everywhere?

Is your eBook purchase not compatible with the device of your
choice?

Don’t worry, now with every Packt book you get a DRM-free
PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and
paste code from your favorite technical books directly into your
application.

The perks don’t stop there, you can get exclusive access to
discounts, newsletters, and great free content in your inbox
daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781835886762

2. Submit your proof of purchase
3. That’s it! We’ll send your free PDF and other benefits to

your email directly

https://packt.link/free-ebook/9781835886762

1

Web Development and the FARM
Stack

Websites are built using a set of technology that is often called a
stack. Every component of the stack is responsible for one layer
of the application. While in theory, you could combine any type
of frontend technology with any type of backend technology
and, thus, end up with a custom stack, some have proven their
worth in terms of agility and reduced development time. If you
are a web developer or an analyst who must put some data
online from time to time, or you just want to broaden your
developer horizons, this chapter should give you some
perspective on this set of tools, and how they compare to
alternative technologies.

This chapter provides an overview of today’s web development
landscape in terms of the available technologies and demands,
and at the end of this chapter, we will make a case for using the
FARM stack—a combination of FastAPI for the REST API layer,
React for the frontend, and MongoDB as the database.

This book focuses on the high-level concepts of the technologies
that constitute the FARM stack. By learning these concepts, you
will be able to develop your next web development project at a
fast pace and with modern capabilities. For now, we will not go
into details or concrete examples, but rather compare the
selected stack components (MongoDB, FastAPI, and React) with
their possible counterparts.

By the end of this chapter, you will have a good understanding
of the benefits that individual FARM stack components bring to
a development project, how they relate to each other, and why
this particular set of technologies is a great fit for web apps that
have fluid specifications—both in terms of the data handled
and desired functionalities.

This chapter will cover the following topics:

What is the FARM stack and how do the components fit
together?
Why use MongoDB for data storage?
What is FastAPI?
The frontend—React

Technical requirements

For this book, you’ll need a few things to aid you in your
journey. The following are recommendations:

The latest version of Python
FastAPI (https://pypi.org/project/fastapi/)
A local development environment on your laptop/desktop
for your application server
A MongoDB Atlas cloud account to host your database
(https://www.mongodb.com/cloud/atlas/register)
Visual Studio Code or the IDE of your choice

Let’s begin with a very basic understanding of what the FARM
stack is.

What is the FARM stack?

Stacks are sets of technologies that cover different parts of a
modern web app, blended and well integrated. The right stack
will enable you to satisfy certain criteria while building a web
application, with considerably less effort and in less time than
building it from scratch.

First, let’s see what you need to build a functional web
application:

https://pypi.org/project/fastapi/
https://www.mongodb.com/cloud/atlas/register

An operating system: Usually, this is Unix/Linux-based.
A storage layer: A SQL or NoSQL database. In this book,
we’ll use MongoDB.
A web server: Apache and NGINX are quite popular, but
we will talk about Python solutions for FastAPI, such as
Uvicorn or Hypercorn.
A development environment: Node.js/JavaScript, .NET,
Java, or Python.

Optionally, and often, you could also add a frontend library or
framework (such as Vue.js, Angular, React, or Svelte) since the
vast majority of web development companies benefit from
adopting one in terms of consistency, development speed, and
compliance with standards. In addition, user expectations have
shifted over time. There are unsaid standards for what logins,
buttons, menus, and other website elements should look like,
and how they function. Using a framework will make your
application more consistent with the modern web and go a long
way toward user satisfaction.

The most famous stacks are as follows:

MERN: MongoDB + Express.js + React + Node.js (MERN)
is probably one of the most popular stacks today.
Developers can be comfortable and never leave JavaScript,

except when they need to write some style sheets. With the
addition of React Native for mobile apps and something
such as Electron.js for desktop apps, a product can
encompass virtually every platform while relying solely on
JavaScript.
MEAN: MongoDB + Express.js + Angular.js + Node.js
(MEAN) is similar to the previously mentioned MERN, with
Angular.js managing the frontend in a more structured
Model–View–Controller (MVC) way.
LAMP: Linux + Apache + MySQL + PHP (LAMP) is
probably the first stack acronym to gain popularity and one
of the most widely used in the past 20 years. It is still quite
popular today.

The first two stacks run on the Node.js platform (a server-run
JavaScript V8 engine) and have a web framework in common.
Although Express.js is the most popular, there are excellent
alternatives in the Node.js universe, such as Koa.js, Fastify.js, or
some more structured ones such as Nest.js.

Since this is a Python book, we will also go through some
important Python frameworks. The top three most popular
frameworks for Python developers are Django, Flask, and
FastAPI. Using the Django web framework and the excellent
Django REST Framework (DRF) for building REST APIs in a

modern and logical way is very popular. Django itself is very
mature and well known among Python developers. It also has
an admin site, the possibility of customizing and serializing
REST responses, the option to choose between functional and
class-based views, and more.

FastAPI, on the other hand, is a relative newcomer. First
released in December 2018, this alternative, lightweight
framework was fast to gain advocates. Almost immediately,
these advocates had created a new acronym for FastAPI within
the tech stack—FARM.

Let’s understand what FARM stands for:

FA stands for FastAPI—in technology years, a brand-new
Python web framework
R stands for React, the most popular UI library
M denotes the data layer—MongoDB, which is the most
popular NoSQL database available today

Figure 1.1 provides a high-level overview of the integrations
between the constituent parts involved in the FARM stack:

Figure 1.1: FARM stack with its components

As you can see in the preceding diagram, the FARM stack is
composed of three layers:

1. The user performs an action using the client, which, in our
case, will be based on React—this ultimately creates a

bundle of HTML, Cascading Style Sheets (CSS), and
JavaScript.

2. This user action (a mouse click, a form submit, or some
other event) then triggers an HTTP request (such as GET,

POST, PUT, or another HTTP verb with a payload).

3. Finally, this request gets processed by the REST API service
(FastAPI).

The Python part is centered around FastAPI and optional
dependencies and is served by Uvicorn—a fast Python-based
server. The backend is responsible for dispatching the
appropriate database calls to MongoDB using various
commands and queries (such as findOne, find, create,

update, and more) and using the MongoDB aggregation

framework. The results obtained from the database are
interpreted by FastAPI through the Python driver of choice
(Motor), converted from BSON into appropriate Python data
structures, and finally, output from the REST API server in the
form of plain JSON. If you use Motor, which is an asynchronous
Python driver for MongoDB, these calls will be handled
asynchronously.

Finally, returning to the diagram in Figure 1.1 and the arrow
labeled JSON, the data is fed to the UI where it is handled by
React and used to update the interface, render the necessary

components, and synchronize the UI with React’s virtual DOM
tree.

The next few sections will talk about the motivations behind the
birth of the FARM stack. Why these technologies and, more
importantly, why these technologies together? You will get a
detailed introduction to each component and the features that
make it a good fit in more detail. After a brief introduction to
the benefits of the stack as a whole, the sections will provide a
high-level overview of each choice and underline the benefits
that it can provide to a modern web development workflow.

Why the FARM stack?

The flexibility and simplicity of the stack, along with its
components, give a real boost in terms of development speed,
extensibility, and maintainability while allowing scalability
(due to the distributed nature of MongoDB on the one hand and
the async nature of FastAPI on the other hand) down the road.
This might be crucial if your product needs to evolve and
become bigger than it was initially supposed to be. The ideal
scenario would probably be a small-to-medium-scale web app
that you can experiment with.

Developers and analysts alike could greatly benefit from
Python’s ecosystem and extensibility through a rich ecosystem
of modules that encompasses virtually every human activity
that includes some type of computing.

Why use MongoDB?

MongoDB is a free, fast, and scalable database with a JSON
format and simple syntax. It enables flexible schemas and, thus,
iterative and rapid development. MongoDB is able to
accommodate data structures of varying complexities.
Additionally, its querying and aggregation methods make it an
excellent choice for a flexible REST API framework such as
FastAPI, coupled with an official Python driver such as Motor. It
has a high level of adoption and maturity and is one of the
pillars of the NoSQL data storage movement that took the web
development world by storm a decade ago.

The following are some other features that will be detailed for
use in this book:

Complex nested structures: MongoDB documents allow
other documents and arrays of documents to be embedded,
which naturally translates into the data flow of a modern
data web app (for example, you can embed all comments

into the blog post they respond to). Denormalization is
encouraged.
Simple, intuitive syntax: The methods for performing
basic create, read, update, delete (CRUD) operations,
coupled with powerful aggregation frameworks and
projections, allow you to achieve almost all data reads quite
easily through the use of drivers. The commands should be
intuitive for anyone with a bit of SQL experience.
Community and documentation: MongoDB is backed by a
mature company and a strong community, and it offers
various tools to facilitate the development and prototyping
process. For instance, Compass is a desktop application
that enables users to manage and administer databases.
The framework of the serverless functions is constantly
being updated and upgraded, and there are excellent
drivers for virtually every programming language.

Of course, MongoDB is not a silver bullet, and some challenges
are worth noticing upfront. On the one hand, the schema-less
design and the ability to insert any type of data into your
database might be a bit panic-inducing but translates to the
need for stronger data integrity validation on the backend side.
You will see how Pydantic—an excellent Python validation and
type-enforcement library—can help you with stronger data
integrity. The absence of complex joins, which are present in

the SQL world, might be a dealbreaker for some types of
applications.

Now that you understand what MongoDB brings to the table in
terms of scalability and flexibility, with its schema-less
approach, take a look at the REST API framework of choice,
FastAPI, and learn how it can help you implement that schema-
less approach and simplify your interactions with the data.

Why use FastAPI?

FastAPI is a modern and performant web framework for
building APIs. Built by Sebastian Ramirez, it uses the newest
features of the Python programming language, such as type
hinting and annotations, the async – await syntax, Pydantic
models, web socket support, and more.

If you are not familiar with APIs, let’s get into it in more depth
by understanding what an API is. An application
programming interface (API) is used to enable some kind of
interaction between different pieces of software, and they
communicate using Hypertext Transfer Protocol (HTTP)
through a cycle of requests and responses. Therefore, an API is,
as its name suggests, an interface. Via this interface, humans or
machines interact with an application or a service. Every API

provider should have an interface that is well suited for the
type of data that they provide; for instance, a weather
forecasting station provides an API that lists the temperatures
and humidity levels for a certain location. Sports sites provide
statistical data about the games that are being played. A pizza
delivery API will provide you with the selected ingredients, the
price, and the estimated time of arrival.

APIs touch every aspect of your life, for example, transmitting
medical data, enabling fast communications between
applications, and even used in tractors in fields. APIs are what
make today’s web run and, put simply, are the best form of
information exchange.

This chapter will not go over the rigorous definitions of REST
APIs, but just list some of their most important features:

Statelessness: REST APIs are said to be stateless, which
means that neither the client nor the server stores any
states in between. All the requests and responses are
handled by the API server in isolation and without
information about the session itself.
Layered structure: To keep the API scalable and
understandable, a RESTful architecture implies a layered
structure. The different layers form a hierarchy and

communicate with each other but not with every
component, thus improving overall security.
Client-server architecture: APIs should be able to connect
different systems/pieces of software without limiting their
own functionalities—the server and the client have to stay
separate and independent from each other.

There are numerous reasons why MongoDB chose FastAPI for
their REST API layer, even though it’s new compared to other
Python frameworks. Here are some of the reasons:

High performance: FastAPI can achieve very high
performance, especially compared to other Python-based
solutions. By using Starlette under the hood, FastAPI’s
performance reaches levels that are usually reserved for
Node.js and Go.
Data validation and simplicity: Being heavily based on
Python types and Pydantic brings numerous benefits. Since
Pydantic structures are just instances of classes the
developers define, you can use complex data validations,
deeply nested JSON objects, and hierarchical models (using
Python lists and dictionaries), and this relates very well
with the nature of MongoDB.
Faster development: Development becomes more
intuitive, with strong integrated development

environment (IDE) support, which leads to faster
development time and fewer bugs.
Standards compliance: FastAPI is standard-based and
fully compatible with open standards for building APIs—
such as OpenAPI and JSON schema.
Logical structuring of apps: The framework allows the
structuring of APIs and apps into multiple routers and
allows granular request and response customization, and
easy access to every part of the HTTP cycle.
Async support: FastAPI uses an asynchronous server
gateway interface (ASGI) and, with the use of an ASGI-
compatible server, such as Uvicorn or Hypercorn, is able to
provide a truly asynchronous workflow without actually
having to import the asyncio module into Python.

Dependency injection: The dependency injection system
in FastAPI is one of its biggest selling points. It enables the
creation of complex functionalities that are easily reusable
across your API. This is a pretty big deal and probably the
feature that makes FastAPI ideal for hybrid web apps—it
gives developers the opportunity to easily attach different
functionalities to the REST endpoints.
Great documentation: The documentation of the
framework itself is excellent and second to none. It is both
easy to follow and extensive.

Automatic documentation: Being based on OpenAPI,
FastAPI enables automatic documentation creation, which
essentially means that you get your API documented for
free with Swagger.

Also, getting started is relatively simple:

pip install fastapi

In order to get at least a basic idea of what coding with FastAPI
looks like, let’s take a look at a minimal API:

main.py

from fastapi import FastAPI

app = FastAPI()

@app.get(“/”)

async def root():

 return {“message”: “Hello World”}

The preceding few lines of code define a minimal API with a
single endpoint (/) that responds to a GET request with the

message Hello world. You can instantiate a FastAPI class and

use decorators to tell the server which HTTP methods should
trigger which function for a response.

Python and REST APIs

Python has been used to build REST APIs for a very long time.
While there are many options and solutions, DRF and Flask
seem to be the most popular ones, at least until recently. If you
are feeling adventurous, you can Google less popular or older
frameworks such as bottle.py and CherryPy.

DRF is a plugin system for the Django web framework and
enables a Django system to create highly customized REST API
responses and generate endpoints based on the defined models.
DRF is a very mature and battle-tested system. It is regularly
updated, and its documentation is very detailed.

Flask, Python’s lightweight microframework, is a real gem
among the web-building Python tools and can create REST APIs
in a lot of different ways. You can use pure Flask and just output
the appropriate format (i.e., JSON instead of HTML) or use some
of the extensions developed to make the creation of REST APIs
as straightforward as possible. Both of these solutions are
fundamentally synchronous, although there seems to be active
development in the direction of enabling async support.

There are also some very robust and mature tools, such as
Tornado, which is an asynchronous networking library (and a

server) that is able to scale to tens of thousands of open
connections. Finally, in the last couple of years, several new
Python-based solutions have been created.

One of these solutions, and arguably the fastest, is Starlette.
Dubbed as a lightweight ASGI framework/toolkit, it is ideal for
building high-performance async services.

Sebastian Ramirez built FastAPI on top of Starlette and
Pydantic, while also adding numerous features and goodies by
using the latest Python features, such as type hinting and async
support. According to some recent developer surveys1, FastAPI
is quickly becoming one of the most popular and most loved
web frameworks.

1 https://www.jetbrains.com/lp/devecosystem-
2023/python/#python_web_libs_two_years

In later chapters of this book, you’ll go over the most important
features of FastAPI, but at this point, we’ll stress the significance
of having a truly async Python framework as the glue for the
most diverse components of a system. In fact, besides doing the
usual web framework stuff, such as communicating with a
database, spitting out data to a frontend, and managing
authentication and authorization, this Python pipeline enables

https://www.jetbrains.com/lp/devecosystem-2023/python/#python_web_libs_two_years
https://www.jetbrains.com/lp/devecosystem-2023/python/#python_web_libs_two_years

you to quickly integrate and easily carry out frequently
required tasks such as background jobs, header and body
manipulation, response and request validation, and more
through the dependency injection system.

The book will try to cover the absolute minimum necessary for
you to be able to build a simple FastAPI system, but along the
way it will consider various web server solutions and
deployment options (such as Deta, Heroku, and DigitalOcean)
for your FastAPI Python-based backend, while trying to opt for
free solutions.

So, to cut a long story short, you should consider choosing
FastAPI because you ideally want the ability and speed to
handle requests asynchronously as if you were using a Node.js
server while having access to the Python ecosystem.
Additionally, you want the simplicity and development speed of
a framework that automatically generates documentation for
you.

After reviewing the backend components, it is time to finalize
your stack and work on the frontend. The next section gives you
a brief introduction to React and discusses what distinguishes it
from other (also valid) solutions.

The frontend – React

The changes in the world of the web are most visible when
talking about the frontend—the part of the website that is
facing the users. Tim Berners-Lee made the first HTML
specification public in 1991, and it consisted of text and under
20 tags. In 1994, CSS was introduced and the web started
looking a little nicer. Legend has it that the new browser
scripting language called Mocha was created in just 10 days—
that was in 1995. Later, this language went through numerous
changes and became what we know today as JavaScript—a
powerful and fast language that, with the advent of Node.js,
was able to conquer the servers, too.

In May 2013, React was presented in the US and the web
development world was able to witness virtual DOM, one-way
data flow, the Flux pattern, and more.

This is a bit of history to just try and provide some context and
continuity because web development, like any other creative
human activity, rarely moves in quantum leaps. Usually, it
moves in steps that enable users to resolve the issues that they
are facing. It would be unfair not to mention Vue.js, which is an
excellent choice for building frontends that also sports an

entire ecosystem of libraries, and Svelte.js, which offers a
radical shift in building UIs in the sense that the UI is compiled,
and the bundled size is significantly smaller.

Why use React?

Interactive, attractive, fast, and intuitive UIs are a necessity for
any public-facing web application. It is possible, though very
difficult, to achieve most or every functionality that even a
simple web application is expected to provide using just plain
JavaScript. FastAPI is more than capable of serving HTML (and
static files, such as JavaScript or CSS) using any compatible
templating engine (the most widely used in the Python world is
probably Jinja2), but we and the users want more.

Compared to other frameworks, React is small. It isn’t even
considered a framework, but a library— actually, a couple of
libraries. Still, it is a mature product with over 10 years of
development behind it, created for the needs of Facebook and
utilized by the biggest companies such as Uber, X (formally
known as Twitter), and Airbnb.

This book does not explore React in depth because we want to
focus on how all the different parts of the FARM stack connect
and fit within the bigger picture. Additionally, 81% of

developers already use React2 and are familiar with its
features, so we assume our readers have a level of familiarity
with this framework already.

2 https://2022.stateofjs.com/en-US/libraries/front-end-
frameworks/

Most developers want a streamlined and structured way of
building UIs. React enables developers to create dynamic
applications in a much easier way by relying on JSX—a mix of
JavaScript and XML that has an intuitive tag-based syntax and
provides developers with a way to think of the application in
terms of components that go on to form other, more complex,
components, thus breaking the process of crafting complex UI
and interactions into smaller, more manageable steps.

The main benefits of using React as a frontend solution can be
summarized as follows:

Performance: By using the React virtual DOM, which
operates in memory, React apps provide smooth and fast
performance.
Reusability: Since the app is built by using components
that have their own properties and logic, you can write out

https://2022.stateofjs.com/en-US/libraries/front-end-frameworks/
https://2022.stateofjs.com/en-US/libraries/front-end-frameworks/

components once and then reuse them as many times as
needed, cutting down development time and complexity.
Ease of use: This is always a bit subjective but React is easy
to get started. Advanced concepts and patterns require
some level of proficiency, but even novice developers can
reap immediate benefits just from the possibility of
splitting the application frontend into components and
then using them like LEGO bricks.

React and frameworks based on React empower you, as a
developer, to create single-page applications that have a
desktop-like look and feel, but also server-side rendering that is
beneficial for search engine optimization. Knowing your way
around React enables you to benefit from some of today’s most
powerful frontend web frameworks such as Next.js, static site
generators (such as Gatsby.js), or exciting and promising
newcomers (such as React Remix).

In version 16.8, the React library introduced Hooks, which
enable developers to use and manipulate the state of the
components, along with some other features of React, without
the need to use classes. This is a big change that successfully
tackles different issues—it enables the reusability of stateful
logic between components and simplifies the understanding
and management of complex components.

The simplest React Hook is probably the useState Hook. This

Hook enables you to have and maintain a stateful value (such
as an object, array, or variable) throughout the life cycle of the
component, without having to resort to old-school class-based
components.

For instance, a very simple component that could be used to
filter search results when a user is trying to find the right car
might contain the desired brand, model, and a production year
range. This functionality would be a great candidate for a
separate component—a search component that would need to
maintain the state of different input controls, probably
implemented as a series of dropdowns. Let’s just see the
simplest possible version of this implementation.

The following block of code creates a simple functional
component with a single stateful string value—an HTML
select element that will update the stateful variable named

brand:

import { useState } from “react”;

const Search = () => {

const [brand, setBrand] = useState(“”);

return (

<div>

<div>Selected brand: {brand}</div>

<select onChange={(ev) =>

setBrand(ev.target.value)}>

<option value=””>All brands</option>

<option value=”Fiat”>Fiat</option>

<option value=”Ford”>Ford</option>

<option value=”Renault”>Renault</option>

<option value=”Opel”>Opel</option>

</select>

</div>

);

};

export default Search;

The bold line is where the Hook magic happens, and it must be
within the body of a function. The statement simply creates a
new state variable, called brand, and provides you with a setter

function that can be used inside the component to set the
desired value.

There are many Hooks that solve different problems, and this
book will go over the following fundamental ones:

Declarative views: In React, you do not have to worry
about transitions or mutations of the DOM. React handles

everything, and the only thing you have to do is declare
how the view looks and reacts.
No templating language: React practically uses JavaScript
as a templating language (through JSX), so all you have to
know in order to be able to use it effectively is some
JavaScript, such as array manipulation and iteration.
Rich ecosystem: There are numerous excellent libraries
that complement React’s basic functionality—from routers
to custom Hooks, external library integrations, CSS
framework adaptations, and more.

Ultimately, Hooks provide React with a new way of adding and
sharing stateful logic across components and can even replace
(in simpler cases) the need for Redux or other external state
management libraries. Most of the examples shown in this book
make use of the Context API—a React feature that enables
passing objects and functions down the component tree without
the need to pass props through components that do not need it.
Coupled with a Hook—the useContext Hook—it provides a

straightforward way of passing and maintaining stateful values
in every part of the app.

React uses (although it is not imperative) the newest features of
functional JavaScript, ES6, and ES7, particularly when it comes
to arrays. Working with React improves understanding of

JavaScript, and a similar thing could be said of FastAPI and
modern Python.

The final piece of the puzzle will be the choice of a CSS library
or framework. Currently, in 2024, there are dozens of CSS
libraries that play nice with React, including Bootstrap, Material
UI, Bulma, and more. Many of these libraries merge with React
to become meaningful frameworks of prebuilt customizable
and parameterized components. We will use Tailwind CSS as it
is simple to set up—and it is intuitive once you get the hang of
it.

Keeping the React part to a bare minimum should allow you to
focus more on the true protagonists of the story—FastAPI and
MongoDB. You can easily replace React, should you wish to do
so, be it Svelte.js, Vue.js, or vanilla handcrafted ECMAScript.
However, by learning the basics of React (and Hooks), you are
embarking on a wonderful web development adventure that
will enable you to use and understand many tools and
frameworks built on top of React.

Arguably, Next.js is the feature-richest server-side rendering
React framework that enables fast development, filesystem-
based routing, and more.

Summary

This chapter laid the background for the FARM stack, from
describing the role of each component to their strengths. Now,
you will be confident in choosing the FARM stack and you know
how to implement it within the context of a flexible and fluid
web development project. Since you’re reading this, I’ll assume
that my case was compelling—that you’re still interested and
ready to explore the FARM stack.

The next chapter will provide a fast-paced, concise, and
actionable overview of MongoDB, and then set up your data
storage layer for your FARM application. As you go along, we
are confident that you will find the combination of FastAPI,
React, and MongoDB to be the best choice for your next web
application.

2

Setting Up the Database with
MongoDB

In this chapter, you will explore some of the main features of
MongoDB through several simple yet illustrative examples. You
will learn about the basic commands of the MongoDB Query
API to start interacting with your data stored in a MongoDB
database. You will learn the essential commands and methods
that will enable you to insert, manage, query, and update your
data.

The aim of this chapter is to help you understand how easy it is
to set up a MongoDB database on your local machine or in the
cloud and perform the operations that might be needed in a
fast-paced web development process.

Querying, through MongoDB methods and aggregation, is best
learned by experimenting with data. This chapter utilizes real-
world sample datasets provided by MongoDB Atlas that are
loaded into your cloud database. You will learn to execute CRUD
and aggregation queries against them.

This chapter will cover the following topics:

The structure of a MongoDB database
Installing MongoDB Community Server and tools
Creating an Atlas cluster
MongoDB querying and CRUD operations
Aggregation framework

Technical requirements

For this chapter, you will require MongoDB version 7.0.7 and
Windows 11 (and Ubuntu 22.04 LTS).

MongoDB version 7.0 is compatible with the following:

Windows 11, Windows Server 2019, or Windows Server
2022 (64-bit versions)
Ubuntu 20.04 LTS (Focal) and Ubuntu 22.04 LTS (Jammy) for
Linux (64-bit releases)

The following are recommended system configurations:

A desktop or laptop with at least 8 GB of RAM.
There are no CPU requirements specified as such but make
sure it’s modern (a multi-core processor) to ensure efficient
performance.

The structure of a MongoDB
database

MongoDB is widely regarded as the leading NoSQL database in
terms of popularity and usage—its power, ease of use, and
versatility make it an excellent choice for large- and small-scale
projects. Its scalability and performance enable the data layer
of your app to have a very solid foundation.

In the following sections, you will take a deeper look into the
basic concepts and building blocks of MongoDB: the document,
the collection, and the database. Since this book takes a bottom-
up approach, you will start from the very bottom and see an
overview of the simplest data structures available in MongoDB
and then take it up from there into documents, collections, and
so on.

Documents

MongoDB is a document-oriented database. But what does that
actually mean?

In MongoDB, documents serve a similar purpose to rows in a
traditional relational database. Each document in MongoDB is a

data structure that consists of key-value pairs, representing a
single record. Data stored in MongoDB offers great flexibility to
application developers to model their data as per their needs
and allows them to easily evolve the schema as their
application requirements change in the future. MongoDB has a
flexible schema model, which essentially means that you can
have different fields in different documents within a collection.
You can also have different data types for fields across
documents based on your needs.

However, if your application requires a more consistent
structure of the data throughout the documents in a collection,
you can use schema validation rules in MongoDB to enforce
consistency. MongoDB empowers you to store data in a way that
makes the most sense for your application needs.

Documents in MongoDB are just an ordered set of key-value
pairs. In this book, the terms key and field are used
interchangeably as they represent the same thing. This
structure, as you will explore later, corresponds with data
structures in every programming language; in Python, you will
see that this structure is a dictionary and lends itself perfectly
to the flow of data of a web app or a desktop application.

The rules for creating documents are pretty simple: the
key/field name must be a string, with a few exception that you
can read more about in the docs, and a document cannot
contain duplicate key names. Remember that MongoDB is case
sensitive.

In this chapter, you will load a sample dataset into your
MongoDB Atlas cluster called sample_mflix. The dataset has

many collections, but one that is of interest to us in this chapter
is the movies collection, which contains documents that

describe movies. The following document could be in this
collection:

{

 _id: ObjectId("573a1390f29313caabcd42e8"),

 plot: 'A group of bandits stage a brazen

train hold-up, only to find a determined

posse hot on their heels.',

 genres: ['Short', 'Western'],

 runtime: 11,

 cast: [

 'A.C. Abadie',

 "Gilbert M. 'Broncho Billy' Anderson",

 'George Barnes',

 'Justus D. Barnes'

],

 poster: 'https://m.media-

amazon.com/images/M/MV5BMTU3NjE5NzYtYTYyNS00MDVmL

WIwYjgtMmYwYWIxZDYyNzU2XkEyXkFqcGdeQXVyNzQzNzQxNz

 title: 'The Great Train Robbery',

 fullplot: "Among the earliest existing

films in American cinema - notable as the

first film that presented a narrative story

to tell - it depicts a group of cowboy

outlaws who hold up a train and rob the

passengers. They are then pursued by a

Sheriff's posse. Several scenes have color

included - all hand tinted.",

 languages: ['English'],

 released: ISODate("1903-12-

01T00:00:00.000Z"),

 directors: ['Edwin S. Porter'],

 rated: 'TV-G',

 awards: { wins: 1, nominations: 0, text: '1

win.' },

 lastupdated: '2015-08-13

00:27:59.177000000',

 year: 1903,

 imdb: { rating: 7.4, votes: 9847, id: 439

},

 countries: ['USA'],

 type: 'movie',

 tomatoes: {

 viewer: { rating: 3.7, numReviews: 2559,

meter: 75 },

 fresh: 6,

 critic: { rating: 7.6, numReviews: 6,

meter: 100 },

 rotten: 0,

 lastUpdated: ISODate("2015-08-

08T19:16:10.000Z")

 },

 num_mflix_comments: 0

}

NOTE

When it comes to nesting documents within documents,
MongoDB supports 100 levels of nesting, which is a limit you
probably won’t reach in most applications.

Supported data types in MongoDB

MongoDB allows you to store any of the BSON data types as
field values. BSON is very closely related to JSON and it stands
for “Binary JSON.” BSON’s binary structure makes it faster and
adds native support for more data types than JSON. One of the
first important decisions when designing any type of
application is the choice of data types. As a developer, you
would never want to use the wrong tools for the job at hand.

NOTE

The full list of supported data types in MongoDB can be found in
the official documentation:
https://www.mongodb.com/docs/mongodb-shell/reference/data-
types/.

Some of the most important data types supported by MongoDB
are:

Strings: These are probably the most basic and universal
data type in MongoDB, and they are used to represent all
text fields in a document.
Numbers: MongoDB supports different types of numbers,
including:

int: 32-bit integer
long: 64-bit integer
double: 64-bit floating point
decimal: 128-bit decimal-based floating point

Booleans: This is the standard Boolean true or false

value; they are written without quotes since you do not
want them to be interpreted as strings.
Objects or embedded documents: In MongoDB, fields
within a document can contain embedded documents,
allowing for complex data structuring within a single

https://www.mongodb.com/docs/mongodb-shell/reference/data-types/
https://www.mongodb.com/docs/mongodb-shell/reference/data-types/

document. This capability supports the deep nesting of
JSON-like structures, facilitating flexible and hierarchical
data modeling.
Arrays: Arrays can contain zero or more values in a list-like
structure. The elements of the array can be any MongoDB
data type, including other documents and arrays. They are
zero-based and particularly suited for making embedded
relationships. For instance, you could store all of the post
comments inside the blog post document itself, along with a
timestamp and the user that made the comment. Arrays
can benefit from the standard JavaScript array methods for
fast editing, pushing, and other methods.
ObjectId: Every document in MongoDB has a unique field
called _id that acts as the primary key. If an inserted

document omits the _id field, MongoDB automatically

generates an ObjectId for the _id field that is used to

uniquely identify a document in the collection. ObjectId
values are 12 bytes in length. They are small, likely unique,
fast to generate, and ordered. These ObjectIds are
extensively used as keys for traditional relationships –
ObjectIds are automatically indexed.
Dates: Though JSON does not support date types and stores
them as plain strings, MongoDB’s BSON format supports
date types explicitly. They represent the 64-bit number of

milliseconds since the Unix epoch (January 1, 1970). All
dates are stored in UTC and have no time zone associated. A
BSON date type is signed. Negative values represent dates
before 1970.
Binary data: Binary data fields can store arbitrary binary
data and are the only way to save non-UTF-8 strings to a
database. These fields can be used in conjunction with
MongoDB’s GridFS filesystem to store images, for example.
Null: This can represent a null value or a nonexistent field,
and we can even store JavaScript functions as a different
data type.

Now that you have an idea of what types of fields are available
in MongoDB and how you can map your business logic to a
(flexible) schema, it is time to get introduced to collections—
groups of documents and a counterpart to a table in the
relational database world.

Collections and databases

Even though you can store multiple schemas in the same
collection, there are many reasons to store your data in
multiple databases and multiple collections:

Data separation: Collections allow you to logically separate
different types of data. For example, you can have a
collection for user data, another collection for product data,
and yet another collection for order data. This separation
makes it easier to manage and query specific types of data.
Performance optimization: By separating data into
different collections, you can optimize performance by
indexing and querying specific collections more efficiently.
This can improve query performance and reduce the
amount of data that needs to be scanned.
Data locality: Grouping documents of the same type in a
collection will require less disk seek time, and considering
that indexing is defined by collection, the querying is much
more efficient.

Although a single instance of MongoDB can host several
databases at once, it is considered good practice to keep all the
document collections used in an application inside a single
database.

NOTE

When you install MongoDB, there will be three databases created
and their names cannot be used for your application database:
admin, local, and config. They are built-in databases that

shouldn’t be replaced, so avoid accidentally naming your
database the same way or making any changes to these
databases.

Options to install the MongoDB
database

After reviewing the basic terms, concepts, and structure of the
MongoDB database, it is time to learn how to set up a MongoDB
database server locally and in the cloud.

The local database setup is convenient for quick prototyping
that doesn’t even require an internet connection. However, we
recommend that you use a cloud-hosted database in MongoDB
Atlas when you’re setting up a database to use as the backend
in future chapters.

MongoDB Atlas offers many benefits over the local installation.
First, it is easy to set up, and, as you will see, you can get it up
and running literally in minutes with a generous free-tier
database ready for work. MongoDB handles all the operational
aspects of the database, such as provisioning, scaling, backup,
and monitoring.

Atlas takes away much of the manual setup and guarantees
availability. Other benefits include the involvement of the
MongoDB team (which tries to implement best practices), high
security by default with access control, firewalls and granular
access control, automated backups (depending on the tier), and
the possibility to be productive right away.

Installing MongoDB and related
tools

MongoDB is not just a database service provider, but a full-
fledged developer data platform that has a set of technologies
built around the core database to meet all your data needs and
improve your productivity as a developer. Let’s examine the
following components that you will be installing or using in the
following sections:

MongoDB Community Edition: A free version of MongoDB
that runs on all major operating systems. It is what you are
going to use to play around with data locally.
MongoDB Compass: A graphical user interface (GUI) for
managing, querying, aggregating, and analyzing MongoDB
data in a visual environment. Compass is a mature and

useful tool that you’ll be using throughout your initial
querying and aggregation explorations.
MongoDB Atlas: The database-as-a-service solution from
MongoDB. This offering is one of the main reasons
MongoDB is a central part of the FARM stack. It is relatively
easy to set up and it relieves you from manually
administering the database.
MongoDB Shell (mongosh): A command-line shell that not

only performs simple create, read, update, and delete
(CRUD) operations on your database but also enables
administrative tasks such as creating and deleting
databases, starting and stopping services, and similar jobs.
MongoDB Database Tools: Several command-line utilities
that allow administrators and developers to export or
import data to and from a database, provide diagnostics, or
enable manipulation of large files stored in MongoDB’s
GridFS system.

This chapter will focus on the procedure to have a fully
functional installation. Check the installation instructions that
correspond to your operating system. This chapter includes
instructions for Windows, Linux, and macOS.

Installing MongoDB and Compass
on Windows

In this section, you will learn how to install the latest version of
MongoDB Community Edition, which at the time of writing is
7.0. MongoDB Community is only supported on 64-bit versions
of Windows on x86_64 architecture. Windows versions
supported are Windows 11, Windows Server 2019, and
Windows Server 2022. To install MongoDB and Compass, you
can refer to the following steps.

NOTE

We strongly advise you to check the instructions on the MongoDB
website (https://www.mongodb.com/docs/manual/tutorial/install-
mongodb-on-windows/) to ensure you have access to the latest
information, as they might slightly change.

1. To download the installer, head over to the MongoDB
Download Center at
https://www.mongodb.com/try/download/community, select
the Windows version, and click on Download as follows:

https://www.mongodb.com/docs/manual/tutorial/install-mongodb-on-windows/
https://www.mongodb.com/docs/manual/tutorial/install-mongodb-on-windows/
https://www.mongodb.com/try/download/community

Figure 2.1: MongoDB download page

2. Next, execute it. If a security prompt displays Open
Executable File, select Yes and proceed to the MongoDB
setup wizard.

3. Read the license agreement, select the checkbox, and then
click on Next.

4. This is an important screen. When asked which type of
setup to choose, select Complete, as follows:

Figure 2.2: Complete installation

5. The next wizard will ask you whether you want MongoDB
to run as a Windows network service (that’s what you
should prefer) or as a local and domain service. Leave the
default values selected and proceed to the next step without
making any changes.

6. Another wizard will appear prompting whether you want
to install Compass, MongoDB’s GUI tool for database
management. Select the checkbox and proceed to install it:

1.

Figure 2.3: Install Compass

7. Finally, the User Account Control (UAC) Windows warning
screen will pop up, and you should select Yes.

Now that you have installed MongoDB Community Server on
your local machine, the next section will show you how to
install other necessary tools that you will be using throughout
this book.

Installing the MongoDB Shell
(mongosh)

After installing MongoDB Community Server and Compass on
your computer, you will next install mongosh, the MongoDB

Shell.

NOTE

For instructions on other operating systems, please visit the
MongoDB documentation:
https://www.mongodb.com/docs/mongodb-shell/install/.

Here’s how you can do it for Windows:

1. Navigate to the MongoDB Download Center
(https://www.mongodb.com/try/download/shell) and, in the
Tools section, select MongoDB Shell.

2. From the dropdowns, select the Windows version and the
msi package and click on Download.

https://www.mongodb.com/docs/mongodb-shell/install/
https://www.mongodb.com/try/download/shell

Figure 2.4: Download the MongoDB Shell

3. Next, locate the msi package on your computer and execute
it. If a security prompt asks Open Executable File, select
Yes and proceed to the MongoDB setup wizard. The wizard
will open the following page. Click on Next:

Figure 2.5: The MongoDB Shell Setup Wizard

4. In the prompt, select the destination folder for installing
mongosh, or leave the default option as it is if it looks good

to you, and then finish the installation.
5. At this point, you should be able to test whether MongoDB

is running (as a service). Enter the following command in

the command prompt of your choice (preferably, use
cmder, available at https://cmder.app):

mongosh

6. You should see various notifications and a tiny prompt
denoted with >. Try typing the following:

Show dbs

If you see the automatically generated admin, config, and

locals databases, you should be good to go.

7. Now, check the installation of Compass. On Windows, you
should be able to find it in your start menu under
MongoDBCompass (no spacing).

8. If you just click the Connect button, without pasting or
typing in any connection string, Compass will connect to
the local MongoDB service running on port 27017 and you

should be able to see all of the databases that you saw
when you used the command line with MongoDB: admin,

config, and local.

MongoDB Database Tools

https://cmder.app/

The MongoDB Database Tools are a collection of command-line
utilities for working with a MongoDB deployment. Some of the
common database tools are as follows:

mongoimport: Imports content from an extended JSON,

CSV, or TSV export file
mongoexport: Produces a JSON or CSV export of data

stored in a mongod instance

mongodump: Creates a binary export of the contents of a

mongod database

There are some other tools, such as mongorestore, bsondump,

mongostat, mongotop, and mongofiles. The MongoDB

Database Tools can be installed with an MSI installer (or
downloaded as a ZIP archive).

NOTE

The msi package can be downloaded from the MongoDB

Download Center
(https://www.mongodb.com/try/download/database-tools).

After downloading, you can follow the installation instructions
provided in the MongoDB documentation

https://www.mongodb.com/try/download/database-tools

(https://www.mongodb.com/docs/database-
tools/installation/installation-windows/).

The next section provides a walk-through of the process of
installing MongoDB on a standard Linux distribution.

Installing MongoDB and Compass
on Linux: Ubuntu

Linux offers numerous benefits for the development and
management of local servers, but most importantly, should you
decide that the database-as-a-service of MongoDB isn’t what
you want to use anymore, you will probably want to work on a
Linux-based server.

In this book, we will go over the installation process on Ubuntu
version 22.04 LTS (Jammy), while the MongoDB version also
supports Ubuntu 20.04 LTS (Focal) on x86_64 architecture. The
necessary steps to install MongoDB Ubuntu will be listed here,
but you should always check the MongoDB Ubuntu installation
page (https://www.mongodb.com/docs/manual/tutorial/install-
mongodb-on-ubuntu/) for recent changes. The process,
however, shouldn’t change.

https://www.mongodb.com/docs/database-tools/installation/installation-windows/
https://www.mongodb.com/docs/database-tools/installation/installation-windows/
https://www.mongodb.com/docs/manual/tutorial/install-mongodb-on-ubuntu/
https://www.mongodb.com/docs/manual/tutorial/install-mongodb-on-ubuntu/

The following actions are to be performed in a Bash shell.
Download the public key that will allow you to install
MongoDB, then you will create a list file and reload the package
manager. Similar steps are required for other Linux
distributions, so be sure to check the documentation on the
website of your chosen distribution. Finally, you will perform
the actual installation of MongoDB through the package
manager and start the service.

It is always preferable to skip the packages provided by the
Linux distribution as they are often not updated to the latest
version. Perform the following steps to install MongoDB on
Ubuntu:

1. Import the public key used by the package management
system as follows.
You need to have gnupg and curl installed on your system.

If you don’t already have them, you can install them by
running the following command:

sudo apt-get install gnupg curl

To import the MongoDB public GPG key, run the following
command:

curl -fsSL

https://www.mongodb.org/static/pgp/server-

7.0.asc | \

 sudo gpg -o

/usr/share/keyrings/mongodb-server-7.0.gpg

\

 --dearmor

Create the /etc/apt/sources.list.d/mongodb-org-

7.0.list file for Ubuntu 22.04 (Jammy) by running the

following command:

echo "deb [arch=amd64,arm64 signed-

by=/usr/share/keyrings/mongodb-server-

7.0.gpg]

https://repo.mongodb.org/apt/ubuntu

jammy/mongodb-org/7.0 multiverse" | sudo

tee /etc/apt/sources.list.d/mongodb-org-

7.0.list

2. Reload the local package database with:

sudo apt-get update

3. Install the MongoDB package. To install the latest stable
version, issue the following command:

sudo apt-get install -y mongodb-org

4. Run MongoDB Community Edition. If you follow these
instructions and install MongoDB through the package
manager, the /var/lib/mongodb data directory and the

/var/log/mongodb log directory will be created during the

installation.
5. You can start the mongod process with:

sudo systemctl start mongod

If you receive an error similar to the following on initiating
mongod:

Failed to start mongod.service: Unit

mongod.service not found.

Run the following command first:

sudo systemctl daemon-reload

Then run the start command (shown in step 5) again.

6. You should be able to start using the MongoDB Shell
(mongosh) by simply typing:

mongosh

MongoDB isn’t particularly different than any other Linux
software when it comes to installation and process
management. However, if you have any issues with the
installation, the first recommendation would be to visit the
MongoDB Linux installation page.

Setting up Atlas

MongoDB Atlas—a cloud database service provided by
MongoDB—is one of the strongest selling points of MongoDB.

MongoDB Atlas is a fully managed database service, which
means that MongoDB handles the infrastructure management,
database setup, configuration, and maintenance tasks for you.
This allows you to focus on developing your applications
instead of managing the underlying infrastructure.

NOTE

The processes of signing up and setting up a MongoDB Atlas
instance are well documented at
https://www.mongodb.com/docs/atlas/getting-started/.

There are two ways in which you can set up your Atlas account:

Atlas UI (website)

https://www.mongodb.com/docs/atlas/getting-started/

Atlas CLI (command line)

The Atlas CLI provides a dedicated CLI for MongoDB Atlas,
allowing you to manage your Atlas database deployments and
Atlas Search directly from your terminal. In this book, you will
see how to do it from the UI.

Head over to https://www.mongodb.com/cloud/atlas/register to
create an Atlas account if you don’t already have it. You can use
either your Google account, GitHub account, or email account to
sign up for this service.

NOTE

The Atlas UI and cluster creation steps may change as more
features are introduced. It is highly recommended that you refer
to the documentation while setting up the cluster for the latest
instructions (https://www.mongodb.com/docs/atlas/getting-
started/).

After setting up the account (here, a Gmail address is used, so
you can log in with a Google account for faster access), you will
be prompted to create a cluster. You will create an M0 cluster,

which is free, and you should select a Cloud Provider & Region
option that is as close to your physical location as possible to
minimize latency.

https://www.mongodb.com/cloud/atlas/register
https://www.mongodb.com/docs/atlas/getting-started/
https://www.mongodb.com/docs/atlas/getting-started/

Creating an Atlas cluster

To set up an Atlas cluster, perform the following steps:

1. On your Atlas dashboard, you will see the Create a
deployment option. Click on Create to start the process of
creating your first Atlas cluster.

Figure 2.6: The Atlas dashboard

In this step, you need to do multiple things:

1. Select a free M0 sandbox option.

2. Give your cluster a meaningful name, such as farm-stack.

You can choose any other name of your choice.
3. Make sure that both the Automate security setup and Add

sample dataset options are checked. This will come in very
handy later.

4. Select the cloud service provider of your choice (by default,
it’s AWS)

5. Choose the region that is nearest to your location to
minimize latency, and click on Create Deployment.

NOTE

Creating an Atlas user and setting up IP is an important step that
you must complete before you start using the Atlas cluster.

2. On the next screen, you will be asked to create a database
user that will have a username and password. Both the
fields are auto-populated for you to simplify the process.
Feel free to change the username and password according
to your preference. Make sure that you save the
password somewhere as you will require it later when
you connect to your cluster.

3. By default, your current IP address is added to enable local
connectivity. MongoDB Atlas provides many layers of
security and restricted IP address access is one of them. If

you are going to use your cluster from any other IP address,
you can add that later, or you also have the option to enable
access from anywhere (0.0.0.0/0), which will allow you

to connect from anywhere, but this is not the
recommended option for security reasons.

After you complete these steps, you have successfully created
your first Atlas cluster!

Getting the connection string of your
Atlas Cluster

Next, you’ll look at the sample dataset that is automatically
loaded for you. In this section, you will connect the dataset to
your Atlas cluster from Compass and explore the same dataset
using it:

1. On the Atlas dashboard, click on the Browse collections
button, as shown in Figure 2.7.

Figure 2.7: The Atlas dashboard

2. You can see that the sample_mflix dataset has already

been loaded in your cluster. You’ll have a database named
sample_mflix and six collections created under it:

comments, embedded_movies, movies, sessions,

theatres, and users.

3. Now, go to your Atlas dashboard and get the connection
string to connect to your Atlas cluster from Compass.

4. On the Atlas dashboard, click on the green Connect button.

Figure 2.8: Connect to your cluster

5. Then, select Compass:

Figure 2.9: Connect to your cluster

6. In the next wizard, copy the connection string shown in the
box:

Figure 2.10: Get the connection string

Great! Now, you have the connection string for your Atlas
cluster. You can go to Compass and use this connection string to
connect to your Atlas cluster from Compass. Don’t forget to
replace <password> with your Atlas user password before

connecting to your cluster.

Connecting to the Atlas cluster from
Compass

Perform the following steps to connect to your Atlas Cluster
from Compass:

1. Launch Compass if it’s not already running on your
computer. In the URI box, paste the connection string you
copied from the previous step and add your password to it.
Next, click on Connect:

Figure 2.11: MongoDB Compass

2. After successfully connecting to your Atlas cluster, you will
see something similar to Figure 2.12:

Figure 2.12: The My Queries tab in MongoDB Compass

3. You can see the list of databases in your cluster in the left
panel. Click on sample_mflix to expand the dropdown and
expose the list of collections. Then, click on movies to see
the documents stored in that collection:

Figure 2.13: List of documents in collections

Figure 2.13 shows that you have 21.4k documents in your
sample_mflix.movies collection.

Now you should have a fully functional instance of the world’s
most popular NoSQL database on your machine. You have also
created an online account and managed to create your very

own cluster, ready to take on most data challenges and power
your web app.

MongoDB querying and CRUD
operations

Let’s see MongoDB in action and experience firsthand the
power of the most popular NoSQL database. This section will
show you the most essential MongoDB commands, through
simple examples. These methods will enable you, as a
developer, to take control of your data, create new documents,
query documents by using different criteria and conditions,
perform simple and more complex aggregations, and output
data in various forms.

Although you will be talking to MongoDB through the Python
drivers (Motor and PyMongo), it is helpful to learn how to write
queries directly at first. You’ll begin by querying the
sample_mflix.movies dataset that was imported into your

cluster at the time of cluster creation, then you’ll go through the
process of creating new data—inserting, updating, and so on.

Let’s first define the two options for executing MongoDB
commands, as follows:

Compass GUI
MongoDB Shell (mongosh)

Connect to your MongoDB Atlas cluster from mongosh and

perform CRUD operations on your data:

1. To connect to your Atlas cluster from mongosh (MongoDB

Shell), navigate to your Atlas cluster dashboard and fetch
the connection string for mongosh. The steps will be the

same as for Compass, except for the connecting tool. For
this, you’ll need the MongoDB Shell and not Compass.
Figure 2.14 shows the connection string for mongosh:

Figure 2.14: Connect to mongosh (MongoDB Shell)

2. Copy the connection string and navigate to the CLI on your
computer.

3. Now, to set up the options for working with and executing
commands in our cloud database in Atlas, perform the
following steps:

1. In a shell session (Command Prompt on Windows or
Bash on Linux), paste the connection string in the
prompt, and hit Enter. Then, provide the password and
hit Enter.

You can also explicitly pass the password in the connection
string by using the --password option followed by your

password. To avoid any typos/errors in typing the
password, you can use this option.

2. On successfully connecting to your Atlas cluster, you
should see something like this:

Figure 2.15: Connecting to a MongoDB database successfully

3. Next, use the show dbs command to list all the databases

present in your cluster:

show dbs

This command should lists all of the available databases: admin,

local, and sample_mflix (your database).

4. In order to use your database, type the following code:

use sample_mflix

The console will respond with switched to db

sample_mflix, which means that now you can query and work

on your database.

5. To see the available collections inside sample_mflix, try

the following code:

show collections

You should be able to view all six collections that we saw in the
Atlas UI and Compass, that is, comments, embedded_movies,

movies, sessions, theatres, and users. Now that you have

your database and collection available, you can proceed and
use some querying options.

Querying in MongoDB

This section will show the use of the sample_mflix.movies

collection as an example for demonstration. Working with real
data with some expected query results helps reinforce the
acquired notions and makes understanding the underlying
processes easier and more thorough.

The most frequent MongoDB query language commands—and
the ones that this chapter will be covering—are as follows:

find(): Finds and selects documents matching simple or

complex criteria
insertOne(): Inserts a new document into the collection

insertMany(): Inserts an array of documents into the

collection
updateOne() and updateMany(): Update one or more

documents according to some criteria
deleteOne() and deleteMany(): Delete one or more

documents from the collection

There are 21,349 documents in the sample_mflix.movies

collection. To query for all the documents, type the following
command in the MongoDB Shell:

db.movies.find()

The preceding command will print several documents, as
follows:

Figure 2.16: find() query output

The console will print the message Type "it" for more, as

the console prints out only 20 documents at a time. This
statement could be interpreted as a classic SELECT * FROM

TABLE in the SQL world.

NOTE

The find() method returns a cursor and not the actual results.

The cursor enables performing some standard database
operations on the returned documents, such as limiting the
number of results, ordering by one or more keys (ascending or
descending), and skipping records.

You can also apply some filters and only return those
documents that satisfy the specified criteria. The movies

collection has the years field, which represents the year in

which the movie was released. For instance, you can write a
query to only return movies that were released in 1969.

In the command prompt, enter the following command:

db.movies.find({"year": 1969}).limit(5)

Here, you used the limit() method on the cursor to specify the

maximum number of documents the cursor should return, in
this case 5.

The preceding command will return the search results:

Figure 2.17: find() operation with a filter criteria

The results should now contain only documents that satisfy the
condition that the year key is equal to 1969. Looking at the

results, it seems like there are many documents. You can also do
a count operation on a query by using the
db.collection.countDocuments() method. For example:

db.movies.countDocuments({"year": 1969})

The preceding command returns 107, which means you have

107 documents in your collection that matched your search
criteria; that is, 107 movies were released in the year 1969.

The JSON syntax that you used in the previous query is a filter,
and it can have numerous key-value pairs with which you
define your query method. MongoDB has many operators that
enable you to query fields with more complex conditions than
plain equality, and their updated documentation is available on
the MongoDB site at
https://docs.mongodb.com/manual/reference/operator/query/.

You can visit the page and look around some of the operators as
they can give you an idea of how you might be able to structure
your queries.

https://docs.mongodb.com/manual/reference/operator/query/

For instance, suppose you want to find all the Comedy (genre)

movies that were released in USA after the year 1945. The

following query will do the job:

db.movies.find({"year": {$gt: 1945},

"countries": "USA", "genres": "Comedy"})

After running the query, you should see a bunch of documents
returned by the cursor.

You can also use the countDocuments method to find out the

exact number of documents that match the filter criteria:

db.movies.countDocuments({"year": {$gt:

1945}, "countries": "USA", "genres":

"Comedy"})

You will find that there are 3521 documents in the collection

that match your search criteria.

The $gt operator is used to specify that the year should be

greater than 1945, ensuring the movies selected were released

after this year. The conditions on country and genre are

straightforward, requiring the countries array to include USA

and the genres array to contain Comedy.

Remember that the find() method implies an AND operation,

so only documents satisfying all three conditions will be
returned.

Some of the most widely used query operators are as follows:

$gt: Greater than

$lt: Less than

$in: Providing a list of values

However, you can see on the MongoDB documentation
(https://www.mongodb.com/docs/manual/reference/operator/qu
ery/) that there are many more—logical and, or, and nor;
geospatial operators for finding the nearest points on a map;
and so on. It is time to explore other methods that allow you to
perform queries and operations.

findOne() is similar to find(); it also takes an optional filter

parameter but returns only the first document that satisfies the
criteria.

Before you dive into the process of creating, deleting, and
updating existing documents, it’s important to mention a very

https://www.mongodb.com/docs/manual/reference/operator/query/
https://www.mongodb.com/docs/manual/reference/operator/query/

useful feature called projection.

