

Learning Angular
Fifth Edition

A practical guide to building web applications with modern Angular

Aristeidis Bampakos

Learning Angular
Fifth Edition
Copyright © 2024 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee
the accuracy of this information.

Publishing Product Manager: Lucy Wan

Acquisition Editor – Peer Reviews: Jane D’Souza

Project Editor: Janice Gonsalves

Development Editor: Rebecca Youé

Copy Editor: Safis Editing

Technical Editor: Gaurav Gavas

Proofreader: Safis Editing

Indexer: Hemangini Bari

Presentation Designer: Ajay Patule

Developer Relations Marketing Executive: Deepak Kumar

First published: April 2016

Second edition: December 2017

Third edition: September 2020

Fourth edition: February 2023

Fifth edition: December 2024

Production reference: 1271224

Published by Packt Publishing Ltd.

Grosvenor House

11 St Paul’s Square

Birmingham

B3 1RB, UK.

ISBN 978-1-83508-748-0

www.packt.com

www.packt.com

Contributors

About the author
Aristeidis Bampakos has over 20 years of experience in the software development industry.

He currently works as a web development team leader at Plex-Earth, specializing in the develop-

ment of web applications using Angular. His career started as a C# .NET developer, but he saw the

potential of web development and moved toward it in early 2011. He began working with Angu-

larJS and in 2020 he was officially recognized as a Google Developer Expert (GDE) for Angular.

Aristeidis is passionate about helping the developer community learn and grow. His love for

teaching has led him to become an award-winning author of the successful book titles Learning

Angular and Angular Projects. He enjoys being speaking about Angular in meetups, conferences,

and podcasts. He is also currently leading the effort to make Angular accessible to the Greek de-

velopment community by maintaining the open-source Greek translation of the official Angular

documentation.

This book is dedicated to all people around the globe that strive with mental health issues.

About the reviewers
Thomas Laforge is a married father living in the French Alps. He is an Angular freelancer with

more than 8 years of experience in the frontend world, particularly in Angular. He has been a

Google Developer Expert (GDE) for over a year and is well known for his open-source project,

Angular Challenges. This project features more than 50 challenges designed to help developers

improve their Angular skills. He is passionate about frontend technology and open-source projects.

Outside of work, he enjoys sports and board games.

Martina Kraus has been active in the world of web development since her early years and,

over time, has become an expert in the field of web security. As an Application Security Engineer,

she focuses on integrating security best practices into all phases of software development. In

her role as an Angular Google Developer Expert (GDE), she loves to spread knowledge about

Angular and web security at national and international conferences, regularly organizes ngGirls

events (free Angular workshops for women) and the German Angular conference NG-DE. She is

currently working on a book titled Authorization and Authentication for Web Developers: A Practical

Guide, where she aims to share her knowledge.

Forewords

Dear Reader,

The book you’re holding continues a journey of knowledge and discovery that began nearly a

decade ago. The origins of Learning Angular date back to the summer of 2015. During that time,

Packt Publishing, with whom I’d had several discussions over the years, approached me to write

a book on any topic of my choosing that would appeal to the frontend web developer community.

In the summer of 2015, it was already well known that the Angular team at Google was working

on a new version of its framework. This was not merely a continuation of what AngularJS had

been up to that point, but a complete rewrite from scratch. AngularJS was showing signs of

aging and facing criticism regarding its operability and performance. In contrast, libraries like

React and Vue were gaining more acceptance, and their future appeared bright and promising.

Angular faced the significant challenge of winning back developers’ hearts in a race it was late

to enter—perhaps too late already.

With only that idea in mind, the task of writing a book seemed daunting, aggravated by the fact

that there was no documentation available. In the summer of 2015, Angular was still in the al-

pha stage, and the only way to familiarize oneself with the framework’s mechanics was to read

the team’s official blog, which dribbled out its posts, or to reverse-engineer code that changed

radically every week with each new release.

Doubts abounded: Would the resulting book be accurate enough? Would it be embraced by the

public given the expectations created? Would it stand the test of time? Despite these concerns,

this was the crucial moment to author a book on an entirely new frontend technology. Ultimately,

the first edition of Learning Angular 2 (which later dropped the version number in favor of just

Learning Angular) was released in May 2016, after much effort and over two dozen rewrites. I

honestly thought that journey would end there: perhaps a couple of dozen books would be sold

at most, it would receive some positive reviews, and probably many negative ones.

I doubted Angular itself would last much longer either; despite its beautifully crafted architecture,

the framework had arrived late to the party and relied on principles the community intended to

bury in favor of functional programming paradigms.

Nearly ten years later, I’m delighted to say my judgment was wrong. The collective effort put into

this book has enabled thousands of developers worldwide to create wonderful projects, contrib-

uting to a better, more accessible world for everyone. Learning Angular 2 became a success, and

its subsequent editions have been no less successful.

Meanwhile, Angular has continued to evolve and has broken paradigms in its continuous pursuit of

evolution. From signals to deferrable views, native server-side rendering, improved lightning-fast

compilation tools, a revamped syntax, and an enhanced transition API, along with hundreds

of major and minor additions, Angular has demonstrated an unparalleled commitment to the

community and influenced the future path of our industry. Right after its inception, Angular was

considered an ugly duckling in the industry. Now, it is the new white swan that once again sets

the pace for the rest.

However, this poses a huge challenge: Can a book capture the greatness of Angular, help readers

confidently initiate themselves in it, and remain accessible and engaging, all while competing

with the comprehensive information on angular.dev, its official website? The answer is yes, as

long as Aristeidis Bampakos is leading this endeavor.

Aristeidis has been the driving force behind this franchise’s success and I owe him an infinite debt

of gratitude. His perseverance in meeting the community’s expectations, his enormous technical

skill in deconstructing complex concepts, and his excellent narrative ability are the reasons why

I consider the book you are now holding a powerful key that will open doors to a fascinating

future for you and many others.

It is an honor to write this foreword and a privilege to have shared this journey with Aristeidis

Bampakos and the Packt team over nearly a decade. The journey doesn’t end here. It is now up

to you, dear reader, to take the next steps, and this book will be your best guide.

Bon voyage.

Pablo Deeleman

Frontend Architect at GitKraken, and previous author of Learning Angular

angular.dev

Hello friends,

I am honored to introduce an exceptional book written by one of my all-time favorite Angular

experts, Aristeidis Bampakos. He is an established bestselling author, a well-respected Angular

Google Developer Expert, a principal enterprise architect, and an open-source author. Over the

years, Aris has become a trusted figure in the Angular community, having not only mastered the

framework, but also contributed directly to translations and other improvements. His dedication

to the Angular ecosystem is reflected not only in his contributions, but also in his passion for

helping others grow their knowledge and skills.

For those looking to level up their Angular expertise, this book offers a comprehensive yet ap-

proachable overview of the framework. Aris has a unique ability to break down complex concepts

into digestible content, making learning Angular accessible and enjoyable for developers of all

levels. Whether you’re just beginning your journey or architecting a production app, this guide

will undoubtedly help you advance your understanding of Angular.

Beyond his Angular contributions, Aris has been a beloved and influential leader in our Tech

Stack Nation community from the very start. His contributions go beyond just code; he brings

wisdom, humility, and a genuine passion for sharing knowledge. I encourage you to visit one of

our live events, where Aris can often be found sharing his insights—not only as a brilliant teacher

and author who never stops asking questions and learning new things, but also as a caring and

supportive friend to us all.

In the constantly evolving world of open-source tech, resources we can trust are increasingly valu-

able, and it’s even more valuable to have someone like Aris to guide us through the ever-changing

landscape of Angular. I have no doubt that you’ll find this book priceless, as I have found Aris’

contributions to our community over the years.

Enjoy your journey through Angular! If you have questions or comments after reading, I encourage

you to reach out to Aris, as he’s super friendly. You can also stop by Tech Stack Nation and ask for

him, I bet he’d love to meet you!

Miles of smiles,

Bonnie Brennan

Founder of TechStackNation.com, Enterprise Architect, and Angular GDE

Join us on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/LearningAngular5e

https://packt.link/LearningAngular5e

Table of Contents

Preface xix

Chapter 1: Building Your First Angular Application 1

Technical requirements �� 2

What is Angular? ��� 2

Why choose Angular? �� 4

Cross-platform • 4

Tooling • 4

Onboarding • 5

The usage of Angular worldwide • 5

Setting up the Angular CLI workspace �� 6

Prerequisites • 6

Node.js • 6

npm • 7

Git • 7

Installing the Angular CLI • 7

CLI commands • 8

Creating a new project • 9

The structure of an Angular application ��� 12

Components • 13

Bootstrapping • 13

Template syntax • 14

Table of Contentsx

Angular tooling ��� 16

Angular DevTools • 16

VSCode Debugger • 20

VSCode Profiles • 22

Angular Language Service • 22

Material Icon Theme • 24

EditorConfig • 24

Summary �� 25

Chapter 2: Introduction to TypeScript 27

Technical requirements �� 27

JavaScript essentials ��� 28

Variable declaration • 28

Function parameters • 31

Arrow functions • 32

Optional chaining • 33

Nullish coalescing • 34

Classes • 35

Modules • 36

What is TypeScript? �� 37

Getting started with TypeScript �� 39

Types • 41

String • 42

Boolean • 42

Number • 42

Array • 42

any • 43

Custom types • 43

Functions • 44

Classes • 45

Table of Contents xi

Interfaces • 48

Generics • 50

Utility types • 52

Summary • 52

Chapter 3: Structuring User Interfaces with Components 55

Technical requirements �� 55

Creating our first component �� 56

The structure of an Angular component • 56

Creating components with the Angular CLI • 58

Interacting with the template ��� 60

Loading the component template • 60

Displaying data from the component class • 62

Controlling data representation • 63

Class binding • 71

Style binding • 72

Getting data from the template • 73

Component inter-communication �� 75

Passing data using an input binding • 75

Listening for events using an output binding • 77

Emitting data through custom events • 80

Local reference variables in templates • 81

Encapsulating CSS styling ��� 82

Deciding on a change detection strategy �� 85

Introducing the component lifecycle �� 89

Performing component initialization • 90

Cleaning up component resources • 91

Detecting input binding changes • 93

Accessing child components • 95

Summary �� 96

Table of Contentsxii

Chapter 4: Enriching Applications Using Pipes and Directives 99

Technical requirements �� 99

Manipulating data with pipes ��� 99

Building pipes ��� 106

Sorting data using pipes • 106

Passing parameters to pipes • 110

Change detection with pipes • 112

Building directives ��� 113

Displaying dynamic data • 114

Property binding and responding to events • 118

Summary �� 120

Chapter 5: Managing Complex Tasks with Services 121

Technical requirements ��� 122

Introducing Angular DI �� 122

Creating our first Angular service �� 124

Injecting services in the constructor • 126

The inject keyword • 128

Providing dependencies across the application ��� 129

Injecting services in the component tree ��� 133

Sharing dependencies through components • 133

Root and component injectors • 138

Sandboxing components with multiple instances • 139

Restricting provider lookup • 145

Overriding providers in the injector hierarchy ��� 147

Overriding service implementation • 147

Providing services conditionally • 149

Transforming objects in Angular services • 151

Summary ��� 153

Table of Contents xiii

Chapter 6: Reactive Patterns in Angular 155

Technical requirements ��� 155

Strategies for handling asynchronous information �� 156

Shifting from callback hell to promises • 156

Observables in a nutshell • 160

Reactive programming in Angular ��� 162

The RxJS library ��� 165

Creating observables • 166

Transforming observables • 167

Subscribing to observables �� 169

Unsubscribing from observables �� 172

Destroying a component • 172

Using the async pipe • 174

Summary ��� 176

Chapter 7: Tracking Application State with Signals 177

Technical requirements ��� 177

Understanding signals �� 178

Reading and writing signals �� 178

Computed signals ��� 180

Cooperating with RxJS �� 182

Summary ��� 185

Chapter 8: Communicating with Data Services over HTTP 187

Technical requirements ��� 187

Communicating data over HTTP ��� 188

Introducing the Angular HTTP client �� 189

Setting up a backend API ��� 191

Handling CRUD data in Angular �� 192

Fetching data through HTTP • 192

Table of Contentsxiv

Modifying data through HTTP • 202

Adding new products • 203

Updating product price • 207

Removing a product • 210

Authentication and authorization with HTTP ��� 214

Authenticating with a backend API • 214

Authorizing user access • 216

Authorizing HTTP requests • 218

Summary �� 222

Chapter 9: Navigating through Applications with Routing 223

Technical requirements �� 224

Introducing the Angular router ��� 224

Specifying a base path • 226

Enabling routing in Angular applications • 226

Configuring the router • 227

Rendering components • 228

Configuring the main routes ��� 228

Organizing application routes �� 232

Navigating imperatively to a route • 233

Using built-in route paths • 238

Styling router links • 239

Passing parameters to routes �� 240

Building a detail page using route parameters • 240

Reusing components using child routes • 245

Taking a snapshot of route parameters • 247

Filtering data using query parameters • 248

Binding input properties to routes • 250

Enhancing navigation with advanced features ��� 252

Controlling route access • 252

Preventing navigation away from a route • 254

Table of Contents xv

Prefetching route data • 256

Lazy-loading parts of the application • 259

Protecting a lazy-loaded route • 262

Summary �� 263

Chapter 10: Collecting User Data with Forms 265

Technical requirements �� 265

Introducing web forms ��� 265

Building template-driven forms ��� 267

Building reactive forms �� 271

Interacting with reactive forms • 271

Creating nesting form hierarchies • 276

Modifying forms dynamically • 278

Using a form builder • 285

Validating input in forms �� 288

Global validation with CSS • 288

Validation in template-driven forms • 290

Validation in reactive forms • 294

Building custom validators • 297

Manipulating form state ��� 303

Updating form state • 303

Reacting to state changes • 304

Summary �� 306

Join Us on Discord ��� 306

Chapter 11: Handling Application Errors 307

Technical requirements �� 307

Handling runtime errors ��� 308

Catching HTTP request errors • 308

Creating a global error handler • 312

Responding to the 401 Unauthorized error • 315

Table of Contentsxvi

Demystifying framework errors ��� 316

Summary �� 318

Chapter 12: Introduction to Angular Material 319

Technical requirements ��� 319

Introducing Material Design ��� 320

Introducing Angular Material ��� 320

Installing Angular Material • 321

Adding UI components • 324

Theming UI components • 325

Integrating UI components ��� 329

Form controls • 330

Input • 330

Select • 335

Chips • 337

Navigation • 338

Layout • 340

Card • 341

Data table • 344

Popups and overlays • 350

Creating a confirmation dialog • 350

Configuring dialogs • 353

Getting data from dialogs • 354

Displaying user notifications • 355

Summary �� 359

Chapter 13: Unit Testing Angular Applications 361

Technical requirements �� 362

Why do we need unit tests? ��� 362

The anatomy of a unit test �� 363

Table of Contents xvii

Introducing unit tests in Angular �� 365

Testing components �� 366

Testing with dependencies • 370

Replacing the dependency with a stub • 371

Spying on the dependency method • 375

Testing asynchronous services • 378

Testing with inputs and outputs • 380

Testing with a component harness • 383

Testing services ��� 385

Testing synchronous/asynchronous methods • 386

Testing services with dependencies • 387

Testing pipes ��� 389

Testing directives �� 390

Testing forms �� 392

Testing the router ��� 395

Routed and routing components • 395

Guards • 398

Resolvers • 401

Summary �� 403

Chapter 14: Bringing Applications to Production 405

Technical requirements �� 406

Building an Angular application ��� 406

Building for different environments • 408

Building for the window object • 410

Limiting the application bundle size ��� 411

Optimizing the application bundle ��� 412

Deploying an Angular application ��� 415

Summary �� 416

Table of Contentsxviii

Chapter 15: Optimizing Application Performance 417

Technical requirements �� 418

Introducing Core Web Vitals ��� 418

Rendering SSR applications �� 422

Overriding SSR in Angular applications • 425

Optimizing image loading �� 428

Deferring components �� 430

Introducing deferrable views • 430

Using deferrable blocks • 431

Loading patterns in @defer blocks • 437

Prerendering SSG applications �� 440

Summary ��� 441

Other Books You May Enjoy 445

Index 449

Preface

As Angular continues to reign as one of the top JavaScript frameworks, more developers are seeking

out the best way to get started with this extraordinarily flexible and secure framework. Learning

Angular, now in its fifth edition, will show you how you can use Angular to achieve cross-plat-

form high performance with the latest web techniques, extensive integration with modern web

standards, and integrated development environments (IDEs).

This book is especially useful for those new to Angular and will help you to get to grips with the

bare bones of the framework needed to start developing Angular apps. You’ll learn how to develop

apps by harnessing the power of the Angular command-line interface (CLI), write unit tests, style

your apps by following the Material Design guidelines, and finally, build them for production.

Updated for Angular 19, this new edition covers lots of new features and practices that address

the current frontend web development challenges. You’ll find new dedicated chapters on signals

and optimization, as well as more on error handling and debugging in Angular, and new real-life

examples. By the end of this book, you’ll not only be able to create Angular applications with

TypeScript from scratch, but also enhance your coding skills with best practices.

Who this book is for
This book is for web developers that want to get started with frontend development, and fron-

tend developers that want to expand their knowledge of JavaScript frameworks. You’ll need prior

exposure to JavaScript, basic knowledge of the command line, and to be comfortable with using

IDEs to get started with this book.

What this book covers
Chapter 1, Building Your First Angular Application

Prefacexx

In this chapter, we set up the development environment by installing the Angular CLI and learn

how to use schematics (commands) to automate tasks such as code generation and application

building. We create a new simple application using the Angular CLI and build it. We also learn

about some of the most useful Angular tools that are available in Visual Studio Code.

Chapter 2, Introduction to TypeScript

In this chapter, we learn what TypeScript is, the language that is used when creating Angular

applications, and what the most basic building blocks are, such as types and classes. We take a

look at some of the advanced types available and the latest features of the language.

Chapter 3, Structuring User Interfaces with Components

In this chapter, we learn how a component is connected to its template and use a decorator to

configure it. We take a look at how components communicate with each other by passing data

from one component to another using input and output bindings and learn about the different

strategies to detect changes in a component. We also learn how to execute custom logic during

the component lifecycle.

Chapter 4, Enriching Applications Using Pipes and Directives

In this chapter, we take a look at Angular’s built-in pipes and we build our own custom pipe. We

learn how to create directives and leverage them through an Angular application that demon-

strates their use.

Chapter 5, Managing Complex Tasks with Services

In this chapter, we learn how the dependency injection mechanism works, create and use services

in components into components, and how to create providers in an Angular application.

Chapter 6, Reactive Patterns in Angular

In this chapter, we learn what reactive programming is and how we can use observables in the

context of an Angular application through the RxJS library. We also take a tour of all the common

RxJS operators that are used in an Angular application.

Chapter 7, Tracking Application State with Signals

In this chapter, we learn the basic concepts of the Signals API and the rationale behind its use. We

explore how to use signals for tracking the state of an Angular application. We also take a look at

signals interoperability with RxJS and how they can play nicely together in a sample application.

Chapter 8, Communicating with Data Services over HTTP

Preface xxi

In this chapter, we learn how to interact with a remote backend API and perform CRUD operations

with data in Angular. We also investigate how to set additional headers to an HTTP request and

intercept it before sending the request or upon completion.

Chapter 9, Navigating through Applications with Routing

In this chapter, we learn how to use the Angular router in order to activate different parts of an

Angular application. We find out how to pass parameters through the URL and how to break an

application into child routes that can be lazy loaded. We then learn how to guard against our

components and how to prepare data prior to initialization of the component.

Chapter 10, Collecting User Data with Forms

In this chapter, we learn how to use Angular forms in order to integrate HTML forms into an ap-

plication and how to set them up using FormGroup and FormControl. We track the interaction

of the user in the form and validate input fields.

Chapter 11, Handling Application Errors

In this chapter, we learn how to handle different types of errors in an Angular application and

learn about errors that come from the framework itself.

Chapter 12, Introduction to Angular Material

In this chapter, we learn how to integrate Google Material Design guidelines in to an Angular

application using a library called Angular Material, developed by the Angular team. We take a

look at some of the core components of the library and how to use them. We discuss the themes

that are bundled with the library and how to install them.

Chapter 13, Unit Testing Angular Applications

In this chapter, we learn how to test Angular artifacts and override them in a test, what the dif-

ferent parts of a test are, and which parts of a component should be tested.

Chapter 14, Bringing Applications to Production

In this chapter, we learn how to use the Angular CLI to build and deploy an Angular application.

We take a look at how to pass environment variables during the build and how to perform build

optimizations prior to deployment.

Chapter 15, Optimizing Application Performance

Prefacexxii

In this chapter, we learn what Core Web Vitals (CWV) are and how they affect the performance

of an Angular application. We explore three different ways to improve CWV metrics: how to ren-

der an application server-side, how to benefit from hydration, and how to optimize our images.

To get the most out of this book
You will need a version of Angular 19 installed on your computer, preferably the latest one. All

code examples have been tested using Angular 19.0.0 on Windows, but they should work with

any future release of Angular 19 as well.

We advise you to type the code for this book yourself or access the code via the GitHub repository

(the link is in the next section). Doing so will help you avoid any potential errors related to the

copying and pasting of code.

Download the example code files
You can download the example code files for this book from your account at http://www.packtpub.

com. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and

register to have the files emailed directly to you.

You can download the code files by following these steps:

1. Log in or register at http://www.packtpub.com.

2. Select the SUPPORT tab.

3. Click on Code Downloads & Errata.

4. Enter the name of the book in the Search box and follow the on-screen instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the latest

version of:

• WinRAR/7-Zip for Windows

• Zipeg/iZip/UnRarX for Mac

• 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/

Learning-Angular-Fifth-Edition. We also have other code bundles from our rich catalog of

books and videos available at https://github.com/PacktPublishing/. Check them out!

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com
https://github.com/PacktPublishing/Learning-Angular-Fifth-Edition
https://github.com/PacktPublishing/Learning-Angular-Fifth-Edition
https://github.com/PacktPublishing/

Preface xxiii

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this book.

You can download it here: https://packt.link/gbp/9781835087480.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file

extensions, pathnames, dummy URLs, user input, and social media handles. For example; “Mount

the downloaded WebStorm-10*.dmg disk image file as another disk in your system.”

A block of code is set as follows:

[default]

exten => s,1,Dial(Zap/1|30)

exten => s,2,Voicemail(u100)

exten => s,102,Voicemail(b100)

exten => i,1,Voicemail(s0)

When we wish to draw your attention to a particular part of a code block, the relevant lines or

items are set in bold:

[default]

exten => s,1,Dial(Zap/1|30)

exten => s,2,Voicemail(u100)

exten => s,102,Voicemail(b100)

exten => i,1,Voicemail(s0)

Any command-line input or output is written as follows:

cp /usr/src/asterisk-addons/configs/cdr_mysql.conf.sample

 /etc/asterisk/cdr_mysql.conf

Bold: Indicates a new term, an important word, or words that you see on the screen, for example,

in menus or dialog boxes. For example: “Select System info from the Administration panel.”

Warnings or important notes appear like this.

https://packt.link/gbp/9781835087480

Prefacexxiv

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com, and mention the book’s title in the subject of

your message. If you have questions about any aspect of this book, please email us at questions@

packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do

happen. If you have found a mistake in this book we would be grateful if you would report this

to us. Please visit, http://www.packtpub.com/submit-errata, selecting your book, clicking on

the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we would

be grateful if you would provide us with the location address or website name. Please contact us

at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you

are interested in either writing or contributing to a book, please visit http://authors.packtpub.

com.

Reviews
Once you have read and used this book, why not leave a review on the site that you purchased it

from? Potential readers can then see and use your unbiased opinion to make purchase decisions,

we at Packt can understand what you think about our products, and our authors can see your

feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

Tips and tricks appear like this.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com
http://authors.packtpub.com
packtpub.com

Preface xxv

Share your thoughts
Once you’ve read Learning Angular, Fifth Edition, we’d love to hear your thoughts! Please click

here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

https://packt.link/r/1835087485
https://packt.link/r/1835087485

Prefacexxvi

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical

books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free

content in your inbox daily.

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below:

https://packt.link/free-ebook/9781835087480

2. Submit your proof of purchase.

3. That’s it! We’ll send your free PDF and other benefits to your email directly.

https://packt.link/free-ebook/9781835087480

1
Building Your First Angular
Application

Web development has undergone huge growth during the last decade. Frameworks, libraries, and

tools have emerged that enable developers to build great web applications. Angular has paved

the way by creating a framework focusing on application performance, development ergonomics,

and modern web techniques.

Before developing Angular applications, we need to learn some basic but essential things to have

a great experience with the Angular framework. One of the primary things we should know is

what Angular is and why we should use it for web development. We will also take a tour in this

chapter of Angular history to understand how the framework has evolved.

Another important but sometimes challenging introductory topic is setting up our development

environment. It must be done at the beginning of a project and getting this right early can reduce

friction as our application grows. Therefore, a large part of this chapter is dedicated to the Angular

CLI, a tool developed by the Angular team that provides scaffolding and automation tasks in an

Angular application, eliminating configuration boilerplate and enabling developers to focus on

the coding process. We will use the Angular CLI to create our first application from scratch, get

a feel for the anatomy of an Angular application, and take a sneak peek at how Angular works

under the hood.

Building Your First Angular Application2

Working on an Angular project without help from development tools, such as an Integrated

Development Environment (IDE), can be painful. Our favorite code editor can provide an agile

development workflow that includes compilation at runtime, static type checking, introspection,

code completion, and visual assistance to debug and build our application. We will highlight some

of the most popular tools in the Angular ecosystem in this chapter, such as Angular DevTools

and Visual Studio Code (VSCode).

To sum up, here are the main topics that we will explore in this chapter:

• What is Angular?

• Why choose Angular?

• Setting up the Angular CLI workspace

• The structure of an Angular application

• Angular tooling

Technical requirements
• GitHub: https://github.com/PacktPublishing/Learning-Angular-Fifth-Edition/

tree/main/ch01

• Node�js: https://nodejs.org

• Git: https://git-scm.com

• VSCode: https://code.visualstudio.com

• Angular DevTools: https://angular.dev/tools/devtools

What is Angular?
Angular is a web framework written in the TypeScript language and includes a CLI, a language

service, a debugging tool, and a rich collection of first-party libraries.

Angular enables developers to build scalable web applications with TypeScript, a strict syntactic

superset of JavaScript, which we will learn about in Chapter 2, Introduction to TypeScript.

The official Angular documentation can be found at https://angular.dev.

Libraries included in the Angular framework provided out of the box are called

first-party libraries.

https://github.com/PacktPublishing/Learning-Angular-Fifth-Edition/tree/main/ch01
https://github.com/PacktPublishing/Learning-Angular-Fifth-Edition/tree/main/ch01
https://nodejs.org
https://git-scm.com
https://code.visualstudio.com
https://angular.dev/tools/devtools
https://angular.dev

Chapter 1 3

Google created Angular. The first version, 1.0, was released in 2012 and was called AngularJS. An-

gularJS was a JavaScript framework, and web applications built with it were written in JavaScript.

In 2016, the Angular team decided to make a revolutionary change in AngularJS. They collabo-

rated with the TypeScript team at Microsoft and introduced the TypeScript language into the

framework. The next version of the framework, 2.0, was written in TypeScript and rebranded as

Angular with a different logo than AngularJS.

In 2022, Angular entered a new era of evolutionary advancements known as the Angular Renais-

sance. During that period, the framework picked up momentum in web development by intro-

ducing major innovations focused on enhancing the Developer Experience (DX) and optimizing

application performance, such as:

• A simple and modern approach to authoring Angular applications

• Improved reactivity patterns to manage application state efficiently

• The integration of Server-Side Rendering (SSR) techniques to improve performance

A major milestone in the Angular Renaissance era was Angular 17, when the Angular team decided

to rebrand the framework with a new logo and colors, reflecting the recent changes and setting

the vision for future advancements.

Angular is based on the most modern web standards and supports all the evergreen browsers.

You can find more details about the specific version support of each browser at https://angular.

dev/reference/versions#browser-support.

In the following section, we will learn the benefits of choosing Angular for web development.

The official Angular documentation is the most up-to-date resource for Angular

development. It’s preferable to use it over other external resources while developing

with Angular.

In this book, we will cover Angular 19, the latest major stable version of the Angular

framework. AngularJS reached the end of its life in 2022, and it is no longer supported

and maintained by the Angular team.

https://angular.dev/reference/versions#browser-support
https://angular.dev/reference/versions#browser-support

Building Your First Angular Application4

Why choose Angular?
The power of the Angular framework is based on the combination of the following characteristics:

• The main pillars of the framework:

• Cross-platform

• Incredible tooling

• Easy onboarding

• The usage of Angular worldwide:

• An amazing community

• Battle-tested against Google products

In the following sections, we will examine each characteristic in more detail.

Cross-platform
Angular applications can run on different platforms: web, server, desktop, and mobile. Angular

can run natively only on the web because it is a web framework; however, it is open-source and

is backed by incredible tooling that enables the framework to run on the remaining three using

the following tools:

• Angular SSR: Renders Angular applications server-side

• Angular service worker: Enables Angular applications to run as Progressive Web Appli-

cations (PWAs) that can execute in desktop and native mobile environments

• Ionic/NativeScript: Allows us to build mobile applications using Angular

The next pillar of the framework describes the tooling available in the Angular ecosystem.

Tooling
The Angular team has built two great tools that make Angular development easy and fun:

• Angular CLI: A command-line interface that allows us to work with Angular projects,

from scaffolding to testing and deployment

• Angular DevTools: A browser extension that enables us to inspect and profile Angular

applications from the comfort of our browser

Chapter 1 5

The Angular CLI is the de facto solution to work with Angular applications. It allows the developer

to focus on writing application code, eliminating the boilerplate of configuration tasks such as

scaffolding, building, testing, and deploying an Angular application.

Onboarding
It is simple and easy to start with Angular development because when we install Angular, we

also get a rich collection of first-party libraries out of the box, including:

• An Angular HTTP client to communicate with external resources over HTTP

• Angular forms to create HTML forms to collect input and data from users

• An Angular router to perform in-app navigations

The preceding libraries are installed by default when we create a new Angular application using

the Angular CLI. However, they are only used in our application if we import them explicitly into

our project.

The usage of Angular worldwide
Many companies use Angular for their websites and web applications. The website https://www.

madewithangular.com contains an extensive list of those companies, including some popular ones.

Additionally, Angular is used in thousands of projects by Google and by millions of developers

worldwide. The fact that Angular is already used internally at Google is a crucial factor in the

reliability of the framework. Every new version of Angular is thoroughly tested in those projects

before becoming available to the public. The testing process helps the Angular team catch bugs

early and delivers a top-quality framework to the rest of the developer community.

Angular is backed and supported by a thriving developer community. Developers can access many

available communities worldwide, online or locally, to get help and guidance with the Angular

framework. On the other hand, communities help the Angular framework progress by sharing

feedback on new features, testing new ideas, and reporting issues. Some of the most popular

online communities are:

• Tech Stack Nation: The world’s friendliest Angular study group that brings together Angu-

lar developers who are passionate about improving their confidence in building amazing

Angular applications. Tech Stack Nation is a community where Angular developers can

collaborate, learn from each other’s expertise, and push the boundaries of what Angular

can achieve. You can join Tech Stack Nation at https://techstacknation.com.

https://www.madewithangular.com
https://www.madewithangular.com
https://techstacknation.com

Building Your First Angular Application6

• Angular Community Discord: Angular’s official Discord server that brings the incredible

Angular community together. Everyone is welcome to join the community with the click of

a button. It is the central location to connect Angular team members, Google Developer

Experts (GDEs), library authors, meetup groups, and anyone interested in learning the

framework. You can join the Angular Community Discord server at https://discord.

gg/angular.

• Angular�love: A community platform for Angular enthusiasts, supported by House of Angu-

lar, to facilitate the growth of Angular developers through knowledge-sharing initiatives.

It started as a blog where experts published articles about Angular news, features, and

best practices. Now, Angular.love also organizes in-person and online meetups, frequently

featuring GDEs. You can join Angular.love at https://angular.love.

Now that we have seen what Angular is and why someone should choose it for web development,

we will learn how to use it and build great web applications.

Setting up the Angular CLI workspace
Setting up a project with Angular can be tricky. You need to know what libraries to import and

ensure that files are processed in the correct order, which leads us to the topic of scaffolding.

Scaffolding is a tool to automate tasks, such as generating a project from scratch, and it becomes

necessary as complexity grows and where every hour counts toward producing business value,

rather than being spent fighting configuration problems.

The primary motivation behind creating the Angular CLI was to help developers focus on appli-

cation building, eliminating the configuration boilerplate. Essentially, with a simple command,

you should be able to initialize an application, add new artifacts, run tests, update applications,

and create a production-grade bundle. The Angular CLI supports all of this using special com-

mands called schematics.

Prerequisites
Before we begin, we must ensure that our development environment includes software tools

essential to the Angular development workflow.

Node.js
Node.js is a JavaScript runtime built on top of Chrome’s v8 JavaScript engine. Angular requires

an active or maintenance Long-Time Support (LTS) version. If you have already installed it, you

can run node -v on the command line to check which version you are running.

https://discord.gg/angular
https://discord.gg/angular
https://angular.love

Chapter 1 7

npm
npm is a software package manager that is included by default in Node.js. You can check this

out by running npm -v in the command line. An Angular application consists of various libraries,

called packages, that exist in a central place called the npm registry. The npm client downloads and

installs the libraries needed to run your application from the npm registry to your local computer.

Git
Git is a client that allows us to connect to distributed version-control systems, such as GitHub,

Bitbucket, and GitLab. It is optional from the perspective of the Angular CLI. You should install

it if you want to upload your Angular project to a Git repository, which you might want to do.

Installing the Angular CLI
The Angular CLI is part of the Angular ecosystem and can be downloaded from the npm package

registry. Since it is used to create Angular projects, we must install it globally in our system. Open

a terminal window and run the following command:

npm install -g @angular/cli

The command that we used to install the Angular CLI uses the npm client, followed by a set of

runtime arguments:

• install or i: Denotes the installation of a package

• -g or --global: Indicates that the package will be installed on the system globally

• @angular/cli: The name of the package to install

If you need to work with applications that use different Node.js versions or can’t

install the runtime due to restricted permissions, use nvm, a version manager for

Node.js designed to be installed per user. You can learn more at https://github.

com/nvm-sh/nvm.

You may need elevated permissions on some Windows systems, so you should run

your terminal as an administrator. Run the preceding command in Linux/macOS sys-

tems by adding the sudo keyword as a prefix to execute with administrative privileges.

https://github.com/nvm-sh/nvm
https://github.com/nvm-sh/nvm

Building Your First Angular Application8

The Angular CLI follows the same version as the Angular framework, which in this book is 19. The

preceding command will install the latest stable version of the Angular CLI. You can check which

version you have installed by running ng version or ng v in the command line. If you have a

different version than 19 after installing it, you can run the following command:

npm install -g @angular/cli@19

The preceding command will fetch and install the latest version of Angular CLI 19.

CLI commands
The Angular CLI is a command-line interface tool that automates specific tasks during develop-

ment, such as serving, building, bundling, updating, and testing an Angular project. As the name

implies, it uses the command line to invoke the ng executable file and run commands using the

following syntax:

ng [command] [options]

Here, [command] is the name of the command to be executed, and [options] denotes additional

parameters that can be passed to each command. To view all available commands, you can run

the following:

ng help

Some commands can be invoked using an alias instead of the name. In this book, we cover the

most common ones (the alias of each command is shown inside parentheses):

• new (n): Creates a new Angular CLI workspace from scratch

• build (b): Compiles an Angular application and outputs generated files in a predefined

folder

• generate (g): Creates new files that comprise an Angular application

• serve (dev): Builds an Angular application and serves it using a pre-configured web server

• test (t): Runs the unit tests of an Angular application

• add: Installs an Angular library in an Angular application

• update: Updates an Angular application to the latest Angular version

You can find more Angular CLI commands at https://angular.dev/cli.

https://angular.dev/cli

Chapter 1 9

Updating an Angular application is one of the most critical tasks from the preceding list. It helps

us stay up to date by upgrading our Angular applications to the latest version.

Additionally, you can use the Angular upgrade guide, which contains tips and step-by-step in-

structions on updating your applications, at https://angular.dev/update-guide.

Creating a new project
Now that we have prepared our development environment, we can start creating our first Angu-

lar application. We will use the ng new command of the Angular CLI and pass the name of the

application that we want to create as an option:

1. Open a terminal window, navigate to a folder of your choice, and run the command ng

new my-app. Creating a new Angular application is a straightforward process. The Angular

CLI will ask for details about the application we want to create so that it can scaffold the

Angular project as best as possible.

2. Initially, it will ask if we want to enable Angular analytics:

Would you like to share pseudonymous usage data about this project
with the Angular Team at Google under Google's Privacy Policy at
https://policies.google.com/privacy. For more details and how to
change this setting, see https://angular.dev/cli/analytics. (y/N)

The Angular CLI will ask this question once when we create the first Angular project and

apply it globally in our system. However, we can change the setting later in a specific

Angular workspace.

3. The next question is related to the styling of our application:

Which stylesheet format would you like to use?

It is common to use CSS to style Angular applications. However, we can use preprocessors

like SCSS or Less to add value to our development workflow. In this book, we work with

CSS directly, so accept the default choice, CSS, and press Enter.

Try to keep your Angular projects up to date because each new version of Angular

comes packed with many exciting new features, performance improvements, and

bug fixes.

https://angular.dev/update-guide

Building Your First Angular Application10

4. Finally, the Angular CLI will prompt us if we want to enable SSR and Static Site Genera-

tion (SSG) in our application:

Do you want to enable Server-Side Rendering (SSR) and Static Site
Generation (SSG/Prerendering)? (y/N)

SSR and SSG are concerned with improving the startup and load performance of an An-

gular application. We will learn more about them in Chapter 15, Optimizing Application

Performance. For now, accept the default choice, No, by pressing Enter.

The process may take some time, depending on your internet connection. During this time, the

Angular CLI downloads and installs all necessary packages and creates default files for your Angu-

lar application. When finished, it will have created a folder called my-app. The folder represents an

Angular CLI workspace that contains a single Angular application called my-app at the root level.

The workspace contains various folders and configuration files that the Angular CLI needs to

build and test the Angular application:

• .vscode: Includes VSCode configuration files

• node_modules: Includes installed npm packages that are needed to develop and run the

Angular application

• public: Contains static assets such as fonts, images, and icons

• src: Contains the source files of the application

• .editorconfig: Defines coding styles for the default editor

• .gitignore: Specifies the files and folders that Git should not track

• angular.json: The main configuration file of the Angular CLI workspace

• package.json and package-lock.json: Provide definitions of npm packages, along with

their exact versions, which are needed to develop, test, and run the Angular application

• README.md: A README file that is automatically generated from the Angular CLI

• tsconfig.app.json: A TypeScript configuration that is specific to the Angular application

• tsconfig.json: A TypeScript configuration that is specific to the Angular CLI workspace

• tsconfig.spec.json: A TypeScript configuration that is specific to unit tests of the An-

gular application

Chapter 1 11

As developers, we should only care about writing the source code that implements features for

our application. Nevertheless, having basic knowledge of how the application is orchestrated

and configured helps us better understand the mechanics and ways to intervene if necessary.

Navigate to the newly created folder and start your application with the following command:

ng serve

The Angular CLI compiles the Angular project and starts a web server that watches for changes

in project files. This way, whenever you change your application code, the web server rebuilds

the project to reflect the new changes.

After compilation has been completed successfully, you can preview the application by opening

your browser and navigating to http://localhost:4200:

Figure 1.1: Angular application landing page

Congratulations! You have created your first Angular CLI workspace. The Angular CLI created a

sample web page that we can use as a reference to build our project. In the next section, we will

explore the main parts of our application and learn how to modify this page.

Remember that any Angular CLI command must be run inside an Angular CLI work-

space folder.

Building Your First Angular Application12

The structure of an Angular application
We will take the first intrepid steps in examining our Angular application. The Angular CLI has

already scaffolded our project and done much of the heavy lifting for us. All we need to do is fire

up our favorite IDE and start working with the Angular project. We will use VSCode in this book,

but feel free to choose any editor you are comfortable with:

1. Open VSCode and select File | Open Folder… from the main menu.

2. Navigate to the my-app folder and select it. VSCode will load the associated Angular CLI

workspace.

3. Expand the src folder.

When we develop an Angular application, we’ll likely interact with the src folder. It is where we

write the code and tests of our application. It contains the following:

• app: All the Angular-related files of the application. You interact with this folder most of

the time during development.

• index.html: The main HTML page of the Angular application.

• main.ts: The main entry point of the Angular application.

• styles.css: CSS styles that apply globally to the Angular application. The extension

of this file depends on the stylesheet format you choose when creating the application.

The app folder contains the actual source code we write for our application. Developers spend

most of their time inside that folder. The Angular application that was created automatically

from the Angular CLI contains the following files:

• app.component.css: Contains CSS styles specific to the sample page. The extension of this

file depends on the stylesheet format you choose when creating the application.

• app.component.html: Contains the HTML content of the sample page.

• app.component.spec.ts: Contains unit tests for the sample page.

• app.component.ts: Defines the presentational logic of the sample page.

• app.config.ts: Defines the configuration of the Angular application.

• app.routes.ts: Defines the routing configuration of the Angular application.

Chapter 1 13

In the following sections, we will learn how Angular orchestrates some of those files to display

the sample page of the application.

Components
The files whose names start with app.component constitute an Angular component. A component

in Angular controls part of a web page by orchestrating the interaction of the presentational logic

with the HTML content of the page, called a template.

Each Angular application has a main HTML file, named index.html, that exists inside the src

folder and contains the following <body> HTML element:

<body>

 <app-root></app-root>

</body>

The <app-root> tag is used to identify the main component of the application and acts as a

container to display its HTML content. It instructs Angular to render the template of the main

component inside that tag. We will learn how it works in Chapter 3, Structuring User Interfaces

with Components.

When the Angular CLI builds an Angular application, it parses the index.html file and identifies

HTML tags inside the <body> element. An Angular application is always rendered inside the

<body> element and comprises a tree of components. When the Angular CLI finds a tag that is

not a known HTML element, such as <app-root>, it starts searching through the components of

the application tree. But how does it know where to start?

Bootstrapping
The startup method of an Angular application is called bootstrapping, and it is defined in the

main.ts file inside the src folder:

import { bootstrapApplication } from '@angular/platform-browser';

import { appConfig } from './app/app.config';

import { AppComponent } from './app/app.component';

The filename extension .ts refers to TypeScript files.

Building Your First Angular Application14

bootstrapApplication(AppComponent, appConfig)

 .catch((err) => console.error(err));

The main task of the bootstrapping file is to define the component that will be loaded at applica-

tion startup. It calls the bootstrapApplication method, passing AppComponent as a parameter

to specify the starting component of the application. It also passes the appConfig object as a

second parameter to specify the configuration that will be used in the application startup. The

application configuration is described in the app.config.ts file:

import { ApplicationConfig, provideZoneChangeDetection } from '@angular/
core';

import { provideRouter } from '@angular/router';

import { routes } from './app.routes';

export const appConfig: ApplicationConfig = {

 providers: [provideZoneChangeDetection({ eventCoalescing: true }),
provideRouter(routes)]

};

The appConfig object contains a providers property to define services provided throughout the

Angular application. We will learn more about services in Chapter 5, Managing Complex Tasks

with Services.

A new Angular CLI application provides routing services by default. Routing is related to in-

app navigation between different components using the browser URL. It is activated using the

provideRouter method, passing a routes object, called route configuration, as a parameter. The

route configuration of the application is defined in the app.routes.ts file:

import { Routes } from '@angular/router';

export const routes: Routes = [];

Our application does not have a route configuration yet, as indicated by the empty routes array.

We will learn how to set up routing and configure it in Chapter 9, Navigating through Applications

with Routing.

Template syntax
Now that we have taken a brief overview of our sample application, it’s time to start interacting

with the source code:

Chapter 1 15

1. Run the following command in a terminal window to start the application if it is not

running already:

ng serve

2. Open the application with your browser at http://localhost:4200, and notice the text

below the Angular logo that reads Hello, my-app. The word my-app, which corresponds

to the application name, comes from a variable declared in the TypeScript file of the main

component. Open the app.component.ts file and locate the title variable:

import { Component } from '@angular/core';

import { RouterOutlet } from '@angular/router';

@Component({

 selector: 'app-root',

 imports: [RouterOutlet],

 templateUrl: './app.component.html',

 styleUrl: './app.component.css'

})

export class AppComponent {

 title = 'my-app';

}

The title variable is a component property that is used in the component template.

3. Open the app.component.html file and go to line 228:

<h1>Hello, {{ title }}</h1>

The title property is surrounded by double curly braces syntax called interpolation,

which is part of the Angular template syntax. In a nutshell, interpolation converts the

value of the title property to text and prints it on the page.

Angular uses specific template syntax to extend and enrich the standard HTML syntax

in the application template. We will learn more about the Angular template syntax in

Chapter 3, Structuring User Interfaces with Components.

If you are working with VSCode, it is preferable to use its integrated termi-

nal, which is accessible from the Terminal | New Terminal option in the

main menu.

Building Your First Angular Application16

4. Change the value of the title property in the AppComponent class to World, save the

changes, wait for the application to reload, and examine the output in the browser:

Figure 1.2: Landing page title

Congratulations! You have successfully interacted with the source code of your application.

By now, you should have a basic understanding of how Angular works and what the basic parts of

an Angular application are. As a reader, you have had to absorb a lot of information so far. Howev-

er, you will get a chance to get more acquainted with the components in the upcoming chapters.

For now, the focus is to get you up and running, by giving you a powerful tool like the Angular

CLI and showing you how only a few steps are needed to display an application on the screen.

Angular tooling
One of the reasons that the Angular framework is popular among developers is the rich ecosystem

of available tools. The Angular community has built amazing tools to complete and automate

various tasks, such as debugging, inspecting, and authoring Angular applications:

• Angular DevTools

• VSCode Debugger

• VSCode Profiles

We will learn how to use each in the following sections, starting with Angular DevTools.

Angular DevTools
Angular DevTools is a browser extension created and maintained by the Angular team. It allows

us to inspect and profile Angular applications directly in the browser. It is currently supported by

Google Chrome and Mozilla Firefox and can be downloaded from the following browser stores:

• Google Chrome: https://chrome.google.com/webstore/detail/angular-developer-
tools/ienfalfjdbdpebioblfackkekamfmbnh

• Mozilla Firefox: https://addons.mozilla.org/firefox/addon/angular-devtools

https://chrome.google.com/webstore/detail/angular-developer-tools/ienfalfjdbdpebioblfackkekamfmbnh
https://chrome.google.com/webstore/detail/angular-developer-tools/ienfalfjdbdpebioblfackkekamfmbnh
https://addons.mozilla.org/firefox/addon/angular-devtools

Chapter 1 17

To open the extension, open the browser developer tools and select the Angular tab. It contains

three additional tabs:

• Components: Displays the component tree of the Angular application

• Profiler: Allows us to profile and inspect the Angular application

• Injector Tree: Displays the services provided by the Angular application

In this chapter, we will explore how to use the Components tab. We will learn how to use the

Profiler tab in Chapter 3, Structuring User Interfaces with Components, and the Injector Tree tab in

Chapter 5, Managing Complex Tasks with Services.

The Components tab allows us to preview the components and directives of an Angular applica-

tion and interact with them. If we select a component from the tree representation, we can view

its properties and metadata:

Figure 1.3: Component preview

Building Your First Angular Application18

From the Components tab, we can also look up the respective HTML element in the DOM or

navigate to the actual source code of the component or directive. Clicking the < > button will

take us to the TypeScript file of the current component:

Figure 1.4: TypeScript source file

Double-clicking a selector from the tree representation of the Components tab will navigate us

to the DOM of the main page and highlight the individual HTML element:

Figure 1.5: Main page DOM

Chapter 1 19

Finally, one of the most useful features of the component tree is that we can alter the value of a

component property and inspect how the component template behaves:

Figure 1.6: Change component state

Building Your First Angular Application20

In the preceding image, you can see that when we changed the value of the title property to

Angular World, the change was also reflected in the component template.

VSCode Debugger
We can debug an Angular application using standard debugging techniques for web applications

or the tooling that VSCode provides out of the box.

The console object is the most commonly used web API for debugging. It is a very fast way to

print data and inspect values in the browser console. To inspect the value of an object in an An-

gular component, we can use the debug or log method, passing the object we want to inspect as

a parameter. However, it is considered an old-fashioned approach, and a codebase with many

console.log methods is difficult to read. An alternate way is to use breakpoints inside the source

code using the VSCode debug menu.

VSCode contains a built-in debugging tool that uses breakpoints to debug Angular applications.

We can add breakpoints inside the source code from VSCode and inspect the state of an Angular ap-

plication. When an Angular application runs and hits a breakpoint, it will pause and wait. During

that time, we can investigate and inspect several values involved in the current execution context.

Let’s see how to add breakpoints to our sample application:

1. Open the app.component.ts file and click on the left of line 11 to add a breakpoint. A red

dot denotes breakpoints:

VSCode is an open-source code editor backed by Microsoft. It is very popular in

the Angular community, primarily because of its robust support for TypeScript.

TypeScript has been, to a great extent, a project driven by Microsoft, so it makes

sense that one of its popular editors was conceived with built-in support for this

language. It contains a rich collection of useful features, including syntax, error

highlighting, automatic builds, and debugging.

Chapter 1 21

Figure 1.7: Adding a breakpoint

2. Click on the Run and Debug button in the left sidebar of VSCode.

3. Click on the play button to start the application using the ng serve command:

Figure 1.8: Run and debug menu

VSCode will build our application, open the default web browser, and hit the breakpoint

inside the editor:

Figure 1.9: Hitting a breakpoint

We can now inspect various aspects of our component and use the buttons in the debugger

toolbar to control the debugging session.

Another powerful feature of VSCode is VSCode Profiles, which help developers customize VSCode

according to their development needs.

Building Your First Angular Application22

VSCode Profiles
VSCode Profiles allows us to customize the following aspects of the VSCode editor:

• Settings: The configuration settings of VSCode

• Keyboard shortcuts: Shortcuts to execute VSCode commands with the keyboard

• Snippets: Reusable template code snippets

• Tasks: Tasks that automate the execution of scripts and tools directly from VSCode

• Extensions: Tools that enable us to add new capabilities in VSCode, such as languages,

debuggers, and linters

Profiles can also be shared, which helps us maintain a consistent development setup and work-

flow across our team. VSCode contains a set of built-in profiles, including one for Angular, that

we can further customize according to our development needs. To install the Angular profile:

1. Click the Manage button represented by the gear icon at the bottom of the left sidebar in

VSCode and select the Profiles option.

2. Click on the arrow of the New Profile button and select the From Template | Angular

option.

3. Click the gear button if you want to select a custom icon for your profile.

4. Click the Create button to create your profile.

VSCode will automatically apply the new profile after it has been created successfully.

In the following sections, we will explore some of the extensions in the VSCode Angular profile.

Angular Language Service
The Angular Language Service extension is developed and maintained by the Angular team and

provides code completion, navigation, and error detection inside Angular templates. It enriches

VSCode with the following features:

• Code completion

• A go-to definition

• Quick info

• Diagnostic messages

Chapter 1 23

To get a glimpse of its powerful capabilities, let’s look at the code completion feature. Suppose

we want to display a new property called description in the template of the main component.

We can set this up by going through the following steps:

1. Define the new property in the app.component.ts file:

export class AppComponent {

 title = 'my-app';

 description = 'Hello World';

}

2. Open the app.component.html file and add the property name in the template using

Angular interpolation syntax. The Angular Language Service will find it and suggest it

for us automatically:

Figure 1.10: Angular Language Service

The description property is a public property. We can omit the keyword public when using public

properties and methods. Code completion does not work for private properties and methods. If

the property had been declared private, then the Angular Language Service and the template

would not have been able to recognize it.

You may have noticed that a red line appeared instantly underneath the HTML element as you

typed. The Angular Language Service did not recognize the property until you typed it correctly

and gave you a proper indication of this lack of recognition. If you hover over the red indication,

it displays a complete information message about what went wrong:

Figure 1.11: Error handling in the template

The preceding information message comes from the diagnostic messages feature. The Angular

Language Service supports various messages according to the use case. You will encounter more

of these messages as you work more with Angular.

Building Your First Angular Application24

Material Icon Theme
VSCode has a built-in set of icons to display different types of files in a project. The Material Icon

Theme extension provides additional icons that conform to the Material Design guidelines by

Google; a subset of this collection targets Angular-based artifacts:

Figure 1.12: Material Icon Theme

Using this extension, you can easily spot the type of Angular files in a project, such as components,

and increase developer productivity, especially in large projects with many files.

EditorConfig
VSCode editor settings, such as indentation or spacing, can be set at a user or project level. Edi-

torConfig can override these settings using the .editorconfig configuration file, which can be

found in the root folder of an Angular CLI project:

Editor configuration, see https://editorconfig.org

root = true

[*]

charset = utf-8

Chapter 1 25

indent_style = space

indent_size = 2

insert_final_newline = true

trim_trailing_whitespace = true

[*.ts]

quote_type = single

ij_typescript_use_double_quotes = false

[*.md]

max_line_length = off

trim_trailing_whitespace = false

You can define unique settings in this file to ensure the consistency of the coding style across

your team.

Summary
That’s it! Your journey into the world of Angular has just begun. Let’s recap the features that you

have learned so far. We learned what Angular is, looked over the brief history of the framework,

and examined the benefits of using it for web development.

We saw how to set up our development workspace and find the tools to bring TypeScript into the

game. We introduced the Angular CLI tool, the Swiss army knife for Angular, which automates

specific development tasks. We used some of the most common commands to scaffold our first

Angular application. We also examined the structure of our application and learned how to in-

teract with it.

Our first application gave us a basic understanding of how Angular works internally to render our

application on a web page. We embarked on our journey, starting with the main HTML file of an

Angular application. We saw how Angular parses that file and starts searching the component

tree to load the main component. We learned the process of Angular bootstrapping and how it

is used to load the application configuration.

Finally, we met some of the most important Angular tools that could empower you as a software

developer. We explored how to use Angular DevTools to inspect Angular applications and VSCode

Debugger for debugging. We also examined VSCode Profiles and how it can help us maintain a

consistent development environment across our team.

Building Your First Angular Application26

In the next chapter, you will learn some of the basics of the TypeScript language. The chapter will

cover what problems can be solved by introducing types and the language itself. TypeScript, as

a superset of JavaScript, contains a lot of powerful concepts and marries well with the Angular

framework, as you are about to discover.

Join us on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/LearningAngular5e

https://packt.link/LearningAngular5e

2
Introduction to TypeScript

As we learned in the previous chapter, when we built our very first Angular application, the code

of an Angular project is written in TypeScript. Writing in TypeScript and leveraging its static

typing gives us a remarkable advantage over other scripting languages. This chapter is not a

thorough overview of the TypeScript language. Instead, we’ll focus on the core elements that will

be useful for this book. As we will see very soon, having sound knowledge of these mechanisms

is paramount to understanding how dependency injection works in Angular.

In this chapter, we’re going to cover the following main topics:

• JavaScript essentials

• What is TypeScript?

• Getting started with TypeScript

We will first refresh our knowledge of JavaScript by revisiting some essential features related to

TypeScript, such as functions and classes. We will then investigate the background of TypeScript

and the rationale behind its creation. We will also learn how to code and execute TypeScript code.

We will emphasize the typing system, which is the main advantage of TypeScript, and learn how

to use it to create basic types and interfaces.

Technical requirements
• GitHub: https://github.com/PacktPublishing/Learning-Angular-Fifth-Edition/

tree/main/ch02

• Node�js: https://nodejs.org

• Git: https://git-scm.com

• VSCode: https://code.visualstudio.com

https://github.com/PacktPublishing/Learning-Angular-Fifth-Edition/tree/main/ch02
https://github.com/PacktPublishing/Learning-Angular-Fifth-Edition/tree/main/ch02
https://nodejs.org
https://git-scm.com
https://code.visualstudio.com

Introduction to TypeScript28

JavaScript essentials
JavaScript is a programming language that contains many features for building web applications.

In this section, we will revisit and refresh our knowledge of some of the most basic ones as they are

directly correlated with TypeScript and Angular development. TypeScript is a syntactic superset

of JavaScript, meaning that it adds features such as types, interfaces, and generics. We will look

at the following JavaScript features in more detail:

• Variable declaration

• Function parameters

• Arrow functions

• Optional chaining

• Nullish coalescing

• Classes

• Modules

If you are comfortable with these features, you can skip directly to the What is TypeScript? section.

Variable declaration
Traditionally, JavaScript developers have used the keyword var to declare objects, variables, and

other artifacts. The reason was that the old semantics of the language only had a function scope

where variables were unique within its context:

function myFunc() {

 var x = 0;

}

In the preceding function, no other variable can be declared as x inside its body. If you do declare

one, then you effectively redefine it. However, there are cases in which scoping is not applied,

such as in loops:

var x = 20;

You can run all the code samples in this section in the following ways:

• Enter the code in a browser console window

• Type the code in a JavaScript file and use Node.js to execute it

Chapter 2 29

for (var x = 0; x < 10; x++) {

}

In the preceding snippet, the x variable outside the loop will not affect the x variable inside be-

cause they have a different scope. To overcome the scope limitation, JavaScript introduced the

let keyword:

function myFunc() {

 let x = 0;

 x = 10;

}

The let keyword allows us to change the reference of a variable multiple times in the code.

Another way to define variables in JavaScript is the const keyword, which indicates that a variable

should never change. As a code base grows, changes may happen by mistake, which can be costly.

The const keyword can prevent these types of mistakes. Consider the following code snippet:

const price = 100;

price = 50;

If we try to execute it, it will throw the following error message:

TypeError: Assignment to constant variable.

The preceding error will come up only at the top level. You need to be aware of this if you declare

objects as constants, like so:

const product = { price: 100 };

product.price = 50;

Declaring the product variable as a constant does not prevent the entire object but rather its

reference from being edited. So, the preceding code is valid. If we try to change the reference of

the variable, we will get the same type of error as before:

const product = { price: 100 };

product = { price: 50 };

It is preferable to use the const keyword when we are sure that the properties of an object will

not change during its lifetime because it prevents the object from accidentally changing.

Introduction to TypeScript30

When we want to combine variables, we can use the spread parameter syntax. A spread parameter

uses the ellipsis (…) to expand the values of a variable:

const category = 'Computing';

const categories = ['Gaming', 'Multimedia'];

const productCategories = [...categories, category];

In the preceding snippet, we combine the categories array and the category item to create a

new array. The categories array still contains two items, whereas the new array contains three.

The current behavior is called immutability, which means not changing a variable but creating

a new one that comes from the original.

We can also use a spread parameter on objects:

const product = {

 name: 'Keyboard',

 price: 75

};

const newProduct = {

 ...product,

 price: 100,

 category: 'Computing'

};

In the preceding snippet, we didn’t change the original product object but created a merge be-

tween the two. The value of the newProduct object will be:

{

 name: 'Keyboard',

 price: 100,

 category: 'Computing'

}

The newProduct object takes the properties from the product object, adds new values on top of

it, and replaces the existing ones.

An object is not immutable if its properties can be changed or its properties are an

object whose properties can be changed.

Chapter 2 31

Function parameters
Functions in JavaScript are the processing machines we use to analyze input, digest informa-

tion, and apply the necessary transformations to data. They use parameters to provide data for

transforming the state of our application or returning an output that will be used to shape our

application’s business logic or user interactivity.

We can declare a function to accept default parameters so that the function assumes a default

value when it’s not explicitly passed upon execution:

function addtoCart(productId, quantity = 1) {

 const product = {

 id: productId,

 qty: quantity

 };

}

If we do not pass a value for the quantity parameter while calling the function, we will get a

product object with qty set to 1.

One significant advantage of JavaScript flexibility when defining functions is accepting an un-

limited, non-declared array of parameters called rest parameters. Essentially, we can define an

additional parameter at the end of the arguments list prefixed by an ellipsis (…):

function addProduct(name, ...categories) {

 const product = {

 name,

 categories: categories.join(',')

 };

}

In the preceding function, we use the join method to create a comma-separated string from the

categories parameter. We pass each parameter separately when calling the function:

addProduct('Keyboard', 'Computing', 'Peripherals');

Default parameters must be defined after all required parameters in the function

signature.

Introduction to TypeScript32

Rest parameters are beneficial when we don’t know how many arguments will be passed as pa-

rameters. The name property is also set using another useful feature of the JavaScript language.

Instead of setting the property in the product object explicitly, we used the property name di-

rectly. The following snippet is equivalent to the initial declaration of the addProduct function:

function addProduct(name, ...categories) {

 const product = {

 name: name,

 categories: categories.join(',')

 };

}

The shorthand syntax for assigning property values can be used only when the parameter name

matches the property name of an object.

Arrow functions
In JavaScript, we can create functions in an alternate way called arrow functions. The purpose

of an arrow function is to simplify the general function syntax and provide a bulletproof way

to handle the function scope, which is traditionally handled by the this object. Consider the

following example, which calculates a product discount given its price:

const discount = (price) => {

 return (price / 100) * 10 ;

};

The preceding code does not have a function keyword, and the function body is defined by an

arrow (=>). Arrow functions can be simplified further using the following best practices:

• Omit the parentheses in the function parameters when the signature contains one pa-

rameter only.

• Omit the curly braces in the function body and the return keyword if the function has

only one statement.

The resulting function will look much simpler and easier to read:

const discount = price => (price / 100) * 10;

Chapter 2 33

Let’s explain now how arrow functions are related to scope handling. The value of the this ob-

ject can point to a different context, depending on where we execute a function. When we use it

inside a callback, we lose track of the upper context, which usually leads us to use conventions

such as assigning its value to an external variable. Consider the following function, which logs a

product name using the native setTimeout function:

function createProduct(name) {

 this.name = name;

 this.getName = function() {

 setTimeout(function() {

 console.log('Product name is:', this.name);

 });

 }

}

Execute the getName function using the following snippet and observe the console output:

const product = new createProduct('Monitor');

product.getName();

The preceding snippet will not print the Monitor product name as expected because our code

modifies the scope of the this object when evaluating the function inside the setTimeout callback.

To fix it, convert the setTimeout function to use an arrow function instead:

setTimeout(() => {

 console.log('Product name is:', this.name);

});

Our code is now simpler and we can use the function scope safely.

Optional chaining
Optional chaining is a powerful feature that can help us with refactoring and simplifying our

code. In a nutshell, it can guide our code to ignore the execution of a statement unless a value has

been provided somewhere in that statement. Let’s look at optional chaining with an example:

const getOrder = () => {

 return {

 product: {

 name: 'Keyboard'

 }

Introduction to TypeScript34

 };

};

In the preceding snippet, we define a getOrder function that returns the product of a particular

order. Next, let’s fetch the value of the product property, making sure that an order exists before

reading it:

const order = getOrder();

if (order !== undefined) {

 const product = order.product;

}

The previous snippet is a precautionary step in case our object has been modified. If we do not

check the object and it has become undefined, JavaScript will throw an error. However, we can

use optional chaining to improve the previous statement:

const order = getOrder();

const product = order?.product;

The character ? after the order object ensures that the product property will be accessed only

if the object has a value. Optional chaining also works in more complicated scenarios, such as:

const name = order?.product?.name;

In the preceding snippet, we also check if the product object has a value before accessing its

name property.

Nullish coalescing
Nullish coalescing is related to providing a default value when a variable is not set. Consider the

following example, which assigns a value to the quantity variable only if the qty variable exists:

const quantity = qty ? qty : 1;

The previous statement is called a ternary operator and operates like a conditional statement.

If the qty variable does not have a value, the quantity variable will be initialized to the default

value of 1. We can rewrite the previous expression using nullish coalescing as:

const quantity = qty ?? 1;

Nullish coalescing helps us make our code readable and smaller.

Chapter 2 35

Classes
JavaScript classes allow us to structure our application code and create instances of each class. A

class can have property members, a constructor, methods, and property accessors. The following

code snippet illustrates what a class looks like:

class User {

 firstName = '';

 lastName = '';

 #isActive = false;

 constructor(firstName, lastName, isActive = true) {

 this.firstName = firstName;

 this.lastName = lastName;

 this.#isActive = isActive;

 }

 getFullname() {

 return `${this.firstName} ${this.lastName}`;

 }

 get active() {

 return this.#isActive;

 }

}

The class statement wraps several elements that we can break down:

• Member: The User class contains the firstName, lastName, and #isActive members. Class

members will only be accessible from within the class itself. Instances of the User class

will have access only to the public properties firstName and lastName. The #isActive

property will not be available because it is private, as denoted by the # character in front

of the property name.

• Constructor: The constructor is executed when we create an instance of the class. It

is usually used to initialize the class members inside it with the parameters provided in

the signature. We can also provide default values for parameters such as the isActive

parameter.

Introduction to TypeScript36

• Method: A method represents a function and may return a value, such as the getFullname

method, which constructs the full name of a user. It can also be defined as private, similar

to class members.

• Property accessor: A property accessor is defined by prefixing a method with the set

keyword to make it writable and the get keyword to make it readable, followed by the

property name we want to expose. The active method is a property accessor that returns

the value of the #isActive member.

A class can also extend members and functionality of other classes. We can make a class inherit

from another by appending the extends keyword to the class definition followed by the class

we want to inherit:

class Customer extends User {

 taxNumber = '';

 constructor(firstName, lastName) {

 super(firstName, lastName);

 }

}

In the preceding snippet, the Customer class extends the User class, which exposes firstName

and lastName properties. Any instance of the Customer class can use those properties by default.

We can also override methods from the User class by appending a method with the same name.

The constructor is required to call the super method, which points to the constructor of the

User class.

Modules
As our applications scale and grow, there will be a time when we need to organize our code better

and make it sustainable and reusable. Modules are a great way to accomplish these tasks, so let’s

look at how they work and how we can implement them in our application.

