O'REILLY"

Learning
TypeScript

Enhance Your Web Development Skills
Using Type-Safe JavaScript

Josh Goldberg

Praise for Learning TypeScript

If you ever screamed back at red squiggly lines in your code, then go
read Learning TypeScript. Goldberg masterfully puts everything in
context while staying practical, showing us that TypeScript is never a
restriction, but a valuable asset.

—Stefan Baumgartner, senior product architect,
Dynatrace; founder, oida.dev

Josh puts TypeScript’s most important concepts front and center, and
explains

them with clear examples and a touch of humor. A must-read for the
JavaScript author who wants to write TypeScript like a pro.

—Andrew Branch, software engineer on TypeScript,
Microsoft

Learning TypeScript is an excellent resource for programmers who have
coded at least

a little before, but may have shied away from typed languages. It goes

a level deeper than the TypeScript handbook to give you

confidence in using TypeScript in your own projects.

—Boris Cherny, software engineer, Meta;
author, Programming TypeScript

We don t know what types code is but we 're very proud of Josh
and are sure it will be a lovely book.

—Frances and Mark Goldberg

Josh is that rare individual who is passionate about both acquiring a
deep command of the fundamentals and explaining concepts to
beginners. I think this book will quickly become a canonical resource for
TypeScript novices and experts alike.

—Beyang Liu, CTO and cofounder, Sourcegraph

Learning TypeScript is a fantastic introduction and reference to the TS
language. Josh's writing is clear and informative, and that helps with
explaining often-confusing TS concepts and syntax. It’s a great place to
start for anyone new to TypeScript!

—Mark Erikson, senior frontend engineer, Replay;
maintainer, Redux

Learning TypeScript is a great book to start your TypeScript journey. It
gives you the tools to understand the language, the type system, and the
IDE integration, and

how to use all these to get the most out of your TypeScript experience.

—Titian Cernicova Dragomir, software engineer,
Bloomberg LP

Josh has been a critical part of the TypeScript community for many
years, and

I'm really excited for folks to be able to benefit from his deep
understanding

and accessible teaching style through Learning TypeScript.

—James Henry, consultant architect, Nrwl; 4x Microsoft
MVP;
creator, angular-eslint and typescript-eslint

Josh is not just a very talented software engineer: he is also an excellent
mentor; you

can feel his passion for education throughout this book. Learning
TypeScript is

structured masterfully, and it contains practical, real-world examples
that will

take TypeScript newbies and enthusiasts to the next level. I can
confidently

say that Learning TypeScript is the definitive guide for anyone looking
to learn or improve their knowledge about TypeScript.

—Remo Jansen, CEO, Wolk Software

In Learning TypeScript, Josh Goldberg breaks down TypeScript’s most
complex concepts into calm, straightforward descriptions and digestible
examples that are sure to serve

as a learning aid and reference for years to come. From the first haiku
to the last joke, Learning TypeScript is a wonderful introduction

to the language that s just my type. No pun intended.

—Nick Nisi, staff engineer, C2FO

They used to say, “Always bet on JavaScript.” Now it’s, “Always bet on
TypeScript,”

and this book will be the industry s most recommended resource.
Guaranteed.

—Joe Previte, open source TypeScript engineer

Reading Learning TypeScript is like spending time with a warm and
smart friend who delights in telling you fascinating things. You’ll walk
away entertained and

educated about TypeScript whether you knew a lot or a little beforehand.

—John Reilly, group principal engineer, Investec;
maintainer, ts-loader; Definitely Typed historian

Learning TypeScript is a comprehensive yet approachable guide to the
TypeScript language and ecosystem. It covers the broad feature set of
TypeScript

while providing suggestions and explaining trade-offs

based on broad experience.

—Daniel Rosenwasser, program manager, TypeScript,
Microsoft; TC39 representative

This is my favorite resource for learning TypeScript. From introductory
to advanced topics, its all clear, concise, and comprehensive.
1 found Josh to be an excellent—and fun—writer.

—Loren Sands-Ramshaw, author, The GraphQL Guide;
TypeScript SDK engineer, Temporal

If you are looking to be an effective TypeScript developer, Learning
TypeScript
has you covered all the way from beginning to advanced concepts.

—Basarat Ali Syed, principal engineer, SEEK;
author, Beginning NodeJS and TypeScript Deep Dive;
Youtuber (Basarat Codes); Microsoft MVP

This book is a great way to learn the language and
a perfect complement to the TypeScript Handbook.

—Orta Therox, ex-TypeScript compiler engineer, Puzmo

Josh is one of the clearest and most dedicated TypeScript communicators
in the world, and his knowledge is finally in book form! Beginners and
experienced devs alike

will love the careful curation and sequencing of topics. The tips, notes,
and

warnings in the classic O Reilly style are worth their weight in gold.

—Shawn “swyx” Wang, head of DX, Airbyte

This book will truly help you learn TypeScript. The theory chapters
together with the practice projects strike a good learning balance and
cover just about every aspect

of the language. Reviewing this book even taught this old dog some new
tricks.

1 finally understand the subtleties of Declaration Files. Highly
recommended.

—Lenz Weber-Tronik, full stack developer, Mayflower
Germany; maintainer, Redux

Learning TypeScript is an accessible, engaging book that distills Josh's
years of experience developing a TypeScript curriculum to teach you
everything you need to know

in just the right order. Whatever your programming background,

you 're in good hands with Josh and Learning TypeScript.

—Dan Vanderkam, senior staff software engineer, Google;
author, Effective TypeScript

Learning TypeScript is the book I wish I had when I first got into
TypeScript. Josh s passion

for teaching new users oozes from every page. It’s thoughtfully organized
into easily digestible chunks, and it covers everything

you need to become a TypeScript expert.

—Brad Zacher, software engineer, Meta;
core maintainer, typescript-eslint

Learning TypeScript

Enhance Your Web Development Skills Using Type-
Safe JavaScript

Josh Goldberg

Learning TypeScript

by Josh Goldberg

Copyright © 2022 Josh Goldberg. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or
corporate(@oreilly.com.

e Acquisitions Editor: Amanda Quinn

e Development Editor: Rita Fernando

e Production Editor: Clare Jensen

e Copyeditor: Piper Editorial Consulting LLC
e Proofreader: nSight, Inc.

e Indexer: nSight, Inc.

e Interior Designer: David Futato

e Cover Designer: Karen Montgomery

e [llustrator: Kate Dullea

e June 2022: First Edition

http://oreilly.com/

Revision History for the First Edition

e 2022-06-03: First Release

See http://oreilly.com/catalog/errata.csp?1sbn=9781098110338 for release
details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.
Learning TypeScript, the cover image, and related trade dress are
trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not
represent the publisher’s views. While the publisher and the author have
used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the author disclaim all
responsibility for errors or omissions, including without limitation
responsibility for damages resulting from the use of or reliance on this
work. Use of the information and instructions contained in this work is at
your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property
rights of others, it is your responsibility to ensure that your use thereof
complies with such licenses and/or rights.

978-1-098-11033-8
[LSI]

http://oreilly.com/catalog/errata.csp?isbn=9781098110338

Dedication

This book is dedicated to my incredible partner, Mariah, who introduced me
to the joy of adopting backyard cats and has regretted it ever since. Toot.

Preface

My journey to TypeScript was not a direct or quick one. I started off in
school primarily writing Java, then C++, and like many new developers
raised on statically typed languages, I looked down on JavaScript as “just”
the sloppy little scripting language people throw onto websites.

My first substantial project in the language was a silly remake of the
original Super Mario Bros. video game in pure HTML5/CSS/JavaScript
and, typical of many first projects, was an absolute mess. In the beginning
of the project I instinctively disliked JavaScript’s weird flexibility and lack
of guardrails. It was only toward the end that I really began to respect
JavaScript’s features and quirks: its flexibility as a language, its ability to
mix and match small functions, and its ability to just work in user browsers
within seconds of page load.

By the time I finished that first project, I had fallen in love with JavaScript.

Static analysis (tools that analyze your code without running it) such as
TypeScript also gave me a queasy gut feeling at first. JavaScript is so
breezy and fluid, 1 thought, why bog ourselves down with rigid structures
and types? Were we reverting back to the worlds of Java and C++ that [had
left behind?

Coming back to my old projects, it took me all of 10 minutes of struggling
to read through my old, convoluted JavaScript code to understand how
messy things could get without static analysis. The act of cleaning that code
up showed me all the places I would have benefited from some structure.
From that point on, I was hooked onto adding as much static analysis to my
projects as I could.

It’s been nearly a decade since I first tinkered with TypeScript, and I enjoy
it as much as ever. The language is still evolving with new features and is
more useful than ever in providing safety and structure to JavaScript.

I hope that by reading Learning TypeScript you can learn to appreciate
TypeScript the way I do: not just as a means to find bugs and typos—and
certainly not a substantial change to JavaScript code patterns—but as
JavaScript with types: a beautiful system for declaring the way our
JavaScript should work, and helping us stick to it.

Who Should Read This Book

If you have an understanding of writing JavaScript code, can run basic
commands in a terminal, and are interested in learning about TypeScript,
this book is for you.

Maybe you’ve heard TypeScript can help you write a lot of JavaScript with
fewer bugs (true!) or document your code well for other people to read
(also true!). Maybe you’ve seen TypeScript show up in a lot of job
postings, or in a new role you’re starting.

Whatever your reason, as long as you come in knowing the fundamentals of
JavaScript—variables, functions, closures/scope, and classes—this book
will take you from no TypeScript knowledge to mastering the fundamentals
and most important features of the language. By the end of this book, you
will understand:

e The history and context for why TypeScript is useful on top of
“vanilla” JavaScript

e How a type system models code
e How a type checker analyzes code

e How to use development-only type annotations to inform the type
system

e How TypeScript works with IDEs (Integrated Development
Environments) to provide code exploration and refactoring tools

And you will be able to:

e Articulate the benefits of TypeScript and general characteristics of its
type system.

e Add type annotations where useful in your code.

e Represent moderately complex types using TypeScript’s built-in
inferences and new syntax.

o Use TypeScript to assist local development in refactoring code.

Why | Wrote This Book

TypeScript is a wildly popular language in both industry and open source:

e GitHub’s 2021 and 2020 State of the Octoverses have it at the
platform’s fourth top language, up from seventh in 2019 and 2018 and
tenth in 2017.

e StackOverflow’s 2021 Developer Survey has it at the world’s third
most loved language (72.73% of users).

e The 2020 State of JS Survey shows TypeScript has consistently high
satisfaction and usage amounts as both a build tool and variant of
JavaScript.

For frontend developers, TypeScript is well supported in all major Ul
libraries and frameworks, including Angular, which strongly recommends
TypeScript, as well as Gatsby, Next.js, React, Svelte, and Vue. For backend
developers, TypeScript generates JavaScript that runs natively in Node.js;
Deno, a similar runtime by Node’s creator, emphasizes directly supporting
TypeScript files.

However, despite this plethora of popular project support, I was rather
disappointed by the lack of good introductory content online when I first
learned the language. Many of the online documentation sources didn’t do a
great job of explaining what a “type system” is or how to use it. They often
assumed a great deal of prior knowledge in both JavaScript and strongly
typed languages, or were written with only cursory code examples.

Not seeing an O’Reilly book with a cute animal cover introducing
TypeScript years ago was a disappointment. While other books on
TypeScript from publishers including O’Reilly now exist prior to this one, I
couldn’t find a book that focuses on the foundations of the language quite
the way [wanted: why it works the way it does and how its core features
work together. A book that starts with a foundational explanation of the
language before adding on features one-by-one. I’'m thrilled to be able to
make a clear, comprehensive introduction to TypeScript language
fundamentals for readers who aren’t already familiar with its principles.

Navigating This Book

Learning TypeScript has two purposes:

* You can read through it once to understand TypeScript as a whole.

e Later, you can refer back to it as a practical introductory TypeScript
language reference.

This book ramps up from concepts to practical use across three general
sections:

e Part I, “Concepts”: How JavaScript came to be, what TypeScript adds
to it, and the foundations of a #ype system as TypeScript creates it.

o Part II, “Features”: Fleshing out how the type system interacts with the
major parts of JavaScript you’d work with when writing TypeScript
code.

o Part [II, “Usage”: Now that you understand the features that make up
the TypeScript language, how to use them in real-world situations to
improve your code reading and editing experience.

I’ve thrown 1n a Part IV, “Extra Credit” section at the end to cover lesser-
used but still occasionally useful TypeScript features. You won’t need to
deeply know them to consider yourself a TypeScript developer. But they’re
all useful concepts that will likely come up as you use TypeScript for real-

world projects. Once you’ve finished understanding the first three sections,
I highly recommend studying up on the extra credit section.

Each chapter starts with a haiku to get into the spirit of its contents and ends
with a pun. The web development community as a whole and TypeScript’s
community within it are known for being jovial and welcoming of
newcomers. | tried to make this book pleasant to read for learners like me
who don’t appreciate long, dry writings.

Examples and Projects

Unlike many other resources that introduce TypeScript, this book
intentionally focuses on introducing language features with standalone
examples showing just the new information rather than delving into
medium- or large-sized projects. I prefer this method of teaching because it
puts a spotlight on the TypeScript language first and foremost. TypeScript is
useful across so many frameworks and platforms—many of which undergo
API updates regularly—that I didn’t want to keep anything framework- or
platform-specific in this book.

That being said, it is supremely useful when learning a programming
language to exercise concepts immediately after they’re introduced. I highly
recommend taking a break after each chapter to rehearse that chapter’s
contents. Each chapter ends with a suggestion to visit its section on
https://learningtypescript.com and work through the examples and projects
listed there.

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLSs, email addresses, filenames, and file
extensions.

Constant width

https://learningtypescript.com/

Used for program listings, as well as within paragraphs to refer to
program elements such as variable or function names, data types,
statements, and keywords.

TIP
This element signifies a tip or suggestion.
NOTE
This element signifies a general note.
WARNING

This element indicates a warning or caution.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for
download at Attps.//learningtypescript.com.

If you have a technical question or a problem using the code examples,
please send email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code
is offered with this book, you may use it in your programs and
documentation. You do not need to contact us for permission unless you’re
reproducing a significant portion of the code. For example, writing a
program that uses several chunks of code from this book does not require
permission. Selling or distributing examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant

https://learningtypescript.com/
mailto:bookquestions@oreilly.com

amount of example code from this book into your product’s documentation
does require permission.

We appreciate, but generally do not require, attribution. An attribution
usually includes the title, author, publisher, and ISBN. For example:
“Learning Typescript by Josh Goldberg (O’Reilly). Copyright 2022 Josh
Goldberg, 978-1-098-11033-8.”

If you feel your use of code examples falls outside fair use or the
permission given above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning

NOTE

For more than 40 years, O 'Reilly Media has provided technology and business training,
knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and
expertise through books, articles, and our online learning platform.
O’Reilly’s online learning platform gives you on-demand access to live
training courses, in-depth learning paths, interactive coding environments,
and a vast collection of text and video from O’Reilly and 200+ other
publishers. For more information, visit http.//oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the
publisher:

e O’Reilly Media, Inc.

e 1005 Gravenstein Highway North

mailto:permissions@oreilly.com
http://oreilly.com/
http://oreilly.com/

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at https://oreil.ly/learning-

typescript.

Email bookquestions@oreilly.com to comment or ask technical questions
about this book.

For news and information about our books and courses, visit
https.//oreilly.com.

Find us on LinkedIn: Attps://linkedin.com/company/oreilly-media.
Follow us on Twitter: https.//twitter.com/oreillymedia.

Watch us on YouTube: Attps.//www.youtube.com/oreillymedia.

Acknowledgments

This book was a team effort, and I’d like to sincerely thank everybody who
made it possible. First and foremost my superhuman editor-in-chief, Rita
Fernando, for an incredible amount of patience and excellent guidance
throughout the authoring journey. Additional shoutout to the rest of the
O’Reilly crew: Kristen Brown, Suzanne Huston, Clare Jensen, Carol Keller,
Elizabeth Kelly, Cheryl Lenser, Elizabeth Oliver, and Amanda Quinn. You
all rock!

Many deep thanks to the tech reviewers for their consistently top-notch
pedagogical insights and TypeScript expertise: Mike Boyle, Ryan
Cavanaugh, Sara Gallagher, Michael Hoffman, Adam Reineke, and Dan

https://oreil.ly/learning-typescript
https://oreil.ly/learning-typescript
mailto:bookquestions@oreilly.com
https://oreilly.com/
https://linkedin.com/company/oreilly-media
https://twitter.com/oreillymedia
https://www.youtube.com/oreillymedia

Vanderkam. This book wouldn’t be the same without you, and I hope I
successfully captured the intent of all your great suggestions!

Further thanks to the assorted peers and praise quoters who gave spot
reviews on the book that helped me improve technical accuracy and writing
quality: Robert Blake, Andrew Branch, James Henry, Adam Kaczmarek,
Loren Sands-Ramshaw, Nik Stern, and Lenz Weber-Tronic. Every
suggestion helps!

Lastly, I’d like to thank my family for their love and support over the years.
My parents, Frances and Mark, and brother, Danny—thanks for letting me
spend time with Legos and books and video games. To my spouse Mariah
Goldberg for her patience during my long bouts of editing and writing, and
our cats Luci, Tiny, and Jerry for distinguished fluffiness and keeping me
company.

Part |. Concepts

Chapter 1. From JavaScript to
TypeScript

JavaScript today
Supports browsers decades past

Beauty of the web

Before talking about TypeScript, we need to first understand where it came
from: JavaScript!

History of JavaScript

JavaScript was designed in 10 days by Brendan Eich at Netscape in 1995 to
be approachable and easy to use for websites. Developers have been poking
fun at its quirks and perceived shortcomings ever since. I’ll cover some of
them in the next section.

JavaScript has evolved tremendously since 1995, though! Its steering
committee, TC39, has released new versions of ECMAScript—the language
specification that JavaScript is based on—yearly since 2015 with new
features that bring it in line with other modern languages. Impressively,
even with regular new language versions, JavaScript has managed to
maintain backward compatibility for decades in varying environments,
including browsers, embedded applications, and server runtimes.

Today, JavaScript is a wonderfully flexible language with a lot of strengths.
One should appreciate that while JavaScript has its quirks, it’s also helped
enable the incredible growth of web applications and the internet.

Show me the perfect programming language and I’ll show you a
language with no users.

—Anders Hejlsberg, TSConf 2019

Vanilla JavaScript’s Pitfalls

Developers often refer to using JavaScript without any significant language
extensions or frameworks as “vanilla”: referring to it being the familiar,
original flavor. I’ll soon go over why TypeScript adds just the right flavor to
overcome these particular major pitfalls, but it’s useful to understand just
why they can be painful. All these weaknesses become more pronounced
the larger and longer-lived a project gets.

Costly Freedom

Many developers’ biggest gripe with JavaScript is unfortunately one of its
key features: JavaScript provides virtually no restrictions in how you
structure your code. That freedom makes it a ton of fun to start a project in
JavaScript!

As you get to have more and more files, though, it becomes apparent how
that freedom can be damaging. Take the following snippet, presented out of
context from some fictional painting application:

function paintPainting(painter, painting) {
return painter
.prepare()
.paint(painting, painter.ownMaterials)
finish();

Reading that code without any context, you can only have vague ideas on
how to call the paintPainting function. Perhaps if you’ve worked in the
surrounding codebase you may recall that painter should be what’s
returned by some getPainter function. You might even make a lucky
guess that painting is a string.

Even if those assumptions are correct, though, later changes to the code
may invalidate them. Perhaps painting is changed from a string to some
other data type, or maybe one or more of the painter’s methods are
renamed.

Other languages might refuse to let you run code if their compiler
determines it would likely crash. Not so with dynamically typed languages
—those that run code without checking if it will likely crash first—such as
JavaScript.

The freedom of code that makes JavaScript so fun becomes a real pain
when you want safety in running your code.

Loose Documentation

Nothing exists in the JavaScript language specification to formalize
describing what function parameters, function returns, variables, or other
constructs in code are meant to be. Many developers have adopted a
standard called JSDoc to describe functions and variables using block
comments. The JSDoc standard describes how you might write
documentation comments placed directly above constructs such as
functions and variables, formatted in a standard way. Here’s an example,
again taken out of context:

/**
* Performs a painter painting a particular painting.
*

* @param {Painting} painter
* @param {string} painting
* @returns {boolean} Whether the painter painted the painting.
*/
function paintPainting(painter, painting) { /* ... */ }

JSDoc has key issues that often make it unpleasant to use in a large
codebase:

¢ Nothing stops JSDoc descriptions from being wrong about code.

e Even if your JSDoc descriptions were previously correct, during code
refactors it can be difficult to find all the now-invalid JSDoc comments
related to your changes.

e Describing complex objects is unwieldy and verbose, requiring
multiple standalone comments to define types and their relationships.

Maintaining JSDoc comments across a dozen files doesn’t take up too much
time, but across hundreds or even thousands of constantly updating files can
be a real chore.

Weaker Developer Tooling

Because JavaScript doesn’t provide built-in ways to identify types, and
code easily diverges from JSDoc comments, it can be difficult to automate
large changes to or gain insights about a codebase. JavaScript developers
are often surprised to see features in typed languages such as C# and Java
that allow developers to perform class member renamings or jump to the
place an argument’s type was declared.

NOTE

You may protest that modern IDEs such as VS Code do provide some development tools such as
automated refactors to JavaScript. True, but: they use TypeScript or an equivalent under the hood
for many of their JavaScript features, and those development tools are not as reliable or as
powerful in most JavaScript code as they are in well-defined TypeScript code.

TypeScript!

TypeScript was created internally at Microsoft in the early 2010s then
released and open sourced in 2012. The head of its development is Anders
Hejlsberg, notable for also having lead the development of the popular C#
and Turbo Pascal languages. TypeScript is often described as a “superset of
JavaScript” or “JavaScript with types.” But what is TypeScript?

