
 Alex Banks &
Eve Porcello

Learning

 React
Modern Patterns for Developing React Apps

Second

Edition

Alex Banks and Eve Porcello

Learning React
Modern Patterns for Developing React Apps

SECOND EDITION

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-05172-5

[LSI]

Learning React
by Alex Banks and Eve Porcello

Copyright © 2020 Alex Banks and Eve Porcello. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Jennifer Pollock
Development Editor: Angela Rufino
Production Editor: Kristen Brown
Copyeditor: Holly Bauer Forsyth
Proofreader: Abby Wheeler

Indexer: Judith McConville
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

May 2017: First Edition
June 2020: Second Edition

Revision History for the Second Edition
2020-06-12: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492051725 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Learning React, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

Table of Contents

Preface. ix

1. Welcome to React. 1
A Strong Foundation 2
React’s Past and Future 2

Learning React: Second Edition Changes 3
Working with the Files 4

File Repository 4
React Developer Tools 4
Installing Node.js 5

2. JavaScript for React. 7
Declaring Variables 8

The const Keyword 8
The let Keyword 9
Template Strings 11

Creating Functions 12
Function Declarations 12
Function Expressions 12
Default Parameters 14
Arrow Functions 14

Compiling JavaScript 17
Objects and Arrays 18

Destructuring Objects 18
Destructuring Arrays 20
Object Literal Enhancement 20

iii

The Spread Operator 21
Asynchronous JavaScript 23

Simple Promises with Fetch 24
Async/Await 25
Building Promises 26

Classes 27
ES6 Modules 28

CommonJS 30

3. Functional Programming with JavaScript. 31
What It Means to Be Functional 32
Imperative Versus Declarative 33
Functional Concepts 36

Immutability 36
Pure Functions 38
Data Transformations 40
Higher-Order Functions 47
Recursion 48
Composition 51
Putting It All Together 52

4. How React Works. 57
Page Setup 57
React Elements 58
ReactDOM 61

Children 61
React Components 65

React Components: A Historical Tour 69

5. React with JSX. 71
React Elements as JSX 71

JSX Tips 72
Mapping Arrays with JSX 73

Babel 73
Recipes as JSX 75
React Fragments 82
Intro to webpack 84

Creating the Project 85
Loading the Bundle 94
Source Mapping 94
Create React App 95

iv | Table of Contents

6. React State Management. 97
Building a Star Rating Component 98
The useState Hook 99
Refactoring for Advanced Reusability 104
State in Component Trees 106

Sending State Down a Component Tree 106
Sending Interactions Back up a Component Tree 109

Building Forms 113
Using Refs 114
Controlled Components 115
Creating Custom Hooks 117
Adding Colors to State 119

React Context 120
Placing Colors in Context 122
Retrieving Colors with useContext 123
Stateful Context Providers 125
Custom Hooks with Context 126

7. Enhancing Components with Hooks. 129
Introducing useEffect 129

The Dependency Array 132
Deep Checking Dependencies 136
When to useLayoutEffect 141
Rules to Follow with Hooks 143
Improving Code with useReducer 146
useReducer to Handle Complex State 148
Improving Component Performance 150
shouldComponentUpdate and PureComponent 153
When to Refactor 154

8. Incorporating Data. 155
Requesting Data 155

Sending Data with a Request 157
Uploading Files with fetch 157
Authorized Requests 158
Saving Data Locally 159
Handling Promise States 162

Render Props 165
Virtualized Lists 167

Creating a Fetch Hook 172

Table of Contents | v

Creating a Fetch Component 174
Handling Multiple Requests 176
Memozing Values 177
Waterfall Requests 181
Throttling the Network Speed 184
Parallel Requests 185
Waiting for Values 187
Canceling Requests 188

Introducing GraphQL 191
GitHub GraphQL API 191
Making a GraphQL Request 193

9. Suspense. 199
Error Boundaries 201
Code Splitting 205

Introducing: The Suspense Component 207
Using Suspense with Data 208
Throwing Promises 212
Building Suspenseful Data Sources 216
Fiber 220

10. React Testing. 223
ESLint 223

ESLint Plug-Ins 227
Prettier 229

Configuring Prettier by Project 229
Prettier in VSCode 230

Typechecking for React Applications 231
PropTypes 231
Flow 235
TypeScript 238

Test-Driven Development 241
TDD and Learning 241

Incorporating Jest 242
Create React App and Testing 242

Testing React Components 246
Queries 249
Testing Events 250
Using Code Coverage 252

vi | Table of Contents

11. React Router. 255
Incorporating the Router 256
Router Properties 259

Nesting Routes 261
Using Redirects 264

Routing Parameters 265

12. React and the Server. 271
Isomorphic Versus Universal 271

Client and Server Domains 272
Server Rendering React 274
Server Rendering with Next.js 280
Gatsby 285
React in the Future 287

Index. 289

Table of Contents | vii

Preface

This book is for developers who want to learn the React library while learning the
latest techniques currently emerging in the JavaScript language. This is an exciting
time to be a JavaScript developer. The ecosystem is exploding with new tools, syntax,
and best practices that promise to solve many of our development problems. Our aim
with this book is to organize these techniques so you can get to work with React right
away. We’ll get into state management, React Router, testing, and server rendering, so
we promise not to introduce only the basics and then throw you to the wolves.

This book does not assume any knowledge of React at all. We’ll introduce all of
React’s basics from scratch. Similarly, we won’t assume that you’ve worked with the
latest JavaScript syntax. This will be introduced in Chapter 2 as a foundation for the
rest of the chapters.

You’ll be better prepared for the contents of the book if you’re comfortable with
HTML, CSS, and JavaScript. It’s almost always best to be comfortable with these big
three before diving into a JavaScript library.

Along the way, check out the GitHub repository. All of the examples are there and
will allow you to practice hands-on.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

ix

Constant width bold

Shows commands or other text that should be typed literally by the user.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/moonhighway/learning-react.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require per‐
mission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Learning React by Alex
Banks and Eve Porcello (O’Reilly). Copyright 2020 Alex Banks and Eve Porcello,
978-1-492-05172-5.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

x | Preface

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/learningReact_2e.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Our journey with React wouldn’t have started without some good old-fashioned luck.
We used YUI when we created the training materials for the full-stack JavaScript pro‐
gram we taught internally at Yahoo. Then in August 2014, development on YUI
ended. We had to change all our course files, but to what? What were we supposed to
use on the front-end now? The answer: React. We didn’t fall in love with React imme‐

Preface | xi

diately; it took us a couple hours to get hooked. It looked like React could potentially
change everything. We got in early and got really lucky.

We appreciate the help of Angela Rufino and Jennifer Pollock for all the support in
developing this second edition. We also want to acknowledge Ally MacDonald for all
her editing help in the first edition. We’re grateful to our tech reviewers, Scott Iwako,
Adam Rackis, Brian Sletten, Max Firtman, and Chetan Karande.

There’s also no way this book could have existed without Sharon Adams and Marilyn
Messineo. They conspired to purchase Alex’s first computer, a Tandy TRS 80 Color
Computer. It also wouldn’t have made it to book form without the love, support, and
encouragement of Jim and Lorri Porcello and Mike and Sharon Adams.

We’d also like to acknowledge Coffee Connexion in Tahoe City, California, for giving
us the coffee we needed to finish this book, and its owner, Robin, who gave us the
timeless advice: “A book on programming? Sounds boring!”

xii | Preface

CHAPTER 1

Welcome to React

What makes a JavaScript library good? Is it the number of stars on GitHub? The
number of downloads on npm? Is the number of tweets that ThoughtLeaders™ write
about it on a daily basis important? How do we pick the best tool to use to build the
best thing? How do we know it’s worth our time? How do we know it’s good?

When React was first released, there was a lot of conversation around whether it was
good, and there were many skeptics. It was new, and the new can often be upsetting.

To respond to these critiques, Pete Hunt from the React team wrote an article called
“Why React?” that recommended that you “give it [React] five minutes.” He wanted to
encourage people to work with React first before thinking that the team’s approach
was too wild.

Yes, React is a small library that doesn’t come with everything you might need out of
the box to build your application. Give it five minutes.

Yes, in React, you write code that looks like HTML right in your JavaScript code. And
yes, those tags require preprocessing to run in a browser. And you’ll probably need a
build tool like webpack for that. Give it five minutes.

As React approaches a decade of use, a lot of teams decided that it’s good because they
gave it five minutes. We’re talking Uber, Twitter, Airbnb, and Twitter—huge compa‐
nies that tried React and realized that it could help teams build better products faster.
At the end of the day, isn’t that what we’re all here for? Not for the tweets. Not for the
stars. Not for the downloads. We’re here to build cool stuff with tools that we like to
use. We’re here for the glory of shipping stuff that we’re proud to say we built. If you
like doing those types of things, you’ll probably like working with React.

1

A Strong Foundation
Whether you’re brand new to React or looking to this text to learn some of the latest
features, we want this book to serve as a strong foundation for all your future work
with the library. The goal of this book is to avoid confusion in the learning process by
putting things in a sequence: a learning roadmap.

Before digging into React, it’s important to know JavaScript. Not all of JavaScript, not
every pattern, but having a comfort with arrays, objects, and functions before jump‐
ing into this book will be useful.

In the next chapter, we’ll look at newer JavaScript syntax to get you acquainted with
the latest JavaScript features, especially those that are frequently used with React.
Then we’ll give an introduction to functional JavaScript so you can understand the
paradigm that gave birth to React. A nice side effect of working with React is that it
can make you a stronger JavaScript developer by promoting patterns that are
readable, reusable, and testable. Sort of like a gentle, helpful brainwashing.

From there, we’ll cover foundational React knowledge to understand how to build
out a user interface with components. Then we’ll learn to compose these components
and add logic with props and state. We’ll cover React Hooks, which allow us to reuse
stateful logic between components.

Once the basics are in place, we’ll build a new application that allows users to add,
edit, and delete colors. We’ll learn how Hooks and Suspense can help us with data
fetching. Throughout the construction of that app, we’ll introduce a variety of tools
from the broader React ecosystem that are used to handle common concerns like
routing, testing, and server-side rendering.

We hope to get you up to speed with the React ecosystem faster by approaching it this
way—not just to scratch the surface, but to equip you with the tools and skills neces‐
sary to build real-world React applications.

React’s Past and Future
React was first created by Jordan Walke, a software engineer at Facebook. It was
incorporated into Facebook’s newsfeed in 2011 and later on Instagram when it was
acquired by Facebook in 2012. At JSConf 2013, React was made open source, and it
joined the crowded category of UI libraries like jQuery, Angular, Dojo, Meteor, and
others. At that time, React was described as “the V in MVC.” In other words,
React components acted as the view layer or the user interface for your JavaScript
applications.

From there, community adoption started to spread. In January 2015, Netflix
announced that they were using React to power their UI development. Later that

2 | Chapter 1: Welcome to React

month, React Native, a library for building mobile applications using React, was
released. Facebook also released ReactVR, another tool that brought React to a
broader range of rendering targets. In 2015 and 2016, a huge number of popular tools
like React Router, Redux, and Mobx came on the scene to handle tasks like routing
and state management. After all, React was billed as a library: concerned with imple‐
menting a specific set of features, not providing a tool for every use case.

Another huge event on the timeline was the release of React Fiber in 2017. Fiber was
a rewrite of React’s rendering algorithm that was sort of magical in its execution. It
was a full rewrite of React’s internals that changed barely anything about the public
API. It was a way of making React more modern and performant without affecting its
users.

More recently in 2019, we saw the release of Hooks, a new way of adding and sharing
stateful logic across components. We also saw the release of Suspense, a way to opti‐
mize asynchronous rendering with React.

In the future, we’ll inevitably see more change, but one of the reasons for React’s suc‐
cess is the strong team that has worked on the project over the years. The team is
ambitious yet cautious, pushing forward-thinking optimizations while constantly
considering the impact any changes to the library will send cascading through the
community.

As changes are made to React and related tools, sometimes there are breaking
changes. In fact, future versions of these tools may break some of the example code in
this book. You can still follow along with the code samples. We’ll provide exact ver‐
sion information in the package.json file so that you can install these packages at the
correct version.

Beyond this book, you can stay on top of changes by following along with the official
React blog. When new versions of React are released, the core team will write a
detailed blog post and changelog about what’s new. The blog has also been translated
into an ever-expanding list of languages, so if English isn’t your native language, you
can find localized versions of the docs on the languages page of the docs site.

Learning React: Second Edition Changes
This is the second edition of Learning React. We felt it was important to update the
book because React has evolved quite a bit over the past few years. We intend to focus
on all the current best practices that are advocated by the React team, but we’ll also
share information about deprecated React features. There’s a lot of React code that
was written years ago using old styles that still works well and must be maintained. In
all cases, we’ll make mention of these features in a sidebar in case you find yourself
working with legacy React applications.

React’s Past and Future | 3

Working with the Files
In this section, we’ll discuss how to work with the files for this book and how to
install some useful React tools.

File Repository
The GitHub repository associated with this book provides all the code files organized
by chapter.

React Developer Tools
We’d highly recommend installing React Developer Tools to support your work on
React projects. These tools are available as a browser extension for Chrome and Fire‐
fox and as a standalone app for use with Safari, IE, and React Native. Once you install
the dev tools, you’ll be able to inspect the React component tree, view props and state
details, and even view which sites are currently using React in production. These are
really useful when debugging and when learning about how React is used in other
projects.

To install, head over to the GitHub repository. There, you’ll find links to the Chrome
and Firefox extensions.

Once installed, you’ll be able to see which sites are using React. Anytime the React
icon is illuminated in the browser toolbar as shown in Figure 1-1, you’ll know that
the site has React on the page.

Figure 1-1. Viewing the React Developer Tools in Chrome

Then, when you open the developer tools, there will be a new tab visible called React,
as shown in Figure 1-2. Clicking on that will show all the components that make up
the page you’re currently viewing.

4 | Chapter 1: Welcome to React

Figure 1-2. Inspecting the DOM with the React Developer Tools

Installing Node.js
Node.js is a JavaScript runtime environment used to build full-stack applications.
Node is open source and can be installed on Windows, macOS, Linux, and other plat‐
forms. We’ll be using Node in Chapter 12 when we build an Express server.

You need to have Node installed, but you do not need to be a Node expert in order to
use React. If you’re not sure if Node.js is installed on your machine, you can open a
Terminal or Command Prompt window and type:

node -v

When you run this command, you should see a node version number returned to
you, ideally 8.6.2 or higher. If you type the command and see an error message that
says “Command not found,” Node.js is not installed. This is easily fixed by installing
Node.js from the Node.js website. Just go through the installer’s automated steps, and
when you type in the node -v command again, you’ll see the version number.

npm
When you installed Node.js, you also installed npm, the Node package manager. In
the JavaScript community, engineers share open source code projects to avoid having
to rewrite frameworks, libraries, or helper functions on their own. React itself is an
example of a useful npm library. We’ll use npm to install a variety of packages
throughout this book.

Most JavaScript projects you encounter today will contain an assorted collection of
files plus a package.json file. This file describes the project and all its dependencies. If
you run npm install in the folder that contains the package.json file, npm will install
all the packages listed in the project.

If you’re starting your own project from scratch and want to include dependencies,
simply run the command:

npm init -y

Working with the Files | 5

This will initialize the project and create a package.json file. From there, you can
install your own dependencies with npm. To install a package with npm, you’ll run:

npm install package-name

To remove a package with npm, you’ll run:

npm remove package-name

Yarn
An alternative to npm is Yarn. It was released in 2016 by Facebook in collaboration
with Exponent, Google, and Tilde. The project helps Facebook and other companies
manage their dependencies reliably. If you’re familiar with the npm workflow, getting
up to speed with Yarn is fairly simple. First, install Yarn globally with npm:

npm install -g yarn

Then, you’re ready to install packages. When installing dependencies from pack‐
age.json, in place of npm install, you can run yarn.

To install a specific package with yarn, run:

yarn add package-name

To remove a dependency, the command is familiar, too:

yarn remove package-name

Yarn is used in production by Facebook and is included in projects like React, React
Native, and Create React App. If you ever find a project that contains a yarn.lock file,
the project uses yarn. Similar to the npm install command, you can install all the
dependencies of the project by typing yarn.

Now that you have your environment set up for React development, you’re ready to
start walking the path of learning React. In Chapter 2, we’ll get up to speed with the
latest JavaScript syntax that’s most commonly found in React code.

6 | Chapter 1: Welcome to React

CHAPTER 2

JavaScript for React

Since its release in 1995, JavaScript has gone through many changes. At first, we used
JavaScript to add interactive elements to web pages: button clicks, hover states, form
validation, etc.. Later, JavaScript got more robust with DHTML and AJAX. Today,
with Node.js, JavaScript has become a real software language that’s used to build full-
stack applications. JavaScript is everywhere.

JavaScript’s evolution has been guided by a group of individuals from companies that
use JavaScript, browser vendors, and community leaders. The committee in charge of
shepherding the changes to JavaScript over the years is the European Computer Man‐
ufacturers Association (ECMA). Changes to the language are community-driven,
originating from proposals written by community members. Anyone can submit a
proposal to the ECMA committee. The responsibility of the ECMA committee is to
manage and prioritize these proposals to decide what’s included in each spec.

The first release of ECMAScript was in 1997, ECMAScript1. This was followed in
1998 by ECMAScript2. ECMAScript3 came out in 1999, adding regular expressions,
string handling, and more. The process of agreeing on an ECMAScript4 became a
chaotic, political mess that proved to be impossible. It was never released. In 2009,
ECMAScript5(ES5) was released, bringing features like new array methods, object
properties, and library support for JSON.

Since then, there has been a lot more momentum in this space. After ES6 or ES2015
was released in, yes, 2015, there have been yearly releases of new JS features. Any‐
thing that’s part of the stage proposals is typically called ESNext, which is a simplified
way of saying this is the next stuff that will be part of the JavaScript spec.

Proposals are taken through clearly defined stages, from stage 0, which represents the
newest proposals, up through stage 4, which represents the finished proposals. When
a proposal gains traction, it’s up to the browser vendors like Chrome and Firefox to

7

implement the features. Consider the const keyword. When creating variables, we
used to use var in all cases. The ECMA committee decided there should be a const
keyword to declare constants (more on that later in the chapter). When const was
first introduced, you couldn’t just write const in JavaScript code and expect it to run
in a browser. Now you can because browser vendors have changed the browser to
support it.

Many of the features we’ll discuss in this chapter are already supported by the newest
browsers, but we’ll also be covering how to compile your JavaScript code. This is the
process of transforming new syntax that the browser doesn’t recognize into older syn‐
tax that the browser understands. The kangax compatibility table is a great place to
stay informed about the latest JavaScript features and their varying degrees of support
by browsers.

In this chapter, we’ll show you all the JavaScript syntax we’ll be using throughout the
book. We hope to provide a good baseline of JavaScript syntax knowledge that will
carry you through all of your work with React. If you haven’t made the switch to the
latest syntax yet, now would be a good time to get started. If you’re already comforta‐
ble with the latest language features, skip to the next chapter.

Declaring Variables
Prior to ES2015, the only way to declare a variable was with the var keyword. We
now have a few different options that provide improved functionality.

The const Keyword
A constant is a variable that cannot be overwritten. Once declared, you cannot
change its value. A lot of the variables that we create in JavaScript should not be over‐
written, so we’ll be using const a lot. Like other languages had done before it, Java‐
Script introduced constants with ES6.

Before constants, all we had were variables, and variables could be overwritten:

var pizza = true;
pizza = false;
console.log(pizza); // false

We cannot reset the value of a constant variable, and it will generate a console error
(as shown in Figure 2-1) if we try to overwrite the value:

const pizza = true;
pizza = false;

Figure 2-1. An attempt at overwriting a constant

8 | Chapter 2: JavaScript for React

The let Keyword
JavaScript now has lexical variable scope. In JavaScript, we create code blocks with
curly braces ({}). In functions, these curly braces block off the scope of any variable
declared with var. On the other hand, consider if/else statements. If you’re coming
from other languages, you might assume that these blocks would also block variable
scope. This was not the case until let came along.

If a variable is created inside of an if/else block, that variable is not scoped to the
block:

var topic = "JavaScript";

if (topic) {
 var topic = "React";
 console.log("block", topic); // block React
}

console.log("global", topic); // global React

The topic variable inside the if block resets the value of topic outside of the block.

With the let keyword, we can scope a variable to any code block. Using let protects
the value of the global variable:

var topic = "JavaScript";

if (topic) {
 let topic = "React";
 console.log("block", topic); // React
}

console.log("global", topic); // JavaScript

The value of topic is not reset outside of the block.

Another area where curly braces don’t block off a variable’s scope is in for loops:

var div,
 container = document.getElementById("container");

for (var i = 0; i < 5; i++) {
 div = document.createElement("div");
 div.onclick = function() {
 alert("This is box #" + i);
 };
 container.appendChild(div);
}

In this loop, we create five divs to appear within a container. Each div is assigned an
onclick handler that creates an alert box to display the index. Declaring i in the for
loop creates a global variable named i, then iterates over it until its value reaches 5.

Declaring Variables | 9

When you click on any of these boxes, the alert says that i is equal to 5 for all divs,
because the current value for the global i is 5 (see Figure 2-2).

Figure 2-2. i is equal to 5 for each box

Declaring the loop counter i with let instead of var does block off the scope of i.
Now clicking on any box will display the value for i that was scoped to the loop itera‐
tion (see Figure 2-3):

const container = document.getElementById("container");
let div;
for (let i = 0; i < 5; i++) {
 div = document.createElement("div");
 div.onclick = function() {
 alert("This is box #: " + i);
 };
 container.appendChild(div);
}

Figure 2-3. The scope of i is protected with let

The scope of i is protected with let.

10 | Chapter 2: JavaScript for React

Template Strings
Template strings provide us with an alternative to string concatenation. They also
allow us to insert variables into a string. You’ll hear these referred to as template
strings, template literals, or string templates interchangeably.

Traditional string concatenation uses plus signs to compose a string using variable
values and strings:

console.log(lastName + ", " + firstName + " " + middleName);

With a template, we can create one string and insert the variable values by surround‐
ing them with ${ }:

console.log(`${lastName}, ${firstName} ${middleName}`);

Any JavaScript that returns a value can be added to a template string between the
${ } in a template string.

Template strings honor whitespace, making it easier to draft up email templates, code
examples, or anything else that contains whitespace. Now you can have a string that
spans multiple lines without breaking your code:

const email = `
Hello ${firstName},

Thanks for ordering ${qty} tickets to ${event}.

Order Details
${firstName} ${middleName} ${lastName}
 ${qty} x $${price} = $${qty*price} to ${event}

You can pick your tickets up 30 minutes before
the show.

Thanks,

${ticketAgent}
`

Previously, using an HTML string directly in our JavaScript code was not so easy to
do because we’d need to run it together on one line. Now that the whitespace is recog‐
nized as text, you can insert formatted HTML that is easy to read and understand:

document.body.innerHTML = `
<section>
 <header>
 <h1>The React Blog</h1>
 </header>
 <article>
 <h2>${article.title}</h2>
 ${article.body}

Declaring Variables | 11

 </article>
 <footer>
 <p>copyright ${new Date().getYear()} | The React Blog</p>
 </footer>
</section>
`;

Notice that we can include variables for the page title and article text as well.

Creating Functions
Any time you want to perform some sort of repeatable task with JavaScript, you can
use a function. Let’s take a look at some of the different syntax options that can be
used to create a function and the anatomy of those functions.

Function Declarations
A function declaration or function definition starts with the function keyword,
which is followed by the name of the function, logCompliment. The JavaScript state‐
ments that are part of the function are defined between the curly braces:

function logCompliment() {
 console.log("You're doing great!");
}

Once you’ve declared the function, you’ll invoke or call it to see it execute:

function logCompliment() {
 console.log("You're doing great!");
}

logCompliment();

Once invoked, you’ll see the compliment logged to the console.

Function Expressions
Another option is to use a function expression. This just involves creating the func‐
tion as a variable:

const logCompliment = function() {
 console.log("You're doing great!");
};

logCompliment();

The result is the same, and You're doing great! is logged to the console.

One thing to be aware of when deciding between a function declaration and a func‐
tion expression is that function declarations are hoisted and function expressions are
not. In other words, you can invoke a function before you write a function declara‐

12 | Chapter 2: JavaScript for React

tion. You cannot invoke a function created by a function expression. This will cause
an error. For example:

// Invoking the function before it's declared
hey();
// Function Declaration
function hey() {
 alert("hey!");
}

This works. You’ll see the alert appear in the browser. It works because the function is
hoisted, or moved up, to the top of the file’s scope. Trying the same exercise with a
function expression will cause an error:

// Invoking the function before it's declared
hey();
// Function Expression
const hey = function() {
 alert("hey!");
};

TypeError: hey is not a function

This is obviously a small example, but this TypeError can occasionally arise when
importing files and functions in a project. If you see it, you can always refactor as a
declaration.

Passing arguments

The logCompliment function currently takes in no arguments or parameters. If we
want to provide dynamic variables to the function, we can pass named parameters to
a function simply by adding them to the parentheses. Let’s start by adding a first
Name variable:

const logCompliment = function(firstName) {
 console.log(`You're doing great, ${firstName}`);
};

logCompliment("Molly");

Now when we call the logCompliment function, the firstName value sent will be
added to the console message.

We could add to this a bit by creating another argument called message. Now, we
won’t hard-code the message. We’ll pass in a dynamic value as a parameter:

const logCompliment = function(firstName, message) {
 console.log(`${firstName}: ${message}`);
};

logCompliment("Molly", "You're so cool");

Creating Functions | 13

Function returns

The logCompliment function currently logs the compliment to the console, but more
often, we’ll use a function to return a value. Let’s add a return statement to this func‐
tion. A return statement specifies the value returned by the function. We’ll rename
the function createCompliment:

const createCompliment = function(firstName, message) {
 return `${firstName}: ${message}`;
};

createCompliment("Molly", "You're so cool");

If you wanted to check to see if the function is executing as expected, just wrap the
function call in a console.log:

console.log(createCompliment("You're so cool", "Molly"));

Default Parameters
Languages including C++ and Python allow developers to declare default values for
function arguments. Default parameters are included in the ES6 spec, so in the event
that a value is not provided for the argument, the default value will be used.

For example, we can set up default strings for the parameters name and activity:

function logActivity(name = "Shane McConkey", activity = "skiing") {
 console.log(`${name} loves ${activity}`);
}

If no arguments are provided to the logActivity function, it will run correctly using
the default values. Default arguments can be any type, not just strings:

const defaultPerson = {
 name: {
 first: "Shane",
 last: "McConkey"
 },
 favActivity: "skiing"
};

function logActivity(person = defaultPerson) {
 console.log(`${person.name.first} loves ${person.favActivity}`);
}

Arrow Functions
Arrow functions are a useful new feature of ES6. With arrow functions, you can cre‐
ate functions without using the function keyword. You also often do not have to use
the return keyword. Let’s consider a function that takes in a firstName and returns a
string, turning the person into a lord. Anyone can be a lord:

14 | Chapter 2: JavaScript for React

const lordify = function(firstName) {
 return `${firstName} of Canterbury`;
};

console.log(lordify("Dale")); // Dale of Canterbury
console.log(lordify("Gail")); // Gail of Canterbury

With an arrow function, we can simplify the syntax tremendously:

const lordify = firstName => `${firstName} of Canterbury`;

With the arrow, we now have an entire function declaration on one line. The func
tion keyword is removed. We also remove return because the arrow points to what
should be returned. Another benefit is that if the function only takes one argument,
we can remove the parentheses around the arguments.

More than one argument should be surrounded by parentheses:

// Typical function
const lordify = function(firstName, land) {
 return `${firstName} of ${land}`;
};

// Arrow Function
const lordify = (firstName, land) => `${firstName} of ${land}`;

console.log(lordify("Don", "Piscataway")); // Don of Piscataway
console.log(lordify("Todd", "Schenectady")); // Todd of Schenectady

We can keep this as a one-line function because there is only one statement that needs
to be returned. If there are multiple lines, you’ll use curly braces:

const lordify = (firstName, land) => {
 if (!firstName) {
 throw new Error("A firstName is required to lordify");
 }

 if (!land) {
 throw new Error("A lord must have a land");
 }

 return `${firstName} of ${land}`;
};

console.log(lordify("Kelly", "Sonoma")); // Kelly of Sonoma
console.log(lordify("Dave")); // ! JAVASCRIPT ERROR

These if/else statements are surrounded with brackets but still benefit from the
shorter syntax of the arrow function.

Creating Functions | 15

Returning objects

What happens if you want to return an object? Consider a function called person that
builds an object based on parameters passed in for firstName and lastName:

const person = (firstName, lastName) =>
 {
 first: firstName,
 last: lastName
 }

console.log(person("Brad", "Janson"));

As soon as you run this, you’ll see the error: Uncaught SyntaxError: Unexpected
token :. To fix this, just wrap the object you’re returning with parentheses:

const person = (firstName, lastName) => ({
 first: firstName,
 last: lastName
});

console.log(person("Flad", "Hanson"));

These missing parentheses are the source of countless bugs in JavaScript and React
apps, so it’s important to remember this one!

Arrow functions and scope

Regular functions do not block this. For example, this becomes something else in
the setTimeout callback, not the tahoe object:

const tahoe = {
 mountains: ["Freel", "Rose", "Tallac", "Rubicon", "Silver"],
 print: function(delay = 1000) {
 setTimeout(function() {
 console.log(this.mountains.join(", "));
 }, delay);
 }
};

tahoe.print(); // Uncaught TypeError: Cannot read property 'join' of undefined

This error is thrown because it’s trying to use the .join method on what this is. If we
log this, we’ll see that it refers to the Window object:

console.log(this); // Window {}

To solve this problem, we can use the arrow function syntax to protect the scope of
this:

const tahoe = {
 mountains: ["Freel", "Rose", "Tallac", "Rubicon", "Silver"],
 print: function(delay = 1000) {

16 | Chapter 2: JavaScript for React

 setTimeout(() => {
 console.log(this.mountains.join(", "));
 }, delay);
 }
};

tahoe.print(); // Freel, Rose, Tallac, Rubicon, Silver

This works as expected, and we can .join the resorts with a comma. Be careful that
you’re always keeping scope in mind. Arrow functions do not block off the scope of
this:

const tahoe = {
 mountains: ["Freel", "Rose", "Tallac", "Rubicon", "Silver"],
 print: (delay = 1000) => {
 setTimeout(() => {
 console.log(this.mountains.join(", "));
 }, delay);
 }
};

tahoe.print(); // Uncaught TypeError: Cannot read property 'join' of undefined

Changing the print function to an arrow function means that this is actually the
window.

Compiling JavaScript
When a new JavaScript feature is proposed and gains support, the community often
wants to use it before it’s supported by all browsers. The only way to be sure that your
code will work is to convert it to more widely compatible code before running it in
the browser. This process is called compiling. One of the most popular tools for Java‐
Script compilation is Babel.

In the past, the only way to use the latest JavaScript features was to wait weeks,
months, or even years until browsers supported them. Now, Babel has made it possi‐
ble to use the latest features of JavaScript right away. The compiling step makes Java‐
Script similar to other languages. It’s not quite traditional compiling: our code isn’t
compiled to binary. Instead, it’s transformed into syntax that can be interpreted by a
wider range of browsers. Also, JavaScript now has source code, meaning that there
will be some files that belong to your project that don’t run in the browser.

As an example, let’s look at an arrow function with some default arguments:

const add = (x = 5, y = 10) => console.log(x + y);

If we run Babel on this code, it will generate the following:

"use strict";

Compiling JavaScript | 17

var add = function add() {
 var x =
 arguments.length <= 0 || arguments[0] === undefined ? 5 : arguments[0];
 var y =
 arguments.length <= 1 || arguments[1] === undefined ? 10 : arguments[1];
 return console.log(x + y);
};

Babel added a “use strict” declaration to run in strict mode. The variables x and y are
defaulted using the arguments array, a technique you may be familiar with. The
resulting JavaScript is more widely supported.

A great way to learn more about how Babel works is to check out the Babel REPL on
the documentation website. Type some new syntax on the left side, then see some
older syntax created.

The process of JavaScript compilation is typically automated by a build tool like web‐
pack or Parcel. We’ll discuss that in more detail later in the book.

Objects and Arrays
Since ES2016, JavaScript syntax has supported creative ways of scoping variables
within objects and arrays. These creative techniques are widely used among the React
community. Let’s take a look at a few of them, including destructuring, object literal
enhancement, and the spread operator.

Destructuring Objects
Destructuring assignment allows you to locally scope fields within an object and to
declare which values will be used. Consider the sandwich object. It has four keys, but
we only want to use the values of two. We can scope bread and meat to be used
locally:

const sandwich = {
 bread: "dutch crunch",
 meat: "tuna",
 cheese: "swiss",
 toppings: ["lettuce", "tomato", "mustard"]
};

const { bread, meat } = sandwich;

console.log(bread, meat); // dutch crunch tuna

The code pulls bread and meat out of the object and creates local variables for them.
Also, since we declared these destructed variables using let, the bread and meat vari‐
ables can be changed without changing the original sandwich:

18 | Chapter 2: JavaScript for React

const sandwich = {
 bread: "dutch crunch",
 meat: "tuna",
 cheese: "swiss",
 toppings: ["lettuce", "tomato", "mustard"]
};

let { bread, meat } = sandwich;

bread = "garlic";
meat = "turkey";

console.log(bread); // garlic
console.log(meat); // turkey

console.log(sandwich.bread, sandwich.meat); // dutch crunch tuna

We can also destructure incoming function arguments. Consider this function that
would log a person’s name as a lord:

const lordify = regularPerson => {
 console.log(`${regularPerson.firstname} of Canterbury`);
};

const regularPerson = {
 firstname: "Bill",
 lastname: "Wilson"
};

lordify(regularPerson); // Bill of Canterbury

Instead of using dot notation syntax to dig into objects, we can destructure the values
we need out of regularPerson:

const lordify = ({ firstname }) => {
 console.log(`${firstname} of Canterbury`);
};

const regularPerson = {
 firstname: "Bill",
 lastname: "Wilson"
};

lordify(regularPerson); // Bill of Canterbury

Let’s take this one level farther to reflect a data change. Now, the regularPerson
object has a new nested object on the spouse key:

const regularPerson = {
 firstname: "Bill",
 lastname: "Wilson",
 spouse: {
 firstname: "Phil",

Objects and Arrays | 19

 lastname: "Wilson"
 }
};

If we wanted to lordify the spouse’s first name, we’d adjust the function’s destructured
arguments slightly:

const lordify = ({ spouse: { firstname } }) => {
 console.log(`${firstname} of Canterbury`);
};

lordify(regularPerson); // Phil of Canterbury

Using the colon and nested curly braces, we can destructure the firstname from the
spouse object.

Destructuring Arrays
Values can also be destructured from arrays. Imagine that we wanted to assign the
first value of an array to a variable name:

const [firstAnimal] = ["Horse", "Mouse", "Cat"];

console.log(firstAnimal); // Horse

We can also pass over unnecessary values with list matching using commas. List
matching occurs when commas take the place of elements that should be skipped.
With the same array, we can access the last value by replacing the first two values with
commas:

const [, , thirdAnimal] = ["Horse", "Mouse", "Cat"];

console.log(thirdAnimal); // Cat

Later in this section, we’ll take this example a step farther by combining array
destructuring and the spread operator.

Object Literal Enhancement
Object literal enhancement is the opposite of destructuring. It’s the process of restruc‐
turing or putting the object back together. With object literal enhancement, we can
grab variables from the global scope and add them to an object:

const name = "Tallac";
const elevation = 9738;

const funHike = { name, elevation };

console.log(funHike); // {name: "Tallac", elevation: 9738}

name and elevation are now keys of the funHike object.

20 | Chapter 2: JavaScript for React

We can also create object methods with object literal enhancement or restructuring:

const name = "Tallac";
const elevation = 9738;
const print = function() {
 console.log(`Mt. ${this.name} is ${this.elevation} feet tall`);
};

const funHike = { name, elevation, print };

funHike.print(); // Mt. Tallac is 9738 feet tall

Notice we use this to access the object keys.

When defining object methods, it’s no longer necessary to use the function keyword:

// Old
var skier = {
 name: name,
 sound: sound,
 powderYell: function() {
 var yell = this.sound.toUpperCase();
 console.log(`${yell} ${yell} ${yell}!!!`);
 },
 speed: function(mph) {
 this.speed = mph;
 console.log("speed:", mph);
 }
};

// New
const skier = {
 name,
 sound,
 powderYell() {
 let yell = this.sound.toUpperCase();
 console.log(`${yell} ${yell} ${yell}!!!`);
 },
 speed(mph) {
 this.speed = mph;
 console.log("speed:", mph);
 }
};

Object literal enhancement allows us to pull global variables into objects and reduces
typing by making the function keyword unnecessary.

The Spread Operator
The spread operator is three dots (...) that perform several different tasks. First, the
spread operator allows us to combine the contents of arrays. For example, if we had
two arrays, we could make a third array that combines the two arrays into one:

Objects and Arrays | 21

const peaks = ["Tallac", "Ralston", "Rose"];
const canyons = ["Ward", "Blackwood"];
const tahoe = [...peaks, ...canyons];

console.log(tahoe.join(", ")); // Tallac, Ralston, Rose, Ward, Blackwood

All of the items from peaks and canyons are pushed into a new array called tahoe.

Let’s take a look at how the spread operator can help us deal with a problem. Using
the peaks array from the previous sample, let’s imagine that we wanted to grab the
last item from the array rather than the first. We could use the Array.reverse
method to reverse the array in combination with array destructuring:

const peaks = ["Tallac", "Ralston", "Rose"];
const [last] = peaks.reverse();

console.log(last); // Rose
console.log(peaks.join(", ")); // Rose, Ralston, Tallac

See what happened? The reverse function has actually altered or mutated the array.
In a world with the spread operator, we don’t have to mutate the original array.
Instead, we can create a copy of the array and then reverse it:

const peaks = ["Tallac", "Ralston", "Rose"];
const [last] = [...peaks].reverse();

console.log(last); // Rose
console.log(peaks.join(", ")); // Tallac, Ralston, Rose

Since we used the spread operator to copy the array, the peaks array is still intact and
can be used later in its original form.

The spread operator can also be used to get the remaining items in the array:

const lakes = ["Donner", "Marlette", "Fallen Leaf", "Cascade"];

const [first, ...others] = lakes;

console.log(others.join(", ")); // Marlette, Fallen Leaf, Cascade

We can also use the three-dot syntax to collect function arguments as an array. When
used in a function, these are called rest parameters. Here, we build a function that
takes in n number of arguments using the spread operator, then uses those arguments
to print some console messages:

function directions(...args) {
 let [start, ...remaining] = args;
 let [finish, ...stops] = remaining.reverse();

 console.log(`drive through ${args.length} towns`);
 console.log(`start in ${start}`);
 console.log(`the destination is ${finish}`);
 console.log(`stopping ${stops.length} times in between`);

22 | Chapter 2: JavaScript for React

}

directions("Truckee", "Tahoe City", "Sunnyside", "Homewood", "Tahoma");

The directions function takes in the arguments using the spread operator. The first
argument is assigned to the start variable. The last argument is assigned to a finish
variable using Array.reverse. We then use the length of the arguments array to dis‐
play how many towns we’re going through. The number of stops is the length of the
arguments array minus the finish stop. This provides incredible flexibility because
we could use the directions function to handle any number of stops.

The spread operator can also be used for objects (see the GitHub page for Rest/
Spread Properties). Using the spread operator with objects is similar to using it with
arrays. In this example, we’ll use it the same way we combined two arrays into a third
array, but instead of arrays, we’ll use objects:

const morning = {
 breakfast: "oatmeal",
 lunch: "peanut butter and jelly"
};

const dinner = "mac and cheese";

const backpackingMeals = {
 ...morning,
 dinner
};

console.log(backpackingMeals);

// {
// breakfast: "oatmeal",
// lunch: "peanut butter and jelly",
// dinner: "mac and cheese"
// }

Asynchronous JavaScript
The code samples that have been part of this chapter so far have been synchronous.
When we write synchronous JavaScript code, we’re providing a list of instructions
that execute immediately in order. For example, if we wanted to use JavaScript to han‐
dle some simple DOM manipulation, we’d write the code to do so like this:

const header = document.getElementById("heading");
header.innerHTML = "Hey!";

These are instructions. “Yo, go select that element with an id of heading. Then when
you’re done with that, how about you set that inner HTML to Hey.” It works synchro‐
nously. While each operation is happening, nothing else is happening.

Asynchronous JavaScript | 23

With the modern web, we need to perform asynchronous tasks. These tasks often
have to wait for some work to finish before they can be completed. We might need to
access a database. We might need to stream video or audio content. We might need
to fetch data from an API. With JavaScript, asynchronous tasks do not block the main
thread. JavaScript is free to do something else while we wait for the API to return
data. JavaScript has evolved a lot over the past few years to make handling these asyn‐
chronous actions easier. Let’s explore some of the features that make this possible.

Simple Promises with Fetch
Making a request to a REST API used to be pretty cumbersome. We’d have to write
20+ lines of nested code just to load some data into our app. Then the fetch() func‐
tion showed up and simplified our lives. Thanks to the ECMAScript committee for
making fetch happen.

Let’s get some data from the randomuser.me API. This API has information like
email address, name, phone number, location, and so on for fake members and is
great to use as dummy data. fetch takes in the URL for this resource as its only
parameter:

console.log(fetch("https://api.randomuser.me/?nat=US&results=1"));

When we log this, we see that there is a pending promise. Promises give us a way to
make sense out of asynchronous behavior in JavaScript. The promise is an object that
represents whether the async operation is pending, has been completed, or has failed.
Think of this like the browser saying, “Hey, I’m going to try my best to go get this
data. Either way, I’ll come back and let you know how it went.”

So back to the fetch result. The pending promise represents a state before the data
has been fetched. We need to chain on a function called .then(). This function will
take in a callback function that will run if the previous operation was successful. In
other words, fetch some data, then do something else.

The something else we want to do is turn the response into JSON:

fetch("https://api.randomuser.me/?nat=US&results=1").then(res =>
 console.log(res.json())
);

The then method will invoke the callback function once the promise has resolved.
Whatever you return from this function becomes the argument of the next then
function. So we can chain together then functions to handle a promise that has been
successfully resolved:

fetch("https://api.randomuser.me/?nat=US&results=1")
 .then(res => res.json())
 .then(json => json.results)

24 | Chapter 2: JavaScript for React

 .then(console.log)
 .catch(console.error);

First, we use fetch to make a GET request to randomuser.me. If the request is suc‐
cessful, we’ll then convert the response body to JSON. Next, we’ll take the JSON data
and return the results, then we’ll send the results to the console.log function, which
will log them to the console. Finally, there is a catch function that invokes a callback
if the fetch did not resolve successfully. Any error that occurred while fetching data
from randomuser.me will be based on that callback. Here, we simply log the error to
the console using console.error.

Async/Await
Another popular approach for handling promises is to create an async function.
Some developers prefer the syntax of async functions because it looks more familiar,
like code that’s found in a synchronous function. Instead of waiting for the results of
a promise to resolve and handling it with a chain of then functions, async functions
can be told to wait for the promise to resolve before further executing any code found
in the function.

Let’s make another API request but wrap the functionality with an async function:

const getFakePerson = async () => {
 let res = await fetch("https://api.randomuser.me/?nat=US&results=1");
 let { results } = res.json();
 console.log(results);
};

getFakePerson();

Notice that the getFakePerson function is declared using the async keyword. This
makes it an asynchronous function that can wait for promises to resolve before exe‐
cuting the code any further. The await keyword is used before promise calls. This
tells the function to wait for the promise to resolve. This code accomplishes the exact
same task as the code in the previous section that uses then functions. Well, almost
the exact same task…

const getFakePerson = async () => {
 try {
 let res = await fetch("https://api.randomuser.me/?nat=US&results=1");
 let { results } = res.json();
 console.log(results);
 } catch (error) {
 console.error(error);
 }
};

getFakePerson();

Asynchronous JavaScript | 25

There we go—now this code accomplishes the exact same task as the code in the pre‐
vious section that uses then functions. If the fetch call is successful, the results are
logged to the console. If it’s unsuccessful, then we’ll log the error to the console using
console.error. When using async and await, you need to surround your promise
call in a try…catch block to handle any errors that may occur due to an unresolved
promise.

Building Promises
When making an asynchronous request, one of two things can happen: everything
goes as we hope, or there’s an error. There can be many different types of successful or
unsuccessful requests. For example, we could try several ways to obtain the data to
reach success. We could also receive multiple types of errors. Promises give us a way
to simplify back to a simple pass or fail.

The getPeople function returns a new promise. The promise makes a request to the
API. If the promise is successful, the data will load. If the promise is unsuccessful, an
error will occur:

const getPeople = count =>
 new Promise((resolves, rejects) => {
 const api = `https://api.randomuser.me/?nat=US&results=${count}`;
 const request = new XMLHttpRequest();
 request.open("GET", api);
 request.onload = () =>
 request.status === 200
 ? resolves(JSON.parse(request.response).results)
 : reject(Error(request.statusText));
 request.onerror = err => rejects(err);
 request.send();
 });

With that, the promise has been created, but it hasn’t been used yet. We can use the
promise by calling the getPeople function and passing in the number of members
that should be loaded. The then function can be chained on to do something once the
promise has been fulfilled. When a promise is rejected, any details are passed back to
the catch function, or the catch block if using async/await syntax:

getPeople(5)
 .then(members => console.log(members))
 .catch(error => console.error(`getPeople failed: ${error.message}`))
);

Promises make dealing with asynchronous requests easier, which is good, because we
have to deal with a lot of asynchronicity in JavaScript. A solid understanding of asyn‐
chronous behavior is essential for the modern JavaScript engineer.

26 | Chapter 2: JavaScript for React

Classes
Prior to ES2015, there was no official class syntax in the JavaScript spec. When classes
were introduced, there was a lot of excitement about how similar the syntax of classes
was to traditional object-oriented languages like Java and C++. The past few years
saw the React library leaning on classes heavily to construct user interface compo‐
nents. Today, React is beginning to move away from classes, instead using functions
to construct components. You’ll still see classes all over the place, particularly in leg‐
acy React code and in the world of JavaScript, so let’s take a quick look at them.

JavaScript uses something called prototypical inheritance. This technique can be
wielded to create structures that feel object-oriented. For example, we can create a
Vacation constructor that needs to be invoked with a new operator:

function Vacation(destination, length) {
 this.destination = destination;
 this.length = length;
}

Vacation.prototype.print = function() {
 console.log(this.destination + " | " + this.length + " days");
};

const maui = new Vacation("Maui", 7);

maui.print(); // Maui | 7 days

This code creates something that feels like a custom type in an object-oriented lan‐
guage. A Vacation has properties (destination, length), and it has a method (print).
The maui instance inherits the print method through the prototype. If you are or
were a developer accustomed to more standard classes, this might fill you with a deep
rage. ES2015 introduced class declaration to quiet that rage, but the dirty secret is that
JavaScript still works the same way. Functions are objects, and inheritance is handled
through the prototype. Classes provide a syntactic sugar on top of that gnarly proto‐
type syntax:

class Vacation {
 constructor(destination, length) {
 this.destination = destination;
 this.length = length;
 }

 print() {
 console.log(`${this.destination} will take ${this.length} days.`);
 }
}

Classes | 27

When you’re creating a class, the class name is typically capitalized. Once you’ve cre‐
ated the class, you can create a new instance of the class using the new keyword. Then
you can call the custom method on the class:

const trip = new Vacation("Santiago, Chile", 7);

trip.print(); // Chile will take 7 days.

Now that a class object has been created, you can use it as many times as you’d like to
create new vacation instances. Classes can also be extended. When a class is extended,
the subclass inherits the properties and methods of the superclass. These properties
and methods can be manipulated from here, but as a default, all will be inherited.

You can use Vacation as an abstract class to create different types of vacations. For
instance, an Expedition can extend the Vacation class to include gear:

class Expedition extends Vacation {
 constructor(destination, length, gear) {
 super(destination, length);
 this.gear = gear;
 }

 print() {
 super.print();
 console.log(`Bring your ${this.gear.join(" and your ")}`);
 }
}

That’s simple inheritance: the subclass inherits the properties of the superclass. By
calling the print method of Vacation, we can append some new content onto what is
printed in the print method of Expedition. Creating a new instance works the exact
same way—create a variable and use the new keyword:

const trip = new Expedition("Mt. Whitney", 3, [
 "sunglasses",
 "prayer flags",
 "camera"
]);

trip.print();

// Mt. Whitney will take 3 days.
// Bring your sunglasses and your prayer flags and your camera

ES6 Modules
A JavaScript module is a piece of reusable code that can easily be incorporated into
other JavaScript files without causing variable collisions. JavaScript modules are
stored in separate files, one file per module. There are two options when creating and

28 | Chapter 2: JavaScript for React

exporting a module: you can export multiple JavaScript objects from a single module
or one JavaScript object per module.

In text-helpers.js, two functions are exported:

export const print=(message) => log(message, new Date())

export const log=(message, timestamp) =>
 console.log(`${timestamp.toString()}: ${message}`)

export can be used to export any JavaScript type that will be consumed in another
module. In this example, the print function and log function are being exported.
Any other variables declared in text-helpers.js will be local to that module.

Modules can also export a single main variable. In these cases, you can use export
default. For example, the mt-freel.js file can export a specific expedition:

export default new Expedition("Mt. Freel", 2, ["water", "snack"]);

export default can be used in place of export when you wish to export only one
type. Again, both export and export default can be used on any JavaScript type:
primitives, objects, arrays, and functions.

Modules can be consumed in other JavaScript files using the import statement. Mod‐
ules with multiple exports can take advantage of object destructuring. Modules that
use export default are imported into a single variable:

import { print, log } from "./text-helpers";
import freel from "./mt-freel";

print("printing a message");
log("logging a message");

freel.print();

You can scope module variables locally under different variable names:

import { print as p, log as l } from "./text-helpers";

p("printing a message");
l("logging a message");

You can also import everything into a single variable using *:

import * as fns from './text-helpers`

This import and export syntax is not yet fully supported by all browsers or by Node.
However, like any emerging JavaScript syntax, it’s supported by Babel. This means
you can use these statements in your source code and Babel will know where to find
the modules you want to include in your compiled JavaScript.

ES6 Modules | 29

CommonJS
CommonJS is the module pattern that’s supported by all versions of Node (see the
Node.js documentation on modules). You can still use these modules with Babel and
webpack. With CommonJS, JavaScript objects are exported using module.exports.

For example, in CommonJS, we can export the print and log functions as an object:

const print(message) => log(message, new Date())

const log(message, timestamp) =>
console.log(`${timestamp.toString()}: ${message}`}

module.exports = {print, log}

CommonJS does not support an import statement. Instead, modules are imported
with the require function:

const { log, print } = require("./txt-helpers");

JavaScript is indeed moving quickly and adapting to the increasing demands that
engineers are placing on the language, and browsers are quickly implementing new
features. For up-to-date compatibility information, see the ESNext compatibility
table. Many of the features that are included in the latest JavaScript syntax are present
because they support functional programming techniques. In functional JavaScript,
we can think of our code as being a collection of functions that can be composed into
applications. In the next chapter, we’ll explore functional techniques in more detail
and will discuss why you might want to use them.

30 | Chapter 2: JavaScript for React

1 Dana S. Scott, “λ-Calculus: Then & Now”.

CHAPTER 3

Functional Programming with JavaScript

When you start to explore React, you’ll likely notice that the topic of functional pro‐
gramming comes up a lot. Functional techniques are being used more and more in
JavaScript projects, particularly React projects.

It’s likely that you’ve already written functional JavaScript code without thinking
about it. If you’ve mapped or reduced an array, then you’re already on your way to
becoming a functional JavaScript programmer. Functional programming techniques
are core not only to React but to many of the libraries in the React ecosystem as well.