In the preceding section, we learned how to work with classes. Having both classes in the same

file is not scalable, and maintaining it won’t be easy. Imagine how much code you must process

to make a simple change in one of the classes. Modules allow us to separate our application code

into single files, enforcing the Single Responsibility Pattern (SRP). Each file is a different module

concerned with a specific feature or functionality.

Chapter 2 37

Let’s refactor the code described in the previous section so that the User and Customer classes

belong to separate modules:

1. Open VSCode and create a new JavaScript file named user.js.

2. Enter the contents of the User class and add the export keyword in the class definition.

The export keyword makes the module available to other modules and forms the public

API of the module.

3. Create a new JavaScript file named customer.js and add the contents of the Customer

class. The Customer class cannot recognize the User class because they are in different files.

4. Import the User class into the customer.js file by adding the following statement at the

top of the file:

import { User } from './user';

We use the import keyword and the relative path of the module file without the extension

to import the User class. If a module exports more than one artifact, we place them inside

curly braces separated by a comma, such as:

import { User, UserPreferences } from './user';

Exploring modules concludes our journey of the JavaScript essentials. In the following section,

we will learn about TypeScript and how it helps us build web applications.

What is TypeScript?
Transforming small web applications into thick monolithic clients was impossible due to the

limitations of earlier JavaScript versions. In a nutshell, large-scale JavaScript applications suffered

from serious maintainability and scalability problems as soon as they grew in size and complexity.

This issue became more relevant as new libraries and modules required seamless integration into

our applications. The lack of proper mechanisms for interoperability led to cumbersome solutions.

A good indication to split a module into multiple files is when the module starts to

occupy different domains. For example, a products module cannot contain logic

for customers.

Introduction to TypeScript38

To overcome those difficulties, Microsoft built a superset of the JavaScript language that would

help build enterprise applications with a lower error footprint using static type checking, better

tooling, and code analysis. TypeScript 1.0 was introduced in 2014. It ran ahead of JavaScript,

implemented the same features, and provided a stable environment for building large-scale ap-

plications. It introduced optional static typing through type annotations, thereby ensuring type

checking at compile time and catching errors early in the development process. Its support for

declaration files also enabled developers to describe the interface of their modules so that other

developers could better integrate them into their code workflow and tooling.

As a superset of JavaScript, one of the main advantages of embracing TypeScript in your next

project is the low entry barrier. If you know JavaScript, you are pretty much all set since all the

additional features in TypeScript are optional. You can pick and introduce any of them to achieve

your goal. Overall, there is a long list of solid arguments for using TypeScript in your next project,

and all apply to Angular.

Here is a short rundown of some of the advantages:

• Annotating your code with types ensures the consistent integration of your different code

units and improves code readability and comprehension.

• The built-in type-checker analyzes your code at compile time and helps you prevent errors

before executing your code.

• The use of types ensures consistency across your application. Combined with the previous

two, the overall code error footprint is minimized in the long run.

• Interfaces ensure the smooth and seamless integration of your libraries in other systems

and code bases.

• Language support across different IDEs is amazing, and you can benefit from features

such as highlighting code, real-time type checking, and automatic compilation at no cost.

• The syntax is familiar to developers from other OOP-based backgrounds, such as Java,

C#, and C++.

The official TypeScript website can be reached at https://www.typescriptlang.

org. It contains extensive language documentation and a playground that gives us

access to a quick tutorial to get up to speed with the language in no time. It includes

some ready-made code examples that cover some of the most common traits of the

language.

https://www.typescriptlang.org
https://www.typescriptlang.org

Chapter 2 39

In the following section, we will learn how to develop and execute a TypeScript application. In

Angular applications, we do not need to execute TypeScript code manually because it is auto-

matically handled by the Angular CLI; however, it is good to know how it works under the hood.

Getting started with TypeScript
The TypeScript language is an npm package that can be installed from the npm registry using

the following command:

npm install -g typescript

In the preceding command, we chose to install TypeScript globally in our system so that we

can use it from any path in our development environment. Let’s see how we can use TypeScript

through a simple example:

1. Open VSCode and select File | New File… from the main menu options.

2. Enter app.ts in the New File… dialog and press Enter.

Figure 2.1: New File… dialog

As we have already learned, TypeScript files have a .ts extension.

3. Select the path where you want to create the new file. VSCode will then open that file

inside the editor.

4. Type the following snippet into the app.ts file:

const title = 'Hello TypeScript!';

Although we have created a TypeScript file, the preceding snippet is valid JavaScript code.

Recall that TypeScript is a superset of JavaScript that provides syntactic sugar through

its typing system. However, writing plain JavaScript code with TypeScript does not give

us any clear benefit.

Introduction to TypeScript40

5. Open a terminal window and run the following command to compile the TypeScript file

into JavaScript:

tsc app.ts

The preceding command initiates a process called transpilation performed by the tsc

executable, a compiler that is at the core of the TypeScript language. We need to compile

TypeScript code into JavaScript because browsers do not currently support TypeScript

out of the box.

The TypeScript compiler supports extra configuration options that we can pass to the

tsc executable through the terminal window or a configuration file. The complete list

of available compiler options can be found at https://www.typescriptlang.org/docs/

handbook/compiler-options.html.

6. The transpilation process will create an app.js file in the same folder as the TypeScript

file. The new file will contain the following code:

var title = 'Hello TypeScript!';

Since we have not used any specific TypeScript feature yet, the preceding snippet looks

almost identical to the original except for the variable declaration.

7. The transpilation process replaced the const keyword with the var keyword because the

TypeScript compiler uses an old JavaScript version by default. We can change that by

specifying a target in the tsc command:

tsc app.ts --target es2022

In the preceding command, we specified es2022, which represents the most recent version

of the JavaScript language at the time of writing. Angular applications that we will build

throughout this book also target the same JavaScript version by default.

8. Since we will use the latest JavaScript version in the rest of this chapter, let’s define the

target option using a TypeScript configuration file. Create a file named tsconfig.json

in the current folder and add the following contents:

Angular uses a compiler that utilizes the TypeScript compiler under the hood

to build Angular applications.

https://www.typescriptlang.org/docs/handbook/compiler-options.html
https://www.typescriptlang.org/docs/handbook/compiler-options.html

Chapter 2 41

{

 "compilerOptions": {

 "target": "ES2022"

 }

}

You can find more options for the TypeScript configuration file at https://www.

typescriptlang.org/tsconfig.

Run the command tsc in a terminal window to verify that the output JavaScript file remains

unchanged.

The TypeScript code we have written so far does not use TypeScript-specific features. In the

following section, we will learn how to use the typing system, which is the most powerful and

essential feature of the TypeScript language.

Types
Working with TypeScript or any other coding language means working with data, and this data

can represent different sorts of content, called types. Types are used to represent the fact that

data can be text, an integer value, or an array of these value types, among others.

You may have already encountered types in JavaScript since we have always worked implicitly

with them. In JavaScript, any given variable could assume (or return, in the case of functions)

any value. Sometimes, this leads to errors and exceptions in our code because of type collisions

between what our code returned and what we expected to return type-wise. However, statically

typing our variables gives our IDE and us a good picture of what kind of data we should find in

each code instance. It becomes an invaluable way to help debug our applications at compile time

before the code is executed.

When we run the tsc command without options, it will compile all TypeScript files

in the current folder using the options from the configuration file.

Types disappear during transpilation and are not included in the final JavaScript code.

https://www.typescriptlang.org/tsconfig
https://www.typescriptlang.org/tsconfig

Introduction to TypeScript42

String
One of the most widely used primitive types is the string, which populates a variable with text:

const product: string = 'Keyboard';

The type is defined by adding a colon and the type name next to the variable.

Boolean
The boolean type defines a variable that can have a value of either true or false:

const isActive: boolean = true;

The result of a boolean variable represents the fulfillment of a conditional statement.

Number
The number type is probably the other most widely used primitive data type, along with string

and boolean:

const price: number = 100;

We can use the number type to define a floating-point number and hexadecimal, decimal, binary,

and octal literals.

Array
The array type defines a list of items that contain a certain type only. Handling exceptions that

arise from errors, such as assigning wrong member types in a list, can now be easily avoided with

this type. We can define arrays using the square bracket syntax or the Array keyword:

const categories: string[] = ['Computing', 'Multimedia'];

const categories: Array<string> = ['Computing', 'Multimedia'];

If we try to add a new item to the categories array with a type other than string, TypeScript will

throw an error, ensuring our typed members remain consistent and that our code is error-free.

Agreeing with your team on either syntax and sticking with it during application

development is advisable.

Chapter 2 43

any
In all preceding cases, typing is optional because TypeScript is smart enough to infer the data

types of variables from their values with a certain level of accuracy.

However, if it is not possible, the typing system will automatically assign the dynamic any type

to the loosely typed data at the cost of reducing type checking to a bare minimum. Additionally,

we can add the any type in our code manually when it is hard to infer the data type from the

information we have at any given point. The any type includes all the other existing types, so we

can type any data value with it and assign any value to it later:

let order: any;

function setOrderNo() {

 order = '0001';

}

However, with great power comes great responsibility. If we bypass the convenience of static type

checking, we open the door to type errors when piping data through our application. It is up to

us to ensure type safety throughout our application.

Custom types
In TypeScript, you can come up with your own type if you need to by using the type keyword in

the following way:

type Categories = 'computing' | 'multimedia';

We can then create a variable of a specific type as follows:

const category: Categories = 'computing';

Letting the typing system infer the types is very important, instead of typing it man-

ually. The type system is never wrong, but the developer can be.

TypeScript contains another type, similar to the any type, called unknown. A variable

of the unknown type can have a value of any type. The main difference is that Type-

Script will not let us apply arbitrary operations to unknown values, such as calling

a method, unless we perform type checking first.

Introduction to TypeScript44

The preceding code is perfectly valid as computing is one of the allowed values and works as

intended. Custom types are an excellent way to add types with a finite number of allowed values.

When we want to create a custom type from an object, we can use the keyof operator. The keyof

operator enables us to iterate over the properties of an object and extract them into a new type:

type Category = {

 computing: string;

 multimedia: string;

};

type CategoryType = keyof Category;

In the preceding snippet, the CategoryType produced the same result as the Categories type.

We will learn how we can use the keyof operator to iterate over object properties dynamically in

Chapter 4, Enriching Applications Using Pipes and Directives.

The typing system of TypeScript is mainly used to annotate JavaScript code with types. It improves

the developer experience by providing intelliSense and preventing bugs early in development. In

the following section, we will learn more about adding type annotations in functions.

Functions
Functions in TypeScript are not that different from regular JavaScript, except that, like everything

else in TypeScript, they can be annotated with static types. Thus, they improve the compiler by

providing the information it expects in their signature and the data type it aims to return, if any.

The following example showcases how a regular function is annotated in TypeScript:

function getProduct(): string {

 return 'Keyboard';

}

In the preceding snippet, we annotated the returned value of the function by adding the string

type to the function declaration. We can also add types in function parameters, such as:

function getFullname(firstName: string, lastName: string): string {

 return `${this.firstName} ${this.lastName}`;

}

In the preceding snippet, we annotated the parameters declared in the function signature, which

makes sense since the compiler will want to check whether the data provided holds the correct type.

Chapter 2 45

When a function does not return a type, we can annotate it using the void type:

function printFullname(firstName: string, lastName: string): void {

 console.log(`${this.firstName} ${this.lastName}`);

}

We have already learned how to use default and rest parameters in JavaScript functions. Type-

Script extends functions’ capabilities by introducing optional parameters. Parameters are defined

as optional by adding the character ? after the parameter name:

function addtoCart(productId: number, quantity?: number) {

 const product = {

 id: productId,

 qty: quantity ?? 1

 };

}

In the preceding function, we have defined quantity as an optional parameter. We have also used

the nullish coalescing syntax to set the qty property of the product object if quantity is not passed.

We can invoke the addToCart function by passing only the productId parameter or both.

We have already learned how JavaScript classes can help us structure our application code. In the

following section, we will see how to use them in TypeScript to improve our application further.

Classes
Consider the User class that we defined in the user.js file:

export class User {

 firstName = '';

As mentioned in the previous section, the TypeScript compiler is smart enough to

infer types when no annotation is provided. In both preceding functions, we could

omit the type because the compiler could infer it from the arguments provided and

the returned statements.

Optional parameters should be placed last in a function signature.

Introduction to TypeScript46

 lastName = '';

 #isActive = false;

 constructor(firstName, lastName, isActive = true) {

 this.firstName = firstName;

 this.lastName = lastName;

 this.#isActive = isActive;

 }

 getFullname() {

 return `${this.firstName} ${this.lastName}`;

 }

 get active() {

 return this.#isActive;

 }

}

We will take simple, small steps to add types throughout the class:

1. Convert the file to TypeScript by renaming it user.ts.

2. Add the following types to all class properties:

firstName: string = '';

lastName: string = '';

private isActive: boolean = false;

In the preceding snippet, we also used the private modifier to define the isActive prop-

erty as private.

3. Modify the constructor by adding types to parameters:

constructor(firstName: string, lastName: string, isActive: boolean =
true) {

 this.firstName = firstName;

 this.lastName = lastName;

 this.isActive = isActive;

}

Chapter 2 47

4. Finally, add types in the active property accessor and the getFullname method:

getFullname(): string {

 return `${this.firstName} ${this.lastName}`;

}

get active(): boolean {

 return this.isActive;

}

Converting a JavaScript class into TypeScript and adding types is an important step toward taking

advantage of the typing feature in TypeScript.

Another great feature of TypeScript related to classes is the instanceOf keyword. It allows us to

check the class instance type and provides the correct properties according to the related class.

Let’s explore it with the Customer class defined in the customer.js file:

1. Convert the file to TypeScript by renaming it customer.ts.

2. Rewrite the Customer class as follows to add types:

class Customer extends User {

 taxNumber: number;

 constructor(firstName: string, lastName: string) {

 super(firstName, lastName);

 }

}

3. Create an object outside of the class that can be of both the User and Customer type:

const account: User | Customer = undefined;

Alternatively, we could omit class properties and have the constructor

create them automatically by declaring parameters as private:

constructor(private firstName: string, private lastName:
string, private isActive: boolean = true) {}

Introduction to TypeScript48

4. We can now use the instanceOf keyword to access different properties of the account

object according to the underlying class:

if (account instanceof Customer) {

 const taxNo = account.taxNumber;

} else {

 const name = account.getFullname();

}

TypeScript is smart enough to understand that the account object in the else statement

does not have a taxNumber property because it is of the User type. Even if we try to access

it by mistake, VSCode will throw an error:

Figure 2.2: Property access error

TypeScript classes help us write well-structured code, can be instantiated, contain business logic,

and provide static typing in our application. As applications scale and more classes are created,

we need to find ways to ensure consistency and rule compliance in our code. As we will learn in

the following section, one of the best ways to address the consistency and validation of types is

to create interfaces.

Interfaces
An interface is a code contract that defines a particular schema. Any artifacts like classes and

functions implementing an interface should comply with this schema. Interfaces are beneficial

when we want to enforce strict typing on classes generated by factories or when we define func-

tion signatures to ensure that a particular typed property is found in the payload.

Interfaces disappear during transpilation and are not included in the final JavaScript

code.

Chapter 2 49

In the following snippet, we define an interface for managing products:

interface Product {

 name: string;

 price: number;

 getCategories: () => string[];

}

An interface can contain properties and methods. In the preceding snippet, the Product interface

contained the name and price properties. It also defined the getCategories method. A class can

use an interface by adding the implements keyword and the interface name in the class declaration:

class Keyboard implements Product {

 name: string = 'Keyboard';

 price: number = 20;

 getCategories(): string[] {

 return ['Computing', 'Peripherals'];

 }

}

In the preceding snippet, the Keyboard class must implement all members of the Product interface;

otherwise, TypeScript will throw an error. If we do not want to implement an interface member,

we can define it as optional using the ? character:

interface Product {

 name: string;

 price: number;

 getCategories: () => string[];

 description?: string;

}

Interfaces are the recommended approach when working with data from a backend

API or other source.

Introduction to TypeScript50

We can also use interfaces to change the type of a variable from one type to another, called type

casting. Type casting is useful when working with dynamic data or when TypeScript cannot

infer the type of a variable automatically. In the following code, we instruct TypeScript to treat

the product object as a Product type:

const product = {

 name: 'Keyboard',

 price: 20

} as Product;

However, type casting should be used with caution. In the preceding snippet, we intentionally

omitted to add the getCategories method, but TypeScript did not throw an error. When we use

type casting, we tell TypeScript that a variable pretends to be of a specific type.

Interfaces can be combined with generics to provide a general code behavior regardless of the

data type, as we will learn in the following section.

Generics
Generics are used when we want to use dynamic types in other TypeScript artifacts, such as

methods.

Suppose that we want to create a function for saving a Product object in the local storage of the

browser:

function save(data: Product) {

 localStorage.setItem('Product', JSON.stringify(data));

}

In the preceding code, we explicitly define the data parameter as a Product. If we also want to

save Keyboard objects, we should modify the save method as follows:

function save(data: Product | Keyboard) {

 localStorage.setItem('Product', JSON.stringify(data));

}

It is recommended to avoid type casting if possible and define types explicitly.

Chapter 2 51

However, the preceding approach does not scale well if we would like to add other types in the

future. Instead, we can use generics to let the consumer of the save method decide upon the

data type passed:

function save<T>(data: T) {

 localStorage.setItem('Product', JSON.stringify(data));

}

In the preceding example, the type of T is not evaluated until we use the method. We use T as a

convention to define generics, but you can also use other letters. We can execute the save method

for a Product object as follows:

save<Product>({

 name: 'Microphone',

 price: 45,

 getCategories: () => ['Peripherals', 'Multimedia']

});

As you can see, its type varies, depending on how you call it. It also ensures that you are passing

the correct type of data. Suppose that the preceding method is called in this way:

save<Product>('Microphone');

We specify that T should be a Product, but we insist on passing its value as a string. The compiler

clearly states that this is not correct. If we would like to use more generics in our save method,

we could use different letters, such as:

function save<T, P>(data: T, obj: P) {

 localStorage.setItem('Product', JSON.stringify(data));

}

Generics are often used in collections because they have similar behavior, regardless of the type.

They can, however, be used on other constructs, such as methods. The idea is that generics should

indicate if you are about to mix types in a way that isn’t allowed.

Generics are powerful to use if you have a typical behavior with many different data types. You

probably won’t be writing custom generics, at least not initially, but it’s good to know what is

going on.

In the following section, we’ll look at some utility types related to interfaces that will help us

during Angular development.

Introduction to TypeScript52

Utility types
Utility types are types that help us to derive new types from existing ones.

The Partial type is used when we want to create an object from an interface where all its prop-

erties are optional. In the following snippet, we use the Product interface to declare a trimmed

version of a product:

const mic: Partial<Product> = {

 name: 'Microphone',

 price: 67

};

In the preceding snippet, we can see that the mic object does not contain the getCategories

method. Alternatively, we could use the Pick type, which allows us to create an object from a

subset of interface properties:

type Microphone = Pick<Product, 'name' | 'price'>;

const microphone: Microphone = {

 name: 'Microphone',

 price: 67

};

Some languages, such as C#, have a reserved type when defining a key-value pair object or dic-

tionary, as it is known. In TypeScript, if we want to define such a type, we can use a Record type:

interface Order {

 products: Record<string, number>;

}

The preceding snippet defines the product name as a string and the quantity as a number.

You can find more utility types at https://www.typescriptlang.org/docs/handbook/utility-

types.html.

Summary
It was a long read, but this introduction to TypeScript was necessary to understand the logic

behind many of the most brilliant parts of Angular. It allowed us to introduce the language syn-

tax and explain the rationale behind its success as the syntax of choice for building the Angular

framework.

https://www.typescriptlang.org/docs/handbook/utility-types.html
https://www.typescriptlang.org/docs/handbook/utility-types.html

Chapter 2 53

We reviewed the type architecture and how we can create advanced business logic when design-

ing functions with various alternatives for parameterized signatures. We even discovered how to

bypass scope-related issues using the powerful arrow functions. We enhanced our knowledge of

TypeScript by exploring some of the most common features used in Angular applications.

Probably the most relevant part of this chapter encompassed our overview of classes, methods,

properties, and accessors and how we can handle inheritance and better application design

through interfaces.

With all this knowledge, we can start learning how to apply it by building Angular applications.

In the next chapter, we will learn how to use Angular components to create composable user

interfaces to maintain our application code and make it more scalable.

3
Structuring User Interfaces with
Components

So far, we have had the opportunity to take a bird’s-eye view of the Angular framework. We

learned how to create a new Angular application using the Angular CLI and how to interact with

an Angular component using template syntax. We also explored TypeScript, which will help us

understand how to write Angular code. We have everything we need to explore the further pos-

sibilities that Angular brings to the game regarding creating interactive components and how

they can communicate with each other.

In this chapter, we will learn about the following concepts:

• Creating our first component

• Interacting with the template

• Component inter-communication

• Encapsulating CSS styling

• Deciding on a change detection strategy

• Introducing the component lifecycle

Technical requirements
This chapter contains various code samples to walk you through Angular components. You can

find the related source code in the ch03 folder of the following GitHub repository:

https://www.github.com/PacktPublishing/Learning-Angular-Fifth-Edition

https://www.github.com/PacktPublishing/Learning-Angular-Fifth-Edition

Structuring User Interfaces with Components56

Creating our first component
Components are the basic building blocks of an Angular application. They control different web

page parts called views, such as a list of products or an order checkout form. They are responsible

for the presentational logic of an Angular application, and they are organized in a hierarchical

tree of components that can interact with each other:

Figure 3.1: Component architecture

The architecture of an Angular application is based on Angular components. Each Angular com-

ponent can communicate and interact with one or more components in the component tree. As

we can see Figure 3.1, a component can simultaneously be a parent of some child components

and a child of another parent component.

In this section, we will explore the following topics about Angular components:

• The structure of an Angular component

• Creating components with the Angular CLI

We will start our journey by investigating the internals of Angular components.

The structure of an Angular component
As we learned in Chapter 1, Building Your First Angular Application, a typical Angular application

contains at least a main component that consists of multiple files. The TypeScript class of the

component is defined in the app.component.ts file:

import { Component } from '@angular/core';

import { RouterOutlet } from '@angular/router';

Chapter 3 57

@Component({
 selector: 'app-root',
 imports: [RouterOutlet],
 templateUrl: './app.component.html',
 styleUrl: './app.component.css'
})
export class AppComponent {
 title = 'World';
}

The @Component is an Angular decorator that defines the properties of the Angular component. An

Angular decorator is a method that accepts an object with metadata as a parameter. The metadata

is used to configure a TypeScript class as an Angular component using the following properties:

• selector: A CSS selector that instructs Angular to load the component in the location
that finds the corresponding tag in an HTML template. The Angular CLI adds the app
prefix by default, but you can customize it using the --prefix option when creating the
Angular project.

• imports: Defines a list of Angular artifacts that the component needs to be loaded cor-
rectly, such as other Angular components. The Angular CLI adds the RouterOutlet in the
main application component by default. The RouterOutlet is used when we need routing
capabilities in an Angular application. We will learn how to configure routing in Chapter

9, Navigating through Applications with Routing.

• templateUrl: Defines the path of an external HTML file that contains the HTML template

of the component. Alternatively, you can provide the template inline using the template

property.

• styleUrl: Defines the path of an external CSS style sheet file that contains the CSS styles of

the component. Alternatively, you can provide the styles inline using the styles property.

In applications built with older Angular versions, you may notice that the imports

property is missing from the @Component decorator. This is because such components

rely on Angular modules to provide the necessary functionality.

However, starting from Angular v16, the standalone property was introduced as an

alternative to Angular modules. With Angular v19, standalone components are now

the default and are enforced throughout the project structure. This shift means that

applications created with Angular v19 will utilize the imports array in standalone

components by default, marking a significant departure from the module-based

architecture of earlier versions.

Structuring User Interfaces with Components58

Now that we have explored the structure of an Angular component, we will learn how to use the

Angular CLI and create components by ourselves.

Creating components with the Angular CLI
In addition to the main application component, we can create other Angular components that

provide specific functionality to the application.

To create a new component in an Angular application, we use the ng generate command of the

Angular CLI, passing the name of the component as a parameter. Run the following command

inside the root folder of the current Angular CLI workspace:

ng generate component product-list

The preceding command creates a dedicated folder for the component named product-list that

contains all the necessary files:

• The product-list.component.css file, which does not contain any CSS styles yet.

• The product-list.component.html file, which contains a paragraph element that dis-

plays static text:

<p>product-list works!</p>

• The product-list.component.spec.ts file, which contains a unit test that checks if the

component can be created successfully:

import { ComponentFixture, TestBed } from '@angular/core/testing';

import { ProductListComponent } from './product-list.component';

describe('ProductListComponent', () => {

 let component: ProductListComponent;

 let fixture: ComponentFixture<ProductListComponent>;

You will need an Angular application to follow along with the rest of the chapter. An

option is to create a new Angular application by running the ng new command that

you learned about in Chapter 1, Building Your First Angular Application. Alternatively,

you can get the source code from the GitHub repository mentioned in the Technical

requirements section of the same chapter.

Chapter 3 59

 beforeEach(async () => {

 await TestBed.configureTestingModule({

 imports: [ProductListComponent]

 })

 .compileComponents();

 fixture = TestBed.createComponent(ProductListComponent);

 component = fixture.componentInstance;

 fixture.detectChanges();

 });

 it('should create', () => {

 expect(component).toBeTruthy();

 });

});

We will learn more about unit testing and its syntax in Chapter 13, Unit Testing Angular

Applications.

• The product-list.component.ts file, which contains the presentational logic of our

component:

import { Component } from '@angular/core';

@Component({

 selector: 'app-product-list',

 imports: [],

 templateUrl: './product-list.component.html',

 styleUrl: './product-list.component.css'

})

export class ProductListComponent {

}

In this section, we focused on the TypeScript class of Angular components, but how do they

interact with their HTML template?

Structuring User Interfaces with Components60

In the following section, we will learn how to display the HTML template of an Angular compo-

nent on a page. We will also see how to use the Angular template syntax to interact between the

TypeScript class of the component and its HTML template.

Interacting with the template
As we have learned, creating an Angular component using the Angular CLI involves generating

a set of accompanying files. One of these files is the component template containing the HTML

content displayed on the page. In this section, we will explore how to display and interact with

the template through the following topics:

• Loading the component template

• Displaying data from the component class

• Styling the component

• Getting data from the template

We will start our journey in the component template by exploring how we render a component

on the web page.

Loading the component template
We learned that Angular uses the selector property to load the component in an HTML template.

A typical Angular application loads the template of the main component at application startup.

The <app-root> tag we saw in Chapter 1, Building Your First Angular Application, is the selector

of the main application component.

To load a component we have created, such as the product list component, we must add its

selector inside an HTML template. For this scenario, we will load it in the template of the main

application component:

1. Open the app.component.html file and move the contents of the <style> tag in the app.

component.css file.

2. Modify the app.component.html file by adding the <app-product-list> tag inside the

<div> tag with the content class:

It is more maintainable and considered a best practice to have all CSS styles

in a separate file.

Chapter 3 61

<div class="content">

 <app-product-list></app-product-list>

</div>

3. Run the ng serve command in a terminal window to start the Angular application. The

command will fail, stating the following error:

[ERROR] NG8001: 'app-product-list' is not a known element

This error is caused because the main application component does not recognize the

product list component yet.

4. Open the app.component.ts file and import the ProductListComponent class:

import { Component } from '@angular/core';

import { RouterOutlet } from '@angular/router';

import { ProductListComponent } from './product-list/product-list.
component';

@Component({

 selector: 'app-root',

 imports: [RouterOutlet, ProductListComponent],

 templateUrl: './app.component.html',

 styleUrl: './app.component.css'

})

export class AppComponent {

 title = 'World';

}

After the application has been built successfully, navigate to http://localhost:4200 to preview

it. The web page displays the static text from the template of the product list component.

In the following sections, we will see how to use the Angular template syntax and interact with

the template through the TypeScript class. We will start exploring how to display dynamic data

defined in the TypeScript class of the component.

We can also use self-enclosing tags, similar to <input> and HTML

elements, to add the product list component as <app-product-list />.

Structuring User Interfaces with Components62

Displaying data from the component class
We have already stumbled upon interpolation to display a property value as text from the com-

ponent class to the template:

<h1>Hello, {{ title }}</h1>

Angular converts the title component property into text and displays it on the screen.

An alternative way to perform interpolation is to bind the title property to the innerText prop-

erty of the <h1> HTML element, a method called property binding:

<h1 [innerText]="title"></h1>

In the preceding snippet, we bind to the DOM property of an element and not its HTML attribute,

as it looks at first sight. The property inside square brackets is called the target property and is

the property of the DOM element into which we want to bind. The variable on the right is called

the template expression and corresponds to the title property of the component.

To better understand how the Angular templating mechanism works, we first need to understand

how Angular interacts with attributes and properties. It defines HTML attributes to initialize a

DOM property and then uses data binding to interact directly with the property.

To set the attribute of an HTML element, we use the attr. syntax through property binding

followed by the attribute name. For example, to set the aria-label accessibility attribute of an

HTML element, we would write the following:

<p [attr.aria-label]="myText"></p>

When we open a web page, the browser parses the HTML content of the page and

converts it into a tree structure, the DOM. Each HTML element of the page is con-

verted into an object called a node, which represents part of the DOM. A node defines

a set of properties and methods representing the object API. The innerText is such

a property and is used to set the text inside of an HTML element.

Chapter 3 63

In the preceding snippet, myText is a property of an Angular component. Remember that property

binding interacts with the properties of an Angular component. Therefore, if we wanted to set the

value of the innerText property directly to the HTML, we would write the text value surrounded

by single quotes:

<h1 [innerText]="'My title'"></h1>

In this case, the value passed to the innerText property is static text, not a component property.

Property binding in the Angular framework binds property values from the component TypeScript

class into the template. As we will see next, the control flow syntax is suitable for coordinating

how those values will be displayed in the template.

Controlling data representation
The new control flow syntax introduced in the latest versions of the Angular framework allows

us to manipulate how data will be represented in the component template. It features a set of

built-in blocks that add the following capabilities to the Angular template syntax:

• Displaying data conditionally

• Iterating through data

• Switching through templates

In the following sections, we will explore the preceding capabilities, starting with displaying

component data based on a conditional statement.

Displaying data conditionally
The @if block adds or removes an HTML element in the DOM based on evaluating an expression.

If the expression evaluates to true, the element is inserted into the DOM. Otherwise, the element

is removed from the DOM. We will illustrate the use of the @if block with an example:

1. Run the following command to create an interface for products:

ng generate interface product

2. Open the product.ts file and add the following properties:

export interface Product {

 id: number;

 title: string;

}

Structuring User Interfaces with Components64

The Product interface defines the structure of a Product object.

3. Open the app.component.css file and move the CSS styles that contain the h1 and p se-

lectors in the product-list.component.css file.

4. Open the product-list.component.ts file and create an empty products array:

import { Component } from '@angular/core';

import { Product } from '../product';

@Component({

 selector: 'app-product-list',

 imports: [],

 templateUrl: './product-list.component.html',

 styleUrl: './product-list.component.css'

})

export class ProductListComponent {

 products: Product[] = [];

}

The products array will be used to store a list of Product objects.

5. Open the product-list.component.html file and replace its content with the following

snippet:

@if (products.length > 0) {

 <h1>Products ({{products.length}})</h1>

}

The <h1> element in the preceding HTML template is rendered on the screen when

the products array is not empty. Otherwise, it is removed completely.

6. The @if block behaves similarly to a JavaScript if statement. Thus, we can add an @else

section in the component template to execute custom logic when there are not yet any

products:

@if (products.length > 0) {

 <h1>Products ({{products.length}})</h1>

} @else {

 <p>No products found!</p>

}

Chapter 3 65

7. Run the ng serve command to preview the application so far:

Figure 3.2: Application output

If we had an additional condition that we would like to evaluate, we could

use an @else if section:

@if (products.length > 0) {

 <h1>Products ({{products.length}})</h1>

} @else if (products.length === 100) {

 Click <a>Load More to see more products

} @else {

 <p>No products found!</p>

}

In applications built with older Angular versions where the control flow syntax is

not available, you may notice the *ngIf syntax was used to display conditional data:

<h1 *ngIf="products.length > 0">

 Products ({{products.length}})

</h1>

The *ngIf is an Angular directive with the same behavior as the @if block. We will

learn how to create custom Angular directives in the following chapter.

However, it is highly recommended to use the @if block for the following reasons:

• Makes templates much more readable

• The syntax is closer to JavaScript and is easier to remember

• It is built into the framework and immediately available, which results in

smaller bundle sizes

You can find more information about *ngIf at https://angular.dev/guide/

directives#adding-or-removing-an-element-with-ngif.

https://angular.dev/guide/directives#adding-or-removing-an-element-with-ngif
https://angular.dev/guide/directives#adding-or-removing-an-element-with-ngif

Structuring User Interfaces with Components66

The application we have built does not display any data because the products array is empty.

In the following section, we will learn how to add and display product data on the product list

component.

Iterating through data
The @for block allows us to loop through a collection of items and render a template for each,

where we can define convenient placeholders to interpolate item data. Each rendered template is

scoped to the outer context, where the loop directive is placed so that we can access other bindings.

We can think of the @for block as the JavaScript for loop but for HTML templates.

We can use the @for block to display the product list in our component as follows:

1. Open the app.component.css file and move the CSS styles that contain the .pill-group,

.pill, and .pill:hover selectors in the product-list.component.css file.

2. Modify the products array in the ProductListComponent class of the product-list.

component.ts file so that it contains the following data:

export class ProductListComponent {

 products: Product[] = [

 { id: 1, title: 'Keyboard' },

 { id: 2, title: 'Microphone' },

 { id: 3, title: 'Web camera' },

 { id: 4, title: 'Tablet' }

];

}

3. Open the product-list.component.html file and add the following snippet after the @

if block:

<ul class="pill-group">

 @for (product of products; track product.id) {

 <li class="pill">{{product.title}}

 }

In the preceding code, we use the @for block and turn each item fetched from

the products array into a product variable called the template input variable. We ref-

erence the template variable in our HTML by binding its title property using Angular

interpolation syntax.

Chapter 3 67

During the execution of the @for block, data may change, HTML elements may be added,

moved, or removed, and the whole list may even be replaced. Angular must synchronize

data changes with the DOM tree by connecting the iterated array and its corresponding

DOM element. It is a process that can become very slow and expensive and may eventually

result in poor performance. For that purpose, Angular relies on the track property, which

keeps track of data changes. In our case, the track property defines the property name of

the product variable that will be used to keep track of every item in the products array.

4. Run the ng serve command to preview the application:

Figure 3.3: Product list

5. The @for block supports adding an @empty section, which is executed when the array of

items is empty. We can refactor our code by removing the @else section of the @if block

and adding an @empty section as follows:

@if (products.length > 0) {

 <h1>Products ({{products.length}})</h1>

}

<ul class="pill-group">

 @for (product of products; track product.id) {

 <li class="pill">{{product.title}}

 } @empty {

 <p>No products found!</p>

 }

Structuring User Interfaces with Components68

The @for block can observe changes in the underlying collection and add, remove, or sort the

rendered templates as items are added, removed, or reordered in the collection. It is also possible

to keep track of other useful properties as well. We can use the extended version of the @for block

using the following syntax:

@for (product of products; track product.id; let variable=property) {}

The variable is a template input variable that we can reference later in our template. The property

can have the following values:

• $count: Indicates the number of items in the array

• $index: Indicates the index of the item in the array

• $first/$last: Indicates whether the current item is the first or last one in the array

• $even/$odd: Indicates whether the index of the item in the array is even or odd

In the following snippet, Angular assigns the value of the $index property to the i input variable.

The i variable is later used in the template to display each product as a numbered list:

@for (product of products; track product.id; let i = $index) {

 <li class="pill">{{i+1}}. {{product.title}}

}

We can use the preceding properties directly or by declaring an alias, as seen in the

following example.

Use the $index property in the track variable when unsure of which one you should

pick from your object data. Additionally, it is recommended to use it when you don’t

have any unique property in your object and you are not modifying the order of the

list by deleting, adding, or moving elements.

Chapter 3 69

The last block of the control flow syntax we will cover is the @switch block in the following section.

Switching through templates
The @switch block switches between parts of the component template and displays each de-

pending on a defined value.

You can think of @switch like the JavaScript switch statement. It consists of the following sections:

• @switch: Defines the property that we want to check when applying the block

• @case: Adds or removes a template from the DOM tree depending on the value of the

property defined in the @switch block

• @default: Adds a template to the DOM tree if the value of the property defined in the @

switch block does not meet any @case statement

We will learn how to use the @switch block by displaying a different emoji according to the

product title. Open the product-list.component.html file and modify the @for block so that it

includes the following @switch block:

<ul class="pill-group">

 @for (product of products; track product.id) {

 <li class="pill">

 @switch (product.title) {

 @case ('Keyboard') { }

 In applications built with older Angular versions, you may notice the following

syntax for iterating over collections:

<ul class="pill-group">

 <li class="pill" *ngFor="let product of products">

 {{product.title}}

The *ngFor is an Angular directive that works similarly to the @for block. However,

it is highly recommended to use @for for the same reasons mentioned about the @

if block in the previous section.

You can find more information about *ngFor at https://angular.dev/guide/

directives#listing-items-with-ngfor.

https://angular.dev/guide/directives#listing-items-with-ngfor
https://angular.dev/guide/directives#listing-items-with-ngfor

Structuring User Interfaces with Components70

 @case ('Microphone') { }

 @default { }

 }

 {{product.title}}

 } @empty {

 <p>No products found!</p>

 }

The @switch block evaluates the title property of each product. When it finds a match, it ac-

tivates the appropriate @case section. If the value of the title property does not match any @

case section, the @default section is activated.

The simplicity and improved ergonomics of the control flow syntax have enabled the introduction

of the @defer block in the Angular framework. The @defer block helps to enhance UX and improve

application performance by loading parts of the component template asynchronously. We will learn

more in Chapter 15, Optimizing Application Performance.

In this section, we learned how to leverage the control flow syntax and coordinate how data will

be displayed on the component template.

In applications built with older Angular versions, you may notice the following

syntax for switching over parts of the template:

<div [ngSwitch]="product.title">

 <p *ngSwitchCase="'Keyboard'"> </p>

 <p *ngSwitchCase="'Microphone'"> </p>

 <p *ngSwitchDefault> </p>

</div>

The [ngSwitch] is an Angular directive with the same behavior as the @switch block.

However, it is highly recommended to use @switch for the same reasons mentioned

about the @if block in the previous section.

You can find more information about [ngSwitch] at https://angular.dev/guide/

directives#switching-cases-with-ngswitch.

 https://angular.dev/guide/directives#switching-cases-with-ngswitch
 https://angular.dev/guide/directives#switching-cases-with-ngswitch

Chapter 3 71

As we will learn in the following section, property binding in the Angular framework applies CSS

styles and classes in Angular templates.

Styling the component
Styles in a web application can be applied using either the class or style attribute, or both, of

an HTML element:

<p class="star"></p>

<p style="color: greenyellow"></p>

The Angular framework provides two types of property binding:

• Class binding

• Style binding

Let’s begin our journey on component styling with class binding in the following section.

Class binding
We can apply a single class to an HTML element using the following syntax:

<p [class.star]="isLiked"></p>

In the preceding snippet, the star class will be added to the paragraph element when the isLiked

expression is true. Otherwise, it will be removed from the element. If we want to apply multiple

CSS classes simultaneously, we can use the following syntax:

<p [class]="currentClasses"></p>

The currentClasses variable is a component property. The value of an expression that is used

in a class binding can be one of the following:

• A space-delimited string of class names such as 'star active'.

• An object with keys as the class names and values as boolean conditions for each key. A

class is added to the element when the value of the key, with its name, is evaluated to be

true. Otherwise, the class is removed from the element:

currentClasses = {

If you want to use this syntax in applications that already use the old directive ap-

proach, you can execute the Angular CLI migration described at https://angular.

dev/reference/migrations/control-flow.

https://angular.dev/reference/migrations/control-flow
https://angular.dev/reference/migrations/control-flow

Structuring User Interfaces with Components72

 star: true,

 active: false

};

Instead of styling our elements using CSS classes, we can set styles directly with the style binding.

Style binding
Like the class binding, we can apply single or multiple styles simultaneously using a style binding.

A single style can be set to an HTML element using the following syntax:

<p [style.color]="'greenyellow'"></p>

In the preceding snippet, the paragraph element will have a greenyellow color. Some styles can

be expanded further in the binding, such as the width of the paragraph element, which we can

define along with the measurement unit:

<p [style.width.px]="100"></p>

The paragraph element will be 100 pixels long. If we need to toggle multiple styles at once, we

can use the object syntax:

<p [style]="currentStyles"></p>

The currentStyles variable is a component property. The value of an expression that is used in

a style binding can be one of the following:

• A string with styles separated by semicolons such as 'color: greenyellow; width:

100px'

• An object where its keys are the names of styles and the values are the actual style values:

currentStyles = {

 color: 'greenyellow',

 width: '100px'

};

Class and style bindings are powerful features that Angular provides out of the box. Together with

the CSS styling configuration that we can define in the @Component decorator, it gives endless

opportunities for styling Angular components. An equally compelling feature is the ability to read

data from a template into the component class, which we look at next.

Chapter 3 73

Getting data from the template
In the previous section, we learned how to use property binding to display data from the compo-

nent class. Real-world scenarios usually involve bidirectional data flow through components. To

get data from the template back to the component class, we use a technique called event binding.

We will learn how to use event binding by notifying the component class when a product has

been selected from the list:

1. Open the product-list.component.ts file and add a selectedProduct property:

selectedProduct: Product | undefined;

2. Open the product-list.component.html file and use the interpolation syntax to display

the selected product if it exists:

@if (selectedProduct) {

 <p>You selected:

 {{selectedProduct.title}}

 </p>

}

3. Add a click event binding in the tag to set the selectedProduct to the current

product variable of the @for block:

@for (product of products; track product.id) {

 <li class="pill" (click)="selectedProduct = product">

 @switch (product.title) {

 @case ('Keyboard') { }

 @case ('Microphone') { }

 @default { }

 }

 {{product.title}}

}

Structuring User Interfaces with Components74

4. Run ng serve to start the application and click on a product from the list:

Figure 3.4: Product selection

An event binding listens for DOM events on the target HTML element and responds to those events

by interacting with members of the component class. The event inside parentheses is called the

target event and is the event we are currently listening to. The expression on the right is called the

template statement and interacts with the component class. Event binding in Angular supports

all native DOM events found at https://developer.mozilla.org/docs/Web/Events.

The interaction of a component template with its corresponding TypeScript class is summarized

in the following diagram:

Figure 3.5: Component-template interaction

The same principle we followed for interacting with the component template and class can be

used when communicating between components.

https://developer.mozilla.org/docs/Web/Events

Chapter 3 75

Component inter-communication
Angular components expose a public API that allows them to communicate with other compo-

nents. This API encompasses input properties, which we use to feed the component with data. It

also exposes output properties we can bind event listeners to, thereby getting timely information

about changes in the component state.

In this section, we will learn how Angular solves the problem of injecting data into and extracting

data from components through quick and easy examples.

Passing data using an input binding
The application currently displays the product list and the selected product details in the same

component. To learn how to pass data between different components, we will create a new Angular

component that will display the details of the selected product. Data representing the specific

product details will be dynamically passed from the product list component.

We will start by creating and configuring the component to display product details:

1. Run the following Angular CLI command to create the new Angular component:

ng generate component product-detail

2. Open the product-detail.component.ts file and modify the import statements accord-

ingly:

import { Component, input } from '@angular/core';

import { Product } from '../product';

The input function is part of the Signals API and is used when we want to pass data from

one component down to another component.

3. Define a product property in the ProductDetailComponent class that uses the input

function:

export class ProductDetailComponent {

 product = input<Product>();

}

We will learn more about the Signals API in Chapter 7, Tracking Application

State with Signals.

Structuring User Interfaces with Components76

4. Open the product-detail.component.html file and add the following contents:

@if (product()) {

 <p>You selected:

 {{product()!.title}}

 </p>

}

In the preceding snippet, we use an @if block to check if the product input property has

been set before displaying its title.

5. Open the product-list.component.ts file and import the ProductDetailComponent class:

import { Component } from '@angular/core';

import { Product } from '../product';

import { ProductDetailComponent } from '../product-detail/product-
detail.component';

@Component({

 selector: 'app-product-list',

 imports: [ProductDetailComponent],

 templateUrl: './product-list.component.html',

 styleUrl: './product-list.component.css'

})

6. Finally, replace the last @if block in the product-list.component.html file with the

following snippet:

<app-product-detail [product]="selectedProduct"></app-product-
detail>

In the preceding snippet, we use property binding to bind the value of the selectedProduct

property into the product input property of the product detail component. This approach

is called input binding.

If we run the application and click on a product from the list, we will see that product selection

continues to work as expected.

In older versions of Angular, we use the @Input decorator for passing data

between components. You can learn more at https://angular.dev/guide/

components/inputs.

https://angular.dev/guide/components/inputs
https://angular.dev/guide/components/inputs

Chapter 3 77

The @if block in the template of the product detail component implies that the product input

property is required; otherwise, it does not display its title. Angular does not know if the prod-

uct list component passes a value for the product input binding during build time. If we want to

enforce that rule during compile time, we can define an input property as required accordingly:

product = input.required<Product>();

According to the previous snippet, if the product list component does not pass a value for the

product input property, the Angular compiler will throw the following error:

[ERROR] NG8008: Required input 'product' from component
ProductDetailComponent must be specified.

That’s it! We have successfully passed data from one component to another. In the following

section, we’ll learn how to listen for events in a component and respond to them.

Listening for events using an output binding
We learned that input binding is used when we want to pass data between components. This

method is applicable in scenarios where we have two components, one that acts as the parent

component and the other as the child. What if we want to communicate the other way, from the

child component to the parent? How do we notify the parent component about specific actions

in the child component?

Consider a scenario where the product detail component should have a button to add the current

product to a shopping cart. The shopping cart would be a property of the product list component.

How would the product detail component notify the product list component that the button was

clicked? Let’s see how we would implement this functionality in our application:

1. Open the product-detail.component.ts file and import the output function from the

@angular/core npm package:

import { Component, input, output } from '@angular/core';

The output function is used when we want to create events that will be triggered from

one component up to another.

2. Define a new component property inside the ProductDetailComponent class that uses

the output function:

added = output();

Structuring User Interfaces with Components78

3. In the same TypeScript class, create the following method:

addToCart() {

 this.added.emit();

}

The addToCart method calls the emit method on the added output event we created in the

previous step. The emit method triggers an event and notifies any component currently

listening to that event.

4. Now, add a <button> element in the component template and bind its click event to the

addToCart method:

@if (product()) {

 <p>You selected:

 {{product()!.title}}

 </p>

 <button (click)="addToCart()">Add to cart</button>

}

5. Open the product-detail.component.css file and add the following CSS styles that will

be applied to the <button> element:

button {

 display: flex;

 align-items: center;

 --button-accent: var(--bright-blue);

 background: color-mix(in srgb, var(--button-accent) 65%,
transparent);

 color: white;

 padding-inline: 0.75rem;

 padding-block: 0.375rem;

 border-radius: 0.5rem;

 border: 0;

 transition: background 0.3s ease;

 font-family: var(--inter-font);

In older versions of Angular, we use the @Output decorator for triggering

events between components. You can learn more at https://angular.dev/

guide/components/outputs.

https://angular.dev/guide/components/outputs
https://angular.dev/guide/components/outputs

Chapter 3 79

 font-size: 0.875rem;

 font-style: normal;

 font-weight: 500;

 line-height: 1.4rem;

 letter-spacing: -0.00875rem;

 cursor: pointer;

}

button:hover {

 background: color-mix(in srgb, var(--button-accent) 50%,
transparent);

}

6. We are almost there! Now, we need to wire up the binding in the product list component

so that the two components can communicate. Open the product-list.component.ts

file and create the following method:

onAdded() {

 alert(`${this.selectedProduct?.title} added to the cart!`);

}

In the preceding snippet, we use the native alert method of the browser to display a

dialog to the user.

7. Finally, modify the <app-product-detail> tag in the product-list.component.html

file as follows:

<app-product-detail

 [product]="selectedProduct"

 (added)="onAdded()"

></app-product-detail>

In the preceding snippet, we use event binding to bind the onAdded method into the added

output property of the product detail component. This approach is called output binding.

If we select a product from the list and click on the Add to cart button, a dialog box will display

a message such as the following:

Web camera added to the cart!

Structuring User Interfaces with Components80

You can see an overview of the component communication mechanism that we have discussed

in the following diagram:

Figure 3.6: Component inter-communication

The output event of the product detail component does nothing more and nothing less than

emitting an event to the parent component. However, we can use it to pass arbitrary data through

the emit method, as we will learn in the following section.

Emitting data through custom events
The emit method of an output event can accept any data to pass up to the parent component. It

is best to define the data type that can be passed to enforce static type checking.

Currently, the product list component already knows the selected product. Let’s assume that

the product list component could only realize it after the user clicks on the Add to cart button:

1. Open the product-detail.component.ts file and use generics to declare the type of data

that will be passed into the product list component:

added = output<Product>();

2. Modify the addToCart method so that the emit method passes the currently selected

product:

addToCart() {

 this.added.emit(this.product()!);

}

3. Open the product-list.component.html file and pass the $event variable in the onAdded

method:

<app-product-detail

 [product]="selectedProduct"

 (added)="onAdded($event)"

></app-product-detail>

Chapter 3 81

The $event object is a reserved keyword in Angular that contains the payload data of an

event emitter from an output binding, in our case, a Product object.

4. Open the product-list.component.ts file and change the signature of the onAdded

method accordingly:

onAdded(product: Product) {

 alert(`${product.title} added to the cart!`);

}

As we saw, output event bindings are a great way to notify a parent component about a change

in the component state or send any data.

Besides using the input and output bindings for communicating with components, we can access

their properties and methods directly using local template reference variables.

Local reference variables in templates
We have seen how to bind data to our templates using interpolation with the double curly braces

syntax. Besides this, we often spot named identifiers prefixed by a hash symbol (#) in the ele-

ments belonging to our components or even regular HTML elements. These reference identifiers,

namely, template reference variables, refer to the components flagged with them in our template

views and then access them programmatically. Components can also use them to refer to other

elements in the DOM and access their properties.

We have learned how components communicate by listening to emitted events using output bind-

ing or passing data through input binding. But what if we could inspect the component in depth,

or at least its exposed properties and methods, and access them without going through the input

and output bindings? Setting a local reference on the component opens the door to its public API.

We can declare a template reference variable for the product detail component in the product-

list.component.html file as follows:

<app-product-detail

 #productDetail

 [product]="selectedProduct"

The public API of a component consists of all public members of the TypeScript class.

Structuring User Interfaces with Components82

 (added)="onAdded()"

></app-product-detail>

From that moment, we can access the component members directly and even bind them in other

locations of the template, such as displaying the product title:

{{productDetail.product()!.title}}

This way, we do not need to rely on the input and output properties and can manipulate the

value of such properties.

We have mainly explained how the component class interacts with its template or other com-

ponents but have barely been concerned about their styling. We explore that in more detail next.

Encapsulating CSS styling
We can define CSS styling within our components to better encapsulate our code and make it

more reusable. In the Creating our first component section, we learned how to define CSS styles for

a component using an external CSS file through the styleUrl property or by defining CSS styles

inside the TypeScript component file with the styles property.

Thanks to scoped styling, CSS management and specificity become a breeze on browsers that

support shadow DOM. CSS styles apply to the elements contained in the component, but they

do not spread beyond their boundaries.

The local reference variable approach is particularly useful when using libraries

where we cannot control the child components to add input or output binding prop-

erties.

The usual rules of CSS specificity govern both ways: https://developer.mozilla.

org/docs/Web/CSS/Specificity.

You can find more detail on shadow DOM at https://developer.mozilla.org/

docs/Web/API/Web_components/Using_shadow_DOM.

https://developer.mozilla.org/docs/Web/CSS/Specificity
https://developer.mozilla.org/docs/Web/CSS/Specificity
https://developer.mozilla.org/docs/Web/API/Web_components/Using_shadow_DOM
https://developer.mozilla.org/docs/Web/API/Web_components/Using_shadow_DOM

Chapter 3 83

On top of that, Angular embeds style sheets in the <head> element of a web page so that they may

affect other elements of our application. We can set up different levels of view encapsulation to

prevent this from happening.

View encapsulation is how Angular needs to manage CSS scoping within the component. We

can change it by setting the encapsulation property of the @Component decorator in one of the

following ViewEncapsulation enumeration values:

• Emulated: Entails an emulation of native scoping in shadow DOM by sandboxing the

CSS rules under a specific selector that points to a component. This option is preferred

to ensure that component styles do not leak outside the component and are not affected

by other external styles. It is the default behavior in Angular CLI projects.

• Native: Uses the native shadow DOM encapsulation mechanism of the renderer that

works only on browsers that support shadow DOM.

• None: Template or style encapsulation is not provided. The styles are injected as they

were added into the <head> element of the document. It is the only option if shadow

DOM-enabled browsers are not involved.

We will explore the Emulated and None options due to their extended support using an example:

1. Open the product-detail.component.html file and enclose the contents of the @if block

in a <div> element:

@if (product()) {

 <div>

 <p>You selected:

 {{product()!.title}}

 </p>

 <button (click)="addToCart()">Add to cart</button>

 </div>

}

2. Open the product-detail.component.css file and add a CSS style to change the border

of a <div> element:

div {

 padding-inline: 0.75rem;

 padding-block: 0.375rem;

 border: 2px dashed;

}

Structuring User Interfaces with Components84

3. Run the application using the ng serve command and notice that the product detail

component has a dashed border around it when you select a product:

Figure 3.7: Product details

The style did not affect the <div> element in the app.component.html file because the

default encapsulation scopes all CSS styles defined to the specific component.

4. Open the product-detail.component.ts file and set the component encapsulation to

ViewEncapsulation.None:

import { Component, input, output, ViewEncapsulation } from '@
angular/core';

import { Product } from '../product';

@Component({

 selector: 'app-product-detail',

 imports: [],

 templateUrl: './product-detail.component.html',

 styleUrl: './product-detail.component.css',

 encapsulation: ViewEncapsulation.None

})

The default view encapsulation is Emulated if we do not specify one explicitly.

Chapter 3 85

The application output should look like the following:

Figure 3.8: No view encapsulation

In the preceding image, the CSS style leaked to the component tree and affected the <div> element

of the main application component.

View encapsulation can solve many issues when styling our components. However, it should be

used cautiously because, as we already learned, CSS styles may leak into parts of the application

and produce unwanted effects.

The change detection strategy is another property of the @Component decorator that is very pow-

erful. Let’s examine this next.

Deciding on a change detection strategy
Change detection is the mechanism that Angular uses internally to detect changes that occur

in component properties and reflect these changes to the view. It is triggered on specific events,

such as when the user clicks a button, an asynchronous request is completed, or a setTimeout

and setInterval method is executed. Angular uses a process called monkey patching to modify

such events by overwriting their default behavior using a library called Zone�js.

Structuring User Interfaces with Components86

Every component has a change detector that detects whether a change has occurred in its prop-

erties by comparing the current value of a property with the previous one. If there are differences,

it applies the change to the component template. In the product detail component, when the

product input property changes as a result of an event that we mentioned earlier, the change

detection mechanism runs for this component and updates the template accordingly.

However, there are cases where this behavior is not desired, such as components that render a

large amount of data. In that scenario, the default change detection mechanism is insufficient

because it may introduce performance bottlenecks in the application. We could alternatively use

the changeDetection property of the @Component decorator, which dictates the selected strategy

the component will follow for change detection.

We will learn how to use a change detection mechanism by profiling our Angular application

with Angular DevTools:

1. Open the product-detail.component.ts file and create a getter property that returns

the current product title:

get productTitle() {

 return this.product()!.title;

}

2. Open the product-detail.component.html file and replace the product.title expression

inside the tag with the productTitle:

@if (product()) {

 <p>You selected:

 {{productTitle}}

 </p>

 <button (click)="addToCart()">Add to cart</button>

}

3. Run the application using the ng serve command and preview it at http://localhost:4200.

4. Start Angular DevTools, select the Profiler tab, and click the Start recording button to

start profiling the Angular application.

Chapter 3 87

5. Click on the Keyboard product from the product list and select the first bar in the bar

chart to review change detection:

Figure 3.9: Change detection bar chart

In the preceding image, we can see that change detection is triggered for each component

in the component tree of the application.

6. Click on the Add to cart button and select the second bar in the bar chart:

Figure 3.10: Change detection bar chart

Angular executed change detection in the product detail component even though we did

not change its properties.

Structuring User Interfaces with Components88

7. Modify the @Component decorator of the product-detail.component.ts file by setting

the changeDetection property to ChangeDetectionStrategy.OnPush:

import { ChangeDetectionStrategy, Component, input, output } from '@
angular/core';

import { Product } from '../product';

@Component({

 selector: 'app-product-detail',

 imports: [],

 templateUrl: './product-detail.component.html',

 styleUrl: './product-detail.component.css',

 changeDetection: ChangeDetectionStrategy.OnPush

})

8. Repeat steps 4 to 6 and observe the output of the second bar in the change detection bar

chart:

Figure 3.11: Change detection bar chart

Change detection did not run for the product detail component this time.

9. Click on the Microphone product from the list and observe the new bar in the bar chart:

Figure 3.12: Change detection bar chart

Chapter 3 89

Change detection ran this time because we changed the reference of the product input

property. If we had just changed a property using the OnPush change detection strategy,

the change detection mechanism would not have been triggered. You can learn about

more change detection scenarios at https://angular.dev/best-practices/skipping-

subtrees.

The change detection strategy is a mechanism that allows us to modify the way our components

detect changes in their data, significantly improving performance in large-scale applications. It

concludes our journey of configuring a component, but the Angular framework does not stop there.

As we’ll learn in the following section, we can hook into specific times in the component lifecycle.

Introducing the component lifecycle
Lifecycle events are hooks that allow us to jump into specific stages in the lifecycle of a compo-

nent and apply custom logic. They are optional to use but might be valuable if you understand

how to use them.

Some hooks are considered best practices, while others help debug and understand what happens

in an Angular application. A hook has an interface defining a method we need to implement. The

Angular framework ensures the hook is called, provided we have implemented this method in

the component.

The most basic lifecycle hooks of an Angular component are:

• ngOnInit: This is called when a component is initialized

• ngOnDestroy: This is called when a component is destroyed

• ngOnChanges: This is called when values of input binding properties in the component

change

• ngAfterViewInit: This is called when Angular initializes the view of the current compo-

nent and its child components

All of these lifecycle hooks are available from the @angular/core npm package of the Angular

framework.

Defining the interface in the component is not obligatory but is considered a good

practice. Angular cares only about whether we have implemented the actual method

or not.

https://angular.dev/best-practices/skipping-subtrees
https://angular.dev/best-practices/skipping-subtrees

Structuring User Interfaces with Components90

We will explore each one through an example in the following sections. Let’s start with the

ngOnInit hook, which is the most basic lifecycle event of a component.

Performing component initialization
The ngOnInit lifecycle hook is a method called during the component initialization. All input

bindings and data-bound properties have been set appropriately at this stage, and we can safely

use them. Using the component constructor to access them may be tempting, but their values

would not have been set at that point. We will learn how to use the ngOnInit lifecycle hook

through the following example:

1. Open the product-detail.component.ts file and add a constructor that logs the value

of the product property in the browser console:

constructor() {

 console.log('Product:', this.product());

}

2. Import the OnInit interface from the @angular/core npm package:

import { Component, input, OnInit, output } from '@angular/core';

3. Add the OnInit interface to the list of implemented interfaces of the ProductDetailComponent

class:

export class ProductDetailComponent implements OnInit

4. Add the following method in the ProductDetailComponent class to log the same infor-

mation as in step 1:

ngOnInit(): void {

 console.log('Product:', this.product());

}

5. Open the product-list.component.ts file and set an initial value to the selectedProduct

property:

selectedProduct: Product | undefined = this.products[0];

A full list of all the supported lifecycle hooks is available in the official Angular doc-

umentation at https://angular.dev/guide/components/lifecycle.

https://angular.dev/guide/components/lifecycle

Chapter 3 91

6. Run the application using the ng serve command and inspect the output of the browser

console:

Figure 3.13: Console output

The first message from the constructor contains an undefined value, but in the second message,

the value of the product property is displayed correctly.

Constructors should be relatively empty and devoid of logic other than setting initial variables.

Adding business logic inside a constructor makes it challenging to mock it in testing scenarios.

Another good use of the ngOnInit hook is when we need to initialize a component with data from

an external source, such as an Angular service, as we will learn in Chapter 5, Managing Complex

Tasks with Services.

The Angular framework provides hooks for all stages of the component lifecycle, from initializa-

tion to destruction.

Cleaning up component resources
The interface we use to hook on the destruction event of a component is the ngOnDestroy lifecycle

hook. We need to import the OnDestroy interface and implement the ngOnDestroy method to

start using it:

import { Component, input, OnDestroy, output } from '@angular/core';

import { Product } from '../product';

@Component({

 selector: 'app-product-detail',

 imports: [],

 templateUrl: './product-detail.component.html',

 styleUrl: './product-detail.component.css'

})

export class ProductDetailComponent implements OnDestroy {

Structuring User Interfaces with Components92

 product = input<Product>();

 added = output();

 addToCart() {

 this.added.emit();

 }

 ngOnDestroy(): void {

 }

}

In the preceding snippet, we have added the OnDestroy interface and implemented its ngOnDestroy

method. We can then add any custom logic in the ngOnDestroy method to run code when the

component is destroyed.

A component is destroyed when it is removed from the DOM tree of a web page due to the fol-

lowing reasons:

• Using the @if block from the control flow syntax

• Navigating away from a component using the Angular router, which we will learn about

in Chapter 9, Navigating through Applications with Routing

We usually perform a cleanup of component resources inside the ngOnDestroy method, such as

the following:

• Resetting timers and intervals

• Unsubscribing from observable streams, which we will learn about in Chapter 6, Reactive

Patterns in Angular

An alternative method to the ngOnDestroy lifecycle hook is to use a built-in Angular service such

as DestroyRef:

import { Component, DestroyRef, input, output } from '@angular/core';

import { Product } from '../product';

@Component({

 selector: 'app-product-detail',

 imports: [],

 templateUrl: './product-detail.component.html',

Chapter 3 93

 styleUrl: './product-detail.component.css'

})

export class ProductDetailComponent {

 product = input<Product>();

 added = output();

 constructor(destroyRef: DestroyRef) {

 destroyRef.onDestroy(() => {

 });

 }

 addToCart() {

 this.added.emit();

 }

}

As we will learn in Chapter 5, Managing Complex Tasks with Services, using a constructor is one

way to inject Angular services into other Angular artifacts. In this case, the destroyRef service

exposes the onDestroy method, which accepts a callback function as a parameter. The callback

function will be called when the component is destroyed.

We have already learned how to pass data down to a component using an input binding. The

Angular framework provides the ngOnChanges lifecycle hook, which we can use to inspect when

the value of such a binding has changed.

Detecting input binding changes
The ngOnChanges lifecycle hook is called when Angular detects that the value of an input data

binding has changed. We will use it in the product detail component to learn how it behaves

when we select a different product from the list:

1. Import the OnChanges and SimpleChanges interfaces in the product-detail.component.

ts file:

import {

 Component,

 input,

 OnChanges,

 output,

Structuring User Interfaces with Components94

 SimpleChanges

} from '@angular/core';

2. Modify the definition of the ProductDetailComponent class so that it implements the

OnChanges interface:

export class ProductDetailComponent implements OnChanges

3. Implement the ngOnChanges method that is defined in the OnChanges interface. It accepts

an object of the SimpleChanges type as a parameter that contains one key for each input

property that changes. Each key points to another object with the properties currentValue

and previousValue, which denote the new and the old value of the input property, re-

spectively:

ngOnChanges(changes: SimpleChanges): void {

 const product = changes['product'];

 const oldValue = product.previousValue;

 const newValue = product.currentValue;

 console.log('Old value', oldValue);

 console.log('New value', newValue);

}

The preceding snippet tracks the product input property for changes and logs old and

new values in the browser console window.

4. To inspect the application, run the ng serve command, select a product from the list, and

notice the output in the console. You should get something like the following:

Figure 3.14: Console output

In the preceding image, the first two lines state that the product value was changed from

undefined to undefined. It is the actual time when the product detail component is

initialized, and the product property has no value yet. The OnChanges lifecycle event is

triggered once the value is first set and in all subsequent changes that occur through the

binding mechanism.

Chapter 3 95

5. To eliminate the unnecessary log messages, we can check whether it is the first time that

the product property is being changed using the isFirstChange method:

ngOnChanges(changes: SimpleChanges): void {

 const product = changes['product'];

 if (!product.isFirstChange()) {

 const oldValue = product.previousValue;

 const newValue = product.currentValue;

 console.log('Old value', oldValue);

 console.log('New value', newValue);

 }

}

If we refresh the browser, we can see the correct message in the console window.

The ngOnChanges lifecycle hook is a great way to detect when the value of an input property

changes. With the advent of the Signals API, we have much better methods to detect and react

to these changes, as we will learn in Chapter 7, Tracking Application State with Signals. However,

for older versions of Angular, the hook is still the preferred solution.

The last lifecycle event of an Angular component we will explore is the ngAfterViewInit hook.

Accessing child components
The ngAfterViewInit lifecycle hook of an Angular component is called when:

• The HTML template of the component has been initialized

• The HTML templates of all child components have been initialized

We can explore how the ngAfterViewInit event works using the product list and product detail

components:

1. Open the product-list.component.ts file and import the AfterViewInit and viewChild

artifacts from the @angular/core npm package:

import { AfterViewInit, Component, viewChild } from '@angular/core';

2. Create the following property in the ProductListComponent class:

productDetail = viewChild(ProductDetailComponent);

We have already learned how to query a component class from an HTML template using

local reference variables. Alternatively, we can use the viewChild function to query a child

component from the parent component class.