TypeScript is four things:

Programming language

A language that includes all the existing JavaScript syntax, plus new
TypeScript-specific syntax for defining and using types

Type checker

A program that takes in a set of files written in JavaScript and/or
TypeScript, develops an understanding of all the constructs (variables,
functions...) created, and lets you know if it thinks anything is set up
incorrectly

Compiler

A program that runs the type checker, reports any issues, then outputs
the equivalent JavaScript code

Language service

A program that uses the type checker to tell editors such as VS Code
how to provide helpful utilities to developers

Getting Started in the TypeScript Playground

You’ve read a good amount about TypeScript by now. Let’s get you writing
it!

The main TypeScript website includes a “Playground” editor at
https://www.typescriptlang.org/play. You can type code into the main editor
and see many of the same editor suggestions you would see when working
with TypeScript locally in a full IDE (Integrated Development
Environment).

Most of the snippets in this book are intentionally small and self-contained
enough that you could type them out in the Playground and tinker with
them for fun.

https://www.typescriptlang.org/play

TypeScript in Action
Take a look at this code snippet:

const firstName = "Georgia";
const namelLength = firstName.length();
/o e

// This expression is not callable.

The code is written in normal JavaScript syntax—I haven’t introduced
TypeScript-specific syntax yet. If you were to run the TypeScript type
checker on this code, it would use its knowledge that the length property
of a string is a number—not a function—to give you the complaint shown
in the comment.

If you were to paste that code into the playground or an editor, it would be
told by the language service to give you a little red squiggly under length
indicating TypeScript’s displeasure with your code. Hovering over the
squigglied code would give you the text of the complaint (Figure 1-1).
const firstName = "Lizzo";
const namelLength = firstName.length();
{(property) String.length: number

Returns the length of a String object.

This expression is not callable.
Type 'Number®' has no call signatures. ts(234%9)

View Problem Mo quick fixes available

Figure 1-1. TypeScript reporting an error on string length not being callable

Being told of these simple errors in your editor as you type them is a lot
more pleasant than waiting until a particular line of code happens to be run
and throw an error. If you tried to run that code in JavaScript, it would
crash!

Freedom Through Restriction

TypeScript allows us to specify what types of values may be provided for
parameters and variables. Some developers find having to explicitly write

out in your code how particular areas are supposed to work to be restrictive
at first.

But! I would argue that being “restricted” in this way is actually a good
thing! By restricting our code to only being able to be used in the ways you
specify, TypeScript can give you confidence that changes in one area of
code won’t break other areas of code that use it.

If, say, you change the number of required parameters for a function,
TypeScript will let you know if you forget to update a place that calls the
function.

In the following example, sayMyName was changed from taking in two
parameters to taking one parameter, but the call to it with two strings wasn’t
updated and so is triggering a TypeScript complaint:

// Previously: sayMyName(firstName, lastNameName) { ...
function sayMyName(fullName) {
console.log(You acting kind of shady, ain't callin' me S${fullName});

}

sayMyName("Beyoncé", "Knowles");

[e
// Expected 1 argument, but got 2.

That code would run without crashing in JavaScript, but its output would be
different from expected (it wouldn’t include "Knowles"):

You acting kind of shady, ain't callin' me Beyoncé

Calling functions with the wrong number of arguments is exactly the sort of
short-sighted JavaScript freedom that TypeScript restricts.

Precise Documentation

Let’s look at a TypeScript-ified version of the paintPainting function
from earlier. Although I haven’t yet gone over the specifics of TypeScript
syntax for documenting types, the following snippet still hints at the great
precision with which TypeScript can document code:

interface Painter {
finish(): boolean;
ownMaterials: Material[];
paint(painting: string, materials: Material[]): boolean;

}

function paintPainting(painter: Painter, painting: string): boolean { /* ...

*/ 3

A TypeScript developer reading this code for the first time could understand
that painter has at least three properties, two of which are methods. By
baking in syntax to describe the “shapes” of objects, TypeScript provides an
excellent, enforced system for describing how objects look.

Stronger Developer Tooling

TypeScript’s typings allow editors such as VS Code to gain much deeper
insights into your code. They can then use those insights to surface
intelligent suggestions as you type. These suggestions can be incredibly
useful for development.

If you’ve used VS Code to write JavaScript before, you might have noticed
that it suggests “autocompletions”™ as you write code with built-in types of
objects like strings. If, say, you start typing the member of something
known to be a string, TypeScript can suggest all the members of the strings
(Figure 1-2).

"test".se

& endsWith

& includes

) toLowerCase

%] toUpperCase

) lastIndexOf

) fortsize

P toLocalelLowerCase
@ tolLocaleUpperCase

Figure 1-2. TypeScript providing autocompletion suggestions in JavaScript for a string

When you add TypeScript’s type checker for understanding code, it can
give you these useful suggestions even for code you’ve written. Upon
typing painter. in the paintPainting function, TypeScript would take its
knowledge that the painter parameter is of type Painter and the Painter
type has the following members (Figure 1-3).

interface Painter {
finish(): boolean;
ownMaterials: Material[];
paint(painting: string, materials: Material[]): boolean;

}

function paintPainting(painter: Painter, painting: string): boolean
painter‘;l

€ finish
& ownMaterials
D paint

Figure 1-3. TypeScript providing autocompletion suggestions in JavaScript for a string

Snazzy! I’ll cover a plethora of other useful editor features in Chapter 12,
“Using IDE Features”.

Compiling Syntax

TypeScript’s compiler allows us to input TypeScript syntax, have it type
checked, and get the equivalent JavaScript emitted. As a convenience, the
compiler may also take modern JavaScript syntax and compile it down into
its older ECMAScript equivalents.

If you were to paste this TypeScript code into the Playground:

const artist = "Augusta Savage";
console.log({ artist });

The Playground would show you on the right-hand side of the screen that
this would be the equivalent JavaScript output by the compiler (Figure 1-4).

TypeScript Download Docs Handbook Community Tools A Search Docs
Playground TS Config ~ Examples ~ What's Mew ~ Help ~ Settings
wilb2 = Rum Export = Share - 45 DTS Erers Logs Plugins

1 const artist = "fugusta Savage®; "ugg Strict®;

2 consale. Log({ artist 1); canst artist = "Augusta Savage®;

3 I -|. console.logl{ artist 1);

Figure 1-4. TypeScript Playground compiling TypeScript code into equivalent JavaScript

The TypeScript Playground is a great tool for showing how source
TypeScript becomes output JavaScript.

NOTE

Many JavaScript projects use dedicated transpilers such as Babel (Aftps.//babeljs.io) instead of
TypeScript’s own to transpile source code into runnable JavaScript. You can find a list of common
project starters on https://learningtypescript.com/starters.

Getting Started Locally

You can run TypeScript on your computer as long as you have Node.js
installed. To install the latest version of TypeScript globally, run the

https://babeljs.io/
https://learningtypescript.com/starters

following command:

npm i1 -g typescript

Now, you’ll be able to run TypeScript on the command line with the tsc
(TypeScript Compiler) command. Try it with the - -version flag to make
sure it’s set up properly:

tsc --version

It should print out something like Version X.Y.Z—whichever version is
current as of you installing TypeScript:

$ tsc --version
Version 4.7.2

Running Locally

Now that TypeScript is installed, let’s have you set up a folder locally to run
TypeScript on code. Create a folder somewhere on your computer and run
this command to create a new tsconfig.json configuration file:

tsc --init

A tsconfig.json file declares the settings that TypeScript uses when
analyzing your code. Most of the options in that file aren’t going to be
relevant to you in this book (there are a lot of uncommon edge cases in
programming that the language needs to account for!). I’ll cover them in
Chapter 13, “Configuration Options”. The important feature is that now you
can run tsc to tell TypeScript to compile all the files in that folder and
TypeScript will refer to that tsconfig.json for any configuration options.

Try adding a file named index.zs with the following contents:

console.blub("Nothing is worth more than laughter.");

Then, run tsc and provide it the name of that index.ts file:

tsc index.ts

You should get an error that looks roughly like:

index.ts:1:9 - error TS2339: Property 'blub' does not exist on type 'Console’.