If you’re wondering where this functional trend came from, the answer is the 1930s,
with the invention of lambda calculus, or λ-calculus.1 Functions have been a part of
calculus since it emerged in the 17th century. Functions can be sent to functions as
arguments or returned from functions as results. More complex functions, called
higher-order functions, can manipulate functions and use them as either arguments or
results or both. In the 1930s, Alonzo Church was at Princeton experimenting with
these higher-order functions when he invented lambda calculus.

In the late 1950s, John McCarthy took the concepts derived from λ-calculus and
applied them to a new programming language called Lisp. Lisp implemented the con‐
cept of higher-order functions and functions as first-class members or first-class citi‐
zens. A function is considered a first-class member when it can be declared as a
variable and sent to functions as an argument. These functions can even be returned
from functions.

In this chapter, we’re going to go over some of the key concepts of functional pro‐
gramming, and we’ll cover how to implement functional techniques with JavaScript.

31

What It Means to Be Functional
JavaScript supports functional programming because JavaScript functions are first-
class citizens. This means that functions can do the same things that variables can do.
The latest JavaScript syntax adds language improvements that can beef up your func‐
tional programming techniques, including arrow functions, promises, and the spread
operator.

In JavaScript, functions can represent data in your application. You may have noticed
that you can declare functions with the var, let, or const keywords the same way
you can declare strings, numbers, or any other variables:

var log = function(message) {
 console.log(message);
};

log("In JavaScript, functions are variables");

// In JavaScript, functions are variables

We can write the same function using an arrow function. Functional programmers
write a lot of small functions, and the arrow function syntax makes that much easier:

const log = message => {
 console.log(message);
};

Since functions are variables, we can add them to objects:

const obj = {
 message: "They can be added to objects like variables",
 log(message) {
 console.log(message);
 }
};

obj.log(obj.message);

// They can be added to objects like variables

Both of these statements do the same thing: they store a function in a variable called
log. Additionally, the const keyword was used to declare the second function, which
will prevent it from being overwritten.

We can also add functions to arrays in JavaScript:

const messages = [
 "They can be inserted into arrays",
 message => console.log(message),
 "like variables",
 message => console.log(message)
];

32 | Chapter 3: Functional Programming with JavaScript

messages[1](messages[0]); // They can be inserted into arrays
messages[3](messages[2]); // like variables

Functions can be sent to other functions as arguments, just like other variables:

const insideFn = logger => {
 logger("They can be sent to other functions as arguments");
};

insideFn(message => console.log(message));

// They can be sent to other functions as arguments

They can also be returned from other functions, just like variables:

const createScream = function(logger) {
 return function(message) {
 logger(message.toUpperCase() + "!!!");
 };
};

const scream = createScream(message => console.log(message));

scream("functions can be returned from other functions");
scream("createScream returns a function");
scream("scream invokes that returned function");

// FUNCTIONS CAN BE RETURNED FROM OTHER FUNCTIONS!!!
// CREATESCREAM RETURNS A FUNCTION!!!
// SCREAM INVOKES THAT RETURNED FUNCTION!!!

The last two examples were of higher-order functions: functions that either take or
return other functions. We could describe the same createScream higher-order func‐
tion with arrows:

const createScream = logger => message => {
 logger(message.toUpperCase() + "!!!");
};

If you see more than one arrow used during a function declaration, this means that
you’re using a higher-order function.

We can say that JavaScript supports functional programming because its functions
are first-class citizens. This means that functions are data. They can be saved,
retrieved, or flow through your applications just like variables.

Imperative Versus Declarative
Functional programming is a part of a larger programming paradigm: declarative pro‐
gramming. Declarative programming is a style of programming where applications

Imperative Versus Declarative | 33

are structured in a way that prioritizes describing what should happen over defining
how it should happen.

In order to understand declarative programming, we’ll contrast it with imperative
programming, or a style of programming that’s only concerned with how to achieve
results with code. Let’s consider a common task: making a string URL-friendly. Typi‐
cally, this can be accomplished by replacing all of the spaces in a string with hyphens,
since spaces are not URL-friendly. First, let’s examine an imperative approach to this
task:

const string = "Restaurants in Hanalei";
const urlFriendly = "";

for (var i = 0; i < string.length; i++) {
 if (string[i] === " ") {
 urlFriendly += "-";
 } else {
 urlFriendly += string[i];
 }
}

console.log(urlFriendly); // "Restaurants-in-Hanalei"

In this example, we loop through every character in the string, replacing spaces as
they occur. The structure of this program is only concerned with how such a task can
be achieved. We use a for loop and an if statement and set values with an equality
operator. Just looking at the code alone does not tell us much. Imperative programs
require lots of comments in order to understand what’s going on.

Now let’s look at a declarative approach to the same problem:

const string = "Restaurants in Hanalei";
const urlFriendly = string.replace(/ /g, "-");

console.log(urlFriendly);

Here we are using string.replace along with a regular expression to replace all
instances of spaces with hyphens. Using string.replace is a way of describing what’s
supposed to happen: spaces in the string should be replaced. The details of how
spaces are dealt with are abstracted away inside the replace function. In a declarative
program, the syntax itself describes what should happen, and the details of how
things happen are abstracted away.

Declarative programs are easy to reason about because the code itself describes what
is happening. For example, read the syntax in the following sample. It details what
happens after members are loaded from an API:

const loadAndMapMembers = compose(
 combineWith(sessionStorage, "members"),
 save(sessionStorage, "members"),

34 | Chapter 3: Functional Programming with JavaScript

 scopeMembers(window),
 logMemberInfoToConsole,
 logFieldsToConsole("name.first"),
 countMembersBy("location.state"),
 prepStatesForMapping,
 save(sessionStorage, "map"),
 renderUSMap
);

getFakeMembers(100).then(loadAndMapMembers);

The declarative approach is more readable and, thus, easier to reason about. The
details of how each of these functions is implemented are abstracted away. Those tiny
functions are named well and combined in a way that describes how member data
goes from being loaded to being saved and printed on a map, and this approach does
not require many comments. Essentially, declarative programming produces applica‐
tions that are easier to reason about, and when it’s easier to reason about an applica‐
tion, that application is easier to scale. Additional details about the declarative
programming paradigm can be found at the Declarative Programming wiki.

Now, let’s consider the task of building a document object model, or DOM. An
imperative approach would be concerned with how the DOM is constructed:

const target = document.getElementById("target");
const wrapper = document.createElement("div");
const headline = document.createElement("h1");

wrapper.id = "welcome";
headline.innerText = "Hello World";

wrapper.appendChild(headline);
target.appendChild(wrapper);

This code is concerned with creating elements, setting elements, and adding them to
the document. It would be very hard to make changes, add features, or scale 10,000
lines of code where the DOM is constructed imperatively.

Now let’s take a look at how we can construct a DOM declaratively using a React
component:

const { render } = ReactDOM;

const Welcome = () => (
 <div id="welcome">
 <h1>Hello World</h1>
 </div>
);

render(<Welcome />, document.getElementById("target"));

Imperative Versus Declarative | 35

React is declarative. Here, the Welcome component describes the DOM that should be
rendered. The render function uses the instructions declared in the component to
build the DOM, abstracting away the details of how the DOM is to be rendered. We
can clearly see that we want to render our Welcome component into the element with
the ID of target.

Functional Concepts
Now that you’ve been introduced to functional programming and what it means to be
“functional” or “declarative,” we’ll move on to introducing the core concepts of func‐
tional programming: immutability, purity, data transformation, higher-order func‐
tions, and recursion.

Immutability
To mutate is to change, so to be immutable is to be unchangeable. In a functional pro‐
gram, data is immutable. It never changes.

If you need to share your birth certificate with the public but want to redact or
remove private information, you essentially have two choices: you can take a big
Sharpie to your original birth certificate and cross out your private data, or you can
find a copy machine. Finding a copy machine, making a copy of your birth certificate,
and writing all over that copy with that big Sharpie would be preferable. This way you
can have a redacted birth certificate to share and your original that’s still intact.

This is how immutable data works in an application. Instead of changing the original
data structures, we build changed copies of those data structures and use them
instead.

To understand how immutability works, let’s take a look at what it means to mutate
data. Consider an object that represents the color lawn:

let color_lawn = {
 title: "lawn",
 color: "#00FF00",
 rating: 0
};

We could build a function that would rate colors and use that function to change the
rating of the color object:

function rateColor(color, rating) {
 color.rating = rating;
 return color;
}

console.log(rateColor(color_lawn, 5).rating); // 5
console.log(color_lawn.rating); // 5

36 | Chapter 3: Functional Programming with JavaScript

In JavaScript, function arguments are references to the actual data. Setting the color’s
rating like this changes or mutates the original color object. (Imagine if you tasked a
business with redacting and sharing your birth certificate and they returned your
original birth certificate with black marker covering the important details. You’d hope
that a business would have the common sense to make a copy of your birth certificate
and return the original unharmed.) We can rewrite the rateColor function so that it
does not harm the original goods (the color object):

const rateColor = function(color, rating) {
 return Object.assign({}, color, { rating: rating });
};

console.log(rateColor(color_lawn, 5).rating); // 5
console.log(color_lawn.rating); // 0

Here, we used Object.assign to change the color rating. Object.assign is the copy
machine. It takes a blank object, copies the color to that object, and overwrites the
rating on the copy. Now we can have a newly rated color object without having to
change the original.

We can write the same function using an arrow function along with the object spread
operator. This rateColor function uses the spread operator to copy the color into a
new object and then overwrite its rating:

const rateColor = (color, rating) => ({
 ...color,
 rating
});

This version of the rateColor function is exactly the same as the previous one. It
treats color as an immutable object, does so with less syntax, and looks a little bit
cleaner. Notice that we wrap the returned object in parentheses. With arrow func‐
tions, this is a required step since the arrow can’t just point to an object’s curly braces.

Let’s consider an array of color names:

let list = [{ title: "Rad Red" }, { title: "Lawn" }, { title: "Party Pink" }];

We could create a function that will add colors to that array using Array.push:

const addColor = function(title, colors) {
 colors.push({ title: title });
 return colors;
};

console.log(addColor("Glam Green", list).length); // 4
console.log(list.length); // 4

However, Array.push is not an immutable function. This addColor function changes
the original array by adding another field to it. In order to keep the colors array
immutable, we must use Array.concat instead:

Functional Concepts | 37

const addColor = (title, array) => array.concat({ title });

console.log(addColor("Glam Green", list).length); // 4
console.log(list.length); // 3

Array.concat concatenates arrays. In this case, it takes a new object with a new color
title and adds it to a copy of the original array.

You can also use the spread operator to concatenate arrays in the same way it can be
used to copy objects. Here’s the emerging JavaScript equivalent of the previous add
Color function:

const addColor = (title, list) => [...list, { title }];

This function copies the original list to a new array and then adds a new object con‐
taining the color’s title to that copy. It is immutable.

Pure Functions
A pure function is a function that returns a value that’s computed based on its argu‐
ments. Pure functions take at least one argument and always return a value or
another function. They do not cause side effects, set global variables, or change any‐
thing about application state. They treat their arguments as immutable data.

In order to understand pure functions, let’s first take a look at an impure function:

const frederick = {
 name: "Frederick Douglass",
 canRead: false,
 canWrite: false
};

function selfEducate() {
 frederick.canRead = true;
 frederick.canWrite = true;
 return frederick;
}

selfEducate();
console.log(frederick);

// {name: "Frederick Douglass", canRead: true, canWrite: true}

The selfEducate function is not a pure function. It does not take any arguments, and
it does not return a value or a function. It also changes a variable outside of its scope:
Frederick. Once the selfEducate function is invoked, something about the “world”
has changed. It causes side effects:

38 | Chapter 3: Functional Programming with JavaScript

const frederick = {
 name: "Frederick Douglass",
 canRead: false,
 canWrite: false
};

const selfEducate = person => {
 person.canRead = true;
 person.canWrite = true;
 return person;
};

console.log(selfEducate(frederick));
console.log(frederick);

// {name: "Frederick Douglass", canRead: true, canWrite: true}
// {name: "Frederick Douglass", canRead: true, canWrite: true}

Pure Functions Are Testable

Pure functions are naturally testable. They do not change anything
about their environment or “world,” and therefore do not require a
complicated test setup or teardown. Everything a pure function
needs to operate it accesses via arguments. When testing a pure
function, you control the arguments, and thus you can estimate the
outcome. This selfEducate function is also impure: it causes side
effects. Invoking this function mutates the objects that are sent to
it. If we could treat the arguments sent to this function as immuta‐
ble data, then we would have a pure function.

Let’s have this function take an argument:

const frederick = {
 name: "Frederick Douglass",
 canRead: false,
 canWrite: false
};

const selfEducate = person => ({
 ...person,
 canRead: true,
 canWrite: true
});

console.log(selfEducate(frederick));
console.log(frederick);

// {name: "Frederick Douglass", canRead: true, canWrite: true}
// {name: "Frederick Douglass", canRead: false, canWrite: false}

Functional Concepts | 39

Finally, this version of selfEducate is a pure function. It computes a value based on
the argument that was sent to it: the person. It returns a new person object without
mutating the argument sent to it and therefore has no side effects.

Now let’s examine an impure function that mutates the DOM:

function Header(text) {
 let h1 = document.createElement("h1");
 h1.innerText = text;
 document.body.appendChild(h1);
}

Header("Header() caused side effects");

The Header function creates a heading—one element with specific text—and adds it
to the DOM. This function is impure. It does not return a function or a value, and it
causes side effects: a changed DOM.

In React, the UI is expressed with pure functions. In the following sample, Header is a
pure function that can be used to create h1 elements just like in the previous example.
However, this function on its own does not cause side effects because it does not
mutate the DOM. This function will create an h1 element, and it’s up to some other
part of the application to use that element to change the DOM:

const Header = props => <h1>{props.title}</h1>;

Pure functions are another core concept of functional programming. They will make
your life much easier because they will not affect your application’s state. When writ‐
ing functions, try to follow these three rules:

1. The function should take in at least one argument.
2. The function should return a value or another function.
3. The function should not change or mutate any of its arguments.

Data Transformations
How does anything change in an application if the data is immutable? Functional
programming is all about transforming data from one form to another. We’ll produce
transformed copies using functions. These functions make our code less imperative
and thus reduce complexity.

You do not need a special framework to understand how to produce one dataset that
is based upon another. JavaScript already has the necessary tools for this task built
into the language. There are two core functions that you must master in order to be
proficient with functional JavaScript: Array.map and Array.reduce.

40 | Chapter 3: Functional Programming with JavaScript

In this section, we’ll take a look at how these and some other core functions trans‐
form data from one type to another.

Consider this array of high schools:

const schools = ["Yorktown", "Washington & Liberty", "Wakefield"];

We can get a comma-delimited list of these and some other strings by using the
Array.join function:

console.log(schools.join(", "));

// "Yorktown, Washington & Liberty, Wakefield"

Array.join is a built-in JavaScript array method that we can use to extract a delimi‐
ted string from our array. The original array is still intact; join simply provides a dif‐
ferent take on it. The details of how this string is produced are abstracted away from
the programmer.

If we wanted to create a function that creates a new array of the schools that begin
with the letter “W,” we could use the Array.filter method:

const wSchools = schools.filter(school => school[0] === "W");

console.log(wSchools);
// ["Washington & Liberty", "Wakefield"]

Array.filter is a built-in JavaScript function that produces a new array from a
source array. This function takes a predicate as its only argument. A predicate is a
function that always returns a Boolean value: true or false. Array.filter invokes
this predicate once for every item in the array. That item is passed to the predicate as
an argument, and the return value is used to decide if that item will be added to the
new array. In this case, Array.filter is checking every school to see if its name
begins with a “W.”

When it’s time to remove an item from an array, we should use Array.filter over
Array.pop or Array.splice because Array.filter is immutable. In this next sample,
the cutSchool function returns new arrays that filter out specific school names:

const cutSchool = (cut, list) => list.filter(school => school !== cut);

console.log(cutSchool("Washington & Liberty", schools).join(", "));

// "Yorktown, Wakefield"

console.log(schools.join("\n"));

// Yorktown
// Washington & Liberty
// Wakefield

Functional Concepts | 41

In this case, the cutSchool function is used to return a new array that does not con‐
tain “Washington & Liberty.” Then, the join function is used with this new array to
create a string out of the remaining two school names. cutSchool is a pure function.
It takes a list of schools and the name of the school that should be removed and
returns a new array without that specific school.

Another array function that is essential to functional programming is Array.map.
Instead of a predicate, the Array.map method takes a function as its argument. This
function will be invoked once for every item in the array, and whatever it returns will
be added to the new array:

const highSchools = schools.map(school => `${school} High School`);

console.log(highSchools.join("\n"));

// Yorktown High School
// Washington & Liberty High School
// Wakefield High School

console.log(schools.join("\n"));

// Yorktown
// Washington & Liberty
// Wakefield

In this case, the map function was used to append “High School” to each school name.
The schools array is still intact.

In the last example, we produced an array of strings from an array of strings. The map
function can produce an array of objects, values, arrays, other functions—any Java‐
Script type. Here’s an example of the map function returning an object for every
school:

const highSchools = schools.map(school => ({ name: school }));

console.log(highSchools);

// [
// { name: "Yorktown" },
// { name: "Washington & Liberty" },
// { name: "Wakefield" }
//]

An array containing objects was produced from an array that contains strings.

If you need to create a pure function that changes one object in an array of objects,
map can be used for this, too. In the following example, we’ll change the school with
the name of “Stratford” to “HB Woodlawn” without mutating the schools array:

let schools = [
 { name: "Yorktown" },

42 | Chapter 3: Functional Programming with JavaScript

 { name: "Stratford" },
 { name: "Washington & Liberty" },
 { name: "Wakefield" }
];

let updatedSchools = editName("Stratford", "HB Woodlawn", schools);

console.log(updatedSchools[1]); // { name: "HB Woodlawn" }
console.log(schools[1]); // { name: "Stratford" }

The schools array is an array of objects. The updatedSchools variable calls the edit
Name function and we send it the school we want to update, the new school, and the
schools array. This changes the new array but makes no edits to the original:

const editName = (oldName, name, arr) =>
 arr.map(item => {
 if (item.name === oldName) {
 return {
 ...item,
 name
 };
 } else {
 return item;
 }
 });

Within editName, the map function is used to create a new array of objects based upon
the original array. The editName function can be written entirely in one line. Here’s an
example of the same function using a shorthand if/else statement:

const editName = (oldName, name, arr) =>
 arr.map(item => (item.name === oldName ? { ...item, name } : item));

If you need to transform an array into an object, you can use Array.map in conjunc‐
tion with Object.keys. Object.keys is a method that can be used to return an array
of keys from an object.

Let’s say we needed to transform the schools object into an array of schools:

const schools = {
 Yorktown: 10,
 "Washington & Liberty": 2,
 Wakefield: 5
};

const schoolArray = Object.keys(schools).map(key => ({
 name: key,
 wins: schools[key]
}));

console.log(schoolArray);

Functional Concepts | 43

// [
// {
// name: "Yorktown",
// wins: 10
// },
// {
// name: "Washington & Liberty",
// wins: 2
// },
// {
// name: "Wakefield",
// wins: 5
// }
//]

In this example, Object.keys returns an array of school names, and we can use map
on that array to produce a new array of the same length. The name of the new object
will be set using the key, and wins is set equal to the value.

So far, we’ve learned that we can transform arrays with Array.map and Array.filter.
We’ve also learned that we can change arrays into objects by combining Object.keys
with Array.map. The final tool that we need in our functional arsenal is the ability to
transform arrays into primitives and other objects.

The reduce and reduceRight functions can be used to transform an array into any
value, including a number, string, boolean, object, or even a function.

Let’s say we need to find the maximum number in an array of numbers. We need to
transform an array into a number; therefore, we can use reduce:

const ages = [21, 18, 42, 40, 64, 63, 34];

const maxAge = ages.reduce((max, age) => {
 console.log(`${age} > ${max} = ${age > max}`);
 if (age > max) {
 return age;
 } else {
 return max;
 }
}, 0);

console.log("maxAge", maxAge);

// 21 > 0 = true
// 18 > 21 = false
// 42 > 21 = true
// 40 > 42 = false
// 64 > 42 = true
// 63 > 64 = false
// 34 > 64 = false
// maxAge 64

44 | Chapter 3: Functional Programming with JavaScript

The ages array has been reduced into a single value: the maximum age, 64. reduce
takes two arguments: a callback function and an original value. In this case, the origi‐
nal value is 0, which sets the initial maximum value to 0. The callback is invoked once
for every item in the array. The first time this callback is invoked, age is equal to 21,
the first value in the array, and max is equal to 0, the initial value. The callback returns
the greater of the two numbers, 21, and that becomes the max value during the next
iteration. Each iteration compares each age against the max value and returns the
greater of the two. Finally, the last number in the array is compared and returned
from the previous callback.

If we remove the console.log statement from the preceding function and use a
shorthand if/else statement, we can calculate the max value in any array of num‐
bers with the following syntax:

const max = ages.reduce((max, value) => (value > max ? value : max), 0);

Array.reduceRight

Array.reduceRight works the same way as Array.reduce; the dif‐
ference is that it starts reducing from the end of the array rather
than the beginning.

Sometimes we need to transform an array into an object. The following example uses
reduce to transform an array that contains colors into a hash:

const colors = [
 {
 id: "xekare",
 title: "rad red",
 rating: 3
 },
 {
 id: "jbwsof",
 title: "big blue",
 rating: 2
 },
 {
 id: "prigbj",
 title: "grizzly grey",
 rating: 5
 },
 {
 id: "ryhbhsl",
 title: "banana",
 rating: 1
 }
];

const hashColors = colors.reduce((hash, { id, title, rating }) => {

Functional Concepts | 45

 hash[id] = { title, rating };
 return hash;
}, {});

console.log(hashColors);

// {
// "xekare": {
// title:"rad red",
// rating:3
// },
// "jbwsof": {
// title:"big blue",
// rating:2
// },
// "prigbj": {
// title:"grizzly grey",
// rating:5
// },
// "ryhbhsl": {
// title:"banana",
// rating:1
// }
// }

In this example, the second argument sent to the reduce function is an empty object.
This is our initial value for the hash. During each iteration, the callback function adds
a new key to the hash using bracket notation and sets the value for that key to the id
field of the array. Array.reduce can be used in this way to reduce an array to a single
value—in this case, an object.

We can even transform arrays into completely different arrays using reduce. Con‐
sider reducing an array with multiple instances of the same value to an array of
unique values. The reduce method can be used to accomplish this task:

const colors = ["red", "red", "green", "blue", "green"];

const uniqueColors = colors.reduce(
 (unique, color) =>
 unique.indexOf(color) !== -1 ? unique : [...unique, color],
 []
);

console.log(uniqueColors);

// ["red", "green", "blue"]

In this example, the colors array is reduced to an array of distinct values. The second
argument sent to the reduce function is an empty array. This will be the initial value
for distinct. When the distinct array does not already contain a specific color, it

46 | Chapter 3: Functional Programming with JavaScript

will be added. Otherwise, it will be skipped, and the current distinct array will be
returned.

map and reduce are the main weapons of any functional programmer, and JavaScript
is no exception. If you want to be a proficient JavaScript engineer, then you must
master these functions. The ability to create one dataset from another is a required
skill and is useful for any type of programming paradigm.

Higher-Order Functions
The use of higher-order functions is also essential to functional programming. We’ve
already mentioned higher-order functions, and we’ve even used a few in this chapter.
Higher-order functions are functions that can manipulate other functions. They can
take functions in as arguments or return functions or both.

The first category of higher-order functions are functions that expect other functions
as arguments. Array.map, Array.filter, and Array.reduce all take functions as
arguments. They are higher-order functions.

Let’s take a look at how we can implement a higher-order function. In the following
example, we create an invokeIf callback function that will test a condition and
invoke a callback function when it’s true and another callback function when the con‐
dition is false:

const invokeIf = (condition, fnTrue, fnFalse) =>
 condition ? fnTrue() : fnFalse();

const showWelcome = () => console.log("Welcome!!!");

const showUnauthorized = () => console.log("Unauthorized!!!");

invokeIf(true, showWelcome, showUnauthorized); // "Welcome!!!"
invokeIf(false, showWelcome, showUnauthorized); // "Unauthorized!!!"

invokeIf expects two functions: one for true and one for false. This is demonstrated
by sending both showWelcome and showUnauthorized to invokeIf. When the condi‐
tion is true, showWelcome is invoked. When it’s false, showUnauthorized is invoked.

Higher-order functions that return other functions can help us handle the complexi‐
ties associated with asynchronicity in JavaScript. They can help us create functions
that can be used or reused at our convenience.

Currying is a functional technique that involves the use of higher-order functions.

The following is an example of currying. The userLogs function hangs on to some
information (the username) and returns a function that can be used and reused when
the rest of the information (the message) is made available. In this example, log

Functional Concepts | 47

messages will all be prepended with the associated username. Notice that we’re using
the getFakeMembers function that returns a promise from Chapter 2:

const userLogs = userName => message =>
 console.log(`${userName} -> ${message}`);

const log = userLogs("grandpa23");

log("attempted to load 20 fake members");
getFakeMembers(20).then(
 members => log(`successfully loaded ${members.length} members`),
 error => log("encountered an error loading members")
);

// grandpa23 -> attempted to load 20 fake members
// grandpa23 -> successfully loaded 20 members

// grandpa23 -> attempted to load 20 fake members
// grandpa23 -> encountered an error loading members

userLogs is the higher-order function. The log function is produced from userLogs,
and every time the log function is used, “grandpa23” is prepended to the message.

Recursion
Recursion is a technique that involves creating functions that recall themselves.
Often, when faced with a challenge that involves a loop, a recursive function can be
used instead. Consider the task of counting down from 10. We could create a for
loop to solve this problem, or we could alternatively use a recursive function. In this
example, countdown is the recursive function:

const countdown = (value, fn) => {
 fn(value);
 return value > 0 ? countdown(value - 1, fn) : value;
};

countdown(10, value => console.log(value));

// 10
// 9
// 8
// 7
// 6
// 5
// 4
// 3
// 2
// 1
// 0

48 | Chapter 3: Functional Programming with JavaScript

countdown expects a number and a function as arguments. In this example, it’s
invoked with a value of 10 and a callback function. When countdown is invoked, the
callback is invoked, which logs the current value. Next, countdown checks the value to
see if it’s greater than 0. If it is, countdown recalls itself with a decremented value.
Eventually, the value will be 0, and countdown will return that value all the way back
up the call stack.

Recursion is a pattern that works particularly well with asynchronous processes.
Functions can recall themselves when they’re ready, like when the data is available or
when a timer has finished.

The countdown function can be modified to count down with a delay. This modified
version of the countdown function can be used to create a countdown clock:

const countdown = (value, fn, delay = 1000) => {
 fn(value);
 return value > 0
 ? setTimeout(() => countdown(value - 1, fn, delay), delay)
 : value;
};

const log = value => console.log(value);
countdown(10, log);

In this example, we create a 10-second countdown by initially invoking countdown
once with the number 10 in a function that logs the countdown. Instead of recalling
itself right away, the countdown function waits one second before recalling itself, thus
creating a clock.

Recursion is a good technique for searching data structures. You can use recursion to
iterate through subfolders until a folder that contains only files is identified. You can
also use recursion to iterate though the HTML DOM until you find an element that
does not contain any children. In the next example, we’ll use recursion to iterate
deeply into an object to retrieve a nested value:

const dan = {
 type: "person",
 data: {
 gender: "male",
 info: {
 id: 22,
 fullname: {
 first: "Dan",
 last: "Deacon"
 }
 }
 }
};

Functional Concepts | 49

deepPick("type", dan); // "person"
deepPick("data.info.fullname.first", dan); // "Dan"

deepPick can be used to access Dan’s type, stored immediately in the first object, or to
dig down into nested objects to locate Dan’s first name. Sending a string that uses dot
notation, we can specify where to locate values that are nested deep within an object:

const deepPick = (fields, object = {}) => {
 const [first, ...remaining] = fields.split(".");
 return remaining.length
 ? deepPick(remaining.join("."), object[first])
 : object[first];
};

The deepPick function is either going to return a value or recall itself until it eventu‐
ally returns a value. First, this function splits the dot-notated fields string into an
array and uses array destructuring to separate the first value from the remaining val‐
ues. If there are remaining values, deepPick recalls itself with slightly different data,
allowing it to dig one level deeper.

This function continues to call itself until the fields string no longer contains dots,
meaning that there are no more remaining fields. In this sample, you can see how the
values for first, remaining, and object[first] change as deepPick iterates
through:

deepPick("data.info.fullname.first", dan); // "Dan"

// First Iteration
// first = "data"
// remaining.join(".") = "info.fullname.first"
// object[first] = { gender: "male", {info} }

// Second Iteration
// first = "info"
// remaining.join(".") = "fullname.first"
// object[first] = {id: 22, {fullname}}

// Third Iteration
// first = "fullname"
// remaining.join("." = "first"
// object[first] = {first: "Dan", last: "Deacon" }

// Finally...
// first = "first"
// remaining.length = 0
// object[first] = "Deacon"

Recursion is a powerful functional technique that’s fun to implement.

50 | Chapter 3: Functional Programming with JavaScript

Composition
Functional programs break up their logic into small, pure functions that are focused
on specific tasks. Eventually, you’ll need to put these smaller functions together.
Specifically, you may need to combine them, call them in series or parallel, or com‐
pose them into larger functions until you eventually have an application.

When it comes to composition, there are a number of different implementations, pat‐
terns, and techniques. One that you may be familiar with is chaining. In JavaScript,
functions can be chained together using dot notation to act on the return value of the
previous function.

Strings have a replace method. The replace method returns a template string, which
will also have a replace method. Therefore, we can chain together replace methods
with dot notation to transform a string:

const template = "hh:mm:ss tt";
const clockTime = template
 .replace("hh", "03")
 .replace("mm", "33")
 .replace("ss", "33")
 .replace("tt", "PM");

console.log(clockTime);

// "03:33:33 PM"

In this example, the template is a string. By chaining replace methods to the end of
the template string, we can replace hours, minutes, seconds, and time of day in the
string with new values. The template itself remains intact and can be reused to create
more clock time displays.

The both function is one function that pipes a value through two separate functions.
The output of civilian hours becomes the input for appendAMPM, and we can change a
date using both of these functions combined into one:

const both = date => appendAMPM(civilianHours(date));

However, this syntax is hard to comprehend and therefore tough to maintain or scale.
What happens when we need to send a value through 20 different functions?

A more elegant approach is to create a higher-order function we can use to compose
functions into larger functions:

const both = compose(
 civilianHours,
 appendAMPM
);

both(new Date());

Functional Concepts | 51

This approach looks much better. It’s easy to scale because we can add more functions
at any point. This approach also makes it easy to change the order of the composed
functions.

The compose function is a higher-order function. It takes functions as arguments and
returns a single value:

const compose = (...fns) => arg =>
 fns.reduce((composed, f) => f(composed), arg);

compose takes in functions as arguments and returns a single function. In this imple‐
mentation, the spread operator is used to turn those function arguments into an array
called fns. A function is then returned that expects one argument, arg. When this
function is invoked, the fns array is piped starting with the argument we want to
send through the function. The argument becomes the initial value for compose, then
each iteration of the reduced callback returns. Notice that the callback takes two argu‐
ments: composed and a function f. Each function is invoked with compose, which is
the result of the previous function’s output. Eventually, the last function will be
invoked and the last result returned.

This is a simple example of a compose function designed to illustrate composition
techniques. This function becomes more complex when it’s time to handle more than
one argument or deal with arguments that are not functions.

Putting It All Together
Now that we’ve been introduced to the core concepts of functional programming, let’s
put those concepts to work for us and build a small JavaScript application.

Our challenge is to build a ticking clock. The clock needs to display hours, minutes,
seconds, and time of day in civilian time. Each field must always have double digits,
meaning leading zeros need to be applied to single-digit values like 1 or 2. The clock
must also tick and change the display every second.

First, let’s review an imperative solution for the clock:

// Log Clock Time every Second
setInterval(logClockTime, 1000);

function logClockTime() {
 // Get Time string as civilian time
 let time = getClockTime();

 // Clear the Console and log the time
 console.clear();
 console.log(time);
}

function getClockTime() {

52 | Chapter 3: Functional Programming with JavaScript

 // Get the Current Time
 let date = new Date();
 let time = "";

 // Serialize clock time
 let time = {
 hours: date.getHours(),
 minutes: date.getMinutes(),
 seconds: date.getSeconds(),
 ampm: "AM"
 };

 // Convert to civilian time
 if (time.hours == 12) {
 time.ampm = "PM";
 } else if (time.hours > 12) {
 time.ampm = "PM";
 time.hours -= 12;
 }

 // Prepend a 0 on the hours to make double digits
 if (time.hours < 10) {
 time.hours = "0" + time.hours;
 }

 // prepend a 0 on the minutes to make double digits
 if (time.minutes < 10) {
 time.minutes = "0" + time.minutes;
 }

 // prepend a 0 on the seconds to make double digits
 if (time.seconds < 10) {
 time.seconds = "0" + time.seconds;
 }

 // Format the clock time as a string "hh:mm:ss tt"
 return time.hours + ":" + time.minutes + ":" + time.seconds + " " + time.ampm;
}

This solution works, and the comments help us understand what’s happening. How‐
ever, these functions are large and complicated. Each function does a lot. They’re
hard to comprehend, they require comments, and they’re tough to maintain. Let’s see
how a functional approach can produce a more scalable application.

Our goal will be to break the application logic up into smaller parts: functions. Each
function will be focused on a single task, and we’ll compose them into larger func‐
tions that we can use to create the clock.

First, let’s create some functions that give us values and manage the console. We’ll
need a function that gives us one second, a function that gives us the current time,
and a couple of functions that will log messages on a console and clear the console. In

Functional Concepts | 53

functional programs, we should use functions over values wherever possible. We’ll
invoke the function to obtain the value when needed:

const oneSecond = () => 1000;
const getCurrentTime = () => new Date();
const clear = () => console.clear();
const log = message => console.log(message);

Next, we’ll need some functions for transforming data. These three functions will be
used to mutate the Date object into an object that can be used for our clock:

serializeClockTime

Takes a date object and returns an object for clock time that contains hours,
minutes, and seconds.

civilianHours

Takes the clock time object and returns an object where hours are converted to
civilian time. For example: 1300 becomes 1:00.

appendAMPM

Takes the clock time object and appends time of day (AM or PM) to that object.

const serializeClockTime = date => ({
 hours: date.getHours(),
 minutes: date.getMinutes(),
 seconds: date.getSeconds()
});

const civilianHours = clockTime => ({
 ...clockTime,
 hours: clockTime.hours > 12 ? clockTime.hours - 12 : clockTime.hours
});

const appendAMPM = clockTime => ({
 ...clockTime,
 ampm: clockTime.hours >= 12 ? "PM" : "AM"
});

These three functions are used to transform data without changing the original. They
treat their arguments as immutable objects.

Next, we’ll need a few higher-order functions:

display

Takes a target function and returns a function that will send a time to the target.
In this example, the target will be console.log.

formatClock

Takes a template string and uses it to return clock time formatted based on the
criteria from the string. In this example, the template is “hh:mm:ss tt”. From

54 | Chapter 3: Functional Programming with JavaScript

there, formatClock will replace the placeholders with hours, minutes, seconds,
and time of day.

prependZero

Takes an object’s key as an argument and prepends a zero to the value stored
under that object’s key. It takes in a key to a specific field and prepends values
with a zero if the value is less than 10.

const display = target => time => target(time);

const formatClock = format => time =>
 format
 .replace("hh", time.hours)
 .replace("mm", time.minutes)
 .replace("ss", time.seconds)
 .replace("tt", time.ampm);

const prependZero = key => clockTime => ({
 ...clockTime,
 key: clockTime[key] < 10 ? "0" + clockTime[key] : clockTime[key]
});

These higher-order functions will be invoked to create the functions that will be
reused to format the clock time for every tick. Both formatClock and prependZero
will be invoked once, initially setting up the required template or key. The inner func‐
tions they return will be invoked once every second to format the time for display.

Now that we have all of the functions required to build a ticking clock, we’ll need to
compose them. We’ll use the compose function that we defined in the last section to
handle composition:

convertToCivilianTime

A single function that takes clock time as an argument and transforms it into
civilian time by using both civilian hours.

doubleDigits

A single function that takes civilian clock time and makes sure the hours,
minutes, and seconds display double digits by prepending zeros where needed.

startTicking

Starts the clock by setting an interval that invokes a callback every second. The
callback is composed using all our functions. Every second the console is cleared,
currentTime is obtained, converted, civilianized, formatted, and displayed.

const convertToCivilianTime = clockTime =>
 compose(
 appendAMPM,
 civilianHours
)(clockTime);

Functional Concepts | 55

const doubleDigits = civilianTime =>
 compose(
 prependZero("hours"),
 prependZero("minutes"),
 prependZero("seconds")
)(civilianTime);

const startTicking = () =>
 setInterval(
 compose(
 clear,
 getCurrentTime,
 serializeClockTime,
 convertToCivilianTime,
 doubleDigits,
 formatClock("hh:mm:ss tt"),
 display(log)
),
 oneSecond()
);

startTicking();

This declarative version of the clock achieves the same results as the imperative ver‐
sion. However, there quite a few benefits to this approach. First, all of these functions
are easily testable and reusable. They can be used in future clocks or other digital dis‐
plays. Also, this program is easily scalable. There are no side effects. There are no
global variables outside of functions themselves. There could still be bugs, but they’ll
be easier to find.

In this chapter, we’ve introduced functional programming principles. Throughout the
book when we discuss best practices in React, we’ll continue to demonstrate how
many React concepts are based in functional techniques. In the next chapter, we’ll
dive into React officially with an improved understanding of the principles that gui‐
ded its development.

56 | Chapter 3: Functional Programming with JavaScript

CHAPTER 4

How React Works

So far on your journey, you’ve brushed up on the latest syntax. You’ve reviewed the
functional programming patterns that guided React’s creation. These steps have pre‐
pared you to take the next step, to do what you came here to do: to learn how React
works. Let’s get into writing some real React code.

When you work with React, it’s more than likely that you’ll be creating your apps with
JSX. JSX is a tag-based JavaScript syntax that looks a lot like HTML. It’s a syntax we’ll
dive deep into in the next chapter and continue to use for the rest of the book. To
truly understand React, though, we need to understand its most atomic units: React
elements. From there, we’ll get into React elements. From there, we’ll get into React
components by looking at how we can create custom components that compose other
components and elements.

Page Setup
In order to work with React in the browser, we need to include two libraries: React
and ReactDOM. React is the library for creating views. ReactDOM is the library used
to actually render the UI in the browser. Both libraries are available as scripts from
the unpkg CDN (links are included in the following code). Let’s set up an HTML
document:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8" />
 <title>React Samples</title>
 </head>
 <body>
 <!-- Target container -->
 <div id="root"></div>

57

 <!-- React library & ReactDOM (Development Version)-->
 <script
 src="https://unpkg.com/react@16/umd/react.development.js">
 </script>
 <script
 src="https://unpkg.com/react-dom@16/umd/react-dom.development.js">
 </script>

 <script>
 // Pure React and JavaScript code
 </script>
 </body>
</html>

These are the minimum requirements for working with React in the browser. You can
place your JavaScript in a separate file, but it must be loaded somewhere in the page
after React has been loaded. We’re going to be using the development version of React
to see all of the error messages and warnings in the browser console. You can choose
to use the minified production version using react.production.min.js and react-
dom.production.min.js, which will strip away those warnings.

React Elements
HTML is simply a set of instructions that a browser follows when constructing the
DOM. The elements that make up an HTML document become DOM elements
when the browser loads HTML and renders the user interface.

Let’s say you have to construct an HTML hierarchy for a recipe. A possible solution
for such a task might look something like this:

<section id="baked-salmon">
 <h1>Baked Salmon</h1>
 <ul class="ingredients">
 2 lb salmon
 5 sprigs fresh rosemary
 2 tablespoons olive oil
 2 small lemons
 1 teaspoon kosher salt
 4 cloves of chopped garlic

 <section class="instructions">
 <h2>Cooking Instructions</h2>
 <p>Preheat the oven to 375 degrees.</p>
 <p>Lightly coat aluminum foil with oil.</p>
 <p>Place salmon on foil</p>
 <p>Cover with rosemary, sliced lemons, chopped garlic.</p>
 <p>Bake for 15-20 minutes until cooked through.</p>
 <p>Remove from oven.</p>

58 | Chapter 4: How React Works

 </section>
</section>

In HTML, elements relate to one another in a hierarchy that resembles a family tree.
We could say that the root element (in this case, a section) has three children: a head‐
ing, an unordered list of ingredients, and a section for the instructions.

In the past, websites consisted of independent HTML pages. When the user navigated
these pages, the browser would request and load different HTML documents. The
invention of AJAX (Asynchronous JavaScript and XML) brought us the single-page
application, or SPA. Since browsers could request and load tiny bits of data using
AJAX, entire web applications could now run out of a single page and rely on Java‐
Script to update the user interface.

In an SPA, the browser initially loads one HTML document. As users navigate
through the site, they actually stay on the same page. JavaScript destroys and creates a
new user interface as the user interacts with the application. It may feel as though
you’re jumping from page to page, but you’re actually still on the same HTML page,
and JavaScript is doing the heavy lifting.

The DOM API is a collection of objects that JavaScript can use to interact with the
browser to modify the DOM. If you’ve used document.createElement or docu
ment.appendChild, you’ve worked with the DOM API.

React is a library that’s designed to update the browser DOM for us. We no longer
have to be concerned with the complexities associated with building high-performing
SPAs because React can do that for us. With React, we do not interact with the DOM
API directly. Instead, we provide instructions for what we want React to build, and
React will take care of rendering and reconciling the elements we’ve instructed it to
create.

The browser DOM is made up of DOM elements. Similarly, the React DOM is made
up of React elements. DOM elements and React elements may look the same, but
they’re actually quite different. A React element is a description of what the actual
DOM element should look like. In other words, React elements are the instructions
for how the browser DOM should be created.

We can create a React element to represent an h1 using React.createElement:

React.createElement("h1", { id: "recipe-0" }, "Baked Salmon");

React Elements | 59

The first argument defines the type of element we want to create. In this case, we
want to create an h1 element. The second argument represents the element’s proper‐
ties. This h1 currently has an id of recipe-0. The third argument represents the ele‐
ment’s children: any nodes that are inserted between the opening and closing tag (in
this case, just some text).

During rendering, React will convert this element to an actual DOM element:

<h1 id="recipe-0">Baked Salmon</h1>

The properties are similarly applied to the new DOM element: the properties are
added to the tag as attributes, and the child text is added as text within the element. A
React element is just a JavaScript literal that tells React how to construct the DOM
element.

If you were to log this element, it would look like this:

{
 $$typeof: Symbol(React.element),
 "type": "h1",
 "key": null,
 "ref": null,
 "props": {id: "recipe-0", children: "Baked Salmon"},
 "_owner": null,
 "_store": {}
}

This is the structure of a React element. There are fields that are used by React:
_owner, _store, and $$typeof. The key and ref fields are important to React ele‐
ments, but we’ll introduce those later. For now, let’s take a closer look at the type and
props fields.

The type property of the React element tells React what type of HTML or SVG ele‐
ment to create. The props property represents the data and child elements required to
construct a DOM element. The children property is for displaying other nested ele‐
ments as text.

Creating Elements

We’re taking a peek at the object that React.createElement
returns. You won’t actually create these elements by hand; instead,
you’ll use the React.createElement function.

60 | Chapter 4: How React Works

ReactDOM
Once we’ve created a React element, we’ll want to see it in the browser. ReactDOM
contains the tools necessary to render React elements in the browser. ReactDOM is
where we’ll find the render method.

We can render a React element, including its children, to the DOM with React
DOM.render. The element we want to render is passed as the first argument, and the
second argument is the target node, where we should render the element:

const dish = React.createElement("h1", null, "Baked Salmon");

ReactDOM.render(dish, document.getElementById("root"));

Rendering the title element to the DOM would add an h1 element to the div with the
id of root, which we would already have defined in our HTML. We build this div
inside the body tag:

<body>
 <div id="root">
 <h1>Baked Salmon</h1>
 </div>
</body>

Anything related to rendering elements to the DOM is found in the ReactDOM pack‐
age. In versions of React earlier than React 16, you could only render one element to
the DOM. Today, it’s possible to render arrays as well. When the ability to do this was
announced at ReactConf 2017, everyone clapped and screamed. It was a big deal. This
is what that looks like:

const dish = React.createElement("h1", null, "Baked Salmon");
const dessert = React.createElement("h2", null, "Coconut Cream Pie");

ReactDOM.render([dish, dessert], document.getElementById("root"));

This will render both of these elements as siblings inside of the root container. We
hope you just clapped and screamed!

In the next section, we’ll get an understanding of how to use props.children.

Children
React renders child elements using props.children. In the previous section, we ren‐
dered a text element as a child of the h1 element, and thus props.children was set to
Baked Salmon. We could render other React elements as children, too, creating a tree
of elements. This is why we use the term element tree: the tree has one root element
from which many branches grow.

ReactDOM | 61

Let’s consider the unordered list that contains ingredients:

 2 lb salmon
 5 sprigs fresh rosemary
 2 tablespoons olive oil
 2 small lemons
 1 teaspoon kosher salt
 4 cloves of chopped garlic

In this sample, the unordered list is the root element, and it has six children. We can
represent this ul and its children with React.createElement:

React.createElement(
 "ul",
 null,
 React.createElement("li", null, "2 lb salmon"),
 React.createElement("li", null, "5 sprigs fresh rosemary"),
 React.createElement("li", null, "2 tablespoons olive oil"),
 React.createElement("li", null, "2 small lemons"),
 React.createElement("li", null, "1 teaspoon kosher salt"),
 React.createElement("li", null, "4 cloves of chopped garlic")
);

Every additional argument sent to the createElement function is another child ele‐
ment. React creates an array of these child elements and sets the value of props.chil
dren to that array.

If we were to inspect the resulting React element, we would see each list item repre‐
sented by a React element and added to an array called props.children. If you con‐
sole log this element:

const list = React.createElement(
 "ul",
 null,
 React.createElement("li", null, "2 lb salmon"),
 React.createElement("li", null, "5 sprigs fresh rosemary"),
 React.createElement("li", null, "2 tablespoons olive oil"),
 React.createElement("li", null, "2 small lemons"),
 React.createElement("li", null, "1 teaspoon kosher salt"),
 React.createElement("li", null, "4 cloves of chopped garlic")
);

console.log(list);

The result will look like this:

{
 "type": "ul",
 "props": {
 "children": [
 { "type": "li", "props": { "children": "2 lb salmon" } … },

62 | Chapter 4: How React Works

 { "type": "li", "props": { "children": "5 sprigs fresh rosemary"} … },
 { "type": "li", "props": { "children": "2 tablespoons olive oil" } … },
 { "type": "li", "props": { "children": "2 small lemons"} … },
 { "type": "li", "props": { "children": "1 teaspoon kosher salt"} … },
 { "type": "li", "props": { "children": "4 cloves of chopped garlic"} … }
]
 ...
 }
}

We can now see that each list item is a child. Earlier in this chapter, we introduced
HTML for an entire recipe rooted in a section element. To create this using React,
we’ll use a series of createElement calls:

React.createElement(
 "section",
 { id: "baked-salmon" },
 React.createElement("h1", null, "Baked Salmon"),
 React.createElement(
 "ul",
 { className: "ingredients" },
 React.createElement("li", null, "2 lb salmon"),
 React.createElement("li", null, "5 sprigs fresh rosemary"),
 React.createElement("li", null, "2 tablespoons olive oil"),
 React.createElement("li", null, "2 small lemons"),
 React.createElement("li", null, "1 teaspoon kosher salt"),
 React.createElement("li", null, "4 cloves of chopped garlic")
),
 React.createElement(
 "section",
 { className: "instructions" },
 React.createElement("h2", null, "Cooking Instructions"),
 React.createElement("p", null, "Preheat the oven to 375 degrees."),
 React.createElement("p", null, "Lightly coat aluminum foil with oil."),
 React.createElement("p", null, "Place salmon on foil."),
 React.createElement(
 "p",
 null,
 "Cover with rosemary, sliced lemons, chopped garlic."
),
 React.createElement(
 "p",
 null,
 "Bake for 15-20 minutes until cooked through."
),
 React.createElement("p", null, "Remove from oven.")
)
);

ReactDOM | 63

className in React

Any element that has an HTML class attribute is using className
for that property instead of class. Since class is a reserved word
in JavaScript, we have to use className to define the class
attribute of an HTML element. This sample is what pure React
looks like. Pure React is ultimately what runs in the browser. A
React app is a tree of React elements all stemming from a single
root element. React elements are the instructions React will use to
build a UI in the browser.

Constructing elements with data
The major advantage of using React is its ability to separate data from UI elements.
Since React is just JavaScript, we can add JavaScript logic to help us build the React
component tree. For example, ingredients can be stored in an array, and we can map
that array to the React elements.

Let’s go back and think about the unordered list for a moment:

React.createElement(
 "ul",
 null,
 React.createElement("li", null, "2 lb salmon"),
 React.createElement("li", null, "5 sprigs fresh rosemary"),
 React.createElement("li", null, "2 tablespoons olive oil"),
 React.createElement("li", null, "2 small lemons"),
 React.createElement("li", null, "1 teaspoon kosher salt"),
 React.createElement("li", null, "4 cloves of chopped garlic")
);

The data used in this list of ingredients can easily be represented using a JavaScript
array:

const items = [
 "2 lb salmon",
 "5 sprigs fresh rosemary",
 "2 tablespoons olive oil",
 "2 small lemons",
 "1 teaspoon kosher salt",
 "4 cloves of chopped garlic"
];

We want to use this data to generate the correct number of list items without having
to hard-code each one. We can map over the array and create list items for as many
ingredients as there are:

64 | Chapter 4: How React Works

React.createElement(
 "ul",
 { className: "ingredients" },
 items.map(ingredient => React.createElement("li", null, ingredient))
);

This syntax creates a React element for each ingredient in the array. Each string is dis‐
played in the list item’s children as text. The value for each ingredient is displayed as
the list item.

When running this code, you’ll see a console warning like the one shown in
Figure 4-1.

Figure 4-1. Console warning

When we build a list of child elements by iterating through an array, React likes each
of those elements to have a key property. The key property is used by React to help it
update the DOM efficiently. You can make this warning go away by adding a unique
key property to each of the list item elements. You can use the array index for each
ingredient as that unique value:

React.createElement(
 "ul",
 { className: "ingredients" },
 items.map((ingredient, i) =>
 React.createElement("li", { key: i }, ingredient)
)
);

We’ll cover keys in more detail when we discuss JSX, but adding this to each list item
will clear the console warning.

React Components
No matter its size, its contents, or what technologies are used to create it, a user inter‐
face is made up of parts. Buttons. Lists. Headings. All of these parts, when put
together, make up a user interface. Consider a recipe application with three different
recipes. The data is different in each box, but the parts needed to create a recipe are
the same (see Figure 4-2).

React Components | 65

Figure 4-2. Recipes app

In React, we describe each of these parts as a component. Components allow us to
reuse the same structure, and then we can populate those structures with different
sets of data.

When considering a user interface you want to build with React, look for opportuni‐
ties to break down your elements into reusable pieces. For example, the recipes in
Figure 4-3 have a title, ingredients list, and instructions. All are part of a larger recipe
or app component. We could create a component for each of the highlighted parts:
ingredients, instructions, and so on.

Figure 4-3. Each component is outlined: App, IngredientsList, Instructions

Think about how scalable this is. If we want to display one recipe, our component
structure will support this. If we want to display 10,000 recipes, we’ll just create
10,000 new instances of that component.