Structuring User Interfaces with Components96

The viewChild function accepts the type of component we want to query as a parameter.

3. Modify the definition of the ProductListComponent class so that it implements the

AfterViewInit interface:

export class ProductListComponent implements AfterViewInit

4. The AfterViewInit interface implements the ngAfterViewInit method, which we can

use to access the productDetail property:

ngAfterViewInit(): void {

 console.log(this.productDetail()!.product());

}

When we query the productDetail property, we get an instance of the ProductDetail-

Component class. We can then access any member of its public API, such as the product

property.

The ngAfterViewInit lifecycle event concludes our journey through the lifecycle of Angular

components. Component lifecycle hooks are a useful feature of the framework, and you will use

them a lot for developing Angular applications.

Summary
In this chapter, we explored Angular components. We saw their structure and how to create them

and discussed how to isolate a component’s HTML template in an external file to ease its future

maintainability. Also, we saw how to do the same with any style sheet we wanted to bind to the

component in case we did not want to bundle the component styles inline. We also learned how

to use the Angular template syntax and interact with the component template. Similarly, we

went through how components communicate bidirectionally using property and event bindings.

In older versions of Angular, we use the @ViewChild decorator for querying

child components. You can learn more at https://angular.dev/guide/

components/queries.

Running the preceding code will display an undefined value for the product prop-

erty because we do not set an initial value when the product detail component is

initialized.

https://angular.dev/guide/components/queries
https://angular.dev/guide/components/queries

Chapter 3 97

We went through the options available in Angular for creating powerful APIs for our components

so that we could provide high levels of interoperability between components, configuring their

properties by assigning either static values or managed bindings. We also saw how a component

could act as a host component for another child component, instantiating the former’s custom

element in its template and laying the groundwork for larger component trees in our applica-

tions. Output parameters give us the layer of interactivity we need by turning our components

into event emitters so they can adequately communicate with any parent component that might

eventually host them.

Template references paved the way for us to create references in our custom elements, which we

can use as accessors to their properties and methods from within the template in a declarative

fashion. An overview of the built-in features for handling CSS view encapsulation in Angular gave

us additional insights into how we can benefit from shadow DOM’s CSS scoping per component.

Finally, we learned how important change detection is in an Angular application and how we

can customize it to improve its performance further.

We also studied the component lifecycle and learned how to execute custom logic using built-in

Angular lifecycle hooks. We still have much more to learn regarding template management in

Angular, mostly concerning two concepts you will use in your journey with Angular: directives

and pipes, which we will cover in the next chapter.

4
Enriching Applications Using
Pipes and Directives

In the previous chapter, we built several components that rendered data on the screen with the

help of input and output properties. We’ll leverage that knowledge in this chapter to take our

components to the next level using Angular pipes and directives. Pipes allow us to digest and

transform the information we bind in our templates. Directives enable more ambitious function-

alities, such as manipulating the DOM or altering the appearance and behavior of HTML elements.

In this chapter, we will learn about the following concepts:

• Manipulating data with pipes

• Building pipes

• Building directives

Technical requirements
The chapter contains code samples to walk you through Angular pipes and directives. You can

find the related source code in the ch04 folder of the following GitHub repository:

https://www.github.com/PacktPublishing/Learning-Angular-Fifth-Edition

Manipulating data with pipes
Pipes allow us to transform the outcome of our expressions at the view level. They take data as

input, transform it into the desired format, and display the output in the template.

https://www.github.com/PacktPublishing/Learning-Angular-Fifth-Edition

Enriching Applications Using Pipes and Directives100

The syntax of a pipe consists of the pipe name following the expression we want to transform,

separated by a pipe symbol (|):

expression | pipe

Any parameters are added after the pipe name, and they are separated by colons:

expression | pipe:param

Pipes can be used with interpolation and property binding in Angular templates and can be

chained to each other.

Angular has a wide range of built-in pipe types already baked into it:

• uppercase/lowercase: This transforms a string into uppercase or lowercase letters.

• percent: This formats a number as a percentage.

• date: This formats a date or a string in a particular date format. The default usage of the

pipe displays the date according to the local settings of the user’s machine. However, we

can pass additional formats Angular has already baked in as parameters.

• currency: This formats a number as a local currency. We can override local settings and

change the currency symbol, passing the currency code as a parameter to the pipe.

• json: This takes an object as an input and outputs it in JSON format, replacing single quotes

with double quotes. The main usage of the json pipe is debugging. It is an excellent way

to see what a complex object contains and print it nicely on the screen.

• keyvalue: This converts an object into a collection of key-value pairs, where the key of

each item represents the object’s property and the value is its actual value.

• slice: This subtracts a subset (slice) of a collection or string. It accepts as parameters a

starting index, where it will begin slicing the input data, and, optionally, an end index.

When the end index is specified, the item at that index is not included in the resulting

array. If the end index is omitted, it falls back to the last index of the data.

• async: This is used when we manage data handled asynchronously by our component

class, and we need to ensure that our views promptly reflect the changes. We will learn

more about this pipe later in Chapter 8, Communicating with Data Services over HTTP, where

we will use it to fetch and display data asynchronously.

The slice pipe transforms immutable data. The transformed list is always

a copy of the original data, even when it returns all items.

Chapter 4 101

We will cover the lowercase, currency, and keyvalue pipes in more detail, but we encourage

you to explore the rest in the API reference at https://angular.dev/api:

1. Open the product-detail.component.ts file and import the CommonModule class:

import { CommonModule } from '@angular/common';

import { Component, input, output } from '@angular/core';

import { Product } from '../product';

@Component({

 selector: 'app-product-detail',

 imports: [CommonModule],

 templateUrl: './product-detail.component.html',

 styleUrl: './product-detail.component.css'

})

The CommonModule class exports the Angular built-in pipes. An Angular component must

import CommonModule before using built-in pipes in the component template.

2. Open the product.ts file and add the following fields to the Product interface that de-

scribe additional properties for a product:

export interface Product {

 id: number;

 title: string;

 price: number;

 categories: Record<number, string>;

}

The categories property is an object where the key represents the category ID, and the

value represents the category description.

3. Open the product-list.component.ts file and modify the products array to set values

for the new properties:

products: Product[] = [

 {

You will need the source code of the Angular application we created in Chapter 3,

Structuring User Interfaces with Components, to follow along with the rest of the chapter.

https://angular.dev/api

Enriching Applications Using Pipes and Directives102

 id: 1,

 title: 'Keyboard',

 price: 100,

 categories: {

 1: 'Computing',

 2: 'Peripherals'

 }

 },

 {

 id: 2,

 title: 'Microphone',

 price: 35,

 categories: { 3: 'Multimedia' }

 },

 {

 id: 3,

 title: 'Web camera',

 price: 79,

 categories: {

 1: 'Computing',

 3: 'Multimedia'

 }

 },

 {

 id: 4,

 title: 'Tablet',

 price: 500,

 categories: { 4: 'Entertainment' }

 }

];

4. Open the product-detail.component.html file and add a paragraph element to display

the price of the selected product in euros:

@if (product()) {

 <p>You selected:

 {{product()!.title}}

 </p>

Chapter 4 103

 <p>{{product()!.price | currency:'EUR'}}</p>

 <button (click)="addToCart()">Add to cart</button>

}

5. Run ng serve to start the application and select the Microphone from the product list:

Figure 4.1: Product details

In the preceding image, the product price is displayed in the currency format.

6. Add the following snippet below the product price to display the product categories:

<div class="pill-group">

 @for (cat of product()!.categories | keyvalue; track cat.key) {

 <p class="pill">{{cat.value | lowercase}}</p>

 }

</div>

In the preceding snippet, we used the @for block to iterate over the categories property

of the product variable. The categories property is not iterable because it is a plain ob-

ject, so, we used the keyvalue pipe to convert it into an array that contains key and value

properties. The key property represents the category ID, a unique identifier we can use

with the track variable. The value property stores the category description.

Additionally, we used the lowercase pipe to convert the category description to lower-

case text.

7. Add the following CSS styles to the product-detail.component.css file:

.pill-group {

 display: flex;

 flex-direction: row;

 align-items: start;

 flex-wrap: wrap;

 gap: 1.25rem;

}

Enriching Applications Using Pipes and Directives104

.pill {

 display: flex;

 align-items: center;

 --pill-accent: var(--gray-900);

 background: color-mix(in srgb, var(--pill-accent) 5%,
transparent);

 color: var(--pill-accent);

 padding-inline: 0.75rem;

 padding-block: 0.375rem;

 border-radius: 2.75rem;

 border: 0;

 transition: background 0.3s ease;

 font-family: var(--inter-font);

 font-size: 0.875rem;

 font-style: normal;

 font-weight: 500;

 line-height: 1.4rem;

 letter-spacing: -0.00875rem;

 text-decoration: none;

}

8. While running the application, select the Web camera product from the list:

Figure 4.2: Product details with categories

Alternative to using the CommonModule, we could have imported each pipe class separately from

the @angular/common npm package:

import { CurrencyPipe, KeyValuePipe, LowerCasePipe } from '@angular/
common';

Chapter 4 105

import { Component, input, output } from '@angular/core';

import { Product } from '../product';

@Component({

 selector: 'app-product-detail',

 imports: [KeyValuePipe, CurrencyPipe, LowerCasePipe],

 templateUrl: './product-detail.component.html',

 styleUrl: './product-detail.component.css'

})

In the final product-detail.component.html file, we use the snippet product()! many times

to read the value of the product property. Alternatively, we could create an alias using the @let

syntax as follows:

@let selectedProduct = product()!;

The @let keyword is similar to the let keyword in JavaScript and is used to declare variables

that are available only in the component template. In the preceding snippet, we declare the

selectedProduct variable, which can be used in the rest of the HTML code as follows:

@if (selectedProduct) {

 <p>You selected:

 {{selectedProduct.title}}

 </p>

 <p>{{selectedProduct.price | currency:'EUR'}}</p>

 <div class="pill-group">

 @for (cat of selectedProduct.categories | keyvalue; track cat.key) {

 <p class="pill">{{cat.value | lowercase}}</p>

 }

 </div>

 <button (click)="addToCart()">Add to cart</button>

}

The @let keyword helps us in cases where we want to use complex expressions in templates

such as:

• Ternary operators

• Nested object properties

• The async pipe

Enriching Applications Using Pipes and Directives106

Built-in pipes are sufficient for most use cases, but we must apply complex transformations to our

data in other cases. The Angular framework provides a mechanism to create uniquely customized

pipes, as we will see in the following section.

Building pipes
We have already seen what pipes are and what their purpose is in the Angular ecosystem. Next,

we will dive deeper into how we can build a pipe to provide custom transformations to data

bindings. In the following section, we will create a pipe that sorts our list of products by title.

Sorting data using pipes
To create a new pipe, we use the ng generate command of the Angular CLI, passing its name as

a parameter:

ng generate pipe sort

The preceding command will generate all necessary files of the sort pipe inside the folder where

we run the ng generate command. The TypeScript class of the pipe is defined in the sort.pipe.

ts file:

import { Pipe, PipeTransform } from '@angular/core';

@Pipe({

 name: 'sort'

})

export class SortPipe implements PipeTransform {

 transform(value: unknown, ...args: unknown[]): unknown {

 return null;

 }

}

The @Pipe is an Angular decorator that defines the name of the Angular pipe.

The TypeScript class of a pipe implements the transform method of the PipeTransform interface

and accepts two parameters:

• value: The input data that we want to transform

Chapter 4 107

• args: An optional list of arguments we can provide to the transformation method, each

separated by a colon

The Angular CLI helped us by scaffolding an empty transform method. We now need to modify

it to satisfy our business needs. The pipe will operate on a list of Product objects, so we need to

make the necessary adjustments to the types provided:

1. Add the following statement to import the Product interface:

import { Product } from './product';

2. Change the type of the value parameter to Product[] since we want to sort a list of

Product objects.

3. Change the method type to Product[] since the sorted list will only contain Product

objects, and modify it so that it returns an empty array by default.

The resulting sort.pipe.ts file should now look like the following:

import { Pipe, PipeTransform } from '@angular/core';

import { Product } from './product';

@Pipe({

 name: 'sort'

})

export class SortPipe implements PipeTransform {

 transform(value: Product[], ...args: unknown[]): Product[] {

 return [];

 }

}

We are now ready to implement the sorting algorithm of our method. We will use the native

sort method, which sorts items alphabetically by default. We will provide a custom comparator

function to the sort method that overrides the default functionality and performs the sorting

logic that we want to achieve:

transform(value: Product[], ...args: unknown[]): Product[] {

 if (value) {

 return value.sort((a: Product, b: Product) => {

 if (a.title < b.title) {

Enriching Applications Using Pipes and Directives108

 return -1;

 } else if (b.title < a.title) {

 return 1;

 }

 return 0;

 });

 }

 return [];

}

It is worth noting that the transform method checks whether there is input data first before

proceeding to the sorting process. Otherwise, it returns an empty array. This mitigates cases

where the collection is set asynchronously, or the component that consumes the pipe does not

set the collection at all.

That’s it! We have successfully created our first pipe. We need to call it from our component

template to see it in action:

1. Open the product-list.component.ts file and import the SortPipe class:

import { Component } from '@angular/core';

import { Product } from '../product';

import { ProductDetailComponent } from '../product-detail/product-
detail.component';

import { SortPipe } from '../sort.pipe';

@Component({

 selector: 'app-product-list',

 imports: [ProductDetailComponent, SortPipe],

 templateUrl: './product-list.component.html',

 styleUrl: './product-list.component.css'

})

For more information about the sort method, refer to https://developer.

mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Array/sort.

https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Array/sort

Chapter 4 109

2. Open the product-list.component.html file and add the pipe in the @for block:

<ul class="pill-group">

 @for (product of products | sort; track product.id) {

 <li class="pill" (click)="selectedProduct = product">

 @switch (product.title) {

 @case ('Keyboard') { }

 @case ('Microphone') { }

 @default { }

 }

 {{product.title}}

 } @empty {

 <p>No products found!</p>

 }

3. If we run the application using the ng serve command, we will notice that the product

list is now sorted by title alphabetically:

Figure 4.3: Product list sorted by title alphabetically

The sort pipe can sort product data only by title. In the following section, we will learn how to

configure the pipe so that it can sort by other product properties as well.

Enriching Applications Using Pipes and Directives110

Passing parameters to pipes
As we learned in the Manipulating data with pipes section, we can pass additional parameters

to a pipe using colons. We use the args parameter in the transform method of a pipe to get the

value of each parameter separated by a colon. We learned that the Angular CLI creates the args

parameter by default and uses the spread operator to expand its values in the method:

transform(value: Product[], ...args: unknown[]): Product[] {

 if (value) {

 return value.sort((a: Product, b: Product) => {

 if (a.title < b.title) {

 return -1;

 } else if (b.title < a.title) {

 return 1;

 }

 return 0;

 });

 }

 return [];

 }

The transform method can currently work only with the title property of a product. We could

leverage the args parameter to make it dynamic and allow the consumer of the pipe to define

the property they want to sort data, such as the product price:

1. Remove the spread operator from the args parameter because we will pass a single prop-

erty of a product each time and change its type, as follows:

transform(value: Product[], args: keyof Product): Product[] {

 if (value) {

 return value.sort((a: Product, b: Product) => {

 if (a.title < b.title) {

 return -1;

 } else if (b.title < a.title) {

 return 1;

 }

 return 0;

 });

 }

Chapter 4 111

 return [];

 }

In the preceding method, we use the keyof type operator from TypeScript to define that

the args parameter can be any property of a Product object.

2. Replace the title property with the args parameter inside the if statement:

if (value) {

 return value.sort((a: Product, b: Product) => {

 if (a[args] < b[args]) {

 return -1;

 } else if (b[args] < a[args]) {

 return 1;

 }

 return 0;

 });

}

Notice that in the preceding snippet, we access the a and b objects using square bracket

syntax instead of the dot syntax as before.

3. Modify the args parameter in the method signature so that it uses the title property by

default, if the consumer does not pass any parameter in the pipe:

transform(value: Product[], args: keyof Product = 'title')

The preceding behavior ensures that the product list component will work without any

change to the pipe usage.

4. Run the ng serve command and verify that the product list is sorted initially by title.

5. Open the product-list.component.html file and pass the price property as a pipe pa-

rameter:

@for (product of products | sort:'price'; track product.id) {

 <li class="pill" (click)="selectedProduct = product">

 @switch (product.title) {

 @case ('Keyboard') { }

 @case ('Microphone') { }

 @default { }

 }

Enriching Applications Using Pipes and Directives112

 {{product.title}}

}

6. Save the file and wait for the application to reload. You should see that the product list

is now sorted by price:

Figure 4.4: Product list sorted by price

The @Pipe decorator contains another significant property that we can set, which is directly re-

lated to the way that pipes react in the change detection mechanism of the Angular framework.

Change detection with pipes
There are two categories of pipes: pure and impure. All pipes are considered pure by default unless

we set the pure property explicitly to false in the @Pipe decorator:

@Pipe({

 name: 'sort',

 pure: false

})

Angular executes pure pipes when there is a change to the reference of the input variable. For

example, if the products array in the ProductListComponent class is assigned to a new value,

the pipe will correctly reflect that change. However, if we add a new product to the array using

the native Array.push method, the pipe will not be triggered because the object reference of the

array does not change.

Another example is when we have created a pure pipe that operates on a single object. Similarly, if

the reference of the value changes, the pipe executes correctly. If a property of the object changes,

the pipe cannot detect the change.

Chapter 4 113

A word of caution, however—impure pipes call the transform method every time the change

detection cycle is triggered. So, this might not be good for performance. Alternatively, you could

leave the pure property unset and try to cache the value or work with reducers and immutable

data to solve this in a better way, like the following:

this.products= [

 ...this.products,

 {

 id: 5,

 title: 'Headphones',

 price: 55,

 categories: { 3: 'Multimedia' }

 }

];

In the preceding snippet, we used the spread parameter syntax to create a new reference of the

products array by appending a new item to the reference of the existing array.

Alternatively to a pure pipe, we can use a computed signal, which is more effective and ergonomic

due to the following reasons:

• We can access the value of the signal in the component class, as opposed to pipes, where

their values can be read only in the template

• A computed signal is a simple plain function so we do not need to use a TypeScript class

as in pipes

We will learn more about signals in Chapter 7, Tracking Application State with Signals.

Creating custom pipes allows us to transform our data in a particular way according to our needs.

We must create custom directives if we also want to transform template elements.

Building directives
Angular directives are HTML attributes that extend the behavior or the appearance of a standard

HTML element. When we apply a directive to an HTML element or even an Angular component,

we can add custom behavior or alter its appearance. There are three types of directives:

• Components: Components are directives that contain an associated HTML template.

• Structural directives: These add or remove elements from the DOM.

Enriching Applications Using Pipes and Directives114

• Attribute directives: These modify the appearance of a DOM element or define a custom

behavior. We met attribute directives in class and style bindings in the previous chapter.

If a directive has a template attached, then it becomes a component. In other words, compo-

nents are Angular directives with a view. This rule is handy when deciding whether to create a

component or a directive for your needs. If you need a template, create a component; otherwise,

make it a directive.

Custom directives allow us to attach advanced behaviors to elements in the DOM or modify their

appearance. In the following sections, we will explore how to create attribute directives.

Displaying dynamic data
Attribute directives are commonly used to alter the appearance of an HTML element. We have all

probably found ourselves in a situation where we want to add copyrighted information to our

applications. Ideally, we want to use this information in various parts of our application, on a

dashboard or a contact page. The content of the information should also be dynamic. The year

or range of years (it depends on how you want to use it) should update dynamically according to

the current date. Our first intention is likely to be to create a component, but what about making

it a directive instead? This way, we could attach the directive to any element we want and not

bother with a particular template. So, let’s begin!

We will use the ng generate command of the Angular CLI, passing the name of the directive as

a parameter:

ng generate directive copyright

The preceding command will generate all the necessary files of the copyright directive inside the

folder where we run the ng generate command. The TypeScript class of the directive is defined

in the copyright.directive.ts file:

import { Directive } from '@angular/core';

@Directive({

 selector: '[appCopyright]'

})

export class CopyrightDirective {

 constructor() { }

}

Chapter 4 115

The @Directive is an Angular decorator that defines the properties of the Angular directive. It

configures a TypeScript class as an Angular directive using the selector property. It is a CSS

selector that instructs Angular to load the directive in the location that finds the corresponding

attribute in an HTML template. The Angular CLI adds the app prefix by default, but you can cus-

tomize it using the --prefix option when creating the Angular project.

Let’s use the newly created directive to add copyright information to our application:

1. Open the styles.css file and add the following CSS styles:

.copyright {

 font-family: "Inter", -apple-system, BlinkMacSystemFont, "Segoe
UI", Roboto,

 Helvetica, Arial, sans-serif, "Apple Color Emoji", "Segoe UI
Emoji",

 "Segoe UI Symbol";

 width: 100%;

 min-height: 100%;

 display: flex;

 justify-content: center;

 align-items: center;

 padding: 1rem;

 box-sizing: inherit;

 position: relative;

}

In the preceding snippet, we added the CSS styles for our copyright directive in the global

CSS stylesheet. Directives do not have an accompanying CSS file that we can use, such

as components.

When we use the selector in an HTML template, we do not add the square brackets.

Enriching Applications Using Pipes and Directives116

2. Open the copyright.directive.ts file and import the ElementRef class from the

@angular/core npm package:

import { Directive, ElementRef } from '@angular/core';

3. Modify the constructor of the directive as follows:

constructor(el: ElementRef) {

 const currentYear = new Date().getFullYear();

 const targetEl: HTMLElement = el.nativeElement;

 targetEl.classList.add('copyright');

 targetEl.textContent = `Copyright ©${currentYear} All Rights
Reserved`;

}

In the preceding snippet, we used the ElementRef class to access and manipulate the un-

derlying HTML element attached to the directive. The nativeElement property contains

the actual native HTML element. We also add the copyright class using the add method

of the classList property. Finally, we change the text of the element by modifying the

textContent property.

4. Open the app.component.ts file and import the CopyrightDirective class:

import { Component } from '@angular/core';

import { RouterOutlet } from '@angular/router';

import { ProductListComponent } from './product-list/product-list.
component';

import { CopyrightDirective } from './copyright.directive';

@Component({

 selector: 'app-root',

 imports: [

 RouterOutlet,

 ProductListComponent,

 CopyrightDirective

The ElementRef is a built-in Angular service. To use a service in a component

or a directive, we need to inject it into the constructor, as we will learn in

Chapter 5, Managing Complex Tasks with Services.

Chapter 4 117

],

 templateUrl: './app.component.html',

 styleUrl: './app.component.css'

})

5. Open the app.component.html file and add a <footer> element to display copyright

information:

<main class="main">

 <div class="content">

 <app-product-list></app-product-list>

 </div>

</main>

<footer appCopyright></footer>

<router-outlet />

6. Run the application using the ng serve command and observe the application output:

Figure 4.5: The application’s output

Enriching Applications Using Pipes and Directives118

When creating directives, it is important to consider reusable functionality that doesn’t necessarily

relate to a particular feature. The topic we looked at was copyrighted information, but we could

build other functionalities, such as tooltips and collapsible or infinite scrolling features, with

relative ease. In the following section, we will build another attribute directive that explores the

options available further.

Property binding and responding to events
Attribute directives are also concerned with the behavior of an HTML element. They can extend the

functionality of the element and add new features. The Angular framework provides two helpful

decorators that we can use in our directives to enhance the functionality of an HTML element:

• @HostBinding: This binds a value to the property of the native host element.

• @HostListener: This binds to an event of the native host element.

The native <input> HTML element can support different input types, including simple text, radio

buttons, and numeric values. When we use the latter, the input adds two arrows inline, up and

down, to control its value. It is this feature of the input element that makes it look incomplete. If

we type a non-numeric character, the input still renders it.

We will create an attribute directive that rejects non-numeric values entered by the keyboard:

1. Run the following Angular CLI command to create a new directive named numeric:

ng generate directive numeric

2. Open the numeric.directive.ts file and import the two decorators that we are going

to use:

import { Directive, HostBinding, HostListener } from '@angular/
core';

3. Define a currentClass property using the @HostBinding decorator that will be bound to

the class property of the <input> element:

@HostBinding('class') currentClass = '';

The native host element is the element where our directive takes action.

Chapter 4 119

4. Define an onKeyPress method using the @HostListener decorator that will be bound to

the keypress native event of the <input> element:

@HostListener('keypress', ['$event']) onKeyPress(event:
KeyboardEvent) {

 const charCode = event.key.charCodeAt(0);

 if (charCode > 31 && (charCode < 48 || charCode > 57)) {

 this.currentClass = 'invalid';

 event.preventDefault();

 } else {

 this.currentClass = 'valid';

 }

}

5. Open the styles.css file and add the following CSS styles that will be applied when a

component uses the directive:

input.valid {

 border: solid green;

}

input.invalid {

 border: solid red;

}

The onKeyPress method contains the logic of how our directive works under the hood.

When the user presses a key inside an <input> element, Angular knows to call the onKeyPress

method because we have registered it with the @HostListener decorator. The @HostListener

decorator accepts the event name and a list of arguments as parameters. In our case, we pass the

keypress event name and the $event argument, respectively. The $event is the current object

that triggered the event, which is of the KeyboardEvent type and contains the keystrokes entered

by the user.

Every time the user presses a key, we extract it from the $event object, convert it into a Unicode

character using the charCodeAt method, and check it against a non-numeric code. If the character

is non-numeric, we call the preventDefault method of the $event object to cancel the user action

and roll back the <input> element to its previous state. At the same time, we set the respective

class to valid if the key is numeric and invalid if it is not.

Enriching Applications Using Pipes and Directives120

We can apply the directive in an <input> tag as follows:

<input appNumeric />

Summary
Now that we have reached this point, it is fair to say that you have met almost every Angular

artifact for building Angular components, which are indeed the wheels and the engine of all An-

gular applications. In the forthcoming chapters, we will see how we can design our application

architecture better, manage dependency injection throughout our component tree, consume

data services, and leverage the new Angular router to show and hide components when required.

Now, get ready to take on new challenges—in the next chapter, we will discover how to use data

services to manage complex tasks in our components.

We will see a real-world usage of the directive in Chapter 10, Collecting User Data

with Forms. In the meantime, if you want to try it yourself, remember to import the

NumericDirective class in your component before using it.

5
Managing Complex Tasks with
Services

We have reached a point in our journey where we can successfully develop more complex appli-

cations by nesting components within other components in a sort of component tree. However,

bundling all our business logic into a single component is not the way to go. Our application

might become unmaintainable very soon as it develops.

In this chapter, we’ll investigate the advantages that Angular’s dependency management mech-

anism can bring to the table to overcome such problems. We will learn how to use the Angular

Dependency Injection (DI) mechanism to declare and consume our dependencies across the

application with minimum effort and optimal results. By the end of this chapter, you will be

able to create an Angular application that is correctly structured to enforce the Separation of

Concerns (SoC) pattern using services.

We will cover the following concepts relating to Angular services:

• Introducing Angular DI

• Creating our first Angular service

• Providing dependencies across the application

• Injecting services in the component tree

• Overriding providers in the injector hierarchy

Managing Complex Tasks with Services122

Technical requirements
The chapter contains various code samples to walk you through the concept of Angular services.

You can find the related source code in the ch05 folder of the following GitHub repository:

https://www.github.com/PacktPublishing/Learning-Angular-Fifth-Edition

Introducing Angular DI
DI is an application design pattern we also come across in other languages, such as C# and Java.

As our applications grow and evolve, each code entity will internally require instances of other

objects, better known as dependencies. Passing such dependencies to the consumer code entity

is known as an injection, and it also entails the participation of another code entity called an

injector. An injector is responsible for instantiating and bootstrapping the required dependen-

cies to be ready for use when injected into a consumer. The consumer knows nothing about how

to instantiate its dependencies and is only aware of the interface they implement to use them.

Angular includes a top-notch DI mechanism to expose required dependencies to any Angular ar-

tifact of an Angular application. Before delving deeper into this subject, let’s look at the problem

that DI in Angular is trying to address.

In Chapter 3, Structuring User Interfaces with Components, we learned how to display a list of objects

using the @for block. We used a static list of Product objects that were declared in the product-

list.component.ts file, as shown here:

products: Product[] = [

 {

 id: 1,

 title: 'Keyboard',

 price: 100,

 categories: {

 1: 'Computing',

 2: 'Peripherals'

 }

 },

 {

 id: 2,

 title: 'Microphone',

 price: 35,

 categories: { 3: 'Multimedia' }

https://www.github.com/PacktPublishing/Learning-Angular-Fifth-Edition

Chapter 5 123

 },

 {

 id: 3,

 title: 'Web camera',

 price: 79,

 categories: {

 1: 'Computing',

 3: 'Multimedia'

 }

 },

 {

 id: 4,

 title: 'Tablet',

 price: 500,

 categories: { 4: 'Entertainment' }

 }

];

This previous approach has two main drawbacks:

• In real-world applications, we rarely work with static data. It usually comes from a back-

end API or some other external source.

• The product list is tightly coupled with the component. Angular components are respon-

sible for the presentation logic and should not be concerned with how to get data. They

only need to display it in the HTML template. Thus, they should delegate business logic

to services to handle such tasks.

In the following section, we’ll learn how to avoid these obstacles using Angular services.

We will create an Angular service that will return the product list. Thus, we will effectively del-

egate business logic tasks away from the component. Remember: the component should only be

concerned with presentation logic.

You will need the source code of the Angular application we created in Chapter 4,

Enriching Applications Using Pipes and Directives, to follow along with the rest of the

chapter.

Managing Complex Tasks with Services124

Creating our first Angular service
To create a new Angular service, we use the ng generate command of the Angular CLI while

passing the name of the service as a parameter:

ng generate service products

Running the preceding command will create the products service, which consists of the products.

service.ts file and its accompanying unit test file, products.service.spec.ts.

We usually name a service after the functionality that it represents. Every service has a business

context or domain within which it operates. When it starts to cross boundaries between different

contexts, this is an indication that you should break it into different services. A products service

should be concerned with products. Similarly, orders should be managed by a separate orders

service.

An Angular service is a TypeScript class marked with the @Injectable decorator. The decorator

identifies the class as an Angular service that can be injected into other Angular artifacts such as

components, directives, or even other services. It accepts an object as a parameter with a single

property named providedIn, which defines which injector provides the service.

An Angular service, by default, is registered with an injector – the root injector of the Angular

application, as defined in the products.service.ts file:

import { Injectable } from '@angular/core';

@Injectable({

 providedIn: 'root'

})

export class ProductsService {

 constructor() { }

}

Our service does not contain any implementation. Let’s add some logic so that our component

can use it:

1. Add the following statement to import the Product interface:

import { Product } from './product';

Chapter 5 125

2. Create the following method in the ProductsService class:

getProducts(): Product[] {

 return [

 {

 id: 1,

 title: 'Keyboard',

 price: 100,

 categories: {

 1: 'Computing',

 2: 'Peripherals'

 }

 },

 {

 id: 2,

 title: 'Microphone',

 price: 35,

 categories: { 3: 'Multimedia' }

 },

 {

 id: 3,

 title: 'Web camera',

 price: 79,

 categories: {

 1: 'Computing',

 3: 'Multimedia'

 }

 },

 {

 id: 4,

 title: 'Tablet',

 price: 500,

 categories: { 4: 'Entertainment' }

 }

];

}

In the following sections, we will learn how to use the service in our application.

Managing Complex Tasks with Services126

Injecting services in the constructor
The most common way to use a service in an Angular component is through its constructor:

1. Open the product-list.component.ts file and modify the products property so that it

is initialized to an empty array:

products: Product[] = [];

2. Add the following statement to import the ProductsService class:

import { ProductsService } from '../products.service';

3. Create a component property called productService and give it a type of ProductsService:

private productService: ProductsService;

4. Instantiate the property using the new keyword in the component’s constructor:

constructor() {

 this.productService = new ProductsService();

}

5. Import the OnInit interface from the @angular/core npm package:

import { Component, OnInit } from '@angular/core';

6. Add the OnInit interface to the list of implemented interfaces of the ProductListComponent

class:

export class ProductListComponent implements OnInit

7. Add the following ngOnInit method that calls the getProducts method of the

productService property and assigns the returned value to the products property:

ngOnInit(): void {

 this.products = this.productService.getProducts();

}

Run the application using the ng serve command to verify that the list of products is still shown

correctly on the page:

Chapter 5 127

Figure 5.1: Product list

Awesome! We have successfully wired up our component with the service, and our application

looks great. Well, this seems to be the case, but it’s actually not. There are some problems with

the actual implementation. If the ProductsService class must change, maybe to accommo-

date another dependency, ProductListComponent should also change the implementation of

its constructor. Thus, it is evident that the product list component is tightly coupled to the

implementation of ProductsService. It prevents us from altering, overriding, or neatly testing

the service if required. It also entails that a new ProductsService object is created every time we

render a product list component, which might not be desired in specific scenarios, such as when

we expect to use an actual singleton service.

DI systems try to solve these issues by proposing several patterns, and the constructor injection

pattern is the one enforced by Angular. We could remove the productService component prop-

erty and inject the service directly into the constructor. The resulting ProductListComponent

class would be the following:

export class ProductListComponent implements OnInit {

 products: Product[] = [];

 selectedProduct: Product | undefined;

Managing Complex Tasks with Services128

 constructor(private productService: ProductsService) {}

 onAdded() {

 alert(`${this.selectedProduct?.title} added to the cart!`);

 }

 ngOnInit(): void {

 this.products = this.productService.getProducts();

 }

}

The component does not need to know how to instantiate the service. On the other hand, it expects

such a dependency to be available before it is instantiated so that it can be injected through its

constructor. This approach is easier to test as it allows us to override it or mock it up.

However, using a constructor is not the only way to inject services in an Angular application, as

we will learn in the following section.

The inject keyword
The Angular framework contains a built-in inject method that we can use to inject services with-

out using the constructor. There are some cases where we would like to use the inject method:

• The constructor contains many injected services, making our code unreadable.

• Constructors cannot be used when working with pure functions in the Angular router or

the HTTP client, as we will learn in the following chapters.

Let’s see how we could refactor the product list component to use the inject method:

1. Open the product-list.component.ts file and import the inject method from the

@angular/core npm package:

import { Component, OnInit, inject } from '@angular/core';

2. Declare the following property in the ProductListComponent class:

Consider declaring injected services as readonly to provide more stable code and

prevent re-assignment of the service. In the preceding snippet, the constructor

could be re-written as constructor(private readonly productService:

ProductsService) {}.

Chapter 5 129

private productService = inject(ProductsService);

3. Remove the constructor from the ProductListComponent class.

The application should still work as expected if we run the ng serve command. The product list

should be displayed as in the preceding section.

We will explore additional use cases for the inject method in Chapter 8, Communicating with

Data Services over HTTP, and Chapter 9, Navigating through Applications with Routing.

Compared to the constructor approach, the inject method provides more accurate types, en-

forcing strongly typed Angular applications.

The Angular CLI provides a schematic that we can run to migrate to the new inject method.

You can find more detail on how to run the schematic at https://angular.dev/reference/

migrations/inject-function.

As we learned, when we create a new Angular service, the Angular CLI registers this service with

the root injector of the application by default. In the following section, we’ll learn about the

internals of the DI mechanism and how the root injector works.

Providing dependencies across the application
The Angular framework offers a DI mechanism to provide dependencies in Angular artifacts such

as components, directives, pipes, and services. The Angular DI is based on an injector hierarchy

where at the top there is the root injector of an Angular application.

Injectors in Angular can examine the dependencies in the constructor of an Angular artifact and

return an instance of the type represented by each dependency, so that we can use it straight away

in the implementation of our Angular class. The injector maintains a list of all dependencies that

an Angular application needs. When a component or other artifact wants to use a dependency,

the injector first checks to see if it has already created an instance of this dependency. If not, it

creates a new one, returns it to the component, and keeps a copy for further use. The next time the

same dependency is requested, it returns the copy previously created. But how does the injector

know which dependencies an Angular application needs?

In this book, we use both the inject method and constructor approach, according to

the execution context of the application code.

https://angular.dev/reference/migrations/inject-function
https://angular.dev/reference/migrations/inject-function

Managing Complex Tasks with Services130

When we create an Angular service, we use the providedIn property of the @Injectable decorator

to define how it is provided to the application. That is, we create a provider for this service. A

provider is a recipe containing guidelines on creating a specific service. During application start-

up, the framework is responsible for configuring the injector with providers of services so that it

knows how to create one upon request. An Angular service is configured with the root injector by

default when created with the CLI. The root injector creates singleton services that are globally

available through the application.

In Chapter 1, Building Your First Angular Application, we learned that the application configuration

object defined in the app.config.ts file has a providers property where we can register appli-

cation services. We could remove the providedIn property from the @Injectable decorator of

the products.service.ts file and add it in that array directly. Registering a service in this way

is the same as configuring the service with providedIn: 'root'. The main difference between

them is that the providedIn syntax is tree shakable.

When you provide a service through the application configuration object, the Angular compiler

cannot say if the service is used somewhere in the application. So, it includes the service in the

final bundle a priori. Thus, using the @Injectable decorator over the providers array of the

application configuration is preferable.

The root injector is not the only injector in an Angular application. Components have their in-

jectors, too. Angular injectors are also hierarchical. Whenever an Angular component defines

a token in its constructor, the injector searches for a type that matches that token in the pool

of registered providers. If no match is found, it delegates the search to the parent component’s

provider and keeps bubbling the component injector tree until it reaches the root injector. If no

match is found, Angular throws an exception.

Tree shaking is the process of finding dependencies that are not used in an application

and removing them from the final bundle. In the context of Angular, the Angular

compiler can detect and delete Angular services that are not used, resulting in a

smaller bundle.

You should always register singleton services with the root injector.

Chapter 5 131

Let’s explore the injector hierarchy of the product list component using Angular DevTools:

1. Run the application using the ng serve command and preview it at http://localhost:4200.

2. Start Angular DevTools and select the Components tab.

3. Select the app-product-list component from the component tree:

Figure 5.2: Components tab

In the preceding image, the Injected Services section contains the services injected in

the component.

Managing Complex Tasks with Services132

4. Click on the down arrow next to the ProductsService label, and you will see the following

diagram:

Figure 5.3: Product list injector hierarchy

The preceding diagram depicts the injector hierarchy of the product list component. It contains

two main injector hierarchy types common to an Angular application: environment and element

injectors.

Environment injectors are configured using the providedIn property and the providers ar-

ray in the application configuration object. In our case, we see the Root and Standalone[_Ap-

pComponent] injectors because the products service is provided from the root injector using the

providedIn property.

Angular creates an element injector for each component which can be configured from the

providers array of the @Component decorator, as we will see in the following section. In our case,

we see the AppComponent and ProductListComponent injectors because these components

are related directly to the product list.

The injector hierarchy diagram in Angular DevTools is in horizontal orientation.

Here, we show it vertically for readability..

Chapter 5 133

Components create injectors, so they are immediately available to their child components. We’ll

learn about this in detail in the following section.

Injecting services in the component tree
As we learned in the preceding section, Angular uses an element injector to provide services in

components through the providers property of the @Component decorator. A service that registers

with the element injector can serve two purposes:

• It can be shared with its child components

• It can create multiple copies of the service every time the component that provides the

service is rendered

In the following sections, we’ll learn how to apply each approach.

Sharing dependencies through components
A service provided through a component can be shared among the child components of the parent

component, and it is immediately available for injection into their constructors. Child components

reuse the same instance of the service as the parent component. Let’s walk our way through an

example to understand this better:

1. Create a new Angular component named favorites:

ng generate component favorites

2. Open the favorites.component.ts file and modify the import statements accordingly:

import { Component, OnInit } from '@angular/core';

import { Product } from '../product';

import { ProductsService } from '../products.service';

You can select the Injector Tree tab of Angular DevTools for a more detailed analysis

of the application injector hierarchy per type. You can also learn more about the

different kinds of injectors at https://angular.dev/guide/di/hierarchical-

dependency-injection#types-of-injector-hierarchies.

https://angular.dev/guide/di/hierarchical-dependency-injection#types-of-injector-hierarchies
https://angular.dev/guide/di/hierarchical-dependency-injection#types-of-injector-hierarchies

Managing Complex Tasks with Services134

3. Modify the FavoritesComponent class to use the ProductsService class and get the prod-

uct list in a products component property:

export class FavoritesComponent implements OnInit {

 products: Product[] = [];

 constructor(private productService: ProductsService) {}

 ngOnInit(): void {

 this.products = this.productService.getProducts();

 }

}

4. Open the favorites.component.html file and replace its content with the following

HTML code:

 <ul class="pill-group">

 @for (product of products | slice:1:3; track product.id) {

 <li class="pill">

 ⭐ {{product.title}}

 }

In the preceding snippet, we iterate over the products array and use the slice pipe to

display only two products.

5. Modify the favorites.component.ts file so that it imports the CommonModule class that

is needed for the slice pipe:

import { CommonModule } from '@angular/common';

import { Component, OnInit } from '@angular/core';

import { Product } from '../product';

import { ProductsService } from '../products.service';

@Component({

 selector: 'app-favorites',

 imports: [CommonModule],

 templateUrl: './favorites.component.html',

Chapter 5 135

 styleUrl: './favorites.component.css'

})

6. Open the favorites.component.css file to add some CSS styles to our favorite products:

.pill-group {

 display: flex;

 flex-direction: column;

 align-items: start;

 flex-wrap: wrap;

 gap: 1.25rem;

}

.pill {

 display: flex;

 align-items: center;

 --pill-accent: var(--hot-red);

 background: color-mix(in srgb, var(--hot-red) 5%, transparent);

 color: var(--pill-accent);

 padding-inline: 0.75rem;

 padding-block: 0.375rem;

 border-radius: 2.75rem;

 border: 0;

 transition: background 0.3s ease;

 font-family: var(--inter-font);

 font-size: 0.875rem;

 font-style: normal;

 font-weight: 500;

 line-height: 1.4rem;

 letter-spacing: -0.00875rem;

 text-decoration: none;

}

Managing Complex Tasks with Services136

7. Open the product-list.component.ts file, import the FavoritesComponent class, and

add the ProductsService class to the providers array of the @Component decorator:

import { Component, OnInit } from '@angular/core';

import { Product } from '../product';

import { ProductDetailComponent } from '../product-detail/product-
detail.component';

import { SortPipe } from '../sort.pipe';

import { ProductsService } from '../products.service';

import { FavoritesComponent } from '../favorites/favorites.
component';

@Component({

 selector: 'app-product-list',

 imports: [ProductDetailComponent, SortPipe, FavoritesComponent],

 templateUrl: './product-list.component.html',

 styleUrl: './product-list.component.css',

 providers: [ProductsService]

})

8. Open the products.service.ts file and remove the providedIn property from the

@Injectable decorator since the element injector of the product list component will

provide it.

9. Finally, open the product-list.component.html file and add the following HTML snippet

to display the contents of the favorites component:

<h1>Favorites</h1>

<app-favorites></app-favorites>

Chapter 5 137

When running the application using ng serve, you should see the following output:

Figure 5.4: Product list with favorites

Let’s explain what we did in the previous example in more detail. We injected ProductsService

in FavoritesComponent but we did not provide it through its injector. So, how was the com-

ponent aware of how to create an instance of the ProductsService class and use it? It wasn’t.

When we added the favorites component to the ProductListComponent template, we made it

a direct child of this component, thus giving it access to all its provided services. In a nutshell,

FavoritesComponent can use ProductsService out of the box because it is already provided

through the element injector of its parent component, ProductListComponent.

Managing Complex Tasks with Services138

So, even if ProductsService was initially registered with the environment root injector, we could

also register it with the element injector of ProductListComponent. In the next section, we’ll

investigate how it is possible to achieve such behavior.

Root and component injectors
We have already learned that when we create an Angular service using the Angular CLI, the service

is provided in the application’s root injector by default. How does this differ when providing a

service through the element injector of a component?

Services provided with the application root injector are available throughout the whole appli-

cation. When a component wants to use such a service, it only needs to inject it, nothing more.

Now, if the component provides the same service through its injector, it will get an instance of

the service entirely different from the one from the root injector. This technique is called service

scope limiting because we limit the scope of the service to a specific part of the component tree:

Figure 5.5: Service scope limiting

Chapter 5 139

The previous diagram shows that ProductsService can be provided through two injec-

tors: the application root injector and the element injector of the product list component.

The FavoritesComponent class injects ProductsService to use it. As we have already seen,

FavoritesComponent is a child component of ProductListComponent.

According to the injector hierarchy, it will first ask the injector of its parent component,

ProductListComponent, about providing the service. The ProductListComponent class in-

deed provides ProductsService, so it creates a new instance of the service and returns it to

FavoritesComponent.

Now, consider that another component in our application, CmpA, wants to use ProductsService.

Since it is not a child component of ProductListComponent and does not contain any parent

component that provides the required service, it will finally reach the application root injector.

The root injector that provides ProductsService checks if it has already created an instance for

that service. If not, it creates a new one, called productService, and returns it to CmpA. It also

keeps productService in the local pool of services for later use.

Suppose another component, CmpB, wants to use ProductsService and asks the application root

injector. The root injector knows it has already created the productService instance when CmpA

requested it and returns it immediately to the CmpB component.

Sandboxing components with multiple instances
When we provide a service through the element injector and inject it into the component’s

constructor, a new instance is created every time the component is rendered on the page. It can

come in handy in cases such as when we want to have a local cache service for each component.

We will explore this scenario by transforming our Angular application so that the product list

displays a quick view of each product using an Angular service:

1. Run the following command to create a new Angular component for the product view:

ng generate component product-view

2. Open the product-view.component.ts file and declare an input property named id so

we can pass a unique identifier of the product we want to display:

import { Component, input } from '@angular/core';

@Component({

 selector: 'app-product-view',

 imports: [],

Managing Complex Tasks with Services140

 templateUrl: './product-view.component.html',

 styleUrl: './product-view.component.css'

})

export class ProductViewComponent {

 id = input<number>();

}

3. Run the following Angular CLI command inside the product-view folder to create an

Angular service that will be dedicated to the product view component:

ng generate service product-view

4. Open the product-view.service.ts file and remove the providedIn property from the

@Injectable decorator because we will provide it later in the product view component.

5. Inject ProductsService into the constructor of the ProductViewService class:

import { Injectable } from '@angular/core';

import { ProductsService } from '../products.service';

@Injectable()

export class ProductViewService {

 constructor(private productService: ProductsService) { }

}

The preceding technique is called service-in-a-service because we inject one Angular

service into another.

6. Create a method named getProduct that takes an id property as a parameter. The meth-

od will call the getProducts method of the ProductsService class and search through

the product list based on the id. If it finds the product, it will keep it in a local variable

named product:

import { Injectable } from '@angular/core';

import { ProductsService } from '../products.service';

import { Product } from '../product';

@Injectable()

export class ProductViewService {

 private product: Product | undefined;

Chapter 5 141

 constructor(private productService: ProductsService) { }

 getProduct(id: number): Product | undefined {

 const products = this.productService.getProducts();

 if (!this.product) {

 this.product = products.find(product => product.id === id)

 }

 return this.product;

 }

}

We have already created the essential Angular artifacts for working with the product view com-

ponent. All we need to do now is connect them and wire them up to the product list:

1. Inject ProductViewService in the constructor of the ProductViewComponent and im-

plement the ngOnInit method:

import { Component, input, OnInit } from '@angular/core';

import { ProductViewService } from './product-view.service';

@Component({

 selector: 'app-product-view',

 imports: [],

 templateUrl: './product-view.component.html',

 styleUrl: './product-view.component.css',

 providers: [ProductViewService]

})

export class ProductViewComponent implements OnInit {

 id = input<number>();

 constructor(private productViewService: ProductViewService) {}

 ngOnInit(): void {

 }

}

Managing Complex Tasks with Services142

2. Create a component property to keep the product that we will fetch from the

ProductViewService class:

import { Component, input, OnInit } from '@angular/core';

import { ProductViewService } from './product-view.service';

import { Product } from '../product';

@Component({

 selector: 'app-product-view',

 imports: [],

 templateUrl: './product-view.component.html',

 styleUrl: './product-view.component.css',

 providers: [ProductViewService]

})

export class ProductViewComponent implements OnInit {

 id = input<number>();

 product: Product | undefined;

 constructor(private productViewService: ProductViewService) {}

 ngOnInit(): void {

 }

}

3. Modify the ngOnInit method so that it calls the getProduct method of the

ProductViewService class as follows:

ngOnInit(): void {

 this.product = this.productViewService.getProduct(this.id()!);

}

In the preceding snippet, we pass the id component property to the getProduct method

as a parameter and assign the returned value to the product property.

4. Open the product-view.component.html file and replace its content with the following

HTML template:

@switch (product?.title) {

 @case ('Keyboard') { }

Chapter 5 143

 @case ('Microphone') { }

 @default { }

}

{{product?.title}}

5. Open the product-list.component.ts file and import the ProductViewComponent class:

import { Component, OnInit } from '@angular/core';

import { Product } from '../product';

import { ProductDetailComponent } from '../product-detail/product-
detail.component';

import { SortPipe } from '../sort.pipe';

import { ProductsService } from '../products.service';

import { ProductViewComponent } from '../product-view/product-view.
component';

@Component({

 selector: 'app-product-list',

 imports: [ProductDetailComponent, SortPipe, ProductViewComponent],

 templateUrl: './product-list.component.html',

 styleUrl: './product-list.component.css'

})

6. Finally, open the product-list.component.html file and modify the @for block to use

the product view component:

<ul class="pill-group">

 @for (product of products | sort; track product.id) {

 <li class="pill" (click)="selectedProduct = product">

 <app-product-view [id]="product.id"></app-product-view>

 } @empty {

 <p>No products found!</p>

 }

If we run our application with the ng serve command, we will see that the product list is still

displayed correctly.

Managing Complex Tasks with Services144

Each rendered product view component creates a dedicated sandboxed ProductViewService

instance for its purpose. Any other component cannot share the instance or be changed except

by the component that provides it.

Try to provide ProductViewService in ProductListComponent instead of ProductViewComponent;

you will see that only one product is rendered multiple times:

Figure 5.6: Product list

In this case, only one service instance is shared among the child components. Why is that? Recall

the business logic of the getProduct method from the ProductViewService class:

getProduct(id: number): Product | undefined {

 const products = this.productService.getProducts();

 if (!this.product) {

 this.product = products.find(product => product.id === id)

 }

 return this.product;

}

In the preceding method, the product property is set initially when we provide the service inside

ProductListComponent. Since we have only one instance of the service, the value of the property

will remain the same while we render the product view component multiple times.

We’ve learned how dependencies are injected into the component hierarchy and how provider

lookup is performed by bubbling the request upward in the component tree. However, what if

we want to constrain such injection or lookup actions? We’ll see how to do so in the next section.

Chapter 5 145

Restricting provider lookup
We can only constrain dependency lookup to the next upper level. To do so, we need to apply the

@Host decorator to those dependency parameters whose provider lookup we want to restrict:

import { CommonModule } from '@angular/common';

import { Component, Host, OnInit } from '@angular/core';

import { Product } from '../product';

import { ProductsService } from '../products.service';

@Component({

 selector: 'app-favorites',

 imports: [CommonModule],

 templateUrl: './favorites.component.html',

 styleUrl: './favorites.component.css'

})

export class FavoritesComponent implements OnInit {

 products: Product[] = [];

 constructor(@Host() private productService: ProductsService) {}

 ngOnInit(): void {

 this.products = this.productService.getProducts();

 }

}

In the preceding example, the element injector of FavoritesComponent will look for the

ProductsService class in its providers. If it does not provide the service, it will not bubble up

the injector hierarchy; instead, it will stop and throw an exception in the console window of the

browser:

Error: NG0201: No provider for _ProductsService found in NodeInjector�

We can configure the injector so that it does not throw an error if we decorate the service with

the @Optional decorator:

import { CommonModule } from '@angular/common';

import { Component, Host, OnInit, Optional } from '@angular/core';

import { Product } from '../product';

import { ProductsService } from '../products.service';

Managing Complex Tasks with Services146

@Component({

 selector: 'app-favorites',

 imports: [CommonModule],

 templateUrl: './favorites.component.html',

 styleUrl: './favorites.component.css'

})

export class FavoritesComponent implements OnInit {

 products: Product[] = [];

 constructor(@Optional() @Host() private productService: ProductsService)
{}

 ngOnInit(): void {

 this.products = this.productService.getProducts();

 }

}

However, using the @Optional decorator does not solve the actual problem. The preceding snippet

will still throw an error, different than the previous one, because we still use the @Host decorator

that limits searching the ProductsService class in the injector hierarchy. We need to refactor the

ngOnInit lifecycle hook event so that it takes care of not finding the service instance.

The @Host and @Optional decorators define the level at which the injector searches for depen-

dencies. There are two other decorators, called @Self and @SkipSelf. When using the @Self

decorator, the injector looks for dependencies in the injector of the current component. On the

contrary, the @SkipSelf decorator instructs the injector to skip the local injector and search

further up in the injector hierarchy.

So far, we have learned how the Angular DI framework uses classes as dependency tokens to work

out the type required and return it from any providers available in the injector hierarchy. However,

there are cases where we might need to override the instance of a class or provide types that are

not actual classes, such as primitive types.

The @Host and @Self decorators work similarly. For more information about when

to use each, have a look at https://angular.dev/guide/di/hierarchical-

dependency-injection#self and https://angular.dev/guide/di/

hierarchical-dependency-injection#host.

https://angular.dev/guide/di/hierarchical-dependency-injection#self
https://angular.dev/guide/di/hierarchical-dependency-injection#self
https://angular.dev/guide/di/hierarchical-dependency-injection#host
https://angular.dev/guide/di/hierarchical-dependency-injection#host

Chapter 5 147

Overriding providers in the injector hierarchy
We already learned how to use the providers array of the @Component decorator in the Sharing

dependencies through components section:

providers: [ProductsService]

The preceding syntax is called class provider syntax and is shorthand for the provide object

literal syntax shown below:

providers: [

 { provide: ProductsService, useClass: ProductsService }

]

The preceding syntax uses an object with the following properties:

• provide: This is the token used to configure the injector. It is the actual class that con-

sumers of the dependency inject into their constructors.

• useClass: This is the actual implementation the injector will provide to the consumers.

The property name will differ according to the implementation type provided. The type

can be a class, a value, or a factory function. In this case, we use useClass because we

are providing a class.

Let’s look at some examples to get an overview of how to use the provide object literal syntax.

Overriding service implementation
We have already learned that a component could share its dependencies with its child components.

Consider the FavoritesComponent, where we used the slice pipe to display a list of favorite prod-

ucts in its template. What if it needs to get data through a trimmed version of ProductsService

and not directly from the service instance of ProductListComponent? We could create a new

service extending the ProductsService class and filtering out data using the native Array�slice

method. Let’s create the new service and learn how to use it:

1. Run the following command to generate the service:

ng generate service favorites

2. Open the favorites.service.ts file and add the following import statements:

import { Product } from './product';

import { ProductsService } from './products.service';

Managing Complex Tasks with Services148

3. Use the extends keyword in the class definition to indicate that ProductsService is the

base class of FavoritesService:

export class FavoritesService extends ProductsService {

 constructor() { }

}

4. Modify the constructor to call the super method and execute any business logic inside

the base class constructor:

constructor() {

 super();

}

5. Create the following service method that uses the slice method to return only the first

two products from the list:

override getProducts(): Product[] {

 return super.getProducts().slice(1, 3);

}

The preceding method is marked with the override keyword to indicate that the imple-

mentation of the method replaces the corresponding method of the base class.

6. Open the favorites.component.ts file and add the following import statement:

import { FavoritesService } from '../favorites.service';

7. Add the FavoritesService class in the providers array of the @Component decorator as

follows:

@Component({

 selector: 'app-favorites',

 imports: [],

 templateUrl: './favorites.component.html',

 styleUrl: './favorites.component.css',

 providers: [

 { provide: ProductsService, useClass: FavoritesService }

]

})

Chapter 5 149

In the preceding snippet, we removed CommonModule from the imports array because we

no longer need the slice pipe.

8. Finally, open the favorites.component.html file and remove the slice pipe from the

@for block.

If we run the application using the ng serve command, we will see that the Favorites section is

still displayed correctly:

Figure 5.7: Favorite products list

The useClass property essentially overwrote the initial implementation of the ProductsService

class for the favorites component. Alternatively, we can go the extra mile and use a function to

return a specific object instance that we need, as we will learn in the following section.

Providing services conditionally
In the example in the previous section, we used the useClass syntax to replace the implementa-

tion of the injected ProductsService class. Alternatively, we could create a factory function that

decides whether it will return an instance of the FavoritesService or ProductsService class ac-

cording to a condition. The function would reside in a simple TypeScript file named favorites.ts:

import { FavoritesService } from './favorites.service';

import { ProductsService } from './products.service';

export function favoritesFactory(isFavorite: boolean) {

 return () => {

 if (isFavorite) {

The preceding output assumes that you have already imported and added the fa-

vorites component in the product list component.

Managing Complex Tasks with Services150

 return new FavoritesService();

 }

 return new ProductsService();

 };

}

We could then modify the providers array in the favorites.component.ts file as follows:

import { CommonModule } from '@angular/common';

import { Component, OnInit } from '@angular/core';

import { Product } from '../product';

import { ProductsService } from '../products.service';

import { favoritesFactory } from '../favorites';

@Component({

 selector: 'app-favorites',

 imports: [CommonModule],

 templateUrl: './favorites.component.html',

 styleUrl: './favorites.component.css',

 providers: [

 { provide: ProductsService, useFactory: favoritesFactory(true) }

]

})

It is worth noting that if one of the services also injected other dependencies, the previous

syntax would not suffice. For example, if the FavoritesService class was dependent on the

ProductViewService class, we would add it to the deps property of the provide object literal

syntax:

providers: [

 {

 provide: ProductsService,

 useFactory: favoritesFactory(true),

 deps: [ProductViewService]

 }

]

Chapter 5 151

We could then use it in the factory function of the favorites.ts file as follows:

export function favoritesFactory(isFavorite: boolean) {

 return (productViewService: ProductViewService) => {

 if (isFavorite) {

 return new FavoritesService();

 }

 return new ProductsService();

 };

}

We have already learned how to provide an alternate class implementation for an Angular service.

What if the dependency we want to provide is not a class but a string or an object? We can use

the useValue syntax to accomplish this task.

Transforming objects in Angular services
It is common to keep application settings in a constant object in real-world applications. How

could we use the useValue syntax to provide these settings in our components? We will learn

more by creating settings for our application, such as the version number and the title:

1. Create an app.settings.ts file in the src\app folder of the Angular CLI workspace and

add the following contents:

export interface AppSettings {

 title: string;

 version: string;

}

export const appSettings: AppSettings = {

 title: 'My e-shop',

 version: '1.0'

};

You may think we could provide these settings as { provide: AppSettings, useValue:

appSettings }, but this would throw an error because AppSettings is an interface, not

a class. Interfaces are syntactic sugar in TypeScript that are thrown away during compi-

lation. Instead, we should provide an InjectionToken object.

Managing Complex Tasks with Services152

2. Add the following statement to import the InjectionToken class from the @angular/

core npm package:

import { InjectionToken } from '@angular/core';

3. Declare the following constant variable that uses the InjectionToken type:

export const APP_SETTINGS = new InjectionToken<AppSettings>('app.
settings');

4. Open the app.component.ts file and modify the import statements as follows:

import { Component, inject } from '@angular/core';

import { RouterOutlet } from '@angular/router';

import { ProductListComponent } from './product-list/product-list.
component';

import { CopyrightDirective } from './copyright.directive';

import { APP_SETTINGS, appSettings } from './app.settings';

5. Add the application settings token in the providers array of the @Component decorator:

@Component({

 selector: 'app-root',

 imports: [

 RouterOutlet,

 ProductListComponent,

 CopyrightDirective

],

 templateUrl: './app.component.html',

 styleUrl: './app.component.css',

 providers: [

 { provide: APP_SETTINGS, useValue: appSettings }

]

})

The useValue syntax is particularly useful when testing Angular applica-

tions. We will use it extensively when we learn about unit testing in Chapter

13, Unit Testing Angular Applications.

Chapter 5 153

6. Add the following property in the AppComponent class:

settings = inject(APP_SETTINGS);

7. Open the app.component.html file and modify the <footer> tag to include the applica-

tion version:

<footer appCopyright> - v{{ settings.version }}</footer>

8. Run the application using the ng serve command and observe the footer in the appli-

cation output:

Copyright ©2024 All Rights Reserved - v1�0

Note that although the AppSettings interface did not play a significant role in the injection pro-

cess, we need it to provide typing on the configuration object.

Angular DI is a powerful and robust mechanism that allows us to manage the dependencies of our

applications efficiently. The Angular team has put much effort into making it simple to use and

removed the burden from the developer’s side. As we have seen, the combinations are plentiful,

and how we will use them depends on the use case.

Summary
The Angular DI implementation is the backbone of the Angular framework. Angular components

delegate complex tasks to Angular services, based on the Angular DI.

In this chapter, we learned what Angular DI is and how to leverage it by creating Angular services.

We explored different ways of injecting Angular services into components. We saw how to share

services between components, isolate services in components, and define dependency access

through the component tree.

Finally, we investigated how to override Angular services by replacing the service implementation

or transforming existing objects into services.

In the next chapter, we will learn what reactive programming is and how we can use observables

in the context of Angular applications.

6
Reactive Patterns in Angular

Handling asynchronous information is a common task in our everyday lives as developers. Re-

active programming is a paradigm that helps us consume, digest, and transform asynchronous

information using data streams. RxJS is a JavaScript library that provides methods to manipulate

data streams using observables.

Angular provides an unparalleled toolset to help us when working with asynchronous data. Ob-

servable streams are at the forefront of this toolset, giving developers a rich set of capabilities

when creating Angular applications. The core of the Angular framework is lightly dependent on

RxJS. Other Angular packages, such as the router and the HTTP client, are more tightly coupled

with observables. However, at the time of writing, the Angular team is currently investigating

making the preceding packages less dependent on observables.

In this chapter, we will learn about the following concepts:

• Strategies for handling asynchronous information

• Reactive programming in Angular

• The RxJS library

• Subscribing to observables

• Unsubscribing from observables

Technical requirements
The chapter contains various code samples to walk you through observables and RxJS. You can

find the related source code in the ch06 folder of the following GitHub repository:

https://www.github.com/PacktPublishing/Learning-Angular-Fifth-Edition

https://www.github.com/PacktPublishing/Learning-Angular-Fifth-Edition

Reactive Patterns in Angular156

Strategies for handling asynchronous information
We manage data asynchronously in different forms, such as consuming data from a backend

API, a typical operation in our daily development workflow, or reading contents from the local

file system. We always consume data over HTTP, such as when authenticating users by sending

credentials to an authentication service. We also use HTTP when fetching the latest posts in our

favorite social network application.

Modern mobile devices have introduced a unique way of consuming remote services. They defer

requests and response consumption until mobile connectivity is available. Responsivity and

availability have become a big deal.

Although internet connections are high-speed nowadays, response time is always involved when

serving such information. Thus, as we will see in this section, we put in place mechanisms to

handle the state of our applications transparently for the end user.

Shifting from callback hell to promises
Sometimes we might need to build functionalities in our application that change its state asyn-

chronously once time has elapsed. In these cases we must introduce code patterns, such as the

callback pattern, to handle this deferred change in the application state.

In a callback, the function that triggers asynchronous action accepts another function as a pa-

rameter. The function is executed when the asynchronous operation has been completed.

Let’s see how to use a callback through an example:

1. Open the app.component.html file and add a <header> HTML element to display the

title component property using interpolation:

You will need the source code of the Angular application we created in Chapter 5,

Managing Complex Tasks with Services, to follow along with the rest of the chapter.

After you get the code, we suggest you take the following actions for simplicity:

• Remove the favorites folder

• Remove the favorites.service.ts and its unit test file

• Remove the favorite.ts file

• Remove the numeric.directive.ts file and its unit test file

• Remove the product-view folder

Chapter 6 157

<header>{{ title }}</header>

<main class="main">

 <div class="content">

 <app-product-list></app-product-list>

 </div>

</main>

<footer appCopyright> - v{{ settings.version }}</footer>

<router-outlet />

2. Open the app.component.ts file and create the following property:

private setTitle = () => {

 this.title = this.settings.title;

}

The setTitle property is used to change the title component property based on the

title property from application settings. It returns an arrow function because we will

use it as a callback to another method.

3. Next, create a changeTitle method that calls another method, named, by convention,

callback, after two seconds:

private changeTitle(callback: Function) {

 setTimeout(() => {

 callback();

 }, 2000);

}

4. Add a constructor to call the changeTitle method, passing the setTitle property as

a parameter:

constructor() {

 this.changeTitle(this.setTitle);

}

In the preceding snippet, we use the setTitle property without parentheses because we

pass function signatures and not actual function calls when we use callbacks.

If we run the Angular application using the ng serve command, we see that the title property

changes after two seconds. The problem with the pattern we just described is that the code can

become confusing and cumbersome as we introduce more nested callbacks.

Reactive Patterns in Angular158

Consider the following scenario where we need to drill down into a folder hierarchy to access

photos on a device:

getRootFolder(folder => {

 getAssetsFolder(folder, assets => {

 getPhotos(assets, photos => {});

 });

});

We depend on the previous asynchronous call and the data it brings back before we can do the next

call. We must execute a method inside a callback that executes another method with a callback.

The code quickly looks complex and difficult to read, leading to a situation known as callback hell.

We can avoid callback hell using promises. Promises introduce a new way of envisioning asyn-

chronous data management by conforming to a neater and more solid interface. Different asyn-

chronous operations can be chained at the same level and even be split and returned from other

functions.