1 console.blub("Nothing is worth more than laughter.");

~~~~

Found 1 error.

Indeed, blub does not exist on the console. What was I thinking?

Before you fix the code to appease TypeScript, note that tsc created an
index.js for you with contents including the console.blub.

NOTE

This is an important concept: even though there was a type error in our code, the syntax was still
completely valid. The TypeScript compiler will still produce JavaScript from an input file
regardless of any type errors.

Correct the code 1n index.ts to call console. log and run tsc again. There
should be no complaints in your terminal, and the index.js file should now
contain updated output code:

console.log("Nothing is worth more than laughter.");

TIP

I highly recommend playing with the book’s snippets as you read through them, either in the
playground or in an editor with TypeScript support, meaning it runs the TypeScript language
service for you. Small self-contained exercises, as well as larger projects, are also available to help
you practice what you’ve learned on https://learningtypescript.com.


https://learningtypescript.com/

Editor Features

Another benefit of creating a tsconfig.json file is that when editors are
opened to a particular folder, they will now recognize that folder as a
TypeScript project. For example, if you open VS Code in a folder, the
settings it uses to analyze your TypeScript code will respect whatever’s in
that folder’s tsconfig.json.

As an exercise, go back through the code snippets in this chapter and type
them in your editor. You should see drop-downs suggesting completions for
names as you type them, especially for members such as the log on
console.

Very exciting: you’re using the TypeScript language service to help yourself
write code! You’re on your way to being a TypeScript developer!

TIP

VS Code comes with great TypeScript support and is itself built in TypeScript. You don’t have to
use it for TypeScript—virtually all modern editors have excellent TypeScript support either built-
in or available via plugins—but [ do recommend it for at least trying out TypeScript while reading
through this book. If you do use a different editor, I also recommend enabling its TypeScript
support. I’ll cover editor features more deeply in Chapter 12, “Using IDE Features”.

What TypeScript Is Not

Now that you’ve seen how wonderful TypeScript is, [ have to warn you
about some limitations. Every tool excels at some areas and has limitations
in others.

A Remedy for Bad Code

TypeScript helps you structure your JavaScript, but other than enforcing
type safety, it doesn’t enforce any opinions on what that structure should
look like.

Good!



TypeScript is a language that everyone is meant to be able to use, not an
opinionated framework with a target audience. You can write code using
whatever architectural patterns you’re used to from JavaScript, and
TypeScript will support them.

If anybody tries to tell you that TypeScript forces you to use classes, or
makes it hard to write good code, or whatever code style complaints are out
there, give them a stern look and tell them to pick up a copy of Learning
TypeScript. TypeScript does not enforce code style opinions such as
whether to use classes or functions, nor is it associated with any particular
application framework—Angular, React, etc.—over others.

Extensions to JavaScript (Mostly)

TypeScript’s design goals explicitly state that it should:
e Align with current and future ECMAScript proposals
e Preserve runtime behavior of all JavaScript code

TypeScript does not try to change how JavaScript works at all. Its creators
have tried very hard to avoid adding new code features that would add to or
conflict with JavaScript. Such a task is the domain of TC39, the technical
committee that works on ECMAScript itself.

There are a few older features in TypeScript that were added many years
ago to reflect common use cases in JavaScript code. Most of those features
are either relatively uncommon or have fallen out of favor, and are only
covered briefly in Chapter 14, “Syntax Extensions”. I recommend staying
away from them in most cases.



NOTE

As of 2022, TC39 is investigating adding a syntax for type annotations to JavaScript. The latest
proposals have them acting as a form of comments that do not impact code at runtime and are
used only for development-time systems such as TypeScript. It will be many years until type
comments or some equivalent are added to JavaScript, so they won’t be mentioned elsewhere in
this book.

Slower Than JavaScript

Sometimes on the internet, you might hear some opinionated developers
complain that TypeScript is slower than JavaScript at runtime. That claim is
generally inaccurate and misleading. The only changes TypeScript makes to
code are if you ask it to compile your code down to earlier versions of
JavaScript to support older runtime environments such as Internet Explorer
11. Many production frameworks don’t use TypeScript’s compiler at all,
instead using a separate tool for transpilation (the part of compiling that
converts source code from one programming language into another) and
TypeScript only for type checking.

TypeScript does, however, add some time to building your code. TypeScript
code must be compiled down to JavaScript before most environments, such
as browsers and Node.js, will run it. Most build pipelines are generally set
up so that the performance hit is negligible, and slower TypeScript features
such as analyzing code for likely mistakes are done separately from
generating runnable application code files.

NOTE

Even projects that seemingly allow running TypeScript code directly, such as ts-node and Deno,
themselves internally convert TypeScript code to JavaScript before running it.

Finished Evolving

The web 1s nowhere near finished evolving, and thus neither is TypeScript.
The TypeScript language is constantly receiving bug fixes and feature



additions to match the ever-shifting needs of the web community. The basic
tenets of TypeScript you’ll learn in this book will remain about the same,
but error messages, fancier features, and editor integrations will improve
over time.

In fact, while this edition of the book was published with TypeScript
version 4.7.2 as the latest, by the time you started reading it, we can be
certain a newer version has been released. Some of the TypeScript error
messages in this book might even already be out of date!

Summary

In this chapter, you read up on the context for some of JavaScript’s main
weaknesses, where TypeScript comes into play, and how to get started with
TypeScript:

e A brief history of JavaScript

e JavaScript’s pitfalls: costly freedom, loose documentation, and weaker
developer tooling

e What TypeScript 1s: a programming language, a type checker, a
compiler, and a language service

o TypeScript’s advantages: freedom through restriction, precise
documentation, and stronger developer tooling

e Getting started writing TypeScript code on the TypeScript Playground
and locally on your computer

e What TypeScript is not: a remedy for bad code, extensions to
JavaScript (mostly), slower than JavaScript, or finished evolving

TIP

Now that you’ve finished reading this chapter, practice what you’ve learned on
https://learningtypescript.com/from-javascript-to-typescript.


https://learningtypescript.com/from-javascript-to-typescript

What happens if you spot errors running the TypeScript compiler?

You’d better go catch them!



Chapter 2. The Type System

JavaScript s power
Comes from flexibility

Be careful with that!

I talked briefly in Chapter 1, “From JavaScript to TypeScript” about the
existence of a “type checker” in TypeScript that looks at your code,
understands how it’s meant to work, and lets you know where you might
have messed up. But how does a type checker work, really?

What’s in a Type?

A “type” 1s a description of what a JavaScript value shape might be. By
“shape” I mean which properties and methods exist on a value, and what
the built-in typeof operator would describe it as.

For example, when you create a variable with the initial value "Aretha":

let singer = "Aretha";

TypeScript can infer, or figure out, that the singer variable is of type string.

The most basic types in TypeScript correspond to the seven basic kinds of
primitives in JavaScript:

e null

e undefined

e boolean// true or false

e string//"", "Hi!", "abc123", ...

e number//0,2.1, -4, ...



bigint // On, 2n, -4n, ...
symbol // Symbol(), Symbol("hi"), ...

For each of these values, TypeScript understands the type of the value to be
one of the seven basic primitives:

null; // null

undefined; // undefined

true; // boolean

"Louise"; // string

1337; // number

1337n; // bigint
Symbol("Franklin"); // symbol

If you ever forget the name of a primitive, you can type a let variable with
a primitive value into the TypeScript Playground or an IDE and hover your
mouse over the variable’s name. The resultant popover will include the
name of the primitive, such as this screenshot showing hovering over a
string variable (Figure 2-1).

u let singer: string
5 1let singer = "Ella Fitzgerald";

Figure 2-1. TypeScript showing a string variable s type in its hover information

TypeScript is also smart enough to be able to infer the type of a variable
whose starting value is computed. In this example, TypeScript knows that
the ternary expression always results in a string, so the bestSong variable is
astring:

// Inferred type: string
let bestSong = Math.random() > 0.5


https://typescriptlang.org/play

? "Chain of Fools"
: "Respect";

Back in the TypeScript Playground or your IDE, try hovering your cursor
on that bestSong variable. You should see some info box or message telling
you that TypeScript has inferred the bestSong variable to be type string
(Figure 2-2).

let bestSong: string

let bestSong = Math.random{) > 8.5
? "Chain of Fools"
: "Respect”;

Figure 2-2. TypeScript reporting a let variable as being its string literal type from its ternary
expression

NOTE

Recall the differences between objects and primitives in JavaScript: classes such as Boolean and
Number wrap around their primitive equivalents. TypeScript best practice is generally to refer to
the lower-case names, such as boolean and number, respectively.

Type Systems

A type system is the set of rules for how a programming language
understands what types the constructs in a program may have.

At its core, TypeScript’s type system works by:

e Reading in your code and understanding all the types and values in
existence

» For each value, seeing what type its initial declaration indicates it may
contain

e For each value, seeing all the ways it’s used later on in code
e Complaining to the user if a value’s usage doesn’t match with its type

Let’s walk through this type inference process in detail.


https://typescriptlang.org/play

Take the following snippet, in which TypeScript is emitting a type error
about a member property being erroneously called as a function:

let firstName = "Whitney";
firstName.length();

[ e
// This expression is not callable.
// Type 'Number' has no call signatures

TypeScript came to that complaint by, in order:

1. Reading in the code and understanding there to be a variable named
firstName

2. Concluding that firstName is of type string because its initial value
1sa string, "Whitney"

3. Seeing that the code is trying to access a . Length member of
firstName and call it like a function

4. Complaining that the . length member of a string is a number, not a
function (it can t be called like a function)

Understanding TypeScript’s type system is an important skill for
understanding TypeScript code. Code snippets in this chapter and
throughout the rest of this book will display more and more complex types
that TypeScript will be able to infer from code.

Kinds of Errors

While writing TypeScript, the two kinds of “errors” you’ll come across
most frequently are:

Syntax
Blocking TypeScript from being converted to JavaScript

Type
Something mismatched has been detected by the type checker



The differences between the two are important.

Syntax errors

Syntax errors are when TypeScript detects incorrect syntax that it cannot
understand as code. These block TypeScript from being able to properly
generate output JavaScript from your file. Depending on the tooling and
settings you’re using to convert your TypeScript code to JavaScript, you
might still get some kind of JavaScript output (in default tsc settings, you
will). But if you do, it likely won’t look like what you expect.

This input TypeScript has a syntax error for an unexpected let:

let let wat;

/o e
// Error: ',' expected.

Its compiled JavaScript output, depending on the TypeScript compiler
version, may look something like:

let let, wat;

TIP

Although TypeScript will do its best to output JavaScript code regardless of syntax errors, the
output code will likely not be what you wanted. It’s best to fix syntax errors before attempting to
run the output JavaScript.

Type errors

Type errors occur when your syntax is valid but the TypeScript type checker
has detected an error with the program’s types. These do not block
TypeScript syntax from being converted to JavaScript. They do, however,
often indicate something will crash or behave unexpectedly if your code is
allowed to run.

You saw this in Chapter 1, “From JavaScript to TypeScript” with the
console.blub example, where the code was syntactically valid but



TypeScript could detect it would likely crash when run:

console.blub("Nothing is worth more than laughter.");

/o e

// Error: Property 'blub' does not exist on type 'Console’.

Even though TypeScript may output JavaScript code despite the presence of
type errors, type errors are generally a sign that the output JavaScript likely
won’t run the way you wanted. It’s best to read them and consider fixing
any reported issues before running JavaScript.

NOTE

Some projects are configured to block running code during development until all TypeScript type
errors—not just syntax—are fixed. Many developers, myself included, generally find this to be
annoying and unnecessary. Most projects have a way to not be blocked, such as with the
tsconfig.json file and configuration options covered in Chapter 13, “Configuration Options”.

Assignability

TypeScript reads variables’ initial values to determine what type those
variables are allowed to be. If it later sees an assignment of a new value to
that variable, it will check if that new value’s type is the same as the
variable’s.

TypeScript is fine with later assigning a different value of the same type to a
variable. If a variable is, say, initially a string value, later assigning it
another string would be fine:

let firstName = "Carole";
firstName = "Joan";

If TypeScript sees an assignment of a different type, it will give us a type
error. We couldn’t, say, initially declare a variable with a string value and
then later on put in a boolean:



let lastName = "King";
lastName = true;
// Error: Type 'boolean' is not assignable to type 'string’.

TypeScript’s checking of whether a value 1s allowed to be provided to a
function call or variable is called assignability: whether that value is
assignable to the expected type it’s passed to. This will be an important
term in later chapters as we compare more complex objects.

Understanding Assignability Errors

Errors in the format “Type...1s not assignable to type...” will be some of
the most common types of errors you’ll see when writing TypeScript code.

The first type mentioned in that error message is the value the code is
attempting to assign to a recipient. The second type mentioned is the
recipient being assigned the first type. For example, when we wrote
lastName = true in the previous snippet, we were trying to assign the
value of true—type boolean—to the recipient variable lastName—type
string.

You’ll see more and more complex assignability issues as you progress
through this book. Remember to read them carefully to understand reported
differences between actual and expected types. Doing so will make it much
easier to work with TypeScript when it’s giving you grief over syntax
eITorsS.

Type Annotations

Sometimes a variable doesn’t have an initial value for TypeScript to read.
TypeScript won’t attempt to figure out the initial type of the variable from
later uses. It’1l consider the variable by default to be implicitly the any type:
indicating that it could be anything in the world.

Variables that can’t have their initial type inferred go through what’s called
an evolving any: rather than enforce any particular type, TypeScript will



evolve its understanding of the variable’s type each time a new value is
assigned.

Here, assigning the evolving any variable rocker is first assigned a string,
which means it has string methods such as toUpperCase, but then is
evolved into a number:

let rocker; // Type: any

rocker = "Joan Jett"; // Type: string
rocker.toUpperCase(); // Ok

rocker = 19.58; // Type: number
rocker.toPrecision(1); // 0Ok

rocker.toUpperCase();

// s

// Error: 'toUpperCase' does not exist on type 'number'.

TypeScript was able to catch that we were calling the toUpperCase()
method on a variable evolved to type number. However, it wasn’t able to
tell us earlier whether it was intentional that we were evolving the variable
from string to number in the first place.

Allowing variables to be evolving any typed—and using the any type in
general—partially defeats the purpose of TypeScript’s type checking!
TypeScript works best when it knows what types your values are meant to
be. Much of TypeScript’s type checking can’t be applied to any typed
values because they don’t have known types to be checked. Chapter 13,
“Configuration Options” will cover how to configure TypeScript’s implicit
any complaints.

TypeScript provides a syntax for declaring the type of a variable without
having to assign it an initial value, called a type annotation. A type
annotation is placed after the name of a variable and includes a colon
followed by the name of a type.

This type annotation indicates the rocker variable is meant to be type
string:



let rocker: string;
rocker = "Joan Jett";

These type annotations exist only for TypeScript—they don’t affect the
runtime code and are not valid JavaScript syntax. If you run tsc to compile
TypeScript source code to JavaScript, they’ll be erased. For example, the
previous example would be compiled to roughly the following JavaScript:

// output .js file
let rocker;
rocker = "Joan Jett";

Assigning a value whose type is not assignable to the variable’s annotated
type will cause a type error.

This snippet assigns a number to a rocker variable previously declared as
type string, causing a type error:

let rocker: string;
rocker = 19.58;
// Error: Type 'number' is not assignable to type 'string’.

You’ll see through the next few chapters how type annotations allow you to
augment TypeScript’s insights into your code, allowing it to give you better
features during development. TypeScript contains an assortment of new
pieces of syntax, such as these type annotations that exist only in the type
system.

NOTE

Nothing that exists only in the type system gets copied over into emitted JavaScript. TypeScript
types don’t affect emitted JavaScript.

Unnecessary Type Annotations

Type annotations allow us to provide information to TypeScript that it
wouldn’t have been able to glean on its own. You could also use them on



variables that have immediately inferable types, but you wouldn’t be telling
TypeScript anything it doesn’t already know.

The following : string type annotation is redundant because TypeScript
could already infer that firstName be of type string:

let firstName: string = "Tina";
/) e~ Does not change the type systen...

If you do add a type annotation to a variable with an initial value,
TypeScript will check that it matches the type of the variable’s value.

The following firstName is declared to be of type string, but its
initializer is the number 42, which TypeScript sees as an incompatibility:

let firstName: string = 42;
[/ e

// Error: Type 'number' is not assignable to type 'string’.

Many developers—myself included—generally prefer not to add type
annotations on variables where the type annotations wouldn’t change
anything. Having to manually write out type annotations can be
cumbersome—especially when they change, and for the complex types I’1l
show you later in this book.

It can sometimes be useful to include explicit type annotations on variables
to clearly document the code and/or to make TypeScript protected against
accidental changes to the variable’s type. We’ll see in later chapters how
explicit type annotations can sometimes explicitly tell TypeScript
information it wouldn’t have inferred normally.

Type Shapes

TypeScript does more than check that the values assigned to variables
match their original types. TypeScript also knows what member properties
should exist on objects. If you attempt to access a property of a variable,



TypeScript will make sure that property is known to exist on that variable’s
type.

Suppose we declare a rapper variable of type string. Later on, when we
use that rapper variable, operations that TypeScript knows work on strings
are allowed:

let rapper = "Queen Latifah";
rapper.length; // ok

Operations that TypeScript doesn’t know to work on strings will not be
allowed:

rapper.push('!');

/] e
// Property 'push' does not exist on type 'string’.

Types can also be more complex shapes, most notably objects. In the
following snippet, TypeScript knows the birthNames object doesn’t have a
middleName key and complains:

let cher = {
firstName: "Cherilyn",
lastName: "Sarkisian",

};

cher.middleName;

[ e
//  Property 'middleName' does not exist on type

// "{ firstName: string; lastName: string; }'.

TypeScript’s understanding of object shapes allows it to report issues with
the usage of objects, not just assignability. Chapter 4, “Objects” will
describe more of TypeScript’s powerful features around objects and object

types.



Modules

The JavaScript programming language did not include a specification for
how files can share code between each other until relatively recently in its

history. ECMAScript 2015 added “ECMAScript modules,” or ESM, to
standardize import and export syntax between files.

For reference, this module file imports a value from a sibling . /values
file and exports a doubled variable:
import { value } from "./values";

export const doubled = value * 2;

To match with the ECMAScript specification, in this book I’ll use the
following nomenclature:

Module

A file with a top-level export or import

Script
Any file that is not a module

TypeScript is able to work with those modern module files as well as older
files. Anything declared in a module file will be available only in that file
unless an explicit export statement in that file exports it. A variable
declared in one module with the same name as a variable declared in
another file won’t be considered a naming conflict (unless one file imports
the other file’s variable).

The following a.ts and b. ts files are both modules that export a similarly
named shared variable without issue. c.ts causes a type error because it
has a naming conflict between an imported shared and its own value:

// a.ts

export const shared = "Cher";



// b.ts

export const shared = "Cher";

// c.ts

import { shared } from "./a";

/] e

// Error: Import declaration conflicts with local declaration of 'shared'.
export const shared = "Cher";

/o e

// Error: Individual declarations in merged declaration
// 'shared' must be all exported or all local.

If a file is a script, though, TypeScript will consider it to be globally scoped,
meaning all scripts have access to its contents. That means variables
declared in a script file cannot have the same name as variables declared in
other script files.

The following a.ts and b. ts files are considered scripts because they do
not have module-style export or import statements. That means their
variables of the same name conflict with each other as if they were declared
in the same file:

// a.ts

const shared = "Cher";

[ e

// Cannot redeclare block-scoped variable 'shared’.

// b.ts

const shared = "Cher";

// ~mnnrn

// Cannot redeclare block-scoped variable 'shared’.

If you see these “Cannot redeclare...” errors in a TypeScript file, it may be
because you have yet to add an export or import statement to the file. Per
the ECMAScript specification, if you need a file to be a module without an
export or import statement, you can add an export {}; somewhere in the
file to force it to be a module:

// a.ts and b.ts
const shared = "Cher"; // 0Ok



export {};

WARNING

TypeScript will not recognize the types of imports and exports in TypeScript files written using
older module systems such as CommonlJS. TypeScript will generally see values returned from
CommonlJS-style require functions to be typed as any.

Summary
In this chapter, you saw how TypeScript’s type system works at its core:
e What a “type” is and the primitive types recognized by TypeScript

e What a “type system” is and how TypeScript’s type system
understands code

e How type errors compare to syntax errors
e Inferred variable types and variable assignability

e Type annotations to explicitly declare variable types and avoid
evolving any types

¢ Object member checking on type shapes

e ECMAScript module files’ declaration scoping compared to script files

TIP

Now that you’ve finished reading this chapter, practice what you’ve learned on
https://learningtypescript.com/the-type-system.

Why did the number and string break up?

They weren t each other s types.


https://learningtypescript.com/the-type-system

Chapter 3. Unions and Literals

Nothing is constant
Values may change over time

(well, except constants)

Chapter 2, “The Type System” covered the concept of the “type system”
and how it can read values to understand the types of variables. Now I’d
like to introduce two key concepts that TypeScript works with to make
inferences on top of those values:

Unions

Expanding a value’s allowed type to be two or more possible types

Narrowing

Reducing a value’s allowed type to not be one or more possible types

Put together, unions and narrowing are powerful concepts that allow
TypeScript to make informed inferences on your code many other
mainstream languages cannot.

Union Types

Take this mathematician variable:

let mathematician = Math.random() > 0.5
? undefined
: "Mark Goldberg";

What type is mathematician?



It’s neither only undefined nor only string, even though those are both
potential types. mathematician can be either undefined or string. This
kind of “either or” type is called a union. Union types are a wonderful
concept that let us handle code cases where we don’t know exactly which
type a value is, but do know it’s one of two or more options.

TypeScript represents union types using the | (pipe) operator between the
possible values, or constituents. The previous mathematician type is
thought of as string | undefined. Hovering over the mathematician
variable would show its type as string | undefined (Figure 3-1).

let mathematician: string | undefined

let mathematician = Math.random() > ©.5
? undefined
"Mark Goldberg";

Figure 3-1. TypeScript reporting the mathematician variable as being type string [ undefined

Declaring Union Types

Union types are an example of a situation when it might be useful to give an
explicit type annotation for a variable even though it has an initial value. In
this example, thinker starts off null but is known to potentially contain a
string instead. Giving it an explicit string | null type annotation
means TypeScript will allow it to be assigned values of type string:

let thinker: string | null = null;

if (Math.random() > 0.5) {
thinker = "Susanne Langer"; // 0Ok

}

Union type declarations can be placed anywhere you might declare a type
with a type annotation.



NOTE

The order of a union type declaration does not matter. You can write boolean | number or
number | boolean and TypeScript will treat both the exact same.

Union Properties

When a value is known to be a union type, TypeScript will only allow you
to access member properties that exist on all possible types in the union. It
will give you a type-checking error if you try to access a type that doesn’t
exist on all possible types.

In the following snippet, physicist is of type number | string. While
.toString() exists in both types and is allowed to be used,
.toUpperCase() and .toFixed() are not because .toUpperCase() is
missing on the number type and . toFixed() is missing on the string type:

let physicist = Math.random() > 0.5
? "Marie Curie"
. 84;

physicist.toString(); // 0k

physicist.toUpperCase();
/] e

// Error: Property 'toUpperCase' does not exist on type 'string | number’.
//  Property 'toUpperCase' does not exist on type 'number'.

physicist.toFixed();
A

// Error: Property 'toFixed' does not exist on type 'string | number'.
//  Property 'toFixed' does not exist on type 'string’.