Projection

Projection allows you to specify which fields should be included
or excluded in the documents returned from query results. This
is achieved by providing an additional argument to the find()

and findOne() methods. This argument is an object that

specifies which fields to include or exclude, effectively tailoring
the query results to only contain the information that is needed.

Building projections is easy; a projection query is just a JSON
object in which the keys are the names of the fields, while the
values are 0 if you want to exclude a field from the output or 1

if we want to include it. The ObjectId type is included by

default, so if you want to remove it from the output, you have to
set it to 0 explicitly. Also, if you have not included the name of

any field in the projection, it is assumed to have a 0 value and is

not projected.

Suppose in your previous query you only want to project the
movie title, country released, and year. To do that, execute the
following command:

db.movies.find({"year": {$gt: 1945},

"countries": "USA", "genres": "Comedy"},

{"_id":0, "title": 1, "countries": 1, "year":

1}).sort({"year": 1}).limit(5)

The sort and limit operations first sort the returned documents
by the year field in ascending order and then restrict the result

to five documents, as specified by the limit parameter. In the

projection part, the _id field is suppressed by setting it to 0, and

the title, countries, and year fields are included by setting

them to 1. Since the genres field and all other fields in the

projection are omitted, they are automatically excluded from
the returned documents.

Creating new documents

The method used to create new documents in MongoDB is
insertOne(). You can try inserting the following fictitious

movie into your database:

db.movies.insertOne({"title": "Once upon a

time on Moon", "genres":["Test"], year:

2024})

The preceding command will print the following message:

{

 acknowledged: true,

 insertedId:

ObjectId("66b25f48b959c3fb3a4e56ed")

}

The first part means that MongoDB acknowledged the insertion
operation, whereas the second property prints out the
ObjectId key, which is the primary key that MongoDB uses and

assigns automatically to the newly inserted documents if not
provided manually.

MongoDB, naturally, also supports inserting many documents at
once with the insertMany() method. Instead of providing a

single document, the method accepts an array of documents.
You could, for example, insert another couple of sample movies
as follows:

db.movies.insertMany([{"title": "Once upon a

time on Moon", "genres":["Test"], year:

2024}, {"title": "Once upon a time on Mars",

"genres":["Test"], year: 2023}, {"title":

"Tiger Force in Paradise", "genres":["Test"],

year: 2019, rating: "G"}])

Here, you inserted three fictitious movies and the third one has
a new property, rating (which is set to G), which does not exist

in any other movies, just to highlight MongoDB’s schema
flexibility. The shell acknowledges this and prints out the
ObjectId key of the newly inserted documents.

Updating documents

Updating documents in MongoDB is possible through several
different methods that are suited for different scenarios that
might arise in your business logic.

The updateOne() method updates the first encountered

document with the data provided in the fields. For example,
let’s update the first movie whose genres field has Test in it

and set it to PlaceHolder genre, as follows:

db.movies.updateOne({genres: "Test"}, {$set:

{"genres.$": "PlaceHolder"}})

You can also update existing properties of the document as long
as you use the $set operator. Let’s say that you want to make

similar updates to all documents in your collection (i.e., set the
genres field value to the placeHolder genre) that match the

passed filter criteria and also increase the year value by 1 in all

matched documents. You could try it with the following
command:

db.movies.updateMany({ "genres": "Test" }, {

$set: { "genres.$": "PlaceHolder" }, $inc: {

"year": 1 } })

The preceding command updates many documents, namely all
movies that satisfy the simple requirement of having Test in

the genres field.

Updating documents is an atomic operation—if two or more
updates are issued at the same time, the one that reaches the
server first will be applied.

mongosh also provides a replaceOne() method that takes a

filter, like your earlier methods, but also expects an entire
document that will take the place of the preceding one. You can
get more information on the collection methods in the following
documentation:
https://www.mongodb.com/docs/manual/reference/method/db.c
ollection.updateOne/.

https://www.mongodb.com/docs/manual/reference/method/db.collection.updateOne/
https://www.mongodb.com/docs/manual/reference/method/db.collection.updateOne/

Deleting documents

Deleting documents works in a similar way to the find

methods—you can provide a filter specifying the documents to
be deleted and use the deleteOne or deleteMany method to

execute the operation.

Let’s delete all the fake movies that you inserted in your
collection by using the following command:

db.movies.deleteMany({genres: "PlaceHolder"})

The shell will acknowledge this operation with a deletedCount

variable equal to 4—the number of deleted documents. The

deleteOne method operates in a very similar way by deleting

the first document that matches the filter criteria.

To drop an entire collection in MongoDB, you can use the
db.collection.drop() command. However, it is not

recommended to drop an entire collection without careful
consideration as it will delete all the data and related indexes. It
is advised that you don’t run this command for the movies
dataset as we need it for the rest of this chapter.

NOTE

Make sure to import the data again in Atlas (you should see an
option on the Atlas dashboard) if you deleted all the documents.

Aggregation framework

The MongoDB aggregation framework is an extremely useful
tool that enables offloading some (or most) of the computing
burden of making calculations and aggregations of varying
complexity to the MongoDB server and sparing your client side,
as well as the (Python-based) backend, of some workload.

Centered around the concept of a pipeline (something that you
might be familiar with if you have done some analytics or you
have ever connected a few commands in Linux), the
aggregation framework is, at its simplest, an alternative way to
retrieve sets of documents from a collection. It is similar to the
find method that you already used extensively but with the

additional benefit of data processing in different stages or steps.

The MongoDB documentation site
(https://www.mongodb.com/docs/manual/reference/method/db.
collection.aggregate/) is the best place to start if you want to get
acquainted with all the possibilities. However, we’ll start with a
couple of simple examples.

https://www.mongodb.com/docs/manual/reference/method/db.collection.aggregate/
https://www.mongodb.com/docs/manual/reference/method/db.collection.aggregate/

The syntax for the aggregation is similar to other methods that
you used earlier, such as find() and findOne(). We use the

aggregate() method, which takes a list of stages as a

parameter.

Probably the best aggregation, to begin with, would be to mimic
the find method.

Write an aggregation query to select all movies where the
genres field includes Comedy:

db.movies.aggregate([{$match: {"genres":

"Comedy"}}])

This is probably the simplest possible aggregation, and it
consists of just one stage, the $match stage, which tells

MongoDB that you only want comedy movies, so the output of
the first stage is exactly that.

In your collection, you have both series and movies data. Let’s

write an aggregation pipeline to filter out films that are of the
movie type and have Comedy as the genre. Then, group them

together to find out the average runtime of comedy movies:

db.movies.aggregate([{$match: {type:

"movie", genres: "Comedy" } }, {$group: {_id:

null, averageRuntime: { $avg: "$runtime" } }

}])

The preceding code will return the following output:

[{ _id: null, averageRuntime:

98.86438291881745 }]

Here is a more detailed explanation of the preceding
aggregation query:

$match stage: This is an aggregation stage that filters
documents to pass only those that match the given criteria
to the next stage. Think of it as a filter that screens out
documents not meeting specific conditions. The parameters
to $match define the criteria for filtering documents. In this

case, {type: "movie", genres: "Comedy"} specifies

that documents must have the type equal to movie and

must include Comedy in their genres array to pass through.

$group stage: This stage is used to aggregate documents.
Documents that meet the criteria from previous stages are
grouped based on a specified identifier and can be

processed collectively, often to perform operations such as
summing or averaging values.
The $group stage takes parameters that define how to

group the documents and what calculations to perform on
the grouped data.
_id: null: In the $group stage, _id specifies the grouping

criteria. Setting _id to null means all documents passed

from the previous stage will be aggregated into a single
group, rather than being divided into multiple groups
based on distinct field values.
averageRuntime: { $avg: “$runtime” }: This part
calculates the average of the runtime values of all
documents in the group. $avg is an accumulator operator

used here to compute the average. $runtime specifies that

the runtime field from each document should be used in
the calculation.

Once the data is grouped and aggregated the way you want it,
you can apply other simpler operations, such as sorting,
ordering, and limiting.

Summary

This chapter detailed the basic building blocks that define
MongoDB and its structure. You have seen how to set up a
database in the cloud using MongoDB Atlas and explored the
basics of creating, updating, and deleting documents. Further,
this chapter detailed the aggregation pipeline framework—a
strong analytic tool.

The next chapter will show how to create APIs with FastAPI—an
exciting and new Python framework. We will provide a
minimal yet complete guide of the main concepts and features,
which should hopefully convince you that building APIs can be
fast, efficient, and fun.

3

Python Type Hints and Pydantic

Before exploring FastAPI, it is useful to explore some Python
concepts that will be heavily used throughout your journey
with FastAPI.

Python type hinting is a very important and relatively new
feature of the language that facilitates the work of developers,
bringing greater robustness and maintainability to the
development workflow. Types make your code more readable
and understandable, and most importantly, they promote good
practices.

FastAPI is heavily based on Python type hints. So, before diving
into the framework, it is useful to review the basic concepts of
type hinting, what they are, how they are implemented, and
what their purpose is. This foundational knowledge will help
you create robust, maintainable, and scalable APIs with
FastAPI.

By the end of this chapter, you will have a deep understanding
of the role of type annotations in Python with FastAPI and

Pydantic. Pydantic is a modern Python library that enforces
type hints at runtime, provides customizable and user-friendly
errors when data is invalid, and allows definition of data
structures using Python type annotations.

You will be able to model your data with precision, leveraging
the advanced features of Pydantic to make you a better and
more productive FastAPI developer.

This chapter will cover the following topics:

Python type hints and their usage
A general overview of Pydantic and its main functions,
including parsing and validating data
Data deserialization and serialization, including advanced
and special cases
Validation and data transformation, aliases, and field and
model-level validation
Advanced Pydantic usage such as nested models, fields, and
model settings

Technical requirements

To run the sample application in this chapter, you should have
Python version 3.11.7 (https://www.python.org/downloads/) or

higher installed on your local computer, a virtual environment,
and a couple of packages. As the examples in this chapter will
not make use of FastAPI, if you wish, you can create a pristine
virtual environment and install Pydantic with the following:

pip install pydantic==2.7.1

pydantic_settings==2.2.1

In this chapter, you will be working with Pydantic and some
Pydantic-related packages, such as pydantic_settings.

Python types

The different types present in a programming language define
the language itself—they define its boundaries and set some
ground rules for what is possible and, more importantly, what
the recommended way of achieving something is. Different
types of variables have completely different sets of methods
and properties available. For example, while capitalizing a
string makes perfect sense, capitalizing a floating number or a
list of integers doesn’t.

If you have used Python for a while, even for the most
mundane tasks, you already know that, like every

programming language, it supports different types of data—
strings and different numerical types such as integers and
floats. It also features a rather rich data structure library: from
dictionaries to lists, from sets to tuples, and so on.

Python is a dynamically typed language. This means that the
type of a variable is not determined at compile time, but at
runtime. This feature gives the language itself a lot of flexibility
and enables you to declare a variable as a string, use it, and
then later on reassign it to a list. However, the ease of changing
the variable type can make larger and more complex codebases
more prone to errors. Dynamic typing implies that the type of a
variable is embedded with the variable itself and is easily
modifiable.

On the other end of the spectrum lie the so-called statically
typed languages: C, C++, Java, Rust, Go, and so on. In these
languages, the type of the variable is known at compile time,
and it cannot change over time. The type-checking is performed
at compile time (so before runtime) and errors are caught
before runtime, as the compiler will prevent the program from
being compiled.

Programming languages are divided into different categories
along another, different axis: strongly typed languages and

weakly typed languages. This characteristic tells us how much a
language restricts its types to operations inherent to those
specific types and how easy it is to coerce, or change, a variable
from one to another type. Unlike JavaScript, for instance,
Python is considered to be on the stronger side of the spectrum,
and the interpreter sends strong messages when you try to
perform an illegal operation, such as typing the following in a
Python interpreter to add a dict type to a number:

>>>{}+3

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for +:

'dict' and 'int'

So, while Python does complain when you attempt to perform
unsupported operations, it only does so at runtime, not before
executing the code. In fact, there is no indication to you—the
developer—that you are writing code that violates the Python
type system.

Type hinting

As you have seen in the previous section, Python is a
dynamically typed language, and types aren’t known until
runtime. Since variable types are embedded in the value of the
variable itself, as a developer, you cannot know the type of a
variable that you encounter in a codebase just by looking at it
or inspecting it with your IDE of choice. Fortunately, Python
introduced a very sought-out feature starting from version 3.5
—type annotations (https://peps.python.org/pep-0484/).

Type annotations or hints in Python are an additional syntax
that notifies you, the developer, of the expected type of a
variable. They are not used by the Python language at runtime,
and they do not modify or affect the behavior of your program
in any way. You might be wondering what the use of these hints
is if the Python interpreter cannot even see them.

As it turns out, several important benefits will make almost any
codebase much more robust, more maintainable, and future-
proof:

Faster code development: Any developer reading your
code will know exactly the type of any annotated variable—
whether it is an integer or a floating point, a list or a set,
allowing for faster development.

Knowledge of methods and properties: You will know
exactly which methods or properties are available for any
given variable. Inadvertently changing the type of a
variable in a larger codebase will be picked up
immediately.
Simplified code development: Code editors and IDE (such
as Visual Studio Code) will provide excellent support and
auto-completion (IntelliSense), further simplifying
development and reducing the cognitive load on the
developer.
Automatic code generation: FastAPI provides automatic
and interactive (as in a fully functional REST API)
documentation that is entirely based on Python type hints.
Type checkers: This is the most important benefit. These
are programs that run in the background and perform
static analysis of your code, spotting potential problems
and informing you immediately.
Easier to read and smaller cognitive load: Annotated
code is much easier to read and puts much less cognitive
load on you as a developer when you have to work on a
piece of code and are trying to figure out what it is
supposed to do.
Strongly typed and flexible: Preserves the language’s
strongly typed nature and dynamic typing flexibility, while

allowing for imposing the necessary safety requirements
and constraints. While recommended for larger codebases,
Python type hints are ingrained into FastAPI and Pydantic,
so even the smallest projects will require you to at least
know your way around types and how to work with them.

Type hinting is at the very base of FastAPI. Coupled with
MongoDB’s flexible document schema, it is the backbone of
FARM stack development. Type hinting ensures that your
application data flow maintains the right data types going in
and out of the system at every moment. While this might seem
trivial for simpler endpoints—quantities should be integers,
names should be strings, and so on—when your data structure
becomes more complex, debugging type errors can become
very cumbersome.

Type hints can also be defined as a formalism—a formal
solution to statically (before runtime) indicate the type of a
value to a type checker (Mypy, in your case), which will ensure
that when the Python runtime encounters your program the
types will not be problematic.

The next section will detail the syntax of type hints, how to
annotate functions, and how to check your code with Mypy.

Implementing type hints

Let’s see how you can implement type hinting. Create a
directory named Chapter3 and create a virtual environment

inside it, as shown earlier. Inside, add a requirements.txt file

with the following contents if you want to be able to recreate
the examples in the chapter exactly:

mypy==1.10.0

pydantic==2.7.4

Install the packages with requirements.txt:

pip install -r requirements.txt

Now you are ready to explore the world of Python type hints.

While there are many Python type checkers—basically tools
that perform static analysis of the source code without running
it—we will use mypy as it is easily installable. Later, you will

have tools such as Black or Ruff at your disposal. These perform
different actions on your source code, including type checking.

In order to showcase the Python type annotation syntax, a
simple function, such as the following will suffice:

1. Create a file called chapter3_01.py and define a simple

function:

def print_name_x_times(name: str, times:

int) -> None:

 for _ in range(times):

 print(name)

The previous function accepts two parameters, name (a

string) and times (an integer), and returns None, while the

function prints the given name for a given number of times
in the console. If you try to call the function in your code
and start typing the arguments, Visual Studio Code (or any
IDE with Python type-checking support) will immediately
suggest a string as the first positional argument and an
integer as the second.

2. You can try to input the wrong argument types, for
instance, an integer first and then a string afterward, save
the file, and run mypy on the command line:

mypy chapter3_01.py

3. Mypy will inform you that there are two errors:

types_testing.py:8: error: Argument 1 to

"print_name_x_times" has incompatible type

"int"; expected "str" [arg-type]

types_testing.py:8: error: Argument 2 to

"print_name_x_times" has incompatible type

"str"; expected "int" [arg-type]

Found 2 errors in 1 file (checked 1 source

file)

This example was simple enough, but take a look again at what
Python Enhancement Proposal 8 (PEP 8) recommends when it
comes to the type-hinting syntax with another example:

1. Insert a simple variable that has a value:

text: str = "John"

The colon is attached to the variable (no spaces), there is
one space after the colon, and, in cases where you do
provide a value, there are spaces around the equal sign.

2. When annotating the output of a function, the "arrow,"
which is made up of a dash and greater than sign (->),

should be surrounded by one space, like this:

def count_users(users: list[str]) -> int:

 return len(users)

So far, you have seen simple annotations that constrain a
variable to some Python primitive types including integers
and strings. Typing annotations can be more flexible: you
might want to allow a variable to accept several variable
types, such as an integer and a string.

3. You can achieve this with the use of the Union package

from the typing module:

from typing import Union

x: Union(str, int)

4. The previously defined x variable can take a string or an

integer value. The more modern and concise way of
achieving the same functionality is the following:

x: str | int

These annotations mean that the variable x can be an integer or

it can take a value of string, which is a different type from an

integer.

The typing module contains several types of so-called generics,

including the following:

List: For variables that should be of the list type

Dict: For dictionaries

Sequence: For any type of sequence of values

Callable: For callables, such as functions

Iterator: Indicates that a function or variable accepts an

iterator object (an object that implements the iterator
protocol and can be used in a for loop)

NOTE

You are encouraged to explore the typing module but bear in

mind that the types from the module are gradually being
imported into Python’s code functionality.

For instance, the List type is very useful in working with

FastAPI as it allows you to serialize a list of items or resources
quickly and efficiently into a JSON output.

An example of a List type is the following, in a new file called

chapter3_02.py:

from typing import List

def square_numbers(numbers: List[int]) ->

List[int]:

 return [number ** 2 for number in

numbers]

Example usage

input_numbers = [1, 2, 3, 4, 5]

squared_numbers =

square_numbers(input_numbers)

print(squared_numbers) # Output: [1, 4, 9,

16, 25]

Another useful type is Literal , which restricts the possible

values of a variable to a few admissible states:

from typing import Literal

account_type: Literal["personal", "business"]

account_type = "name"

The preceding lines showcase the power of type hints. There is
nothing inherently wrong with assigning the account_type

variable to a string, but that string is not part of the admissible
state set and thus Mypy complains and returns an
Incompatible types in assignment error.

Now, look at an example that includes a datetime argument.

Create a new file called chapter3_03.py:

from datetime import datetime

def format_datetime(dt: datetime) -> str:

 return dt.strftime("%Y-%m-%d %H:%M:%S")

now = datetime.now()

print(format_datetime(now))

The previously defined function accepts one parameter—a
datetime object—and outputs a string: a nicely formatted date
and time, useful for displaying on websites. If you try to type dt
and then a dot in your Visual Studio Code editor, you will be
prompted by the autocompletion system, offering all the
methods and properties related to the datetime object.

To declare a structure as a list of dictionaries (something very
familiar to anyone working with a JSON-based API), you could
use something like this, in a file named chapter3_04.py:

def get_users(id: int) -> list[dict]:

 return [

 {"id": 1, "name": "Alice"},

 {"id": 2, "name": "Bob"},

 {"id": 3, "name": "Charlie"},

]

After having covered the basic annotation types in Python, the
next few sections will look at some more advanced types that
are very useful when working with FastAPI and Pydantic.

Advanced annotations

The annotations you have seen so far are very simple and
convey basic information related only to the specific desired
type of a variable, function, class argument, or output. Python’s
typing system is capable of much more and it can be used to
restrict the allowable variables' state further and prevent you,
the developer, from creating impossible or illegal states in your
code.

The most frequently used types are the following:

The Optional type is used for handling optional values

and None values in an explicit and developer-friendly way.

The Union type allows you to define a union of possible

types, such as integers and strings. Modern Python uses the
pipe operator (|), as shown in the previous example.

The self type is used to indicate that the value will be an

instance of a certain class, useful in Pydantic model
validators as we will see later.
The New type allows developers to define completely new

types based on existing types.

This section detailed Python type hints, their purpose, and how
they are implemented. The next section will take a deeper look
at Pydantic, the workhorse of FastAPI data validation.

Pydantic

Pydantic is a data validation library labeled on its website as
the most widely used data validation library for Python. It
allows you to model your data in a granular way and perform
various types of validation while being firmly rooted in the
Python type hinting system. The actual version, V2, has critical
parts of the code rewritten in Rust for speed and allows for an
excellent developer experience. The following list describes
some of the benefits of using Pydantic:

Based on type hints that are part of the standard
library: Instead of needing to learn contrived new systems
or terminologies, you just need to learn pure Python types.

Excellent speed: Everything about FastAPI and MongoDB
revolves around speed—fast and responsive applications
delivered in record time—so having a fast validation and
parsing library is mandatory. The core of Pydantic is
written in Rust, which ensures high-speed operations on
data.
Huge community support and wide adoption: Learning
your way around Pydantic will prove useful when working
with popular packages such as Django Ninja, SQLModel,
LangChain, and more.
The possibility of emitting JSON schema: It facilitates
integration with other systems.
More flexibility: Pydantic supports different modes (strict
and lax when it comes to coercion) and nearly unlimited
customization options and flexibility.
Popular among developers: It has been downloaded more
than 70 million times and over 8,000 packages on PyPI
depend on Pydantic (as of July 2024).

NOTE

You can take a look at Pydantic in detail in its documentation:
https://docs.pydantic.dev/latest/.

https://docs.pydantic.dev/latest/

Broadly speaking, Pydantic tackles many important problems
in a modern web development workflow. It ensures that the
data that is ingested into your application is properly formed
and formatted, falls within the desired range, is of the
appropriate type and dimensions, and reaches your document
store safely and without errors.

Pydantic also ensures that your application outputs the data
exactly as intended and according to the specification, omitting
fields that should not be exposed (such as user passwords) and
even more complex tasks, including interfacing with other
incompatible systems.

FastAPI is standing on the shoulders of two powerful Python
libraries—Starlette and Pydantic. While Starlette takes care of
the web-related aspects of the framework, often through thin
wrappers and utility functions and classes provided by FastAPI,
Pydantic is responsible for FastAPI’s phenomenal developer
experience. Pydantic is fundamental to FastAPI, and leveraging
its powerful capabilities opens up the playing field for all FARM
stack developers.

While type checking is performed statically (without running
the code), the role of Pydantic is apparent during runtime and
performs the role of a guardian of inbound data. Your FastAPI

application will receive data from users, from a flexible
MongoDB database schema, and from other systems via APIs—
and Pydantic will facilitate the parsing and data validation.
Instead of crafting complex validation logic for every possible
invalid case, you will simply create Pydantic models of desired
complexity, matching your application’s needs as closely as
possible.

In the following sections, you will explore most of functionality
of Pydantic through examples with increasing complexity and
demands as we feel that it is the best and most effective way of
familiarizing yourself with the library.

Pydantic basics

Unlike some other libraries that provide similar functionality
(such as dataclasses), Pydantic provides a base model (aptly

named BaseModel) that enables the parsing and validation

functionality through inheritance. Since you will be building a
user model in the coming sections, you can start by jotting
down the most basic data that needs to be associated with your
user. At the minimum, you will need the following:

A username
An email address

An ID (keep it as an integer for now)
A date of birth

In Pydantic, a user model that would be associated with this
specification could look like the following, in a file called
chapter3_05.py:

from datetime import datetime

from pydantic import BaseModel

class User(BaseModel):

 id: int

 username: str

 email: str

 dob: datetime

The User class already handled a lot of work for you—there is

no need to perform validation checks as the instantiation of the
class performs the validation and parsing immediately.

The process of constructing the class is pretty straightforward:
each field has a type declaration, and Pydantic is ready to
inform you of any erroneous types it might encounter.

If you try and create a user, you shouldn’t see any errors:

Pu = User(id=1, username="freethrow",

email="email@gmail.com", dob=datetime(1975,

5, 13))

Say however, you create a user with the wrong data, and
conveniently import the Pydantic ValidationError:

from pydantic import BaseModel,

ValidationError

try:

 u = User(

 id="one",

 username="freethrow",

 email="email@gmail.com",

 dob=datetime(1975, 5, 13),

)

 print(u)

except ValidationError as e:

 print(e)

Pydantic will inform you that the data cannot be validated
when you run the program:

1 validation error for User

id

 Input should be a valid integer, unable to

parse string as an integer [type=int_parsing,

input_value='one', input_type=str]

The error messages of Pydantic, derived from
ValidationError, are deliberately informative and precise.

The field with an error is called id and the type of error is

described. The first useful aspect that comes to mind is that if
there were several errors—for instance, you might provide an
invalid datetime—Pydantic will not stop at the first error. It

will continue parsing the entire instance and outputting the list
of errors that can easily be output in JSON format. That is
actually the desired behavior when working with APIs; you
want to be able to list all the errors, for instance, to a user that
has sent the wrong data to the backend. The exception contains
a list of all the encountered errors.

The model guarantees that the instance, once validation is
passed, will have the required fields and that they are of the
correct type.

You can also provide defaults and nullable types, according to
the type hinting conventions:

class User(BaseModel):

 id: int = 2

 username: str

 email: str

 dob: datetime

 fav_colors: list[str] | None = ["red",

"blue"]

The previous model has a default id value (which is not

something that you would want to do in practice) and a list of
favorite colors as strings, which can also be None.

When you create and print a model (or more precisely, when
you invoke its representation via the print function), you get a

nice output:

id=2 username='marko' email='email@gmail.com'

dob=datetime.datetime(1975, 5, 13, 0, 0)

fav_colors=None

Pydantic by default operates in a lax mode, which means that it
will try to coerce the provided types to the ones that are
declared in the model. For instance, if you pass the user ID as a
string "2" to the model, there will not be any errors, as

Pydantic automatically converts the ID to an integer.

Although fields are available through the dot notation
(user.id) and they can be easily modified, this is not

recommended as the validation rules will not be applied. You
could instantiate a user with an id value of 5, access user.id,

and set it to a string "five", but that is probably not something

you would want.

Besides pure data validation, Pydantic provides other
important functionalities to your application. Some of the most
widely used operations with Pydantic models are the following:

Data deserialization: Ingesting data into the model
Data serialization: Outputting validated data from the
model into Python data structures or JSON
Data modification: Sanitizing or modifying data on the fly

The next few sections will look at each of these operations in
more detail.

Deserialization

Deserialization refers to the process of providing data to the
model, which is the input phase, as opposed to the process of
serialization, which means outputting model data in a desired
form. Deserialization is tightly coupled with validation as the

processes of validation and parsing are performed when
instantiating the model, although this can be overridden.

In Pydantic, the term validation refers to the process of
instantiating a model (or other type) that adheres to specified
types and constraints. Pydantic guarantees the types and
constraints of the output, not the input data. This distinction
becomes apparent when you consider the ValidationError

type of Pydantic that is raised when data cannot be successfully
parsed into a model instance.

While you have already performed a couple of validations
through instantiating the Pydantic-based user models, the data
to be validated is often passed in the form of a dictionary. The
following is an example of passing data as a dictionary, in a file
named chapter3_06.py:

Create another version of your user model and pass it a
dictionary of data:

class User(BaseModel):

 id: int

 username: str

 email: str

 password: str

user = User.model_validate(

 {

 "id": 1,

 "username": "freethrow",

 "email": "email@gmail.com",

 "password": "somesecret",

 }

)

print(user)

The .model_validate() method is a helper that accepts a

Python dictionary and performs the class instantiation and thus
validation. This method creates your user instance and

validates the data types in one step.

Similarly, model_validate_json() accepts a JSON string

(useful when working with APIs).

There is also a method for constructing a model instance
without validation with model_construct() but this has very

specific user cases and is not recommended in most cases.

You have learned how to pass data to your simple Pydantic
model. The next section will take a closer look at the model
fields and their properties.

Model fields

Pydantic fields are based on Python types and setting them to
be required or nullable and providing default values is
intuitive. For instance, to create a default value for a field, it is
enough to provide it in the model as a value, while the nullable
field follows the same conventions that you saw in the Python
types sections—by using the older union syntax from the
typing module, or the newer syntax with the pipe operator.

The following is an example of another user model in a file
named chapter3_07.py:

1. Insert some default values:

from pydantic import BaseModel

from typing import Literal

class UserModel(BaseModel):

 id: int

 username: str

 email: str

 account: Literal["personal",

"business"] | None = None

 nickname: str | None = None

The previously defined UserModel class defines a couple of

standard string-type fields: an account that can have
exactly two values or be equal to None and a nickname that

can be a string or None.

2. You may use the model_fields property to inspect the

model as follows:

print(UserModel.model_fields)

You will get a handy list of all the fields belonging to the
model with information about them including their types
and whether they are required:

{'id': FieldInfo(annotation=int,

required=True), 'username':

FieldInfo(annotation=str, required=True),

'email': FieldInfo(annotation=str,

required=True), 'account':

FieldInfo(annotation=Union[Literal['personal'

'business'], NoneType], required=False,

default=None), 'nickname':

FieldInfo(annotation=Union[str, NoneType],

required=False, default=None)}

The next section will detail Pydantic-specific types that make
working with the library easier and faster.

Pydantic types

While Pydantic is based on standard Python types such as
strings, integers, dictionaries, and sets, which makes it very
intuitive and straightforward for starting, the library also
provides a plethora of customizations and solutions for
common cases. In this section, you will get to know the most
useful ones.

Strict types such as StrictBool, StrictInt, StrictStr, and

other Pydantic-specific types are types that will pass validation
only if the validated value belongs to these types, without any
coercion: a StrictInt must be of type Integer and not "1" or

1.0, for example.

Constrained types provide additional constraints for existing
types. For instance, condate() is a date type with greater than,

greater than or equal, less than, and less than or equal
constraints. conlist() wraps the list type and adds length

validation or can impose a rule that the items contained must
be unique.

Pydantic is not limited to the validation of primitive types such
as strings and integers. Many additional validators cover the
vast majority of uses that you might run into while modeling

your business logic. For instance, the email validator validates

email addresses and, since it is not part of the core Pydantic
package, it needs to be installed separately by using the
following command:

pip install pydantic[email]

The Pydantic website
(https://docs.pydantic.dev/latest/api/types/) provides a
comprehensive list of additional validation types that extend
the functionalities—lists can have a minimum and maximum
length, uniqueness can be required, integers can be positive or
negative, and many more, including CSS color codes, for
instance.

Pydantic fields

While the simple Python type annotations might suffice in
many cases, the real power of Pydantic starts to show when you
begin to use the Field class for the fields. The Field class is

used to customize models and add metadata to the model fields.

Let’s see how you can use the Field class for the UserModel

explored in the previous section. Create a file and name it

chapter3_08.py.

First, rewrite your previous UserModel with the help of the

Field class:

from typing import Literal

from pydantic import BaseModel, Field

class UserModelFields(BaseModel):

 id: int = Field(…)

 username: str = Field(…)

 email: str = Field(…)

 account: Literal["personal", "business"]

| None = Field(default=None)

 nickname: str | None =

Field(default=None)

This model is equivalent to the one previously defined without
fields. The first syntactic difference can be seen in the way
default values are provided—the Field class accepts a default

value that is defined explicitly.

Fields also provide additional model flexibility, through the use
of aliases, as you will see in the next section.

Field aliases

Fields allow you to create and use aliases, which is very useful
when dealing with different systems that need to be compatible
with your Pydantic-based data definition. Create a file named
chapter3_09.py. Assume that your application uses the

UserModelFields model for users, but also needs to be able to

ingest data from another system, maybe through a JSON-based
API, and this other system sends the data in the following JSON
format:

external_api_data = {

 "user_id": 234,

 "name": "Marko",

 "email": "email@gmail.com",

 "account_type": "personal",

 "nick": "freethrow",

}

This format clearly doesn’t conform to your UserModelFields

model and aliases provide an elegant way of dealing with this
incompatibility:

class UserModelFields(BaseModel):

 id: int = Field(alias="user_id")

 username: str = Field(alias="name")

 email: str = Field()

 account: Literal["personal", "business"]

| None = Field(

 default=None, alias="account_type"

)

 nickname: str | None =

Field(default=None, alias="nick")

This updated model provides aliases for all the fields that have
different names, so it is possible to validate your external data:

user =

UserModelFields.model_validate(external_api_data)

In this case, you have used the simple alias parameter, but

there are other options for aliases for serialization or for
validation only.

Additionally, the Field class enables numeric values to be

constrained in different ways, which is a feature heavily used in
FastAPI. Create a file called chapter3_10.py and start

populating it.

Suppose you need to model a chess event that has the following
fields:

from datetime import datetime

from uuid import uuid4

from pydantic import BaseModel, Field

class ChessTournament(BaseModel):

 id: int = Field(strict=True)

 dt: datetime =

Field(default_factory=datetime.now)

 name: str = Field(min_length=10,

max_length=30)

 num_players: int = Field(ge=4, le=16,

multiple_of=2)

 code: str = Field(default_factory=uuid4)

In this relatively simple class, Pydantic fields introduce some
complex validation rules that would otherwise be very verbose
and cumbersome to write:

dt: The datetime object of the tournament uses a

default_factory parameter, a function invoked at

instantiation time that provides the default value. In this
case, the value is equal to datetime.now.

name: This field has some length constraints, such as the

minimum and maximum length.
The number of enlisted players is constrained: It must be
greater than or equal to 4, less than or equal to 16, and

additionally, it must be an even number—a multiple of 2—
to allow for all players to play in each round.
The code of the tournament: This is another string
generated by a default factory, in this case the uuid library.

id: This field is an integer, but this time you apply the

strict flag, which means you override the default

behavior of Pydantic and do not allow strings like "3" to

pass validation, even though they could be cast to integers.

NOTE

A useful page in the Pydantic documentation is dedicated to
Fields: https://docs.pydantic.dev/latest/concepts/fields/. There are
numerous validation options available through the Field class,

and you are encouraged to skim through them before you start
your modeling process.

The next section will detail how to get the data out of the model
through the process of deserialization.

Serialization

The most important task of any parsing and validation library is
data serialization (or data dumping). It is the process of
converting and outputting a model instance to a Python

dictionary or a JSON-encoded string. The method for generating
a Python dictionary is model_dump(), as demonstrated by the

following user model example, in a new file called
chapter3_11.py.

To be able to use email validation in Pydantic, add the following
line to the requirements.txt file:

email_validator==2.1.1

And then, re-run the user model:

pip install -r requirements.txt

class UserModel(BaseModel):

 id: int = Field()

 username: str = Field(min_length=5,

max_length=20)

 email: EmailStr = Field()

 password: str = Field(min_length=5,

max_length=20, pattern="^[a-zA-Z0-9]+$")

The user model that you are using is a fairly standard one, and,
with your knowledge of Pydantic fields, you can already
understand it. There are a couple of new validations, but they
are intuitive: the EmailStr object imported from Pydantic is a

string that validates email addresses, while the password field

contains an additional regular expression to ensure that the
field contains only alphanumeric characters and no spaces.
Here’s another example:

1. Create an instance of the model and serialize it to a Python
dictionary:

u = UserModel(

 id=1,

 username="freethrow",

 email="email@gmail.com",

 password="password123",

)

print(u.model_dump())

The result is a simple Python dictionary:

{'id': 1, 'username': 'freethrow',

'email': 'email@gmail.com', 'password':

'password123'}

2. Try to dump the model to a JSON representation and omit
the password for security reasons:

print(u.model_dump_json(exclude=set("password

The result is a JSON string with the password omitted:

{"id":1,"username":"freethrow","email":"email

Serialization uses the field names and not the aliases by default,
but that is another setting that can be easily overridden by
setting the by_alias flag to True.

An example of an alias used when working with FastAPI and
MongoDB is MongoDB’s ObjectId field, which is mostly

serialized as a string. Another useful method is
model_json_schema(), which generates the JSON schema for

a model.

Models can be additionally configured through the ConfigDict

object, and the special field called model_config—the name is

reserved and mandatory. In the following file, called
chapter3_12.py, you are using the model_config field to

allow populating the model by name and prevent passing
additional data to the model:

from pydantic import BaseModel, Field,

ConfigDict, EmailStr

class UserModel(BaseModel):

 id: int = Field()

 username: str = Field(min_length=5,

max_length=20, alias="name")

 email: EmailStr = Field()

 password: str = Field(min_length=5,

max_length=20, pattern="^[a-zA-Z0-9]+$")

 model_config = ConfigDict(extra="forbid",

populate_by_name=True)

The model_config field allows for additional configuration of

the model. For instance, the extra keyword refers to additional

data fields that are passed to the deserialization process: the
default behavior is just to ignore this data.

In this example, we set extra to forbid, so any additional data

passed and not declared in the model will throw a validation
error. populate_by_name is another useful setting as it allows

us to populate a model by using field names and not only
aliases, practically mixing and matching. You will see that this
feature is handy when crafting APIs that have to talk to
different systems.

Custom serializers

Pydantic can provide you with virtually unlimited capabilities
when it comes to serialization and also provides different

serialization methods for Python and JSON outputs with the use
of the @field_serializer decorator.

NOTE

Python decorators are a powerful and elegant feature that allow
you to modify or extend the behavior of functions or methods
without changing their actual code.

Decorators are higher-order functions that take a function as
input, add some functionality, and return a new, decorated
function. This approach promotes the reusability, modularity, and
separation of concerns in your Python programs.

In the following example, you are going to create a very simple
bank account model and use different serializers depending on
the type of serialization. Your requirement is to round the
balance to exactly two decimals and, only when serializing to
JSON, to format the updated field according to the ISO format:

1. Create a new file named chapter3_13.py and add a

simple model for a bank account that contains only two
fields, the balance and the time of the last account update:

from datetime import datetime

from pydantic import BaseModel,

field_serializer

class Account(BaseModel):

 balance: float

 updated: datetime

 @field_serializer("balance",

when_used="always")

 def serialize_balance(self, value:

float) -> float:

 return round(value, 2)

 @field_serializer("updated",

when_used="json")

 def serialize_updated(self, value:

datetime) -> str:

 return value.isoformat()

You have added two custom serializers. The first is the
balance serializer (as denoted by the string "balance"),

which will always be used. This serializer simply rounds
the balance to two decimals. The second serializer is used
only for JSON serialization and returns the date as an ISO-
formatted datetime string.

2. If you try to populate the model and inspect the
serializations, you will see how the serializers modified the
initial default output:

account_data = {

 "balance": 123.45545,

 "updated": datetime.now(),

}

account =

Account.model_validate(account_data)

print("Python dictionary:",

account.model_dump())

print("JSON:", account.model_dump_json())

You will get a similar output:

Python dictionary: {'balance': 123.46,

'updated': datetime.datetime(2024, 5, 2,

21, 34, 11, 917378)}

JSON: {"balance":123.46,"updated":"2024-

05-02T21:34:11.917378"}

Earlier in this chapter, you saw basic validation provided by
Pydantic through the mere instantiation of the model class. The
next section will discuss the various custom validation methods
of Pydantic with the help of Pydantic decorators and how they
can be leveraged to move beyond serialization and provide
powerful custom validation functionality.

Custom data validation

Similar to custom field serializers, custom field validators are
implemented as decorators, with the @field_validator

decorator.

Field validators are class methods, so they must receive the
entire class as the first argument, not the instance, while the
second value is the name of the field to be validated (or a list of
fields, or the * symbol for all fields).

Field validators should return either the parsed value or a
ValueError response (or AssertionError) in case the data

passed to the validator doesn’t conform to the validation rules.
As with other Pydantic features, it is much easier to start with
an example. Create a new file called chapter3_14.py and

insert the following code:

from pydantic import

BaseModel, field_validator

class Article(BaseModel):

 id: int

 title: str

 content: str

 published: bool

 @field_validator("title")

 @classmethod

 def check_title(cls, v: str) -> str:

 if "FARM stack" not in v:

 raise ValueError('Title must

contain "FARM stack"')

 return v.title()

The validator is run before the class instantiation and accepts
the class and the name of the validated field as arguments. The
check_title validator checks that the title contains the string

"FARM stack" and if it doesn’t, it throws ValueError.

Additionally, the validator returns the string in title case, so we
can perform data transformation as well, at the field level.

While field validators provide great flexibility, they do not
consider field interactions and the combinations of field values.
That is where model validators come into play, as the next
section will outline.

Model validators

Another useful feature when performing validation of web-
related data is model validation—the possibility to write
validation functions at the model level, allowing for complex
interactions between various fields.

The model validators can run before or after instantiating the
model class. Again, we will take a look at a rather simple
example:

1. First, create a new file and name it chapter3_15.py.

2. Suppose you have a user model with the following
structure:

from pydantic import BaseModel, EmailStr,

ValidationError, model_validator

from typing import Any, Self

class UserModelV(BaseModel):

 id: int

 username: str

 email: EmailStr

 password1: str

 password2: str

The model is simple like the previous ones, and it contains
two password fields that are required to match to enable
the registration of a new user. Additionally, you want to
impose another validation—the data that comes into the
model via deserialization must not contain private data
(such as a social security number or card number). Model
validators allow you to perform flexible validations such as
this.

3. Continuing the previous model, you can write the following
model validators under the class definition:

@model_validator(mode='after')

def check_passwords_match(self) -> Self:

 pw1 = self.password1

 pw2 = self.password2

 if pw1 is not None and pw2 is not None

and pw1 != pw2:

 raise ValueError('passwords do not

match')

 return self

@model_validator(mode='before')

@classmethod

def check_private_data(cls, data: Any) ->

Any:

 if isinstance(data, dict):

 assert (

 'private_data' not in data

), 'Private data should not be

included'

 return data

4. Now, try to validate of the following data:

usr_data = {

 "id": 1,

 "username": "freethrow",

 "email": "email@gmail.com",

 "password1": "password123",

 "password2": "password456",

 "private_data": "some private data",

}

try:

 user =

UserModelV.model_validate(usr_data)

 print(user)

except ValidationError as e:

 print(e)

You will be informed of just one error—the one related to
the before mode, stating that private data should not be

included.
5. If you comment out or delete the line that sets the
private_data field and re-run the example, the error

becomes the following:

Value error, passwords do not match

[type=value_error, input_value={'id': 1,

'username': 'fr...ssword2':

'password456'}, input_type=dict]

There are a couple of new concepts involved in the previous
example; you are using the Self Python type, introduced for

denoting instances of the wrapping class, so you practically
expect the output to be an instance of the UserModelV class.

Another new concept is present in the check_private_data

function as it checks whether the data passed to the class is an
instance of a dictionary, and then proceeds to verify whether
the undesired private_data field is present in the dictionary—

this is just Pydantic’s way of checking for the data passed as it is
stored inside a dictionary.

The next section will detail how to compose nested models with
Pydantic to validate models of increasing complexity.

Nested models

The treatment of nested models in Pydantic through
composition is very straightforward and intuitive if you are
coming from a basic MongoDB background. To understand how
to implement nested models, the easiest way is to start from an
existing data structure that needs to be validated and run
through Pydantic:

1. Begin with the structure of a JSON document that returns
car brands and makes (or models). Create a new file named
chapter3_16.py and add the following lines of code:

car_data = {

 "brand": "Ford",

 "models": [

 {"model": "Mustang", "year":

1964},

 {"model": "Focus", "year": 1975},

 {"model": "Explorer", "year":

1999},

],

 "country": "USA",

}

You can start from the inside of the data structure and
begin identifying the smallest units or the most deeply
nested structures—in this case, the smallest unit is the car
model (a Ford Mustang from 1964).

2. This can be the first Pydantic model:

class CarModel(BaseModel):

 model: str

 year: int

3. Once this first abstraction is made, it is easy to create a
model for the brand:

class CarBrand(BaseModel):

 brand: str

 models: List[CarModel]

 country: str

The car brand model has distinct names and countries of origin
and contains a list of models.

Model fields can be other models (or lists or sets or other
sequences thereof) and this feature makes mapping Pydantic
data structures to data, and especially MongoDB documents, a
very pleasant and intuitive process.

While MongoDB can support up to 100 levels of nesting, you
will probably not hit that limit in your data modeling process.
However, it’s worth noting that Pydantic will support you as you
delve deeper and deeper into your data structures. Embedding
data also becomes much more manageable from the Python
side, as you can rest assured that data coming into your
collections is stored as intended.

The next and final section will detail another useful tool that
Pydantic offers—a little help with managing environment
variables and settings, a problem that you face in every web-
related project.

Pydantic Settings

Pydantic Settings is an external package that needs to be
installed separately. It provides Pydantic features for loading a
settings or config class from environment variables or secret
files.

That is basically the definition from the Pydantic website
(https://docs.pydantic.dev/latest/concepts/pydantic_settings/),
and the whole concept revolves around the BaseSettings

class.

A model that inherits from this class attempts to read the values
of any fields passed as keyword arguments by scanning the
environment.

This simple functionality allows you to define clear and
straightforward configuration classes from environment
variables. Pydantic settings can also automatically pick up

https://docs.pydantic.dev/latest/concepts/pydantic_settings/

environment modifications and, when needed, manually
override settings for testing, development, or production.

In the following exercise, you will create a simple
pydantic_settings setup that will allow you to read

environment variables and easily override them in case the
necessity arises:

1. Install Pydantic settings with pip:

pip install pydantic-settings

2. Create a .env file at the same level as your project files:

API_URL=https://api.com/v2

SECRET_KEY=s3cretstr1n6

3. Now you can set up a simple Settings configuration (the

chapter3_17.py file):

from pydantic import Field

from pydantic_settings import BaseSettings

class Settings(BaseSettings):

 api_url: str = Field(default="")

 secret_key: str = Field(default="")

 class Config:

 env_file = ".env"

print(Settings().model_dump())

4. If you run this code, both the Python and the .env file are

on the same path, so you will see that Pydantic was able to
read the environment variables from the .env file:

{'api_url': 'https://api.com/v2',

'secret_key': 's3cretstr1n6'}

However, if you set an environment variable, it will take
precedence over the .env file.

5. You can test it by adding this line before the Settings()

call and observing the output of the program:

os.environ["API_URL"] =

'http://localhost:8000'

Pydantic Settings makes managing configurations such as your
Atlas and MongoDB URLs, secrets for hashing passwords, and
other configurations much more structured and organized.

Summary

This chapter detailed aspects of Python that are either new and
still evolving, or often simply overlooked, such as type hinting,
and the implications that their use can have on your projects.

FastAPI is based on Pydantic and type hinting. Working with
these solid principles and conventions will make your code
more robust, maintainable, and future-proof even when
working with other frameworks. You have a solid Python types
foundation and have learned the basic functionalities provided
by Pydantic—validation, serialization, and deserialization.

You have learned how to deserialize, serialize, and validate data
through Pydantic, and even add some transformations during
the process, creating structures of increased complexity.

This chapter has equipped you to learn more web-specific
aspects of FastAPI and to blend data seamlessly between
MongoDB, Python data structures, and JSON.

The next chapter will explore FastAPI and its Pythonic
foundations.

4

Getting Started with FastAPI

The application programming interface (API) is the
cornerstone of your FARM stack, functioning as the brain of the
system. It implements business logic that dictates how the data
flows in and out of the system, but more importantly, how it
relates to the business requirements inside your system.

Frameworks such as FastAPI are much easier to showcase
through examples. In this chapter, you’ll explore some simple
endpoints that make up for a minimal, self-contained REST API.
These examples will help you understand how FastAPI handles
requests and responses.

This chapter focuses on introducing the framework, along with
the standard REST API practices and how they are implemented
in FastAPI. You’ll learn how to send requests and modify them
according to your needs, and how to retrieve all the data from
HTTP requests, including parameters and request bodies. You’ll
also understand how to handle responses and how you can use
FastAPI to easily set cookies, headers, and other standard web-
related topics.

This chapter will cover the following topics:

An overview of the FastAPI framework
Setup and requirements for a simple FastAPI app
Python features in FastAPI, such as type hinting,
annotations, and async/await syntax

How FastAPI handles typical REST API tasks
Working with form data
Anatomy of a FastAPI project and routers

Technical requirements

For this chapter, you will need the following:

Python setup
Virtual environments
Code editor and plugins
REST client

The following sections cover these requirements in more detail.

Python setup

If you do not have Python installed, visit the Python download
site (https://www.python.org/downloads/) to get the installer for

https://www.python.org/downloads/

your OS. In this book, you will be using version 3.11.7 or later.

FastAPI relies heavily on Python hints and annotations, and
Python versions after 3.6 treat type hints in a similar, modern
way; so, while theoretically any version later than 3.6 should
work, the code in this book uses Python version 3.11.7, for
compatibility reasons.

Ensure that your Python installation is upgraded to one of the
latest Python versions—as stated, at least version 3.11.7—and is
reachable and the default version. You can check this by:

Typing python in your terminal of choice.

Using pyenv, a handy tool that manages multiple Python
versions on the same machine.

Virtual environments

If you have ever worked with a Python project before, chances
are you needed to include some, if not dozens, Python third-
party packages. After all, one of Python’s main strengths lies in
its vast ecosystem, which is one of the primary reasons it's
chosen for the FARM stack.

Without getting into the detailed specifics of how Python
manages third-party package installations, let’s just go over the

main problems that can arise should you decide to use only one
Python installation for all of your projects, or even worse,
should that installation be the default operating system Python
installation.

Following are a few challenges:

Operating systems often lag in terms of Python versions, so
the latest couple of versions likely won’t be available.
Packages will get installed into the same namespace or in
the same packages folder, creating havoc in any application
or package that depends on that package.
Python packages depend on other packages and those
packages also have versions. Let’s suppose that you are
using package A, which depends on packages B and C, and
for some reason, you need to keep package B to a specific
version (i.e., 1.2.3). You might need package B for a totally
different project and that project might require a different
version.
Reduced or impossible reproducibility: without a separate
Python virtual environment, it would prove very difficult to
quickly replicate the desired functionality with all the
required packages.

Python virtual environments are the solution to the
aforementioned problems as they allow you to work in a
pristine Python development with only the packages and
package versions that you need. In our case, the virtual
environment will certainly include the core packages: FastAPI
and Uvicorn. FastAPI, on the other hand, depends on Starlette,
Pydantic, and so on, so it is really important to have the
package versions under control.

The best practice for Python development states that each
project, no matter how big or small, should have its own virtual
environment. While there are several ways of creating a virtual
environment, which is a separated and isolated Python
environment, you will use virtualenv.

The basic syntax for creating new virtual environments with
virtualenv is given in the following command. Once you are

in the project folder, name your folder FARM or chapter4, open

a terminal, and enter the following command:

python – m venv venv

This command will create a new virtual environment for your
project, a copy of the Python interpreter (or if you are using

macOS, a brand new Python interpreter) and the necessary
folder structure, a couple of commands necessary for activating
and deactivating the environment, as well as a copy of the pip

installer (pip installs packages).

In order to activate your new virtual environment, you will
choose one of the following commands, depending on your
operating system. For Windows systems, type the following in
the shell:

venv/Scripts/activate

On Linux or macOS systems, use the following command:

source venv/bin/activate

In both cases, your shell should now be prepended with the
name that you have given to your environment. In the
command to create a new virtual environment, the final
parameter is the name of the environment, so it was venv in

this case.

Some considerations when working with virtual environments
are as follows:

There are different schools of thought when it comes to
virtual environment placement. For now, it will suffice if
you keep them inside your project folder like you did.
Similar to the activate command, there is also a

deactivate command to exit your virtual environment.

Saving the exact package versions in a requirements.txt

file and pinning the dependencies is not only useful but
also often mandatory when deploying.

There are many alternatives to virtualenv in the Python

community, as well as many complementary packages. Poetry is
a tool that manages virtual environments and dependencies
simultaneously, virtualenvwrapper is a set of utilities that

further simplify the process of environment management.
pyenv is a bit more complex—it manages Python versions and

allows you to have different virtual environments based on
different Python versions.

Code editors

While there are many great code editors and integrated
development environments (IDEs) for Python, a common

choice is Visual Studio Code (VS Code) from Microsoft.
Released in 2015, it’s cross-platform, providing a lot of
integrated tools, such as an integrated terminal for running
your development server. It’s lightweight and offers hundreds
of plugins for virtually any programming task you may have.
Since you’ll be working with JavaScript, Python, React, and CSS
for styling, along with running command-line processes, using
VS Code is the easiest option.

There’s also an excellent MongoDB plugin named MongoDB for
VS Code, that allows you to connect to a MongoDB or Atlas
cluster, navigate through databases and collections, get a quick
overview of the schema and indexes, and view documents in
collections. This proves very handy in a full stack scenario
when you find yourself dealing with backend code in Python,
frontend code in JavaScript and React or Next.js, running shells,
and needing to quickly view the state of the MongoDB database.
The extension is available here:
https://marketplace.visualstudio.com/items?
itemName=mongodb.mongodb-vscode. You can install it from
the Extensions tab in Visual Studio Code as well, just by
searching for MongoDB.

Terminal

https://marketplace.visualstudio.com/items?itemName=mongodb.mongodb-vscode
https://marketplace.visualstudio.com/items?itemName=mongodb.mongodb-vscode

Besides Python and Git, you’ll need a shell program. Linux and
Mac users usually have one pre-installed. For Windows, you can
use Windows PowerShell or a console emulator such as Cmder
(https://cmder.app), which offers additional features.

REST clients

To effectively test your REST API, you’ll need a REST client.
While Postman (https://www.postman.) is robust and
customizable, there are other viable alternatives. Insomnia ()
and the REST GUI offer a simpler interface, while HTTPie (), a
command-line REST API client, allows quick testing without
leaving the shell. It offers features such as an expressive syntax,
handling of forms and uploads, and sessions.

HTTPie is probably the easiest REST client to install, as it can be
done using pip or some other package manager, such as

Chocolatey, apt (for Linux), or Homebrew.

The easiest way to install HTTPie is to activate your virtual
environment and use pip, as shown in the following command:

pip install httpie

https://cmder.app/
https://www.postman.com/

Once it’s been installed, you can test HTTPie with the following
command:

(venv) http GET

"http://jsonplaceholder.typicode.com/todos/1"

The output should begin with an HTTP/1.1 200 OK response.

venv signifies that the virtual environment is active. HTTPie

simplifies issuing HTTP requests by simply adding POST for

POST requests, payloads, form values, and so on.