We’ll create a component by writing a function. That function will return a reusable
part of a user interface. Let’s create a function that returns an unordered list of ingre‐
dients. This time, we’ll make dessert with a function called IngredientsList:

function IngredientsList() {
 return React.createElement(
 "ul",

66 | Chapter 4: How React Works

 { className: "ingredients" },
 React.createElement("li", null, "1 cup unsalted butter"),
 React.createElement("li", null, "1 cup crunchy peanut butter"),
 React.createElement("li", null, "1 cup brown sugar"),
 React.createElement("li", null, "1 cup white sugar"),
 React.createElement("li", null, "2 eggs"),
 React.createElement("li", null, "2.5 cups all purpose flour"),
 React.createElement("li", null, "1 teaspoon baking powder"),
 React.createElement("li", null, "0.5 teaspoon salt")
);
}

ReactDOM.render(
 React.createElement(IngredientsList, null, null),
 document.getElementById("root")
);

The component’s name is IngredientsList, and the function outputs elements that
look like this:

<IngredientsList>
 <ul className="ingredients">
 1 cup unsalted butter
 1 cup crunchy peanut butter
 1 cup brown sugar
 1 cup white sugar
 2 eggs
 2.5 cups all purpose flour
 1 teaspoon baking powder
 0.5 teaspoon salt

</IngredientsList>

This is pretty cool, but we’ve hardcoded this data into the component. What if we
could build one component and then pass data into that component as properties?
And then what if that component could render the data dynamically? Maybe some‐
day that will happen!

Just kidding—that day is now. Here’s an array of secretIngredients needed to put
together a recipe:

const secretIngredients = [
 "1 cup unsalted butter",
 "1 cup crunchy peanut butter",
 "1 cup brown sugar",
 "1 cup white sugar",
 "2 eggs",
 "2.5 cups all purpose flour",
 "1 teaspoon baking powder",
 "0.5 teaspoon salt"
];

React Components | 67

Then we’ll adjust the IngredientsList component to map over these items, con‐
structing an li for however many items are in the items array:

function IngredientsList() {
 return React.createElement(
 "ul",
 { className: "ingredients" },
 items.map((ingredient, i) =>
 React.createElement("li", { key: i }, ingredient)
)
);
}

Then we’ll pass those secretIngredients as a property called items, which is the
second argument used in createElement:

ReactDOM.render(
 React.createElement(IngredientsList, { items: secretIngredients }, null),
 document.getElementById("root")
);

Now, let’s look at the DOM. The data property items is an array with eight ingredi‐
ents. Because we made the li tags using a loop, we were able to add a unique key
using the index of the loop:

<IngredientsList items="[...]">
 <ul className="ingredients">
 <li key="0">1 cup unsalted butter
 <li key="1">1 cup crunchy peanut butter
 <li key="2">1 cup brown sugar
 <li key="3">1 cup white sugar
 <li key="4">2 eggs
 <li key="5">2.5 cups all purpose flour
 <li key="6">1 teaspoon baking powder
 <li key="7">0.5 teaspoon salt

</IngredientsList>

Creating our component this way will make the component more flexible. Whether
the items array is one item or a hundred items long, the component will render each
as a list item.

Another adjustment we can make here is to reference the items array from React
props. Instead of mapping over the global items, we’ll make items available on the
props object. Start by passing props to the function, then mapping over
props.items:

function IngredientsList(props) {
 return React.createElement(
 "ul",
 { className: "ingredients" },
 props.items.map((ingredient, i) =>

68 | Chapter 4: How React Works

 React.createElement("li", { key: i }, ingredient)
)
);
}

We could also clean up the code a bit by destructuring items from props:

function IngredientsList({ items }) {
 return React.createElement(
 "ul",
 { className: "ingredients" },
 items.map((ingredient, i) =>
 React.createElement("li", { key: i }, ingredient)
)
);
}

Everything that’s associated with the UI for IngredientsList is encapsulated into
one component. Everything we need is right there.

React Components: A Historical Tour
Before there were function components, there were other ways to create components.
While we won’t spend a great deal of time on these approaches, it’s important to
understand the history of React components, particularly when dealing with these
APIs in legacy codebases. Let’s take a little historical tour of React APIs of times gone
by.

Tour stop 1: createClass
When React was first made open source in 2013, there was one way to create a com‐
ponent: createClass. The use of React.createClass to create a component looks
like this:

const IngredientsList = React.createClass({
 displayName: "IngredientsList",
 render() {
 return React.createElement(
 "ul",
 { className: "ingredients" },
 this.props.items.map((ingredient, i) =>
 React.createElement("li", { key: i }, ingredient)
)
);
 }
});

Components that used createClass would have a render() method that described
the React element(s) that should be returned and rendered. The idea of the compo‐
nent was the same: we’d describe a reusable bit of UI to render.

React Components | 69

In React 15.5 (April 2017), React started throwing warnings if createClass was used.
In React 16 (September 2017), React.createClass was officially deprecated and was
moved to its own package, create-react-class.

Tour stop 2: class components
When class syntax was added to JavaScript with ES 2015, React introduced a new
method for creating React components. The React.Component API allowed you to
use class syntax to create a new component instance:

class IngredientsList extends React.Component {
 render() {
 return React.createElement(
 "ul",
 { className: "ingredients" },
 this.props.items.map((ingredient, i) =>
 React.createElement("li", { key: i }, ingredient)
)
);
 }
}

It’s still possible to create a React component using class syntax, but be forewarned
that React.Component is on the path to deprecation as well. Although it’s still sup‐
ported, you can expect this to go the way of React.createClass, another old friend
who shaped you but who you won’t see as often because they moved away and you
moved on. From now on, we’ll use functions to create components in this book and
only briefly point out older patterns for reference.

70 | Chapter 4: How React Works

CHAPTER 5

React with JSX

In the last chapter, we dove deep into how React works, breaking down our React
applications into small reusable pieces called components. These components render
trees of elements and other components. Using the createElement function is a good
way to see how React works, but as React developers, that’s not what we do. We don’t
go around composing complex, barely readable trees of JavaScript syntax and call it
fun. In order to work efficiently with React, we need one more thing: JSX.

JSX combines the JS from JavaScript and the X from XML. It is a JavaScript extension
that allows us to define React elements using a tag-based syntax directly within our
JavaScript code. Sometimes JSX is confused with HTML because they look similar.
JSX is just another way of creating React elements, so you don’t have to pull your hair
out looking for the missing comma in a complex createElement call.

In this chapter, we’re going to discuss how to use JSX to construct a React application.

React Elements as JSX
Facebook’s React team released JSX when they released React to provide a concise
syntax for creating complex DOM trees with attributes. They also hoped to make
React more readable like HTML and XML. In JSX, an element’s type is specified with
a tag. The tag’s attributes represent the properties. The element’s children can be
added between the opening and closing tags.

71

You can also add other JSX elements as children. If you have an unordered list, you
can add child list item elements to it with JSX tags. It looks very similar to HTML:

 1 lb Salmon
 1 cup Pine Nuts
 2 cups Butter Lettuce
 1 Yellow Squash
 1/2 cup Olive Oil
 3 Cloves of Garlic

JSX works with components as well. Simply define the component using the class
name. We pass an array of ingredients to the IngredientsList as a property with
JSX, as shown in Figure 5-1.

Figure 5-1. Creating the IngredientsList with JSX

When we pass the array of ingredients to this component, we need to surround it
with curly braces. This is called a JavaScript expression, and we must use these when
passing JavaScript values to components as properties. Component properties will
take two types: either a string or a JavaScript expression. JavaScript expressions can
include arrays, objects, and even functions. In order to include them, you must sur‐
round them in curly braces.

JSX Tips
JSX might look familiar, and most of the rules result in syntax that’s similar to HTML.
However, there are a few considerations you should understand when working with
JSX.

Nested components
JSX allows you to add components as children of other components. For example,
inside the IngredientsList, we can render another component called Ingredient
multiple times:

<IngredientsList>
 <Ingredient />
 <Ingredient />
 <Ingredient />
</IngredientsList>

72 | Chapter 5: React with JSX

className

Since class is a reserved word in JavaScript, className is used to define the class
attribute instead:

<h1 className="fancy">Baked Salmon</h1>

JavaScript expressions
JavaScript expressions are wrapped in curly braces and indicate where variables will
be evaluated and their resulting values returned. For example, if we want to display
the value of the title property in an element, we can insert that value using a Java‐
Script expression. The variable will be evaluated and its value returned:

<h1>{title}</h1>

Values of types other than string should also appear as JavaScript expressions:

<input type="checkbox" defaultChecked={false} />

Evaluation
The JavaScript that’s added in between the curly braces will get evaluated. This means
that operations such as concatenation or addition will occur. This also means that
functions found in JavaScript expressions will be invoked:

<h1>{"Hello" + title}</h1>

<h1>{title.toLowerCase().replace}</h1>

Mapping Arrays with JSX
JSX is JavaScript, so you can incorporate JSX directly inside of JavaScript functions.
For example, you can map an array to JSX elements:

 {props.ingredients.map((ingredient, i) => (
 <li key="{i}">{ingredient}
))}

JSX looks clean and readable, but it can’t be interpreted with a browser. All JSX must
be converted into createElement calls. Luckily, there’s an excellent tool for this task:
Babel.

Babel
Many software languages require you to compile your source code. JavaScript is an
interpreted language: the browser interprets the code as text, so there’s no need to
compile JavaScript. However, not all browsers support the latest JavaScript syntax,

Babel | 73

and no browser supports JSX syntax. Since we want to use the latest features of Java‐
Script along with JSX, we’re going to need a way to convert our fancy source code into
something that the browser can interpret. This process is called compiling, and it’s
what Babel is designed to do.

The first version of the project was called 6to5, and it was released in September
2014. 6to5 was a tool that could be used to convert ES6 syntax to ES5 syntax, which
was more widely supported by web browsers. As the project grew, it aimed to be a
platform to support all of the latest changes in ECMAScript. It also grew to support
converting JSX into JavaScript. The project was renamed Babel in February 2015.

Babel is used in production at Facebook, Netflix, PayPal, Airbnb, and more. Previ‐
ously, Facebook had created a JSX transformer that was their standard, but it was
soon retired in favor of Babel.

There are many ways of working with Babel. The easiest way to get started is to
include a link to the Babel CDN directly in your HTML, which will compile any code
in script blocks that have a type of “text/babel.” Babel will compile the source code on
the client before running it. Although this may not be the best solution for produc‐
tion, it’s a great way to get started with JSX:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8" />
 <title>React Examples</title>
 </head>
 <body>
 <div id="root"></div>

 <!-- React Library & React DOM -->
 <script
 src="https://unpkg.com/react@16.8.6/umd/react.development.js">
 </script>
 <script
 src="https://unpkg.com/react-dom@16.8.6/umd/react-dom.development.js">
 </script>
 <script
 src="https://unpkg.com/@babel/standalone/babel.min.js">
 </script>

 <script type="text/babel">
 // JSX code here. Or link to separate JavaScript file that contains JSX.
 </script>
 </body>
</html>

74 | Chapter 5: React with JSX

Console Warning in the Browser with In-Browser Babel

When using the in-browser transformer, you’ll see a warning that
says to precompile scripts for production. Don’t worry about that
warning for the purposes of this and any other small demos. We’ll
upgrade to production-ready Babel later in the chapter.

Recipes as JSX
JSX provides us with a nice, clean way to express React elements in our code that
makes sense to us and is immediately readable by developers. The drawback of JSX is
that it’s not readable by the browser. Before our code can be interpreted by the
browser, it needs to be converted from JSX into JavaScript.

This data array contains two recipes, and this represents our application’s current
state:

const data = [
 {
 name: "Baked Salmon",
 ingredients: [
 { name: "Salmon", amount: 1, measurement: "l lb" },
 { name: "Pine Nuts", amount: 1, measurement: "cup" },
 { name: "Butter Lettuce", amount: 2, measurement: "cups" },
 { name: "Yellow Squash", amount: 1, measurement: "med" },
 { name: "Olive Oil", amount: 0.5, measurement: "cup" },
 { name: "Garlic", amount: 3, measurement: "cloves" }
],
 steps: [
 "Preheat the oven to 350 degrees.",
 "Spread the olive oil around a glass baking dish.",
 "Add the yellow squash and place in the oven for 30 mins.",
 "Add the salmon, garlic, and pine nuts to the dish.",
 "Bake for 15 minutes.",
 "Remove from oven. Add the lettuce and serve."
]
 },
 {
 name: "Fish Tacos",
 ingredients: [
 { name: "Whitefish", amount: 1, measurement: "l lb" },
 { name: "Cheese", amount: 1, measurement: "cup" },
 { name: "Iceberg Lettuce", amount: 2, measurement: "cups" },
 { name: "Tomatoes", amount: 2, measurement: "large" },
 { name: "Tortillas", amount: 3, measurement: "med" }
],
 steps: [
 "Cook the fish on the grill until cooked through.",
 "Place the fish on the 3 tortillas.",
 "Top them with lettuce, tomatoes, and cheese."
]

Recipes as JSX | 75

 }
];

The data is expressed in an array of two JavaScript objects. Each object contains the
name of the recipe, a list of the ingredients required, and a list of steps necessary to
cook the recipe.

We can create a UI for these recipes with two components: a Menu component for list‐
ing the recipes and a Recipe component that describes the UI for each recipe. It’s the
Menu component that we’ll render to the DOM. We’ll pass our data to the Menu com‐
ponent as a property called recipes:

// The data, an array of Recipe objects
const data = [...];

// A function component for an individual Recipe
function Recipe (props) {
 ...
}

// A function component for the Menu of Recipes
function Menu (props) {
 ...
}

// A call to ReactDOM.render to render our Menu into the current DOM
ReactDOM.render(
 <Menu recipes={data} title="Delicious Recipes" />,
 document.getElementById("root")
);

The React elements within the Menu component are expressed as JSX. Everything is
contained within an article element. A header element, an h1 element, and a
div.recipes element are used to describe the DOM for our menu. The value for the
title property will be displayed as text within the h1:

function Menu(props) {
 return (
 <article>
 <header>
 <h1>{props.title}</h1>
 </header>
 <div className="recipes" />
 </article>
);
}

76 | Chapter 5: React with JSX

Inside of the div.recipes element, we add a component for each recipe:

<div className="recipes">
 {props.recipes.map((recipe, i) => (
 <Recipe
 key={i}
 name={recipe.name}
 ingredients={recipe.ingredients}
 steps={recipe.steps}
 />
))}
</div>

In order to list the recipes within the div.recipes element, we use curly braces to
add a JavaScript expression that will return an array of children. We can use the map
function on the props.recipes array to return a component for each object within
the array. As mentioned previously, each recipe contains a name, some ingredients,
and cooking instructions (steps). We’ll need to pass this data to each Recipe as props.
Also remember that we should use the key property to uniquely identify each
element.

You could also refactor this to use spread syntax. The JSX spread operator works like
the object spread operator. It will add each field of the recipe object as a property of
the Recipe component. The syntax here will supply all properties to the component:

{
 props.recipes.map((recipe, i) => <Recipe key={i} {...recipe} />);
}

Remember that this shortcut will provide all the properties to the Recipe component.
This could be a good thing but might also add too many properties to the component.

Another place we can make a syntax improvement to our Menu component is where
we take in the props argument. We can use object destructuring to scope the variables
to this function. This allows us to access the title and recipes variables directly, no
longer having to prefix them with props:

function Menu({ title, recipes }) {
 return (
 <article>
 <header>
 <h1>{title}</h1>
 </header>
 <div className="recipes">
 {recipes.map((recipe, i) => (
 <Recipe key={i} {...recipe} />
))}
 </div>
 </article>

Recipes as JSX | 77

);
}

Now let’s code the component for each individual recipe:

function Recipe({ name, ingredients, steps }) {
 return (
 <section id={name.toLowerCase().replace(/ /g, "-")}>
 <h1>{name}</h1>
 <ul className="ingredients">
 {ingredients.map((ingredient, i) => (
 <li key={i}>{ingredient.name}
))}

 <section className="instructions">
 <h2>Cooking Instructions</h2>
 {steps.map((step, i) => (
 <p key={i}>{step}</p>
))}
 </section>
 </section>
);
}

Each recipe has a string for the name, an array of objects for ingredients, and an array
of strings for the steps. Using object destructuring, we can tell this component to
locally scope those fields by name so we can access them directly without having to
use props.name, props.ingredients, or props.steps.

The first JavaScript expression we see is being used to set the id attribute for the root
section element. It’s converting the recipe’s name to a lowercase string and globally
replacing spaces with dashes. The result is that “Baked Salmon” will be converted to
“baked-salmon” (and likewise, if we had a recipe with the name “Boston Baked
Beans,” it would be converted to “boston-baked-beans”) before it’s used as the id
attribute in our UI. The value for name is also being displayed in an h1 as a text node.

Inside of the unordered list, a JavaScript expression is mapping each ingredient to an
li element that displays the name of the ingredient. Within our instructions section,
we see the same pattern being used to return a paragraph element where each step is
displayed. These map functions are returning arrays of child elements.

The complete code for the application should look like this:

const data = [
 {
 name: "Baked Salmon",
 ingredients: [
 { name: "Salmon", amount: 1, measurement: "l lb" },
 { name: "Pine Nuts", amount: 1, measurement: "cup" },
 { name: "Butter Lettuce", amount: 2, measurement: "cups" },
 { name: "Yellow Squash", amount: 1, measurement: "med" },

78 | Chapter 5: React with JSX

 { name: "Olive Oil", amount: 0.5, measurement: "cup" },
 { name: "Garlic", amount: 3, measurement: "cloves" }
],
 steps: [
 "Preheat the oven to 350 degrees.",
 "Spread the olive oil around a glass baking dish.",
 "Add the yellow squash and place in the oven for 30 mins.",
 "Add the salmon, garlic, and pine nuts to the dish.",
 "Bake for 15 minutes.",
 "Remove from oven. Add the lettuce and serve."
]
 },
 {
 name: "Fish Tacos",
 ingredients: [
 { name: "Whitefish", amount: 1, measurement: "l lb" },
 { name: "Cheese", amount: 1, measurement: "cup" },
 { name: "Iceberg Lettuce", amount: 2, measurement: "cups" },
 { name: "Tomatoes", amount: 2, measurement: "large" },
 { name: "Tortillas", amount: 3, measurement: "med" }
],
 steps: [
 "Cook the fish on the grill until hot.",
 "Place the fish on the 3 tortillas.",
 "Top them with lettuce, tomatoes, and cheese."
]
 }
];

function Recipe({ name, ingredients, steps }) {
 return (
 <section id={name.toLowerCase().replace(/ /g, "-")}>
 <h1>{name}</h1>
 <ul className="ingredients">
 {ingredients.map((ingredient, i) => (
 <li key={i}>{ingredient.name}
))}

 <section className="instructions">
 <h2>Cooking Instructions</h2>
 {steps.map((step, i) => (
 <p key={i}>{step}</p>
))}
 </section>
 </section>
);
}

function Menu({ title, recipes }) {
 return (
 <article>
 <header>

Recipes as JSX | 79

 <h1>{title}</h1>
 </header>
 <div className="recipes">
 {recipes.map((recipe, i) => (
 <Recipe key={i} {...recipe} />
))}
 </div>
 </article>
);
}

ReactDOM.render(
 <Menu recipes={data} title="Delicious Recipes" />,
 document.getElementById("root")
);

When we run this code in the browser, React will construct a UI using our instruc‐
tions with the recipe data as shown in Figure 5-2.

If you’re using Google Chrome and have the React Developer Tools Extension
installed, you can take a look at the present state of the component tree. To do this,
open the developer tools and select the Components tab, as shown in Figure 5-3.

Here we can see the Menu and its child elements. The data array contains two objects
for recipes, and we have two Recipe elements. Each Recipe element has properties
for the recipe name, ingredients, and steps. The ingredients and steps are passed
down to their own components as data.

The components are constructed based on the application’s data being passed to the
Menu component as a property. If we change the recipes array and rerender our Menu
component, React will change this DOM as efficiently as possible.

80 | Chapter 5: React with JSX

Figure 5-2. Delicious Recipes output

Recipes as JSX | 81

Figure 5-3. Resulting virtual DOM in React Developer Tools

React Fragments
In the previous section, we rendered the Menu component, a parent component that
rendered the Recipe component. We want to take a moment to look at a small exam‐
ple of rendering two sibling components using a React fragment. Let’s start by creat‐
ing a new component called Cat that we’ll render to the DOM at the root:

function Cat({ name }) {
 return <h1>The cat's name is {name}</h1>;
}

ReactDOM.render(<Cat name="Jungle" />, document.getElementById("root"));

82 | Chapter 5: React with JSX

This will render the h1 as expected, but what might happen if we added a p tag to the
Cat component at the same level as the h1?

function Cat({ name }) {
 return (
 <h1>The cat's name is {name}</h1>
 <p>He's good.</p>
);
}

Immediately, we’ll see an error in the console that reads Adjacent JSX elements
must be wrapped in an enclosing tag and recommends using a fragment. This is
where fragments come into play! React will not render two or more adjacent or sib‐
ling elements as a component, so we used to have to wrap these in an enclosing tag
like a div. This led to a lot of unnecessary tags being created, though, and a bunch of
wrappers without much purpose. If we use a React fragment, we can mimic the
behavior of a wrapper without actually creating a new tag.

Start by wrapping the adjacent tags, the h1 and p, with a React.Fragment tag:

function Cat({ name }) {
 return (
 <React.Fragment>
 <h1>The cat's name is {name}</h1>
 <p>He's good.</p>
 </React.Fragment>
);
}

Adding this clears the warning. You also can use a fragment shorthand to make this
look even cleaner:

function Cat({ name }) {
 return (
 <>
 <h1>The cat's name is {name}</h1>
 <p>He's good.</p>
 </>
);
}

If you look at the DOM, the fragment is not visible in the resulting tree:

<div id="root">
 <h1>The cat's name is Jungle</h1>
 <p>He's good</p>
</div>

Fragments are a relatively new feature of React and do away with the need for extra
wrapper tags that can pollute the DOM.

React Fragments | 83

Intro to webpack
Once we start working with React in real projects, there are a lot of questions to con‐
sider: How do we want to deal with JSX and ESNext transformation? How can we
manage our dependencies? How can we optimize our images and CSS?

Many different tools have emerged to answer these questions, including Browserify,
gulp, Grunt, Prepack, and more. Due to its features and widespread adoption by large
companies, webpack has also emerged as one of the leading tools for bundling.

The React ecosystem has matured to include tools like create-react-app, Gatsby, and
Code Sandbox. When you use these tools, a lot of the details about how the code gets
compiled are abstracted away. For the remainder of this chapter, we are going to set
up our own webpack build. This day in age, understanding that your JavaScript/React
code is being compiled by something like webpack is vital, but knowing how to com‐
pile your JavaScript/React with something like webpack is not as important. We
understand if you want to skip ahead.

Webpack is billed as a module bundler. A module bundler takes all of our different
files (JavaScript, LESS, CSS, JSX, ESNext, and so on) and turns them into a single file.
The two main benefits of bundling are modularity and network performance.

Modularity will allow you to break down your source code into parts, or modules,
that are easier to work with, especially in a team environment.

Network performance is gained by only needing to load one dependency in the
browser: the bundle. Each script tag makes an HTTP request, and there’s a latency
penalty for each HTTP request. Bundling all the dependencies into a single file allows
you to load everything with one HTTP request, thereby avoiding additional latency.

Aside from code compilation, webpack also can handle:

Code splitting
Splits up your code into different chunks that can be loaded when you need
them. Sometimes these are called rollups or layers; the aim is to break up code as
needed for different pages or devices.

Minification
Removes whitespace, line breaks, lengthy variable names, and unnecessary code
to reduce the file size.

Feature Flagging
Sends code to one or more—but not all—environments when testing out fea‐
tures.

84 | Chapter 5: React with JSX

Hot Module Replacement (HMR)
Watches for changes in source code. Changes only the updated modules
immediately.

The Recipes app we built earlier in this chapter has some limitations that webpack
will help us alleviate. Using a tool like webpack to statically build client JavaScript
makes it possible for teams to work together on large-scale web applications. We can
also gain the following benefits by incorporating the webpack module bundler:

Modularity
Using the module pattern to export modules that will later be imported or
required by another part of the application makes source code more approacha‐
ble. It allows development teams to work together, by allowing them to create
and work with separate files that will be statically combined into a single file
before sending to production.

Composition
With modules, we can build small, simple, reusable React components that we
can compose efficiently into applications. Smaller components are easier to com‐
prehend, test, and reuse. They’re also easier to replace down the line when
enhancing applications.

Speed
Packaging all the application’s modules and dependencies into a single client bun‐
dle will reduce the load time of an application because there’s latency associated
with each HTTP request. Packaging everything together in a single file means
that the client will only need to make a single request. Minifying the code in the
bundle will improve load time as well.

Consistency
Since webpack will compile JSX and JavaScript, we can start using tomorrow’s
JavaScript syntax today. Babel supports a wide range of ESNext syntax, which
means we don’t have to worry about whether the browser supports our code. It
allows developers to consistently use cutting-edge JavaScript syntax.

Creating the Project
To demonstrate how we might set up a React project from scratch, let’s go ahead and
create a new folder on our computer called recipes-app:

mkdir recipes-app
cd recipes-app

For this project, we’re going to go through the following steps:

Intro to webpack | 85

1. Create the project.
2. Break down the recipe app into components that live in different files.
3. Set up a webpack build that incorporates Babel.

create-react-app

There’s a tool called Create React App that can be used to autogen‐
erate a React project with all of this preconfigured. We’re going to
take a closer look at what’s happening behind the scenes before
abstracting these steps away with a tool.

1. Create the project

Next, we’ll create the project and package.json file with npm, sending the -y flag to
use all of the defaults. We’ll also install webpack, webpack-cli, react, and react-dom:

npm init -y
npm install react react-dom serve

If we’re using npm 5, we don’t need to send the --save flag when installing. Next,
we’ll create the following directory structure to house the components:

recipes-app (folder)
 > node_modules (already added with npm install command)
 > package.json (already added with npm init command)
 > package-lock.json (already added with npm init command)
 > index.html
 > /src (folder)
 > index.js
 > /data (folder)
 > recipes.json
 > /components (folder)
 > Recipe.js
 > Instructions.js
 > Ingredients.js

File Organization

There’s no one way to organize the files in a React project. This is
just one possible strategy.

2. Break components into modules

Currently, the Recipe component is doing quite a bit. We’re displaying the name of
the recipe, constructing an unordered list of ingredients, and displaying the instruc‐
tions, with each step getting its own paragraph element. This component should be

86 | Chapter 5: React with JSX

placed in the Recipe.js file. In any file where we’re using JSX, we’ll need to import
React at the top:

// ./src/components/Recipe.js

import React from "react";

export default function Recipe({ name, ingredients, steps }) {
 return (
 <section id="baked-salmon">
 <h1>{name}</h1>
 <ul className="ingredients">
 {ingredients.map((ingredient, i) => (
 <li key={i}>{ingredient.name}
))}

 <section className="instructions">
 <h2>Cooking Instructions</h2>
 {steps.map((step, i) => (
 <p key={i}>{step}</p>
))}
 </section>
 </section>
);
}

A more functional approach to the Recipe component would be to break it down
into smaller, more focused function components and compose them together. We can
start by pulling the instructions out into their own component and creating a module
in a separate file we can use for any set of instructions.

In that new file called Instructions.js, create the following component:

// ./src/components/Instructions.js

import React from "react";

export default function Instructions({ title, steps }) {
 return (
 <section className="instructions">
 <h2>{title}</h2>
 {steps.map((s, i) => (
 <p key={i}>{s}</p>
))}
 </section>
);
}

Here, we’ve created a new component called Instructions. We’ll pass the title of the
instructions and the steps to this component. This way, we can reuse this component
for “Cooking Instructions,” “Baking Instructions,” “Prep Instructions,” or a “Pre-cook
Checklist”—anything that has steps.

Intro to webpack | 87

Now think about the ingredients. In the Recipe component, we’re only displaying the
ingredient names, but each ingredient in the data for the recipe has an amount and
measurement as well. We’ll create a component called Ingredient for this:

// ./src/components/Ingredient.js

import React from "react";

export default function Ingredient({ amount, measurement, name }) {
 return (

 {amount} {measurement} {name}

);
}

Here, we assume each ingredient has an amount, a measurement, and a name. We
destructure those values from our props object and display them each in independent
classed span elements.

Using the Ingredient component, we can construct an IngredientsList component
that can be used any time we need to display a list of ingredients:

// ./src/components/IngredientsList.js

import React from "react";
import Ingredient from "./Ingredient";

export default function IngredientsList({ list }) {
 return (
 <ul className="ingredients">
 {list.map((ingredient, i) => (
 <Ingredient key={i} {...ingredient} />
))}

);
}

In this file, we first import the Ingredient component because we’re going to use it
for each ingredient. The ingredients are passed to this component as an array in a
property called list. Each ingredient in the list array will be mapped to the Ingre
dient component. The JSX spread operator is used to pass all the data to the Ingredi
ent component as props.

Using spread operator:

<Ingredient {...ingredient} />

is another way of expressing:

88 | Chapter 5: React with JSX

<Ingredient
 amount={ingredient.amount}
 measurement={ingredient.measurement}
 name={ingredient.name}
/>

So, given an ingredient with these fields:

let ingredient = {
 amount: 1,
 measurement: "cup",
 name: "sugar"
};

We get:

<Ingredient amount={1} measurement="cup" name="sugar" />

Now that we have components for ingredients and instructions, we can compose
recipes using these components:

// ./src/components/Recipe.js

import React from "react";
import IngredientsList from "./IngredientsList";
import Instructions from "./Instructions";

function Recipe({ name, ingredients, steps }) {
 return (
 <section id={name.toLowerCase().replace(/ /g, "-")}>
 <h1>{name}</h1>
 <IngredientsList list={ingredients} />
 <Instructions title="Cooking Instructions" steps={steps} />
 </section>
);
}

export default Recipe;

First, we import the components we’re going to use: IngredientsList and Instruc
tions. Now we can use them to create the Recipe component. Instead of a bunch of
complicated code building out the entire recipe in one place, we’ve expressed our
recipe more declaratively by composing smaller components. Not only is the code
nice and simple, but it also reads well. This shows us that a recipe should display the
name of the recipe, a list of ingredients, and some cooking instructions. We’ve
abstracted away what it means to display ingredients and instructions into smaller,
simple components.

In a modular approach, the Menu component would look pretty similar. The key dif‐
ference is that it would live in its own file, import the modules it needs to use, and
export itself:

Intro to webpack | 89

// ./src/components/Menu.js

import React from "react";
import Recipe from "./Recipe";

function Menu({ recipes }) {
 return (
 <article>
 <header>
 <h1>Delicious Recipes</h1>
 </header>
 <div className="recipes">
 {recipes.map((recipe, i) => (
 <Recipe key={i} {...recipe} />
))}
 </div>
 </article>
);
}

export default Menu;

We still need to use ReactDOM to render the Menu component. The main file for the
project is index.js. This will be responsible for rendering the component to the DOM.

Let’s create this file:

// ./src/index.js

import React from "react";
import { render } from "react-dom";
import Menu from "./components/Menu";
import data from "./data/recipes.json";

render(<Menu recipes={data} />, document.getElementById("root"));

The first four statements import the necessary modules for our app to work. Instead
of loading react and react-dom via the script tag, we import them so webpack can
add them to our bundle. We also need the Menu component and a sample data array
that has been moved to a separate module. It still contains two recipes: Baked Salmon
and Fish Tacos.

All of our imported variables are local to the index.js file. When we render the Menu
component, we pass the array of recipe data to this component as a property.

The data is being pulled from the recipes.json file. This is the same data we used ear‐
lier in the chapter, but now it’s following valid JSON formatting rules:

// ./src/data/recipes.json

[
 {

90 | Chapter 5: React with JSX

 "name": "Baked Salmon",
 "ingredients": [
 { "name": "Salmon", "amount": 1, "measurement": "lb" },
 { "name": "Pine Nuts", "amount": 1, "measurement": "cup" },
 { "name": "Butter Lettuce", "amount": 2, "measurement": "cups" },
 { "name": "Yellow Squash", "amount": 1, "measurement": "med" },
 { "name": "Olive Oil", "amount": 0.5, "measurement": "cup" },
 { "name": "Garlic", "amount": 3, "measurement": "cloves" }
],
 "steps": [
 "Preheat the oven to 350 degrees.",
 "Spread the olive oil around a glass baking dish.",
 "Add the yellow squash and place in the oven for 30 mins.",
 "Add the salmon, garlic, and pine nuts to the dish.",
 "Bake for 15 minutes.",
 "Remove from oven. Add the lettuce and serve."
]
 },
 {
 "name": "Fish Tacos",
 "ingredients": [
 { "name": "Whitefish", "amount": 1, "measurement": "lb" },
 { "name": "Cheese", "amount": 1, "measurement": "cup" },
 { "name": "Iceberg Lettuce", "amount": 2, "measurement": "cups" },
 { "name": "Tomatoes", "amount": 2, "measurement": "large" },
 { "name": "Tortillas", "amount": 3, "measurement": "med" }
],
 "steps": [
 "Cook the fish on the grill until cooked through.",
 "Place the fish on the 3 tortillas.",
 "Top them with lettuce, tomatoes, and cheese."
]
 }
]

Now that we’ve pulled our code apart into separate modules and files, let’s create a
build process with webpack that will put everything back together into a single file.
You may be thinking, “Wait, we just did all of that work to break everything apart,
and now we’re going to use a tool to put it back together? Why on Earth…?” Splitting
projects into separate files typically makes larger projects easier to manage because
team members can work on separate components without overlap. It also means that
files can be easier to test.

3. Creating the webpack build
In order to create a static build process with webpack, we’ll need to install a few
things. Everything we need can be installed with npm:

npm install --save-dev webpack webpack-cli

Remember that we’ve already installed React and ReactDOM.

Intro to webpack | 91

For this modular Recipes app to work, we’re going to need to tell webpack how to
bundle our source code into a single file. As of version 4.0.0, webpack does not
require a configuration file to bundle a project. If we don’t include a config file, web‐
pack will run the defaults to package our code. Using a config file, though, means
we’ll be able to customize our setup. Plus, this shows us some of the magic of web‐
pack instead of hiding it away. The default webpack configuration file is always
webpack.config.js.

The starting file for our Recipes app is index.js. It imports React, ReactDOM, and the
Menu.js file. This is what we want to run in the browser first. Wherever webpack
finds an import statement, it will find the associated module in the filesystem and
include it in the bundle. index.js imports Menu.js, Menu.js imports Recipe.js, Recipe.js
imports Instructions.js and IngredientsList.js, and IngredientsList.js imports Ingredi‐
ent.js. Webpack will follow this import tree and include all of these necessary modules
in our bundle. Traversal through all these files creates what’s called a dependency
graph. A dependency is just something our app needs, like a component file, a library
file like React, or an image. Picture each file we need as a circle on the graph, with
webpack drawing all the lines between the circles to create the graph. That graph is
the bundle.

Import Statements

We’re using import statements, which are not presently supported
by most browsers or by Node.js. The reason import statements
work is that Babel will convert them into require('module/
path'); statements in our final code. The require function is how
CommonJS modules are typically loaded.

As webpack builds our bundle, we need to tell it to transform JSX to React elements.

The webpack.config.js file is just another module that exports a JavaScript literal
object that describes the actions webpack should take. The configuration file should
be saved to the root folder of the project, right next to the index.js file:

// ./webpack.config.js

var path = require("path");

module.exports = {
 entry: "./src/index.js",
 output: {
 path: path.join(__dirname, "dist", "assets"),
 filename: "bundle.js"
 }
};

92 | Chapter 5: React with JSX

First, we tell webpack that our client entry file is ./src/index.js. It will automatically
build the dependency graph based on import statements starting in that file. Next, we
specify that we want to output a bundled JavaScript file to ./dist/bundle.js. This is
where webpack will place the final packaged JavaScript.

Next, let’s install the necessary Babel dependencies. We’ll need babel-loader and
@babel/core:

npm install babel-loader @babel/core --save-dev

The next set of instructions for webpack consists of a list of loaders to run on speci‐
fied modules. This will be added to the config file under the module field:

module.exports = {
 entry: "./src/index.js",
 output: {
 path: path.join(__dirname, "dist", "assets"),
 filename: "bundle.js"
 },
 module: {
 rules: [{ test: /\.js$/, exclude: /node_modules/, loader: "babel-loader" }]
 }
};

The rules field is an array because there are many types of loaders you can incorpo‐
rate with webpack. In this example, we’re only incorporating the babel-loader. Each
loader is a JavaScript object. The test field is a regular expression that matches the
file path of each module that the loader should operate on. In this case, we’re running
the babel-loader on all imported JavaScript files except those found in the
node_modules folder.

At this point, we need to specify presets for running Babel. When we set a preset, we
tell Babel which transforms to perform. In other words, we can say, “Hey Babel. If
you see some ESNext syntax here, go ahead and transform that code into syntax we’re
sure the browser understands. If you see some JSX, transform that too.” Start by
installing the presets:

npm install @babel/preset-env @babel/preset-react --save-dev

Then create one more file at the root of the project: .babelrc:

{
 "presets": ["@babel/preset-env", "@babel/preset-react"]
}

All right! We’ve created something pretty cool: a project that resembles a real React
app! Let’s go ahead and run webpack to make sure this works.

Webpack is run statically. Typically, bundles are created before the app is deployed to
the server. You can run it from the command line using npx:

Intro to webpack | 93

npx webpack --mode development

Webpack will either succeed and create a bundle or fail and show you an error. Most
errors have to do with broken import references. When debugging webpack errors,
look closely at the filenames and file paths used in import statements.

You can also add an npm script to your package.json file to create a shortcut:

 "scripts": {
 "build": "webpack --mode production"
 },

Then you can run the shortcut to generate the bundle:

npm run build

Loading the Bundle
We have a bundle, so now what? We exported the bundle to the dist folder. This
folder contains the files we want to run on the web server. The dist folder is where the
index.html file should be placed. This file needs to include a target div element where
the React Menu component will be mounted. It also requires a single script tag that
will load our bundled JavaScript:

// ./dist/index.html

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8" />
 <title>React Recipes App</title>
 </head>
 <body>
 <div id="root"></div>
 <script src="bundle.js"></script>
 </body>
</html>

This is the home page for your app. It will load everything it needs from one file, one
HTTP request: bundle.js. You’ll need to deploy these files to your web server or build
a web server application that will serve these files with something like Node.js or
Ruby on Rails.

Source Mapping
Bundling our code into a single file can cause some setbacks when it comes time to
debug the application in the browser. We can eliminate this problem by providing a
source map. A source map is a file that maps a bundle to the original source files.
With webpack, all we have to do is add a couple lines to our webpack.config.js file.

94 | Chapter 5: React with JSX

//webpack.config.js with source mapping

module.exports = {
 ...
 devtool: "#source-map" // Add this option for source mapping
};

Setting the devtool property to '#source-map' tells webpack that you want to use
source mapping. The next time you run webpack, you’ll see that two output files are
generated and added to the dist folder: the original bundle.js and bundle.js.map.

The source map is going to let you debug using your original source files. In the
Sources tab of your browser’s developer tools, you should find a folder named web‐
pack://. Inside of this folder, you’ll see all the source files in your bundle, as shown in
Figure 5-4.

Figure 5-4. Sources panel of Chrome Developer Tools

You can debug from these files using the browser step-through debugger. Clicking on
any line number adds a breakpoint. Refreshing the browser will pause JavaScript pro‐
cessing when any breakpoints are reached in your source file. You can inspect scoped
variables in the Scope panel or add variables to watch in the Watch panel.

Create React App
A pretty amazing tool to have at your disposal as a React developer is Create React
App, a command-line tool that autogenerates a React project. Create React App was
inspired by the Ember CLI project, and it lets developers get started with React

Intro to webpack | 95

projects quickly without the manual configuration of webpack, Babel, ESLint, and
associated tools.

To get started with Create React App, install the package globally:

npm install -g create-react-app

Then, use the command and the name of the folder where you’d like the app to be
created:

create-react-app my-project

npx

You can also use npx to run Create React App without the need for
a global install. Simply run npx create-react-app my-project.

This will create a React project in that directory with just three dependencies: React,
ReactDOM, and react-scripts. react-scripts was also created by Facebook and is
where the real magic happens. It installs Babel, ESLint, webpack, and more so that
you don’t have to configure them manually. Within the generated project folder,
you’ll also find a src folder containing an App.js file. Here, you can edit the root com‐
ponent and import other component files.

From within the my-react-project folder, you can run npm start. If you prefer, you
can also run yarn start. This will start your application on port 3000.

You can run tests with npm test or yarn test. This runs all of the test files in the
project in an interactive mode.

You can also run the npm run build command. Using yarn, run yarn build.

This will create a production-ready bundle that has been transformed and minified.

Create React App is a great tool for beginners and experienced React developers
alike. As the tool evolves, more functionality will likely be added, so you can keep an
eye on the changes on GitHub. Another way to get started with React without having
to worry about setting up your own customized webpack build is to use CodeSand‐
box. CodeSandbox is an IDE that runs online at https://codesandbox.io.

In this chapter, we leveled up our React skills by learning about JSX. We created com‐
ponents. We broke those components into a project structure, and we learned more
about Babel and webpack. Now we’re ready to take our knowledge of components to
the next level. It’s time to talk about Hooks.

96 | Chapter 5: React with JSX

CHAPTER 6

React State Management

Data is what makes our React components come to life. The user interface for recipes
that we built in the last chapter is useless without the array of recipes. It’s the recipes
and the ingredients along with clear instructions that makes such an app worthwhile.
Our user interfaces are tools that creators will use to generate content. In order to
build the best tools possible for our content creators, we’ll need to know how to effec‐
tively manipulate and change data.

In the last chapter, we constructed a component tree: a hierarchy of components that
data was able to flow through as properties. Properties are half of the picture. State is
the other half. The state of a React application is driven by data that has the ability to
change. Introducing state to the recipe application could make it possible for chefs to
create new recipes, modify existing recipes, and remove old ones.

State and properties have a relationship with each other. When we work with React
applications, we gracefully compose components that are tied together based on this
relationship. When the state of a component tree changes, so do the properties. The
new data flows through the tree, causing specific leaves and branches to render to
reflect the new content.

In this chapter, we’re going to bring applications to life by introducing state. We’ll
learn to create stateful components and how state can be sent down a component tree
and user interactions back up the component tree. We’ll learn techniques for collect‐
ing form data from users. And we’ll take a look at the various ways in which we can
separate concerns within our applications by introducing stateful context providers.

97

Building a Star Rating Component
We would all be eating terrible food and watching terrible movies without the five-
star rating system. If we plan on letting users drive the content on our website, we’ll
need a way to know if that content is any good or not. That makes the StarRating
component one of the most important React components you’ll ever build (see
Figure 6-1).

Figure 6-1. StarRating component

The StarRating component will allow users to rate content based on a specific num‐
ber of stars. Content that’s no good gets one star. Highly recommended content gets
five stars. Users can set the rating for specific content by clicking on a specific star.
First, we’ll need a star, and we can get one from react-icons:

npm i react-icons

react-icons is an npm library that contains hundreds of SVG icons that are dis‐
tributed as React components. By installing it, we just installed several popular icon
libraries that contain hundreds of common SVG icons. You can browse all the icons
in the library. We’re going to use the star icon from the Font Awesome collection:

import React from "react";
import { FaStar } from "react-icons/fa";

export default function StarRating() {
 return [
 <FaStar color="red" />,
 <FaStar color="red" />,
 <FaStar color="red" />,
 <FaStar color="grey" />,
 <FaStar color="grey" />
];
}

Here, we’ve created a StarRating component that renders five SVG stars that we’ve
imported from react-icons. The first three stars are filled in with red, and the last
two are grey. We render the stars first because seeing them gives us a roadmap for

98 | Chapter 6: React State Management

what we’ll have to build. A selected star should be filled in with red, and a star that’s
not selected should be greyed out. Let’s create a component that automatically files
the stars based upon the selected property:

const Star = ({ selected = false }) => (
 <FaStar color={selected ? "red" : "grey"} />
);

The Star component renders an individual star and uses the selected property to fill
it with the appropriate color. If the selected property is not passed to this component,
we’ll assume that the star should not be selected and by default will be filled in with
grey.

The 5-star rating system is pretty popular, but a 10-star rating system is far more
detailed. We should allow developers to select the total number of stars they wish to
use when they add this component to their app. This can be accomplished by adding
a totalStars property to the StarRating component:

const createArray = length => [...Array(length)];

export default function StarRating({ totalStars = 5 }) {
 return createArray(totalStars).map((n, i) => <Star key={i} />);
}

Here, we added the createArray function from Chapter 2. All we have to do is sup‐
ply the length of the array that we want to create and we get a new array at that
length. We use this function with the totalStars property to create an array of a spe‐
cific length. Once we have an array, we can map over it and render Star components.
By default, totalStars is equal to 5, which means this component will render 5 grey
stars, as shown in Figure 6-2.

Figure 6-2. Five stars are displayed

The useState Hook
It’s time to make the StarRating component clickable, which will allow our users to
change the rating. Since the rating is a value that will change, we’ll store and change
that value using React state. We incorporate state into a function component using a
React feature called Hooks. Hooks contain reusable code logic that is separate from the
component tree. They allow us to hook up functionality to our components. React
ships with several built-in hooks we can use out of the box. In this case, we want to
add state to our React component, so the first hook we’ll work with is React’s

The useState Hook | 99

useState hook. This hook is already available in the react package; we simply need
to import it:

import React, { useState } from "react";
import { FaStar } from "react-icons/fa";

The stars the user has selected represents the rating. We’ll create a state variable called
selectedStars, which will hold the user’s rating. We’ll create this variable by adding
the useState hook directly to the StarRating component:

export default function StarRating({ totalStars = 5 }) {
 const [selectedStars] = useState(3);
 return (
 <>
 {createArray(totalStars).map((n, i) => (
 <Star key={i} selected={selectedStars > i} />
))}
 <p>
 {selectedStars} of {totalStars} stars
 </p>
 </>
);
}

We just hooked this component up with state. The useState hook is a function that
we can invoke to return an array. The first value of that array is the state variable we
want to use. In this case, that variable is selectedStars, or the number of stars the
StarRating will color red. useState returns an array. We can take advantage of array
destructuring, which allows us to name our state variable whatever we like. The value
we send to the useState function is the default value for the state variable. In this
case, selectedStars will initially be set to 3, as shown in Figure 6-3.

Figure 6-3. Three of five stars are selected

In order to collect a different rating from the user, we’ll need to allow them to click on
any of our stars. This means we’ll need to make the stars clickable by adding an
onClick handler to the FaStar component:

100 | Chapter 6: React State Management

const Star = ({ selected = false, onSelect = f => f }) => (
 <FaStar color={selected ? "red" : "grey"} onClick={onSelect} />
);

Here, we modified the star to contain an onSelect property. Check it out: this prop‐
erty is a function. When a user clicks on the FaStar component, we’ll invoke this
function, which can notify its parent that a star has been clicked. The default value for
this function is f => f. This is simply a fake function that does nothing; it just
returns whatever argument was sent to it. However, if we do not set a default function
and the onSelect property is not defined, an error will occur when we click the FaS
tar component because the value for onSelect must be a function. Even though f =>
f does nothing, it is a function, which means it can be invoked without causing
errors. If an onSelect property is not defined, no problem. React will simply invoke
the fake function and nothing will happen.

Now that our Star component is clickable, we’ll use it to change the state of the Star
Rating:

export default function StarRating({ totalStars = 5 }) {
 const [selectedStars, setSelectedStars] = useState(0);
 return (
 <>
 {createArray(totalStars).map((n, i) => (
 <Star
 key={i}
 selected={selectedStars > i}
 onSelect={() => setSelectedStars(i + 1)}
 />
))}
 <p>
 {selectedStars} of {totalStars} stars
 </p>
 </>
);
}

In order to change the state of the StarRating component, we’ll need a function that
can modify the value of selectedStars. The second item in the array that’s returned
by the useState hook is a function that can be used to change the state value. Again,
by destructuring this array, we can name that function whatever we like. In this case,
we’re calling it setSelectedStars, because that’s what it does: it sets the value of
selectedStars.

The most important thing to remember about Hooks is that they can cause the com‐
ponent they’re hooked into to rerender. Every time we invoke the setSelectedStars
function to change the value of selectedStars, the StarRating function component
will be reinvoked by the hook, and it will render again, this time with a new value for
selectedStars. This is why Hooks are such a killer feature. When data within the

The useState Hook | 101

hook changes, they have the power to rerender the component they’re hooked into
with new data.

The StarRating component will be rerendered every time a user clicks a Star. When
the user clicks the Star, the onSelect property of that star is invoked. When the onSe
lect property is invoked, we’ll invoke the setSelectedStars function and send it the
number of the star that was just selected. We can use the i variable from the map func‐
tion to help us calculate that number. When the map function renders the first Star,
the value for i is 0. This means that we need to add 1 to this value to get the correct
number of stars. When setSelectedStars is invoked, the StarRating component is
invoked with a the value for selectedStars, as shown in Figure 6-4.

Figure 6-4. Hooks in React developer tools

The React developer tools will show you which Hooks are incorporated with specific
components. When we render the StarRating component in the browser, we can
view debugging information about that component by selecting it in the developer
tools. In the column on the right, we can see that the StarRating component incor‐
porates a state Hook that has a value of 2. As we interact with the app, we can watch
the state value change and the component tree rerender with the corresponding num‐
ber of stars selected.

102 | Chapter 6: React State Management

React State the “Old Way”
In previous versions of React, before v16.8.0, the only way to add state to a compo‐
nent was to use a class component. This required not only a lot of syntax, but it also
made it more difficult to reuse functionality across components. Hooks were
designed to solve problems presented with class components by providing a solution
to incorporate functionality into function components.

The following code is a class component. This was the original StarRating compo‐
nent that was printed in the first edition of this book:

import React, { Component } from "react";

export default class StarRating extends Component {
 constructor(props) {
 super(props);
 this.state = {
 starsSelected: 0
 };
 this.change = this.change.bind(this);
 }

 change(starsSelected) {
 this.setState({ starsSelected });
 }

 render() {
 const { totalStars } = this.props;
 const { starsSelected } = this.state;
 return (
 <div>
 {[...Array(totalStars)].map((n, i) => (
 <Star
 key={i}
 selected={i < starsSelected}
 onClick={() => this.change(i + 1)}
 />
))}
 <p>
 {starsSelected} of {totalStars} stars
 </p>
 </div>
);
 }
}

This class component does the same thing as our function component with noticeably
more code. Additionally, it introduces more confusion thorough the use of the this
keyword and function binding.

The useState Hook | 103

As of today, this code still works. We’re no longer covering class components in this
book because they’re no longer needed. Function components and Hooks are the
future of React, and we’re not looking back. There could come a day where class com‐
ponents are officially deprecated, and this code will no longer be supported.

Refactoring for Advanced Reusability
Right now, the Star component is ready for production. You can use it across several
applications when you need to obtain a rating from a user. However, if we were to
ship this component to npm so that anyone in the world could use it to obtain ratings
from users, we may want to consider handling a couple more use cases.

First, let’s consider the style property. This property allows you to add CSS styles to
elements. It is highly possible that a future developer, even yourself, could come
across the need to modify the style of your entire container. They may attempt to do
something like this:

export default function App() {
 return <StarRating style={{ backgroundColor: "lightblue" }} />;
}

All React elements have style properties. A lot of components also have style proper‐
ties. So attempting to modify the style for the entire component seems sensible.

All we need to do is collect those styles and pass them down to the StarRating con‐
tainer. Currently, the StarRating does not have a single container because we are
using a React fragment. To make this work, we’ll have to upgrade from a fragment to
a div element and pass the styles to that div:

export default function StarRating({ style = {}, totalStars = 5 }) {
 const [selectedStars, setSelectedStars] = useState(0);
 return (
 <div style={{ padding: "5px", ...style }}>
 {createArray(totalStars).map((n, i) => (
 <Star
 key={i}
 selected={selectedStars > i}
 onSelect={() => setSelectedStars(i + 1)}
 />
))}
 <p>
 {selectedStars} of {totalStars} stars
 </p>
 </div>
);
}

104 | Chapter 6: React State Management

In the code above, we replaced the fragment with a div element and then applied
styles to that div element. By default we assign that div a padding of 5px, and then we
use the spread operator to apply the rest of the properties from the style object to
the div style.