To better understand how promises work, let’s refactor our previous callback example:

1. Create a new method in the AppComponent class named onComplete that returns a Promise

object. A promise can either be resolved or rejected. The resolve parameter indicates

that the promise was completed successfully and optionally returns a result:

private onComplete() {

 return new Promise<void>(resolve => {

 });

}

2. Introduce a timeout of two seconds in the promise so that it resolves after this time has

elapsed:

private onComplete() {

 return new Promise<void>(resolve => {

 setTimeout(() => {

 resolve();

 }, 2000);

 });

}

Chapter 6 159

3. Now, replace the changeTitle call in the constructor with the promise-based method.

To execute a method that returns a promise, we invoke the method and chain it with the

then method:

constructor() {

 this.onComplete().then(this.setTitle);

}

We should not notice any significant difference if we rerun the Angular application. The real value

of promises lies in the simplicity and readability afforded to our code. We could now refactor the

previous folder hierarchy example accordingly:

getRootFolder()

 .then(getAssetsFolder)

 .then(getPhotos);

The chaining of the then method in the preceding code shows how we can line up one asyn-

chronous call after another. Each previous asynchronous call passes its result in the upcoming

asynchronous method.

Promises are compelling, but sometimes we might need to produce a response output that fol-

lows a more complex digest process or even cancel the whole process. We cannot accomplish

such behavior with promises because they are triggered as soon as they are instantiated. In other

words, promises are not lazy. On the other hand, the possibility of tearing down an asynchro-

nous operation after it has been fired but not completed yet can become quite handy in specific

scenarios. Promises allow us to resolve or reject an asynchronous operation, but sometimes we

might want to abort everything before getting to that point.

On top of that, promises behave as one-time operations. Once they are resolved, we cannot expect

to receive any further information or state change notifications unless we run everything from

scratch. To summarize the limitations of promises:

• They cannot be canceled

• They are immediately executed

• They are one-time operations; there is no easy way to retry them

• They respond with only one value

Reactive Patterns in Angular160

Let’s illustrate some of the limitations with an example:

1. Replace setTimeout with setInterval in the onComplete method:

private onComplete() {

 return new Promise<void>(resolve => {

 setInterval(() => {

 resolve();

 }, 2000);

 });

}

The promise will now resolve repeatedly every two seconds.

2. Modify the setTitle property to append the current timestamp in the title property of

the component:

private setTitle = () => {

 const timestamp = new Date();

 this.title = `${this.settings.title} (${timestamp})`;

}

3. Run the Angular application and you will notice that the timestamp is set only once after

two seconds and never changes again. The promise resolves itself, and the entire asyn-

chronous event terminates at that very moment.

We may need a more proactive implementation of asynchronous data handling to fix the preceding

behavior, which is where observables come into the picture.

Observables in a nutshell
An observable is an object that maintains a list of dependents, called observers, and informs

them about state and data changes by emitting events asynchronously. To do so, the observable

implements all the necessary machinery to produce and emit such events. It can be triggered and

canceled at any time, regardless of whether it has emitted the expected data already.

Observers must subscribe to an observable to be notified and react to reflect the state change.

This pattern, known as the observer pattern, allows concurrent operations and more advanced

logic. These observers, also known as subscribers, keep listening to whatever happens in the

observable until it is destroyed. We can see all this with more transparency in an actual example:

Chapter 6 161

1. Import the Observable artifact from the rxjs npm package:

import { Observable } from 'rxjs';

2. Create a component property named title$ that creates an Observable object. The con-

structor of an observable accepts an observer object as a parameter. The observer is

an arrow function that contains the business logic that will be executed when someone

uses the observable. Call the next method of the observer every two seconds to indicate

a data or application state change:

title$ = new Observable(observer => {

 setInterval(() => {

 observer.next();

 }, 2000);

});

3. Modify the constructor component to use the newly created title$ property:

constructor() {

 this.title$.subscribe(this.setTitle);

}

We use the subscribe method to register to the title$ observable and get notified of any changes.

If we do not call this method, the setTitle method will never execute.

If you run the application, you will notice that the timestamp changes every two seconds. Con-

gratulations! You have entered the world of observables and reactive programming!

Observables return a stream of events, and our subscribers receive prompt notifications of those

events so that they can act accordingly. They do not perform an asynchronous operation and

terminate (although we can configure them to do so) but start a stream of ongoing events to

which we can subscribe.

When we define an observable variable, we tend to append the $ sign to the

variable name. It is a convention that we follow to identify observables in

our code efficiently and quickly.

An observable will not do anything unless a subscriber subscribes to it.

Reactive Patterns in Angular162

That’s not all, however. This stream can combine many operations before hitting observers sub-

scribed to it. Just as we can manipulate arrays with methods such as map or filter to transform

them, we can do the same with the stream of events emitted by observables. It is a pattern known

as reactive programming, and Angular makes the most of this paradigm to handle asynchronous

information.

Reactive programming in Angular
The observer pattern stands at the core of reactive programming. The most basic implementation

of a reactive script encompasses several concepts that we need to become familiar with:

• An observable

• An observer

• A timeline

• A stream of events

• A set of composable operators

It may sound daunting, but it isn’t. The big challenge here is to change our mindset and learn

how to think reactively, which is the primary goal of this section.

Let’s explain through a more descriptive example. Think about an interaction device such as a

keyboard. It has keys that the user presses. Each one of those keystrokes triggers a specific key-

board event, such as keyUp. The keyUp event features a wide range of metadata, including—but

not limited to—the numeric code of the specific key the user pressed at a given moment. As the

user continues hitting keys, more keyUp events are triggered and piped through an imaginary

timeline. The timeline is a continuous stream of data where the keyUp event can happen at any

time; after all, the user decides when to press those keys.

Recall the example with observables from the previous section. That code could notify an ob-

server that every two seconds, another value was emitted. We know how often a timer interval

is triggered. In the case of keyUp events, we don’t know because they are not under our control.

Let’s try to explain it further by implementing a key logger in our application:

Reactive programming entails applying asynchronous subscriptions and transfor-

mations to observable streams of events.

Chapter 6 163

1. Create a new Angular component named key-logger:

ng generate component key-logger

2. Open the key-logger.component.html file and replace its content with the following

HTML template:

<input type="text" #keyContainer />

You pressed: {{keys}}

In the preceding template, we added an <input> HTML element and attached the

keyContainer template reference variable.

We also display a keys property representing all the keyboard keys the user has pressed.

3. Open the key-logger.component.ts file and import the OnInit, viewChild, and

ElementRef artifacts from the @angular/core npm package:

import { Component, ElementRef, OnInit, viewChild } from '@angular/
core';

4. Create the following properties in the KeyLoggerComponent class:

input = viewChild<ElementRef>('keyContainer');

keys = '';

The input property is used to query the <input> HTML element using the keyContainer

template reference variable.

5. Add the following import statement to import the fromEvent artifact from the rxjs npm

package:

import { fromEvent } from 'rxjs';

The RxJS library has various helpful artifacts, called operators, that we can use with ob-

servables. The fromEvent operator creates an observable from the DOM event of a native

HTML element.

A template reference variable can be added to any HTML element, not just

components.

Reactive Patterns in Angular164

6. Implement the ngOnInit method from the OnInit interface to listen for keyup events in

the <input> element and save pressed keys in the keys property:

export class KeyLoggerComponent implements OnInit {

 input = viewChild<ElementRef>('keyContainer');

 keys = '';

 ngOnInit(): void {

 const logger$ = fromEvent<KeyboardEvent>(this.input()!.
nativeElement, 'keyup');

 logger$.subscribe(evt => this.keys += evt.key);

 }

}

Notice that we get access to the native HTML input element through the nativeElement

property of the template reference variable. The result of querying using the viewChild

function is an ElementRef object, which is a wrapper over the actual HTML element.

7. Open the app.component.ts file and import the KeyLoggerComponent class:

import { Component, inject } from '@angular/core';

import { RouterOutlet } from '@angular/router';

import { ProductListComponent } from './product-list/product-list.
component';

import { CopyrightDirective } from './copyright.directive';

import { APP_SETTINGS, appSettings } from './app.settings';

import { Observable } from 'rxjs';

import { KeyLoggerComponent } from './key-logger/key-logger.
component';

@Component({

 selector: 'app-root',

 imports: [

 RouterOutlet,

 ProductListComponent,

 CopyrightDirective,

 KeyLoggerComponent

],

 templateUrl: './app.component.html',

 styleUrl: './app.component.css',

Chapter 6 165

 providers: [

 { provide: APP_SETTINGS, useValue: appSettings }

]

})

8. Open the app.component.html file and add the <app-key-logger> selector in the template:

<header>{{ title }}</header>

<main class="main">

 <div class="content">

 <app-product-list></app-product-list>

 </div>

</main>

<footer appCopyright> - v{{ settings.version }}</footer>

<router-outlet />

<app-key-logger></app-key-logger>

Run the application using the ng serve command and start pressing keys to verify the usage of

the key logger that we have just created:

Figure 6.1: Key logger output

An essential aspect of observables is using operators and chaining observables together, enabling

rich composition. Observable operators look like array methods when we want to use them. For

example, a map operator for observables is used similarly to the map method of an array. In the

following section, we will learn about the RxJS library, which provides these operators, and learn

about some of them through examples.

The RxJS library
As mentioned previously, Angular comes with a peer dependency on RxJS, the JavaScript flavor

of the ReactiveX library, which allows us to create observables out of a large variety of scenarios,

including the following:

• Interaction events

• Promises

• Callback functions

• Events

Reactive Patterns in Angular166

Reactive programming does not aim to replace asynchronous patterns like promises or callbacks.

All the way around, it can leverage them as well to create observable sequences.

RxJS has built-in support for various composable operators to transform, filter, and combine the

resulting event streams. Its API provides convenient methods for observers to subscribe to these

streams so that our components can respond accordingly to state changes or input interaction.

Let’s see some of these operators in action in the following subsections.

Creating observables
We have already learned how to create an observable from a DOM event using the fromEvent

operator. Two other popular operators concerned with observable creation are the of and from

operators.

The of operator is used to create an observable from values such as numbers:

const values = of(1, 2, 3);

values.subscribe(value => console.log(value));

The previous snippet prints the numbers 1, 2, and 3 in the browser console window in order.

The from operator is used to convert an array to an observable:

const values = from([1, 2, 3]);

values.subscribe(value => console.log(value));

The from operator is also very useful when converting promises or callbacks to observables. We

could wrap the onComplete method in the constructor of the AppComponent class as follows:

constructor() {

 const complete$ = from(this.onComplete());

 complete$.subscribe(this.setTitle);

}

Besides creating observables, the RxJS library also contains a couple of handy operators to ma-

nipulate and transform data emitted from observables.

The from operator is an excellent way to migrate to observables if you use promises

in an existing application!

Chapter 6 167

Transforming observables
We have already learned how to create a numeric-only directive in Chapter 4, Enriching Applica-

tions Using Pipes and Directives. We will now use RxJS operators to accomplish the same thing in

our key logger component:

1. Open the key-logger.component.ts file and import the tap operator from the rxjs npm

package:

import { fromEvent, tap } from 'rxjs';

2. Refactor the ngOnInit method as follows:

ngOnInit(): void {

 const logger$ = fromEvent<KeyboardEvent>(this.input()!.
nativeElement, 'keyup');

 logger$.pipe(

 tap(evt => this.keys += evt.key)

).subscribe();

}

The pipe operator links and combines multiple operators separated by commas. We can

think of it as a recipe that defines the operators that should be applied to an observable.

One of them is the tap operator, which is used when we want to do something with the

data emitted without modifying it.

3. We want to exclude non-numeric values that the logger$ observable emits. We already

get the actual key pressed from the evt property, but it returns alphanumeric values. It

would not be efficient to list all non-numeric values and exclude them manually. Instead,

we will use the map operator to get the actual Unicode value of the key. It behaves similarly

to the map method of an array as it returns an observable with a modified version of the

initial data. Import the map operator from the rxjs npm package:

import { fromEvent, tap, map } from 'rxjs';

4. Add the following snippet above the tap operator in the ngOnInit method:

map(evt => evt.key.charCodeAt(0))

5. We can now add the filter operator, which operates similarly to the filter method of

an array for excluding non-numeric values. Import the filter operator from the rxjs

npm package:

import { fromEvent, tap, map, filter } from 'rxjs';

Reactive Patterns in Angular168

6. Add the following snippet after the map operator in the ngOnInit method:

filter(code => (code > 31 && (code < 48 || code > 57)) === false)

7. The observable currently emits Unicode character codes. We must convert them back to

keyboard characters to display them on the HTML template. Refactor the tap operator

to accommodate this change:

tap(digit => this.keys += String.fromCharCode(digit))

As a final touch, we will add an input binding in the component to toggle the numeric-only fea-

ture on and off conditionally:

1. Add the input function in the import statement of the @angular/core npm package:

import { Component, ElementRef, OnInit, viewChild, input } from '@
angular/core';

2. Add a numeric input property in the KeyLoggerComponent class:

numeric = input(false);

3. Refactor the filter operator in the ngOnInit method so that it takes into account the

numeric property:

filter(code => {

 if (this.numeric()) {

 return (code > 31 && (code < 48 || code > 57)) === false;

 }

 return true;

})

The logger$ observable will filter non-numeric values only if the numeric input property

is true.

4. The ngOnInit method should finally look like the following:

ngOnInit(): void {

 const logger$ = fromEvent<KeyboardEvent>(this.input()!.
nativeElement, 'keyup');

 logger$.pipe(

 map(evt => evt.key.charCodeAt(0)),

 filter(code => {

 if (this.numeric()) {

Chapter 6 169

 return (code > 31 && (code < 48 || code > 57)) === false;

 }

 return true;

 }),

 tap(digit => this.keys += String.fromCharCode(digit))

).subscribe();

}

5. Open the app.component.html file and add a binding to the numeric property in the

<app-key-logger> selector:

<app-key-logger [numeric]="true"></app-key-logger>

6. Run the application using the ng serve command and enter Angular 19 inside the input

box:

Figure 6.2: Numeric key logger

We have seen RxJS operators manipulating observables that return primitive data types such as

numbers, strings, and arrays. In the following section, we will learn how to use observables in

our e-shop application.

Subscribing to observables
We have already learned that an observer needs to subscribe to an observable to get emitted data.

The observer in our case will be the product list component and the observable will reside inside

the products.service.ts file. Thus, we first need to convert the ProductsService class to use

observables instead of plain arrays so that components can subscribe to get data:

1. Open the products.service.ts file and add the following import statement:

import { Observable, of } from 'rxjs';

2. Extract the product data used in the getProducts method into a separate service property

to enhance code readability:

private products: Product[] = [

 {

 id: 1,

 title: 'Keyboard',

 price: 100,

Reactive Patterns in Angular170

 categories: {

 1: 'Computing',

 2: 'Peripherals'

 }

 },

 {

 id: 2,

 title: 'Microphone',

 price: 35,

 categories: { 3: 'Multimedia' }

 },

 {

 id: 3,

 title: 'Web camera',

 price: 79,

 categories: {

 1: 'Computing',

 3: 'Multimedia'

 }

 },

 {

 id: 4,

 title: 'Tablet',

 price: 500,

 categories: { 4: 'Entertainment' }

 }

];

3. Modify the getProducts method so that it returns the products property as an observable:

getProducts(): Observable<Product[]> {

 return of(this.products);

}

In the preceding snippet, we use the of operator to create a new observable from the

products array.

The ProductsService class now emits product data using observables. We must modify the

component to subscribe and get this data:

Chapter 6 171

1. Open the product-list.component.ts file and create a getProducts method in the

ProductListComponent class:

private getProducts() {

 this.productService.getProducts().subscribe(products => {

 this.products = products;

 });

}

In the preceding method, we subscribe to the getProducts method of the ProductsService

class because it returns an observable instead of a plain array. The products array is

returned inside the subscribe method, where we set the products component property

to the array emitted from the observable.

2. Modify the ngOnInit method so that it calls the newly created getProducts method:

ngOnInit(): void {

 this.getProducts();

}

Run the application using the ng serve command, and you should see the product list displayed

on the page successfully:

Figure 6.3: Product list

We could have added the body of the getProducts method inside the ngOnInit

method directly. We did not as component lifecycle event methods should be as

clear and concise as possible. Always try to extract their logic in a separate method

for clarity.

Reactive Patterns in Angular172

As depicted in the previous image, we have achieved the same result of displaying the product

list as in Chapter 5, Managing Complex Tasks with Services, but using observables. It may not be

evident at once, but we have set the foundation for working with the Angular HTTP client which

is based on observables. In Chapter 8, Communicating with Data Services over HTTP, we will explore

the HTTP client in more detail.

When we subscribe to observables, we are prone to potential memory leaks if we do not clean

them up on time. In the following section, we will learn about different ways to accomplish that.

Unsubscribing from observables
When we subscribe to an observable, we create an observer that listens for changes in a data stream.

The observer watches the stream continuously while the subscription remains active. When a

subscription is active, it reserves memory in the browser and consumes certain resources. If we

do not tell the observer to unsubscribe at some point and clean up any resources, the subscription

to the observable will possibly lead to a memory leak.

Some of the most well-known techniques to use for unsubscribing from observables are the

following:

• Unsubscribe from an observable manually

• Use the async pipe in a component template

Let’s see both techniques in action in the following subsections.

Destroying a component
A component has lifecycle events we can use to hook on and perform custom logic, as we learned

in Chapter 3, Structuring User Interfaces with Components. One of them is the ngOnDestroy event,

which is called when the component is destroyed and no longer exists.

Recall ProductListComponent and ProductViewComponent, which we used earlier in our examples.

They subscribe to the appropriate methods of ProductsService and ProductViewService upon

component initialization. When components are destroyed, the reference of the subscriptions

stays active, which may lead to unpredictable behavior. We need to manually unsubscribe when

components are destroyed to clean up any resources properly:

An observer usually needs to unsubscribe when the Angular component that created

the subscription must be destroyed.

Chapter 6 173

1. Open the product-list.component.ts file and add the following import statement:

import { Subscription } from 'rxjs';

2. Create the following property in the ProductListComponent class:

private productsSub: Subscription | undefined;

3. Assign the productsSub property to the subscription result in the getProducts method:

private getProducts() {

 this.productsSub = this.productService.getProducts().
subscribe(products => {

 this.products = products;

 });

}

4. Import the OnDestroy lifecycle hook from the @angular/core npm package:

import { Component, OnInit, OnDestroy } from '@angular/core';

5. Add OnDestroy to the implemented interface list of the ProductListComponent class:

export class ProductListComponent implements OnInit, OnDestroy

6. Implement the ngOnDestroy method as follows:

ngOnDestroy(): void {

 this.productsSub?.unsubscribe();

}

The unsubscribe method removes an observer from the active listeners of a subscription and

cleans up any reserved resources.

That’s a lot of boilerplate code to unsubscribe from a single subscription. It may quickly become

unreadable and unmaintainable if we have many subscriptions.

Alternatively, we can use a particular type of operator called takeUntilDestroyed, which is

available in the @angular/core/rxjs-interop package. We will explore the way of unsubscribing

from observables using this operator in the product list component:

1. Open the product-list.component.ts file and import the inject, DestroyRef, and

takeUntilDestroyed artifacts as follows:

import { Component, DestroyRef, inject, OnInit } from '@angular/
core';

Reactive Patterns in Angular174

import { takeUntilDestroyed } from '@angular/core/rxjs-interop';

The takeUntilDestroyed artifact is an operator that unsubscribes from an observable

when the component is destroyed.

2. Declare the following property to inject the DestroyRef service:

private destroyRef = inject(DestroyRef);

3. Modify the getProducts method as follows:

private getProducts() {

 this.productService.getProducts().pipe(

 takeUntilDestroyed(this.destroyRef)

).subscribe(products => {

 this.products = products;

 });

}

In the preceding method, we use the pipe operator to chain the takeUntilDestroyed

operator with the subscription from the getProducts method of the ProductsService

class. The takeUntilDestroyed operator accepts a parameter of the DestroyRef service.

4. Remove any code related to the ngOnDestroy method.

That’s it! We have now converted our subscription to be more declarative and readable. However,

the problem of maintainability still exists. Our components are now unsubscribing from their

observables manually. We can solve that using a special-purpose Angular pipe, the async pipe,

which allows us to unsubscribe automatically with less code.

Using the async pipe
The async pipe is a built-in Angular pipe used in conjunction with observables, and its role is two-

fold. It helps us to type less code and saves us from having to set up and tear down a subscription.

It automatically subscribes to an observable and unsubscribes when the component is destroyed.

We will use it to simplify the code of the product list component:

1. Open the product-list.component.ts file and add the following import statements:

import { AsyncPipe } from '@angular/common';

import { Observable } from 'rxjs';

Chapter 6 175

2. Add the AsyncPipe class into the imports array of the @Component decorator:

@Component({

 selector: 'app-product-list',

 imports: [ProductDetailComponent, SortPipe, AsyncPipe],

 templateUrl: './product-list.component.html',

 styleUrl: './product-list.component.css'

})

3. Convert the products component property to an observable:

products$: Observable<Product[]> | undefined;

4. Assign the getProducts method of the ProductsService class to the products$ compo-

nent property:

private getProducts() {

 this.products$ = this.productService.getProducts();

}

The body of the getProducts method has now been reduced to one line and has become

more readable.

5. Open the product-list.component.html file and add the following snippet at the be-

ginning of the file:

@let products = (products$ | async)!;

In the preceding snippet, we subscribe to the products$ observable using the async pipe

and create a template variable using the @let keyword. The template variable has the

same name as the respective component property we had previously, so we do not need

to change the component template further.

That’s it! We do not need to subscribe or unsubscribe from the observable manually anymore!

The async pipe takes care of everything for us.

We have learned that observables react to application events and emit values asynchronously in

registered observers. We could visualize observables as wrapper objects around emitted values.

Angular enriches the reactivity field of web applications by providing a similar wrapper that

works synchronously and reacts to application state changes.

Reactive Patterns in Angular176

Summary
It takes much more than a single chapter to cover in detail all the great things we can do with

reactivity in Angular. The good news is that we have covered all the tools and classes we need

for basic Angular development.

We learned what reactive programming is and how it can be used in Angular. We saw how to

apply reactive techniques like observables to interact with data streams. We explored the RxJS

library and how to use some operators to manipulate observables. We learned different ways of

subscribing and unsubscribing from observables in Angular components.

The rest is just left to your imagination, so feel free to go the extra mile and put all of this knowledge

into practice in your Angular applications. The possibilities are endless, and you have strategies

ranging from promises and observables. You can leverage the incredible functionalities of the

reactive patterns and build amazing reactive experiences for your Angular applications.

As we have already highlighted, the sky’s the limit. However, we still have a long and exciting

road ahead. In the next chapter, we will explore signals, an alternate reactive pattern built into

the Angular framework. We will learn how to use Angular signals to handle the state of an An-

gular application.

7
Tracking Application State with
Signals

Angular empowers developers to use built-in reactivity in their applications using signals. Angular

signals are a synchronous approach to reactive programming that efficiently improves application

performance and manages application state.

We met signals in previous chapters where we used the input method to exchange data between

components and the viewChild method to query child components. The Signals API can be used

in different parts of an Angular application, thus, its usage is scattered throughout the chapters

of this book.

In this chapter, we will cover the following topics:

• Understanding signals

• Reading and writing signals

• Computed signals

• Cooperating with RxJS

Technical requirements
The chapter contains various code samples to walk you through the concept of Angular signals.

You can find the related source code in the ch07 folder of the following GitHub repository:

https://www.github.com/PacktPublishing/Learning-Angular-Fifth-Edition

https://www.github.com/PacktPublishing/Learning-Angular-Fifth-Edition

Tracking Application State with Signals178

Understanding signals
As we learned in Chapter 3, Structuring User Interfaces with Components, Zone�js plays a significant

role in the performance of an Angular application. It triggers the Angular change detection mecha-

nism when particular events occur inside the application. The framework checks every application

component in each detection cycle and evaluates its bindings, degrading application performance.

The rationale of change detection with Zone.js is based on the fact that Angular cannot know

when or where a change has happened inside the application. Inevitably, Angular developers try

to limit change detection cycles using the following techniques:

• Configuring components with the OnPush change detection strategy

• Interacting manually with the change detection mechanism using the ChangeDetectorRef

service

Signals improve how developers interact with the Angular change detection mechanism by sim-

plifying and enhancing the preceding techniques according to application needs.

Angular signals provide more robust and ergonomic management of the change detection cycle

based on reactivity. They watch how the application state changes and allow the framework to

react by triggering change detection only in parts affected by the change.

Signals also act as containers for values, which the change detection mechanism must check. When

a value changes, signals notify the framework about that change. The framework is responsible

for triggering change detection and updating any signal consumers. A signal value can change

either directly using writable signals or indirectly using read-only or computed signals.

In the following section, we will learn how writable signals work.

Reading and writing signals
A writable signal is indicated by the signal type from the @angular/core npm package.

Signals are an innovative feature of the Angular framework that will enable further

improvements in the application’s performance by introducing zone-less applica-

tions and signal-based components in the future.

You will need the source code of the Angular application we created in Chapter 6,

Reactive Patterns in Angular, to follow along with the rest of the chapter. After you

get the code, we suggest you remove the key-logger folder for simplicity.

Chapter 7 179

Let’s get started and learn how we can write a value in a signal:

1. Open the app.component.ts file and import the signal artifact from the @angular/core

npm package:

import { Component, inject, signal } from '@angular/core';

2. Declare the following property in the AppComponent class as a signal and initialize it:

currentDate = signal(new Date());

3. Replace the timestamp variable in the setTitle property with the following snippet:

this.currentDate.set(new Date());

In the preceding snippet, we use the set method to write a new value in the signal. The

method notifies the Angular framework that the value has changed, and it must run the

change detection mechanism.

4. Modify the title property to use the value of the currentDate signal:

this.title = `${this.settings.title} (${this.currentDate()})`;

In the preceding snippet, we call the currentDate getter method to read the value of the

signal.

Signals are a great choice in cases where the speed and performance of an application matters,

such as:

• A dashboard page with widgets and live data that must be updated regularly, such as a

stock exchange application.

• A component that needs to display properties from a large or complex object, such as the

following:

const order = {

 no: '1',

 date: new Date(),

 products: [

 {

 id: 1,

 title: 'Keyboard',

 price: 100

 },

Tracking Application State with Signals180

 {

 id: 2,

 title: 'Microphone',

 price: 35

 }

],

 customerCode: '0002',

 isCompleted: false

};

In this case, we can extract the object properties we want in a signal without involving

the whole object in the change detection cycle, such as:

const orderDetails = signal({

 no: '1',

 customerCode: '0002',

 isCompleted: false

});

A similar method of signals that also triggers change detection is the update method. It is used

when we want to set a new value on a signal based on its current value:

this.currentDate.update(d => {

 return new Date(d.getFullYear(), d.getMonth(), d.getDate(), 0, 0);

});

The preceding snippet will get the value of the currentDate signal in the d variable and use it to

return a new Date object.

In the following section, we will explore how computed signals behave in an Angular application.

Computed signals
A computed or read-only signal depends on other signals, writable or computed. The value of a

computed signal cannot change directly using the set or the update method, it can only change

indirectly when the value of any of the other signals changes.

Let’s see how it works:

1. Open the app.component.ts file and import the computed and Signal artifacts from the

@angular/core npm package:

Chapter 7 181

import {

 Component,

 inject,

 Signal,

 computed,

 signal

} from '@angular/core';

2. Change the type of the title component property to Signal:

title: Signal<string> = signal('');

The Signal type indicates that the signal is a computed one.

3. Remove the title assignment from the setTitle method and add it inside the constructor

as follows:

constructor() {

 this.title$.subscribe(this.setTitle);

 this.title = computed(() => {

 return `${this.settings.title} (${this.currentDate()})`;

 });

}

In the preceding snippet, we use the computed function to set the value of the title signal.

The value of the title signal depends on the currentDate signal. It is updated every 2

seconds when the value of the currentDate signal changes.

4. Open the app.component.html file and modify the <header> HTML element as follows:

<header>{{ title() }}</header>

5. Run the application using ng serve and verify that the title is updated correctly.

Computed signals have great performance when it comes to more complicated calculations than

the preceding one due to the following reasons:

• The computed function executes when the signal value is first read on the template

• A new signal value is calculated only when the derived signals change

• Computed signals use a cache mechanism to memoize values and return them without

recalculating

Tracking Application State with Signals182

Although signals are a modern reactive approach for Angular, they are relatively new to the An-

gular ecosystem compared to RxJS. In the following section, we will learn how they can cooperate

with RxJS in an Angular application.

Cooperating with RxJS
Signals and RxJS empower Angular applications with reactive capabilities. These libraries can

complement each other to provide reactivity while using the benefits of the Angular framework.

Signals was not built to replace RxJS but to provide an alternate reactive approach to developers

with the following additional characteristics:

• Fine-grained reactivity

• Imperative programming

• Improved usage of the change detection mechanism

However, there are core parts in the Angular framework that still use RxJS and observables, such

as the HTTP client and the router. Additionally, many developers prefer the declarative approach

that the RxJS library provides out of the box.

Angular Signals provides a built-in API to cooperate with RxJS and observables. The signals API

provides a function that can convert an observable into a signal:

1. Open the product-list.component.ts file and import the inject and toSignal artifacts:

import { Component, inject } from '@angular/core';

import { toSignal } from '@angular/core/rxjs-interop';

The @angular/core/rxjs-interop npm package includes all the utility methods for han-

dling signal and observable cooperation. The toSignal function can convert an observable

into a signal.

At the time of writing, the Angular team is currently investigating and experimenting

to make RxJS optional for Angular applications in the foreseeable future. They are

also working to convert built-in APIs such as the HTTP client and router into signals.

The rxjs-interop package also contains utility methods for converting a

signal to an observable. You can read more in Reactive Patterns with RxJS and

Angular Signals by Lamis Chebbi (Packt Publishing).

Chapter 7 183

2. Create the following signal in the ProductListComponent class:

products = toSignal(inject(ProductsService).getProducts(), {

 initialValue: []

});

We pass two parameters in the toSignal function: the observable we want to convert

and an initial value optionally. In this case, we pass the getProducts method of the

ProductService class that returns an observable, and we also set the initial value of the

signal to an empty array.

3. Open the product-list.component.html file and modify its contents as follows:

@if (products().length > 0) {

 <h1>Products ({{products().length}})</h1>

}

<ul class="pill-group">

 @for (product of products() | sort; track product.id) {

 <li class="pill" (click)="selectedProduct = product">

 @switch (product.title) {

 @case ('Keyboard') { }

 @case ('Microphone') { }

 @default { }

 }

 {{product.title}}

 } @empty {

 <p>No products found!</p>

 }

<app-product-detail

 [product]="selectedProduct"

 (added)="onAdded()"

></app-product-detail>

In the preceding template, we removed the top @if block and converted the products

property into a signal. We do not need the async pipe because signals subscribe auto-

matically to an observable.

Tracking Application State with Signals184

4. To further clean up our component, we can remove any code that is related to the async

pipe and observables since it is no longer needed. The resulting product-list.component.

ts file should be the following:

import { Component, inject } from '@angular/core';

import { toSignal } from '@angular/core/rxjs-interop';

import { Product } from '../product';

import { ProductDetailComponent } from '../product-detail/product-
detail.component';

import { SortPipe } from '../sort.pipe';

import { ProductsService } from '../products.service';

@Component({

 selector: 'app-product-list',

 imports: [ProductDetailComponent, SortPipe],

 templateUrl: './product-list.component.html',

 styleUrl: './product-list.component.css'

})

export class ProductListComponent {

 selectedProduct: Product | undefined;

 products = toSignal(inject(ProductsService).getProducts(), {

 initialValue: []

 });

 onAdded() {

 alert(`${this.selectedProduct?.title} added to the cart!`);

 }

}

5. Run the application using ng serve and observe that the application output displays

the product list.

The preceding snippet looks much simpler. Angular signals improve the developer experience

and ergonomics in addition to the performance of our applications.

Chapter 7 185

Summary
In this chapter, we explored signals, which is a new reactive pattern in Angular that is used for

managing application state. We learned their rationale and how they compare with Zone.js. We

explored examples of how to read and write values into signals. We also learned how to create

computed signals that depend on values from other signals.

In the next chapter, we will learn how to use the Angular HTTP client and consume data from a

remote endpoint.

8
Communicating with Data
Services over HTTP

A real-world scenario for enterprise Angular applications is to connect to remote services and APIs

to exchange data. The Angular HTTP client provides out-of-the-box support for communicating

with services over HTTP. The interaction of an Angular application with the HTTP client is based

on RxJS observable streams, giving developers a rich set of capabilities for data access.

There are many ways to connect to APIs through HTTP. In this book, we will only scratch the sur-

face. Still, the insights covered in this chapter will give you all you need to connect your Angular

applications to HTTP services in no time, leaving all you can do with them up to your creativity.

In this chapter, we will explore the following concepts:

• Communicating data over HTTP

• Introducing the Angular HTTP client

• Setting up a backend API

• Handling CRUD data in Angular

• Authentication and authorization with HTTP

Technical requirements
The chapter contains various code samples to walk you through the concept of the Angular HTTP

client. You can find the related source code in the ch08 folder of the following GitHub repository:

https://www.github.com/PacktPublishing/Learning-Angular-Fifth-Edition

https://www.github.com/PacktPublishing/Learning-Angular-Fifth-Edition

Communicating with Data Services over HTTP188

Communicating data over HTTP
Before we dive into describing the Angular HTTP client and how to use it to communicate with

servers, let’s talk about native HTTP implementations first. Currently, if we want to communicate

with a server over HTTP using JavaScript, we can use the JavaScript-native fetch API. It contains

all the necessary methods to connect with a server and exchange data.

You can see an example of how to fetch data in the following code:

fetch(url)

 .then(response => {

 return response.ok ? response.text() : '';

 })

 .then(result => {

 if (result) {

 console.log(result);

 } else {

 console.error('An error has occurred');

 }

 });

Although the fetch API is promise-based, the promise it returns is not rejected if there is an error.

Instead, the request is unsuccessful when the ok property is not in the response object.

If the request to the remote URL is completed, we can use the text() method of the response

object to return the response text inside a new promise. Finally, in the second then callback, we

display either the response text or a specific error message to the browser console.

We have already learned that observables are flexible for managing asynchronous operations.

You are probably wondering how we can apply this pattern when consuming information from

an HTTP service. So far, you will be becoming used to submitting asynchronous requests to AJAX

services and then passing the response to a callback or a promise. Now, we will handle the call by

returning an observable. The observable will emit the server response as an event in the context

of a stream, which can be funneled through RxJS operators to better digest the response.

To learn more about the fetch API, check out the official documentation at https://

developer.mozilla.org/docs/Web/API/fetch.

https://developer.mozilla.org/docs/Web/API/fetch
https://developer.mozilla.org/docs/Web/API/fetch

Chapter 8 189

Let’s convert the previous example with the fetch API to an observable. We use the Observable

class to wrap the fetch call in an observable stream and replace the console methods with the

appropriate observer object methods:

const request$ = new Observable(observer => {

 fetch(url)

 .then(response => {

 return response.ok ? response.text() : '';

 })

 .then(result => {

 if (result) {

 observer.next(result);

 observer.complete();

 } else {

 observer.error('An error has occurred');

 }

 });

});

In the preceding snippet, we use the following observer methods:

• next: This returns the response data to subscribers when they arrive

• complete: This notifies subscribers that no other data will be available in the stream

• error: This alerts subscribers that an error has occurred

That’s it! We have now built a custom HTTP client. Of course, this isn’t much. Our custom HTTP

client only handles a GET operation to get data from a remote endpoint. We are not handling

many other operations of the HTTP protocol, such as POST, PUT, and DELETE. It was, however,

essential to realize all the heavy lifting the HTTP client in Angular is doing for us. Another im-

portant lesson is how easy it is to turn an asynchronous API into an observable API that fits nicely

with the rest of our asynchronous concepts. So, let’s continue with Angular’s implementation

of an HTTP service.

Introducing the Angular HTTP client
The HTTP client of the Angular framework is a separate Angular library that resides in the

@angular/common npm package under the http namespace. The Angular CLI installs this package

by default when creating a new Angular project.

Communicating with Data Services over HTTP190

To start using the Angular HTTP client, we need to import the provideHttpClient method in

the app.config.ts file:

import { provideHttpClient } from '@angular/common/http';

import { ApplicationConfig, provideZoneChangeDetection } from '@angular/
core';

import { provideRouter } from '@angular/router';

import { routes } from './app.routes';

export const appConfig: ApplicationConfig = {

 providers: [

 provideZoneChangeDetection({ eventCoalescing: true }),

 provideRouter(routes),

 provideHttpClient()

]

};

The provideHttpClient method exposes various Angular services we can use to handle asyn-

chronous HTTP communication. The most basic is the HttpClient service, which provides a

robust API and abstracts all operations required to handle asynchronous connections through

the following HTTP methods:

• get: This performs a GET operation to fetch data

• post: This performs a POST operation to add new data

• put/patch: This performs a PUT/PATCH operation to update existing data

• delete: This performs a DELETE operation to remove existing data

You will need the source code of the Angular application we created in Chapter 6,

Reactive Patterns in Angular, to follow along with the rest of the chapter. After you

get the code, we suggest you remove the key-logger folder for simplicity.

Suppose we want to use the HTTP client in applications built with older versions of An-

gular. In that case, we need to import an Angular module, called HttpClientModule,

from the @angular/common/http namespace into one of the modules of our ap-

plication.

Chapter 8 191

The previous HTTP methods constitute the primary operations for Create, Read, Update, Delete

(CRUD) applications. All the earlier methods of the Angular HTTP client return an observable

data stream. Angular components can use the RxJS library to subscribe to those methods and

interact with a remote API.

In the following section, we will explore how to use these methods and communicate with a

remote API.

Setting up a backend API
A web CRUD application usually connects to a server and uses an HTTP backend API to perform

operations on data. It fetches existing data, updates it, creates new data, or deletes it.

In a real-world scenario, you will most likely interact with a real backend API service through

HTTP. In this book, we will use a fake API called Fake Store API.

The Fake Store API is a backend REST API available online that you can use when you need fake

data for an e-commerce or e-shop web application. It can manage products, shopping carts, and

users available in the JSON format. It exposes the following main endpoints:

• products: This manages a set of product items

• cart: This manages the shopping cart of a user

• user: This manages a collection of application users

• login: This handles user authentication

The Angular team is currently investigating and experimenting to see if they can

make the use of RxJS optional in the framework. In that case, we might see an HTTP

implementation that is based on signals. For the rest of this chapter, we will stick with

observables because the Angular HTTP client does not support signals out of the box.

The official Fake Store API documentation can be found at https://fakestoreapi.

com.

In this chapter, we will work only with the products and login endpoints. However,

we will revisit the cart endpoint later in the book.

https://fakestoreapi.com
https://fakestoreapi.com

Communicating with Data Services over HTTP192

All operations that modify data do not persist them physically in a database. However, they re-

turn an indication of whether the operation was successful. All operations that get data return

a predefined collection of items.

Handling CRUD data in Angular
CRUD applications are widely used in the Angular world. You will hardly find any web application

that does not follow this pattern. Angular does a great job of supporting this type of application

by providing the HttpClient service. In this section, we will explore the Angular HTTP client by

interacting with the products endpoint of the Fake Store API.

Fetching data through HTTP
The ProductListComponent class uses the ProductsService class to fetch and display product

data. Data is currently hardcoded into the products property of the ProductsService class. In this

section, we will modify our Angular application to work with live data from the Fake Store API:

1. Open the app.component.ts file and remove the providers property from the @Component

decorator. We will provide APP_SETTINGS directly through the application configuration

file.

2. At this point, we can also remove the title property, the title$ observable, the setTitle

property, and the constructor of the component class:

export class AppComponent {

 settings = inject(APP_SETTINGS);

}

3. Open the app.component.html file and modify the <header> HTML element so that it

uses the settings object directly:

<header>{{ settings.title }}</header>

4. Open the app.config.ts file and add the APP_SETTINGS provider as follows:

import { provideHttpClient } from '@angular/common/http';

import { ApplicationConfig, provideZoneChangeDetection } from '@
angular/core';

import { provideRouter } from '@angular/router';

import { routes } from './app.routes';

Chapter 8 193

import { APP_SETTINGS, appSettings } from './app.settings';

export const appConfig: ApplicationConfig = {

 providers: [

 provideZoneChangeDetection({ eventCoalescing: true }),

 provideRouter(routes),

 provideHttpClient(),

 { provide: APP_SETTINGS, useValue: appSettings }

]

};

We provide APP_SETTINGS from the application configuration file because we want it to

be accessible globally in the application.

5. Open the app.settings.ts file and add a new property in the AppSettings interface that

represents the URL of the Fake Store API:

import { InjectionToken } from '@angular/core';

export interface AppSettings {

 title: string;

 version: string;

 apiUrl: string;

}

export const appSettings: AppSettings = {

 title: 'My e-shop',

 version: '1.0',

 apiUrl: 'https://fakestoreapi.com'

};

export const APP_SETTINGS = new InjectionToken<AppSettings>('app.
settings');

The URL of a backend API can also be added in environment files, as we will

learn in Chapter 14, Bringing Applications to Production.

Communicating with Data Services over HTTP194

6. Open the products.service.ts file and modify the import statements accordingly:

import { HttpClient } from '@angular/common/http';

import { Injectable, inject } from '@angular/core';

import { Product } from './product';

import { Observable, of } from 'rxjs';

import { APP_SETTINGS } from './app.settings';

7. Create the following property in the ProductsService class that represents the API prod-

ucts endpoint:

private productsUrl = inject(APP_SETTINGS).apiUrl + '/products';

8. Modify the constructor to inject the HttpClient service:

constructor(private http: HttpClient) { }

9. Modify the getProducts method so that it uses the HttpClient service to get the list of

products:

getProducts(): Observable<Product[]> {

 return this.http.get<Product[]>(this.productsUrl);

}

In the preceding method, we use the get method of the HttpClient class and pass the

products endpoint of the API as a parameter. We also define the Product as a generic type in

the get method to indicate that the response from the API contains a list of Product objects.

10. Convert the products property to an empty array:

private products: Product[] = [];

We will use this for local cache purposes later, in the Modifying data through HTTP section.

11. Open the product-list.component.html file and modify the @if block so that it checks

if the products template variable exists:

@if (products) {

 <h1>Products ({{products.length}})</h1>

}

We need to check if the variable exists because data is now fetched from the Fake Store

API and there will be a network delay before the variable has a value.

Chapter 8 195

If we run the application using the ng serve command, we should see an extended list of products

from the API similar to the following:

Figure 8.1: Product list from the Fake Store API

Communicating with Data Services over HTTP196

The products endpoint supports passing a request parameter to limit the results returned from

the API. As indicated at https://fakestoreapi.com/docs#p-limit, we can use a query param-

eter named limit to accomplish that task. Let’s see how we can pass query parameters in the

Angular HTTP client:

1. Open the products.service.ts file and import the HttpParams class from the @angular/

common/http namespace:

import { HttpClient, HttpParams } from '@angular/common/http';

The HttpParams class is used to pass query parameters in an HTTP request.

2. Create the following variable inside the getProducts method:

const options = new HttpParams().set('limit', 10);

The set method of the HttpParams class creates a new query parameter. If we wanted to

pass additional parameters, we should chain more set methods, such as:

const options = new HttpParams()

 .set('limit', 10)

 .set('page', 1);

3. We use the second parameter of the get method to pass query parameters using the

params property:

return this.http.get<Product[]>(this.productsUrl, {

 params: options

});

The HttpParams class is immutable. The following would not work because

every operation returns a new instance:

const options = new HttpParams();

options.set('limit', 10);

https://fakestoreapi.com/docs#p-limit

Chapter 8 197

4. Save your changes, wait for the application to reload, and observe the application’s output:

Figure 8.2: Product list

In the preceding list, all products are displayed with the same tag icon, which is the default

one according to the @switch block in the product-list.component.html file:

<li class="pill" (click)="selectedProduct = product">

 @switch (product.title) {

 @case ('Keyboard') { }

 @case ('Microphone') { }

 @default { }

 }

 {{product.title}}

Communicating with Data Services over HTTP198

The @switch block relies on the product title property. We will change it so that it is

based on the category property, which comes from the products endpoint of the API.

5. Open the product.ts file and replace the categories property with the following property:

category: string;

6. Open the product-list.component.html file and modify the @switch block as follows:

@switch (product.category) {

 @case ('electronics') { }

 @case ('jewelery') { }

 @default { }

}

7. We also need to modify the product-detail.component.html file because we replaced

the categories property in step 1:

@if (product()) {

 <p>You selected:

 {{product()!.title}}

 </p>

 <p>{{product()!.price | currency:'EUR'}}</p>

 <div class="pill-group">

 <p class="pill">{{ product()!.category }}</p>

 </div>

 <button (click)="addToCart()">Add to cart</button>

}

8. Save your changes, wait for the application to reload, and observe the application’s output:

Chapter 8 199

Figure 8.3: Product list with categories

If you click on a product in the list, you will notice that the product details are shown correctly:

Figure 8.4: Product details

Communicating with Data Services over HTTP200

The product details component continues to work as expected because we pass the selected

product as an input property from the product list:

<app-product-detail

 [product]="selectedProduct"

 (added)="onAdded()"

></app-product-detail>

We will change the previous behavior and get the product details directly from the API using an

HTTP GET request. The Fake Store API contains an endpoint method that we can use to get the

details for a specific product based on its ID:

1. Open the products.service.ts file and create a new getProduct method that accepts

the product id as a parameter and initiates a GET request to the API based on that id:

getProduct(id: number): Observable<Product> {

 return this.http.get<Product>(`${this.productsUrl}/${id}`);

}

The preceding method uses the get method of the HttpClient service. It accepts the

products endpoint URL followed by the product id as a parameter.

2. Open the product-detail.component.ts file and modify the import statements as fol-

lows:

import { CommonModule } from '@angular/common';

import {

 Component,

 input,

 output,

 OnChanges

} from '@angular/core';

import { Product } from '../product';

import { Observable } from 'rxjs';

import { ProductsService } from '../products.service';

3. Add the following property in the ProductDetailComponent class:

id = input<number>();

The id component property will be used to pass the ID of the selected product from the list.

Chapter 8 201

4. Replace the product input property with the following observable:

product$: Observable<Product> | undefined;

The product$ property will be used to call the getProduct method from the service.

5. Add a constructor in the ProductDetailComponent class and inject ProductsService:

constructor(private productService: ProductsService) { }

6. Add OnChanges in the list of implemented interfaces:

export class ProductDetailComponent implements OnChanges

7. Implement the ngOnChanges method as follows:

ngOnChanges(): void {

 this.product$ = this.productService.getProduct(this.id()!);

}

In the preceding method, we assign the value of the getProduct method from

ProductsService to the product$ component property every time a new id is passed

using the input binding.

8. Open the product-detail.component.html file and modify its content so that it uses

the product$ observable:

@let product = (product$ | async);

@if (product) {

 <p>You selected:

 {{product.title}}

 </p>

 <p>{{product.price | currency:'EUR'}}</p>

 <div class="pill-group">

 <p class="pill">{{ product.category }}</p>

 </div>

 <button (click)="addToCart()">Add to cart</button>

}

9. Finally, open the product-list.component.html file and bind the id of the selectedProduct

property to the id input binding of the <app-product-detail> component:

<app-product-detail

 [id]="selectedProduct?.id"

Communicating with Data Services over HTTP202

 (added)="onAdded()"

></app-product-detail>

If we run the application using the ng serve command and select a product from the list, we will

verify that the product detail is displayed correctly.

We have learned how to get a list of items and a single item from a backend API and covered the

Read part of a CRUD operation. In the following section, we cover the remaining parts of a CRUD

operation, which are mainly concerned with modifying data.

Modifying data through HTTP
Modifying data in a CRUD application usually refers to adding new data and updating or deleting

existing data. To demonstrate how to implement such functionality in an Angular application

using the HTTP client, we will make the following changes to our application:

• Create an Angular component to add new products

• Modify the product detail component to change the price of an existing product

• Add a button in the product detail component to delete an existing product

We have already mentioned that no HTTP operations persist data physically in the Fake Store

API, so we need to implement a local cache mechanism for our product data and interact with it

directly in the products service:

1. Open the products.service.ts file and import the map RxJS operator:

import { Observable, map, of } from 'rxjs';

2. Modify the getProducts method as follows:

getProducts(): Observable<Product[]> {

 const options = new HttpParams().set('limit', 10);

 return this.http.get<Product[]>(this.productsUrl, {

 params: options

 }).pipe(map(products => {

 this.products = products;

 return products;

 }));

}

The preceding method fills the products array with data from the API and returns product

data as an observable.

Chapter 8 203

3. Modify the getProduct method so that it uses the products array to return a product

object instead of the Fake Store API:

getProduct(id: number): Observable<Product> {

 const product = this.products.find(p => p.id === id);

 return of(product!);

}

We now have our products service in place and can start building the component for adding new

products.

Adding new products
To add a new product through our application, we need to send its details to the Fake Store API:

1. Open the products.service.ts file and add the following method:

addProduct(newProduct: Partial<Product>): Observable<Product> {

 return this.http.post<Product>(this.productsUrl, newProduct).pipe(

 map(product => {

 this.products.push(product);

 return product;

 })

);

}

In the preceding snippet, we use the post method of the HttpClient class and pass the

products endpoint of the API along with a new product object as parameters.

The generic type defined in the post method indicates that the returned product from the

API is a Product object. We also add the new product into the local cache and return it.

2. Run the following Angular CLI command to create a new component:

ng generate component product-create

3. Open the product-create.component.ts file and add the following import statement:

import { ProductsService } from '../products.service';

We define the new product as Partial because new products do not have

an ID.

Communicating with Data Services over HTTP204

4. Create a constructor and inject the ProductsService class:

constructor(private productsService: ProductsService) {}

5. Add the following method to the component class:

createProduct(title: string, price: string, category: string) {

 this.productsService.addProduct({

 title,

 price: Number(price),

 category

 }).subscribe();

}

The preceding method accepts the product details as parameters and calls the addProduct

method of the ProductsService class. We use the native Number function to convert the

price value to a number because it will be passed as a string from the template.

6. Open the product-create.component.html file and replace its content with the following

HTML template:

<h1>Add new product</h1>

<div>

 <label for="title">Title</label>

 <input id="title" #title />

</div>

<div>

 <label for="price">Price</label>

 <input id="price" #price type="number" />

</div>

<div>

 <label for="category">Category</label>

 <select id="category" #category>

 <option>Select a category</option>

 <option value="electronics">Electronics</option>

We do not need to unsubscribe when interacting with the Angular HTTP

client because the framework will do it automatically for us.

Chapter 8 205

 <option value="jewelery">Jewelery</option>

 <option>Other</option>

 </select>

</div>

<div>

 <button (click)="createProduct(title.value, price.value, category.
value)">Create</button>

</div>

In the preceding template, we bind the createProduct method to the click event of the

Create button and pass the value of the <input> and <select> HTML elements using the

respective template reference variables.

7. Open the global styles.css file and add the following CSS style:

input {

 border-radius: 4px;

 padding: 8px;

 margin-bottom: 16px;

 border: 1px solid #BDBDBD;

}

Also, move the button-related styles from the product-detail.component.css file in the

global CSS styles file.

8. Open the product-create.component.css file and add the following CSS styles to give

a nice look and feel to our new component:

input {

 width: 200px;

}

select {

 border-radius: 4px;

 padding: 8px;

 margin-bottom: 16px;

 border: 1px solid #BDBDBD;

 width: 220px;

}

Communicating with Data Services over HTTP206

label {

 margin-bottom: 4px;

 display: block;

}

9. Open the product-list.component.ts file and import the ProductCreateComponent class:

import { AsyncPipe } from '@angular/common';

import { Component, OnInit } from '@angular/core';

import { Observable } from 'rxjs';

import { Product } from '../product';

import { ProductDetailComponent } from '../product-detail/product-
detail.component';

import { SortPipe } from '../sort.pipe';

import { ProductsService } from '../products.service';

import { ProductCreateComponent } from '../product-create/product-
create.component';

@Component({

 selector: 'app-product-list',

 imports: [

 ProductDetailComponent,

 SortPipe,

 AsyncPipe,

 ProductCreateComponent

],

 templateUrl: './product-list.component.html',

 styleUrl: './product-list.component.css'

})

10. Finally, open the product-list.component.html file and add the following snippet at

the end of the template:

<app-product-create></app-product-create>

If we now run our Angular application using the ng serve command, we should see the compo-

nent for adding new products at the end of the page:

Chapter 8 207

Figure 8.5: Create a product

To experiment, try to add a new product by filling in its details, clicking on the Create button, and

verifying that the new product has been added to the list.

The next feature we will add to our application is to modify data by changing the price of an

existing product.

Updating product price
The price of a product in an e-commerce application may need to change at some point. We need

to provide a way for our users to update that price through our application:

1. Open the products.service.ts file and add a new method for updating a product:

updateProduct(id: number, price: number): Observable<Product> {

 return this.http.patch<Product>(`${this.productsUrl}/${id}`, {

 price

 }).pipe(

 map(product => {

 const index = this.products.findIndex(p => p.id === id);

 this.products[index].price = price;

 return product;

 })

);

}

Communicating with Data Services over HTTP208

In the preceding method, we use the patch method of the HttpClient class to send the

details of the product that we want to modify to the API. We also update the price of the

selected product in the local cache of products and return it.

2. Add the following method to the ProductDetailComponent class:

changePrice(product: Product, price: string) {

 this.productService.updateProduct(product.id, Number(price)).
subscribe();

}

The preceding method accepts an existing product and its new price as parameters and

calls the updateProduct method of the ProductsService class.

3. Open the product-detail.component.html file and add an <input> and a <button> el-

ement after the paragraph element of the price:

@let product = (product$ | async);

@if (product) {

 <p>You selected:

 {{product.title}}

 </p>

 <p>{{product.price | currency:'EUR'}}</p>

 <input placeholder="New price" #price type="number" />

 <button

 class="secondary"

 (click)="changePrice(product, price.value)">

 Change

 </button>

 <div class="pill-group">

 <p class="pill">{{ product.category }}</p>

Alternatively, we could have used the put method of the HTTP client. The

patch method should be used when we want to update only a subset of

an object, whereas the put method interacts with all object properties. In

this case, we do not want to update the product title, so we use the patch

method. Both methods accept the API endpoint and the object we want to

update as parameters.

Chapter 8 209

 </div>

 <button (click)="addToCart()">Add to cart</button>

}

The <input> element is used to enter the new price of the product and defines the price

template reference variable. The click event of the <button> element is bound to the

changePrice method that passes the current product object and the value of the price

variable.

4. Finally, open the product-detail.component.css file and add the following CSS styles:

button.secondary {

 display: inline;

 margin-left: 5px;

 --button-accent: var(--vivid-pink);

}

5. Run the ng serve command to start the Angular application and select a product from

the list. The product details should look like the following:

Figure 8.6: Product details

6. Enter a price in the New price input box and click the Change button. The existing price

should be updated to reflect the change, for example:

Communicating with Data Services over HTTP210

Figure 8.7: Product details with changed price

We can now modify a product by changing its price.

 The next and final step of our CRUD application will be to delete an existing product.

Removing a product
Deleting a product from an e-shop application is not very common. However, we need to provide

functionality for it in case users enter incorrect or invalid data and want to delete it afterward. In

our application, deleting an existing product will be done with the product details component:

1. Open the products.service.ts file and import the tap operator from the rxjs package:

import { Observable, map, of, tap } from 'rxjs';

2. Add the following method to the ProductsService class:

deleteProduct(id: number): Observable<void> {

 return this.http.delete<void>(`${this.productsUrl}/${id}`).pipe(

 tap(() => {

 const index = this.products.findIndex(p => p.id === id);

 this.products.splice(index, 1);

 })

);

}

Remember that changes in products that come from the Fake Store API are not phys-

ically persisted. If you change the price and refresh the browser, it will restore the

initial price.

Chapter 8 211

In the preceding method, we use the delete method of the HttpClient class, passing the

products endpoint and the product id we want to delete in the API. We are also using the

splice method of the products array to remove the product from the local cache.

The return type of the method is set to Observable<void> because we are not currently

interested in the result of the HTTP request. We only need to know if it was successful

or not. We also use the tap RxJS operator because we are not altering the returned value

from the observable.

3. Open the product-detail.component.ts file and create a new output property in the

ProductDetailComponent class:

deleted = output();

The preceding property will notify the ProductListComponent that the selected product

has been deleted.

4. Create the following method, which calls the deleteProduct method of the

ProductsService class and triggers the deleted output event:

remove(product: Product) {

 this.productService.deleteProduct(product.id).subscribe(() => {

 this.deleted.emit();

 });

}

5. Open the product-detail.component.html file, create a <button> element, and bind its

click event to the emit method of the deleted output:

@let product = (product$ | async);

@if (product) {

 <p>You selected:

 {{product.title}}

 </p>

 <p>{{product.price | currency:'EUR'}}</p>

 <input placeholder="New price" #price type="number" />

 <button

 class="secondary"

 (click)="changePrice(product, price.value)">

 Change

 </button>

Communicating with Data Services over HTTP212

 <div class="pill-group">

 <p class="pill">{{ product.category }}</p>

 </div>

 <div class="button-group">

 <button (click)="addToCart()">Add to cart</button>

 <button class="delete" (click)="remove(product)">Delete</button>

 </div>

}

In the preceding snippet, we grouped the two buttons in a <div> HTML element so that

they appear side by side.

6. Add an appropriate style for the new button and the button group in the product-detail.

component.css file:

button.delete {

 display: inline;

 margin-left: 5px;

 --button-accent: var(--hot-red);

}

.button-group {

 display: flex;

 flex-direction: row;

 align-items: start;

 flex-wrap: wrap;

}

7. Open the product-list.component.html file and add a binding to the deleted event of

the <app-product-detail> component:

<app-product-detail

 [id]="selectedProduct?.id"

 (added)="onAdded()"

 (deleted)="selectedProduct = undefined"

></app-product-detail>

Chapter 8 213

If we run the application using the ng serve command and select a product from the list, we

should see something like the following:

Figure 8.8: Product details

The product detail component now has a Delete button that deletes the product and removes it

from the list when it is clicked.

The e-shop application we have built so far has an Add to cart button that we can use to add a

product to a shopping cart. The button does not do much yet, but we will implement the full cart

functionality in the following chapters. According to the documentation of the Fake Store API,

shopping carts are only available to authenticated users, so we must ensure that the Add to cart

button will only be available to them in our application.

In the following section, we will learn about authentication and authorization in Angular.

Remember that changes in products that come from the Fake Store API are not phys-

ically persisted. If you delete a product and refresh the browser, the product will

appear again on the list.

In an Angular enterprise application, the product management feature must also

be protected from unauthorized users. In this case, we would implement a more

granular authorization scheme with user roles, allowing only administrators to

change and add products. We will not implement this feature, but we encourage

you to experiment.

Communicating with Data Services over HTTP214

Authentication and authorization with HTTP
The Fake Store API provides an endpoint for authenticating users. It contains a login method that

accepts a username and a password as parameters and returns an authentication token. We will

use the authentication token in our application to differentiate between a logged-in user and a

guest.

We will explore the following authentication and authorization topics in this section:

• Authenticating with a backend API

• Authorizing users for certain features

• Authorizing HTTP requests using interceptors

Let’s get started with the topic of authenticating with the Fake Store API.

Authenticating with a backend API
In Angular real-world applications, we usually create an Angular component, allowing users to

log in and out of the application. An Angular service will communicate with the API and handle

all authentication tasks.

Let’s get started by creating the authentication service:

1. Run the following command to create a new Angular service:

ng generate service auth

2. Open the auth.service.ts file and modify the import statements as follows:

import { Injectable, computed, inject, signal } from '@angular/
core';

import { HttpClient } from '@angular/common/http';

import { Observable, tap } from 'rxjs';

import { APP_SETTINGS } from './app.settings';

A predefined pool from the users endpoint at https://fakestoreapi.com/users

provides the username and password.

https://fakestoreapi.com/users

Chapter 8 215

3. Create the following properties in the AuthService class:

private accessToken = signal('');

private authUrl = inject(APP_SETTINGS).apiUrl + '/auth';

isLoggedIn = computed(() => this.accessToken() !== '');

In the preceding snippet, the accessToken signal will store the authentication token from

the API, and the isLoggedIn signal indicates whether the user is logged in. The logged-in

status of the user depends on whether the accessToken property has a value.

The authUrl property points to the authentication endpoint URL of the Fake Store API.

4. Inject the HttpClient class in the constructor:

constructor(private http: HttpClient) { }

5. Create a login method to allow users to log in to the Fake Store API:

login(username: string, password: string): Observable<string> {

 return this.http.post<string>(this.authUrl + '/login', {

 username, password

 }).pipe(tap(token => this.accessToken.set(token)));

}

The preceding method initiates a POST request to the API, using the login endpoint and

passing username and password in the request body. The observable returned from the

POST request is passed to the tap operator, which updates the accessToken signal.

6. Create a logout method that resets the accessToken signal:

logout() {

 this.accessToken.set('');

}

We have already set up the business logic for authenticating users in our Angular application.

In the following section, we will learn how to use it to control authorization in the application.

Signals can be used not only in Angular components but also inside services.

Communicating with Data Services over HTTP216

Authorizing user access
First, we will create an authentication component that will allow our users to log in and out of

the application:

1. Run the following command to create a new Angular component:

ng generate component auth

2. Open the auth.component.ts file and add the following import statement:

import { AuthService } from '../auth.service';

3. Inject AuthService in the component’s constructor:

constructor(public authService: AuthService) {}

In the preceding snippet, we use the public access modifier to inject AuthService because

we want it to be accessible from the component’s template.

4. Create the following methods in the AuthComponent class:

login() {

 this.authService.login('david_r', '3478*#54').subscribe();

}

logout() {

 this.authService.logout();

}

In the preceding snippet, the login method uses predefined credentials from the users

endpoint.

5. Open the auth.component.html file and replace its content with the following HTML

template:

@if (!authService.isLoggedIn()) {

 <button (click)="login()">Login</button>

} @else {

 <button (click)="logout()">Logout</button>

}

The preceding template contains two <button> HTML elements for login/logout purposes.

Each button is displayed conditionally according to the value of the isLoggedIn signal

of the AuthService class.

Chapter 8 217

We can now leverage the isLoggedIn signal in the product detail component and toggle the

visibility of the Add to cart button:

1. Open the product-detail.component.ts file and add the following import statement:

import { AuthService } from '../auth.service';

2. Inject AuthService in the constructor of the ProductDetailComponent class:

constructor(private productService: ProductsService, public
authService: AuthService) { }

3. Open the product-detail.component.html file and use an @if block to display the Add

to cart button conditionally:

@if (authService.isLoggedIn()) {

 <button (click)="addToCart()">Add to cart</button>

}

4. Open the app.component.ts file and import the AuthComponent class:

import { Component, inject } from '@angular/core';

import { RouterOutlet } from '@angular/router';

import { ProductListComponent } from './product-list/product-list.
component';

import { CopyrightDirective } from './copyright.directive';

import { APP_SETTINGS } from './app.settings';

import { AuthComponent } from './auth/auth.component';

@Component({

 selector: 'app-root',

 imports: [

 RouterOutlet,

 ProductListComponent,

 CopyrightDirective,

 AuthComponent

],

 templateUrl: './app.component.html',

 styleUrl: './app.component.css'

})

Communicating with Data Services over HTTP218

5. Open the app.component.html file and add the <app-auth> tag inside the <header> HTML

element:

<header>

 {{ settings.title }}

 <app-auth></app-auth>

</header>

To try the authentication feature in the application, follow these steps:

1. Run the ng serve command to start the application and navigate to http://localhost:4200.

2. Select a product from the list and verify that the Add to cart button is not visible.

3. Click the Login button in the top-left corner of the page. The text should change to Logout

after you have logged in successfully to the Fake Store API, and the Add to cart button

should appear.

Congratulations! You have added basic authentication and authorization patterns to your An-

gular application.

It is common in enterprise applications to perform authorization in the business logic layer while

communicating with the backend API. The backend API often requires certain method calls to

pass the authentication token in each request through headers. We will learn how to work with

HTTP headers in the following section.

Authorizing HTTP requests
The Fake Store API does not require authorization while communicating with its endpoints. How-

ever, suppose we are working with a backend API that expects all HTTP requests to contain an

authentication token using HTTP headers. A common pattern in web applications is to include

the token in an Authorization header. We can use HTTP headers in an Angular application by

importing the HttpHeaders class from the @angular/common/http namespace and modifying our

methods accordingly. Here is an example of how the getProducts method should look:

getProducts(): Observable<Product[]> {

 const options = {

 params: new HttpParams().set('limit', 10),

 headers: new HttpHeaders({ Authorization: 'myToken' })

 };

 return this.http.get<Product[]>(this.productsUrl, options).
pipe(map(products => {

 this.products = products;

Chapter 8 219

 return products;

 }));

}

All HttpClient methods accept an optional object as a parameter for passing additional options

to an HTTP request, including HTTP headers. To set headers, we use the headers property of the

options object and create a new instance of the HttpHeaders class as a value. The HttpHeaders

object is a key-value pair that defines custom HTTP headers.

Now, imagine what will happen if we need to pass the authentication token in all methods of the

ProductsService class. We should go to each of them and write the same code repeatedly. Our

code could quickly become cluttered and difficult to test. Luckily, the Angular HTTP client has

another feature we can use to help us in such a situation called interceptors.

An HTTP interceptor is an Angular service that intercepts HTTP requests and responses that pass

through the Angular HTTP client. It can be used in the following scenarios:

• When we want to pass custom HTTP headers in every request, such as an authentication

token

• When we want to display a loading indicator while we wait for a response from the server

• When we want to provide a logging mechanism for every HTTP communication

In our case, we can create an interceptor for passing the authentication token to each HTTP request:

1. Run the following command to create a new interceptor:

ng generate interceptor auth

2. Open the app.config.ts file and import the withInterceptors function from the

@angular/common/http namespace:

import { provideHttpClient, withInterceptors } from '@angular/
common/http';

The withInterceptors function is used to register an interceptor with the HTTP client.