Installing the necessary packages

After setting up the virtual environment, you should activate it
and install the Python libraries required for your first simple
application: FastAPI and Uvicorn.

For FastAPI to run, it needs a server. In this case, a server is a
software designed to serve web applications (or REST APIs).
FastAPI relies on the asynchronous server gateway interface
(ASGI), which enables async non-blocking applications, which
is something you can completely use with your FastAPI

capabilities. You can read more about ASGI in the following
documentation: https://asgi.readthedocs.io/.

At present, the FastAPI documentation lists three compatible
Python ASGI-compatible servers: Uvicorn, Hypercorn, and
Daphne. This book will focus on Uvicorn, the most widely used
and recommended option for working with FastAPI. Uvicorn
offers high performance, and if you get stuck, there’s extensive
documentation available online.

To install the first two dependencies, ensure you’re in your
working directory with the desired virtual environment
activated, then execute the following:

pip install fastapi uvicorn

Now, you have a Python coding environment that contains a
shell, one or two REST clients, a great editor, and a great REST
framework. If you’ve previously developed a Django or Flask
application, this should all be familiar ground.

Finally, choose a folder or clone this book’s GitHub repository
and activate a virtual environment. It is customary to create the
environment in a folder named venv within the working

https://asgi.readthedocs.io/

directory, but feel free to structure your directories and code as
you prefer.

Later, this chapter will briefly discuss some options for
structuring your FastAPI code. For now, ensure you’re in a
folder with your newly created virtual environment activated.

FastAPI in a nutshell

In Chapter 1, Web Development and the FARM Stack, it was
mentioned why FastAPI is the preferred REST framework in the
FARM stack. What sets FastAPI apart is its coding speed and the
resulting clean code, with which you can spot bugs quickly and
early. The author of the framework himself, Sebastian Ramirez,
often modestly emphasizes that FastAPI is just a mix of Starlette
and Pydantic, while heavily relying on modern Python features,
especially type hinting.

Before diving into an example and building a FastAPI app, it is
useful to quickly go over the frameworks that FastAPI is based
on.

Starlette

Starlette is an ASGI framework known for its top performance
and numerous features, which are also available in FastAPI.
These include WebSocket support, events on startup and
shutdown, session and cookie support, background tasks,
middleware implementations, and templates. While you will
not be coding directly in Starlette, it is important to know how
FastAPI works under the hood and what its origins are.

If you’re interested in knowing its functionalities, visit
Starlette’s excellent documentation (https://www.starlette.io/).

Asynchronous programming

You will likely have learned about the asynchronous
programming paradigm when developing apps with Node.js. It
involves running slow operations, such as network calls and file
reading, allowing the system to respond to other requests
without blocking. This is achieved by using an event loop, an
asynchronous task manager that enables it to move requests to
the next one, even though the previous one hasn’t finished and
yielded a response.

Python added support for asynchronous I/O programming in
version 3.4 and the async/await keywords in version 3.6. ASGI

emerged shortly afterward in the Python world, outlining how

applications should be structured and called, and defining the
events that can be sent and received. FastAPI relies on ASGI and
returns an ASGI-compatible app.

In this book, all the endpoint functions are prefixed with the
async keyword, even before they become necessary, since you

will be using the asynchronous Motor Python MongoDB driver.

NOTE

If you are developing a simple application not expecting high
stress, you can use simple synchronous code and the official
PyMongo driver.

Functions with the async keyword are coroutines; they run on

the event loop. While simple examples in this chapter may
work without async, the real power of asynchronous

programming in FastAPI will be visible when you connect to
your MongoDB server through an async driver, such as Motor

(https://motor.readthedocs.io/en/stable/).

Standard REST API operations

This section will discuss some common terminologies in API
development. Usually, communication occurs via the HTTP
protocol, through HTTP requests and responses. You’ll explore

how FastAPI handles these aspects and leverages additional
libraries such as Pydantic and type hints to improve efficiency.
In the examples, you’ll be using Uvicorn as the server.

The basis of any REST API communication is a system of URLs
and paths. The URL for your local web development server will
be http://localhost:8000 since 8000 is the default port that

Uvicorn uses. The path part (optional) of an endpoint could be
/cars, while http is the scheme. You will see how FastAPI

handles paths, query strings, and the request and response
bodies, the significance of defining endpoint functions in a
certain order, and how to extract variables from dynamic path
segments effectively.

In every path or address, the URL and the path combined,
there’s a set of approved actions that can be performed on it—
HTTP verbs. For example, a page or URL might list all the cars
on sale, but you cannot issue a POST request since this is not

allowed.

In FastAPI, these verbs are implemented as Python decorators.
To put it better, they are exposed as decorators, and they are
implemented only if you, the developer, implement them.

FastAPI encourages the proper and semantic use of HTTP verbs
for data resource operations. For example, you should always
use POST (or the @post decorator) when creating new

resources, GET for reading data (individual or lists of items),

PATCH for updating, and so on.

HTTP messages consist of a request/status line, headers, and,
optionally, body data. FastAPI offers tools to easily create and
modify headers, set response codes, and manipulate request
and response bodies in a clean and intuitive way.

This section describes the programming concepts and specific
Python features that underpin FastAPI’s performance and
enable maintainable code. In the next section, you’ll learn
about standard REST API operations and see how they’re
achieved with FastAPI.

How does FastAPI speak REST?

Observing even a minimal FastAPI application, the classic Hello
World example, you can start examining how FastAPI
structures endpoints. In this context, an endpoint specifies the
following details:

A unique combination of a URL: This will be the same in
your development server—localhost:8000.

A path: The part after the slash.
An HTTP method.

In a new folder named Chapter4, for example, create a new

Python file named chapter4_01.py by using Visual Studio

Code:

from fastapi import FastAPI

app = FastAPI()

@app.get("/")

async def root():

 return {"message": "Hello FastAPI"}

With this code, you can accomplish several things. Here’s a
breakdown of what each part does:

In the first line of chapter4_01.py, you imported the

FastAPI class from the fastapi package.

Next, you instantiated an application object. This is just a
Python class with all the API functionalities that exposes an
ASGI-compatible application, which must be passed to
Uvicorn.

Now, the application is ready and instantiated. But without
endpoints, it can’t do or say much. It has one endpoint, the root,
which you can view at http://127.0.0.1:8000/. FastAPI

exposes decorators for HTTP methods to tell the application
how and whether to respond. However, you must implement
them.

After that, you used the @get decorator, which corresponds to

the GET method, and passed a URL—in this case, the root path,

/, is used.

The decorated function, named root, is responsible for

responding to requests. It accepts any arguments (in this case,
there aren’t any). The value returned by the function, typically
a Python dictionary, will be transformed into a JavaScript
Object Notation (JSON) response by the ASGI server and
returned as an HTTP response. This may seem obvious, but it is
useful to break things down to understand the fundamentals.

The preceding code defines a fully functional application with a
single endpoint. To test it, you need a Uvicorn server. Now, you
must run the live server with Uvicorn in your command line:

uvicorn chapter4_01:app --reload

You will use this code snippet quite often when developing with
FastAPI, so the following note will break it down.

NOTE

Uvicorn is your ASGI-compatible web server. You can call it
directly by passing it the combination of the executable Python
file (without the extension) and the instantiated app (the FastAPI
instance), separated by a colon (:). The --reload flag instructs

Uvicorn to reload the server each time you save your code,
similar to Nodemon in Node.js. Unless specified otherwise, you
can run all the examples in this book containing FastAPI apps
using this syntax.

Here’s the output when testing your only endpoint with HTTPie.
Remember, when you omit the keyword for the method, it
defaults to a GET request:

(venv) http http://localhost:8000/

HTTP/1.1 200 OK

content-length: 27

content-type: application/json date: Fri, 01

Apr 2022 17:35:48 GMT

server: uvicorn

{

 "message": "Hello FastAPI"

}

HTTPie informs you that your simple endpoint is running. You
will get a 200 OK status code, the content-type is correctly set

to application/json, and the response is a JSON object

containing the desired message.

Every REST API guide begins with similar hello world examples,
but with FastAPI, this is particularly useful. With a couple of
lines of code, you can see the anatomy of a simple endpoint.
This endpoint only covers the GET method directed toward the

root URL (/). So, if you try to test this app with a POST request,

you should get a 405 Method Not Allowed error (or any

method other than GET).

If you want to create an endpoint that responds with the same
message but for POST requests, you will just have to change the

decorator. Add the following code to the end of your file
(chapter4_01.py):

@app.post("/")

async def post_root():

 return {"message": "Post request

success!"}

HTTPie will respond accordingly in the terminal:

(venv) http POST http://localhost:8000

HTTP/1.1 200 OK

content-length: 35

content-type: application/json date: Sat, 26

Mar 2022 12:49:25 GMT

server: uvicorn

{

 "message": "Post request success!"

}

Now that you’ve created a couple of endpoints, head over to
http://localhost:8000/docs and see what FastAPI has

generated for you.

Automatic documentation

When developing REST APIs, you will find yourself needing to
constantly perform API calls—GET and POST requests—analyze

the responses, set payloads and headers, and so on. Choosing a
viable REST client is largely a matter of preference and is

something that should be carefully considered. While there are
numerous clients on the market— ranging from full-blown API
IDEs such as Postman (https://www.postman.com/) to the
slightly more lightweight Insomnia (https://insomnia.rest/) or
Visual Studio Code’s REST Client
(https://marketplace.visualstudio.com/items?
itemName=humao.rest-client)—this book mostly uses the very
simple command-line based HTTPie client, which exposes a
minimalistic command-line interface.

This, however, is the right moment to introduce another of
FastAPI’s most beloved features—interactive documentation—a
tool that facilitates the development process of REST APIs in
FastAPI.

With each endpoint or router that you develop, FastAPI creates
automatically generated documentation. It is interactive,
allowing you to test your API as you develop it. FastAPI lists all
the endpoints you define and provides information about
expected inputs and responses. The documentation is based on
the OpenAPI specification and relies heavily on Python hints
and the Pydantic library. It allows setting the JSON or form data
to be sent to the endpoints, displays responses or errors, is
tightly coupled with Pydantic, and is able to handle simple
authorization procedures such as the bearer token flow that

https://www.postman.com/
https://insomnia.rest/
https://marketplace.visualstudio.com/items?itemName=humao.rest-client
https://marketplace.visualstudio.com/items?itemName=humao.rest-client

will be implemented in Chapter 6, Authentication and
Authorization. Rather than having to use a REST client, you can
just open the documentation, select the desired endpoint to be
tested, input the test data conveniently into a standard web
page, and hit the Submit button!

In this section, you created a minimal, yet fully functional API
with a single endpoint, giving you insights into the syntax and
structure of an app. In the next section, you will learn about the
basic elements of a REST API request-response cycle and how
you can control every single aspect of the process. Standard
REST clients provide a more transferable experience and enable
you to compare different APIs, even those that aren’t Python-
based.

Building a showcase API

REST APIs revolve around HTTP requests and responses, which
power the web and are implemented in every web framework
using the HTTP protocol. To showcase the capabilities of
FastAPI, you will now create simple endpoints that focus on
specific parts of code that achieve the desired functionalities.
Rather than the usual CRUD operations, the next sections will

focus on the process of retrieving and setting request and
response elements.

Retrieving path and query
parameters

The first endpoint will be for retrieving a fictional car by its
unique ID.

1. Create a file called chapter4_02.py and insert the

following code:

from fastapi import FastAPI

app = FastAPI()

@app.get("/car/{id}")

async def root(id):

 return {"car_id": id}

The third line of the code snippet defines a dynamic path
defined with car/:id, while {id} is a standard Python

string-formatted dynamic parameter in the sense that it can
be anything—a string or a number since you haven’t used
any hinting.

2. Try it out and test the endpoint with an ID equal to 1:

(venv) http "http://localhost:8000/car/1"

HTTP/1.1 200 OK

content-length: 14

content-type: application/json date: Mon,

28 Mar 2022 20:31:58 GMT

server: uvicorn

{

 "car_id": "1"

}

3. You got your JSON response back, but here, 1 in the

response is a string (hint: quotes). You can try this same
route with an ID equal to a string:

(venv) http

http://localhost:8000/car/billy HTTP/1.1

200 OK

{

 "car_id": "billy"

}

FastAPI returns your string, which was provided as part of
the dynamic parameter. However, Python’s newer features,
such as type hinting, come into play.

4. Returning to your FastAPI route (or endpoint) to make the
car ID become an integer, it is enough to hint at the type of

the variable parameter. The endpoint will look like this:

@app.get("/carh/{id}")

async def hinted_car_id(id: int):

 return {"car_id": id}

You have given it a new path: /carh/{id} (the h after car

means hint). Apart from the function’s name (hinted_car_id),

the only difference is in the argument: the semicolon followed
by int means that you can expect an integer, but FastAPI takes

this very seriously and you can already see how the framework
puts the hinting system to good use.

If you take a look at the interactive documentation at
http://localhost:8000/docs and try to insert a string in the

id field for the /carh/ endpoint, you will get an error.

Now, try it out in your REST client and test the /carh/ route by

passing it a string. First, FastAPI sets the status code for you
correctly—that is, 422 Unprocessable Entity—and in the

body of the response, it pointed out what the problem was—the
value is not a valid integer. It also informs you of the exact
location where the error occurred: in the id path.

This is a trivial example but imagine that you are sending a
complex request with a complicated path, several query strings,
and maybe additional information in the header. Using type
hinting quickly solves these problems.

If you try to access the endpoint without specifying any ID, you
will get yet another error:

(venv) http http://localhost:8000/carh/

HTTP/1.1 404 Not Found

{

 "detail": "Not Found"

}

FastAPI has, again, correctly set the status code, giving you a
404 Not Found error, and repeated this message in the body.

The endpoint you hit does not exist; you must specify a value
after the slash.

Situations may arise where you have similar paths: both
dynamic and static. A typical case is an application that has
numerous users. Directing the API at the URL defined by
/users/id would give you some information about the user

with the selected ID, while /users/me would typically be an

endpoint that displays your information and allows you to
modify it, in some way.

In these situations, it is important to remember that, like in
other web frameworks, order matters. Because of said order of
path handler declarations, the following piece of code will not
yield the desired results as the application will try to match the
/me route with the first endpoint that it encounters—the one

that requires an ID—and since the /me part is not a valid ID,

you will get an error.

Create a new file called chapter4_03.py and paste the

following code:

from fastapi import FastAPI

app = FastAPI()

@app.get("/user/{id}")

async def user(id: int):

 return {"User_id": id}
@app.get("/user/me")

async def me_user():

 return {"User_id": "This is me!"}

When you run the application and test the /user/me endpoint,

you will get a 422 Unprocessable Entity error, like

mailto:id%7d@app.get(%22/user/me%22)

previously. This is quite logical once you remember that order
matters—FastAPI finds the first matching URL, checks the types,
and throws an error. If the first match is the one with the fixed
path, everything works as intended. Just change the order of the
two routes and everything will work as expected.

Another powerful feature of the path treatment of FastAPI is
how it limits the path to a specific set of values and a path
function, imported from FastAPI, which enables you to perform
additional validation on the path.

Suppose you want to have a URL path that accepts two values
and allows the following:

account_type: This can be free or pro.

months: This must be an integer between 3 and 12.

FastAPI solves this by letting you create a class based on Enum

for the account type. This class defines all the possible values
for the account variable. In this case, there are just two—free

and pro. Create a new file and name it chapter4_04.py and

edit it:

from enum import Enum

from fastapi import FastAPI, Path

app = FastAPI()

class AccountType(str, Enum):

 FREE = "free"

 PRO = "pro"

Finally, in the actual endpoint, you can combine this class with
the utilities from the Path function (do not forget to import it

along with FastAPI from fastapi). Paste the following code at

the end of the file:

@app.get("/account/{acc_type}/{months}")

async def account(acc_type: AccountType,

months: int = Path(..., ge=3, le=12)):

 return {"message": "Account created",

"account_type": acc_type, "months": months}

In the preceding code, FastAPI sets the type of the acc_type

part of the path to your previously defined class and ensures
that only the free or pro value can be passed. The months

variable, however, is handled by the Path utility function.

When you try to hit this endpoint, account_type will show

that there are only two values available, while the actual value
of the enumeration can be accessed through the .value syntax.

FastAPI allows you to declare path parameters using standard
Python types. If no type is declared, FastAPI will assume that
you’re working with strings.

For more details on these topics, you can visit the excellent
documentation site and see what other options are available
(https://fastapi.tiangolo.com/tutorial/path-params/). In this case,
the Path function received three parameters. The three dots

mean that the value is required and that no default value has
been provided, ge=3 means that the value can be greater than

or equal to 3, while le=12 means that it can be smaller than or

equal to 12. This syntax allows you to define validation right

inside the path functions quickly.

Query parameters

Now that you’ve learned how to validate, restrict, and properly
order your path parameters and endpoints, it’s time to look at
query parameters. These parameters are a simple mechanism
of passing data to a server through the URL and they are
represented as key-value pairs, separated by an equals sign (=).
You can have multiple pairs of keys and values separated by an
ampersand (&).

Query parameters are added at the end of the URL by using the
question mark/equals notation: ?min_

price=2000&max_price=4000.

The question mark, ?, is a separator that tells you where the

query string begins, while the ampersand, &, allows you to add

more than one (the equals sign, =) assignment.

Query parameters are usually used to apply filters, sort, order,
or limit query sets, paginate a long list of results, and similar
tasks. FastAPI treats them very similarly to path parameters as
it automatically picks them up and makes them available for
processing in your endpoint functions.

1. Create a simple endpoint that accepts two query
parameters for the minimum and maximum prices of the
car, and name it chapter4_05.py:

from fastapi import FastAPI

app = FastAPI()

@app.get("/cars/price")

async def cars_by_price(min_price: int =

0, max_price: int = 100000):

 return {"Message": f"Listing cars with

prices between {min_price} and

{max_price}"}

2. Test this endpoint with HTTPie:

(venv) http

"http://localhost:8000/cars/price?

min_price=2000&max_price=4000"

HTTP/1.1 200 OK

content-length: 60

content-type: application/json date: Mon,

28 Mar 2022 21:20:24 GMT

server: uvicorn

{

"Message": "Listing cars with prices

between 2000 and 4000"

}

In this solution, you can’t ensure the basic condition that the
minimum price should be lower than the maximum price. This
is handled by the object-level validation of Pydantic.

FastAPI picks your query parameters and performs the same
parsing and validation checks it did previously. It provides the
Query function, like the Path function. You can use the greater

than, less than, or equal conditions, as well as set default values.

They can also be set to default to None. Query parameters will

be converted into Boolean values as needed. You can write
rather complex combinations of path and query parameters, as
FastAPI can distinguish between them and handle them inside
the function.

With that, you’ve seen how FastAPI enables working with data
that is passed through the path and query parameters, as well
as the tools it uses under the hood to perform parsing and
validation as soon as possible. Now, you will examine the main
data vehicle of REST APIs: the request body.

The request body—the bulk of the data

REST APIs enable two-way communication between a client—a
web browser or a mobile application and an API server. The
bulk of this data is carried over in the request and response
body. A request body has data sent from the client to your API,
while the response body is data sent from the API server to the
client(s).

This data can be encoded in various ways, but many users
prefer to encode data with JSON since it is exceptionally nice
with our database solution of choice, MongoDB—which
operates with BSON, a close relative to JSON.

When modifying data on the server, you should always use:

POST requests: To create new resources

PUT and PATCH: To update resources

DELETE: To delete resources

Since the body of a request will contain raw data—in this case,
MongoDB documents or arrays of documents—you can use
Pydantic models. But first, see how the mechanism works,
without any validation or modeling. In HTTP terminology, the
GET method should be idempotent, meaning it should always

return the same value for the same set of parameters.

In the following code for a hypothetical endpoint used to insert
new cars in your future database, you can pass the generic
request body as the data. It can be a dictionary without entering
into the specifics of how that dictionary should be shaped.
Create a new file called chapter4_06.py and paste the

following code:

from typing import Dict

from fastapi import FastAPI, Body

app = FastAPI()

@app.post("/cars")

async def new_car(data: Dict = Body(...)):

 print(data)

 return {"message": data}

Intuitively, the Body function is similar to the previously

introduced Path and Query functions. Yet the difference is,

when working with the request body, this function is
mandatory.

The three dots indicate that the body is required (you must send
something), but this is the only requirement. Try to insert a car
(a Fiat 500, made in 2015):

(venv) http POST "http://localhost:8000/cars"

brand="FIAT" model="500" year=2015

HTTP/1.1 200 OK

content-length: 56

content-type: application/json date: Mon, 28

Mar 2022 21:27:31 GMT

server: uvicorn

{

 "message": {

 "brand": "FIAT",

 "model": "500",

 "year": "2015"

}

FastAPI does the heavy lifting. You can retrieve all the data
passed to the request body and make it available to your
function for further processing – database insertion, optional
preprocessing, and so on.

On the other hand, you could have passed any key-value pairs
to the body. Of course, this is just an illustration of the general
mechanism—in reality, Pydantic will be your data guardian,
ensuring you only let the right data in.

While all went well, FastAPI sends you a 200 response status

again, even though a 201 Resource Created error is more

appropriate and exact. You could, for instance, have some
document inserted into MongoDB at the end of the function and
a 201 CREATED status message would be appropriate. You will

see how easy it is to modify the response body as well, but for
now, you will be able to see why Pydantic shines when it comes
to request bodies.

To create new car entries, you would only need the brand,

model, and production year fields.

So, create a simple Pydantic model with the desired types in the
chapter4_07.py file:

from fastapi import FastAPI, Body

from pydantic import BaseModel

class InsertCar(BaseModel):

 brand: str

 model: str

 year: int

app = FastAPI()

@app.post("/cars")

async def new_car(data: InsertCar):

 print(data)

 return {"message": data}

By now, you know that the first two parameters are expected to
be strings, while the year must be an integer; all of them are
required.

Now, if you try to post the same data that you did previously but
with additional fields, you will only get these three fields back.
Also, these fields will go through Pydantic parsing and
validation and throw meaningful error messages if something
does not conform to the data specification.

This combination of Pydantic model validation and the Body

function provides all the necessary flexibility when working
with request data. This is because you can combine them and

pass different bits of information using the same request bus
ride.

If you want to pass a promo code attached to a user, along with
the new car data, you could try defining a Pydantic model for
the user and extracting the promo code with the Body function.

First, define a minimal user model in a new file and name it
chapter4_08.py:

class UserModel(BaseModel):

 username: str

 name: str

Now, create a more complex function that will process two
Pydantic models and an optional user promo code – set the
default value to None:

@app.post("/car/user")

async def new_car_model(car: InsertCar, user:

UserModel, code: int = Body(None)):

 return {"car": car, "user": user, "code":

code}

For this request, which contains a full-fledged JSON object with
two nested objects and some code, you might opt to use

Insomnia or a similar GUI client since it’s easier than typing
JSON in the command prompt or resorting to piping. While it is
largely a matter of preference, when developing and testing
REST APIs, it is useful to have a GUI tool such as Insomnia or
Postman and a command-line client (such as cURL or HTTPie).

The Body class constructor’s parameters are very similar to the

Path and Query constructors, and since they will often be much

more complex, it is useful to try and tame them with Pydantic.
Parsing, validation, and meaningful error messages – Pydantic
provides us with the whole package before allowing the request
body data to make it to the real data processing functionality.
The POST requests are almost exclusively fed an appropriate

Pydantic model as a parameter.

After playing around with the combination of request bodies
and Pydantic models, you have seen that you can control the
inflow of the data and be confident that the data that’s available
to your API endpoint will be what you want and expect it to be.
Sometimes, however, you may want to go to the bare metal, and
work with the raw request object. FastAPI covers that case too,
as is discussed in the next section.

The request object

FastAPI is built on the Starlette web framework. The raw
request object in FastAPI is Starlette’s request object and it can
be accessed in your functions once it’s been imported from
FastAPI directly. By using the request object directly, you are
missing out on FastAPI’s most important features: Pydantic’s
parsing and validation and self-documentation! However, there
might be situations in which you need to have the raw request.

Look at the following example in the chapter4_09.py file:

from fastapi import FastAPI, Request

app = FastAPI()

@app.get("/cars")

async def raw_request(request: Request):

 return {"message": request.base_url,

"all": dir(request)}

In the preceding code, you created a minimal FastAPI app,
imported the Request class, and used it in the endpoint. If you

test this endpoint with your REST client, you will only get the

base URL as the message, while the all part lists all the

methods and properties of the Request object so that you have

an idea of what is available.

All of these methods and properties are available for you to use
in your application.

With that, you’ve seen how FastAPI facilitates your work with
the main HTTP transport mechanisms—request bodies, query
strings, and paths. Next, you’ll explore equally important
aspects of any web framework solution—cookies, headers, form
data, and files.

Cookies and headers, form data, and files

Speaking of the ways the web framework ingests data, topics
such as handling form data, handling files, and manipulating
cookies and headers must be included. This section will provide
simple examples of how FastAPI handles these tasks.

Headers

Header parameters are handled in a similar way to query and
path parameters and, as you’ll see later, cookies. You can collect
them, so to speak, using the Header function. Headers are

essential in topics such as authentication and authorization as
they often carry JSON Web Tokens (JWTs), which are used for
identifying users and their permissions.

Try to read the user agent by using the Header function in a

new file called chapter4_10.py:

from typing import Annotated

from fastapi import FastAPI, Header

app = FastAPI()

@app.get("/headers")

async def read_headers(user_agent:

Annotated[str | None, Header()] = None):

 return {"User-Agent": user_agent}

Depending on the software you use to execute the test for the
endpoint, you’ll get different results. Here’s an example of using
HTTPie:

(venv) http GET

"http://localhost:8000/headers"

HTTP/1.1 200 OK

content-length: 29

content-type: application/json date: Sun, 27

Mar 2022 09:26:49 GMT

server: uvicorn

{

"User-Agent": "HTTPie/3.2.2"

}

You can extract all the headers in this way and FastAPI will
provide further assistance—it will convert names into
lowercase, convert the keys into snake case, and so on.

Cookies

Cookies work similarly, although they can be extracted
manually from the Cookies header. The framework offers a

utility function, conveniently named Cookie, that does all the

work in a way similar to Query, Path, and Header.

Forms (and files)

So far, you’ve only dealt with JSON data. It is the ubiquitous
language of the web and your main vehicle for moving data
back and forth. There are cases, however, that require a
different data encoding – forms might be processed directly by
your API, with data encoded as multipart/form-data or

form-urlencoded. Since the arrival of modern React Server

Actions, form data has become more popular in frontend
development too.

NOTE

Although you can have multiple Form parameters in a path
operation, you cannot declare the Body fields expected in JSON.

The HTTP request will have the body encoded using only
application/x-www-form-urlencoded instead of

application/json. This limitation is part of the HTTP protocol

and is not specific to FastAPI.

The simplest way to cover both form cases—with and without
including files for upload—is to start by installing python-

multipart, a streaming multipart parser for Python. For this,

you must stop your server and use pip to install it:

pip install python-multipart==0.0.9

The Form function works similarly to the previously examined

utility functions, but with the difference that it looks for form-
encoded parameters. For simple fields, data is usually encoded
using the media type (application/x-www-form-

urlencoded), while if files are included, the encoding

corresponds to mutlipart/form-data.

Look at a simple example in which you wish to upload an image
and a couple of form fields, such as the brand and the model.

You will use a photo that can be found on Pexels
(https://www.pexels.com/photo/white-), renamed to car.jpeg

and saved in the current directory.

Create a file named chapter4_11.py and paste the following

code:

from fastapi import FastAPI, Form, File,

UploadFile

app = FastAPI()

@app.post("/upload")

async def upload(

 file: UploadFile = File(...), brand: str

= Form(...), model: str = Form(...)

):

 return {"brand": brand, "model": model,

"file_name": file.filename}

The preceding code handles the form parameters via the Form

function and the uploaded file by using the UploadFile utility

class.

The photo, however, isn’t saved on the disk—its presence is
merely acknowledged, and the filename is returned. Testing
this endpoint, that has a file upload, in HTTPie looks like this:

https://www.pexels.com/photo/white-vintage-car-parked-on-green-grass-8746027/

http -f POST

localhost:8000/upload brand='Ferrari'

model='Testarossa' file@car.jpeg

The preceding HTTPie call returns the following output:

HTTP/1.1 200 OK

content-length: 63

content-type: application/json

date: Fri, 22 Mar 2024 11:01:38 GMT

server: uvicorn

{

 "brand": "Ferrari",

 "file_name": "car.jpeg",

 "model": "Testarossa"

}

To save the image to a disk, you must copy the buffer to an
actual file on the disk. The following code achieves this
(chapter4_12.py):

import shutil

from fastapi import FastAPI, Form, File,

UploadFile

mailto:file@car.jpeg

app = FastAPI()

@app.post("/upload")

async def upload(

 picture: UploadFile = File(...),

 brand: str = Form(...),

 model: str = Form(...)

):

 with open("saved_file.png", "wb") as

buffer:

 shutil.copyfileobj(picture.file,

buffer)

 return {"brand": brand, "model": model,

"file_name": picture.filename}

The open block opens a file on the disk using a specified

filename and copies the FastAPI file that’s sent through the
form. You will have hardcoded the filename, so any new upload
will simply overwrite the existing file, but you could use some
randomly generated filename while using the universally
unique identifier (UUID) library, for example.

File uploading is an operation that can be achieved in different
ways—file uploads can be also handled by the Python async file

library known as aiofiles or as a background task, which is

another feature of FastAPI, as will be shown later in Chapter 5,
Setting Up a React Workflow.

FastAPI response customization

The previous sections discussed numerous examples of FastAPI
requests how you can reach every corner of the request—the
path, the query string, the request body, headers, and cookies—
and how to work with form-encoded requests.

Now, let’s take a closer look at FastAPI’s response objects. In all
previous cases, you returned a Python dictionary that was
serialized into JSON by FastAPI. The framework enables
customizations to the response.

The first thing you might want to change in an HTTP response is
the status code, for instance to provide some meaningful errors
when things do not go as planned. FastAPI conveniently raises
classic Python exceptions when HTTP errors are present. It also
uses standard-compliant meaningful response codes that
minimize the need to create custom payload messages. For
instance, you don’t want to send a 200 OK status code for

everything and then notify users of errors by using the payload
—FastAPI encourages good practices.

Setting status codes

HTTP status codes indicate whether an operation was
successful or there was an error. These codes also provide

information about the type of operation, and they can be
divided into several groups: informational, successful, client
errors, server errors, and so on. It isn’t necessary to memorize
the status codes, although you probably know what a 404 or

500 code is.

FastAPI makes it incredibly easy to set a status code—it is
enough to just pass the desired status_code variable to the

decorator. Here, you are using the 208 status code for a

simple endpoint (chapter4_13.py):

from fastapi import FastAPI, status

app = FastAPI()

@app.get("/",

status_code=status.HTTP_208_ALREADY_REPORTED)

async def raw_fa_response():

 return {"message": "fastapi response"}

Testing the root route in HTTPie yields the following output:

(venv) http GET "http://localhost:8000"

HTTP/1.1 208 Already Reported content-length:

30

content-type: application/json date: Sun, 27

Mar 2022 20:14:25 GMT

server: uvicorn

{

 "message": "fastapi response"

}

Similarly, you can set status codes for the delete, update, and

create operations.

FastAPI sets the 200 status code by default if it doesn’t

encounter exceptions, so it is up to you to set the correct codes
for the various API operations, such as 204 No Content for

deleting and 201 for creating. This is a good practice that is

particularly encouraged.

Pydantic can be used for response modeling. You can limit or
modify the fields that should appear in the response and
perform similar checks that it does for the request body by
using the response_model argument.

FastAPI does not enable customizing the response, but
modifying and setting headers and cookies is as simple as
reading them from the HTTP request and the framework has
you covered.

Although beyond the scope of this book, it is worth noting that
JSON is by no means the only response that FastAPI can
provide: you can output an HTMLResponse and use classic

Flask-like Jinja templates, StreamingResponse,

FileResponse, RedirectResponse, and so on.

HTTP errors

Errors are bound to happen. For example, users somehow find
a way to send the wrong parameters to a query, the frontend
sends the wrong request body, or the database goes offline
(although this is unlikely with MongoDB)—anything can
happen. It is crucial to detect these errors as soon as possible
(this is a leitmotiv in FastAPI) and send clear and complete
messages to the frontend, as well as the user by raising
exceptions.

FastAPI relies on web standards and enforces good practices in
every facet of the development process, so it puts a lot of
emphasis on using HTTP status codes. These codes provide a
clear indication of the type of problem that has arisen, while
the payload can be used to further clarify the cause of the
problem.

FastAPI uses a Python exception, aptly called HTTPException,

to raise HTTP errors. This class allows you to set a status code
and set an error message.

Returning to the example of inserting new cars into the
database, you could set a custom exception like the following
(chapter4_14.py):

from pydantic import BaseModel

from fastapi import Fastapi, HTTPException,

status

app = FastAPI()

class InsertCar(BaseModel):

 brand: str

 model: str

 year: int

@app.post("/carsmodel")

async def new_car_model(car: InsertCar):

 if car.year > 2022:

 raise HTTPException(

 status.HTTP_406_NOT_ACCEPTABLE,

detail="The car doesn't exist yet!"

)

 return {"message": car}

When trying to insert a car that hasn’t been built yet, the
response is as follows:

(venv) λ http POST

http://localhost:8000/carsmodel brand="fiat"

mode3

l="500L" year=2023

HTTP/1.1 406 Not Acceptable content-length:

39

content-type: application/json date: Tue, 29

Mar 2022 18:37:42 GMT

server: uvicorn

{

 "detail": "The car doesn't exist yet!"

}

This is a pretty contrived example of making custom exceptions
for a possible problem that might arise. However, this gives a
good idea of what is possible and the flexibility that FastAPI
gives you.

Dependency injection

To make a brief but self-contained introduction to FastAPI, the
system of dependency injection must be mentioned. In broad
terms, dependency injection (DI) is a way of providing

necessary functionalities (classes, functions, database
connections, authorization statuses and so on) to a path
operation function at the right time. FastAPI’s DI system is very
useful for sharing logic across endpoints, sharing database
connections, for instance, as you will see when you connect to
your MongoDB Atlas instance—performing security and
authentication checks, and so on.

Dependencies aren’t special; they are just normal functions that
can take the same arguments as path operations. In fact, the
official documentation compares them to path operations
without the decorator. Dependencies are used a bit differently,
though. They are given a single parameter (typically a callable)
and they are not called directly; they are just passed as a
parameter to Depends().

An example inspired by the official FastAPI documentation is
the following; you can use a pagination dependency and use it
in different resources (chapter4_15.py):

from typing import Annotated

from fastapi import Depends, FastAPI

app = FastAPI()

async def pagination(q: str | None = None,

skip: int = 0, limit: int = 100):

 return {"q": q, "skip": skip, "limit":

limit}

@app.get("/cars/")

async def read_items(commons: Annotated[dict,

Depends(pagination)]):

 return commons

@app.get("/users/")

async def read_users(commons: Annotated[dict,

Depends(pagination)]):

 return commons

One of the most common cases of DI used in a full stack FastAPI
project is authentication; you can use the same authentication
logic, that is, some class or function that checks the header for
an authorization token and applies it to all the routes or routers
that need to require authentication, as you will see in Chapter 6,
Authentication and Authorization.

Structuring FastAPI applications with routers

Although putting all of our request/response logic in one big

file is possible, as you start building even a moderately sized
project, you will quickly see that this is not feasible,
maintainable, or pleasant to work with. FastAPI, like Express.js
in the Node.js world, or Flask with its blueprints, provides
APIRouter—a module designed to handle a group of path

operations relating to a single type of object or resource. With
this approach, you can assign a separate APIRouter to handle,
for instance, cars, at the /cars path, another to handle the

creation and management of users at /users, and so on.

FastAPI proposes a type of project structure that is simple and
intuitive enough, yet able to accommodate the most common
cases.

API Routers

FastAPI provides a class named APIRouter that is used for
grouping routes, usually related to the same type of resource
(users, shopping items, and so on). This concept, known in Flask
as Blueprints and present in every modern web framework,
allows the code to be more modular and distributed in smaller
units, with each router managing only a certain type of
resource. These APIRouters are finally included in the main
FastAPI instance and provide very similar functionality.

Instead of applying the path decorators (@get, @post and so on)

directly on the main application instance (usually called app),
they are applied to the APIRouter instance. Below is a simple
example of an application broken into two APIRouters:

1. First, create a chapter4_16.py file that will host the main

FastAPI instance:

from fastapi import FastAPI

from routers.cars import router as

cars_router

from routers.user import router as

users_router

app = FastAPI()

app.include_router(cars_router,

prefix="/cars", tags=["cars"])

app.include_router(users_router,

prefix="/users", tags=["users"])

2. Now, create a new folder named /routers, and in this

folder, create an APIRouter in a file named users.py:

from fastapi import APIRouter

router = APIRouter()

@router.get("/")

async def get_users():

 return {"message": "All users here"}

3. Create another file, in the same /routers directory, named

cars.py:

from fastapi import APIRouter

router = APIRouter()

@router.get("/")

async def get_cars():

 return {"message": "All cars here"}

When connecting the routers to the main application, in the
chapter4_17.py file, you are able to provide different optional

arguments to the APIRouter—tags and a set of dependencies,
such as an authentication requirement. The prefix, however, is
mandatory, as the application needs to know at which URL to
mount the APIRouter.

If you test this application with Uvicorn with the following
command:

uvicorn chapter4_17:app

And then, head over to the automatically generated
documentation, you will see that the two APIRouters are
mounted just as if you defined two separate endpoints. They
are, however, grouped under the respective tags, for easier
navigation and testing.

If you now navigate to the documentation, you should indeed
find just one route defined at /cars and responding only to GET

requests. It is intuitive that this procedure can have you build
parallel or same-level routers in no time, but one of the biggest
benefits of using APIRouters is that they support nesting, which
enables managing quite complex hierarchies of endpoints
effortlessly!

Routers are subsystems of an application and are not meant to
be used autonomously, although you are free to mount entire
separate FastAPI applications under specific paths, but that is
beyond the scope of this book.

Middleware

FastAPI implements the concept of middleware—something
that you might have encountered in Django or Express.js, and
more recently Next.js—popular frameworks that make
extensive use of the concept. Middleware is simply a set of
functions that run on every request and tap into the
request/response cycle, intercepting the request,

manipulating it in some desired way, then taking the response
before it is sent to the browser or client, performing additional
manipulation if needed, and finally, returning the final
response.

Middleware is based on the ASGI specification, and it is
implemented in Starlette, so FastAPI enables using it in all your
routes and optionally tying it to a part of an application (via
APIRouter) or the entire app.

Similarly to the mentioned frameworks, the FastAPI
middleware is just a function that receives the request and a
call_next function. Create a new file named

chapter4_17.py:

from fastapi import FastAPI, Request

from random import randint

app = FastAPI()

@app.middleware("http")

async def add_random_header(request: Request,

call_next):

 number = randint(1,10)

 response = await call_next(request)

 response.headers["X-Random-Integer "] =

str(number)

 return response

@app.get("/")

async def root():

 return {"message": "Hello World"}

If you now start this small application, and test the only route,
the route at http://127.0.0.1:8000/, you will notice that the

returned headers contain an integer between 1 and 10, and on
every request this integer will be different.

Middleware plays a large role in authentication with cross-
origin resource sharing (CORS), something you’re bound to
face when developing full stack applications, but also for
redirecting, managing proxies, and so on. It is a very powerful
concept that can greatly simplify and enhance your application
efficiency.

Summary

This chapter covered very simple examples of how FastAPI
achieves the most common REST API tasks and the way it can
help you by leveraging modern Python features and libraries
such as Pydantic.

This chapter also detailed how FastAPI enables you to perform
requests and responses through HTTP and how you can tap into
it, at any point, and customize and access the elements of the
request, as well as the response. Finally, it also detailed how to
split your API into routers and how to organize your app into
logical resource-based units.

http://127.0.0.1:8000/

The next chapter will give you a quick introduction to React—
the user interface library of choice in the FARM stack.

5

Setting Up a React Workflow

This chapter focuses on the React library and discusses the
important topics and features that you should be aware of so
that you can create a very simple React app, really just a
frontend. In this chapter, you will learn about the main features
and the most salient concepts of React.

You will begin with the prerequisites and tools, such as Node.js,
some Visual Studio Code extensions, and more. You will also
learn how to use the new standard and recommended build
tool called Vite. Compared to Create React App, Vite is more
efficient and allows for fast hot module replacement (HMR)
and on-demand file serving, without the need for bundling.
Bundling is the process of combining and joining multiple
JavaScript files into a single file, reducing the number of HTTP
requests needed to load the page. HMR, on the other hand,
allows for the updating of single modules while the application
is running, in real time.

You will design a simple application with a few components and
see how decoupling helps you write modular and maintainable

code. This chapter covers two of the most important React
Hooks and how they solve some common web development
problems. However, the main objective of this chapter is to
discuss the tools needed to be able to explore React and its
various functionalities.

By the end of this chapter, you will have a simple but fully
functional React web app. The concepts in this chapter will
prepare you to be a frontend developer who values relatively
simple tools to be able to achieve complex functionalities,
without being confined within a strict framework.

This chapter will cover the following topics:

Introduction to React and how to use Vite to create React
apps
Styling techniques with Tailwind CSS
The functional components and JSX, the language of React
How to use the useState and useEffect Hooks for state

management and API communication
Features of React Router and other packages within the
React ecosystem

Technical requirements

Creating a React-based application involves several steps,
including setting up a build system and a transpiler, creating a
directory structure, and more. You must install the following
tools before you start developing your application:

Vite: Vite requires Node.js versions 18+ or 20+ in order to
run, but you can always check the documentation at
https://vitejs.dev for updates.
Node.js: You can download Node.js for your operating
system from https://nodejs.org/en/download/. When
installing, check all the boxes – you want npm (Node.js’
package manager) and optional additional command-line
tools if you are on a Windows machine.
Visual Studio Code: Install a React extension called ES7+
React/Redux/React-Native snippets to help speed up the
creation of components of a React app.
React Developer Tools : Install the React Developer Tools
browser extension (https://react.dev/learn/react-developer-
tools). This enables debugging your React apps quicker and
spotting potential problems easily.

Creating a React app using Vite

https://vitejs.dev/
https://nodejs.org/en/download/
https://react.dev/learn/react-developer-tools
https://react.dev/learn/react-developer-tools

React is a JavaScript library for building user interfaces (UIs),
particularly for single-page applications (SPAs) but also for
traditional server-side-rendered applications. It offers reusable
UI components that are able to manage their own state,
allowing for the creation of complex and dynamic web
applications with simplicity and high scalability.

React is based on the virtual document object model (DOM). It
minimizes manipulations of the actual DOM, improving
performance. As stated in the introduction, React’s robust
ecosystem includes libraries, tools, and frameworks such as
Next.js, Remix.js, mobile-centric React Native, and numerous
Hooks. These features enable developers to build versatile and
high-performance applications.

Vite is a modern build tool designed to simplify and speed up
the development of web applications with React, but also with
Vue.js, Svelte, and other frameworks and libraries. It offers a
fast development server that supports features such as hot
module replacement, ensuring quick updates without losing the
application’s current state. Unlike traditional setups, Vite
separates app modules into dependencies and source code,
employing esbuild for fast dependency bundling and serving

source code using native ECMAScript Modules (ESMs). This

approach results in faster server start and update times,
enhancing productivity during development.

NOTE

Vite supports the scaffolding of numerous types of projects, such
as Svelte, Preact, Solid.js, and more.

Let's start by creating a simple app that you will be building
upon in this introduction:

1. Pick a folder of your choice, for example, chapter5. Set it

to the working directory with cd, and from your terminal

of choice, run the following command to create a React
template:

npm create vite@latest frontend -- --

template react

2. Unlike the Create React App tool, Vite requires manual
installation of all the Node.js dependencies. Change the
working directory into your /frontend directory:

cd frontend

3. Next, you can install the dependencies by running the
following command:

npm install

Once this process is complete, you will have a properly
initiated React project ready to be developed.

4. Although you can start your project with a simple
command (npm run dev), this is the opportunity to install

your CSS framework, Tailwind CSS, as it is easier to begin
with the Tailwind CSS setup and not have to deal with the
few bundled Vite-specific CSS styles. Run the following
commands to install the CSS framework in order to install
the Tailwind framework and initialize its configuration file:

npm install -D tailwindcss postcss

autoprefixer

npx tailwindcss init -p

While the first command installs Tailwind itself and a
couple of needed packages as development dependencies,
the second creates a tailwind.config.js file, the file that

you will be using for fine-tuning and configuring your
instance of Tailwind.

5. It is useful to set up a simple project to showcase basic
React concepts. Configure your newly created
tailwind.config.js file by replacing the contents of the

file with the following code. The configuration of Tailwind
for React is the following:

/** @type {import('tailwindcss').Config}

*/

export default {

 content: [

 "./index.html",

 "./src/**/*.{js,ts,jsx,tsx}",

],

 theme: {

 extend: {},

 },

 plugins: [],

}

6. Finally, edit the src/index.css file that Vite created and

populated with some default styles. Delete everything, and
insert the tailwind directives instead:

@tailwind base;

@tailwind components;

@tailwind utilities;

Now, you have a basic React application with a Tailwind
setup.
The latest documentation of this process is usually
available on the excellent Tailwind CSS website
(https://tailwindcss.com/docs/guides/vite) along with similar
documents for Next.js, Remix.js, and other frameworks.
Delete the App.css file since you will not be using it, and

then perform the following steps to populate the landing
page of your application.

7. Replace the contents of App.jsx by pasting the following

code:

export default function App() {

 return (

 <div className="bg-purple-800 text-

white min-h-screen p-4 flex flex-col

justify-center items-center">

 <h1 className="text-3xl font-thin">

 Hello FARM stack!

 </h1>

 </div>

https://tailwindcss.com/docs/guides/vite

)

}

8. Back in the terminal, start your React project with the
following command:

npm run dev

If you open a browser tab on port 5173

(http://localhost:5173/), which is the default for Vite, you

will be greeted by a purple screen and the title Hello FARM
stack! in the middle of the page. However, behind this page,
there is some code and many packages, and you can examine
this generated code by looking inside the frontend folder that
the Vite build tool built for you.

NOTE

In your project, there is a node_modules directory that contains

all the project dependencies. You don’t need to touch this folder
except for extreme debugging operations.

In the public folder, there are a couple of generic files that you

will not use in this project, such as the png logos and the
favicon.ico file. This folder will contain static assets that Vite

will not process, such as images, fonts and so on. You can leave
it as is or use it later for files that will be served to users
without any Vite modification.

In the /src directory there is an important HTML file called

index.html. This bare-bones file contains a div element with

the id parameter of the root. This div element is the place

where React will load your entire application.

You will be creating most of the application in the /src

directory. The App.jsx file that represents your entire

application will be living inside this file, which, in turn, will be
rendered in your single div element with the id parameter of

the root in the index.html file. This complexity is necessary

for the declarative approach that React will be able to provide
us with while developing, in just a few more steps. At this point,
different approaches are possible depending on your use case,
so you might want to create additional folders for components
or pages or group functionalities by features.

React enables you to style applications in a myriad of ways. You
can use classic CSS style sheets or syntactically awesome style
sheets (SASS), you can opt for JavaScript-style objects, or you
can choose a modern but efficient solution such as styled-
components. Additionally, all the major UI/CSS frameworks

have a React version, for example, Material UI, Bootstrap, and
Semantic UI.

Throughout this book, you will be using Tailwind CSS, which
has an atypical approach that busy developers tend to like, as it
doesn’t get in the way. It is excellent for defining basic, simple
styles that make the page look simple and clean, but it is also
good for achieving pixel-perfect designs from Figma or Adobe
XD files if needed.

Tailwind CSS and installation

Tailwind CSS is a utility-first framework that translates CSS into
classes that can be used directly in the markup and enables you
to achieve complex designs. Just by adding classes to your
HTML elements, you will be able to create completely styled
documents. Check out the Tailwind documentation at
https://tailwindcss.com/, as you will be using it for all your React
styling needs.

Your App.jsx file has a div element with the following list of

classes:

bg-purple-800: To make the background purple

text-white: To make the text white

https://tailwindcss.com/

min-h-screen: To make the height full-screen

p-4: To add padding

flex: To display a flex container

flex-col: To set the flex direction to a vertical one

justify-center: To justify the item’s center

items-center: To center the items across the secondary

axis

className is from JavaScript Syntax Extension (JSX), React’s

language for creating HTML. Visual Studio Code does some
autocompletion as soon as you type in the first quote.

This is a basic React + Tailwind setup. If you want to practice
Tailwind CSS a bit, try creating a full-height page with some
dashed borders and some titles.

The next section will tackle the most fundamental parts of React
by using JSX.

Components and building blocks
of JSX

According to the latest Stack Overflow Developer Survey from
20231, React is the developers’ top choice, and still the most

popular frontend JavaScript library by a large margin. Like
FastAPI, React boasts an incredibly well-written and structured
documentation website (https://react.dev/), so starting from
there and making your way up is one of the best things you can
do when starting your React journey and even when you have
become a seasoned developer.

1 https://survey.stackoverflow.co/2023/#most-popular-
technologies-webframe

To put it simply, React enables you to craft UIs using a much
simpler and more efficient way compared to plain JavaScript or
first-generation JavaScript libraries such as jQuery, as it takes
care of operations that would prove to be very tedious and
error-prone if performed with plain JavaScript. React achieves
this with the help of JSX, which is an enhanced JavaScript and
HTML mix that React compiles into JavaScript.

To be more precise, JSX is a JavaScript extension used in React
to build interactive functionalities and UIs in a visually intuitive
way. It allows you to write HTML-like code within JavaScript,
making the code easier to understand and maintain.

https://react.dev/
https://survey.stackoverflow.co/2023/#most-popular-technologies-webframe
https://survey.stackoverflow.co/2023/#most-popular-technologies-webframe

React performs two essential functions, which are visible in the
main.jsx file of your newly created Vite project. If you open

and inspect the file, you will see two packages imported. React
is responsible for using features such as JSX, while ReactDOM
performs operations on the DOM.

The keyword in every React description is declarative, so you,
as a developer, can describe (declare) the UI and the associated
data flow and actions. Then, React will figure out how to
achieve the desired functionality through its mechanisms and
optimizations.

JSX is the glue that holds the whole React concept together. The
smallest building blocks of a React page or app are React
elements. A simple element might be as follows:

const title = <h1>The Car Sales App</h1>

This code looks like an h1 HTML element, but it also looks like

JavaScript. Both observations are valid, because JSX enables
you to create React elements that can be inserted into React’s
virtual DOM tree, which is different from the actual HTML.
React takes care of the tedious job of updating the DOM to
match the virtual DOM through a process called diffing, and

then compiles the JSX elements (through a tool called Babel)
into actual HTML elements.

React elements are immutable, which means that once you
create them, you cannot change them, and as the React website
states, they are like single frames in a movie. However, they can
be replaced with new elements or frames.

It is important to note that every React component, including
your App.jsx file, which is currently the only component that

you have, must return only one element—a div element or a

fragment (essentially, an empty tag, <>) and all the React

elements enclosed in it. The following examples will show you
how to craft some components:

Create some simple elements in your App.jsx file by pasting

the following code:

export default function App() {

 const data = [{

 id: 1,

 name: "Fiat"

 },

 {

 id: 2,

 name: "Peugeot"

 },

 {

 id: 3,

 name: "Ford"

 },

 {

 id: 4,

 name: "Renault"

 },

 {

 id: 5,

 name: "Citroen"

 }

]

 return (

 <div className="bg-purple-800 text-

white min-h-screen p-4 flex flex-col items-

center">

 <div className="mb-4 space-y-5">

 <h2>Your budget is {budget}

</h2>

 <label

htmlFor="budget">Budget : </label>

 <input type="number"

className="text-black" step={1000}

id="budget" value={budget} onChange={(e) =>

setBudget(e.target.value)} />

 </div>

 <div className="grid grid-cols-3

gap-4">

 {data.filter((el) => el.price

<= budget).map((el) => {

 return (

 <Card car={el} key=

{el.id} />

)

 }

)}

 </div>

 </div >

);

}

When you run your web app, you should see the following page
rendered:

Figure 4.1: A simple page generated by using React

Recap

Let us review what you created in your React app:

1. First, you declared some data, a simple list of car brands in
an array. For now, the data is hard-coded, but this data
might be loaded from an external API.

2. Then, in the return statement, you map over this array by

using the JavaScript map function, iterating by referencing

each element of the array as el.

Finally, you return these elements. In this case, they are strings,
and you wrap them in template literals (another ES6 feature)
and transform them to uppercase by using another JavaScript
function. The whole function returns exactly one div element.

Since class is a reserved name in JavaScript, React uses the
className keyword, and you can see how it was used quite a

bit since Tailwind is very verbose. Finally, there’s a little
addition to the App.jsx file, so React doesn’t complain in the

console—a key property so React can handle our list even when
it changes. You can read about the purpose and need for this
key in the documentation here:

https://react.dev/learn/rendering-lists#keeping-list-items-in-
order-with-key.

The key is a unique identifier that React needs anytime it
creates arrays of DOM elements, so it knows which one to
replace, keep, or remove. This is a rather simplistic example,
but it shows the basics of the power of JSX. An important thing
to remember is that you must return exactly one element, such
as a div element, a title, or a React fragment. Functional

components are, after all, functions (and you will only be
working with functional components).

React does not have a dedicated templating language with a
special syntax for looping over arrays of objects or if-else

constructs. Instead, you can rely on the full power of JavaScript
and use the standard language features such as map for

iterating through arrays, filter for filtering data, ternary

operators for if-else constructs, template literals for string

interpolations, and more.

The next section will discuss React components.