Restricting access to properties that don’t exist on all union types is a safety
measure. If an object is not known to definitely be a type that contains a
property, TypeScript will believe it unsafe to try to use that property. The
property might not exist!

To use a property of a union typed value that only exists on a subset of the
potential types, your code will need to indicate to TypeScript that the value



at that location in code is one of those more specific types: a process called
narrowing.

Narrowing

Narrowing is when TypeScript infers from your code that a value is of a
more specific type than what it was defined, declared, or previously inferred
as. Once TypeScript knows that a value’s type is more narrow than
previously known, it will allow you to treat the value like that more specific
type. A logical check that can be used to narrow types is called a #ype
guard.

Let’s cover two of the common type guards TypeScript can use to deduce
type narrowing from your code.

Assignment Narrowing

If you directly assign a value to a variable, TypeScript will narrow the
variable’s type to that value’s type.

Here, the admiral variable is declared initially as a number | string, but
after being assigned the value "Grace Hopper", TypeScript knows it must
be a string:

let admiral: number | string;
admiral = "Grace Hopper";
admiral.toUpperCase(); // Ok: string
admiral.toFixed();

// ~m s

// Error: Property 'toFixed' does not exist on type 'string'.

Assignment narrowing comes into play when a variable is given an explicit
union type annotation and an initial value too. TypeScript will understand
that while the variable may later receive a value of any of the union typed
values, it starts off as only the type of its initial value.



In the following snippet, inventor is declared as type number | string,
but TypeScript knows it’s immediately narrowed to a string from its initial
value:

let inventor: number | string = "Hedy Lamarr";
inventor.toUpperCase(); // Ok: string

inventor.toFixed();

[ e

// Error: Property 'toFixed' does not exist on type 'string’.

Conditional Checks

A common way to get TypeScript to narrow a variable’s value is to write an
if statement checking the variable for being equal to a known value.
TypeScript is smart enough to understand that inside the body of that if
statement, the variable must be the same type as the known value:

// Type of scientist: number | string
let scientist = Math.random() > 0.5

? "Rosalind Franklin"

. 51,

if (scientist === "Rosalind Franklin") {
// Type of scientist: string
scientist.toUpperCase(); // Ok

}

// Type of scientist: number | string
scientist.toUpperCase();

// s s o

// Error: Property 'toUpperCase' does not exist on type 'string [ number'.
//  Property 'toUpperCase' does not exist on type 'number'.

Narrowing with conditional logic shows TypeScript’s type-checking logic
mirroring good JavaScript coding patterns. If a variable might be one of
several types, you’ll generally want to check its type for being what you
need. TypeScript is forcing us to play it safe with our code. Thanks,
TypeScript!



Typeof Checks

In addition to direct value checking, TypeScript also recognizes the typeof

operator in narrowing down variable types.

Similar to the scientist example, checking if typeof researcher is
"string" indicates to TypeScript that the type of researcher must be
string:

let researcher = Math.random() > 0.5
? "Rosalind Franklin"
. 51,

if (typeof researcher === "string") {
researcher.toUpperCase(); // Ok: string
}

Logical negations from ! and else statements work as well:

if (!(typeof researcher === "string")) {
researcher.toFixed(); // Ok: number
} else {

researcher.toUpperCase(); // Ok: string
}

Those code snippets can be rewritten with a ternary statement, which is also

supported for type narrowing:

typeof researcher === "string"
? researcher.toUpperCase() // Ok: string
: researcher.toFixed(); // Ok: number

Whichever way you write them, typeof checks are a practical and often
used way to narrow types.

TypeScript’s type checker recognizes several more forms of narrowing that

we’ll see in later chapters.



Literal Types

Now that I’ve shown union types and narrowing for working with values
that may be two or more potential types, I’d like go the opposite direction
by introducing literal types: more specific versions of primitive types.

Take this philosopher variable:

const philosopher = "Hypatia";

What type is philosopher?

At first glance, you might say string—and you’d be correct. philosopher
1s indeed a string.

But! philosopher is not just any old string. It’s specifically the value
"Hypatia". Therefore, the philosopher variable’s type is technically the
more specific "Hypatia".

Such is the concept of a literal type: the type of a value that is known to be
a specific value of a primitive, rather than any of those primitive’s values at
all. The primitive type string represents the set of all possible strings that
could ever exist; the literal type "Hypatia" represents just that one string.

If you declare a variable as const and directly give it a literal value,
TypeScript will infer the variable to be that literal value as a type. This is
why, when you hover a mouse over a const variable with an initial literal
value in an IDE such as VS Code, it will show you the variable’s type as
that literal (Figure 3-2) instead of the more general primitive (Figure 3-3).

const mathematician: "Mark Goldberg"

const mathematician = "Mark Goldberg";

Figure 3-2. TypeScript reporting a const variable as being specifically its literal type



let mathematician: string

let mathematician = "Mark Goldberg";

Figure 3-3. TypeScript reporting a let variable as being generally its primitive type

You can think of each primitive type as a union of every possible matching
literal value. In other words, a primitive type is the set of all possible literal
values of that type.

Other than the boolean, null, and undefined types, all other primitives
such as number and string have a infinite number of literal types. The
common types you’ll find in typical TypeScript code are just those:

e boolean: just true | false
e null and undefined: both just have one literal value, themselves
e number: 0 | 1| 2| ... | 0.1 ] 0.2 |

° Str-‘l_ng: nn | Ilall | llbll | IICII | e | Ilaall | Ilabll | llacll |

Union type annotations can mix and match between literals and primitives.
A representation of a lifespan, for example, might be represented by any
number or one of a couple known edge cases:

let lifespan: number | "ongoing" | "uncertain";

lifespan = 89; // Ok
lifespan = "ongoing"; // 0Ok

lifespan = true;

// Error: Type 'true' is not assignable to
// type 'number | "ongoing" | "uncertain"'

Literal Assignability

You’ve seen how different primitive types such as number and string are
not assignable to each other. Similarly, different literal types within the



same primitive type—e.g., 0 and 1—are not assignable to each other.

In this example, specificallyAda is declared as being of the literal type
"Ada", so while the value "Ada" may be given to it, the types "Byron" and
string are not assignable to it:

let specificallyAda: "Ada";

specificallyAda = "Ada"; // 0Ok

"Byron";
' 1s not assignable to type '"Ada"'.

specificallyAda
// Error: Type '"Byron"

let someString = ""; // Type: string

specificallyAda = someString;
// Error: Type 'string' is not assignable to type '"Ada"'.

Literal types are, however, allowed to be assigned to their corresponding
primitive types. Any specific literal string is still a string.

In this code example, the value ":)", which is of type ":)", is being
assigned to the someString variable previously inferred to be of type
string:

someString = ":)";

Who would have thought a simple variable assignment would be so
theoretically intense?

Strict Null Checking

The power of narrowed unions with literals is particularly visible when
working with potentially undefined values, an area of type systems
TypeScript refers to as strict null checking. TypeScript is part of a surge of
modern programming languages that utilize strict null checking to fix the
dreaded “billion-dollar mistake.”



The Billion-Dollar Mistake

I call it my billion-dollar mistake. It was the invention of the null
reference in 1965... This has led to innumerable errors, vulnerabilities,
and system crashes, which have probably caused a billion dollars of pain
and damage in the last 40 years.

—Tony Hoare, 2009

The “billion-dollar mistake” is a catchy industry term for many type
systems allowing null values to be used in places that require a different
type. In languages without strict null checking, code like this example that
assign null to a string is allowed:

const firstName: string = null;

If you’ve previously worked in a typed language such as C++ or Java that
suffers from the billion-dollar mistake, it may be surprising to you that
some languages don’t allow such a thing. If you’ve never worked in a
language with the strict null checking before, it may be surprising that some
languages allowed the billion-dollar mistake in the first place!

The TypeScript compiler contains a multitude of options that allow
changing how it runs. Chapter 13, “Configuration Options” will cover
TypeScript compiler options in depth. One of the most useful opt-in
options, strictNullChecks, toggles whether strict null checking is
enabled. Roughly speaking, disabling strictNullChecks adds | null |
undefined to every type in your code, thereby allowing any variable to
receive null or undefined.

With the strictNullChecks option set to false, the following code is
considered totally type safe. That’s wrong, though; nameMaybe might be
undefined when . toLowerCase is accessed from it:

let nameMaybe = Math.random() > 0.5
? "Tony Hoare"
: undefined;



nameMaybe.toLowerCase();
// Potential runtime error: Cannot read property 'toLowerCase' of undefined.

With strict null checking enabled, TypeScript sees the potential crash in the
code snippet:

let nameMaybe = Math.random() > 0.5
? "Tony Hoare"
: undefined;

nameMaybe. toLowerCase();
// Error: Object is possibly 'undefined'.

Without strict null checking enabled, it’s much harder to know whether
your code is safe from errors due to accidentally null or undefined values.

TypeScript best practice 1s generally to enable strict null checking. Doing so
helps prevent crashes and eliminates the billion-dollar mistake.

Truthiness Narrowing

Recall from JavaScript that truthiness, or being truthy, is whether a value
would be considered true when evaluated in a Boolean context, such as an
&& operator or if statement. All values in JavaScript are truthy except for
those defined as falsy: false, 0, -0, On, "", null, undefined, and NaN.’

TypeScript can also narrow a variable’s type from a truthiness check if only
some of its potential values may be truthy. In the following snippet,
geneticist is of type string | undefined, and because undefined is
always falsy, TypeScript can deduce that it must be of type string within
the i1f statement’s body:

let geneticist = Math.random() > 0.5
? "Barbara McClintock"
: undefined;

if (geneticist) {
geneticist.toUpperCase(); // Ok: string
}



geneticist.toUpperCase();
// Error: Object is possibly 'undefined'.

Logical operators that perform truthiness checking work as well, namely &&
and ?.:

geneticist && geneticist.toUpperCase(); // Ok: string | undefined
geneticist?.toUpperCase(); // Ok: string | undefined

Unfortunately, truthiness checking doesn’t go the other way. If all we know
about a string | undefined value is that it’s falsy, that doesn’t tell us
whether it’s an empty string or undefined.

Here, biologist is of type false | string, and while it can be narrowed
down to just string in the if statement body, the else statement body

knows it can still be a string if it’s "":

let biologist = Math.random() > 0.5 && "Rachel Carson";

if (biologist) {

biologist; // Type: string
} else {

biologist; // Type: false | string
}

Variables Without Initial Values

Variables declared without an initial value default to undefined in
JavaScript. That presents an edge case in the type system: what if you
declare a variable to be a type that doesn’t include undefined, then try to
use it before assigning a value?

TypeScript is smart enough to understand that the variable is undefined
until a value is assigned. It will report a specialized error message if you try
to use that variable, such as by accessing one of its properties, before
assigning a value:

let mathematician: string;

mathematician?.length;



// Error: Variable 'mathematician' is used before being assigned.
mathematician = "Mark Goldberg";

mathematician.length; // 0Ok

Note that this reporting doesn’t apply if the variable’s type includes
undefined. Adding | undefined to a variable’s type indicates to
TypeScript that it doesn’t need to be defined before use, as undefined is a
valid type for its value.

The previous code snippet wouldn’t emit any errors if the type of
mathematicianis string | undefined:

let mathematician: string | undefined;

mathematician?.length; // 0k

mathematician = "Mark Goldberg";
mathematician.length; // 0Ok

Type Aliases

Most union types you’ll see in code will generally only have two or three
constituents. However, you may sometimes find a use for longer union
types that are inconvenient to type out repeatedly.

Each of these variables can be one of four possible types:

let rawDataFirst: boolean | number | string | null | undefined;
let rawDataSecond: boolean | number | string | null | undefined;
let rawDataThird: boolean | number | string | null | undefined;

TypeScript includes type aliases for assigning easier names to reused types.
A type alias starts with the type keyword, a new name, =, and then any
type. By convention, type aliases are given names in PascalCase:

type MyName = ...;



Type aliases act as a copy-and-paste in the type system. When TypeScript
sees a type alias, it acts as if you’d typed out the actual type the alias was
referring to. The previous variables’ type annotations could be rewritten to
use a type alias for the long union type:

type RawData = boolean | number | string | null | undefined;
let rawDataFirst: RawData;

let rawDataSecond: RawData;
let rawDataThird: RawData;

That’s a lot easier to read!

Type aliases are a handy feature to use in TypeScript whenever your types
start getting complex. For now, that just includes long union types; later on
it will include array, function, and object types.

Type Aliases Are Not JavaScript

Type aliases, like type annotations, are not compiled to the output
JavaScript. They exist purely in the TypeScript type system.

The previous code snippet would compile to roughly this JavaScript:

let rawDataFirst;
let rawDataSecond;
let rawDataThird;

Because type aliases are purely in the type system, you cannot reference
them in runtime code. TypeScript will let you know with a type error if you
are trying to access something that won’t exist at runtime:

type SomeType = string | undefined;
console.log(SomeType);
[ e

// Error: 'SomeType' only refers to a type, but is being used as a value here.

Type aliases exist purely as a development-time construct.



Combining Type Aliases

Type aliases may reference other type aliases. It can sometimes be useful to
have type aliases refer to each other, such as when one type alias is a union
of types that includes (is a superset of) the union types within another type
alias.

This IdMaybe type is a union of the types within Id as well as undefined
and null:
type Id = number | string;

// Equivalent to: number | string | undefined | null
type IdMaybe = Id | undefined | null;

Type aliases don’t have to be declared in order of usage. You can have a
type alias declared earlier in a file reference an alias declared later in the

file.

The previous code snippet could be rewritten to have IdMaybe come before
Id:

type IdMaybe = Id | undefined | null; // 0k
type Id = number | string;

Summary

In this chapter, you went over union and literal types in TypeScript, along
with how its type system can deduce more specific (narrower) types from
how our code is structured:

e How union types represent values that could be one of two or more
types

e Explicitly indicating union types with type annotations

e How type narrowing reduces the possible types of a value



e The difference between const variables with literal types and let
variables with primitive types

e The “billion-dollar mistake” and how TypeScript handles strict null
checking

e Using explicit | undefined to represent values that might not exist
e Implicit | undefined for unassigned variables

e Using type aliases to save typing long type unions repeatedly

TIP

Now that you’ve finished reading this chapter, practice what you’ve learned on
https://learningtypescript.com/unions-and-literals.

Why are const variables so serious?

They take themselves too literally.

1 The deprecated document.all object in browsers is also defined as falsy in an old quirk of
legacy browser compatibility. For the purposes of this book—and your own happiness as a
developer—don’t worry about document.all.


https://learningtypescript.com/unions-and-literals

Chapter 4. Objects

Object literals
A set of keys and values

Each with their own type

Chapter 3, “Unions and Literals™ fleshed out union and literal types:
working with primitives such as boolean and literal values of them such as
true. Those primitives only scratch the surface of the complex object
shapes JavaScript code commonly uses. TypeScript would be pretty
unusable if it weren’t able to represent those objects. This chapter will
cover how to describe complex object shapes and how TypeScript checks
their assignability.

Object Types

When you create an object literal with {. ..} syntax, TypeScript will
consider it to be a new object type, or type shape, based on its properties.
That object type will have the same property names and primitive types as
the object’s values. Accessing properties of the value can be done with
either value.member or the equivalent value[ 'member' ] syntax.

TypeScript understands that the following poet variable’s type is that of an
object with two properties: born, of type number, and name, of type
string. Accessing those members would be allowed, but attempting to
access any other member name would cause a type error for that name not
existing:

const poet = {
born: 1935,
name: "Mary Oliver",

};



poet['born']; // Type: number
poet.name; // Type: string

poet.end;

/)

// Error: Property 'end' does not exist on
// type '{ name: string; start: number; }'.

Object types are a core concept for how TypeScript understands JavaScript
code. Every value other than null and undefined has a set of members in
its backing type shape, and so TypeScript must understand the object type
for every value in order to type check it.

Declaring Object Types

Inferring types directly from existing objects is all fine and good, but
eventually you’ll want to be able to declare the type of an object explicitly.
You’ll need a way to describe an object shape separately from objects that
satisfy it.

Object types may be described using a syntax that looks similar to object
literals but with types instead of values for fields. It’s the same syntax that
TypeScript shows in error messages about type assignability.

This poetLater variable is the same type from before with name: string
and born: number:

let poetLater: {
born: number;
name: string;

}s
// Ok
poetLater = {
born: 1935,
name: "Mary Oliver",
s

poetLater = "Sappho";
// Error: Type 'string' is not assignable to
// type '{ born: number; name: string; }'



Aliased Object Types

Constantly writing out object types like { born: number; name:
string; } would get tiresome rather quickly. It’s more common to use
type aliases to assign each type shape a name.

The previous code snippet could be rewritten with a type Poet, which
comes with the added benefit of making TypeScript’s assignability error
message a little more direct and readable:

type Poet = {
born: number;
name: string;

};
let poetlLater: Poet;

// Ok
poetLater = {
born: 1935,
name: "Sara Teasdale",

};

poetLater = "Emily Dickinson";
// Error: Type 'string' is not assignable to 'Poet'.

NOTE

Most TypeScript projects prefer using the interface keyword to describe object types, which is a
feature I won’t cover until Chapter 7, “Interfaces”. Aliased object types and interfaces are almost
identical: everything in this chapter applies to interfaces as well.

I bring these object types up now because understanding how TypeScript
interprets object literals is an important part of learning about TypeScript’s
type system. These concepts will continue to be important once we switch
over to features in the next section of this book.



Structural Typing

TypeScript’s type system is structurally typed: meaning any value that
happens to satisfy a type is allowed to be used as a value of that type. In
other words, when you declare that a parameter or variable is of a particular
object type, you’re telling TypeScript that whatever object(s) you use, they
need to have those properties.

The following WithFirstName and WithLastName aliased object types both
only declare a single member of type string. The hasBoth variable just so
happens to have both of them—even though it wasn’t declared as such
explicitly—so it can be provided to variables that are declared as either of
the two aliased object types:

type WithFirstName = {
firstName: string;

};

type WithLastName = {
lastName: string;

};

const hasBoth = {
firstName: "Lucille",
lastName: "Clifton",

}s

// Ok: ‘hasBoth' contains a ‘firstName' property of type ‘string’
let withFirstName: WithFirstName = hasBoth;

// Ok: ‘hasBoth' contains a ‘lastName' property of type ‘string’
let withLastName: WithLastName = hasBoth;

Structural typing not the same as duck typing, which comes from the phrase
“If it looks like a duck and quacks like a duck, it’s probably a duck.”

e Structural typing is when there is a static system checking the type—in
TypeScript’s case, the type checker.

e Duck typing is when nothing checks object types until they’re used at
runtime.



In summary: JavaScript is duck typed whereas TypeScript is structurally
typed.

Usage Checking

When providing a value to a location annotated with an object type,
TypeScript will check that the value is assignable to that object type. To
start, the value must have the object type’s required properties. If any
member required on the object type is missing in the object, TypeScript will
issue a type error.

The following FirstAndLastNames aliased object type requires that both
the first and last properties exist. An object containing both of those 1s
allowed to be used in a variable declared to be of type
FirstAndLastNames, but an object without them is not:

type FirstAndLastNames = {
first: string;
last: string;

}s
// Ok

const hasBoth: FirstAndLastNames = {
first: "Sarojini",
last: "Naidu",

};

const hasOnlyOne: FirstAndLastNames = {
first: "Sappho"
s
// Property 'last' is missing in type '{ first: string; }'
// but required in type 'FirstAndlLastNames'.

Mismatched types between the two are not allowed either. Object types
specify both the names of required properties and the types those properties
are expected to be. If an object’s property doesn’t match, TypeScript will
report a type error.

The following TimeRange type expects the start member to be of type
Date. The hasStartString object is causing a type error because its start



is type string instead:

type TimeRange = {
start: Date;

};

const hasStartString: TimeRange = {
start: "1879-02-13",
// Error: Type 'string' is not assignable to type 'Date’.

};

Excess Property Checking

Typescript will report a type error if a variable is declared with an object
type and its initial value has more fields than its type describes. Therefore,
declaring a variable to be of an object type is a way of getting the type
checker to make sure it has only the expected fields on that type.

The following poetMatch variable has exactly the fields described in the
object type aliased by Poet, while extraProperty causes a type error for
having an extra property:

type Poet = {
born: number;
name: string;

}

// Ok: all fields match what's expected in Poet
const poetMatch: Poet = {

born: 1928,

name: "Maya Angelou"

};

const extraProperty: Poet = {
activity: "walking",
born: 1935,
name: "Mary Oliver",
3
// Error: Type '{ activity: string; born: number; name: string; }'
// 1s not assignable to type 'Poet'.
// Object literal may only specify known properties,
// and 'activity' does not exist in type 'Poet'.



Note that excess property checks only trigger for object literals being
created in locations that are declared to be an object type. Providing an
existing object literal bypasses excess property checks.

This extraPropertyButOk variable does not trigger a type error with the
previous example’s Poet type because its initial value happens to
structurally match Poet:

const existingObject = {
activity: "walking",
born: 1935,
name: "Mary Oliver",

};

const extraPropertyButOk: Poet = existingObject; // 0k

Excess property checks will trigger anywhere a new object is being created
in a location that expects it to match an object type—which as you’ll see in
later chapters includes array members, class fields, and function parameters.
Banning excess properties is another way TypeScript helps make sure your
code is clean and does what you expect. Excess properties not declared in
their object types are often either mistyped property names or unused code.

Nested Object Types

As JavaScript objects can be nested as members of other objects,
TypeScript’s object types must be able to represent nested object types in
the type system. The syntax to do so is the same as before but witha { ...
} object type instead of a primitive name.

Poem type is declared to be an object whose author property has
firstName: string and lastName: string. The poemMatch variable is
assignable to Poem because it matches that structure, while poemMismatch
is not because its author property includes name instead of firstName and
lastName:

type Poem = {
author: {



firstName: string;
lastName: string;

I
name: string;
s
// Ok
const poemMatch: Poem = {
author: {
firstName: "Sylvia",
lastName: "Plath",
s
name: "Lady Lazarus",
s

const poemMismatch: Poem = {
author: {
name: "Sylvia Plath",
s
// Error: Type '{ name: string; }' is not assignable
// to type '{ firstName: string; lastName: string; }'.
// Object literal may only specify known properties, and 'name'
// does not exist in type '{ firstName: string; lastName: string; }'.
name: "Tulips",

I

};

Another way of writing the type Poem would be to extract out the author
property’s shape into its own aliased object type, Author. Extracting out
nested types into their own type aliases also helps TypeScript give more
informative type error messages. In this case, it can say 'Author' instead
of '{ firstName: string; lastName: string; }':

type Author = {
firstName: string;
lastName: string;

}s

type Poem = {
author: Author;
name: string;

};

const poemMismatch: Poem = {
author: {
name: "Sylvia Plath",



s
// Error: Type '{ name: string; }' i1s not assignable to type 'Author’.

// Object literal may only specify known properties,
// and 'name' does not exist in type 'Author’.
name: "Tulips",

}s

TIP

It is generally a good idea to move nested object types into their own type name like this, both for
more readable code and for more readable TypeScript error messages.

You’ll see in later chapters how object type members can be other types
such as arrays and functions.

Optional Properties

Object type properties don’t all have to be required in the object. You can
include a ? before the : in a type property’s type annotation to indicate that
it’s an optional property.

This Book type requires only a pages property and optionally allows an
author. Objects adhering to it may provide author or leave it out as long
as they provide pages:

type Book = {
author?: string;
pages: number;

};
// Ok

const ok: Book = {
author: "Rita Dove",
pages: 80,

s

const missing: Book = {
author: "Rita Dove",
s
// Error: Property 'pages' is missing in type
// '{ author: string; }' but required in type 'Book’.



Keep in mind there is a difference between optional properties and
properties whose type happens to include undefined in a type union. A
property declared as optional with ? is allowed to not exist. A property
declared as required and | undefined must exist, even if the value is
undefined.

The editor property in the following Writers type may be skipped in
declaring variables because it has a ? in its declaration. The author
property does not have a ?, so it must exist, even if its value is just
undefined:

type Writers = {
author: string | undefined;
editor?: string;

}s

// Ok: author is provided as undefined
const hasRequired: Writers = {
author: undefined,

};

const missingRequired: Writers = {};

/] e
// Error: Property 'author' is missing in type