Additionally, we may find developers who attempt to implement other common
properties properties to the entire star rating:

export default function App() {
 return (
 <StarRating
 style={{ backgroundColor: "lightblue" }}
 onDoubleClick={e => alert("double click")}
 />
);
}

In this sample, the user is trying to add a double-click method to the entire StarRat
ing component. If we feel it is necessary, we can also pass this method along with any
other properties down to our containing div:

export default function StarRating({ style = {}, totalStars = 5, ...props }) {
 const [selectedStars, setSelectedStars] = useState(0);
 return (
 <div style={{ padding: 5, ...style }} {...props}>
 ...
 </div>
);
}

The first step is to collect any and all properties that the user may be attempting to
add to the StarRating. We gather these properties using the spread opera‐
tor: ...props. Next, we’ll pass all of these remaining properties down to the div ele‐
ment: {...props}.

By doing this, we make two assumptions. First, we are assuming that users will add
only those properties that are supported by the div element. Second, we are assuming
that our user can’t add malicious properties to the component.

This is not a blanket rule to apply to all of your components. In fact, it’s only a good
idea to add this level of support in certain situations. The real point is that it’s impor‐
tant to think about how the consumers of your component may try to use it in the
future.

Refactoring for Advanced Reusability | 105

State in Component Trees
It’s not a great idea to use state in every single component. Having state data dis‐
tributed throughout too many of your components will make it harder to track down
bugs and make changes within your application. This occurs because it’s hard to keep
track of where the state values live within your component tree. It’s easier to under‐
stand your application’s state, or state for a specific feature, if you manage it from one
location. There are several approaches to this methodology, and the first one we’ll
analyze is storing state at the root of the component tree and passing it down to child
components via props.

Let’s build a small application that can be used to save a list of colors. We’ll call the
app the “Color Organizer”, and it will allow users to associate a list of colors with a
custom title and rating. To get started, a sample dataset may look like the following:

[
 {
 "id": "0175d1f0-a8c6-41bf-8d02-df5734d829a4",
 "title": "ocean at dusk",
 "color": "#00c4e2",
 "rating": 5
 },
 {
 "id": "83c7ba2f-7392-4d7d-9e23-35adbe186046",
 "title": "lawn",
 "color": "#26ac56",
 "rating": 3
 },
 {
 "id": "a11e3995-b0bd-4d58-8c48-5e49ae7f7f23",
 "title": "bright red",
 "color": "#ff0000",
 "rating": 0
 }
]

The color-data.json file contains an array of three colors. Each color has an id, title,
color, and rating. First, we’ll create a UI consisting of React components that will be
used to display this data in a browser. Then we’ll allow the users to add new colors as
well as rate and remove colors from the list.

Sending State Down a Component Tree
In this iteration, we’ll store state in the root of the Color Organizer, the App compo‐
nent, and pass the colors down to child components to handle the rendering. The App
component will be the only component within our application that holds state. We’ll
add the list of colors to the App with the useState hook:

106 | Chapter 6: React State Management

import React, { useState } from "react";
import colorData from "./color-data.json";
import ColorList from "./ColorList.js";

export default function App() {
 const [colors] = useState(colorData);
 return <ColorList colors={colors} />;
}

The App component sits at the root of our tree. Adding useState to this component
hooks it up with state management for colors. In this example, the colorData is the
array of sample colors from above. The App component uses the colorData as the ini‐
tial state for colors. From there, the colors are passed down to a component called
the ColorList:

import React from "react";
import Color from "./Color";

export default function ColorList({ colors = [] }) {
 if(!colors.length) return <div>No Colors Listed.</div>;
 return (
 <div>
 {
 colors.map(color => <Color key={color.id} {...color} />)
 }
 </div>
);
}

The ColorList receives the colors from the App component as props. If the list is
empty, this component will display a message to our users. When we have a color
array, we can map over it and pass the details about each color farther down the tree
to the Color component:

export default function Color({ title, color, rating }) {
 return (
 <section>
 <h1>{title}</h1>
 <div style={{ height: 50, backgroundColor: color }} />
 <StarRating selectedStars={rating} />
 </section>
);
}

The Color component expects three properties: title, color, and rating. These val‐
ues are found in each color object and were passed to this component using the
spread operator <Color {...color} />. This takes each field from the color object
and passes it to the Color component as a property with the same name as the object
key. The Color component displays these values. The title is rendered inside of an
h1 element. The color value is displayed as the backgroundColor for a div element.

State in Component Trees | 107

The rating is passed farther down the tree to the StarRating component, which will
display the rating visually as selected stars:

export default function StarRating({ totalStars = 5, selectedStars = 0 }) {
 return (
 <>
 {createArray(totalStars).map((n, i) => (
 <Star
 key={i}
 selected={selectedStars > i}
 />
))}
 <p>
 {selectedStars} of {totalStars} stars
 </p>
 </>
);
}

This StarRating component has been modified. We’ve turned it into a pure compo‐
nent. A pure component is a function component that does not contain state and will
render the same user interface given the same props. We made this component a pure
component because the state for color ratings are stored in the colors array at the
root of the component tree. Remember that the goal of this iteration is to store state
in a single location and not have it distributed through many different components
within the tree.

It is possible for the StarRating component to hold its own state
and receive state from a parent component via props. This is typi‐
cally necessary when distributing components for wider use by the
community. We demonstrate this technique in the next chapter
when we cover the useEffect hook.

At this point, we’ve finished passing state down the component tree from the App
component all the way to each Star component that’s filled red to visually represent
the rating for each color. If we render the app based on the color-data.json file that
was listed previously, we should see our colors in the browser, as shown in Figure 6-5.

108 | Chapter 6: React State Management

Figure 6-5. Color Organizer rendered in the browser

Sending Interactions Back up a Component Tree
So far, we’ve rendered a representation of the colors array as UI by composing React
components and passing data down the tree from parent component to child compo‐
nent via props. What happens if we want to remove a color from the list or change

State in Component Trees | 109

the rating of a color in our list? The colors are stored in state at the root of our tree.
We’ll need to collect interactions from child components and send them back up the
tree to the root component where we can change the state.

For instance, let’s say we wanted to add a Remove button next to each color’s title that
would allow users to remove colors from state. We would add that button to the
Color component:

import { FaTrash } from "react-icons/fa";

export default function Color({ id, title, color, rating, onRemove = f => f }) {
 return (
 <section>
 <h1>{title}</h1>
 <button onClick={() => onRemove(id)}>
 <FaTrash />
 </button>
 <div style={{ height: 50, backgroundColor: color }} />
 <StarRating selectedStars={rating} />
 </section>
);
}

Here, we’ve modified the color by adding a button that will allow users to remove col‐
ors. First, we imported a trash can icon from react-icons. Next, we wrapped the
FaTrash icon in a button. Adding an onClick handler to this button allows us to
invoke the onRemove function property, which has been added to our list of properties
along with the id. When a user clicks the Remove button, we’ll invoke removeColor
and pass it the id of the color that we want to remove. That is why the id value has
also been gathered from the Color component’s properties.

This solution is great because we keep the Color component pure. It doesn’t have
state and can easily be reused in a different part of the app or another application
altogether. The Color component is not concerned with what happens when a user
clicks the Remove button. All it cares about is notifying the parent that this event has
occurred and passing the information about which color the user wishes to remove.
It’s now the parent’s responsibility to handle this event:

export default function ColorList({ colors = [], onRemoveColor = f => f }) {
 if (!colors.length) return <div>No Colors Listed. (Add a Color)</div>;

return (
 colors.map(color => (
 <Color key={color.id} {...color} onRemove={onRemoveColor} />
)
 }
 </div>
);
}

110 | Chapter 6: React State Management

The Color component’s parent is the ColorList. This component also doesn’t have
access to state. Instead of removing the color, it simply passes the event up to its par‐
ent. It accomplishes this by adding an onRemoveColor function property. If a Color
component invokes the onRemove property, the ColorList will in turn invoke its onRe
moveColor property and send the responsibility for removing the color up to its par‐
ent. The color’s id is still being passed to the onRemoveColor function.

The parent of the ColorList is the App. This component is the component that has
been hooked up with state. This is where we can capture the color id and remove the
color in state:

export default function App() {
 const [colors, setColors] = useState(colorData);
 return (
 <ColorList
 colors={colors}
 onRemoveColor={id => {
 const newColors = colors.filter(color => color.id !== id);
 setColors(newColors);
 }}
 />
);
}

First, we add a variable for setColors. Remember that the second argument in the
array returned by useState is a function we can use to modify the state. When the
ColorList raises an onRemoveColor event, we capture the id of the color to remove
from the arguments and use it to filter the list of colors to exclude the color the user
wants to remove. Next, we change the state. We use the setColors function to change
change the array of colors to the newly filtered array.

Changing the state of the colors array causes the App component to be rerendered
with the new list of colors. Those new colors are passed to the ColorList component,
which is also rerendered. It will render Color components for the remaining colors
and our UI will reflect the changes we’ve made by rendering one less color.

If we want to rate the colors that are stored in the App components state, we’ll have to
repeat the process with an onRate event. First, we’ll collect the new rating from the
individual star that was clicked and pass that value to the parent of the StarRating:

export default function StarRating({
 totalStars = 5,
 selectedStars = 0,
 onRate = f => f
}) {
 return (
 <>
 {createArray(totalStars).map((n, i) => (
 <Star

State in Component Trees | 111

 key={i}
 selected={selectedStars > i}
 onSelect={() => onRate(i + 1)}
 />
))}
 </>
);
}

Then, we’ll grab the rating from the onRate handler we added to the StarRating
component. We’ll then pass the new rating along with the id of the color to be rated
up to the Color component’s parent via another onRate function property:

export default function Color({
 id,
 title,
 color,
 rating,
 onRemove = f => f,
 onRate = f => f
}) {
 return (
 <section>
 <h1>{title}</h1>
 <button onClick={() => onRemove(id)}>
 <FaTrash />
 </button>
 <div style={{ height: 50, backgroundColor: color }} />
 <StarRating
 selectedStars={rating}
 onRate={rating => onRate(id, rating)}
 />
 </section>
);
}

In the ColorList component, we’ll have to capture the onRate event from individual
color components and pass them up to its parent via the onRateColor function
property:

export default function ColorList({
 colors = [],
 onRemoveColor = f => f,
 onRateColor = f => f
}) {
if (!colors.length) return <div>No Colors Listed. (Add a Color)</div>;
 return (
 <div className="color-list">
 {
 colors.map(color => (
 <Color
 key={color.id}

112 | Chapter 6: React State Management

 {...color}
 onRemove={onRemoveColor}
 onRate={onRateColor}
 />
)
 }
 </div>
);
}

Finally, after passing the event up through all of these components, we’ll arrive at the
App, where state is stored and the new rating can be saved:

export default function App() {
 const [colors, setColors] = useState(colorData);
 return (
 <ColorList
 colors={colors}
 onRateColor={(id, rating) => {
 const newColors = colors.map(color =>
 color.id === id ? { ...color, rating } : color
);
 setColors(newColors);
 }}
 onRemoveColor={id => {
 const newColors = colors.filter(color => color.id !== id);
 setColors(newColors);
 }}
 />
);
}

The App component will change color ratings when the ColorList invokes the
onRateColor property with the id of the color to rate and the new rating. We’ll use
those values to construct an array of new colors by mapping over the existing colors
and changing the rating for the color that matches the id property. Once we send the
newColors to the setColors function, the state value for colors will change and the
App component will be invoked with a new value for the colors array.

Once the state of our colors array changes, the UI tree is rendered with the new data.
The new rating is reflected back to the user via red stars. Just as we passed data down
a component tree via props, interactions can be passed back up the tree along with
data via function properties.

Building Forms
For a lot of us, being a web developer means collecting large amounts of information
from users with forms. If this sounds like your job, then you’ll be building a lot of
form components with React. All of the HTML form elements that are available to

Building Forms | 113

the DOM are also available as React elements, which means that you may already
know how to render a form with JSX:

<form>
 <input type="text" placeholder="color title..." required />
 <input type="color" required />
 <button>ADD</button>
</form>

This form element has three child elements: two input elements and a button. The
first input element is a text input that will be used to collect the title value for new
colors. The second input element is an HTML color input that will allow users to
pick a color from a color wheel. We’ll be using basic HTML form validation, so we’ve
marked both inputs as required. The ADD button will be used to add a new color.

Using Refs
When it’s time to build a form component in React, there are several patterns avail‐
able to you. One of these patterns involves accessing the DOM node directly using a
React feature called refs. In React, a ref is an object that stores values for the lifetime
of a component. There are several use cases that involve using refs. In this section,
we’ll look at how we can access a DOM node directly with a ref.

React provides us with a useRef hook that we can use to create a ref. We’ll use this
hook when building the AddColorForm component:

import React, { useRef } from "react";

export default function AddColorForm({ onNewColor = f => f }) {
 const txtTitle = useRef();
 const hexColor = useRef();

 const submit = e => { ... }

 return (...)
}

First, when creating this component, we’ll also create two refs using the useRef hook.
The txtTitle ref will be used to reference the text input we’ve added to the form to
collect the color title. The hexColor ref will be used to access hexadecimal color val‐
ues from the HTML color input. We can set the values for these refs directly in JSX
using the ref property:

 return (
 <form onSubmit={submit}>
 <input ref={txtTitle} type="text" placeholder="color title..." required />
 <input ref={hexColor} type="color" required />
 <button>ADD</button>
 </form>

114 | Chapter 6: React State Management

);
}

Here, we set the value for the txtTitle and hexColor refs by adding the ref attribute
to these input elements in JSX. This creates a current field on our ref object that ref‐
erences the DOM element directly. This provides us access to the DOM element,
which means we can capture its value. When the user submits this form by clicking
the ADD button, we’ll invoke the submit function:

const submit = e => {
 e.preventDefault();
 const title = txtTitle.current.value;
 const color = hexColor.current.value;
 onNewColor(title, color);
 txtTitle.current.value = "";
 hexColor.current.value = "";
};

When we submit HTML forms, by default, they send a POST request to the current
URL with the values of the form elements stored in the body. We don’t want to do
that. This is why the first line of code in the submit function is e.preventDefault(),
which prevents the browser from trying to submit the form with a POST request.

Next, we capture the current values for each of our form elements using their refs.
These values are then passed up to this component’s parent via the onNewColor func‐
tion property. Both the title and the hexadecimal value for the new color are passed as
function arguments. Finally, we reset the value attribute for both inputs to clear the
data and prepare the form to collect another color.

Did you notice the subtle paradigm shift that has occurred by using refs? We’re
mutating the value attribute of DOM nodes directly by setting them equal to ""
empty strings. This is imperative code. The AddColorForm is now what we call an
uncontrolled component because it uses the DOM to save the form values. Sometimes
using uncontrolled component can get you out of problems. For instance, you may
want to share access to a form and its values with code outside of React. However, a
controlled component is a better approach.

Controlled Components
In a controlled component, the from values are managed by React and not the DOM.
They do not require us to use refs. They do not require us to write imperative code.
Adding features like robust form validation is much easier when working with a con‐
trolled component. Let’s modify the AddColorForm by giving it control over the form’s
state:

Building Forms | 115

import React, { useState } from "react";

export default function AddColorForm({ onNewColor = f => f }) {
 const [title, setTitle] = useState("");
 const [color, setColor] = useState("#000000");

 const submit = e => { ... };

 return (...);
}

First, instead of using refs, we’re going to save the values for the title and color
using React state. We’ll create variables for title and color. Additionally, we’ll define
the functions that can be used to change state: setTitle and setColor.

Now that the component controls the values for title and color, we can display
them inside of the form input elements by setting the value attribute. Once we set the
value attribute of an input element, we’ll no longer be able to change with the form.
The only way to change the value at this point would be to change the state variable
every time the user types a new character in the input element. That’s exactly what
we’ll do:

<form onSubmit={submit}>
 <input
 value={title}
 onChange={event => setTitle(event.target.value)}
 type="text"
 placeholder="color title..."
 required
 />
 <input
 value={color}
 onChange={event => setColor(event.target.value)}
 type="color"
 required
 />
 <button>ADD</button>
</form>
}

This controlled component now sets the value of both input elements using the
title and color from state. Whenever these elements raise an onChange event, we
can access the new value using the event argument. The event.target is a reference
to the DOM element, so we can obtain the current value of that element with
event.target.value. When the title changes, we’ll invoke setTitle to change the
title value in state. Changing that value will cause this component to rerender, and we
can now display the new value for title inside the input element. Changing the
color works exactly the same way.

116 | Chapter 6: React State Management

When it’s time to submit the form, we can simply pass the state values for title and
color to the onNewColor function property as arguments when we invoke it. The set
Title and setColor functions can be used to reset the values after the new color has
been passed to the parent component:

const submit = e => {
 e.preventDefault();
 onNewColor(title, color);
 setTitle("");
 setColor("");
};

It’s called a controlled component because React controls the state of the form. It’s
worth pointing out that controlled form components are rerendered, a lot. Think
about it: every new character typed in the title field causes the AddColorForm to
rerender. Using the color wheel in the color picker causes this component to rerender
way more than the title field because the color value repeatedly changes as the user
drags the mouse around the color wheel. This is OK—React is designed to handle this
type of workload. Hopefully, knowing that controlled components are rerendered fre‐
quently will prevent you from adding some long and expensive process to this com‐
ponent. At the very least, this knowledge will come in handy when you’re trying to
optimize your React components.

Creating Custom Hooks
When you have a large form with a lot of input elements, you may be tempted to
copy and paste these two lines of code:

value={title}
onChange={event => setTitle(event.target.value)}

It might seem like you’re working faster by simply copying and pasting these proper‐
ties into every form element while tweaking the variable names along the way. How‐
ever, whenever you copy and paste code, you should hear a tiny little alarm sound in
your head. Copying and pasting code suggests that there’s something redundant
enough to abstract away in a function.

We can package the details necessary to create controlled form components into a
custom hook. We could create our own useInput hook where we can abstract away
the redundancy involved with creating controlled form inputs:

import { useState } from "react";

export const useInput = initialValue => {
 const [value, setValue] = useState(initialValue);
 return [
 { value, onChange: e => setValue(e.target.value) },
 () => setValue(initialValue)

Building Forms | 117

];
};

This is a custom hook. It doesn’t take a lot of code. Inside of this hook, we’re still
using the useState hook to create a state value. Next, we return an array. The first
value of the array is the object that contains the same properties we were tempted to
copy and paste: the value from state along with an onChange function property that
changes that value in state. The second value in the array is a function that can be
reused to reset the value back to its initial value. We can use our hook inside of the
AddColorForm:

import React from "react";
import { useInput } from "./hooks";

export default function AddColorForm({ onNewColor = f => f }) {
 const [titleProps, resetTitle] = useInput("");
 const [colorProps, resetColor] = useInput("#000000");

 const submit = event => { ... }

 return (...)
}

The useState hook is encapsulated within our useInput hook. We can obtain the
properties for both the title and the color by destructuring them from the first value
of the returned array. The second value of this array contains a function we can use to
reset the value property back to its initial value, an empty string. The titleProps
and colorProps are ready to be spread into their corresponding input elements:

return (
 <form onSubmit={submit}>
 <input
 {...titleProps}
 type="text"
 placeholder="color title..."
 required
 />
 <input {...colorProps} type="color" required />
 <button>ADD</button>
 </form>
);
}

Spreading these properties from our custom hook is much more fun than pasting
them. Now both the title and the color inputs are receiving properties for their value
and onChange events. We’ve used our hook to create controlled form inputs without
worrying about the underlying implementation details. The only other change we
need to make is when this form is submitted:

118 | Chapter 6: React State Management

const submit = event => {
 event.preventDefault();
 onNewColor(titleProps.value, colorProps.value);
 resetTitle();
 resetColor();
};

Within the submit function, we need to be sure to grab the value for both the title
and the color from their properties. Finally, we can use the custom reset functions
that were returned from the useInput hook.

Hooks are designed to be used inside of React components. We can compose hooks
within other hooks because eventually the customized hook will be used inside of a
component. Changing the state within this hook still causes the AddColorForm to
rerender with new values for titleProps or colorProps.

Adding Colors to State
Both the controlled form component and the uncontrolled from component pass the
values for title and color to the parent component via the onNewColor function.
The parent doesn’t care whether we used a controlled component or an uncontrolled
component; it only wants the values for the new color.

Let’s add the AddColorForm, whichever one you choose, to the the App component.
When the onNewColor property is invoked, we’ll save the new color in state:

import React, { useState } from "react";
import colorData from "./color-data.json";
import ColorList from "./ColorList.js";
import AddColorForm from "./AddColorForm";
import { v4 } from "uuid";

export default function App() {
 const [colors, setColors] = useState(colorData);
 return (
 <>
 <AddColorForm
 onNewColor={(title, color) => {
 const newColors = [
 ...colors,
 {
 id: v4(),
 rating: 0,
 title,
 color
 }
];
 setColors(newColors);
 }}
 />

Building Forms | 119

 <ColorList .../>
 </>
);
}

When a new color is added, the onNewColor property is invoked. The title and hex‐
adecimal value for the new color are passed to this function as arguments. We use
these arguments to create a new array of colors. First, we spread the current colors
from state into the new array. Then we add an entirely new color object using the
title and color values. Additionally, we set the rating of the new color to 0 because
it has not yet been rated. We also use the v4 function found in the uuid package to
generate a new unique id for the color. Once we have an array of colors that contains
our new color, we save it to state by invoking setColors. This causes the App compo‐
nent to rerender with a new array of colors. That new array will be used to update
the UI. We’ll see the new color at bottom of the list.

With this change, we’ve completed the first iteration of the Color Organizer. Users
can now add new colors to the list, remove colors from the list, and rate any existing
color on that list.

React Context
Storing state in one location at the root of our tree was an important pattern that hel‐
ped us all be more successful with early versions of React. Learning to pass state both
down and up a component tree via properties is a necessary right of passage for any
React developer—it’s something we should all know how to do. However, as React
evolved and our component trees got larger, following this principle slowly became
more unrealistic. It’s hard for many developers to maintain state in a single location at
the root of a component tree for a complex application. Passing state down and up
the tree through dozens of components is tedious and bug ridden.

The UI elements that most of us work on are complex. The root of the tree is often
very far from the leaves. This puts data the application depends on many layers away
from the components that use the data. Every component must receive props that
they only pass to their children. This will bloat our code and make our UI harder to
scale.

Passing state data through every component as props until it reaches the component
that needs to use it is like taking the train from San Francisco to DC. On the train,
you’ll pass through every state, but you won’t get off until you reach your destination
(see Figure 6-6).

120 | Chapter 6: React State Management

Figure 6-6. Train from San Francisco to DC

It’s obviously more efficient to fly from San Francisco to DC. This way, you don’t have
to pass through every state—you simply fly over them (Figure 6-7).

Figure 6-7. Flight from San Francisco to DC

In React, context is like jet-setting for your data. You can place data in React context
by creating a context provider. A context provider is a React component you can wrap
around your entire component tree or specific sections of your component tree. The
context provider is the departing airport where your data boards the plane. It’s also
the airline hub. All flights depart from that airport to different destinations. Each des‐
tination is a context consumer. The context consumer is the React component that

React Context | 121

retrieves the data from context. This is the destination airport where your data lands,
deplanes, and goes to work.

Using context still allows to us store state data in a single location, but it doesn’t
require us to pass that data through a bunch of components that don’t need it.

Placing Colors in Context
In order to use context in React, we must first place some data in a context provider
and add that provider to our component tree. React comes with a function called
createContext that we can use to create a new context object. This object contains
two components: a context Provider and a Consumer.

Let’s place the default colors found in the color-data.json file into context. We’ll add
context to the index.js file, the entry point of our application:

import React, { createContext } from "react";
import colors from "./color-data";
import { render } from "react-dom";
import App from "./App";

export const ColorContext = createContext();

render(
 <ColorContext.Provider value={{ colors }}>
 <App />
 </ColorContext.Provider>,
 document.getElementById("root")
);

Using createContext, we created a new instance of React context that we named Col
orContext. The color context contains two components: ColorContext.Provider
and ColorContext.Consumer. We need to use the provider to place the colors in state.
We add data to context by setting the value property of the Provider. In this sce‐
nario, we added an object containing the colors to context. Since we wrapped the
entire App component with the provider, the array of colors will made available to
any context consumers found in our entire component tree. It’s important to notice
that we’ve also exported the ColorContext from this location. This is necessary
because we will need to access the ColorContext.Consumer when we want to obtain
the colors from context.

122 | Chapter 6: React State Management

A context Provider doesn’t always have to wrap an entire applica‐
tion. It’s not only OK to wrap specific sections components with a
context Provider, it can make your application more efficient. The
Provider will only provide context values to its children.
It’s OK to use multiple context providers. In fact, you may be using
context providers in your React app already without even knowing
it. Many npm packages designed to work with React use context
behind the scenes.

Now that we’re providing the colors value in context, the App component no longer
needs to hold state and pass it down to its children as props. We’ve made the App
component a “flyover” component. The Provider is the App component’s parent, and
it’s providing the colors in context. The ColorList is the App component’s child, and
it can obtain the colors directly on its own. So the app doesn’t need to touch the col‐
ors at all, which is great because the App component itself has nothing to do with col‐
ors. That responsibility has been delegated farther down the tree.

We can remove a lot of lines of code from the App component. It only needs to render
the AddColorForm and the ColorList. It no longer has to worry about the data:

import React from "react";
import ColorList from "./ColorList.js";
import AddColorForm from "./AddColorForm";

export default function App() {
 return (
 <>
 <AddColorForm />
 <ColorList />
 </>
);
}

Retrieving Colors with useContext
The addition of Hooks makes working with context a joy. The useContext hook is
used to obtain values from context, and it obtains those values we need from the con‐
text Consumer. The ColorList component no longer needs to obtain the array of col
ors from its properties. It can access them directly via the useContext hook:

import React, { useContext } from "react";
import { ColorContext } from "./";
import Color from "./Color";

export default function ColorList() {
 const { colors } = useContext(ColorContext);
 if (!colors.length) return <div>No Colors Listed. (Add a Color)</div>;
 return (

React Context | 123

 <div className="color-list">
 {
 colors.map(color => <Color key={color.id} {...color} />)
 }
 </div>
);
}

Here, we’ve modified the ColorList component and removed the colors=[] prop‐
erty because the colors are being retrieved from context. The useContext hook
requires the context instance to obtain values from it. The ColorContext instance is
being imported from the index.js file where we create the context and add the pro‐
vider to our component tree. The ColorList can now construct a user interface based
on the data that has been provided in context.

Using Context Consumer

The Consumer is accessed within the useContext hook, which
means that we no longer have to work directly with the consumer
component. Before Hooks, we would have to obtain the colors
from context using a pattern called render props within the context
consumer. Render props are passed as arguments to a child func‐
tion. The following example is how you would use the consumer to
obtain the colors from context:

export default function ColorList() {
 return (
 <ColorContext.Consumer>
 {context => {
 if (!context.colors.length)
 return <div>No Colors Listed. (Add a Color)</div>;
 return (
 <div className="color-list">
 {
 context.colors.map(color =>
 <Color key={color.id} {...color} />)
 }
 </div>
)
 }}
 </ColorContext.Consumer>
)
}

124 | Chapter 6: React State Management

Stateful Context Providers
The context provider can place an object into context, but it can’t mutate the values in
context on its own. It needs some help from a parent component. The trick is to cre‐
ate a stateful component that renders a context provider. When the state of the state‐
ful component changes, it will rerender the context provider with new context data.
Any of the context providers’ children will also be rerendered with the new context
data.

The stateful component that renders the context provider is our custom provider.
That is: that’s the component that will be used when it’s time to wrap our App with the
provider. In a brand-new file, let’s create a ColorProvider:

import React, { createContext, useState } from "react";
import colorData from "./color-data.json";

const ColorContext = createContext();

export default function ColorProvider ({ children }) {
 const [colors, setColors] = useState(colorData);
 return (
 <ColorContext.Provider value={{ colors, setColors }}>
 {children}
 </ColorContext.Provider>
);
};

The ColorProvider is a component that renders the ColorContext.Provider.
Within this component, we’ve created a state variable for colors using the useState
hook. The initial data for colors is still being populated from color-data.json. Next,
the ColorProvider adds the colors from state to context using the value property of
the ColorContext.Provider. Any children rendered within the ColorProvider will
be wrapped by the ColorContext.Provider and will have access to the colors array
from context.

You may have noticed that the setColors function is also being added to context.
This gives context consumers the ability to change the value for colors. Whenever
setColors is invoked, the colors array will change. This will cause the ColorPro
vider to rerender, and our UI will update itself to display the new colors array.

Adding setColors to context may not be the best idea. It invites other developers and
you to make mistakes later on down the road when using it. There are only three
options when it comes to changing the value of the colors array: users can add col‐
ors, remove colors, or rate colors. It’s a better idea to add functions for each of these
operations to context. This way, you don’t expose the setColors function to consum‐
ers; you only expose functions for the changes they’re allowed to make:

React Context | 125

export default function ColorProvider ({ children }) {
 const [colors, setColors] = useState(colorData);

 const addColor = (title, color) =>
 setColors([
 ...colors,
 {
 id: v4(),
 rating: 0,
 title,
 color
 }
]);

 const rateColor = (id, rating) =>
 setColors(
 colors.map(color => (color.id === id ? { ...color, rating } : color))
);

 const removeColor = id => setColors(colors.filter(color => color.id !== id));

 return (
 <ColorContext.Provider value={{ colors, addColor, removeColor, rateColor }}>
 {children}
 </ColorContext.Provider>
);
};

That looks better. We added functions to context for all of the operations that can be
made on the colors array. Now, any component within our tree can consume these
operations and make changes to colors using simple functions that we can document.

Custom Hooks with Context
There’s one more killer change we can make. The introduction of Hooks has made it
so that we don’t have to expose context to consumer components at all. Let’s face it:
context can be confusing for team members who aren’t reading this book. We can
make everything much easier for them by wrapping context in a custom hook.
Instead of exposing the ColorContext instance, we can create a hook called useCol
ors that returns the colors from context:

import React, { createContext, useState, useContext } from "react";
import colorData from "./color-data.json";
import { v4 } from "uuid";

const ColorContext = createContext();
export const useColors = () => useContext(ColorContext);

This one simple change has a huge impact on architecture. We’ve wrapped all of the
functionality necessary to render and work with stateful colors in a single JavaScript

126 | Chapter 6: React State Management

module. Context is contained to this module yet exposed through a hook. This works
because we return context using the useContext hook, which has access to the Color
Context locally in this file. It’s now appropriate to rename this module color-
hooks.js and distribute this functionality for wider use by the community.

Consuming colors using the ColorProvider and the useColors hook is a joyous
event. This is why we program. Let’s take this hook out for a spin in the current Color
Organizer app. First, we need to wrap our App component with the custom ColorPro
vider. We can do this in the index.js file:

import React from "react";
import { ColorProvider } from "./color-hooks.js";
import { render } from "react-dom";
import App from "./App";

render(
 <ColorProvider>
 <App />
 </ColorProvider>,
 document.getElementById("root")
);

Now, any component that’s a child of the App can obtain the colors from the
useColors hook. The ColorList component needs to access the colors array to ren‐
der the colors on the screen:

import React from "react";
import Color from "./Color";
import { useColors } from "./color-hooks";

export default function ColorList() {
 const { colors } = useColors();
 return (...);
}

We’ve removed any references to context from this component. Everything it needs is
now being provided from our hook. The Color component could use our hook to
obtain the functions for rating and removing colors directly:

import React from "react";
import StarRating from "./StarRating";
import { useColors } from "./color-hooks";

export default function Color({ id, title, color, rating }) {
 const { rateColor, removeColor } = useColors();
 return (
 <section>
 <h1>{title}</h1>
 <button onClick={() => removeColor(id)}>X</button>
 <div style={{ height: 50, backgroundColor: color }} />
 <StarRating

React Context | 127

 selectedStars={rating}
 onRate={rating => rateColor(id, rating)}
 />
 </section>
);
}

Now, the Color component no longer needs to pass events to the parent via function
props. It has access to the rateColor and removeColor functions in context. They’re
easily obtained through the useColors hook. This is a lot of fun, but we’re not fin‐
ished yet. The AddColorForm can also benefit from the useColors hook:

import React from "react";
import { useInput } from "./hooks";
import { useColors } from "./color-hooks";

export default function AddColorForm() {
 const [titleProps, resetTitle] = useInput("");
 const [colorProps, resetColor] = useInput("#000000");
 const { addColor } = useColors();

 const submit = e => {
 e.preventDefault();
 addColor(titleProps.value, colorProps.value);
 resetTitle();
 resetColor();
 };

 return (...);
}

The AddColorForm component can add colors directly with the addColor function.
When colors are added, rated, or removed, the state of the colors value in context
will change. When this change happens, the children of the ColorProvider are
rerendered with new context data. All of this is happening through a simple hook.

Hooks provide software developers with the stimulation they need to stay motivated
and enjoy frontend programming. This is primarily because they’re an awesome tool
for separating concerns. Now, React components only need to concern themselves
with rendering other React components and keeping the user interface up to date.
React Hooks can concern themselves with the logic required to make the app work.
Both the UI and Hooks can be developed separately, tested separately, and even
deployed separately. This is all very good news for React.

We’ve only scratched the surface of what can be accomplished with Hooks. In the
next chapter, we’ll dive a little deeper.

128 | Chapter 6: React State Management

CHAPTER 7

Enhancing Components with Hooks

Rendering is the heartbeat of a React application. When something changes (props,
state), the component tree rerenders, reflecting the latest data as a user interface. So
far, useState has been our workhorse for describing how our components should be
rendering. But we can do more. There are more Hooks that define rules about why
and when rendering should happen. There are more Hooks that enhance rendering
performance. There are always more Hooks to help us out.

In the last chapter, we introduced useState, useRef, and useContext, and we saw
that we could compose these Hooks into our own custom Hooks: useInput and use
Colors. There’s more where that came from, though. React comes with more Hooks
out of the box. In this chapter, we’re going to take a closer look at useEffect, use
LayoutEffect, and useReducer. All of these are vital when building applications.
We’ll also look at useCallback and useMemo, which can help optimize our compo‐
nents for performance.

Introducing useEffect
We now have a good sense of what happens when we render a component. A compo‐
nent is simply a function that renders a user interface. Renders occur when the app
first loads and when props and state values change. But what happens when we need
to do something after a render? Let’s take a closer look.

Consider a simple component, the Checkbox. We’re using useState to set a checked
value and a function to change the value of checked: setChecked. A user can check
and uncheck the box, but how might we alert the user that the box has been checked?
Let’s try this with an alert, as it’s a great way to block the thread:

129

import React, { useState } from "react";

function Checkbox() {
 const [checked, setChecked] = useState(false);

 alert(`checked: ${checked.toString()}`);

 return (
 <>
 <input
 type="checkbox"
 value={checked}
 onChange={() => setChecked(checked => !checked)}
 />
 {checked ? "checked" : "not checked"}
 </>
);
};

We’ve added the alert before the render to block the render. The component will not
render until the user clicks the OK button on the alert box. Because the alert is block‐
ing, we don’t see the next state of the checkbox rendered until clicking OK.

That isn’t the goal, so maybe we should place the alert after the return?

function Checkbox {
 const [checked, setChecked] = useState(false);

 return (
 <>
 <input
 type="checkbox"
 value={checked}
 onChange={() => setChecked(checked => !checked)}
 />
 {checked ? "checked" : "not checked"}
 </>
);

 alert(`checked: ${checked.toString()}`);
};

Scratch that. We can’t call alert after the render because the code will never be
reached. To ensure that we see the alert as expected, we can use useEffect. Placing
the alert inside of the useEffect function means that the function will be called
after the render, as a side effect:

function Checkbox {
 const [checked, setChecked] = useState(false);

 useEffect(() => {
 alert(`checked: ${checked.toString()}`);

130 | Chapter 7: Enhancing Components with Hooks

 });

 return (
 <>
 <input
 type="checkbox"
 value={checked}
 onChange={() => setChecked(checked => !checked)}
 />
 {checked ? "checked" : "not checked"}
 </>
);
};

We use useEffect when a render needs to cause side effects. Think of a side effect as
something that a function does that isn’t part of the return. The function is the Check
box. The Checkbox function renders UI. But we might want the component to do
more than that. Those things we want the component to do other than return UI are
called effects.

An alert, a console.log, or an interaction with a browser or native API is not part
of the render. It’s not part of the return. In a React app, though, the render affects the
results of one of these events. We can use useEffect to wait for the render, then pro‐
vide the values to an alert or a console.log:

useEffect(() => {
 console.log(checked ? "Yes, checked" : "No, not checked");
});

Similarly, we could check in with the value of checked on render and then set that to
a value in localStorage:

useEffect(() => {
 localStorage.setItem("checkbox-value", checked);
});

We might also use useEffect to focus on a specific text input that has been added to
the DOM. React will render the output, then call useEffect to focus the element:

useEffect(() => {
 txtInputRef.current.focus();
});

On render, the txtInputRef will have a value. We can access that value in the effect
to apply the focus. Every time we render, useEffect has access to the latest values
from that render: props, state, refs, etc.

Think of useEffect as being a function that happens after a render. When a render
fires, we can access the current state values within our component and use them to do
something else. Then, once we render again, the whole thing starts over. New values,
new renders, new effects.

Introducing useEffect | 131

The Dependency Array
useEffect is designed to work in conjunction with other stateful Hooks like
useState and the heretofore unmentioned useReducer, which we promise to discuss
later in the chapter. React will rerender the component tree when the state changes.
As we’ve learned, useEffect will be called after these renders.

Consider the following, where the App component has two separate state values:

import React, { useState, useEffect } from "react";
import "./App.css";

function App() {
 const [val, set] = useState("");
 const [phrase, setPhrase] = useState("example phrase");

 const createPhrase = () => {
 setPhrase(val);
 set("");
 };

 useEffect(() => {
 console.log(`typing "${val}"`);
 });

 useEffect(() => {
 console.log(`saved phrase: "${phrase}"`);
 });

 return (
 <>
 <label>Favorite phrase:</label>
 <input
 value={val}
 placeholder={phrase}
 onChange={e => set(e.target.value)}
 />
 <button onClick={createPhrase}>send</button>
 </>
);
}

val is a state variable that represents the value of the input field. The val changes
every time the value of the input field changes. It causes the component to render
every time the user types a new character. When the user clicks the Send button, the
val of the text area is saved as the phrase, and the val is reset to "", which empties
the text field.

This works as expected, but the useEffect hook is invoked more times than it should
be. After every render, both useEffect Hooks are called:

132 | Chapter 7: Enhancing Components with Hooks

typing "" // First Render
saved phrase: "example phrase" // First Render
typing "S" // Second Render
saved phrase: "example phrase" // Second Render
typing "Sh" // Third Render
saved phrase: "example phrase" // Third Render
typing "Shr" // Fourth Render
saved phrase: "example phrase" // Fourth Render
typing "Shre" // Fifth Render
saved phrase: "example phrase" // Fifth Render
typing "Shred" // Sixth Render
saved phrase: "example phrase" // Sixth Render

We don’t want every effect to be invoked on every render. We need to associate useEf
fect hooks with specific data changes. To solve this problem, we can incorporate the
dependency array. The dependency array can be used to control when an effect is
invoked:

useEffect(() => {
 console.log(`typing "${val}"`);
}, [val]);

useEffect(() => {
 console.log(`saved phrase: "${phrase}"`);
}, [phrase]);

We’ve added the dependency array to both effects to control when they’re invoked.
The first effect is only invoked when the val value has changed. The second effect is
only invoked when the phrase value has changed. Now, when we run the app and
take a look at the console, we’ll see more efficient updates occurring:

typing "" // First Render
saved phrase: "example phrase" // First Render
typing "S" // Second Render
typing "Sh" // Third Render
typing "Shr" // Fourth Render
typing "Shre" // Fifth Render
typing "Shred" // Sixth Render
typing "" // Seventh Render
saved phrase: "Shred" // Seventh Render

Changing the val value by typing into the input only causes the first effect to fire.
When we click the button, the phrase is saved and the val is reset to "".

It’s an array after all, so it’s possible to check multiple values in the dependency array.
Let’s say we wanted to run a specific effect any time either the val or phrase has
changed:

useEffect(() => {
 console.log("either val or phrase has changed");
}, [val, phrase]);

Introducing useEffect | 133

If either of those values changes, the effect will be called again. It’s also possible to
supply an empty array as the second argument to a useEffect function. An empty
dependency array causes the effect to be invoked only once after the initial render:

useEffect(() => {
 console.log("only once after initial render");
}, []);

Since there are no dependencies in the array, the effect is invoked for the initial ren‐
der. No dependencies means no changes, so the effect will never be invoked again.
Effects that are only invoked on the first render are extremely useful for initialization:

useEffect(() => {
 welcomeChime.play();
}, []);

If you return a function from the effect, the function will be invoked when the com‐
ponent is removed from the tree:

useEffect(() => {
 welcomeChime.play();
 return () => goodbyeChime.play();
}, []);

This means that you can use useEffect for setup and teardown. The empty array
means that the welcome chime will play once on first render. Then, we’ll return a
function as a cleanup function to play a goodbye chime when the component is
removed from the tree.

This pattern is useful in many situations. Perhaps we’ll subscribe to a news feed on
first render. Then we’ll unsubscribe from the news feed with the cleanup function.
More specifically, we’ll start by creating a state value for posts and a function to
change that value, called setPosts. Then we’ll create a function, addPosts, that will
take in the newest post and add it to the array. Then we can use useEffect to sub‐
scribe to the news feed and play the chime. Plus, we can return the cleanup functions,
unsubscribing and playing the goodbye chime:

const [posts, setPosts] = useState([]);
const addPost = post => setPosts(allPosts => [post, ...allPosts]);

useEffect(() => {
 newsFeed.subscribe(addPost);
 welcomeChime.play();
 return () => {
 newsFeed.unsubscribe(addPost);
 goodbyeChime.play();
 };
}, []);

This is a lot going on in useEffect, though. We might want to use a separate useEf
fect for the news feed events and another useEffect for the chime events:

134 | Chapter 7: Enhancing Components with Hooks

useEffect(() => {
 newsFeed.subscribe(addPost);
 return () => newsFeed.unsubscribe(addPost);
}, []);

useEffect(() => {
 welcomeChime.play();
 return () => goodbyeChime.play();
}, []);

Splitting functionality into multiple useEffect calls is typically a good idea. But let’s
enhance this even further. What we’re trying to create here is functionality for sub‐
scribing to a news feed that plays different jazzy sounds for subscribing, unsubscrib‐
ing, and whenever there’s a new post. Everyone loves lots of loud sounds right? This is
a case for a custom hook. Maybe we should call it useJazzyNews:

const useJazzyNews = () => {
 const [posts, setPosts] = useState([]);
 const addPost = post => setPosts(allPosts => [post, ...allPosts]);

 useEffect(() => {
 newsFeed.subscribe(addPost);
 return () => newsFeed.unsubscribe(addPost);
 }, []);

 useEffect(() => {
 welcomeChime.play();
 return () => goodbyeChime.play();
 }, []);

 return posts;
};

Our custom hook contains all of the functionality to handle a jazzy news feed, which
means that we can easily share this functionality with our components. In a new
component called NewsFeed, we’ll use the custom hook:

function NewsFeed({ url }) {
 const posts = useJazzyNews();

 return (
 <>
 <h1>{posts.length} articles</h1>
 {posts.map(post => (
 <Post key={post.id} {...post} />
))}
 </>
);
}

Introducing useEffect | 135

Deep Checking Dependencies
So far, the dependencies we’ve added to the array have been strings. JavaScript primi‐
tives like strings, booleans, numbers, etc., are comparable. A string would equal a
string as expected:

if ("gnar" === "gnar") {
 console.log("gnarly!!");
}

However, when we start to compare objects, arrays, and functions, the comparison is
different. For example, if we compared two arrays:

if ([1, 2, 3] !== [1, 2, 3]) {
 console.log("but they are the same");
}

These arrays [1,2,3] and [1,2,3] are not equal, even though they look identical in
length and in entries. This is because they are two different instances of a similar-
looking array. If we create a variable to hold this array value and then compare, we’ll
see the expected output:

const array = [1, 2, 3];
if (array === array) {
 console.log("because it's the exact same instance");
}

In JavaScript, arrays, objects, and functions are the same only when they’re the exact
same instance. So how does this relate to the useEffect dependency array? To
demonstrate this, we’re going to need a component we can force to render as much as
we want. Let’s build a hook that causes a component to render whenever a key is
pressed:

const useAnyKeyToRender = () => {
 const [, forceRender] = useState();

 useEffect(() => {
 window.addEventListener("keydown", forceRender);
 return () => window.removeEventListener("keydown", forceRender);
 }, []);
};

At minimum, all we need to do to force a render is invoke a state change function. We
don’t care about the state value. We only want the state function: forceRender. (That’s
why we added the comma using array destructuring. Remember, from Chapter 2?)
When the component first renders, we’ll listen for keydown events. When a key is
pressed, we’ll force the component to render by invoking forceRender. As we’ve done
before, we’ll return a cleanup function where we stop listening to keydown events. By
adding this hook to a component, we can force it to rerender simply by pressing a
key.

136 | Chapter 7: Enhancing Components with Hooks

With the custom hook built, we can use it in the App component (and any other com‐
ponent for that matter! Hooks are cool.):

function App() {
 useAnyKeyToRender();

 useEffect(() => {
 console.log("fresh render");
 });

 return <h1>Open the console</h1>;
}

Every time we press a key, the App component is rendered. useEffect demonstrates
this by logging “fresh render” to the console every time the App is rendered. Let’s
adjust useEffect in the App component to reference the word value. If word changes,
we’ll rerender:

const word = "gnar";
useEffect(() => {
 console.log("fresh render");
}, [word]);

Instead of calling useEffect on every keydown event, we would only call this after
first render and any time the word value changes. It doesn’t change, so subsequent
rerenders don’t occur. Adding a primitive or a number to the dependency array works
as expected. The effect is invoked once.

What happens if instead of a single word, we use an array of words?

const words = ["sick", "powder", "day"];
useEffect(() => {
 console.log("fresh render");
}, [words]);

The variable words is an array. Because a new array is declared with each render, Java‐
Script assumes that words has changed, thus invoking the “fresh render” effect every
time. The array is a new instance each time, and this registers as an update that
should trigger a rerender.

Declaring words outside of the scope of the App would solve the problem:

const words = ["sick", "powder", "day"];

function App() {
 useAnyKeyToRender();
 useEffect(() => {
 console.log("fresh render");
 }, [words]);

 return <h1>component</h1>;
}

Introducing useEffect | 137

The dependency array in this case refers to one instance of words that’s declared out‐
side of the function. The “fresh render” effect does not get called again after the first
render because words is the same instance as the last render. This is a good solution
for this example, but it’s not always possible (or advisable) to have a variable defined
outside of the scope of the function. Sometimes the value passed to the dependency
array requires variables in scope. For example, we might need to create the words
array from a React property like children:

function WordCount({ children = "" }) {
 useAnyKeyToRender();

 const words = children.split(" ");

 useEffect(() => {
 console.log("fresh render");
 }, [words]);

 return (
 <>
 <p>{children}</p>
 <p>
 {words.length} - words
 </p>
 </>
);
}

function App() {
 return <WordCount>You are not going to believe this but...</WordCount>;
}

The App component contains some words that are children of the WordCount compo‐
nent. The WordCount component takes in children as a property. Then we set words
in the component equal to an array of those words that we’ve called .split on. We
would hope that the component will rerender only if words changes, but as soon as
we press a key, we see the dreaded “fresh render” words appearing in the console.

Let’s replace that feeling of dread with one of calm, because the React team has pro‐
vided us a way to avoid these extra renders. They wouldn’t hang us out to dry like
that. The solution to this problem is, as you might expect, another hook: useMemo.

useMemo invokes a function to calculate a memoized value. In computer science in
general, memoization is a technique that’s used to improve performance. In a memo‐
ized function, the result of a function call is saved and cached. Then, when the func‐
tion is called again with the same inputs, the cached value is returned. In React,
useMemo allows us to compare the cached value against itself to see if it has actually
changed.

138 | Chapter 7: Enhancing Components with Hooks

The way useMemo works is that we pass it a function that’s used to calculate and create
a memoized value. useMemo will only recalculate that value when one of the depen‐
dencies has changed. First, let’s import the useMemo hook:

import React, { useEffect, useMemo } from "react";

Then we’ll use the function to set words:

const words = useMemo(() => {
 const words = children.split(" ");
 return words;
}, []);

useEffect(() => {
 console.log("fresh render");
}, [words]);

useMemo invokes the function sent to it and sets words to the return value of that
function. Like useEffect, useMemo relies on a dependency array:

const words = useMemo(() => children.split(" "));

When we don’t include the dependency array with useMemo, the words are calculated
with every render. The dependency array controls when the callback function should
be invoked. The second argument sent to the useMemo function is the dependency
array and should contain the children value:

function WordCount({ children = "" }) {
 useAnyKeyToRender();

 const words = useMemo(() => children.split(" "), [children]);

 useEffect(() => {
 console.log("fresh render");
 }, [words]);

 return (...);
}

The words array depends on the children property. If children changes, we should
calculate a new value for words that reflects that change. At that point, useMemo will
calculate a new value for words when the component initially renders and if the chil
dren property changes.

The useMemo hook is a great function to understand when you’re creating React appli‐
cations.

useCallback can be used like useMemo, but it memoizes functions instead of values.
For example:

const fn = () => {
 console.log("hello");

Introducing useEffect | 139

 console.log("world");
};

useEffect(() => {
 console.log("fresh render");
 fn();
}, [fn]);

fn is a function that logs “Hello” then “World.” It is a dependency of useEffect, but
just like words, JavaScript assumes fn is different every render. Therefore, it triggers
the effect every render. This yields a “fresh render” for every key press. It’s not ideal.

Start by wrapping the function with useCallback:

const fn = useCallback(() => {
 console.log("hello");
 console.log("world");
}, []);

useEffect(() => {
 console.log("fresh render");
 fn();
}, [fn]);

useCallback memoizes the function value for fn. Just like useMemo and useEffect, it
also expects a dependency array as the second argument. In this case, we create the
memoized callback once because the dependency array is empty.

Now that we have an understanding of the uses and differences between useMemo and
useCallback, let’s improve our useJazzyNews hook. Every time there’s a new post,
we’ll call newPostChime.play(). In this hook, posts are an array, so we’ll need to use
useMemo to memoize the value:

const useJazzyNews = () => {
 const [_posts, setPosts] = useState([]);
 const addPost = post => setPosts(allPosts => [post, ...allPosts]);

 const posts = useMemo(() => _posts, [_posts]);

 useEffect(() => {
 newPostChime.play();
 }, [posts]);

 useEffect(() => {
 newsFeed.subscribe(addPost);
 return () => newsFeed.unsubscribe(addPost);
 }, []);

 useEffect(() => {
 welcomeChime.play();
 return () => goodbyeChime.play();
 }, []);

140 | Chapter 7: Enhancing Components with Hooks

 return posts;
};

Now, the useJazzyNews hook plays a chime every time there’s a new post. We made
this happen with a few changes to the hook. First, const [posts, setPosts] was
renamed to const [_posts, setPosts]. We’ll calculate a new value for posts every
time _posts change.

Next, we added the effect that plays the chime every time the post array changes.
We’re listening to the news feed for new posts. When a new post is added, this hook is
reinvoked with _posts reflecting that new post. Then, a new value for post is memo‐
ized because _posts have changed. Then the chime plays because this effect is depen‐
dent on posts. It only plays when the posts change, and the list of posts only changes
when a new one is added.

Later in the chapter, we’ll discuss the React Profiler, a browser extension for testing
performance and rendering of React components. There, we’ll dig into more detail
about when to use useMemo and useCallback. (Spoiler alert: sparingly!)