Components

https://react.dev/learn/rendering-lists#keeping-list-items-in-order-with-key
https://react.dev/learn/rendering-lists#keeping-list-items-in-order-with-key

Components are reusable pieces of the UI. They are the
functions returning pieces or units of UI written in JSX. They
are the building blocks of UI in React, allowing you to create
modular, reusable pieces of code that can be composed to form
the desired output of the user interface.

Figure 4.2 shows an application user interface that is visually
broken into separate components. Each rectangle represents an
independent component that is imported into the main app
component. Some might be repeated several times, while
others, such as the header and the footer, might be present with
only one instance:

Figure 4.2: Breaking an app into components

One of the first stages of planning the development of a React
site is the identification of areas, or pieces, that could be
abstracted into components and reused in some way or at least
abstracted into separate units.

Next, we will create a minimal component for displaying the
header on a page. The component should have an easy task: to
display the header, in your case, the title of the page.

Functional components in React.js are defined as files with
.jsx or .js extensions, and like your App.jsx file (the root

component), they must return a single JSX element. The
filenames should be capitalized. This is a great moment in
which to use your previously installed React extension for
Visual Studio Code as it provides useful snippets for creating
standard components. Follow these steps:

1. Create a folder and name it components in your /src

folder along with a new file called Header.jsx in it.

2. Now, open the newly created file and type in rafce. The

editor should suggest creating a component shell called
reactArrowFunctionExportComponent.

3. Select this entry from the suggestion list and you will see
your file filled with a typical ES6 arrow function
component exported:

const Header = () => {

 return (

 <div>Header</div>

)

}

export default Header

This file defines a single JSX topmost element—called
Header—and exports it at the bottom.

4. Make some edits to this file, making use of our Tailwind CSS
framework classes to make a div element. At this point,

don’t worry about responsiveness or fancy coloring.
Replace the Header element with the following code:

const Header = () => {

 return <div className="text-3xl border-

yellow-500 border-4 p-4">Header</div>;

};

export default Header;

5. After these edits, which are purely Tailwind-related, import
the first component to our App.jsx file. Imports are

handled in terms of the relative path—remember that the
dot denotes the current directory of the file (/src, in your

case), while /components is the folder in which you are

keeping your components. The App.jsx file should also

include an instance of the Header component. Replace the

contents of the App.jsx file with the following code:

import Header from "./components/Header";

export default function App() {

 const data = [

 { id: 1, name: "Fiat" },

 { id: 2, name: "Peugeot" },

 { id: 3, name: "Ford" },

 { id: 4, name: "Renault" },

 { id: 5, name: "Citroen" },

];

 return (

 <div className="bg-purple-800 text-

white min-h-screen p-4 flex flex-col

justify-between items-center">

 <Header/>

 <h1 className="text-3xl font-thin

border-b-white border-b m-3">

 Hello FARM stack!

 </h1>

 <div>

 {data.map((el) => {

 return (

 <div key={el.id}>

 Cars listed as{" "}

{el.name.toUpperCase()}

 </div>

);

 })}

 </div>

 </div>

);

6. Vite should automatically reload the app for you if you
haven’t stopped the npm run dev process.

You will see that your simple web page now has a simple
header component. It is an H1 element and has some basic

formatting, as it is purple, centered, and has a yellow border.
You imported the component as a self-closing tag. It is worth
noting that components can be self-closing or (like an H1 tag, for

instance) enclose the data provided via children.

You just made your first, very simple, React functional
component. In this way, you can break down the functionality
of your entire website. You can add a footer, some navigation,
and more. The process of breaking an app down into

components and deciding what should constitute a single
component is so important that the React documentation has an
excellent page dedicated to the process:
https://reactjs.org/docs/thinking-in-react.html.

Creating dynamic components

Crafting components like this is nice and quick, but it can
become tedious if the output is fixed. Fortunately, React
components are functions, and functions can take arguments
then do something useful with those arguments. Suppose you
want to create a component that will replace your plain list of
car brands and display the information in a more pleasing and
informative way. You can pass the data for each car in your
data array (an object) and have it formatted in a specified way.

To redo your procedure for displaying the list, follow these
steps:

1. Create a new file in the components folder, name it

Card.jsx, and type rafce in order to get the correct

component template. Replace the Card component with the

following code:

const Card = ({ car: { name, year, model,

https://reactjs.org/docs/thinking-in-react.html

price } }) => {

 return (

 <div className="bg-white rounded

m-4 p-4 shadow-lg">

 <h1 className="text-2xl text-

gray-600">{name}</h1>

 <p className="text-sm text-

gray-600">{year} - {model}</p>

 <p className="text-lg text-

right text-gray-600 align-text-

bottom">${price}</p>

 </div>

)

}

export default Card

This component, unlike the Header component that you

made earlier, accepts props, or properties that define the
component behavior. The Card component is a simple

reusable abstraction that is repeated across the page
wherever needed. You also made use of ES7 object
destructuring to make the component a bit easier on the
eyes and not have to repeat props.name, props.model,

and so on.
2. Update the App.jsx main file to make proper use of Card.

Replace the contents of App.jsx with the following code:

import { useState } from "react";

import Card from "./components/Card";

export default function App() {

 const data = [

 { id: 1, name: "Fiat", year: 2023,

model: "Panda", price: 12000 },

 { id: 2, name: "Peugeot", year:

2018, model: "308", price: 16000 },

 { id: 3, name: "Ford", year: 2022,

model: "Mustang", price: 25000 },

 { id: 4, name: "Renault", year:

2019, model: "Clio", price: 18000 },

 { id: 5, name: "Citroen", year:

2021, model: "C3 Aircross", price: 22000

},

 { id: 6, name: "Toyota", year:

2020, model: "Yaris", price: 15000 },

 { id: 7, name: "Volkswagen", year:

2021, model: "Golf", price: 28000 },

 { id: 8, name: "BMW", year: 2022,

model: "M3", price: 45000 },

 { id: 9, name: "Mercedes", year:

2021, model: "A-Class", price: 35000 },

 { id: 10, name: "Audi", year:

2022, model: "A6", price: 40000 }

]

 const [budget, setBudget] =

useState(20000)

 return (

 <div className="bg-purple-800

text-white min-h-screen p-4 flex flex-col

items-center">

 <div className="mb-4 space-y-

5">

 <h2>Your budget is

{budget}</h2>

 <label

htmlFor="budget">Budget : </label>

 <input type="number"

className="text-black" step={1000}

id="budget" value={budget} onChange={(e)

=> setBudget(e.target.value)} />

 </div>

 <div className="grid grid-

cols-3 gap-4">

 {data.map((el) => {

 return (

 <Card car={el}

key={el.id} />

)

 }

)}

 </div>

 </div>

);

}

3. Next, the goal is to use the newly created Card component

and pass it all the needed data. Update Card.jsx with the

following code:

const Card = ({ car: { name, year, model,

price } }) => {

 return (

 <div className="bg-white rounded

m-4 p-4 shadow-lg">

 <h1 className="text-2xl text-

gray-600">{name}</h1>

 <p className="text-sm text-

gray-600">{year} - {model}</p>

 <p className="text-lg text-

right text-gray-600 align-text-

bottom">${price}</p>

 </div>

)

}

export default Card;

Now, instead of returning the div elements when mapping

through your data, you are returning your Card component

and passing it the key—that is, the ID of the car object. Note

that the ID has to be unique or React will throw warnings in the
console indicating that we haven’t specified it. Additionally,
you’re passing something that you can refer to as el and set to

the element—the car object from your data array.

Your Card component is now able to display data related to the

cars—each card holds the data of a single car. You passed data
through props (short for properties) to each card. You just have
to accept it in the component.

It is easy to pass props to components, but since props provide
one-way communication, in most apps, you will have to deal
with the state as well, which is discussed in the next section

Events and state

React exposes and wraps all the standard DOM events—button
and link clicks, form submissions, mouse hovers, keyups and
keydowns, and more. Handling these events in React is
relatively intuitive. A click event will be handled by a synthetic
event called onClick; events are named by using the

camelCase naming convention. In React, event handlers are
functions that are triggered when an interaction occurs. These
functions accept function handlers, which are other functions,

as props. The simplest possible case would be clicking a button
(although it could be any DOM element).

Create a simple component in a file called Button.jsx in the

/components directory that contains a button that, when

clicked, displays a message in the console:

1. Paste the following code into your Button.jsx file after

performing the racfe action:

const Button = () => {

 const handleClick = () => {

 console.log("click")

 }

 return (<

 button className = "bg-white text-

purple-800 hover:bg-gray-300 p-3 rounded-

md"

 onClick = {

 handleClick

 } > Button < /button>

)

}

export default Button

This is a simple example and it showcases the underlying
mechanism; onClick is React’s way of knowing what event

it should listen to and the handleClick function executes

your (rather simple) business logic. If you import the
button into the App.jsx file and click the button, you

should see the messages in the console.
2. The implementation is very simple; update the App.jsx

component with the following:

import { useState } from "react";

import Card from "./components/Card";

import Button from "./components/Card";

export default function App() {

 const data = [

 { id: 1, name: "Fiat", year: 2023,

model: "Panda", price: 12000 },

 // continued

];

 const [budget, setBudget] =

useState(20000);

 return (

 <div className="bg-purple-800 text-

white min-h-screen p-4 flex flex-col

items-center">

 <div className="mb-4 space-y-5">

 <h2>Your budget is {budget}</h2>

 <Button />

 <label htmlFor="budget">Budget :

</label>

 <input

 type="number"

 className="text-black"

 step={1000}

 id="budget"

 value={budget}

 onChange={(e) =>

setBudget(e.target.value)}

 />

 </div>

 <div className="grid grid-cols-3

gap-4">

 {data.map((el) => {

 return <Card car={el} key=

{el.id} />;

 })}

 </div>

 </div>

);

React Hooks with events and state

The components of React are essentially functions that convert
a state to a user interface. A React component isa function that
takes props as arguments. It can be thought of as an updatable
data structure responsible for the component behavior. The

output of the function, the component, is a JSX element.
Essentially, React Hooks are functional constructs that enable
you to tap into the life cycle of a component and change its
state.

While there are many standard React Hooks and numerous
external ones, you will work with only two, which are the most
fundamental for React comprehension: useState and

useEffect. These two Hooks will remain in the forthcoming

React version 19, while others, such as useMemo, useCallback,

and some others, will be gradually deprecated. It is also true
that while mastering React takes some time, much of standard
UI functionality can be achieved through clever combinations
of these two Hooks.

Creating stateful variables with useState

The useState Hook allows you to maintain a certain state

throughout your component. For example, you might want to
maintain some kind of state in your SPA, so the website doesn’t
show you any cars that are too expensive based on your
specified budget. You can make a simple textbox, set it to
display just numeric values, and hook it up with a state variable
that you can name budget.

Replace the contents of the App.jsx file with the following

code:

import { useState } from "react";

import Card from "./components/Card";

export default function App() {

 const data = [

 { id: 1, name: "Fiat", year: 2023, model:

"Panda", price: 12000 },

 { id: 2, name: "Peugeot", year: 2018,

model: "308", price: 16000 },

 { id: 3, name: "Ford", year: 2022, model:

"Mustang", price: 25000 },

 { id: 4, name: "Renault", year: 2019,

model: "Clio", price: 18000 },

 { id: 5, name: "Citroen", year: 2021,

model: "C3 Aircross", price: 22000 },

 { id: 6, name: "Toyota", year: 2020,

model: "Yaris", price: 15000 },

 { id: 7, name: "Volkswagen", year: 2021,

model: "Golf", price: 28000 },

 { id: 8, name: "BMW", year: 2022, model:

"M3", price: 45000 },

 { id: 9, name: "Mercedes", year: 2021,

model: "A-Class", price: 35000 },

 { id: 10, name: "Audi", year: 2022,

model: "A6", price: 40000 }

]

 const [budget, setBudget] = useState(20000)

 return (

 <div className="bg-purple-800 text-white

min-h-screen p-4 flex flex-col items-center">

 <div className="mb-4 space-y-5">

 <h2>Your budget is {budget}</h2>

 <label htmlFor="budget">Budget :

</label>

 <input type="number" className="text-

black" step={1000} id="budget" value={budget}

onChange={(e) => setBudget(e.target.value)}

/>

 </div>

 <div className="grid grid-cols-3 gap-

4">

 {data.filter((el) => el.price <=

budget).map((el) => {

 return (

 <Card car={el} key={el.id} />

)

 }

)}

 </div>

 </div >

);

}

In the preceding example, you first import the useState Hook

from React. The useState Hook returns two values:

A variable, which can be anything you want—an array or
an object, a simple number, or a string
A function that sets the value for this state variable

Although you can use any legal JavaScript name, it is a good
convention to use the name of the variable—in your case,
budget—and the same name prepended with set: setBudget.

With this simple line of code, you have told React to set up a
state unit called budget and to set up a setter. The argument of

the useState() call is the initial value. In the following case,

you have set it to 20,000 dollars.

The following image shows the updated web app with the
updateable budget box:

Figure 4.3: Listing cars

Now, you are free to use this state variable across the page.
Here, you placed the useState call inside the App functional

component—if you try to place it elsewhere, it will not work:
Hooks tap into the lifecycle of components from the inside of

the bodies of the functions defining the components
themselves!

Moving down to the bottom of the component, you added a
simple textbox. You can set it to display only numeric values
with HTML and a step of 1000 and add an onChange handler.

This is a good moment to emphasize yet again that React uses
the so-called synthetic event, a wrapper around the browser’s
native events that enables React to achieve cross-browser
compatibility. Once you have remembered a couple of
differences (that the events are using camelCase rather than
lowercase, and you must pass them a function in JSX), you will
be writing event handlers in no time.

In your app, you added an onChange event to the textbox and

set it to handle the state, then you set the new value of the
budget. Every time you change the value, the setBudget

function fires, and, as a consequence, the budget updates and
different Card instances are displayed that match your budget

constraints.

This onChange event takes the current value of the textbox

(target.value, just like the original DOM events, as it’s just a

wrapper) and sets your budget state to this value using our
useState call defined just above the function.

Finally, you’ve added a div element component that uses this

budget value and displays it. You have added a state variable to
your app’s root component. You can set it, get it, and display it
on the page.

Now, you have accomplished another task typical for
developing React apps. You have allowed the user to enter their
budget and you are displaying it on the page. If you want to
differentiate between cars that fit said budget and those that do
not, you will make use of some simple JavaScript and
component state. To get this to work, set your small data sample
that is currently hardcoded to be a state variable itself, so the
user can just filter it and display only those cars within the
price range.

The procedure is simple and involves pure JavaScript to
accomplish the task of displaying an array of cars satisfying the
condition that their price is less than or equal to your budget.
Hint: Use JavaScript filtering arrays as shown in bold in the
following code sample:

{data.filter((el) => el.price <=

budget).map((el) => {

 return (

 <Card car={el} key={el.id} />

)

 }

)}

At this point, you can dive into the excellent React.js
documentation and learn more about the useState Hook and

its sibling, the useReducer Hook

(https://react.dev/reference/react/useState). This is a Hook that
might be thought of as a generalization of the useState Hook.

It is best suited when you have to deal with numerous pieces of
state that are interconnected, so managing them with many
simple useState Hooks could end up being tedious and

difficult to maintain.

In this section, you have seen how the useState Hook enables

you to add a stateful variable in a very simple and
straightforward way and how to manipulate the state through
regular events.

Next, you will learn how you can get your data from your
efficient FastAPI backend into your React.js frontend. You will

https://react.dev/reference/react/useState

get to know another Hook called useEffect.

Communicating with APIs and
the outside world using useEffect

Here, you can use a free mock REST API. However, you do need
to address the problem of accessing external data and the
management of external events. External to what, you might
wonder?

You have seen that React and its mighty Hooks are centered
around the task of synchronizing the UI to the state and the
data. Components can contain other components, and together,
they form what is known as a component tree, which is then
constantly compared to the current state. React does all of this
coordination work, to determine what should be rendered,
updated, and more.

Events that are outside of the React data flow process are called
side effects. Notable examples of React side effects are as
follows:

Performing API calls—sending or receiving data from an
external server

Subscribing to external data sources via websockets or
streams
Setting or getting data values to and from the local storage
or session storage
Event listeners and their cleanup functions

Remember that React works in a continuous data flow, with an
underlying system constantly scanning for updates and ready
to re-render components that it deems in need of an update.
The following example will illustrate this.

Consider that you are working on your Car Sales application
and you need to list all the users that have registered an
account. The task at hand is a simple and common one. You
have a dedicated page—it will live in a URL called /users or

something similar, and it should be populated with the data
(think of a JavaScript array of objects) from an external API.
This API will be powered by FastAPI, but for now, you will use a
readymade mock solution called Jsonplaceholder.

The GET call you need to make should be directed toward the

URL https://jsonplaceholder.typicode.com/users/.

You already understand how to make components, provide
them with props, and set their state, so that shouldn’t be a

https://jsonplaceholder.typicode.com/users/

problem. When it comes to loading data from an external API,
you might just use something such as Fetch or Axios, as if you

were using a normal plain JavaScript app. Fetch and Axios are

the two most popular JavaScript libraries used for making HTTP
requests to servers.

Trying to fetch the data in a React component and then setting
the state to the resulting JSON would start an infinite loop.
Bear in mind that React came before the server component
with async code existed.

Whenever the state of a component changes and the
component is re-rendered, the new render again triggers a
fetch call to the API, the state changes again to be set to the list

of users, and so on.

In this component’s data flow, the fetching of the data is
considered external—not part of the main component life cycle.
It is executed after the component has been executed.

To deal with this problem, React has a very elegant solution—
the useEffect Hook. You can create a new application by

editing the App.jsx main component, and then display a list of

users from your API endpoint.

You can implement a possible solution using the useEffect

Hook. Paste the following code into your App.jsx file (refer

App3.jsx):

import { useState, useEffect } from "react";

export default function App() {

 const [users, setUsers] = useState([]);

 useEffect(() => {

 fetchUsers();

 }, []);

 const fetchUsers = () => {

 fetch("https://jsonplaceholder.typicode.c

 .then((res) => res.json())

 .then((data) => setUsers(data));

 };

 return (

 <div className="bg-purple-800 text-

white min-h-screen p-4 flex flex-col items-

center">

 <h2 className="mb-4">List of

users</h2>

 <div className="grid grid-cols-3

gap-4">

 {users.map((user) => (

 <li key={user.id}>

{user.name}

))}

 </div>

 </div>

);

}

At the top of the App.jsx file, import useState and useEffect

and then you can begin creating your sole state variable—the
users array—initializing it to an empty array.

The fetchUsers function is simple—it makes a call to the API

and returns data in JSON format, using promises. It could also
have been an async/await function.

The useEffect Hook, as with all Hooks, is executed inside the

component function. It does not return a value, however, and it
accepts two arguments: the function to be executed (in this
case, fetchUsers), and a dependency array, an array of values

whose change in value will trigger a new execution of the
effect. If the function should trigger only once, the array should
be empty. If you want to fetch other users from the next API
URL, you must add the URL to the array.

As with useState, there are many more subtleties involved.

For example, you can provide a cleanup function at the bottom
of the useEffect body to make sure that any long-lasting

effects are removed, but this should give you a basic idea of
how to handle actions that reach out to an external API.

Additionally, useContext allows React to cover an entire area

of components and pass values directly without having to pass
them through several components that might not actually need
it, a procedure called prop drilling. You can even create your
own Hooks and abstract functionality that can be reused in
several places of the app, ensuring better maintainability and
less repetition.

With the introduction of Hooks, the whole ecosystem becomes
much clearer and cleaner, and the mapping of business logic to
UIs is much more streamlined and logical.

You now have the knowledge that is necessary to set and get
states in your components or apps and to communicate with
external API services in a predictable and controllable way,
while crafting clean and simple code. Just using React and its
Hooks can give you web developer proficiency, but there is a
whole ecosystem of packages and modules built around React
that can be just as important and useful as the core libraries.

Exploring React Router and other
useful packages

So far, you have only created a couple of single-page apps, but
you haven’t touched some advanced functionalities. However,
single-page apps are not limited to a single URL. For example, if
you navigate to your Gmail account, you will see that the URL
changes with every action that you might take.

While there are several solutions that enable you to achieve
routing in SPAs, React Router is the standard solution, and it is a
well-tested, mature package.

The underlying idea of a frontend page router is that it should
enable rendering different components on the same page
depending on the route that is loaded. For instance, the /about

route would cause the app to load a component called
About.jsx in the main App component, removing other

previously loaded components. The package provides a basic
structure, within the BrowserRouter class, which can be used

to wrap an entire root App component.

React is such a popular framework that there is a diverse
ecosystem of tools and integrations that you can learn about. As

you’ve already seen earlier, besides Tailwind, you can use
virtually any UI or CSS framework either directly or through
some optimized React version, such as Bootstrap, or more
tightly coupled with React, such as Ant Design. You can enhance
your user experience with subtle animations through Framer
Motion, and you can speed up the development of forms with
some excellent form libraries such as React Hook Form. For
complex state problems, Redux is the most popular and widely
adopted industry standard, but there are many smaller or
specialized libraries for local and global state management,
such as Recoil, Zustand, or React Query.

Summary

This chapter provided a short introduction to the world’s most
popular user interface library—React.js.

This chapter also detailed what JSX is and why it’s so
convenient for developers. It explored the basic building blocks
of React, functional components, and the basic rules that must
be followed when designing them. It also introduced two
fundamental React Hooks that, when combined, allow you to
begin building basic user interfaces, maintain and change the
state of the components, and interact with external APIs.

Finally, the chapter covered the implementation of some of the
React libraries that will make your life easier when developing
custom applications. These libraries all have excellent
documentation and are updated frequently.

The next chapter will use some of this basic knowledge and
React to create a simple but fully functional and dynamic
application.

6

Authentication and Authorization

The concepts of authentication—proving that the user is who
they claim to be—and authorization—making sure that the
authenticated user should or should not be able to perform
certain operations on your API—are very complex. In this
chapter, you will explore the topics of authentication and
authorization from a very practical standpoint and from the
FARM stack perspective.

The chapter will detail a simple yet robust and extensible setup
for your FastAPI backend, based on JSON Web Token (JWT)—
arguably the most popular and practical authentication method
that has emerged in the last years. Then, you will see how to
integrate your JWT-based authentication methods into React,
leveraging some of React’s powerful features—namely, Hooks,
Context, and React Router.

By the end of this chapter, you should have a solid grasp of
authentication methods that both FastAPI on the backend and
React on the frontend have to offer, and you will be able to

authenticate users and control what they can and cannot do
within your application with granularity and precision.

The chapter will cover the following topics:

The user model and how it relates to other resources
JWT authentication mechanism—the big picture
Authentication and authorization tools in FastAPI
How to protect the routes, routers, or the entire app
Various solutions for authenticating with React

Technical requirements

To run the sample application in this chapter, you should have
the following:

Node.js version 18 or later
Python 3.11.7 or later

The requirements are identical to those in the previous
chapters, and the new packages that you will install will be
described as they are used.

Understanding JSON Web Token

HTTP is a stateless protocol, and that fact alone implies several
important consequences. One of them is that if you want to
persist some kind of state between requests, you must resort to
a mechanism that will be able to remember a set of data, such
as who the logged-in user was, what the selected items during a
previous browser session were, or what the site preferences
were. In order to achieve such functionality, and identify the
current user, you as a developer have numerous options at your
disposal. Some of the most popular and modern solutions are
the following:

Credential-based authentication: It requires the user to
enter personal credentials, such as a username or email,
along with a password
Passwordless login: Users receive a secure, time-limited
token via email or another communication channel for
authentication instead of using a traditional password after
creating an account. The secure token is used for session
authentication, eliminating the need to type or remember
passwords.
Biometric passwords: It utilizes a bio-feature of the user,
such as a fingerprint, for authentication.
Social authentication: Users leverage their existing social
media accounts (e.g., Google, Facebook, or LinkedIn) for

authentication. This associates the user’s social media
account with their account on the platform.
Classic personal credentials method: Users provide an
email and choose a password during registration.
Optionally, users can also select a username.

This chapter will consider the classic personal credentials
method. When users register, they provide an email and choose
a password and, optionally, a username.

What is JWT?

While there are different ways of maintaining the identity of a
user across different parts of an app, JWT is arguably the most
common and popular method of connecting frontend
applications (React, Vue.js, and Angular) or mobile apps with an
API (in our case, a REST API). JWT is nothing but a standard, a
way of structuring a big string composed of seemingly random
characters and numbers that encapsulate user data in a secure
way.

JWTs contain three parts—the header, the payload, and the
signature. The header hosts metadata about the token itself—
the algorithm used for signing the token and the type of the
token.

The payload is the most interesting part. It contains the
following information necessary for authentication:

Data (claims): The ID of the user (or the username)
The issued at field (iat): The date and time of issuing the
token
The time at which the token ceases to be valid: Tied to the
duration of the token
Optionally, other fields: For example, the username, roles
etc.

The payload is decodable and readable by everyone. You can
read more about tokens and understand how they look in the
JWT documentation: https://jwt.io.

Finally, the most important part of the token is the signature.
The signature guarantees the claims made by the token. The
signature is reproduced (calculated) and compared with the
original—thus preventing the modification of the claims.

For example, consider a JWT stating that the username is John.

Now, if someone were to attempt to change this to Rita, they

would also need to modify the signature to match. However,
altering the signature would render the token invalid. This

https://jwt.io/

mechanism ensures that the token’s content remains
unchanged and authentic.

The token is hence able to completely replace the
authentication data—user or email and password combinations
that do not need to be transmitted more than once.

In the upcoming sections, you will learn how to implement a
JWT-based authentication flow in your app.

FastAPI backend with users and
dependencies

Web applications (or mobile apps, for that matter) are not very
useful if they are not secure. You must have heard about tiny
errors in the authentication implementations that result in
hundreds of thousands or even millions of compromised
accounts, potentially exposing sensitive and valuable
information.

FastAPI is based on OpenAPI—previously known as Swagger—
an open specification for crafting APIs. OpenAPI enables you to
define various security schemes, compatible with the various
protocols (apiKey, http, OAuth 2.0, openIdConnect, and so

on). While the FastAPI documentation website
(https://fastapi.tiangolo.com/tutorial/security/) provides an
excellent and detailed tutorial on creating an authentication
flow, it is based on the OAuth 2.0 protocol, which uses form

data to send the credentials (username and password).

In the following sections, you will devise a simple user model
that will enable an authentication flow. You will then learn how
to encode the user data into a JWT and how to use the token for
accessing protected routes.

User model for authentication

The basis of every authentication flow is the user model, which
has to be able to store a minimum set of data needed for
unequivocally identifying the users. The most common unique
fields are an email address, a username, and, of course, a
primary key—an ObjectId instance in the case of MongoDB.

Modeling data with MongoDB is inherently different from
modeling relational databases as discussed in Chapter 2, Setting
Up the Database with MongoDB. The driving idea is to think of
queries upfront and model your relationships taking into
account the queries that your app is going to be making most
frequently.

https://fastapi.tiangolo.com/tutorial/security/

Authentication and authorization
with FastAPI: a walk-through

Authentication and authorization with FastAPI are much easier
to understand through an example. In the next few sub-
sections, you will develop a simple yet fully functional
authentication system that will contain all the mandatory steps.
To highlight the important parts, while keeping the example as
concise as possible, you will not use a real MongoDB
connection. Instead, you will make your own JSON file-based
database that will store users as they register into the app and
effectively mock a MongoDB collection. The first and foremost
step is to review your authentication system.

Reviewing all the parts of your
authentication system

The following list provides a quick recapitulation of the tools
and packages needed for implementing a FastAPI
authentication workflow:

To implement a FastAPI authentication workflow, you must
use FastAPI’s security tools. In FastAPI, when you need to
declare dependencies with OAuth2 scopes, you will use the
Security() class. The other FastAPI import that will be

needed is the type of dependable—in this case, you will use
bearer tokens for authorization. You can refer to the
FastAPI documentation:
https://fastapi.tiangolo.com/reference/security/#fastapi.secu
rity.HTTPBearer.
You also need password hashing and comparing
functionality, which passlib can provide. The

passlib.context module contains one main class:

passlib.context.CryptContext, designed to take care

of many of the more frequent coding tasks associated with
hashing and comparing strings through various algorithms.
Your authentication system requires two main
functionalities: hashing passwords during user registration
and comparing hashed passwords during login with those
stored in your database.
Finally, PyJWT will provide the functionality to encode and
decode JWT.

Creating the model

The next steps involve creating the basic FastAPI application in
a new virtual environment, activating the environment,
installing the necessary packages, and creating a suitable model
of the users with the required fields:

https://fastapi.tiangolo.com/reference/security/#fastapi.security.HTTPBearer
https://fastapi.tiangolo.com/reference/security/#fastapi.security.HTTPBearer

1. Create a new directory, set it as the working directory with
the cd (change directory) command, create a new Python

environment in /venv, and activate it:

mkdir chapter6

cd chapter6

python -m venv venv

source ./venv/bin/activate

2. Once the new Python environment is active, install the
needed packages for the authentication system and the
application overall:

pip install fastapi uvicorn bcrypt==4.0.1

passlib pyjwt

NOTE

If you want to be able to reproduce exactly the code in the book,
you are strongly encouraged to use the
/backend/requirements.txt file from the accompanying

repository and install the packages with the pip install -r

requirements.txt command.

The following are the last three packages needed for your
authentication system:

Passlib is a password hashing library for Python, and it

supports a wide range of hashing algorithms, including
bcrypt. It is very useful as it provides a unified interface

for hashing and verifying passwords.
The bcrypt package is a Python module that provides the

password hashing method based on the Blowfish password
hashing algorithm that you will be using. Please stick to the
provided version of the package as there are some
unresolved issues with later versions.
PyJWT is the Python library for encoding and decoding JWT.

3. Next, create the models for the application. As this app will
only deal with users, the models.py file is rather simple:

from pydantic import BaseModel, Field

from typing import List

class UserBase(BaseModel):

 id: str = Field(...)

 username: str = Field(

 ...,

 min_length=3,

 max_length=15)

 password: str = Field(...)

class UserIn(BaseModel):

 username: str = Field(

 ...,

 min_length=3,

 max_length=15)

 password: str = Field(...)

class UserOut(BaseModel):

 id: str = Field(...)

 username: str = Field(

 ...,

 min_length=3,

 max_length=15)

class UsersList(BaseModel):

 users: List[UserOut]

The models are self-explanatory, and they are left to be as
explicit as possible. UserBase corresponds to the user

representation that will be stored in your dummy database, or
in a MongoDB collection (pay special attention to Object_id).

In the given solution, the id field will be a UUID, so you set it to

a string type.

NOTE

A Python UUID (which stands for universally unique
identifier) is a 128-bit string that uniquely identifies an object,

entity, or resource in both space and time. In our case, it will
mimic MongoDB’s ObjectId() class for the purpose of this

demonstration.

The models.py file contains two additional auxiliary Pydantic

models: UserIn, which accepts the user data for registration or

login (typically username and password, but can easily be
extended to include email or other data), and UserOut, which is

responsible for representing users within the application,
excluding the hashed password but including the ID and the
username.

UsersList finally just outputs the list of all users, and you will

use this model as an example for your protected route. Now,
build your app.py file and create the actual application.

Creating the application file

After defining the models, you can now proceed and create the
main FastAPI application and the authentication class:

1. Open a new Python file and name it app.py. Inside this file,

create a minimal FastAPI application:

from fastapi import FastAPI

app = FastAPI()

We will return to this file shortly, but for now, let’s keep it
as short as possible. Now it is time to build out the heart of
your authentication system.

2. In the same folder, create the authentication.py file and

start building it. Having all this at hand, open the newly
created authentication.py file and begin crafting the

authentication class. For this, you must first scaffold the
AuthHandler class and add the required imports:

import datetime

import jwt

from fastapi import HTTPException,

Security

from fastapi.security import

HTTPAuthorizationCredentials, HTTPBearer

from passlib.context import CryptContext

class AuthHandler:

 security = HTTPBearer()

 pwd_context = CryptContext(schemes=

[“bcrypt”], deprecated=”auto”)

 secret = “FARMSTACKsecretString”

Now that you have learned about all these imports, you can
craft a class named AuthHandler, that uses FastAPI’s

HTTPBearer as the security dependency and defines a

password-processing context from passlib.

Adding security dependency and password-
processing context

This procedure consists of multiple steps. You’ll need to add a
secret string that would ideally be generated randomly and
kept safe in an environment variable, far from any git

commit. The secret string is necessary for hashing the

passwords. Here, you will hardcode it in this file for simplicity.

So, continue with the same file and code the desired
functionality step by step, as follows:

1. Hashing the passwords
First, you will need a function for generating the hashed
password. Add the following code into your
authentication.py file under the AuthHandler class:

def get_password_hash(self, password: str)

-> str:

 return

self.pwd_context.hash(password)

This function simply creates a hash of the given password,
and this result is what you will be storing in your database.
It is making good use of your previously defined passlib

context.
2. Verifying the hashed passwords

In the next step, you need a way of verifying that the hash
of the provided plain password matches the stored hashed
version. Add the following code into your
authentication.py file:

 def verify_password(

 self,

 plain_password: str,

 hashed_password: str) -> bool:

 return self.pwd_context.verify(

 plain_password,

 hashed_password)

Similar to the previous function, verify_password simply

verifies that the hash of plain_password is indeed equal

to the (already) hashed password and it returns True or

False.

3. Token encoding
Now you can take care of the token encoding. Add the
following code at the end of your authentication.py file:

def encode_token(self, user_id: int,

username: str) -> str:

payload = {

 “exp”:

datetime.datetime.now(datetime.timezone.utc)

 +

datetime.timedelta(minutes=30),

 “iat”:

datetime.datetime.now(datetime.timezone.utc),

 “sub”: {“user_id”: user_id,

“username”: username},

 }

 return jwt.encode(payload,

self.secret, algorithm=”HS256”)

The encode_token method of your class leverages the

PyJWT package’s encode method to create the JWT itself,

and it is very explicit; the payload contains the expiration
time (very important—you do not want the JWTs to last for
too long) and the issued-at time (the iat part). Also, it

references the dictionary named sub, which contains all

the data that you wish to encode—in this case, the user ID
and the username, although you could also add a role
(regular user, administrator, and so on) or other data. To
recap, the JWT encodes three pieces of data:

1. The expiration duration, in this example, 30 minutes.
2. The time of issuing the token, in this example, it is set

to now().

3. The sub part is the data (in the form of a dictionary)

that you want to include in the token. In this example,
it is the user ID and the username.

4. Decoding the token
Continue building out the class, as now the reverse
functionality is required—a way of decoding the token:

def decode_token(self, token: str):

 try:

 payload = jwt.decode(

 token,

 self.secret,

 algorithms=[“HS256”])

 return payload[“sub”]

 except jwt.ExpiredSignatureError:

 raise HTTPException(

 status_code=401,

 detail=”Signature has

expired”)

 except jwt.InvalidTokenError:

 raise HTTPException(

 status_code=401,

 detail=”Invalid token”)

The previous snippet is also pretty straightforward. Here,
you try to decode the JWT and in case of expiry or an
invalid token, you raise a nice exception with the status
code and a descriptive message.

5. Defining the dependency
Finalize your class with the dependency to be injected in
the routes that will need protection:

def auth_wrapper(

 self,

 auth: HTTPAuthorizationCredentials =

Security(security)) -> dict:

 return

self.decode_token(auth.credentials)

You will use this auth_wrapper as the dependency—it will

check for the presence of a valid JWT passed as a bearer token
in the request headers for all the routes or entire routers that
need authorization.

The authorization.py file is a minimal implementation of an

authentication/authorization flow.

In the previous steps you wrapped most of the authentication
and authorization functionality into a simple and compact
class. The creation of the token, its encoding and decoding, as
well as the password hashing and verification. Finally, you have
created a simple dependency that will be used for verifying the
user and enabling or disabling access to protected routes.

Building the FastAPI router for the application will be very
similar to the ones that you have already built in Chapter 2,
Setting Up the Database with MongoDB. You will have two basic
endpoints for registering and logging in, and they will rely
heavily on the AuthHandler class.

Creating the APIRouter for the users

In this section, you will create the APIRouter for the users and
implement the login and register functionalities with the help
of the authentication class and a mock database service
implemented with dictionaries and UUID. To achieve this
functionality, perform the following steps:

1. Create a folder routers in the root of your application and

a file named users.py inside of it. Add the following code

to the users.py file:

import json

import uuid

from fastapi import APIRouter, Body,

Depends, HTTPException, Request

from fastapi.encoders import

jsonable_encoder

from fastapi.responses import JSONResponse

from authentication import AuthHandler

from models import UserBase, UserIn,

UserOut, UsersList

2. After adding the imports at the start of the file, create the
APIRouter and the registration endpoint. The registration
function uses the fake JSON database to store the username
and the hashed password, by using the
authentication.py file that you created before.

router = APIRouter()

auth_handler = AuthHandler()

@router.post(“/register”,

response_description=”Register user”)

async def register(request: Request,

newUser: UserIn = Body(...)) -> UserBase:

 users =

json.loads(open(“users.json”).read())

[“users”]

 newUser.password =

auth_handler.get_password_hash(newUser.passwo

 if any(user[“username”] ==

newUser.username for user in users):

 raise

HTTPException(status_code=409,

detail=”Username already taken”)

 newUser = jsonable_encoder(newUser)

 newUser[“id”] = str(uuid. uuid4())

 users.append(newUser)

 with open(“users.json”, “w”) as f:

 json.dump({“users”: users}, f,

indent=4)

 return newUser

In order to demonstrate a basic JWT-based authentication
and authorization system, a fake data storage solution is
used. Instead of connecting through a driver to a MongoDB
cluster, you use a simple JSON file for storing users along
with their hashed passwords—a solution similar to the
popular JSON Server Node package, used for testing and
scaffolding purposes. However, all the functionality and
logic presented will apply to real database scenarios, and it
is easily adaptable for MongoDB drivers or ODMs, such as
PyMongo, Motor, or Beanie.

After the imports, which include a couple of packages that
you will likely not need when working with a real
MongoDB database, such as JSON and uuid, you have

instantiated APIRouter and the custom-made AuthHandler

class.
The /register endpoint accepts the new user’s data in the

body and molds it through the UserIn Pydantic class

defined in the models.py file, while the output is set to be

of class UserBase. This is something that you would likely

avoid as it will send the hashed password back to the newly
registered user.
Instead of a real MongoDB database, you are reading the
contents of a JSON file called users.json—this file will

host a very simple data structure that will mimic your
users’ MongoDB collection: a simple array of dictionaries
containing user data – the ID, the username, and the
hashed password.
Now that you have this “database,” or array of users, it is
easy to just loop over them and verify whether it contains a
user with the same username as the user trying to register
—if so, you just dismiss it with a gentle HTTP 409 response

code and a Username already taken message.

If the username is not taken, proceed to start using your
auth_handler instance and set the plain-text raw

password to its hashed counterpart, safe to be stored inside
the database.
In order to be able to store the user as a Python dictionary,
use jsonable_encoder and add a new key to it: the uuid

string that will be used as the ID of the new user.
Finally, append the user (represented as a dictionary with
an ID, username, and hashed password) to your list of
users, write the modified list to the JSON file, and return the
user.

3. Now, continuing with the users.py router, you can create

the login endpoint as well by adding the following code at

the end of the file:

@router.post(“/login”,

response_description=”Login user”)

async def login(request: Request,

loginUser: UserIn = Body(...)) -> str:

 users =

json.loads(open(“users.json”).read())

[“users”]

 user = next(

 (user for user in users if

user[“username”] == loginUser.username),

None

)

 if (user is None) or (

 not

auth_handler.verify_password(loginUser.passwo

user[“password”])

):

 raise

HTTPException(status_code=401,

detail=”Invalid username and/or password”)

 token =

auth_handler.encode_token(str(user[“id”]),

user[“username”])

 response = JSONResponse(content=

{“token”: token})

 return response

This code follows a similar logic: it loads the user data and
attempts to find the login user by their username (similar to
a find query). If the user is not found or the password
verification fails, the endpoint raises an exception. It’s
considered a good security practice to inform the user that
the entire combination of username and password is
invalid, without specifying which part exactly failed. If both
checks pass, you encode the token and return it to the user.

4. Time to hook up the router. Edit the previously created
app.py file by replacing the contents of the file with the

following code:

from fastapi import FastAPI

from fastapi.middleware.cors import

CORSMiddleware

from routers.users import router as

users_router

origins = [“*”]

app = FastAPI()

app.add_middleware(

 CORSMiddleware,

 allow_origins=origins,

 allow_credentials=True,

 allow_methods=[“*”],

 allow_headers=[“*”],

)

app.include_router(users_router,

prefix=”/users”, tags=[“users”])

Here, you added the CORS middleware in order to
facilitate the connection with your future React frontend,
and you added the users router.

5. Now, create a file called users.json in the root of your

project and populate it with an empty users array:

{

 users:[]

}

6. Save the file and start the FastAPI application from the
shell:

uvicorn app:app --reload

7. You should be able to perform a user registration and a
user login. Try it with the HTTPie client:

http 127.0.0.1:8000/users/register

username=”marko” password=”marko123”

8. The server should send the following response, but bear in
mind that your hash and UUID will be different:

HTTP/1.1 200 OK

content-length: 138

content-type: application/json

date: Sun, 07 Apr 2024 18:38:41 GMT

server: uvicorn

{

 “id”: “45cd212b-71eb-42b4-9d06-

a74f2609764b”,

 “password”:

“$2b$12$owWXcY5KgI9s6Rdfjcpx7eXaZOMWf8NaxN.So

 “username”: “marko”

}

If you peek in the users.json file, you should see

something like this:

{

 “users”: [

 {

 “username”: “marko”,

 “password”:

“$2b$12$owWXcY5KgI9s6Rdfjcpx7eXaZOMWf8NaxN.So

 “id”: “45cd212b-71eb-42b4-

9d06-a74f2609764b”

 }

]

NOTE

In a real-world system, you would not want to send the hashed
password even to the logged-in user, but this whole system is for
demonstration purposes and created to be as illustrative as
possible.

You have created a full authentication flow (for demonstration
purposes—you will not use a JSON file with dictionaries and
UUIDs in production) and you have crafted all the mandatory

functionalities: creating users (registration), checking for the
validity of the submitted data, and user login. Finally, you tested
the registration functionality by creating a test user.

Testing the login functionality with HTTPie

Now, test the login functionality with the correct user/password
combination and then a wrong one.

1. First, log in. In the terminal, issue the following HTTPie
command:

http POST 127.0.0.1:8000/users/login

username=”marko” password=”marko123”

The response should be just a big string—your JWT—the
value of this token (here, it starts with the string
eyJhbGciOiJ…) should be copied and saved for testing the
authenticated route later:

HTTP/1.1 200 OK

content-length: 241

content-type: application/json

date: Sun, 07 Apr 2024 18:43:07 GMT

server: uvicorn

{

 “token”:

“eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJleHA

iOiI0NWNkMjEyYi03MWViLTQyYjQtOWQwNi1hNzRmMjYw

I6Im1hcmtvIn19.tFcJoKhTdDBDIBhCX-

dCUEkCD3Fc8E-smQd2M_h5h2k”

}

2. Try something like the following (notice the password is
wrong):

http POST 127.0.0.1:8000/users/login

username=”marko” password=”marko111”

The response will be similar to the following:

HTTP/1.1 401 Unauthorized

content-length: 45

content-type: application/json

date: Sun, 07 Apr 2024 18:44:34 GMT

server: uvicorn

{

 “detail”: “Invalid username and/or

password”

}

You have just implemented your own authentication system
with FastAPI from scratch. Now it would be great to put it to use
in a route.

Creating a protected route

Say that now you want a new endpoint that lists all the users in
your system, and you want to make it visible only to logged-in
users. This method would allow you to protect any route in
different routers, just by leveraging the powerful FastAPI
dependency injection system:

1. Open the users.py file and add the following route at the

end:

@router.get(“/list”,

response_description=”List all users”)

async def list_users(request: Request,

user_data=Depends(auth_handler.auth_wrapper))

 users =

json.loads(open(“users.json”).read())

[“users”]

 return UsersList(users=users)

The key to this route is the user_data part—if the

dependency is not met, the route will respond with an
exception and the messages defined in
authentication.py.

2. Try to log in, grab the JWT that you got from the login
endpoint and have copied (if it hasn't expired!), and then
pass it as the bearer token:

http GET 127.0.0.1:8000/users/list

‘Authorization:Bearer <your Bearer Token>’

The result should contain all the users that you have
created so far:

HTTP/1.1 200 OK

content-length: 76

content-type: application/json

date: Sun, 07 Apr 2024 19:07:45 GMT

server: uvicorn

{

 “users”: [

 {

 “id”: “45cd212b-71eb-42b4-

9d06-a74f2609764b”,

 “username”: “marko”

 }

]

}

3. If you try to modify the token, or if you let it expire, the
result will be the following:

HTTP/1.1 401 Unauthorized

content-length: 26

content-type: application/json

date: Sun, 07 Apr 2024 19:10:12 GMT

server: uvicorn

{

 “detail”: “Invalid token”

}

In this section, you saw how to create a simple but efficient
authentication system on your FastAPI backend, create a JWT
generator, verify the tokens, protect some routes, and provide
the routes needed for creating (registering) new users and
logging in. The next section will show how things work on the
front end.

Authenticating the users in React

In this section, you will go through a basic mechanism that will
enable you to have a simple authentication flow on the client
side. Everything will revolve around the JWT and the way you
decide to handle it.

React.js is an unopinionated UI library. It provides numerous
ways of implementing user authentication and authorization.
Since your FastAPI backend implements JWT-based
authentication, you have to decide how to deal with the JWT in
React.

In this chapter, you are going to store it in memory, then in
localStorage (an HTML5 simple web storage object in

JavaScript that allows applications to store key-value pairs in a
user’s web browser with no expiration date). This chapter will
not cover cookie-based solutions, which tend to be the most
robust and secure, as one such solution will be covered in the
next chapter.

Each of these methods has its benefits and drawbacks, and it is
very useful to get acquainted with them. Authentication should
always be taken very seriously and, depending on your
application scope and requirements, it should always be a topic
that requires thorough analysis.

There is an ongoing debate on what the optimal solution for
storing authentication data is—in this case, the JWT. As always,
there are pros and cons to each solution.

Cookies have been around for a very long time—they can store
data in key-value pairs in the browser and are readable from
both the browser and the server. Their popularity coincided
with the classic server-side-rendered websites. However, they
can store a very limited amount of data and the structure of
said data has to be very simple.

localstorage and sessionStorage were introduced with

HTML5 as a way to address the need for storing complex data
structures in single-page applications (SPAs), among other
things. Their capacity is around 10 MB, depending on the
browser’s implementation, compared to 4 KB of cookie capacity.
Session storage data persists through a session, while local
storage remains in the browser even after it is closed and
reopened until manually deleted, making SPAs the most
pleasant but also the most vulnerable solution. Both can host
complex JSON data structures.

Storing JWTs in localstorage is easy and it provides a great

user and developer experience.

The majority of authorities on the subject suggest storing JWTs
in HTTP-only cookies, as they cannot be accessed through
JavaScript and require the frontend and the backend to run on
the same domain.

This can be accomplished in different ways, through routing
requests or using a proxy. Another popular strategy is the use of
so-called refresh tokens. In this method, the application issues
one token upon login, and then this token is used to generate
other (refresh) tokens automatically, allowing you to strike the
right balance between security and user experience.

The Context API

In Chapter 3, Python Type Hints and Pydantic, you learned how
to manage simple pieces of the state of a component through
the useState hook.

Imagine that you have a top-level component—maybe even the
root App.js component—and you need to pass some piece of

state to a deeply nested component inside the React component
tree. You would need to pass that piece of data to a component
that is inside the App.js stateful component and then pass it

further down the tree until it reaches the subcomponent that
actually needs said data.

This pattern is known as prop drilling—passing a state value
through props and having multiple components that do not use
this state value; they just pass it on. Prop drilling has several
implications, most of which are best avoided:

Refactoring and changing code is more difficult because
you must keep the state value channels of communication
intact at all times
Code is less reusable as components need to always provide
the state value
More code needs to be written, as components need to
accept and forward props

React introduced the Context API as a way of providing values
across components without the need for prop drilling.

Creating a simple SPA

In the following section, you will create a very simple SPA that
will allow users to register (if they are not registered yet), log in
with a username and password, and, if authenticated, see the
list of all registered users. The UI will tightly mimic your
backend.

NOTE

In order for the frontend to be functional and testable, it is
mandatory to provide the backend from the previous section, so
be sure to run the FastAPI backend with:

uvicorn app:app --reload

The frontend will connect to the running FastAPI backend
through the API. While FastAPI is serving the application on the
address http://127.0.0.1:8000, the React frontend will use

this same URL to connect, perform GET and POST requests,
authenticate users and list resources.

You will go through the main concepts of the Context API
storing the JWT in the application. Begin with the following
steps:

1. Create a new Vite React project, install Tailwind, and add
Tailwind CSS as it simplifies the styling of the application.
Please refer to Chapter 5, Setting up a React Workflow, in
order to do so. Also, delete files and folder that will not be
needed (assets such as App.css).

2. Create in the /src folder a new file and name it

AuthContext.jsx. The .jsx extension is a reminder that

the context is indeed a React component that will wrap all
the other components that need access to the context
variables, functions, objects, or arrays:

import {

 createContext

} from ‘react’;

const AuthContext = createContext();

export const AuthProvider = ({

 children

}) => {

 const [user, setUser] =

useState(null);

 const [jwt, setJwt] = useState(null);

 const [message, setMessage] =

useState(null);

 return (<AuthContext.Provider value={

 {

 user,

 jwt,

 register,

 login,

 logout,

 message,

 setMessage

 }

 } > {

 children

 } </AuthContext.Provider>)

}

The preceding code shows the structure of the context
creation – you imported createContext from React and

created your first context (AuthContext). After defining a

couple of state variables and setters (for the user, the jwt

token and the message), you returned the AuthContext

component and the values that will be available in the
context. The syntax is a bit different from the one used for
the hooks examined in Chapter 4, Getting Started with
FastAPI, but this is a straightforward template that you will
reuse many times, should you opt for the Context API.

3. While simple, creating a context involves several steps:
1. First, you will need to create the actual context that will

be shared across the application.
2. After that, the context should be provided to all the

components needing access to its values.
3. The components that need to access the context values

need to subscribe to the context in order to be able to
read, but also write to it.

So, the first step when creating a context should be defining
exactly what type of information you need to pass to
components. If you think about it, you would definitely
want the JWT since that is the whole point of this exercise.
In order to showcase context functionality, you will also
include the logged-in user and a message that will display
the state of the application.
But since the context can also contain and pass functions—
and that’s indeed one of its most useful features—you will
also add to the context the register, login, and logout

functions. That may not be something you would do in a
production system, but it will showcase the capabilities of
Context API.

4. Now, the only thing left to do is add the functions to the
context. To do that, edit the existing AuthContext.jsx file

and, after declaring the state variables, define the function
for registering new users:

 const register = async (username,

password) => {

 try {

 const response = await

fetch(‘http://127.0.0.1:8000/users/register’,

{

 method: ‘POST’,

 headers: {

 ‘Content-Type’:

‘application/json’,

 },

 body: JSON.stringify({

 username,

 password

 }),

 });

 if (response.ok) {

 const data = await

response.json();

 setMessage(`Registration

successful: user ${data.username}

created`);

 } else {

 const data = await

response.json();

 setMessage(`Registration failed:

${JSON.stringify(data)}`);

 }

 } catch (error) {

 setMessage(`Registration failed:

${JSON.stringify(error)}`);

 }

 };

This simple JavaScript function is part of the context, and
the only thing that interacts with your context is the setting
of the status message—if a user is successfully created, the
message confirms it. In case of an error, the message is set
to the error. You will want to provide a more complex
validation logic and a nicer UI, but this is quite illustrative
of the context functioning.

5. Now add the other function related to authentication—the
login() function:

const login = async (username, password)

=> {

 setJwt(null)

 const response = await

fetch(‘http://127.0.0.1:8000/users/login’,

{

 method: ‘POST’,

 headers: {

 ‘Content-Type’: ‘application/json’,

 },

 body: JSON.stringify({

 username,

 password

 }),

 });

 if (response.ok) {

 const data = await response.json();

 setJwt(data.token);

 setUser({

 username

 });

 setMessage(`Login successful: token

${data.token.slice(0, 10)}..., user

${username}`);

 } else {

 const data = await response.json();

 setMessage(‘Login failed: ‘ +

data.detail);

 setUser({

 username: null

 });

 }

};

The preceding code is similar to the register function—it

sends a POST request to the FastAPI /login endpoint with

the user-provided username and password, and it clears
any pre-existing JWT in the process. If the request is
successful, the retrieved token is set to its state variable and
the username accordingly.

6. The final piece of the puzzle is logging the user out. Since
you are dealing only with the Context API and not some
persistent storage solutions, the code is very short; it just
needs to clear the context variables and set the appropriate
message:

const logout = () => {

 setUser(null);

 setJwt(null);

 setMessage(‘Logout successful’);

};

7. Your AuthContext is nearly complete—the only thing left

is to inform the context that it needs to provide the

previously defined functions. So, modify the return

statement to include everything:

return (<

 AuthContext.Provider value = {

 {

 user,

 jwt,

 register,

 login,

 logout,

 message,

 setMessage

 }

 } > {

 children

 } <

 /AuthContext.Provider>

);

8. As a final touch, add a useContext React hook that

facilitates working with contexts:

export const useAuth = () =>

useContext(AuthContext);

This simple one-line hook allows you to now use
AuthContext in any component that has access to the

context—so any component wrapped inside AuthContext

—with some simple ES6 destructuring. With your
AuthContext now in place, you can put it directly in the

App.jsx component and wrap it around all the other

components.
9. Open the App.jsx file and edit it:

import { AuthProvider } from

“./AuthContext”;

const App = () => {

 return (

 <div className=”bg-blue-200 flex flex-

col justify-center items-center min-h-

screen”>

 <AuthProvider>

 <h1 className=”text-2xl text-blue-

800”> Simple Auth App </h1>

 </AuthProvider>{“ “}

 </div>

);

};

export default App

This root component doesn’t contain anything that you
haven’t seen already—apart from importing
AuthProvider—the component of your custom

authentication context responsible for wrapping the area of
components and a bit of Tailwind styles.