// '{}' but required in type 'Writers'.

Chapter 7, “Interfaces” will cover more on other kinds of properties, while
Chapter 13, “Configuration Options” will describe TypeScript’s strictness
settings around optional properties.

Unions of Object Types

It is reasonable in TypeScript code to want to be able to describe a type that
can be one or more different object types that have slightly different
properties. Furthermore, your code might want to be able to type narrow
between those object types based on the value of a property.



Inferred Object-Type Unions

If a variable is given an initial value that could be one of multiple object
types, TypeScript will infer its type to be a union of object types. That union
type will have a constituent for each of the possible object shapes. Each of
the possible properties on the type will be present in each of those
constituents, though they’ll be ? optional types on any type that doesn’t
have an initial value for them.

This poem value always has a name property of type string, and may or
may not have pages and rhymes properties:

const poem = Math.random() > 0.5
? { name: "The Double Image", pages: 7 }
: { name: "Her Kind", rhymes: true };

// Type:

/A

// name: string;

//  pages: number;

// rhymes?: undefined;

//}

/7

/A

// name: string;

//  pages?: undefined;
//  rhymes: boolean;
//}

poem.name; // string
poem.pages; // number | undefined
poem.rhymes; // booleans | undefined

Explicit Object-Type Unions

Alternately, you can be more explicit about your object types by being
explicit with your own union of object types. Doing so requires writing a bit
more code but comes with the advantage of giving you more control over
your object types. Most notably, if a value’s type is a union of object types,
TypeScript’s type system will only allow access to properties that exist on
all of those union types.



This version of the previous poem variable is explicitly typed to be a union
type that always has the always property along with either pages or
rhymes. Accessing names is allowed because it always exists, but pages
and rhymes aren’t guaranteed to exist:

type PoemWithPages = {
name: string;
pages: number;

};

type PoemWithRhymes = {
name: string;
rhymes: boolean;

3
type Poem = PoemWithPages | PoemWithRhymes;

const poem: Poem = Math.random() > 0.5
? { name: "The Double Image", pages: 7 }
: { name: "Her Kind", rhymes: true };

poem.name; // 0Ok

poem.pages;

/]
// Property 'pages' does not exist on type 'Poem'.

//  Property 'pages' does not exist on type 'PoemWithRhymes'.

poem.rhymes;

[/ e

// Property 'rhymes' does not exist on type 'Poem’.
//  Property 'rhymes' does not exist on type 'PoemWithPages'.

Restricting access to potentially nonexistent members of objects can be a
good thing for code safety. If a value might be one of multiple types,
properties that don’t exist on all of those types aren’t guaranteed to exist on
the object.

Just as how unions of literal and/or primitive types must be type narrowed
to access properties that don’t exist on all type constituents, you’ll need to
narrow those object type unions.



Narrowing Object Types

If the type checker sees that an area of code can only be run if a union typed
value contains a certain property, it will narrow the value’s type to only the
constituents that contain that property. In other words, TypeScript’s type
narrowing will apply to objects if you check their shape in code.

Continuing the explicitly typed poem example, check whether "pages" 1in
poem acts as a type guard for TypeScript to indicate that it is a
PoemWithPages. If poem is not a PoemWithPages, then it must be a
PoemWithRhymes:

if ("pages" in poem) {
poem.pages; // Ok: poem is narrowed to PoemWithPages
} else {
poem.rhymes; // Ok: poem is narrowed to PoemWithRhymes

}

Note that TypeScript won’t allow truthiness existence checks like if
(poem.pages). Attempting to access a property of an object that might not
exist is considered a type error, even if used in a way that seems to behave
like a type guard:

if (poem.pages) { /* ... */ }
/] e
// Property 'pages' does not exist on type 'PoemWithPages | PoemWithRhymes'.

//  Property 'pages' does not exist on type 'PoemWithRhymes'.

Discriminated Unions

Another popular form of union typed objects in JavaScript and TypeScript
is to have a property on the object indicate what shape the object is. This
kind of type shape is called a discriminated union, and the property whose
value indicates the object’s type is a discriminant. TypeScript is able to
perform type narrowing for code that type guards on discriminant
properties.

For example, this Poem type describes an object that can be either a new
PoemWithPages type or a new PoemWithRhymes type, and the type



property indicates which one. If poem. type is "pages", then TypeScript is
able to infer that the type of poem must be PoemWithPages. Without that
type narrowing, neither property is guaranteed to exist on the value:

type PoemWithPages = {
name: string;
pages: number;
type: 'pages';

3

type PoemWithRhymes = {
name: string;
rhymes: boolean;
type: 'rhymes';

s

type Poem = PoemWithPages | PoemWithRhymes;
const poem: Poem = Math.random() > 0.5

? { name: "The Double Image", pages: 7, type: "pages" }
: { name: "Her Kind", rhymes: true, type: "rhymes" };

if (poem.type === "pages") {
console.log( It's got pages: ${poem.pages}’); // Ok
} else {

console.log( It rhymes: ${poem.rhymes}");
}

poem.type; // Type: 'pages' | 'rhymes'

poem.pages;

/] e

// Error: Property 'pages' does not exist on type 'Poem’.
//  Property 'pages' does not exist on type 'PoemWithRhymes'.

Discriminated unions are my favorite feature in TypeScript because they
beautifully combine a common elegant JavaScript pattern with TypeScript’s
type narrowing. Chapter 10, “Generics” and its associated projects will
show more around using discriminated unions for generic data operations.



Intersection Types

TypeScript’s | union types represent the type of a value that could be one of
two or more different types. Just as JavaScript’s runtime | operator acts as a
counterpart to its & operator, TypeScript allows representing a type that is
multiple types at the same time: an & intersection type. Intersection types
are typically used with aliased object types to create a new type that
combines multiple existing object types.

The following Artwork and Writing types are used to form a combined
WrittenArt type that has the properties genre, name, and pages:

type Artwork = {
genre: string;
name: string;

};

type Writing = {
pages: number;
name: string;

}s

type WrittenArt = Artwork & Writing;
// Equivalent to:

/A
// genre: string;

// name: string;
//  pages: number;
//}

Intersection types can be combined with union types, which is sometimes
useful to describe discriminated unions in one type.

This ShortPoem type always has an author property, then is also a
discriminated union on a type property:

type ShortPoem = { author: string } & (
| { kigo: string; type: "haiku"; }
| { meter: number; type: "villanelle"; }

);



// Ok

const morningGlory: ShortPoem = {
author: "Fukuda Chiyo-ni",
kigo: "Morning Glory",
type: "haiku",

s

const oneArt: ShortPoem = {

author: "Elizabeth Bishop",

type: "villanelle",
s
// Error: Type '{ author: string; type: "villanelle"; }
// 1s not assignable to type 'ShortPoem’.
// Type '{ author: string; type: "villanelle"; }' is not assignable to
// type '{ author: string; } & { meter: number; type: "villanelle"; }'.
// Property 'meter' is missing in type '{ author: string; type:
"villanelle"; }'
// but required in type '{ meter: number; type: "villanelle"; }'.

1



Dangers of Intersection Types

Intersection types are a useful concept, but it’s easy to use them in ways that
confuse either yourself or the TypeScript compiler. I recommend trying to
keep code as simple as possible when using them.

Long assignability errors

Assignability error messages from TypeScript get much harder to read when
you create complex intersection types, such as one combined with a union
type. This will be a common theme with TypeScript’s type system (and
typed programming languages in general): the more complex you get, the
harder it will be to understand messages from the type checker.

In the case of the previous code snippet’s ShortPoem, it would be much
more readable to split the type into a series of aliased object types to allow
TypeScript to print those names:

type ShortPoemBase = { author: string };

type Haiku = ShortPoemBase & { kigo: string; type: "haiku" };

type Villanelle = ShortPoemBase & { meter: number; type: "villanelle" };
type ShortPoem = Haiku | Villanelle;

const oneArt: ShortPoem = {

author: "Elizabeth Bishop",

type: "villanelle",
s
// Type '{ author: string; type: "villanelle"; }
// 1s not assignable to type 'ShortPoem’.
// Type '{ author: string; type: "villanelle"; }
//  1s not assignable to type 'Villanelle'.

I

I

// Property 'meter' is missing in type

// '"{ author: string; type: "villanelle"; }'

// but required in type '{ meter: number; type: "villanelle"; }'.
never

Intersection types are also easy to misuse and create an impossible type
with. Primitive types cannot be joined together as constituents in an
intersection type because it’s impossible for a value to be multiple



primitives at the same time. Trying to & two primitive types together will
result in the never type, represented by the keyword never:

type NotPossible = number & string;
// Type: never

The never keyword and type is what programming languages refer to as a
bottom type, or empty type. A bottom type is one that can have no possible
values and can’t be reached. No types can be provided to a location whose
type is a bottom type:

let notNumber: NotPossible = 0;
/] e

// Error: Type 'number' is not assignable to type 'never’.
let notString: never = "";

[] s

// Error: Type 'string' is not assignable to type 'never'’.

Most TypeScript projects rarely—if ever—use the never type. It comes up
once in a while to represent impossible states in code. Most of the time,
though, it’s likely to be a mistake from misusing intersection types. I’ll
cover it more in Chapter 15, “Type Operations”.

Summary

In this chapter, you expanded your grasp of the TypeScript type system to
be able to work with objects:

e How TypeScript interprets types from object type literals

e Describing object literal types, including nested and optional
properties

e Declaring, inferring, and type narrowing with unions of object literal
types

¢ Discriminated unions and discriminants



e Combining object types together with intersection types

TIP

Now that you’ve finished reading this chapter, practice what you’ve learned on
https://learningtypescript.com/objects.

How does a lawyer declare their TypeScript type?

“I object!”


https://learningtypescript.com/objects

Part ll. Features




Chapter 5. Functions

Function arguments
In one end, out the other

As a return type

In Chapter 2, “The Type System”, you saw how to use type annotations to
annotate values of variables. Now, you’ll see how to do the same with
function parameters and return types—and why that can be useful.

Function Parameters

Take the following sing function that takes in a song parameter and logs it:

function sing(song) {
console.log( Singing: ${song}! );
}

What value type did the developer who wrote the sing function intend for
the song parameter to be provided with?

Is it a string? Is it an object with an overridden toString() method? Is
this code buggy? Who knows?!

Without explicit type information declared, we may never know—
TypeScript will consider it to be the any type, meaning the parameter’s type
could be anything.

As with variables, TypeScript allows you to declare the type of function
parameters with a type annotation. Now we can use a : string to tell
TypeScript that the song parameter is of type string:

function sing(song: string) {
console.log( Singing: ${song}! );



Much better: now we know what type song is meant to be!

Note that you don’t need to add proper type annotations to function
parameters for your code to be valid TypeScript syntax. TypeScript might
yell at you with type errors, but the emitted JavaScript will still run. The
previous code snippet missing a type declaration on the song parameter will
still convert from TypeScript to JavaScript. Chapter 13, “Configuration
Options” will cover how to configure TypeScript’s complaints about
parameters that are implicitly of type any the way song is.

Required Parameters

Unlike JavaScript, which allows functions to be called with any number of
arguments, TypeScript assumes that all parameters declared on a function
are required. If a function is called with a wrong number of arguments,
TypeScript will protest in the form of a type error. TypeScript’s argument
counting will come into play if a function is called with either too few or
too many arguments.

This singTwo function requires two parameters, so passing one argument
and passing three arguments are both not allowed:

function singTwo(first: string, second: string) {
console.log( ${first} / ${second} );
}

// Logs: "Ball and Chain / undefined"
singTwo("Ball and Chain");

/] e
// Error: Expected 2 arguments, but got 1.

// Logs: "I Will Survive / Higher Love"
singTwo("I Will Survive", "Higher Love"); // Ok

// Logs: "Go Your Own Way / The Chain"
singTwo("Go Your Own Way", "The Chain", "Dreams");

/o e
// Error: Expected 2 arguments, but got 3.



Enforcing that required parameters be provided to a function helps enforce
type safety by making sure all expected argument values exist inside the
function. Failing to ensure those values exist could result in unexpected
behavior in code, such as the previous singTwo function logging
undefined or ignoring an argument.

NOTE

Parameter refers to a function’s declaration of what it expects to receive as an argument.
Argument refers to a value provided to a parameter in a function call. In the previous example,
first and second are parameters, while strings such as "Dreams" are arguments.

Optional Parameters

Recall that in JavaScript, if a function parameter is not provided, its
argument value inside the function defaults to undefined. Sometimes
function parameters are not necessary to provide, and the intended use of
the function is for that undefined value. We wouldn’t want TypeScript to
report type errors for failing to provide arguments to those optional
parameters. TypeScript allows annotating a parameter as optional by adding
a ? before the : in its type annotation—similar to optional object type
properties.

Optional parameters don’t need to be provided to function calls. Their types
therefore always have | undefined added as a union type.

In the following announceSong function, the singer parameter is marked
optional. Its type is string | undefined, and it doesn’t need to be
provided by callers of the function. If singer is provided, it may be a
string value or undefined:

function announceSong(song: string, singer?: string) {
console.log( Song: ${song} );

if (singer) {
console.log( Singer: ${singer}’);

}



}

announceSong("Greensleeves"); // 0Ok
announceSong("Greensleeves", undefined); // 0Ok
announceSong("Chandelier", "Sia"); // 0Ok

These optional parameters are always implicitly able to be undefined. In
the previous code, singer starts off as being of type string | undefined,
then 1s narrowed to just string by the if statement.

Optional parameters are not the same as parameters with union types that
happen to include | undefined. Parameters that aren’t marked as optional
with a ? must always be provided, even if the value is explicitly undefined.

The singer parameter in this announceSongBy function must be provided
explicitly. It may be a string value or undefined:

function announceSongBy(song: string, singer: string | undefined) { /* ... */

}

announceSongBy("Greensleeves");
// Error: Expected 2 arguments, but got 1.

announceSongBy("Greensleeves", undefined); // Ok
announceSongBy("Chandelier", "Sia"); // 0Ok

Any optional parameters for a function must be the last parameters. Placing
an optional parameter before a required parameter would trigger a
TypeScript syntax error:

function announceSinger(singer?: string, song: string) {}

//

// Error: A required parameter cannot follow an optional parameter.

Default Parameters

Optional parameters in JavaScript may be given a default value with an =
and a value in their declaration. For these optional parameters, because a
value is provided by default, their TypeScript type does not implicitly have
the | undefined union added on inside the function. TypeScript will still



allow the function to be called with missing or undefined arguments for
those parameters.

TypeScript’s type inference works similarly for default function parameter
values as it does for initial variable values. If a parameter has a default
value and doesn’t have a type annotation, TypeScript will infer the
parameter’s type based on that default value.

In the following rateSong function, rating is inferred to be of type
number, but is an optional number | undefined in the code that calls the
function:

function rateSong(song: string, rating = 0) {
console.log( ${song} gets ${rating}/5 stars!’);

}

rateSong("Photograph"); // 0k
rateSong("Set Fire to the Rain", 5); // Ok
rateSong("Set Fire to the Rain", undefined); // 0k

rateSong("At Last!", "100");

/o e
// Error: Argument of type '"100"' is not assignable

// to parameter of type 'number | undefined’.

Rest Parameters

Some functions in JavaScript are made to be called with any number of
arguments. The . .. spread operator may be placed on the last parameter in
a function declaration to indicate any “rest” arguments passed to the
function starting at that parameter should all be stored in a single array.

TypeScript allows declaring the types of these rest parameters similarly to
regular parameters, except with a [ ] syntax added at the end to indicate it’s
an array of arguments.

Here, singAl1TheSongs is allowed to take zero or more arguments of type

string for its songs rest parameter:

function singAllTheSongs(singer: string, ...songs: string[]) {
for (const song of songs) {



console.log( ${song}, by ${singer}’);
}
}

singAllTheSongs("Alicia Keys"); // Ok

singAllTheSongs("Lady Gaga", "Bad Romance", "Just Dance", "Poker Face"); // Ok

singAllTheSongs("Ella Fitzgerald", 2000);
// o

// Error: Argument of type 'number' is not
// assignable to parameter of type 'string’.

I’1l cover working with arrays in TypeScript in Chapter 6, “Arrays”.

Return Types

TypeScript is perceptive: if it understands all the possible values returned
by a function, it’ll know what type the function returns. In this example,
singSongs is understood by TypeScript to return a number:

// Type: (songs: string[]) => number
function singSongs(songs: string[]) {
for (const song of songs) {
console.log( ${song} );

}

return songs.length;

}

If a function contains multiple return statements with different values,
TypeScript will infer the return type to be a union of all the possible
returned types.

This getSongAt function would be inferred to return string | undefined

because its two possible returned values are typed string and undefined,
respectively:

// Type: (songs: string[], index: number) => string | undefined
function getSongAt(songs: string[], index: number) {
return index < songs.length
? songs[index]



: undefined;

Explicit Return Types

As with variables, I generally recommend not bothering to explicitly
declare the return types of functions with type annotations. However, there
are a few cases where it can be useful specifically for functions:

¢ You might want to enforce functions with many possible returned
values always return the same type of value.

e TypeScript will refuse to try to reason through return types of recursive
function.

e [t can speed up TypeScript type checking in very large projects—i.e.,
those with hundreds of TypeScript files or more.

Function declaration return type annotations are placed after the ) following
the list of parameters.

For a function declaration, that falls just before the {:

function singSongsRecursive(songs: string[], count = 0): number {
return songs.length ? singSongsRecursive(songs.slice(1l), count + 1) : count;

}

For arrow functions (also known as lambdas), that falls just before the =>:

const singSongsRecursive = (songs: string[], count = 0): number =>
songs.length ? singSongsRecursive(songs.slice(1), count + 1) : count;

If a return statement in a function returns a value not assignable to the
function’s return type, TypeScript will give an assignability complaint.

Here, the getSongRecordingDate function is explicitly declared as
returning Date | undefined, but one of its return statements incorrectly
provides a string:



function getSongRecordingDate(song: string): Date | undefined {
switch (song) {
case "Strange Fruit":
return new Date('April 20, 1939'); // Ok

case "Greensleeves":
return "unknown";
// Error: Type 'string' is not assignable to type 'Date’.

default:
return undefined; // 0Ok

Function Types

JavaScript allows us to pass functions around as values. That means we
need a way to declare the type of a parameter or variable meant to hold a
function.

Function type syntax looks similar to an arrow function, but with a type
instead of the body.

This nothingInGivesString variable’s type describes a function with no

parameters and a returned string value:

let nothingInGivesString: () => string;

This inputAndOutput variable’s type describes a function with a string[ ]
parameter, an optional count parameter, and a returned number value:

let inputAndOutput: (songs: string[], count?: number) => number;

Function types are frequently used to describe callback parameters
(parameters meant to be called as functions).

For example, the following runOnSongs snippet declares the type of its
getSongAt parameter to be a function that takes in an index: number and
returns a string. Passing getSongAt matches that type, but LogSong fails
for taking in a string as its parameter instead of a number:



const songs = ["Juice", "Shake It Off", "What's Up"];

function runOnSongs(getSongAt: (index: number) => string) {
for (let 1{ = 0; 1 < songs.length; 1 += 1) {
console.log(getSongAt(i));

}
}

function getSongAt(index: number) {
return "${songs[index]}";

}

runOnSongs(getSongAt); // Ok

function logSong(song: string) {
return "${song}’;

}

runOnSongs(logSong);

/B
// Error: Argument of type '(song: string) => string' is not
// assignable to parameter of type '(index: number) => string’.
// Types of parameters 'song' and 'index' are incompatible.
// Type 'number' is not assignable to type 'string'.

The error message for runOnSongs(logSong) is an example of an
assignability error that includes a few levels of details. When complaining
that two function types aren’t assignable to each other, TypeScript will
typically give three levels of detail, with increasing levels of specificity:

1. The first indentation level prints out the two function types.
2. The next indentation level specifies which part is mismatched.

3. The last indentation level is the precise assignability complaint of the
mismatched part.

In the previous code snippet, those levels are:

1. logSongs: (strong: string) => string is the provided type being
assigned to the getSongAt: (index: number) => string recipient



2. The song parameter of LogSong being assigned to the index
parameter of getSongAt

3. song’s number type is not assignable to index’s string type

TIP

TypeScript’s multiline errors can seem daunting at first. Reading through them line-by-line and
understanding what each part is conveying goes a long way to comprehending the error.

Function Type Parentheses

Function types may be placed anywhere that another type would be used.
That includes union types.

In union types, parentheses may be used to indicate which part of an
annotation is the function return or the surrounding union type:

// Type i1s a function that returns a union: string | undefined
let returnsStringOrUndefined: () => string | undefined;

// Type is either undefined or a function that returns a string
let maybeReturnsString: (() => string) | undefined;

Later chapters that introduce more type syntaxes will show other places
where function types must be wrapped with parentheses.

Parameter Type Inferences

It would be cumbersome if we had to declare parameter types for every
function we write, including inline functions used as parameters.
Fortunately, TypeScript can infer the types of parameters in a function
provided to a location with a declared type.

This singer variable is known to be a function that takes in a parameter of
type string, so the song parameter in the function later assigned to singer
1s known to be a string:



let singer: (song: string) => string;

singer = function (song) {

// Type of song: string
return "Singing: ${song.toUpperCase()}!"; // Ok

};
Functions passed as arguments to parameters with function parameter types
will have their parameter types inferred as well.
For example, the song and index parameters here are inferred by

TypeScript to be string and number, respectively:

const songs = ["Call Me", "Jolene", "The Chain"];

// song: string
// index: number
songs.forEach((song, index) => {
console.log( ${song} i1s at index ${index}’);

s

Function Type Aliases

Remember type aliases from Chapter 3, “Unions and Literals”? They can be
used for function types as well.

This StringToNumber type aliases a function that takes in a string and
returns a number, which means it can be used later to describe the types of
variables:

type StringToNumber = (input: string) => number;
let stringToNumber: StringToNumber;

stringToNumber = (input) => input.length; // 0Ok
stringToNumber = (input) => 1input.toUpperCase();

// o i s s s i 0 s

// Error: Type 'string' is not assignable to type 'number'.

Similarly, function parameters can themselves be typed with aliases that
happen to refer to a function type.



This usesNumberToString function has a single parameter which is itself
the NumberToString aliased function type:

type NumberToString = (input: number) => string;

function usesNumberToString(numberToString: NumberToString) {
console.log( The string is: ${numberToString(1234)}");

}
usesNumberToString((input) => “${input}! Hooray!"); // Ok

usesNumberToString((input) => input * 2);

/o e

// Error: Type 'number' is not assignable to type 'string’.

Type aliases are particularly useful for function types. They can save a lot
of horizontal space in having to repeatedly write out parameters and/or
return types.

More Return Types

Now, let’s look at two more return types: void and never.

Void Returns

Some functions aren’t meant to return any value. They either have no
return statements or only have return statements that don’t return a value.
TypeScript allows using a void keyword to refer to the return type of such a
function that returns nothing.

Functions whose return type is void may not return a value. This LogSong
function is declared as returning void, so it’s not allowed to return a value:

function logSong(song: string | undefined): void {
if (!song) {
return; // Ok
}

console.log( ${song}");



return true;
// Error: Type 'boolean' is not assignable to type 'void'.

}

void can be useful as the return type in a function type declaration. When
used in a function type declaration, void indicates that any returned value
from the function would be ignored.

For example, this songLogger variable represents a function that takes in a
song: string and doesn’t return a value:

let songlLogger: (song: string) => void;

songlogger = (song) => {
console.log( ${songs} );
};

songLogger("Heart of Glass"); // Ok

Note that although JavaScript functions all return undefined by default if
no real value 1s returned, void 1s not the same as undefined. void means
the return type of a function will be ignored, while undefined is a literal
value to be returned. Trying to assign a value of type void to a value whose
type instead includes undefined is a type error:

function returnsVoid() {
return;

}

let lazyValue: string | undefined;

lazyValue = returnsVoid();
// Error: Type 'void' is not assignable to type 'string | undefined'.

The distinction between undefined and void returns is particularly useful
for ignoring any returned value from a function passed to a location whose
type is declared as returning void. For example, the built-in forEach
method on arrays takes in a callback that returns void. Functions provided
to forEach can return any value they want. records.push(record) in the
following saveRecords function returns a number (the returned value from



an array’s .push()), yet is still allowed to be the returned value for the
arrow function passed to newRecords. forEach:

const records: string[] = [];

function saveRecords(newRecords: string[]) {
newRecords.forEach(record => records.push(record));

}

saveRecords(['21', 'Come On Over', 'The Bodyguard'])

The void type is not JavaScript. It’s a TypeScript keyword used to declare