When to useLayoutEffect
We understand that the render always comes before useEffect. The render happens
first, then all effects run in order with full access to all of the values from the render.
A quick look at the React docs will point out that there’s another type of effect hook:
useLayoutEffect.

useLayoutEffect is called at a specific moment in the render cycle. The series of events
is as follows:

1. Render
2. useLayoutEffect is called
3. Browser paint: the time when the component’s elements are actually added to the

DOM
4. useEffect is called

This can be observed by adding some simple console messages:

import React, { useEffect, useLayoutEffect } from "react";

function App() {
 useEffect(() => console.log("useEffect"));
 useLayoutEffect(() => console.log("useLayoutEffect"));
 return <div>ready</div>;
}

Introducing useEffect | 141

In the App component, useEffect is the first hook, followed by useLayoutEffect. We
see that useLayoutEffect is invoked before useEffect:

useLayoutEffect
useEffect

useLayoutEffect is invoked after the render but before the browser paints the
change. In most circumstances, useEffect is the right tool for the job, but if your
effect is essential to the browser paint (the appearance or placement of the UI ele‐
ments on the screen), you may want to use useLayoutEffect. For instance, you may
want to obtain the width and height of an element when the window is resized:

function useWindowSize {
 const [width, setWidth] = useState(0);
 const [height, setHeight] = useState(0);

 const resize = () => {
 setWidth(window.innerWidth);
 setHeight(window.innerHeight);
 };

 useLayoutEffect(() => {
 window.addEventListener("resize", resize);
 resize();
 return () => window.removeEventListener("resize", resize);
 }, []);

 return [width, height];
};

The width and height of the window is information that your component may need
before the browser paints. useLayoutEffect is used to calculate the window’s width
and height before the paint. Another example of when to use useLayoutEffect is
when tracking the position of the mouse:

function useMousePosition {
 const [x, setX] = useState(0);
 const [y, setY] = useState(0);

 const setPosition = ({ x, y }) => {
 setX(x);
 setY(y);
 };

 useLayoutEffect(() => {
 window.addEventListener("mousemove", setPosition);
 return () => window.removeEventListener("mousemove", setPosition);
 }, []);

 return [x, y];
};

142 | Chapter 7: Enhancing Components with Hooks

It’s highly likely that the x and y position of the mouse will be used when painting the
screen. useLayoutEffect is available to help calculate those positions accurately
before the paint.

Rules to Follow with Hooks
As you’re working with Hooks, there are a few guidelines to keep in mind that can
help avoid bugs and unusual behavior:

Hooks only run in the scope of a component
Hooks should only be called from React components. They can also be added to
custom Hooks, which are eventually added to components. Hooks are not regu‐
lar JavaScript—they’re a React pattern, but they’re starting to be modeled and
incorporated in other libraries.

It’s a good idea to break functionality out into multiple Hooks
In our earlier example with the Jazzy News component, we split everything
related to subscriptions into one effect and everything related to sound effects
into another effect. This immediately made the code easier to read, but there was
another benefit to doing this. Since Hooks are invoked in order, it’s a good idea to
keep them small. Once invoked, React saves the values of Hooks in an array so
the values can be tracked. Consider the following component:

function Counter() {
 const [count, setCount] = useState(0);
 const [checked, toggle] = useState(false);

 useEffect(() => {
 ...
 }, [checked]);

 useEffect(() => {
 ...
 }, []);

 useEffect(() => {
 ...
 }, [count]);

 return (...)
}

The order of Hook calls is the same for each and every render:

[count, checked, DependencyArray, DependencyArray, DependencyArray]

Introducing useEffect | 143

Hooks should only be called at the top level
Hooks should be used at the top level of a React function. They cannot be placed
into conditional statements, loops, or nested functions. Let’s adjust the counter:

function Counter() {
 const [count, setCount] = useState(0);

 if (count > 5) {
 const [checked, toggle] = useState(false);
 }

 useEffect(() => {
 ...
 });

 if (count > 5) {
 useEffect(() => {
 ...
 });
 }

 useEffect(() => {
 ...
 });

 return (...)
}

When we use useState within the if statement, we’re saying that the hook
should only be called when the count value is greater than 5. That will throw off
the array values. Sometimes the array will be: [count, checked, DependencyAr
ray, 0, DependencyArray]. Other times: [count, DependencyArray, 1]. The
index of the effect in that array matters to React. It’s how values are saved.

Wait, so are we saying that we can never use conditional logic in React applica‐
tions anymore? Of course not! We just have to organize these conditionals differ‐
ently. We can nest if statements, loops, and other conditionals within the hook:

function Counter() {
 const [count, setCount] = useState(0);
 const [checked, toggle] =
 useState(
 count => (count < 5)
 ? undefined
 : !c,
 (count < 5) ? undefined
);

 useEffect(() => {

144 | Chapter 7: Enhancing Components with Hooks

 ...
 });

 useEffect(() => {
 if (count < 5) return;
 ...
 });

 useEffect(() => {
 ...
 });

 return (...)
}

Here, the value for checked is based on the condition that the count is greater
than 5. When count is less than 5, the value for checked is undefined. Nesting
this conditional inside the hook means that the hook remains on the top level,
but the result is similar. The second effect enforces the same rules. If the count is
less than 5, the return statement will prevent the effect from continuing to exe‐
cute. This keeps the hook values array intact: [countValue, checkedValue,
DependencyArray, DependencyArray, DependencyArray].

Like conditional logic, you need to nest asynchronous behavior inside of a hook.
useEffect takes a function as the first argument, not a promise. So you can’t use
an async function as the first argument: useEffect(async () => {}). You can,
however, create an async function inside of the nested function like this:

useEffect(() => {
 const fn = async () => {
 await SomePromise();
 };
 fn();
});

We created a variable, fn, to handle the async/await, then we called the function
as the return. You can give this function a name, or you can use async effects as
an anonymous function:

useEffect(() => {
 (async () => {
 await SomePromise();
 })();
});

If you follow these rules, you can avoid some common gotchas with React Hooks. If
you’re using Create React App, there’s an ESLint plug-in included called
eslint-plugin-react-hooks that provides warning hints if you’re in violation of these
rules.

Introducing useEffect | 145

Improving Code with useReducer
Consider the Checkbox component. This component is a perfect example of a compo‐
nent that holds simple state. The box is either checked or not checked. checked is the
state value, and setChecked is a function that will be used to change the state. When
the component first renders, the value of checked will be false:

function Checkbox() {
 const [checked, setChecked] = useState(false);

 return (
 <>
 <input
 type="checkbox"
 value={checked}
 onChange={() => setChecked(checked => !checked)}
 />
 {checked ? "checked" : "not checked"}
 </>
);
}

This works well, but one area of this function could be cause for alarm:

onChange={() => setChecked(checked => !checked)}

Look at it closely. It feels OK at first glance, but are we stirring up trouble here? We’re
sending a function that takes in the current value of checked and returns the oppo‐
site, !checked. This is probably more complex than it needs to be. Developers could
easily send the wrong information and break the whole thing. Instead of handling it
this way, why not provide a function as a toggle?

Let’s add a function called toggle that will do the same thing: call setChecked and
return the opposite of the current value of checked:

function Checkbox() {
 const [checked, setChecked] = useState(false);

 function toggle() {
 setChecked(checked => !checked);
 }

 return (
 <>
 <input type="checkbox" value={checked} onChange={toggle} />
 {checked ? "checked" : "not checked"}
 </>
);
}

146 | Chapter 7: Enhancing Components with Hooks

This is better. onChange is set to a predictable value: the toggle function. We know
what that function is going to do every time, everywhere it’s used. We can still take
this one step farther to yield even more predictable results each time we use the check
box component. Remember the function we sent to setChecked in the toggle
function?

setChecked(checked => !checked);

We’re going to refer to this function, checked => !checked, by a different name now:
a reducer. A reducer function’s most simple definition is that it takes in the current
state and returns a new state. If checked is false, it should return the opposite, true.
Instead of hardcoding this behavior into onChange events, we can abstract the logic
into a reducer function that will always produce the same results. Instead of useState
in the component, we’ll use useReducer:

function Checkbox() {
 const [checked, toggle] = useReducer(checked => !checked, false);

 return (
 <>
 <input type="checkbox" value={checked} onChange={toggle} />
 {checked ? "checked" : "not checked"}
 </>
);
}

useReducer takes in the reducer function and the initial state, false. Then, we’ll set
the onChange function to setChecked, which will call the reducer function.

Our earlier reducer, checked => !checked, is a prime example of this. If the same
input is provided to a function, the same output should be expected. This concept
originates with Array.reduce in JavaScript. reduce fundamentally does the same
thing as a reducer: it takes in a function (to reduce all of the values into a single value)
and an initial value and returns one value.

Array.reduce takes in a reducer function and an initial value. For each value in the
numbers array, the reducer is called until one value is returned:

const numbers = [28, 34, 67, 68];

numbers.reduce((number, nextNumber) => number + nextNumber, 0); // 197

The reducer sent to Array.reduce takes in two arguments. You can also send multi‐
ple arguments to a reducer function:

function Numbers() {
 const [number, setNumber] = useReducer(
 (number, newNumber) => number + newNumber,
 0
);

Introducing useEffect | 147

 return <h1 onClick={() => setNumber(30)}>{number}</h1>;
}

Every time we click on the h1, we’ll add 30 to the total.

useReducer to Handle Complex State
useReducer can help us handle state updates more predictably as state becomes more
complex. Consider an object that contains user data:

const firstUser = {
 id: "0391-3233-3201",
 firstName: "Bill",
 lastName: "Wilson",
 city: "Missoula",
 state: "Montana",
 email: "bwilson@mtnwilsons.com",
 admin: false
};

Then we have a component called User that sets the firstUser as the initial state, and
the component displays the appropriate data:

function User() {
 const [user, setUser] = useState(firstUser);

 return (
 <div>
 <h1>
 {user.firstName} {user.lastName} - {user.admin ? "Admin" : "User"}
 </h1>
 <p>Email: {user.email}</p>
 <p>
 Location: {user.city}, {user.state}
 </p>
 <button>Make Admin</button>
 </div>
);
}

A common error when managing state is to overwrite the state:

<button
 onClick={() => {
 setUser({ admin: true });
 }}
>
 Make Admin
</button>

148 | Chapter 7: Enhancing Components with Hooks

Doing this would overwrite state from firstUser and replace it with just what we
sent to the setUser function: {admin: true}. This can be fixed by spreading the cur‐
rent values from user, then overwriting the admin value:

<button
 onClick={() => {
 setUser({ ...user, admin: true });
 }}
>
 Make Admin
</button>

This will take the initial state and push in the new key/values: {admin: true}. We
need to rewrite this logic in every onClick, making it prone to error (we might forget
to do this when we come back to the app tomorrow):

function User() {
 const [user, setUser] = useReducer(
 (user, newDetails) => ({ ...user, ...newDetails }),
 firstUser
);
 ...
}

Then we’ll send the new state value, newDetails, to the reducer, and it will be pushed
into the object:

<button
 onClick={() => {
 setUser({ admin: true });
 }}
>
 Make Admin
</button>

This pattern is useful when state has multiple subvalues or when the next state
depends on a previous state. Teach everyone to spread, they’ll spread for a day. Teach
everyone to useReducer and they’ll spread for life.

Legacy setState and useReducer
In previous versions of React, we used a function called setState to update state. Ini‐
tial state would be assigned in the constructor as an object:

class User extends React.Component {
 constructor(props) {
 super(props);
 this.state = {
 id: "0391-3233-3201",
 firstName: "Bill",
 lastName: "Wilson",

Introducing useEffect | 149

 city: "Missoula",
 state: "Montana",
 email: "bwilson@mtnwilsons.com",
 admin: false
 };
 }
}

<button onSubmit={() =>
 {this.setState({admin: true });}}
Make Admin
</button>

The older incarnation of setState merged state values. The same is true of useRe
ducer:

const [state, setState] = useReducer(
 (state, newState) =>
 ({...state, ...newState}),
 initialState);

<button onSubmit={() =>
 {setState({admin: true });}}
Make Admin
</button>
</div>);

If you like this pattern, you can use legacy-set-state npm or useReducer.

The past few examples are simple applications for a reducer. In the next chapter, we’ll
dig deeper into reducer design patterns that can be used to simplify state management
in your apps.

Improving Component Performance
In a React application, components are rendered…usually a lot. Improving perfor‐
mance includes preventing unnecessary renders and reducing the time a render takes
to propagate. React comes with tools to help us prevent unnecessary renders: memo,
useMemo, and useCallback. We looked at useMemo and useCallback earlier in the
chapter, but in this section, we’ll go into more detail about how to use these Hooks to
make your websites perform better.

The memo function is used to create pure components. As discussed in Chapter 3, we
know that, given the same parameters, a pure function will always return the same
result. A pure component works the same way. In React, a pure component is a com‐
ponent that always renders the same output, given the same properties.

Let’s create a component called Cat:

150 | Chapter 7: Enhancing Components with Hooks

const Cat = ({ name }) => {
 console.log(`rendering ${name}`);
 return <p>{name}</p>;
};

Cat is a pure component. The output is always a paragraph that displays the name
property. If the name provided as a property is the same, the output will be the same:

function App() {
 const [cats, setCats] = useState(["Biscuit", "Jungle", "Outlaw"]);
 return (
 <>
 {cats.map((name, i) => (
 <Cat key={i} name={name} />
))}
 <button onClick={() => setCats([...cats, prompt("Name a cat")])}>
 Add a Cat
 </button>
 </>
);
}

This app uses the Cat component. After the initial render, the console reads:

rendering Biscuit
rendering Jungle
rendering Outlaw

When the “Add a Cat” button is clicked, the user is prompted to add a cat.

If we add a cat named “Ripple,” we see that all Cat components are rerendered:

rendering Biscuit
rendering Jungle
rendering Outlaw
rendering Ripple

This code works because prompt is blocking. This is just an exam‐
ple. Don’t use prompt in a real app.

Every time we add a cat, every Cat component is rendered, but the Cat component is
a pure component. Nothing changes about the output given the same prop, so there
shouldn’t be a render for each of these. We don’t want to rerender a pure component
if the properties haven’t changed. The memo function can be used to create a compo‐
nent that will only render when its properties change. Start by importing it from the
React library and use it to wrap the current Cat component:

import React, { useState, memo } from "react";

Introducing useEffect | 151

const Cat = ({ name }) => {
 console.log(`rendering ${name}`);
 return <p>{name}</p>;
};

const PureCat = memo(Cat);

Here, we’ve created a new component called PureCat. PureCat will only cause the Cat
to render when the properties change. Then we can replace the Cat component with
PureCat in the App component:

cats.map((name, i) => <PureCat key={i} name={name} />);

Now, every time we add a new cat name, like “Pancake,” we see only one render in the
console:

rendering Pancake

Because the names of the other cats have not changed, we don’t render those Cat
components. This is working well for a name property, but what if we introduce a
function property to the Cat component?

const Cat = memo(({ name, meow = f => f }) => {
 console.log(`rendering ${name}`);
 return <p onClick={() => meow(name)}>{name}</p>;
});

Every time a cat is clicked on, we can use this property to log a meow to the console:

<PureCat key={i} name={name} meow={name => console.log(`${name} has meowed`)} />

When we add this change, PureCat no longer works as expected. It’s always rendering
every Cat component even though the name property remains the same. This is
because of the added meow property. Unfortunately, every time we define the meow
property as a function, it’s always new function. To React, the meow property has
changed, and the component is rerendered.

The memo function will allow us to define more specific rules around when this com‐
ponent should rerender:

const RenderCatOnce = memo(Cat, () => true);
const AlwaysRenderCat = memo(Cat, () => false);

The second argument sent to the memo function is a predicate. A predicate is a func‐
tion that only returns true or false. This function decides whether to rerender a cat
or not. When it returns false, the Cat is rerendered. When this function returns
true, the Cat will not be rerendered. No matter what, the Cat is always rendered at
least once. This is why, with RenderCatOnce, it will render once and then never again.
Typically, this function is used to check actual values:

const PureCat = memo(
 Cat,

152 | Chapter 7: Enhancing Components with Hooks

 (prevProps, nextProps) => prevProps.name === nextProps.name
);

We can use the second argument to compare properties and decide if Cat should be
rerendered. The predicate receives the previous properties and the next properties.
These objects are used to compare the name property. If the name changes, the compo‐
nent will be re-rendered. If the name is the same, it will be rerendered regardless of
what React thinks about the meow property.

shouldComponentUpdate and PureComponent
The concepts we’re discussing are not new to React. The memo function is a new solu‐
tion to a common problem. In previous versions of React, there was a method called
shouldComponentUpdate. If present in the component, it was used to let React know
under which circumstances the component should update. shouldComponentUpdate
described which props or state would need to change for the component to rerender.
Once shouldComponentUpdate was part of the React library, it was embraced as a use‐
ful feature by many. So useful that the React team decided to create an alternate way
of creating a component as a class. A class component would look like this:

class Cat extends React.Component {
 render() {
 return (
 {name} is a good cat!
)
 }
}

A PureComponent would look like this:

class Cat extends React.PureComponent {
 render() {
 return (
 {name} is a good cat!
)
 }
}

PureComponent is the same as React.memo, but PureComponent is only for class com‐
ponents; React.memo is only for function components.

useCallback and useMemo can be used to memoize object and function properties.
Let’s use useCallback in the Cat component:

const PureCat = memo(Cat);
function App() {
 const meow = useCallback(name => console.log(`${name} has meowed`, []);
 return <PureCat name="Biscuit" meow={meow} />
}

Introducing useEffect | 153

In this case, we did not provide a property-checking predicate to memo(Cat). Instead,
we used useCallback to ensure that the meow function had not changed. Using these
functions can be helpful when dealing with too many rerenders in your component
tree.

When to Refactor
The last Hooks we discussed, useMemo and useCallback, along with the memo func‐
tion, are commonly overused. React is designed to be fast. It’s designed to have com‐
ponents render a lot. The process of optimizing for performance began when you
decided to use React in the first place. It’s fast. Any further refactoring should be a last
step.

There are trade-offs to refactoring. Using useCallback and useMemo everywhere
because it seems like a good idea might actually make your app less performant.
You’re adding more lines of code and developer hours to your application. When you
refactor for performance, it’s important to have a goal. Perhaps you want to stop the
screen from freezing or flickering. Maybe you know there are some costly functions
that are slowing the speed of your app unreasonably.

The React Profiler can be used to measure the performance of each of your compo‐
nents. The profiler ships with the React Developer Tools that you’ve likely installed
already (available for Chrome and Firefox).

Always make sure your app works and you’re satisfied with the codebase before refac‐
toring. Over-refactoring, or refactoring before your app works, can introduce weird
bugs that are hard to spot, and it might not be worth your time and focus to intro‐
duce these optimizations.

In the last two chapters, we’ve introduced many of the Hooks that ship with React.
You’ve seen use cases for each hook, and you’ve created your own custom Hooks by
composing other Hooks. Next, we’ll build on these foundational skills by incorporat‐
ing additional libraries and advanced patterns.

154 | Chapter 7: Enhancing Components with Hooks

CHAPTER 8

Incorporating Data

Data is the lifeblood of our applications. It flows like water, and it nourishes our com‐
ponents with value. The user interface components we’ve composed are vessels for
data. We fill our applications with data from the internet. We collect, create, and send
new data to the internet. The value of our applications is not the components them‐
selves—it’s the data that flows through those components.

When we talk about data, it may sound a little like we’re talking about water or food.
The cloud is the abundantly endless source from which we send and receive data. It’s
the internet. It’s the networks, services, systems, and databases where we manipulate
and store zettabytes of data. The cloud hydrates our clients with the latest and freshest
data from the source. We work with this data locally and even store it locally. But
when our local data becomes out of sync with the source, it loses its freshness and is
said to be stale.

These are the challenges we face as developers working with data. We need to keep
our applications hydrated with fresh data from the cloud. In this chapter, we’re going
to take a look at various techniques for loading and working with data from the
source.

Requesting Data
In the movie Star Wars, the droid C-3P0 is a protocol droid. His specialty, of course,
is communication. He speaks over six million languages. Surely, C-3P0 knows how to
send an HTTP request, because the Hyper Text Transfer Protocol is one of the most
popular ways to transmit data to and from the internet.

HTTP provides the backbone for our internet communication. Every time we load
http://www.google.com into our browser, we’re asking Google to send us a search
form. The files necessary for us to search are transmitted to the browser over HTTP.

155

When we interact with Google by searching for “cat photos,” we’re asking Google to
find us cat photos. Google responds with data, and images are transferred to our
browser over HTTP.

In JavaScript, the most popular way to make an HTTP request is to use fetch. If we
wanted to ask GitHub for information about Moon Highway, we could do so by send‐
ing a fetch request:

fetch(`https://api.github.com/users/moonhighway`)
 .then(response => response.json())
 .then(console.log)
 .catch(console.error);

The fetch function returns a promise. Here, we’re making an asynchronous request
to a specific URL: https://api.github.com/users/moonhighway. It takes time for that
request to traverse the internet and respond with information. When it does, that
information is passed to a callback using the .then(callback) method. The GitHub
API will respond with JSON data, but that data is contained in the body of the HTTP
response, so we call response.json() to obtain that data and parse it as JSON. Once
obtained, we log that data to the console. If anything goes wrong, we’ll pass the error
to the console.error method.

GitHub will respond to this request with a JSON object:

{
 "login": "MoonHighway",
 "id": 5952087,
 "node_id": "MDEyOk9yZ2FuaXphdGlvbjU5NTIwODc=",
 "avatar_url": "https://avatars0.githubusercontent.com/u/5952087?v=4",
 "bio": "Web Development classroom training materials.",

 ...

}

On GitHub, basic information about user accounts is made available by their API. Go
ahead, try searching for yourself: https://api.github.com/users/<YOUR_GIT‐
HUB_USER_NAME>.

Another way of working with promises is to use async/await. Since fetch returns a
promise, we can await a fetch request inside of an async function:

async function requestGithubUser(githubLogin) {
 try {
 const response = await fetch(
 `https://api.github.com/users/${githubLogin}`
);
 const userData = await response.json();
 console.log(userData);
 } catch (error) {
 console.error(error);

156 | Chapter 8: Incorporating Data

 }
}

This code achieves the exact same results as the previous fetch request that was made
by chaining .then functions on to the request. When we await a promise, the next
line of code will not be executed until the promise has resolved. This format gives us a
nice way to work with promises in code. We’ll be using both approaches for the
remainder of this chapter.

Sending Data with a Request
A lot of requests require us to upload data with the request. For instance, we need to
collect information about a user in order to create an account, or we may need new
information about a user to update their account.

Typically, we use a POST request when we’re creating data and a PUT request when
we’re modifying it. The second argument of the fetch function allows us to pass an
object of options that fetch can use when creating our HTTP request:

fetch("/create/user", {
 method: "POST",
 body: JSON.stringify({ username, password, bio })
});

This fetch is using the POST method to create a new user. The username, password,
and user’s bio are being passed as string content in the body of the request.

Uploading Files with fetch
Uploading files requires a different type of HTTP request: a multipart-formdata
request. This type of request tells the server that a file or multiple files are located in
the body of the request. To make this request in JavaScript, all we have to do is pass a
FormData object in the body of our request:

const formData = new FormData();
formData.append("username", "moontahoe");
formData.append("fullname", "Alex Banks");
forData.append("avatar", imgFile);

fetch("/create/user", {
 method: "POST",
 body: formData
});

This time, when we create a user, we’re passing the username, fullname, and avatar
image along with the request as a formData object. Although these values are
hardcoded here, we could easily collect them from a form.

Requesting Data | 157

Authorized Requests
Sometimes, we need to be authorized to make requests. Authorization is typically
required to obtain personal or sensitive data. Additionally, authorization is almost
always required for users to take action on the server with POST, PUT, or DELETE
requests.

Users typically identify themselves with each request by adding a unique token to the
request that a service can use to identify the user. This token is usually added as the
Authorization header. On GitHub, you can see your personal account information if
you send a token along with your request:

fetch(`https://api.github.com/users/${login}`, {
 method: "GET",
 headers: {
 Authorization: `Bearer ${token}`
 }
});

Tokens are typically obtained when a user signs into a service by providing their user‐
name and password. Tokens can also be obtained from third parties like GitHub or
Facebook using with an open standard protocol called OAuth.

GitHub allows you to generate a Personal User token. You can generate one by log‐
ging in to GitHub and navigating to: Settings > Developer Settings > Personal Access
Tokens. From here, you can create tokens with specific read/write rules and then use
those tokens to obtain personal information from the GitHub API. If you generate a
Personal Access Token and send it along with the fetch request, GitHub will provide
additional private information about your account.

Fetching data from within a React component requires us to orchestrate the useState
and useEffect hooks. The useState hook is used to store the response in state, and
the useEffect hook is used to make the fetch request. For example, if we wanted to
display information about a GitHub user in a component, we could use the following
code:

import React, { useState, useEffect } from "react";

function GitHubUser({ login }) {
 const [data, setData] = useState();

 useEffect(() => {
 if (!login) return;
 fetch(`https://api.github.com/users/${login}`)
 .then(response => response.json())
 .then(setData)
 .catch(console.error);
 }, [login]);

158 | Chapter 8: Incorporating Data

 if (data)
 return <pre>{JSON.stringify(data, null, 2)}</pre>;

 return null;
}

export default function App() {
 return <GitHubUser login="moonhighway" />;
}

In this code, our App renders a GitHubUser component and displays JSON data about
moonhighway. On the first render, GitHubUser sets up a state variable for data using
the useState hook. Then, because data is initially null, the component returns null.
Returning null from a component tells React to render nothing. It doesn’t cause an
error; we’ll just see a black screen.

After the component is rendered, the useEffect hook is invoked. This is where we
make the fetch request. When we get a response, we obtain and parse the data in that
response as JSON. Now we can pass that JSON object to the setData function, which
causes our component to render once again, but this time it will have data. This
useEffect hook will not be invoked again unless the value for login changes. When
it does, we’ll need to request more information about a different user from GitHub.

When there is data, we’re rendering it as a JSON string in a pre element. The
JSON.stringify method takes three arguments: the JSON data to convert to a string,
a replacer function that can be used to replace properties of the JSON object, and the
number of spaces to use when formatting the data. In this case, we sent null as the
replacer because we don’t want to replace anything. The 2 represents the number of
spaces to be used when formatting the code. This will indent the JSON string two
spaces. Using the pre element honors whitespace, so readable JSON is what is finally
rendered.

Saving Data Locally
We can save data locally to the browser using the Web Storage API. Data can be saved
by either using the window.localStorage or window.sessionStorage objects. The
sessionStorage API only saves data for the user’s session. Closing the tabs or restart‐
ing the browser will clear any data saved to sessionStorage. On the other hand,
localStorage will save data indefinitely until you remove it.

JSON data should be saved in browser storage as a string. This means converting an
object into a JSON string before saving it and parsing that string into JSON while
loading it. Some function to handle saving and loading JSON data to the browser
could look like:

const loadJSON = key =>
 key && JSON.parse(localStorage.getItem(key));

Requesting Data | 159

const saveJSON = (key, data) =>
 localStorage.setItem(key, JSON.stringify(data));

The loadJSON function loads an item from localStorage using the key. The local
Storage.getItem function is used to load the data. If the item is there, it’s then
parsed into JSON before being returned. If it’s not there, the loadJSON function will
return null.

The saveJSON function will save some data to localStorage using a unique key iden‐
tifier. The localStorage.setItem function can be used to save data to the browser.
Before saving the data, we’ll need to convert it to a JSON string.

Loading data from web storage, saving data to web storage, stringifying data, and
parsing JSON strings are all synchronous tasks. Both the loadJSON and saveJSON
functions are synchronous. So be careful—calling these functions too often with too
much data can lead to performance issues. It’s typically a good idea to throttle or
debounce these functions for the sake of performance.

We could save the user’s data that we received from our GitHub request. Then the
next time that same user is requested, we could use the data saved to localStorage
instead of sending another request to GitHub. We’ll add the following code to the
GitHubUser component:

const [data, setData] = useState(loadJSON(`user:${login}`));
useEffect(() => {
 if (!data) return;
 if (data.login === login) return;
 const { name, avatar_url, location } = data;
 saveJSON(`user:${login}`, {
 name,
 login,
 avatar_url,
 location
 });
}, [data]);

The loadJSON function is synchronous, so we can use it when we invoke useState to
set the initial value for data. If there was user data saved to the browser under
user:moonhighway, we’ll initially set the data using that value. Otherwise, data will
initially be null.

When data changes here after it has been loaded from GitHub, we’ll invoke saveJSON
to save only those user details that we need: name, login, avatar_url, and location.
No need to save the rest of the user object when we’re not using it. We also skip saving
the data when that object is empty, !data. Also, if the current login and data.login
are equal to each other, then we already have saved data for that user. We’ll skip the
step of saving that data again.

160 | Chapter 8: Incorporating Data

Here’s a look at the entire GitHubUser component that uses localStorage to save
data in the browser:

import React, { useState, useEffect } from "react";

const loadJSON = key =>
 key && JSON.parse(localStorage.getItem(key));
const saveJSON = (key, data) =>
 localStorage.setItem(key, JSON.stringify(data));

function GitHubUser({ login }) {
 const [data, setData] = useState(
 loadJSON(`user:${login}`)
);

 useEffect(() => {
 if (!data) return;
 if (data.login === login) return;
 const { name, avatar_url, location } = data;
 saveJSON(`user:${login}`, {
 name,
 login,
 avatar_url,
 location
 });
 }, [data]);

 useEffect(() => {
 if (!login) return;
 if (data && data.login === login) return;
 fetch(`https://api.github.com/users/${login}`)
 .then(response => response.json())
 .then(setData)
 .catch(console.error);
 }, [login]);

 if (data)
 return <pre>{JSON.stringify(data, null, 2)}</pre>;

 return null;
}

Notice the GitHubUser component now has two useEffect hooks. The first hook is
used to save the data to the browser. It’s invoked whenever the value for data changes.
The second hook is used to request more data from GitHub. The fetch request is not
sent when there’s already data saved locally for that user. This is handled by the sec‐
ond if statement in the second useEffect hook: if (data && data.login ===
login) return;. If there is data and the login for that data matches the login prop‐
erty, then there’s no need to send an additional request to GitHub. We’ll just use the
local data.

Requesting Data | 161

The first time we run the application, if the login is set to moonhighway, the following
object will be rendered to the page:

{
 "login": "MoonHighway",
 "id": 5952087,
 "node_id": "MDEyOk9yZ2FuaXphdGlvbjU5NTIwODc=",
 "avatar_url": "https://avatars0.githubusercontent.com/u/5952087?v=4",
 "gravatar_id": "",
 "url": "https://api.github.com/users/MoonHighway",
 "html_url": "https://github.com/MoonHighway",

 ...

}

This is the response from GitHub. We can tell because this object contains a lot of
extra information about the user that we don’t need. The first time we run this page
we’ll see this lengthy response. But the second time we run the page, the response is
much shorter:

{
 "name": "Moon Highway",
 "login": "moonhighway",
 "avatar_url": "https://avatars0.githubusercontent.com/u/5952087?v=4",
 "location": "Tahoe City, CA"
}

This time, the data we saved locally for moonhighway is being rendered to the browser.
Since we only needed four fields of data, we only saved four fields of data. We’ll
always see this smaller offline object until we clear the storage:

localStorage.clear();

Both sessionStorage and localStorage are essential weapons for web developers.
We can work with this local data when we’re offline, and they allow us to increase the
performance of our applications by sending fewer network requests. However, we
must know when to use them. Implementing offline storage adds complexity to our
applications, and it can make them tough to work with in development. Additionally,
we don’t need to work with web storage to cache data. If we’re simply looking for a
performance bump, we could try letting HTTP handle caching. Our browser will
automatically cache content if we add Cache-Control: max-age=<EXP_DATE> to our
headers. The EXP_DATE defines the expiration date for the content.

Handling Promise States
HTTP requests and promises both have three states: pending, success (fulfilled), and
fail (rejected). A request is pending when we make the request and are waiting for a
response. That response can only go one of two ways: success or fail. If a response is

162 | Chapter 8: Incorporating Data

successful, it means we’ve successfully connected to the server and have received data.
In the world of promises, a successful response means that the promise has been
resolved. If something goes wrong during this process, we can say the HTTP request
has failed or the promise has been rejected. In both cases, we’ll receive an error
explaining what happened.

We really need to handle all three of these states when we make HTTP requests. We
can modify the GitHub user component to render more than just a successful
response. We can add a “loading…” message when the request is pending, or we can
render the error details if something goes wrong:

function GitHubUser({ login }) {
 const [data, setData] = useState();
 const [error, setError] = useState();
 const [loading, setLoading] = useState(false);

 useEffect(() => {
 if (!login) return;
 setLoading(true);
 fetch(`https://api.github.com/users/${login}`)
 .then(data => data.json())
 .then(setData)
 .then(() => setLoading(false))
 .catch(setError);
 }, [login]);

 if (loading) return <h1>loading...</h1>;
 if (error)
 return <pre>{JSON.stringify(error, null, 2)}</pre>;
 if (!data) return null;

 return (
 <div className="githubUser">
 <img
 src={data.avatar_url}
 alt={data.login}
 style={{ width: 200 }}
 />
 <div>
 <h1>{data.login}</h1>
 {data.name && <p>{data.name}</p>}
 {data.location && <p>{data.location}</p>}
 </div>
 </div>
);
}

When this request is successful, Moon Highway’s information is rendered for the user
to see on the screen, as shown in Figure 8-1.

Requesting Data | 163

Figure 8-1. Sample output

If something goes wrong, we’re simply displaying the error object as a JSON string.
In production, we would do more with the error. Maybe we would track it, log it, or
try to make another request. While in development, it’s OK to render error details,
which gives the developer instant feedback.

Finally, while the request is pending, we simply display a “loading…” message using
an h1.

Sometimes an HTTP request can succeed with an error. This happens when the
request was successful—successfully connected to a server and received a response—
but the response body contains an error. Sometimes servers pass additional errors as
successful responses.

Handling all three of these states bloats our code a little bit, but it’s essential to do so
on every request. Requests take time and a lot could go wrong. Because all requests—
and promises—have these three states, it makes it possible to handle all HTTP
requests with a reusable hook, or a component, or even a React feature called Sus‐
pense. We’ll cover each of these approaches, but first, we must introduce the concept
of render props.

164 | Chapter 8: Incorporating Data

Render Props
Render props are exactly what they sound like: properties that are rendered. This can
mean components that are sent as properties that are rendered when specific condi‐
tions are met, or it can mean function properties that return components that will be
rendered. In the second case, when they’re functions, data can be passed as arguments
and used when rendering the returned component.

Render props are useful when maximizing reusability in asynchronous components.
With this pattern, we can create components that abstract away complex mechanics
or monotonous boilerplate that’s necessary for application development.

Consider the task of displaying a list:

import React from "react";

const tahoe_peaks = [
 { name: "Freel Peak", elevation: 10891 },
 { name: "Monument Peak", elevation: 10067 },
 { name: "Pyramid Peak", elevation: 9983 },
 { name: "Mt. Tallac", elevation: 9735 }
];

export default function App() {
 return (

 {tahoe_peaks.map((peak, i) => (
 <li key={i}>
 {peak.name} - {peak.elevation.toLocaleString()}ft

))}

);
}

In this example, the four tallest peaks in Tahoe are rendered into an unordered list.
This code makes sense, but mapping over an array to render each item individually
does introduce some code complexity. Mapping over an array of items is also a pretty
common task. We may find ourselves frequently repeating this pattern. We could cre‐
ate a List component that we can reuse as a solution whenever we need to render an
unordered list.

In JavaScript, arrays either contain values or they’re empty. When a list is empty, we
need to display a message to our users. However, that message may change upon
implementation. No worries—we can pass a component to render when the list is
empty:

function List({ data = [], renderEmpty }) {
 if (!data.length) return renderEmpty;
 return <p>{data.length} items</p>;

Render Props | 165

}

export default function App() {
 return <List renderEmpty={<p>This list is empty</p>} />;
}

The List component expects two properties: data and renderEmpty. The first argu‐
ment, data, represents the array of items that are to be mapped over. Its default value
is an empty array. The second argument, renderEmpty, is a component that will be
rendered if the list is empty. So when data.length is 0, the List component renders
whatever was passed as the renderEmpty property by returning that property.

In this case, users would see the following message: This list is empty.

renderEmpty is a render prop because it contains a component to render when a par‐
ticular condition has been met—in this case, when the list is empty or the data prop‐
erty has not been provided.

We can send this component an actual array of data:

export default function App() {
 return (
 <List
 data={tahoe_peaks}
 renderEmpty={<p>This list is empty</p>}
 />
);
}

Doing so at this point only renders the number of items found within the array: 4
items.

We can also tell our List component what to render for each item found within the
array. For example, we can send a renderItem property:

export default function App() {
 return (
 <List
 data={tahoe_peaks}
 renderEmpty={<p>This list is empty</p>}
 renderItem={item => (
 <>
 {item.name} - {item.elevation.toLocaleString()}ft
 </>
)}
 />
);
}

This time, the render prop is a function. The data (the item itself) is passed to this
function as an argument so that it can be used when what to render for each Tahoe

166 | Chapter 8: Incorporating Data

Peak is decided. In this case, we render a React fragment that displays the item’s name
and elevation. If the array is tahoe_peaks, we expect the renderItem property to be
invoked four times: once for each of the peaks in the array.

This approach allows us to abstract away the mechanics of mapping over arrays. Now
the List component will handle the mapping; we just have to tell it what to render:

function List({ data = [], renderItem, renderEmpty }) {
 return !data.length ? (
 renderEmpty
) : (

 {data.map((item, i) => (
 <li key={i}>{renderItem(item)}
))}

);
}

When the data array is not empty, the List component renders an unordered list,
. It maps over each item within the array using the .map method and renders a
list item, , for every value within the array. The List component makes sure each
list item receives a unique key. Within each element, the renderItem property is
invoked and the item itself is passed to that function property as an argument. The
result is an unordered list that displays the name and elevation of each of Tahoe’s tall‐
est peaks.

The good news is we have a reusable List component that we can use whenever we
need to render an unordered list. The bad news is our component is a bit bare bones.
There are better components we can use to handle this task.

Virtualized Lists
If it’s our job to develop a reusable component for rendering lists, there are many dif‐
ferent use cases to consider and solutions to implement. One of the most important
things to consider is what happens when the list is very large. Many of the data points
we work with in production can feel infinite. A Google search yields pages and pages
of results. Searching for a place to stay in Tahoe on Airbnb results in a list of houses
and apartments that seems to never end. Production applications typically have a lot
of data that needs to be rendered, but we can’t render it all at once.

There’s a limit to what the browser can render. Rendering takes time, processing
power, and memory, all three of which have eventual limitations. This should be
taken into consideration when developing a reusable list component. When the data
array is very large, what should we do?

Virtualized Lists | 167

Even though our search for a place to stay may have yielded one thousand results, we
cannot possibly look at all those results at the same time—there’s not enough screen
space for all the images, names, and prices. We might only be able to see about five
results at a time. When scrolling, we can see more results, but we have to scroll down
pretty far to see a thousand results. Rendering a thousand results in a scrollable layer
is asking a lot of the phone.

Instead of rendering 1,000 results at a time, what if we only rendered 11? Remember
that the user can only see about five results on one screen. So we render the five items
the user can see and render six items off screen both above and below the visible win‐
dow of items. Rendering items above and below the visible window will allow the
user to scroll in both directions. We can see that in Figure 8-2.

Figure 8-2. Windowing with off-screen content

168 | Chapter 8: Incorporating Data

As the user scrolls, we can unmount the results that have already been viewed as well
as render new results off screen, ready for the user to reveal via the scroll. This result‐
ing solution means that the browser will only render 11 elements at a time while the
data for the rest of the elements is there waiting to be rendered. This technique is
called windowing or virtualization. It allows us to scroll very large, sometimes infinite
lists of data without crashing our browser.

There’s a lot to consider when building a virtualized list component. Thankfully, we
don’t have to start from scratch; the community has already developed many virtual‐
ized list components for us to use. The most popular of these for the browser are
react-window and react-virtualized. Virtualized lists are so important that React
Native even ships with one: the FlatList. Most of us will not have to build virtual‐
ized list components, but we do need to know how to use them.

To implement a virtualized list, we’re going to need a lot of data—in this case, fake
data:

npm i faker

Installing faker will allow us to create a large array of fake data. For this example, we’ll
use fake users. We’ll create five thousand fake users at random:

import faker from "faker";

const bigList = [...Array(5000)].map(() => ({
 name: faker.name.findName(),
 email: faker.internet.email(),
 avatar: faker.internet.avatar()
}));

The bigList variable was created by mapping over an array of five thousand empty
values and replacing those empty values with information about a fake user. The
name, email, and avatar for each user are generated at random using functions sup‐
plied by faker.

If we use the List component we created in the last section, it will render all five
thousand users at the same time:

export default function App() {
 const renderItem = item => (
 <div style={{ display: "flex" }}>

 <p>
 {item.name} - {item.email}
 </p>
 </div>
);

 return <List data={bigList} renderItem={renderItem} />;
}

Virtualized Lists | 169

This code creates a div element for each user. Within that div, an img element is ren‐
dered for that user’s photo, and the user name and email are rendered with a para‐
graph element, as shown in Figure 8-3.

Figure 8-3. Performance results

The combination of React and modern browsers is already pretty amazing. We’re
most likely able to render all five thousand users, but it takes a while. In this example,
it took 52ms to be exact. As the number of users in our list goes up, so does this time,
until we eventually reach a tipping point.

Let’s render the same fake user list using react-window:

npm i react-window

react-window is a library that has several components we can use to render virtual‐
ized lists. In this example, we’ll use the FixSizeList component from react-window:

import React from "react";
import { FixedSizeList } from "react-window";
import faker from "faker";

const bigList = [...Array(5000)].map(() => ({
 name: faker.name.findName(),
 email: faker.internet.email(),
 avatar: faker.internet.avatar()
}));

170 | Chapter 8: Incorporating Data

export default function App() {
 const renderRow = ({ index, style }) => (
 <div style={{ ...style, ...{ display: "flex" } }}>
 <img
 src={bigList[index].avatar}
 alt={bigList[index].name}
 width={50}
 />
 <p>
 {bigList[index].name} - {bigList[index].email}
 </p>
 </div>
);

 return (
 <FixedSizeList
 height={window.innerHeight}
 width={window.innerWidth - 20}
 itemCount={bigList.length}
 itemSize={50}
 >
 {renderRow}
 </FixedSizeList>
);
}

FixedSizeList is slightly different from our List component. It requires the total
number of items in the list along with the number of pixels each row requires as the
itemSize property. Another big difference in this syntax is that the render prop is
being passed to FixedSizeList as the children property. This render props pattern
is used quite frequently.

So, let’s see what happens when five thousand fake users are rendered with the Fix
SizeList component (see Figure 8-4).

This time, not all of the users are being rendered at once. Only those rows that the
user can see or easily scroll to are being rendered. Notice that it only takes 2.6ms for
this initial render.

As you scroll down to reveal more users, the FixedSizeList is hard at work render‐
ing more users off screen as well as removing users that have scrolled off screen. This
component automatically handles scrolling in both directions. This component may
render quite frequently, but the renders are fast. It also doesn’t matter how many
users are in our array: the FixedSizeList can handle it.

Virtualized Lists | 171

Figure 8-4. 2.6ms for this render

Creating a Fetch Hook
We know that a request is either pending, successful, or failed. We can reuse the logic
that’s necessary for making a fetch request by creating a custom hook. We’ll call this
hook useFetch, and we can use it in components across our application whenever we
need to make a fetch request:

import React, { useState, useEffect } from "react";

export function useFetch(uri) {
 const [data, setData] = useState();
 const [error, setError] = useState();
 const [loading, setLoading] = useState(true);

 useEffect(() => {
 if (!uri) return;
 fetch(uri)
 .then(data => data.json())
 .then(setData)
 .then(() => setLoading(false))
 .catch(setError);
 }, [uri]);

 return {
 loading,
 data,
 error

172 | Chapter 8: Incorporating Data

 };
}

This custom hook was created by composing the useState and useEffect hooks.
The three states of a fetch request are represented in this hook: pending, success, and
error. When the request is pending, the hook will return true for loading. When the
request is successful and data is retrieved, it will be passed to the component from
this hook. If something goes wrong, then this hook will return the error.

All three of these states are managed inside of the useEffect hook. This hook is
invoked every time the value for uri changes. If there’s no uri, the fetch request is not
made. When there’s a uri, the fetch request begins. If the request is successful, we
pass the resulting JSON to the setData function, changing the state value for data.
After that, we then change the state value for loading to false because the request was
successful (i.e., it’s no longer pending). Finally, if anything goes wrong, we catch it
and pass it to setError, which changes the state value for error.

Now we can use this hook to make fetch requests within our components. Anytime
the values for loading, data, or error change, this hook causes the GitHubUser com‐
ponent to rerender with those new values:

function GitHubUser({ login }) {
 const { loading, data, error } = useFetch(
 `https://api.github.com/users/${login}`
);

 if (loading) return <h1>loading...</h1>;
 if (error)
 return <pre>{JSON.stringify(error, null, 2)}</pre>;

 return (
 <div className="githubUser">
 <img
 src={data.avatar_url}
 alt={data.login}
 style={{ width: 200 }}
 />
 <div>
 <h1>{data.login}</h1>
 {data.name && <p>{data.name}</p>}
 {data.location && <p>{data.location}</p>}
 </div>
 </div>
);
}

Although the component now has less logic, it still handles all three states. Assuming
we have a SearchForm component ready to collect search strings from the user, we
can add the GitHubUser component to our main App component:

Virtualized Lists | 173

import React, { useState } from "react";
import GitHubUser from "./GitHubUser";
import SearchForm from "./SearchForm";

export default function App() {
 const [login, setLogin] = useState("moontahoe");

 return (
 <>
 <SearchForm value={login} onSearch={setLogin} />
 <GitHubUser login={login} />
 </>
);
}

The main App component stores the username of the GitHub user in state. The only
way to change this value is to use the search form to search for a new user. Whenever
the value of login changes, the value sent to useFetch changes because it depends on
the login property: https://api.github.com/users/${login}. This changes the uri within
our hook and triggers a fetch request for the new user login. We’ve created a custom
hook and used it to successfully create a small application that can be used to look up
and display GitHub user details. We’ll continue to use this hook as we iterate on this
application.

Creating a Fetch Component
Hooks typically allow us to reuse functionality across components. There are times
when we find ourselves repeating the exact same pattern when it comes to rendering
within our components. For example, the loading spinner we choose to render may
be the exact same spinner we want to render across our entire application whenever a
fetch request is pending. The way we handle errors with our fetch requests may also
be consistent across our application.

Instead of replicating the exact same code in multiple components across our applica‐
tion, we can create one component to render consistent loading spinners and consis‐
tently handle all of our errors across our entire domain. Let’s create a Fetch
component:

function Fetch({
 uri,
 renderSuccess,
 loadingFallback = <p>loading...</p>,
 renderError = error => (
 <pre>{JSON.stringify(error, null, 2)}</pre>
)
}) {
 const { loading, data, error } = useFetch(uri);
 if (loading) return loadingFallback;
 if (error) return renderError(error);

174 | Chapter 8: Incorporating Data

 if (data) return renderSuccess({ data });
}

The custom hook, useFetch, is one layer of abstraction: it abstracts away the mechan‐
ics of making a fetch request. The Fetch component is an additional layer of abstrac‐
tion: it abstracts away the mechanics of handling what to render. When the request is
loading, the Fetch component will render whatever was passed to the optional
loadingFallback property. When it’s successful, the JSON response data is passed to
the renderSuccess property. If there’s an error, it’s rendered using the optional ren
derError property. The loadingFallback and renderError properties provide an
optional layer of customization. However, when they’re not supplied, they fall back to
their default values.

With the Fetch component in our arsenal, we can really simplify the logic in our
GitHubUser component:

import React from "react";
import Fetch from "./Fetch";

export default function GitHubUser({ login }) {
 return (
 <Fetch
 uri={`https://api.github.com/users/${login}`}
 renderSuccess={UserDetails}
 />
);
}

function UserDetails({ data }) {
 return (
 <div className="githubUser">
 <img
 src={data.avatar_url}
 alt={data.login}
 style={{ width: 200 }}
 />
 <div>
 <h1>{data.login}</h1>
 {data.name && <p>{data.name}</p>}
 {data.location && <p>{data.location}</p>}
 </div>
 </div>
);
}

The GitHubUser component receives a login for a user to look up on GitHub. We use
that login to construct the uri property we send to the fetch component. If success‐
ful, the UserDetails component is rendered. When the Fetch component is loading,
the default “loading…” message will be displayed. If something goes wrong, the error
details are automatically displayed.

Virtualized Lists | 175

We can provide custom values for these properties. Here’s an example of how we can
alternatively use our flexible component:

<Fetch
 uri={`https://api.github.com/users/${login}`}
 loadingFallback={<LoadingSpinner />}
 renderError={error => {
 // handle error
 return <p>Something went wrong... {error.message}</p>;
 }}
 renderSuccess={({ data }) => (
 <>
 <h1>Todo: Render UI for data</h1>
 <pre>{JSON.stringify(data, null, 2)}</pre>
 </>
)}
/>

This time, the Fetch component will render our custom loading spinner. If some‐
thing goes wrong, we hide the error details. When the request is successful, we’ve
chosen to alternatively render the raw data along with a TODO message for
ourselves.

Be careful: extra layers of abstraction, whether through hooks or components, can
add complexity to our code. It’s our job to reduce complexity wherever we can. How‐
ever, in this case, we’ve reduced complexity by abstracting away reusable logic into a
component and a hook.

Handling Multiple Requests
Once we start making requests for data from the internet, we won’t be able to stop.
More often than not, we need to make several HTTP requests to obtain all the data
required to hydrate our application. For example, we’re currently asking GitHub to
provide information about a user’s account. We’ll also need to obtain information
about that user’s repositories. Both of these data points are obtained by making sepa‐
rate HTTP requests.

GitHub users typically have many repositories. Information about a user’s reposito‐
ries is passed as an array of objects. We’re going to create a special custom hook called
useIterator that will allow us to iterate through any array of objects:

export const useIterator = (
 items = [],
 initialIndex = 0
) => {
 const [i, setIndex] = useState(initialIndex);

 const prev = () => {
 if (i === 0) return setIndex(items.length - 1);
 setIndex(i - 1);

176 | Chapter 8: Incorporating Data

 };

 const next = () => {
 if (i === items.length - 1) return setIndex(0);
 setIndex(i + 1);
 };

 return [items[i], prev, next];
};

This hook will allow us to cycle through any array. Because it returns items inside of
an array, we can take advantage of array destructuring to give these values names that
make sense:

const [letter, previous, next] = useIterator([
 "a",
 "b",
 "c"
]);

In this case, the initial letter is “b.” If the user invokes next, the component will
rerender, but this time, the value for letter will be “b.” Invoke next two more times,
and the value for letter will once again be “a” because this iterator circles back
around to the first item in the array instead of letting the index go out of bounds.

The useIterator hook takes in an array of items and an initial index. The key value
to this iterator hook is the index, i, which was created with the useState hook. i is
used to identify the current item in the array. This hook returns the current item,
item[i], as well as functions for iterating through that array: prev and next. Both the
prev and next functions either decrement or increment the value of i by invoking
setIndex. This action causes the hook to rerender with a new index.

Memozing Values
The useIterator hook is pretty cool. But we can do even better by memoizing the
value for item as well as the function for prev and next:

import React, { useCallback, useMemo } from "react";

export const useIterator = (
 items = [],
 initialValue = 0
) => {
 const [i, setIndex] = useState(initialValue);

 const prev = useCallback(() => {
 if (i === 0) return setIndex(items.length - 1);
 setIndex(i - 1);
 }, [i]);

Virtualized Lists | 177

 const next = useCallback(() => {
 if (i === items.length - 1) return setIndex(0);
 setIndex(i + 1);
 }, [i]);

 const item = useMemo(() => items[i], [i]);

 return [item || items[0], prev, next];
};

Here, both prev and next are created with the useCallback hook. This ensures that
the function for prev will always be the same until the value for i changes. Likewise,
the item value will always point to the same item object unless the value for i
changes.

Memoizing these values does not give us huge performance gains, or at least not
enough to justify the code complexity. However, when a consumer uses the useItera
tor component, the memoized values will always point to the exact same object and
function. This makes it easier on our consumers when they need to compare these
values or use them in their own dependency arrays.