3. Import the interceptor we created in the previous step using the following statement:

import { authInterceptor } from './auth.interceptor';

For simplicity, we are using a hardcoded value for the authentication token. In a

real-world scenario, we may get it from the local storage of the browser or some

other means.

Communicating with Data Services over HTTP220

4. Modify the provideHttpClient method to register the authInterceptor:

export const appConfig: ApplicationConfig = {

 providers: [

 provideZoneChangeDetection({ eventCoalescing: true }),

 provideRouter(routes),

 provideHttpClient(withInterceptors([authInterceptor])),

 { provide: APP_SETTINGS, useValue: appSettings }

]

};

The withInterceptors function accepts a list of registered interceptors, and their order

matters. In the following diagram, you can see how interceptors process HTTP requests

and responses according to their order:

Figure 8.9: Execution order of Angular interceptors

5. Open the auth.interceptor.ts file and modify the arrow function of the authInterceptor

function as follows:

export const authInterceptor: HttpInterceptorFn = (req, next) => {

 const authReq = req.clone({

 setHeaders: { Authorization: 'myToken' }

By default, the last interceptor before sending the request to the server is a

built-in Angular service named HttpBackend.

Chapter 8 221

 });

 return next(authReq);

};

The arrow function accepts the following parameters: req, which indicates the current

request, and next, which is the next interceptor in the chain. In the preceding snippet,

we use the clone method to modify the existing request because HTTP requests are im-

mutable by default. Similarly, due to the immutable nature of HTTP headers, we use the

setHeaders method to update them. Finally, we delegate the request to the next inter-

ceptor using the handle method.

Interceptors can use the inject method to get dependencies that they may need from the Angular

DI mechanism. For example, if we wanted to use the AuthService class inside the interceptor,

we could modify it as follows:

import { inject } from '@angular/core';

import { HttpInterceptorFn } from '@angular/common/http';

import { AuthService } from './auth.service';

export const authInterceptor: HttpInterceptorFn = (req, next) => {

 const authService = inject(AuthService);

 const authReq = req.clone({

 setHeaders: { Authorization: 'myToken' }

 });

 return next(authReq);

};

 In applications built with older versions of the Angular framework, you may notice

that interceptors are TypeScript classes instead of pure functions. To register an in-

terceptor with the HTTP client, we need to add the following provide object literal

in the providers array of the module, which also provides the HttpClientModule:

{

 provide: HTTP_INTERCEPTORS,

 useClass: AuthInterceptor,

 multi: true

}

In the preceding snippet, HTTP_INTERCEPTORS is an injection token that can be

provided multiple times as indicated by the multi property.

Communicating with Data Services over HTTP222

Angular interceptors have many uses, and authorization is one of the most basic. Passing au-

thentication tokens during HTTP requests is a common scenario in enterprise web applications.

Summary
Enterprise web applications must exchange information with a backend API almost daily. The

Angular framework enables applications to communicate with an API over HTTP using the An-

gular HTTP client. In this chapter, we explored the essential parts of the Angular HTTP client.

We learned to move away from the traditional fetch API and use observables to communicate over

HTTP. We explored the basic parts of a CRUD application using the Fake Store API as our backend.

We investigated how to implement authentication and authorization in Angular applications.

Finally, we learned what Angular interceptors are and how to use them to authorize HTTP calls.

Now that we know how to consume data from a backend API in our components, we can further

improve the user experience of our application. In the next chapter, we will learn how to load

our components through navigation using the Angular router.

9
Navigating through
Applications with Routing

In previous chapters, we did a great job of separating concerns and adding different layers of

abstraction to increase the maintainability of an Angular application. However, we have barely

focused on the application’s UX.

Our user interface is bloated, with components scattered across a single screen. We must provide

a better navigational experience for users and a logical way to change the application’s view

intuitively. Now is the right time to incorporate routing and split the different areas of interest

into pages, connected by a grid of links and URLs.

So, how do we deploy a navigation scheme between components of an Angular application? We

use the Angular router and create custom links for our components to react to.

This chapter contains the following sections:

• Introducing the Angular router

• Configuring the main routes

• Organizing application routes

• Passing parameters to routes

• Enhancing navigation with advanced features

Navigating Through Applications with Routing224

Technical requirements
The chapter contains various code samples to walk you through routing in the Angular frame-

work. You can find the related source code in the ch09 folder of the following GitHub repository:

https://www.github.com/PacktPublishing/Learning-Angular-Fifth-Edition

Introducing the Angular router
In traditional web applications, when we wanted to change from one view to another, we needed

to request a new page from the server. The browser would create a URL for the view and send it to

the server. The browser would then reload the page as soon as the client received a response. It was

a process that resulted in round trip time delays and a bad user experience for our applications:

Figure 9.1: Routing in traditional web applications

https://www.github.com/PacktPublishing/Learning-Angular-Fifth-Edition

Chapter 9 225

Modern web applications using JavaScript frameworks such as Angular follow a different approach.

They handle changes between views or components on the client side without bothering the

server. They contact the server once during bootstrapping to get the main HTML file. The router

on the client intercepts and handles any subsequent URL changes. These applications are called

Single-Page Applications (SPAs) because they do not cause a full reload of a page:

Figure 9.2: SPA architecture

The Angular framework provides the @angular/router npm package, which we can use to nav-

igate between different components in an Angular application.

Adding routing in an Angular application involves the following steps:

1. Specifying the base path for the Angular application

2. Using an appropriate directive or service from the @angular/router npm package

3. Configuring different routes for the Angular application

4. Deciding where to render components upon navigation

In the following sections, we will learn the basics of Angular routing before diving deeper into

hands-on examples.

Navigating Through Applications with Routing226

Specifying a base path
As we have already seen, modern and traditional web applications react differently when a URL

changes inside the application. The architecture of each browser plays an essential part in this

behavior. Older browsers initiate a new request to the server when the URL changes. Modern

browsers, also known as evergreen browsers, can change the URL and the browser history when

navigating in different views without sending a request to the server, using a technique called

pushState.

An Angular application must set the <base> HTML tag in the index.html file to enable pushState

routing:

<!doctype html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title>MyApp</title>

 <base href="/">

 <meta name="viewport" content="width=device-width, initial-scale=1">

 <link rel="icon" type="image/x-icon" href="favicon.ico">

</head>

<body>

 <app-root></app-root>

</body>

</html>

The href attribute informs the browser of the path it should follow when loading application

resources. The Angular CLI automatically adds the tag when creating a new application and sets

the href value to the application root, /. If your application resides in a different folder from the

root, you should name it after that folder.

Enabling routing in Angular applications
The Angular router is enabled by default in new Angular applications, as indicated by the

provideRouter method in the app.config.ts file:

HTML5 pushState allows in-app navigation without causing a full reload of a page

and is supported by all modern browsers.

Chapter 9 227

import { ApplicationConfig, provideZoneChangeDetection } from '@angular/
core';

import { provideRouter } from '@angular/router';

import { routes } from './app.routes';

export const appConfig: ApplicationConfig = {

 providers: [

 provideZoneChangeDetection({ eventCoalescing: true }),

 provideRouter(routes)

]

};

The provideRouter method enables us to use a set of Angular artifacts related to routing:

• Services to perform common routing tasks such as navigation

• Directives that we can use in our components to enrich them with navigation logic

It accepts a single parameter, which is the routing configuration of the application, and is defined

by default in the app.routes.ts file.

Configuring the router
The app.routes.ts file contains a list of Routes objects that specify which routes exist in the

application and which components should respond to a specific route. It looks like the following:

const routes: Routes = [

 { path: 'products', component: ProductListComponent },

 { path: '**', component: PageNotFoundComponent }

];

In applications built with older versions of the Angular framework, the router is

enabled by importing the RouterModule class in the main application module and

using its forRoot method to define the routing configuration.

In applications built with older versions of the Angular framework, you may notice

that the route configuration is defined in a dedicated app-routing.module.ts file.

Navigating Through Applications with Routing228

Each route definition object contains a path property, which is the URL path of the route, and a

component property that defines which component will be loaded when the application navigates

to that path.

Navigation in an Angular application can occur manually by changing the browser URL or nav-

igating using in-app links. The browser will cause the application to reload in the first scenario,

while the second will instruct the router to navigate at runtime. In our case, when the browser

URL contains the products path, the router renders the product list component on the page. On

the contrary, when the application navigates to products by code, the router follows the same

procedure and updates the browser URL.

If the user tries to navigate to a URL that does not match any route, Angular activates a custom

type of route called wildcard or fallback. The wildcard route has a path property with two as-

terisks and matches any URL. The component property for this is usually an application-specific

PageNotFoundComponent or the main component of the application.

Rendering components
The template of the main application component contains the <router-outlet> element, which

is one of the main directives of the Angular router. It resides inside the app.component.html

file and is used as a placeholder for components activated with routing. These components are

rendered as a sibling element of the <router-outlet> element.

We have covered the basics and provided a minimal router setup. In the next section, we will look

at a more realistic example and expand our knowledge of routing.

Configuring the main routes
When we start designing the architecture of an Angular application with routing, it is easiest

to think about its main features, such as menu links that users can click to access. Products and

shopping carts are basic features of the e-shop application we are currently building. Adding

links and configuring them to activate certain features of an Angular application is part of the

route configuration of the application.

The value of a path property should not contain a leading /.

Chapter 9 229

To set up the route configuration of our application, we need to follow the steps below:

1. Run the following command to create a new Angular component for the shopping cart:

ng generate component cart

2. Open the app.routes.ts file and add the following import statements:

import { CartComponent } from './cart/cart.component';

import { ProductListComponent } from './product-list/product-list.
component';

3. Add two route definition objects in the routes variable:

export const routes: Routes = [

 { path: 'products', component: ProductListComponent },

 { path: 'cart', component: CartComponent }

];

In the preceding snippet, the products route will activate the ProductListComponent,

and the cart route will activate the CartComponent.

4. Open the app.component.html file and modify the <header> HTML element as follows:

<header>

 <h2>{{ settings.title }}</h2>

 <div class="menu-links">

 Products

 My Cart

 </div>

 You will need the source code of the Angular application we created in Chapter 8,

Communicating with Data Services over HTTP, to follow along with the rest of the chap-

ter. After you get the code, we suggest you take the following actions for simplicity:

• Remove the auth.interceptor.ts and its unit test file. Actual calls in the

Fake Store API do not need authentication.

• Modify the app.config.ts file so that the provideHttpClient method

does not use the interceptor.

Navigating Through Applications with Routing230

 <app-auth></app-auth>

</header>

In the preceding template, we apply the routerLink directive to anchor HTML elements

and assign the route path we want to navigate. Notice that the path should start with /

as opposed to the path property in the route definition object.

How the path starts depends on whether we want to use absolute or relative routing in

our application, as we will learn later in the chapter.

5. Move the <router-outlet> HTML element inside the <div> element with the content

class selector and remove the <app-product-list> component:

<main class="main">

 <div class="content">

 <router-outlet />

 </div>

</main>

6. Open the app.component.ts file, remove any references to the ProductListComponent

class, and import the RouterLink class:

import { Component, inject } from '@angular/core';

import { RouterLink, RouterOutlet } from '@angular/router';

import { CopyrightDirective } from './copyright.directive';

import { APP_SETTINGS } from './app.settings';

import { AuthComponent } from './auth/auth.component';

@Component({

 selector: 'app-root',

 imports: [

 RouterOutlet,

 RouterLink,

 CopyrightDirective,

 AuthComponent

],

 templateUrl: './app.component.html',

 styleUrl: './app.component.css'

})

Chapter 9 231

7. Open the app.component.css file and replace every CSS style related to the .social-links

selector with the following styles:

header {

 display: flex;

 flex-direction: row;

 gap: 0.73rem;

 justify-content: end;

 margin-top: 1.5rem;

}

.menu-links {

 display: flex;

 align-items: center;

 gap: 0.73rem;

}

.menu-links a {

 transition: fill 0.3s ease;

 color: var(--gray-400);

}

.menu-links a:hover {

 color: var(--gray-900);

}

8. Finally, open the global styles.css file and add the following CSS styles:

a {

 text-decoration: none;

}

.spacer {

 flex: 1 1 auto;

}

We are now ready to preview our Angular application:

1. Run the ng serve command and navigate to http://localhost:4200. Initially, the ap-

plication page displays the application header and the copyright information only.

Navigating Through Applications with Routing232

2. Click on the Products link. The application should display the product list and update

the browser URL to match the /products path.

3. Now navigate to the root path at http://localhost:4200 and append the /cart path

at the end of the browser URL. The application should replace the product list view with

the cart component:

cart works!

Congratulations! Your Angular application now supports in-app navigation.

We have barely scratched the surface of Angular routing. There are many features for us to in-

vestigate in the following sections. For now, let’s try to break our components into more routes

so that we can manage them easily.

Organizing application routes
Our application displays the product list along with the product details and the product create

components. We need to organize the routing configuration so that different routes activate

each component.

In this section, we will add a new route for the product create component. Later, in the Passing

parameters to routes section, we will add a separate route for the product details component.

Let’s get started with the product create component:

1. Open the app.routes.ts file and add the following import statement:

import { ProductCreateComponent } from './product-create/product-
create.component';

2. Add the following route definition object in the routes variable:

{ path: 'products/new', component: ProductCreateComponent }

3. Open the product-list.component.ts file and remove any references to the

ProductCreateComponent class.

4. Open the product-list.component.html file and remove the <app-product-create>

element.

Routing in Angular works bi-directionally. It enables us to navigate to an Angular

component using the in-app links or the browser address bar.

Chapter 9 233

5. Run the ng serve command to start the application, click on the Products link, and verify

that the product create form is not displayed.

Currently, the product create component is only accessible using the browser URL, and we cannot

reach it using the application UI. In the following section, we will learn how to accomplish that

task and imperatively navigate to a route.

Navigating imperatively to a route
The product create component can only be activated by entering the address http://

localhost:4200/products/new in the browser address bar. Let’s add a button in the product

list that will navigate us from the UI also:

1. Open the product-list.component.html file and modify the second @if block as follows:

@if (products) {
 <div class="caption">
 <h1>Products ({{products.length}})</h1>

 <svg
 width="24"
 height="24"
 xmlns="http://www.w3.org/2000/svg"
 fill-rule="evenodd"
 clip-rule="evenodd">
 <path d="M11.5 0c6.347 0 11.5 5.153 11.5 11.5s-5.153 11.5-
11.5 11.5-11.5-5.153-11.5-11.5 5.153-11.5 11.5-11.5zm0 1c5.795 0
10.5 4.705 10.5 10.5s-4.705 10.5-10.5 10.5-10.5-4.705-10.5-10.5
4.705-10.5 10.5-10.5zm.5 10h6v1h-6v6h-1v-6h-6v-1h6v-6h1v6z"/>
 </svg>

 </div>
}

In the preceding snippet, we added an anchor element that will navigate us to the product

create component, as indicated by the value of the routerLink directive.

The <path> element below might be tricky to type out manually. Alternative-

ly, you can find the code in the ch09 folder in the book’s GitHub repository

and copy it from there.

Navigating Through Applications with Routing234

2. Open the product-list.component.css file and add the following CSS styles:

.caption {

 display: flex;

 align-items: center;

 gap: 1.25rem;

}

path {

 transition: fill 0.3s ease;

 fill: var(--gray-400);

}

a:hover svg path {

 fill: var(--gray-900);

}

3. Open the product-list.component.ts file and add the following import statement:

import { RouterLink } from '@angular/router';

4. Add the RouterLink class in the imports array of the @Component decorator:

@Component({

 selector: 'app-product-list',

 imports: [

 ProductDetailComponent,

 SortPipe,

 AsyncPipe,

 RouterLink

The value of the routerLink directive is new and not /products/new as

someone would expect. The preceding behavior is because the button resides

in the product list component, which is already activated by the products

part of the route.

The Angular router can synthesize the destination route by all activated

routes, but if you don’t want to start from the root, you can add a / before

the route.

Chapter 9 235

],

 templateUrl: './product-list.component.html',

 styleUrl: './product-list.component.css'

})

5. Open the product-create.component.css file and add the following CSS style:

:host {

 width: 400px;

}

In the preceding style, the :host selector targets the host element of the product create

component.

6. Run the ng serve command to start the application and navigate to http://

localhost:4200/products:

Figure 9.3: Product list

Navigating Through Applications with Routing236

7. Click the button with the plus sign. The application redirects you to the /products/new

route and activates the product create component:

Figure 9.4: Product create form

Although the product create component remains functional, our change introduced a flaw in the

application’s UX. The user does not have a visual indication when a new product is created because

the product list belongs to a different route. We must modify the logic of the Create button so

that it redirects the user to the product list upon successful creation of a product:

1. Open the product-create.component.ts file and add the following import statement:

import { Router } from '@angular/router';

2. Inject the Router service in the constructor of the ProductCreateComponent class:

constructor(private productsService: ProductsService, private
router: Router) {}

3. Modify the createProduct method as follows:

createProduct(title: string, price: string, category: string) {

 this.productsService.addProduct({

 title,

 price: Number(price),

 category

 }).subscribe(() => this.router.navigate(['/products']));

}

Chapter 9 237

In the preceding method, we call the navigate method of the Router service to navigate

into the /products route of the application.

It accepts a link parameters array containing the destination route path we want to

navigate.

4. Open the products.service.ts file and modify the getProducts method so that it uses

the Fake Store API when there is no local product data:

getProducts(): Observable<Product[]> {

 if (this.products.length === 0) {

 const options = new HttpParams().set('limit', 10);

 return this.http.get<Product[]>(this.productsUrl, {

 params: options

 }).pipe(map(products => {

 this.products = products;

 return products;

 }));

 }

 return of(this.products);

}

If we do not make the preceding change, the product list component will always return

data from the Fake Store API.

Our application now redirects users to the product list whenever they create a new product so

that they can see it on the list.

So far, we have configured the application routing to activate components according to a given

path. However, our application does not show any components in the following situations:

• When we navigate to the root path of the application

• When we try to navigate to a non-existing route

In the following section, we will learn how to use the built-in route paths that Angular router

provides and improve the application UX.

We use the / character because we are using absolute routing by default.

Navigating Through Applications with Routing238

Using built-in route paths
When we want to define a component that will be loaded when we navigate to the root path,

we create a route definition object and set the path property to an empty string. A route with an

empty string path is called the default route of the Angular application.

In our case, we want the default route to display the product list component. Open the app.routes.

ts file and add the following route at the end of the routes variable:

{ path: '', redirectTo: 'products', pathMatch: 'full' }

In the preceding snippet, we tell the router to redirect to the products path when the application

navigates to the default route. The pathMatch property tells the router how to match the URL to

the root path property. In this case, the router redirects to the products path only when the URL

matches the root path, which is the empty string.

If we run the application, we will notice that when the browser URL points to the root path of our

application, we are redirected to the products path, and the product list is displayed on the screen.

We have encountered the concept of unknown routes in the Introducing the Angular router sec-

tion. We saw briefly how to set up a wildcard route to display a PageNotFoundComponent when

our application tries to navigate to a route that does not exist. In real-world applications, it is

common to create such a component, especially if you want to display additional information to

the user, such as what next steps they can follow. In our case, which is simpler, we will redirect

to the products route.

Open the app.routes.ts file and add the following route at the end of the routes variable:

{ path: '**', redirectTo: 'products' }

If we run our application using the ng serve command and navigate to an unknown path, our

application will display the product list.

We added the default route after all other routes because the order of the routes is

important. The router selects routes with a first-match-wins strategy. More specific

routes should be defined before less specific ones.

The wildcard route must be the last entry in the route list because the application

should only reach it if there are no matching routes.

Chapter 9 239

Until now, we have relied on the address bar of the browser to indicate which route is active at

any given time. As we will learn in the following section, we could improve the user experience

using CSS styling.

Styling router links
The application header contains the Products and the My Cart links. When we navigate to each one,

it is not clear which route has been activated. The Angular router exports the routerLinkActive

directive, which we can use to change the style of a link when the corresponding route is active.

It works similarly to the class binding we learned about in Chapter 3, Structuring User Interfaces

with Components. It accepts a list of class names or a class that is added when the link is active

and removed when it becomes inactive.

Let’s see how to use it in our application:

1. Open the app.component.css file and add the following CSS style:

.menu-links a.active {

 color: var(--electric-violet);

}

2. Open the app.component.ts file and import the RouterLinkActive class from the

@angular/router npm package:

import { RouterLink, RouterLinkActive, RouterOutlet } from '@
angular/router';

3. Add the RouterLinkActive class in the imports array of the @Component decorator:

@Component({

 selector: 'app-root',

 imports: [

 RouterOutlet,

 RouterLink,

 RouterLinkActive,

 CopyrightDirective,

 AuthComponent

],

 templateUrl: './app.component.html',

 styleUrl: './app.component.css'

})

Navigating Through Applications with Routing240

4. Open the app.component.html file and add the routerLinkActive directive to both links:

<div class="menu-links">

 Products

 My Cart

</div>

Now, when we click on an application link in the header, its color changes to denote the link is

active.

We have learned how to use routing and activate components that do not need any parameters.

However, the product details component accepts the product ID as a parameter. In the next section,

we will learn how to activate the component using dynamic route parameters.

Passing parameters to routes
A common scenario in enterprise web applications is to have a list of items, and when you click

on one of them, the page changes the current view and displays details of the selected item. The

previous approach resembles a master-detail browsing functionality, where each generated URL

on the master page contains the identifiers required to load each item on the detail page.

We can represent the previous scenario with two routes navigating to different components. One

component is the list of items, and the other is the item details. So, we need to find a way to create

and pass dynamic item-specific data from one route to the other.

We are tackling double trouble here: creating URLs with dynamic parameters at runtime and

parsing the value of these parameters. No problem: the Angular router has our back, and we will

see how with a real example.

Building a detail page using route parameters
The product list in our application currently displays a list of products. When we click on a prod-

uct, the product details appear below the list. We need to refactor the previous workflow so that

the component responsible for displaying product details is rendered on a different page from

the list. We will use the Angular router to redirect the user to the new page upon clicking on a

product from the list.

The product list component currently passes the selected product ID via input binding. We will

use the Angular router to pass the product ID as a route parameter instead:

Chapter 9 241

1. Open the app.routes.ts file and add the following import statement:

import { ProductDetailComponent } from './product-detail/product-
detail.component';

2. Add the following route definition in the routes variable after the products/new route:

{ path: 'products/:id', component: ProductDetailComponent }

The colon character denotes id as a route parameter in the new route definition object.

If a route has multiple parameters, we separate them with /. As we will learn later, the

parameter name is important when we want to consume its value in our components.

3. Open the product-list.component.html file and add an anchor element for the product

title so that it uses the new route definition:

<ul class="pill-group">

 @for (product of products | sort; track product.id) {

 <li class="pill" (click)="selectedProduct = product">

 @switch (product.category) {

 @case ('electronics') { }

 @case ('jewelery') { }

 @default { }

 }

 <a [routerLink]="[product.id]">{{product.title}}

 } @empty {

 <p>No products found!</p>

 }

In the preceding snippet, the routerLink directive uses property binding to set its value

in a link parameters array. We pass the id of the product template reference variable as

a parameter in the array.

We do not need to prefix the value of the link parameters array with

/products because that route already activates the product list.

Navigating Through Applications with Routing242

4. Remove the <app-product-detail> component and the click event binding from the

 tag.

We can now proceed by modifying the product detail component so that it works with routing:

1. Open the product-detail.component.css file and add a CSS style to set the width of

the host element:

:host {

 width: 450px;

}

2. Open the product-detail.component.ts file and modify the import statements as fol-

lows:

import { CommonModule } from '@angular/common';

import { Component, input, OnInit } from '@angular/core';

import { ActivatedRoute, Router } from '@angular/router';

import { Product } from '../product';

import { Observable, switchMap } from 'rxjs';

import { ProductsService } from '../products.service';

import { AuthService } from '../auth.service';

The Angular router exports the ActivatedRoute service, which we can use to retrieve

information about the currently activated route, including any parameters.

3. Modify the component constructor to inject the ActivatedRoute and Router services:

constructor(

 private productService: ProductsService,

 public authService: AuthService,

 private route: ActivatedRoute,

 private router: Router

) { }

We can refactor the product-list.component.ts file and remove any code

that uses the selectedProduct property and the ProductDetailComponent

class. The product list does not need to keep the selected product in its local

state because we are navigating away from the list upon choosing a product.

Chapter 9 243

4. Modify the list of implemented interfaces of the ProductDetailComponent class:

export class ProductDetailComponent implements OnInit

5. Create the following ngOnInit method:

ngOnInit(): void {

 this.product$ = this.route.paramMap.pipe(

 switchMap(params => {

 return this.productService.getProduct(Number(params.
get('id')));

 })

);

}

The ActivatedRoute service contains the paramMap observable, which we can use to sub-

scribe and get route parameter values. The switchMap RxJS operator is used when we

want to get a value from an observable, complete it, and pass the value down to another

observable. We use it, in this case, to pipe the id parameter from the paramMap observable

to the getProduct method of the ProductsService class.

6. Modify the changePrice and remove methods so that the application will redirect to the

product list upon completion of each action:

changePrice(product: Product, price: string) {

 this.productService.updateProduct(product.id, Number(price)).
subscribe(() => {

 this.router.navigate(['/products']);

 });

}

remove(product: Product) {

 this.productService.deleteProduct(product.id).subscribe(() => {

 this.router.navigate(['/products']);

 });

}

7. Remove the ngOnChanges method because the component and its bindings are initialized

every time the route is activated.

Navigating Through Applications with Routing244

8. Remove the output event emitters because the product list component is not a parent

component anymore. Leave the id input property as is because we will use it later in the

chapter.

9. Leave the addToCart method empty for now. We will use it later in Chapter 10, Collecting

User Data with Forms.

It is also worth noting the following:

1. The paramMap observable returns an object of the ParamMap type. We can use the get

method of the ParamMap object to pass the parameter name we defined in the route con-

figuration and access its value.

2. We convert the value of the id parameter to a number because route parameter values

are always strings.

If we run the application using the ng serve command and click on a product from the list, the

application navigates us to the product details component:

Figure 9.5: Product Details page

If you refresh the browser, the application will not display the product because the

getProduct method of the ProductsService class works only with the cached

version of product data. You must go to the product list again and select a product

because the local cache has been reset. Note that this behavior is based on the cur-

rent implementation of the e-shop application and is not tied to the Angular router

architecture.

Chapter 9 245

In the previous example, we used the paramMap property to get route parameters as an observable.

So, ideally, our component could be notified of new values during its lifetime. But the component

is destroyed each time we want to select a different product from the list, and so is the subscrip-

tion to the paramMap observable.

Alternatively, we can avoid using observables by reusing the instance of a component as soon as

it remains rendered on the screen during consecutive navigations. We can achieve this behavior

using child routes, as we will learn in the following section.

Reusing components using child routes
Child routes are a perfect solution when we want a landing page component that will provide

routing to other components. The component should contain a <router-outlet> element in

which child routes will be loaded.

Suppose that we want to define the layout of our Angular application like this:

Figure 9.6: Master-detail layout

The scenario in the previous diagram requires the product list component to contain a <router-

outlet> element to render the product details component when the related route is activated.

The product details component will be rendered in the <router-outlet> of the product list com-

ponent and not in the <router-outlet> of the main application component.

Navigating Through Applications with Routing246

The product details component is not destroyed when we navigate from one product to another.

Instead, it remains in the DOM tree, and its ngOnInit method is called once, the first time we

select a product. When we choose a new product from the list, the paramMap observable emits

the id of the new product. The new product is fetched using the ProductsService class, and the

component template is refreshed to reflect the new changes.

The route configuration of the application, in this case, would be as follows:

export const routes: Routes = [

 {

 path: 'products',

 component: ProductListComponent,

 children: [

 { path: 'new', component: ProductCreateComponent },

 { path: ':id', component: ProductDetailComponent },

]

 },

 { path: 'cart', component: CartComponent },

 { path: '', redirectTo: 'products', pathMatch: 'full' },

 { path: '**', redirectTo: 'products' }

];

In the preceding snippet, we use the children property of the route definition object to define

child routes containing a list of route definition objects.

A parent route can also provide services to its children by using the providers property of the

route definition object. Providing services in a route is very helpful when we want to limit access

to a subset of the routing configuration. If we wanted to restrict the ProductsService class only

to the product-related components, we should do the following:

{

 path: 'products',

 component: ProductListComponent,

 children: [

 { path: 'new', component: ProductCreateComponent },

Notice also that we removed the word products from the path property of the

children routes because the parent route will append it.

Chapter 9 247

 { path: ':id', component: ProductDetailComponent },

],

 providers: [ProductsService]

}

Angular creates a separate injector when providing services in route definition objects, which is

an immediate child of the root injector. Suppose the service is also provided in the root injector,

and suppose the cart component uses that. In that case, the instance created by one of the prod-

uct-related components will differ from that of the cart component.

We have learned how to use the paramMap observable in Angular routing. In the following section,

we will discuss an alternative approach using snapshots.

Taking a snapshot of route parameters
When we select a product from the list, the product list component is removed from the DOM

tree, and the product details component is added. To choose a different product, we need to click

on either the Products link or the back button of our browser. Consequently, the product details

component is replaced by the product list component in the DOM. So, we are in a situation where

only one component is displayed on the screen at any time.

When the product details component is destroyed, so is its ngOnInit method and the subscription

to the paramMap observable. So, we do not benefit from using observables at this point. Alterna-

tively, we could use the snapshot property of the ActivatedRoute service to get values for route

parameters, as follows:

ngOnInit(): void {

 const id = this.route.snapshot.params['id'];

 this.product$ = this.productService.getProduct(id);

}

The snapshot property represents the current value of a route parameter, which also happens

to be the initial value. It contains the params property, an object of route parameter key-value

pairs we can access.

If you are sure your component will not be reused, use the snapshot approach.

Navigating Through Applications with Routing248

So far, we have dealt with routing parameters in the form of products/:id. We use these param-

eters to navigate to a component that requires the parameter. In our case, the product details

component requires the id parameter to get specific product details. However, there is another

type of route parameter when we need it to be optional, as we will learn in the following section.

Filtering data using query parameters
In Chapter 8, Communicating with Data Services over HTTP, we learned how to pass query param-

eters to a request using the HttpParams class. The Angular router also supports passing query

parameters through the application’s URL.

The getProducts method in the products.service.ts file uses HTTP query parameters to limit

product results returned from the Fake Store API:

getProducts(): Observable<Product[]> {

 if (this.products.length === 0) {

 const options = new HttpParams().set('limit', 10);

 return this.http.get<Product[]>(this.productsUrl, {

 params: options

 }).pipe(map(products => {

 this.products = products;

 return products;

 }));

 }

 return of(this.products);

}

It uses a hardcoded value for setting the limit query parameter. We will modify the application

so that the product list component passes the limit value dynamically:

1. Open the products.service.ts file and modify the getProducts method so that the

limit is passed as a parameter:

getProducts(limit?: number): Observable<Product[]> {

 if (this.products.length === 0) {

 const options = new HttpParams().set('limit', limit || 10);

 return this.http.get<Product[]>(this.productsUrl, {

 params: options

 }).pipe(map(products => {

Chapter 9 249

 this.products = products;

 return products;

 }));

 }

 return of(this.products);

}

In the preceding method, if the limit value is falsy, we pass a default value of 10 to the

query parameter.

2. Open the product-list.component.ts file and import the ActivatedRoute service and

the switchMap RxJS operator:

import { RouterLink, ActivatedRoute } from '@angular/router';

import { Observable, switchMap } from 'rxjs';

3. Inject the ActivatedRoute service in the constructor of the ProductListComponent class:

constructor(private productService: ProductsService, private route:
ActivatedRoute) {}

4. The ActivatedRoute service contains a queryParamMap observable that we can subscribe

to get query parameter values. It returns a ParamMap object, similar to the paramMap observ-

able we saw earlier, which we can query to get parameter values. Modify the getProducts

method to use the queryParamMap observable:

private getProducts() {

 this.products$ = this.route.queryParamMap.pipe(

 switchMap(params => {

 return this.productService.getProducts(Number(params.
get('limit')));

 })

);

}

A falsy value evaluates to False in a Boolean context and can be null,

undefined, 0, or False. You can read more at https://developer.mozilla.

org/docs/Glossary/Falsy.

https://developer.mozilla.org/docs/Glossary/Falsy
https://developer.mozilla.org/docs/Glossary/Falsy

Navigating Through Applications with Routing250

In the preceding snippet, we use the switchMap RxJS operator to pipe the limit parameter

from the queryParamMap observable to the getProducts method of the ProductsService

class as a number.

5. Run the ng serve command to start the application and navigate to http://

localhost:4200?limit=5. You should see a list of 5 products:

Figure 9.7: Filtered product list

Try to experiment with different values for the limit parameter and observe the output.

Query parameters in routing are powerful and can be used for various use cases, such as filtering

and sorting data. They can also be used when working with snapshot-based routing.

In the following section, we will explore a new innovative way to pass route parameters using

component input properties.

Binding input properties to routes
We have already learned, in Chapter 3, Structuring User Interfaces with Components, that we use

input and output bindings to inter-communicate between components. An input binding can

also pass route parameters while navigating to a component. We will see an example using the

product detail component:

1. The input binding with route parameters is not enabled by default in the Angular router.

We must activate it from the application configuration file. Open the app.config.ts file

and import the withComponentInputBinding function from the @angular/router npm

package:

Chapter 9 251

import { provideRouter, withComponentInputBinding } from '@angular/
router';

2. Pass the preceding function as the second parameter in the provideRouter method:

provideRouter(routes, withComponentInputBinding()),

3. Now, open the product-detail.component.ts file and change the type of the id com-

ponent property to a string:

id = input<string>();

We must change the property type because routing parameters are passed as strings.

4. Modify the ngOnInit method to use the id parameter to fetch a product:

ngOnInit(): void {

 this.product$ = this.productService.getProduct(Number(this.
id()!));

}

5. Run the ng serve command and verify that the product details are displayed upon se-

lecting a product from the list.

Binding route parameters to component input properties has the following advantages:

• The TypeScript component class is simpler because we do not have asynchronous calls

with observables

• We can access existing components that work with input and output bindings using a route

Now that we have learned all the different ways to pass parameters during navigation, we have

covered all the essential information we need to start building Angular applications with routing.

In the following sections, we will focus on advanced practices that enhance the user experience

when using in-app navigation in Angular applications.

Input binding works with components that are activated via routing. If we want to ac-

cess any route parameter from another component, we must use the ActivatedRoute

service.

Navigating Through Applications with Routing252

Enhancing navigation with advanced features
So far, we have covered basic routing with route and query parameters. The Angular router is

quite capable, though, and able to do much more, such as the following:

• Controlling access to a route

• Preventing navigation away from a route

• Prefetching data to improve application UX

• Lazy-loading routes to speed up response time

In the following sections, we will learn about all these techniques in more detail.

Controlling route access
When we want to control access to a particular route, we use a guard. To create a guard, we use the

ng generate command of the Angular CLI, passing the word guard and its name as parameters:

ng generate guard auth

When we execute the previous command, the Angular CLI asks what type of guard we would like

to create. There are multiple types of guards that we can create according to the functionality

that they provide:

• CanActivate: Controls whether a route can be activated

• CanActivateChild: Controls whether children routes can be activated

• CanDeactivate: Controls whether a route can be deactivated

• CanMatch: Controls whether a route can be accessed at all

Select CanActivate and press Enter. The Angular CLI creates the following auth.guard.ts file:

import { CanActivateFn } from '@angular/router';

export const authGuard: CanActivateFn = (route, state) => {

 return true;

};

Deactivation happens when we navigate away from a route.

Chapter 9 253

The guard that we created is a function of type CanActivateFn, which accepts two parameters:

• route: Indicates the route that will be activated

• state: Contains the state of the router upon successful navigation

Our guard returns true immediately, allowing free access to the route. Let’s add custom logic to

control access based on whether the user is logged in:

1. Modify the import statements as follows:

import { inject } from '@angular/core';

import { CanActivateFn, Router } from '@angular/router';

import { AuthService } from './auth.service';

2. Replace the body of the arrow function with the following snippet:

const authService = inject(AuthService);

const router = inject(Router);

if (authService.isLoggedIn()) {

 return true;

}

return router.parseUrl('/');

In the preceding snippet, we use the inject method to inject the AuthService and Router

services into the function. We then check the value of the isLoggedIn signal. If it is true, we

allow the application to navigate to the requested route. Otherwise, we use the parseUrl

method of the Router service to navigate to the root path of the Angular application.

The CanActivateFn function can return a boolean value, either synchronously or

asynchronously. In the latter case, the router will wait for the observable or the

promise to resolve before continuing. If the asynchronous event does not complete,

the navigation will not continue. It can also return a UrlTree object, which will

cause new navigation to a defined route.

The parseUrl method returns a UrlTree object, which effectively cancels

the previous navigation and redirects the user to the URL passed in the

parameter. It is advised to use it over the navigate method, which may

introduce unexpected behavior and can lead to complex navigation issues.

Navigating Through Applications with Routing254

3. Open the app.routes.ts file and add the following import statement:

import { authGuard } from './auth.guard';

4. Add the authGuard function in the canActivate array of the cart route:

{

 path: 'cart',

 component: CartComponent,

 canActivate: [authGuard]

}

Only authenticated users can now access the shopping cart. If you run the application using the

ng serve command and click the My Cart link, you will notice that nothing happens.

Another guard type related to the activation of a route is the CanDeactivate guard. In the following

section, we will learn how to use it to prevent a user leaving a route.

Preventing navigation away from a route
A guard that controls if a route can be deactivated is a function of the CanDeactivateFn type. We

will learn how to use it by implementing a guard that notifies the user of pending products in

the cart when they navigate away from the cart component:

1. Run the following command to generate a new guard:

ng generate guard checkout

2. Select the CanDeactivate type from the list and press Enter.

3. Open the checkout.guard.ts file and add the following import statement:

import { CartComponent } from './cart/cart.component';

The canActivate property is an array because multiple guards can control route

activation. The order of guards in the array is important. If one of the guards fails

to pass, Angular will prevent access to the route.

When you try to access the shopping cart from the product list, you always remain

on the same page. This is because the redirection that happens due to the authenti-

cation guard does not have any effect when you are already in the redirected route.

Chapter 9 255

4. Change the generic of the CanDeactivateFn to CartComponent and remove the parameters

of the arrow function.

5. Replace the body of the arrow function with the following snippet:

const confirmation = confirm(

 'You have pending items in your cart. Do you want to continue?'

);

return confirmation;

In the preceding snippet, we use the confirm method of the global window object to display

a confirmation dialog before navigating away from the cart component. The application

execution will wait until the confirmation dialog is dismissed as a user interaction.

6. Open the app.routes.ts file and add the following import statement:

import { checkoutGuard } from './checkout.guard';

7. A route definition object contains a canDeactivate array similar to canActivate. Add the

checkoutGuard function to the canDeactivate array of the cart route:

{

 path: 'cart',

 component: CartComponent,

 canActivate: [authGuard],

 canDeactivate: [checkoutGuard]

}

For such a simple scenario, we could have written the logic of the checkoutGuard function inline

to avoid the creation of the checkout.guard.ts file:

{

In a real-world scenario, we will probably need to add more components in

the generics to create a generic guard.

The canDeactivate property is an array because multiple guards can control route

deactivation. The order of guards in the array is important. If one of the guards fails

to pass, Angular will prevent a user leaving the route.

Navigating Through Applications with Routing256

 path: 'cart',

 component: CartComponent,

 canActivate: [authGuard],

 canDeactivate: [() => confirm('You have pending items in your cart. Do
you want to continue?')]

}

Run the application using the ng serve command and click the My Cart link after you have logged

in. If you then click on the Products link or press the back button of the browser, you should see

a dialog with the following message:

You have pending items in your cart� Do you want to continue?

If you click the Cancel button, the navigation is canceled, and the application remains in its cur-

rent state. If you click the OK button, you will be redirected to the product list.

Prefetching route data
You may have noticed that when you navigate to the root path of the application for the first time,

there is a delay in displaying the product list. It is reasonable since we are making an HTTP request

to the backend API. However, the product list component was already initialized at that time.

The preceding behavior may lead to unwanted effects if the component contains logic that inter-

acts with data during initialization. To solve this problem, we can use a resolver to prefetch the

product list and load the component when data are available.

To create a resolver, we use the ng generate command of the Angular CLI, passing the word

resolver and its name as parameters:

ng generate resolver products

The preceding command creates the following products.resolver.ts file:

import { ResolveFn } from '@angular/router';

export const productsResolver: ResolveFn<boolean> = (route, state) => {

 return true;

};

A resolver can be handy when handling possible errors before activating a route. It

would be more appropriate to navigate to an error page if the request to the API does

not succeed instead of displaying a blank page.

Chapter 9 257

The resolver that we created is a function of type ResolveFn, which accepts two parameters:

• route: Indicates the route that will be activated

• state: Contains the state of the activated route

Currently, our resolver returns a boolean value. Let’s add custom logic so that it returns an array

of products:

1. Add the following import statements:

import { inject } from '@angular/core';

import { Product } from './product';

import { ProductsService } from './products.service';

2. Modify the productsResolver function so that it returns a product array:

export const productsResolver: ResolveFn<Product[]> = (route, state)
=> {

 return [];

};

3. Use the inject method to inject ProductsService in the function body:

const productService = inject(ProductsService);

4. Use the queryParamMap property to get the limit parameter value from the current route:

const limit = Number(route.queryParamMap.get('limit'));

5. Replace the return statement with the following:

return productService.getProducts(limit);

6. The resulting function should look like the following:

export const productsResolver: ResolveFn<Product[]> = (route, state)
=> {

 const productService = inject(ProductsService);

 const limit = Number(route.queryParamMap.get('limit'));

A ResolveFn function can return an observable or promise. The router will wait

for the observable or the promise to resolve before continuing. If the asynchronous

event does not complete, the navigation will not continue.

Navigating Through Applications with Routing258

 return productService.getProducts(limit);

};

Now that we have created the resolver, we can connect it with the product list component:

1. Open the app.routes.ts file and add the following import statement:

import { productsResolver } from './products.resolver';

2. Add the following resolve property to the products route:

{

 path: 'products',

 component: ProductListComponent,

 resolve: {

 products: productsResolver

 }

}

The resolve property is an object that contains a unique name as a key and the resolver

function as a value. The key name is important because we will use it in our components

to access the resolved data.

3. Open the product-list.component.ts file and import the of operator from the rxjs

npm package:

import { Observable, switchMap, of } from 'rxjs';

4. Modify the getProducts method so that it subscribes to the data property of the

ActivatedRoute service:

private getProducts() {

 this.products$ = this.route.data.pipe(

 switchMap(data => of(data['products']))

);

}

In the preceding snippet, the data observable emits an object whose value exists in the

products key. Notice that we use the switchMap operator to return products in a new

observable.

Chapter 9 259

5. Run the ng serve command to start the application and verify that the product list is

displayed when navigating to http://localhost:4200.

Angular resolvers improve application performance when complex initialization logic exists in

routed components. Another way to improve the application performance is to load components

or child routes on demand, as we will learn in the following section.

Lazy-loading parts of the application
Our application may grow at some point, and the amount of data we put into it may also increase.

The application may take a long time to start initially, or certain parts can take a long time to load.

To overcome these problems, we can use a technique called lazy loading.

Lazy loading means we don’t initially load certain application parts, such as Angular components

or routes. There are many advantages of lazy loading in an Angular application:

• Components and routes can be loaded upon request from the user

• Users who visit certain areas of your application can significantly benefit from this tech-

nique

• We can add more features in a lazy-loaded area without affecting the overall application

bundle size

To understand how lazy loading in Angular works, we will create a new component that displays

the current user profile.

Let’s get started:

1. Run the following command to create an Angular component:

ng generate component user

At this point, we can also remove any references to the ProductsService

class because it is not needed anymore.

A good practice is to lazy-load parts of the application that are not used frequently,

such as the profile of the currently logged-in user.

Navigating Through Applications with Routing260

2. Create a file named user.routes.ts in the src\app folder and add the following content:

import { UserComponent } from './user/user.component';

export default [

 { path: '', component: UserComponent }

];

In the preceding snippet, we set the path property to an empty string to activate the route

by default. We also use the default keyword to benefit from the default export feature

in lazy loading.

3. Open the app.routes.ts file and add the following route definition in the routes variable:

{ path: 'user', loadChildren: () => import('./user.routes') }

The loadChildren property of a route definition object is used to lazy-load Angular routes.

It returns an arrow function that uses a dynamic import statement to lazy-load the routes

file. The import function accepts the relative path of the routes file we want to import.

4. Add a new anchor element to the <header> element of the app.component.html file that

links to the newly created route:

<div class="menu-links">

 Products

 My Cart

 My Profile

</div>

5. Run the command ng serve and observe the output in the console window. It should

look similar to the following:

Initial chunk files | Names | Raw size

polyfills.js | polyfills | 82.71 kB |

main.js | main | 47.22 kB |

styles.css | styles | 1.14 kB |

 | Initial total | 131.07 kB

Lazy chunk files | Names | Raw size

chunk-D3RURZVV.js | user-routes | 1.26 kB |

Chapter 9 261

Application bundle generation complete. [1.234 seconds]

In the preceding output, we can see that the Angular CLI has created a lazy chunk file

named user-routes in addition to the initial chunk files of the application.

6. Navigate with your browser to http://localhost:4200 and open the developer tools.

7. Click the My Profile link and inspect the Network requests tab:

Figure 9.8: Lazy-loaded route

The application initiates a new request to the chunk file, which is the bundle of the user

route. The Angular framework creates a new bundle for each lazy-loaded artifact and does

not include it in the main application bundle.

If you navigate away and click the My Profile link again, you will notice that the applica-

tion does not make a new request to load the bundle file. As soon as a lazy-loaded route

is requested, it is kept in memory and can be used for subsequent requests.

Lazy loading works not only with routes but also with components. We could have lazy-loaded

the user component instead of the whole route by modifying the user route as follows:

{

 path: 'user',

 loadComponent: () => import('./user/user.component').then(c =>
c.UserComponent),

}

In the preceding snippet, we use the loadComponent property to import the user.component.ts

file dynamically. The import function returns a promise that we chain with the then method to

load the UserComponent class.

Navigating Through Applications with Routing262

The user route is currently accessible for all users, even if not authenticated. In the following

section, we will learn how to protect them using guards.

Protecting a lazy-loaded route
We can control unauthorized access to a lazy-loaded route similarly to how we can on normal

routes. However, our guards need to support a function type named CanMatchFn.

We will extend our authentication guard for use with lazy-loaded routes:

1. Open the auth.guard.ts file and import the CanMatchFn type from the @angular/router

npm package:

import { CanActivateFn, CanMatchFn, Router } from '@angular/router';

2. Modify the signature of the authGuard function as follows:

export const authGuard: CanActivateFn | CanMatchFn = () => {

 const authService = inject(AuthService);

 const router = inject(Router);

 if (authService.isLoggedIn()) {

 return true;

 }

 return router.parseUrl('/');

};

3. Open the app.routes.ts file and add the authGuard function in the canMatch array of

the user route:

{

 path: 'user',

 loadChildren: () => import('./user.routes'),

 canMatch: [authGuard]

}

The canMatch property is an array because multiple guards can control route match-

ing. The order of guards in the array is important. If one of the guards fails to match

with a route, Angular will prevent access to the route.

Chapter 9 263

If we now run the application and click the My Profile link, we will notice that we cannot navigate

to the respective component unless we are authenticated.

Lazy loading is a technique preferred when the application performance is critical. Angular has

also introduced a more performant feature to delay loading parts of an Angular application called

deferrable views. Deferrable views give developers more fine-grained control over the conditions

under which a part of the application will be loaded. We will explore deferrable views in Chapter

15, Optimizing Application Performance.

Summary
We have now uncovered the power of the Angular router, and we hope you have enjoyed this jour-

ney into the intricacies of this library. One of the things that shines in the Angular router is the vast

number of options and scenarios we can cover with such a simple but powerful implementation.

We have learned the basics of setting up routing and handling different types of parameters. We

have also learned about more advanced features, such as child routing. Furthermore, we have

learned how to protect our routes from unauthorized access. Finally, we have shown the full

power of routing and how you can improve response time with lazy loading and prefetching.

In the next chapter, we will beef up our application components to showcase the mechanisms

underlying web forms in Angular and the best strategies to grab user input with form controls.

10
Collecting User Data with Forms

Web applications use forms to collect input data from users. Use cases vary, from allowing users

to log in, fill in payment information, book a flight, or even perform a search. Form data can later

be persisted on local storage or be sent to a server using a backend API.

In this chapter, we will cover the following topics about forms:

• Introducing web forms

• Building template-driven forms

• Building reactive forms

• Using a form builder

• Validating input in forms

• Manipulating form state

Technical requirements
The chapter contains various code samples to walk you through creating and managing forms in

Angular. You can find the related source code in the ch10 folder of the following GitHub repository:

https://www.github.com/PacktPublishing/Learning-Angular-Fifth-Edition

Introducing web forms
A form usually has the following characteristics that enhance the user experience of a web ap-

plication:

• Defines different kinds of input fields

https://www.github.com/PacktPublishing/Learning-Angular-Fifth-Edition

Collecting User Data with Forms266

• Sets up different kinds of validations and displays validation errors to the user

• Supports different strategies for handling data if the form is in an error state

The Angular framework provides two approaches to handling forms: template-driven and reac-

tive. Neither approach is considered better; you must choose the one that best suits your scenario.

The main difference between the two approaches is how they manage data:

• Template-driven forms: These are easy to set up and add to an Angular application. They

operate solely on the component template to create elements and configure validation

rules; thus, they are not easy to test. They also depend on the change detection mecha-

nism of the framework.

• Reactive forms: These are more robust when scaling and testing. They operate in the

component class to manage input controls and set validation rules. They also manipu-

late data using an intermediate form model, maintaining their immutable nature. This

technique is for you if you use reactive programming techniques extensively or if your

Angular application comprises many forms.

A form in a web application consists of a <form> HTML element that contains HTML elements

for entering data, such as <input> and <select> elements, and <button> elements for interact-

ing with the data. The form can retrieve and save data locally or send it to a server for further

manipulation. The following is an example of a simple form that is used for logging a user into

a web application:

<form>

 <div>

 <input type="text" name="username" placeholder="Username" />

 </div>

 <div>

 <input type="password" name="password" placeholder="Password" />

 </div>

 <button type="submit">Login</button>

</form>

The preceding form has two <input> elements: one for entering the username and another for

entering the password. The type of the password field is set to password so that the content of the

input control is not visible while typing. The type of the <button> element is set to submit so that

the form can collect data by a user clicking on the button or pressing Enter on any input control.

Chapter 10 267

Notice that an HTML element must reside inside the <form> element to be part of it. The following

screenshot shows what the form looks like when rendered on a page:

Figure 10.1: Login form

Web applications can significantly enhance the user experience by using forms that provide

features such as autocomplete in input controls or prompting the user to save sensitive data.

Now that we have understood what a web form looks like, let’s learn how all that fits into the

Angular framework.

Building template-driven forms
Template-driven forms are one of two different ways of integrating forms with Angular. These can

be powerful in cases where we want to create small and simple forms for our Angular application.

We learned about data binding in Chapter 3, Structuring User Interfaces with Components, and how

we can use different types to read data from an Angular component and write data to it. In that case,

binding is either one way or another, called one-way binding. In template-driven forms, we can

combine both ways and create a two-way binding that can read and write data simultaneously.

Template-driven forms provide the ngModel directive, which we can use in our components to

get this behavior. To learn more about template-driven forms, we will convert the change price

functionality of our product detail component to work with Angular forms.

We could add another button with the reset type if we wanted to reset form data.

You will need the source code of the Angular application we created in Chapter 9, Nav-

igating through Applications with Routing, to follow along with the rest of the chapter.

Collecting User Data with Forms268

Let’s get started:

1. Open the product-detail.component.ts file and add the following import statement:

import { FormsModule } from '@angular/forms';

We add template-driven forms to an Angular application using the FormsModule class

from the @angular/forms npm package.

2. Add FormsModule in the imports array of the @Component decorator:

@Component({

 selector: 'app-product-detail',

 imports: [CommonModule, FormsModule],

 templateUrl: './product-detail.component.html',

 styleUrl: './product-detail.component.css'

})

3. Open the product-detail.component.html file and modify the <input> element as fol-

lows:

<input placeholder="New price" type="number" name="price"
[(ngModel)]="product.price" />

In the preceding snippet, we bind the price property of the product template variable

to the ngModel directive of the <input> element. The name attribute is required so that

Angular can internally create a unique form control to distinguish it.

4. Modify the <button> element as follows:

<button class="secondary" type="submit">Change</button>

In the preceding snippet, we remove the click event from the <button> element because

submitting the form will update the price. We also add the submit type to indicate that

the form submission can happen by a user clicking the button.

5. Surround the <input> and <button> elements with the following <form> element:

The syntax of the ngModel directive is known as a banana in a box, and we

create it in two steps. First, we make the banana by surrounding ngModel

in parentheses (). Then, we put it in a box by surrounding it with square

brackets [()].

Chapter 10 269

<form (ngSubmit)="changePrice(product)">

 <input placeholder="New price" type="number" name="price"
[(ngModel)]="product.price" />

 <button class="secondary" type="submit">Change</button>

</form>

In the preceding snippet, we bind the changePrice method to the ngSubmit event of the

form. The binding will trigger the method execution if we press Enter inside the input box

or click the button. The ngSubmit event is part of the Angular FormsModule and hooks on

the native submit event of an HTML form.

6. Open the product-detail.component.ts file and modify the changePrice method as

follows:

changePrice(product: Product) {

 this.productService.updateProduct(

 product.id,

 product.price

).subscribe(() => this.router.navigate(['/products']));

}

7. Run the application using the ng serve command and select a product from the list.

8. You will notice that the current product price is already displayed inside the input box.

Try to change the price, and you will notice that the current price of the product is also

changing while you type:

Figure 10.2: Two-way binding

Collecting User Data with Forms270

The behavior of our application depicted in the preceding image is the magic behind two-way

binding and ngModel.

While we type inside the input box, the ngModel directive updates the value of the product price.

The new price is directly reflected in the template because we use Angular interpolation syntax

to display its value.

In our case, updating the current product price while entering a new one is a bad user experience.

The user should be able to view the current price of the product at all times. We will modify the

product detail component so that the price is displayed correctly:

1. Open the product-detail.component.ts file and create a price property inside the

ProductDetailComponent class:

price: number | undefined;

2. Modify the changePrice method to use the price component property:

changePrice(product: Product) {

 this.productService.updateProduct(

 product.id,

 this.price!

).subscribe(() => this.router.navigate(['/products']));

}

3. Open the product-detail.component.html file and replace the binding in the <input>

element to use the new component property:

<input placeholder="New price" type="number" name="price"
[(ngModel)]="price" />

If we run the application and try to enter a new price inside the New price input box, we will

notice that the current price displayed does not change. The functionality of changing the price

also works correctly as before.

We have seen how template-driven forms can be useful when creating small and simple forms.

In the next section, we dive deeper into the alternative approach offered by the Angular frame-

work: reactive forms.

Two-way binding was the biggest selling point when AngularJS came out in 2010. It

was complex to achieve that behavior in those days with vanilla JavaScript and jQuery.

Chapter 10 271

Building reactive forms
Reactive forms, as the name implies, reactively provide access to web forms. They are built with

reactivity in mind, where input controls and their values can be manipulated using observable

streams. They also maintain an immutable state of form data, making them easier to test because

we can be sure that the form state can be modified explicitly and consistently.

Reactive forms have a programmatic approach to creating form elements and setting up valida-

tion rules by setting everything up in the component class. The Angular key classes involved in

this approach are the following:

• FormControl: Represents an individual form control, such as an <input> element.

• FormGroup: Represents a collection of form controls. The <form> element is the topmost

FormGroup in the hierarchy of a reactive form.

• FormArray: Represents a collection of form controls, just like FormGroup, but can be mod-

ified at runtime. For example, we can add or remove FormControl objects dynamically

as needed.

The preceding classes are available from the @angular/forms npm package and contain properties

that can be used in the following scenarios:

• To render the UI differently according to the status of a form or control

• To check if we have interacted with a form or control

We will explore each form class through an example in our Angular application. In the following

section, we will introduce reactive forms in our application using the product create component.

Interacting with reactive forms
The Angular application we have built contains a component to add new products. The compo-

nent uses template reference variables to collect input data. We will use the Angular forms API

to accomplish the same task using reactive forms:

1. Open the product-create.component.ts file and add the following import statement:

import { FormControl, FormGroup, ReactiveFormsModule } from '@
angular/forms';

2. Add the ReactiveFormsModule class in the imports array of the @Component decorator:

@Component({

 selector: 'app-product-create',

Collecting User Data with Forms272

 imports: [ReactiveFormsModule],

 templateUrl: './product-create.component.html',

 styleUrl: './product-create.component.css'

})

The Angular forms library provides the ReactiveFormsModule class to create reactive

forms in an Angular application.

3. Define the following productForm property in the ProductCreateComponent class:

productForm = new FormGroup({

 title: new FormControl('', { nonNullable: true }),

 price: new FormControl<number | undefined>(undefined, {
nonNullable: true }),

 category: new FormControl('', { nonNullable: true })

});

The FormGroup constructor accepts an object that contains key-value pairs of form con-

trols. The key is a unique control name, and the value is a FormControl instance. The

FormControl constructor accepts the default value of the control in the first parameter.

For the title and the category controls, we pass an empty string so that we do not set

any value initially. For the price control, which should accept numbers as values, we set

it initially to undefined. The second parameter passed in the FormControl is an object

that sets the nonNullable property to indicate that the control does not accept null values.

4. After we have created the form group and its controls, we need to associate them with

the respective HTML elements in the template. Open the product-create.component.

html file and surround the <input>, <select>, and <button> HTML elements with the

following <form> element:

<form [formGroup]="productForm">

 <div>

 <label for="title">Title</label>

 <input id="title" #title />

 </div>

 <div>

 <label for="price">Price</label>

 <input id="price" #price type="number" />

 </div>

 <div>

Chapter 10 273

 <label for="category">Category</label>

 <select id="category" #category>

 <option>Select a category</option>

 <option value="electronics">Electronics</option>

 <option value="jewelery">Jewelery</option>

 <option>Other</option>

 </select>

 </div>

 <div>

 <button (click)="createProduct(title.value, price.value,
category.value)">Create</button>

 </div>

</form>

In the preceding template, we use the formGroup directive, exported from the

ReactiveFormsModule class, to connect a FormGroup instance to a <form> element.

5. The ReactiveFormsModule class also exports the formControlName directive, which we

use to connect a FormControl instance to an HTML element. Modify the form HTML

elements as follows:

<div>

 <label for="title">Title</label>

 <input id="title" formControlName="title" />

</div>

<div>

 <label for="price">Price</label>

 <input id="price" formControlName="price" type="number" />

</div>

<div>

 <label for="category">Category</label>

 <select id="category" formControlName="category">

 <option>Select a category</option>

 <option value="electronics">Electronics</option>

 <option value="jewelery">Jewelery</option>

 <option>Other</option>

 </select>

</div>

Collecting User Data with Forms274

In the preceding snippet, we set the value of the formControlName directive to the name

of the respective FormControl instance. We also remove the template reference variables

because we can get their values directly from the FormGroup instance.

6. Modify the createProduct method in the product-create.component.ts file accordingly:

createProduct() {

 this.productsService.addProduct(this.productForm.value).
subscribe(() => {

 this.router.navigate(['/products']);

 });

}

In the preceding method, we use the value property of the FormGroup class to get the

form value.

In this case, we can use the form value because the form model is identical to the Product

interface.

If it was different, we could use the controls property of the FormGroup class to get form

control values individually as follows:

createProduct() {

 this.productsService.addProduct({

 title: this.productForm.controls.title.value,

 price: this.productForm.controls.price.value,

 category: this.productForm.controls.category.value

 }).subscribe(() => {

 this.router.navigate(['/products']);

 });

}

The FormControl class contains a value property that returns the value of a form control.

Note that the value property does not include values from disabled fields

of a form. Instead, we can use the getRawValue method to return values

from all fields.

Chapter 10 275

7. Modify the <form> element in the product-create.component.html file so that we create

a new product upon form submission:

<form [formGroup]="productForm" (ngSubmit)="createProduct()">

 <div>

 <label for="title">Title</label>

 <input id="title" formControlName="title" />

 </div>

 <div>

 <label for="price">Price</label>

 <input id="price" formControlName="price" type="number" />

 </div>

 <div>

 <label for="category">Category</label>

 <select id="category" formControlName="category">

 <option>Select a category</option>

 <option value="electronics">Electronics</option>

 <option value="jewelery">Jewelery</option>

 <option>Other</option>

 </select>

 </div>

 <div>

 <button type="submit">Create</button>

 </div>

</form>

8. Open the global styles.css file and add the following CSS style:

label {

 margin-bottom: 4px;

 display: block;

}

We want the preceding styles to be available globally because we will use them in the cart

component later in the chapter.

9. Open the product-create.component.css file and remove the style for the <label> tag.

If we run the application, we will see that the functionality of adding a new product still works

as expected.

Collecting User Data with Forms276

We learned that the FormGroup class groups a collection of form controls. A form control can be

a single form control or another form group, as we will see in the following section.

Creating nesting form hierarchies
The product create component consists of a single form group with three form controls. Some

use cases in enterprise applications require more advanced forms that involve creating nested

hierarchies of form groups. Consider the following form, which is used to add a new product

along with additional details:

Figure 10.3: New product form with additional information

The preceding form may look like a single form group, but if we take a deeper look at the com-

ponent class, we will see that the productForm consists of two FormGroup instances, one nested

inside the other:

productForm = new FormGroup({

Chapter 10 277

 title: new FormControl('', { nonNullable: true }),

 price: new FormControl<number | undefined>(undefined, { nonNullable:
true }),

 category: new FormControl('', { nonNullable: true }),

 extra: new FormGroup({

 image: new FormControl(''),

 description: new FormControl('')

 })

});

The productForm property is the parent form group, while extra is its child. A parent form group

can have as many children form groups as it needs. If we take a look at the component template,

we will see that the child form group is defined differently from the parent one:

<form [formGroup]="productForm" (ngSubmit)="createProduct()">

 <div>

 <label for="title">Title</label>

 <input id="title" formControlName="title" />

 </div>

 <div>

 <label for="price">Price</label>

 <input id="price" formControlName="price" type="number" />

 </div>

 <div>

 <label for="category">Category</label>

 <select id="category" formControlName="category">

 <option>Select a category</option>

 <option value="electronics">Electronics</option>

 <option value="jewelery">Jewelery</option>

 <option>Other</option>

 </select>

 </div>

 <h2>Additional details</h2>

 <form formGroupName="extra">

 <div>

 <label for="descr">Description</label>

 <input id="descr" formControlName="description" />

 </div>

Collecting User Data with Forms278

 <div>

 <label for="photo">Photo URL</label>

 <input id="photo" formControlName="image" />

 </div>

 </form>

 <div>

 <button type="submit">Create</button>

 </div>

</form>

In the preceding HTML template, we use the formGroupName directive to bind the inner form

element to the extra property.

The value of a child form group is shared with its parent in a nested form hierarchy. In our case,

the value of the extra form group will be included in the productForm group, thereby maintaining

a consistent form model.

We have already covered the FormGroup and FormControl classes. In the following section, we

will learn how to use the FormArray class to interact with dynamic forms.

Modifying forms dynamically
Consider the scenario where we have added some products to the shopping cart of our e-shop

application and want to update their quantities before checking out the order.

Currently, our application does not have any functionality for a shopping cart, so we will now

add one:

1. Run the following command to create a Cart interface:

ng generate interface Cart

2. Open the cart.ts file and modify the Cart interface as follows:

export interface Cart {

 id: number;

You may have expected to bind it directly to the productForm.extra property, but

Angular is pretty smart because it understands that extra is a child form group of

productForm. It can deduce this information because the form element related to

extra is inside the form element that binds to the productForm property.

Chapter 10 279

 products: { productId :number }[];

}

In the preceding snippet, the products property will contain the product IDs that belong

to the current cart.

3. Create a new service to manage the shopping cart by running the following Angular CLI

command:

ng generate service cart

4. Open the cart.service.ts file and modify the import statements as follows:

import { Injectable, inject } from '@angular/core';

import { HttpClient } from '@angular/common/http';

import { Observable, defer, map } from 'rxjs';

import { Cart } from './cart';

import { APP_SETTINGS } from './app.settings';

5. Create the following properties in the CartService class:

cart: Cart | undefined;

private cartUrl = inject(APP_SETTINGS).apiUrl + '/carts';

The cartUrl property is used for the cart endpoint of the Fake Store API and the cart

property to keep a local cache of the user cart.

6. Inject the HttpClient service in the constructor:

constructor(private http: HttpClient) { }

7. Add the following method to add a product to the cart:

addProduct(id: number): Observable<Cart> {

 const cartProduct = { productId: id, quantity: 1 };

 return defer(() =>

 !this.cart

 ? this.http.post<Cart>(this.cartUrl, { products: [cartProduct]
})

 : this.http.put<Cart>(`${this.cartUrl}/${this.cart.id}`, {

 products: [

 ...this.cart.products,

Collecting User Data with Forms280

 cartProduct

]

 })

).pipe(map(cart => this.cart = cart));

}

In the preceding method, we use a new RxJS operator called defer. The defer operator

works as an if/else statement for observables.

If the cart property has not been initialized, which means that our cart is currently empty,

we initiate a POST request to the API passing the cartProduct variable as a parameter.

Otherwise, we initiate a PATCH request passing the cartProduct along with the existing

products from the cart.

We have completed the setup of our service so that it can communicate with the Fake Store API.