return types of functions. Remember, it’s an indication that a function’s
returned value isn’t meant to be used, not a value that can itself be returned.

Never Returns

Some functions not only don’t return a value, but aren’t meant to return at
all. Never-returning functions are those that always throw an error or run an
infinite loop (hopefully intentionally!).

If a function is meant to never return, adding an explicit : never type
annotation indicates that any code after a call to that function won’t run.
This fail function only ever throws an error, so it can help TypeScript’s
control flow analysis with type narrowing param to string:

function fail(message: string): never {
throw new Error( Invariant failure: ${message}.);

}

function workWithUnsafeParam(param: unknown) {
if (typeof param !== "string") {
fail( param should be a string, not ${typeof param}');
}

// Here, param is known to be type string
param.toUpperCase(); // 0Ok



NOTE

never is not the same as void. void is for a function that returns nothing. never is for a function
that never returns.

Function Overloads

Some JavaScript functions are able to be called with drastically different
sets of parameters that can’t be represented just by optional and/or rest
parameters. These functions can be described with a TypeScript syntax
called overload signatures: declaring different versions of the function’s
name, parameters, and return types multiple times before one final
implementation signature and the body of the function.

When determining whether to emit a syntax error for a call to an overloaded
function, TypeScript will only look at the function’s overload signatures.
The implementation signature is only used by the function’s internal logic.

This createDate function is meant to be called either with one timestamp
parameter or with three parameters—month, day, and year. Calling with
either of those numbers of arguments is allowed, but calling with two
arguments would cause a type error because no overload signature allows
for two arguments. In this example, the first two lines are the overload
signatures, and the third line is the implementation signature:

function createDate(timestamp: number): Date;
function createDate(month: number, day: number, year: number): Date;
function createDate(monthOrTimestamp: number, day?: number, year?: number) {
return day === undefined || year === undefined
? new Date(monthOrTimestamp)
: new Date(year, monthOrTimestamp, day);

}

createDate(554356800); // 0Ok
createDate(7, 27, 1987); // 0Ok

createDate(4, 1);
// Error: No overload expects 2 arguments, but overloads
// do exist that expect either 1 or 3 arguments.



Overload signatures, as with other type system syntaxes, are erased when
compiling TypeScript to output JavaScript.

The previous code snippet’s function would compile to roughly the
following JavaScript:

function createDate(monthOrTimestamp, day, year) {
return day === undefined || year === undefined
? new Date(monthOrTimestamp)
: new Date(year, monthOrTimestamp, day);

WARNING

Function overloads are generally used as a last resort for complex, difficult-to-describe function
types. It’s generally better to keep functions simple and avoid using function overloads when
possible.

Call-Signature Compatibility

The implementation signature used for an overloaded function’s
implementation is what the function’s implementation uses for parameter
types and return type. Thus, the return type and each parameter in a
function’s overload signatures must be assignable to the parameter at the
same index in its implementation signature. In other words, the
implementation signature has to be compatible with all of the overload
signatures.

This format function’s implementation signature declares its first
parameter to be a string. While the first two overload signatures are
compatible for also being type string, the third overload signature’s () =>
string type is not compatible:

function format(data: string): string; // 0Ok
function format(data: string, needle: string, haystack: string): string; // 0k

function format(getData: () => string): string;

// ~mv s

// This overload signature is not compatible with its implementation



signature.

function format(data: string, needle?: string, haystack?: string) {
return needle && haystack ? data.replace(needle, haystack) : data;

}

Summary

In this chapter, you saw how a function’s parameters and return types can
be inferred or explicitly declared in TypeScript:

e Declaring function parameter types with type annotations

e Declaring optional parameters, default values, and rest parameters to
change type system behavior

e Declaring function return types with type annotations

e Describing functions that don’t return a usable value with the void
type

e Describing functions that don’t return at all with the never type

e Using function overloads to describe varying function call signatures

TIP

Now that you’ve finished reading this chapter, practice what you’ve learned on
https://learningtypescript.com/functions.

What makes a TypeScript project good?

1t functions well.


https://learningtypescript.com/functions

Chapter 6. Arrays

Arrays and tuples
One flexible and one fixed

Choose your adventure

JavaScript arrays are wildly flexible and can hold any mixture of values
inside:

const elements = [true, null, undefined, 42];

elements.push("even", ["more"]);
// Value of elements: [true, null, undefined, 42, "even", ["more"]]

In most cases, though, individual JavaScript arrays are intended to hold
only one specific type of value. Adding values of a different type may be
confusing to readers, or worse, the result of an error that could cause
problems in the program.

TypeScript respects the best practice of keeping to one data type per array
by remembering what type of data is initially inside an array, and only
allowing the array to operate on that kind of data.

In this example, TypeScript knows the warriors array initially contains
string typed values, so while adding more string typed values is allowed,
adding any other type of data is not:

const warriors = ["Artemisia", "Boudica"];

// Ok: "Zenobia" is a string
warriors.push("Zenobia");

warriors.push(true);

//

// Argument of type 'boolean' i1s not assignable to parameter of type 'string'.



You can think of TypeScript’s inference of an array’s type from its initial
members as similar to how it understands variable types from their initial
values. TypeScript generally tries to understand the intended types of your
code from how values are assigned, and arrays are no exception.

Array Types

As with other variable declarations, variables meant to store arrays don’t
need to have an initial value. The variables can start off undefined and
receive an array value later.

TypeScript will want you to let it know what types of values are meant to
go 1n the array by giving the variable a type annotation. The type annotation
for an array requires the type of elements in the array followed by a [ ]:

let arrayOfNumbers: number[];

arrayOfNumbers = [4, 8, 15, 16, 23, 42];

NOTE

Array types can also be written in a syntax like Array<number> called class generics. Most
developers prefer the simpler number[ ]. Classes are covered in Chapter 8, “Classes”, and generics
are covered in Chapter 9, “Type Modifiers”.

Array and Function Types

Array types are an example of a syntax container where function types may
need parentheses to distinguish what’s in the function type or not.
Parentheses may be used to indicate which part of an annotation is the
function return or the surrounding array type.

The createStrings type here, which is a function type, is not the same as
stringCreators, which is an array type:



// Type i1s a function that returns an array of strings
let createStrings: () => string[];

// Type i1s an array of functions that each return a string
let stringCreators: (() => string)[];

Union-Type Arrays

You can use a union type to indicate that each element of an array can be
one of multiple select types.

When using array types with unions, parentheses may need to be used to
indicate which part of an annotation is the contents of the array or the
surrounding union type. Using parentheses in array union types is important
—the following two types are not the same:

// Type is either a number or an array of strings
let stringOrArrayOfNumbers: string | number[];

// Type i1s an array of elements that are each either a number or a string
let arrayOfStringOrNumbers: (string | number)[];

TypeScript will understand from an array’s declaration that it is a union-
type array if it contains more than one type of element. In other words, the
type of an array’s elements is the union of all possible types for elements in
the array.

Here, namesMaybe is (string | undefined)[ ] because it has both
string values and an undefined value:

// Type is (string | undefined)[]
const namesMaybe = [

"Aqualtune",

"Blenda",

undefined,

1;



Evolving Any Arrays

If you don’t include a type annotation on a variable initially set to an empty
array, TypeScript will treat the array as evolving any[ ], meaning it can
receive any content. As with evolving any variables, we don’t like evolving
any[ ] arrays. They partially negate the benefits of TypeScript’s type
checker by allowing you to add potentially incorrect values.

This values array starts off containing any elements, evolves to contain
string elements, then again evolves to include number | string
clements:

// Type: any[]
let values = [];

// Type: string[]
values.push('');

// Type: (number | string)[]
values[0] = 0;

As with variables, allowing arrays to be evolving any typed—and using the
any type in general—partially defeats the purpose of TypeScript’s type

checking. TypeScript works best when it knows what types your values are
meant to be.

Multidimensional Arrays

A 2D array, or an array of arrays, will have two “[]”s:

let arrayOfArraysOfNumbers: number[][];

arrayOfArraysOfNumbers = [
[1, 2, 37,
[2, 4, 6],
[3, 6, 9],

1

A 3D array, or an array of arrays of arrays, will have three “[]”’s. 4D arrays
have four “[]”’s. 5D arrays have five “[]”s. You can guess where this is



going for 6D arrays and beyond.

These multidimensional array types don’t introduce any new concepts to
array types. Think of a 2D array as taking in the original type, which just so
happens to have [ ] at the end, and adding a [ ] after it.

This arrayOfArraysOfNumbers array is of type number[ ][ ], which is also
representable by (number[])[]:

// Type: number[][]
let arrayOfArraysOfNumbers: (number[])[];

Array Members

TypeScript understands typical index-based access for retrieving members
of an array to give back an element of that array’s type.

This defenders array is of type string[ ], so defender is a string:

const defenders = ["Clarenza", "Dina"];

// Type: string
const defender = defenders[0];

Members of union typed arrays are themselves that same union type.
Here, soldiersOrDates is of type (string | Date)[], so the
soldierOrDate variable is of type string | Date:

const soldiersOrDates = ["Deborah Sampson", new Date(1782, 6, 3)];

// Type: Date | string

const soldierOrDate = soldiersOrDates[0];
Caveat: Unsound Members

The TypeScript type system is known to be technically unsound: it can get
types mostly right, but sometimes its understanding about the types of
values may be incorrect. Arrays in particular are a source of unsoundness in



the type system. By default, TypeScript assumes all array member accesses
return a member of that array, even though in JavaScript, accessing an array
element with an index greater than the array’s length gives undefined.

This code gives no complaints with the default TypeScript compiler
settings:

function withElements(elements: string[]) {
console.log(elements[9001].length); // No type error

}

withElements(["It's", "over"]);

We as readers can deduce that it’ll crash at runtime with “Cannot read
property 'length' of undefined”, but TypeScript intentionally does
not make sure retrieved array members exist. It sees elements[9001] in
the code snippet as being type string, not undefined.

NOTE

TypeScript does have a - -noUncheckedIndexedAccess flag that makes array lookups more
restricted and type safe, but it’s quite strict and most projects don’t use it. I don’t cover it in this
book. Chapter 12, “Using IDE Features” links to resources that explain all of TypeScript’s
configuration options in depth.

Spreads and Rests

Remember . .. rest parameters for functions from Chapter 5, “Functions™?
Rest parameters and array spreading, both with the . .. operator, are key
ways to interact with arrays in JavaScript. TypeScript understands both of
them.

Spreads

Arrays can be joined together using the ... spread operator. TypeScript
understands the result array will contain values that can be from either of



the input arrays.

If the input arrays are the same type, the output array will be that same type.
If two arrays of different types are spread together to create a new array, the
new array will be understood to be a union type array of elements that are
either of the two original types.

Here, the conjoined array is known to contain both values that are type
string and values that are type number, so its type is inferred to be
(string | number)[]:

// Type: string[]
const soldiers = ["Harriet Tubman", "Joan of Arc", "Khutulun"];

// Type: number/[]
const soldierAges = [90, 19, 45];

// Type: (string | number)[]
const conjoined = [...soldiers, ...soldierAges];

Spreading Rest Parameters

TypeScript recognizes and will perform type checking on the JavaScript
practice of ... spreading an array as a rest parameter. Arrays used as
arguments for rest parameters must have the same array type as the rest
parameter.

The logWarriors function below takes in only string values for its
. . .names rest parameter. Spreading an array of type string[ ] is allowed,
but a number([ ] is not:

function logWarriors(greeting: string, ...names: string[]) {
for (const name of names) {
console.log( ${greeting}, ${name}!’);
}
}

const warriors = ["Cathay Williams", "Lozen", "Nzinga"];
logWarriors("Hello", ...warriors);

const birthYears = [1844, 1840, 1583];



logWarriors("Born in", ...birthYears);

/o s

// Error: Argument of type 'number' is not
// assignable to parameter of type 'string’.

Tuples

Although JavaScript arrays may be any size in theory, it is sometimes useful
to use an array of a fixed size—also known as a tuple. Tuple arrays have a
specific known type at each index that may be more specific than a union
type of all possible members of the array. The syntax to declare a tuple type
looks like an array literal, but with types in place of element values.

Here, the array yearAndWarrior is declared as being a tuple type with a
number at index 0 and a string at index 1:

let yearAndWarrior: [number, string];

yearAndWarrior = [530, "Tomyris"]; // Ok
yearAndWarrior = [false, "Tomyris"];
/o e

I

// Error: Type 'boolean' is not assignable to type 'number'.

yearAndWarrior = [530];
// Error: Type '[number]' is not assignable to type '[number, string]’.
//  Source has 1 element(s) but target requires 2.

Tuples are often used in JavaScript alongside array destructuring to be able
to assign multiple values at once, such as setting two variables to initial
values based on a single condition.

For example, TypeScript recognizes here that year is always going to be a
number and warrior is always going to be a string:

// year type: number

// warrior type: string

let [year, warrior] = Math.random() > 0.5
? [340, "Archidamia"]
: [1828, "Rani of Jhansi"];



Tuple Assignability

Tuple types are treated by TypeScript as more specific than variable length
array types. That means variable length array types aren’t assignable to
tuple types.

Here, although we as humans may see pairLoose as having [boolean,
number ] inside, TypeScript infers it to be the more general (boolean |
number)[] type:

// Type: (boolean | number)[]
const pairLoose = [false, 123];

const pairTupleLoose: [boolean, number] = pairLoose;

] s

// Error: Type '(number | boolean)[]' is not

// assignable to type '[boolean, number]'.

// Target requires 2 element(s) but source may have fewer.

If pairLoose had been declared as a [boolean, number] itself, the
assignment of its value to pairTuple would have been permitted.

Tuples of different lengths are also not assignable to each other, as
TypeScript includes knowing how many members are in the tuple in tuple

types.

Here, tupleTwoExtra must have exactly two members, so although
tupleThree starts with the correct members, its third member prevents it
from being assignable to tupleTwoExtra:

const tupleThree: [boolean, number, string] = [false, 1583, "Nzinga"];
const tupleTwoExact: [boolean, number] = [tupleThree[0], tupleThree[1]];

const tupleTwoExtra: [boolean, number] = tupleThree;
/]

// Error: Type '[boolean, number, string]' 1is

// not assignable to type '[boolean, number]'.

//  Source has 3 element(s) but target allows only 2.



Tuples as rest parameters

Because tuples are seen as arrays with more specific type information on
length and element types, they can be particularly useful for storing
arguments to be passed to a function. TypeScript is able to provide accurate
type checking for tuples passed as ... rest parameters.

Here, the LlogPair function’s parameters are typed string and number.
Trying to pass in a value of type (string | number)[] as arguments
wouldn’t be type safe as the contents might not match up: they could both
be the same type, or one of each type in the wrong order. However, if
TypeScript knows the value to be a [string, number] tuple, it
understands the values match up:

function logPair(name: string, value: number) {
console.log( ${name} has ${value} );

}
const pairArray = ["Amage", 1];

logPair(...pairArray);
// Error: A spread argument must either have a
// tuple type or be passed to a rest parameter.

const pairTuplelncorrect: [number, string] = [1, "Amage"];

logPair(...pairTupleIncorrect);
// Error: Argument of type 'number' is not
// assignable to parameter of type 'string’.

const pairTupleCorrect: [string, number] = ["Amage", 1];

logPair(...pairTupleCorrect); // Ok

If you really want to go wild with your rest parameters tuples, you can mix
them with arrays to store a list of arguments for multiple function calls.
Here, trios is an array of tuples, where each tuple also has a tuple for its
second member. trios.forEach(trio => logTrio(...trio)) is known
to be safe because each . . .trio happens to match the parameter types of
logTrio. trios.forEach(logTrio), however, is not assignable because



that 1s attempting to pass the entire [string, [number, boolean] as the
first parameter, which is type string:

function logTrio(name: string, value: [number, boolean]) {
console.log( ${name} has ${value[0]} (${value[1]});
}

const trios: [string, [number, boolean]][] = [
["Amanitore", [1, true]],
["£thelflad", [2, false]l],
["Ann E. Dunwoody", [3, false]]

1
trios.forEach(trio => logTrio(...trio)); // 0Ok

trios.forkach(logTrio);

/e

// Argument of type '(name: string, value: [number, boolean]) => void'

// 1s not assignable to parameter of type

// '(value: [string, [number, boolean]], ...) => void'.

// Types of parameters 'name' and 'value' are incompatible.

// Type '[string, [number, boolean]]' is not assignable to type 'string’.

Tuple Inferences

TypeScript generally treats created arrays as variable length arrays, not
tuples. If it sees an array being used as a variable’s initial value or the
returned value for a function, then it will assume a flexible size array rather
than a fixed size tuple.

The following firstCharAndSize function is inferred as returning
(string | number)[], not [string, number], because that’s the type
inferred for its returned array literal:

// Return type: (string | number)[]

function firstCharAndSize(input: string) {
return [input[0], input.length];

}

// firstChar type: string | number
// size type: string | number
const [firstChar, size] = firstCharAndSize("Gudit");



There are two common ways in TypeScript to indicate that a value should
be a more specific tuple type instead of a general array type: explicit tuple
types and const assertions.

Explicit tuple types

Tuple types may be used in type annotations, such as the return type
annotation for a function. If the function is declared as returning a tuple
type and returns an array literal, that array literal will be inferred to be a
tuple instead of a more general variable-length array.

This firstCharAndSizeExplicit function version explicitly states that it
returns a tuple of a string and number:

// Return type: [string, number]

function firstCharAndSizeExplicit(input: string): [string, number] {
return [input[0], input.length];

}

// firstChar type: string
// size type: number
const [firstChar, size] = firstCharAndSizeExplicit("Cathay Williams");

Const asserted tuples

Typing out tuple types in explicit type annotations can be a pain for the
same reasons as typing out any explicit type annotations. It’s extra syntax
for you to write and update as code changes.

As an alternative, TypeScript provides an as const operator known as a
const assertion that can be placed after a value. Const assertions tell
TypeScript to use the most literal, read-only possible form of the value
when inferring its type. If one is placed after an array literal, it will indicate
that the array should be treated as a tuple:

// Type: (string | number)[]
const unionArray = [1157, "Tomoe"];

// Type: readonly [1157, "Tomoe"]
const readonlyTuple = [1157, "Tomoe"] as const;



Note that as const assertions go beyond switching from flexible sized
arrays to fixed size tuples: they also indicate to TypeScript that the tuple is
read-only and cannot be used in a place that expects it should be allowed to
modify the value.

In this example, pairMutable is allowed to be modified because it has a
traditional explicit tuple type. However, the as const makes the value not
assignable to the mutable pairAlsoMutable, and members of the constant
pairConst are not allowed to be modified:

const pairMutable: [number, string] = [1157, "Tomoe"];
pairMutable[0] = 1247; // Ok

const pairAlsoMutable: [number, string] = [1157, "Tomoe"] as const;

/] e
// Error: The type 'readonly [1157, "Tomoe"]' is 'readonly'
// and cannot be assigned to the mutable type '[number, string]’.

const pairConst = [1157, "Tomoe"] as const;
pairConst[0] = 1247;
// ~

// Error: Cannot assign to 'Q' because it is a read-only property.

In practice, read-only tuples are convenient for function returns. Returned
values from functions that return a tuple are often destructured immediately
anyway, so the tuple being read-only does not get in the way of using the
function.

This firstCharAndSizeAsConst returns a readonly [string, number],
but the consuming code only cares about retrieving the values from that
tuple:

// Return type: readonly [string, number]
function firstCharAndSizeAsConst(input: string) {
return [input[0], input.length] as const;

}

// firstChar type: string
// size type: number
const [firstChar, size] = firstCharAndSizeAsConst("Ching Shih");



NOTE

Read-only objects and as const assertions are covered more deeply in Chapter 9, “Type
Modifiers”.

Summary

In this chapter, you worked with declaring arrays and retrieving their
members:

e Declaring array types with [ ]

e Using parentheses to declare arrays of functions or union types

How TypeScript understands array elements as the type of the array

Working with ... spreads and rests

Declaring tuple types to represent fixed-size arrays

Using type annotations or as const assertions to create tuples

TIP

Now that you’ve finished reading this chapter, practice what you’ve learned on
https://learningtypescript.com/arrays.

What's a pirate’s favorite data structure?

Arrrrr-ays!


https://learningtypescript.com/arrays

Chapter 7. Interfaces

Why only use the
Boring built-in type shapes when

We can make our own!

I mentioned back in Chapter 4, “Objects” that although type aliases for {
... } object types are a way to describe object shapes, TypeScript also
includes an “interface” feature many developers prefer. Interfaces are
another way to declare an object shape with an associated name. Interfaces
are in many ways similar to aliased object types but are generally preferred
for their more readable error messages, speedier compiler performance, and
better interoperability with classes.

Type Aliases Versus Interfaces

Here is a quick recap of the syntax for how an aliased object type would
describe an object with a born: number and name: string:

type Poet = {
born: number;
name: string;

};
Here is the equivalent syntax for an interface:

interface Poet {
born: number;
name: string;

}

The two syntaxes are almost identical.



TIP

TypeScript developers who prefer semicolons generally put them after type aliases and not after
interfaces. This preference mirrors the difference between declaring a variable with a ; versus
declaring a class or function without.

TypeScript’s assignability checking and error messages for interfaces also
work and look just about the same as they do for object types. The
following assignability errors for assigning to the valuelLater variable
would be roughly the same if Poet was an interface or type alias:

let valuelLater: Poet;

// Ok

valuelLater = {
born: 1935,
name: 'Sara Teasdale',

}s

valuelLater = "Emily Dickinson";
// Error: Type 'string' is not assignable to 'Poet’.

valuelLater = {
born: true,
// Error: Type 'boolean' is not assignable to type 'number’.
name: 'Sappho'

};

However, there are a few key differences between interfaces and type
aliases:

e Asyou’ll see later in this chapter, interfaces can “merge” together to
be augmented—a feature particularly useful when working with third-
party code such as built-in globals or npm packages.

e Asyou’ll see in the next chapter, Chapter 8, “Classes”, interfaces can
be used to type check the structure of class declarations while type
aliases cannot.



e Interfaces are generally speedier for the TypeScript type checker to
work with: they declare a named type that can be cached more easily
internally, rather than a dynamic copy-and-paste of a new object literal
the way type aliases do.

e Because interfaces are considered named objects rather than an alias
for an unnamed object literal, their error messages are more likely to
be readable in hard edge cases.

For the latter two reasons and to maintain consistency, the rest of this book
and its associated projects default to using interfaces over aliased object
shapes. I generally recommend using interfaces whenever possible (i.e.,
until you need features such as union types from type aliases).

Types of Properties

JavaScript objects can be wild and wacky in real-world usage, including
getters and setters, properties that only sometimes exist, or accepting any
arbitrary property names. TypeScript provides a set of type system tools for
interfaces to help us model that wackiness.

TIP

Because interfaces and type aliases behave so similarly, the following types of properties
introduced in this chapter are all also usable with aliased object types.

Optional Properties

As with object types, interface properties don’t all have to be required in the
object. You can indicate an interface’s property is optional by including a ?
before the : in its type annotation.

This Book interface requires only a required property and optionally
allows an optional. Objects adhering to it may provide optional or leave
it out as long as they provide required:



interface Book {
author?: string;
pages: number;

};
// Ok

const ok: Book = {
author: "Rita Dove",
pages: 80,

s

const missing: Book = {
pages: 80
3
// Error: Property 'author' is missing in type
// '{ pages: number; }' but required in type 'Book’.

The same caveats around the difference between optional properties and
properties whose type happens to include undefined in a type union apply
to interfaces as well as object types. Chapter 13, “Configuration Options”
will describe TypeScript’s strictness settings around optional properties.

Read-Only Properties

You may sometimes wish to block users of your interface from reassigning
properties of objects adhering to an interface. TypeScript allows you to add
a readonly modifier before a property name to indicate that once set, that
property should not be set to a different value. These readonly properties
can be read from normally, but not reassigned to anything new.

For example, the text property in the below Page interface gives back a
string when accessed, but causes a type error if assigned a new value:

interface Page {
readonly text: string;

}

function read(page: Page) {
// Ok: reading the text property doesn't attempt to modify it
console.log(page.text);

nypn,
M 3

page.text +=



/]

// Error: Cannot assign to 'text'
// because it is a read-only property.

Note that readonly modifiers exist only in the type system, and only apply
to the usage of that interface. It won’t apply to an object unless that object is