10. Now comes the part where you will define the components
that will be wrapped inside the context – as those
components will be able to consume the context, have
access to the context data, and modify it. For a bit more
complex application, you would likely resort to the React
Router package, but since this will be a very simple
application, you will cram all the components into one
page. There aren’t many of them:

1. Login: A simple login component form that will accept
a username and password and then call the login()

function from the context.
2. Register: Similar to the login component, but for

registering new users.
3. Message: The simplest component, used only to display

the status of the app.
4. Users: The component whose state depends on the

authentication status: if the user is logged in, they can
see the list of users, meaning the JWT is present and
valid; otherwise, the user is prompted to make a login.

11. The Register component will be used for user

registration. It needs to display a form. Create the
Register.jsx file in the /src folder and create a simple

form with two fields:

import { useState } from ‘react’;

import { useAuth } from ‘./AuthContext’;

const Register = () => {

 const [username, setUsername] =

useState(‘’);

 const [password, setPassword] =

useState(‘’);

 const { register } = useAuth();

 const handleSubmit = (e) => {

 e.preventDefault();

 register(username, password)

 setUsername(‘’)

 setPassword(‘’)

 };

 return (

 <div className=”m-5 p-5 border-

2”>

 <form onSubmit={handleSubmit}

className=’grid grid-rows-3 gap-2’>

 <input

 type=”text”

 placeholder=”Username”

 className=’p-2’

 value={username}

 onChange={(e) =>

setUsername(e.target.value)}

 />

 <input

 type=”password”

 placeholder=”Password”

 className=’p-2’

 value={password}

 onChange={(e) =>

setPassword(e.target.value)}

 />

 <button type=”submit”

className=’bg-blue-500 text-white

rounded’>Register</button>

 </form>

 </div>

);

};

export default Register

You have just created a React-specific form with the help of
two local state variables that take care of keeping track and
sending the username and password to your FastAPI
instance. The register function is imported from

AuthContext through the useAuth() hook. That line

really shows how easy it is to work with the context from
within the wrapped components.
Finally, handleSubmit performs the call to the register

function, clears the fields, and prevents the default HTML
form behavior.

12. Create the Login.jsx file, which is nearly identical (and

here you could practice your React skills and perform some
refactoring). The component has a login form that will be
used for logging in:

import { useState } from ‘react’;

import { useAuth } from ‘./AuthContext’;

const Login = () => {

 const [username, setUsername] =

useState(‘’);

 const [password, setPassword] =

useState(‘’);

 const { login } = useAuth();

 const handleSubmit = (e) => {

 e.preventDefault();

 login(username, password);

 setUsername(‘’);

 setPassword(‘’);

 };

 return (

 <div className=”m-5 p-5 border-

2”>

 <form onSubmit={handleSubmit}

className=’grid grid-rows-3 gap-2’>

 <input

 type=”text”

 placeholder=”Username”

 className=’p-2’

 value={username}

 onChange={(e) =>

setUsername(e.target.value)}

 />

 <input

 type=”password”

 placeholder=”Password”

 className=’p-2’

 value={password}

 onChange={(e) =>

setPassword(e.target.value)}

 />

 <button type=”submit”

className=’bg-blue-500 text-white

rounded’>Login</button>

 </form>

 </div>

);

};

export default Login

13. There are two components left to be inserted in your
simple auth application powered by FastAPI and React.
First, create the src/Message.jsx component, which will

be used to display the status message:

import { useAuth } from “./AuthContext”

const Message = () => {

 const { message } = useAuth()

 return (

 <div className=”p-2 my-2”>

 <p>{message}</p>

 </div>

)

}

export default Message

The Messages component reads the message state variable

from the context and displays it to the users.
14. Now, you can finally create the src/Users.jsx component

and edit it:

import { useEffect, useState } from

‘react’;

import { useAuth } from ‘./AuthContext’;

const Users = () => {

 const { jwt, logout } = useAuth();

 const [users, setUsers] =

useState(null);

 useEffect(() => {

 const fetchUsers = async () => {

 const response = await

fetch(‘http://127.0.0.1:8000/users/list’,

{

 headers: {

 Authorization: `Bearer

${jwt}`,

 },

 });

 const data = await

response.json();

 setUsers(data.users);

 };

 if (jwt) {

 fetchUsers();

 }

 }, [jwt]);

 if (!jwt) return <div>Please log in to

see all the users</div>;

 return (

 <div>

 {users ? (

 <div className=’flex flex-

col’>

 <h1>The list of

users</h1>

 {users.map((user)

=> (

 <li key=

{user.id}>{user.username}

))}

 <button onClick=

{logout} className=’bg-blue-500 text-white

rounded’>Logout</button>

 </div>

) : (

 <p>Loading...</p>

)}

 </div>

);

};

export default Users;

This component does a bit of heavy lifting compared to the
others. It imports jwt (along with the logout function)

from the context. This is important since the output of the
Users.jsx component depends entirely on the existence

and validity of the JWT.
After declaring a local state variable—users—the

component uses the useEffect React hook to perform a

call to the REST API, and since the /users/list endpoint is

protected, the JWT token needs to be present and valid.
If the call to the /users/list endpoint is successful, the

retrieved users data is sent to the users variable and

displayed. Finally, if there is no jwt in the context, the user

is asked to perform a login and the Logout button you
added simply calls the logout function from the context.

15. Finally, to tie everything together, replace the App.jsx file

with the following code to import the components, and
finalize the root component:

import { useState } from ‘react’;

import { AuthProvider } from

‘./AuthContext’;

import Register from ‘./Register’;

import Login from ‘./Login’;

import Users from ‘./Users’;

import Message from ‘./Message’;

const App = () => {

 const [showLogin, setShowLogin] =

useState(true)

 return (

 <div className=’bg-blue-200 flex flex-

col justify-center items-center min-h-

screen’>

 <AuthProvider>

 <h1 className=’text-2xl text-blue-

800’>Simple Auth App</h1>

 <Message />

 {showLogin ? <Login /> : <Register

/>}

 <button onClick={() =>

setShowLogin(!showLogin)}>{showLogin ?

‘Register’ : ‘Login’}</button>

 <hr />

 <Users />

 </AuthProvider>

 </div>

);

};

export default App;

Now, you’ll be able to test the application—try registering,
logging in, entering invalid data, and so on. You have created a
very simple but complete full stack authentication solution. In
the next section, you will learn about some methods of
persisting the login data.

Persisting authentication data with
localStorage

As mentioned before, the most developer-friendly option for
persisting authentication is the use of localStorage or

sessionStorage. localStorage becomes very useful when it

comes to storing temporary, local data. It is widely used for
tasks such as remembering shopping cart data or user login on
any website where security is not paramount. localStorage

has a higher storage limit than cookies (5 MB versus 4 KB) and
does not get sent with every HTTP request. This makes it a
better choice for client-side storage.

To use localStorage, you can set and get JSON items using the

setItem() and getItem() methods, respectively. One

important thing to remember is that localStorage only stores

strings, so you will need to use JSON.stringify() and

JSON.parse() to convert between JavaScript objects and

strings.

Armed with this knowledge, try to summarize what the app
requirements are – you want the user to be able to refresh or
close and reopen the application window/tab and remain
logged in if they were logged in, in the first place. Translated
into React language, you need a useEffect hook that will run

and verify whether there is a token stored in localStorage. If

it is present, you want to check this token through the FastAPI
/me endpoint and set the username accordingly:

1. Open the existing AuthContext.jsx file, and after the

useState hook, define the useEffect call:

 export const AuthProvider = ({

children }) => {

 const [user, setUser] =

useState(null);

 const [jwt, setJwt] = useState(null);

 const [message, setMessage] =

useState(null);

 useEffect(() => {

 const storedJwt =

localStorage.getItem(‘jwt’);

 if (storedJwt) {

 setJwt(storedJwt);

fetch(‘http://127.0.0.1:8000/users/me’, {

 headers: {

 Authorization: `Bearer

${storedJwt}`,

 },

 })

 .then(res => res.json())

 .then(data => {

 if (data.username) {

 setUser({

username: data.username });

setMessage(`Welcome back,

${data.username}!`);

 }

 })

 .catch(() => {

localStorage.removeItem(‘jwt’);

 });

 }

 }, []);

The bulk of your persistence logic is located in the
useEffect call. First, you can try to get the jwt token from

localStorage and then use that token to get the user data

from the /me route. If the username is found, it is set in the

context and the user is (already) logged in. If not, you clear
localStorage or send a message that the token has

expired (in the Users.jsx component).

2. The login() function also has to be modified in order to

take account of localStorage. In the same

AuthContext.jsx, modify the login() function:

const login = async (username,

 password) => {

 setJwt(null)

 const response = await fetch(

 ‘http://127.0.0.1:8000/users/login’,

{

 method: ‘POST’,

 headers: {

 ‘Content-Type’:

‘application/json’,

 },

 body: JSON.stringify({

 username,

 password

 }),

 });

 if (response.ok) {

 const data = await response

 .json();

 setJwt(data.token);

 localStorage.setItem(‘jwt’,

data.token);

 setUser({

 username

 });

 setMessage(

 `Login successful: token

${data.token.slice(0, 10)}..., user

${username}`

);

 } else {

 const data = await response

 .json();

 setMessage(‘Login failed: ‘ +

 data.detail);

 setUser({

 username: null

 });

 }

 };

The only modification involves setting the new JWT to the
localStorage jwt variable. Hence, the logout() function

will also need to clear localstorage.

3. In the same AuthContext.jsx file, modify the logout

function:

const logout = () => {

 setUser(null);

 setJwt(‘’);

 localStorage .removeItem(‘jwt’);

 setMessage(‘Logout successful’);

};

4. Finally, in order to make your application even more
explicit and informative, open the Users.jsx component

and replace it with the following code:

import { useEffect, useState } from

‘react’;

import { useAuth } from ‘./AuthContext’;

const Users = () => {

 const { jwt, logout } = useAuth();

 const [users, setUsers] =

useState(null);

 const [error, setError] =

useState(null);

 useEffect(() => {

 const fetchUsers = async () => {

 const response = await

fetch(‘http://127.0.0.1:8000/users/list’,

{

 headers: {

 Authorization: `Bearer

${jwt}`,

 },

 });

 const data = await

response.json();

 if (!response.ok) {

 setError(data.detail);

 }

 setUsers(data.users);

 };

 if (jwt) {

 fetchUsers();

 }

 }, [jwt]);

 if (!jwt) return <div>Please log in to

see all the users</div>;

 return (

 <div>

 {users ? (

 <div className=’flex flex-

col’>

 <h1>The list of

users</h1>

 {users.map((user)

=> (

 <li

className=’’ key={user.id}>{user.username}

))}

 <button onClick=

{logout} className=’bg-blue-500 text-white

rounded’>Logout</button>

 </div>

) : (

 <p>{error}</p>

)}

 </div>

);

};

export default Users;

The app is now able to persist the logged-in user, retrieve the
stored JWT, and restore the previous authentication state.
Before trying to log in, make sure that the FastAPI backend is
working properly on port 8000.

Try logging in, refreshing the browser, closing the tab, and
reopening it.

You can also try this with the token inside the Application tab
in the developer toolbar of Chrome or Firefox and see what
happens if you tamper with it or delete it.

Other authentication solutions

It is important to emphasize again that the FARM stack can be a
great prototyping tool. So, knowing your way around it when
creating an authentication flow, even if it is not ideal or
bulletproof, might be just good enough to get you over that MVP

hump in the race for the next great data-driven product. You
could easily implement a similar solution with cookies instead
of localStorage for instance, but keeping in mind the

specificities of both solutions.

Finally, it is important to get acquainted with the various third-
party authentication options. Firebase and Supabase are
popular database and authentication services that can be used
solely for managing users and authenticating them. Clerk and
Kinde are newer players in the field and are particularly
geared toward the React/Next.js/Remix.js ecosystem, while
Auth0 and Cognito are industry-standard solutions. Almost all
third-party authentication systems offer a generous free or
almost-free tier, but once your application grows, you are
bound to hit a paid tier, and the costs vary and replacing these
services, should the need arise, is not easy.

Summary

In this chapter, you’ve seen a very basic, but quite
representative, implementation of two versions of an
authentication mechanism. You learned how FastAPI enables
the use of standard-compliant authentication methods and
implemented one of the simplest possible yet effective solutions

– without persisting the authentication data and storing the
JWT in localStorage.

You have learned how elegant and flexible FastAPI is when it
comes to defining granular roles and permissions, especially
with MongoDB, with the aid of Pydantic as the middleman. This
chapter was focused exclusively on JWTs as the means of
communication because it is the primary and most popular tool
in SPAs nowadays, and it enables great connectivity between
services or microservices. JWT mechanisms shine when you
need to develop different applications with the same FastAPI
and MongoDB-powered backend—for instance, a React web
application and a React Native or Flutter-based mobile app.

Furthermore, carefully considering your authentication and
authorization strategy is crucial, especially when extracting
user data from third-party systems may not be feasible or
practical. This highlights the importance of devising robust
authentication and authorization methods.

In the next chapter, you will create a more complex FastAPI
backend, with image uploading through a third-party service
and use a MongoDB database for persistance.

7

Building a Backend with FastAPI

In the previous chapters, you learned the basic mechanics of
authentication and authorization, and now you are ready to
implement it and secure a web API, built with FastAPI. In this
chapter, you will put this knowledge to good use and create a
simple, yet fully functional REST API showcasing used cars and
their pictures.

In this chapter, you will learn about the following actions,
which can be thought of as a loosely coupled blueprint when
creating a REST API with FastAPI.

This chapter will cover the following topics:

Connecting the FastAPI instance to MongoDB Atlas by using
the Python Motor driver
Defining the Pydantic models according to the specification
and initial creation of the FastAPI application
Creating the API router and implementing CRUD operations
Securing the API with a JWT
Deployment to Render

Technical requirements

The requirements for this chapter are similar to those defined
earlier. You will work with:

Python 3.11.7 or higher
Visual Studio Code
An account on MongoDB Atlas

Later on, you will need to create an account on the image-
hosting service Cloudinary (free) and the Render platform for
hosting the API (also a free tier account). Again, you will use
HTTPie for manually testing the API endpoints that you are
going to implement.

Let’s start by understanding the application to be developed
and what the backend will require.

Introducing the application

It is much easier to start working with a framework while
having a specific problem that needs solving, even if the
requirements are somewhat vague. The task at hand is rather
simple: you need to create a REST API backend for storing and

retrieving data about used cars for a fictional car sales
company.

The data structure that describes a vehicle is rather simple but
can become more complicated as soon as you delve into the
details such as engine models, interior colors, types of
suspension, and so on.

In your first simple create, read, update, delete (CRUD)
application, you will keep the resource data limited. A car will
be described by the following fields:

Brand: The brand of the car (Ford, Renault, etc.),

represented by a string
Make or model: For example, Fiesta or Clio, represented by
a string
Year: The year of production, an integer limited to a

reasonable range (1970–2024)
Cm3: The displacement of the engine, proportional to the

power of the engine, a ranged integer
kW: Power of the engine in kW, an integer

Km: How many kilometers the car has travelled, an integer

in the hundreds of thousands range
Price: The price in euros

An image URL: This is optional

An essential feature of every car sales website is the presence of
images, so you will implement an image-uploading pipeline
with one of the leading services for image hosting and
processing—Cloudinary. Later, you will aid the employees even
more by generating compelling copy text for each car model,
which will make the API richer while showcasing FastAPI’s
simplicity.

Creating an Atlas instance and a
collection

Log in to your Atlas account, and create a new database called
carBackend inside a collection named cars. You can refer to

Chapter 2, Setting Up the Database with MongoDB. After creating
the database and the collection, take note of the MongoDB
connection string and save it in a text file for later, when you
will be creating your secret environment keys.

Setting up the Python environment

After creating the MongoDB database on Atlas and connecting
it, it is time for you to set up a brand new Python virtual
environment and install the requirements:

1. First, create a plain text file called requirements.txt and

insert the following lines in it:

fastapi==0.111.0

motor==3.4.0

uvicorn==0.29.0

pydantic-settings==2.2.1

2. The package versioning is important if you want to be able
to reproduce exactly the code used in this book and you can
always refer to the requirements.txt file in the book’s

repository. Run the pip installation command that reads

the previously defined requirements file:

pip install -r requirements.txt

Your environment is ready. Now, armed with the knowledge of
Python type hints and Pydantic from Chapter 3, Python Type
Hints and Pydantic, you will model this relatively simple car
data structure.

Defining the Pydantic models

Let’s begin with the first Pydantic model, for a single car. Here,
one of the main problems that need to be solved upfront is how

to serialize and define the MongoDB ObjectID key in Pydantic.

While there are different ways of representing the ObjectID,

the simplest and the one currently recommended by MongoDB
is to cast the ObjectID to a string. You can refer to the

following documentation for further details:
https://www.mongodb.com/developer/languages/python/python
-quickstart-fastapi/.

MongoDB uses the field name _id for the identifier. In Python,

since attributes that start with an underscore have a special
meaning, you cannot use the original field name for model
population.

Pydantic aliases provide a simple and elegant solution; you can
name the field id but also give it an alias of _id and set the

populate_by_name flag to True, as shown in Chapter 3, Python

Type Hints and Pydantic.

Finally, you will need to cast the ObjectID as a string. To do so,

you will use a simple Python annotation, and the Pydantic
BeforeValidator module.

1. Create a folder named Chapter7 and a models.py file

inside of it, and start with the imports and the ObjectID

type:

https://www.mongodb.com/developer/languages/python/python-quickstart-fastapi/
https://www.mongodb.com/developer/languages/python/python-quickstart-fastapi/

#models.py

from typing import Optional, Annotated,

List

from pydantic import BaseModel,

ConfigDict, Field, BeforeValidator,

field_validator

PyObjectId = Annotated[str,

BeforeValidator(str)]

2. After the imports, and creating a new type, PyObjectId,

which will be used to represent MongoDB’s original BSON
ObjectID as a string, continue populating the model:

class CarModel(BaseModel):

 id: Optional[PyObjectId] = Field(

 alias="_id", default=None)

 brand: str = Field(...)

 make: str = Field(...)

 year: int = Field(..., gt=1970,

lt=2025)

 cm3: int = Field(..., gt=0, lt=5000)

 km: int = Field(..., gt=0, lt=500000)

 price: int = Field(..., gt=0,

lt=100000)

These fields should be very familiar if you read the chapter
on Pydantic; you are simply declaring the car fields,
marking all of them as required, and setting some
reasonable limits on the numerical quantities (cm3, km,

price, and year).

Bear in mind that the number of car brands is limited, so it
is possible and probably advisable to create an
enumerated type for the brand name, but in this case, you
will keep things simple.

3. Add two convenient field validators that act as modifiers.
You want to return the title of every car brand and model:

@field_validator("brand")

@classmethod

def check_brand_case(cls, v: str) -> str:

 return v.title()

@field_validator("make")

@classmethod

def check_make_case(cls, v: str) -> str:

 return v.title()

4. To complete the model, finally, add a configuration
dictionary that will allow it to be populated by name and
allow arbitrary types:

model_config = ConfigDict(

 populate_by_name=True,

 arbitrary_types_allowed=True,

 json_schema_extra={

 "example": {

 "brand": "Ford",

 "make": "Fiesta",

 "year": 2019,

 "cm3": 1500,

 "km": 120000,

 "price": 10000,

 }

 },

)

5. You can now test the model by adding the following
(temporary) lines at the end of the file, outside of the class
definition, and running it:

test_car = CarModel(

 brand="ford", make="fiesta",

year=2019, cm3=1500, km=120000,

price=10000

)

print(test_car.model_dump())

6. Run the models.py file:

python models.py

You will get the following output:

{'id': None, 'brand': 'Ford', 'make':

'Fiesta', 'year': 2019, 'cm3': 1500, 'km':

120000, 'price': 10000}.

Now, it’s time to define other models for updating a single
instance and getting a list of cars. The update model will

need to allow only specific fields to be changed. In theory,
only the price should be updatable since cars are pretty

immutable objects in their own right, but this system will
allow for some ambiguity and situations in which the
inserted data is just wrong and needs to be manually
corrected via the API.

7. After deleting or commenting out the testing lines from
models.py, proceed with creating the UpdateCarModel

model:

class UpdateCarModel(BaseModel):

 brand: Optional[str] = Field(...)

 make: Optional[str] = Field(...)

 year: Optional[int] = Field(...,

gt=1970, lt=2025)

 cm3: Optional[int] = Field(..., gt=0,

lt=5000)

 km: Optional[int] = Field(..., gt=0,

lt=500 * 1000)

 price: Optional[int] = Field(...,

gt=0, lt=100 * 1000)

The remaining part of the class is identical to the CarModel

class and will be omitted for brevity.
8. Finally, the ListCarsModel class will be very simple, as it

only needs to handle a list of CarModel classes:

class CarCollection(BaseModel):

 cars: List[CarModel]

With the models now in place, you are ready to make a
simple test and see how ListCarsModel works.

9. Create a new testing file called test_models.py, add the

following lines in order to create two different car models
and a list, and then print a model dump:

from models import CarCollection, CarModel

test_car_1 = CarModel(

 brand="ford", make="fiesta",

year=2019, cm3=1500, km=120000,

price=10000

)

test_car_2 = CarModel(

 brand="fiat", make="stilo", year=2003,

cm3=1600, km=320000, price=3000

)

car_list = CarCollection(cars=[test_car_1,

test_car_2])

print(car_list.model_dump())

If you run the test_models.py file with Python, the output

should be the following:

{'cars': [{'id': None, 'brand': 'Ford',

'make': 'Fiesta', 'year': 2019, 'cm3':

1500, 'km': 120000, 'price': 10000},

{'id': None, 'brand': 'Fiat', 'make':

'Stilo', 'year': 2003, 'cm3': 1600, 'km':

320000, 'price': 3000}]}

The models, at least an initial iteration of them (and MongoDB
is excellent for iterative data modeling), are complete, so you
can start scaffolding your FastAPI application structure in the
next section.

Scaffolding a FastAPI application

Scaffolding is the term generally used to describe the process
of creating the initial application with little or no functionality.
In this section, you will build the FastAPI application and
connect it to your MongoDB Atlas instance through the
asynchronous MongoDB Motor driver. Initially, you will only

create a generic and minimal FastAPI application, and
gradually add functionality.

You will begin by storing the secret environment data—in your
case, just the MongoDB Atlas database URL—into a .env file.

These values should be always kept outside the reach of the
repositories. You want to be able to connect to your MongoDB
database and verify whether the connection is successful.

Creating a .env file to keep the
secrets

For managing values that should be kept secret and out of the
version control system, you will use an environment file (.env).

Perform the following steps to set up the environment variables
and exclude them from the version control:

1. First, create a .env file and, inside it, put your secret

connection string in the following format, without quotes:

DB_URL=mongodb+srv://<USERNAME>:

<PASSWORD>@cluster0.fkm24.mongodb.net/?

retryWrites=true&w=majority&appName=Cluster0

DB_NAME=carBackend

This .env file will later host other secret files for external

services that you might need to use in your API
development.

2. Now, create a .gitignore file, and populate it with the

basic entries: directories and files that are not to be tracked
by Git. Open a file, name it .gitignore, and insert the

following:

__pycache__/

.env

venv/

There are numerous examples of Python-related
.gitignore files on the web, so feel free to look around,

but this will be more than sufficient for our purposes.
3. Now, you can put the working directory under version

control with the following Git commands:

git init

git add .

git commit -m "initial commit"

Creating a Pydantic configuration with
pydantic_settings

In the next steps, you will use the previously created
environment variables and provide them to the
pydantic_settings—the Pydantic class for managing

application settings, covered in Chapter 3, Python Type Hints
and Pydantic. This class will later be easily invoked wherever
the environment variables will be necessary.

After this preparatory work, create a config.py file that will

leverage the pydantic_settings package for managing your

settings, as follows:

1. Create a configuration file, aptly named config.py, which

you will use for reading the settings of the application. You
will be able to change them easily later when you introduce
some automated testing or make different settings for
production, a different database, and so on. Paste the
following code into config.py:

from typing import Optional

from pydantic_settings import

BaseSettings, SettingsConfigDict

class BaseConfig(BaseSettings):

 DB_URL: Optional[str]

 DB_NAME: Optional[str]

 model_config =

SettingsConfigDict(env_file=".env",

extra="ignore")

Now, you will use these configuration settings to get the
environment data to connect to the MongoDB Atlas
instance.

2. Finally, you can start scaffolding the actual application file
by creating a new Python file, named app.py. In this file,

first, instantiate a FastAPI instance and create a root route
with a simple message:

from fastapi import FastAPI

app = FastAPI()

@app.get("/")

async def get_root():

 return {"Message": "Root working"}

3. You should be able to run this bare-bones application in the
terminal with your server of choice:

uvicorn app:app

The simple root message is available at 127.0.0.1:8000 and

you have the application running.

Connecting to Atlas

Now it is time to connect it to Atlas. To do so, you will use the
Lifespan Events of FastAPI, which is the newer way of
handling events that need to occur only once before the
application starts up and begins receiving requests. Lifespan
Events also allow you to handle events that should fire only
after the application finishes handling requests.

NOTE

The FastAPI website has excellent documentation about the topic:
https://fastapi.tiangolo.com/advanced/events/.

For the use case in this chapter, you will use an asynchronous
context manager that will allow you to yield the application
instance, and fire events before and after the application starts.
Follow these steps:

1. To showcase how this works, edit the app.py file:

https://fastapi.tiangolo.com/advanced/events/

from contextlib import asynccontextmanager

from fastapi import FastAPI

@asynccontextmanager

async def lifespan(app: FastAPI):

 print("Starting up!")

 yield

 print("Shutting down!")

app = FastAPI(lifespan=lifespan)

@app.get("/")

async def get_root():

 return {"Message": "Root working!"}

If you start the application with the same command as
shown previously and then shut it down with Ctrl+C, you
will see that the print statements display messages in the

console.
The lifespan event async context is the mechanism you

will use to connect to your Atlas instance, through the use
of the settings.

2. Again, open up the app.py file, add the configuration

settings, change the lifespan function, and bring in the

Motor driver:

from fastapi import FastAPI

from motor import motor_asyncio

from config import BaseConfig

settings = BaseConfig()

async def lifespan(app: FastAPI):

 app.client =

motor_asyncio.AsyncIOMotorClient(settings.DB_

 app.db = app.client[settings.DB_NAME]

 try:

 app.client.admin.command("ping")

 print("Pinged your deployment. You

have successfully connected to MongoDB!")

 print("Mongo address:",

settings.DB_URL)

 except Exception as e:

 print(e)

 yield

 app.client.close()

app = FastAPI(lifespan=lifespan)

@app.get("/")

async def get_root():

 return {"Message": "Root working!"}

3. If you start the application now, you should receive a
message similar to the following:

INFO: Started server process [28228]

INFO: Waiting for application startup.

Pinged your deployment. You have

successfully connected to MongoDB!

Mongo address: <your connection string>

INFO: Application startup complete.

INFO: Uvicorn running on

http://127.0.0.1:8000 (Press

You have implemented quite a lot in this setup:

You have created the FastAPI instance, the backbone of
your API.
You have set the environment variables with
pydantic_settings and they are, thus, manageable and

maintainable.
You have connected to the Atlas cluster that you have set
up.
You have also “attached“ the MongoDB database to the
application, so you will be able to access it conveniently
from the API routers through the request.

Now, let's start implementing the routes for the CRUD
operations, starting from a solid and expansible setup.

CRUD operations

The four basic operations at the heart of almost every web
application are often referred by the acronym CRUD (create,
read, update, and delete). These operations enable users to
interact with data by creating new resources, retrieving one or
more instances of existing resources, and modifying and
deleting resources. Here, a more formal definition of APIs is
used, but resources, in this case, are simply cars.

FastAPI is strongly tied to web standards, so these operations
map to specific HTTP request methods: POST is used for

creating new instances, GET is for reading one or more cars,

PUT is for updating, and DELETE is for deleting resources. In

your case, the resources are represented by cars, which map to

MongoDB documents.

Set up the API router

After having the application ready and serving a basic root
endpoint, the environment variables set up, and the connection
to the Atlas MongoDB database in place, you are now ready to
start implementing the endpoints.

In fact, in the following sections, we will add a router for users;
this will be needed to enable you to associate individual cars

with particular users/salespersons, and to allow for some basic
authentication and authorization.

Like most modern web frameworks (Express.js, Flask, etc.),
FastAPI allows you to structure and group endpoints into API
routers. APIRouter is a module designed to handle a group of

operations related to a single type of object or resource: in your
case, cars, and later, users.

Perform the following steps to create the API router for
managing cars:

1. Create a dedicated folder inside your app directory and
name it /routers. This directory will contain all the API

routers . Inside it, create an empty __init__.py file to turn

the folder into a Python package.
2. Now, create a file named /routers/cars.py. This will be

the first router in this app but, potentially, you could add
more should the application grow. It is a convention to
name the routers according to the resources they manage.

3. Inside /routers/cars.py, begin scaffolding the router:

from fastapi import APIRouter, Body,

Request, status

from models import CarModel

router = APIRouter()

The APIRouter instantiation is very similar to the creation

of the main FastAPI instance—it can be thought of as a
small FastAPI application that becomes an integral part of
the main app, as well as its automated documentation.
APIRouter by itself doesn’t have any functionality—it

needs to be plugged into the main application (app.py) in

order to perform its tasks.
4. Before proceeding, let’s modify the app.py file and plug the

newly created APIRouter in:

from fastapi import FastAPI, status

from fastapi.middleware.cors import

CORSMiddleware

from motor import motor_asyncio

from fastapi.exceptions import

RequestValidationError

from fastapi.responses import JSONResponse

from fastapi.encoders import

jsonable_encoder

from collections import defaultdict

from config import BaseConfig

from routers.cars import router as

cars_router

from routers.users import router as

users_router

settings = BaseConfig()

async def lifespan(app: FastAPI):

 app.client =

motor_asyncio.AsyncIOMotorClient(settings.DB_

 app.db = app.client[settings.DB_NAME]

 try:

 app.client.admin.command("ping")

 print("Pinged your deployment. You

have successfully connected to MongoDB!")

 except Exception as e:

 print(e)

 yield

 app. client.close()

app = FastAPI(lifespan=lifespan)

app.include_router(cars_router,

prefix="/cars", tags=["cars"])

@app.get("/")

async def get_root():

 return {"Message": "Root working!"}

You have created your first APIRouter that will be handling

operations regarding cars and you have connected it, through
the app.py file, to the main FastAPI instance.

Now, you will add functionality to the APIRouter by

implementing handlers for various operations.

The POST handler

Now, with the APIRouter connected, you can return to the

/routers/cars.py file and create the first endpoint, a POST

request handler for creating new instances:

@router.post(

 "/",

 response_description="Add new car",

 response_model=CarModel,

 status_code=status.HTTP_201_CREATED,

 response_model_by_alias=False,

)

async def add_car(request: Request, car:

CarModel = Body(...)):

 cars = request.app.db["cars"]

 document = car.model_dump(

 by_alias=True, exclude=["id"])

 inserted = await

cars.insert_one(document)

 return await cars.find_one({"_id":

inserted.inserted_id})

The code is rather simple and self-explanatory as it uses the
previously defined Pydantic model (CarModel), which is

flexible enough to be reused (through the alias) as the input and
output model.

The line that creates the document to be inserted from the
model uses a couple of Pydantic features, which are covered in
Chapter 3, Python Type Hints and Pydantic, namely, the alias and
the excluded fields.

Now, launch the application:

uvicorn app:app

In another terminal, still inside the working directory of your
project and with the virtual environment activated, test the
endpoint with HTTPie:

http POST http://127.0.0.1:8000/cars/

brand="KIA" make="Ceed" year=2015 price=2000

km=100000 cm3=1500

Your terminal should output the following response:

HTTP/1.1 201 Created

content-length: 109

content-type: application/json

date: Sun, 12 May 2024 15:29:45 GMT

server: uvicorn

{

 "brand": "Kia",

 "cm3": 1500,

 "id": "6640e06ad82a890d261a8a40",

 "km": 100000,

 "make": "Ceed",

 "price": 2000,

 "year": 2015

}

You have created the first endpoint—you can test it further with
HTTPie, or with the interactive documentation at
http://127.0.0.1:8000/docs, and try inserting some invalid

data, such as a year greater than 2024 or something similar.

The endpoint should respond with informative JSON that will
quickly direct you to the problem or provide feedback to the
end user. Now, you will create the GET handlers for viewing the

cars inside your database.

Handling the GET requests

For viewing resources—cars—in your system, you will use the
HTTP GET method. FastAPI makes very good use of HTTP verb

semantics and closely follows web standards and good
practices.

Follow these steps:

1. First, return the whole collection of cars—if you have
played around with the POST endpoint, you might already

have a couple of them inserted. Continuing the
/routers/cars.py file, let’s add the GET handler:

@router.get(

 "/",

 response_description="List all cars",

 response_model=CarCollection,

 response_model_by_alias=False,

)

async def list_cars(request: Request):

 cars = request.app.db["cars"]

 results = []

 cursor = cars.find()

 async for document in cursor:

 results.append(document)

 return CarCollection(cars=results)

2. Test this endpoint with HTTPie:

http http://127.0.0.1:8000/cars/

After running the preceding command, you should get all
the cars inserted up to this point, in a nice JSON structure.
The function signature and the decorator are similar to the
POST endpoint.

3. Instead of using async for, which can be a bit

counterintuitive at first if you are not used to it, you could
also swap the population of the empty results list with the
following:

return CarCollection(

 cars=await cars.find().to_list(1000)

)

Then, you could use the to_list() method to get the

results in a list. If you wish to dive deeper into the Motor

documentation on handling cursors, their page is a bit dry
but complete: https://motor.readthedocs.io/en/stable/api-
tornado/cursors.html.

https://motor.readthedocs.io/en/stable/api-tornado/cursors.html
https://motor.readthedocs.io/en/stable/api-tornado/cursors.html

Later, you will learn how to manually add pagination, since
the collection will hopefully grow to hundreds of cars, as
you will not want to send the user hundreds of results
immediately. Now, create the GET endpoint for finding a

single car by its ID.
4. In the same /routers/cars.py file, add the following GET

handler:

@router.get(

 "/{id}",

 response_description="Get a single car

by ID",

 response_model=CarModel,

 response_model_by_alias=False,

)

async def show_car(id: str, request:

Request):

 cars = request.app.db["cars"]

 try:

 id = ObjectId(id)

 except Exception:

 raise

HTTPException(status_code=404,

detail=f"Car {id} not found")

 if (car := await cars.find_one({"_id":

ObjectId(id)})) is not None:

 return car

 raise HTTPException(status_code=404,

detail=f"Car with {id} not found")

The logic of the endpoint is contained in the line that checks
whether the collection contains a car with the desired ID and
the ID is supplied via a path parameter. The Python walrus
operator (:=), also known as the assignment expression, makes

your code more concise: if the car is found (it is not None), it is

returned and the operand of the truthiness check—the car
instance itself—is passed on; otherwise, the code proceeds to
finish with an HTTP exception.

Again, for the HTTPie command for testing, you will need to
look up an ID and provide it as a path parameter (your ID value
will be different from the following):

http

http://127.0.0.1:8000/cars/6640e06ad82a890d261a8a

You have implemented two of the most important result listing
methods that map to a GET HTTP method: retrieving a list of all

items and a specific single item. Other GET endpoints can

retrieve queries based on MongoDB aggregations, simpler
queries, and filtering, but these two cover the basics.

Now, let’s complete the API with the UPDATE and DELETE

methods.

Updating and deleting records

Now you will tackle the most complex endpoint—the PUT

method that will be used for updating the car instance. Again,
in the same /routers/cars.py file, after the GET routes,

continue editing:

async def update_car(

 id: str,

 request: Request,

 user=Depends(auth_handler.auth_wrapper),

 car: UpdateCarModel = Body(...),

):

 try:

 id = ObjectId(id)

 except Exception:

 raise HTTPException(status_code=404,

detail=f"Car {id} not found")

 car = {

 k: v

 for k, v in

car.model_dump(by_alias=True).items()

 if v is not None and k != "_id"

 }

The first part of the endpoint function analyzes the provided
user data and checks which fields should be updated, by merely
acknowledging their presence in the provided
UpdateCarModel Pydantic model. If the field is present in the

request body, its value is passed to the update dictionary.

Thus, you get a transformed car object that, if not empty, will

then be fed to the find_one_and_update() function of

MongoDB:

 if len(car) >= 1:

 cars = request.app.db["cars"]

 update_result = await

cars.find_one_and_update(

 {"_id": ObjectId(id)},

 {"$set": car},

 return_document=ReturnDocument.AFTER,

)

 if update_result is not None:

 return update_result

 else:

 raise

HTTPException(status_code=404, detail=f"Car

{id} not found")

The update result simply performs the asynchronous update
and returns the updated document by leveraging PyMongo’s
ReturnDocument.AFTER to return the document after the

update has been performed.

Finally, you must also take into account the case in which none
of the fields is set for updating, and simply return the original
document if it is found:

 if (existing_car := await

cars.find_one({"_id": id})) is not None:

 return existing_car

 raise HTTPException(status_code=404,

detail=f"Car {id} not found")

The endpoint provides two possibilities of a 404 exception in

case the document is not found: when there are fields to be
updated and when there are not.

Now, finish the implementation of the basic CRUD functionality
with the method for deleting cars:

@router.delete("/{id}",

response_description="Delete a car")

async def delete_car(

 id: str, request: Request,

user=Depends(auth_handler.auth_wrapper)

):

 try:

 id = ObjectId(id)

 except Exception:

 raise HTTPException(status_code=404,

detail=f"Car {id} not found")

 cars = request.app.db["cars"]

 delete_result = await

cars.delete_one({"_id": id})

 if delete_result.deleted_count == 1:

 return

Response(status_code=status.HTTP_204_NO_CONTENT)

 raise HTTPException(status_code=404,

detail=f"Car with {id} not found")

This is probably the simplest endpoint; if the car with the ID is
found, it is deleted and the appropriate HTTP status is returned
on an empty (No Content) response.

This concludes the basic CRUD functionality, but before going
on, let’s tackle another aspect that, while not part of the basic

functionality, will incur in every real-life project: result
pagination.

Result pagination

Every application that works with data and users must have an
appropriate way to enable and facilitate their communication.
Slamming hundreds of results into the browser isn’t exactly the
best solution.

Results pagination with MongoDB, as well as other databases, is
achieved with the help of the skip and limit parameters.

In this case, you will create a simple frontend-friendly
pagination system with a custom Pydantic model that will
provide two additional JSON properties: the current page and
the has_more flag, to indicate whether there are more result

pages.

This pattern matches the pagination UI with the arrows and
page numbers that indicate the total number of results to the
user.

Start by commenting out the existing GET route. Open the

models.py file and add the following model:

class CarCollectionPagination(CarCollection):

 page: int = Field(ge=1, default=1)

 has_more: bool

This model inherits the CarCollection model and adds the

two desired fields – this pattern is useful when dealing with
large and complex models.

In the cars.py file, after instantiating APIRouter, add a

hardcoded constant that will define the number of default
results per page:

CARS_PER_PAGE = 10

Now you will update (or better, replace entirely) the get all

method in the routers/cars.py file:

@router.get(

 "/",

 response_description="List all cars,

paginated",

 response_model=CarCollectionPagination,

 response_model_by_alias=False,

)

async def list_cars(

 request: Request,

 page: int = 1,

 limit: int = CARS_PER_PAGE,

):

 cars = request.app.db["cars"]

 results = []

The first part of the function is very similar to the previous
version, but we have two new parameters: page and limit (the

number of results per page). Now, create the actual pagination:

cursor =

cars.find().sort("companyName").limit(limit).skip

- 1) * limit)

 total_documents = await

cars.count_documents({})

 has_more = total_documents > limit * page

 async for document in cursor:

 results.append(document)

 return

CarCollectionPagination(cars=results,

page=page, has_more=has_more)

The bulk of the work is handled directly by MongoDB, with the
limit and skip parameters. The endpoint needs the total

number of cars in the collection in order to provide information
on the remaining results and their existence.

This endpoint will work just like the previous one so, to
properly test it, open MongoDB Compass and import some data.
The accompanying GitHub repository contains a file named
cars.csv with 1,249 cars.

After importing this data, you can perform a GET request like

the following:

http http://127.0.0.1:8000/cars/?page=12

The output should contain a list of cars, as in the previous case,
but also the indication of the page and whether there are more
results:

{

 "has_more": false,

 "page": 12

}

Since you are already pulling the total document count from the
database, you could extend this pagination model to include
either the total number of cars in the database or the total

number of pages given the current pagination. That would be a
good exercise that showcases how easy it is to extend and
modify the FastAPI setup.

You have successfully created a fully functional REST API with
FastAPI. Now, let’s further enhance the application by providing
image-uploading functionality.

Uploading images to Cloudinary

While FastAPI is perfectly capable of serving static files –
through the StaticFiles module

(https://fastapi.tiangolo.com/tutorial/static-files/) – you will
rarely want to use your server space and bandwidth to store
images or videos.

Many specialized services can take care of digital asset media
management and, in this section, you will learn how to work
with one of the premier players in the area—Cloudinary.

Cloudinary, as its name suggests, is a cloud-based service that
provides various solutions for digital media assets and web and
mobile applications. These services include uploading and
storing images and videos, and these are precisely the functions
that we are going to use now.

https://fastapi.tiangolo.com/tutorial/static-files/

However, Cloudinary and other similar specialized services
offer much more (image and video manipulations, filters,
automatic cropping and formatting, and real-time
transformations) and they might be an excellent fit for many
media workflows, especially very heavy ones.

To be able to use the service, you will first need to create a free
account by following the instructions at
https://cloudinary.com/users/register_free.

After successfully signing up and logging in, you will
automatically get assigned a product environment key, visible
in the top-left corner. For your purposes, you will only interact
through the Python API as you need to be able to upload images
to your environment through FastAPI.

To get started with the Python API, or any other for that matter,
in addition to this environment key, you will need two more
pieces of information: the API key and the API secret. Both can
be obtained from the Settings page
(console.cloudinary.com./settings) and by selecting API Keys
from the left menu.

Copy the API key and API secret, or create new ones and copy
them into your existing .env file:

https://cloudinary.com/users/register_free
http://console.cloudinary.com./settings

DB_URL=mongodb+srv://xxxxxx:xxxxxxxx@cluster0.fkm

retryWrites=true&w=majority&appName=Cluster0

DB_NAME=carBackend

CLOUDINARY_SECRET_KEY=xxxxxxxxxxxxxxxx

CLOUDINARY_API_KEY=xxxxxxxxxx

CLOUDINARY_CLOUD_NAME=xxxxxxxx

The environment name is mapped as
CLOUDINARY_CLOUD_NAME, while the secret key and API key are

prepended by CLOUDINARY.

You will also need to modify the config.py file to

accommodate the new variables:

from typing import Optional

from pydantic_settings import BaseSettings,

SettingsConfigDict

class BaseConfig(BaseSettings):

 DB_URL: Optional[str]

 DB_NAME: Optional[str]

 CLOUDINARY_SECRET_KEY: Optional[str]

 CLOUDINARY_API_KEY: Optional[str]

 CLOUDINARY_CLOUD_NAME: Optional[str]

 model_config =

SettingsConfigDict(env_file=".env",

extra="ignore")

The next step is to install the cloudinary Python package:

pip install cloudinary

Another thing you can do is add it to your requirements.txt

file, which, at this point, should look like this:

fastapi==0.111.0

motor==3.4.0

uvicorn==0.29.0

httpie==3.2.2

cloudinary==1.40.0

pydantic-settings==2.2.1

The Cloudinary documentation is much richer when it comes to
JavaScript, and there seem to be a couple of quirks when setting
up the upload client, but the essence is simple.

Updating the models

First, you will update the models.py file to accommodate the

new field – a string that will store the URL of the uploaded

image from Cloudinary:

1. Open the models.py file and add just one line in the

CarModel class, after the other fields and before the

validators:

add the picture file

 picture_url: Optional[str] =

Field(None)

2. At this point, you should open MongoDB Compass and
drop the existing cars collection, as you will create a new,

empty one. Now, comment out the previous route for the
POST handler in the cars.py file and create a new one

taking into account the image uploading process.
3. Cloudinary provides a simple utility module called
uploader that needs to be imported, along with the

cloudinary module itself. After the existing imports, add

the following lines (cars.py):

import cloudinary

from cloudinary import uploader # noqa:

F401

These lines import cloudinary and the uploader package,

while the # noqa line prevents code linters from removing

the line upon saving (as it is imported from a package that
is already imported as a whole).

4. The next step is configuring your Cloudinary instance, and
you can do it in the /routers/cars.py file for

convenience, although this could be made application-wide.
To be able to read the environment variables, you will need
to instantiate the Settings class again in the same file and

pass the variables to the cloudinary configuration object.

5. Open the cars router and modify it. The first part of the
/routers/cars.py file should now look like this:

from bson import ObjectId

from fastapi import (

 APIRouter,

 Body,

 File,

 Form,

 HTTPException,

 Request,

 UploadFile,

 status,

)

from fastapi.responses import Response

from pymongo import ReturnDocument

import cloudinary

from cloudinary import uploader # noqa:

F401

from config import BaseConfig

from models import

CarCollectionPagination, CarModel,

UpdateCarModel

settings = BaseConfig()

router = APIRouter()

CARS_PER_PAGE = 10

cloudinary.config(

 cloud_name=settings.CLOUDINARY_CLOUD_NAME

 api_key=settings.CLOUDINARY_API_KEY,

 api_secret=settings.CLOUDINARY_SECRET_KEY

)

Now, you must treat the POST handler differently, since it

will accept a form and a file (your car picture) and not JSON
anymore. You will need to accept the form data:

@router.post(

 "/",

 response_description="Add new car with

picture",

 response_model=CarModel,

 status_code=status.HTTP_201_CREATED,

)

async def add_car_with_picture(

 request: Request,

 brand: str = Form("brand"),

 make: str = Form("make"),

 year: int = Form("year"),

 cm3: int = Form("cm3"),

 km: int = Form("km"),

 price: int = Form("price"),

 picture: UploadFile = File("picture"),

):

All the CarModel fields are now mapped to form fields with

names, while the picture is defined as an UploadFile and

expects a file.
Continue with the same function, and add the uploading
functionality:

 cloudinary_image =

cloudinary.uploader.upload(

 picture.file, crop="fill",

width=800

)

 picture_url = cloudinary_image["url"]

The code that handles the actual upload is very simple: just
a call to uploader with the received file and there are

numerous options, transformations, and filters that you
could use.

NOTE

The Cloudinary documentation covers in detail the available
transformations:
https://cloudinary.com/documentation/transformations_intro.

In your case, you are just cropping the image and setting a
maximum width. Cloudinary will return a URL once the picture
is uploaded, and that URL will be part of the model, along with
the data we used previously.

Finally, you can construct a Pydantic model of the car and pass
it to the MongoDB cars collection:

 car = CarModel(

 brand=brand,

 make=make,

 year=year,

 cm3=cm3,

 km=km,

 price=price,

 picture_url=picture_url,

)

 cars = request.app.db["cars"]

 document = car.model_dump(by_alias=True,

exclude=["id"])

https://cloudinary.com/documentation/transformations_intro

 inserted = await

cars.insert_one(document)

 return await cars.find_one({"_id":

inserted.inserted_id})

You can test the endpoint through the interactive
documentation that FastAPI serves on 127.0.0.1:8000/docs;

just select an image and pass it to the file field that is present in
the POST handler for the root route, and don’t forget to fill the

remaining fields or there will be an error—just like dealing
with JSON.

You can also test the route with HTTPie, but first provide an
image and name it accordingly:

http --form POST 127.0.0.1:8000/cars

brand="Ford" make="Focus" year=2000 cm3=1500

price=12000 km=23000 picture="ford.jpg"

After having the Cars API router ready, now you will create the

second router for handling users.

Adding the user model

You have successfully created a REST API powered by the
Cloudinary image hosting and processing power and, following
a similar procedure, you could easily integrate other third-party
services into your API, making your application more complex
and powerful.

Without authentication, however, it would be very risky to
deploy even the simplest API online. For instance, a malicious
user (or even a kid willing to pull some pranks) could easily
“bomb” your API with images that you wouldn’t want displayed
and in quantities that would quickly fill your free quota.
Therefore, before committing your API to GitHub and deploying
it—in this case, to Render.com—you will add a user model and a
JWT-based authentication scheme very similar to the one
shown in Chapter 6, Authentication and Authorization.

In the following section, you will create a simple user model
and allow users to log in to the application, in order to perform
some operations otherwise unavailable – namely, creating,
updating, and deleting resources (cars). You will begin by
abstracting the authentication logic into a class.

Creating the authentication functionality

In this section, you will implement an authentication class,
similar to the one used in Chapter 6, Authentication and
Authorization, that will abstract the functionalities needed for
authentication and authorization—password encryption, JWT
encoding and decoding, and the dependency that will be used
for protecting routes. Follow these steps:

1. First, create a file called authentication.py in the root

folder of your project and import the modules needed for
authentication:

from datetime import datetime

import jwt

from fastapi import HTTPException,

Security

from fastapi.security import

HTTPAuthorizationCredentials, HTTPBearer

from passlib.context import CryptContext

2. Next, implement an AuthHandler class that will provide all

the needed functionality for hashing and verifying
passwords and encoding and decoding tokens:

class AuthHandler:

 security = HTTPBearer()

 pwd_context = CryptContext(

 schemes=["bcrypt"],

deprecated="auto"

)

 secret = "FARMSTACKsecretString"

 def get_password_hash(self, password):

 return

self.pwd_context.hash(password)

 def verify_password(

 self, plain_password,

hashed_password

):

 return self.pwd_context.verify(

 plain_password,

hashed_password

)

 def encode_token(self, user_id,

username):

 payload = {

 "exp": datetime.datetime.now(

 datetime.timezone.utc)

 +

datetime.timedelta(minutes=30),

 "iat":

datetime.datetime.now(datetime.timezone.utc),

 "sub": {

 "user_id": user_id,

 "username": username},

 }

 return jwt.encode(payload,

self.secret, algorithm="HS256")

 def decode_token(self, token):

try:

 payload = jwt.decode(

 token, self.secret, algorithms=

["HS256"]

)

 return payload["sub"]

except jwt.ExpiredSignatureError:

 raise HTTPException(

 status_code=401,

 detail="Signature has expired"

)

except jwt.InvalidTokenError:

 raise HTTPException(

 status_code=401,

 detail="Invalid token"

)

3. Finally, you will end the file with the auth_wrapper

function, which will be injected as a dependency into the
FastAPI endpoints that require an authenticated user:

 def auth_wrapper(

 self,

 auth: HTTPAuthorizationCredentials

=

 Security(security)

):

 return

self.decode_token(auth.credentials)

The authentication class is nearly identical to the one
defined in Chapter 6, Authentication and Authorization—it
provides methods for password hashing and verification,
for JWT encoding and decoding, and a handy
auth_wrapper method that is used as a dependency

injection.
4. With the authentication.py file ready, add the user

model, very similar to the one defined in the previous
chapter, bearing in mind that this model could be much
more complex.

5. In the models.py file, edit the CarModel class and add

another field—user_id. That way, you will be able to

associate an inserted car with a particular user and require
a valid user for every creation operation:

class CarModel(BaseModel):

 id: Optional[PyObjectId] =

Field(alias="_id", default=None)

 brand: str = Field(...)

 make: str = Field(...)

 year: int = Field(..., gt=1970,

lt=2025)

 cm3: int = Field(..., gt=0, lt=5000)

 km: int = Field(..., gt=0, lt=500 *

1000)

 price: int = Field(..., gt=0,

lt=100000)

 user_id: str = Field(...)

 picture_url: Optional[str] =

Field(None)

6. The model for updating the car will not need the user_id

field as you do not want to make that field editable. Now,
after all the car models, let’s add the user-related models in
the same models.py file:

class UserModel(BaseModel):

 id: Optional[PyObjectId] =

Field(alias="_id", default=None)

 username: str = Field(...,

min_length=3, max_length=15)

 password: str = Field(...)

class LoginModel(BaseModel):

 username: str = Field(...)

 password: str = Field(...)

class CurrentUserModel(BaseModel):

 id: PyObjectId = Field(alias="_id",

default=None)

 username: str = Field(...,

min_length=3, max_length=15)

The three models correspond to the three ways you will be
accessing the user data: the full model with all the data, the
login and registration model, and the current user that should
return _id and the username.

Creating the User router

After the Pydantic models are set up, create a new router for
users and allow some basic operations such as registration,
logging in, and verifying the user based on the JWT.

Open the file named users.py inside the routers folder and

add the imports:

from bson import ObjectId

from fastapi import APIRouter, Body, Depends,

HTTPException, Request, Response

from fastapi.responses import JSONResponse

from authentication import AuthHandler

from models import CurrentUserModel,

LoginModel, UserModel

router = APIRouter()

auth_handler = AuthHandler()

The authhandler class encapsulates all of your authentication

logic and you will see this functionality in the endpoint
functions.