Now, we need to connect the service with the respective component:

1. Open the product-detail.component.ts file and add the following import statement:

import { CartService } from '../cart.service';

2. Inject CartService in the ProductDetailComponent class:

constructor(

 private productService: ProductsService,

 public authService: AuthService,

 private route: ActivatedRoute,

 private router: Router,

 private cartService: CartService

) { }

3. Modify the addToCart method so that it calls the addProduct method of the CartService

class:

addToCart(id: number) {

 this.cartService.addProduct(id).subscribe();

}

4. Finally, open the product-detail.component.html file and modify the click event of

the Add to cart button:

<button (click)="addToCart(product.id)">Add to cart</button>

Chapter 10 281

We have implemented the basic functionality for storing the selected products that users want

to buy. Now, we must modify the cart component to display the cart items:

1. Open the cart.component.ts file and modify the import statements as follows:

import { Component, OnInit } from '@angular/core';

import {

 FormArray,

 FormControl,

 FormGroup,

 ReactiveFormsModule

} from '@angular/forms';

import { Product } from '../product';

import { CartService } from '../cart.service';

import { ProductsService } from '../products.service';

2. Add the ReactiveFormsModule class in the imports array of the @Component decorator:

@Component({

 selector: 'app-cart',

 imports: [ReactiveFormsModule],

 templateUrl: './cart.component.html',

 styleUrl: './cart.component.css'

})

3. Add the OnInit interface to the list of implemented interfaces of the CartComponent class:

export class CartComponent implements OnInit

4. Create the following properties in the TypeScript class:

cartForm = new FormGroup({

 products: new FormArray<FormControl<number>>([])

});

products: Product[] = [];

In the preceding snippet, we created a FormGroup object containing a products property.

We set the value of the products property to an instance of the FormArray class. The con-

structor of the FormArray class accepts a list of FormControl instances with the type number

as a parameter. The list is empty for now since the cart has no products. The products

property outside the FormGroup instance will be used for lookup reasons to display the

title of each product in the cart.

Collecting User Data with Forms282

5. Add a constructor to inject the following services:

constructor(

 private cartService: CartService,

 private productsService: ProductsService

) {}

6. Create the following method to get products from the cart:

private getProducts() {

 this.productsService.getProducts().subscribe(products => {

 this.cartService.cart?.products.forEach(item => {

 const product = products.find(p => p.id === item.productId);

 if (product) {

 this.products.push(product);

 }

 });

 });

}

In the preceding method, we initially subscribe to the getProducts method of the

ProductsService class to get the available products. Then, for each product in the cart,

we extract the productId property and check if it exists inside the cart. If the product is

found, we add it to the products component property.

7. Create another method to build our form:

private buildForm() {

 this.products.forEach(() => {

 this.cartForm.controls.products.push(

 new FormControl(1, { nonNullable: true })

);

 });

}

In the preceding method, we iterate over the products property and add a FormControl

instance for each one inside the products form array. We set the value of each form control

to 1 to indicate that the cart contains one item of each product by default.

Chapter 10 283

8. Create the following ngOnInit method that combines both methods from steps 6 and 7:

ngOnInit(): void {

 this.getProducts();

 this.buildForm();

}

9. Open the cart.component.html file and replace its HTML template with the following

content:

<div [formGroup]="cartForm">

 <div formArrayName="products">

 @for(product of cartForm.controls.products.controls; track
$index) {

 <label>{{products[$index].title}}</label>

 <input [formControlName]="$index" type="number" />

 }

 </div>

</div>

In the preceding template, we use a @for block to iterate over the controls property of

the products form array and create an <input> element for each one. We use the $index

keyword of the @for block to give a dynamically created name to each form control using

the formControlName binding. We have also added a <label> tag that displays the product

title from the products component property. The product title is fetched using the $index

of the current product in the array.

10. Finally, open the cart.component.css files and add the following CSS styles:

:host {

 width: 500px;

}

input {

 width: 50px;

}

To see the cart component in action, run the application using the ng serve command and add

some products to the cart.

Collecting User Data with Forms284

After adding some products to the cart, click the My Cart link to view your shopping cart. It

should look like the following:

Figure 10.4: Shopping cart

Since we have established the business logic for managing a shopping cart, we can also update

the checkout guard we created in the previous chapter:

1. Open the checkout.guard.ts file and add the following import statements:

import { inject } from '@angular/core';

import { CartService } from './cart.service';

2. Inject the CartService class in the checkoutGuard function using the following statement:

const cartService = inject(CartService);

3. Modify the remaining body of the checkoutGuard arrow function so that we display the

confirmation dialog only when the cart is not empty:

if (cartService.cart) {

 const confirmation = confirm(

 'You have pending items in your cart. Do you want to continue?'

);

 return confirmation;

}

return true;

Do not forget to log in first because the functionality that adds a product to the cart

is available only to authenticated users.

Chapter 10 285

With the FormArray, we have completed our exploration of the most basic building blocks of an

Angular form. We learned how to use Angular forms classes to create structured web forms and

collect user input. In the following section, we will learn how to build Angular forms using the

FormBuilder service.

Using a form builder
Using form classes to build Angular forms can become repetitive and tedious for complex sce-

narios. The Angular framework provides FormBuilder, a built-in service to Angular forms that

contains helper methods for building forms. Let’s see how we could use it to build a form for

creating new products:

1. Open the product-create.component.ts file and import the OnInit and FormBuilder

artifacts:

import { Component, OnInit } from '@angular/core';

import { FormControl, FormGroup, ReactiveFormsModule, FormBuilder }
from '@angular/forms';

2. Add OnInit to the list of implemented interfaces in the ProductCreateComponent class:

export class ProductCreateComponent implements OnInit

3. Inject the FormBuilder class in the constructor:

constructor(

 private productsService: ProductsService,

 private router: Router,

 private builder: FormBuilder

) {}

4. Modify the productForm property as follows:

productForm: FormGroup<{

 title: FormControl<string>,

 price: FormControl<number | undefined>,

 category: FormControl<string>

}> | undefined;

In the preceding snippet, we define only the structure of the form because it will now be

created using the FormBuilder service.

Collecting User Data with Forms286

5. Create the following method to build the form:

private buildForm() {

 this.productForm = this.builder.nonNullable.group({

 title: [''],

 price: this.builder.nonNullable.control<number |
undefined>(undefined),

 category: ['']

 });

}

In the preceding method, we use the nonNullable property of the FormBuilder class to

create a form group that cannot be null. The group method is used to group form controls.

The title and category form controls are created using an empty string as the default

value. The price form control follows a different approach from the rest because we can-

not assign a default value of undefined due to TypeScript language limitations. In this

case, we use the control method of the nonNullable property to define the form control.

6. Add the ngOnInit lifecycle hook to execute the buildForm method:

ngOnInit(): void {

 this.buildForm();

}

7. Add the non-null assertion operator when accessing the productForm property in the

createProduct method:

createProduct() {

 this.productsService.addProduct(this.productForm!.value).
subscribe(() => {

 this.router.navigate(['/products']);

 });

}

8. Open the product-create.component.html file and add the non-null assertion operator

in the <form> HTML element also:

<form [formGroup]="productForm!" (ngSubmit)="createProduct()">

 <div>

 <label for="title">Title</label>

Chapter 10 287

 <input id="title" formControlName="title" />

 </div>

 <div>

 <label for="price">Price</label>

 <input id="price" formControlName="price" type="number" />

 </div>

 <div>

 <label for="category">Category</label>

 <select id="category" formControlName="category">

 <option>Select a category</option>

 <option value="electronics">Electronics</option>

 <option value="jewelery">Jewelery</option>

 <option>Other</option>

 </select>

 </div>

 <div>

 <button type="submit">Create</button>

 </div>

</form>

Using the FormBuilder service to create Angular forms, we don’t have to deal with the FormGroup

and FormControl data types explicitly, although that is what is being created under the hood.

Run the application using the ng serve command and verify that the new product creation process

works correctly. Try to click the Create button without entering any values in the form controls

and observe what happens in the product list. The application creates a product with an empty

title. It is a situation that we should avoid in a real-world scenario. We should be aware of the

status of a form control and take action accordingly.

In the following section, we’ll investigate different properties that we can check to get form status

and provide feedback to the user.

The example code in the rest of the chapter does not use the FormBuilder service

when working with reactive forms.

Collecting User Data with Forms288

Validating input in forms
An Angular form should validate input and provide visual feedback to enhance UX and guide

users to complete the form successfully. We will investigate the following ways to validate forms

in Angular applications:

• Global validation with CSS

• Validation in the component class

• Validation in the component template

• Building custom validators

In the following section, we will learn how to apply validation rules globally in an Angular ap-

plication using CSS styles.

Global validation with CSS
The Angular framework sets the following CSS classes automatically in a form, template-driven

or reactive, that we can use to provide user feedback:

• ng-untouched: Indicates that we have not interacted with a form yet

• ng-touched: Indicates that we have interacted with a form

• ng-dirty: Indicates that we have set a value to a form

• ng-pristine: Indicates that we have not modified a form yet

Furthermore, Angular adds the following classes on the HTML element of a form control:

• ng-valid: Indicates that the value of a form is valid

• ng-invalid: Indicates that the value of a form is not valid

Angular sets the preceding CSS classes in the form and its controls according to their status. The

form status is evaluated according to the status of its controls. For example, if at least one form

control is invalid, Angular will set the ng-invalid CSS class to the form and the corresponding

control.

In the case of nested form hierarchies, the status of a child form group is bubbled

up to the hierarchy and shared with its parent form.

Chapter 10 289

We can use the built-in CSS classes and style Angular forms using CSS only. For example, to display

a light blue highlighted border in an input control when interacting with that control for the first

time, we should add the following style:

input.ng-touched {

 border: 3px solid lightblue;

}

We can also combine CSS classes according to the needs of our application:

1. Open the global styles.css file and modify the input.valid style as follows:

input.valid, input.ng-dirty.ng-valid {

 border: solid green;

}

The preceding style will display a green border when an input control has a valid value

entered by the user.

2. Modify the input.invalid style accordingly:

input.invalid, input.ng-dirty.ng-invalid {

 border: solid red;

}

The preceding style will display a red border when an input control has an invalid value

entered by the user.

3. Open the product-create.component.html file and add the required attribute in the

<input> form controls:

<div>

 <label for="title">Title</label>

 <input id="title" formControlName="title" required />

</div>

<div>

 <label for="price">Price</label>

 <input id="price" formControlName="price" type="number" required
/>

</div>

Collecting User Data with Forms290

4. Run the application using the ng serve command and navigate to http://localhost:4200/

products/new.

5. Enter some text into the Title field and click outside of the input control. Notice that it

has a green border.

6. Remove the text from the Title field and click outside of the input control. The border

should now turn red.

We learned how to define validation rules in the template using CSS styles. In the following sec-

tion, we will learn how to define them in template-driven forms and give visual feedback using

appropriate messages.

Validation in template-driven forms
In the preceding section, we learned that Angular adds a collection of built-in CSS classes while

validating Angular forms. Each class has a corresponding boolean property in the respective form

model, both in template-drive and reactive forms:

• untouched: Indicates that we have not interacted with a form yet

• touched: Indicates that we have interacted with a form

• dirty: Indicates that we have set a value to a form

• pristine: Indicates that we have not modified a form yet

• valid: Indicates that the value of a form is valid

• invalid: Indicates that the value of a form is not valid

We can leverage the preceding classes and inform the user about the current form status. First,

let’s investigate the behavior of the change price process in the product details component:

1. Run the ng serve command to start the application and navigate to http://localhost:4200.

2. Select a product from the list.

3. Add a value of 0 into the New price input box and click the Change button.

4. Select the same product from the list and observe the output:

Chapter 10 291

Figure 10.5: Product details

The presentation logic of the component fails to detect that the user can enter 0 for the

product price. A product should always have a price.

The product details component needs to validate the input of the price value, and if the input is

found to be invalid, disable the Change button, and display an informational message to the user.

Template-driven validation is performed in the component template. Open the product-detail.

component.html file and execute the following steps:

1. Create the priceCtrl template reference variable and bind it to the ngModel property:

<input

 placeholder="New price"

 type="number"

 name="price"

 #priceCtrl="ngModel"

 [(ngModel)]="price" />

Handling validation is a matter of personal preference or business specification. In

this scenario, we decided to showcase a common validation approach by disabling

the button and displaying an appropriate message.

Collecting User Data with Forms292

The ngModel property gives us access to the underlying form control model.

2. Add the required and min validation attributes to the HTML element:

<input

 placeholder="New price"

 type="number"

 name="price"

 required min="1"

 #priceCtrl="ngModel"

 [(ngModel)]="price" />

The min validation attribute can be used only with <input> HTML elements of the number

type. It is used to define the minimum value when using the arrows of the numeric control.

3. Add the following HTML element underneath the <button> element of the form:

@if (priceCtrl.dirty && (priceCtrl.invalid || priceCtrl.
hasError('min'))) {

 Please enter a valid price

}

The preceding HTML element will be displayed when we enter a price value and then either

leave it blank or enter a zero. We use the hasError method of the form control model to

check if the min validation throws an error.

4. Add a priceForm template reference variable in the <form> HTML element and bind it to

the ngForm property:

<form (ngSubmit)="changePrice(product)" #priceForm="ngForm">

 <input

 placeholder="New price"

 type="number"

 name="price"

 required min="1"

 #priceCtrl="ngModel"

 [(ngModel)]="price" />

All validation attributes can be checked using the hasError method. The

validity status of a control is evaluated based on the status of all validation

attributes we attach to the HTML element.

Chapter 10 293

 <button class="secondary" type="submit">Change</button>

 @if (priceCtrl.dirty && (priceCtrl.invalid || priceCtrl.
hasError('min'))) {

 Please enter a valid price

 }

</form>

The ngForm property gives us access to the underlying form model.

5. Bind the disabled property of the <button> HTML element to the invalid status of the

form model:

<button

 class="secondary"

 type="submit"

 [disabled]="priceForm.invalid">

 Change

</button>

6. Open the styles.css file and add the following CSS styles for the tag and the

disabled button:

.help-text {

 display: flex;

 color: var(--hot-red);

 font-size: 0.875rem;

}

button:disabled {

 background-color: lightgrey;

 cursor: not-allowed;

}

To verify that the validation works as intended, execute the following steps:

1. Run the ng serve command to start the application and select a product from the list.

In the preceding template, we could bind directly to the priceCtrl.invalid

status since the form has only one control. We choose the form instead for

demonstration purposes.

Collecting User Data with Forms294

2. Enter 0 in the New price input box and observe the output:

Figure 10.6: Validation error

3. Enter a valid value and verify that the error message is gone and the Change button is

enabled.

4. Leave the New price input box blank and verify that the error message is displayed again

and the Change button is disabled.

Now that we have learned how to accomplish validation in template-driven forms, let’s see how

to validate input data in reactive ones.

Validation in reactive forms
Template-driven forms rely solely on the component template to perform validations. In re-

active forms, the source of truth is our form model that resides in the TypeScript class of the

component. We define validation rules in reactive forms when building the FormGroup instance

programmatically.

To demonstrate validation in reactive forms, we will add validation rules in the product create

component:

1. Open the product-create.component.ts file and import the Validators class from the

@angular/forms npm package:

Chapter 10 295

import {

 FormControl,

 FormGroup,

 ReactiveFormsModule,

 Validators

} from '@angular/forms';

2. Modify the declaration of the productForm property so that the title and price form

controls pass a validators property in the FormControl instance:

productForm = new FormGroup({

 title: new FormControl('', {

 nonNullable: true,

 validators: Validators.required

 }),

 price: new FormControl<number | undefined>(undefined, {

 nonNullable: true,

 validators: [Validators.required, Validators.min(1)]

 }),

 category: new FormControl('', { nonNullable: true })

});

The Validators class contains a static field for each validation rule available. It contains

almost the same validator rules that are available for template-driven forms. We can

combine multiple validators by adding them to an array, as indicated by the validators

property in the price form control.

3. Open the product-create.component.html file and use the invalid property of the

productForm property to disable the Create button:

<button type="submit" [disabled]="productForm.invalid">Create</
button>

When we add a validator using the FormControl class, we can remove the

respective HTML attribute from the HTML template. However, it is recom-

mended to keep it for accessibility purposes so that screen-reader applica-

tions can use it.

Collecting User Data with Forms296

4. Add a HTML element in each <input> form control to display an error message

when the control has been touched, and the required validation throws an error:

<div>

 <label for="title">Title</label>

 <input id="title" formControlName="title" required />

 @if (productForm.controls.title.touched && productForm.controls.
title.invalid) {

 Title is required

 }

</div>

<div>

 <label for="price">Price</label>

 <input id="price" formControlName="price" type="number" required
/>

 @if (productForm.controls.price.touched && productForm.controls.
price.invalid) {

 Price is required

 }

</div>

In the preceding snippet, we use the controls property of the productForm property to

get access to the individual form control models and get their statuses.

5. It would be nice to display different messages depending on the validation rule. We could

display a more specific message when the min validation of the price control throws an

error, for example. We can use the hasError method that we saw in the preceding section

to display such a message:

<div>

 <label for="price">Price</label>

 <input id="price" formControlName="price" type="number" required
/>

 @if (productForm.controls.price.touched && productForm.controls.
price.hasError('required')) {

 Price is required

 }

 @if (productForm.controls.price.touched && productForm.controls.
price.hasError('min')) {

 Price should be greater than 0

Chapter 10 297

 }

</div>

The Angular framework provides a set of built-in validators that we learned to use in our forms.

In the following section, we will learn how to create a custom validator for template-driven and

reactive forms to satisfy particular business needs.

Building custom validators
Built-in validators won’t cover all the scenarios we might encounter in an Angular application;

however, writing a custom validator and using it in an Angular form is easy. In our case, we will

build a validator to check that the price of a product cannot exceed a specified threshold.

1. Create a file named price-maximum.validator.ts in the src\app folder and add the

following contents:

import { ValidatorFn, AbstractControl, ValidationErrors } from '@
angular/forms';

export function priceMaximumValidator(price: number): ValidatorFn {

 return (control: AbstractControl): ValidationErrors | null => {

 const isMax = control.value <= price;

 return isMax ? null : { priceMaximum: true };

 };

}

A form validator is a function that returns a ValidationErrors object with the error

specified or a null value. It accepts the form control to which it will be applied as a pa-

rameter. In the preceding snippet, if the control value is larger than a specific threshold

passed in the price parameter of the exported function, it returns a validation error object.

Otherwise, it returns null.

We could use the built-in max validator to accomplish the same task. However, we

will be building the validator function for learning purposes.

Custom validators are used when we want to validate a form or a control with custom

code. For example, to communicate with an API for validating a value, or to perform

a complex calculation for validating a value.

Collecting User Data with Forms298

The key of the validation error object specifies a descriptive name for the validator error.

It is a name we can later check with the hasError method of the control to find out if it

has any errors. The value of the validation error object can be any arbitrary value that we

can pass in the error message.

2. Open the product-create.component.ts file and add the following import statement:

import { priceMaximumValidator } from '../price-maximum.validator';

3. Add the validator in the validators array of the price form control and set the threshold

to 1000:

price: new FormControl<number | undefined>(undefined, {

 nonNullable: true,

 validators: [

 Validators.required,

 Validators.min(1),

 priceMaximumValidator(1000)

]

})

4. Add a new HTML element for the price form control in the product-create.

component.html file:

<div>
 <label for="price">Price</label>
 <input id="price" formControlName="price" type="number" required
/>
 @if (productForm.controls.price.touched && productForm.controls.
price.hasError('required')) {
 Price is required
 }
 @if (productForm.controls.price.touched && productForm.controls.
price.hasError('min')) {
 Price should be greater than 0
 }
 @if (productForm.controls.price.touched && productForm.controls.
price.hasError('priceMaximum')) {
 Price must be smaller or equal to 1000</
span>
 }
</div>

Chapter 10 299

5. Run the ng serve command to start the application and navigate to http://

localhost:4200/products/new.

6. Enter a value of 1200 in the Price field, click outside the input box, and observe the output:

Figure 10.7: Validation in reactive forms

To use the price maximum validator in a template-driven form, we must follow a different ap-

proach that involves creating an Angular directive:

1. Run the following command to create an Angular directive:

ng generate directive price-maximum

The preceding directive will act as a wrapper over the priceMaximumValidator function

we have already created.

2. Open the price-maximum.directive.ts file and modify the import statements as follows:

import { Directive, input, numberAttribute } from '@angular/core';

import { AbstractControl, NG_VALIDATORS, ValidationErrors, Validator
} from '@angular/forms';

import { priceMaximumValidator } from './price-maximum.validator';

3. Add the NG_VALIDATORS provider in the @Directive decorator:

@Directive({

 selector: '[appPriceMaximum]',

Collecting User Data with Forms300

 providers: [

 {

 provide: NG_VALIDATORS,

 useExisting: PriceMaximumDirective,

 multi: true

 }

]

})

The NG_VALIDATORS token is a built-in token of Angular forms that helps us register an

Angular directive as a form validator. In the preceding snippet, we use the multi prop-

erty in the provider configuration because we can register multiple directives with the

NG_VALIDATORS token.

4. Add the Validator interface in the implemented interfaces of the PriceMaximumDirective

class:

export class PriceMaximumDirective implements Validator

5. Add the following input property that will be used to pass a value for the maximum

threshold:

appPriceMaximum = input(undefined, {

 alias: 'threshold',

 transform: numberAttribute

});

In the preceding property, we pass a configuration object with two properties as a param-

eter in the input function. The alias property defines the name of the input property that

we will use for binding. The transform property is used to convert the value of the input

property to a different type. The numberAttribute is a built-in function of the Angular

framework that converts the input property value to a number.

6. Implement the validate method of the Validator interface as follows:

validate(control: AbstractControl): ValidationErrors | null {

Angular also contains the booleanAttribute function, which parses an

input property value as a boolean.

Chapter 10 301

 return this.appPriceMaximum

 ? priceMaximumValidator(this.appPriceMaximum()!)(control)

 : null;

}

The signature of the validate method is the same as the function returned from the

priceMaximumValidator function. It checks the appPriceMaximum input property and

accordingly delegates its value to the priceMaximumValidator function.

We will use the new directive we created in the product detail component:

1. Open the product-detail.component.ts file and add the following import statement:

import { PriceMaximumDirective } from '../price-maximum.directive';

2. Add the PriceMaximumDirective class in the imports array of the @Component decorator:

@Component({

 selector: 'app-product-detail',

 imports: [

 CommonModule,

 FormsModule,

 PriceMaximumDirective

],

 templateUrl: './product-detail.component.html',

 styleUrl: './product-detail.component.css'

})

3. Open the product-detail.component.html file and add the new validator in the <input>

HTML element:

<input

 placeholder="New price"

 type="number"

 name="price"

 required min="1"

 appPriceMaximum threshold="500"

 #priceCtrl="ngModel"

 [(ngModel)]="price" />

Collecting User Data with Forms302

4. Add a new HTML element to display a different message when the validator throws

an error:

@if (priceCtrl.dirty && priceCtrl.hasError('priceMaximum')) {

 Price must be smaller or equal to 500</
span>

}

5. Run the ng serve command to start the application and select a product from the list.

6. Enter the value 600 in the New price input box and observe the output:

Figure 10.8: Validation in template-driven forms

Angular custom validations can work synchronously or asynchronously. In this section, we learned

how to work with the former. Asynchronous validations are an advanced topic that we will not

cover in this book. However, you can learn more at https://angular.dev/guide/forms/form-

validation#creating-asynchronous-validators.

In the following section, we will explore manipulating the state of an Angular form.

https://angular.dev/guide/forms/form-validation#creating-asynchronous-validators
https://angular.dev/guide/forms/form-validation#creating-asynchronous-validators

Chapter 10 303

Manipulating form state
The state of an Angular form differs between template-driven and reactive forms. In the former,

the state is a plain object, whereas in the latter, it is kept in the form model. In this section, we

will learn about the following concepts:

• Updating form state

• Reacting to state changes

We will start by exploring how we can change the form state.

Updating form state
Working with the form state in template-driven forms is relatively easy. We must interact with

the component property bound to the ngModel directive of a form control.

In reactive forms, we can use the value property of a FormControl instance or the following

methods of the FormGroup class to change values in the whole form:

• setValue: Replaces values in all controls of the form

• patchValue: Updates values in specific controls of the form

The setValue method accepts an object as a parameter that contains key-value pairs for all form

controls. If we want to fill in the details of a product in the product create component program-

matically, the following snippet serves as an example:

this.productForm.setValue({

 title: 'TV monitor',

 price: 600,

 category: 'electronics'

});

In the preceding snippet, each key of the object passed in the setValue method must match the

name of each form control. If we omit one, Angular will throw an error.

If we want to fill in some of the details of a product, we can use the patchValue method:

this.productForm.patchValue({

 title: 'TV monitor',

 category: 'electronics'

});

Collecting User Data with Forms304

The setValue and patchValue methods of the FormGroup class help us set data in a form.

Another interesting aspect of forms is that we can be notified when these values change, as we

will see in the following section.

Reacting to state changes
A common scenario when working with Angular forms is that we want to trigger a side effect

when the value of a form control changes. A side effect can be any of the following:

• To alter the value of a form control

• To initiate an HTTP request to filter the value of a form control

• To enable/disable certain parts of the component template

In template-driven forms, we can use an extended version of the ngModel directive to get notified

when its value changes. The ngModel directive contains the following bindable properties:

• ngModel: An input property for passing values to the control

• ngModelChange: An output property for getting notified when the control value changes

We can write the ngModel binding in the <input> HTML element of the product detail component

in the following alternate way:

<input

 placeholder="New price"

 type="number"

 name="price"

 required min="1"

 appPriceMaximum threshold="500"

 #priceCtrl="ngModel"

 [ngModel]="price"

 (ngModelChange)="price = $event" />

In the preceding snippet, we set the value of the ngModel input property using property bind-

ing and the value of the price component property using event binding. Angular triggers the

ngModelChange event automatically and includes the new value of the <input> HTML element in

the $event property. We can use the ngModelChange event for any side effects in our component

when the value of the price form control changes.

Chapter 10 305

In reactive forms, we use an observable-based API to react to state changes. The FormGroup and

FormControl classes contain the valueChanges observable, which we can use to subscribe and

get notified when the value of the form or control changes.

We will use it to reset the value of the price form control in the product create component when

the category changes:

1. Open the product-create.component.ts file and import the OnInit artifact from the @

angular/core npm package:

import { Component, OnInit } from '@angular/core';

2. Add the OnInit interface to the list of the ProductCreateComponent class implemented

interfaces:

export class ProductCreateComponent implements OnInit

3. Create the following ngOnInit method to subscribe to the valueChanges property of the

category form control:

ngOnInit(): void {

 this.productForm.controls.category.valueChanges.subscribe(() => {

 this.productForm.controls.price.reset();

 });

}

In the preceding method, we reset the value of the price form control by using the reset

method of the FormControl class.

Of course, there is more that we can do with the valueChanges observable; for example, we could

check if the product title is already reserved by sending it to a backend API. Hopefully, however,

the preceding examples have conveyed how you can take advantage of the reactive nature of

forms and respond accordingly.

The valueChanges property of the FormControl class is a standard observable

stream. Do not forget to unsubscribe when the component is destroyed.

Collecting User Data with Forms306

Summary
In this chapter, we learned that Angular provides two different flavors for creating forms – tem-

plate-driven and reactive – and neither approach is better than the other. We explored how to

build each form type and perform validations on input data, and covered custom validations for

implementing additional validation scenarios. We also learned how to update the state of a form

and how to react when the values in the state change.

In the following chapter, we will explore various ways of handling application errors. Error han-

dling is a very important feature of an Angular application and can have different sources and

reasons, as we will see.

11
Handling Application Errors

Application errors are an integral part of the lifetime of a web application. They can occur either

during runtime or while developing the application. Possible causes of a runtime error are an

HTTP request that failed or an incomplete HTML form. A web application must handle runtime

errors and mitigate unwanted effects to ensure a smooth user experience.

Development errors usually happen when we do not properly use a programming language or

framework according to its semantics. In this case, errors may override the compiler and surface

in the application while running. Development errors can be mitigated by following best practices

and recommended coding techniques.

In this chapter, we will learn how to handle different types of errors in an Angular application and

understand errors from the framework itself. We will explore the following concepts in more detail:

• Handling runtime errors

• Demystifying framework errors

Technical requirements
The code samples described in this chapter can be found in the ch11 folder of the following

GitHub repository:

https://www.github.com/PacktPublishing/Learning-Angular-Fifth-Edition

https://www.github.com/PacktPublishing/Learning-Angular-Fifth-Edition

Handling Application Errors308

Handling runtime errors
The most common runtime errors in an Angular application come from the interaction with an

HTTP API. Entering the wrong login credentials or sending data in the wrong format can result

in an HTTP error. An Angular application can handle HTTP errors in the following ways:

• Explicitly during the execution of a particular HTTP request

• Globally in the global error handler of the application

• Centrally using an HTTP interceptor

In the following section, we will explore how to handle an HTTP error in a specific HTTP request.

Catching HTTP request errors
Handling errors in HTTP requests typically requires manually inspecting the information returned

in the error response object. RxJS provides the catchError operator to simplify that. It can catch

potential errors when initiating an HTTP request with the pipe operator.

Let’s see how we could use the catchError operator to catch HTTP errors while fetching the

product list in our application:

1. Open the products.service.ts file and import the catchError and throwError operators

from the rxjs npm package:

import { Observable, map, of, tap, catchError, throwError } from
'rxjs';

2. Import the HttpErrorResponse interface from the @angular/common/http namespace:

import { HttpClient, HttpParams, HttpErrorResponse } from '@angular/
common/http';

3. Modify the getProducts method accordingly:

getProducts(limit?: number): Observable<Product[]> {

 if (this.products.length === 0) {

 const options = new HttpParams().set('limit', limit || 10);

 return this.http.get<Product[]>(this.productsUrl, {

You will need the source code of the Angular application we created in Chapter 10,

Collecting User Data with Forms, to follow along with the rest of the chapter.

Chapter 11 309

 params: options

 }).pipe(

 map(products => {

 this.products = products;

 return products;

 }),

 catchError((error: HttpErrorResponse) => {

 console.error(error);

 return throwError(() => error);

 })

);

 }

 return of(this.products);

}

The signature of the catchError operator contains the actual HttpErrorResponse object

that is returned from the server. After catching the error, we use the throwError operator,

which re-throws the error as an observable.

This way, we ensure that the application execution will continue and complete without

causing a potential memory leak.

In a real-world scenario, we would probably create a helper method to log the error in a more

solid tracking system and return something meaningful according to the cause of the error:

1. In the same file, products.service.ts, import the HttpStatusCode enumeration from

the @angular/common/http namespace:

import { HttpClient, HttpParams, HttpErrorResponse, HttpStatusCode }
from '@angular/common/http';

HttpStatusCode is an enumeration that contains a list of all HTTP response status codes.

2. Create the following method in the ProductsService class:

private handleError(error: HttpErrorResponse) {

 let message = '';

Alternatively, we could have used the throw keyword from the standard web

API methods to throw the error. However the throwError method is, most

of the time, overkill. Please use it accordingly.

Handling Application Errors310

 switch(error.status) {

 case HttpStatusCode.InternalServerError:

 message = 'Server error';

 break;

 case HttpStatusCode.BadRequest:

 message = 'Request error';

 break;

 default:

 message = 'Unknown error';

 }

 console.error(message, error.error);

 return throwError(() => error);

}

The preceding method logs a different message in the browser console according to the

error status. It uses a switch statement to differentiate between internal server errors

and bad requests. For any other errors, it falls back to the default statement, which logs

a generic message in the console.

3. Refactor the getProducts method to use the handleError method to catch errors:

getProducts(limit?: number): Observable<Product[]> {

 if (this.products.length === 0) {

 const options = new HttpParams().set('limit', limit || 10);

 return this.http.get<Product[]>(this.productsUrl, {

 params: options

 }).pipe(

 map(products => {

 this.products = products;

 return products;

 }),

 catchError(this.handleError)

);

 }

 return of(this.products);

}

Chapter 11 311

The handleError method currently manages HTTP errors originating only from the HTTP re-

sponse. However, other errors can occur in an Angular application from the client side, such

as a request that did not reach the server due to a network error or an exception thrown in an

RxJS operator. To handle any of the previous errors, we should add a new case statement in the

handleError method:

private handleError(error: HttpErrorResponse) {

 let message = '';

 switch(error.status) {

 case 0:

 message = 'Client error';

 break;

 case HttpStatusCode.InternalServerError:

 message = 'Server error';

 break;

 case HttpStatusCode.BadRequest:

 message = 'Request error';

 break;

 default:

 message = 'Unknown error';

 }

 console.error(message, error.error);

 return throwError(() => error);

}

In the preceding snippet, an error with a status of 0 indicates that it is an error that occurred on

the client side of the application.

Error handling in HTTP requests could be combined with a mechanism that retries a given HTTP

call a specific amount of times before handling the error. There is an RxJS operator for nearly

everything, even one for retrying HTTP requests. It accepts the number of retries where the par-

ticular request has to be executed until it completes successfully:

getProducts(limit?: number): Observable<Product[]> {

 if (this.products.length === 0) {

 const options = new HttpParams().set('limit', limit || 10);

Handling Application Errors312

 return this.http.get<Product[]>(this.productsUrl, {

 params: options

 }).pipe(

 map(products => {

 this.products = products;

 return products;

 }),

 retry(2),

 catchError(this.handleError)

);

 }

 return of(this.products);

}

We learned that we use the catchError RxJS operator to capture errors. The way we handle it

depends on the scenario. In our case, we created a handleError method for all HTTP calls in a

service. In a real-world scenario, we would follow the same approach of error handling in other

Angular services of an application. Creating one method for each service would not be convenient

and does not scale well.

Alternatively, we could utilize the global error handler that Angular provides to handle errors in

a central place. We will learn how to create a global error handler in the next section.

Creating a global error handler
The Angular framework provides the ErrorHandler class for handling errors globally in an An-

gular application. The default implementation of the ErrorHandler class prints error messages

in the browser console window.

To create a custom error handler for our application, we need to sub-class the ErrorHandler class

and provide our tailored implementation for error logging:

1. Create a file named app-error-handler.ts in the src\app folder of the Angular CLI

workspace.

2. Open the file and add the following import statements:

import { HttpErrorResponse, HttpStatusCode } from '@angular/common/
http';

import { ErrorHandler, Injectable } from '@angular/core';

Chapter 11 313

3. Create a TypeScript class that implements the ErrorHandler interface:

@Injectable()

export class AppErrorHandler implements ErrorHandler {}

The AppErrorHandler class must be decorated with the @Injectable() decorator because

we will provide it later in the application configuration file.

4. Implement the handleError method from the ErrorHandler interface as follows:

handleError(error: any): void {

 const err = error.rejection || error;

 let message = '';

 if (err instanceof HttpErrorResponse) {

 switch(err.status) {

 case 0:

 message = 'Client error';

 break;

 case HttpStatusCode.InternalServerError:

 message = 'Server error';

 break;

 case HttpStatusCode.BadRequest:

 message = 'Request error';

 break;

 default:

 message = 'Unknown error';

 }

 } else {

 message = 'Application error';

 }

 console.error(message, err);

}

In the preceding method, we check if the error object contains a rejection property.

Errors originating from the Zone�js library, which is responsible for the change detection

in Angular, encapsulate the actual error inside that property.

Handling Application Errors314

After extracting the error in the err variable, we check to see if it is an HTTP error using

the HttpErrorResponse type. This check will eventually catch any errors from HTTP calls

using the throwError RxJS operator. All other errors are treated as application errors that

occur on the client side.

5. Open the app.config.ts file and import the ErrorHandler class from the @angular/

core npm package:

import { ApplicationConfig, ErrorHandler, provideZoneChangeDetection
} from '@angular/core';

6. Import the custom error handler we created in the app-error-handler.ts file:

import { AppErrorHandler } from './app-error-handler';

7. Register the AppErrorHandler class as the global error handler of the application by adding

it to the providers array of the appConfig variable:

export const appConfig: ApplicationConfig = {

 providers: [

 provideZoneChangeDetection({ eventCoalescing: true }),

 provideRouter(routes),

 provideHttpClient(),

 { provide: APP_SETTINGS, useValue: appSettings },

 { provide: ErrorHandler, useClass: AppErrorHandler }

]

};

To investigate the behavior of the global application error handler, execute the following steps:

1. Run the ng serve command to start the application.

2. Disconnect your computer from the internet.

3. Navigate to http://localhost:4200.

4. Open the browser developer tools and inspect the output of the console window:

Chapter 11 315

Figure 11.1: Application error

One of the most common HTTP errors in a web enterprise application is the 401 Unauthorized

response error. We will learn how to handle this specific error in the following section.

Responding to the 401 Unauthorized error
The 401 Unauthorized error in an Angular application can occur in the following cases:

• The user does not provide the correct credentials while logging in to the application

• The authentication token provided when the user logged in to the application has expired

A good place to handle the 401 Unauthorized error is inside an HTTP interceptor responsible for

authentication. In Chapter 8, Communicating with Data Services over HTTP, we learned how to

create an authentication interceptor for passing the authorization token to every HTTP request.

To handle the 401 Unauthorized error, the auth.interceptor.ts file could be modified as follows:

import { HttpErrorResponse, HttpInterceptorFn, HttpStatusCode } from '@
angular/common/http';

import { inject } from '@angular/core';

import { AuthService } from './auth.service';

import { catchError, EMPTY, throwError } from 'rxjs';

export const authInterceptor: HttpInterceptorFn = (req, next) => {

 const authService = inject(AuthService);

 const authReq = req.clone({

 setHeaders: { Authorization: 'myToken' }

 });

 return next(authReq).pipe(

 catchError((error: HttpErrorResponse) => {

Handling Application Errors316

 if (error.status === HttpStatusCode.Unauthorized) {

 authService.logout();

 return EMPTY;

 } else {

 return throwError(() => error);

 }

 })

);

};

The interceptor will call the logout method of the AuthService class when a 401 Unauthorized

error occurs and return an EMPTY observable to stop emitting data. It will use the throwError oper-

ator to bubble the error to the global error handler in all other errors. As we have already seen, the

global error handler will examine the returned error and take action according to the status code.

As we saw in the global error handler we created in the previous section, some errors are unrelated

to the interaction with the HTTP client. There are application errors that occur on the client side,

and we will learn how to understand them in the following section.

Demystifying framework errors
Application errors that originate on the client side in an Angular application can have many causes.

One of them is the interaction of our source code with the Angular framework. Developers like to

try new things and approaches while building applications. Sometimes, things will go well but,

other times, they may cause errors in an application.

The Angular framework provides a mechanism for reporting some of these common errors with

the following format:

NGWXYZ: {Error message}.<Link>

Let’s analyze the preceding error format:

• NG: Indicates that it is an Angular error to differentiate between other errors originating

from TypeScript and the browser

• W: A single-digit number that indicates the type of the error. 0 represents a runtime error,

and all other numbers from 1 to 9 represent a compiler error

• X: A single-digit number that indicates the category of the framework runtime area, such

as change detection, dependency injection, and template

• YZ: A two-digit code used to index the specific error

Chapter 11 317

• {Error message}: The actual error message

• <Link>: A link to the Angular documentation that provides more information about the

specified error

Error messages that conform to the preceding format are displayed in the browser console as

they happen. Let’s see an error example using the ExpressionChangedAfterChecked error, the

most famous error in Angular applications:

1. Open the app.component.ts file and import the AfterViewInit artifact from the

@angular/core npm package:

import { AfterViewInit, Component, inject } from '@angular/core';

2. Add the AfterViewInit in the list of implemented interfaces:

export class AppComponent implements AfterViewInit

3. Create the following title property in the AppComponent class:

title = '';

4. Implement the ngAfterViewInit method and change the title property inside the meth-

od body:

ngAfterViewInit(): void {

 this.title = this.settings.title;

}

5. Open the app.component.html file and bind the title property to the <h2> HTML element:

 <h2>{{ title }}</h2>

6. Run the ng serve command and navigate to http://localhost:4200.

Initially, everything looks to work correctly. The value of the title property is displayed

on the page correctly.

7. Open the browser developer tools and inspect the console window:

Application error RuntimeError: NG0100:
ExpressionChangedAfterItHasBeenCheckedError: Expression has changed
after it was checked. Previous value: ''. Current value: 'My
e-shop'. Expression location: _AppComponent component. Find more at
https://angular.dev/errors/NG0100

Handling Application Errors318

The preceding message indicates that changing the value of the title property caused

the error.

8. Clicking on the https://angular.dev/errors/NG0100 link will redirect us to the appro-

priate error guide in the Angular documentation for more information. The error guide

explains the specific error and describes how to fix the problem in our application code.

When we understand the error messages that originate from the Angular framework, we can fix

them easily.

Summary
Handling errors during runtime or development is crucial for every Angular application. In this

chapter, we learned how to handle errors that occur during the runtime of an Angular application,

such as HTTP or client-side errors. We also learned how to understand and fix application errors

thrown by the Angular framework.

In the next chapter, we will learn how to skin our application to look more beautiful with the help

of Angular Material. Angular Material has many components and styles that are ready for you to

use in your projects. So, let’s give your Angular project the love it deserves.

https://angular.dev/errors/NG0100

12
Introduction to Angular Material

When developing a web application, you must decide how to create your user interface (UI).

It should ideally use proper contrasting colors, have a consistent look and feel, be responsive,

and work well on different devices and browsers. In short, there are many things to consider

regarding UI and UX. Many developers consider creating the UI/UX a daunting task and turn to

UI frameworks that do much of the heavy lifting. Some frameworks are used more than others,

namely Bootstrap and Tailwind CSS. However, Angular Material, a framework based on Goo-

gle’s Material Design techniques, has gained popularity. In this chapter, we will explain what

Material Design is and how Angular Material uses it to provide a component UI library for the

Angular framework. We will also learn to use various Angular Material components by applying

them in our e-shop application.

In this chapter, we will be doing the following:

• Introducing Material Design

• Introducing Angular Material

• Integrating UI components

Technical requirements
The chapter contains various code samples to walk you through the concept of Angular Material.

You can find the related source code in the ch12 folder of the following GitHub repository:

https://www.github.com/PacktPublishing/Learning-Angular-Fifth-Edition

https://www.github.com/PacktPublishing/Learning-Angular-Fifth-Edition

Introduction to Angular Material320

Introducing Material Design
Material Design is a design language developed by Google with the following goals in mind:

• Develop a single underlying system, allowing a unified experience across platforms and

device sizes.

• Mobile precepts are fundamental, but touch, voice, mouse, and keyboard are all first-class

input methods.

The purpose of a design language is to have the user deal with how the UI and user interaction

should look and feel across devices. Material Design is based on three main principles:

• Material is the metaphor: It is inspired by the physical world with different textures and

mediums, such as paper and ink.

• Bold, graphic, and intentional: It is guided by different print design methods, such as

typography, grids, and color, to create an immersive experience for the user.

• Motion provides meaning: Elements are displayed on the screen by creating animations

and interactions that reorganize the environment.

Material Design has much theory behind it, and proper documentation on the topic is available

should you wish to delve further. You can find more information at the official documentation

site: https://material.io

A design language alone isn’t that interesting if you are not a designer. In the following section,

we will learn how Angular developers can benefit from Material Design using the Angular Ma-

terial library.

Introducing Angular Material
The Angular Material library was developed to implement Material Design for the Angular frame-

work. It is based on the following concepts:

• Sprint from zero to app: The intention is to make it easy for you, as an application devel-

oper, to hit the ground running. The effort needed to set it up should be minimal.

• Fast and consistent: Performance has been a significant focus point, and Angular Material

is guaranteed to work well on all major browsers.

• Versatile: Many themes should be easily customizable, and there is also great support for

localization and internationalization.

https://material.io

Chapter 12 321

• Optimized for Angular: The fact that the Angular team has built it means that support

for Angular is a big priority.

The library is split into the following main parts:

• Components: Many UI components, such as different kinds of input, buttons, layout, navi-

gation, modals, and other ways to show tabular data, are in place to help you be successful.

• Themes: The library comes with preinstalled themes, but there is also a theming guide if

you want to create your own at https://material.angular.io/guide/theming.

The core of the Angular Material library is the Angular CDK, which is a collection of tools that

implement similar interaction patterns unrelated to any presentation style. The behavior of

Angular Material components has been designed using the Angular CDK. The Angular CDK is

so abstract that you can use it to create custom components. You should seriously consider it if

you are a UI library author.

We have covered all the basic theory about Angular Material, so let’s put it into practice in the

following section by integrating it with an Angular application.

Installing Angular Material
The Angular Material library is an npm package. To install it, we need to manually execute the

npm install command and import several Angular artifacts into our Angular application. The

Angular team has automated these interactions by creating the necessary schematics to install

it using the Angular CLI.

Every part and component of the Angular Material library encapsulates web acces-

sibility best techniques out of the box.

You will need the source code of the Angular application we created in Chapter 11,

Handling Application Errors, to follow along with the rest of the chapter.

https://material.angular.io/guide/theming

Introduction to Angular Material322

We can use the ng add command of the Angular CLI to install Angular Material into our e-shop

application:

1. Run the following command in the current Angular CLI workspace:

ng add @angular/material

The Angular CLI will find the latest stable version of the Angular Material library and

prompt us to download it.

2. After the download is complete, it will ask us whether we want to use a prebuilt theme

for our Angular application or a custom one:

Choose a prebuilt theme name, or "custom" for a custom theme: (Use
arrow keys)

Accept the default value, Azure/Blue, by pressing Enter.

3. After selecting a theme, the Angular CLI will ask if we want to set up global typography

styles in our application. Typography refers to how the text is arranged in our application:

Set up global Angular Material typography styles? (y/N)

We want to keep our application as simple as possible, so accept the default value, No, by

pressing Enter.

4. The next question is about animations. Animation isn’t strictly required, but we want our

application to display a beautiful animation when we click a button or open a modal dialog:

Include the Angular animations module? (Use arrow keys)

Accept the default value, Include and enable animations, by pressing Enter.

In this book, we work with Angular Material 19, which is compatible with

Angular 19. If the version that prompts you is different, you should run the

command ng add @angular/material@19 to install the latest Angular

Material 19 to your system.

Angular Material typography is based on Material Design guidelines and

uses the Roboto Google Font for styling.

Chapter 12 323

The Angular CLI will start installing and configuring Angular Material into our application. It

will scaffold and import all necessary artifacts so we can start working with Angular Material

immediately:

• angular.json: It adds the theme stylesheet file in the configuration file of the Angular

CLI workspace:

"styles": [

 "@angular/material/prebuilt-themes/azure-blue.css",

 "src/styles.css"

]

• package.json: It adds the @angular/cdk and @angular/material npm packages.

• index.html: It adds the stylesheet files of the Roboto fonts and the Material icons in the

main HTML file.

• styles.css: It adds the necessary global CSS styles for the <html> and the <body> tags:

html, body { height: 100%; }

body { margin: 0; font-family: Roboto, "Helvetica Neue", sans-serif;
}

• app.config.ts: It enables animations in the application configuration file:

import { provideHttpClient } from '@angular/common/http';

import { ApplicationConfig, ErrorHandler, provideZoneChangeDetection
} from '@angular/core';

import { provideRouter } from '@angular/router';

import { routes } from './app.routes';

import { APP_SETTINGS, appSettings } from './app.settings';

import { AppErrorHandler } from './app-error-handler';

import { provideAnimationsAsync } from '@angular/platform-browser/
animations/async';

export const appConfig: ApplicationConfig = {

 providers: [

 provideZoneChangeDetection({ eventCoalescing: true }),

 provideRouter(routes),

 provideHttpClient(),

 { provide: APP_SETTINGS, useValue: appSettings },

Introduction to Angular Material324

 { provide: ErrorHandler, useClass: AppErrorHandler },

 provideAnimationsAsync()

]

};

After the process is finished, we can begin adding UI components from the Angular Material

library into our application.

Adding UI components
The button component is one of the most used components from the Angular Material library.

As an example, we will learn how easy it is to add a button component to our e-shop application.

Before we can use it in our Angular application, we must remove all CSS styles for the native

<button> tag that we have used so far:

1. Open the styles.css file and remove the button, button:hover, and button:disabled

CSS styles.

2. Open the product-detail.component.css file and remove the --button-accent variable

from the button.secondary and button.delete styles.

3. Remove the .button-group CSS style completely.

4. Add a color in the button.delete style:

button.delete {

 display: inline;

 margin-left: 5px;

 color: brown;

}

To start using a UI component from the Angular Material library, we must import its corresponding

Angular component. Let’s see how this is done by adding a button component in the authentica-

tion component of the Angular application:

1. Open the auth.component.ts file and add the following import statement to use Angular

Material buttons:

import { MatButton } from '@angular/material/button';

We do not import directly from the @angular/material package because every compo-

nent has a dedicated namespace. The button component can be found in the @angular/

material/button namespace.

Chapter 12 325

2. Add the MatButton class in the imports array of the @Component decorator:

@Component({

 selector: 'app-auth',

 imports: [MatButton],

 templateUrl: './auth.component.html',

 styleUrl: './auth.component.css'

})

3. Open the auth.component.html file and add the mat-button directive in the <button>

HTML elements:

@if (!authService.isLoggedIn()) {

 <button mat-button (click)="login()">Login</button>

} @else {

 <button mat-button (click)="logout()">Logout</button>

}

In the preceding template, the mat-button directive, in essence, modifies the <button>

element so that it appears and behaves as a Material Design button.

If we run the ng serve command and navigate to http://localhost:4200, we will notice that

the button style is different than before. It looks more like a link, which is the default appearance

of a Material button. In the following section, we will learn about theming and variations of the

button component.

Theming UI components
The Angular Material library comes with four built-in themes:

• Azure/Blue

• Rose/Red

Angular Material components can also be used by importing their respective

module, such as MatButtonModule for buttons. It is recommended to import

the components directly though, because it helps us stay consistent with

modern Angular patterns. However, we will see that some features require

too many components to import. In those cases, it is acceptable to import

the module directly.

Introduction to Angular Material326

• Magenta/Violet

• Cyan/Orange

When we add Angular Material to an Angular application, we can choose which of the preceding

themes we want to apply. We can always change it by modifying the included CSS stylesheet file

in the angular.json configuration file. Here’s an example:

"styles": [

 "/@angular/material/prebuilt-themes/azure-blue.css",

 "src/styles.css"

]

As we saw in the preceding section, the button component is displayed as a link. The mat-button

directive displays a background color only when we hover over the button. To set the background

color permanently, we must use the mat-flat-button directive as follows:

@if (!authService.isLoggedIn()) {

 <button mat-flat-button (click)="login()">

 Login

 </button>

} @else {

 <button mat-flat-button (click)="logout()">

 Logout

 </button>

}

Now that we know how to interact with the button component in an Angular application let’s

learn some of its variations:

1. Open the product-create.component.ts file and add the following import statement:

import { MatButton } from '@angular/material/button';

2. Add the MatButton class in the imports array of the @Component decorator:

@Component({

 selector: 'app-product-create',

 imports: [ReactiveFormsModule, MatButton],

 templateUrl: './product-create.component.html',

 styleUrl: './product-create.component.css'

})

Chapter 12 327

3. Open the product-create.component.html file and add the mat-raised-button directive

in the <button> HTML element:

<button

 mat-raised-button

 type="submit"

 [disabled]="productForm.invalid">

 Create

</button>

The mat-raised-button directive will add a shadow to the button element:

Figure 12.1: Raised button

4. Open the product-detail.component.ts file and repeat steps 1 and 2.

5. Open the product-detail.component.html file and add the mat-stroked-button direc-

tive in the Change button:

<button

 mat-stroked-button

 class="secondary"

 type="submit"

 [disabled]="priceForm.invalid">

 Change

</button>

The mat-stroked-button directive adds a border around the button element:

Figure 12.2: Stroked button

6. Remove the <div> HTML element with the button-group class and add the mat-raised-

button directive in both <button> HTML elements:

@if (authService.isLoggedIn()) {

Introduction to Angular Material328

 <button

 mat-raised-button

 (click)="addToCart(product.id)">

 Add to cart

 </button>

}

<button

 mat-raised-button

 class="delete"

 (click)="remove(product)">

 Delete

</button>

The two buttons appear as follows when we run the application:

Figure 12.3: Product detail action buttons

7. Open the product-list.component.ts file and add the following import statements:

import { MatMiniFabButton } from '@angular/material/button';

import { MatIcon } from '@angular/material/icon';

8. Add the preceding imported classes in the imports array of the @Component decorator:

@Component({

 selector: 'app-product-list',

 imports: [

 SortPipe,

 AsyncPipe,

 RouterLink,

 MatMiniFabButton,

 MatIcon

],

 templateUrl: './product-list.component.html',

 styleUrl: './product-list.component.css'

})

Chapter 12 329

9. Open the product-list.component.html file and replace the anchor element that navi-

gates to the product create component with the following HTML snippet:

<button mat-mini-fab routerLink="new">

 <mat-icon>add</mat-icon>

</button>

The mat-mini-fab directive displays a square button with rounded corners and an icon

indicated by the <mat-icon> HTML element. The text of the <mat-icon> element corre-

sponds to the add icon name from the Material Design icons collection:

Figure 12.4: FAB button

Theming in Angular Material is so extensive that we can use existing CSS variables to create

custom themes, a topic that is out of the scope of this book.

To continue our journey through the land of styling with Angular Material, we will learn how to

integrate various UI components in the next section.

Integrating UI components
Angular Material contains a lot of UI components organized in categories at https://material.

angular.io/components/categories. In this chapter, we will explore a subset of the preceding

collection that can be grouped into the following categories:

• Form controls: These can be used inside an Angular form, such as autocomplete, input,

and drop-down list.

• Navigation: These provide navigation capabilities, such as a header and footer.

• Layout: These define how data is represented, such as a card or table.

• Popups and overlays: These are overlay windows that display information and can block

any user interaction until they are dismissed in any way.

In the following sections, we will explore each category in more detail.

https://material.angular.io/components/categories
https://material.angular.io/components/categories

Introduction to Angular Material330

Form controls
We learned in Chapter 10, Collecting User Data with Forms, that form controls are about collecting

input data in different ways and taking further action, such as sending data to a backend API

over HTTP.

There are quite a few form controls in the Angular Material library of varying types, namely the

following:

• Autocomplete: Enables the user to start typing in an input field and be presented with sug-

gestions while typing. It helps to narrow down the possible values that the input can take.

• Checkbox: A classic checkbox representing a state either checked or unchecked.

• Date picker: Allows the user to select a date in a calendar.

• Input: A classic input control enhanced with meaningful animation while typing.

• Radio button: A classic radio button enhanced with animations and transitions while

editing to create a better user experience.

• Select: A drop-down control that prompts the user to select one or more items from a list.

• Slider: Enables the user to increase or decrease a value by pulling a slider button to either

the right or the left.

• Slide toggle: A switch the user can slide to set on or off.

• Chips: A list that displays, selects, and filters items.

In the following sections, we will examine some of these form controls in more detail. Let’s begin

with the input component.

Input
The input component is usually attached to an <input> HTML element. We can also add the

ability to display errors in the input field.

Before we can use the input component in our Angular application, we must remove all CSS styles

for the native <input> tag that we have used so far:

1. Open the styles.css file and remove any CSS styles referencing the input tag.

2. Remove the input CSS style from the product-create.component.css and cart.

component.css files.

Chapter 12 331

To learn how to use the input component, we will integrate it into our application components:

1. Open the product-create.component.ts file and add the following import statements:

import { MatInput } from '@angular/material/input';

import { MatFormField, MatError, MatLabel } from '@angular/material/
form-field';

2. Add the preceding imported classes in the imports array of the @Component decorator:

@Component({

 selector: 'app-product-create',

 imports: [

 ReactiveFormsModule,

 MatButton,

 MatInput,

 MatFormField,

 MatError,

 MatLabel

],

 templateUrl: './product-create.component.html',

 styleUrl: './product-create.component.css'

})

3. Open the product-create.component.html file and replace the <div> tags of the <input>

HTML elements as follows:

<mat-form-field>

 <mat-label>Title</mat-label>

 <input formControlName="title" matInput required />

 <mat-error>Title is required</mat-error>

</mat-form-field>

<mat-form-field>

 <mat-label>Price</mat-label>

 <input formControlName="price" matInput type="number" required />

 @if (productForm.controls.price.touched && productForm.controls.
price.hasError('required')) {

 <mat-error>Price is required</mat-error>

 }

Introduction to Angular Material332

 @if (productForm.controls.price.touched && productForm.controls.
price.hasError('min')) {

 <mat-error>Price should be greater than 0</mat-error>

 }

 @if (productForm.controls.price.touched && productForm.controls.
price.hasError('priceMaximum')) {

 <mat-error>Price must be smaller or equal to 1000</mat-error>

 }

</mat-form-field>

In the preceding HTML snippet, we use the matInput directive to indicate that an <input>

HTML element is an Angular Material input component. A form control in Angular Ma-

terial must be enclosed in a <mat-form-field> element.

We have replaced all <label> HTML elements with <mat-label> elements. A <mat-label>

HTML element is a label that targets a specific Angular Material form control.

The <mat-error> element displays error messages in form controls when Angular triggers

validation errors. It is shown by default when the status of the form control is invalid. In

all other cases, we can use an @if block to control when the <mat-error> element will

be displayed.

4. Open the global styles.css file and add the following CSS style:

mat-form-field {

 width: 100%;

}

In the preceding snippet, we configure mat-form-field elements to take all the available

width.

5. Run the ng serve command to start the application and navigate to http://

localhost:4200/products/new. Focus on the appearance of the input fields:

Figure 12.5: Input component

Chapter 12 333

In the preceding figure, the label of each form control is suffixed by an asterisk. The as-

terisk is a common indication that the form control must have a value. Angular Material

automatically adds it by recognizing the required attribute on the <input> HTML element.

6. Open the cart.component.ts file and repeat steps 1 and 2, but do not include the MatError

class.

7. Open the cart.component.html file and modify the contents of the @for block as follows:

@for(product of cartForm.controls.products.controls; track $index) {

 <mat-form-field>

 <mat-label>{{products[$index].title}}</mat-label>

 <input

 [formControlName]="$index"

 placeholder="{{products[$index].title}}"

 type="number"

 matInput />

 </mat-form-field>

}

The remaining component of our application that contains an <input> HTML element is the

product detail component. The product detail component is a special case of an Angular Material

input because we must group it with the button that changes the product price:

1. Open the product-detail.component.ts file and modify the import statement from the

Angular Material npm package as follows:

import { MatButton, MatIconButton } from '@angular/material/button';

import { MatInput } from '@angular/material/input';

import { MatFormField, MatError, MatSuffix } from '@angular/
material/form-field';

import { MatIcon } from '@angular/material/icon';

2. Add the preceding imported classes in the imports array of the @Component decorator:

@Component({

 selector: 'app-product-detail',

 imports: [

 CommonModule,

 FormsModule,

 PriceMaximumDirective,

 MatButton,

Introduction to Angular Material334

 MatInput,

 MatFormField,

 MatError,

 MatIcon,

 MatSuffix,

 MatIconButton

],

 templateUrl: './product-detail.component.html',

 styleUrl: './product-detail.component.css'

})

3. Open the product-detail.component.html file and modify the <form> HTML element

as follows:

<form (ngSubmit)="changePrice(product)" #priceForm="ngForm">

 <mat-form-field>

 <input

 placeholder="New price"

 type="number"

 name="price"

 required min="1"

 appPriceMaximum threshold="500"

 matInput

 #priceCtrl="ngModel"

 [(ngModel)]="price" />

 <button

 mat-icon-button

 matSuffix

 type="submit"

 [disabled]="priceForm.invalid">

 <mat-icon>edit</mat-icon>

 </button>

 @if (priceCtrl.dirty && (priceCtrl.invalid || priceCtrl.
hasError('min'))) {

 <mat-error>Please enter a valid price</mat-error>

 }

 @if (priceCtrl.dirty && priceCtrl.hasError('priceMaximum')) {

Chapter 12 335

 <mat-error>Price must be smaller or equal to 500</mat-error>

 }

 </mat-form-field>

</form>

In the preceding snippet, we modified the button that changes the price so that it displays

a pencil icon, and it is placed in line with the <input> HTML element.

The mat-icon-button directive indicates that the button will not have any text. Instead,

it will display an icon defined by the <mat-icon> HTML element. The matSuffix directive

positions the button inline and at the end of the <input> HTML element.

4. Navigate to the product list in the browser and select one product. The input for changing

the product price should be the following:

Figure 12.6: Input component with inline button

In the following section, we will learn how to use an Angular Material select component to choose

a category in the product create component.

Select
The select component works similarly to the native <select> HTML element. It displays a drop-

down element with a list of options for users.

We will add one in the product create component to select the category of a new product:

1. Open the product-create.component.ts file and add the following import statement:

import { MatSelect, MatOption } from '@angular/material/select';

2. Add the preceding imported classes in the imports array of the @Component decorator:

@Component({

 selector: 'app-product-create',

 imports: [

 ReactiveFormsModule,

 MatButton,

 MatInput,

Introduction to Angular Material336

 MatFormField,

 MatError,

 MatLabel,

 MatSelect,

 MatOption

],

 templateUrl: './product-create.component.html',

 styleUrl: './product-create.component.css'

})

3. Open the product-create.component.html file and replace the <div> HTML element

that encloses the <select> element with the following HTML snippet:

<mat-form-field>

 <mat-label>Category</mat-label>

 <mat-select formControlName="category">

 <mat-option value="electronics">Electronics</mat-option>

 <mat-option value="jewelery">Jewelery</mat-option>

 <mat-option>Other</mat-option>

 </mat-select>

</mat-form-field>

In the preceding snippet, we replaced the <select> and the <option> HTML elements

with the <mat-select> and the <mat-option> elements, respectively.

4. Navigate to http://localhost:4200/products/new and click on the Category drop-

down list:

Figure 12.7: Select component

Chapter 12 337

The product details component displays the product category as a paragraph element with a

specific CSS class. In the following section, we will learn how to represent the product category

with the Angular Material chips component.

Chips
The chips component is often used to display information grouped by a specific property. It can

also provide data filtering and selection capabilities. We can use chips in our application to display

the category in the product details component.

Let’s get started:

1. Open the product-detail.component.ts file and add the following import statement:

import { MatChipSet, MatChip } from '@angular/material/chips';

2. Add the preceding imported classes in the imports array of the @Component decorator:

@Component({

 selector: 'app-product-detail',

 imports: [

 CommonModule,

 FormsModule,

 PriceMaximumDirective,

 MatButton,

 MatInput,

 MatFormField,

 MatError,

 MatIcon,

 MatSuffix,

 MatIconButton,

 MatChipSet,

 MatChip

],

 templateUrl: './product-detail.component.html',

 styleUrl: './product-detail.component.css'

})

Our products only have one category, but chips would make more sense if we had

additional categories assigned to our products.

Introduction to Angular Material338

3. Open the product-detail.component.html file and replace the <div> HTML element

that contains the pill-group class with the following content:

<mat-chip-set>

 <mat-chip>{{ product.category }}</mat-chip>

</mat-chip-set>

The <mat-chip> HTML element indicates a chip component. Chips must always be en-

closed using a container element. The simplest form of a chips container is the <mat-

chip-set> element.

4. Open the product-detail.component.css file and add the following CSS style:

mat-chip-set {

 margin-bottom: 1.375rem;

}

5. Run the ng serve command to start the application and select a product from the list.

The category should, for example, look like the following:

Figure 12.8: Chips component

The chips component completes our exploration of the Angular Material form controls. In the fol-

lowing section, we will get hands-on experience by styling the navigation layout of the application.

Navigation
There are different ways of navigating in an Angular application, such as clicking a link or a menu

item. Angular Material offers the following components for this type of interaction:

• Menu: A pop-up list where you can choose from a predefined set of options.

• Sidenav: A component that acts as a menu docked to the left or the right of the page. It can

be presented as an overlay over the application while dimming the application content.

• Toolbar: A standard toolbar that allows the user to reach commonly used actions.

In this section, we will demonstrate how to use the toolbar component. We will convert the

<header> and <footer> HTML elements of the main application component to Angular Material

toolbars.

Chapter 12 339

To create a toolbar, we will go through the following steps:

1. Open the app.component.ts file and add the following import statements:

import { MatToolbarRow, MatToolbar } from '@angular/material/
toolbar';

import { MatButton } from '@angular/material/button';

2. Add the preceding imported classes in the imports array of the @Component decorator and

remove the RouterLinkActive class:

@Component({

 selector: 'app-root',

 imports: [

 RouterOutlet,

 RouterLink,

 CopyrightDirective,

 AuthComponent,

 MatToolbarRow,

 MatToolbar,

 MatButton

],

 templateUrl: './app.component.html',

 styleUrl: './app.component.css'

})

3. Open the app.component.html file and modify the <header> HTML element as follows:

<header>

 <mat-toolbar>

 <mat-toolbar-row>

 <h2>{{ settings.title }}</h2>

 <button mat-button routerLink="/products">Products</button>

 <button mat-button routerLink="/cart">My Cart</button>

 <button mat-button routerLink="/user">My Profile</button>

 <app-auth></app-auth>

 </mat-toolbar-row>

 </mat-toolbar>

</header>

Introduction to Angular Material340

In the preceding template, we add the main application links and the authentication

component inside a <mat-toolbar> element. The toolbar component consists of a single

row indicated by the <mat-toolbar-row> HTML element.

4. Open the app.component.css file and remove the CSS style for the header tag and the

menu-links.

5. If we run the application using the ng serve command, we will see the new toolbar of

our application at the top of the page:

Figure 12.9: Application header

6. Now, modify the <footer> HTML element to convert it to an Angular Material toolbar

component:

<footer>

 <mat-toolbar>

 <mat-toolbar-row>

 - v{{ settings.version }}

 </mat-toolbar-row>

 </mat-toolbar>

</footer>

7. Save changes, wait for the application to refresh, and observe the toolbar at the bottom

of the application:

Figure 12.10: Application footer

The toolbar component is fully customizable, and we can adjust it according to the application’s

needs. We can add icons and even create toolbars with content in multiple rows. Now that you

know the basics of creating a simple toolbar, you can explore further possibilities.

In the following section, we will learn how to lay out content differently inside our application.

Layout
When we refer to the layout, we discuss how we place content in our templates. Angular Material

gives us different components for this purpose:

Chapter 12 341

• List: Visualizes the content as a list of items. It can be enriched with links and icons and

even multiline.