Now, we’re going to create a repository menu component. Within this component,
we’ll use the useIterator hook to allow the users to cycle through their list of
repositories:

< learning-react >

If they click the Next button, they’ll see the name of the next repository. Likewise, if
they click the Previous button, they’ll see the name of the previous repository. Repo
Menu is the component we’ll create to provide this feature:

import React from "react";
import { useIterator } from "../hooks";

export function RepoMenu({
 repositories,
 onSelect = f => f
}) {
 const [{ name }, previous, next] = useIterator(
 repositories
);

 useEffect(() => {
 if (!name) return;
 onSelect(name);
 }, [name]);

 return (
 <div style={{ display: "flex" }}>
 <button onClick={previous}><</button>
 <p>{name}</p>

178 | Chapter 8: Incorporating Data

 <button onClick={next}>></button>
 </div>
);
}

RepoMenu receives a list of repositories as a prop. It then destructures the name from
the current repository object and the previous and next functions from useItera
tor. < is an entity for “Less Than,” and a less than sign, “<”, is displayed. The same
is true for >, greater than. These are indicators for previous and next, and when
the user clicks on either of these indicators, the component is rerendered with a new
repository name. If the name changes, then the user has selected a different repository,
so we invoke the onSelect function and pass the name of the new repository to that
function as an argument.

Remember, array destructuring allows us to name the items whatever we want. Even
though we named those functions prev and next within the hook, here, when we use
the hook, we can change their names to previous and next.

Now we can create the UserRepositories component. This component should
request a list of a GitHub user’s repositories first, and once received, pass that list to
the RepoMenu component:

import React from "react";
import Fetch from "./Fetch";
import RepoMenu from "./RepoMenu";

export default function UserRepositories({
 login,
 selectedRepo,
 onSelect = f => f
}) {
 return (
 <Fetch
 uri={`https://api.github.com/users/${login}/repos`}
 renderSuccess={({ data }) => (
 <RepoMenu
 repositories={data}
 selectedRepo={selectedRepo}
 onSelect={onSelect}
 />
)}
 />
);
}

The UserRepositories component requires a login to use in order to make the fetch
request for a list of repositories. That login is used to create the URI and pass it to
the Fetch component. Once the fetch has successfully resolved, we’ll render the Repo
Menu along with the list of repositories that was returned from the Fetch component

Virtualized Lists | 179

as data. When the user selects a different repository, we simply pass the name of that
new repository along to the parent object:

function UserDetails({ data }) {
 return (
 <div className="githubUser">

 <div>
 <h1>{data.login}</h1>
 {data.name && <p>{data.name}</p>}
 {data.location && <p>{data.location}</p>}
 </div>
 <UserRepositories
 login={data.login}
 onSelect={repoName => console.log(`${repoName} selected`)}
 />
 </div>
);

Now we need to add our new component to the UserDetails component. When the
UserDetails component is rendered, we’ll also render that user’s repository list.
Assuming the login value is eveporcello, the rendered output for the above compo‐
nent would look something like Figure 8-5.

Figure 8-5. Repository output

In order to get information about Eve’s account along with her list of repositories, we
need to send two separate HTTP requests. A majority of our lives as React developers

180 | Chapter 8: Incorporating Data

will be spent like this: making multiple requests for information and composing all of
the information received into beautiful user interface applications. Making two
requests for information is just the beginning. In the next section, we’ll continue to
make more requests of GitHub so we can see the README.md for the selected
repository.

Waterfall Requests
In the last section, we made two HTTP requests. The first request was for a user’s
details, then once we had those details, we made a second request for that user’s repo‐
sitories. These requests happen one at a time, one after the other.

The first request is made when we initially fetch the user’s details:

<Fetch
 uri={`https://api.github.com/users/${login}`}
 renderSuccess={UserDetails}
/>

Once we have that user’s details, the UserDetails component is rendered. It in turn
renders UserRepositories, which then sends a fetch request for that user’s
repositories:

<Fetch
 uri={`https://api.github.com/users/${login}/repos`}
 renderSuccess={({ data }) => (
 <RepoMenu repositories={data} onSelect={onSelect} />
)}
/>

We call these requests waterfall requests because they happen one right after the other
—they’re dependent on each other. If something goes wrong with the user details
request, the request for that user’s repositories is never made.

Let’s add some more layers (water?) to this waterfall. First, we request the user’s info,
then their repository list, then, once we have their repository list, we make a request
for the first repository’s README.md file. As the user cycles through the list of
repositories, we’ll make additional requests for the associated README to each
repository.

Repository README files are written using Markdown, which is a text format that
can be easily rendered as HTML with the ReactMarkdown component. First, let’s
install react-markdown:

npm i react-markdown

Requesting the contents of a repository’s README file also requires a waterfall of
requests. First, we have to make a data request to the repository’s README route:
https://api.github.com/repos/${login}/${repo}/readme. GitHub will respond to this

Virtualized Lists | 181

route with the details about a repository’s README file but not the contents of that
file. It does provide us with a download_url that we can use to request the contents of
the README file. But to get the Markdown content, we’ll have to make an additional
request. Both of these requests can be made within a single async function:

const loadReadme = async (login, repo) => {
 const uri = `https://api.github.com/repos/${login}/${repo}/readme`;
 const { download_url } = await fetch(uri).then(res =>
 res.json()
);
 const markdown = await fetch(download_url).then(res =>
 res.text()
);

 console.log(`Markdown for ${repo}\n\n${markdown}`);
};

In order to find a repository README, we need the repository owner’s login and the
name of the repository. Those values are used to construct a unique URL: https://
api.github.com/repos/moonhighway/learning-react/readme. When this request is suc‐
cessful, we destructure the download_url from its response. Now we can use this
value to download the contents of the README; all we have to do is fetch the down
load_url. We’ll parse this text as text—res.text()—rather than JSON because the
body of the response is Markdown text.

Once we have the Markdown, let’s render it by wrapping the loadReadme function
inside of a React component:

import React, {
 useState,
 useEffect,
 useCallback
} from "react";
import ReactMarkdown from "react-markdown";

export default function RepositoryReadme({ repo, login }) {
 const [loading, setLoading] = useState(false);
 const [error, setError] = useState();
 const [markdown, setMarkdown] = useState("");

 const loadReadme = useCallback(async (login, repo) => {
 setLoading(true);
 const uri = `https://api.github.com/repos/${login}/${repo}/readme`;
 const { download_url } = await fetch(uri).then(res =>
 res.json()
);
 const markdown = await fetch(download_url).then(res =>
 res.text()
);
 setMarkdown(markdown);
 setLoading(false);

182 | Chapter 8: Incorporating Data

 }, []);

 useEffect(() => {
 if (!repo || !login) return;
 loadReadme(login, repo).catch(setError);
 }, [repo]);

 if (error)
 return <pre>{JSON.stringify(error, null, 2)}</pre>;
 if (loading) return <p>Loading...</p>;

 return <ReactMarkdown source={markdown} />;
}

First, we add the loadReadme function to the component using the useCallback hook
to memoize the function when the component initially renders. This function now
changes the loading state to true before the fetch request and changes it back to
false after the request. When the Markdown is received, it’s saved in state using the
setMarkdown function.

Next, we need to actually call loadReadme, so we add a useEffect hook to load the
README file after the component initially renders. If for some reason the properties
for repo and login are not present, the README will not be loaded. The depend‐
ency array in this hook contains [repo]. This is because we want to load another
README if the value for repo changes. If anything goes wrong while loading the
README, it will be caught and sent to the setError function.

Notice we have to handle the same three render states that we do for every fetch
request: pending, success, and fail. Finally, when we have a successful response, the
Markdown itself is rendered using the ReactMarkdown component.

All there is left to do is render the RepositoryReadme component inside of the Repo
Menu component. As the user cycles through repositories using the RepoMenu compo‐
nent, the README for each repository will also be loaded and displayed:

export function RepoMenu({ repositories, login }) {
 const [{ name }, previous, next] = useIterator(
 repositories
);
 return (
 <>
 <div style={{ display: "flex" }}>
 <button onClick={previous}><</button>
 <p>{name}</p>
 <button onClick={next}>></button>
 </div>
 <RepositoryReadme login={login} repo={name} />
 </>
);
}

Virtualized Lists | 183

Now our application is really making multiple requests; initially, it makes four
requests: one for the user’s details, then one for that user’s repository list, then one for
information about the selected repository’s README, and finally one more request
for the text contents of the README. These are all waterfall requests because they
happen one after another.

Additionally, as the user interacts with the application, more requests are made. Two
waterfall requests are made to obtain the README file every time the user changes
the current repository. All four initial waterfall requests are made every time the user
searches for a different GitHub account.

Throttling the Network Speed
All of these requests are visible from the Network tab under your developer tools.
From this tab, you can see every request, and you can throttle your network speed to
see how these requests unfold on slow networks. If you want to see how the waterfall
requests happen one after another you can slow down your network speed and see
the loading messages as they’re rendered.

The Network tab is available under the developer tools of most major browsers. To
throttle the network speed in Google Chrome, select the arrow next to the word
“Online,” as demonstrated in Figure 8-6.

Figure 8-6. Changing the speed of the network request

This will open a menu where you can choose various speeds, as you can see in
Figure 8-7.

Figure 8-7. Selecting the speed of the network request

Selecting “Fast 3G” or “Slow 3G” will significantly throttle your network requests.

Additionally, the Network tab displays a timeline for all of the HTTP requests. You
can filter this timeline to only view “XHR” requests. This means it will only show the
request made using fetch (Figure 8-8).

184 | Chapter 8: Incorporating Data

Figure 8-8. The waterfall of a request

Here, we see that four requests were made one after the other. Notice that the loading
graphic is titled “Waterfall.” This shows that each request is made after the other is
complete.

Parallel Requests
Sometimes, it’s possible to make an application faster by sending all requests at once.
Instead of having each request occur one after another in a waterfall, we can send our
requests in parallel, or at the same time.

The reason our application is currently making a waterfall of request is that the com‐
ponents are rendered inside of one another. GitHubUser eventually renders UserRepo
sitories, which eventually renders RepositoryReadme. Requests are not made until
each component has been rendered.

Making these requests in parallel is going to require a different approach. First, we’ll
need to remove the <RepositoryReadme /> from the RepoMenu’s render function.
This is a good move. The RepoMenu should only focus on the logistics of creating a
menu of repositories that the user can cycle through. The RepositoryReadme compo‐
nent should be handed in a different component.

Next, we’ll need to remove <RepoMenu /> from the renderSuccess property of User
Repositories. Likewise, <UserRepositories /> needs to be removed from the User
Details component.

Instead of nesting these components inside of one another, we’ll place them all on the
same level next to one another, all within the App component:

import React, { useState } from "react";
import SearchForm from "./SearchForm";
import GitHubUser from "./GitHubUser";
import UserRepositories from "./UserRepositories";
import RepositoryReadme from "./RepositoryReadme";

export default function App() {
 const [login, setLogin] = useState("moonhighway");
 const [repo, setRepo] = useState("learning-react");
 return (
 <>
 <SearchForm value={login} onSearch={setLogin} />

Virtualized Lists | 185

 <GitHubUser login={login} />
 <UserRepositories
 login={login}
 repo={repo}
 onSelect={setRepo}
 />
 <RepositoryReadme login={login} repo={repo} />
 </>
);
}

The GitHubUser, UserRepositories, and RepositoryReadme components all send
HTTP requests to GitHub for data. Rending them side-by-side on the same level will
cause all of these requests to happen at the same time, in parallel.

Each component requires specific information in order to make the request. We need
a login to obtain a GitHub user. We need a login to obtain a list of user repositories.
The RepositoryReadme requires both a login and a repo to work properly. To make
sure all of the components have what they need to make their requests, we initialize
the app to display the details for the user “moonhighway” and the repository
“learning-react.”

If the user searches for another GitHubUser with the SearchForm, the value for login
will change, which will trigger the useEffect hooks within our components, causing
them to make additional requests for data. If the user cycles through the list of reposi‐
tories, then the onSelect property for UserRepositories will be invoked, which
causes the repo value to change. Changing the repo value will trigger the useEffect
hook inside of the RepositoryReadme component, and a new README will be
requested.

The RepoMenu component always starts with the first repository, no matter what. We
have to see if there’s a selectedRepo property. If there is, we need to use it to find the
initial index for the repository to be displayed:

export function RepoMenu({ repositories, selected, onSelect = f => f }) {
 const [{ name }, previous, next] = useIterator(
 repositories,
 selected ? repositories.findIndex(repo => repo.name === selected) : null
);
 ...
}

The second argument for the useIterator hook is the initial index to start with. If
there’s a selected property, then we’ll search for the index of the selected repository
by name. This is required to make sure the repository menu displays the correct
repository initially. We also need to pass this selected property to this component
from UserRepositories:

186 | Chapter 8: Incorporating Data

<Fetch
 uri={`https://api.github.com/users/${login}/repos`}
 renderSuccess={({ data }) => (
 <RepoMenu
 repositories={data}
 selected={repo}
 onSelect={onSelect}
 />
)}
/>

Now that the repo property is being passed down to the RepoMenu, the menu should
select the initial repository, which in our case is “learning-react.”

If you take a look at the Network tab, you’ll notice we’ve made three requests in paral‐
lel, as shown in Figure 8-9.

Figure 8-9. Creating a parallel request

So each component made its request at the same time. The RepoReadme component
still has to make a waterfall request to obtain the contents of the README file. This
is OK. It’s hard to make every request right when your app initially renders. Parallel
and waterfall requests can work in conjunction with each other.

Waiting for Values
We currently initialize the values for login and repo to “moonhighway” and
“learning-react.” We may not always be able to guess which data to render first. When
that’s the case, we simply don’t render the component until the data it requires is
present:

export default function App() {
 const [login, setLogin] = useState();
 const [repo, setRepo] = useState();
 return (
 <>
 <SearchForm value={login} onSearch={setLogin} />
 {login && <GitHubUser login={login} />}
 {login && (
 <UserRepositories
 login={login}
 repo={repo}
 onSelect={setRepo}

Virtualized Lists | 187

 />
)}
 {login && repo && (
 <RepositoryReadme login={login} repo={repo} />
)}
 </>
);
}

In this scenario, none of the components are rendered until their required props have
values. Initially, the only component rendered is the SearchForm. Searching for a user
will change the value for login, causing the UserRepositories component to render.
When this component looks up the repositories, it will select the first repository in
the list, causing setRepo to be invoked. Finally, we have a login and a repo, so the
RepositoryReadme component will be rendered.

Canceling Requests
Thinking about our application a little bit more, we realize that the user could empty
the search field and search for no user at all. In this case, we would also want to make
sure that the value for repo is also empty. Let’s add a handleSearch method that
makes sure the repo value changes when there’s no value for login:

export default function App() {
 const [login, setLogin] = useState("moonhighway");
 const [repo, setRepo] = useState("learning-react");

 const handleSearch = login => {
 if (login) return setLogin(login);
 setLogin("");
 setRepo("");
 };

 if (!login)
 return (
 <SearchForm value={login} onSearch={handleSearch} />
);

 return (
 <>
 <SearchForm value={login} onSearch={handleSearch} />
 <GitHubUser login={login} />
 <UserRepositories
 login={login}
 repo={repo}
 onSelect={setRepo}
 />
 <RepositoryReadme login={login} repo={repo} />
 </>

188 | Chapter 8: Incorporating Data

);
}

We’ve added a handleSearch method. Now, when the user clears the search field and
searches for an empty string, the repo value is also set to an empty string. If for some
reason there’s not a login, we only render one component: the SearchForm. When we
have a value for login, we’ll render all four components.

Now, technically our app has two screens. One screen only displays a search form.
The other screen only shows when the search form contains a value, in which case, it
shows all four components. We’ve set ourselves up to mount or unmount compo‐
nents based on user interactivity. Let’s say we were looking at the details for “moon‐
highway.” If the user empties the search field, then the GitHubUser,
UserRepositories, and RepositoryReadme components are unmounted and will no
longer be displayed. But what if these components were in the middle of loading data
when they were unmounted?

You can try it out:

1. Throttle the network to “Slow 3G” to have enough time to cause problems
2. Change the value of the search field from “moonhighway” to “eveporcello”
3. While the data is loading, search for an empty string, “”

These steps will cause the GitHubUser, UserRepositories, and RepositoryReadme to
become unmounted while they’re in the middle of making fetch requests. Eventually,
when there’s a response to the fetch request, these components are no longer moun‐
ted. Attempting to change state values in an unmounted component will cause the
error shown in Figure 8-10.

Figure 8-10. Mounted error

Whenever our users load data over a slow network, these errors can occur. But we
can protect ourselves. First, we can create a hook that will tell us whether or not the
current component is mounted:

export function useMountedRef() {
 const mounted = useRef(false);
 useEffect(() => {
 mounted.current = true;
 return () => (mounted.current = false);

Virtualized Lists | 189

 });
 return mounted;
}

The useMountedRef hook uses a ref. When the component unmounts, state is wiped
clean, but refs are still available. The above useEffect doesn’t have a dependency
array; it’s invoked every time a component renders and ensures that the value for the
ref is true. Whenever the component unmounts, the function returned from useEf
fect is invoked, which changes the value of the ref to false.

Now we can use this hook inside of the RepoReadme component. This will allow us to
make sure the component is mounted before applying any state updates:

const mounted = useMountedRef();

const loadReadme = useCallback(async (login, repo) => {
 setLoading(true);
 const uri = `https://api.github.com/repos/${login}/${repo}/readme`;
 const { download_url } = await fetch(uri).then(res =>
 res.json()
);
 const markdown = await fetch(download_url).then(res =>
 res.text()
);
 if (mounted.current) {
 setMarkdown(markdown);
 setLoading(false);
 }
}, []);

Now we have a ref that tells us whether or not the component is mounted. It will take
time for both of these requests to finish. When they do, we check to make sure the
component is still mounted before calling setMarkdown or setLoading.

Let’s add the same logic to our useFetch hook:

const mounted = useMountedRef();

useEffect(() => {
 if (!uri) return;
 if (!mounted.current) return;
 setLoading(true);
 fetch(uri)
 .then(data => {
 if (!mounted.current) throw new Error("component is not mounted");
 return data;
 })
 .then(data => data.json())
 .then(setData)
 .then(() => setLoading(false))
 .catch(error => {
 if (!mounted.current) return;

190 | Chapter 8: Incorporating Data

 setError(error);
 });

The useFetch hook is used to make the rest of the fetch requests in our app. In this
hook, we compose the fetch request using thenables, chainable .then() functions,
instead of async/await. When the fetch is complete, we check to see if the compo‐
nent is mounted in the first .then callback. If the component is mounted, the data is
returned and the rest of the .then functions are invoked. When the component is not
mounted, the first .then function throws an error, preventing the rest of the .then
functions from executing. Instead, the .catch function is invoked and the new error
is passed to that function. The .catch function will check to see if the component is
mounted before it tries to invoke setError.

We’ve successfully canceled our requests. We didn’t stop the HTTP request itself from
occurring, but we did protect the state calls we make after the request is resolved. It’s
always a good idea to test your app under slow network conditions. These bugs will
be revealed and eliminated.

Introducing GraphQL
Just like React, GraphQL was designed at Facebook. And, just like React is a declara‐
tive solution for composing user interfaces, GraphQL is a declarative solution for
communicating with APIs. When we make parallel data requests, we’re attempting to
get all the data we need immediately at the same time. GraphQL was designed to do
just that.

In order to get data from a GraphQL API, we still need to make an HTTP request to a
specific URI. However, we also need to send a query along with the request. A
GraphQL query is a declarative description of the data we’re requesting. The service
will parse this description and will package all the data we’re asking for into a single
response.

GitHub GraphQL API
In order to use GraphQL in your React application, the backend service you’re com‐
municating with needs to be built following GraphQL specifications. Fortunately, Git‐
Hub also exposes a GraphQL API. Most GraphQL services provide a way to explore
the GraphQL API. At GitHub, this is called the GraphQL Explorer. In order to use
the Explorer, you must sign in with your GitHub account.

The left panel of the Explorer is where we draft our GraphQL query. Inside of this
panel, we could add a query to obtain information about a single GitHub user:

Introducing GraphQL | 191

query {
 user(login: "moontahoe") {
 id
 login
 name
 location
 avatarUrl
 }
}

This is a GraphQL query. We’re asking for information about the GitHub user
“moontahoe.” Instead of getting all of the public information available about moonta‐
hoe, we only get the data we want: id, login, avatarUrl, name, and location. When
we press the Play button on this page, we send this query as an HTTP POST request
to https://api.github.com/graphql. All GitHub GraphQL queries are sent to this URI.
GitHub will parse this query and return only the data we asked for:

{
 "data": {
 "user": {
 "id": "MDQ6VXNlcjU5NTIwODI=",
 "login": "MoonTahoe",
 "name": "Alex Banks",
 "location": "Tahoe City, CA",
 "avatarUrl": "https://github.com/moontahoe.png"
 }
 }
}

We can formalize this GraphQL query into a reusable operation named findRepos.
Every time we want to find information about a user and their repositories, we could
do so by sending a login variable to this query:

query findRepos($login: String!) {
 user(login: $login) {
 login
 name
 location
 avatar_url: avatarUrl
 repositories(first: 100) {
 totalCount
 nodes {
 name
 }
 }
 }
}

Now we’ve created a formal findRepos query that we can reuse simply by chaining
the value of the $login variable. We set this variable using the Query Variables panel
shown in Figure 8-11.

192 | Chapter 8: Incorporating Data

Figure 8-11. GitHub GraphQL Explorer

In addition to obtaining details about a user, we’re also asking for that user’s first hun‐
dred repositories. We’re asking for the number of repositories returned by the query,
the totalCount, along with the name of each repository. GraphQL only returns the
data we ask for. In this case, we’ll only get the name for each repository, nothing else.

There’s one more change that we made to this query: we used an alias for the avatar
Url. The GraphQL field to obtain a user’s avatar is called avatarUrl, but we want that
variable to be named avatar_url. The alias tells GitHub to rename that field in the
data response.

GraphQL is a huge topic. We wrote a whole book about it: Learning GraphQL. We’re
only scratching the surface here, but GraphQL is increasingly becoming more of a
requirement for any developer. In order to be a successful developer in the 21st cen‐
tury, it’s important to understand the fundamentals of GraphQL.

Making a GraphQL Request
A GraphQL request is an HTTP request that contains a query in the body of the
request. You can use fetch to make a GraphQL request. There are also a number of
libraries and frameworks that can handle the details of making these types of requests

Introducing GraphQL | 193

for you. In this next section, we’ll see how we can hydrate our applications with
GraphQL data using a library called graphql-request.

GraphQL is not restricted to HTTP. It’s a specification of how data
requests should be made over a network. It can technically work
with any network protocol. Additionally, GraphQL is language-
agnostic.

First, let’s install graphql-request:

npm i graphql-request

GitHub’s GraphQL API requires identification to send requests from client applica‐
tions. In order to complete this next sample, you must obtain a personal access token
from GitHub, and this token must be sent with every request.

To obtain a personal access token for GraphQL requests, navigate to Settings > Devel‐
oper Settings > Personal Access Tokens. On this form, you can create an access token
that has specific rights. The token must have the following read access in order to
make GraphQL requests:

• user
• public_repo
• repo
• repo_deployment
• repo:status
• read:repo_hook
• read:org
• read:public_key
• read:gpg_key

We can use graphql-request to make GraphQL requests from JavaScript:

import { GraphQLClient } from "graphql-request";

const query = `
 query findRepos($login:String!) {
 user(login:$login) {
 login
 name
 location
 avatar_url: avatarUrl
 repositories(first:100) {
 totalCount

194 | Chapter 8: Incorporating Data

 nodes {
 name
 }
 }
 }
 }
`;

const client = new GraphQLClient(
 "https://api.github.com/graphql",
 {
 headers: {
 Authorization: `Bearer <PERSONAL_ACCESS_TOKEN>`
 }
 }
);

client
 .request(query, { login: "moontahoe" })
 .then(results => JSON.stringify(results, null, 2))
 .then(console.log)
 .catch(console.error);

We send this request using the GraphQLClient constructor from graphql-request.
When we create the client, we use the URI for GitHub’s GraphQL API: https://
api.github.com/graphql. We also send some additional headers that contain our per‐
sonal access token. This token identifies us and is required by GitHub when using
their GraphQL API. We can now use the client to make our GraphQL requests.

In order to make a GraphQL request, we’ll need a query. The query is simply a string
that contains the GraphQL query from above. We send the query to the request
function along with any variables that the query may require. In this case, the query
requires a variable named $login, so we send an object that contains a value for
$login in the login field.

Here, we’re simply converting the resulting JSON to a string and logging it to the
console:

{
 "user": {
 "id": "MDQ6VXNlcjU5NTIwODI=",
 "login": "MoonTahoe",
 "name": "Alex Banks",
 "location": "Tahoe City, CA",
 "avatar_url": "https://avatars0.githubusercontent.com/u/5952082?v=4",
 "repositories": {
 "totalCount": 52,
 "nodes": [
 {
 "name": "snowtooth"
 },

Introducing GraphQL | 195

 {
 "name": "Memory"
 },
 {
 "name": "snowtooth-status"
 },

 ...

]
 }
 }
}

Just like fetch, client.request returns a promise. Getting this data inside of your
React component will feel very similar to fetching data from a route:

export default function App() {
 const [login, setLogin] = useState("moontahoe");
 const [userData, setUserData] = useState();
 useEffect(() => {
 client
 .request(query, { login })
 .then(({ user }) => user)
 .then(setUserData)
 .catch(console.error);
 }, [client, query, login]);

 if (!userData) return <p>loading...</p>;

 return (
 <>
 <SearchForm value={login} onSearch={setLogin} />
 <UserDetails {...userData} />
 <p>{userData.repositories.totalCount} - repos</p>
 <List
 data={userData.repositories.nodes}
 renderItem={repo => {repo.name}}
 />
 </>
);
}

We make the client.request inside of a useEffect hook. If the client, query, or
login changes, the useEffect hook will make another request. Then we’ll render the
resulting JSON with React, as shown in Figure 8-12.

196 | Chapter 8: Incorporating Data

Figure 8-12. GraphQL app

This example doesn’t put care into handling loading and error states, but we can
apply everything we learned in the rest of this chapter to GraphQL. React doesn’t
really care how we get the data. As long as we understand how to work with asyn‐
chronous objects like promises within our components, we’ll be ready for anything.

Loading data from the internet is an asynchronous task. When we request data, it
takes some time for it to be delivered, and stuff can go wrong. Handling the pending,
success, and fail states of a promise within a React component is an orchestration
of stateful hooks with the useEffect hook.

We spent much of this chapter covering promises, fetch, and HTTP. This is because
HTTP is still the most popular way to request data from the internet, and promises fit
nicely with HTTP requests. Sometimes, you may work with a different protocol like
WebSockets. No worries: this is accomplished by working with stateful hooks and
useEffect.

Here’s a brief example of how we can incorporate socket.io into a custom useChat
Room hook:

Introducing GraphQL | 197

const reducer = (messages, incomingMessage) => [
 messages,
 ...incomingMessage
];

export function useChatRoom(socket, messages = []) {
 const [status, setStatus] = useState(null);
 const [messages, appendMessage] = useReducer(
 reducer,
 messages
);

 const send = message => socket.emit("message", message);

 useEffect(() => {
 socket.on("connection", () => setStatus("connected"));
 socket.on("disconnecting", () =>
 setStatus("disconnected")
);
 socket.on("message", setStatus);
 return () => {
 socket.removeAllListeners("connect");
 socket.removeAllListeners("disconnect");
 socket.removeAllListeners("message");
 };
 }, []);

 return {
 status,
 messages,
 send
 };
}

This hook provides an array of chat messages, the websocket connection status, and
a function that can be used to broadcast new messages to the socket. All of these val‐
ues are affected by listeners that are defined in the useEffect hook. When the socket
raises connection or disconnecting events, the value for status changes. When new
messages are received, they’re appended to the array of messages via the useReducer
hook.

In this chapter, we’ve discussed some techniques for handling asynchronous data in
applications. This is a hugely important topic, and in the next chapter, we’ll show how
Suspense might lead to future changes in this area.

198 | Chapter 8: Incorporating Data

CHAPTER 9

Suspense

This is the least important chapter in this book. At least, that’s what we’ve been told by
the React team. They didn’t specifically say, “this is the least important chapter, don’t
write it.” They’ve only issued a series of tweets warning educators and evangelists that
much of their work in this area will very soon be outdated. All of this will change.

It could be said that the work the React team has done with Fiber, Suspense, and con‐
current mode represents the future of web development. This work may change the
way browsers interpret JavaScript. That sounds pretty important. We’re saying that
this is the least important chapter in this book because the community hype for Sus‐
pense is high; we need to say it to balance out your expectations. The APIs and pat‐
terns that make up Suspense are not the single overarching theory that defines how
all things large and small should operate.

Suspense is a just a feature. You may not ever need to use it. It’s being designed to
solve specific problems that Facebook experiences working at scale. We don’t all have
the same problems as Facebook, so we may want to think twice before reaching for
those tools as the solution to all our problems. They may unnecessarily introduce
complexity where complexity is not needed. Plus, this is all going to change. Concur‐
rent mode is an experimental feature, and the React team has issued stern warnings
about trying to use it in production. In fact, most of these concepts involve using
hooks. If you don’t see yourself developing custom hooks on a daily basis, you’ll prob‐
ably never need to know about these features. Much of the mechanics involving Sus‐
pense can be abstracted away in hooks.

In light of these three paragraphs of downplay, the concepts covered in this chapter
are exciting. If used correctly, they could someday help us create better user experien‐
ces. If you own or maintain a React library of hooks and/or components, you may
find these concepts valuable. They’ll help you fine-tune your custom hooks to allow
for better feedback and prioritization.

199

In this chapter, we’ll build another small app to demonstrate some of these features.
We’ll essentially rebuild the app from Chapter 8, but this time with a little more struc‐
ture. For example, we’ll be using a SiteLayout component:

export default function SiteLayout({
 children,
 menu = c => null
}) {
 return (
 <div className="site-container">
 <div>{menu}</div>
 <div>{children}</div>
 </div>
);
}

SiteLayout will rendered within the App component to help us compose our UI:

export default function App() {
 return (
 <SiteLayout menu={<p>Menu</p>}>
 <>
 <Callout>Callout</Callout>
 <h1>Contents</h1>
 <p>This is the main part of the example layout</p>
 </>
 </SiteLayout>
);
}

This component will be used to give our layout some style, as shown in Figure 9-1.

Specifically, it will allow us to clearly see where and when specific components are
rendered.

200 | Chapter 9: Suspense

Figure 9-1. Sample layout

Error Boundaries
Thus far, we haven’t done the best job with handling errors. An error thrown any‐
where in our component tree will take down the entire application. Larger compo‐
nent trees only further complicate our project and complicate debugging it.
Sometimes, it can be hard to pinpoint where an error has occurred, especially when
they occur within components that we didn’t write.

Error boundaries are components that can be used to prevent errors from crashing
the entire app. They also allow us to render sensible error messages in production.
Because errors can be handled by a single component, they could potentially track
errors within the application and report them to an issue management system.

Currently, the only way to make an error boundary component is to use a class com‐
ponent. Like most topics in this chapter, this too will eventually change. In the future,
creating error boundaries could be possible with a hook or some other solution that
doesn’t require creating a class. For now, here’s an example of an ErrorBoundary
component:

import React, { Component } from "react";

export default class ErrorBoundary extends Component {
 state = { error: null };

 static getDerivedStateFromError(error) {
 return { error };
 }

Error Boundaries | 201

 render() {
 const { error } = this.state;
 const { children, fallback } = this.props;

 if (error) return <fallback error={error} />;
 return children;
 }
}

This is a class component. It stores state differently, and it doesn’t use hooks. Instead,
it has access to specific methods that are invoked during different times throughout
the component life cycle. getDerivedStateFromError is one of those methods. It is
invoked when an error occurs anywhere within the children during the render pro‐
cess. When an error occurs, the value for state.error is set. Where there’s an error,
the fallback component is rendered, and that error is passed to the component as a
property.

Now we can use this component in our tree to capture errors and render a fallback
component if they occur. For example, we could wrap our entire application with an
error boundary:

function ErrorScreen({ error }) {
 //
 // Here you can handle or track the error before rendering the message
 //

 return (
 <div className="error">
 <h3>We are sorry... something went wrong</h3>
 <p>We cannot process your request at this moment.</p>
 <p>ERROR: {error.message}</p>
 </div>
);
}

<ErrorBoundary fallback={ErrorScreen}>
 <App />
</ErrorBoundary>;

The ErrorScreen provides a gentle message for our users that an error has occurred.
It renders some details about the error. It also gives us a place to potentially track
errors that occur anywhere within our app. If an error does occur within the app, this
component will be rendered instead of a black screen. We can make this component
look nice with a little CSS:

202 | Chapter 9: Suspense

.error {
 background-color: #efacac;
 border: double 4px darkred;
 color: darkred;
 padding: 1em;
}

To test this out we’re going to create a component we can use to intentionally cause
errors. BreakThings always throws an error:

const BreakThings = () => {
 throw new Error("We intentionally broke something");
};

Error boundaries can be composed. Sure, we wrapped the App component in an
ErrorBoundary, but we can also wrap individual components within the App with
Error:

 return (
 <SiteLayout
 menu={
 <ErrorBoundary fallback={ErrorScreen}>
 <p>Site Layout Menu</p>
 <BreakThings />
 </ErrorBoundary>
 }
 >
 <ErrorBoundary fallback={ErrorScreen}>
 <Callout>Callout<BreakThings /></Callout>
 </ErrorBoundary>
 <ErrorBoundary fallback={ErrorScreen}>
 <h1>Contents</h1>
 <p>this is the main part of the example layout</p>
 </ErrorBoundary>
 </SiteLayout>

Each ErrorBoundary will render a fallback if an error occurs anywhere within their
children. In this case, we used the BreakThings component in the menu and within
the Callout. This would result in rendering the ErrorScreen twice, as we can see in
Figure 9-2.

We can see that the ErrorBoundaries are rendered in place. Notice that the two
errors that have occurred have been contained to their regions. The boundaries are
like walls that prevent these errors from attacking the rest of the application. Despite
intentionally throwing two errors, the contents are still rendered without issue.

Error Boundaries | 203

Figure 9-2. ErrorBoundaries

In Figure 9-3, we can observe what happens when we move the BreakThings compo‐
nent to only the contents.

Figure 9-3. Error

Now we see the menu and the callout being rendered without issue, but the contents
has rendered an error to notify the user that an error has occurred.

Inside of the render method in the ErrorBoundary class component, we can make
the fallback property optional. When it’s not included, we’ll simply use our
ErrorScreen component:

render() {
 const { error } = this.state;
 const { children } = this.props;

 if (error && !fallback) return <ErrorScreen error={error} />;
 if (error) return <fallback error={error} />;

204 | Chapter 9: Suspense

 return children;
}

This is a good solution for handling errors consistently across an application. Now,
we just have to wrap specific parts of our component tree with an ErrorBoundary and
let the component handle the rest:

<ErrorBoundary>
 <h1><Contents /></h1>
 <p>this is the main part of the example layout</p>
 <BreakThings />
</ErrorBoundary>

Error boundaries are not only a good idea—they’re essential for retaining users in
production, and they’ll prevent some small bug in a relatively unimportant compo‐
nent from bringing down the entire application.

Code Splitting
If the applications you’re working on are small now, chances are they won’t stay that
way. A lot of the applications you work on will eventually contain massive codebases
with hundreds, maybe even thousands, of components. Most of your users could be
accessing your applications via their phones on potentially slow networks. They can’t
wait for the entire codebase of your application to successfully download before React
completes its first render.

Code splitting provides us with a way to split our codebase into manageable chunks
and then load those chunks as they’re needed. To exemplify the power of code split‐
ting, we’ll add a user agreement screen to our application:

export default function Agreement({ onAgree = f => f }) {
 return (
 <div>
 <p>Terms...</p>
 <p>These are the terms and stuff. Do you agree?</p>
 <button onClick={onAgree}>I agree</button>
 </div>
);
}

Next, we’ll move the rest of our codebase from a component called App to a compo‐
nent called Main, and we’ll place that component in its own file:

import React from "react";
import ErrorBoundary from "./ErrorBoundary";

const SiteLayout = ({ children, menu = c => null }) => {
 return (
 <div className="site-container">
 <div>{menu}</div>

Code Splitting | 205

 <div>{children}</div>
 </div>
);
};

const Menu = () => (
 <ErrorBoundary>
 <p style={{ color: "white" }}>TODO: Build Menu</p>
 </ErrorBoundary>
);

const Callout = ({ children }) => (
 <ErrorBoundary>
 <div className="callout">{children}</div>
 </ErrorBoundary>
);

export default function Main() {
 return (
 <SiteLayout menu={<Menu />}>
 <Callout>Welcome to the site</Callout>
 <ErrorBoundary>
 <h1>TODO: Home Page</h1>
 <p>Complete the main contents for this home page</p>
 </ErrorBoundary>
 </SiteLayout>
);
}

So Main is where the current site layout is rendered. Now we’ll modify the App com‐
ponent to render the Agreement until the user agrees to it. When they agree, we’ll
unmount the Agreement component and render the Main website component:

import React, { useState } from "react";
import Agreement from "./Agreement";
import Main from "./Main";
import "./SiteLayout.css";

export default function App() {
 const [agree, setAgree] = useState(false);

 if (!agree)
 return <Agreement onAgree={() => setAgree(true)} />;

 return <Main />;
}

Initially, the only component that’s rendered is the Agreement component. Once the
user agrees, the value for agree changes to true, and the Main component is ren‐
dered. The issue is that all code for the Main component and all of its children is pack‐
aged into a single JavaScript file: the bundle. That means that users have to wait for

206 | Chapter 9: Suspense

this codebase to download completely before the Agreement component is initially
rendered.

We can put off loading the main component until it has rendered by declaring it
using React.lazy instead of initially importing it:

const Main = React.lazy(() => import("./Main"));

We’re telling React to wait to load the codebase for the Main component until it’s ini‐
tially rendered. When it is rendered, it will be imported at that time using the import
function.

Importing code during runtime is just like loading anything else from the internet.
First, the request for the JavaScript code is pending. Then it’s either successful, and a
JavaScript file is returned, or it fails, causing an error to occur. Just like we need to
notify a user that we’re in the process of loading data, we’ll need to let the user know
that we’re in the process of loading code.

Introducing: The Suspense Component
Once again, we find ourselves in a situation where we’re managing an asynchronous
request. This time, we have the Suspense component to help us out. The Suspense
component works much like the ErrorBoundary component. We wrap it around spe‐
cific components in our tree. Instead of falling back to an error message when an
error occurs, the Suspense component renders a loading message when lazy loading
occurs.

We can modify the app to lazy load the Main component with the following code:

import React, { useState, Suspense, lazy } from "react";
import Agreement from "./Agreement";
import ClimbingBoxLoader from "react-spinners/ClimbingBoxLoader";

const Main = lazy(() => import("./Main"));

export default function App() {
 const [agree, setAgree] = useState(false);

 if (!agree)
 return <Agreement onAgree={() => setAgree(true)} />;

 return (
 <Suspense fallback={<ClimbingBoxLoader />}>
 <Main />
 </Suspense>
);
}

Code Splitting | 207

Now the app initially only loads the codebase for React, the Agreement component,
and the ClimbingBoxLoader. React will hold off on loading the Main component until
the user agrees to the agreement.

The Main component has been wrapped in a Suspense component. As soon as the
user agrees to the agreement, we start loading the codebase for the Main component.
Because the request for this codebase is pending, the Suspense component will ren‐
der the ClimbingBoxLoader in its place until the codebase has successfully loaded.
Once that happens, the Suspense component will unmount the ClimbingBoxLoader
and render the Main component.

React Spinners is a library of animated loading spinners that indi‐
cate that something is loading or that the app is working. For the
remainder of this chapter, we’ll be sampling different loader com‐
ponents from this library. Make sure you install this library: npm i
react-spinners.

What happens when the internet connection goes down before trying to load the
Main component? Well, we’ll have an error on our hands. We can handle that by
wrapping our Suspense component within an ErrorBoundary:

<ErrorBoundary fallback={ErrorScreen}>
 <Suspense fallback={<ClimbingBoxLoader />}>
 <Main />
 </Suspense>
</ErrorBoundary>

The composition of these three components gives us a way to handle most asynchro‐
nous requests. We have a solution for pending: the Suspense component will render a
loader animation while the request for the source code is pending. We have a solution
for the failed state: if an error occurs while loading the Main component, it will be
caught and handled by the ErrorBoundary. We even have a solution for success: if the
request is successful, we’ll render the Main component.

Using Suspense with Data
In the last chapter, we built a useFetch hook and a Fetch component to help us han‐
dle the three states involved with making a GitHub request: pending, success, and fail.
That was our solution. We think it was pretty cool. However, in the last section, we
handled these three states by elegantly composing the ErrorBoundary and Suspense
components. That was for lazy loading JavaScript source code, but we can use the
same pattern to help us load data.

Let’s say we have a Status component that’s capable of rendering some sort of status
message:

208 | Chapter 9: Suspense

import React from "react";

const loadStatus = () => "success - ready";

function Status() {
 const status = loadStatus();
 return <h1>status: {status}</h1>;
}

This component invokes the loadStatus function to retrieve the current status mes‐
sage. We can render the Status component in our App component:

export default function App() {
 return (
 <ErrorBoundary>
 <Status />
 </ErrorBoundary>
);
}

If we were to run this code as-is, we would see our successful status message, as
shown in Figure 9-4.

Figure 9-4. Success: everything works

When we rendered the Status component within the App component, we were good
React developers because we wrapped the Status component inside of an error
boundary. Now if something goes wrong while loading the status, the ErrorBoundary
will fall back to the default error screen. To demonstrate this, let’s cause an error
inside of the loadStatus function:

const loadStatus = () => {
 throw new Error("something went wrong");
};

Code Splitting | 209

Now when we run our application, we see the expected output. The ErrorBoundary
caught our error and rendered a message to the user instead (Figure 9-5).

Figure 9-5. Fail: error boundary triggered

So far, everything is working as suspected. We’ve composed the Status component
inside of an ErrorBoundary, and the combination of these two components is han‐
dling two of the three promise states: success or rejected. “Rejected” is the official
promise term for a failed or error state.

We have two of the three states covered. What about the third state? Pending? That
state can be triggered by throwing a promise:

const loadStatus = () => {
 throw new Promise(resolves => null);
};

If we throw a promise from the loadStatus function, we’ll see a special type of error
in the browser (Figure 9-6).

This error is telling us that a pending state was triggered, but there is no Suspense
component configured somewhere higher in the tree. Whenever we throw a promise
from a React app, we need a Suspense component to handle rendering a fallback:

export default function App() {
 return (
 <Suspense fallback={<GridLoader />}>
 <ErrorBoundary>
 <Status />
 </ErrorBoundary>
 </Suspense>

210 | Chapter 9: Suspense

);
}

Figure 9-6. Throw promise

Now we have the right component composition to handle all three states. The load
Status function is still throwing a promise, but there’s now a Suspense component
configured somewhere higher in the tree to handle it. When we throw the promise,
we’re telling React that we’re waiting on a pending promise. React responds by ren‐
dering the fallback GridLoader component (Figure 9-7).

Figure 9-7. GridLoader

Code Splitting | 211

When loadStatus successfully returns a result, we’ll render the Status component as
planned. If something goes wrong (if loadStatus throws an error), we have it cov‐
ered with an ErrorBoundary. When loadStatus throws a promise, we trigger the
pending state, which is handled by the Suspense component.

This is a pretty cool pattern, but wait…what do you mean, “throw a promise”?

Throwing Promises
In JavaScript, the throw keyword is technically for errors. You’ve probably used it
many times in your own code:

throw new Error("inspecting errors");

This line of code causes an error. When this error goes unhandled, it crashes the
whole app, as demonstrated in Figure 9-8.

Figure 9-8. Throwing an error

The error screen you see rendered in the browser is a development-mode feature of
Create React App. Whenever you’re in development mode, unhandled errors are
caught and displayed directly on the screen. If you close this screen by clicking on the
“X” in the upper right-hand corner, you’ll see what your production users see when
there’s an error: nothing, a blank, white screen.

Unhandled errors are always visible in the console. All the red text we see in the con‐
sole is information about the error we’ve thrown.

212 | Chapter 9: Suspense

JavaScript is a pretty free-loving language. It lets us get away with a lot of stuff that we
can’t get away with when using traditional typed languages. For example, in Java‐
Script, we can throw any type:

throw "inspecting errors";

Here, we’ve thrown a string. The browser will tell us that something has gone
uncaught, but it’s not an error (Figure 9-9).

Figure 9-9. GridLoader

This time, when we threw a string, the Create React App error screen wasn’t rendered
inside the browser. React knows the difference between an error and a string.

JavaScript lets us throw any type, which means we can throw a promise:

throw new Promise(resolves => null);

Now the browser is telling us that something has gone uncaught. It’s not an error, it’s a
promise, as shown in Figure 9-10.

Code Splitting | 213

Figure 9-10. Throwing a promise

To throw a promise within the React component tree, we’ll do so first in a
loadStatus function:

const loadStatus = () => {
 console.log("load status");
 throw new Promise(resolves => setTimeout(resolves, 3000));
};

If we use this loadStatus function inside a React component, a promise is thrown,
then somewhere farther up the tree is caught by the Suspense component. That’s
right: JavaScript allows us to throw any type, which also means that we can catch any
type.

Consider the following example:

safe(loadStatus);

function safe(fn) {
 try {
 fn();
 } catch (error) {
 if (error instanceof Promise) {
 error.then(() => safe(fn));
 } else {
 throw error;
 }
 }
}

We’re sending the loadStatus function a safe function, which makes safe a higher-
order function. loadStatus becomes fn within the scope of the safe function. The

214 | Chapter 9: Suspense

safe function tries to invoke the fn that’s passed as the argument. In this case, safe
tries to invoke loadStatus. When it does, loadStatus throws a promise, an inten‐
tional delay of three seconds. That promise is immediately caught and becomes error
within the scope of the catch block. We can check to see if the error is a promise, and
in this case, it is. Now we can wait for that promise to resolve and then attempt to call
safe again with the same loadStatus function.

What do we expect to happen when we invoke the safe function recursively with a
function that creates a promise that causes a three-second delay? We get a delayed
loop, as shown in Figure 9-11.

Figure 9-11. An unfortunate loop

The safe function is invoked, the promise is caught, we wait three seconds for the
promise to resolve, then we call safe again with the same function, and the cycle
starts all over again. Every three seconds, the string “load status” is printed to the con‐
sole. How many times you watch that happen depends upon how patient you are.

We didn’t make this endless recursive loop to test your patience; we made it to
demonstrate a point. Watch what happens when we use this new loadStatus func‐
tion in conjunction with our Status component from earlier:

const loadStatus = () => {
 console.log("load status");
 throw new Promise(resolves => setTimeout(resolves, 3000));
};

function Status() {
 const status = loadStatus();
 return <h1>status: {status}</h1>;
}

export default function App() {
 return (
 <Suspense fallback={<GridLoader />}>
 <ErrorBoundary>
 <Status />
 </ErrorBoundary>
 </Suspense>
);
}

Code Splitting | 215

Because loadStatus is throwing a promise, the GridLoader animation renders on the
screen. When you take a look at the console, the results are once again testing your
patience (Figure 9-12).

Figure 9-12. Suspense recursion

We see the same pattern as we did with the safe function. The Suspense component
knows that a promise was thrown. It will render the fallback component. Then the
Suspense component waits for the thrown promise to be resolved, just like the safe
function did. Once resolved, the Suspense component rerenders the Status compo‐
nent. When Status renders again, it calls loadStatus and the whole process repeats
itself. We see “load status” printed to the console, every three seconds, endlessly,
forever.

An endless loop is typically not the desired output. It isn’t for React, either. It’s impor‐
tant to know that, when we throw a promise, it’s caught by the Suspense component,
and we enter into a pending state until the promise has been resolved.

Building Suspenseful Data Sources
A Suspenseful data source needs to provide a function that handles all the states asso‐
ciated with loading data: pending, success, and error. The loadStatus function can
only return or throw one type at a time. We need the loadStatus function to throw a
promise when the data is loading, return a response when the data is successful, or
throw an error if something goes wrong:

function loadStatus() {
 if (error) throw error;
 if (response) return response;
 throw promise;
}

216 | Chapter 9: Suspense

We’ll need a place to declare error, response, and promise. We also need to make
sure that these variables are scoped appropriately and do not collide with other
requests. The solution is to define loadStatus using a closure:

const loadStatus = (function() {
 let error, promise, response;

 return function() {
 if (error) throw error;
 if (response) return response;
 throw promise;
 };
})();

This is a closure. The scope of the error, promise, and response are closed off from
any code outside of the function where they’re defined. When we declare loadStatus,
an anonymous function is declared and immediately invoked: fn() is the same as
(fn)(). The value of loadStatus becomes the inner function that’s returned. The
loadStatus function now has access to error, promise, and response, but the rest of
our JavaScript world does not.

Now all we need to do is handle the values for error, response, and promise. The
promise will be pending for three seconds before it’s successfully resolved. When the
promise resolves, the value for response will be set to “success.” We’ll catch any errors
or promise rejections and use them to set the error value:

const loadStatus = (function() {
 let error, response;
 const promise = new Promise(resolves =>
 setTimeout(resolves, 3000)
)
 .then(() => (response = "success"))
 .catch(e => (error = e));
 return function() {
 if (error) throw error;
 if (response) return response;
 throw pending;
 };
})();

We created a promise that’s pending for three seconds. If the loadStatus function is
invoked at any point during that time, the promise itself will be thrown. After the
three seconds, the promise is successfully resolved and response is assigned a value.
If you invoke loadStatus now, it will return the response: “success.” If something
went wrong, then the loadStatus function would return the error.

The loadStatus function is our Suspenseful data source. It is capable of communicat‐
ing its state with the Suspense architecture. The inner workings of loadStatus are
hardcoded. It always resolves the same three-second delay promise. However, the

Code Splitting | 217

mechanics of handling error, response, and promise are repeatable. We can wrap
any promise with this technique to produce suspenseful data sources.

All we need to create a Suspenseful data source is a promise, so we can create a func‐
tion that takes a promise as an argument and returns a Suspenseful data source. In
this example, we call that function createResource:

const resource = createResource(promise);
const result = resource.read();

This code assumes that createResource(promise) will successfully create a resource
object. This object has a read function, and we can invoke read as many times as we
like. When the promise is resolved, read will return the resulting data. When the
promise is pending, read will throw the promise. And if anything goes wrong, read
will throw an error. This data source is ready to work with Suspense.

The createResource function looks a lot like our anonymous function from before:

function createResource(pending) {
 let error, response;
 pending.then(r => (response = r)).catch(e => (error = e));
 return {
 read() {
 if (error) throw error;
 if (response) return response;
 throw pending;
 }
 };
}

This function still closes off the values for error and response, but it allows consum‐
ers to pass in a promise as an argument called pending. When the pending promise is
resolved, we capture the results with a .then function. If the promise is rejected, we’ll
catch the error and use it to assign a value to the error variable.

The createResource function returns a resource object. This object contains a func‐
tion called read. If the promise is still pending, then error and response will be
undefined. So read throws the promise. Invoking read when there’s a value for error
will cause that error to be thrown. Finally, invoking read when there’s a response will
yield whatever data was resolved by the promise. It doesn’t matter how many times
we call read—it will always accurately report on the state of our promise.

In order to test it out in a component, we’ll need a promise, ideally one that sounds
like the name of an ’80s ski movie:

const threeSecondsToGnar = new Promise(resolves =>
 setTimeout(() => resolves({ gnar: "gnarly!" }), 3000)
);

218 | Chapter 9: Suspense

The threeSecondsToGnar promise waits three seconds before resolving to an object
that has a field and value for gnar. Let’s use this promise to create a Suspenseful data
resource and use that data resource in a small React application:

const resource = createResource(threeSecondsToGnar);

function Gnar() {
 const result = resource.read();
 return <h1>Gnar: {result.gnar}</h1>;
}

export default function App() {
 return (
 <Suspense fallback={<GridLoader />}>
 <ErrorBoundary>
 <Gnar />
 </ErrorBoundary>
 </Suspense>
);
}

React components can render a lot. The Gnar component will be rendered several
times before it actually returns a response. Each time Gnar is rendered,
resource.read() is invoked. The first time Gnar is rendered, a promise is thrown.
That promise is handled by the Suspense component and a fallback component will
be rendered.