Let’s create the registration route:

@router.post("/register",

response_description="Register user")

async def register(request: Request, newUser:

LoginModel = Body(...)) -> UserModel:

 users = request.app.db["users"]

 # hash the password before inserting it

into MongoDB

 newUser.password =

auth_handler.get_password_hash(newUser.password)

 newUser = newUser.model_dump()

 # check existing user or email 409

Conflict:

 if (

 existing_username := await

users.find_one({"username":

newUser["username"]})

 is not None

):

 raise HTTPException(

 status_code=409,

 detail=f"User with username

{newUser['username']} already exists",

)

 new_user = await

users.insert_one(newUser)

 created_user = await

users.find_one({"_id": new_user.inserted_id})

 return created_user

The endpoint performs the same functionality as shown in
Chapter 6, Authentication and Authorization, except, this time,
you are working with a real MongoDB collection. The login
functionality is also very similar:

@router.post("/login",

response_description="Login user")

async def login(request: Request, loginUser:

LoginModel = Body(...)) -> str:

 users = request.app.db["users"]

 user = await users.find_one({"username":

loginUser.username})

 if (user is None) or (

 not

auth_handler.verify_password(loginUser.password,

user["password"])

):

 raise HTTPException(status_code=401,

detail="Invalid username and/or password")

 token =

auth_handler.encode_token(str(user["_id"]),

user["username"])

 Wrong indentation. check and replace

with:

response = JSONResponse(

 content={

 "token": token,

 "username": user["username"]

 }

)

 return response

If a user is not found by username or the password doesn’t

match, the endpoint responds with an HTTP 401 status and

throws a generic message; otherwise, a username and a token
are returned.

The final endpoint consists of a /me route—a route that will be

used periodically by the frontend (React) to check the existing
JWT and its validity:

@router.get(

 "/me",

 response_description="Logged in user

data",

 response_ model=CurrentUserModel

)

async def me(

 request: Request,

 response: Response,

 user_data=Depends(auth_handler.auth_wrapper)

):

 users = request.app.db["users"]

 currentUser = await users.find_one(

 {"_id":

ObjectId(user_data["user_id"])}

)

 return currentUser

With the users router finished, let’s plug it into the app.py file,

just below the cars router:

app.include_router(

 cars_router, prefix="/cars", tags=

["cars"]

)

app.include_router(

 users_router, prefix="/users", tags=

["users"]

)

The cars.py file, which contains the APIRouter for managing

the cars, will have to be updated to take into account the newly
added user data. The creation endpoint will now look like the
following:

@router.post(

 "/",

 response_description="Add new car with

picture",

 response_model=CarModel,

 status_code=status.HTTP_201_CREATED,

)

async def add_car_with_picture(

 request: Request,

 brand: str = Form("brand"),

 make: str = Form("make"),

 year: int = Form("year"),

 cm3: int = Form("cm3"),

 km: int = Form("km"),

 price: int = Form("price"),

 picture: UploadFile = File("picture"),

 user: str

=Depends(auth_handler.auth_wrapper),

):

The user data is provided through dependency injection and
auth_wrapper. The rest of the function is largely unaltered—

you just need the user_id value from the logged-in user:

cloudinary_image =

cloudinary.uploader.upload(

 picture.file, folder="FARM2",

crop="fill", width=800

)

picture_url = cloudinary_image["url"]

car = CarModel(

 brand=brand,

 make=make,

 year=year,

 cm3=cm3,

 km=km,

 price=price,

 picture_url=picture_url,

 user_id=user["user_id"],

)

cars = request.app.db["cars"]

document = car.model_dump(by_alias=True,

exclude=["id"])

inserted = await cars.insert_one(document)

return await cars.find_one({"_id":

inserted.inserted_id})

The API is now quite complete; it handles data of varying
complexity and can handle images using a top-quality cloud
service. However, before deploying your API to an online cloud
platform for the world to see, there is one more thing that
needs to be done: setting up the cross-origin resource sharing
(CORS) middleware.

FastAPI middleware and CORS

The concept of middleware is common in almost every
reputable web framework, and FastAPI is no exception.
Middleware is just a function that accepts requests before they
are handed over to the path operations for processing and also
responds before they are returned.

This simple concept is quite powerful and has many uses—a
middleware can check for specific headers that contain
authentication data (such as a bearer token) and accept or deny
requests accordingly, it can be used for rate limiting (often with
the Redis key-value database), and so on.

Creating middleware in FastAPI is based on Starlette’s
middleware, like most web-related concepts in FastAPI, and the
documentation provides some nice examples:
https://fastapi.tiangolo.com/tutorial/middleware/.

In your application, you will use a ready-made middleware to
enable the FastAPI-based backend—which will be running on
one machine—to communicate with a frontend (in your case,
React) running on a different origin.

CORS refers to the policy that is applied when you incur
situations when the backend and frontend reside on different
origins and, by default, it is very restrictive— allowing only
sharing data (such as calling JavaScript fetch functions)
between systems using the same origin: the combination of a
protocol (HTTP, for instance), domain (such as www.packt.com)
and a port (for example, 3000 or 80).

By default, the policy blocks all communication, so if you were
to deploy your backend as it is currently, you couldn’t reach it
from a React.js or Next.js application running even on the same
machine but a different port.

FastAPI’s solution for this task is achieved through middleware,
and it allows granular precision.

https://fastapi.tiangolo.com/tutorial/middleware/
http://www.packt.com/

In your app.py file, import the following to import the CORS

middleware:

from fastapi.middleware.cors import

CORSMiddleware

After having imported the middleware, you need to configure it.
After instantiating the FastAPI instance with the lifespan, add
the middleware:

app = FastAPI(lifespan=lifespan)

app.add_middleware(

 CORSMiddleware,

 allow_origins=["*"],

 allow_credentials=True,

 allow_methods=["*"],

 allow_headers=["*"],

)

This is a catch-all CORS setup that should be avoided in
production, but it will be enough for our purposes and this
example backend. The square brackets contain lists of allowed
methods (such as POST, GET, and so on), origins, headers, and

whether credentials should be allowed.

You can restart the Uvicorn server and check that it works like
before. Now, you will deploy the backend on a cloud platform.

Deployment to Render.com

Render.com is one of numerous modern cloud platforms that
simplify deploying and managing web applications, APIs, static
sites, and other types of software projects. It provides
developers with an intuitive and simple interface and powerful
automation tools and pipelines.

There are many ways to deploy a FastAPI instance: Vercel
(known mainly as the company behind Next.js), Fly.io, Ralway,
Heroku, and so on.

In this case, we will choose Render.com as it provides a simple,
fast, streamlined deployment procedure, and has a free tier and
excellent documentation.

The deployment process can be broken into steps, and you will
review each one of them briefly; it is also useful to visit their
FastAPI-dedicated page if you wish to get up to speed:
https://docs.render.com/deploy-fastapi.

Here are the steps:

https://docs.render.com/deploy-fastapi

1. Set up a GitHub repo for your backend.
Again, make sure that your .gitignore file contains

entries for the .env file, as well as the env/ directory for

the Python environment—you do not want to accidentally
commit the secrets and passwords to a public repository,
nor do you want to upload the entire virtual environment
content.
If you haven’t committed the last changes to your backend,
do it now with the following commands:

git add .

git commit -m "ready for deployment"

Now head to github.com, use your credentials to log in, and
create a new repository. Name it however you see fit; in this
example, we will use the name FastAPIbackendCh7.

2. Set up a Render.com account.
Now, head over to render.com and create a free account.
You can log in with your GitHub account and then navigate
to the dashboard link: dashboard.render.com.
Locate the New + button and select Web Service. On the
next prompt, select Build and deploy from a Git
repository and click Next.

3. Select the GitHub repository.

http://github.com/
http://render.com/
http://dashboard.render.com/

In the right-hand menu, select the GitHub Configure
account and you will be taken to GitHub asking you to
install Render. Choose your account, the one you used for
the backend repository origin, and proceed to select the
repo. This will allow Render to know which repository to
pull.

4. Configure the web service.
This is the most important and complex step of the process.
Render is informed which repository is involved, and now
it has to get all the data necessary for the web service to be
deployed. We will examine them one by one:

1. Name: The name of the service, and it needs to be
unique. This name will be part of the deployed service
URL.

2. Region: You should select the region nearest to you in
order to reduce latency.

3. Branch: This tells Render which branch to pull. It will
probably be main, especially if it is the only branch, as

in our case.
4. Root directory: The directory that contains the main

FastAPI instance. In our case, you can leave it blank
and it will default to the root /.

5. Runtime: You will be using Python 3; it should be
picked up automatically by Render.

6. Build command: The command that sets up the
environment – in your case, the Python 3 virtual
environment, so it should be the following:

pip install -r requirements.txt

7. Start command: The command that will start the web
service once it is installed. Since we are using Uvicorn
in production as well, you can refer to Uvicorn’s
documentation: https://www.uvicorn.org/settings/. To
allow the service to run on the default port (80), the

command should be as follows:

uvicorn app:app --host 0.0.0.0 --port

80

8. Instance type: You can select the free one, bearing in
mind that free instances spin down after periods of
inactivity; however, it is more than enough for testing
the service.

9. Environment variables: In these fields, you can now
insert your environment variables from the .env file,

one by one: DB_URL and DB_NAME for MongoDB, and

three Cloudinary variables.

https://www.uvicorn.org/settings/

After checking that you have entered all the settings and
variables, you can finally click the blue Create Web Service
button.

The final settings page will look similar to the following images.
The settings page is quite long and you will have to scroll a bit,
but the first thing that has to be specified are the name of the
service and the region:

Figure 7.1: The Render web service general settings page

After setting the name and the region, you will see your
selected repository and the branch to be deployed (main, in
your case). You can leave the root directory empty by default.

Figure 7.2: The repository and the branch settings

Next, you will specify the build and the start command. The
build command is the one that installs your Python
environment, while the start command starts the web service –
your API.

Figure 7.3: The build and start commands

The last step before starting the actual deployment command is
to pass the environment variables to Render.com:

Figure 7.4: The environment variables

After initiating the deployment procedure, you will have to wait
a bit—the service will have to create a new Python
environment, install all the required dependencies, and start
the service. After the process is complete, you can click on the
URL on the page (in your case, it will be
https://farm2ch7.onrender.com you will have to use another
address) and you can check your API online.

Your API is now live on the internet and ready to receive
requests. It is worth mentioning that due to the recent rise of
FastAPI’s popularity, more and more hosting and software-as-
a-service (SaaS) providers are providing detailed instructions
for hosting FastAPI services. They all share a similar logic—you
will have to provide a requirements file to let the platform
know what your app needs to be functional, and you will have
to provide a GitHub repo with the code. A particularly
important step is the handling of the environment variables.
They are usually provided manually, although some providers
accept entire .env files.

Summary

https://farm2ch7.onrender.com/

In this chapter, you have taken a simple business requirement
and turned it into a fully functional API deployed on the
internet.

You have created the Pydantic models and applied some
constraints on the data structure, learned how to connect to a
MongoDB Atlas instance, and developed a basic, yet fully
functional, CRUD functionality FASTAPI service.

You have learned how to model entities (in your case, cars and
users) through Pydantic and how to make the data flow
seamlessly to and from your database of choice – MongoDB –
through simple pythonic FastAPI endpoints.

You have managed the secret keys – for connecting to MongoDB
Atlas and Cloudinary – through pydantic_settings and you

have crafted simple, yet flexible models that can easily
accommodate more requirements, be expanded or include
more functionality.

The service is now ready to be used in the frontend – ultimately,
giving life to a full-stack web application.

In the next chapter, you will add a simple user model to this
same API and build a React frontend that will consume the
FastAPI backend.

8

Building the Frontend of the
Application

In the previous chapter, you explored how to build your FastAPI
backend and connect to MongoDB. This will be used by a React
frontend that you will be building in this chapter. The
application will be simple and feature-rich and, most
importantly, will allow you to see the parts of the stack working
together.

In this chapter, you will build the frontend of a full-stack FARM
application. You will learn how to set up a React Vite
application and install and set up React Router, as well as
various ways of loading content. The application will enable
authenticated users to insert new items (cars), while there will
be several pages for displaying cars.

You will develop a website that will list used cars for sale and
allow only logged-in users to post new car ads. You will begin by
creating a React application with Vite, then you will lay out the
page structure with React Router and gradually introduce

features such as authentication, protected pages, and data
loading. After this chapter, you will be able to comfortably
leverage React Router for your single-page-applications (SPAs)
and use the powerful React Hook Form (RHF) for granular
form control.

This chapter will cover the following topics:

Creating a new React application using Vite
Setting up the React Router for SPA page navigation
Managing data with data loaders
Introduction to RHF and Zod for data validation
Authentication and authorization with the Context API
Protecting routes and displaying data with React Router
pages

Technical requirements

The technical requirements for this chapter are similar to the
ones listed in Chapter 4, Getting Started with FastAPI. You will
need the following:

Node version 18.14
A good code editor, such as Visual Studio Code
The Node package manager

Creating a Vite React application

In this section you will scaffold a Vite React application and set
up Tailwind CSS for styling. This procedure has already been
covered in Chapter 5, Setting Up a React workflow,, so you can
refer to it. Make sure to complete the brief tutorial in Chapter 5,
as the following guide is heavily based on the concepts
presented therein.

You are going to use the create vite command with the Node

package manager to create your project through the following
steps:

1. Open your terminal client in a project directory containing
the previously created backend folder, and issue the
following command for creating a Vite React project:

npm create vite@latest frontend-app -- --

template react

2. Now, change the directory to the newly created frontend-

app folder and install the dependencies and Tailwind:

npm install -D tailwindcss postcss

autoprefixer

3. Initialize the Tailwind configuration—the following
command creates a blank Tailwind configuration file:

npx tailwindcss init -p

4. Finally, configure the generated tailwind.config.js and

React’s index.css files according to the latest

documentation at https://tailwindcss.com/docs/guides/vite.

Your index.css should now include only the Tailwind imports:

@tailwind base;

@tailwind components;

@tailwind utilities;

To test that Tailwind has been properly configured, change the
App.jsx file and start the development server:

export default function App() {

 return (<

 h1 className = “text-3xl font-bold” >

 Cars FARM <

 /h1>

https://tailwindcss.com/docs/guides/vite

)

}

When you refresh your app, you should see a white page with
the text Cars FARM.

After setting up a functional React application and Tailwind, it
is time to introduce probably the most important third-party
React package—React Router.

React Router

Up to this point, all of your components have fit onto a single
page because you were building SPAs. To enable your
application to display completely different pages based on the
provided route, you will use a package called React Router—the
de facto standard when it comes to page routing in React.

While there are some very good and robust alternatives, such
as TanStack Router (https://tanstack.com/router/), React Router
is widely adopted, and getting to know its basic mechanisms
will greatly benefit you, as a developer, as you are bound to run
into code based on it.

Version 6.4 of React Router has some major changes while
retaining previous basic principles, which you will use to build

https://tanstack.com/router/

your frontend. However, as of May 2024, even more drastic
changes have been announced—React Remix, an entire full-
stack framework (with functionalities comparable to Next.js),
which is based on React Router, and React Router itself should
be merged into a single project. In this section, you will learn
about the most important components that will allow you to
create a single-page experience without page reloading or
having knowledge of React Router 6.4, which will be very useful
later, as it is the most widely adopted React routing solution.

The basic underlying principle of React Router is to listen to
URL path changes (such as /about or /login) and

conditionally display components in a layout. The displayed
components can be thought of as “pages,” while the layout
keeps some parts of the pages that should always be displayed
—such as a footer and navigation.

Before looking at React Router, review the pages that you will
have in your application:

Home page: This will contain some generic information,
corresponding to the root (/) path

A car list page: This will display all the cars in the database
(/cars)

An individual car page: This will provide additional
details about the cars (/cars/car_id)

A login page: This allows users (in your case
administrators) to log in (/login)

An “insert new car” page: This will provide a form for the
authenticated user only

For simplicity, you will not include a registration route (since
there will only be a couple of authenticated employees) and
there will not be a deleting or updating functionality on the
frontend. In the following section, you will install and configure
React Router and make it the basis of your application.

Installing and setting up React
Router

React Router is just a Node.js package, so the installation
process is easy. The setting up of the router inside the
application, however, includes lots of features and different
options. You will be using the most powerful and recommended
data router, which provides data loading and is the suggested
option by the React Router team.

Working with the router generally involves two steps:

1. Using one of the provided methods for generating the
desired routes
(https://reactrouter.com/en/main/routers/picking-a-router).

2. Creating components, often called pages, that will
correspond to different routes, such as Login.jsx and

Home.jsx. Additionally, you will almost always create one

or more layouts that will contain common components
such as the navigation or the footer.

Now, you will perform the steps necessary to install React
Router into your application:

1. The first step, as with any third-party package, is to install
the router package:

npm i react-router-dom@6.23.1

The version number corresponds to the latest version at the
time of writing, so you can reproduce the exact
functionality.
In this chapter, the CSS styling of the application will
intentionally be kept to a bare minimum—just enough to
distinguish between components.

2. Start by creating a new directory called /pages inside the

/src folder and scaffolding all your pages. The page names

https://reactrouter.com/en/main/routers/picking-a-router

will be Home, Cars, Login, NewCar, NotFound, and

SingleCar, all with the .jsx extensions and you will

perform the scaffolding of these other pages the same way
as the Home.jsx page.

The first component, located at /src/pages/Home.jsx,

will look like this:

const Home = () => {

 return (

 <div>Home</div>

)

}

export default Home

Although they are often referred to as pages when speaking
about React Router, these pages are nothing more than
regular React components. The distinction, and the fact that
they are often grouped together in a directory called pages,

is based purely on the fact that these components
correspond to the pages structure of a SPA and are
generally not meant to be reused elsewhere.

3. After scaffolding the desired pages, implement the router.
This procedure consists of creating the router and inserting
it into a top-level React component. You will use the

App.jsx component, which loads and inserts the entire

React application in the DOM.

Since version 6.4, React Router has introduced the possibility of
fetching data before the route (or page) that needs the said data
is loaded, through simple functions called data loaders. To
highlight this functionality that has become fundamental to the
entire ecosystem, you will need to create the router through
createBrowserRouter

(https://reactrouter.com/en/main/routers/create-browser-router)
since it is the recommended router for all React Router web
projects, as stated in the documentation.

After selecting createBrowserRouter as the desired method of

creating the router, it is time to integrate it into your
application.

Integrating the router with the application

In the following steps, you will integrate the router into your
application, create a Layout component, and plug in the

components (pages) that will be loaded on each defined URI:

1. To properly configure the router, you will need another
component—the Layout component—in which the

https://reactrouter.com/en/main/routers/create-browser-router

previously created pages will be rendered. Inside the /src

folder, create a /layouts folder and create a

RootLayout.jsx file inside it:

const RootLayout = () => {

 return (

 <div>RootLayout</div>

)

}

export default RootLayout

The React router that you will be using and the one that
supports data loading is based on three imports from the
react-router-dom package: createBrowserRouter,

createRoutesFromElements, and Route.

2. Open the App.jsx file and import the packages and the

previously created pages:

import {

 createBrowserRouter,

 Route,

 createRoutesFromElements,

 RouterProvider

} from “react-router-dom”

import RootLayout from

“./layouts/RootLayout”

import Cars from “./pages/Cars”

import Home from “./pages/Home”

import Login from “./pages/Login”

import NewCar from “./pages/NewCar”

import SingleCar from “./pages/SingleCar”

3. Now, continuing with the same App.jsx file, hook up the

router created from the elements that you just imported
and defined:

const router = createBrowserRouter(

 createRoutesFromElements(

 <Route path=”/” element={<RootLayout

/>}>

 <Route index element={<Home />} />

 <Route path=”cars” element={<Cars

/>} />

 <Route path=”login” element={<Login

/>} />

 <Route path=”new-car” element=

{<NewCar />} />

 <Route path=”cars/:id” element=

{<SingleCar />} />

 </Route>

)

)

export default function App() {

 return (

 <RouterProvider router={router} />

)

}

There are a few important things to note in the preceding code.
After creating the router, you invoked the React Router function
called createRoutesFromElements, which creates the actual

routes. A route is used to define an individual path that
corresponds and maps to a component; it can be a self-closing
tag (such as the ones used for the pages) or it can enclose other
routes—such as the home page path, which in turn corresponds
to RootLayout.

If you start the React server again and visit the page
http://localhost:5173, you will see only the text

RootLayout. Try navigating to any of the routes defined in the

router: /cars, /cars/333, or /login. You will see the same

RootLayout text, but if you enter a path that is not defined,

such as /about, React will inform you that the page doesn’t

exist with a message similar to this: Unexpected Application

Error! 404 Not Found.

This means that the router is indeed working; it is not set up to
handle cases in which the user navigates to an undefined route
and it does not display the contents of the pages. Now you will
fix both problems.

Creating the layout and the NotFound page

In order to work properly, the router needs a place to display
the content of pages— remember that “pages” are just React
components. Now you will create Layout.jsx and also handle

cases in which a user hits a URI that doesn’t exist, resulting in a
Page Not Found error:

1. First, create a new page in the /src/pages directory and

name it NotFound.jsx, with the following content:

const NotFound = () => {

 return (

 <div>This page does not exist yet!

</div>

)

}

export default NotFound

Now, create a catch-all route that will display the Not Found
page in cases where the path doesn’t match any defined

route. Remember that the order of routes is important—
React Router will attempt to match routes sequentially, so it
makes sense to use the * symbol to catch all previously

undefined routes and associate them with the NotFound

component.
2. Update the App.jsx file to display the NotFound route as

the last route in the RootLayout route:

 createRoutesFromElements(

 <Route path=”/” element={<RootLayout

/>}>

 <Route index element={<Home />} />

// more routes here…

 <Route path=”*” element={<NotFound

/>} />

 </Route>

)

To achieve the main functionality of the router—displaying
other components/pages in the layout component—you will
use the Outlet component, which is a special React Router

component that is used to nest routes inside routes. Your
router currently has one parent route—the one defined
with the following:

<Route path=”/” element={<RootLayout />}>

All the other pages are nested. You will need to modify
RootLayout (which will always be loaded, even for non-

existing routes!) and provide the Outlet component for

rendering page-specific components.
3. Open RootLayout.jsx and modify it:

import { Outlet } from “react-router-dom”

const RootLayout = () => {

 return (

 <div className=” bg-blue-200 min-

h-screen p-2”>

 <h2>RootLayout</h2>

 <main className=”p-8 flex

flex-col flex-1 bg-white “>

 <Outlet />

 </main>

 </div>

)

}

export default RootLayout

With the Outlet component now in place, you have

achieved routing. If you try to navigate to the pages defined
in the router, you should see the page update with the
component content, in which the layout is displayed as

before, but the Outlet component changes and displays

the content of the page selected in the URL.
The whole point of using the router is to achieve navigation
through “pages” without having to reload the page.

4. Now, to finalize the RootLayout component, you will

update the component and add some links, using the
provided NavLink component from React Router:

import {

 Outlet,

 NavLink

} from “react-router-dom”

const RootLayout = () => {

 return (

 <div className=” bg-blue-200 min-h-

screen p-2”>

 <h2>RootLayout</h2>

 <header className=”p-8 w-full”>

 <nav className=”flex flex-row

 justify-between”>

 <div className=”flex flex-row

space-x-3”>

 <NavLink to=”/”>Home</NavLink>

 <NavLink

to=”/cars”>Cars</NavLink>

 <NavLink

to=”/login”>Login</NavLink>

 <NavLink to=”/new-car”>New

Car</NavLink>

 </div>

 </nav>

 </header>

 <main className=”p-8 flex flex-col

flex-1

 bg-white “>

 <Outlet />

 </main>

 </div>

)

}

export default RootLayout

Now you have a simple navigation in place and the NotFound

page loads when needed. The router also provides navigation
history, so the browser’s back and forward buttons are
functional. The app styling is intentionally minimalistic and
used only to underline the different components.

So far, you have only one layout, but there could potentially be
more—one for the cars list page and the individual car pages—
embedded into the main layout. Just like APIRouters from
FastAPI, React routes and layouts can be nested. React Router’s

nesting is a powerful feature that enables the construction of
layered websites that load or update only the necessary
components.

After having set up the React Router, let’s explore an important
feature that is available only when using data routers, such as
the one you used—data loaders—special functions that allow
developers to access data in a more efficient way.

React Router loaders

Loaders are simply functions that can provide data to the route
before it loads (https://reactrouter.com/en/main/route/loader)
through a simple React hook.

In order to use some data, first create a new .env file and add

the address of your Python backend:

VITE_API_URL=http://127.0.0.1:8000

If you restart the server now, Vite will be able to pick up the
address in your code and the URI will be available at
import.meta.env.VITE_API_URL.

NOTE

https://reactrouter.com/en/main/route/loader

To learn more about how Vite handles environment variables,
head over to their documentation: https://vitejs.dev/guide/env-
and-mode.

Now you will learn how React Router manages data loading and
prefetching. Perform the following steps to load data from your
backend into the React application and learn how to use the
powerful and simple useLoader Hook.

First, work on the /src/pages/Cars.jsx component to see

how data loaders can help you manage component data:

1. Create a src/components folder and inside, create a

simple static React component in the CarCard.jsx file for

displaying a single car:

const CarCard = ({ car }) => {

 return (

 <div className=”flex flex-col p-3

text-black

 bg-white rounded-xl overflow-hidden

shadow-md

 hover:scale-105 transition-transform

 duration-200”>

 <div>{car.brand} {car.make}

{car.year} {car.cm3}

https://vitejs.dev/guide/env-and-mode
https://vitejs.dev/guide/env-and-mode

 {car.price} {car.km}

 </div>

 <img src={car.picture_url} alt=

{car.make}

 className=”w-full h-64 object-

cover

 object-center” />

 </div>

)

}

export default CarCard

With the Card component out of the way, you can now see

how the data loader works.
Loaders are functions that provide data to the components
in the router before they are rendered. These functions are
usually defined and exported from the same component,
although this is not mandatory.

2. Open Cars.jsx and update it accordingly:

import { useLoaderData } from “react-

router-dom”

import CarCard from

“../components/CarCard”

const Cars = () => {

 const cars = useLoaderData()

 return (

 <div>

 <h1>Available cars</h1>

 <div className=”md:grid md:grid-

cols-3 sm:grid

 sm:grid-cols-2 gap-5”>

 {cars.map(car => (

 <CarCard key={car.id} car={car}

/>

))}

 </div>

 </div>

)

}

export default Cars

The component imports useLoaderData—a custom hook

provided by React Router whose sole purpose is to provide
the data from the loader function to the component that
needs it. This paradigm is at the heart of React Remix and
similar to some Next.js functionalities, so it is useful to get
acquainted with. The useLoader function will contain the

data from the server, usually in JSON format.
3. Now, export the carsLoader function as well in the same

file:

export const carsLoader = async () => {

 const res = await fetch(

 `${import.meta.env.VITE_API_URL}/cars?

limit=30`

)

 const response = await res.json()

 if (!res.ok){

 throw new Error(response.message)

 }

 return response[‘cars’]

}

NOTE

These two pieces—the component and the function—are not
connected. This connection must happen in the router and allow
preloading of data at the router level.

4. Now you will connect the component and the loader
through the router. Open the App.jsx file and modify the

code by providing the loader argument to the /cars route:

import Cars, { carsLoader } from

“./pages/Cars”

// continues

 <Route path=”/” element={<RootLayout

/>}>

 <Route index element={<Home />} />

 <Route path=”cars” element={<Cars />}

 loader={carsLoader} />

 <Route path=”login” element={<Login

/>} />

 <Route path=”new-car” element=

{<NewCar />} />

 <Route path=”cars/:id”

 element={<SingleCar />} />

 <Route path=”*” element={<NotFound

/>} />

 </Route>

With the loader now in place, you are ready to test your /cars

page, which should be displaying the cars saved in the
collection so far.

The next few sections will explore the implementation of
another piece of functionality that you will likely encounter in
every React (or Next.js, or web development in general) project
—handling forms with React with RHF. You will implement the
login functionality with the help of the most popular third-party
package for handling forms with React, and also perform data
validation with the Zod package.

React Hook Form and Zod

There are many ways of handling forms with React, and one of
the most common patterns was shown in Chapter 5, Setting Up a
React Workflow. State variables are created with the useState

Hook, the form is prevented from submitting and is intercepted,
and, finally, the data is passed through JSON or as form data.
While this workflow is acceptable when working with simple
data and a couple of fields, it can quickly become difficult to
manage in cases where you have to keep track of dozens of
fields, their constraints, and their possible states.

RHF is a mature project with a thriving community and is
distinguished from other similar libraries by its speed, minimal
amount of rendering, and deep integration with the most
popular data validation libraries for TypeScript and JavaScript,
such as Zod and Yup. In this case, you will learn the basics of
Zod.

Performing data validation with Zod

The JavaScript and TypeScript ecosystem currently has several
validation libraries—with Zod and Yup arguably being the most
popular ones. Zod is a TypeScript-first schema declaration and

validation library that provides data validation of data
structures. Zod provides a simple and intuitive object-based
syntax for creating complex validation rules for objects and
values in JavaScript applications and greatly facilitates the
process of ensuring data integrity across the application.

The basic idea of these packages is to provide them with a
prototype of the desired data structure and to perform a
validation of the data against said defined data structure:

1. First, install the package:

npm i react-hook-form@7.51.5

Since the version number at the time of writing and used in
the book’s repository is 7.51.5, use the preceding command
if you want to reproduce the exact code from the
repository.

2. Update the Login.jsx component and make it display

LoginForm, which you will create shortly:

import LoginForm from

“../components/LoginForm”

const Login = () => {

 return (

 <div>

 <h1>Login</h1>

 <LoginForm />

 </div>

)

}

export default Login

3. Now, the /src/components/LoginForm.jsx file will

contain all the form functionality as well as the data
validation with Zod:

import { useForm } from “react-hook-form”

import { z } from ‘zod’;

import { zodResolver } from

‘@hookform/resolvers/zod’;

const schema = z.object({

 username: z.string().min(4, ‘Username

must be at least 4 characters

long’).max(10, ‘Username cannot exceed 10

characters’),

 password: z.string().min(4, ‘Password

must be at least 4 characters

long’).max(10, ‘Password cannot exceed 10

characters’),

});

The component begins with the imports—the useForm

hook and Zod, as well as the Zod resolver for integration
with the form hook. Data validation in Zod is similar to how
it is in Pydantic—you define an object and set the desired
properties on various fields. In this case, we set that the
username and password is between 4 and 10 characters
long, but Zod allows for some very complex validation, as
you can see on their website (https://zod.dev/).
The useForm Hook provides several useful functions:

1. register is used to register single-form fields with the

hook
2. handleSubmit is the function that will be called upon

submission
3. formState contains different information about the

form state (https://react-hook-
form.com/docs/useform/formstate)

4. Now, set up the form Hook:

const LoginForm = () => {

 const { register, handleSubmit,

 formState: { errors } } = useForm({

 resolver: zodResolver(schema),

 });

 const onSubmitForm = (data) => {

https://zod.dev/
https://react-hook-form.com/docs/useform/formstate
https://react-hook-form.com/docs/useform/formstate

 console.log(data)

 }

In this case, you will only track the errors (tied to the
validation defined previously with Zod), but this object
tracks much more. In your code, you’ll just output the data
to the console once it is validated.

5. Now, build the form’s JSX and add some styling to see
what’s happening:

return (

 <div className=”flex items-center

justify-center”>

 <div className=”w-full max-w-xs”>

 <form className=”bg-white shadow-md

rounded

 px-8 pt-6 pb-8 mb-4”

 onSubmit=

{handleSubmit(onSubmitForm)}>

The component will output some mildly styled JSX
containing the form and the form onSubmit event is bound

to the handle. This process is quite simple: the form has an
onSubmit method that you handed over to the

handleSubmit method of RHF. This handleSubmit method

is destructured from the hook itself, along with the

register function (for mapping input fields) and the

errors that reside in the form state. After establishing the
connection, the handleSubmit method needs to know

which function should process the form and its data. In this
case, it should pass the handling to the onSubmitForm

function.
The two form fields, for the username and the password,
are nearly identical:

<div className=”mb-4”>

 <label htmlFor=”username”

className=”block

 text-gray-700 text-sm font-bold mb-2”>

 Username

 </label>

 <input id=”username” type=”text”

 placeholder=”Username” required

 {...register(‘username’)}

 className=”shadow appearance-none

border

 rounded w-full py-2 px-3 text-gray-

700

 leading-tight focus:outline-none

 focus:shadow-outline”/>

 {errors.username && <p

className=”text-red-500

 text-xs italic”>

{errors.username.message}</p>}

</div>

The highlighted parts of the code are the registration of the
fields with the useForm Hook—a way of letting the form know

which fields to expect and the errors (if they are present) that
are related to their respective fields.

This way, the fields are registered to the hook form through this
spread operator syntax. Since the errors provided by the form
are bound to the fields, take this opportunity and show them
next to the fields that report errors for a more pleasing user
experience.

The rest of the component is intuitive and covers the password

field and the submit button:

<div className=”mb-6”>

 <label htmlFor=”password” className=”block

text-gray-700

 text-sm font-bold mb-2”>Password</label>

 <input id=”password” type=”password”

placeholder=”****”

 required

 {...register(‘password’)}

 className=”shadow appearance-none border

rounded w-full

 py-2 px-3 text-gray-700 mb-3 leading-

tight

 focus:outline-none focus:shadow-outline”

/>

 {errors.password && <p className=”text-red-

500 text-xs

 italic”>{errors.password.message}</p>}

</div>

<div className=”flex items-center justify-

between”>

 <button type=”submit”>Sign

In</button>

 </div>

 </form>

 </div>

 </div>

)

}

export default LoginForm

The complete code from the book is available in the book
repository.

The form is now ready and is handled completely by the hook
form with a Zod validation. If you try to input data that doesn’t
meet the validation criteria (username or password shorter

than four characters, for instance) you will get an error
message next to the fields. After setting up the form for logging
in, you will create an authentication context that will allow the
user to stay logged in. The authentication process—the creation
of a React context and storing the JWT—will be very similar to
the one covered in Chapter 6, Authentication and Authorization,
so this next section only covers and highlights the important
parts of the code.

Authentication context and
storing the JWT

In this section, you will use your brand-new form, powered by
RHF, and connect it to the Context API. The procedure for
defining a React Context API was covered in detail in Chapter 4,
Getting Started with FastAPI and in this chapter, you will apply
that knowledge and create a similar context for keeping track of
the authentication state of the application:

1. Create a new folder in the /src directory and name it

contexts. Inside this folder, create a new file called

AuthContext.jsx and create the provider:

import { createContext, useState,

useEffect } from ‘react’;

import { Navigate } from ‘react-router-

dom’;

export const AuthContext =

createContext();

export const AuthProvider = ({ children })

=> {

 const [user, setUser] = useState(null);

 const [jwt, setJwt] =

useState(localStorage.getItem('jwt')||null);

 const [message, setMessage] = useState(

 “Please log in”

);

The context that you are creating is rather simple and
contains a couple of state variables and setters that will be
needed for the authentication flow: the username (whose
presence or absence thereof will indicate whether the user
is authenticated), the JWT, and a helper message that, in
this case, is only useful for debugging and illustration.
The initial values are set to null and a generic message

through the useState hook—the username is set to null,

the JWT to an empty string, and the message to Please

log in.

2. Next, add a useEffect hook that will fire once the context

is loaded or when the page is reloaded:

useEffect(() => {

 const storedJwt = localStorage

 .getItem(‘jwt’);

 if(storedJwt) {

 setJwt(storedJwt);

 fetch(

`${import.meta.env.VITE_API_URL}/users/me`,

{

 headers: {

 Authorization: `Bearer

${storedJwt}`,

 },

 })

 .then(res => res.json())

The first part of the useEffect hook checks whether there

is a JWT present in the local storage. If it is present, the
useEffect hook performs an API call to the FastAPI server

to determine whether the JWT is able to return a valid user:

.then(data => {

 if(data.username) {

 setUser({user: data.username});

 setMessage(`Welcome back,

${data.username}!`);

 } else {

If the token is invalid or it has been tampered with or has
expired, the useEffect hook removes it from local storage,

sets the context state variables to null, and sets an

appropriate message to the users:

localStorage.removeItem(

 ‘jwt’);

setJwt(null);

setUser(null);

setMessage(data.message)

}

})

.catch(() => {

 localStorage

 .removeItem(

 ‘jwt’);

 setJwt(null);

 setUser(null);

 setMessage(

 ‘Please log in or register’

);

});

}

else {

 setJwt(null);

 setUser(null);

 setMessage(

 ‘Please log in or register’

);

}

}, []); };

To sum it up, the useEffect hook performs a cycle. First, it

checks for the local storage and if it doesn’t find a JWT, it deletes
the JWT from the context, sets the username to null, and

prompts the user to log in. The same result is obtained if the API
call to the /me route, with the existing JWT, does not yield a

valid username. This means that the token is present, but
invalid or expired. If the JWT is indeed present and it can be
used in order to obtain a valid username, the username is then
set and the JWT is stored in the Context. Since the dependency
array is empty, this hook will run only once on the first render.

Implementing the login functionality

The login function will reside again inside the context for
simplicity, although it could be in a separate file. Following is
the login flow:

1. The user provides their username and password.
2. A fetch call to the backend is performed.
3. If the response has an HTTP status of 200 and the JWT is

returned, localStorage is set, as well as the context, and

the user is authenticated.
4. If the response doesn’t return an HTTP status of 200, it

means that the login information was not accepted and, in
that case, both the JWT and the username values are set to
null in the context and effectively invalidated.

To implement the login functionality, perform these steps:

1. First, the login function needs to call the login API route

with the provided username and password. Paste the
following code into the end of the AuthContext.jsx file:

const login = async (username,

 password) => { const response = await

fetch(`${import.meta.env.VITE_API_URL}/users/

{

 method: ‘POST’,

 headers: {

 ‘Content-Type’:

‘application/json’,

 },

 body: JSON.stringify({

 username,

 password

 }),

 });

2. Next, depending on the response, the function will set the
state variables in the context accordingly:

 const data = await response

 .json();

 if(response.ok) {

 setJwt(data.token);

 localStorage.setItem(‘jwt’, data

 .token);

 setUser(data.username);

 setMessage(

 `Login successful: welcome

${data.username}`

);

 } else {

 setMessage(‘Login failed: ‘ +

 data.detail);

 setUser(null)

 setJwt(null);

 localStorage.removeItem(‘jwt’);

 }

 return data

};

The logic is similar to the one applied in the useEffect

hook—if a valid user is found, the context state variables
(username and JWT) are set; otherwise, they are set to
null.

3. The final part is just the logout function and the returning

of the context provider. The following logout function is

defined inside AuthProvider:

 const logout = () => {

 setUser(null);

 setJwt(null);

 localStorage.removeItem(‘jwt’);

 setMessage(‘Logout successful’);

 };

 return (<

 AuthContext.Provider value = {

 {

 username,

 jwt,

 login,

 logout,

 message,

 setMessage

 }

 } > {

 children

 } <

 /AuthContext.Provider>

);

At this point you have accomplished quite a lot: you have set up
the context, defined the login and logout functions, and created
the context provider. Now, to facilitate the use of the context,
you will create a simple custom React hook, based on the
useContext built-in hook.

Creating a custom hook for accessing the
context

With the Context API set up, you can now proceed and create a
useAuth.jsx file inside a new folder, /src/hooks, which will

allow easy access to the context from various places:

1. Create the useAuth.jsx file inside the new folder:

import {

 useContext

} from “react”;

import {

 AuthContext

} from “../contexts/AuthContext”;

export const useAuth = () => {

 const context = useContext(

 AuthContext)

 if (!context) {

 throw new Error(

 ‘Must be used within an

AuthProvider’

)

 }

 return context

}

The useAuth hook contains an error message in case the

hook is accessed outside of the context—but your context
will enclose the entire application.
The final step in using a React context is to wrap the
components that will need to access it; in your case, this
will be App.jsx—the root component.

2. Open the App.jsx file and wrap the only component that it

is currently returning— RouterProvider—inside

AuthProvider:

import { AuthProvider } from

“./contexts/AuthContext”

// continues

export default function App() {

 return (

 <AuthProvider>

 <RouterProvider router={router} />

 </AuthProvider>

)

}

Finally, display the context data and the state variables
inside the RootLayout component that currently hosts all

of your pages. This is a useful debugging technique while
working with React Context API; you do not need to switch
to and from the developer tools constantly.

3. Open RootLayout.jsx and edit the file:

import { Outlet, NavLink } from “react-

router-dom”

import { useAuth } from “../hooks/useAuth”

const RootLayout = () => {

 const { user, message, logout } =

useAuth()

4. After having access to the various state variables and the
logout function, you can now add a little bit of JSX

conditional rendering and create a dynamic menu:

const RootLayout = () => {

 const {

 user,

 message,

 logout

 } = useAuth()

 return (

 <div className=” bg-blue-200 min-h-

screen p-2”>

 <h2>RootLayout</h2>

 <p className=”text-red-500 p-2

border”>

 {message}

 </p>

 <p>Username: {user}</p>

 <header className=”p-3 w-full”>

 <nav className=”flex flex-row

justify-between

 mx-auto”>

 <div className=”flex flex-row space-

x-3”>

 <NavLink to=”/”>Home</NavLink>

 <NavLink to=”/cars”>Cars</NavLink>

 {user ? <>

 <NavLink to=”/new-car”>New

Car</NavLink>

 <button onClick=

{logout}>Logout</button>

 </> : <>

 <NavLink

to=”/login”>Login</NavLink>

 </>}

 </div>

 </nav>

 </header>

 <main className=”p-8 flex flex-col flex-

1

 bg-white “>

 <Outlet />

 </main>

 </div>

)

}

export default RootLayout

The application is rather simple, but it showcases the
login/logout process well. As an exercise, you could easily
implement the registration page—the API endpoint already
exists and you should create the logic for handling the register
form.

The following section will focus on completing some more
functionality—the route for inserting new cars is still reachable

for users who are not logged in and the form doesn’t exist yet.
Now you will secure the resource creation endpoint and create
protected pages with React Router.

Protecting routes

Protected routes are routes and pages that are not accessible to
everyone—they usually require the user to be logged in or to
have certain privileges (admin or creator). There are many
ways of protecting routes in React Router. One popular pattern
is through high-order components—they are wrapper
components that wrap routes that require a logged-in user. The
new React Router and its Outlet component allow you to easily

implement gate logic and redirect the user if they need to be
authorized.

Create a basic component that checks for the presence of a user
(through the username). If the user is present, the component
will use an Outlet component to let the wrapped routes make

their way to the browser; otherwise, a redirect to the login page
will ensue:

1. Create a new component in the /src/components folder

and name it AuthRequired.jsx:

import {

 Outlet,

 Navigate

} from “react-router-dom”

import {

 useAuth

} from “../hooks/useAuth”

const AuthRequired = () => {

 const {

 jwt

 } = useAuth()

 return (

 <div>

 <h1>AuthRequired</h1>

 {jwt ? <Outlet /> : <Navigate

to=”/login” />}

 </div>

)

}

export default AuthRequired

The logic is simple; the component ensures you perform the
JWT presence check. It then acts like a semaphore or a
simple IF construct that checks for a condition—if a JWT is
present, the Outlet component will show the enclosed

components (in our case only one: the NewCar page), and if

not, React Router’s Navigate component is used for

programmatic navigation to the home page.
This simple solution will not force the authenticated user to
be redirected to the home page if they reload a protected
page, since the useEffect hook in Layout.jsx will detect

whether the JWT is invalid only after the component loads.
If the JWT is indeed invalid, the useEffect hook will

invalidate the JWT, thus triggering the redirect.
2. Now, update the App.jsx component, import the

AuthRequired component, and enclose the NewCar page:

import AuthRequired from

“./components/AuthRequired”

import { AuthProvider } from

“./contexts/AuthContext”

// code continues

const router = createBrowserRouter(

 createRoutesFromElements(

 <Route path=”/” element={<RootLayout

/>}>

 <Route index element={<Home />} />

 <Route path=”cars” element={<Cars

/>} loader={carsLoader} />

 <Route path=”login” element={<Login

/>} />

 <Route element={<AuthRequired />}>

 <Route path=”new-car” element=

{<NewCar />} />

 </Route>

 <Route path=”cars/:id” element=

{<SingleCar />} />

You have learned how to protect routes that need
authentication. Now, you will build another form to insert data
about new cars and upload images (one image per car, to be
precise) to Cloudinary through FastAPI.

Creating the page for inserting new
cars

The page for inserting new cars into the collection—the
NewCar.jsx component—is protected and can be accessed only

by authenticated users. In this section, you will build a more
complex form and gradually modularize the code:

1. First, update the NewCar.jsx page and add a CarForm

component, which you will build shortly:

import CarForm from

“../components/CarForm”

const NewCar = () => {

 return (

 <div>

 <CarForm />

 </div>

)

}

export default NewCar

2. Now, create this component in the /src/components

folder. In this folder, create a new file and name it
CarForm.jsx. Before starting to code the form, quickly

review what type of data the form needs to collect and send
to the API:

1. Brand: A string
2. Make: A string
3. Year: An integer
4. Price: An integer
5. Km: An integer
6. Cm3: An integer
7. Picture: A file object

It would be rather tedious and repetitive to create each
field in the form as an individual input and just copy and
paste everything across the file. Instead, you can abstract
the input field and make it a reusable component. This
component will need to accept some props, such as a name

and type (number or string), and RHF can register it and
associate an error, if any, to said field. So, before starting
the form, create another component that will be reused as
many times as needed and that will significantly facilitate
the process of creating and updating the form should you
need to add even more fields later—in a real-life scenario,
cars can have hundreds of fields.

3. Create a new file in the /src/components folder and name

it InputField.jsx:

const InputField = ({ props }) => {

 const { name, type, error } = props;

 return (

 <div className=”mb-4”>

 <label

 className=”block text-gray-700

text-sm mb-2”

 htmlFor={name}

 >

 {name}

 </label>

 <input

 className=”shadow appearance-none

border rounded w-full py-2 px-3 text-gray-

700 leading-tight focus:outline-none

focus:shadow-outline”

 id={name}

 name={name}

 type={type}

 placeholder={name}

 required

 autoComplete=”off”

 {...props}

 />

 {error && <p className=”text-red-500

text-xs italic”>{error.message}</p>}

 </div>

);

};

export default InputField;

The field component is simple, yet useful—it abstracts all
the functionality and even adds some styling.

4. Now, go back to the CarForm file and start with the imports:

import { useForm } from “react-hook-form”

import { z } from ‘zod’;

import { zodResolver } from

‘@hookform/resolvers/zod’;

import { useNavigate } from “react-router-

dom”;

import { useAuth } from

“../hooks/useAuth”;

import InputField from “./InputField”;

5. You are going to use Zod again for data validation, so add a
schema—it should ideally match the Pydantic validation
rules on the backend for consistency:

const schema = z.object({

 brand: z.string().min(2, ‘Brand must

contain at least two letters’).max(20,

‘Brand cannot exceed 20 characters’),

 make: z.string().min(1, ‘Car model

must be at least 1 character

long’).max(20, ‘Model cannot exceed 20

characters’),

 year:

z.coerce.number().gte(1950).lte(2025),

 price:

z.coerce.number().gte(100).lte(1000000),

 km:

z.coerce.number().gte(0).lte(500000),

 cm3:

z.coerce.number().gt(0).lte(5000),

 picture: z.any()

 .refine(file => file[0] &&

file[0].type.startsWith(‘image/’), {

message: ‘File must be an image’ })

 .refine(file => file[0] &&

file[0].size <= 1024 * 1024, { message:

‘File size must be less than 1MB’ }),

});

The Zod schema syntax is rather intuitive, though there
might be some aspects that need caution—numbers need to
be coerced, as HTML forms send strings by default, and
files can be validated through handy functions.

6. Now, start the actual form component:

const CarForm = () => {

 const navigate = useNavigate();

 const { jwt } = useAuth();

 const { register, handleSubmit,

 formState: { errors, isSubmitting } }

= useForm({

 resolver: zodResolver(schema),

 });

The useNavigate hook is used to navigate away from the

page once the submission is complete, while useForm is

similar to the one used for logging users in.
7. Create a simple JavaScript array containing the data about

the fields that are needed for the form:

 let formArray = [

 {

 name: “brand”,

 type: “text”,

 error: errors.brand

 },

 {

 name: “make”,

 type: “text”,

 error: errors.make

 },

 {

 name: “year”,

 type: “number”,

 error: errors.year

 },

 {

 name: “price”,

 type: “number”,

 error: errors.price

 },

 {

 name: “km”,

 type: “number”,

 error: errors.km

 },

 {

 name: “cm3”,

 type: “number”,

 error: errors.cm3

 },

 {

 name: “picture”,

 type: “file”,

 error: errors.picture

 }

]

8. With this array, the form code becomes much more
manageable. Look at the onSubmit function:

const onSubmit = async (data) => {

 const formData = new FormData();

 formArray.forEach((field) => {

 if (field == “picture”) {

 formData.append(field, data[field]

[0]);

 } else {

 formData.append(field.name,

data[field.name]);

 }

 });

};

Suddenly, the onSubmit function is much more succinct—it

loops over the array and adds the fields to the formData

object. Keep in mind that the file field is special—it is an

array and you want only the first element, that is, the
picture.

9. To complete the onSubmit function, you need to make the

POST request to the API:

const result = await

fetch(`${import.meta.env.VITE_API_URL}/cars/`

{

 method: “POST”,

 body: formData,

 headers: {

 Authorization: `Bearer ${jwt}`,

 },

});

const json = await result.json();

if (result.ok) {

 navigate(“/cars”);

} else if (json.detail) {

 setMessage(JSON.stringify(json));

 navigate(“/”);

}

The fetch call is simple. After you get the result back, you
can apply custom logic. In this case, you JSONify—render
the error object as a JSON string and set the message to
show it—if the error is coming from the server.

10. Finally, the JSX is trivial, thanks to your InputField

component and formArray, while you also use the

submitting value from the useForm hook:

return (

 <div className=”flex items-center

justify-center”>

 <div className=”w-full max-w-xs”>

 <form

 className=”bg-white shadow-md

rounded px-8 pt-6 pb-8 mb-4 “

 encType=”multipart/form-data”

 onSubmit={handleSubmit(onSubmit)}

 >

 <h2 className=”text-center text-

2xl font-bold mb-6”>Insert new car</h2>

 {formArray.map((item, index) => (

 <InputField

 key={index}

 props={{

 name: item.name,

 type: item.type,

 error: item.error,

 ...register(item.name),

 }}

 />

))}

 <div className=”flex items-center

justify-between”>

 <button

 className=”bg-gray-900

hover:bg-gray-700 text-white w-full font-

bold py-2 px-4 rounded focus:outline-none

focus:shadow-outline”

 type=”submit”

 disabled={isSubmitting}

 >

 {isSubmitting ? “Saving...” :

“Save new car”}

 </button>

 </div>

 </form>

 </div>

 </div>

);}

export default CarForm

The submit button is now reused as a submission indicator—it
displays a different message while submitting and is also

disabled to prevent multiple requests.

Building a page to update cars would be very similar to the
previous endpoint—RHF plays extremely well with initial or
default data that can be populated from an existing object, and
you can also play with the online form builder: https://react-
hook-form.com/form-builder. Deleting cars is also relatively
simple as the request needs only to be authenticated and
contains the car ID.

You have now built a car creation page, which can be extended
in numerous ways. You have learned how to modularize your
React code and how to provide meaningful messages and logic
to your application, depending on the data flow to and from the
server. Now you will build a page for displaying single cars and
use loaders again.

Displaying single cars

Now that you have created the pages for displaying multiple
items (cars), authenticating, and creating new items, create an
individual car page and see how React Router deals with
parameters in the URL:

https://react-hook-form.com/form-builder
https://react-hook-form.com/form-builder

1. Edit the SingleCar.jsx file and introduce the

useLoaderData hook, already used for preloading data on

the cars page:

import { useLoaderData } from “react-

router-dom”;

import CarCard from

“../components/CarCards”;

const SingleCar = () => {

 const car = useLoaderData()

 return (

 <CarCard car={car} />

);

};

export default SingleCar

To save space, we reused the CarCard function to display

data about the car. However, in a realistic scenario, this
page would contain possibly an image gallery, much more
data, maybe some comments or notes, and so on. The goal
here, however, is just to show another way of creating the
loader function.

2. Open the App.jsx file that currently hosts the router and

update the cars/:id route, bearing in mind that the colon

denotes a parameter, in this case, the string version of the
ObjectId component of the car in the MongoDB collection:

import fetchCarData from

“./utils/fetchCarData”

// continues

const router = createBrowserRouter(

 createRoutesFromElements(

 <Route path=”/” element={<RootLayout

/>}>

 <Route index element={<Home />} />

 <Route path=”cars” element={<Cars

/>} loader={carsLoader} />

 <Route path=”login” element={<Login

/>} />

 <Route element={<AuthRequired />}>

 <Route path=”new-car” element=

{<NewCar />} />

 </Route>

 <Route

 path=”cars/:id”

 element={<SingleCar />}

 loader={async ({ params }) => {

 return fetchCarData(params.id);

 }}

 errorElement={<NotFound />} />

 <Route path=”*” element={<NotFound

/>} />

 </Route>

)

)

There are just two changes in the route: the loader

function, which is supplied as a part of an async function
that takes in the parameter ID, and errorElement. The

NotFound component will be displayed, in case the loader

function encounters an error while fetching the data. Here,
again, you reuse an existing element, but it could be
customized.

3. The final piece of the puzzle is the fetchCarData.js file,

which is located in the /src/utils folder:

export default async function

fetchCarData(id) {

 const res = await

fetch(`${import.meta.env.VITE_API_URL}/cars/$

 const response = await res.json()

 if (!res.ok) {

 throw new Error(response.message)

 }

 return response

}

The async function just performs a single API call to retrieve

the data related to an individual entity and, in case of an error,
errorElement will be triggered.

Loader functions are extremely handy. By preloading data, they
enable the user to have a much better user experience and the
application feels faster.

Summary

In this chapter, you created a React application using a modern
Vite setup and implemented the basic functionality—creating
new resources and, listing and displaying cars. This chapter
also served as a refresher for you on the basic React hooks, such
as useState and useEffect, and the Context API. You also

learned the basics of React Router with its powerful loader
functions. In this chapter, you created two forms using RHF and
learned how to manage various steps and states involved with
the use of your API.

The following chapter will explore Next.js version 14—the most
powerful and feature-rich React.js-based full-stack framework.

9

Third-Party Services Integration
with FastAPI and Beanie

After learning about the tools that compose the FARM stack, you
will see them combined in a more complex setting in this
chapter. You will build on your knowledge of Pydantic and
FastAPI to learn about Beanie, one of the most popular
MongoDB Object-Document Mappers (ODMs), and how it can
make your code more efficient and enhance your developer
experience.