• Grid list: Helps us arrange the content in blocks. We only need to define the number of

columns; the component will fill the visual space.

• Card: Wraps content and adds a box shadow. We can define a header for it as well.

• Tabs: Divides up the content into different tabs.

• Stepper: Divides up the content into wizard-like steps.

• Expansion panel: Enables us to place the content in a list-like way with a title for each

item. Items can only be expanded one at a time.

• Table: Represents data in a tabular format with rows and columns.

In this book, we will cover the card and table components.

Card
We will learn how to display each product in the list as a card:

1. Open the product.ts file and add an image property to the Product interface:

export interface Product {

 id: number;

 title: string;

 price: number;

 category: string;

 image: string;

}

The image property is a URL that points to the product image file in the Fake Store API.

2. Open the product-list.component.ts file and add the following import statement:

import { MatCardModule } from '@angular/material/card';

3. Add the MatCardModule class in the imports array of the @Component decorator:

@Component({

 selector: 'app-product-list',

 imports: [

 SortPipe,

 AsyncPipe,

 RouterLink,

Introduction to Angular Material342

 MatMiniFabButton,

 MatIcon,

 MatCardModule

],

 templateUrl: './product-list.component.html',

 styleUrl: './product-list.component.css'

})

4. Open the product-list.component.html file and replace the unordered list element with

the following HTML snippet:

@for (product of products | sort; track product.id) {

 <mat-card [routerLink]="[product.id]">

 <mat-card-header>

 <mat-card-title-group>

 <mat-card-title>{{ product.title }}</mat-card-title>

 <mat-card-subtitle>{{ product.category }}</mat-card-
subtitle>

 </mat-card-title-group>

 </mat-card-header>

 </mat-card>

} @empty {

 <p>No products found!</p>

}

An Angular Material card component consists of a header, indicated by the <mat-card-

header> HTML element. The header component contains a <mat-card-title-group>

HTML element that aligns the card title, subtitle, and image into a single section. The card

title indicated by the <mat-card-title> HTML element displays the product title. The

card subtitle indicated by the <mat-card-subtitle> HTML element displays the product

category. Finally, the product image is displayed by attaching the mat-card-sm-image

directive to an HTML element. The sm keyword in the directive indicates that we

want to render a small size of the image.

The Angular Material card component consists of many other components

and directives. We choose to import the whole Angular module because it

would not be convenient to import them all individually.

Chapter 12 343

5. Open the product-list.component.css file and add the following CSS style:

mat-card {

 margin: 1.375rem;

 cursor: pointer;

}

6. Run the application using the ng serve command and navigate to http://localhost:4200:

Figure 12.11: Product list card representation

You can explore more options for the card component by navigating to https://material.

angular.io/components/card/overview.

In the following section, we will learn how to switch the product list to a tabular view.

Angular Material also supports md and lg for medium and large sizes, re-

spectively.

https://material.angular.io/components/card/overview
https://material.angular.io/components/card/overview

Introduction to Angular Material344

Data table
The table component from the Angular Material library enables us to display our data in col-

umns and rows. To create a table, we must import the MatTableModule class from the @angular/

material/table namespace.

Let’s get started:

1. Open the product-list.component.ts file and import the CurrencyPipe and the

MatTableModule artifacts:

import { AsyncPipe, CurrencyPipe } from '@angular/common';

import { MatTableModule } from '@angular/material/table';

2. Add the preceding imported classes to the imports array of the @Component decorator:

@Component({

 selector: 'app-product-list',

 imports: [

 SortPipe,

 AsyncPipe,

 CurrencyPipe,

 RouterLink,

 MatMiniFabButton,

 MatIcon,

 MatCardModule,

 MatTableModule

],

 templateUrl: './product-list.component.html',

 styleUrl: './product-list.component.css'

})

3. Create the following property in the ProductListComponent class to define the table

column names:

columnNames = ['title', 'price'];

The Angular Material data table consists of many other components and directives.

We choose to import the whole Angular module because it would not be convenient

to import them all individually.

Chapter 12 345

The name of each column matches a property from the Product interface.

4. Open the product-list.component.html file and add the following snippet after the

@for block:

<table mat-table [dataSource]="products"></table>

An Angular Material table is a standard <table> HTML element with the mat-table di-

rective attached.

The dataSource property of the mat-table directive defines the data we want to display

on the table. It can be any data that can be enumerated, such as an array. In our case, we

bind it to the products template reference variable.

5. Add an <ng-container> element for each column we want to display:

<table mat-table [dataSource]="products">

 <ng-container matColumnDef="title">

 <th mat-header-cell *matHeaderCellDef>Title</th>

 <td mat-cell *matCellDef="let product">

 <a [routerLink]="[product.id]">{{ product.title }}

 </td>

 </ng-container>

 <ng-container matColumnDef="price">

 <th mat-header-cell *matHeaderCellDef>Price</th>

 <td mat-cell *matCellDef="let product">{{ product.price |
currency }}</td>

 </ng-container>

</table>

The <ng-container> element uses the matColumnDef directive to set the name of the

specific column.

The <ng-container> element is a unique-purpose element that groups

elements with similar functionality. It does not interfere with the styling of

the child elements, nor is it rendered on the screen.

The value of the matColumnDef directive must match with a value from the

columnNames component property; otherwise, the application will throw

an error that it cannot find the name of the defined column.

Introduction to Angular Material346

It contains a <th> HTML element with a mat-header-cell directive that indicates the

header of the cell and a <td> HTML element with a mat-cell directive for the data of the

cell. The <td> HTML element uses the matCellDef directive to create a local template

variable for the current row data that we can use later.

6. Add the following snippet after the <ng-container> elements:

<tr mat-header-row *matHeaderRowDef="columnNames"></tr>

<tr mat-row *matRowDef="let row; columns: columnNames;"></tr>

In the preceding snippet, we define the header row of the table that displays column

names and the actual rows that contain data.

If we run the application, the output should be the following:

Figure 12.12: Table component

Chapter 12 347

The product list component displays the card and the table representation of data simultaneously.

We will use the button toggle component from Angular Material to distinguish between them.

The button toggle component toggles buttons on or off according to a specific condition:

1. Open the product-list.component.ts file and add the following import statement:

import { MatButtonToggle, MatButtonToggleGroup } from '@angular/
material/button-toggle';

2. Add the preceding imported classes in the imports array of the @Component decorator:

@Component({

 selector: 'app-product-list',

 imports: [

 SortPipe,

 AsyncPipe,

 CurrencyPipe,

 RouterLink,

 MatMiniFabButton,

 MatIcon,

 MatCardModule,

 MatTableModule,

 MatButtonToggle,

 MatButtonToggleGroup

],

 templateUrl: './product-list.component.html',

 styleUrl: './product-list.component.css'

})

3. Open the product-list.component.html file and add the following HTML snippet inside

the <div> HTML element with the caption class:

<mat-button-toggle-group #group="matButtonToggleGroup">

 <mat-button-toggle value="card" checked>

 <mat-icon>list</mat-icon>

 </mat-button-toggle>

 <mat-button-toggle value="table">

 <mat-icon>grid_on</mat-icon>

 </mat-button-toggle>

</mat-button-toggle-group>

Introduction to Angular Material348

In the preceding snippet, we use the <mat-button-toggle-group> element to create two

toggle buttons side by side. The instance of the button toggle group is assigned to the

group template reference variable so we can access it later.

We declare toggle buttons using the <mat-button-toggle> element and setting an appro-

priate value. The value property will be set when we click on either button. We also have

an icon for each toggle button to enhance UX while users interact with the product list.

4. Create a new @if block after the <div> HTML element with the caption class and move

the @for block inside it:

@if (group.value === 'card') {

 @for (product of products | sort; track product.id) {

 <mat-card [routerLink]="[product.id]">

 <mat-card-header>

 <mat-card-title-group>

 <mat-card-title>{{ product.title }}</mat-card-title>

 <mat-card-subtitle>{{ product.category }}</mat-card-
subtitle>

 </mat-card-title-group>

 </mat-card-header>

 </mat-card>

 } @empty {

 <p>No products found!</p>

 }

}

According to the preceding snippet, the card representation of products will be displayed

when the value property of the button toggle group is set to card.

5. Add the following @else block and move the data table component inside it to display the

product list in tabular format when the second toggle button is clicked:

@else {

 <table mat-table [dataSource]="products">

 <ng-container matColumnDef="title">

 <th mat-header-cell *matHeaderCellDef>Title</th>

 <td mat-cell *matCellDef="let product">

Chapter 12 349

 <a [routerLink]="[product.id]">{{ product.title }}

 </td>

 </ng-container>

 <ng-container matColumnDef="price">

 <th mat-header-cell *matHeaderCellDef>Price</th>

 <td mat-cell *matCellDef="let product">{{ product.price |
currency }}</td>

 </ng-container>

 <tr mat-header-row *matHeaderRowDef="columnNames"></tr>

 <tr mat-row *matRowDef="let row; columns: columnNames;"></tr>

 </table>

}

6. Run the ng serve command to start the application and verify that the card representa-

tion is initially displayed.

Figure 12.13: Product list

Introduction to Angular Material350

7. Click the second toggle button and verify that the products are now displayed in tabular

format.

In this section, we learned how to display the product list in a tabular format. We also used toggle

buttons to switch from the card view to the tabular one.

In the following section, we will learn how to use popups and overlays to provide additional

information to the users.

Popups and overlays
There are different ways to capture the user’s attention in a web application. One of them is to

show a pop-up dialog over the content of the page and prompt the user to act accordingly. Another

way is displaying information as a notification in different parts of the page.

Angular Material offers three different components for handling such cases:

• Dialog: A modal pop-up dialog that displays itself on top of the page content.

• Badge: A small circled indication to update the status of a UI element.

• Snackbar: An information message displayed at the bottom of a page that is visible briefly.

Its purpose is to notify the user of the result of an action, such as saving a form.

We will learn how to use the preceding components in our e-shop application, starting with how

to create a simple modal dialog.

Creating a confirmation dialog
The dialog component is quite powerful and can easily be customized and configured. It is an or-

dinary Angular component with custom directives that force it to behave like a dialog. To explore

the capabilities of the Angular Material dialog, we will use a confirmation dialog in the checkout

guard to notify users about remaining items in their shopping carts:

1. Run the following Angular CLI command to create a new Angular component:

ng generate component checkout

The preceding command will create an Angular component that will host our dialog.

2. Open the checkout.component.ts file and add the following import statements:

import { MatButton } from '@angular/material/button';

import { MatDialogModule } from '@angular/material/dialog';

Chapter 12 351

3. Add the preceding imported classes in the imports array of the @Component decorator:

@Component({

 selector: 'app-checkout',

 imports: [MatButton, MatDialogModule],

 templateUrl: './checkout.component.html',

 styleUrl: './checkout.component.css'

})

4. Open the checkout.component.html file and replace its content with the following HTML

template:

<h1 mat-dialog-title>Cart Checkout</h1>

<mat-dialog-content>

 You have pending items in your cart. Do you want to
continue?

</mat-dialog-content>

<mat-dialog-actions>

 <button mat-raised-button>Yes</button>

 <button mat-button>No</button>

</mat-dialog-actions>

The component template contains various directives and elements that belong to the An-

gular Material dialog component. The mat-dialog-title directive defines the title of the

dialog, and the <mat-dialog-content> is the actual content. The <mat-dialog-actions>

element defines the actions the dialog can perform and usually wraps button elements.

5. A dialog must be triggered to be displayed on a page. Open the checkout.guard.ts file

and add the following import statements:

import { MatDialog } from '@angular/material/dialog';

import { CheckoutComponent } from './checkout/checkout.component';

6. Inject the MatDialog service in the body of the checkoutGuard function:

const dialog = inject(MatDialog);

The Angular Material dialog component consists of many other components

and directives. We choose to import the whole Angular module because it

would not be convenient to import them all individually.

Introduction to Angular Material352

7. Modify the assignment of the confirmation variable as follows:

if (cartService.cart) {

 const confirmation = dialog.open(CheckoutComponent).afterClosed();

 return confirmation;

}

In the preceding snippet, we use the MatDialog service to display the checkout compo-

nent. The MatDialog service accepts the type of component class representing the dialog

as a parameter.

The open method of the MatDialog service returns an afterClosed observable property,

which will notify us when the dialog closes. The observable emits any value that is sent

back from the dialog.

We can now verify that the dialog component works as expected by executing the following steps:

1. Run the application using the ng serve command and navigate to http://localhost:4200.

2. Log in to the application.

3. Select a product from the list and add it to the shopping cart.

4. Repeat the preceding step to add more products to the cart.

5. Navigate to the shopping cart and then click the back button of the browser or any of the

application links to leave the cart. The following dialog will be displayed on the screen:

Figure 12.14: Checkout dialog component

Later in the chapter, we will learn how to return a boolean value from the dialog

component that matches the type returned by the CanDeactivateFn function.

Chapter 12 353

We could improve the application’s UX further by displaying information on the dialog about

the number of items we have added to the shopping cart. In the following section, we will learn

how to pass data in the dialog and display the number of shopping cart items.

Configuring dialogs
In a real-world scenario, you will probably need to create a reusable component to display a dialog

in an Angular project. The component may end up in an Angular library as a package. Therefore,

you should configure the dialog component to accept data dynamically.

In the current Angular project, we would like to display the number of products that we have

added to the shopping cart:

1. Open the checkout.component.ts file and modify the import statements as follows:

import { Component, inject } from '@angular/core';

import { MatButton } from '@angular/material/button';

import { MatDialogModule, MAT_DIALOG_DATA } from '@angular/material/
dialog';

2. Inject MAT_DIALOG_DATA in the CheckoutComponent class in the following way:

export class CheckoutComponent {

 data = inject(MAT_DIALOG_DATA);

}

The MAT_DIALOG_DATA is an injection token that enables us to pass arbitrary data to the

dialog component. The data variable will contain any data we pass to the dialog when

we call its open method.

3. Open the checkout.component.html file and add the data property to the inner text of

the HTML element:

 You have {{ data }} pending items in your cart.

 Do you want to continue?

4. Open the checkout.guard.ts file and set the data property in the dialog configuration

object, which is the second parameter of the open method:

const confirmation = dialog.open(

 CheckoutComponent,

Introduction to Angular Material354

 { data: cartService.cart.products.length }

).afterClosed();

5. If we try to leave the cart page while running the application, we will get a dialog similar

to the following:

Figure 12.15: Checkout dialog component with custom data

The buttons of the dialog component don’t do anything specific yet. In the following section, we

will learn how to configure them and return data to the guard.

Getting data from dialogs
The Angular Material dialog module exposes the mat-dialog-close directive that we can use to

configure which button will close the dialog. Open the checkout.component.html file and add

the mat-dialog-close directive to both buttons:

<mat-dialog-actions>

 <button mat-raised-button mat-dialog-close>Yes</button>

 <button mat-button [mat-dialog-close]="false">No</button>

 </mat-dialog-actions>

In the preceding snippet, we use the mat-dialog-close directive in two ways:

• Without passing a value in the Yes button, the dialog will return true as a default value,

allowing the guard to navigate away from the shopping cart page.

• With property binding in the No button, we pass false as a value to cancel the navigation

from the guard.

Chapter 12 355

Execute the following steps to verify that the dialog behavior is correct:

1. Run the ng serve command to start the application and navigate to http://localhost:4200.

2. Log in to the application.

3. Select a product from the list and add it to the cart.

4. Click the My Cart link to navigate to the shopping cart.

5. Click the Products link, select No in the checkout dialog, and verify that the application

stays on the shopping cart page.

6. Click the Products link again, select Yes in the dialog, and you should navigate to the

product list.

Dialogs are a great feature of Angular Material that can give your applications powerful capabil-

ities. In the following section, we will explore the badge and snackbar components for notifying

the user when a product is added to the shopping cart.

Displaying user notifications
The Angular Material library enforces patterns and behaviors that improve the application’s UX.

One aspect of the application UX concerns providing notifications to users upon specific actions.

Angular Material gives us the badge and the snackbar components we can use in this case.

Applying badges
The badge component is a circle positioned on top of another element and usually displays a

number. We will learn how to apply badges by displaying the number of shopping cart items in

the My Cart application link:

1. Open the app.component.ts file and add the following import statements:

import { MatBadge } from '@angular/material/badge';

import { CartService } from './cart.service';

The MatBadge class exports the badge component. The CartService class will provide us

with the number of items in the shopping cart.

2. Add the MatBadge class in the imports array of the @Component decorator:

@Component({

 selector: 'app-root',

 imports: [

 RouterOutlet,

Introduction to Angular Material356

 RouterLink,

 CopyrightDirective,

 AuthComponent,

 MatToolbarRow,

 MatToolbar,

 MatButton,

 MatBadge

],

 templateUrl: './app.component.html',

 styleUrl: './app.component.css'

})

3. Inject the CartService class in the AppComponent class:

cartService = inject(CartService);

4. Open the app.component.html file and add the matBadge directive to the My Cart button:

<button

 mat-button

 routerLink="/cart"

 [matBadge]="cartService.cart?.products?.length">

 My Cart

</button>

In the preceding snippet, the matBadge directive indicates the number displayed in the

badge. In this case, we bind it with the length of the products array that exists in the

current shopping cart.

5. Open the app.component.css file and add the following CSS style:

button {

 margin: 5px;

}

The preceding style will add space around each application link so that buttons do not

overlap with the badge component.

6. Run the ng serve command to start the application and add some products to the shop-

ping cart. Notice that the badge icon updates its value when products are added to the

cart; here’s an example:

Chapter 12 357

Figure 12.16: Badge component

Applying a snackbar
Another good UX pattern when we work with CRUD applications is to display a notification when

an action has been completed. We can apply such a pattern by displaying a notification when

a product is added to the shopping cart. We will use the snackbar component of the Angular

Material to show the notification:

1. Open the product-detail.component.ts file and add the following import statement:

import { MatSnackBarModule, MatSnackBar } from '@angular/material/
snack-bar';

The snackbar is not an actual Angular component like all the Angular Material components

we have seen. It is an Angular service named MatSnackBar and can be used by importing

the MatSnackBarModule class into our components.

2. Add the MatSnackBarModule class in the imports array of the @Component decorator:

@Component({

 selector: 'app-product-detail',

 imports: [

 CommonModule,

 FormsModule,

 PriceMaximumDirective,

 MatButton,

 MatInput,

 MatFormField,

 MatError,

 MatIcon,

 MatSuffix,

 MatIconButton,

 MatChipSet,

 MatChip,

 MatSnackBarModule

],

Introduction to Angular Material358

 templateUrl: './product-detail.component.html',

 styleUrl: './product-detail.component.css'

})

3. Inject the MatSnackBar service into the constructor of the ProductDetailComponent class:

constructor(

 private productService: ProductsService,

 public authService: AuthService,

 private route: ActivatedRoute,

 private router: Router,

 private cartService: CartService,

 private snackbar: MatSnackBar

) { }

4. Modify the addToCart method to display a snackbar when the product is added to the cart:

addToCart(id: number) {

 this.cartService.addProduct(id).subscribe(() => {

 this.snackbar.open('Product added to cart!', undefined, {

 duration: 1000

 });

 });

}

In the preceding method, we use the open method of the MatSnackBar service to display

a snackbar. The open method accepts three parameters: the message we want to display,

any action we want to take when the snackbar is dismissed, and a configuration object.

The configuration object enables us to set various options, such as the duration for which

the snackbar will be visible in milliseconds.

5. Run the ng serve command to start the application and select a product from the list.

6. Ensure you are logged in and click the Add to cart button. The following notification

message will be displayed at the bottom of the page:

We do not pass a parameter for the action because we do not want to react

when the snackbar is dismissed.

Chapter 12 359

Figure 12.17: Snackbar component

In this section, we learned to use pop-up models and notification overlays to enhance the appli-

cation UX and provide a great workflow to our users.

Summary
In this chapter, we looked at the basics of the Material Design system. We put most of our focus

on Angular Material, the Material Design implementation meant for Angular, and how it consists

of different components. We looked at a hands-on explanation of how to install it, set it up, and

use some of its core components and themes.

Hopefully, you will have read this chapter and found that you now grasp Material Design in gen-

eral and Angular Material in particular and can determine whether it is a good match for your

next Angular application.

Web applications must be testable to ensure they are functional and in accordance with the appli-

cation requirements. In the next chapter, we will learn how to apply different testing techniques

in Angular applications.

The position of the snackbar can be changed from the configuration options. Read

more at https://material.angular.io/components/snack-bar/overview.

https://material.angular.io/components/snack-bar/overview

13
Unit Testing Angular
Applications

In the previous chapters, we went through many aspects of how to build an Angular enterprise

application from scratch. But how can we ensure that an application can be maintained in the

future without much hassle? A comprehensive automated testing layer can become our lifeline

once our application begins to scale up and we have to mitigate the impact of bugs.

Testing, specifically unit testing, is meant to be carried out by the developer as the project is be-

ing developed. Now that our knowledge of the framework is mature, we will briefly cover all the

intricacies of unit testing an Angular application in this chapter including the use of testing tools..

In more detail, we will learn about the following:

• Why do we need unit tests?

• The anatomy of a unit test

• Introducing unit tests in Angular

• Testing components

• Testing services

For simplicity, the examples in this chapter are not related to the e-shop application

that we have built throughout the book.

Unit Testing Angular Applications362

• Testing pipes

• Testing directives

• Testing forms

• Testing the router

Technical requirements
The chapter contains various code samples to walk you through the concept of unit testing in

Angular. You can find the related source code in the ch13 folder of the following GitHub repository:

https://www.github.com/PacktPublishing/Learning-Angular-Fifth-Edition.

Why do we need unit tests?
In this section, we will learn what unit tests are and why they are useful in web development.

Unit tests are part of an engineering philosophy for efficient and agile development processes.

They add a layer of automated testing to the application code before it is developed. The core

concept is that a piece of code is accompanied by its test, both of which are built by the developer

who works on that code. First, we design the test against the feature we want to deliver, checking

the accuracy of its output and behavior. Since the feature is still not implemented, the test will

fail, so the developer’s job is to build the feature to pass the test.

Unit testing is quite controversial. While test-driven development is beneficial for ensuring code

quality and maintenance over time, not everybody undertakes unit testing in their daily devel-

opment workflow.

Building tests as we develop our code can sometimes feel like a burden, especially when the test

results become larger than the functionality it aims to test. However, the arguments in favor of

testing outnumber the arguments against it:

• Building tests contributes to better code design. Our code must conform to the test re-

quirements and not vice versa. If we try to test an existing piece of code and find ourselves

blocked at some point, the chances are that the code is not well designed and requires

some rethinking. On the other hand, building testable features can help with the early

detection of side effects.

You can skip to the next section if you’re familiar with unit testing and test-driven

development.

https://www.github.com/PacktPublishing/Learning-Angular-Fifth-Edition

Chapter 13 363

• Refactoring tested code is a lifeline against introducing bugs in later stages. Development

is meant to evolve with time, and the risk of introducing a bug with every refactor is high.

Unit tests are an excellent way to ensure we catch bugs early, either when introducing

new features or updating existing ones.

• Building tests is an excellent way to document our code. It becomes a priceless resource

when someone unfamiliar with the code base takes over the development endeavor.

These are only a few arguments, but you can find countless resources on the web about the ben-

efits of testing your code. If you do not feel convinced yet, give it a try; otherwise, let’s continue

with our journey and look at the overall form of a unit test.

The anatomy of a unit test
There are many different ways to test a piece of code. In this chapter, we will look at the anatomy

of a unit test—the separate parts it’s made of.

To test any code, we need a framework for writing the test and a runner to run it on. In this sec-

tion, we will focus on the test framework. The test framework should provide utility functions

for building test suites containing one or several test specs. As a result, unit testing involves the

following concepts:

• Test suite: A suite that creates a logical grouping for many tests. A suite, for example, can

contain all the tests for a specific feature.

• Test spec: The actual unit test.

We will use Jasmine in this chapter, a popular test framework that is also used by default in

Angular CLI projects. This is what a unit test looks like in Jasmine:

describe('Calculator', () => {

 it('should add two numbers', () => {

 expect(1+1).toBe(2);

 });

});

The describe method defines the test suite and accepts a name and an arrow function as pa-

rameters. The arrow function is the body of the test suite and contains several unit tests. The it

method defines a single unit test. It accepts a name and an arrow function as parameters.

Unit Testing Angular Applications364

Each test spec validates a specific functionality of the feature described in the suite name and

declares one or several expectations in its body. Each expectation takes a value, called the ex-

pected value, which is compared against an actual value using a matcher function. The function

checks whether the expected and actual values match accordingly, which is called an assertion.

The test framework passes or fails the spec depending on the result of such assertions. In the

previous example, 1+1 will return the actual value that is supposed to match the expected value,

2, declared in the toBe matcher function.

Suppose the previous code contains another mathematical operation that must be tested. It would

make sense to group both operations under the Calculator suite, as follows:

describe('Calculator', () => {

 it('should add two numbers', () => {

 expect(1+1).toBe(2);

 });

 it('should subtract two numbers', () => {

 expect(1-1).toBe(0);

 });

});

So far, we have learned about test suites and how to use them to group tests according to their

functionality. Furthermore, we have learned about invoking the code we want to test and affirming

that it does what it should do. However, more concepts are involved in unit tests that are worth

knowing about, namely, the setup and teardown functionalities.

A setup functionality prepares your code before you start running the tests. It’s a way to keep your

code clean by focusing on invoking the code and checking the assertions. A teardown functionality

is the opposite. It is responsible for tearing down what we initially set up, involving activities such

as cleaning up resources. Let’s see what this looks like in practice with a code example:

describe('Calculator', () => {

 let total: number;

 beforeEach(() => total = 1);

The Jasmine framework contains various matcher functions according to user-spe-

cific needs, as we will see later in the chapter.

Chapter 13 365

 it('should add two numbers', () => {

 total = total + 1;

 expect(total).toBe(2);

 });

 it('should subtract two numbers', () => {

 total = total - 1;

 expect(total).toBe(0);

 });

 afterEach(() => total = 0);

});

The beforeEach method is used for the setup functionality and runs before every unit test. In this

example, we set the value of the total variable to 1 before each test. The afterEach method is

used to run teardown logic. After each test, we reset the value of the total variable to 0.

It is evident that the test only has to care about invoking application code and asserting the out-

come, which makes tests cleaner; however, tests tend to have much more setup in a real-world

application. Most importantly, the beforeEach method tends to make it easier to add new tests,

which is great. We want well-tested code; the easier it is to write and maintain such code, the

better for our software.

Now that we have covered the basics of a unit test, let’s see how we can implement them in the

context of the Angular framework.

Introducing unit tests in Angular
In the previous section, we familiarized ourselves with unit testing and its general concepts, such

as test suites, test specs, and assertions. It is time to venture into unit testing with Angular, armed

with that knowledge. Before we start writing tests for Angular, though, let’s have a look at the

tooling that the Angular framework and the Angular CLI provide us with:

• Jasmine: We have already learned that this is the testing framework.

• Karma: The test runner for running our unit tests.

• Angular testing utilities: A set of helper methods that assist us in setting up our unit tests

and writing our assertions in the context of the Angular framework.

Unit Testing Angular Applications366

Angular testing utilities help us to create a testing environment that makes writing tests for our

Angular artifacts easy. It consists of the TestBed class and various helper methods in the @angular/

core/testing namespace. As this chapter progresses, we will learn what these are and how they

can help us test various artifacts. For now, let’s have a look at the most commonly used concepts

so that you are familiar with them when we look at them in more detail later on:

• TestBed: A class that creates a testing module. We attach an Angular artifact to this testing

module when we test it. The TestBed class contains the configureTestingModule method

we use to set up the test module as needed.

• ComponentFixture: A wrapper class around an Angular component instance. It allows us

to interact with the component and its corresponding HTML element.

• DebugElement: A wrapper around the DOM element of the component. It is an abstraction

that operates cross-platform so that our tests are platform-independent.

Now that we know our testing environment and the frameworks and libraries used, we can start

writing our first unit tests in Angular.

We will embark on this great journey from the most fundamental building block in Angular, the

component.

Testing components
You may have noticed that whenever we used the Angular CLI to scaffold a new Angular appli-

cation or generate an Angular artifact, it created some test files for us.

Test files in the Angular CLI contain the word spec in their filename. The filename of a test is the

same as the Angular artifact it is testing, followed by the suffix .spec.ts. For example, the test

file for the main component of an Angular application is app.component.spec.ts and it resides

in the same path as the component file.

When we use the Angular CLI, we do not have to do anything to configure Jasmine

and Karma in an Angular application. Unit testing works out of the box when we

create a new Angular CLI project. Most of the time, we will interact with the Angular

testing utilities.

All the examples described in this chapter have been created in a new Angular CLI

project.

Chapter 13 367

When we scaffold a new Angular application, the Angular CLI automatically creates a test for the

main component, AppComponent. At the beginning of the file, there is a beforeEach statement

that is used for setup purposes:

beforeEach(async () => {

 await TestBed.configureTestingModule({

 imports: [AppComponent],

 }).compileComponents();

});

It uses the configureTestingModule method of the TestBed class and passes an object as a

parameter.

We can specify an imports array that contains the component we want to test. Additionally, we

can define teardown options using the teardown property.

The teardown property contains an object of the ModuleTeardownOptions type that can set the

following properties:

• destroyAfterEach: It creates a new instance of the module at each test to eliminate bugs

caused by the incomplete cleanup of HTML elements.

• rethrowErrors: It throws any errors that occur when the module is destroyed.

Finally, we call the compileComponents method to compile the TypeScript class and the HTML

template of our component.

The first unit test verifies whether we can create a new instance of AppComponent using the

createComponent method:

it('should create the app', () => {

 const fixture = TestBed.createComponent(AppComponent);

 const app = fixture.componentInstance;

We should consider an Angular artifact and its corresponding test one thing. When

we change the logic of the artifact, we may need to modify the unit test as well.

Placing unit test files with their Angular artifacts makes it easier for us to remember

and edit them. It also helps us when we need to refactor our code, such as moving

artifacts (not forgetting to move the unit test).

Unit Testing Angular Applications368

 expect(app).toBeTruthy();

});

The result of the createComponent method is a ComponentFixture instance of the AppComponent

type that can give us the component instance using the componentInstance property. We also

use the toBeTruthy matcher function to check whether the resulting instance is valid.

As soon as we have access to the component instance, we can query any of its public properties

and methods:

it(`should have the 'my-app' title`, () => {

 const fixture = TestBed.createComponent(AppComponent);

 const app = fixture.componentInstance;

 expect(app.title).toEqual('my-app');

});

In the previous test, we check whether the title component property is set to my-app using

another matcher function, toEqual.

As we have learned, a component consists of a TypeScript class and a template file. So, testing

it only from the class perspective, as in the previous test, is not sufficient. We should also test

whether the class interacts correctly with the DOM:

it('should render title', () => {

 const fixture = TestBed.createComponent(AppComponent);

 fixture.detectChanges();

 const compiled = fixture.nativeElement as HTMLElement;

 expect(compiled.querySelector('h1')?.textContent).toContain('Hello, my-
app');

});

The value of the title component property in a new Angular application will be the

name you passed in the ng new command while creating the application.

Many developers favor class testing over DOM testing and rely on end-to-end (E2E)

testing, which is slower and performs poorly. E2E tests often validate the integration

of an application with a backend API and are easy to break. Thus, performing DOM

unit testing in your Angular applications is recommended.

Chapter 13 369

In the preceding test, we create a component and call the detectChanges method of the

ComponentFixture. The detectChanges method triggers the Angular change detection mech-

anism, forcing the data bindings to be updated. It executes the ngOnInit life cycle event of the

component the first time it is called and the ngOnChanges in subsequent calls so that we can query

the DOM element of the component using the nativeElement property. In this example, we check

the textContent of the HTML element corresponding to the title property.

To run tests, we use the ng test command of the Angular CLI. It will start the Karma test runner,

fetch all unit test files, execute them, and open a browser to display the results of each test. The

Angular CLI uses the Google Chrome browser by default. The output will look like this:

Figure 13.1: Test execution output

In the previous figure, we can see the result of each test at the top of the page. We can also see

how Karma visually groups each test by suite. In our case, the only test suite is AppComponent.

Now, let’s make one of our tests fail. Open the app.component.ts file, change the value of the

title property to my-new-app, and save the file. Karma will re-execute our tests and display the

results on the page:

Figure 13.2: Test failure

Unit Testing Angular Applications370

Sometimes, reading the output of tests in the browser is not very convenient. Alternatively, we

can inspect the console window that we used to run the ng test command, which contains a

trimmed version of the test results:

Executed 3 of 3 SUCCESS (0.117 secs / 0.044 secs)

TOTAL: 3 SUCCESS

We’ve gained quite a lot of insight just by looking at the test of AppComponent that the Angular CLI

automatically created for us. In the following section, we will look at a more advanced scenario

for testing a component with dependencies.

Testing with dependencies
In a real-world scenario, components are not usually as simple as the main component. They

will almost certainly be dependent on one or more services. They will also possibly contain other

child components in their template.

We have different ways of dealing with testing in such situations. One thing is clear: if we are

testing the component, we should not test the service or its child components. So, when we set

up such a test, the dependency should not be the real class. There are different ways of dealing

with that when it comes to unit testing; no solution is strictly better than another:

• Stubbing: A method that instructs the dependency injector to inject a stub of the depen-

dency that we provide instead of the real class.

• Spying: A method that injects the actual dependency but attaches a spy to the method

that we call in our component. We can then either return mock data or let the method

call through.

Karma runs in watch mode, so we do not need to execute the Angular CLI test com-

mand every time we make a change.

Using stubbing over spying is preferable when a dependency is complicated. Some

services inject other services, so using the real dependency in a test requires you to

compensate for other dependencies. It is also the preferred method when the com-

ponent we want to test contains child components in its template.

Chapter 13 371

Regardless of the approach, we ensure that the test does not perform unintended actions, such as

accessing the filesystem or attempting to communicate via HTTP; we are testing the component

in complete isolation.

Replacing the dependency with a stub
Replacing a dependency with a stub means that we completely replace the dependency with a

fake one.

We can create a fake dependency in the following ways:

• Create a constant variable or class that contains properties and methods of the real de-

pendency.

• Create a mock definition of the actual class of the dependency.

The approaches are not so different. In this section, we will look at the first one as it is most com-

mon in Angular development. Feel free to explore the second one at your own pace.

Consider the following stub.component.ts component file:

import { Component, OnInit } from '@angular/core';

import { StubService } from '../stub.service';

@Component({

 selector: 'app-stub',

 template: '{{ msg }}'

})

export class StubComponent implements OnInit {

 msg = '';

 constructor(private stubService: StubService) {}

 ngOnInit(): void {

 this.msg = this.stubService.isBusy

 ? this.stubService.name + ' is on mission'

 : this.stubService.name + ' is available';

 }

}

Unit Testing Angular Applications372

It injects StubService, which contains two public properties. Providing a stub for this service in

tests is pretty straightforward, as shown in the following example:

const serviceStub: Partial<StubService> = {

 name: 'Boothstomper'

};

We have declared the service as Partial because we want only to set the name property initially.

We can now use the object literal syntax to inject the stub service in our testing module:

await TestBed.configureTestingModule({

 imports: [StubComponent],

 providers: [

 { provide: StubService, useValue: serviceStub }

]

})

.compileComponents();

The msg component property relies on the value of the isBusy service property. Therefore, we

need to get a reference to the service in the test suite and provide alternate values for this prop-

erty in each test. We can get the injected instance of StubService using the inject method of

the TestBed class:

describe('status', () => {

 let service: StubService;

 beforeEach(() => {

 service = TestBed.inject(StubService);

 })

});

We pass the real StubService as a parameter to the inject method, not the stubbed

version we created. Modifying the value of the stub will not affect the injected ser-

vice since our component uses an instance of the real service. The inject method

asks the root injector of the application for the requested service. If the service was

provided from the component injector, we would need to get it from the component

injector using fixture.debugElement.injector.get(StubService).

Chapter 13 373

We can now write our tests to check whether the msg component property behaves correctly

during data binding:

describe('status', () => {

 let service: StubService;

 let msgDisplay: HTMLElement;

 beforeEach(() => {

 service = TestBed.inject(StubService);

 msgDisplay = fixture.nativeElement.querySelector('span');

 })

 it('should be on a mission', () => {

 service.isBusy = true;

 fixture.detectChanges();

 expect(msgDisplay.textContent).toContain('is on mission');

 });

 it('should be available', () => {

 service.isBusy = false;

 fixture.detectChanges();

 expect(msgDisplay.textContent).toContain('is available');

 });

});

Stubbing a dependency is not always viable, especially when the root injector does not pro-

vide it. A service can be provided at the component injector level. Providing a stub using the

process we looked at earlier doesn’t have any effect. To tackle such a scenario, we can use the

overrideComponent method of the TestBed class:

await TestBed.configureTestingModule({

 imports: [StubComponent],

 providers: [

 { provide: StubService, useValue: serviceStub }

We have removed the fixture.detectChanges line from the beforeEach statement

because we want to trigger change detection in our tests separately.

Unit Testing Angular Applications374

]

})

.overrideComponent(StubComponent, {

 set: {

 providers: [

 { provide: StubService, useValue: serviceStub }

]

 }

})

.compileComponents();

The overrideComponent method accepts two parameters: the type of component that provides the

service and an override metadata object. The metadata object contains the set property, which

provides services to the component.

Suppose that the component we want to test contains a child component in its template, such as:

@Component({

 selector: 'app-stub',

 template: `

 {{ msg }}

 <app-child></app-child>

 `

})

In the preceding case, when we tested the StubComponent, we also needed to import the TypeScript

class of the <app-child> component when configuring the testing module:

await TestBed.configureTestingModule({

 imports: [StubComponent],

 providers: [

 { provide: StubService, useValue: serviceStub }

],

 imports: [ChildComponent]

})

The ChildComponent class may have other dependencies as well. Providing stubs for those de-

pendencies is not viable because it is not the responsibility of the component under test. Instead,

we can create a stub TypeScript class for the component and import it when configuring the

testing module:

Chapter 13 375

@Component({ selector: 'app-child', template: '' })

class ChildStubComponent {}

In the preceding snippet, we passed an empty array in the template property of the component

because we are not interested in the internal implementation of the child component.

Alternatively, to provide a stub of the component, we can pass the NO_ERRORS_SCHEMA from the

@angular/core npm package while configuring the testing module:

await TestBed.configureTestingModule({

 imports: [StubComponent],

 providers: [

 { provide: StubService, useValue: serviceStub },

],

 schemas: [NO_ERRORS_SCHEMA]

})

The preceding snippet instructs Angular to ignore any components that have not been imported

into the testing module.

Stubbing a dependency is very simple, but it is not always possible, as we will see in the following

section.

Spying on the dependency method
Using a stub is not the only way to isolate logic in a unit test. We don’t have to replace the entire

dependency—only the parts our component uses. Replacing certain parts means we point out

specific methods on the dependency and assign a spy to them. A spy can answer what you want,

but you can also see how many times it was called and with what arguments. So, a spy gives you

much more information about what is happening.

There are two ways to set up a spy in a dependency:

• Inject the actual dependency and spy on its methods.

• Use the Jasmine createSpyObj method to create a fake dependency instance. We can then

spy on the methods of this dependency as we would with the real one.

If the child component contains properties and methods that are used while testing

the parent component, we need to define them as well in the ChildStubComponent.

Unit Testing Angular Applications376

The first case is most common in Angular development. Let’s see how to set it up. Consider the

following spy.component.ts file, which uses the Title service of the Angular framework:

import { Component, OnInit } from '@angular/core';

import { Title } from '@angular/platform-browser';

@Component({

 selector: 'app-spy',

 template: '{{ caption }}'

})

export class SpyComponent implements OnInit {

 caption = '';

 constructor(private title: Title) {}

 ngOnInit(): void {

 this.title.setTitle('My Angular app');

 this.caption = this.title.getTitle();

 }

}

We do not have any control over the Title service since it is built into the framework. It may

have dependencies that we do not know about. Spying on its methods is the easiest and safest

way to use it in our tests. We inject it in the testing module using the providers array and then

use it in our test, such as:

it('should set the title', () => {

 const title = TestBed.inject(Title);

 const spy = spyOn(title, 'setTitle');

 component.ngOnInit();

 expect(spy).toHaveBeenCalledWith('My Angular app');

});

The Title service interacts with the title of the main HTML document in an Angular

application.

Chapter 13 377

We use the Jasmine spyOn method, which accepts two parameters: the object and its specific

method to spy. We used it before calling the ngOnInit component method to attach the spy before

triggering the change detection mechanism. The expect statement validates that the setTitle

method was called with the correct arguments.

Our component also uses the getTitle method to get the document title. We can spy directly on

that method and return mock data:

1. First, we need to define the Title service as a spy object and initialize it by passing two

parameters—the name of the service and an array of the method names that the com-

ponent currently uses:

const titleSpy = jasmine.createSpyObj('Title', [

 'getTitle', 'setTitle'

]);

2. Then we attach a spy to the getTitle method and return a custom title using the Jasmine

returnValue method:

titleSpy.getTitle.and.returnValue('My title');

3. Finally, we add the titleSpy variable in the providers array of the testing module:

await TestBed.configureTestingModule({

 imports: [SpyComponent],

 providers: [

 { provide: Title, useValue: titleSpy }

]

})

.compileComponents();

The resulting test should look like the following:

it('should get the title', async () => {

 const titleSpy = jasmine.createSpyObj('Title', [

 'getTitle', 'setTitle'

]);

 titleSpy.getTitle.and.returnValue('My title');

 await TestBed.configureTestingModule({

 imports: [SpyComponent],

Unit Testing Angular Applications378

 providers: [

 { provide: Title, useValue: titleSpy }

]

 })

 .compileComponents();

 const fixture = TestBed.createComponent(SpyComponent);

 fixture.detectChanges();

 expect(fixture.nativeElement.textContent).toContain('My title');

});

Very few services are well behaved and straightforward, such as the Title service, in the sense

that they are synchronous. Most of the time, they are asynchronous and can return observables

or promises. In the following section, we will learn how to test asynchronous dependencies.

Testing asynchronous services
Angular testing utilities provide two artifacts to tackle asynchronous testing scenarios:

• waitForAsync: An asynchronous approach to unit test services. It is combined with the

whenStable method of the ComponentFixture class.

• fakeAsync: A synchronous approach to unit test services. It is used in combination with

the tick function.

Both approaches provide roughly the same functionality; they only differ in how we use them.

Let’s see how we can use each by looking at an example.

Consider the following async.component.ts file:

import { AsyncPipe } from '@angular/common';

import { Component, OnInit } from '@angular/core';

import { Observable } from 'rxjs';

import { AsyncService } from '../async.service';

@Component({

 selector: 'app-async',

 imports: [AsyncPipe],

 template: `

 @for(item of items$ | async; track item) {

Chapter 13 379

 <p>{{ item }}</p>

 }

 `

})

export class AsyncComponent implements OnInit {

 items$: Observable<string[]> | undefined;

 constructor(private asyncService: AsyncService) {}

 ngOnInit(): void {

 this.items$ = this.asyncService.getItems();

 }

}

It injects the AsyncService from the async.service.ts file and calls its getItems method inside

the ngOnInit method. As we can see, the getItems method returns an observable of strings. It

also introduces a slight delay so that the scenario looks asynchronous:

getItems(): Observable<string[]> {

 return of(items).pipe(delay(500));

}

The unit test queries the native element of the component and checks whether the value of the

items$ observable is displayed correctly:

it('should get data with waitForAsync', waitForAsync(async() => {

 fixture.detectChanges();

 await fixture.whenStable();

 fixture.detectChanges();

 const itemDisplay: HTMLElement[] = fixture.nativeElement.
querySelectorAll('p');

 expect(itemDisplay.length).toBe(2);

}));

We wrap the test body inside the waitForAsync method and call the detectChanges method to

trigger change detection. Furthermore, we call the whenStable method, which returns a prom-

ise that is resolved immediately when the items$ observable is complete. When the promise is

resolved, we call the detectChanges method again to trigger data binding and query the DOM

accordingly.

Unit Testing Angular Applications380

An alternative synchronous approach would be to use the fakeAsync method and write the same

unit test as follows:

it('should get items with fakeAsync', fakeAsync(() => {

 fixture.detectChanges();

 tick(500);

 fixture.detectChanges();

 const itemDisplay: HTMLElement[] = fixture.nativeElement.
querySelectorAll('p');

 expect(itemDisplay.length).toBe(2);

}));

In the previous snippet, we wrapped the test body in a fakeAsync method and replaced the

whenStable method with the tick function. The tick function advances the time by 500 ms,

which is the virtual delay we introduced in the getItems method of the AsyncService.

Testing components with asynchronous services can sometimes become a nightmare. Still, each

of the described approaches can significantly help us in this task. However, components are not

only about services but also input and output bindings. In the following section, we will learn

how to test the public API of a component.

Testing with inputs and outputs
So far, we have learned how to test components with simple properties and tackle synchronous

and asynchronous dependencies. But there is more to a component than that. As we learned in

Chapter 3, Structuring User Interfaces with Components, a component has a public API consisting

of inputs and outputs that should also be tested.

Since we want to test the public API of a component, it makes sense to test how it interacts when

hosted from another component. Testing such a component can be done in two ways:

• We can verify that our input binding is correctly set.

• We can verify that our output binding triggers correctly and that what it emits is received.

The whenStable method is also used when we want to test a component that con-

tains a template-driven form. The asynchronous nature of this method makes it

preferable to use reactive forms in our Angular applications.

Chapter 13 381

Suppose that we have the following bindings.component.ts file with an input and output bind-

ing:

import { Component, input, output } from '@angular/core';

@Component({

 selector: 'app-bindings',

 template: `

 <p>{{ title() }}</p>

 <button (click)="liked.emit()">Like!</button>

 `

})

export class BindingsComponent {

 title = input('');

 liked = output();

}

Before we start writing our tests, we should create a test host component inside the bindings.

component.spec.ts file that is going to use the component under test:

@Component({

 imports: [BindingsComponent],

 template: `

 <app-bindings [title]="testTitle" (liked)="isFavorite = true"></app-
bindings>

 `

})

export class TestHostComponent {

 testTitle = 'My title';

 isFavorite = false;

}

In the setup phase, notice that the ComponentFixture is of the TestHostComponent type:

describe('BindingsComponent', () => {

 let component: TestHostComponent;

 let fixture: ComponentFixture<TestHostComponent>;

 beforeEach(async () => {

Unit Testing Angular Applications382

 await TestBed.configureTestingModule({

 imports: [TestHostComponent]

 })

 .compileComponents();

 fixture = TestBed.createComponent(TestHostComponent);

 component = fixture.componentInstance;

 fixture.detectChanges();

 });

 it('should create', () => {

 expect(component).toBeTruthy();

 });

});

Our unit tests will validate the behavior of BindingsComponent when interacting with

TestHostComponent.

The first test checks whether the input binding to the title property has been applied correctly:

it('should display the title', () => {

 const titleDisplay: HTMLElement = fixture.nativeElement.
querySelector('p');

 expect(titleDisplay.textContent).toEqual(component.testTitle);

});

The second test validates whether the isFavorite property is wired up correctly with the liked

output event:

it('should emit the liked event', () => {

 const button: HTMLButtonElement = fixture.nativeElement.
querySelector('button');

 button.click();

 expect(component.isFavorite).toBeTrue();

});

In the previous test, we query the DOM for the <button> element using the nativeElement proper-

ty of the ComponentFixture class. Then, we click on it for the output event to emit. Alternatively, we

could have used the debugElement property to find the button and use its triggerEventHandler

method to click on it:

Chapter 13 383

it('should emit the liked event using debugElement', () => {

 const buttonDe = fixture.debugElement.query(By.css('button'));

 buttonDe.triggerEventHandler('click');

 expect(component.isFavorite).toBeTrue();

});

In the preceding test, we use the query method, which accepts a predicate function as a param-

eter. The predicate uses the CSS method of the By class to locate an element by its CSS selector.

The triggerEventHandler method accepts the event name we want to trigger as a parameter;

in this case, it is the click event.

We could have avoided a lot of code if we had only tested the BindingsComponent, which would

still have been valid. But we would have missed the opportunity to test it as a real-world scenario.

The public API of a component is intended to be used by other components, so we should test it

in this way.

Currently, the button we use in the template of the BindingsComponent is a native HTML <button>

element. If the button was an Angular Material button component, we could use an alternate

approach for interacting with it, which is the topic of the following section.

Testing with a component harness
The Angular CDK library, the core of Angular Material, contains a set of utilities that allow a test

to interact with a component over a public testing API. Angular CDK testing utilities enable us

to access Angular Material components without relying on their internal implementation using

a component harness.

The process of testing an Angular component using a harness consists of the following parts:

• @angular/cdk/testing: The npm package that contains infrastructure for interacting

with a component harness.

• Testing environment: The environment in which the component harness test will be

loaded. The Angular CDK contains a built-in testing environment for unit testing with

Karma. It also provides a rich set of tools that allow developers to create custom testing

environments.

As we learned in the Introducing unit tests in Angular section, the debugElement is

framework agnostic. If you are sure that your tests will only run in a browser, you

should go with the nativeElement property.

Unit Testing Angular Applications384

• Component harness: A class that gives the developer access to the instance of a compo-

nent in the browser DOM.

To learn how to use component harnesses, we will convert the <button> element of the

BindingsComponent into an Angular Material button:

import { Component, input, output } from '@angular/core';

import { MatButton } from '@angular/material/button';

@Component({

 selector: 'app-bindings',

 imports: [MatButton],

 template: `

 <p>{{ title() }}</p>

 <button mat-button (click)="liked.emit()">Like!</button>

 `

})

To start using a component harness from the Angular CDK, we need to import the following

artifacts from the @angular/cdk/testing namespace:

import { TestbedHarnessEnvironment } from '@angular/cdk/testing/testbed';

import { MatButtonHarness } from '@angular/material/button/testing';

In the preceding snippet, we have added the following classes:

• TestbedHarnessEnvironment: Represents the testing environment for running unit tests

with Karma.

• MatButtonHarness: The component harness for the Angular Material button component.

Almost all components of the Angular Material library have a corresponding component

harness that we can use.

The preceding snippet assumes that you have added the Angular Material library to

the project that you are working on.

If you are a component library author, the Angular CDK provides all the necessary

tools for creating harnesses for your UI components.

Chapter 13 385

After we have finished importing all the necessary artifacts, we can write our test:

it('should emit the liked event using harness', async () => {

 const loader = TestbedHarnessEnvironment.loader(fixture);

 const buttonHarness = await loader.getHarness(MatButtonHarness);

 await buttonHarness.click();

 expect(component.isFavorite).toBeTrue();

});

In the preceding test, the loader method of the testing environment accepts the ComponentFixture

instance of the current component as a parameter and returns a HarnessLoader object. The ab-

straction that an Angular CDK harness provides is based on the concept that it operates on the

component fixture, which is an abstraction layer on top of the actual DOM element.

We surround the body of the test inside an async function because component harnesses are

promise-based. We use the getHarness method of the harness loader to load the specific harness

for the button component. Finally, we call the click method of the button component harness

to trigger the button click event.

The component harness is a powerful Angular CDK tool that ensures we interact with components

abstractly and safely during testing.

We have discussed many ways to test a component with a dependency. Now, it is time to learn

how to test the dependency itself.

Testing services
As we learned in Chapter 5, Managing Complex Tasks with Services, a service can inject other services.

Testing a standalone service is pretty straightforward: we get an instance from the injector and

then start to query its public properties and methods.

We do not need to call the detectChanges method because the Angular CDK com-

ponent harness triggers change detection automatically.

We are only interested in testing the public API of a service, which is the interface that

components and other artifacts use. Private properties and methods do not have any

value when tested because they represent the internal implementation of the service.

Unit Testing Angular Applications386

There are two different types of testing that we can perform in a service:

• Testing synchronous and asynchronous operations, such as a method that returns a simple

array or one that returns an observable

• Testing services with dependencies, such as a method that makes HTTP requests

In the following sections, we will go through each in more detail.

Testing synchronous/asynchronous methods
When we create an Angular service using the Angular CLI, it also creates a corresponding test file.

Consider the following async.service.spec.ts file, which is the test file for the AsyncService

we used earlier:

import { TestBed } from '@angular/core/testing';

import { AsyncService } from './async.service';

describe('AsyncService', () => {

 let service: AsyncService;

 beforeEach(() => {

 TestBed.configureTestingModule({});

 service = TestBed.inject(AsyncService);

 });

 it('should be created', () => {

 expect(service).toBeTruthy();

 });

});

The AsyncService is not dependent on anything. It is also provided with the root injector of the

Angular application, so it passes an empty object to the configureTestingModule method. We

can get an instance of the service we test using the inject method of the TestBed class.

The first test that we can write is pretty straightforward as it calls the setItems method and

inspects its result:

it('should set items', () => {

 const result = service.setItems('Camera');

Chapter 13 387

 expect(result.length).toBe(3);

});

Writing a test for synchronous methods, as in the previous case, is usually relatively easy; how-

ever, things are different when we want to test an asynchronous method such as the following.

This second test is a bit tricky because it involves an observable. We need to subscribe to the

getItems method and inspect the value as soon as the observable is complete:

it('should get items', (done: DoneFn) => {

 service.getItems().subscribe(items => {

 expect(items.length).toBe(2);

 done();

 });

});

The Karma test runner does not know when an observable will complete, so we provide the done

method to signal that the observable has been completed, and we can now assert the expect

statement.

Testing services with dependencies
Testing services with dependencies is similar to testing components with dependencies. Every

method we saw in the Testing components section can be applied similarly; however, we follow a

different approach when testing a service that injects the HttpClient service.

Consider the following deps.service.ts file that uses the HTTP client:

import { HttpClient } from '@angular/common/http';

import { Injectable } from '@angular/core';

@Injectable({

 providedIn: 'root'

})

export class DepsService {

 constructor(private http: HttpClient) { }

 getItems() {

 return this.http.get('http://some.url');

 }

Unit Testing Angular Applications388

 addItem(item: string) {

 return this.http.post('http://some.url', { name: item });

 }

}

Angular testing utilities provide two artifacts for mocking HTTP requests in unit tests: the

provideHttpClientTesting function, which provides an HTTP client for testing, and the

HttpTestingController, which mocks the HttpClient service. We can import both from the @

angular/common/http/testing namespace:

import { TestBed } from '@angular/core/testing';

import { provideHttpClient } from '@angular/common/http';

import { HttpTestingController, provideHttpClientTesting } from '@angular/
common/http/testing';

import { DepsService } from './deps.service';

describe('DepsService', () => {

 let service: DepsService;

 let httpTestingController: HttpTestingController;

 beforeEach(() => {

 TestBed.configureTestingModule({

 providers: [

 provideHttpClient(),

 provideHttpClientTesting()

]

 });

 service = TestBed.inject(DepsService);

 httpTestingController = TestBed.inject(HttpTestingController);

 });

});

Our tests should not make a real HTTP request. They only need to validate that it will be made

with the correct options. The following is the first test that validates the getItems method:

it('should get items', () => {

 service.getItems().subscribe();

Chapter 13 389

 const req = httpTestingController.expectOne('http://some.url');

 expect(req.request.method).toBe('GET');

});

In the preceding test, we create a fake request using the expectOne method of the

HttpTestingController that takes a URL as an argument. The expectOne method creates a

mock request object and asserts that only one request is made to the specific URL. After we have

created our request, we can validate that its method is GET.

We follow a similar approach when testing the addItem method, except that we need to make

sure that the body of the request contains the correct data:

it('should add an item', () => {

 service.addItem('Camera').subscribe();

 const req = httpTestingController.expectOne('http://some.url');

 expect(req.request.method).toBe('POST');

 expect(req.request.body).toEqual({

 name: 'Camera'

 });

});

After each test, we make sure that no unmatched requests are pending using the verify method

inside an afterEach block:

afterEach(() => {

 httpTestingController.verify();

});

In the following section, we continue our journey through the testing world by learning how to

test a pipe.

Testing pipes
As we learned in Chapter 4, Enriching Applications Using Pipes and Directives, a pipe is a TypeScript

class that implements the PipeTransform interface. It exposes a transform method, which is

usually synchronous, which means it is straightforward to test.

Consider the list.pipe.ts file containing a pipe that converts a comma-separated string into

a list:

import { Pipe, PipeTransform } from '@angular/core';

Unit Testing Angular Applications390

@Pipe({

 name: 'list'

})

export class ListPipe implements PipeTransform {

 transform(value: string): string[] {

 return value.split(',');

 }

}

Writing a test is simple. The only thing that we need to do is to instantiate an instance of the

ListPipe class and verify the outcome of the transform method with some mock data:

it('should return an array', () => {

 const pipe = new ListPipe();

 expect(pipe.transform('A,B,C')).toEqual(['A', 'B', 'C']);

});

Angular directives are artifacts that we may not create very often since the built-in collection that

the framework provides is more than enough; however, if we create custom directives, we should

also test them. In the following section, we will learn how to accomplish this.

Testing directives
Directives are usually quite straightforward in their overall shape, being components with no

view attached. The fact that directives usually work with components gives us a good idea of

how to proceed when testing them.

Consider the copyright.directive.ts file that we created in Chapter 5, Enriching Applications

Using Pipes and Directives:

import { Directive, ElementRef } from '@angular/core';

@Directive({

 selector: '[appCopyright]'

Angular testing utilities are not involved when testing a pipe. We create an instance

of the pipe class, and we can start calling the transform method.

Chapter 13 391

})

export class CopyrightDirective {

 constructor(el: ElementRef) {

 const currentYear = new Date().getFullYear();

 const targetEl: HTMLElement = el.nativeElement;

 targetEl.classList.add('copyright');

 targetEl.textContent = `Copyright ©${currentYear} All Rights
Reserved`;

 }

}

A directive is usually used with a component, so it makes sense to unit test it while using it on

a component. Let’s create a test host component and add it to the imports array of the testing

module:

@Component({

 imports: [CopyrightDirective],

 template: ''

})

class TestHostComponent { }

We can now write our tests that check whether the element contains the copyright class

and displays the current year in its textContent property:

describe('CopyrightDirective', () => {

 let container: HTMLElement;

 beforeEach(() => {

 const fixture = TestBed.configureTestingModule({

 imports: [TestHostComponent]

 })

 .createComponent(TestHostComponent);

 container = fixture.nativeElement.querySelector('span');

 });

 it('should have copyright class', () => {

 expect(container.classList).toContain('copyright');

Unit Testing Angular Applications392

 });

 it('should display copyright details', () => {

 expect(container.textContent).toContain(new Date().getFullYear().
toString());

 });

});

This is how simple it can be to test a directive. The key takeaways are that you need a component

to place the directive on and that you implicitly test the directive using the component.

In the following section, we will learn how to test reactive forms.

Testing forms
As we saw in Chapter 10, Collecting User Data with Forms, forms are integral to an Angular ap-

plication. It is rare for an Angular application not to have at least one simple form, such as a

search form. In this chapter, we will focus on reactive forms because they are easier to test than

template-driven forms.

Consider the following search.component.ts file:

import { Component } from '@angular/core';

import { FormGroup, FormControl, Validators, ReactiveFormsModule } from '@
angular/forms';

@Component({

 selector: 'app-search',

 imports: [ReactiveFormsModule],

 template: `

 <form [formGroup]="searchForm" (ngSubmit)="search()">

 <input type="text" formControlName="searchText">

 <button type="submit" [disabled]="searchForm.invalid">Search</
button>

 </form>

 `

})

export class SearchComponent {

 searchForm = new FormGroup({

 searchText: new FormControl('', Validators.required)

Chapter 13 393

 });

 search() {

 if(this.searchForm.valid) {

 console.log('You searched for: ' + this.searchForm.controls.
searchText.value);

 }

 }

}

In the preceding component, we can write our unit tests to verify that:

• The value of the searchText form control can be set correctly

• The Search button is disabled when the form is invalid

• The console.log method is called when the form is valid, and the user clicks the Search

button

To test a reactive form, we first need to import ReactiveFormsModule into the testing module:

await TestBed.configureTestingModule({

 imports: [SearchComponent, ReactiveFormsModule]

})

.compileComponents();

For the first test, we need to assert whether the value propagates to the searchText form control

when we type something into the input control:

it('should set the searchText', () => {

 const input: HTMLInputElement = fixture.nativeElement.
querySelector('input');

 input.value = 'Angular';

 input.dispatchEvent(new CustomEvent('input'));

 expect(component.searchForm.controls.searchText.value).toBe('Angular');

});

In the preceding test, we use the querySelector method of the nativeElement property to find

the <input> HTML element and set its value. But this alone will not be sufficient for the value to

propagate to the form control. The Angular framework will not know whether the value of the

<input> HTML element has changed until we trigger the input DOM event to that element. We

are using the dispatchEvent method to trigger the event, which accepts a single method as a

parameter that points to an instance of the CustomEvent class.

Unit Testing Angular Applications394

Now that we are sure that the searchText form control is wired up correctly, we can use it to

write the remaining tests:

it('should disable search button', () => {

 const button: HTMLButtonElement = fixture.nativeElement.
querySelector('button');

 component.searchForm.controls.searchText.setValue('');

 expect(button.disabled).toBeTrue();

});

it('should log to the console', () => {

 const button: HTMLButtonElement = fixture.nativeElement.
querySelector('button');

 const spy = spyOn(console, 'log');

 component.searchForm.controls.searchText.setValue('Angular');

 fixture.detectChanges();

 button.click();

 expect(spy).toHaveBeenCalledWith('You searched for: Angular');

});

Note that in the second test, we set the value of the searchText form control, and then we call the

detectChanges method for the button to be enabled. Clicking on the button triggers the submit

event of the form, and we can finally assert the expectation of our test.

In cases where a form has many controls, it is not convenient to query them inside our tests. Al-

ternatively, we can create a Page object that takes care of querying HTML elements and spying

on services:

class Page {

 get searchText() { return this.query<HTMLInputElement>('input'); }

 get submitButton() { return this.query<HTMLButtonElement>('button'); }

 private query<T>(selector: string): T {

 return fixture.nativeElement.querySelector(selector);

 }

}

We can then create an instance of the Page object in the beforeEach statement and access its

properties and methods in our tests.

Chapter 13 395

As we have seen, reactive forms are very easy to test since the form model is the single source

of truth. In the following section, we will learn how to test parts of an Angular application that

use the router.

Testing the router
Testing code interacting with the Angular router could easily be a separate chapter. In this section,

we will focus on the following router concepts:

• Routed and routing components

• Guards

• Resolvers

Let’s see first how to test routed and routing components.

Routed and routing components
A routed component is a component that is activated when we navigate to a specific application

route. Consider the following app.routes.ts file:

import { Routes } from '@angular/router';

import { RoutedComponent } from './routed/routed.component';

export const routes: Routes = [

 { path: 'routed', component: RoutedComponent }

];

The RoutedComponent class is defined in the following routed.component.ts file:

import { Component } from '@angular/core';

@Component({

 selector: 'app-routed',

 template: '{{ title }}'

})

export class RoutedComponent {

 title = 'My routed component';

}

The preceding component binds the value of the title component property to a HTML

element. The test we will write will assert if the binding works correctly.

Unit Testing Angular Applications396

Angular router testing is based on the component harness approach we learned about in the

Testing components section. It exposes the RouterTestingHarness class, which contains various

utility methods for working with routed components in tests:

import { RouterTestingHarness } from '@angular/router/testing';

Before we can start testing a routed component, we must register the application routing con-

figuration in the testing module:

beforeEach(async () => {

 await TestBed.configureTestingModule({

 providers: [provideRouter(routes)]

 })

 .compileComponents();

 fixture = TestBed.createComponent(RoutedComponent);

 component = fixture.componentInstance;

 fixture.detectChanges();

});

In the preceding setup process, we provide the application routing configuration as in the app.

config.ts file.

We have already learned that we can query the DOM of the native HTML element from

the ComponentFixture class. When a component is loaded using the router, we use the

routeNativeElement property instead from the RouterTestingHarness class:

it('should display a span element', async () => {

 const harness = await RouterTestingHarness.create();

 await harness.navigateByUrl('/routed');

 expect(harness.routeNativeElement?.querySelector('span')?.textContent).
toBe('My routed component');

});

The preceding test is separated into the following steps:

1. We use the create method of the RouterTestingHarness to create a new routing harness

for our component.

2. We navigate to the registered route path using the navigateByUrl method. According

to the application routing configuration, the /routed URL will activate the component

under test.

Chapter 13 397

3. We use standard query methods of the routeNativeElement property to verify that the

 HTML element displays the correct text.

A routing component is a component that is used to navigate to another component in an Angular

application. It usually involves calling the navigate method of the Router service as follows:

import { Component } from '@angular/core';

import { Router } from '@angular/router';

@Component({

 selector: 'app-routed',

 template: '{{ title }}'

})

export class RoutedComponent {

 title = 'My routed component';

 constructor(private router: Router) {}

 goBack() {

 this.router.navigate(['/']);

 }

}

According to the preceding snippet, our test should verify that the router will navigate to the root

path when we call the goBack method:

it('should navigate to the root path', () => {

 component.goBack();

 expect(TestBed.inject(Router).url).toBe('/');

});

In the preceding test, we use the inject method of the TestBed class to get a reference to the

Router service. We then access the url property to verify that the navigation process was com-

pleted correctly.

In the following section, we will learn how to test router guards.

The RouterTestingHarness class also contains the routeDebugElement prop-

erty, which works cross-platform similarly to the debugElement property of the

ComponentFixture class.

Unit Testing Angular Applications398

Guards
We learned in Chapter 9, Navigating through Applications with Routing, that router guards are plain

functions.

Consider the following guard that checks the authentication status of a user:

import { inject } from '@angular/core';

import { CanActivateFn, Router } from '@angular/router';

import { AuthService } from './auth.service';

export const authGuard: CanActivateFn = () => {

 const authService = inject(AuthService);

 const router = inject(Router);

 if (authService.isLoggedIn) {

 return true;

 }

 return router.parseUrl('/');

};

In the preceding guard, we check the isLoggedIn property of the following AuthService class:

import { Injectable } from '@angular/core';

@Injectable({

 providedIn: 'root'

})

export class AuthService {

 isLoggedIn = false;

}

If the isLoggedIn property is true, the guard also returns true. Otherwise, it executes the parseUrl

method of the Router service to redirect users to the root path.