When the promise has resolved, the Suspense component will attempt to render Gnar
again. Gnar will invoke resource.read() again, but this time, assuming everything
went OK, resource.read() will successfully return Gnar, which is used to render the
state of Gnar in an h1 element. If something went wrong, resource.read() would
have thrown an error, which would be handed by the ErrorBoundary.

As you can imagine, the createResource function can become quite robust. Our
resource can attempt to handle errors. Maybe when there’s a network error, the
resource can wait a few seconds and automatically attempt to load the data again. Our
resource could communicate with other resources. Maybe we can log the perfor‐
mance statistics behind all of our resources. The sky’s the limit. As long as we have a
function that we can use to read the current state of that resource, we can do what‐
ever we like with the resource itself.

At present, this is how Suspense works. This is how we can use the Suspense compo‐
nent with any type of asynchronous resource. This could all change, and we expect it
to change. However, whatever the finalized API for Suspense ends up being, it will be
sure to handle three states: pending, success, and fail.

The look at these Suspense APIs has been kind of high-level, and this was intentional
because this stuff is experimental. It’s going to change. What’s important to take away

Code Splitting | 219

from this chapter is that React is always tinkering with ways to make React apps
faster.

Behind the scenes of a lot of this work is the way that React itself works—specifically,
its reconciliation algorithm called Fiber.

Fiber
Throughout this book, we’ve talked about React components as being functions that
return data as a UI. Every time this data changes (props, state, remote data, etc), we
rely on React to rerender the component. If we click a star to rate a color, we assume
that our UI will change, and we assume that it’ll happen fast. We assume this because
we trust React to make it happen. How exactly does this work though? To understand
how React efficiently updates the DOM, let’s take a closer look at how React works.

Consider that you’re writing an article for your company blog. You want feedback, so
you send the article to your coworker before you publish. They recommend a few
quick changes, and now you need to incorporate those changes. You create a brand-
new document, type out the entire article from scratch, and then add in the edits.

You’re probably groaning at this unnecessary extra effort, but this is how a lot of
libraries previously worked. To make an update, we’d get rid of everything, then start
from scratch and rebuild the DOM during the update.

Now, you’re writing another blog post and you send it to your coworker again. This
time, you’ve modernized your article-writing process to use GitHub. Your coworker
checks out a GitHub branch, makes the changes, and merges in the branch when
they’re finished. Faster and more efficient.

This process is similar to how React works. When a change occurs, React makes a
copy of the component tree as a JavaScript object. It looks for the parts of the tree that
need to change and changes only those parts. Once complete, the copy of the tree
(known as the work-in-progress tree) replaces the existing tree. It’s important to reit‐
erate that it uses the parts of the tree that are already there. For example, if we had to
update an item in the list from red to green:

 blue
 purple
 red

React would not get rid of the third li. Instead it would replace its children (red text)
with green text. This is an efficient approach to updating and is the way that React
has updated the DOM since its inception. There is a potential problem here, though.
Updating the DOM is an expensive task because it’s synchronous. We have to wait for
all of the updates to be reconciled and then rendered before we can do other tasks on

220 | Chapter 9: Suspense

the main thread. In other words, we’d have to wait for React to recursively move
through all of the updates, which could make the user experience seem unresponsive.

The React team’s solution to this was a full rewrite of React’s reconciliation algorithm,
called Fiber. Fiber, released in version 16.0, rewrote the way that DOM updates
worked by taking a more asynchronous approach. The first change with 16.0 was the
separation of the renderer and the reconciler. A renderer is the part of the library that
handles rendering, and the reconciler is the part of the library that manages updates
when they occur.

Separating the renderer from the reconciler was a big deal. The reconciliation algo‐
rithm was kept in React Core (the package you install to use React), and each render‐
ing target was made responsible for rendering. In other words, ReactDOM, React
Native, React 360, and more would be responsible for the logic of rendering and
could be plugged into React’s core reconciliation algorithm.

Another huge shift with React Fiber was its changes to the reconciliation algorithm.
Remember our expensive DOM updates that blocked the main thread? This lengthy
block of updates is called work—with Fiber, React split the work into smaller units of
work called fibers. A fiber is a JavaScript object that keeps track of what it’s reconcil‐
ing and where it is in the updating cycle.

Once a fiber (unit of work) is complete, React checks in with the main thread to make
sure there’s not anything important to do. If there is important work to do, React will
give control to the main thread. When it’s done with that important work, React will
continue its update. If there’s nothing critical to jump to on the main thread, React
moves on to the next unit of work and renders those changes to the DOM.

To use the GitHub example from earlier, each fiber represents a commit on a branch,
and when we check the branch back into the main branch, that represents the upda‐
ted DOM tree. By breaking up the work of an update into chunks, Fiber allows prior‐
ity tasks to jump the line for immediate handling by the main thread. The result is a
user experience that feels more responsive.

If this was all Fiber did, it would be a success, but there’s even more to it than that! In
addition to the performance benefits of breaking work into smaller units, the rewrite
also sets up exciting possibilities for the future. Fiber provides the infrastructure for
prioritizing updates. In the longer term, the developer may even be able to tweak the
defaults and decide which types of tasks should be given the highest priority. The pro‐
cess of prioritizing units of work is called scheduling; this concept underlies the exper‐
imental concurrent mode, which will eventually allow these units of work to be
performed in parallel.

An understanding of Fiber is not vital to working with React in production, but the
rewrite of its reconciliation algorithm provides interesting insight into how React
works and how its contributors are thinking about the future.

Code Splitting | 221

1 For a brief introduction to unit testing, see Martin Fowler’s article, “Unit Testing”.

CHAPTER 10

React Testing

In order to keep up with our competitors, we must move quickly while ensuring
quality. One vital tool that allows us to do this is unit testing. Unit testing makes it
possible to verify that every piece, or unit, of our application functions as intended.1

One benefit of practicing functional techniques is that they lend themselves to writ‐
ing testable code. Pure functions are naturally testable. Immutability is easily testable.
Composing applications out of small functions designed for specific tasks produces
testable functions or units of code.

In this section, we’ll demonstrate techniques that can be used to unit test React appli‐
cations. This chapter will not only cover testing, but also tools that can be used to
help evaluate and improve your code and your tests.

ESLint
In most programming languages, code needs to be compiled before you can run any‐
thing. Programming languages have pretty strict rules about coding style and will not
compile until the code is formatted appropriately. JavaScript does not have those rules
and does not come with a compiler. We write code, cross our fingers, and run it in the
browser to see if it works or not. The good news is that there are tools we can use to
analyze our code and make us stick to specific formatting guidelines.

The process of analyzing JavaScript code is called hinting or linting. JSHint and JSLint
are the original tools used to analyze JavaScript and provide feedback about format‐
ting. ESLint is the latest code linter that supports emerging JavaScript syntax. Addi‐

223

tionally, ESLint is pluggable. This means we can create and share plug-ins that can be
added to ESLint configurations to extend its capabilities.

ESLint is supported out of the box with Create React App, and we’ve already seen lint
warnings and errors appear in the console.

We’ll be working with a plug-in called eslint-plugin-react. This plug-in will ana‐
lyze our JSX and React syntax in addition to our JavaScript.

Let’s install eslint as a dev dependency. We can install eslint with npm:

npm install eslint --save-dev

or

yarn add eslint --dev

Before we use ESLint, we’ll need to define some configuration rules that we can agree
to follow. We’ll define these in a configuration file that’s located in our project root.
This file can be formatted as JSON or YAML. YAML is a data serialization formation
like JSON but with less syntax, making it a little easier for humans to read.

ESLint comes with a tool that helps us set up configuration. There are several compa‐
nies that have created ESLint config files that we can use as a starting point, or we can
create our own.

We can create an ESLint configuration by running eslint --init and answering
some questions about our coding style:

npx eslint --init

How would you like to configure ESLint?
To check syntax and find problems

What type of modules does your project use?
JavaScript modules (import/export)

Which framework does your project use?
React

Does your project use TypeScript?
N

Where does your code run? (Press space to select, a to toggle all,
i to invert selection)
Browser

What format do you want your config file to be in?
JSON

Would you like to install them now with npm?
Y

224 | Chapter 10: React Testing

After npx eslint --init runs, three things happen:

1. eslint-plugin-react is installed locally to the ./node_modules folder.
2. These dependencies are automatically added to the package.json file.
3. A configuration file, .eslintrc.json, is created and added to the root of our project.

If we open .eslintrc.json, we’ll see an object of settings:

{
 "env": {
 "browser": true,
 "es6": true
 },
 "extends": [
 "eslint:recommended",
 "plugin:react/recommended"
],
 "globals": {
 "Atomics": "readonly",
 "SharedArrayBuffer": "readonly"
 },
 "parserOptions": {
 "ecmaFeatures": {
 "jsx": true
 },
 "ecmaVersion": 2018,
 "sourceType": "module"
 },
 "plugins": ["react"],
 "rules": {}
}

Importantly, if we look at the extends key, we’ll see that our --init command inital‐
ized defaults for eslint and react. This means that we don’t have to manually con‐
figure all of the rules. Instead, those rules are provided to us.

Let’s test our ESLint configuration and these rules by creating a sample.js file:

const gnar = "gnarly";

const info = ({
 file = __filename,
 dir = __dirname
}) => (
 <p>
 {dir}: {file}
 </p>
);

switch (gnar) {
 default:

ESLint | 225

 console.log("gnarly");
 break;
}

This file has some issues, but nothing that would cause errors in the browser. Techni‐
cally, this code works just fine. Let’s run ESLint on this file and see what feedback we
get based on our customized rules:

npx eslint sample.js

3:7 error 'info' is assigned a value but never used no-unused-vars
4:3 error 'file' is missing in props validation react/prop-types
4:10 error 'filename' is not defined no-undef
5:3 error 'dir' is missing in props validation react/prop-types
5:9 error 'dirname' is not defined no-undef
7:3 error 'React' must be in scope when using JSX react/react-in-jsx-scope

✖ 6 problems (6 errors, 0 warnings)

ESLint has performed a static analysis of our code and is reporting some issues based
on our configuration choices. There are errors about property validation, and ESLint
also complains about __filename and __dirname because it does not automatically
include Node.js globals. And finally, ESLint’s default React warnings let us know that
React must be in scope when using JSX.

The command eslint . will lint our entire directory. To do this, we’ll most likely
require that ESLint ignore some JavaScript files. The .eslintignore file is where we can
add files or directories for ESLint to ignore:

dist/assets/
sample.js

This .eslintignore file tells ESLint to ignore our new sample.js file as well as anything in
the dist/assets folder. If we don’t ignore the assets folder, ESLint will analyze the client
bundle.js file, and it will probably find a lot to complain about in that file.

Let’s add a script to our package.json file for running ESLint:

{
 "scripts": {
 "lint": "eslint ."
 }
}

Now ESLint can be run any time we want with npm run lint, and it will analyze all
of the files in our project except the ones we’ve ignored.

226 | Chapter 10: React Testing

ESLint Plug-Ins
There are a multitude of plug-ins that can be added to your ESLint configuration to
help you as you’re writing code. For a React project, you’ll definitely want to install
eslint-plugin-react-hooks, a plug-in to enforce the rules of React Hooks. This
package was released by the React team to help fix bugs related to Hooks usage.

Start by installing it:

npm install eslint-plugin-react-hooks --save-dev

OR

yarn add eslint-plugin-react-hooks --dev

Then, open the .eslintrc.json file and add the following:

{
 "plugins": [
 // ...
 "react-hooks"
],
 "rules": {
 "react-hooks/rules-of-hooks": "error",
 "react-hooks/exhaustive-deps": "warn"
 }
}

This plug-in will check to ensure that functions that start with the word “use”
(assumed to be a hook) are following the rules of Hooks.

Once this has been added, we’ll write some sample code to test the plug-in. Adjust the
code in sample.js. Even though this code won’t run, we’re testing to see if the plug-in
is working appropriately:

function gnar() {
 const [nickname, setNickname] = useState(
 "dude"
);
 return <h1>gnarly</h1>;
}

Several errors will pop up from this code, but most importantly, there’s the error that
lets us know we’re trying to call useState in a function that isn’t a component or a
hook:

4:35 error React Hook "useState" is called in function "gnar" that is neither
a React function component nor a custom React Hook function
react-hooks/rules-of-hooks

These shoutouts will help us along the way as we learn the ins and outs of working
with Hooks.

ESLint | 227

Another useful ESLint plug-in to incorporate into your projects is eslint-plugin-
jsx-a11y. A11y is a numeronym, which means that there are 11 letters between the
“a” and the “y” in accessibility. When we consider accessibility, we build tools, web‐
sites, and technologies that can be used by people with disabilities.

This plug-in will analyze your code and ensure that it’s not breaking any accessibility
rules. Accessibility should be an area of focus for all of us, and working with this
plug-in will promote good practices when writing accessible React applications.

To install, we’ll use npm or yarn again:

npm install eslint-plugin-jsx-a11y

// or

yarn add eslint-plugin-jsx-a11y

Then we’ll add to our config, .eslintrc.json:

{
 "extends": [
 // ...
 "plugin:jsx-a11y/recommended"
],
 "plugins": [
 // ...
 "jsx-a11y"
]
}

Now let’s test it. We’ll adjust our sample.js file to include an image tag that has no alt
property. In order for an image to pass a lint check, it must have an alt prop or an
empty string if the image doesn’t affect the user’s understanding of the content:

function Image() {
 return ;
}

If we run lint again with npm run lint, we’ll see that there’s a new error that’s called
by the jsx/a11y plug-in:

5:10 error img elements must have an alt prop, either with meaningful text,
or an empty string for decorative images

There are many other ESLint plug-ins you can use to statically analyze your code, and
you could spend weeks tuning your ESLint config to perfection. If you’re looking to
take yours to the next level, there are many useful resources in the Awesome ESLint
repository.

228 | Chapter 10: React Testing

Prettier
Prettier is an opinionated code formatter you can use on a range of projects. The
effect Prettier has had on the day-to-day work of web developers since its release has
been pretty incredible. Based on historical records, arguing over syntax filled 87% of
an average JavaScript developer’s day, but now Prettier handles code formatting and
defining the rules around what code syntax should be used per project. The time sav‐
ings are significant. Also, if you’ve ever unleashed Prettier on a Markdown table, the
quick, crisp formatting that occurs is a pretty incredible sight to behold.

ESLint used to be in charge of code formatting for many projects, but now there’s a
clear delineation of responsibilities. ESLint handles code-quality concerns. Prettier
handles code formatting.

To make Prettier work with ESLint, we’ll tinker with the configuration of our project
a bit more. You can install Prettier globally to get started:

sudo npm install -g prettier

Now you can use Prettier anywhere on any project.

Configuring Prettier by Project
To add a Prettier configuration file to your project, you can create a .prettierrc file.
This file will describe the project defaults:

{
 "semi": true,
 "trailingComma": none,
 "singleQuote": false,
 "printWidth": 80
}

These are our preferred defaults, but of course, choose what makes most sense to you.
For more Prettier formatting options, check out Prettier’s documentation.

Let’s replace what currently lives in our sample.js file with some code to format:

console.log("Prettier Test")

Now let’s try running the Prettier CLI from the Terminal or Command Prompt:

prettier --check "sample.js"

Prettier runs the test and shows us the following message: Code style issues found
in the above file(s). Forgot to run Prettier? To run it from the CLI, we can
pass the write flag:

prettier --write "sample.js"

Prettier | 229

Once we do this, we’ll see an output of a certain number of milliseconds that it took
Prettier to format the file. If we open the file, we’ll see that the content has changed
based on the defaults supplied in the .prettierrc file. If you’re thinking that this process
seems laborious and could be sped up, you’re right. Let’s start automating!

First, we’ll integrate ESLint and Prettier by installing a config tool and a plug-in:

npm install eslint-config-prettier eslint-plugin-prettier --save-dev

The config (eslint-config-prettier) turns off any ESLint rules that could conflict
with Prettier. The plug-in (eslint-plugin-prettier) integrates Prettier rules into
ESLint rules. In other words, when we run our lint script, Prettier will run, too.

We’ll incorporate these tools into .eslintrc.json:

{
 "extends": [
 // ...
 "plugin:prettier/recommended"
],
 "plugins": [
 //,
 "prettier"],
 "rules": {
 // ...
 "prettier/prettier": "error"
 }
}

Make sure to break some formatting rules in your code to ensure that Prettier is
working. For example, in sample.js:

console.log("Prettier Test");

Running the lint command npm run lint will yield the following output:

1:13 error Replace `'Prettier·Test')` with `"Prettier·Test");` prettier/prettier

All of the errors were found. Now you can run the Prettier write command and sweep
the formatting for one file:

prettier --write "sample.js"

Or for all of the JavaScript files in certain folders:

prettier --write "src/*.js"

Prettier in VSCode
If you’re using VSCode, it’s highly recommended that you set up Prettier in your edi‐
tor. Configuration is fairly quick and will save you a lot of time as you’re writing code.

230 | Chapter 10: React Testing

You’ll first want to install the VSCode extension for Prettier. Just follow this link and
click Install. Once installed, you can run Prettier with Control + Command + P on a
Mac or Ctrl + Shift + P on a PC to manually format a file or highlighted bit of code.
For even better results, you can format your code on Save. This involves adding some
settings to VSCode.

To access these settings, select the Code menu, then Preferences, then Settings. (Or
Command + comma on a Mac or Ctrl + comma on a PC, if you’re in a hurry.) Then
you can click on the small paper icon in the upper right-hand corner to open the
VSCode settings as JSON. You’ll want to add a few helpful keys here:

{
 "editor.formatOnSave": true
}

Now when you save any file, Prettier will format it based on the .prettierrc
defaults! Pretty killer. You can also search Settings for Prettier options to set up
defaults in your editor if you want to enforce formatting, even if your project doesn’t
contain a .prettierrc config file.

If you’re using a different editor, Prettier likely supports that, too. For instructions
specific to other code editors, check out the Editor Integration section of the docs.

Typechecking for React Applications
When you’re working with a larger application, you may want to incorporate type‐
checking to help pinpoint certain types of bugs. There are three main solutions for
typechecking in React apps: the prop-types library, Flow, and TypeScript. In the next
section, we’ll take a closer look at how you might set up these tools to increase code
quality.

PropTypes
In the first edition of this book, PropTypes were part of the core React library and
were the recommended way to add typechecking to your application. Today, due to
the emergence of other solutions like Flow and TypeScript, the functionality has been
moved to its own library to make React’s bundle size smaller. Still, PropTypes are a
widely used solution.

To add PropTypes to your app, install the prop-types library:

npm install prop-types --save-dev

We’ll test this by creating a minimal App component that renders the name of a
library:

import React from "react";
import ReactDOM from "react-dom";

Typechecking for React Applications | 231

function App({ name }) {
 return (
 <div>
 <h1>{name}</h1>
 </div>
);
}

ReactDOM.render(
 <App name="React" />,
 document.getElementById("root")
);

Then we’ll import the prop-types library and use App.propTypes to define which
type each property should be:

import PropTypes from "prop-types";

function App({ name }) {
 return (
 <div>
 <h1>{name}</h1>
 </div>
);
}

App.propTypes = {
 name: PropTypes.string
};

The App component has one property name and should always be a string. If an incor‐
rect type value is passed as the name, an error will be thrown. For example, if we used
a boolean:

ReactDOM.render(
 <App name="React" />,
 document.getElementById("root")
);

Our console would report a problem back to us:

Warning: Failed prop type: Invalid prop name of type boolean supplied to App,
expected string. in App

When a value of an incorrect type is provided for a property, the warning only
appears in development mode. The warnings and broken renders won’t appear in
production.

Other types are available, of course, when validating properties. We could add a
boolean for whether or not a technology was used at a company:

232 | Chapter 10: React Testing

function App({ name, using }) {
 return (
 <div>
 <h1>{name}</h1>
 <p>
 {using ? "used here" : "not used here"}
 </p>
 </div>
);
}

App.propTypes = {
 name: PropTypes.string,
 using: PropTypes.bool
};

ReactDOM.render(
 <App name="React" using={true} />,
 document.getElementById("root")
);

The longer list of type checks includes:

• PropTypes.array

• PropTypes.object

• PropTypes.bool

• PropTypes.func

• PropTypes.number

• PropTypes.string

• PropTypes.symbol

Additionally, if you want to ensure that a value was provided, you can chain .isRe
quired onto the end of any of these options. For example, if a string must be sup‐
plied, you’d use:

App.propTypes = {
 name: PropTypes.string.isRequired
};

ReactDOM.render(
 <App />,
 document.getElementById("root")
);

Then, if you fail to provide a value for this field, the following warning will appear in
the console:

Typechecking for React Applications | 233

index.js:1 Warning: Failed prop type: The prop name is marked as required in App,
but its value is undefined.

There also may be situations where you don’t care what the value is, as long as a value
is provided. In that case, you can use any. For example:

App.propTypes = {
 name: PropTypes.any.isRequired
};

This means that a boolean, string, number––anything––could be supplied. As long as
name is not undefined, the typecheck will succeed.

In addition to the basic typechecks, there are a few other utilities that are useful for
many real-world situations. Consider a component where there are two status
options: Open and Closed:

function App({ status }) {
 return (
 <div>
 <h1>
 We're {status === "Open" ? "Open!" : "Closed!"}
 </h1>
 </div>
);
}

ReactDOM.render(
 <App status="Open" />,
 document.getElementById("root")
);

Status is a string, so we might be inclined to use the string check:

App.propTypes = {
 status: PropTypes.string.isRequired
};

That works well, but if other string values besides Open and Closed are passed in, the
property will be validated. The type of check we actually want to enforce is an enum
check. An enumeration type is a restricted list of options for a particular field or
property. We’ll adjust the propTypes object like so:

App.propTypes = {
 status: PropTypes.oneOf(["Open", "Closed"])
};

Now if anything other than the values from the array that’s passed to Prop
Types.oneOf is supplied, a warning will appear.

For all the options you can configure for PropTypes in your React app, check out the
documentation.

234 | Chapter 10: React Testing

Flow
Flow is a typechecking library that’s used and maintained by Facebook Open Source.
It’s a tool that checks for errors via static type annotations. In other words, if you cre‐
ate a variable that’s a particular type, Flow will check to be sure that that value used is
the correct type.

Let’s fire up a Create React App project:

npx create-react-app in-the-flow

Then we’ll add Flow to the project. Create React App doesn’t assume you want to use
Flow, so it doesn’t ship with the library, but it’s smooth to incorporate:

npm install --save flow-bin

Once installed, we’ll add an npm script to run Flow when we type npm run flow. In
package.json, just add this to the scripts key:

{
 "scripts": {
 "start": "react-scripts start",
 "build": "react-scripts build",
 "test": "react-scripts test",
 "eject": "react-scripts eject",
 "flow": "flow"
 }
}

Now running the flow command will run typechecking on our files. Before we can
use it, though, we need to create a .flowconfig file. To do so, we run:

npm run flow init

This creates a skeleton of a configuration file that looks like this:

[ignore]

[include]

[libs]

[lints]

[options]

[strict]

In most cases, you’ll leave this blank to use Flow’s defaults. If you want to configure
Flow beyond the basics, you can explore more options in the documentation.

Typechecking for React Applications | 235

One of the coolest features of Flow is that you can adopt Flow incrementally. It can
feel overwhelming to have to add typechecking to an entire project. With Flow, this
isn’t a requirement. All you need to do is add the line //@flow to the top of any files
you want to typecheck, then Flow will automatically only check those files.

Another option is to add the VSCode extension for Flow to help with code comple‐
tion and parameter hints. If you have Prettier or a linting tool set up, this will help
your editor handle the unexpected syntax of Flow. You can find that in the market‐
place.

Let’s open the index.js file and, for the sake of simplicity, keep everything in the same
file. Make sure to add //@flow to the top of the file:

//@flow

import React from "react";
import ReactDOM from "react-dom";

function App(props) {
 return (
 <div>
 <h1>{props.item}</h1>
 </div>
);
}

ReactDOM.render(
 <App item="jacket" />,
 document.getElementById("root")
);

Now we’ll define the types for the properties:

type Props = {
 item: string
};

function App(props: Props) {
 //...
}

Then run Flow npm run flow. In certain versions of Flow, you may see this warning:

Cannot call ReactDOM.render with root bound to container because null [1] is
incompatible with Element [2]

This warning exists because if document.getElementById("root") returns null, the
app will crash. To safeguard against this (and to clear the error), we can do one of two
things. The first approach is to use an if statement to check to see that root is not
null:

236 | Chapter 10: React Testing

const root = document.getElementById("root");

if (root !== null) {
 ReactDOM.render(<App item="jacket" />, root);
}

Another option is to add a typecheck to the root constant using Flow syntax:

const root = document.getElementById("root");

ReactDOM.render(<App item="jacket" />, root);

In either case, you’ll clear the error and see that your code is free of errors!

No errors!

We could trust this fully, but trying to break it feels like a good idea. Let’s pass a dif‐
ferent property type to the app:

ReactDOM.render(<App item={3} />, root);

Cool, we broke it! Now we get an error that reads:

Cannot create App element because number [1] is incompatible with string [2]
in property item.

Let’s switch it back and add another property for a number. We’ll also adjust the com‐
ponent and property definitions:

type Props = {
 item: string,
 cost: number
};

function App(props: Props) {
 return (
 <div>
 <h1>{props.item}</h1>
 <p>Cost: {props.cost}</p>
 </div>
);
}

ReactDOM.render(
 <App item="jacket" cost={249} />,
 root
);

Running this works, but what if we removed the cost value?

ReactDOM.render(<App item="jacket" />, root);

We’ll immediately get an error:

Cannot create App element because property cost is missing in props [1] but
exists in Props [2].

Typechecking for React Applications | 237

If cost is truly not a required value, we can make it optional in the property defini‐
tions using the question mark after the property name, cost?:

type Props = {
 item: string,
 cost?: number
};

If we run it again, we don’t see the error.

That’s the tip of the iceberg with all of the different features that Flow has to offer. To
learn more and to stay on top of the changes in the library, head over to the docu‐
mentation site.

TypeScript
TypeScript is another popular tool for typechecking in React applications. It’s an open
source superset of JavaScript, which means that it adds additional features to the lan‐
guage. Created at Microsoft, TypeScript is designed to be used for large apps to help
developers find bugs and iterate more quickly on projects.

TypeScript has a growing allegiance of supporters, so the tooling in the ecosystem
continues to improve. One tool that we’re already familiar with is Create React App,
which has a TypeScript template we can use. Let’s set up some basic typechecking,
similar to what we did with PropTypes and Flow, to get a sense of how we can start
using it in our own apps.

We’ll start by generating yet another Create React App, this time with some different
flags:

npx create-react-app my-type --template typescript

Now let’s tour the features of our scaffolded project. Notice in the src directory that
the file extensions are .ts or .tsx now. We’ll also find a .tsconfig.json file, which con‐
tains all of our TypeScript settings. More on that in a bit.

Also, if you take a look at the package.json file, there are new dependencies listed and
installed related to TypeScript, like the library itself and type definitions for Jest,
React, ReactDOM, and more. Any dependency that starts with @types/ describes the
type definitions for a library. That means that the functions and methods in the
library are typed so that we don’t have to describe all of the library’s types.

If your project doesn’t include the TypeScript features, you might
be using an old version of Create React App. To get rid of this, you
can run npm uninstall -g create-react-app.

238 | Chapter 10: React Testing

Let’s try dropping our component from the Flow lesson into our project. Just add the
following to the index.ts file:

import React from "react";
import ReactDOM from "react-dom";

function App(props) {
 return (
 <div>
 <h1>{props.item}</h1>
 </div>
);
}

ReactDOM.render(
 <App item="jacket" />,
 document.getElementById("root")
);

If we run the project with npm start, we should see our first TypeScript error. This is
to be expected at this point:

Parameter 'props' implicitly has an 'any' type.

This means we need to add type rules for this App component. We’ll start by defining
types just as we did earlier for the Flow component. The item is a string, so we’ll add
that to the AppProps type:

type AppProps = {
 item: string;
};

ReactDOM.render(
 <App item="jacket" />,
 document.getElementById("root")
);

Then we’ll reference AppProps in the component:

function App(props: AppProps) {
 return (
 <div>
 <h1>{props.item}</h1>
 </div>
);
}

Now the component will render with no TypeScript issues. It’s also possible to
destructure props if we’d like to:

function App({ item }: AppProps) {
 return (
 <div>

Typechecking for React Applications | 239

 <h1>{item}</h1>
 </div>
);
}

We can break this by passing a value of a different type as the item property:

ReactDOM.render(
 <App item={1} />,
 document.getElementById("root")
);

This immediately triggers an error:

Type 'number' is not assignable to type 'string'.

The error also tells us the exact line where there’s a problem. This is extremely useful
as we’re debugging.

TypeScript helps with more than just property validation, though. We can use Type‐
Script’s type inference to help us do typechecking on hook values.

Consider a state value for a fabricColor with an initial state of purple. The compo‐
nent might look like this:

type AppProps = {
 item: string;
};

function App({ item }: AppProps) {
 const [fabricColor, setFabricColor] = useState(
 "purple"
);
 return (
 <div>
 <h1>
 {fabricColor} {item}
 </h1>
 <button
 onClick={() => setFabricColor("blue")}
 >
 Make the Jacket Blue
 </button>
 </div>
);
}

Notice that we haven’t added anything to the type definitions object. Instead, Type‐
Script is inferring that the type for the fabricColor should match the type of its ini‐
tial state. If we try setting the fabricColor with a number instead of another string
color blue, an error will be thrown:

<button onClick={() => setFabricColor(3)}>

240 | Chapter 10: React Testing

2 For more on this development pattern, see Jeff McWherter’s and James Bender’s “Red, Green, Refactor”.

The error looks like this:

Argument of type '3' is not assignable to parameter of type string.

TypeScript is hooking us up with some pretty low-effort typechecking for this value.
Of course, you can customize this further, but this should give you a start toward
adding typechecking to your applications.

For more on TypeScript, check out the official docs and the amazing React+Type‐
Script Cheatsheets on GitHub.

Test-Driven Development
Test-driven development, or TDD, is a practice—not a technology. It does not mean
that you simply have tests for your application. Rather, it’s the practice of letting the
tests drive the development process. In order to practice TDD, you should follow
these steps:

Write the tests first
This is the most critical step. You declare what you’re building and how it should
work first in a test. The steps you’ll use to test are red, green, and gold.

Run the tests and watch them fail (red)
Run the tests and watch them fail before you write the code.

Write the minimal amount of code required to make the tests pass (green)
Focus specifically on making each test pass; do not add any functionality beyond
the scope of the test.

Refactor both the code and the tests (gold)
Once the tests pass, it’s time to take a closer look at your code and your tests. Try
to express your code as simply and as beautifully as possible.2

TDD gives us an excellent way to approach a React application, particularly when
testing Hooks. It’s typically easier to think about how a Hook should work before
actually writing it. Practicing TDD will allow you to build and certify the entire data
structure for a feature or application independent of the UI.

TDD and Learning
If you’re new to TDD, or new to the language you’re testing, you may find it challeng‐
ing to write a test before writing code. This is to be expected, and it’s OK to write the
code before the test until you get the hang of it. Try to work in small batches: a little

Test-Driven Development | 241

bit of code, a few tests, and so on. Once you get used to writing tests, it will be easier
to write the tests first.

For the remainder of this chapter, we’ll be writing tests for code that already exists.
Technically, we’re not practicing TDD. However, in the next section, we’ll pretend
that our code does not already exist so we can get a feel for the TDD workflow.

Incorporating Jest
Before we can get started writing tests, we’ll need to select a testing framework. You
can write tests for React with any JavaScript testing framework, but the official React
docs recommend testing with Jest, a JavaScript test runner that lets you access the
DOM via JSDOM. Accessing the DOM is important because you want to be able to
check what is rendered with React to ensure your application is working correctly.

Create React App and Testing
Projects that have been initialized with Create React App already come with the jest
package installed. We can create another Create React App project to get started, or
use an existing one:

npx create-react-app testing

Now we can start thinking about testing with a small example. We’ll create two new
files in the src folder: functions.js and functions.test.js. Remember, Jest is already con‐
figured and installed in Create React App, so all you need to do is start writing tests.
In functions.test.js, we’ll stub the tests. In other words, we’ll write what we think the
function should do.

We want our function to take in a value, multiply it by two, and return it. So we’ll
model that in the test. The test function is the function that Jest provides to test a
single piece of functionality:

functions.test.js
test("Multiplies by two", () => {
 expect();
});

The first argument, Multiplies by two, is the test name. The second argument is the
function that contains what should be tested and the third (optional) argument speci‐
fies a timeout. The default timeout is five seconds.

The next thing we’ll do is stub the function that will multiply numbers by two. This
function will be referred to as our system under test (SUT). In functions.js, create the
function:

export default function timesTwo() {...}

242 | Chapter 10: React Testing

We’ll export it so that we can use the SUT in the test. In the test file, we want to
import the function, and we’ll use expect to write an assertion. In the assertion, we’ll
say that if we pass 4 to the timesTwo function, we expect that it should return 8:

import { timesTwo } from "./functions";

test("Multiplies by two", () => {
 expect(timesTwo(4)).toBe(8);
});

Jest “matchers” are returned by the expect function and used to verify results. To test
the function, we’ll use the .toBe matcher. This verifies that the resulting object
matches the argument sent to .toBe.

Let’s run the tests and watch them fail using npm test or npm run test. Jest will pro‐
vide specific details on each failure, including a stack trace:

FAIL src/functions.test.js
 ✕ Multiplies by two (5ms)

 ● Multiplies by two

 expect(received).toBe(expected) // Object.is equality

 Expected: 8
 Received: undefined

 2 |
 3 | test("Multiplies by two", () => {
 > 4 | expect(timesTwo(4)).toBe(8);
 | ^
 5 | });
 6 |

 at Object.<anonymous> (src/functions.test.js:4:23)

Test Suites: 1 failed, 1 total
Tests: 1 failed, 1 total
Snapshots: 0 total
Time: 1.048s
Ran all test suites related to changed files.

Taking the time to write the tests and run them to watch them fail shows us that our
tests are working as intended. This failure feedback represents our to-do list. It’s our
job to write the minimal code required to make our tests pass.

Now if we add the proper functionality to the functions.js file, we can make the tests
pass:

export function timesTwo(a) {
 return a * 2;
}

Incorporating Jest | 243

The .toBe matcher has helped us test for equality with a single value. If we want to
test an object or array, we could use .toEqual. Let’s go through another cycle with
our tests. In the test file, we’ll test for equality of an array of objects.

We have a list of menu items from the Guy Fieri restaurant in Las Vegas. It’s impor‐
tant that we build an object of their ordered items so the customer can get what they
want and know what they’re supposed to pay. We’ll stub the test first:

test("Build an order object", () => {
 expect();
});

Then we’ll stub our function:

export function order(items) {
 // ...
}

Now we’ll use the order function in the test file. We’ll also assume that we have a
starter list of data for an order that we need to transform:

import { timesTwo, order } from "./functions";

const menuItems = [
 {
 id: "1",
 name: "Tatted Up Turkey Burger",
 price: 19.5
 },
 {
 id: "2",
 name: "Lobster Lollipops",
 price: 16.5
 },
 {
 id: "3",
 name: "Motley Que Pulled Pork Sandwich",
 price: 21.5
 },
 {
 id: "4",
 name: "Trash Can Nachos",
 price: 19.5
 }
];

test("Build an order object", () => {
 expect(order(menuItems));
});

244 | Chapter 10: React Testing

Remember that we’ll use toEqual because we’re checking the value of an object
instead of an array. What do we want the result to equal? Well, we want to create an
object that looks like this:

const result = {
 orderItems: menuItems,
 total: 77
};

So we just add that to the test and use it in the assertion:

test("Build an order object", () => {
 const result = {
 orderItems: menuItems,
 total: 77
 };
 expect(order(menuItems)).toEqual(result);
});

Now we’ll complete the function in the functions.js file:

export function order(items) {
 const total = items.reduce(
 (price, item) => price + item.price,
 0
);
 return {
 orderItems: items,
 total
 };
}

And when we check out the terminal, we’ll find that are tests are now passing! Now
this might feel like a trivial example, but if you were fetching data, it’s likely that you’d
test for shape matches of arrays and objects.

Another commonly used function with Jest is describe(). If you’ve used other test‐
ing libraries, you might have seen a similar function before. This function is typically
used to wrap several related tests. For example, if we had a few tests for similar func‐
tions, we could wrap them in a describe statement:

describe("Math functions", () => {
 test("Multiplies by two", () => {
 expect(timesTwo(4)).toBe(8);
 });
 test("Adds two numbers", () => {
 expect(sum(4, 2)).toBe(6);
 });
 test("Subtracts two numbers", () => {
 expect(subtract(4, 2)).toBe(2);
 });
});

Incorporating Jest | 245

When you wrap tests in the describe statement, the test runner creates a block of
tests, which makes the testing output in the terminal look more organized and easier
to read:

Math functions
 ✓ Multiplies by two
 ✓ Adds two numbers
 ✓ Subtracts two numbers (1ms)

As you write more tests, grouping them in describe blocks might be a useful
enhancement.

This process represents a typical TDD cycle. We wrote the tests first, then wrote code
to make the tests pass. Once the tests pass, we can take a closer look at the code to see
if there’s anything that’s worth refactoring for clarity or performance. This approach
is very effective when working with JavaScript (or really any other language).

Testing React Components
Now that we have a basic understanding of the process behind writing tests, we can
start to apply these techniques to component testing in React.

React components provide instructions for React to follow when creating and manag‐
ing updates to the DOM. We can test these components by rendering them and
checking the resulting DOM.

We’re not running our tests in a browser; we’re running them in the terminal with
Node.js. Node.js does not have the DOM API that comes standard with each browser.
Jest incorporates an npm package called jsdom that’s used to simulate a browser envi‐
ronment in Node.js, which is essential for testing React components.

For each component test, it’s likely that we’ll need to render our React component tree
to a DOM element. To demonstrate this workflow, let’s revisit our Star component in
Star.js:

import { FaStar } from "react-icons/fa";

export default function Star({ selected = false }) {
 return (
 <FaStar color={selected ? "red" : "grey"} id="star" />
);
}

246 | Chapter 10: React Testing

Then in index.js, we’ll import and render the star:

import Star from "./Star";

ReactDOM.render(
 <Star />,
 document.getElementById("root")
);

Now let’s write our test. We already wrote the code for the star, so we won’t be partak‐
ing in TDD here. If you had to incorporate tests into your existing apps, this is how
you’d do it. In a new file called Star.test.js, start by importing React, ReactDOM, and
the Star:

import React from "react";
import ReactDOM from "react-dom";
import Star from "./Star";

test("renders a star", () => {
 const div = document.createElement("div");
 ReactDOM.render(<Star />, div);
});

We’ll also want to write the tests. Remember, the first argument we supply to test is
the name of the test. Then we’re going to perform some setup by creating a div that
we can render the star to with ReactDOM.render. Once the element is created, we can
write the assertion:

test("renders a star", () => {
 const div = document.createElement("div");
 ReactDOM.render(<Star />, div);
 expect(div.querySelector("svg")).toBeTruthy();
});

We’ll expect that if we try to select an svg element inside of the created div, the result
will be truthy. When we run the test, we should see that the test passes. Just to verify
that we aren’t getting a valid assertion when we shouldn’t be, we can change the selec‐
tor to find something fake and watch the test fail:

expect(
 div.querySelector("notrealthing")
).toBeTruthy();

The documentation provides more detail about all of the custom matchers that are
available so that you can test exactly what you want to test.

When you generated your React project, you may have noticed that a few packages
from @testing-library were installed in addition to the basics like React and React‐
DOM. React Testing Library is a project that was started by Kent C. Dodds as a way
to enforce good testing practices and to expand the testing utilities that were part of

Testing React Components | 247

the React ecosystem. Testing Library is an umbrella over many testing packages for
libraries like Vue, Svelte, Reason, Angular, and more—it’s not just for React.

One potential reason you might choose React Testing Library is to get better error
messages when a test fails. The current error we see when we test the assertion:

expect(
 div.querySelector("notrealthing")
).toBeTruthy();

is:

expect(received).toBeTruthy()

Received: null

Let’s punch this up by adding React Testing Library. It’s already installed in our Create
React App project. To begin, we’ll import the toHaveAttribute function from
@testing-library/jest-dom:

import { toHaveAttribute } from "@testing-library/jest-dom";

From there, we want to extend the functionality of expect to include this function:

expect.extend({ toHaveAttribute });

Now instead of using toBeTruthy, which gives us hard-to-read messages, we can use
toHaveAttribute:

test("renders a star", () => {
 const div = document.createElement("div");
 ReactDOM.render(<Star />, div);
 expect(
 div.querySelector("svg")
).toHaveAttribute("id", "hotdog");
});

Now when we run the tests, we see an error telling us exactly what’s what:

 expect(element).toHaveAttribute("id", "hotdog")
 // element.getAttribute("id") === "hotdog"

 Expected the element to have attribute:
 id="hotdog"
 Received:
 id="star"

It should be pretty straightforward to fix this now:

expect(div.querySelector("svg")).toHaveAttribute(
 "id",
 "star"
);

248 | Chapter 10: React Testing

Using more than one of the custom matchers just means that you need to import,
extend, and use:

import {
 toHaveAttribute,
 toHaveClass
} from "@testing-library/jest-dom";

expect.extend({ toHaveAttribute, toHaveClass });

expect(you).toHaveClass("evenALittle");

There’s an even faster way to do this, though. If you find yourself importing too many
of these matchers to list or keep track of, you can import the extend-expect library:

import "@testing-library/jest-dom/extend-expect";

// Remove this --> expect.extend({ toHaveAttribute, toHaveClass });

The assertions will continue to run as expected (pun intended). Another fun fact
about Create React App is that, in a file called setupTests.js that ships with CRA,
there’s a line that has already included the extend-expect helpers. If you look at the
src folder, you’ll see that setupTests.js contains:

// jest-dom adds custom jest matchers for asserting on DOM nodes.
// allows you to do things like:
// expect(element).toHaveTextContent(/react/i)
// learn more: https://github.com/testing-library/jest-dom
import "@testing-library/jest-dom/extend-expect";

So if you’re using Create React App, you don’t even have to include the import in your
test files.

Queries
Queries are another feature of the React Testing Library that allow you to match
based on certain criteria. In order to demonstrate using a query, let’s adjust the Star
component to include a title. This will allow us to write a common style of test—one
that matches based on text:

export default function Star({ selected = false }) {
 return (
 <>
 <h1>Great Star</h1>
 <FaStar
 id="star"
 color={selected ? "red" : "grey"}
 />
 </>
);
}

Testing React Components | 249

Let’s pause to think about what we’re trying to test. We want the component to render,
and now we want to test to see if the h1 contains the correct text. A function that’s
part of React Testing Library, render, will help us do just that. render will replace our
need to use ReactDOM.render(), so the test will look a bit different. Start by import‐
ing render from React Testing Library:

import { render } from "@testing-library/react";

render will take in one argument: the component or element that we want to render.
The function returns an object of queries that can be used to check in with values in
that component or element. The query we’ll use is getByText, which will find the first
matching node for a query and throw an error if no elements match. To return a list
of all matching nodes, use getAllBy to return an array:

test("renders an h1", () => {
 const { getByText } = render(<Star />);
 const h1 = getByText(/Great Star/);
 expect(h1).toHaveTextContent("Great Star");
});

getByText finds the h1 element via the regular expression that’s passed to it. Then we
use the Jest matcher toHaveTextContent to describe what text the h1 should include.

Run the tests, and they’ll pass. If we change the text passed to the toHaveTextCon
tent() function, the test will fail.

Testing Events
Another important part of writing tests is testing events that are part of components.
Let’s use and test the Checkbox component we created in Chapter 7:

export function Checkbox() {
 const [checked, setChecked] = useReducer(
 checked => !checked,
 false
);

 return (
 <>
 <label>
 {checked ? "checked" : "not checked"}
 <input
 type="checkbox"
 value={checked}
 onChange={setChecked}
 />
 </label>
 </>
);
}

250 | Chapter 10: React Testing

This component uses useReducer to toggle a checkbox. Our aim here is to create an
automated test that will click this checkbox and change the value of checked from the
default false to true. Writing a test to check the box will also fire useReducer and
test the hook.

Let’s stub the test:

import React from "react";

test("Selecting the checkbox should change the value of checked to true", () => {
 // .. write a test
});

The first thing we need to do is select the element that we want to fire the event on. In
other words, which element do we want to click on with the automated test? We’ll use
one of Testing Library’s queries to find the element we’re looking for. Since the input
has a label, we can use getByLabelText():

import { render } from "@testing-library/react";
import { Checkbox } from "./Checkbox";

test("Selecting the checkbox should change the value of checked to true", () => {
 const { getByLabelText } = render(<Checkbox />);
});

When the component first renders, its label text reads not checked, so we can search
via a regular expression to find a match with the string:

test("Selecting the checkbox should change the value of checked to true", () => {
 const { getByLabelText } = render(<Checkbox />);
 const checkbox = getByLabelText(/not checked/);
});

Currently, this regex is case sensitive, so if you wanted to search for any case, you
could add an i to the end of it. Use that technique with caution depending on how
permissive you want the query selection to be:

const checkbox = getByLabelText(/not checked/i);

Now we have our checkbox selected. All we need to do now is fire the event (click the
checkbox) and write an assertion to make sure that the checked property is set to
true when the checkbox is clicked:

mport { render, fireEvent } from "@testing-library/react"

test("Selecting the checkbox should change the value of checked to true", () => {
 const { getByLabelText } = render(<Checkbox />);
 const checkbox = getByLabelText(/not checked/i);
 fireEvent.click(checkbox);
 expect(checkbox.checked).toEqual(true);
});

Testing React Components | 251

You also could add the reverse toggle to this checkbox test by firing the event again
and checking that the property is set to false on toggle. We changed the name of the
test to be more accurate:

test("Selecting the checkbox should toggle its value", () => {
 const { getByLabelText } = render(<Checkbox />);
 const checkbox = getByLabelText(/not checked/i);
 fireEvent.click(checkbox);
 expect(checkbox.checked).toEqual(true);
 fireEvent.click(checkbox);
 expect(checkbox.checked).toEqual(false);
});

In this case, selecting the checkbox is pretty easy. We have a label we can use to find
the input we want to check. In the event that you don’t have such an easy way to
access a DOM element, Testing Library gives you another utility you can use to check
in with any DOM element. You’ll start by adding an attribute to the element you want
to select:

<input
 type="checkbox"
 value={checked}
 onChange={setChecked}
 data-testid="checkbox" // Add the data-testid= attribute
/>

Then use the query getByTestId:

test("Selecting the checkbox should change the value of checked to true", () => {
 const { getByTestId } = render(<Checkbox />);
 const checkbox = getByTestId("checkbox");
 fireEvent.click(checkbox);
 expect(checkbox.checked).toEqual(true);
});

This will do the same thing but is particularly useful when reaching out to DOM ele‐
ments that are otherwise difficult to access.

Once this Checkbox component is tested, we can confidently incorporate it into the
rest of the application and reuse it.

Using Code Coverage
Code coverage is the process of reporting on how many lines of code have actually
been tested. It provides a metric that can help you decide when you’ve written enough
tests.

Jest ships with Istanbul, a JavaScript tool used to review your tests and generate a
report that describes how many statements, branches, functions, and lines have been
covered.

252 | Chapter 10: React Testing

3 See Martin Fowler’s article, “Test-Coverage”.

To run Jest with code coverage, simply add the coverage flag when you run the jest
command:

npm test -- --coverage

This report tells you how much of your code in each file has been executed during the
testing process and reports on all files that have been imported into tests.

Jest also generates a report that you can run in your browser, which provides more
details about what code has been covered by tests. After running Jest with coverage
reporting, you’ll notice that a coverage folder has been added to the root. In a web
browser, open this file: /coverage/lcov-report/index.html. It will show you your code
coverage in an interactive report.

This report tells you how much of the code has been covered, as well as the individual
coverage based on each subfolder. You can drill down into a subfolder to see how well
the individual files within have been covered. If you select the components/ui folder,
you’ll see how well your user interface components are covered by testing.

You can see which lines have been covered in an individual file by clicking on the
filename.

Code coverage is a great tool to measure the reach of your tests. It’s one benchmark to
help you understand when you’ve written enough unit tests for your code. It’s not
typical to have 100% code coverage in every project. Shooting for anything above
85% is a good target.3

Testing can often feel like an extra step, but the tooling around React testing has
never been better. Even if you don’t test all of your code, starting to think about how
to incorporate testing practices can help you save time and money when building
production-ready applications.

Testing React Components | 253

1 Express.js documentation, “Basic routing”.
2 The project has been starred over 20,000 times on GitHub.
3 See “Sites Using React Router”.

CHAPTER 11

React Router

When the web started, most websites consisted of a series of pages that users could
navigate through by requesting and opening separate files. The location of the current
file or resource was listed in the browser’s location bar. The browser’s forward and
back buttons would work as expected. Bookmarking content deep within a website
would allow users to save a reference to a specific file that could be reloaded at the
user’s request. On a page-based, or server-rendered, website, the browser’s navigation
and history features simply work as expected.

In a single-page app, all of these features become problematic. Remember, in a single-
page app, everything is happening on the same page. JavaScript is loading informa‐
tion and changing the UI. Features like browser history, bookmarks, and forward and
back buttons will not work without a routing solution. Routing is the process of defin‐
ing endpoints for your client’s requests.1 These endpoints work in conjunction with
the browser’s location and history objects. They’re used to identify requested content
so that JavaScript can load and render the appropriate user interface.

Unlike Angular, Ember, or Backbone, React doesn’t come with a standard router. Rec‐
ognizing the importance of a routing solution, engineers Michael Jackson and Ryan
Florence created one named simply React Router. The React Router has been adopted
by the community as a popular routing solution for React apps.2 It’s used by compa‐
nies including Uber, Zendesk, PayPal, and Vimeo.3

In this chapter, we’ll introduce React Router and leverage its features to handle rout‐
ing on the client.

255

Incorporating the Router
To demonstrate the capabilities of the React Router, we’ll build a classic starter web‐
site complete with About, Events, Products, and Contact Us sections. Although this
website will feel as though it has multiple pages, there’s only one—it’s an SPA, a
single-page application (see Figure 11-1).

Figure 11-1. Simple website with link navigation

The sitemap for this website consists of a home page, a page for each section, and an
error page to handle 404 Not Found errors (see Figure 11-2).

Figure 11-2. Sitemap with local links

The router will allow us to set up routes for each section of the website. Each route is
an endpoint that can be entered into the browser’s location bar. When a route is
requested, we can render the appropriate content.