used in a location that declares it to be of that interface.

In this continuation of the exclaim example, the text property is allowed
to be modified outside of the function because its parent object isn’t
explicitly used as a Text until inside the function. pageIsh is allowed to be
used as a Page because a writable property is assignable to a readonly
property (mutable properties can be read from, which is all a readonly
property needs):

const pagelsh = {
text: "Hello, world!",

};

// Ok: messengerIsh is an inferred object type with text, not a Page
page.text += "!";

// Ok: read takes in Page, which happens to
// be a more specific version of pageIsh's type
read(messengerIsh);

Declaring the variable pageIsh with the explicit type annotation : Page
would have indicated to TypeScript that its text property was readonly.
Its inferred type, however, was not readonly.

Read-only interface members are a handy way to make sure areas of code
don’t unexpectedly modify objects they’re not meant to. However,
remember that they’re a type system construct only and don’t exist in the
compiled JavaScript output code. They only protect from modification
during development with the TypeScript type checker.



Functions and Methods

It’s very common in JavaScript for object members to be functions.
TypeScript therefore allows declaring interface members as being the
function types previously covered in Chapter 5, “Functions”.

TypeScript provides two ways of declaring interface members as functions:

e Method syntax: declaring that a member of the interface is a function
intended to be called as a member of the object, like member(): void

e Property syntax: declaring that a member of the interface is equal to a
standalone function, like member: () => void

The two declaration forms are an analog for the two ways you can declare a
JavaScript object as having a function.

Both method and property members shown here are functions that may be
called with no parameters and return a string:

interface HasBothFunctionTypes {
property: () => string;
method(): string;

}

const hasBoth: HasBothFunctionTypes = {
property: () => ",
method() {
return "";
}
s

hasBoth.property(); // 0Ok
hasBoth.method(); // 0k

Both forms can receive the ? optional modifier to indicate they don’t need
to be provided:

interface OptionalReadonlyFunctions {
optionalProperty?: () => string;
optionalMethod?(): string;

}



Method and property declarations can mostly be used interchangeably. The
main differences between them that I’ll cover in this book are:

e Methods cannot be declared as readonly; properties can.
e Interface merging (covered later in this chapter) treats them differently.

e Some of the operations performed on types covered in Chapter 15,
“Type Operations” treat them differently.

Future versions of TypeScript may add the option to be more strict about
the differences between methods and property functions.

For now, the general style guide I recommend is:

e Use a method function if you know the underlying function may refer
to this, most commonly for instances of classes (covered in
Chapter 8, “Classes™).

e Use a property function otherwise.

Don’t sweat it if you mix up these two, or don’t understand the difference.
It’1] rarely impact your code unless you’re being intentional about this
scoping and which form you choose.

Call Signatures

Interfaces and object types can declare call signatures, which is a type
system description of how a value may be called like a function. Only
values that may be called in the way the call signature declares will be
assignable to the interface—i.e., a function with assignable parameters and
return type. A call signature looks similar to a function type, but with a :
colon instead of an => arrow.

The following FunctionAlias and CallSignature types both describe the
same function parameters and return type:

type FunctionAlias = (input: string) => number;



interface CallSignature {
(input: string): number;

}

// Type: (input: string) => number
const typedFunctionAlias: FunctionAlias

(input) => input.length; // 0k

// Type: (input: string) => number
const typedCallSignature: CallSignature = (input) => input.length; // 0k

Call signatures can be used to describe functions that additionally have
some user-defined property on them. TypeScript will recognize a property
added to a function declaration as adding to that function declaration’s type.

The following keepsTrackOfCalls function declaration is given a count
property of type number, making it assignable to the FunctionWithCount
interface. It can therefore be assigned to the hasCallCount argument of
type FunctionWithCount. The function at the end of the snippet was not
given a count:

interface FunctionWithCount {
count: number;
(): void;

}

let hasCallCount: FunctionWithCount;

function keepsTrackOfCalls() {
keepsTrackOfCalls.count += 1;
console.log( I've been called ${keepsTrackOfCalls.count} times! );

}

keepsTrackOfCalls.count = 0;
hasCallCount = keepsTrackOfCalls; // 0k

function doesNotHaveCount() {
console.log("No idea!");

}

hasCallCount = doesNotHaveCount;
// Error: Property 'count' is missing in type
// () => void' but required in type 'FunctionWithCalls'



Index Signatures

Some JavaScript projects create objects meant to store values under any
arbitrary string key. For these “container” objects, declaring an interface
with a field for every possible key would be impractical or impossible.

TypeScript provides a syntax called an index signature to indicate that an
interface’s objects are allowed to take in any key and give back a certain
type under that key. They’re most commonly used with string keys because
JavaScript object property lookups convert keys to strings implicitly. An
index signature looks like a regular property definition but with a type after
the key, and array brackets surrounding them, like { [1: string]: ... }.

This WordCounts interface is declared as allowing any string key with a
number value. Objects of that type aren’t bound to receiving any particular
key—as long as the value is a number:

interface WordCounts {
[i1: string]: number;

}

const counts: WordCounts = {};

counts.apple = 0; // 0Ok
counts.banana = 1; // Ok

counts.cherry = false;
// Error: Type 'boolean' is not assignable to type 'number'.

Index signatures are convenient for assigning values to an object but aren’t
completely type safe. They indicate that an object should give back a value
no matter what property is being accessed.

This publishDates value safely gives back Frankenstein as a Date but
tricks TypeScript into thinking its Beloved is defined even though it’s
undefined:

interface DatesByName {
[i1: string]: Date;

}



const publishDates: DatesByName = {
Frankenstein: new Date("1 January 1818"),

};

publishDates.Frankenstein; // Type: Date
console.log(publishDates.Frankenstein.toString()); // 0k

publishDates.Beloved; // Type: Date, but runtime value of undefined!
console.log(publishDates.Beloved.toString()); // Ok in the type system, but...
// Runtime error: Cannot read property 'toString'

// of undefined (reading publishDates.Beloved)

When possible, if you’re looking to store key-value pairs and the keys
aren’t known ahead of time, it is generally safer to use a Map. Its .get
method always returns a type with | undefined to indicate that the key
might not exist. Chapter 9, “Type Modifiers” will discuss working with
generic container classes such as Map and Set.

Mixing properties and index signatures

Interfaces are able to include explicitly named properties and catchall
string index signatures, with one catch: each named property’s type must
be assignable to its catchall index signature’s type. You can think of mixing
them as telling TypeScript that named properties give a more specific type,
and any other property falls back to the index signature’s type.

Here, HistoricalNovels declares that all properties are type number, and
additionally the Oroonoko property must exist to begin with:

interface HistoricalNovels {
Oroonoko: number;
[i1: string]: number;

}
// Ok

const novels: HistoricalNovels = {
Outlander: 1991,
Oroonoko: 1688,

};

const missingOroonoko: HistoricalNovels = {
Outlander: 1991,

};



// Error: Property 'Oroonoko' i1s missing in type
// '{ Outlander: number; }' but required in type 'HistoricalNovels'.

One common type system trick with mixed properties and index signatures
is to use a more specific property type literal for the named property than an
index signature’s primitive. As long as the named property’s type is
assignable to the index signature’s—which is true for a literal and a
primitive, respectively—TypeScript will allow it.

Here, ChapterStarts declares that a property under preface must be 0
and all other properties have the more general number. That means any
object adhering to ChapterStarts must have a preface property equal to
0:

interface ChapterStarts {
preface: 0;
[1: string]: number;

}

const correctPreface: ChapterStarts = {
preface: 0,
night: 1,
shopping: 5

3

const wrongPreface: ChapterStarts = {
preface: 1,
// Error: Type '1' is not assignable to type '0'.

};

Numeric index signatures

Although JavaScript implicitly converts object property lookup keys to
strings, it is sometimes desirable to only allow numbers as keys for an
object. TypeScript index signatures can use a number type instead of
string but with the same catch as named properties that their types must be
assignable to the catchall string index signature’s.

The following MoreNarrowNumbers interface would be allowed because
string is assignable to string | undefined, but MoreNarrowStrings
would not because string | undefined is not assignable to string:



// Ok

interface MoreNarrowNumbers {
[1: number]: string;
[i: string]: string | undefined;

}
// Ok

const mixesNumbersAndStrings: MoreNarrowNumbers = {
0: '',
key1: '',
key2: undefined,

}

interface MoreNarrowStrings {
[1: number]: string | undefined;
// Error: 'number' index type 'string | undefined'’
// 1s not assignable to 'string' index type 'string’.
[i1: string]: string;

}

Nested Interfaces

Just like object types can be nested as properties of other object types,
interface types can also have properties that are themselves interface types
(or object types).

This Novel interface contains an author property that must satisfy an inline
object type and a setting property that must satisfy the Setting interface:

interface Novel {
author: {
name: string;
b
setting: Setting;
}

interface Setting {
place: string;
year: number;

}

let myNovel: Novel;

// Ok
myNovel = {



author: {
name: 'Jane Austen',

s
setting: {
place: 'England',
year: 1812,
}
s
myNovel = {
author: {
name: 'Emily Bronté',
s
setting: {
place: 'West Yorkshire',
s
// Error: Property 'year' is missing in type
// '{ place: string; }' but required in type 'Setting’.
3

Interface Extensions

Sometimes you may end up with multiple interfaces that look similar to
each other. One interface may contain all the same members of another
interface, with a few extras added on.

TypeScript allows an interface to extend another interface, which declares it
as copying all the members of another. An interface may be marked as
extending another interface by adding the extends keyword after its name
(the “derived” interface), followed by the name of the interface to extend
(the “base” interface). Doing so indicates to TypeScript that all objects
adhering to the derived interface must also have all the members of the base
interface.

In the following example, the Novella interface extends from Writing and
thus requires objects to have at least both Novella’s pages and Writing’s
title members:

interface Writing {
title: string;
}



interface Novella extends Writing {
pages: number;

}

// Ok
let myNovella: Novella = {

pages: 195,
title: "Ethan Frome",
s

let missingPages: Novella = {

[/ e

// Error: Property 'pages' is missing in type

// '{ title: string; }' but required in type 'Novella’.
title: "The Awakening",

}

let extraProperty: Novella = {
/]

// Error: Type '{ genre: string; name: string; strategy: string; }'
// 1s not assignable to type 'Novella'.
// Object literal may only specify known properties,
// and 'genre' does not exist in type 'Novella’.
pages: 300,
strategy: "baseline",
style: "Naturalism"

}s

Interface extensions are a nifty way to represent that one type of entity in
your project is a superset (it includes all the members of) another entity.
They allow you to avoid having to type out the same code repeatedly across
multiple interfaces to represent that relationship.

Overridden Properties

Derived interfaces may override, or replace, properties from their base
interface by declaring the property again with a different type. TypeScript’s
type checker will enforce that an overridden property must be assignable to
its base property. It does so to ensure that instances of the derived interface
type stay assignable to the base interface type.



Most derived interfaces that redeclare properties do so either to make those
properties a more specific subset of a type union or to make the properties a
type that extends from the base interface’s type.

For example, this WithNullableName type is properly made non-nullable in
WithNonNullableName. WithNumericName, however, is not allowed as
number | string and is not assignable to string | null:

interface WithNullableName {
name: string | null;

}

interface WithNonNullableName extends WithNullableName {
name: string;

}

interface WithNumericName extends WithNullableName {
name: number | string;

}

// Error: Interface 'WithNumericName' incorrectly

// extends interface 'WithNullableName'.

// Types of property 'name' are incompatible.

// Type 'string | number' is not assignable to type 'string [ null’.
// Type 'number' is not assignable to type 'string'.

Extending Multiple Interfaces

Interfaces in TypeScript are allowed to be declared as extending multiple
other interfaces. Any number of interface names separated by commas may
be used after the extends keyword following the derived interface’s name.
The derived interface will receive all members from all base interfaces.

Here, the GivesBothAndEither has three methods: one on its own, one
from GivesNumber, and one from GivesString:

interface GivesNumber {
giveNumber(): number;

}

interface GivesString {
giveString(): string;

}



interface GivesBothAndEither extends GivesNumber, GivesString {
giveEither(): number | string;

}

function useGivesBoth(instance: GivesBothAndEither) {
instance.giveEither(); // Type: number | string
instance.giveNumber(); // Type: number
instance.giveString(); // Type: string

}

By marking an interface as extending multiple other interfaces, you can
both reduce code duplication and make it easier for object shapes to be
reused across different areas of code.

Interface Merging

One of the important features of interfaces is their ability to merge with
each other. Interface merging means if two interfaces are declared in the
same scope with the same name, they’ll join into one bigger interface under
that name with all declared fields.

This snippet declares a Merged interface with two properties: fromFirst
and fromSecond:

interface Merged {
fromFirst: string;

}

interface Merged {
fromSecond: number;

}

// Equivalent to:

// interface Merged {
//  fromFirst: string;
//  fromSecond: number;

/7 }

Interface merging isn’t a feature used very often in day-to-day TypeScript
development. I would recommend avoiding it when possible, as it can be



difficult to understand code where an interface is declared in multiple
places.

However, interface merging is particularly useful for augmenting interfaces
from external packages or built-in global interfaces such as Window. For
example, when using the default TypeScript compiler options, declaring a
Window interface in a file with a myEnvironmentVariable property makes
awindow.myEnvironmentVariab'le available:

interface Window {
myEnvironmentVariable: string;

}

window.myEnvironmentVariable; // Type: string

I’1l cover type definitions more deeply in Chapter 11, “Declaration Files”
and TypeScript global type options in Chapter 13, “Configuration Options”.

Member Naming Conflicts

Note that merged interfaces may not declare the same name of a property
multiple times with different types. If a property is already declared in an
interface, a later merged interface must use the same type.

In this MergedProperties interface, the same property is allowed because
it is the same in both declarations, but different is an error for being a
different type:

interface MergedProperties {
same: (input: boolean) => string;
different: (input: string) => string;

}

interface MergedProperties {
same: (input: boolean) => string; // 0k

different: (input: number) => string;
// Error: Subsequent property declarations must have the same type.
// Property 'different' must be of type '(input: string) => string’,
// but here has type '(input: number) => string’.

}



Merged interfaces may, however, define a method with the same name and
a different signature. Doing so creates a function overload for the method.

This MergedMethods interface creates a different method that has two
overloads:

interface MergedMethods {
different(input: string): string;

}

interface MergedMethods {
different(input: number): string; // 0Ok
}

Summary
This chapter introduced how object types may be described by interfaces:
e Using interfaces instead of type aliases to declare object types

e Various interface property types: optional, read-only, function, and
method

e Using index signatures for catchall object properties
e Reusing interfaces using nested interfaces and extends inheritance

e How interfaces with the same name can merge together

Next up will be a native JavaScript syntax for setting up multiple objects to
have the same properties: classes.

TIP

Now that you’ve finished reading this chapter, practice what you’ve learned on
https://learningtypescript.com/objects-and-interfaces.


https://learningtypescript.com/objects-and-interfaces

Why are interfaces good drivers?

They 're great at merging.



Chapter 8. Classes

Some functional devs
Try to never use classes

Too intense for me

The world of JavaScript during TypeScript’s creation and release in the
early 2010s was quite different from today. Features such as arrow
functions and let/const variables that would later be standardized in
ES2015 were still distant hopes on the horizon. Babel was a few years away
from its first commit; its predecessor tools such as Traceur that converted
newer JavaScript syntax to old hadn’t achieved full mainstream adoption.

TypeScript’s early marketing and feature set were tailored to that world. In
addition to its type checking, its transpiler was emphasized—with classes as
a frequent example. Nowadays TypeScript’s class support is just one feature
among many to support all JavaScript language features. TypeScript neither
encourages nor discourages class use or any other popular JavaScript
pattern.

Class Methods

TypeScript generally understands methods the same way it understands
standalone functions. Parameter types default to any unless given a type or
default value; calling the method requires an acceptable number of
arguments; return types can generally be inferred if the function is not
recursive.

This code snippet defines a Greeter class with a greet class method that

takes in a single required parameter of type number:

class Greeter {
greet(name: string) {



console.log( ${name}, do your stuff!’);

}

new Greeter().greet("Miss Frizzle"); // Ok

new Greeter().greet();

/o e
// Error: Expected 1 arguments, but got 0.

Class constructors are treated like typical class methods with regards to
their parameters. TypeScript will perform type checking to make sure a
correct number of arguments with correct types are provided to method
calls.

This Greeted constructor also expects its message: string parameter to
be provided:

class Greeted {
constructor(message: string) {
console.log( As I always say: $S{message}!’);

}
}

new Greeted("take chances, make mistakes, get messy");

new Greeted();
// Error: Expected 1 arguments, but got 0.

I’ll cover constructors in the context of subclasses later in this chapter.

Class Properties

To read from or write to a property on a class in TypeScript, it must be
explicitly declared in the class. Class properties are declared using the same
syntax as interfaces: their name followed optionally by a type annotation.

TypeScript will not attempt to deduce what members may exist on a class
from their assignments in a constructor.



In this example, destination is allowed to be assigned to and accessed on
instances of the FieldTrip class because it is explicitly declared as a
string. The this.nonexistent assignment in the constructor is not
allowed because the class does not declare a nonexistent property:

class FieldTrip {
destination: string;

constructor(destination: string) {
this.destination = destination; // 0k
console.log( We're going to ${this.destination}!);

this.nonexistent = destination;

[/ e

// Error: Property 'nonexistent' does not exist on type 'FieldTrip’.

Explicitly declaring class properties allows TypeScript to quickly
understand what 1s or is not allowed to exist on instances of classes. Later,
when class instances are in use, TypeScript uses that understanding to give
a type error if code attempts to access a member of a class instance not
known to exist, such as with this continuation’s trip.nonexistent:

const trip = new FieldTrip("planetarium");
trip.destination; // 0k
trip.nonexistent;

[]

// Error: Property 'nonexistent' does not exist on type 'FieldTrip’.

Function Properties

Let’s recap some JavaScript method scoping and syntax fundamentals for a
bit, as they can be surprising if you’re not accustomed to them. JavaScript
contains two syntaxes for declaring a member on a class to be a callable
function: method and property.



I’ve already shown the method approach of putting parentheses after the
member name, like myFunction() {3}. The method approach assigns a
function to the class prototype, so all class instances use the same function
definition.

This WithMethod class declares a myMethod method that all instances are
able to refer to:

class WithMethod {
myMethod() {}
}

new WithMethod().myMethod === new WithMethod().myMethod; // true

The other syntax is to declare a property whose value happens to be a
function. This creates a new function per instance of the class, which can be
useful with () => arrow functions whose this scope should always point
to the class instance (at the time and memory cost of creating a new
function per class instance).

This WithProperty class contains a single property of name myProperty
and type () => void that will be re-created for each class instance:

class WithProperty {
myProperty: () => {}
}

new WithMethod().myProperty === new WithMethod().myProperty; // false

Function properties can be given parameters and return types using the
same syntax as class methods and standalone functions. After all, they’re a
value assigned to a class member and the value happens to be a function.

This WithPropertyParameters class has a takesParameters property of
type (input: string) => number:

class WithPropertyParameters {
takesParameters = (input: boolean) => input ? "Yes" : "No";

}



const instance = new WithPropertyParameters();
instance.takesParameters(true); // 0k

instance.takesParameters(123);

//

// Error: Argument of type 'number' is not
// assignable to parameter of type 'boolean'.

Initialization Checking

With strict compiler settings enabled, TypeScript will check that each
property declared whose type does not include undefined is assigned a
value 1n the constructor. This strict initialization checking is useful because
it prevents code from accidentally forgetting to assign a value to a class

property.
The following WithValue class does not assign a value to its unused
property, which TypeScript recognizes as a type error:

class Withvalue {
immediate = 0; // Ok
later: number; // Ok (set in the constructor)
mayBeUndefined: number | undefined; // Ok (allowed to be undefined)

unused: number;
// Error: Property 'unused' has no initializer
// and is not definitely assigned in the constructor.

constructor() {
this.later = 1;

}

Without strict initialization checking, a class instance could be allowed to
access a value that might be undefined even though the type system says it
can’t be.

This example would compile happily if strict initialization checking didn’t
happen, but the resultant JavaScript would crash at runtime:



class MissingInitializer {
property: string;

}

new MissingInitializer().property.length;
// TypeError: Cannot read property 'length' of undefined

The billion-dollar mistake strikes again!

Configuring strict property initialization checking with TypeScript’s
strictPropertyInitialization compiler option is covered in
Chapter 12, “Using IDE Features”.

Definitely assigned properties

Although strict initialization checking is useful most of the time, you may
come across some cases where a class property is intentionally able to be
unassigned after the class constructor. If you are absolutely sure a property
should not have strict initialization checking applied to it, you can add a !
after its name to disable the check. Doing so asserts to TypeScript that the
property will be assigned a value other than undefined before its first
usage.

This ActivitiesQueue class is meant to be re-initialized any number of
times separately from its constructor, so its pending property must be
asserted with a !:

class ActivitiesQueue {
pending!: string[]; // Ok

initialize(pending: string[]) {
this.pending = pending;

}
next() {

return this.pending.pop();
}

}

const activities = new ActivitiesQueue();



activities.initialize(['eat', 'sleep', 'learn'])
activities.next();

Needing to disable strict initialization checking on a class property is often a sign of code being
set up in a way that doesn’t lend itself well to type checking. Instead of adding a ! assertion and
reducing type safety for the property, consider refactoring the class to no longer need the assertion.

Optional Properties

Much like interfaces, classes in TypeScript may declare a property as
optional by adding a ? after its declaration name. Optional properties
behave roughly the same as properties whose types happen to be a union
that includes | undefined. Strict initialization checking won’t mind if
they’re not explicitly set in their constructor.

This OptionalProperty class marks its property as optional, so it’s
allowed to not be assigned in the class constructor regardless of strict
property initialization checking:

class MissingInitializer {
property?: string;

}
new MissingInitializer().property?.length; // 0k

new MissingInitializer().property.length;
// Error: Object is possibly 'undefined'.

Read-Only Properties

Again much like interfaces, classes in TypeScript may declare a property as
read-only by adding the readonly keyword before its declaration name.
The readonly keyword exists purely within the type system and is removed
when compiling to JavaScript.

Properties declared as readonly may only be assigned initial values where
they are declared or in a constructor. Any other location—including



methods on the class itself—may only read from the properties, not write to
them.

In this example, the text property on the Quote class is given a value in the

constructor, but the other uses cause type errors:

class Quote {
readonly text: string;

constructor(text: string) {
this.text = ;

}

emphasize() {
this.text += "!";
VAR

// Error: Cannot assign to 'text' because it is a read-only property.

}

const quote = new Quote(
"There is a brilliant child locked inside every student."

);

Quote.text = "Ha!";
// Error: Cannot assign to 'text' because it is a read-only property.

WARNING

External users of your code, such as consumers of any npm packages you published, might not
respect readonly modifiers—especially if they’re writing JavaScript and don’t have type
checking. If you need true read-only protection, consider using # private fields and/or get()
function properties.

Properties declared as readonly with an initial value of a primitive have a
slight quirk compared to other properties: they are inferred to be their
value’s narrowed literal type if possible, rather than the wider primitive.
TypeScript feels comfortable with a more aggressive initial type narrowing
because it knows the value won’t be changed later; it is similar to const
variables taking on narrower types than let variables.



In this example, the class properties are both initially declared as a string
literal, so in order to widen one of them to string, a type annotation is
needed:

class RandomQuote {
readonly explicit: string = "Home is the nicest word there is.";
readonly implicit = "Home is the nicest word there is.";

constructor() {
if (Math.random () > 0.5) {
this.explicit = "We start learning the minute we're born." // 0k;