We decided to keep the AuthService class simple and focus on the logic of the

authentication guard.

Chapter 13 399

The Angular CLI has created the following unit test for the guard:

import { TestBed } from '@angular/core/testing';

import { CanActivateFn } from '@angular/router';

import { authGuard } from './auth.guard';

describe('authGuard', () => {

 const executeGuard: CanActivateFn = (...guardParameters) =>

 TestBed.runInInjectionContext(() => authGuard(...guardParameters));

 beforeEach(() => {

 TestBed.configureTestingModule({});

 });

 it('should be created', () => {

 expect(executeGuard).toBeTruthy();

 });

});

In the preceding snippet, the executeGuard variable encapsulates the creation of the authGuard

function. It uses the runInInjectionContext method of the TestBed class to allow the injection

of required services using the inject method.

To create unit tests that validate the usage of the authentication guard, we must execute the

following steps:

1. Modify the import statement of the @angular/router npm package as follows:

import {

 ActivatedRouteSnapshot,

 CanActivateFn,

 Router,

 RouterStateSnapshot

} from '@angular/router';

2. Add the following import statement:

import { AuthService } from './auth.service';

Unit Testing Angular Applications400

3. Create the following variables that correspond to the injected services:

let authService: AuthService;

let routerSpy: jasmine.SpyObj<Router>;

4. Initialize the preceding variables in the beforeEach statement of the test suite:

beforeEach(() => {

 routerSpy = jasmine.createSpyObj('Router', ['parseUrl']);

 TestBed.configureTestingModule({

 providers: [

 { provide: Router, useValue: routerSpy }

]

 });

 authService = TestBed.inject(AuthService);

});

In the preceding snippet, we use the createSpyObj method to create a spy object for the

Router service and provide it to the testing module. Additionally, we get the instance of

the actual AuthService class using the inject method of the TestBed class because it is

a simple service with no dependencies.

5. The first unit test should assert that the guard execution returns true when the user is

authenticated:

it('should return true', () => {

 authService.isLoggedIn = true;

 expect(executeGuard({} as ActivatedRouteSnapshot, {} as
RouterStateSnapshot)).toBeTrue();

});

6. The second unit test should verify that the guard execution causes a redirection to the

root path:

it('should redirect', () => {

We pass an empty object for the ActivatedRouteSnapshot and

RouterStateSnapshot parameters because they are unnecessary in the

guard.

Chapter 13 401

 authService.isLoggedIn = false;

 executeGuard({} as ActivatedRouteSnapshot, {} as
RouterStateSnapshot);

 expect(routerSpy.parseUrl).toHaveBeenCalledWith('/');

});

In the following section, we will learn how to test guard resolvers.

Resolvers
Router resolvers are plain functions of a specific type similar to guards. The most common scenario

when testing resolvers is to verify that the returned data is correct.

Consider the following resolver, which returns a list of items:

import { ResolveFn } from '@angular/router';

import { AsyncService } from './async.service';

import { inject } from '@angular/core';

export const itemsResolver: ResolveFn<string[]> = () => {

 const asyncService = inject(AsyncService);

 return asyncService.getItems();

};

The Angular CLI will initially create the following unit test file when scaffolding the resolver:

import { TestBed } from '@angular/core/testing';

import { ResolveFn } from '@angular/router';

import { itemsResolver } from './items.resolver';

describe('itemsResolver', () => {

 const executeResolver: ResolveFn<boolean> = (...resolverParameters) =>

 TestBed.runInInjectionContext(() => itemsResolver(...
resolverParameters));

 beforeEach(() => {

The resolver uses the AsyncService we saw earlier, which returns an observable of

items using the getItems method.

Unit Testing Angular Applications402

 TestBed.configureTestingModule({});

 });

 it('should be created', () => {

 expect(executeResolver).toBeTruthy();

 });

});

In the preceding snippet, the executeResolver variable encapsulates the creation of the

itemsResolver function, similar to how it does with guards. It also uses the runInInjectionContext

method of the TestBed class to allow the injection of required services.

The logic of our resolver is very simple, so we must write a single unit test:

1. Modify the import statement of the @angular/router npm package as follows:

import {

 ActivatedRouteSnapshot,

 ResolveFn,

 RouterStateSnapshot

} from '@angular/router';

2. Add the following import statement:

import { Observable } from 'rxjs';

3. Change the type of the executeResolver variable to ResolveFn<string[]> so that it

matches the signature of the itemsResolver function:

const executeResolver: ResolveFn<string[]> = (...resolverParameters)
=>

 TestBed.runInInjectionContext(() => itemsResolver(...
resolverParameters));

4. Write the following unit test:

it('should return items', () => {

 (executeResolver({} as ActivatedRouteSnapshot, {} as
RouterStateSnapshot) as Observable<string[]>).subscribe(items => {

 expect(items).toEqual(['Microphone', 'Keyboard']);

 })

});

Chapter 13 403

To verify that the resolver returns correct data, we must subscribe to the executeResolver

function.

In this section, we learned how to unit test some important features of the Angular router.

Summary
We are at the end of our testing journey, and it’s been a long but exciting one. In this chapter, we

saw the importance of introducing unit testing in our Angular applications, the basic shape of a

unit test, and the process of setting up Jasmine for our tests.

We also learned how to write robust tests for our components, directives, pipes, and services. We

also discussed how to test Angular reactive forms and the router.

This unit testing chapter has almost completed the puzzle of building a complete Angular appli-

cation. Only the last piece remains, which is important because web applications are ultimately

destined for the web. Therefore, in the next chapter, we will learn how to produce a production

build for an Angular application and deploy it to share with the rest of the world!

14
Bringing Applications to
Production

A web application should typically run on the web and be accessible by anyone and from any-

where. It needs two essential ingredients: a web server hosting the application and a production

build to deploy it to that server. In this chapter, we will focus on the second part of the recipe.

In a nutshell, a production build of a web application is an optimized version of the application

code that is smaller, faster, and more performant. Primarily, it is a process that takes all the code

files of the application, applies optimization techniques, and converts them into a single-bundle

file.

In the previous chapters, we went through the many parts involved in building an Angular ap-

plication. We need just one last piece to connect the dots and make our application available for

anyone to use, which is to build it and deploy it to a web server.

In this chapter, we will learn about the following concepts:

• Building an Angular application

• Limiting the application bundle size

• Optimizing the application bundle

• Deploying an Angular application

Bringing Applications to Production406

Technical requirements
The chapter contains various code samples to walk you through the concept of bringing appli-

cations to production.

You can find the related source code in the ch14 folder of the following GitHub repository:

https://www.github.com/PacktPublishing/Learning-Angular-Fifth-Edition

Building an Angular application
To build an Angular application, we use the following command of the Angular CLI:

ng build

The build process boots up the Angular compiler, which primarily collects all TypeScript and

HTML files of our application code and converts them into JavaScript. CSS stylesheet files such as

SCSS are converted into pure CSS files. The build process ensures the fast and optimal rendering

of our application in the browser.

An Angular application contains various TypeScript files not generally used during runtime, such

as unit tests or tooling helpers. The compiler knows which files to collect for the build process by

reading the files property of the tsconfig.app.json file:

{

 "extends": "./tsconfig.json",

 "compilerOptions": {

 "outDir": "./out-tsc/app",

 "types": []

 },

 "files": [

 "src/main.ts"

],

 "include": [

 "src/**/*.d.ts"

]

}

The src/main.ts file is the main entry point of the application and helps Angular to go through

all the components, services, and other Angular artifacts that our application needs.

https://www.github.com/PacktPublishing/Learning-Angular-Fifth-Edition

Chapter 14 407

The output of the ng build command looks like the following:

Initial chunk files | Names | Raw size | Estimated transfer
size

main-N4USDVTP.js | main | 206.91 kB | 55.87
kB

polyfills-SCHOHYNV.js | polyfills | 34.52 kB | 11.29
kB

styles-5INURTSO.css | styles | 0 bytes | 0
bytes

 | Initial total | 241.44 kB | 67.16
kB

This output displays the JavaScript and CSS files generated from building the Angular application,

namely:

• main: The actual application code that we have written

• polyfills: Feature polyfills for older browsers

• styles: Global CSS styles of our application

The Angular compiler outputs the preceding files into a dist\appName\browser folder, where

appName is the application name. It also contains the following files:

• favicon.ico: The icon of the Angular application

• index.html: The main HTML file of the Angular application

The ng build command of the Angular CLI can be run in two modes: development and produc-

tion. By default, it is run in production mode. To run it in development mode, we should run the

following Angular CLI command:

ng build --configuration=development

The preceding command will have an output that looks like the following:

Initial chunk files | Names | Raw size

main.js | main | 1.25 MB |

polyfills.js | polyfills | 90.23 kB |

styles.css | styles | 95 bytes |

 | Initial total | 1.35 MB

Bringing Applications to Production408

In the preceding output, you may notice that the names of the Initial chunk files do not

contain hash numbers, as in the case of a production build. In production mode, the Angular CLI

performs various optimization techniques on the application code, such as image optimization

and Ahead of Time (AOT) compilation, so that the final output is suitable for hosting in a web

server and a production environment. The hash number added to each file ensures that the cache

of a browser will quickly invalidate them upon deploying a newer version of the application.

When we ran the ng build command of the Angular CLI in development mode, we used the

--configuration option. The --configuration option allows us to run an Angular application in

different environments. We will learn how to define Angular environments in the following section.

Building for different environments
An organization may want to build an Angular application for multiple environments that require

different variables, such as a backend API endpoint and application local settings. A common

use case is a staging environment for testing the application before deploying it to production.

The Angular CLI enables us to define different configurations for each environment and build our

application with each one. We can execute the ng build command while passing the configura-

tion name as a parameter using the following syntax:

ng build --configuration=name

We can use the following Angular CLI command to start working with environments:

ng generate environments

This command will create a src\environments folder in the Angular project that contains the

following files:

• environment.ts: The default environment of the application, which is used during pro-

duction

• environment.development.ts: The application environment used during development

We can also pass a configuration in other Angular CLI commands, such as ng serve

and ng test.

Chapter 14 409

It will also add a fileReplacements section in the angular.json configuration file of the Angular

project:

"development": {

 "optimization": false,

 "extractLicenses": false,

 "sourceMap": true,

 "fileReplacements": [

 {

 "replace": "src/environments/environment.ts",

 "with": "src/environments/environment.development.ts"

 }

]

}

In the preceding snippet, the fileReplacements property defines the environment file that will

replace the default one while executing the build command in the development environment.

If we run the ng build --configuration=development command, the Angular CLI will replace

the environment.ts file with the environment.development.ts file in the application bundle.

Each environment file exports an environment object where we can define additional application

properties such as the URL of a backend API:

export const environment = {

 apiUrl: 'https://my-default-url'

};

We need to import the default environment to access an environment property in an Angular

application. For example, to use the apiUrl property in the main application component, we

should do the following:

import { Component } from '@angular/core';

import { RouterOutlet } from '@angular/router';

import { environment } from '../environments/environment';

The same properties of the exported object must be defined in all environment files.

Bringing Applications to Production410

@Component({

 selector: 'app-root',

 imports: [RouterOutlet],

 templateUrl: './app.component.html',

 styleUrl: './app.component.css'

})

export class AppComponent {

 title = 'my-app';

 apiUrl = environment.apiUrl;

}

Not all libraries in an Angular application can be imported as a JavaScript module, as most of the

Angular first-party libraries are. In the following section, we will learn how to import libraries

that need the global window object.

Building for the window object
An Angular application may use a library like jQuery that must be attached to the window object.

Other libraries, such as Bootstrap, have fonts, icons, and CSS files that must be included in the

application bundle.

In all these cases, we need to tell the Angular CLI about their existence so that it can include them

in the final bundle.

The angular.json configuration file contains an options object in the build configuration that

we can use to define such files:

"options": {

 "outputPath": "dist/my-app",

 "index": "src/index.html",

 "browser": "src/main.ts",

 "polyfills": [

 "zone.js"

],

 "tsConfig": "tsconfig.app.json",

 "assets": [

 {

 "glob": "**/*",

 "input": "public"

Chapter 14 411

 }

],

 "styles": [

 "src/styles.css"

],

 "scripts": []

}

The options object contains the following properties that we can use:

• assets: Contains static files from the public folder such as icons, fonts, and translations.

• styles: Contains external CSS stylesheet files. The global CSS stylesheet file of the appli-

cation is included by default.

• scripts: Contains external JavaScript files.

As we add more and more features to an Angular application, the final bundle will grow bigger

at some point. In the following section, we’ll learn how to mitigate such an effect using budgets.

Limiting the application bundle size
As developers, we always want to build impressive applications with cool features for the end

user. As such, we end up adding more and more features to our Angular application – sometimes

according to the specifications and at other times to provide additional value to users. However,

adding new functionality to an Angular application will cause it to grow in size, which may not

be acceptable at some point. To overcome this problem, we can use budgets.

Budgets are thresholds that we can define in the angular.json configuration file, and we can

make sure that the size of our application does not exceed those thresholds. To set budgets, we

can use the budgets property of the production configuration in the build command:

"budgets": [

 {

 "type": "initial",

 "maximumWarning": "500kB",

 "maximumError": "1MB"

 },

 {

 "type": "anyComponentStyle",

 "maximumWarning": "4kB",

Bringing Applications to Production412

 "maximumError": "8kB"

 }

]

The Angular CLI defines the preceding default budgets when creating a new Angular CLI project.

We can define a budget for different types, such as the whole Angular application or some parts

of it. The threshold of a budget can be defined as bytes, kilobytes, megabytes, or a percentage of

it. The Angular CLI displays a warning or throws an error when the size is reached or exceeds the

defined value of the threshold.

To better understand it, let’s describe the previous default example:

• A warning is shown when the size of the Angular application exceeds 500 KB and an error

when it goes over 1 MB.

• A warning is shown when the size of any component style exceeds 4 KB and an error

when it goes over 8.

Budgets are great to use when we want to provide an alert mechanism in case our Angular appli-

cation grows significantly. However, they are just a level of information and precaution. In the

following section, we will learn how to minimize our bundle size.

Optimizing the application bundle
As we learned in the Building an Angular application section, the Angular CLI performs optimization

techniques when we build an Angular application. The optimization process that is performed in

the application code includes modern web techniques and tools, including the following:

• Minification: Converts multiline source files into a single line, removing white space and

comments. It is a process that enables browsers to parse them faster later on.

• Uglification: Renames properties and methods to a non-human-readable form so that

they are difficult to understand and use for malicious purposes.

• Bundling: Concatenates all source files of the application into a single file, called the

bundle.

To see all available options you can define when configuring budgets in an Angular

application, check out the guide on the official documentation website at https://

angular.dev/tools/cli/build/#configuring-size-budgets.

https://angular.dev/tools/cli/build/#configuring-size-budgets
https://angular.dev/tools/cli/build/#configuring-size-budgets

Chapter 14 413

• Tree-shaking: Removes unused files and Angular artifacts, such as components and ser-

vices, resulting in a smaller bundle.

• Font optimization: Inlines external font files in the main HTML file of the application

without blocking render requests. It currently supports Google Fonts and Adobe Fonts

and requires an internet connection to download them.

• Build cache: Caches the previous build state and restores it when we run the same build,

decreasing the time taken to build the application.

If the final bundle of an Angular application remains large after all preceding optimization tech-

niques, we can use an external tool called source-map-explorer to investigate the cause. Perhaps

we have imported a JavaScript library twice or included an unused file. The tool analyzes our ap-

plication bundle and displays all Angular artifacts and libraries we use in a visual representation.

To start using it, do the following:

1. Install the source-map-explorer npm package from the terminal:

npm install source-map-explorer --save-dev

2. Build your Angular application and enable source maps:

ng build --source-map

3. Add the following script in the package.json file:

"scripts": {

 "ng": "ng",

 "start": "ng serve",

 "build": "ng build",

 "watch": "ng build --watch --configuration development",

 "test": "ng test",

 "analyze": "source-map-explorer"

}

4. Run the following command against the main bundle file:

npm run analyze dist/my-app/browser/main*.js

Bringing Applications to Production414

It will open up a visual representation of the application bundle in the browser:

Figure 14.1: Source map explorer output

We can then interact with it and inspect it to understand why our bundle is still too large. Some

causes may be the following:

• A library is included twice in the bundle

• A library that cannot be tree-shaken is included but is not currently used

The last step after we build our Angular application is to deploy it to a web server, as we will learn

in the following section.

Chapter 14 415

Deploying an Angular application
If you already have a web server that you want to use for your Angular application, you can copy

the contents of the output folder to a path in that server. If you want to deploy it in another folder

other than the root, you can change the href attribute of the <base> tag in the main HTML file

in the following ways:

• Passing the --base-href option in the ng build command:

ng build --base-href=/mypath/

• Setting the baseHref property in the build command of the angular.json configuration

file:

"options": {

 "outputPath": "dist/my-app",

 "index": "src/index.html",

 "browser": "src/main.ts",

 "baseHref": "/mypath/",

 "polyfills": [

 "zone.js"

],

 "tsConfig": "tsconfig.app.json",

 "assets": [

 {

 "glob": "**/*",

 "input": "public"

 }

],

 "styles": [

 "src/styles.css"

],

 "scripts": []

}

If you do not want to deploy it to a custom server, you can use the Angular CLI tooling to deploy

it in a supported hosting provider, which you can find at https://angular.dev/tools/cli/

deployment#automatic-deployment-with-the-cli.

https://angular.dev/tools/cli/deployment#automatic-deployment-with-the-cli
https://angular.dev/tools/cli/deployment#automatic-deployment-with-the-cli

Bringing Applications to Production416

Summary
The deployment of an Angular application is the simplest and most crucial part because it finally

makes your awesome application available to the end user. Web applications are all about deliv-

ering experiences to the end user at the end of the day.

In this chapter, we learned how to build an Angular application and make it ready for production.

We also investigated different ways to optimize the final bundle and learned how to deploy an

Angular application into a custom server, manually and automatically, for other hosting providers.

In the next chapter, which is also the final chapter of the book, we will learn how to improve the

performance of an Angular application.

15
Optimizing Application
Performance

As developers and technical professionals, we play a crucial role in building and deploying Angular

applications, ensuring their continued performance and delivering a superior user experience.

Our efforts are instrumental in the success of our applications.

The behavior of a web application and how it performs during runtime are key considerations

for monitoring and optimization. We should monitor and measure application performance in

case our application starts to degrade. One of the most popular metrics for identifying issues in

web applications is Core Web Vitals (CWV).

After determining the causes of degradation, we can apply various optimization techniques. The

Angular framework provides various tools for optimizing Angular applications, including Serv-

er-Side Rendering (SSR), image optimization, and deferred view loading. If we know that the

application will be performance intensive beforehand, using any of the preceding tools is also

highly encouraged early in development.

In this chapter, we will explore the following Angular concepts regarding optimization:

• Introducing Core Web Vitals

• Rendering SSR applications

• Optimizing image loading

• Deferring components

• Prerendering SSG applications

Optimizing Application Performance418

Technical requirements
The chapter contains various code samples to walk you through the concept of optimizing Angu-

lar applications. You can find the related source code in the ch15 folder of the following GitHub

repository:

https://github.com/PacktPublishing/Learning-Angular-Fifth-Edition

Introducing Core Web Vitals
CWV is a set of metrics that helps us measure the performance of a web application. It is part of

Web Vitals, an initiative led by Google that unifies various guides and tools for measuring per-

formance on web pages. Each metric focuses on a specific aspect of user experience, including

the loading, interactivity, and visual stability of a web page:

• Largest Contentful Paint (LCP): This measures the load speed of a web page by calculating

how long it takes for the largest element on the page to render. A fast LCP value indicates

that the page becomes available to the user quickly.

• Interaction to Next Paint (INP): This measures the responsiveness of a web page by cal-

culating how long it takes to respond to user interactions and provide visual feedback. A

low INP value indicates that the page responds to the user quickly.

• Cumulative Layout Shift (CLS): This measures the stability of the UI on a web page by

calculating how often unwanted layout shifts occur. A layout shift usually happens when

HTML elements are moved in the DOM due to dynamic or asynchronous loading. A low

CLS value indicates that the page is visually stable.

Web Vitals contains additional metrics that contribute to the existing CWV set by

measuring a wider or more niche area of UX, such as First Contentful Paint (FCP)

and Time to First Byte (TTFB).

https://github.com/PacktPublishing/Learning-Angular-Fifth-Edition

Chapter 15 419

The value of each CWV metric falls into the following categories:

• GOOD (green)

• NEEDS IMPROVEMENT (orange)

• POOR (red)

We can measure CWV in the following ways:

• In the field: We can use tools like PageSpeed Insights and Chrome User Experience

Report while the web application runs in production.

• Programmatically in JavaScript: We can use standard web APIs or third-party libraries

such as web-vitals.

• In the lab: We can use tools such as Chrome DevTools and Lighthouse while building

the web application during development.

In this chapter, we will learn how to use Chrome DevTools to measure the performance of our

e-shop application:

1. Copy the source code from Chapter 12, Introduction to Angular Material, into a new folder.

2. Run the following command inside the new folder to install package dependencies:

npm install

3. Run the following command to start the Angular application:

ng serve

4. Open Google Chrome and navigate to http://localhost:4200.

You can find out more about CWV categories and their thresholds at https://web.

dev/articles/vitals#core-web-vitals.

https://web.dev/articles/vitals#core-web-vitals
https://web.dev/articles/vitals#core-web-vitals

Optimizing Application Performance420

5. Toggle the developer tools and select the Lighthouse tab. Lighthouse is a tool for mea-

suring various performance aspects of a web page, including CWV. Google Chrome has

an embedded version of Lighthouse that we can use to benchmark our application:

Figure 15.1: Lighthouse tab

On the screen shown in the preceding image, we can generate a Lighthouse performance

report by selecting various options, including the Device and Categories sections. The

Device section allows us to specify the environment in which we want to measure our

application. The Categories section allows us to evaluate different metrics, including

Performance, related to CWV.

6. Select the Desktop option in the Device section, check only the Performance option in

the Categories section, and click the Analyze page load button:

Chapter 15 421

Figure 15.2: Lighthouse report

In the preceding image, we can see the individual score from CWV metrics and the overall

performance score.

In the following sections, we will explore ways to improve the performance score by applying

Angular best practices. We will start with SSR.

The overall performance score is an estimation and may vary depending on the

capabilities of your computer or any installed browser extensions. It is preferable

to run the benchmark in incognito or private mode to simulate an environment

closer to a real-world scenario.

Optimizing Application Performance422

Rendering SSR applications
SSR is a technique in web development that improves application performance and security in

the following ways:

• It improves the loading performance by rendering the application on the server and elim-

inating the initial HTML content delivered to the client. The server delivers the initial

HTML to the client, which can parse and load while it waits for the JavaScript content to

be downloaded.

• It improves Search Engine Optimization (SEO) by making the application discover-

able and indexable by web crawlers. SEO provides meaningful content when shared in

third-party applications such as social media platforms.

• It improves CWV metrics related to loading speed and UI stability, such as LCP, FCP, and

CLS.

• It improves security by adding CSP nonces to Angular applications.

As we saw in Chapter 1, Building Your First Angular Application, when we created a new application

using the Angular CLI, it prompted us to enable SSR:

Do you want to enable Server-Side Rendering (SSR) and Static Site
Generation (SSG/Prerendering)? (y/N)

In our case, we have already created an Angular application using the Angular CLI. To add SSR

in an existing Angular application, run the following command in a terminal window inside the

Angular CLI workspace:

ng add @angular/ssr

The preceding command will ask us the following question:

Would you like to use the Server Routing and App Engine APIs (Developer
Preview) for this server application? (y/N)

Accept the default value, No, by pressing Enter and the Angular CLI will prompt us to install the

@angular/ssr npm package.

A feature in Developer Preview means that it is not ready yet for production but you

can test it in your development environment.

Chapter 15 423

After installation completes, the Angular CLI creates the following files:

• main.server.ts: This is used to bootstrap the application in the server using a specific

configuration.

• app.config.server.ts: This contains the configuration for the application rendered on

the server. It exports a config variable, which contains a merged version of the client and

server application configuration files.

• server.ts: This configures and starts a Node.js Express server that renders the Angular

application on the server. It uses the CommonEngine class from the @angular/ssr package

to start the Angular application.

Additionally, the command will make the following modifications in the Angular CLI workspace:

• It will add the necessary options in the build section of the angular.json file to run the

Angular application in SSR and SSG.

• It will add the necessary entries in the files and types property of the tsconfig.app.

json file so that the TypeScript compiler can identify the files created for the server.

• It will add the necessary scripts and dependencies in the package.json file.

• It will add provideClientHydration in the src\app\app.config.ts file to enable hydra-

tion in the Angular application. Hydration is the process of restoring the server-side-ren-

dered application to the client. We will learn more about hydration later in the chapter.

Now that we have installed Angular SSR in our application, let’s see how to use it:

1. Open the app.config.ts file and modify the import statement of the @angular/common/

http namespace as follows:

import { provideHttpClient, withFetch } from '@angular/common/http';

The withFetch method is used to configure the Angular HTTP client so that it uses the

native fetch API for making requests.

It’s strongly recommended to enable fetch for applications that use SSR for better per-

formance and compatibility.

2. Pass the withFetch method as a parameter in the provideHttpClient method:

provideHttpClient(withFetch())

3. Run the following command to build the Angular application:

ng build

Optimizing Application Performance424

The preceding command generates browser and server bundles inside the dist\my-app

folder and prerenders static routes. We will learn more about prerendering in the Preren-

dering SSG applications section.

4. Run the following command to run the SSR application:

npm run serve:ssr:my-app

The preceding command will start the Express server locally at port 4000 and serve the

SSR application.

5. Open Google Chrome and navigate to http://localhost:4000. You should see the e-shop

application on the web page.

6. Repeat the process we learned in the previous section to run a performance benchmark

using Lighthouse. The overall score and CWV metrics should have been improved dra-

matically:

Figure 15.3: Lighthouse report (SSR)

Chapter 15 425

The performance of our application has been improved by more than 20% just by installing SSR

in our Angular application! As we will learn later in the chapter, we can apply various Angular

techniques to improve performance further more.

Angular SSR is a good fit when we need to fetch data from the server and display it statically on

a website. However, there are cases where SSR is not beneficial, such as when an application is

based on data entry and has a lot of user inputs.

In the following section, we will learn how to override SSR or skip it completely for certain parts

of an Angular application.

Overriding SSR in Angular applications
Hydration is an important feature enabled by default in Angular SSR applications. It improves

the overall performance of the application by handling the creation of the DOM on the client ef-

ficiently. The client can reuse the DOM structure of the server-side-rendered application instead

of creating it from scratch and forcing a UI flicker, which affects CWV metrics such as LCP and

CLS. The hydration process will fail in the following cases:

• When we try to manipulate the DOM through a native browser API such as window or

document either directly or using a third-party library

• When our component templates do not have a valid HTML syntax

We can overcome the preceding problems by applying the following best practices:

• Use Angular APIs to detect the platform on which our application is running before in-

teracting with the DOM

• Skip hydration for specific Angular components

Let’s see how to use both with an example:

1. Run the SSR version of the Angular application, as shown in the previous section.

2. Notice the text that is displayed in the application footer:

- v1�0

The copyright information is not displayed correctly.

3. Open the copyright.directive.ts file and focus on the constructor code:

constructor(el: ElementRef) {

 const currentYear = new Date().getFullYear();

 const targetEl: HTMLElement = el.nativeElement;

Optimizing Application Performance426

 targetEl.classList.add('copyright');

 targetEl.textContent = `Copyright ©${currentYear} All Rights
Reserved`;

}

The preceding code uses the nativeElement property to manipulate the DOM by adding

a CSS class and setting textContent of the HTML element. However, as mentioned, the

code breaks our application because there is no DOM on the server. Let’s fix that!

4. Open the app.component.html file and add the ngSkipHydration attribute on the <mat-

toolbar> element of the <footer> HTML tag:

<footer>

 <mat-toolbar ngSkipHydration>

 <mat-toolbar-row>

 - v{{ settings.version }}

 </mat-toolbar-row>

 </mat-toolbar>

</footer>

In the preceding snippet, the <mat-toolbar> component and its child components will

not be hydrated. This effectively means that Angular will create them from scratch when

the SSR version of the application is ready.

5. Run step 1 again and observe the output in the application footer:

Copyright ©2024 All Rights Reserved - v1�0

An alternate and better approach is to refactor our code so that it executes client code conditionally:

1. Modify the import statements in the copyright.directive.ts file as follows:

ngSkipHydration is an HTML attribute, not an Angular directive. It can only

be used in other Angular components, not native HTML elements. It would

not work if we had added it in the <footer> tag instead.

Skipping hydration should be considered a workaround. We use it tempo-

rarily in cases where hydration cannot be enabled. It is recommended to

refactor your code so your application can benefit from hydration capabilities.

Chapter 15 427

import { isPlatformBrowser } from '@angular/common';

import { Directive, ElementRef, inject, OnInit, PLATFORM_ID } from
'@angular/core';

The PLATFORM_ID is an InjectionToken that indicates the type of platform our application

is currently running on. The isPlatformBrowser function checks if a given platform ID

is the browser.

Add the OnInit interface to the list of implemented interfaces of the CopyrightDirective

class:

export class CopyrightDirective implements OnInit

2. Add the following class properties:

private platform = inject(PLATFORM_ID);

private el = inject(ElementRef);

3. Remove the constructor and add the following ngOnInit method:

ngOnInit(): void {

 if (isPlatformBrowser(this.platform)) {

 const currentYear = new Date().getFullYear();

 const targetEl: HTMLElement = this.el.nativeElement;

 targetEl.classList.add('copyright');

 targetEl.textContent = `Copyright ©${currentYear} All Rights
Reserved ${targetEl.textContent}`;

 }

}

The isPlatformBrowser function accepts the platform ID as a parameter.

4. Build and run the application in server-side mode to verify that the copyright message

is still visible.

To sum up, it is recommended that you use Angular SSR throughout your application and refactor

parts of the application code that must run on the browser. This will allow you to reap all the

benefits of a server-side-rendered application.

 Angular also provides the isPlatformServer function, a counterpart of

the isPlatformBrowser function, which checks if the current platform is

the server.

Optimizing Application Performance428

In the preceding section, we showed that adding SSR to an Angular application dramatically

improves its overall performance score. As we will learn in the following section, we can do even

better by applying optimization techniques to product images.

Optimizing image loading
The product list, which is the landing component of our application, displays an image of each

product on the list. How images are loaded in an Angular application can affect CWV metrics

such as LCP and CLS. Our application currently loads images as received from the Fake Store API.

However, we can use specific Angular artifacts to enforce best practices while loading images.

The Angular framework provides us with the NgOptimizedImage directive, which we can attach

to HTML elements:

1. Open the product-list.component.ts file and import the NgOptimizedImage class from

the @angular/common npm package:

import { AsyncPipe, CurrencyPipe, NgOptimizedImage } from '@angular/
common';

2. Add the NgOptimizedImage class in the imports array of the @Component decorator:

@Component({

 selector: 'app-product-list',

 imports: [

 SortPipe,

 AsyncPipe,

 CurrencyPipe,

 RouterLink,

 MatMiniFabButton,

 MatIcon,

 MatCardModule,

 MatTableModule,

 MatButtonToggle,

 MatButtonToggleGroup,

 NgOptimizedImage

],

 templateUrl: './product-list.component.html',

 styleUrl: './product-list.component.css'

})

Chapter 15 429

3. Open the product-list.component.html file and replace the binding of the src property

with the ngSrc directive:

<mat-card-title-group>

 <mat-card-title>{{ product.title }}</mat-card-title>

 <mat-card-subtitle>{{ product.category }}</mat-card-subtitle>

</mat-card-title-group>

The ngSrc directive is insufficient to prevent layout shifts while loading the image. We

must also set the image size by defining the width, height, or fill attributes. In this

case, we will use the latter because the size of each image is not the same for all products:

4. Open the product-list.component.css file and add the following CSS styles to position

the image at the top right of the container:

img {

 object-fit: contain;

 object-position: right 5px top 0;

}

5. Run the following command to start the application:

ng serve

6. Navigate to http://localhost:4200 and verify that the product list is shown correctly.

The benefits acquired from using the NgOptimizedImage directive are not noticeable in the UI

at once. The directive works in the background and automatically improves the LCP metric of

CWV by:

• Setting fetch priority on the HTML element

• Lazy loading images

• Setting preconnect link tags and preload hints in the case of SSR

• Generating srcset attributes for responsive images

Additionally, it helps developers to follow best practices regarding image loading, such as:

• Setting the size of the image if it is known beforehand

• Loading images through a CDN

• Displaying appropriate warnings in the console window for different metrics

Optimizing Application Performance430

The NgOptimizedImage directive contains many other features we can enable to achieve powerful

performance improvements, such as setting up image loaders, using placeholders, and defining

priority images to load. You can find more information at https://angular.dev/guide/image-

optimization.

We have already learned about various tools for improving application performance. One of the

most performant tools is deferrable views, which we will learn about in the following section.

Deferring components
Introducing the new control flow syntax enabled Angular to integrate new primitives in the frame-

work, improving the ergonomics, DX, and performance of Angular applications. One such primi-

tive is deferrable views, which allow lazily loading an Angular component and its dependencies.

Introducing deferrable views
We have already learned how to use the Angular router for lazy loading a component based on

a specific route. Deferrable views provide a new API that supplements the preceding one. Com-

bining it with lazy-load routing guarantees the development of high-performance and powerful

web applications. Deferrable views allow us to lazy load a component based on an event or the

component state and have the following characteristics:

• They are simple to use and easy to reason about the enclosed code

• We define them in a declarative way

• They minimize the initial application load and final bundle size, improving CWV metrics

such as LCP and TTFB

Each deferrable view is split into a separate chunk, similar to the individual chunk files generated

by lazy-loaded routes. They consist of the following HTML blocks:

• @defer: Indicates the HTML content that will be loaded.

• @placeholder: Indicates the HTML content shown before the @defer block starts loading.

It is particularly useful when the application is loaded over a slow network or when we

want to avoid UI flickering.

• @loading: Indicates the HTML content that will be visible while the @defer block is loading.

• @error: Indicates the HTML content shown if an error occurs while the @defer block is

loading.

We will learn how to use each block in the following section.

https://angular.dev/guide/image-optimization
https://angular.dev/guide/image-optimization

Chapter 15 431

Using deferrable blocks
We will integrate deferrable views in our e-shop application by creating a component that displays

a featured product from the Fake Store API that is not currently in the product list. Let’s start:

1. Run the following command to create the new component:

ng generate component featured

2. Open the products.service.ts file and add the following method, which gets a specific

product with ID 20 from the Fake Store API:

getFeatured(): Observable<Product> {

 return this.http.get<Product>(this.productsUrl + '/20');

}

3. Open the featured.component.ts file and modify the import statements as follows:

import { Component, OnInit } from '@angular/core';

import { CommonModule } from '@angular/common';

import { MatButton } from '@angular/material/button';

import { MatCardModule } from '@angular/material/card';

import { Observable } from 'rxjs';

import { Product } from '../product';

import { ProductsService } from '../products.service';

4. Modify the imports array of the @Component decorator as follows:

@Component({

 selector: 'app-featured',

 imports: [CommonModule, MatButton, MatCardModule],

 templateUrl: './featured.component.html',

 styleUrl: './featured.component.css'

})

5. Modify the FeaturedComponent class as follows:

export class FeaturedComponent implements OnInit {

 product$: Observable<Product> | undefined;

 constructor(private productService: ProductsService) {}

 ngOnInit() {

Optimizing Application Performance432

 this.product$ = this.productService.getFeatured();

 }

}

In the preceding TypeScript class, we have declared the product$ observable and assigned

it to the returned value of the getFeatured method from the ProductsService class.

6. Open the featured.component.html file and replace its contents with the following HTML

code:

@if (product$ | async; as product) {

 <mat-card>

 <mat-card-header>

 <mat-card-title>MEGA DEAL</mat-card-title>

 <mat-card-subtitle>{{ product.title }}</mat-card-subtitle>

 </mat-card-header>

 <mat-card-actions>

 <button mat-flat-button color="primary">Buy now</button>

 </mat-card-actions>

 </mat-card>

}

In the preceding snippet, we use the async pipe to subscribe to the product$ observable

inside the @if block. The HTML content of the block displays product details as an Angular

Material card component.

7. Open the featured.component.css file and add the following CSS styles for the card and

the button components:

mat-card {

 max-width: 350px;

}

button {

 width: 100%;

}

Chapter 15 433

The new Angular component is in place. We must add it to the main component of the application

and use a @defer block to load it:

1. Open the app.component.ts file and add the following import statement:

import { FeaturedComponent } from './featured/featured.component';

2. Add the FeaturedComponent class in the imports array of the @Component decorator:

@Component({

 selector: 'app-root',

 imports: [

 RouterOutlet,

 RouterLink,

 CopyrightDirective,

 AuthComponent,

 MatToolbarRow,

 MatToolbar,

 MatButton,

 MatBadge,

 FeaturedComponent

],

 templateUrl: './app.component.html',

 styleUrl: './app.component.css'

})

3. Open the app.component.html file and add the <app-featured> component inside the

<main> HTML tag:

<main class="main">

 <div class="content">

 <router-outlet />

 </div>

 @defer() {

 <app-featured />

 }

</main>

In the preceding snippet, we use the @defer block to declare the <app-featured> com-

ponent using the self-enclosing tag syntax.

Optimizing Application Performance434

4. Run the ng serve command to start the application and observe the Lazy chunk files

section in the terminal window:

Lazy chunk files | Names | Raw size

chunk-OP24QI45.mjs | featured-component | 2.88 kB |

chunk-4T4L5V7V.mjs | user-routes | 1.19 kB |

The source code of the featured component is split into a chunk file.

5. Navigate to http://localhost:4200 and observe the new component on the right side

of the product list:

Figure 15.4: Featured product

Chapter 15 435

Try to reload the browser, and you will notice a UI flickering while loading the featured product.

We will use the @placeholder block to display an outline image before the featured component

starts loading:

1. Copy the placeholder.png image from the public folder of the GitHub repository de-

scribed in the Technical requirements section to the respective folder of your workspace.

2. Add a @placeholder block following the @defer block as follows:

@defer() {

 <app-featured />

} @placeholder(minimum 1s) {

}

The @placeholder block accepts an optional parameter defining the minimum time the

placeholder will be visible. In this case, we have defined the minimum time as 1 second.

3. Run the application using the ng serve command and verify that the following placeholder

image is visible for 1 second before the actual content is loaded:

Figure 15.5: Placeholder image

Optimizing Application Performance436

An alternate approach would be to use the @loading block and display a loading indicator, such

as a spinner, while the featured component is loading:

1. Open the app.component.ts file and add the following import statement:

import { MatProgressSpinner } from '@angular/material/progress-
spinner';

The MatProgressSpinner class is a spinner component from the Angular Material library.

2. Add the MatProgressSpinner class in the imports array of the @Component decorator:

@Component({

 selector: 'app-root',

 imports: [

 RouterOutlet,

 RouterLink,

 CopyrightDirective,

 AuthComponent,

 MatToolbarRow,

 MatToolbar,

 MatButton,

 MatBadge,

 FeaturedComponent,

 MatProgressSpinner

],

 templateUrl: './app.component.html',

 styleUrl: './app.component.css'

})

3. Add the @loading block in the app.component.html file as follows:

@defer() {

 <app-featured />

} @loading(minimum 1s) {

 <mat-spinner ngSkipHydration></mat-spinner>

}

The @loading block accepts the same optional parameters as the @placeholder block. In

this case, we show the spinner component for 1 second minimum.

Chapter 15 437

4. If we run the application using the ng serve command, we should see a spinner indication

for 1 second while the featured component is loading.

The @error block in deferrable views works similarly to the @placeholder and @loading blocks.

The HTML content inside it will be visible when an error occurs while loading the @defer block

contents:

@defer() {

 <app-featured />

} @placeholder(minimum 1s) {

} @error() {

 An error occurred while loading the featured product

}

As we have seen, the contents of a @defer block start loading immediately when the component

that it belongs to is rendered. However, the deferrable views API provides us with ergonomic tools

to control when the block will be loaded, as we will see in the following section.

Loading patterns in @defer blocks
Using triggers and prefetch mechanisms, we can control how and when a @defer block will load:

• Triggers define when the block’s contents start loading

• Prefetch defines whether Angular will fetch the contents beforehand so that they are

available when needed

We can define a trigger as an optional parameter inside the @defer block using the on keyword

and the name of the trigger:

@defer(on viewport) {

 <app-featured />

} @placeholder(minimum 1s) {

} @error() {

We added the ngSkipHydration attribute because the spinner component

interacts with the browser DOM and cannot be hydrated.

Optimizing Application Performance438

 An error occurred while loading the featured product

}

The Angular framework contains the following built-in triggers:

• viewport: This will trigger the block when the content enters the browser viewport, which

is the part of the browser that is currently visible.

• interaction: This will trigger the block when the user interacts with the content.

• hover: This will trigger the block when users hover over the area covered by the content

with their mouse.

• idle: This will trigger the block when the browser has entered an idle state, which is

the default behavior of deferrable views. The idle state of the browser is triggered by the

native requestIdleCallback API.

• immediate: This will trigger the block when the client renders the page.

• timer: This will trigger the block after a specified duration. The duration is a required

parameter of the timer function:

@defer(on timer(2s)) {

 <app-featured />

}

• The preceding snippet will start loading the featured component after 2 seconds.

You can learn more about the viewport at https://developer.mozilla.

org/docs/Glossary/Viewport.

You can learn more about the idle state at https://developer.mozilla.

org/docs/Web/API/Window/requestIdleCallback.

The difference between not using the block and using it with the immediate

trigger is that we benefit from the code-splitting features of deferrable views

and deliver less JavaScript to the client.

https://developer.mozilla.org/docs/Glossary/Viewport
https://developer.mozilla.org/docs/Glossary/Viewport
https://developer.mozilla.org/docs/Web/API/Window/requestIdleCallback
https://developer.mozilla.org/docs/Web/API/Window/requestIdleCallback

Chapter 15 439

We can achieve better loading granularity by combining triggers:

@defer(on timer(2s); on idle) {

 <app-featured />

}

The preceding snippet will load the featured component when the browser is idle or after 2

seconds.

In addition to the built-in triggers, we can create custom triggers by ourselves using the when

keyword. The when keyword is followed by an expression that evaluates to a boolean:

@defer(when isActive === true) {

 <app-featured />

}

In the preceding snippet, the featured component will be loaded when the isActive component

property is true.

Triggers in deferrable views are powerful and ergonomic tools that can give amazing results in

speed and performance. When combined with prefetching, they can achieve great performance

improvements in Angular applications. Prefetching allows us to specify the condition in which

we can prefetch a deferrable view to be ready when needed. Prefetching supports all built-in

triggers of deferrable views:

@defer(on timer(2s); prefetch on idle) {

 <app-featured />

}

The preceding snippet will prefetch the content when the browser is idle and load it after 2

seconds. It can also define when it will prefetch the content using the when keyword or create

custom triggers.

Triggers and prefetching allow us to create sophisticated and complex scenarios for loading de-

ferrable views. The versatility that the deferrable views API provides makes it a very useful tool

in developing highly sophisticated and performant Angular applications.

Deferrable views should not be used for content that must be rendered immediately.

Optimizing Application Performance440

In the following section, we will conclude our journey to optimizing application performance

with Angular SSG.

Prerendering SSG applications
SSG or build-time prerendering is the process of creating static generated HTML files for an An-

gular application. It happens by default when we build an Angular SSR application using the ng

build Angular CLI command.

The main benefit of an SSG application is that it does not require round-trip times between the

server and client for each request. Instead, every page is served as static content, eliminating the

time it takes to load the application, as measured by the TTFB CWV metric.

In the Rendering SSR applications section, the output of the Angular CLI build command included

the following message:

Prerendered 4 static routes.

Let’s see how SSG works and what the preceding output means:

1. Run the following command to build the Angular application:

ng build

2. The ng build command will create the dist\my-app\browser folder.

3. Navigate to the dist\my-app folder and open the prerendered-routes.json file:

{

 "routes": [

 "/cart",

 "/products",

 "/products/new",

 "/user"

]

}

The preceding folder should not be confused with the browser folder gen-

erated when building a non-SSR Angular application.

Chapter 15 441

It lists the application routes that Angular SSG prerendered. It has also created one folder

and index.html file for each route inside the browser folder.

4. Open the products\index.html file, and you will see that Angular has added all CSS and

HTML files, and it has even rendered the product data as fetched from the Fake Store API.

5. To preview how SSG works, run the ng serve command to start the application and

navigate to http://localhost:4200/products. The product list loads instantly without

waiting for the application to fetch data from the Fake Store API.

SSG is enabled by default in Angular SSR applications and can dramatically improve their load-

ing time and runtime performance. It can be particularly useful for low-end devices with poor

performance.

Summary
In this chapter, we learned different ways to optimize and improve the performance of an An-

gular application. We introduced the concept of CWV and how it can affect a web application.

We explored how to measure and improve CWV metrics using SSR and hydration in Angular

applications. We also investigated different aspects of performance optimizations, such as the

NgOptimizedImage directive and deferrable views. Finally, we saw an overview of SSG in Angular

applications.

Our journey with the Angular framework ends with this chapter. However, the possibilities of

what we can do are endless. The Angular framework is updated with new features in each release,

giving web developers a powerful tool for everyday development. We were delighted to have you

on board, and we hope this book has helped you to broaden your ideas on what you can achieve

with such an excellent tool!

The ng serve command serves the SSG version of our application because it executes

the ng build command under the hood. To disable SSG, open the angular.json

file and set the prerender property to false inside the build section.

Optimizing Application Performance442

Join us on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/LearningAngular5e

https://packt.link/LearningAngular5e

packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as

industry leading tools to help you plan your personal development and advance your career. For

more information, please visit our website.

Why Subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos from

over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of

free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

www.packt.com
www.packt.com

Other Books
You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Effective Angular

Roberto Heckers

ISBN: 978-1-80512-553-2

• Create Nx monorepos ready to handle hundreds of Angular applications

• Reduce complexity in Angular with the standalone API, inject function, control flow, and

Signals

• Effectively manage application state using Signals, RxJS, and NgRx

• Build dynamic components with projection, TemplateRef, and defer blocks

• Perform end-to-end and unit testing in Angular with Cypress and Jest

• Optimize Angular performance, prevent bad practices, and automate deployments

https://www.packtpub.com/en-us/product/effective-angular-9781805123002

Other Books You May Enjoy446

Reactive Patterns with RxJS and Angular Signals

Lamis Chebbi

ISBN: 978-1-83508-770-1

• Get to grips with RxJS core concepts such as Observables, subjects, and operators

• Use the marble diagram in reactive patterns

• Delve into stream manipulation, including transforming and combining them

• Understand memory leak problems using RxJS and best practices to avoid them

• Build reactive patterns using Angular Signals and RxJS

• Explore different testing strategies for RxJS apps

• Discover multicasting in RxJS and how it can resolve complex problems

• Build a complete Angular app reactively using the latest features of RxJS and Angular

https://www.packtpub.com/en-us/product/reactive-patterns-with-rxjs-and-angular-signals-9781835083185

Other Books You May Enjoy 447

Angular for Enterprise Applications, Third Edition

Doguhan Uluca

ISBN: 978-1-80512-712-3

• Best practices for architecting and leading enterprise projects

• Minimalist, value-first approach to delivering web apps

• How standalone components, services, providers, modules, lazy loading, and directives

work in Angular

• Manage your app’s data reactivity using Signals or RxJS

• State management for your Angular apps with NgRx

• Angular ecosystem to build and deliver enterprise applications

• Automated testing and CI/CD to deliver high quality apps

• Authentication and authorization

• Building role-based access control with REST and GraphQL

https://www.packtpub.com/en-us/product/angular-for-enterprise-applications-9781805125037

Share your thoughts
Now you’ve finished Learning Angular, Fifth Edition, we’d love to hear your thoughts! If you pur-

chased the book from Amazon, please click here to go straight to the Amazon review

page for this book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and

apply today. We have worked with thousands of developers and tech professionals, just like you,

to help them share their insight with the global tech community. You can make a general appli-

cation, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

https://packt.link/r/1835087485
https://packt.link/r/1835087485
authors.packtpub.com

Index

Symbols
401 Unauthorized error

responding to 315, 316
@Host decorators

reference link 146
@Self decorators

reference link 146

A
Ahead of Time (AOT) compilation 408
Angular application

bootstrapping 13, 14
building 406-408
building, for different

environments 408-410
building, for window object 410, 411
components 13
deploying 415
structure 12
template syntax 14-16

Angular CDK 321
Angular characteristics

cross-platform 4
onboarding 5
tooling 4, 5
worldwide, usage 5, 6

Angular CLI 1
commands 8, 9
installing 7, 8
new project, creating 9-11
prerequisites 6
workspace, setting up 6

Angular component 13
creating 56
creating, with Angular CLI 58-60
inter-communication 75
structure 56-58

Angular components, inter-communication
data, emitting through custom events 80, 81
data, passing with input binding 75-77
events, listening with output binding 77-80
template reference variables 81, 82

Angular decorator 57
Angular Dependency Injection (DI) 121-123

dependencies 129-132
Angular DevTools 2, 16-20
Angular directive 65
Angular form

reacting, to state changes 304, 305
state, manipulating 303
state, updating 303

Angular framework
online communities 5

Index450

Angular HTTP client 189-191
data, fetching 192-201
data, modifying 202
used, for communicating data

services 188, 189
used, for handling CRUD data 192

Angular HTTP client authentication 214
with backend API 214, 215

Angular HTTP client authorization 214
HTTP requests 218-221
user access 216-218

Angular HTTP client, data modification
new product, adding 203-207
product price, updating 207-210
product, removing 210-213

AngularJS 3
Angular Language Service 22, 23
Angular Material 320, 321

installing 321-324
UI components, adding 324, 325
UI components, integrating 329
UI components, theming 325-329

Angular router 224, 225
base path, specifying 226
components, rendering 228
configuring 227, 228
enabling, in Angular applications 226
main routes, configuring 228-232

Angular service
creating 124, 125
injecting, in constructor 126-128
inject keyword 128, 129

Angular testing utilities 365
any type 43
application bundle

optimizing 412-414
size, limiting 411, 412

application routes
built-in route paths, using 238, 239
navigating, imperatively to 233-237
organizing 232, 233
router links, styling 239, 240

Array.push method 112
Array.slice method 147
array type 42
arrow functions 32, 33
assertion 364
asynchronous information

callback hell, shifting to promises 156-160
handling strategies 156
observables 160-162

asynchronous methods
testing 386

asynchronous services
components, testing 378-380

async pipe
using 174, 175

B
badge component 355
badges

applying 355, 356
boolean type 42
Bootstrap 410
bootstrapping 13
budgets 411
built-in route paths

using 238, 239

C
callback hell 158
callback pattern 156

Index 451

change detection strategy
deciding on 85-89

child routes
used, for reusing components 245-247

Chrome DevTools 419
used, for measuring performance of e-shop

application 419, 420
Chrome User Experience Report 419
class provider syntax 147
class statement

elements 35
component harness 383, 384
component lifecycle 89, 90

child components, accessing 95, 96
initialization, performing 90, 91
input binding changes, detecting 93-95
resources, cleaning up 91-93

components
deferring 430
testing 366-370
testing, with asynchronous

services 378-380
testing, with component harness 383-385
testing, with dependencies 370
testing, with inputs and outputs 380-383

component template
class binding 71, 72
data, displaying conditionally 63-66
data, displaying from component

class 62, 63
data, obtaining from 73, 74
data representation, controlling 63
interacting with 60
iterating, through data 66-69
loading 60, 61
style binding 72

styling 71
switching, through 69-71

computed signals 113, 178-180
working 180, 181

constructor injection pattern 127
Core Web Vitals (CWVs) 417, 418

Cumulative Layout Shift (CLS) 418
Interaction to Next Paint (INP) 418
Largest Contentful Paint (LCP) 418
measuring, ways 419
reference link 419

Create Read Update Delete (CRUD) 191
data handling, in Angular HTTP client 192

CSS classes
global validation with 288-290

CSS styling
encapsulating 82-85

custom types 43, 44
custom validators

building 297-302

D
data

manipulating, with pipes 99
sorting, with pipes 106-109

data services
communicating, with Angular

HTTP client 188, 189
default route 238
deferrable blocks

using 431-437
deferrable views 263, 430
DELETE operation 189
dependencies 122

components, testing 370

Index452

replacing, with stub 371-375
services, testing 387-389

dependency method
spying on 375-378

developer experience (DX) 3
dialog component

configuring 353, 354
confirmation dialog, creating 350-353
data, obtaining from 354, 355
user notifications, displaying 355

directives 99
attribute directives 114
building 113, 114
components 113
dynamic data, displaying 114-118
property binding 118-120
structural directives 113
testing 390-392

E
EditorConfig 24, 25
element injectors 132
ElementRef 116
emit method 80
end-to-end (E2E) testing 368
environment injectors 132
event binding 73

F
Fake Store API 191

reference link 191
fallback route 228
fetch API

reference link 188
filter method 162, 167

First Contentful Paint (FCP) 418
forms, in Angular applications

custom validators, building 297-302
global validation, with CSS 288-290
input, validating 288
testing 392-394
validation, in reactive forms 294-297
validation, in template-driven

forms 290-294
framework errors

demystifying 316-318
function parameters 31, 32

G
generics 50, 51
GET operation 189
Git repository 7
global error handler

creating 312-315

H
HTTP backend API

setting up 191, 192
HttpClientModule 190
HTTP headers 218
HttpParams class 196
HTTP request errors

catching 308-312
hydration 423-425

I
image loading

optimizing 428-430
inject function

reference link 129

Index 453

injector 122
injector hierarchy

objects, transforming in
Angular services 151-153

service implementation, overriding 147-149
services, providing 149-151
used, for overriding providers 147

injector services 133
dependencies, sharing through

components 133-137
provider lookup, restricting 145, 146
root and component injectors 138, 139
sandboxing components, with multiple

instances 139-144
input binding

used, for passing data 75-77
Integrated Development Environment

(IDE) 2
Interaction to Next Paint (INP) 418
interceptors 219
interfaces 48
interpolation 15

J
Jasmine 363-365
JavaScript features 28

arrow functions 32, 33
classes 35, 36
function parameters 31, 32
modules 36, 37
nullish coalescing 34
optional chaining 33, 34
variable declaration 28-30

jQuery 410

K
Karma 365
key logger

implementing 162-165
keyUp event feature 162

L
Largest Contentful Paint (LCP) 418
lazy-loaded route

protecting 262, 263
lazy loading 259
Lighthouse 419
Long Time Support (LTS) 6

M
main routes

configuring 228-232
map method 162-167
map operator 165
matcher function 364
Material Design 320
Material Icon Theme 24
monkey patch 85

N
navigation, with advanced features

enhancing 252
lazy loading 259-262
preventing, away from route 254, 255
route access, controlling 252-254
route data, prefetching 256-259

Node.js 6
npm 7

Index454

nullish coalescing 34
number type 42

O
observables

creating 166
subscribing 169-172
transforming 167-169

observable streams 155
observables, unsubscribing 172

async pipe, using 174, 175
component, destroying 172-174

observer methods
complete 189
error 189
next 189

observer pattern 160
one-way binding 267
onKeyPress method 119
operators 163
optional chaining 33, 34
output binding

used, for listening for events 77-80

P
PageSpeed Insights 419
patterns

loading, in @defer blocks 437-439
pipes 99

building 106
built-in types 100-106
change detection mechanism 112, 113
parameters, passing to 110-112
syntax 100
testing 389

used, for manipulating data 99
used, for sorting data 106-109

POST operation 189
predicate function 383
Progressive Web Applications (PWA) 4
promises 158

rejected parameter 158
resolve parameter 158

property binding 62
provideHttpClient method 190
provide object literal syntax 147
providers

overriding, in injector hierarchy 147
pushState 226
PUT operation 189

Q
query parameters

used, for filtering data 248-250

R
reactive forms 266

building 271
form builder, using 285-287
interacting with 271-275
modifying, dynamically 278-285
nesting form hierarchies, creating 276-278
validation 294-297

reactive programming 155
in Angular 162-165

ReactiveX library 165
rest parameters 31
rich composition 165
route access

controlling 252-254

Index 455

route configuration 14
route data

prefetching 256-259
routed component

testing 395, 396
route parameters 240

components, reusing
with child routes 245-247

input properties, binding to 250, 251
query parameters, used for

filtering data 248-250
snapshot, taking of 247
used, for building detail page 240-245

router
testing 395

router guards
testing 398-400

router links
styling 239, 240

router resolvers
testing 401-403

routing component
testing 397

runtime errors, in Angular application
global error handler, creating 312-315
handling 308
HTTP request errors, catching 308-312
responding, to 401 Unauthorized

error 315, 316
rxjs-interop package 182
RxJS library 155, 165

cooperating with 182-184
observables, creating 166
observables, transforming 167-169

S
schematics 6
Search Engine Optimization (SEO) 422
Separation of Concerns (SoC) 121
Server-Side Rendering (SSR) 3, 10, 422

overriding, in Angular applications 425-427
service-in-a-service 140
services

testing 385, 386
testing, with dependencies 387-389

service scope limiting 138
setup functionality 364
Shadow DOM 82
signal-based components 178
signals 177, 178
Single-Page Applications (SPAs) 225
Single Responsibility Pattern (SRP) 36
slice pipe 100
snackbar component 357

applying 357, 358
sort method 108
spread parameter 30
spying 370
SSG applications

prerendering 440, 441
SSR applications

rendering 422-425
Static Site Generation (SSG) 10
string type 42
stub

dependency, replacing with 371-375
stubbing 370
subscribers 160

Index456

switch statement 69
synchronous methods

testing 387

T
target event 74
target property 62
teardown functionality 364
template-driven forms 266

building 267-270
validation 290-294

template expression 62
template input variable 66
template reference variables 81, 82
template statement 74
ternary operator 34
test spec 363
test suite 363
Time to First Byte (TTFB) 418
transform method

args 107
value 106

tree shaking 130
triggers 439
two-way binding 267
type casting 50
TypeScript 37-39

interfaces 48-50
types 41
working with 39-41

TypeScript language, interfaces
generics 50, 51
utility types 52

TypeScript language, types
any type 43
array type 42
boolean type 42
classes type 45-48
custom types 43, 44
function type 44, 45
number type 42
string type 42

U
UI components, Angular Material

card 341-343
chips 337, 338
data table 344-350
form controls 330
input 330-335
layout 340
navigation 338-340
overlays 350
pop-up dialog 350
select 335-337

unit tests 362, 365
anatomy 363-365
need for 362, 363
test spec 363
test suite 363

utility types 52

V
variable declaration 28-30
viewport 438

reference link 438
views 56
Visual Studio Code (VSCode) 2
VSCode Debugger 20, 21

Index 457

VSCode profiles 22
Angular Language Service 22, 23
EditorConfig 24, 25
Material Icon Theme 24

W
watch mode 370
web forms 265-267
web-vitals 419
wildcard route 228, 238
writable signals 178-180

working 179

Z
Zone.js library 85, 313
zone-less applications 178

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical

books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free

content in your inbox daily.

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below:

https://packt.link/free-ebook/9781835087480

2. Submit your proof of purchase.

3. That’s it! We’ll send your free PDF and other benefits to your email directly.

https://packt.link/free-ebook/9781835087480

	Cover
	Copyright Page
	Contributors
	Forewords
	Table of Contents
	Preface
	Chapter 1: Building Your First Angular Application
	Technical requirements
	What is Angular?
	Why choose Angular?
	Cross-platform
	Tooling
	Onboarding
	The usage of Angular worldwide

	Setting up the Angular CLI workspace
	Prerequisites
	Node.js
	npm
	Git

	Installing the Angular CLI
	CLI commands
	Creating a new project

	The structure of an Angular application
	Components
	Bootstrapping
	Template syntax

	Angular tooling
	Angular DevTools
	VSCode Debugger
	VSCode Profiles
	Angular Language Service
	Material Icon Theme
	EditorConfig

	Summary

	Chapter 2: Introduction to TypeScript
	Technical requirements
	JavaScript essentials
	Variable declaration
	Function parameters
	Arrow functions
	Optional chaining
	Nullish coalescing
	Classes
	Modules

	What is TypeScript?
	Getting started with TypeScript
	Types
	String
	Boolean
	Number
	Array
	any
	Custom types
	Functions
	Classes

	Interfaces
	Generics
	Utility types

	Summary

	Chapter 3: Structuring User Interfaces with Components
	Technical requirements
	Creating our first component
	The structure of an Angular component
	Creating components with the Angular CLI

	Interacting with the template
	Loading the component template
	Displaying data from the component class
	Controlling data representation
	Class binding
	Style binding

	Getting data from the template

	Component inter-communication
	Passing data using an input binding
	Listening for events using an output binding
	Emitting data through custom events

	Local reference variables in templates

	Encapsulating CSS styling
	Deciding on a change detection strategy
	Introducing the component lifecycle
	Performing component initialization
	Cleaning up component resources
	Detecting input binding changes
	Accessing child components

	Summary

	Chapter 4: Enriching Applications Using Pipes and Directives
	Technical requirements
	Manipulating data with pipes
	Building pipes
	Sorting data using pipes
	Passing parameters to pipes
	Change detection with pipes

	Building directives
	Displaying dynamic data
	Property binding and responding to events

	Summary

	Chapter 5: Managing Complex Tasks with Services
	Technical requirements
	Introducing Angular DI
	Creating our first Angular service
	Injecting services in the constructor
	The inject keyword

	Providing dependencies across the application
	Injecting services in the component tree
	Sharing dependencies through components
	Root and component injectors
	Sandboxing components with multiple instances
	Restricting provider lookup

	Overriding providers in the injector hierarchy
	Overriding service implementation
	Providing services conditionally
	Transforming objects in Angular services

	Summary

	Chapter 6: Reactive Patterns in Angular
	Technical requirements
	Strategies for handling asynchronous information
	Shifting from callback hell to promises
	Observables in a nutshell

	Reactive programming in Angular
	The RxJS library
	Creating observables
	Transforming observables

	Subscribing to observables
	Unsubscribing from observables
	Destroying a component
	Using the async pipe

	Summary

	Chapter 7: Tracking Application State with Signals
	Technical requirements
	Understanding signals
	Reading and writing signals
	Computed signals
	Cooperating with RxJS
	Summary

	Chapter 8: Communicating with Data Services over HTTP
	Technical requirements
	Communicating data over HTTP
	Introducing the Angular HTTP client
	Setting up a backend API
	Handling CRUD data in Angular
	Fetching data through HTTP
	Modifying data through HTTP
	Adding new products
	Updating product price
	Removing a product

	Authentication and authorization with HTTP
	Authenticating with a backend API
	Authorizing user access
	Authorizing HTTP requests

	Summary

	Chapter 9: Navigating through Applications with Routing
	Technical requirements
	Introducing the Angular router
	Specifying a base path
	Enabling routing in Angular applications
	Configuring the router
	Rendering components

	Configuring the main routes
	Organizing application routes
	Navigating imperatively to a route
	Using built-in route paths
	Styling router links

	Passing parameters to routes
	Building a detail page using route parameters
	Reusing components using child routes
	Taking a snapshot of route parameters
	Filtering data using query parameters
	Binding input properties to routes

	Enhancing navigation with advanced features
	Controlling route access
	Preventing navigation away from a route
	Prefetching route data
	Lazy-loading parts of the application
	Protecting a lazy-loaded route

	Summary

	Chapter 10: Collecting User Data with Forms
	Technical requirements
	Introducing web forms
	Building template-driven forms
	Building reactive forms
	Interacting with reactive forms
	Creating nesting form hierarchies
	Modifying forms dynamically
	Using a form builder

	Validating input in forms
	Global validation with CSS
	Validation in template-driven forms
	Validation in reactive forms
	Building custom validators

	Manipulating form state
	Updating form state
	Reacting to state changes

	Summary
	Join Us on Discord

	Chapter 11: Handling Application Errors
	Technical requirements
	Handling runtime errors
	Catching HTTP request errors
	Creating a global error handler
	Responding to the 401 Unauthorized error

	Demystifying framework errors
	Summary

	Chapter 12: Introduction to Angular Material
	Technical requirements
	Introducing Material Design
	Introducing Angular Material
	Installing Angular Material
	Adding UI components
	Theming UI components

	Integrating UI components
	Form controls
	Input
	Select
	Chips

	Navigation
	Layout
	Card
	Data table

	Popups and overlays
	Creating a confirmation dialog
	Configuring dialogs
	Getting data from dialogs
	Displaying user notifications

	Summary

	Chapter 13: Unit Testing Angular Applications
	Technical requirements
	Why do we need unit tests?
	The anatomy of a unit test
	Introducing unit tests in Angular
	Testing components
	Testing with dependencies
	Replacing the dependency with a stub
	Spying on the dependency method
	Testing asynchronous services

	Testing with inputs and outputs
	Testing with a component harness

	Testing services
	Testing synchronous/asynchronous methods
	Testing services with dependencies

	Testing pipes
	Testing directives
	Testing forms
	Testing the router
	Routed and routing components
	Guards
	Resolvers

	Summary

	Chapter 14: Bringing Applications to Production
	Technical requirements
	Building an Angular application
	Building for different environments
	Building for the window object

	Limiting the application bundle size
	Optimizing the application bundle
	Deploying an Angular application
	Summary

	Chapter 15: Optimizing Application Performance
	Technical requirements
	Introducing Core Web Vitals
	Rendering SSR applications
	Overriding SSR in Angular applications

	Optimizing image loading
	Deferring components
	Introducing deferrable views
	Using deferrable blocks
	Loading patterns in @defer blocks

	Prerendering SSG applications
	Summary

	Packt Page
	Other Books You May Enjoy
	Index