To start, let’s install React Router and React Router DOM. React Router DOM is used
for regular React applications that use the DOM. If you’re writing an app for React
Native, you’ll use react-router-native. We’re going to install these packages at their
experimental versions because React Router 6 is not officially out at the time of this
printing. Once released, you can use the packages without that designation.

npm install react-router@experimental react-router-dom@experimental

256 | Chapter 11: React Router

We’ll also need a few placeholder components for each section or page in the sitemap.
We can export these components from a single file called pages.js:

import React from "react";

export function Home() {
 return (
 <div>
 <h1>[Company Website]</h1>
 </div>
);
}

export function About() {
 return (
 <div>
 <h1>[About]</h1>
 </div>
);
}

export function Events() {
 return (
 <div>
 <h1>[Events]</h1>
 </div>
);
}

export function Products() {
 return (
 <div>
 <h1>[Products]</h1>
 </div>
);
}

export function Contact() {
 return (
 <div>
 <h1>[Contact]</h1>
 </div>
);
}

With these pages stubbed out, we need to adjust the index.js file. Instead of rendering
the App component, we’ll render the Router component. The Router component
passes information about the current location to any children that are nested inside of
it. The Router component should be used once and placed near the root of our com‐
ponent tree:

Incorporating the Router | 257

import React from "react";
import { render } from "react-dom";
import App from "./App";

import { BrowserRouter as Router } from "react-router-dom";

render(
 <Router>
 <App />
 </Router>,
 document.getElementById("root")
);

Notice that we’re importing BrowserRouter as Router. The next thing we need to do
is set up our route configuration. We’re going to place this in the App.js file. The
wrapper component for any routes we want to render is called Routes. Inside of
Routes, we’ll use a Route component for each page we want to render. We also want
to import all of the pages from the ./pages.js file:

import React from "react";
import { Routes, Route } from "react-router-dom";
import {
 Home,
 About,
 Events,
 Products,
 Contact
} from "./pages";

function App() {
 return (
 <div>
 <Routes>
 <Route path="/" element={<Home />} />
 <Route
 path="/about"
 element={<About />}
 />
 <Route
 path="/events"
 element={<Events />}
 />
 <Route
 path="/products"
 element={<Products />}
 />
 <Route
 path="/contact"
 element={<Contact />}
 />
 </Routes>
 </div>

258 | Chapter 11: React Router

);
}

These routes tell the Router which component to render when the window’s location
changes. Each Route component has path and element properties. When the brows‐
er’s location matches the path, the element will be displayed. When the location is /,
the router will render the Home component. When the location is /products, the
router will render the Products component.

At this point, we can run the app and physically type the routes into the browser’s
location bar to watch the content change. For example, type http://localhost:3000/
about into the location bar and watch the About component render.

It’s probably not realistic to expect our users to navigate the website by typing routes
into the location bar. The react-router-dom provides a Link component that we can
use to create browser links.

Let’s modify the home page to contain a navigation menu with a link for each route:

import { Link } from "react-router-dom";

export function Home() {
 return (
 <div>
 <h1>[Company Website]</h1>
 <nav>
 <Link to="about">About</Link>
 <Link to="events">Events</Link>
 <Link to="products">Products</Link>
 <Link to="contact">Contact Us</Link>
 </nav>
 </div>
);
}

Now users can access every internal page from the home page by clicking on a link.
The browser’s back button will take them back to the home page.

Router Properties
The React Router passes properties to the components it renders. For instance, we
can obtain the current location via a property. Let’s use the current location to help us
create a 404 Not Found component. First, we’ll create the component:

export function Whoops404() {
 return (
 <div>
 <h1>Resource not found</h1>
 </div>

Router Properties | 259

);
}

Then we’ll add this to our route configuration in App.js. If we visit a route that doesn’t
exist, like highway, we want to display the Whoops404 component. We’ll use the * as
the path value and the component as the element:

function App() {
 return (
 <div>
 <Routes>
 <Route path="/" element={<Home />} />
 <Route
 path="/about"
 element={<About />}
 />
 <Route
 path="/events"
 element={<Events />}
 />
 <Route
 path="/products"
 element={<Products />}
 />
 <Route
 path="/contact"
 element={<Contact />}
 />
 <Route path="*" element={<Whoops404 />} />
 </Routes>
 </div>
);
}

Now if we visit localhost:3000/highway, we’ll see the 404 page component render. We
also could display the value of the route that we’ve visited by using the location value.
Since we’re living in a world with React Hooks, there’s a hook for that. In the
Whoops404 component, create a variable called location that returns the value of the
current location (i.e., properties about which page you’re navigated to). Then use the
value of location.pathname to display the route that’s being visited:

export function Whoops404() {
 let location = useLocation();
 console.log(location);
 return (
 <div>
 <h1>
 Resource not found at {location.pathname}
 </h1>
 </div>
);
}

260 | Chapter 11: React Router

If you log the location, you can explore that object further.

This section introduced the basics of implementing and working with the React
Router. Router is used once and wraps all components that will use routing. All Route
components need to be wrapped with a Routes component, which selects the compo‐
nent to render based on the window’s present location. Link components can be used
to facilitate navigation. These basics can get you pretty far, but they just scratch the
surface of the router’s capabilities.

Nesting Routes
Route components are used with content that should be displayed only when specific
URLs are matched. This feature allows us to organize our web apps into eloquent
hierarchies that promote content reuse.

Sometimes, as users navigate our apps, we want some of the UI to stay in place. In the
past, solutions such as page templates and master pages have helped web developers
reuse UI elements.

Let’s consider the simple starter website. We might want to create subpages for the
About page that will display additional content. When the user selects the About sec‐
tion, they should be defaulted to the Company page under that section. The outline
looks like this:

• Home Page
— About the Company

— Company (default)
— History
— Services
— Location

— Events
— Products
— Contact Us

• 404 Error Page

The new routes that we need to create will reflect this hierarchy:

• http://localhost:3000/
— http://localhost:3000/about

— http://localhost:3000/about
— http://localhost:3000/about/history

Router Properties | 261

— http://localhost:3000/about/services
— http://localhost:3000/about/location

— http://localhost:3000/events
— http://localhost:3000/products
— http://localhost:3000/contact

• http://localhost:3000/hot-potato

We also need to remember to stub placeholder components for our new sections:
Company, Services, History, and Location. As an example, here’s some text for the
Services component that you can reuse for the other two:

export function Services() {
 <section>
 <h2>Our Services</h2>
 <p>
 Lorem ipsum dolor sit amet, consectetur
 adipiscing elit. Integer nec odio. Praesent
 libero. Sed cursus ante dapibus diam. Sed
 nisi. Nulla quis sem at nibh elementum
 imperdiet. Duis sagittis ipsum. Praesent
 mauris. Fusce nec tellus sed augue semper
 porta. Mauris massa. Vestibulum lacinia arcu
 eget nulla. Class aptent taciti sociosqu ad
 litora torquent per conubia nostra, per
 inceptos himenaeos. Curabitur sodales ligula
 in libero.
 </p>
 </section>;
}

With those components created, we can configure the router starting with the App.js
file. If you want to create a page hierarchy with the routes, all you need to do is nest
the Route components inside of each other:

import {
 Home,
 About,
 Events,
 Products,
 Contact,
 Whoops404,
 Services,
 History,
 Location
} from "./pages";

function App() {
 return (
 <div>

262 | Chapter 11: React Router

 <Routes>
 <Route path="/" element={<Home />} />
 <Route path="about" element={<About />}>
 <Route
 path="services"
 element={<Services />}
 />

 <Route
 path="history"
 element={<History />}
 />
 <Route
 path="location"
 element={<Location />}
 />
 </Route>
 <Route
 path="events"
 element={<Events />}
 />
 <Route
 path="products"
 element={<Products />}
 />
 <Route
 path="contact"
 element={<Contact />}
 />
 <Route path="*" element={<Whoops404 />} />
 </Routes>
 </div>
);
}

Once you’ve wrapped the nested routes with the About Route component, you can
visit these pages. If you open http://localhost:3000/about/history, you’ll just see the
content from the About page, but the History component doesn’t display. In order to
get that to display, we’ll use another feature of React Router DOM: the Outlet com‐
ponent. Outlet will let us render these nested components. We’ll just place it any‐
where we want to render child content.

In the About component in pages.js, we’ll add this under the <h1>:

import {
 Link,
 useLocation,
 Outlet
} from "react-router-dom";

export function About() {
 return (

Router Properties | 263

 <div>
 <h1>[About]</h1>
 <Outlet />
 </div>
);
}

Now this About component will be reused across the entire section and will display
the nested components. The location will tell the app which subsection to render. For
example, when the location is http://localhost:3000/about/history, the History compo‐
nent will be rendered inside of the About component.

Using Redirects
Sometimes you want to redirect users from one route to another. For instance, we can
make sure that if users try to access content via http://localhost:3000/services, they get
redirected to the correct route: http://localhost:3000/about/services.

Let’s modify our application to include redirects to ensure that our users can access
the correct content:

import {
 Routes,
 Route,
 Redirect
} from "react-router-dom";

function App() {
 return (
 <div>
 <Routes>
 <Route path="/" element={<Home />} />
 // Other Routes
 <Redirect
 from="services"
 to="about/services"
 />
 </Routes>
 </div>
);
}

The Redirect component allows us to redirect the user to a specific route.

When routes are changed in a production application, users will still try to access old
content via old routes. This typically happens because of bookmarks. The Redirect
component provides us with a way to load the appropriate content for users, even if
they’re accessing our site via an old bookmark.

264 | Chapter 11: React Router

Throughout this section, we’ve created a route configuration using the Route compo‐
nent. If you love this structure, feel free to ignore this next section, but we wanted to
make sure that you knew how to create a route configuration a different way. It’s also
possible to use the hook useRoutes to configure your application’s routing.

If we wanted to refactor our application to use useRoutes, we’d make the adjustments
in the App component (or anywhere where the routes are set up). Let’s refactor it:

import { useRoutes } from "react-router-dom";

function App() {
 let element = useRoutes([
 { path: "/", element: <Home /> },
 {
 path: "about",
 element: <About />,
 children: [
 {
 path: "services",
 element: <Services />
 },
 { path: "history", element: <History /> },
 {
 path: "location",
 element: <Location />
 }
]
 },
 { path: "events", element: <Events /> },
 { path: "products", element: <Products /> },
 { path: "contact", element: <Contact /> },
 { path: "*", element: <Whoops404 /> },
 {
 path: "services",
 redirectTo: "about/services"
 }
]);
 return element;
}

The official docs call the config element, but you can choose to call it whatever you
like. It’s also totally optional to use this syntax. Route is a wrapper around useRoutes,
so you’re actually using this either way. Choose whichever syntax and style works best
for you!

Routing Parameters
Another useful feature of the React Router is the ability to set up routing parameters.
Routing parameters are variables that obtain their values from the URL. They’re

Using Redirects | 265

extremely useful in data-driven web applications for filtering content or managing
display preferences.

Let’s revisit the color organizer and improve it by adding the ability to select and dis‐
play one color at a time using React Router. When a user selects a color by clicking on
it, the app should render that color and display its title and hex value.

Using the router, we can obtain the color ID via the URL. For example, this is the
URL we’ll use to display the color “lawn” because the ID for lawn is being passed
within the URL:

http://localhost:3000/58d9caee-6ea6-4d7b-9984-65b145031979

To start, let’s set up the router in the index.js file. We’ll import the Router and wrap
the App component:

import { BrowserRouter as Router } from "react-router-dom";

render(
 <Router>
 <App />
 </Router>,
 document.getElementById("root")
);

Wrapping the App passes all of the router’s properties to the component and any other
components nested inside of it. From there, we can set up the route configuration.
We’ll use the Routes and Route components instead of useRoutes, but remember that
this is always an option if you prefer that syntax. Start by importing Routes and
Route:

import { Routes, Route } from "react-router-dom";

Then add to the App. This application will have two routes: the ColorList and the
ColorDetails. We haven’t built ColorDetails yet, but let’s import it:

import { ColorDetails } from "./ColorDetails";

export default function App() {
 return (
 <ColorProvider>
 <AddColorForm />
 <Routes>
 <Route
 path="/"
 element={<ColorList />}
 />
 <Route
 path=":id"
 element={<ColorDetails />}
 />
 </Routes>

266 | Chapter 11: React Router

 </ColorProvider>
);
}

The ColorDetails component will display dynamically based on the id of the color.
Let’s create the ColorDetails component in a new file called ColorDetails.js. To start,
it’ll be a placeholder:

import React from "react";

export function ColorDetails() {
 return (
 <div>
 <h1>Details</h1>
 </div>
);
}

How do we know if this is working? The easiest way to check is to open the React
Developer tools and find the id of one of the colors that is being rendered. If you
don’t have a color yet, then add one and take a look at its id. Once you have the id,
you can append that to the localhost:3000 URL. For example, localhost:
3000/00fdb4c5-c5bd-4087-a48f-4ff7a9d90af8.

Now, you should see the ColorDetails page appear. Now we know that the router
and our routes are working, but we want this to be more dynamic. On the ColorDe
tails page, we want to display the correct color based on the id that’s found in the
URL. To do that, we’ll use the useParams hook:

import { useParams } from "react-router-dom";

export function ColorDetails() {
 let params = useParams();
 console.log(params);
 return (
 <div>
 <h1>Details</h1>
 </div>
);
}

If we log params, we’ll see that this is an object that contains any parameters that are
available on the router. We’ll destructure this object to grab the id, then we can use
that id to find the correct color in the colors array. Let’s use our useColors hook to
make this happen:

import { useColors } from "./";

export function ColorDetails() {
 let { id } = useParams(); // destructure id

Using Redirects | 267

 let { colors } = useColors();

 let foundColor = colors.find(
 color => color.id === id
);
 console.log(foundColor);

 return (
 <div>
 <h1>Details</h1>
 </div>
);
}

Logging foundColor shows us that we’ve found the correct color. Now all we need to
do is display the data about that color in the component:

export function ColorDetails() {
 let { id } = useParams();
 let { colors } = useColors();

 let foundColor = colors.find(
 color => color.id === id
);

 return (
 <div>
 <div
 style={{
 backgroundColor: foundColor.color,
 height: 100,
 width: 100
 }}
 ></div>
 <h1>{foundColor.title}</h1>
 <h1>{foundColor.color}</h1>
 </div>
);
}

Another feature we want to add to the color organizer is the ability to navigate to the
ColorDetails page by clicking on the color in the list. Let’s add this functionality to
the Color component. We’re going to use another router hook called useNavigate to
open the details page when we click on the component. We’ll import it first from
react-router-dom:

import { useNavigate } from "react-router-dom";

Then we’ll call useNavigate, which will return a function we can use to navigate to
another page:

let navigate = useNavigate();

268 | Chapter 11: React Router

Now in the section, we’ll add an onClick handler to navigate to the route based on
the color id:

let navigate = useNavigate();

return (
 <section
 className="color"
 onClick={() => navigate(`/${id}`)}
 >
 // Color component
 </section>
);

Now, when we click on the section, we’ll be routed to the correct page.

Routing parameters are an ideal tool to obtain data that affects the presentation of
your user interface. However, they should only be used when you want users to cap‐
ture these details in a URL. For example, in the case of the color organizer, users can
send other users links to specific colors or all the colors sorted by a specific field.
Users can also bookmark those links to return specific data.

In this chapter, we reviewed the basic usage of the React Router. In the next chapter,
we’ll learn how to use routing on the server.

Using Redirects | 269

CHAPTER 12

React and the Server

So far, we’ve built small applications with React that run entirely in the browser.
They’ve collected data in the browser and saved the data using browser storage. This
makes sense because React is a view layer; it’s intended to render UI. However, most
applications require at least the existence of some sort of a backend, and we will need
to understand how to structure applications with a server in mind.

Even if you have a client application that’s relying entirely on cloud services for the
backend, you still need to get and send data to these services. There are specific places
where these transactions should be made and libraries that can help you deal with the
latency associated with HTTP requests.

Additionally, React can be rendered isomorphically, which means that it can be in
platforms other than the browser. This means we can render our UI on the server
before it ever gets to the browser. Taking advantage of server rendering, we can
improve the performance, portability, and security of our applications.

We start this chapter with a look at the differences between isomorphism and univer‐
salism and how both concepts relate to React. Next, we’ll look at how to make an iso‐
morphic application using universal JavaScript. Finally, we’ll improve the color
organizer by adding a server and rendering the UI on the server first.

Isomorphic Versus Universal
The terms isomorphic and universal are often used to describe applications that work
on both the client and the server. Although these terms are used interchangeably to
describe the same application, there’s a subtle difference between them that’s worth
investigating. Isomorphic applications are applications that can be rendered on

271

1 Gert Hengeveld, “Isomorphism vs Universal JavaScript”, Medium.

multiple platforms. Universal code means that the exact same code can run in multi‐
ple environments.1

Node.js will allow us to reuse the same code we’ve written in the browser in other
applications such as servers, CLIs, and even native applications. Let’s take a look at
some universal JavaScript:

const userDetails = response => {
 const login = response.login;
 console.log(login);
};

The printNames function is universal. The exact same code can be invoked in the
browser or on a server. This means that if we constructed a server with Node.js, we
could potentially reuse code between the two environments. Universal JavaScript is
JavaScript that can run on the server or in the browser without error (see
Figure 12-1).

Figure 12-1. Client and server domains

Client and Server Domains
The server and the client are completely different domains, so all of our JavaScript
code won’t automatically work between them. Let’s take a look at creating an AJAX
request with the browser:

fetch("https://api.github.com/users/moonhighway")
 .then(res => res.json())
 .then(console.log);

Here, we’re making a fetch request to the GitHub API, converting the response to
JSON, then calling a function on the JSON results to parse it.

272 | Chapter 12: React and the Server

However, if we try to run the exact same code with Node.js, we get an error:

fetch("https://api.github.com/users/moonhighway")
^

ReferenceError: fetch is not defined
at Object.<anonymous> (/Users/eveporcello/Desktop/index.js:7:1)
at Module._compile (internal/modules/cjs/loader.js:1063:30)
at Object.Module._extensions..js (internal/modules/cjs/loader.js:1103:10)
at Module.load (internal/modules/cjs/loader.js:914:32)
at Function.Module._load (internal/modules/cjs/loader.js:822:14)
at Function.Module.runMain (internal/modules/cjs/loader.js:1143:12)
at internal/main/run_main_module.js:16:11

This error occurs because Node.js does not have a built-in fetch function like the
browser does. With Node.js, we can use isomorphic-fetch from npm, or use the
built-in https module. Since we’ve already used the fetch syntax, let’s incorporate
isomorphic-fetch:

npm install isomorphic-fetch

Then we’ll just import isomorphic-fetch with no changes to the code:

const fetch = require("isomorphic-fetch");

const userDetails = response => {
 const login = response.login;
 console.log(login);
};

fetch("https://api.github.com/users/moonhighway")
 .then(res => res.json())
 .then(userDetails);

Loading data from an API with Node.js requires the use of core modules. It requires
different code. In these samples, the userDetails function is universal, so the same
function works in both environments.

This JavaScript file is now isomorphic. It contains universal JavaScript. All of the code
is not universal, but the file itself will work in both environments. It can run it with
Node.js or include it in a <script> tag in the browser.

Let’s take a look at the Star component. Is this component universal?

function Star({
 selected = false,
 onClick = f => f
}) {
 return (
 <div
 className={
 selected ? "star selected" : "star"
 }

Isomorphic Versus Universal | 273

 onClick={onClick}
 ></div>
);
}

Sure it is; remember, the JSX compiles to JavaScript. The Star component is simply a
function:

function Star({
 selected = false,
 onClick = f => f
}) {
 return React.createElement("div", {
 className: selected
 ? "star selected"
 : "star",
 onClick: onClick
 });
}

We can render this component directly in the browser, or render it in a different envi‐
ronment and capture the HTML output as a string. ReactDOM has a renderToString
method that we can use to render UI to an HTML string:

// Renders html directly in the browser
ReactDOM.render(<Star />);

// Renders html as a string
let html = ReactDOM.renderToString(<Star />);

We can build isomorphic applications that render components on different platforms,
and we can architect these applications in a way that reuses JavaScript code univer‐
sally across multiple environments. Additionally, we can build isomorphic applica‐
tions using other languages such as Go or Python—we’re not restricted to Node.js.

Server Rendering React
Using the ReactDOM.renderToString method allows us to render UI on the server.
Servers are powerful; they have access to all kinds of resources that browsers do not.
Servers can be secure and access secure data. You can use all of these added benefits
to your advantage by rendering initial content on the server.

The app we’ll server render is our Recipes app that we built in Chapter 5. You can run
Create React App and place this code over the contents of the index.js file:

import React from "react";
import ReactDOM from "react-dom";
import "./index.css";
import { Menu } from "./Menu";

const data = [

274 | Chapter 12: React and the Server

 {
 name: "Baked Salmon",
 ingredients: [
 {
 name: "Salmon",
 amount: 1,
 measurement: "lb"
 },
 {
 name: "Pine Nuts",
 amount: 1,
 measurement: "cup"
 },
 {
 name: "Butter Lettuce",
 amount: 2,
 measurement: "cups"
 },
 {
 name: "Yellow Squash",
 amount: 1,
 measurement: "med"
 },
 {
 name: "Olive Oil",
 amount: 0.5,
 measurement: "cup"
 },
 {
 name: "Garlic",
 amount: 3,
 measurement: "cloves"
 }
],
 steps: [
 "Preheat the oven to 350 degrees.",
 "Spread the olive oil around a glass baking dish.",
 "Add the yellow squash and place in the oven for 30 mins.",
 "Add the salmon, garlic, and pine nuts to the dish.",
 "Bake for 15 minutes.",
 "Remove from oven. Add the lettuce and serve."
]
 },
 {
 name: "Fish Tacos",
 ingredients: [
 {
 name: "Whitefish",
 amount: 1,
 measurement: "l lb"
 },
 {

Server Rendering React | 275

 name: "Cheese",
 amount: 1,
 measurement: "cup"
 },
 {
 name: "Iceberg Lettuce",
 amount: 2,
 measurement: "cups"
 },
 {
 name: "Tomatoes",
 amount: 2,
 measurement: "large"
 },
 {
 name: "Tortillas",
 amount: 3,
 measurement: "med"
 }
],
 steps: [
 "Cook the fish on the grill until hot.",
 "Place the fish on the 3 tortillas.",
 "Top them with lettuce, tomatoes, and cheese."
]
 }
];

ReactDOM.render(
 <Menu
 recipes={data}
 title="Delicious Recipes"
 />,
 document.getElementById("root")
);

The components will live in a new file called Menu.js:
function Recipe({ name, ingredients, steps }) {
 return (
 <section
 id={name.toLowerCase().replace(/ /g, "-")}
 >
 <h1>{name}</h1>
 <ul className="ingredients">
 {ingredients.map((ingredient, i) => (
 <li key={i}>{ingredient.name}
))}

 <section className="instructions">
 <h2>Cooking Instructions</h2>
 {steps.map((step, i) => (
 <p key={i}>{step}</p>

276 | Chapter 12: React and the Server

))}
 </section>
 </section>
);
}

export function Menu({ title, recipes }) {
 return (
 <article>
 <header>
 <h1>{title}</h1>
 </header>
 <div className="recipes">
 {recipes.map((recipe, i) => (
 <Recipe key={i} {...recipe} />
))}
 </div>
 </article>
);
}

Throughout the book, we’ve rendered components on the client. Client-side render‐
ing is typically the first approach we’ll use when building an app. We serve up the
Create React App build folder, and the browser runs the HTML and makes calls to the
script.js file to load any JavaScript.

Doing this can be time consuming. The user might have to wait to see anything load
for a few seconds depending on their network speed. Using Create React App with an
Express server, we can create a hybrid experience of client- and server-side rendering.

We’re rendering a Menu component that renders several recipes. The first change we’ll
make to this app is to use ReactDOM.hydrate instead of ReactDOM.render.

These two functions are the same except hydrate is used to add content to a con‐
tainer that was rendered by ReactDOMServer. The order of operations will look like
this:

1. Render a static version of the app, allowing users to see that something has hap‐
pened and the page has “loaded.”

2. Make the request for the dynamic JavaScript.
3. Replace the static content with the dynamic content.
4. User clicks on something and it works.

We’re rehydrating the app after a server-side render. By rehydrate, we mean statically
loading the content as static HTML and then loading the JavaScript. This allows users
to experience perceived performance. They’ll see that something is happening on the
page, and that makes them want to stay on the page.

Server Rendering React | 277

Next, we need to set up our project’s server, and we’ll use Express, a lightweight Node
server. Install it first:

npm install express

Then we’ll create a server folder called server and create an index.js file inside of that.
This file will build a server that will serve up the build folder but also preload some
static HTML content:

import express from "express";
const app = express();

app.use(express.static("./build"));

This imports and statically serves the build folder. Next, we want to use renderTo
String from ReactDOM to render the app as a static HTML string:

import React from "react";
import ReactDOMServer from "react-dom/server";
import { Menu } from "../src/Menu.js";

const PORT = process.env.PORT || 4000;

app.get("/*", (req, res) => {
 const app = ReactDOMServer.renderToString(
 <Menu />
);
});

app.listen(PORT, () =>
 console.log(
 `Server is listening on port ${PORT}`
)
);

We’ll pass the Menu component to this function because that’s what we want to render
statically. We then want to read the static index.html file from the built client app,
inject the app’s content in the div, and send that as the response to the request:

app.get("/*", (req, res) => {
 const app = ReactDOMServer.renderToString(
 <Menu />
);

 const indexFile = path.resolve(
 "./build/index.html"
);

 fs.readFile(indexFile, "utf8", (err, data) => {
 return res.send(
 data.replace(
 '<div id="root"></div>',
 `<div id="root">${app}</div>`

278 | Chapter 12: React and the Server

)
);
 });
});

Once we’ve completed this, we’ll need to do some configuration with webpack and
Babel. Remember, Create React App can take care of compiling and building out of
the box, but we need to set up and enforce different rules with the server project.

Start by installing a few dependencies (OK, a lot of dependencies):

npm install @babel/core @babel/preset-env babel-loader nodemon npm-run-all
webpack webpack-cli webpack-node-externals

With Babel installed, let’s create a .babelrc with some presets:

{
 "presets": ["@babel/preset-env", "react-app"]
}

You’ll add react-app because the project uses Create React App, and it has already
been installed.

Next, add a webpack configuration file for the server called webpack.server.js:
const path = require("path");
const nodeExternals = require("webpack-node-externals");

module.exports = {
 entry: "./server/index.js",
 target: "node",
 externals: [nodeExternals()],
 output: {
 path: path.resolve("build-server"),
 filename: "index.js"
 },
 module: {
 rules: [
 {
 test: /\.js$/,
 use: "babel-loader"
 }
]
 }
};

The babel-loader will transform JavaScript files as expected, and nodeExternals will
scan the node_modules folder for all node_modules names. Then, it will build an
external function that tells webpack not to bundle those modules or any submodules.

Also, you might run into a webpack error due to a version conflict between the ver‐
sion you’ve installed with Create React App and the version we just installed. To fix
the conflict, just add a .env file to the root of the project and add:

Server Rendering React | 279

SKIP_PREFLIGHT_CHECK=true

Finally, we can add a few extra npm scripts to run our dev commands:

{
 "scripts": {
 //...
 "dev:build-server": "NODE_ENV=development webpack --config webpack.server.js
 --mode=development -w",
 "dev:start": "nodemon ./server-build/index.js",
 "dev": "npm-run-all --parallel build dev:*"
 }
}

1. dev:build-server: Passes development as an environment variable and runs web
pack with the new server config.

2. dev:start: Runs the server file with nodemon, which will listen for any changes.
3. dev: Runs both processes in parallel.

Now when we run npm run dev, both of the processes will run. You should be able to
see the app running on localhost:4000. When the app runs, the content will load in
sequence, first as prerendered HTML and then with the JavaScript bundle.

Using a technique like this can mean faster load times and will yield a boost in per‐
ceived performance. With users expecting page-load times of two seconds or less, any
improved performance can mean the difference between users using your website or
bouncing to a competitor.

Server Rendering with Next.js
Another powerful and widely used tool in the server rendering ecosystem is Next.js.
Next is an open source technology that was released by Zeit to help engineers write
server-rendered apps more easily. This includes features for intuitive routing, stati‐
cally optimizing, automatic splitting, and more. In the next section, we’ll take a closer
look at how to work with Next.js to enable server rendering in our app.

To start, we’ll create a whole new project, running the following commands:

mkdir project-next
cd project-next
npm init -y
npm install --save react react-dom next
mkdir pages

Then we’ll create some npm scripts to run common commands more easily:

280 | Chapter 12: React and the Server

{
 //...
 "scripts": {
 "dev": "next",
 "build": "next build",
 "start": "next start"
 }
}

In the pages folder, we’ll create an index.js file. We’ll write our component, but we
won’t worry about importing React or ReactDOM. Instead, we’ll just write a
component:

export default function Index() {
 return (
 <div>
 <p>Hello everyone!</p>
 </div>
);
}

Once we’ve created this, we can run npm run dev to see the page running on local
host:3000. It displays the expected component.

You’ll also notice there’s a small lightning bolt icon in the lower righthand corner of
the screen. Hovering over this will display a button that reads Prerendered Page.
When you click on it, it will take you to documentation about the Static Optimization
Indicator. This means that the page fits the criteria for automatic static optimization,
meaning that it can be prerendered. There are no data requirements that block it. If a
page is automatically statically optimized (a mouthful, but useful!), the page is faster
to load because there’s no server-side effort needed. The page can be streamed from a
CDN, yielding a super-fast user experience. You don’t have to do anything to pick up
on this performance enhancement.

What if the page does have data requirements? What if the page cannot be preren‐
dered? To explore this, let’s make our app a bit more robust and build toward a com‐
ponent that fetches some remote data from an API. In a new file called Pets.js:

export default function Pets() {
 return <h1>Pets!</h1>;
}

To start, we’ll render an h1. Now we can visit localhost:3000/pets to see that our
page is now loaded on that route. That’s good, but we can improve this by adding
links and a layout component that will display the correct content for each page. We’ll
create a header that can be used on both pages and will display links:

Server Rendering with Next.js | 281

import Link from "next/link";

export default function Header() {
 return (
 <div>
 <Link href="/">
 <a>Home
 </Link>
 <Link href="/pets">
 <a>Pets
 </Link>
 </div>
);
}

The Link component is a wrapper around a couple of links. These look similar to the
links we created with React Router. We can also add a style to each of the <a> tags:

const linkStyle = {
 marginRight: 15,
 color: "salmon"
};

export default function Header() {
 return (
 <div>
 <Link href="/">
 Home
 </Link>
 <Link href="/pets">
 Pets
 </Link>
 </div>
);
}

Next, we’ll incorporate the Header component into a new file called Layout.js. This
will dynamically display the component based on the correct route:

import Header from "./Header";

export function Layout(props) {
 return (
 <div>
 <Header />
 {props.children}
 </div>
);
}

The Layout component will take in props and display any additional content in the
component underneath the Header. Then in each page, we can create content blocks

282 | Chapter 12: React and the Server

that can be passed to the Layout component when rendered. For example, the index.js
file would now look like this:

import Layout from "./Layout";

export default function Index() {
 return (
 <Layout>
 <div>
 <h1>Hello everyone!</h1>
 </div>
 </Layout>
);
}

We’ll do the same in the Pets.js file:

import Layout from "./Layout";

export default function Pets() {
 return (
 <Layout>
 <div>
 <h1>Hey pets!</h1>
 </div>
 </Layout>
);
}

Now if we visit the homepage, we should see the header, then when we click the Pets
link, we should see the Pets page.

When we click on the lightning bolt button in the lower righthand corner, we’ll notice
that these pages are still being prerendered. This is to be expected as we continue to
render static content. Let’s use the Pets page to load some data and see how this
changes.

To start, we’ll install isomorphic-unfetch like we did earlier in the chapter:

npm install isomorphic-unfetch

We’ll use this to make a fetch call to the Pet Library API. Start by importing it in the
Pages.js file:

import fetch from "isomorphic-unfetch";

Then we’re going to add a function called getInitialProps. This will handle fetching
and loading the data:

Pets.getInitialProps = async function() {
 const res = await fetch(
 `http://pet-library.moonhighway.com/api/pets`
);

Server Rendering with Next.js | 283

 const data = await res.json();
 return {
 pets: data
 };
};

When we return the data as the value for pets, we then can map over the data in the
component.

Adjust the component to map over the pets property:

export default function Pets(props) {
 return (
 <Layout>
 <div>
 <h1>Pets!</h1>

 {props.pets.map(pet => (
 <li key={pet.id}>{pet.name}
))}

 </div>
 </Layout>
);
}

If getInitialProps is present in the component, Next.js will render the page in
response to each request. This means that the page will be server-side rendered
instead of statically prerendered, so the data from the API will be current on each
request.

Once we’re satisfied with the state of the application, we can run a build with npm run
build. Next.js is concerned with performance, so it will give us a full rundown of the
number of kilobytes present for each file. This is a quick spot-check for unusually
large files.

Next to each file, we’ll see an icon for whether a site is server-rendered at runtime (λ),
automatically rendered as HTML (○), or automatically generated as static HTML +
JSON (●).

Once you’ve built the app, you can deploy it. Next.js is an open source product of
Zeit, a cloud-hosting provider, so the experience of deploying with Zeit is the most
straightforward. However, you can use many different hosting providers to deploy
your application.

To recap, there are some important bits of terminology that are important to under‐
stand when setting out to build your own apps:

284 | Chapter 12: React and the Server

CSR (client-side rendering)
Rendering an app in a browser, generally using the DOM. This is what we do
with an unmodified Create React App.

SSR (server-side rendering)
Rendering a client-side or universal app to HTML on the server.

Rehydration
Loading JavaScript views on the client to reuse the server-rendered HTML’s
DOM tree and data.

Prerendering
Running a client-side application at build time and capturing initial state as static
HTML.

Gatsby
Another popular site generator that’s based on React is Gatsby. Gatsby is taking over
the world as a straightforward way to create a content-driven website. It aims to offer
smarter defaults to manage concerns like performance, accessibility, image handling,
and more. And if you’re reading this book, it’s likely that you might work on a Gatsby
project at some point!

Gatsby is used for a range of projects, but it’s often used to build content-driven web‐
sites. In other words, if you have a blog or static content, Gatsby is a great choice, par‐
ticularly now that you know React. Gatsby can also handle dynamic content like
loading data from APIs, integration with frameworks, and more.

In this section, we’ll start building a quick Gatsby site to demonstrate how it works.
Essentially, we’ll build our small Next.js app as a Gatsby app:

npm install -g gatsby-cli
gatsby new pets

If you have yarn installed globally, the CLI will ask you whether to use yarn or npm.
Either is fine. Then you’ll change directory into the pets folder:

cd pets

Now you can start the project with gatsby develop. When you visit localhost:
8000, you’ll see your Gatsby starter site running. Now you can take a tour of the files.

If you open up the project’s src folder, you’ll see three subfolders: components, images,
and pages.

Within the pages folder, you’ll find a 404.js error page, an index.js page (the page that
renders when you visit localhost:8000), and a page-2.js that renders the content of
the second page.

Gatsby | 285

If you visit the components folder, this where the magic of Gatsby is located. Remem‐
ber when we built the Header and Layout components with Next.js? Both of these
components are already created as templates in the components folder.

A few particularly interesting things to note:

layout.js
This contains the Layout component. It uses the useStaticQuery hook to query
some data about the site using GraphQL.

seo.js
This component lets us access the page’s metadata for search engine optimization
purposes.

If you add additional pages to the pages folder, this will add additional pages to your
site. Let’s try it and add a page-3.js file to the pages folder. Then we’ll add the following
code to that file to stand up a quick page:

import React from "react";
import { Link } from "gatsby";

import Layout from "../components/layout";
import SEO from "../components/seo";

const ThirdPage = () => (
 <Layout>
 <SEO title="Page three" />
 <h1>Hi from the third page</h1>
 <Link to="/">Go back to the homepage</Link>
 </Layout>
);

export default ThirdPage;

We’ll use the Layout component to wrap the content so that it’s displayed as
children. Not only does Layout display the dynamic content, but as soon as we cre‐
ate it, the page is autogenerated.

That’s the tip of the iceberg with what you can do with Gatsby, but we’ll leave you
with some information about some of its additional features:

Static content
You can build your site as static files, which can be deployed without a server.

CDN support
It’s possible to cache your site on CDNs all over the world to improve perfor‐
mance and availability.

286 | Chapter 12: React and the Server

Responsive and progressive images
Gatsby loads images as blurry placeholders, then fades in the full assets. This tac‐
tic, popularized by Medium, allows users to see something rendering before the
full resource is available.

Prefetching of linked pages
All of the content needed to load the next page will load in the background
before you click on the next link.

All of these features and more are used to ensure a seamless user experience. Gatsby
has made a lot of decisions for you. That could be good or bad, but these constraints
aim to let you focus on your content.

React in the Future
While Angular, Ember, and Vue continue to have substantial marketshare in the Java‐
Script ecosystem, it’s hard to argue with the fact that React is currently the most
widely used and influential library for building JavaScript apps. In addition to the
library itself, the wider JavaScript community, as evidenced particularly by Next.js
and Gatsby, has embraced React as the tool of choice.

So where do we go from here? We’d encourage you to use these skills to build your
own projects. If you’re looking to build mobile applications, you can check out React
Native. If you’re looking to declaratively fetch data, you can check out GraphQL. If
you’re looking to build content-based websites, dig deeper into Next.js and Gatsby.

There are a number of avenues you can travel down, but these skills you’ve picked up
in React will serve you well as you set out to build your own applications. When
you’re doing so, we hope that this book will serve as a reference and a foundation.
Although React and its related libraries will almost certainly go through changes,
these are stable tools that you can feel confident about using right away. Building apps
with React and functional, declarative JavaScript is a lot of fun, and we can’t wait to
see what you’ll build.

React in the Future | 287

Index

A
Array.filter function, 41
Array.join function, 41
Array.map function, 40, 42-44
Array.pop function, 41
Array.reduce function, 40, 44-47, 147
Array.reduceRight function, 44-47
Array.splice function, 41
arrays

destructuring, 20
mapping with JSX, 73
spread operator (…), 21

arrow functions, 14-17
async function, 25, 156
asynchronous programming

async and await functions, 25, 156
building promises, 26
fetch() function, 24, 155, 156
render props pattern, 165
versus synchronous, 23

authorization, 158
await function, 25, 156

B
Babel

benefits of, 17
history of, 73
working with, 74

bundling, 84

C
checkboxes, 129-131, 146
child elements, 61-64
class components, 103

classes, 27-28
className, 64, 73
code coverage, 252
code examples, obtaining and using, x, 4
code splitting

benefits of, 205
building Suspenseful data sources, 216
definition of term, 84
example of, 205
Suspense component, 207
throwing promises, 212
using Suspense with data, 208

colors
adding to state, 119
placing in context, 122
retrieving with useContext, 123

CommonJS, 30
component trees

building, 64
definition of term, 97
inspecting, 4, 80
managing state from one location, 106
sending interactions back up, 109-113
sending state down, 106

components
controlled components, 115
creating fetch components, 174
enhancing with hooks, 129
improving component performance, 150
pure components, 150
shouldComponentUpdate method, 153
testing React components, 246-253

composition, 51-52
concurrent mode, 221

289

const keyword, 8
context

context providers and consumers, 121
createContext function, 122
custom hooks with, 126
purpose of, 120
stateful context providers, 125
useContext hook, 123

controlled components, 115
Create React App, 95, 212, 242
createContext function, 122

D
data management

challenges of, 155
GraphQL, 191-198
render props, 165
requesting data

async/await and, 156
authorized requests, 158
fetch requests, 155
handling promise states, 162
saving data locally, 159
sending data with requests, 157
uploading files with fetch, 157

virtualized lists
canceling requests, 188
creating fetch components, 174
creating fetch hooks, 172
handling multiple requests, 176
implementing, 169
memoizing values, 177
parallel requests, 185
purpose of, 167
throttling network speed, 184
waiting for values, 187
waterfall requests, 181

data transformations, 40-47
declarative programming, 33-36, 56
dependencies

deep checking, 136-141
dependency arrays, 132-135

development environment
GitHub file repository, 4
Node package manager, 5
Node.js, 5
React Developer Tools, 4, 58
Yarn, 6

E
ECMAScript, 7
element trees, 61
error boundaries, 201-205
ES6 modules, 28-30
ESLint, 223-228
ESNext, compatibility table, 30
European Computer Manufacturers Associa‐

tion (ECMA), 7

F
fake data, 169
feature flagging, 84
fetch() function, 24, 155
Fiber algorithm, 220-221
first-class members/functions, 31
Flow, 235
forms

adding colors to state, 119
building with refs, 114
controlled components, 115
custom hooks, 117
form and child elements, 114
rendering with JSX, 113

fragments, 82-83
functional programming

core concepts
composition, 51-52
data transformations, 40-47
higher-order functions, 47
immutability, 36
pure functions, 38
recursion, 48-50
ticking clock program example, 52-56

definition of term, 32
imperative versus declarative programming,

33-36, 56
introduction to, 31

functions
arrow functions, 14-17
creating, 12
default parameters, 14
function declarations, 12
function expressions, 12
function returns, 14
higher-order, 31, 33, 47
passing arguments, 13
pure functions, 38
reducer functions, 147

290 | Index

G
Gatsby, 285
GitHub file repository, 4
GraphQL, 191-198

H
higher-order functions, 31, 33, 47
hinting, 223
hooks

benefits of, 128
creating fetch hooks, 172
custom hooks, 117, 173, 176
custom with context, 126
enhancing components with, 129
purpose of, 99
rules to follow with hooks, 143-145
useCallback hook, 139, 150
useContext hook, 123
useEffect hook

data requests, 158
deep checking dependencies, 136-141
dependency arrays, 132-135
improving component performance, 150
introduction to, 129-131
refactoring, 154
shouldComponentUpdate method, 153
useLayoutEffect hook, 141
useReducer hook, 146-150

useInput hook, 117
useMemo hook, 138-141, 150
useRef hook, 114
useState hook, 99-104, 118, 158-198

Hot Module Replacement (HMR), 85

I
immutability, 36
imperative programming, 33-36
import statements, 29, 92
isomorphic applications, 271

J
JavaScript

asynchronous, 23-26
classes, 27-28
compiling, 17
ES6 modules, 28-30
evolution of, 7
expressions, 72-73

functions, 12-17
objects and arrays, 18-23
variables, 8-12

Jest, 242-246
JSHint, 223
JSLint, 223
JSX language extension

Babel, 73
JSX tips

className, 73
evaluation, 73
JavaScript expressions, 73
nested components, 72

mapping arrays with, 73
purpose of, 71
React elements as JSX, 71
React fragments, 82-83
recipe examples, 75-80
rendering forms with, 113
webpack

app creation, 95
bundle loading, 94
introduction to, 84
project creation, 85-94
source mapping, 94

L
layers, 84
let keyword, 9
lexical variable scope, 9
linting, 223

M
map and reduce, 40-47
memoization, 153, 177
minification, 84
module bundlers, 84
modules, 28-30, 85
multipart-formdata requests, 157

N
network speed, throttling, 184
Next.js, 280-285
Node package manager (npm), installing, 5
Node.js

code reuse with, 272
installing, 5

Index | 291

O
objects

destructuring, 18
object literal enhancement, 20

P
package.json file, 5, 86
page setup, 57
parallel requests, 185
Personal Access tokens, 158
Personal User tokens, 158
POST requests, 157
predicates, 41
Prettier, 229
promises

building, 26
code splitting and, 212
handling promise states, 162
simple with fetch() function, 24, 156

PropTypes library, 231
prototypical inheritance, 27
pure components, 150
pure functions, 38
PureComponent, 153
PUT requests, 157

Q
queries (React Testing Library), 249

R
React

development environment
GitHub repository, 4
Node package manager, 5
Node.js, 5
React Developer Tools, 4
Yarn, 6

future of, 3, 287
how it works

page setup, 57
React components, 65-70
React elements, 58-60
ReactDOM, 61-65

installing, 86
introduction to

approach to learning, 2
benefits of, 1
deprecated features, 3

history of, 2
prerequisites to learning, ix
versions, 3, 58

React blog, 3
React components, 65-70, 246-253
React Developer Tools, 4, 80, 154
React elements, 58-60
React fragments, 82-83
React Native, 3
React Profiler, 154
React Router

incorporating, 256-259
nesting routes, 261
purpose of, 255
router properties, 259-264
routing parameters, 265
using redirects, 264-269

React Spinners library, 208
react-icons library, 98
React.Component API, 70
React.createClass, 69
React.createElement, 59-70
React.memo, 153
ReactDOM

constructing elements with data, 64
installing, 86
purpose of, 57
ReactDOM package, 61
render method, 61
rendering child elements, 61-64

ReactDOM.renderToString method, 274
reconciliation algorithm, Fiber, 220-221
recursion, 48-50
redirects, 264-269
reducer functions, 147
refactoring, 154
refs, building forms with, 114
render props pattern, 124, 165
rollups, 84
routing, 255

(see also React Router)

S
server-side rendering

isomorphic versus universal rendering, 271
need for, 271
with Gatsby, 285
with Next.js, 280-285
with React, 274-280

292 | Index

setState function, 149
shouldComponentUpdate method, 153
spread operator (…), 21
spreading props, 105
state management

building forms, 113-120
building star rating components, 98
component trees, 106-113
handling complex state, 148
handling promise states, 162
importance of, 97
legacy setState function, 149
prior to release of hooks, 103
React context, 120-128
useState hook, 99-104, 118, 158-198

string templates, 11
Suspense component

benefits and drawbacks of, 199
code splitting

benefits of, 205
building Suspenseful data sources, 216
example of, 205
how it works, 207
throwing promises, 212
using Suspense with data, 208

error boundaries, 201-205
future of, 219

system under test (SUT), 242

T
template strings, 11
test-driven development (TDD), 241
type inference, 240
typechecking

Flow, 235
PropTypes library, 231
TypeScript, 238

TypeScript, 238

U
unit testing

benefits of, 223, 253
ESLint, 223-228
Jest, 242-246
Prettier, 229
test-driven development, 241
testing React components, 246-253
typechecking

Flow, 235

PropTypes library, 231
TypeScript, 238

universal code, 271
useCallback hook, 139, 150
useContext hook, 123
useEffect hook

data requests, 158
deep checking dependencies, 136-141
dependency arrays, 132-135
improving component performance, 150
introduction to, 129-131
refactoring, 154
rules to follow with hooks, 143-145
shouldComponentUpdate method, 153
useLayoutEffect, 141
useReducer hook

handling complex state with, 148
improving code with, 146
legacy setState function and, 149

useFetch hook, 172
useInput hook, 117
useLayoutEffect hook, 141
useMemo hook, 138-141, 150
useReducer hook

handling complex state with, 148
improving code with, 146
legacy setState function and, 149

useRef hook
building components, 114

useState hook, 99-104, 118, 158-198

V
variables

const keyword, 8
declaring, 8
let keyword, 9
template strings, 11

virtualization, 169
virtualized lists

canceling requests, 188
creating fetch components, 174
creating fetch hooks, 172
handling multiple requests, 176
implementing, 169
memoizing values, 177
parallel requests, 185
purpose of, 167
throttling network speed, 184
waiting for values, 187

Index | 293

waterfall requests, 181
VSCode, 230

W
waterfall requests, 181
Web Storage API, 159
webpack

app creation, 95
bundle loading, 94
installing, 86

introduction to, 84
project creation, 85-94
source mapping, 94

window.localStorage object, 159
window.sessionStorage object, 159
windowing, 169

Y
Yarn, installing, 6

294 | Index

About the Authors
Alex Banks and Eve Porcello are software engineers, instructors, and cofounders of
Moon Highway, a curriculum development company in Northern California. They’ve
created courses for LinkedIn Learning and egghead.io, are frequent conference speak‐
ers, and teach workshops to engineers all over the world.

Colophon
The animal on the cover of Learning React is a wild boar and its babies (Sus scrofa).
The wild boar, also known as wild swine or Eurasian wild pig, is native to Eurasia,
North Africa, and the Greater Sunda Islands. Because of human intervention, they are
one of the widest-ranging mammals in the world.

Wild boars have short thin legs and bulky bodies with short, massive trunks. Their
necks are short and thick, leading to a large head that accounts for up to a third of the
body’s length. Adult sizes and weights vary depending on environmental factors such
as access to food and water. Despite their size, they can run up to 25 miles per hour
and jump to a height of 55–59 inches. In the winter, their coat consists of coarse bris‐
tles that overlay short brown downy fur. These bristles are longer along the boar’s
back and shortest around the face and limbs.

Wild boars have a highly developed sense of smell; they have been used for drug
detection in Germany. They also have an acute sense of hearing, which contrasts with
their weak eyesight and lack of color vision. The boars are unable to recognize a
human standing 30 feet away.

Boars are social animals that live in female-dominated groups. Breeding lasts from
around November to January. Males go through several bodily changes in prepara‐
tion of mating, including the development of a subcutaneous armor that helps during
confrontations with rivals; they travel long distances, eating very little on the way, to
locate a sow. Average litters contain four to six piglets.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world.

The cover illustration is by Karen Montgomery, based on a black-and-white engrav‐
ing from Meyers Kleines Lexicon. The cover fonts are Gilroy Semibold and Guardian
Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Con‐
densed; and the code font is Dalton Maag’s Ubuntu Mono.

	Copyright
	Table of Contents
	Preface
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. Welcome to React
	A Strong Foundation
	React’s Past and Future
	Learning React: Second Edition Changes

	Working with the Files
	File Repository
	React Developer Tools
	Installing Node.js

	Chapter 2. JavaScript for React
	Declaring Variables
	The const Keyword
	The let Keyword
	Template Strings

	Creating Functions
	Function Declarations
	Function Expressions
	Default Parameters
	Arrow Functions

	Compiling JavaScript
	Objects and Arrays
	Destructuring Objects
	Destructuring Arrays
	Object Literal Enhancement
	The Spread Operator

	Asynchronous JavaScript
	Simple Promises with Fetch
	Async/Await
	Building Promises

	Classes
	ES6 Modules
	CommonJS

	Chapter 3. Functional Programming with JavaScript
	What It Means to Be Functional
	Imperative Versus Declarative
	Functional Concepts
	Immutability
	Pure Functions
	Data Transformations
	Higher-Order Functions
	Recursion
	Composition
	Putting It All Together

	Chapter 4. How React Works
	Page Setup
	React Elements
	ReactDOM
	Children

	React Components
	React Components: A Historical Tour

	Chapter 5. React with JSX
	React Elements as JSX
	JSX Tips
	Mapping Arrays with JSX

	Babel
	Recipes as JSX
	React Fragments
	Intro to webpack
	Creating the Project
	Loading the Bundle
	Source Mapping
	Create React App

	Chapter 6. React State Management
	Building a Star Rating Component
	The useState Hook
	Refactoring for Advanced Reusability
	State in Component Trees
	Sending State Down a Component Tree
	Sending Interactions Back up a Component Tree

	Building Forms
	Using Refs
	Controlled Components
	Creating Custom Hooks
	Adding Colors to State

	React Context
	Placing Colors in Context
	Retrieving Colors with useContext
	Stateful Context Providers
	Custom Hooks with Context

	Chapter 7. Enhancing Components with Hooks
	Introducing useEffect
	The Dependency Array
	Deep Checking Dependencies
	When to useLayoutEffect
	Rules to Follow with Hooks
	Improving Code with useReducer
	useReducer to Handle Complex State
	Improving Component Performance
	shouldComponentUpdate and PureComponent
	When to Refactor

	Chapter 8. Incorporating Data
	Requesting Data
	Sending Data with a Request
	Uploading Files with fetch
	Authorized Requests
	Saving Data Locally
	Handling Promise States

	Render Props
	Virtualized Lists
	Creating a Fetch Hook
	Creating a Fetch Component
	Handling Multiple Requests
	Memozing Values
	Waterfall Requests
	Throttling the Network Speed
	Parallel Requests
	Waiting for Values
	Canceling Requests

	Introducing GraphQL
	GitHub GraphQL API
	Making a GraphQL Request

	Chapter 9. Suspense
	Error Boundaries
	Code Splitting
	Introducing: The Suspense Component
	Using Suspense with Data
	Throwing Promises
	Building Suspenseful Data Sources
	Fiber

	Chapter 10. React Testing
	ESLint
	ESLint Plug-Ins

	Prettier
	Configuring Prettier by Project
	Prettier in VSCode

	Typechecking for React Applications
	PropTypes
	Flow
	TypeScript

	Test-Driven Development
	TDD and Learning

	Incorporating Jest
	Create React App and Testing

	Testing React Components
	Queries
	Testing Events
	Using Code Coverage

	Chapter 11. React Router
	Incorporating the Router
	Router Properties
	Nesting Routes

	Using Redirects
	Routing Parameters

	Chapter 12. React and the Server
	Isomorphic Versus Universal
	Client and Server Domains

	Server Rendering React
	Server Rendering with Next.js
	Gatsby
	React in the Future

	Index
	About the Authors
	Colophon