Finally, you will see how the stack’s flexibility is useful when
you need to extend your application with external, third-party
functionality. In this chapter, you will add a fully AI-based
salesperson assistant that will make use of OpenAI to create
catchy car descriptions, and then you will use the Resend API
service to send automated emails.

These functionalities are becoming more and more central to
web application requirements in the modern web, and through

this chapter, you will see how the right set of tools can make
application development more efficient.

This chapter will walk you through the following tasks:

Installing and using Beanie – a Python MongoDB ODM
Learning about the basic Beanie features (connections,
CRUD operations, and aggregations)
Using FastAPI’s background tasks to handle long-running
processes while maintaining the responsiveness of the
application
Programmatically sending emails from an application
Integrating OpenAI’s ChatGPT (or any other Large
Language Model (LLM))

Technical requirements

The technical requirements for this chapter are similar to the
requirements in the chapters in which we created backends
with FastAPI, with the addition of a couple of libraries and
services for the email-sending functionality and AI integration:

Python 3.11.7 or higher
Visual Studio Code with the Python extensions set up (same
as in Chapter 3)

An account on MongoDB Atlas
An account on Render.com (if you wish to deploy the
FastAPI backend)
An OpenAI account with API access, or a free, locally run
LLM such as Llama 2 or Llama 3 in case you do not want to
deploy the app and incur costs
A Netlify account (free tier)

We strongly recommend starting with the free (or cheapest)
tiers of the previous accounts and making sure that you feel
comfortable within these environments.

With the technical requirements out of the way, let’s discuss the
project you will build throughout this chapter.

Project outline

Staying with the situation that you operate a (small) used car
sales agency, the requirements are somewhat similar to the
ones in the previous chapters. You will build a backend for a
web app that displays information and pictures of cars that are
for sale. Unlike the previous chapters, now you will use an
ODM, and you will include email sending and OpenAI
integration, which will be handled by FastAPI’s background
tasks.

The car data model will be handled by Pydantic and Beanie. The
application will need authenticated users and, while you will
use JSON Web Tokens (JWTs) again in the backend, on the
frontend, which you will develop in the next chapter, they will
be handled by cookies, with the help of a package called iron-

session.

Finally, you will integrate an LLM API (in this case, OpenAI) to
help create useful car model descriptions, list the pros and cons
of the newly inserted car model for the marketing pages, and
send tailored emails to specified recipients on every new car ad
insertion.

NOTE

LLMs are machine learning systems designed specifically to
generate and understand human language. Trained on huge
datasets, they are able to perform efficiently on tasks such as text
summarization and generation, translation, and image
generation. In the last couple of years, LLMs have gained
popularity and adoption, and their fields of implementation will
only grow over time.

In the next section, you will learn how to create a backend with
FastAPI and Beanie and how to integrate OpenAI and email-

sending functionality.

Building the backend with
FastAPI and Beanie

For simplicity’s sake and to make the application as illustrative
as possible, the API that you will build in this chapter will not
differ too much from the one built in Chapter 7, Building a
Backend with FastAPI. This way, you will be able to naturally
pick up the main differences in the approaches of using Motor
(or PyMongo) directly and the Beanie ODM.

Object-Relational Mappers (ORMs) and ODMs are tools whose
main purpose is to abstract the underlying database (whether
it’s a relational or non-relational database) and facilitate the
development process. Some famous Python examples include
the Django ORM and SQLAlchemy—two proven and battle-
tested solutions—as well as SQLModel, which was created by
the creator of FastAPI and tightly integrated into the
FastAPI/Pydantic world.

Two modern ODMs that are gaining traction and popularity
among the Python and MongoDB community are Beanie
(https://beanie-odm.dev/) and Odmantic

https://beanie-odm.dev/

(https://art049.github.io/odmantic/). In this project, you will be
working with the more mature and older one of the two—the
Beanie ODM.

Introduction to the Beanie ODM

Beanie is one of the most popular MongoDB ODMs for Python.
ODMs are a programming technique that allows developers to
work directly with classes (Python classes in our case)
representing NoSQL documents. When using Beanie, each
MongoDB collection is mapped to a corresponding document
class that allows you to retrieve or aggregate data and perform
CRUD operations, saving time by removing the necessity of
boilerplate code.

Beanie also handles MongoDB’s ObjectId type elegantly, and

since its document class is based on Pydantic, you get to use all
of the powerful validation and parsing features of Pydantic
right out of the box.

In brief, some of Beanie’s salient features include the following:

Asynchronous, based on the Motor driver and ideal for
performant FastAPI apps
Based on Pydantic and compatible with Pydantic version 2

https://art049.github.io/odmantic/

Schema-based, with seamless handling of ObjectId string

conversions
Simple CRUD operations, as well as support for MongoDB’s
powerful aggregation framework

In the following section, you will begin creating a Beanie-
powered application through which you will learn some
features of the ODM.

Creating the Beanie application

You will learn how to use Beanie by creating a new application
and exploring the functionality provided by the ODM—
connecting to a database, mapping collections to document
classes, and performing CRUD operations on the documents.

To begin the project and scaffold the FastAPI application,
perform the following steps:

1. Create a new folder (chapter9) and a virtual environment

with the following command:

python -m venv venv

2. Activate the virtual environment with the following
command (for Linux or Mac):

source venv/bin/activate

Or, for a Windows system, use the following:

venv\Scripts\activate.bat

3. Activate it and lay out an initial requirements.txt file

with the following packages:

fastapi==0.111.0

fastapi_cors==0.0.6

beanie==1.26.00

bcrypt==4.0.1

cloudinary==1.40.0

uvicorn==0.30.1

pydantic-settings

PyJWT==2.8.0

python-multipart==0.0.9

openai==1.33.0

resend==2.0.0

4. Install the required packages by running the following
command:

pip install –r requirements.txt

If you look closely at the requirements.txt file you will

notice that you are installing a new package—fastapi-

cors—that is useful for managing the Cross-Origin

Resource Sharing (CORS) settings through environment
variables.

5. In the same working directory, create an empty .env file

and then create a .gitignore file with the following

content:

.env

.venv

env/

venv/

After getting the basic packages and settings ready, you will
now create the models with Beanie.

Defining the models with Beanie

Before scaffolding the main FastAPI application, you will learn
how Beanie handles data models. As mentioned earlier, Beanie’s
Document class represents documents that will eventually be

saved into a MongoDB database, and these models inherit
Beanie’s Document class, which itself is a Pydantic’s BaseModel-

based class. As stated on the Beanie website: "The Document

class in Beanie is responsible for mapping and handling the
data from the collection. It is inherited from the BaseModel

Pydantic class, so it follows the same data typing and parsing
behavior." (https://beanie-odm.dev/tutorial/defining-a-
document/)

Let’s begin creating the models, bearing in mind that the file
will also contain several pure Pydantic models for validation of
inputs and outputs (not all models will be Beanie-based, only
the ones that map documents in collections):

1. Create a file named models.py in the root of the directory,

and import the necessary modules:

from datetime import datetime

from typing import List, Optional

from beanie import Document, Link,

PydanticObjectId

from pydantic import BaseModel, Field

The only new import in this code is from Beanie: you are
importing the Document class—the workhorse of Beanie for

working with data—as well as Link (needed for

referencing data, since you will not be embedding user data
in car documents but referencing the users) and

https://beanie-odm.dev/tutorial/defining-a-document/
https://beanie-odm.dev/tutorial/defining-a-document/

PydanticObjectId—a field type representing ObjectId

compatible with Pydantic.
2. Continue working on the models.py file and create the

base user model:

class User(Document):

 username: str = Field(min_length=3,

max_length=50)

 password: str

 email: str

 created: datetime =

Field(default_factory=datetime.now)

 class Settings:

 name = "user"

 class Config:

 json_schema_extra = {

 "example": {

 "username": "John",

 "password": "password",

 "email": "john@mail.com",

 }

 }

The User model inherits from the Beanie Document class

instead of the BaseModel class of Pydantic, but the rest is

largely the same. In fact, the Document class is based on the

BaseModel class and inherits its functionality—you were

able to use a Pydantic field with the default factory for
creating the datetime type.

Then, you used the Settings class to specify the name of

the collection that will be used in MongoDB. This class is
quite powerful and allows setting caching, indexing,
validations upon saving, and much more, as you can see on
the documentation page: https://beanie-
odm.dev/tutorial/defining-a-document/#settings.

3. Continuing with the same models.py file, you will now

provide a couple of Pydantic models used for specific
purposes: registering a new user, logging the user in, and
providing information about the current user:

class RegisterUser(BaseModel):

 username: str

 password: str

 email: str

class LoginUser(BaseModel):

 username: str

 password: str

class CurrentUser(BaseModel):

 username: str

 email: str

 id: PydanticObjectId

https://beanie-odm.dev/tutorial/defining-a-document/#settings
https://beanie-odm.dev/tutorial/defining-a-document/#settings

4. The previous code should feel familiar as it is completely
based on Pydantic, so define the document model for the
cars:

class Car(Document):

 brand: str

 make: str

 year: int

 cm3: int

 price: float

 description: Optional[str] = None

 picture_url: Optional[str] = None

 pros: List[str] = []

 cons: List[str] = []

 date: datetime = datetime.now()

 user: Link[User] = None

 class Settings:

 name = "car"

The Beanie document model contains all the fields that you
have used throughout the book, and a couple of new ones:
two lists of strings that will include small text snippets of
pros and cons for each car model—something along the
lines of compact and easy to park. Also, the car description
is intentionally left blank—these fields will be populated

later, in a background task, by an OpenAI chat-completion
prompt.
The interesting part of this model is the user part: the Link

field type provides a direct link to the user. You can check
the documentation to see what is possible with Beanie
relations and what the current limitations are:
https://beanie-odm.dev/tutorial/relations/.
Beanie manages relationships through links in the
respective fields, and at the time of writing, only top-level
fields are supported. Links to related documents can be
links, optional links, and lists of links, as well as backward
links.
Backward links are reverse relationships: if an object called
House has a link to an owner—a Person object, for

instance—then that Person object can have a backward

link to all the houses that they own, through a backlink.
5. Finally, add an UpdateCar Pydantic model that will be used

for updating cars:

class UpdateCar(BaseModel):

 price: Optional[float] = None

 description: Optional[str] = None

 pros: Optional[List[str]] = None

 cons: Optional[List[str]] = None

https://beanie-odm.dev/tutorial/relations/

Notice that you haven’t defined almost any validation on the
fields—this is done only to save some space and simplify the
model. Since Beanie is based on Pydantic, it can count on the
full functionality of Pydantic and, thus, implement complex and
powerful validations.

With the models now defined, you can proceed to connect to
the MongoDB database. It is important to have the models
defined upfront, as their names will be fed to the Beanie
initialization code, as you will see in the next section.

Connecting to the MongoDB database

The Beanie ODM uses the Motor asynchronous driver as its
engine. To be able to operate on documents, it needs two things:
a Motor database instance, and the list of document models that
are going to be used and that can be seen by Beanie. The
documentation page describes this process: https://beanie-
odm.dev/tutorial/initialization/. In order to configure Beanie
and the environment variables, you are going to use pydantic-

settings and its BasicSettings class for easy access to the

environment variables inside your application.

The process is very similar to the one used in Chapter 7,
Building a Backend with FastAPI:

https://beanie-odm.dev/tutorial/initialization/
https://beanie-odm.dev/tutorial/initialization/

Environment variables are stored in the .env file.

pydantic-settings is used to read the environment

variables and create a settings object (through the
config.py file).

These settings, together with the models, are used to
initialize the database connection to Atlas.

To create the database connection and use the models, perform
the following steps:

1. Define the configuration and environment variables by
using pydantic-settings. Since you need the settings

before initializing the database connection, and they are
read from the environment, populate the .env file that will

host the environment variables, which are then going to be
read through the config.py file and instantiated into a

settings object.
The .env file should contain the following entries:

DB_URL=mongodb://localhost:27017/ or the

Atlas address

CLOUDINARY_SECRET_KEY=

<cloudinary.secret.key>

CLOUDINARY_API_KEY=<cloudinary.api.key>

CLOUDINARY_CLOUD_NAME=

<cloudinary.cloud.name>

OPENAI_API_KEY=<openai.api.key>

RESEND_API_KEY=<resend.api.key>

You will set up the OpenAI and Resend API keys later, but
for now, you can insert the other values for MongoDB Atlas
and the Cloudinary keys.

2. Create a file in the root of the same working folder in which
you created the models and name it config.py. Open the

config.py file and create the BaseConfig class for

reading the environment values and easy overriding of
these values, based on the desired configuration:

from typing import Optional

from pydantic_settings import

BaseSettings, SettingsConfigDict

class BaseConfig(BaseSettings):

 DB_URL: Optional[str]

 CLOUDINARY_SECRET_KEY: Optional[str]

 CLOUDINARY_API_KEY: Optional[str]

 CLOUDINARY_CLOUD_NAME: Optional[str]

 OPENAI_API_KEY: Optional[str]

 RESEND_API_KEY: Optional[str]

 model_config = SettingsConfigDict(

 env_file=".env", extra="ignore"

)

3. The differences in connecting to a MongoDB database with
Beanie compared to plain Motor-based connections become
apparent in the database.py file that you will create in the

same root directory and populate with the following code:

import motor.motor_asyncio

from beanie import init_beanie

from config import BaseConfig

from models import Car, User

settings = BaseConfig()

async def init_db():

 client =

motor.motor_asyncio.AsyncIOMotorClient(

 settings.DB_URL

)

 await

init_beanie(database=client.carAds,

 document_models=[User, Car]

)

The initialization code is highlighted: the async init_beanie

function needs the Motor client and the document models.

With the models defined and the database connection in place,
you will now begin crafting the FastAPI application and the
routers.

Creating the FastAPI application

All the necessary pieces are ready, and now that you have the
connection to the MongoDB database ready, you can start
building the application. Use the freshly created database.py

file for connecting to your MongoDB instance and wrap it into
the lifespan context manager to ensure that the application
connects when started and that the connection is deleted on
shutdown.

To create the main FastAPI application file (app.py), perform

the following steps:

1. Create the app.py file in the root directory, which will be

very similar to the one created in Chapter 7, Building a
Backend with FastAPI:

from contextlib import asynccontextmanager

from fastapi import FastAPI

from fastapi_cors import CORS

from database import init_db

@asynccontextmanager

async def lifespan(app: FastAPI):

 await init_db()

 yield

app = FastAPI(lifespan=lifespan)

CORS(app)

Apart from the init_db function, you imported the

fastapi_cors package, which allows easier management

of CORS.
All you need to do now is add one line to the .env file to

specify the allowed origins: ALLOW_ORIGINS=*.

You can explore the documentation of this simple package
here: https://pypi.org/project/fastapi-cors/.

2. The connection initialization code is nested inside a
lifespan event, like the previously used solution with Motor,
while the rest of the code is just the inclusion of the routers
that you will be creating soon and a root endpoint:

@app.get("/", tags=["Root"])

async def read_root() -> dict:

 return {"message": "Welcome to your

beanie powered app!"}

3. If you have installed a recent version of FastAPI (0.111 or
later) that installs the fastapi-cli package, you can now

https://pypi.org/project/fastapi-cors/

start the development FastAPI server with the following
command:

fastapi dev

Alternatively, you can use the following standard code line:

uvicorn app:app --reload

The preceding code uses the new fastapi-cli package for

easier development (https://fastapi.tiangolo.com/fastapi-cli/).
fastapi-cors will provide a new endpoint called “health

check.” If you try it out, you will see the environment variables
related to CORS (ALLOWED_CREDENTIALS, ALLOWED_METHODS,

ALLOWED_ORIGINS, and others), and they are now settable

through the .env file.

The FastAPI main application is now ready, but it needs two
routers: one for users and one for cars, as well as the
authentication logic. First, you will handle the authentication
class along with the users router.

Creating the APIRouter class for the users
and the authentication class

https://fastapi.tiangolo.com/fastapi-cli/

The authentication class will encapsulate the authentication
logic, similar to the one shown in Chapter 6, Authentication and
Authorization, and create the accompanying APIRouter for
managing users—registration, logging in, and verification.

The authentication.py file will be identical to the previously

used one for simplicity’s sake. The authentication.py file,

located in the root of the project, contains the encoding and
decoding JWT logic, the password encryption, and the
dependency injection, as shown in Chapter 7, Building a
Backend with FastAPI.

We provide the file contents here, for your convenience:

import datetime

import jwt

from fastapi import HTTPException, Security

from fastapi.security import

HTTPAuthorizationCredentials, HTTPBearer

from passlib.context import CryptContext

class AuthHandler:

 security = HTTPBearer()

 pwd_context = CryptContext(

 schemes=["bcrypt"], deprecated="auto"

)

 secret = "FARMSTACKsecretString"

 def get_password_hash(self, password):

 return

self.pwd_context.hash(password)

 def verify_password(

 self, plain_password, hashed_password

):

 return self.pwd_context.verify(

 plain_password, hashed_password

)

 def encode_token(self, user_id,

username):

 payload = {

 "exp":

datetime.datetime.now(datetime.timezone.utc)

 + datetime.timedelta(minutes=30),

 "iat":

datetime.datetime.now(datetime.timezone.utc),

 "sub": {"user_id": user_id,

"username": username},

 }

 return jwt.encode(payload,

self.secret, algorithm="HS256")

 def decode_token(self, token):

 try:

 payload = jwt.decode(token,

self.secret, algorithms=["HS256"])

 return payload["sub"]

 except jwt.ExpiredSignatureError:

 raise HTTPException(

 status_code=401,

 detail="Signature has expired"

)

 except jwt.InvalidTokenError:

 raise

HTTPException(status_code=401,

detail="Invalid token")

 def auth_wrapper(self, auth:

HTTPAuthorizationCredentials =

Security(security)):

 return

self.decode_token(auth.credentials)

The user.py router will be placed in the /routers folder, and

it will expose three endpoints: for registering new users, for
logging users in, and for verifying the user—given a Bearer

token in the header. This last route is optional, as you will not
use it directly in the next chapter (on Next.js) since we are
opting for a simple cookie-based solution.

To create the API router for users, perform the following steps:

1. Create a routers/user.py file and populate it to create

the router for the users. This router is again similar to the

Motor version, and it shares the same logic, but some
differences are highlighted in the following code:

from fastapi import APIRouter, Body,

Depends, HTTPException

from fastapi.responses import JSONResponse

from authentication import AuthHandler

from models import CurrentUser, LoginUser,

RegisterUser, User

auth_handler = AuthHandler()

router = APIRouter()

@router.post(

 "/register",

 response_description="Register user",

 response_model=CurrentUser

)

async def register(

 newUser: RegisterUser = Body(...),

 response_model=User):

 newUser.password =

auth_handler.get_password_hash(

 newUser.password)

 query = {

"$or": [{"username": newUser.username},

 {"email": newUser.email}]}

 existing_user = await

User.find_one(query)

 if existing_user is not None:

 raise HTTPException(

 status_code=409,

 detail=f"{newUser.username} or

{newUser.email}

 already exists"

)

 user = await

User(**newUser.model_dump()).save()

 return user

The router showcases some of Beanie’s features: the direct
querying of the User model (the users collection) with a

MongoDB query, and the simple async creation of a new
instance if the checks for existing users pass. In this case,
you have two conditions: the username and the email must
be available (not present in the collection). The querying
syntax of Beanie is very intuitive: https://beanie-
odm.dev/tutorial/finding-documents/.

2. Create the login route in the user.py file:

@router.post("/login",

response_description="Login user and

return token")

async def login(loginUser: LoginUser =

Body(...)) -> str:

https://beanie-odm.dev/tutorial/finding-documents/
https://beanie-odm.dev/tutorial/finding-documents/

 user = await User.find_one(

 User.username ==

loginUser.username

)

 if user and

auth_handler.verify_password(

 loginUser.password,

user.password):

 token = auth_handler.encode_token(

 str(user.id),

 user.username

)

 response = JSONResponse(

 content={

 "token": token,

 "username":

user.username})

 return response

 else:

 raise HTTPException(

 status_code=401,

 detail="Invalid username or

password")

The login functionality uses the find_one MongoDB

method, which is available in Beanie.

3. Finally, add the /me route, for verifying the logged-in user.

This method uses the get method, which accepts an

ObjectId:

@router.get(

 "/me", response_description="Logged in

user data", response_model=CurrentUser

)

async def me(

 user_data=Depends(auth_handler.auth_wrapp

):

 currentUser = await

User.get(user_data["user_id"])

 return currentUser

This completes the users.py APIRouter, which uses several

Beanie querying methods. Now, you will create the Car router

with Beanie ODM.

The Car APIRouter

Similar to what you have accomplished in the previous
chapters, the Cars router will be in charge of performing some

CRUD operations. For simplicity, you will implement only
partial updates of the car instances: you will be able to update

the fields defined in the UpdateCar model. Since the

description and the lists of pros and cons will initially be empty,
they need to be able to be updated later (by a call to OpenAI’s
API).

To create the Cars router, in the /routers folder and the

cars.py file, perform the following steps:

1. Begin by creating a /routers/cars.py file and list the

initial imports (there will be some more added later, when
you start implementing background tasks):

from typing import List

import cloudinary

from beanie import PydanticObjectId,

WriteRules

from cloudinary import uploader # noqa:

F401

from fastapi import (APIRouter, Depends,

File, Form,

 HTTPException, UploadFile, status)

from authentication import AuthHandler

from config import BaseConfig

from models import Car, UpdateCar, User

These imports are similar to the ones used when working
with Motor directly; the main difference is the Beanie

imports: PydanticObjectId (for handling ObjectIds with

Pydantic) and WriteRules, which will enable the

relationship of Car and User to be written to the MongoDB

database as a reference.
2. Continuing with the file, you can now instantiate the

authentication handler (auth_handler) class, the settings,

and the router, as well as the Cloudinary configuration:

auth_handler = AuthHandler()

settings = BaseConfig()

cloudinary.config(

 cloud_name=settings.CLOUDINARY_CLOUD_NAME

 api_key=settings.CLOUDINARY_API_KEY,

 api_secret=settings.CLOUDINARY_SECRET_KEY

)

router = APIRouter()

3. After having the necessary settings and authentication
ready, you can create the first route—the GET handler,

which in this case simply retrieves all the cars in the
database:

@router.get("/", response_model=List[Car])

async def get_cars():

 return await Car.find_all().to_list()

The find_all() Beanie method is asynchronous, like all

Beanie methods, and it simply returns all the documents in
the database. Other querying methods are .find(search

query) and .first_or_none(), which are often used to

check for the existence of a certain condition (such as a
user with a given username or email). Finally, the
to_list() method, like with Motor, returns a list of

documents, but you could also use the async for construct

(shown in Chapter 4, Getting Started with FastAPI) and
generate a list that way.

4. Create the GET method for getting one car instance by its

ID:

@router.get("/{car_id}",

response_model=Car)

async def get_car(car_id:

PydanticObjectId):

 car = await Car.get(car_id)

 if not car:

 raise

HTTPException(status_code=404, detail="Car

not found")

 return car

This implementation is also simple—it uses the get()

shortcut to query the collection by ObjectId, which is

elegantly handled by Beanie.
5. The method for creating the new car instances is a bit more

complex, but not too heavy. Since you are uploading an
image (a file), you are using form data instead of JSON and
the endpoint must upload the image to Cloudinary, obtain
an image URL from Cloudinary, and only then insert it into
the MongoDB database along with the other data:

@router.post(

 "/",

 response_description="Add new car with

picture",

 response_model=Car,

 status_code=status.HTTP_201_CREATED,

)

async def add_car_with_picture(

 brand: str = Form("brand"),

 make: str = Form("make"),

 year: int = Form("year"),

 cm3: int = Form("cm3"),

 km: int = Form("km"),

 price: int = Form("price"),

 picture: UploadFile = File("picture"),

 user_data=Depends(auth_handler.auth_wrapp

):

 cloudinary_image =

cloudinary.uploader.upload(

 picture.file,

 folder="FARM2",

 crop="fill",

 width=800,

 gravity="auto")

 picture_url = cloudinary_image["url"]

 user = await

User.get(user_data["user_id"])

 car = Car(

 brand=brand,

 make=make,

 year=year,

 cm3=cm3,

 km=km,

 price=price,

 picture_url=picture_url,

 user=user,

)

 return await

car.insert(link_rule=WriteRules.WRITE)

The route for creating new resources uses the Beanie
methods for getting a user by the ID (provided in the
Bearer token in the header) and the insert() method for

inserting a new car.
Finally, link_rule allows you to save the salesperson’s ID

(https://beanie-odm.dev/tutorial/relations/).
6. The update method is similar to its Motor counterpart, and

it could be easily incorporated into a dashboard to update
or delete car model adverts:

@router.put("/{car_id}",

response_model=Car)

async def update_car(

 car_id: PydanticObjectId,

 cardata: UpdateCar):

 car = await Car.get(car_id)

 if not car:

 raise HTTPException(

 status_code=404,

 detail="Car not found")

 updated_car = {

 k: v for k, v in

cardata.model_dump().items() if v is not

None}

 return await car.set(updated_car)

https://beanie-odm.dev/tutorial/relations/

Once again, you only update the fields that are provided in
the request, using the Pydantic model_dump method to

verify which fields are actually provided, leaving the other
ones (which are null or None, in Python terminology)

unaltered.
7. In the delete method, you only need to provide the

selected document and invoke the delete() method:

@router.delete("/{car_id}")

async def delete_car(car_id:

PydanticObjectId):

 car = await Car.get(car_id)

 if not car:

 raise

HTTPException(status_code=404, detail="Car

not found")

 await car.delete()

You have now completed your API routers, and you are ready to
implement some more advanced functionality, which FastAPI
and the FARM stack in general make a quick and fun task.
Before being able to use the routers, however, you will need to
import them into the app.py file. Open the app.py file and

modify the imports at the top, adding the routers and aliasing
them as cars and users:

from contextlib import asynccontextmanager

from fastapi import FastAPI

from database import init_db

from routers import cars as cars_router

from routers import user as user_router

from fastapi_cors import CORS

Finally, integrate them in the application by modifying the same
app.py file:

@asynccontextmanager

async def lifespan(app: FastAPI):

 await init_db()

 yield

app = FastAPI(lifespan=lifespan)

CORS(app)

app.include_router(

 cars_router.router,

 prefix="/cars",

 tags=["Cars"]

)

app.include_router(

 user_router.router,

 prefix="/users",

 tags=["Users"]

)

@app.get("/", tags=["Root"])

async def read_root() -> dict:

 return {"message": "Welcome to your

beanie powered app!"}

With the routers hooked up, you will integrate a simple, yet
functional, AI assistant that will provide marketing information
about the newly inserted cars, and automatically send emails to
the salespersons, to a list of customers, or to a group of
subscribers.

Background tasks with FastAPI

One of the most interesting features of FastAPI is how it handles
background tasks—functions that should be run
asynchronously after the response has already been sent to the
client.

There are many use cases for background tasks. Any operation
that could potentially take some time, such as waiting for an
external API call to return a response, sending emails, or
creating a complex document based on data processing in the
endpoint, is a potential candidate for a background task. In all
these cases, it would be bad practice and lead to a horrible user
experience to just let the application hang while waiting for the

result. Instead, these tasks are handed to the background to be
processed while the response is returned immediately.

While very useful for simple tasks, background tasks shouldn’t
be used for processes that require significant processing power
and/or multitasking. In this case, a more robust tool such as
Celery (https://docs.celeryq.dev/) might be the best solution.
Celery is a Python task queue framework that distributes work
across threads or different machines.

FastAPI defines a class called BackgroundTasks, inherited

from the Starlette web framework, which works simply and
intuitively, as you will see in the following section when you use
it to plug external services into your FastAPI application.

Before using background tasks for interfacing with third-party
services, create a very simple task for demonstration purposes:

1. Create a file called background.py in the root of the

project and populate it with the following code:

from time import sleep

def delayed_task(username: str) -> None:

 sleep(5)

 print(

https://docs.celeryq.dev/

 f"User just logged in: {username}"

)

This function is very simple—it sleeps for five seconds and
then prints a message on the console.
The syntax for integrating the task into an endpoint will be
shown in the following API router.

2. Open the /routers/user.py file because you will attach

this simple background task to the login function.

This function could also perform some logging or some
more complex and time-consuming operations that would
block the response until completion, but in this case, a
simple print statement will be used.

3. At the top of the file, import the background tasks and
modify only the login endpoint in the following way:

from fastapi import APIRouter,

BackgroundTasks, Body, Depends,

HTTPException

from background import delayed_task

code continues …

@router.post("/login",

response_description="Login user and

return token")

async def login(

 background_tasks: BackgroundTasks,

 loginUser: LoginUser = Body(...)

) -> str:

 user = await User.find_one(

 User.username ==

loginUser.username

)

 if user and

auth_handler.verify_password(

 loginUser.password, user.password

):

 token = auth_handler.encode_token(

 str(user.id), user.username

)

 background_tasks.add_task(

 delayed_task,

 username=user.username

)

 response = JSONResponse(

 content={

 "token": token,

 "username": user.username

 }

)

 return response

 else:

 raise HTTPException(

 status_code=401,

 detail="Invalid username

or password"

)

The background tasks syntax is as follows: the first
argument is the name of the function to be invoked, and the
next arguments are the arguments passed to this function.
Now, run the development server with the following line of
code:

fastapi dev

You can navigate to the address of the interactive
documentation (127.0.0.1:8000/docs) and try to log in.

4. If you have also installed HTTPie, you can leave one
terminal running the FastAPI application in development
mode, open another terminal, and issue a login POST
request, making sure to use the correct username and
password of a user that you have created before. For
example, the following command tests logging in for the
user tanja:

http POST 127.0.0.1:8000/users/login

username=tanja password=tanja123

If you look at the first terminal, you will see the following
message after five seconds:

User just logged in: tanja

You have just created a straightforward, but potentially useful,
background task and learned the syntax.

In the next section, you will create two background tasks that
will create a new car description using OpenAI’s API and email
the logged-in user—the user that inserted the car—with the
description and the car data.

Integrating OpenAI with FastAPI

LLMs have been the buzzword in the last couple of years and
they have been dominating the web development discourse,
and it is becoming hard to find successful applications that
aren’t using some form of LLM integration. Modern
applications make use of image, text, and audio processing, and
they might provide an edge to your next web application as
well.

In your car-selling and advertising application, you are going to
use one of the simplest features of a behemoth such as OpenAI
—the task at hand is to make things a bit easier on the
salespersons and provide them a baseline marketing line for
each new car that gets put on sale:

1. After having obtained the OpenAI key and setting your
environment variable, modify the background.py file:

import json

from openai import OpenAI

from config import BaseConfig

from models import Car

settings = BaseConfig()

client =

OpenAI(api_key=settings.OPENAI_API_KEY)

In the previous code, you imported a couple of necessary
libraries: json for decoding the OpenAI response, the

openai module, as well as the config module for reading

the API keys. After instantiating the settings and the OpenAI
client, you will create a helper function that will generate
the prompt for OpenAI.
Although these tasks are handled much more elegantly
with a library called LangChain—the de facto standard
when working with LLMs in Python—for simplicity’s sake,
you will use a simple Python f-string to regenerate the

prompt on each request.
Remember, the prompt needs to provide a text description
and two arrays—one for the positive aspects and one for
the negative aspects of the car.

NOTE

You can easily swap OpenAI for another LLM, such as Google
Gemini.

2. The following is one way to create a prompt for generating
car data, but you will probably want to get more creative or
conservative in the descriptions provided by OpenAI,
depending on your case:

def generate_prompt(brand: str, model:

str, year: int) -> str:

 return f"""

 You are a helpful car sales assistant.

Describe the {brand} {model} from {year}

in a playful manner.

 Also, provide five pros and five cons

of the model, but formulate the cons in a

not overly negative way.

 You will respond with a JSON format

consisting of the following:

 a brief description of the {brand}

{model}, playful and positive, but not

over the top.

 This will be called *description*.

Make it at least 350 characters.

 an array of 5 brief *pros* of the car

model, short and concise, maximum 12

words, slightly positive and playful

 an array of 5 brief *cons* drawbacks

of the car model, short and concise,

maximum 12 words, not too negative, but in

a slightly negative tone

 make the *pros* sound very positive

and the *cons* sound negative, but not too

much

 """

3. Now that the prompt is ready to be generated, it is time to
perform a call to the OpenAI API. Please always refer to the
latest OpenAI API documentation
(https://platform.openai.com/docs/overview), as it is subject
to frequent modifications. Currently, at the time of writing,
the following code demonstrates the way to communicate
with the API, which you should paste into your
background.py file:

async def create_description(

 brand,

 make,

 year,

 picture_url):

 prompt = generate_prompt(brand, make,

https://platform.openai.com/docs/overview

year)

 try:

 response =

client.chat.completions.create(

 model="gpt-4",

 messages=[{"role": "user",

"content": prompt}],

 max_tokens=500,

 temperature=0.2,

)

 content =

response.choices[0].message.content

 car_info = json.loads(content)

 await Car.find(

 Car.brand == brand,

 Car.make == make,

 Car.year == year

).set(

 {

 "description":

car_info["description"],

 "pros": car_info["pros"],

 "cons": car_info["cons"],

 }

)

 except Exception as e:

 print(e)

The preceding code makes a call to the OpenAI client
through the chat completion method. You have selected a
model (gpt-4), started the messages array, and set

max_tokens and temperature. Again, for all the

parameter settings, refer to the latest OpenAI
documentation. In this case, you are limiting the number of
tokens to 500 and setting the temperature to 0.2 (this

quantity impacts the “creativity” and the
“conservativeness” of the responses).
After receiving the response from OpenAI, you parsed the
JSON content (car_info) into a Python dictionary

containing the desired keys: description (text) and two
arrays of strings (pros and cons). Armed with this newly
generated data, you performed a MongoDB update
(through Beanie) that selects all the cars that match the
brand, the make, and the production year, and you set their
description, pros, and cons to the data returned by OpenAI.
In case of an error, we simply display the error.

4. Now plug the background task into the POST endpoint.

Open the /routers/cars.py file and import the newly

created background function at the top:

from background import create_description

5. The rest of the code will remain unaltered; you are only
modifying the POST endpoint:

@router.post(

 "/",

 response_description="Add new car with

picture",

 response_model=Car,

 status_code=status.HTTP_201_CREATED,

)

async def add_car_with_picture(

 background_tasks: BackgroundTasks,

 brand: str = Form("brand"),

 make: str = Form("make"),

 year: int = Form("year"),

 cm3: int = Form("cm3"),

 km: int = Form("km"),

 price: int = Form("price"),

 picture: UploadFile = File("picture"),

 user_data=Depends(auth_handler.auth_wrapp

):

 cloudinary_image =

cloudinary.uploader.upload(

 picture.file,

 folder="FARM2",

 crop="fill",

 width=800,

 height=600,

 gravity="auto"

)

 picture_url = cloudinary_image["url"]

 user = await

User.get(user_data["user_id"])

 car = Car(

 brand=brand,

 make=make,

 year=year,

 cm3=cm3,

 km=km,

 price=price,

 picture_url=picture_url,

 user=user,

)

 background_tasks.add_task(

 create_description, brand=brand,

make=make,

 year=year, picture_url=picture_url

)

 return await

car.insert(link_rule=WriteRules.WRITE)

This could be performed in a much more granular way: you
could await the generated ID of the newly inserted car and
update only that particular instance. The function also lacks

some basic validation for cases in which the provided car brand
and make don’t exist, or in cases in which OpenAI doesn’t
provide a valid response. The point is that the endpoint
function returns the response immediately—that is, almost
immediately, after performing the MongoDB insertion, and the
description and the two arrays are updated later.

If you try to rerun the development server and insert a car, you
should see the newly created document (in Compass or Atlas)
and, after a couple of seconds, the document will be updated
with the initially empty fields: description, pros, and cons.

You can imagine different scenarios that could be covered by
this functionality: maybe the car description needs to be
approved by a human being and then the advert is set to be
published (by adding a published Boolean variable), maybe you
want to send the email to all the registered users, and so on.

The next section will take this background job a bit further and
show you how you can quickly integrate emails into your
application.

Integrating emails into FastAPI

One of the most frequent requirements of modern web
applications is sending automated emails. Today, there are

numerous options for sending emails, and two of the most
popular options are Mailgun and SendGrid by Twilio.

Through this application, you will learn how to set up email
functionality using a relatively new service called Resend.
Their API-centric approach is very developer-friendly and easy
to start with.

Navigate to the Resend home page (https://resend.com) and
create a free account. After logging in, navigate to the API keys
page (https://resend.com/api-keys), generate a key, and give it a
memorable name, such as FARMstack. The key will be visible

only once, so make sure to copy it and store it in the .env file.

Perform the following steps to add Resend functionality to your
application:

1. Install the resend package:

pip install resend==2.0.0

2. After installing the resend package, update the

background.py file:

import json

import resend

https://resend.com/
https://resend.com/api-keys

from openai import OpenAI

from config import BaseConfig

from models import Car

settings = BaseConfig()

client =

OpenAI(api_key=settings.OPENAI_API_KEY)

resend.api_key = settings.RESEND_API_KEY

code continues …

3. Update the create_description function to send a

message once the response is returned from OpenAI:

async def create_description(brand, make,

year, picture_url):

 prompt = generate_prompt(brand, make,

year)

 try:

 response =

client.chat.completions.create(

 model="gpt-4",

 messages=[

 {"role": "user",

"content": prompt}],

 max_tokens=500,

 temperature=0.2,

)

 content =

response.choices[0].message.content

 car_info = json.loads(content)

 await Car.find(

 Car.brand == brand,

 Car.make == make,

 Car.year == year).set(

 {

 "description":

car_info["description"],

 "pros": car_info["pros"],

 "cons": car_info["cons"],

 }

)

 def generate_email():

 pros_list = "
".join([f"-

{pro}" for pro in car_info["pros"]])

 cons_list = "
".join([f"-

{con}" for con in car_info["cons"]])

 return f"""

 Hello,

 We have a new car for you:

{brand} {make} from {year}.

 <p>

</p>

 {car_info['description']}

 <h3>Pros</h3>

 {pros_list}

 <h3>Cons</h3>

 {cons_list}

 """

 params: resend.Emails.SendParams =

{

 "from":"FARM Cars

<onboarding@resend.dev>",

 "to": ["youremail@gmail.com"],

 "subject": "New Car On Sale!",

 "html": generate_email(),

 }

 resend.Emails.send(params)

 except Exception as e:

 print(e)

The recipient email should be the same email that you have
signed up with Resend as it will be the only option until you
register and verify your domain, but more than enough for
development and testing purposes:
https://resend.com/docs/knowledge-base/.

The resend package makes sending emails simple—you just

perform a single call to the resend.Emails.Send function and

define the parameters. In your case, the parameters are the
following:

to – a list of recipient emails.

https://resend.com/docs/knowledge-base/

from – the email address of the sender. In this case, you will

leave the default provided by Resend, but later on, you will
replace it with your own domain address.
subject – the subject of the email.

html – the HTML content of the email.

The parameters are fed to the resend.Email.send() function

as a dictionary.

The email HTML in this app is constructed directly from an f-

string in Python, but you could always resort to more

sophisticated and complex solutions with Jinja2 (for a purely
Python solution, since the backend is written in Python) or use
React Email by Resend (https://react.email/). Jinja2 is arguably
the most popular Python HTML templating engine, and it is
used by the Flask web framework, while React Email provides
React-based email templates.

NOTE

Please refer to Chapter 7, Building a Backend with FastAPI, on
deploying your backend to Render.com. The procedure will
remain largely unchanged: just keep track of the environment
variables and make sure to add the newly created ones (the

https://react.email/

OpenAI and Render keys). Alternatively, you can run the backend
from this chapter in order to use it in the next chapter.

Summary

In this chapter, you learned the basics of Beanie, a popular ODM
library for MongoDB, built on top of Motor and Pydantic. You
learned how to define models and define Beanie documents
that map to MongoDB collections and how to query and
perform CRUD operations with the ODM.

You built another FastAPI application in which you integrated
third-party services with the help of background tasks, which is
a FastAPI feature that allows slow- and long-running tasks to be
executed in the background, while maintaining the app’s
responsiveness.

This chapter also covered integrating the most popular AI
service, ChatGPT, into your applications, providing intelligent
additional data about your newly inserted entities. Finally, you
learned how to implement a simple email-sending solution,
which is common in many web applications.

In the next chapter, you will dive into the most popular and
advanced web framework based on React.js: Next.js. You will

learn the basics of the latest version of Next.js (14) and discover
the most important features that set it apart from other
frontend or even full stack solutions.

10

Web Development with Next.js
14

Next.js is a React framework for building full stack web
applications. While React is a library for building user
interfaces (web or native), Next.js is a full-blown framework,
built on React, that provides dozens of features and, most
importantly, a structure for projects ranging from simple
websites (like the one you are going to build in this chapter) to
incredibly complex applications.

While React.js is an unopinionated declarative library for
building UIs, as a framework, Next.js provides configurations,
tooling, bundling, compiling, and much more, enabling the
developer to focus solely on building the application.

This chapter will cover the following topics:

How to create a Next.js project and deploy it
The newest Next.js App Router and its features
The different types of page rendering: dynamic, server-side,
static

Next.js useful tools: the Image component and the Head

component
Server Actions along with cookie-based authentication

Technical requirements

To create the sample application in this chapter, you should
have the following:

Node.js version 18.17 or later
Python 3.11.7 for running the backend from the previous
chapter (either locally or from a deployment, such as
Render)

The requirements are identical to those in the previous
chapters, and the new packages you will install will be
described as they are introduced.

Introduction to Next.js

Next.js 14 is the latest version of the popular React-based
framework for creating full-stack and production-ready web
applications.

Next.js goes as far as providing even the possibility of creating
the backend server through a new Next.js feature named Route
Handlers (https://nextjs.org/docs/app/building-your-
application/routing/route-handlers). This feature provides
functions that allow you to create custom HTTP request
handlers and create full-fledged APIs by using the Web Request
and Response APIs.

These route handlers expose HTTP methods similarly to FastAPI
(GET, POST, and so on) and allow building complex APIs that

support middleware, caching, dynamic functions, setting and
getting cookies and headers, and much more.

In the next few sections, you’ll be able to plug in your own,
Python-based server and have that server run independently,
maybe serving other applications simultaneously (a mobile
application, for instance). You will be able to unleash the power
of Python’s ecosystem for integrating some data science or AI
libraries and work quickly to have a great developer experience
with Python.

NOTE

For more detailed instructions on a particular topic, you can refer
to the following website: https://nextjs.org/docs.

https://nextjs.org/docs/app/building-your-application/routing/route-handlers
https://nextjs.org/docs/app/building-your-application/routing/route-handlers
https://nextjs.org/docs

Creating a Next.js 14 project

In this project-oriented section, you will learn how to create
and deploy your project using your React knowledge. You will
create a brand new Next.js app by performing a series of simple
steps. The project will use Tailwind CSS (integrated into Next.js)
and JavaScript instead of TypeScript.

The frontend that you will be building in this chapter requires a
running backend—from the previous chapter. It can run either
on your local machine or, in case you performed the
deployment, from Render.com. During development, running
the background from the previous chapter locally in a separate
terminal will be easier and faster, with the virtual environment
activated.

To create a brand new Next.js project and set it up the way we
have specified (JavaScript instead of Typescript, the new App
Router, and so on), perform the following steps:

1. Open the terminal in the folder of your choice and enter
the following command:

npx create-next-app@latest

The prompt will ask you if you wish to install the latest
create-next-app package, which at the time of writing is

version 14.2.4. Confirm the installation.
After the installation of the create-next-app package and

starting it with the previous command, the CLI tool will
pose a series of questions (https://nextjs.org/docs/getting-
started/installation). For your project, you should choose
the following:

1. What is your project named? farm
2. Would you like to use TypeScript? No
3. Would you like to use ESLint? Yes
4. Would you like to use Tailwind CSS? Yes
5. Would you like to use the src/ directory? Yes

6. Would you like to use App Router? (recommended) Yes
7. Would you like to customize the default import alias

(@/*)? No

2. Change the directory through the terminal with the cd

FARM command and run the development server:

npm run dev

The CLI will inform you that the server is running on the
URL http://127.0.0.1:3000. If you visit this page in

your browser, the first render of the page could be a bit

https://nextjs.org/docs/getting-started/installation
https://nextjs.org/docs/getting-started/installation

delayed, which is normal, because Next.js would be
compiling the first and currently only page.

3. The page currently displays a lot of Next.js-specific styles, so
to start with a clean slate, open the only automatically
defined page in /src/app/page.js and make it an empty

React component (you can use the rafce shortcut from the

React Snippets extension):

const Home = () => {

 return (

 <div>Home</div>

)

}

export default Home

4. Also, delete the Next-specific styles from the
/src/app/globals.css file and leave just the three

Tailwind imports at the top:

@tailwind base;

@tailwind components;

@tailwind utilities;

Now you have a blank Next.js application running, and you are
ready to define the application pages. Next.js uses a different

type of routing system than React Router. In the next section,
you will learn how to use the most important features of the
Next.js framework as you need them. Before proceeding, you
will briefly observe the Next.js project structure and get
acquainted with the main folders and files in the next section.

Next.js project structure

While the documentation goes into great detail explaining each
file and folder’s function (https://nextjs.org/docs/getting-
started/project-structure), it is good to know where you started.
The /app folder is the center of the application. Its structure

will determine the application routing that will be covered in
the following section.

The most important files and folders that define a Next.js
project structure are the following:

The /public folder in the root project directory can be

used for serving static files, and they are referenced by the
base URL.
The next.config.js file is a Node.js module used for

configuring your Next.js application—prefixing assets, gzip

compression, managing custom headers, allowing remote
image hosts, logging, and much more can be configured

https://nextjs.org/docs/getting-started/project-structure
https://nextjs.org/docs/getting-started/project-structure

from this file (https://nextjs.org/docs/app/api-
reference/next-config-js).
The globals.css file is the global CSS style imported into

every route. In your application, you are keeping it
minimal and importing only the Tailwind directives.
Optionally, you can create a middleware.js function that

will contain middleware that will be applied on every or
only selected requests. See the documentation on
middleware to learn more:
https://nextjs.org/docs/app/building-your-
application/routing/middleware
Optionally, you can create a /components directory outside

the /app folder (which has the special routing role) and

create your React components inside it.

Now that you’ve gone through the brief project structure, you
will create the pages for your application and learn the basics
of the Next.js App Router along the way. You will keep styling
intentionally to a minimum in order to showcase the
functionalities and component boundaries.

Routing with Next.js 14

The latest and recommended routing system in Next.js relies on
the App Router, which you chose to implement while creating

https://nextjs.org/docs/app/api-reference/next-config-js
https://nextjs.org/docs/app/api-reference/next-config-js
https://nextjs.org/docs/app/building-your-application/routing/middleware
https://nextjs.org/docs/app/building-your-application/routing/middleware

the project. The App Router is based on a file structure that
resides inside the src/App folder—generally, every URL has a

corresponding folder with the appropriate name and a
page.js file inside of it. This structure allows you to even

replace the page.js file with a route.js file, which is then

treated as an API endpoint. You will create a simple route
handler for demonstration purposes, but you will not use route
handlers in the project.

NOTE

A detailed introduction to the App Router is available on the
Next.js documentation website
(https://nextjs.org/docs/pages/building-your-application/routing).

You will now build the basic page structure: a home page, a
page for displaying all the cars as well as an individual car, a
private page for inserting new cars (for authorized users only),
and a login page.

Creating the pages structure with the App
Router

You already have a page.js file in the root of the App directory;

it maps to the /root URL of the website.

https://nextjs.org/docs/pages/building-your-application/routing

Now, you will build the routes for the remaining pages:

1. To create a route for displaying the cars (at /cars in the

URL), create a new folder and name it cars in the /app

directory, with a simple page.js file inside (the name

page.js is mandatory):

const Cars = () => {

 return (

 <div>Cars</div>

)

}

export default Cars

2. While inside the /src/app/cars directory, create a nested

folder for displaying the individual cars based on the ID of
the car. Create another folder inside the cars directory and

name it [id]. This will tell the router that the route should

map to /cars/someID. The /cars/ part is based on the

fact that the folder is inside the /cars directory, while the

brackets syntax notifies Next.js of the presence of a
dynamic parameter (id, in this case). Inside the [id] folder

create a page.js file and name the component inside

CarDetails.

3. Repeat the same procedure and create a
/app/login/page.js file and a /app/private/page.js

file with the corresponding file structure. Run the rafce

command and create a simple component corresponding to
each page.

Now, you have the defined pages, and you can test their
functionality by manually visiting the various URLs: /, /cars,

/private, and /login.

This is a good moment to compare the App Router to other
solutions that we used in the previous chapters—namely, React
Router.

Layouts in Next.js

Similar to React Router and its Slot component, the Next.js App

Router provides a powerful Layout component that blends into

the directory structure concept. Layout is a user interface that

is shared among routes; it preserves state, remains interactive,
and does not re-render. Instead of a Slot component used in

React Router, the Next.js layout accepts a children prop that

will render inside the base page—practically the entire
application will be loaded inside this layout component.

You can inspect the mandatory root layout that is used
throughout the entire Next.js application and is located in
/app/layout.js. Try adding an element inside the body and

before the {{children}} component and inspect on which

pages the element is visible—it should be visible on every page.
The root layout isn’t the only layout that you can use; in fact,
you can and you should create layouts for related routes that
encapsulate common functionality or user interface elements.

To create a simple layout that will be used for the cars list page
and the individual cars (so it will be located inside the
/app/cars folder), create a file named layout.js inside the

/app/cars directory:

const layout = ({ children }) => {

 return (

 <div className="p-4 bg-slate-300

border-2

 border-black">

 <h2>Cars Layout</h2>

 <p>More common cars functionality

here.</p>

 {children}

 </div>

)

}

export default layout

You will notice that the layout affects the /cars and /cars/id

routes, but not the other ones; it is the location of the layout file
that defines when it will be loaded. This functionality enables
you to create different nested routes and keep reusable UI
functionality based on your application logic.

Before moving on, there are a couple of features of the Next.js
router that need to be mentioned:

Templates are defined with a file named template.js

that wraps the entire child layout or page but does not
persist across requests. It can be used, for instance, with
Framer Motion to add page transitions and animations
between different pages.
Catch-all segments are routes defined with an ellipsis
inside the brackets, such as [… folderName]. These

segments will match more additional path parameters. The
Next.js documentation on route segments is available at
https://nextjs.org/docs/app/building-your-
application/routing/dynamic-routes#catch-all-segments.
Route groups are useful when you want to prevent a
folder from being included in the route’s URL path, while

retaining the layout functionality. Route groups are
documented at https://nextjs.org/docs/app/building-your-
application/routing/route-groups.

After having created the necessary pages and learned about the
main features of the App Router, in the next section, you will
learn about Next.js components and how to leverage layouts in
your application structure.

Next.js components

One of the main new concepts of Next.js is the distinction
between server and client components. The most important
difference is that server components allow you to create user
interfaces that will be rendered and cached on the server, while
client components can be prerendered on the server and then
can use client JavaScript code for browser and user
interactivity (React Hooks, browser APIs such as
localstorage, and so on).

NOTE

The Next.js documentation explains the major but also the more
subtle differences here: https://nextjs.org/docs/app/building-your-
application/rendering/composition-patterns.

https://nextjs.org/docs/app/building-your-application/routing/route-groups
https://nextjs.org/docs/app/building-your-application/routing/route-groups
https://nextjs.org/docs/app/building-your-application/rendering/composition-patterns
https://nextjs.org/docs/app/building-your-application/rendering/composition-patterns

Generally speaking, since server components can access data on
the server directly, they are preferred for tasks such as data
fetching and working with sensitive information (access tokens,
API keys, and so on). Client components are a better fit for
classic React single-page application (SPA) tasks: adding
interactivity, using React hooks, custom hooks that depend on
the state, interfacing with the browser, geolocation, and so on.

By default, Next.js components are server components. To turn
them into client components, you must add the "use client"

directive as the first line. This directive defines a boundary
between a server and a client component module.

Creating the navigation component

To begin crafting Next.js components, now you will create a
simple navigation component and learn about the Link

component in Next.js.

To create a navigation component, implement the following
steps:

1. Create a folder called /src/components/ alongside the

/app folder (not inside it, since these will not be user-

navigable pages) and create the NavBar.js file inside it:

import Link from "next/link"

const Navbar = async () => {

 return (

 <nav className="flex justify-

between

 items-center bg-gray-800 p-4">

 <h1 className="text-

white">Farm Cars</h1>

 <div className="flex space-x-4

text-white

 child-hover:text-yellow-

400">

 <Link href="/">Home</Link>

 <Link

href="/cars">Cars</Link>

 <Link

href="/private">Private</Link>

 <Link

href="/login">Login</Link>

 </div>

 </nav>

)

}

export default Navbar

The NavBar.js component is very similar to the ones

created in previous chapters. However, here, you have

imported the Link component—the Next.js component that

extends the <a> element (the native HTML link component)

and provides data pre-fetching
(https://nextjs.org/docs/app/api-reference/components/link).

2. The previous code utilizes a Tailwind plugin that enables
developers to target descendent selectors directly. To use it,
open the tailwind.config.js file and edit the content by

changing the plugins array value:

 plugins: [

 function ({ addVariant }) {

 addVariant('child', '& > *');

 addVariant('child-hover', '& >

*:hover');

 }

],

3. Now open the root layout, located at /src/app/layout.js,

and insert the NavBar.js component before the children

props by replacing the existing RootLayout function with

the following code:

import Navbar from "@/components/NavBar";

...

export default function RootLayout({

https://nextjs.org/docs/app/api-reference/components/link

children }) {

 return (

 <html lang="en">

 <body>

 <Navbar />

 {children}

 </body>

 </html>

);

}

In this step, you added the newly created component to the root
layout since it will be displayed on every page.

You now have defined the routes, scaffolded the basic pages of
the application, and created a simple navigation menu. In the
next section, you will see how Next.js simplifies data loading
through server components.

Data loading with server
components

The following process will help you learn how to load data from
your FastAPI server into the /cars page without resorting to

hooks and states, and see how Next.js extends the native fetch
functionality.

To load data from your FastAPI server into the /cars page

without hooks, implement the following steps:

1. Before creating the page that should display information
about all the cars that are currently present in your cars
collection, create a .env file in the root of the Next.js

project (parallel to the /src folder) and use it to map the

address of your API:

API_URL=http://127.0.0.1:8000

This value will have to change once you deploy and wish to
use your Render.com API URL, or whatever backend
deployment solution you might choose.

2. Once it has been set in the environment, the address will be
available in your code:

process.env.API_URL

It is important to remember that in order to be visible in
the browser, the environment variables need to be
prepended by the NEXT_PUBLIC_ string. In this case,

however, you are doing data fetching on the server, in a
server component, so it is perfectly fine to hide the API
address.

Now you are ready to perform the first server-side fetch.
Make sure that your backend server is running on the
specified port 8000.

3. Open the /app/cars/page.js file and edit it:

import Link from "next/link"

const Cars = async () => {

 const data = await fetch(

 `${process.env.API_URL}/cars/`, {

 next: {

 revalidate: 10

 }

 }

)

 const cars = await data.json()

 return (

 <>

 <h1>Cars</h1>

 <div>

 {cars.map((car) => (

 <div key={car._id}

className="m-4 bg-white p-2">

 <Link href=

{`/cars/${car._id}`}>

 <p>{car.brand}

{car.make} from {car.year}</p>

 </Link>

 </div>

))}

 </div>

 </>

)

}

export default Cars

The previous code might seem simple, but it represents a
completely new paradigm in React-based development.

You used the Next.js fetch function, which extends the native

Web API fetch method and provides some additional

functionalities. It is an async function, so the entire component

is asynchronous, and the call is awaited.

NOTE

This fetch functionality is explained in great detail on the Next.js
website: https://nextjs.org/docs/app/building-your-
application/data-fetching/fetching-caching-and-revalidating.

While providing various features such as access to headers and
cookies, the fetch function allows granular control over

caching and revalidating the received data. Revalidation in this
context means the cache invalidation and re-fetching of the

https://nextjs.org/docs/app/building-your-application/data-fetching/fetching-caching-and-revalidating
https://nextjs.org/docs/app/building-your-application/data-fetching/fetching-caching-and-revalidating

latest data. Your cars page might have very frequent updates,
and you can set a time limit on the content. In the preceding
code, the content is revalidated every 10 seconds. In some cases,
it might make sense to revalidate the data after a couple of
hours or even days.

Before moving on to specialized components provided by the
framework, you will learn about the error.js file, which is

used for catching errors while staying within the boundaries of
a layout and route group.

Error pages in Next.js

To catch unexpected errors that might arise in server
components and client components, and to display a fallback
user interface, you can create a file called error.js (the name

is mandatory) inside the desired folder:

1. Create a file, /src/app/cars/error.js, with the

following simple content:

"use client"

const error = () => {

 return (

 <div className="bg-red-800 text-white

p-3">

 There was an error while fetching

car data!

 </div>

)

}

export default error

The component must use the "use client" directive as

per the documentation.
2. You can test the error handling page by throwing a generic

error inside [id]/page.js:

const SingleCar = () => {

 throw new Error('Error')

}

export default SingleCar

If you now try to navigate to any car details page, you will see
that the page is loaded—the navigation is present, and the main
layout and the cars layout are rendered. Only the inside of the
innermost route group, which contains the error.js file,

displays the error message.

After learning how to get data inside the page directly from the
server, in the following section, you will create a statically

generated single-car page and learn about the powerful Next.js
Image component.

Static page generation and the Image
component

Next.js provides yet another way of generating pages—static
rendering. In this case, pages are rendered at build time (instead
of at request time), or, in case of data revalidation, in the
background. The resulting page is then cached and pushed to
the content delivery network, for efficient and fast serving. This
makes Next.js effectively behave like a static site generator,
much like Gatsby.js or Hugo, and achieve maximum
performance in terms of website speed.

However, not all routes are suitable for static rendering; pages
that are personalized and contain user-specific data are
examples of pages that shouldn’t be statically generated. Blog
posts, documentation pages, or even car ads, however, are not
pages that should display different features to different users.

In this section, you will first generate individual car pages as
server-side rendered pages, like the cars page before, and
afterward, you will modify the page(s) to be statically rendered.

Before you begin working with the Image component, modify

the next.js.mjs file—the Next.js configuration file—and let

Next.js know that it should allow images from an external
domain—in your case, Cloudinary—since this is where our car
images are hosted.

Perform the following steps:

1. Open the next.config.mjs file and edit the configuration:

/** @type {import('next').NextConfig} */

const nextConfig = {

 images: {

 remotePatterns: [

 {

 hostname: 'res.cloudinary.com',

 },

]

 }

};

export default nextConfig;

2. After this modification, restart the Next.js development
server manually:

npm run dev

Now you will create the server-side rendered version of the
cars page.

3. Open /app/cars/[id]/page.js and modify it

accordingly:

import {

 redirect

} from "next/navigation"

import Image from "next/image"

const CarDetails = async ({

 params

}) => {

 const carId = params.id

 const res = await fetch(

 `${process.env.API_URL}/cars/${carId}`,

{

 next: {

 revalidate: 10

 }

 }

)

 if(!res.ok) {

 redirect("/error")

 }

 const data = await res.json()

In the preceding code, you imported the next/image

component and you destructured the parameters as
params from the URL. Then, you performed a similar

fetch request and checked the result status. In case of an

error, you used the Next.js redirect function to redirect

the user to the error page, which is yet to be created.
4. Now, continue editing the component and return some

basic JSX:

return (

 <div className="p-4 flex flex-col

justify-center

 items-center min-h-full bg-white">

 <h1>{data.brand} {data.make}

({data.year})</h1>

 <p>{data.description}</p>

 <div className="p-2 shadow-md bg-

white">

 <Image src={data.picture_url}

 alt={`${data.brand} ${data.make}`}

 width={600} height={400}

 className="object-cover w-full" />

 </div>

 <div className="grid grid-cols-2 gap-3

my-3">

 {data.pros && <div className="bg-

green-200

 p-5 flex flex-col justify-center

 items-center">

 <h2>Pros</h2>

 <ol className="list-decimal">

 {data.pros.map((pro, index) => (

 <li key={index}>{pro}

))}

 </div>}

 {data.cons && <div className="bg-

red-200 p-5

 flex flex-col justify-center

items-center">

 <h2>Cons</h2>

 <ol className="list-decimal">

 {data.cons.map((con, index) => (

 <li key={index}>{con}

))}

 </div>}

 </div>

 </div >

)

}

export default CarDetails

The rest of the functional component is rather simple. You
have used the Image component and provided the

mandatory data, such as the width, height, and alt text.

The Image component has a rich API that is documented on
the Next.js website (https://nextjs.org/docs/app/api-
reference/components/image), and it should be used
whenever possible because it vastly improves your site’s
performance.
The redirect function is imported from

next/navigation (https://nextjs.org/docs/app/building-

your-application/routing/redirecting).
The statically generated version of the page(s) includes
providing a generateStaticParams() function to the

page and exporting it; Next.js uses this function to know
which pages to generate at build time.

5. For your /app/cars/[id]/page.js file, this function will

need to loop over all the cars that need a static page (all
cars in this case) and provide an array of IDs:

export async function

generateStaticParams() {

 const cars = await fetch(

 `${process.env.API_URL}/cars/`).then((res

=>

https://nextjs.org/docs/app/api-reference/components/image
https://nextjs.org/docs/app/api-reference/components/image
https://nextjs.org/docs/app/building-your-application/routing/redirecting
https://nextjs.org/docs/app/building-your-application/routing/redirecting

 res.json())

 return cars.map((car) => ({id:

car._id,}))

}

If you add the preceding generateStaticParams() function

to the component, stop the development server and run
another Next.js command:

npm run build

Next.js will produce an optimized build of the entire site,
rendering the individual car pages at build time as static HTML
pages. If you inspect the console, you will see the list of routes
and a legend that shows which pages were rendered at build
time.

Running the production build is possible with the following
command:

npm run start

Before closing this section, let’s take care of the cases in which
the user hits the wrong URL, resulting in a nonexistent car. To

handle these 404 Page Not Found errors, create a new file

called /src/app/not-found.js and populate it:

import Link from "next/link"

const NotFoundPage = () => {

 return (

 <div className="min-h-screen flex flex-

col

 justify-center items-center">

 <h1>Custom Not Found Page</h1>

 <p>take a look at <Link href="/cars"

 className="text-blue-500">our

cars</Link>

 </p>

 </div>

)

}

export default NotFoundPage

This route will cover all the route groups, in a similar way to
the * route in the React Router package.

After having created the dynamic server-side and statically
generated pages and exploring some of the most important
features of Next.js, you will learn how to authenticate users
with the existing API in the next section.

Authentication and Server
Actions in Next.js

You have learned about quite a few Next.js features that make it
stand out as the premier web framework, but the list of the
most important functionalities wouldn’t be complete without a
very brief introduction to Server Actions.

Server Actions are simply asynchronous functions executed
only on the server and designed to handle data fetching and
mutations (through POST, PUT, and DELETE methods), and they

can be called through plain form submissions (the default
browser form handling method), but also through event
handlers (a React-y approach) or by third-party libraries such
as Axios.

The benefits of such an approach are numerous. Performance is
improved because the client-side JavaScript is significantly
reduced, and since the actions run only on the server, the
overall security of the application is enhanced and applications
can even run with JavaScript disabled, much like the old-school
applications of a couple of decades ago.

You will now create your first server action that will be used for
logging users in, with the help of a package called Iron Session
—a stateless session utility based on cookies that takes care of
all the work that you implemented earlier with localStorage:

signing and encrypting cookies. The usage is quite simple, and it
is documented here: https://github.com/vvo/iron-session.

1. Install the Iron Session package with the following
command:

npm i iron-session

2. To use the iron-session functionality, create a

sessionOptions object in a file called /src/lib.js:

export const sessionOptions = {

 password:

 "complex_password_at_least_32_characters_l

 cookieName: "farmcars_session",

 cookieOptions: {

 httpOnly: true,

 secure: false,

 maxAge: 60 * 60,

 }

};

https://github.com/vvo/iron-session

The configuration object defines the options necessary for the
cookie encryption and decryption and you should use a strong,
computer-generated random password.

The Iron Session API is very simple as the session object allows
for setting and getting dictionary-like values. You will use it to
set two simple values: the currently logged-in username as well
as the jwt itself, necessary for performing calls to your FastAPI

endpoints.

Now you will begin creating the server actions needed for the
application, beginning from the login action for authenticating
users:

1. Create a /src/actions.js file and import the necessary

packages:

"use server";

import { cookies } from "next/headers"

import { getIronSession } from "iron-

session"

import { sessionOptions } from "./lib"

import { redirect } from "next/navigation"

export const getSession = async () => {

 const session = await getIronSession(

 cookies(), sessionOptions)

 return session

}

The previous code imports the cookies from Next.js and the
getIronSession() function from Iron Session, as well as

the sessionOptions class you defined earlier. You then

created a simple function for getting the current session
and the data within.

2. Now, in the same file, handle the login functionality:

export const login = async (status,

formData) => {

 const username =

formData.get("username")

 const password =

formData.get("password")

 const result = await fetch(

 `${process.env.API_URL}/users/login`,

{

 method: "POST",

 headers: {

 "Content-Type": "application/json"

 },

 body: JSON.stringify({ username,

password })

 })

 const data = await result.json()

 const session = await getSession()

 if (result.ok) {

 session.username = data.username

 session.jwt = data.token

 await session.save()

 redirect("/private")

 } else {

 session.destroy()

 return { error: data.detail }

 }

}

The code is straightforward and not unlike the code you
saw in the React Router and localStorage solution. The

important parts are the ones related to the session object—
if the fetch call returns a successful response, it means

that a valid user was found, and the session is set with the
username and the corresponding jwt. If not, the session is

destroyed.
A redirect to the /private page is performed only when

the user logs in and the session is successfully set.
Now that you have created your first Server Action, you are
ready to create a Next.js client component—the login form
that will be used on the login page.

3. Create a new component file,
/src/app/components/LoginForm.js:

"use client"

import {login} from "@/actions"

import { useFormState } from "react-dom";

const LoginForm = () => {

 const [state, formAction] =

useFormState(login, {})

LoginForm is, unlike the previously created NavBar

component, a client component, which means that it will
get rendered on the client and thus needs to begin with the
"use client" directive.

The useFormState hook is one of the newest additions to

the React ecosystem (it is, in fact, imported from the React-
Dom package, and not Next.js) and it allows you to update
the state based on the form action
(https://pl.react.dev/reference/react-
dom/hooks/useFormState).

4. Continue building the LoginForm component:

return (

 <div className="flex flex-col items-

center justify-center max-w-sm mx-auto mt-

10">

 <form className="bg-white shadow-

md rounded px-8 pt-6 pb-8 mb-4" action=

https://pl.react.dev/reference/react-dom/hooks/useFormState
https://pl.react.dev/reference/react-dom/hooks/useFormState

{formAction}>

 <div className="mb-4">

 <label className="block

text-gray-700 text-sm font-bold mb-2"

htmlFor="username">

 Username

 </label>

 <input

 className="shadow

appearance-none border rounded w-full py-2

px-3 text-gray-700 leading-tight

focus:outline-none focus:shadow-outline"

id="username" name="username" type="text"

placeholder="Username" required />

 </div>

 <div className="mb-6">

 <label className="block

text-gray-700 text-sm font-bold mb-2"

htmlFor="password">

 Password

 </label>

 <input className="shadow

appearance-none border rounded w-full py-2

px-3 text-gray-700 mb-3 leading-tight

focus:outline-none focus:shadow-outline"

id="password" name="password"

type="password"

placeholder="******************" required

/>

 </div>

 <div className="flex items-

center justify-between">

 <button className="bg-

blue-500 hover:bg-blue-700 text-white

font-bold py-2 px-4 w-full rounded

focus:outline-none focus:shadow-outline"

type="submit">

 Sign In

 </button>

 </div>

 <pre>{JSON.stringify(state,

null, 2)}</pre>

 </form>

 </div >

)

}

export default LoginForm

This login form uses the useFormState hook, which

provides the state—essentially the error object, and
formAction. In the form, you are displaying the state as a

stringified JSON object, but in a realistic scenario, you can
access all the individual errors provided by the server
(FastAPI in your case) and display them accordingly.

5. After updating the /src/app/login/page.js page and

simply adding the LoginForm component, you will have

the following:

import LoginForm from

"@/components/LoginForm"

const page = () => {

 return (

 <div>

 <h2>Login Page</h2>

 <LoginForm />

 </div>

)

}

export default page

Now, if you try to navigate to the /login route and insert some

invalid credentials, the error will be printed below the form in
a stringified JSON format. If the credentials are valid, you
should be redirected to the /private route, and in the

Application tab of the Chrome or Firefox developer tools, you
will be able to see a secure cookie with the encrypted data—the
username and jwt, available across the entire application.

You have added the authentication functionality through the
use of the iron-session package and with the Next.js Server

Actions.

In the next section, you will create a protected page that is
visible only to authenticated users. Although there are different
ways of protecting pages in Next.js, including the use of Next.js
middleware, you are going to protect just one page with a
simple session verification.

Creating protected pages

In this section, you will create one protected page—the page for
inserting new cars into the MongoDB database collection. Use
Iron Session to check the validity of the cookie and to pass the
value of the logged-in user’s username and jwt across pages.

You will create a protected page by verifying the data from the
session. If the session is present (and includes a username and
jwt), the user will be able to navigate to it and perform an

action to create new cars through the form and an associated
Server Action. If not, the user will be redirected to the login
page.

The only authenticated page that you will need in this
application is the one for inserting new cars, and Iron Session
makes this job very easy:

1. Open /src/app/private/page.js and edit the file:

import { getSession } from "@/actions"

import { redirect } from "next/navigation"

const page = async () => {

 const session = await getSession()

 if (!session?.jwt) {

 redirect("/login")

 }

 return (

 <div className="p-4">

 <h1>Private Page</h1>

 <pre>{JSON.stringify(session, null,

2)}</pre>

 </div>

)

}

export default page

The previous code uses the Iron Session object: if jwt in the

session is present, the user is able to see the page that
currently contains the session data. If the session is invalid,
the user is redirected to the /login page.

2. To add logout functionality with the session, add another
action to the /src/actions.js file:

export const logout = async () => {

 const session = await getSession()

 session.destroy()

 redirect("/")

}

This action can now be invoked from the NavBar

component, and the session object can be used to show or
hide the login and logout links accordingly.

3. To incorporate the logout functionality into the website,
create a simple one-button form for logging the user out in
a new LogoutForm.js file:

import { logout } from "@/actions"

const LogoutForm = () => {

 return (

 <form action={logout}>

 <button className="bg-blue-500

 hover:bg-blue-700"

type="submit">

 Logout

 </button>

 </form>

)

}

export default LogoutForm

LogoutForm consists of only one button that invokes the

logout action defined earlier. Let’s add it to the navigation
(NavBar.js) component with some conditional logic.

4. Open the src/components/Navbar.js file and edit the

navigation component:

import Link from "next/link"

import { getSession } from "@/actions";

import LogoutForm from "./LogoutForm";

After importing the getSession function—to track

whether the user is logged in or not—and the LogoutForm

button, you can define the component:

const Navbar = async () => {

 const session = await getSession()

 return (

 <nav className="flex justify-between

items-center

 bg-gray-800 p-4">

 <h1 className="text-white">Farm

Cars</h1>

 <div className="flex space-x-4 text-

white

 child-hover:text-yellow-400">

 <Link href="/">Home</Link>

 <Link href="/cars">Cars</Link>

 <Link

href="/private">Private</Link>

 {!session?.jwt && <Link

 href="/login">Login</Link>}

 {session?.jwt && <LogoutForm />}

 </div>

 </nav>

)

}

export default Navbar

The component now keeps track of the logged user and displays
conditionally the login or logout link depending on the user’s
logged-in status. The private link is deliberately always visible,
but you can test it out; if you are not logged in, you will not be
able to visit the page and you will get redirected to the login
page.

You have now completely implemented the login functionality.
There are a couple of factors to consider, starting with the
duration of the cookie—set through the maxAge property in the

file /src/lib.js—which should match the duration of jwt

provided by FastAPI from the backend. The application
intentionally lacks user registration functionality since the idea
is to have a couple of employees—users who can be created
through the API directly. As an exercise, you could write the
page for registering users and using the FastAPI
/users/register endpoint.

In the next section, you will finalize the application by creating
a private page that’s visible only to authenticated users and will
allow only salespeople to insert new cars.

Implementing the new car page

In this section, you will create the form for inserting new cars.
You will not use a form validation library, since that was
covered in Chapter 8, Building the Frontend of the Application,
with the Zod library. In a realistic application, the form would
definitely have a similar type of validation. You will create a
new Server Action for performing the POST API call and again
use useFormState—the same pattern that you used for logging

the users in.

As the form for inserting cars contains a lot of fields (and there
could be many, many more), you will start by abstracting the
form field into a separate component. The implementation of

the new car advert creation will be broken into the following
steps:

1. Create a new Field component in a file named

/src/components/InputField.js:

const InputField = ({ props }) => {

 // eslint-disable-next-line react/prop-

types

 const { name, type } = props

 return (

 <div className="mb-4">

 <label className="block text-gray-

700

 text-sm font-bold mb-2" htmlFor=

{name}>

 {name}

 </label>

 <input className="shadow appearance-

none

 border rounded w-full py-2 px-3

 text-gray-700 leading-tight

 focus:outline-none focus:shadow-

outline"

 id={name}

 name={name}

 type={type}

 placeholder={name}

 required

 autoComplete="off"

 />

 </div>

)

}

export default InputField

With InputField now out of the way, create CarForm.

2. Create a new component in the
/src/components/CarForm.js file and begin with the

imports and the array of fields that will be needed:

"use client"

import { createCar } from "@/actions"

import { useFormState } from "react-dom"

import InputField from "./InputField"

const CarForm = () => {

 let formArray = [

 {

 name: "brand",

 type: "text"

 },

 {

 name: "make",

 type: "text"

 },

 {

 name: "year",

 type: "number"

 },

 {

 name: "price",

 type: "number"

 },

 {

 name: "km",

 type: "number"

 },

 {

 name: "cm3",

 type: "number"

 },

 {

 name: "picture",

 type: "file"

 }

]

The component uses the useFormState hook; you already

know that it needs to be a client component.
3. The rest of the component is just a mapping over the
fields array and the implementation of the hook:

const [state, formAction] = useFormState(

 createCar, {})

 return (

 <div className="flex items-center

justify-center">

 <pre>{JSON.stringify(state, null,

2)}</pre>

 <div className="w-full max-w-xs">

 <form className="bg-white

shadow-md rounded

 px-8 pt-6 pb-8 mb-4"

 action={formAction}>

 <h2 className="text-center

text-2xl

 font-bold mb-6">Insert new

car

 </h2>

 {formArray.map((item, index)

=> (

 <InputField key={index}

 props={{

 name: item.name, type:

item.type

 }} />

))}

 <div className="flex items-

center

 justify-between">

 <button className="bg-

gray-900

 hover:bg-gray-700 text-

white w-full

 font-bold py-2 px-4

rounded

 focus:outline-none

 focus:shadow-outline"

 type="submit">Save new

car

 </button>

 </div>

 </form>

 </div>

 </div>

)

 }

export default CarForm

The form uses the createCar action that you will be

defining in the actions.js file in a future step.

4. The form needs to be displayed on the private page, so edit
the /src/app/private/page.js file:

import CarForm from "@/components/CarForm"

import {getSession} from "@/actions"

import { redirect } from "next/navigation"

const page = async () => {

 const session = await getSession()

 if (!session?.jwt) {

 redirect("/login")

 }

 return (

 <div className="p-4">

 <h1>Private Page</h1>

 <CarForm />

 </div>

)

}

export default page

The form is created, and it is displayed on the /private

page. The only thing that is missing is the corresponding
action, which you will create in the next step.

5. Open the /src/actions.js file and add the following

action to the end of the file for creating a new car:

export const createCar = async (state,

formData) => {

 const session = await getSession()

 const jwt = session.jwt

 const result = await fetch(`${

 process.env.API_URL}/cars/`,

 {

 method: "POST",

 headers: {

 Authorization: `Bearer ${jwt}`,

 },

 body: formData

 })

 const data = await result.json()

 if (result.ok) {

 redirect("/")

 } else {

 return { error: data.detail }

 }

}

The action is straightforward—that is the beauty of Server
Actions. It is just a function that checks the session and jwt and

performs the API POST request. The function should also

include an earlier redirect to the login page in case jwt is not

found, but this way, you let the useFormState hook display any

errors coming from the backend.

You have implemented the website specification—users are
able to log in and insert new cars and, after the period of
revalidation (15-20 seconds), the cars are displayed on the /car

page as well as on the dedicated page for the newly inserted car.

In the next section, you will deploy your application to Netlify
and learn how to streamline the process, while providing
environment variables and configuring settings for a
deployment.

Providing metadata

One of the main features of Next.js is the ability to provide
better search engine optimization (SEO) than SPAs. While
generating static content that is easily picked up by crawlers is
important, providing useful page metadata is essential.

Metadata is an important feature of every web application or
site, and Next.js solves this problem in an elegant way with the
Metadata component. Metadata enables direct communication

with search engines (such as Google), providing precise
information about the site’s content, title, and description, as
well as page-specific information.

In this brief section, you will learn how to set the title tags of
pages. The Next.js documentation is very detailed
(https://nextjs.org/docs/app/building-your-
application/optimizing/metadata) and explains the various
pieces of information that can be set, but in this case, you are
only going to set the page titles:

https://nextjs.org/docs/app/building-your-application/optimizing/metadata
https://nextjs.org/docs/app/building-your-application/optimizing/metadata

1. Open the src/app/layout.js page and edit the metadata

part:

export const metadata = {

 title: "Farm Cars App",

 description: "Next.js + FastAPI +

MongoDB App",

};

This simple change will cause all the pages within the
layout to have the newly set title and description. Since you
have edited the Root layout, which encloses all the pages,

this means that every page on the website will be affected.
These can be overridden on a per-page basis.

2. Open /src/app/cars/[id]/page.js for the individual

cars page and add the following export:

export async function generateMetadata({

params }, parent) {

 const carId = params.id

 const car = await

fetch(`${process.env.API_URL}/cars/${carId}`)

=> res.json())

 const title = `FARM Cars App -

${car.brand} ${car.make} (${car.year})`

 return { title }

}

The preceding export signals to Next.js that only these pages
should have the title that is returned from the function, while
the other pages will have the unaltered title.

You have successfully edited the pages’ metadata, and now it is
time to deploy the application on the internet, which the next
section will detail.

Deployment on Netlify

Next.js is arguably the most popular full-stack and frontend
framework, and there is a plethora of deployment options.

In this section, you will learn how to deploy your Next.js
application on Netlify—one of the most popular web platforms
for deployment, content orchestration, continuous integration,
and much more.

In order to deploy your website on Netlify, you will need to
deploy the FastAPI backend. If you haven’t already done so,
please refer to Chapter 7, Building a Backend with FastAPI, on
how to do that. Once you have the backend address (in your

example, the URL of the deployed FastAPI application is
https://chapter9backend2ed.onrender.com), it will be used as
the API URL for the Next.js frontend.

In order to perform the deployment to Netlify, perform the
following steps:

Create a Netlify account: Log in with your GitHub account
and create a free Netlify account, since Netlify will pick
your code from the repository that you will make for the
Next.js app.
Create a GitHub repository: In order to be able to deploy
to Netlify (or Vercel for that matter), you will need to create
a GitHub repository for your Next.js project.

To create a GitHub repository, implement the following steps:

1. In your terminal, enter the project folder and type the
following:

git add .

This command adds the modified and newly created files to
the repository.

2. Next, commit the changes:

https://chapter9backend2ed.onrender.com/

git commit -m "Next.js project"

3. Now that your project is under version control, create a
new repository in your GitHub account and choose an
appropriate name. In your case, the repository is named
chapter10frontend.

Pushing the changes to GitHub

Now you can add the new origin to your local repository. In the
same terminal inside the project, type the following commands:

1. First, set the name of the branch to main:

git branch -M main

2. Then, set the origin to the newly created repository:

git remote add origin

https://github.com/<your

username>/<name_of_the_repo>.git

Here, you need to replace the name of the repository and
your username: (<username> and <name_of_the_repo>).

3. Finally, push the project to GitHub:

git push -u origin main

Now, you can deploy the repository on Netlify in the following
manner:

1. Create a new site on Netlify: After logging in to Netlify,
click the Add new site button and select Import an
existing project. You will be prompted to select a provider,
and you will select GitHub since that is where you
committed your Next.js project. From the list of projects
belonging to your account (or the account that you logged
in to Netlify with), search for the Next.js project
(chapter10frontend in your case).

2. Set up the site settings: You will be presented with a page
that will ask you to fill in some details about the project,
which are as follows:

1. Branch to deploy: Leave it as main as that is your only

branch
2. Base directory: Leave empty
3. Build command: Leave it as npm run build

4. Publish directory: Leave it as .next

5. Set the only environment variable: Click the Add
environment variables button and set a new variable

where the key (the name) will be API_URL and the

value will be the FastAPI backend URL. If you followed
the steps from the previous chapter to host your
backend on Render, the value will be
https://chapter9backend2ed.onrender.com.

3. Hit the Deploy (<name of your repo>) button!

After a while, you should have your website deployed to the
address indicated on the page. Bear in mind, however, that the
API must be working, and since the free tier of Render.com, for
instance (if you used Render as your backend deployment
option), can take up to a minute to wake up after going stale, be
prepared to wake up the API. The recommendation is to wait
until the backend is responsive—you can check it by simply
visiting the API address—and then begin the deployment
process. This way, you will prevent potential deployment and
page generation errors.

This is a good moment to analyze the command that you
provided to Netlify to build the site—the build command. If

you run npm run build in your Next.js command line, Next.js

performs a series of operations and produces an optimized
build.

https://chapter9backend2ed.onrender.com/

These operations include code optimizations (such as
minification and code splitting), the creation of a .next

directory that contains the optimized, production-ready code,
and the directory that actually gets served on the internet.

The build command also generates the static pages and the

route handlers. You can test the build after it successfully
completes, with the following command:

npm run start

You have now successfully deployed an optimized FastAPI
MongoDB-powered Next.js website and you are ready to tackle
a host of web development tasks with an incredibly powerful
and flexible stack.

Summary

In this chapter, you have learned the basics of Next.js, a popular
React-based full-stack framework that, coupled with FastAPI
and MongoDB, allows you to build any virtually any type of web
application.

You have learned how to create a new Next.js project, how to
implement routing with the new App Router, and how to fetch
data with server components.

Important Next.js concepts, such as Server Actions, form
handling, and cookies were also introduced and implemented.
Apart from this, you explored some of the Next.js optimizations
such as the Image component for serving optimized images, the

Metadata tags, and how to create a production build.

Finally, you deployed your Next.js application on Netlify, but the
underlying principles of deployment remain the same for other
providers.

Next.js is a rich and complex ecosystem in its own right, and
you should consider this chapter as a starting point for your
next application, which blends the best of the three worlds:
FastAPI, MongoDB, and React, with the addition of external
third-party services that your application might need.

The next chapter will share some practical advice for you while
working with the FARM stack, along with project ideas that can
help you get started right away.

11

Useful Resources and Project
Ideas

In this final chapter, you will learn about FastAPI, React, and
MongoDB (FARM) stack components and some recommended
actions to understand the technologies that make up this
flexible stack.

For building data-driven or data-intensive applications, this
chapter provides some practical advice when working with the
FARM stack, along with project ideas where the FARM stack, or
very similar stacks, could be applicable and helpful. You will
also learn how to find your way in the constantly changing web
development and analytics fields. This will be helpful for those
who come from the most diverse backgrounds, but their jobs or
newfound passion drives them to find a path through the data-
driven world.

This chapter will cover the following topics:

MongoDB considerations
FastAPI and Python considerations

React practices
Beginner project ideas

MongoDB considerations

In Chapter 2, Setting Up the Database with MongoDB, you were
introduced to MongoDB to get you started with simpler projects.
However, MongoDB is a complex ecosystem employed by
enterprise-level companies. Therefore, diving deeper into its
features and patterns will benefit you as a developer and help
you understand the NoSQL paradigm.

One of the first steps in employing MongoDB is understanding
data modeling or schema design. Your data model should reflect
how your application will see the data and its flow, starting
from the queries you make. There are advanced design patterns
that apply to MongoDB schemas that are beyond the scope of
this book.

Chapter 2, Setting Up the Database with MongoDB, covered some
popular MongoDB document modeling best practices. The
following list provides more tips:

Objects should be combined in the same document if they
are meant to be used together. The quote “Data that is

accessed together, stays together” might inform your
schema.
When separating objects into different documents, try not
to make JOINs necessary, although simple LEFT JOINs are
possible through the MongoDB aggregation framework.
The frequency of the data use cases should dictate the
schemas. The most frequent data flows should be the
easiest to access.

Coming from the relational database world, modeling
relationships often boils down to the choice between
embedding and referencing. In the simple application you
worked on in previous chapters that listed used cars, you opted
to reference the user ID when you made the CRUD application
with users, since it was the simplest thing to do.

However, that could probably apply to a real-world setting as
well. There are numerous empirical rules. For example, if the
many sides of a one-to-many relationship could contain
hundreds of items, embedding is probably not the best way to
go.

The extensive MongoDB documentation states that embedding
should be preferred in relationships that are one-to-one, one-to-

few, and one-to-many, while referencing should be used in one-
to-very-numerous-many and many-to-many cases.

NOTE

To learn more about the basics of data modeling using real-world
examples, check the following documentation:
https://www.mongodb.com/developer/products/mongodb/mongod
b-schema-design-best-practices/.

Additionally, Python drivers such as PyMongo and its async
counterpart, Motor, play seamlessly with MongoDB. With the
help of rich data structure system and data-processing
capabilities of Python, it is relatively easy to change and mix
things up, change schemas, and try out different types of
documents until you find the optimal solution for your
particular use case.

Here are two interesting projects that could be included in
some of your applications:

Beanie (https://roman-right.github.io/beanie/) is an
Asynchronous Python object-document mapper for
MongoDB, based on Motor and Pydantic, that can speed up
the creation of CRUD applications. You already learned how
to use Beanie for backend development. Please refer to

https://www.mongodb.com/developer/products/mongodb/mongodb-schema-design-best-practices/
https://www.mongodb.com/developer/products/mongodb/mongodb-schema-design-best-practices/
https://roman-right.github.io/beanie/

Chapter 9, Third-Party Services Integration with FastAPI and
Beanie.
Mongita (https://github.com/scottrogowski/mongita) can be
thought of as SQLite for MongoDB. It could be useful as an
embedded database for lighter cases in which you want to
keep the data local, or for prototyping even before having
to set up MongoDB or Atlas.

FastAPI and Python
considerations

Python encompasses data and text processing, web
development, data science, machine learning, numerical
computations, visualizations, and virtually every possible
aspect of computing.

Best practices in Python are applicable to FastAPI as well.
However, since FastAPI translates simple Python functions (or
even classes, inspired by the class-based views of Django) into
REST API endpoints, you don’t have to do anything additional.
FastAPI is built in a way that favors the developer, giving you
the necessary flexibility and smoothness while writing an API.

https://github.com/scottrogowski/mongita

The following list provides generic considerations that should
be part of your FastAPI development process:

Use Git and GitHub and learn a simple workflow. It is
easier to learn one workflow and use it until you get used
to it and then switch, rather than trying to learn all the
commands at once, especially if you’re the only developer
trying to automate or REST-ify a business process.
Keep your environment variables in .env files, but also

back them up somewhere (API keys, external services
credentials, or elsewhere).
Learn the type hinting system of Python. It is closely related
to Pydantic and adds a layer of robustness to your overall
code. It is also an integral part of coding a FastAPI
application.
Structure your application properly. It is very easy and
tempting to create a feature-rich application in a single file.
This proves true especially if you do not have a clear
specification, but you should resist this urge. Refer to the
FastAPI documentation on structuring larger applications
(https://fastapi.tiangolo.com/tutorial/bigger-applications).

The main idea is to break the application into routers and
Pydantic models, so that they have separate directories. For
example, you have a /routers directory in the book, so you

https://fastapi.tiangolo.com/tutorial/bigger-applications

should have had a /models directory as well. These directories

should each have an empty __init__.py file, making them

Python modules. You can keep the external service utilities
either in a separate file or in a /helpers directory. You could go

granular, depending on the complexity of your app. Remember
that you will always end up with an ASGI application that is the
only endpoint referenced by your server of choice, such as
Uvicorn or another server.

Testing FastAPI applications

Testing is necessary to ensure that your application behaves the
way it is supposed to. This chapter won’t cover test-driven
development (TDD), in which tests are written before the
actual code. However, there are some specific issues that you
may run into when working with the async MongoDB Python
driver, called Motor, and FastAPI.

Unit testing your API is essential and simple to set up. Every
endpoint should be tested, and each should perform the tasks
they are delegated. While unit testing in Python already has
several mature frameworks, such as unittest and pytest,

some FastAPI-specific points are worth mentioning.

The FastAPI documentation
(https://fastapi.tiangolo.com/tutorial/testing/) recommends that
you use the TestClient class provided by Starlette. Francois

Voron, in his excellent book Building Data Science Applications
with FastAPI, recommends a slightly more advanced setup
using HTTPX (an async HTTP library similar to Requests,

developed by the Starlette team) and pytest-asyncio, making

the whole process completely asynchronous.

The inclusion of Pydantic makes the testing of FastAPI
applications a pleasant experience and enforces certain
practices that tend to produce more stable software. On the
other hand, the automatic documentation of FastAPI is an
incredibly helpful tool that saves you time and frequent trips
between the code editor and the client.

React practices

In Chapter 1, Web Development and the FARM Stack, you chose
React for your frontend because of its simplicity and flexibility.
If you are a visual learner, try the video course by Academind
GMBH and its main author, Maximilian Schwarzmüller, called
React – The Complete Guide.

https://fastapi.tiangolo.com/tutorial/testing/

Solid knowledge of JavaScript and ES6 is the best foundation for
becoming a better React developer, but it is also important to
dive a bit deeper into some fundamental React concepts and
explore the Hooks mechanism, the component life cycle, and
the component hierarchy.

You should familiarize yourself with other hooks; in this book,
you get a glimpse of two or three of the most popular hooks, but
there are many more. Knowing how and why hooks work the
way they do will make you a better React developer.

As of 2024, React functional components are generally
preferred to older class-based ones as they are more concise,
maintainable, and flexible.

Other topics

This section emphasizes some other important points that
would be useful when using the FARM stack. While you can use
the FARM stack for virtually any type of web application you
choose, the stack might be more suitable for some types of apps
and less suitable for others.

Authentication and authorization

Chapter 6, Authentication and Authorization, is dedicated to
implementing a JWT-based authentication solution with
FastAPI and its consequent application in React. However, as
mentioned in that chapter, that might not be the best or a viable
solution for certain use cases. You may need to revert to a third-
party provider such as Firebase, Auth0, or Cognito. Before
committing to a third-party solution, be sure to fully
understand the pros and cons, the consequences of a potential
lock-in, and the price factor, especially if you are planning to
scale the application.

Data visualization and the FARM
stack

Chapter 1, Web Development and the FARM Stack, describes
some rather simple visualizations, but with properly formatted
and granular JSON responses and React as the frontend, almost
anything is possible. This possibility to practically mold the data
according to your needs gives you a great playground where
you can test, tinker, and try out different solutions, perhaps
iteratively, until you reach the type of data visualization that
you are satisfied with.

There is a broad spectrum of visualization requirements, and it
isn’t necessary to try and craft a Shirley Wu D3.js piece of art,

where a simple two-color stacked run-of-the-mill bar chart
could have done the job. However, with the availability of a fast
backend and MongoDB accommodating virtually any type of
data structure that you might throw at it, you will be ready for
any task. The Observable wrapper of D3.js has a very

interesting interface and abstracts many of the mechanisms of
D3.js, so it might be a good place to start.

Relational databases

If your use case requires the complexity of relational databases,
such as SQL, and their strict structure, you don’t need to
abandon the FARM stack altogether. Given the modularity of
FastAPI and some of the deployment options that this book
explored, you can plug in a relational database, such as
Postgres or MySQL, explore the documentation of SQLAlchemy
or some async database Python drivers, and simply add said
functionality while managing the users, for instance, through
MongoDB.

Some project ideas to get started

This section lists some project ideas to help you explore the
possibilities of the FARM stack and hone your skills, but above

all, explore your creativity. These sample project ideas will help
you explore some functionalities of the FARM stack, like
building document automation pipelines, creating data
dashboard applications, and building portfolio sites.

Old-school portfolio website

This project shows how FastAPI, React, and MongoDB are
perfectly capable of handling simple portfolio sites that include
content such as an about page, service, gallery, contact form,
and more.

The following steps outline how you might create an app for
this purpose:

1. Create a nice design (or try to recreate it in Tailwind CSS).
2. Plug in React-Router or Next.js if you want to make it fast.
3. Use server-side generation and image optimization.
4. For the content, define a couple of Pydantic models: a blog

post, portfolio item, article and so on. Then, create simple
routes for serving them via GET requests.

5. Since this is a developers’ blog, you don’t even need to
create an authentication system and POST or PUT routes:

text-related content will be entered directly into MongoDB

(Atlas or Compass) and images will go to separate folders
on Cloudinary, queried directly through the API.

6. Incorporate Markdown, a powerful text preprocessor that
converts simple text (Markdown) into valid HTML. Both
Python and ES6/React have excellent libraries for handling
Markdown, so you will be able to find a good combination.

React-admin inventory

Another project idea is to create an inventory system built on
top of React-admin (https://marmelab.com/react-admin/), with
authentication from Auth0 or Firebase, and a public-facing
interface. React-admin provides an admin interface similar to
the one used by Django and it is based on CRUD verbs: each
resource (or item) that exposes interfaces for POST, PUT, GET,

and DELETE operations can be edited, deleted, and read and

new instances can be created.

Explore the package and try to think of some type of collection
that you may want to manage. There are excellent tools such as
Airtable that expose REST APIs that can be called from your
FastAPI routes.

Plotly Dash or Streamlit to create
exploratory data analysis

https://marmelab.com/react-admin/

applications

With Plotly Dash or Streamlit, you can build apps that you can
use to play around your data. To see these tools in action, follow
these steps:

1. Pick a dataset that you are familiar with.
2. Create an input pipeline that programmatically accepts

data and tests it out thoroughly. This data could come from
a web or, better, API scraper or from an input file that
uploads a JSON or CSV file.

3. Clean the data, preprocess it, and insert it into the
MongoDB datastore.

4. Next, based on the structure of the data, figure out some
useful filters and controls, not unlike enterprise tools such
as Tableau or Looker Studio. If you’re already familiar with
data like that, you will know what to expect.

5. After that, you can open up a Jupyter notebook, install a
couple of visualization libraries, and see what types of
correlations or groupings can come up.

6. After you have found some interesting pandas-driven data
wranglings, you can just extract them into separate
functionalities, test them, and incorporate them into
FastAPI endpoints, ready to be visualized with D3.js or
Chart.js.

7. Finally, you could deploy your application and share it with
your friend who manages your team to show them the data
backing your draft decisions.

Earlier, you saw how easy it is to embed a machine learning
model built with scikit-learn. Next, you can try embedding a
neural network model with Keras or try out some simple linear
regression.

NOTE

Knowledge of data visualization and exploration frameworks
such as Streamlit (https://streamlit.io/) or Dash
(https://dash.plotly.com/) will help you in building and deploying
your data dashboard applications

A document automation pipeline

Have you always been surrounded by repetitive documents that
have the same structure? Here’s what you can do:

1. Try to think of a document server based on the docx-tpl

package, which allows you to define a Word template,
formatted as it should be, and then pass a context
containing all the data that needs to be in the document,
such as text, images, tables, paragraphs, and titles, all while

https://streamlit.io/
https://dash.plotly.com/

maintaining the initially defined styles. Similar and even
more powerful automation can be achieved with Excel. You
can use pandas for complex calculations, pivoting, and
merging different documents into one.

2. After creating the templates, think of some FastAPI
endpoints that would perform POST requests and save the

posted data to a MongoDB database, along with the data
(for instance, the title of the document, the author, the data,
or other details), and then trigger a DOCX or XLSX
document render.

3. Save the file with a recognizable name (maybe by adding
the current time or the UUID library, for uniqueness) in a
directory and ensure this directory is servable, by FastAPI
directly (via the static files functionality). If you plan to
have a significant number of heavy documents, even an
entire Nginx server block could work.

4. These files could then be accessible to all the team
members or even sent directly via mail with the cron
command-line utility or something similar.

Summary

This chapter presented some pointers to help you fortify your
FARM stack knowledge, as well as provided some project ideas

that you could customize and use as a starting point for your
own projects. Using them, you can create numerous simple as
well as some complex applications to showcase the capabilities
and the flexibility of the stack. With regards to what can easily
be achieved with the FARM stack, you can also explore other
capabilities such as server-side rendering and image
optimization with Next.js, send emails, and perform data
visualizations.

FARM stack has a future as the stack of choice for professional
development teams and data wranglers or freelancers who just
need to tell a story through a web application. By embracing its
components, you can build highly interactive and responsive
applications tailored to various needs.

With all the knowledge and hands-on examples you performed
throughout this book, you should now be confident in your
journey to building fully functional applications using the
FARM stack. As is true for any technology or tool, the more you
practice, the more you get better!

Index

As this ebook edition doesn't have fixed pagination, the page
numbers below are hyperlinked for reference only, based on the
printed edition of this book.

A

Aggregation framework: 4-5, 40-42

Angular: 3, 121

Apache: 2-3

APIRouter: 93-94, 128-129, 161-163

asynchronous server gateway interface (ASGI): 7-8, 73-74

Auth0: 149, 281-282

AuthContext: 136-137, 139-141, 143, 146-148, 202, 204-207, 210

AuthHandler: 125-126

AuthProvider: 136, 140, 144-146

B

Beanie: 129, 219-228, 231-234

C

cloudinary: 152, 170-174, 226, 233

CORS: 181-182, 223, 228

CRUD: 32-33, 78, 151-152, 161

D

default_factory: 58, 224

deletedCount: 40

deleteMany: 35, 40

deleteOne: 35, 40

Django: 8, 50, 73

E

ECMAScript Modules (ESMs): 98

F

fastapi-cli: 228

fastapi-cors: 223, 228

Firebase: 149, 281-282

G

gateway: 7, 73

Gatsby: 10, 257

Gemini: 239

geospatial: 37

gitignore: 157, 182, 223

Google: 8, 26, 120, 239, 271

H

Heroku: 8, 182

Hooks: 10-12, 97-98, 112, 114-115

HTTPie: 72-73, 77-78, 82, 85

Hugo: 257

I

insertMany: 35, 39

insertOne: 35, 38

iron-session: 220, 261-262, 265

J

Jinja2: 9, 245

jQuery: 102

K

Keras: 283

L

LangChain: 50, 239

LLMs (Large language models): 221, 239

M

MERN: 3

mongodump: 23

Motor: 4-5, 32, 74-75, 129, 160, 162

Mypy: 46-47, 49

MySQL: 3, 281

N

Netlify: 220, 271-275

Ninja: 50

O

ODMs (Object-document mappers): 129, 219, 221

OpenAI: 219-222, 239-243, 245

ORMs (Object-relational mapping): 221

P

Panda: 108, 111-112

Plotly: 283

Postgres: 281

Postman: 72, 78, 85

PowerShell: 72

PyJWT: 123-124, 127

PyMongo: 32, 74, 129, 172, 221, 278

R

Redux: 118

S

syntactically awesome style sheets (SASS): 101

single-page applications (SPAs): 98, 118, 134, 150, 187, 189, 271

SQLAlchemy: 221, 281

SQLite: 279

SQLModel: 50, 221

Starlette: 6, 8, 51, 71, 74, 237, 280

T

Tailwind: 99-101, 104, 106

U

Ubuntu: 14, 24

Unix: 2, 17

universally unique identifier (UUID):89, 124-125

uvicorn: 2, 4, 71, 73, 75-77, 182-183

V

Vercel: 182, 273

Vite: 97-100, 102

www.packtpub.com

Subscribe to our online digital library for full access to over
7,000 books and videos, as well as industry leading tools to help
you plan your personal development and advance your career.
For more information, please visit our website.

Why subscribe?

Spend less time learning and more time coding with
practical eBooks and Videos from over 4,000 industry
professionals
Improve your learning with Skill Plans built especially for
you
Get a free eBook or video every month
Fully searchable for easy access to vital information
Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book
published, with PDF and ePub files available? You can upgrade
to the eBook version at packtpub.com and as a print book

http://www.packtpub.com/
http://packtpub.com/

customer, you are entitled to a discount on the eBook copy. Get
in touch with us at customercare@packtpub.com for more
details.

At www.packtpub.com, you can also read a collection of free
technical articles, sign up for a range of free newsletters, and
receive exclusive discounts and offers on Packt books and
eBooks.

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other
books by Packt:

mailto:customercare@packtpub.com
http://www.packtpub.com/

Mastering MongoDB 7.0 - Fourth Edition

https://flo.packtpub.services/product/detail/B22384
https://flo.packtpub.services/product/detail/B22384

Elie Hannouch, Leandro Domingues, Malak Abu Hammad,
Rajesh Nair, Arek Borucki, Rachelle Palmer, and Marko
Aleksendrić, Ph.D.

ISBN: 978-1-83546-047-4

Execute advanced MongoDB queries for intricate data
insights
Harness the power of aggregation pipelines to transform
data
Optimize query performance using strategic indexing
techniques
Navigate MongoDB Atlas seamlessly for monitoring and
backups
Master RBAC, user management, and data encryption for
security

Practical MongoDB Aggregations

Paul Done

https://flo.packtpub.services/product/detail/B22435
https://flo.packtpub.services/product/detail/B22435

ISBN: 978-1-83588-436-2

Develop dynamic aggregation pipelines tailored to
changing business requirements
Master essential techniques to optimize aggregation
pipelines for rapid data processing
Achieve optimal efficiency for applying aggregations to vast
datasets with effective sharding strategies
Eliminate the performance penalties of processing data
externally by filtering, grouping, and calculating
aggregated values directly within the database
Use pipelines to help you secure your data access and
distribution

Packt is searching for authors
like you

If you’re interested in becoming an author for Packt, please
visit authors.packtpub.com and apply today. We have worked
with thousands of developers and tech professionals, just like
you, to help them share their insight with the global tech
community. You can make a general application, apply for a
specific hot topic that we are recruiting an author for, or submit
your own idea.

http://authors.packtpub.com/

Download a free PDF copy of this
book

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print
books everywhere?

Is your eBook purchase not compatible with the device of your
choice?

Don’t worry, now with every Packt book you get a DRM-free
PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and
paste code from your favorite technical books directly into your
application.

The perks don’t stop there, you can get exclusive access to
discounts, newsletters, and great free content in your inbox
daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781835886762

2. Submit your proof of purchase
3. That’s it! We’ll send your free PDF and other benefits to

your email directly

https://packt.link/free-ebook/9781835886762

	Preface
	How this book will help you
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Download the color images
	Conventions used
	Get in touch
	Download a free PDF copy of this book

	Chapter 1: Web Development and the FARM Stack
	Technical requirements
	What is the FARM stack?
	Why the FARM stack?
	Why use MongoDB?
	Why use FastAPI?
	Python and REST APIs
	The frontend – React
	Why use React?

	Summary

	Chapter 2: Setting Up the Database with MongoDB
	Technical requirements
	The structure of a MongoDB database
	Documents
	Supported data types in MongoDB
	Collections and databases
	Options to install the MongoDB database

	Installing MongoDB and related tools
	Installing MongoDB and Compass on Windows
	Installing the MongoDB Shell (mongosh)
	MongoDB Database Tools
	Installing MongoDB and Compass on Linux: Ubuntu
	Setting up Atlas
	Creating an Atlas cluster
	Getting the connection string of your Atlas Cluster
	Connecting to the Atlas cluster from Compass

	MongoDB querying and CRUD operations
	Querying in MongoDB
	Projection
	Creating new documents
	Updating documents
	Deleting documents

	Summary

	Chapter 3: Python Type Hints and Pydantic
	Technical requirements
	Python types
	Type hinting
	Implementing type hints
	Advanced annotations

	Pydantic
	Pydantic basics
	Deserialization
	Model fields
	Pydantic types
	Pydantic fields
	Serialization
	Custom data validation
	Model validators
	Nested models
	Pydantic Settings

	Summary

	Chapter 4: Getting Started with FastAPI
	Technical requirements
	Python setup
	Virtual environments
	Code editors
	Terminal
	REST clients
	Installing the necessary packages

	FastAPI in a nutshell
	Starlette
	Asynchronous programming
	Standard REST API operations
	How does FastAPI speak REST?
	Automatic documentation

	Building a showcase API
	Retrieving path and query parameters
	FastAPI response customization

	Summary

	Chapter 5: Setting Up a React Workflow
	Technical requirements
	Creating a React app using Vite
	Tailwind CSS and installation

	Components and building blocks of JSX
	Recap
	Components
	Creating dynamic components
	Events and state
	React Hooks with events and state

	Communicating with APIs and the outside world using useEffect
	Exploring React Router and other useful packages
	Summary

	Chapter 6: Authentication and Authorization
	Technical requirements
	Understanding JSON Web Token
	What is JWT?

	FastAPI backend with users and dependencies
	User model for authentication
	Authentication and authorization with FastAPI: a walk-through

	Authenticating the users in React
	Persisting authentication data with localStorage
	Other authentication solutions

	Summary

	Chapter 7: Building a Backend with FastAPI
	Technical requirements
	Introducing the application
	Creating an Atlas instance and a collection
	Setting up the Python environment
	Defining the Pydantic models

	Scaffolding a FastAPI application
	Creating a .env file to keep the secrets

	CRUD operations
	The POST handler
	Handling the GET requests
	Updating and deleting records

	Uploading images to Cloudinary
	Adding the user model
	FastAPI middleware and CORS
	Deployment to Render.com
	Summary

	Chapter 8: Building the Frontend of the Application
	Technical requirements
	Creating a Vite React application
	React Router
	Installing and setting up React Router
	React Router loaders

	React Hook Form and Zod
	Performing data validation with Zod

	Authentication context and storing the JWT
	Implementing the login functionality
	Protecting routes
	Creating the page for inserting new cars
	Displaying single cars

	Summary

	Chapter 9: Third-Party Services Integration with FastAPI and Beanie
	Technical requirements
	Project outline
	Building the backend with FastAPI and Beanie
	Introduction to the Beanie ODM
	Defining the models with Beanie
	Connecting to the MongoDB database
	Creating the FastAPI application
	Background tasks with FastAPI
	Integrating OpenAI with FastAPI

	Summary

	Chapter 10: Web Development with Next.js 14
	Technical requirements
	Introduction to Next.js
	Creating a Next.js 14 project
	Next.js project structure
	Routing with Next.js 14
	Data loading with server components

	Authentication and Server Actions in Next.js
	Creating protected pages
	Implementing the new car page
	Providing metadata

	Deployment on Netlify
	Pushing the changes to GitHub

	Summary

	Chapter 11: Useful Resources and Project Ideas
	MongoDB considerations
	FastAPI and Python considerations
	Testing FastAPI applications
	React practices
	Other topics
	Authentication and authorization
	Data visualization and the FARM stack
	Relational databases

	Some project ideas to get started
	Old-school portfolio website
	React-admin inventory
	Plotly Dash or Streamlit to create exploratory data analysis applications
	A document automation pipeline

	Summary

	Index
	Why subscribe?

	Other Books You May Enjoy
	Packt is searching for authors like you
	Download a free PDF copy of this book