this.implicit = "We start learning the minute we're born.";
// Error: Type '"We start learning the minute we're born."' 1is
// not assignable to type '"Home is the nicest word there is."'.

}

const quote = new RandomQuote();

quote.explicit; // Type: string
quote.implicit; // Type: "Home is the nicest word there is."

Widening a property’s type explicitly is not necessary very often. Still, it
can sometimes be useful in the case of conditional logic in constructors like
the one in RandomQuote.

Classes as Types

Classes are relatively unique in the type system in that a class declaration
creates both a runtime value—the class itself—as well as a type that can be
used in type annotations.

The name of this Teacher class 1s used to annotate a teacher variable,
telling TypeScript that it should be assigned only values that are assignable
to the Teacher class—such as instances of the Teacher class itself:

class Teacher {
sayHello() {



console.log("Take chances, make mistakes, get messy!");

}

let teacher: Teacher;
teacher = new Teacher(); // Ok

teacher = "Wahoo!";
// Error: Type 'string' is not assignable to type 'Teacher'.

Interestingly, TypeScript will consider any object type that happens to
include all the same members of a class to be assignable to the class. This is
because TypeScript’s structural typing cares only about the shape of objects,
not how they’re declared.

Here, withSchoolBus takes in a parameter of type SchoolBus. That can be
satisfied by any object that happens to have a getAbilities property of
type () => string[], such as an instance of the SchoolBus class:

class SchoolBus {
getAbilities() {
return ["magic", "shapeshifting"];
}
}

function withSchoolBus(bus: SchoolBus) {
console.log(bus.getAbilities());

}

withSchoolBus(new SchoolBus()); // Ok

// Ok
withSchoolBus({

getAbilities: () => ["transmogrification"],

1)

withSchoolBus({
getAbilities: () => 123,
// -
// Error: Type 'number' is not assignable to type 'string[]’.

s



TIP

In most real-world code, developers don’t pass object values in places that ask for class types.
This structural checking behavior may seem unexpected but doesn’t come up very often.

Classes and Interfaces

Back in Chapter 7, “Interfaces”, I showed you how interfaces allow
TypeScript developers to set up expectations for object shapes in code.
TypeScript allows a class to declare its instances as adhering to an interface
by adding the implements keyword after the class name, followed by the
name of an interface. Doing so indicates to TypeScript that instances of the
class should be assignable to each of those interfaces. Any mismatches
would be called out as type errors by the type checker.

In this example, the Student class correctly implements the Learner
interface by including its property name and method study, but Slacker is
missing a study and thus results in a type error:

interface Learner {
name: string;
study(hours: number): void;

}

class Student implements Learner {
name: string;

constructor(name: string) {
this.name = name;

}

study(hours: number) {
for (let 1 = 0; 1 < hours; i+= 1) {
console.log("...studying...");

}
}

class Slacker implements Learner {

)] i



// Error: Class 'Slacker' incorrectly implements interface 'Learner’.
// Property 'study' is missing in type 'Slacker'

// but required in type 'Learner'.

name = "Rocky";

NOTE

Interfaces meant to be implemented by classes are a typical reason to use the method syntax for
declaring an interface member as a function—as used by the Learner interface.

Marking a class as implementing an interface doesn’t change anything
about how the class is used. If the class already happened to match up to the
interface, TypeScript’s type checker would have allowed its instances to be
used in places where an instance of the interface is required anyway.
TypeScript won’t even infer the types of methods or properties on the class
from the interface: if we had added a study(hours) {} method to the
Slacker example, TypeScript would consider the hours parameter an
implicit any unless we gave it a type annotation.

This version of the Student class causes implicit any type errors because it
doesn’t provide type annotations on its members:

class Student implements Learner {
name;
// Error: Member 'name' implicitly has an 'any' type.

study(hours) {
// Error: Parameter 'hours' implicitly has an 'any' type.

}

Implementing an interface is purely a safety check. It does not copy any
interface members onto the class definition for you. Rather, implementing
an interface signals your intention to the type checker and surfaces type
errors in the class definition, rather than later on where class instances are
used. It’s similar in purpose to adding a type annotation to a variable even
though it has an initial value.



Implementing Multiple Interfaces

Classes in TypeScript are allowed to be declared as implementing multiple
interfaces. The list of implemented interfaces for a class may be any
number of interface names with commas in-between.

In this example, both classes are required to have at least a grades property
to implement Graded and a report property to implement Reporter. The
Empty class has two type errors for failing to implement either of the
interfaces properly:

interface Graded {
grades: number[];

}

interface Reporter {
report: () => string;

}

class ReportCard implements Graded, Reporter {
grades: number[];

constructor(grades: number[]) {
this.grades = grades;

}
report() {

return this.grades.join(", ");
}

}

class Empty implements Graded, Reporter { }

// Error: Class 'Empty' incorrectly implements interface 'Graded'.
// Property 'grades' is missing in type 'Empty'
// but required in type 'Graded'.

// Error: Class 'Empty' incorrectly implements interface 'Reporter’.
//  Property 'report' is missing in type 'Empty'
//  but required in type 'Reporter’.

In practice, there may be some interfaces whose definitions make it
impossible to have a class implement both. Attempting to declare a class



implementing two conflicting interfaces will result in at least one type error
on the class.

The following AgeIsANumber and AgeIsNotANumber interfaces declare
very different types for an age property. Neither the AsNumber class nor
NotAsNumber class properly implement both:

interface AgeIsANumber {
age: number;

}

interface AgeIsNotANumber {
age: () => string;

}

class AsNumber implements AgeIsANumber, AgeIsNotANumber {
age = 0;
/]~
// Error: Property 'age' in type 'AsNumber' is not assignable
// to the same property in base type 'AgeIsNotANumber'.
//  Type 'number' is not assignable to type '() => string’.

class NotAsNumber implements AgeIsANumber, AgeIsNotANumber {
age() { return ""; }

/]~

// Error: Property 'age' in type 'NotAsNumber' is not assignable
// to the same property in base type 'AgeIsANumber’.

// Type '() => string' is not assignable to type 'number'.

}

Cases where two interfaces describe very different object shapes generally
indicate you shouldn’t try to implement them with the same class.

Extending a Class

TypeScript adds type checking onto the JavaScript concept of a class
extending, or subclassing, another class. To start, any method or property
declared on a base class will be available on the subclass, also known as the
derived class.



In this example, Teacher declares a teach method that may be used by
instances of the StudentTeacher subclass:

class Teacher {

teach() {
console.log("The surest test of discipline is its absence.");

}
}

class StudentTeacher extends Teacher {

learn() {
console.log("I cannot afford the luxury of a closed mind.");

}
}

const teacher = new StudentTeacher();
teacher.teach(); // Ok (defined on base)
teacher.learn(); // Ok (defined on subclass)

teacher.other();

[

// Error: Property 'other' does not exist on type 'StudentTeacher'.

Extension Assignability

Subclasses inherit members from their base class much like derived
interfaces extend base interfaces. Instances of subclasses have all the
members of their base class and thus may be used wherever an instance of
the base is required. If a base class doesn’t have all the members a subclass
does, then it can’t be used when the more specific subclass is required.

Instances of the following Lesson class may not be used where instances of
its derived OnlinelLesson are required, but derived instances may be used
to satisfy either the base or subclass:

class Lesson {
subject: string;

constructor(subject: string) {
this.subject = subject;

}



class OnlineLesson extends Lesson {
url: string;

constructor(subject: string, url: string) {
super(subject);
this.url = url;

}

let lesson: Lesson;
lesson = new Lesson('"coding"); // Ok
lesson = new OnlineLesson("coding", "oreilly.com"); // 0k

let online: Onlinelesson;
online = new OnlineLesson("coding", "oreilly.com"); // Ok

online = new Lesson("coding");
// Error: Property 'url' is missing in type
// 'Lesson' but required in type 'OnlinelLesson’.

Per TypeScript’s structural typing, if all the members on a subclass already
exist on its base class with the same type, then instances of the base class
are still allowed to be used in place of the subclass.

In this example, LabeledPastGrades only adds an optional property to
PastGrades, so instances of the base class may be used in place of the
subclass:

class PastGrades {
grades: number[] = [];

}

class LabeledPastGrades extends PastGrades {
label?: string;

}

let subClass: LabeledPastGrades;

new LabeledPastGrades(); // 0Ok
new PastGrades(); // Ok

subClass
subClass



TIP

In most real-world code, subclasses generally add new required type information on top of their
base class. This structural checking behavior may seem unexpected but doesn’t come up very
often.

Overridden Constructors

As with vanilla JavaScript, subclasses are not required by TypeScript to
define their own constructor. Subclasses without their own constructor
implicitly use the constructor from their base class.

In JavaScript, if a subclass does declare its own constructor, then it must
call its base class constructor via the super keyword. Subclass constructors
may declare any parameters regardless of what their base class requires.
TypeScript’s type checker will make sure that the call to the base class
constructor uses the correct parameters.

In this example, PassingAnnouncer’s constructor correctly calls the base
constructor with a number argument, while FailingAnnouncer gets a type
error for forgetting to make that call:

class GradeAnnouncer {
message: string;

constructor(grade: number) {
this.message = grade >= 65 ? "Maybe next time...'

: "You pass!";
}
}

class PassingAnnouncer extends GradeAnnouncer {
constructor() {
super(100);
}
}

class FailingAnnouncer extends GradeAnnouncer {
constructor() { }

/]

// Error: Constructors for subclasses must contain a 'super' call.

}



As per JavaScript rules, the constructor of a subclass must call the base
constructor before accessing this or super. TypeScript will report a type
error if it sees a this or super being accessed before super().

The following ContinuedGradesTally class erroneously refers to
this.grades in its constructor before calling to super():

class GradesTally {
grades: number[] = [];

addGrades(...grades: number[]) {
this.grades.push(...grades);
return this.grades.length;

}

class ContinuedGradesTally extends GradesTally {
constructor(previousGrades: number[]) {
this.grades = [...previousGrades];
// Error: 'super' must be called before accessing
// 'this' in the constructor of a subclass.

super();

console.log("Starting with length", this.grades.length); // 0k

Overridden Methods

Subclasses may redeclare new methods with the same names as the base
class, as long as the method on the subclass method is assignable to the
method on the base class. Remember, since subclasses can be used
wherever the original class is used, the types of the new methods must be
usable in place of the original methods.

In this example, FailureCounter’s countGrades method is permitted
because it has the same first parameter and return type as the base
GradeCounter’s countGrades method. AnyFailureChecker’s
countGrades causes a type error for having the wrong return type:



class GradeCounter {
countGrades(grades: string[], letter: string) {
return grades.filter(grade => grade === letter).length;
}
}

class FailureCounter extends GradeCounter {
countGrades(grades: string[]) {
return super.countGrades(grades, "F");
}
}

class AnyFailureChecker extends GradeCounter {
countGrades(grades: string[]) {

// Property 'countGrades' in type 'AnyFailureChecker' is not
// assignable to the same property in base type 'GradeCounter'.
// Type '(grades: string[]) => boolean' is not assignable
// to type '(grades: string[], letter: string) => number'.
// Type 'boolean' is not assignable to type 'number'.
return super.countGrades(grades, "F") !== 0;

}

const counter: GradeCounter = new AnyFailureChecker();

// Expected type: number
// Actual type: boolean
const count = counter.countGrades(["A", "C", "F"]);

Overridden Properties

Subclasses may also explicitly redeclare properties of their base class with
the same name, as long as the new type is assignable to the type on the base
class. As with overridden methods, subclasses must structurally match up
with base classes.

Most subclasses that redeclare properties do so either to make those

properties a more specific subset of a type union or to make the properties a

type that extends from the base class property’s type.

In this example, the base class Assignment declares its grade to be number
| undefined, while the subclass GradedAssignment declares it as a
number that must always exist:



class Assignment {
grade?: number;

}

class GradedAssignment extends Assignment {
grade: number;

constructor(grade: number) {

super();
this.grade = grade;

Expanding the allowed set of values of a property’s union type is not
allowed, as doing so would make the subclass property no longer assignable
to the base class property’s type.

In this example, VagueGrade’s value tries to add | string on top of the
base class NumericGrade’s number type, causing a type error:

class NumericGrade {
value = 0;

}

class VagueGrade extends NumericGrade {
value = Math.random() > 0.5 2 1 : "...";
// Error: Property 'value' in type 'NumberOrString' is not
// assignable to the same property in base type 'JustNumber'.
// Type 'string | number' is not assignable to type 'number'.
// Type 'string' is not assignable to type 'number'.

}

const instance: NumericGrade = new VagueGrade();
// Expected type: number

// Actual type: number | string
instance.value;

Abstract Classes

It can sometimes be useful to create a base class that doesn’t itself declare
the implementation of some methods, but instead expects a subclass to



provide them. Marking a class as abstract is done by adding TypeScript’s
abstract keyword in front of the class name and in front of any method
intended to be abstract. Those abstract method declarations skip providing a
body in the abstract base class; instead, they are declared the same way an
interface would be.

In this example, the School class and its getStudentTypes method are
marked as abstract. Its subclasses—Preschool and Absence—are
therefore expected to implement getStudentTypes:

abstract class School {
readonly name: string;

constructor(name: string) {
this.name = name;

}

abstract getStudentTypes(): string[];
}

class Preschool extends School {
getStudentTypes() {
return ["preschooler"];

}
}

class Absence extends School { }

/] s
// Error: Nonabstract class 'Absence’ does not implement
// inherited abstract member 'getStudentTypes' from class 'School'’.

An abstract class cannot be instantiated directly, as it doesn’t have
definitions for some methods that its implementation may assume do exist.
Only nonabstract (“concrete”) classes can be instantiated.

Continuing the School example, attempting to call new School would
result in a TypeScript type error:

let school: School;

school = new Preschool("Sunnyside Daycare"); // 0Ok



school = new School("somewhere else");
// Error: Cannot create an instance of an abstract class.

Abstract classes are often used in frameworks where consumers are
expected to fill out details of a class. The class may be used as a type
annotation to indicate values must adhere to the class—as with the earlier
example of school: School—but creating new instances must be done
with subclasses.

Member Visibility

JavaScript includes the ability to start the name of a class member with # to
mark it as a “private” class member. Private class members may only be
accessed by instances of that class. JavaScript runtimes enforce that privacy
by throwing an error if an area of code outside the class tries to access the
private method or property.

TypeScript’s class support predates JavaScript’s true # privacy, and while
TypeScript supports private class members, it also allows a slightly more
nuanced set of privacy definitions on class methods and properties that exist
solely in the type system. TypeScript’s member visibilities are achieved by
adding one of the following keywords before the declaration name of a
class member:

public (default)
Allowed to be accessed by anybody, anywhere

protected

Allowed to be accessed only by the class itself and its subclasses

private

Allowed to be accessed only by the class itself



These keywords exist purely within the type system. They’re removed
along with all other type system syntax when the code is compiled to
JavaScript.

Here, Base declares two public members, one protected, one private,
and one true private with #truePrivate. Subclass is allowed to access the
public and protected members but not private or #truePrivate:

class Base {
isPublicImplicit = 0;
public isPublicExplicit =
protected isProtected = 2;
private isPrivate = 3;
#truePrivate = 4;

1;

}

class Subclass extends Base {
examples() {
this.isPublicImplicit; // 0Ok
this.isPublicExplicit; // 0k
this.isProtected; // 0Ok

this.isPrivate;
// Error: Property 'isPrivate' is private
// and only accessible within class 'Base’.

this.#truePrivate;
// Property '#truePrivate' is not accessible outside
// class 'Base' because it has a private identifier.

}

new Subclass().isPublicImplicit; // 0Ok
new Subclass().isPublicExplicit; // 0Ok

new Subclass().isProtected;

/o s
// Error: Property 'isProtected' is protected

// and only accessible within class 'Base' and its subclasses.

new Subclass().isPrivate;

/o e
// Error: Property 'isPrivate' is private
// and only accessible within class 'Base’.



The key difference between TypeScript’s member visibilities and
JavaScript’s true private declarations is that TypeScript’s exist only in the
type system, while JavaScript’s also exist at runtime. A TypeScript class
member declared as protected or private will compile to the same
JavaScript code as if they were declared public explicitly or implicitly. As
with interfaces and type annotations, visibility keywords are erased when
outputting JavaScript. Only # private fields are truly private in runtime
JavaScript.

Visibility modifiers may be marked along with readonly. To declare a
member both as readonly and with an explicit visibility, the visibility
comes first.

This TwoKeywords class declares its name member as both private and

readonly:

class TwoKeywords {
private readonly name: string;

constructor() {
this.name = "Anne Sullivan"; // 0Ok

}
Log() {

console.log(this.name); // Ok
}

}

const two = new TwoKeywords();

two.name = "Savitribai Phule";

/] e

// Error: Property 'name' is private and
// only accessible within class 'TwoKeywords'.

) e~

// Error: Cannot assign to 'name'
// because it is a read-only property.

Note that it 1s not permitted to mix TypeScript’s old member visibility
keyword with JavaScript’s new # private fields. Private fields are always



private by default, so there’s no need to additionally mark them with the
private keyword.

Static Field Modifiers

JavaScript allows declaring members on a class itself—rather than its
instances—using the static keyword. TypeScript supports using the
static keyword on its own and/or with readonly and/or with one of the
visibility keywords. When combined, the visibility keyword comes first,
then static, then readonly.

This HasStatic class puts them all together to make its static prompt and
answer properties both readonly and protected:

class Question {
protected static readonly answer: "bash";
protected static readonly prompt =
"What's an ogre's favorite programming language?";

guess(getAnswer: (prompt: string) => string) {
const answer = getAnswer(Question.prompt);

// Ok

if (answer === Question.answer) {
console.log("You got it!");

} else {
console.log("Try again...")

}
}

Question.answer;

[ e
// Error: Property 'answer' is protected and only
// accessible within class 'HasStatic' and its subclasses.

Using read-only and/or visibility modifiers to static class fields is useful for
restricting those fields from being accessed or modified outside their class.



Summary

This chapter introduced a plethora of type system features and syntaxes
around classes:

e Declaring and using class methods and properties

e Marking properties readonly and/or optional

e Using class names as types in type annotations

e Implementing interfaces to enforce class instance shapes

e Extending classes, along with assignability and override rules for
subclasses

e Marking classes and methods as abstract

e Adding type system modifiers to class fields

TIP

Now that you’ve finished reading this chapter, practice what you’ve learned on
https://learningtypescript.com/classes.

Why do object-oriented programming developers always wear suits?

Because they’ve got class.


https://learningtypescript.com/classes

Chapter 9. Type Modifiers

Types of types from types.

)

“Its turtles all the way down,’

Anders likes to say.

By now you’ve read all about how the TypeScript type system works with
existing JavaScript constructs such as arrays, classes, and objects. For this
chapter and Chapter 10, “Generics”, I’'m going to take a step further into the
type system itself and show features that focus on writing more precise
types, as well as types based on other types.

Top Types

I mentioned the concept of a bottom type back in Chapter 4, “Objects” to
describe a type that can have no possible values and can’t be reached. It
stands to reason that the opposite might also exist in type theory. It does!

A top type, or universal type, is a type that can represent any possible value
in a system. Values of all other types can be provided to a location whose
type is a top type. In other words, all types are assignable to a top type.

any, Again

The any type can act as a top type, in that any type can be provided to a
location of type any. any is generally used when a location is allowed to
accept data of any type, such as the parameters to console. log:

let anyValue: any;
anyValue = "Lucille Ball"; // 0k
anyValue = 123; // 0k

console.log(anyValue); // Ok



The problem with any is that it explicitly tells TypeScript not to perform
type checking on that value’s assignability or members. That lack of safety
is useful if you’d like to quickly bypass TypeScript’s type checker, but the
disabling of type checking reduces TypeScript’s usefulness for that value.

For example, the name. toUpperCase() call below definitely will crash, but
because name is declared as any, TypeScript does not report a type
complaint:

function greetComedian(name: any) {
// No type error...
console.log( Announcing ${name.toUpperCase()}! );

}

greetComedian({ name: "Bea Arthur" });
// Runtime error: name.toUpperCase is not a function

If you want to indicate that a value can be anything, the unknown type is
much safer.

unknown

The unknown type in TypeScript is its true top type. unknown is similar to
any in that all objects may be passed to locations of type unknown. The key
difference with unknown is that TypeScript is much more restrictive about
values of type unknown:

e TypeScript does not allow directly accessing properties of unknown
typed values.

e unknown is not assignable to types that are not a top type (any or
unknown).

Attempting to access a property of an unknown typed value, as in the
following snippet, will cause TypeScript to report a type error:

function greetComedian(name: unknown) {
console.log( Announcing ${name.toUpperCase()}! );

//



// Error: Object is of type 'unknown'.

The only way TypeScript will allow code to access members on a name of
type unknown is if the value’s type is narrowed, such as using instanceof
or typeof, or with a type assertion.

This code snippet uses typeof to narrow name from unknown to string:

function greetComedianSafety(name: unknown) {

if (typeof value === "string") {
console.log( Announcing ${name.toUpperCase()}!"); // Ok
} else {

console.log("Well, I'm off.");

}
}

greetComedianSafety("Betty White"); // Logs: 4
greetComedianSafety({}); // Does not log

Those two restrictions make unknown a much safer type to use than any.
You should generally prefer using unknown instead of any when possible.

Type Predicates

I’ve previously shown you how JavaScript constructs such as instanceof
and typeof can be used to narrow types. That’s all fine and good for
directly using that limited set of checks, but it gets lost if you wrap the logic
with a function.

For example, this 1sNumberOrString function takes in a value and returns
a boolean indicating whether the value is a number or string. We as
humans can infer that the va'lue inside the if statement must therefore be
one of those two types since isNumberOrString(value) returned true, but
TypeScript does not. All it knows is that i{sNumberOrString returns a
boolean—mnot that it’s meant to narrow the type of an argument:

function isNumberOrString(value: unknown) {
return [ 'number', 'string'].includes(typeof value);



}

function logValueIfExists(value: number | string | null | undefined) {
if (isNumberOrString(value)) {
// Type of value: number | string | null | undefined
value.toString();
// Error: Object is possibly undefined.
} else {
console.log("Value does not exist:", value);

}

TypeScript has a special syntax for functions that return a boolean meant to
indicate whether an argument is a particular type. This is referred to as a
type predicate, also sometimes called a “user-defined type guard”: you the
developer are creating your own type guard akin to instanceof or typeof.
Type predicates are commonly used to indicate whether an argument passed
in as a parameter is a more specific type than the parameter’s.

Type predicate’s return types can be declared as the name of a parameter,
the is keyword, and some type:

function typePredicate(input: WideType): input is NarrowType;

We can change the previous example’s helper function to have an explicit
return type that explicitly states value is number | string. TypeScript
will then be able to infer that blocks of code only reachable if value 1is
number | stringis true must have a value of type number | string.
Additionally, blocks of code only reachable if value is number |
stringis false must have a value of type null | undefined:

function isNumberOrString(value: unknown): value is number | string {
return [ 'number', 'string'].includes(typeof value);

}

function logValueIfExists(value: number | string | null | undefined) {
if (isNumberOrString(value)) {
// Type of value: number | string
value.toString(); // Ok
} else {
// Type of value: null | undefined



console.log("value does not exist:", value);

You can think of a type predicate as returning not just a boolean, but also an
indication that the argument was that more specific type.

Type predicates are often used to check whether an object already known to
be an instance of one interface is an instance of a more specific interface.

Here, the StandupComedian interface contains additional information on
top of Comedian. The isStandupComedian type guard can be used to check
whether a general Comedian is specifically a StandupComedian:

interface Comedian {
funny: boolean;

}

interface StandupComedian extends Comedian {
routine: string;

}

function isStandupComedian(value: Comedian): value is StandupComedian {
return 'routine' in value;

}

function workWithComedian(value: Comedian) {
if (isStandupComedian(value)) {
// Type of value: StandupComedian
console.log(value.routine); // 0Ok

}

// Type of value: Comedian
console.log(value.routine);

// ~maa

// Error: Property 'routine' does not exist on type 'Comedian'.

Be warned: because type predicates also narrow types in the false case, you
might get surprising results if a type predicate checks more than just the
type of its input.



This isLongString type predicate returns false if its input parameter is
undefined or a string with a length less than 7. As a result, the else
statement (its false case) is narrowed to thinking text must be type
undefined:

function isLongString(input: string | undefined): input is string {
return !!(input && input.length >= 7);
}

function workWithText(text: string | undefined) {
if (isLongString(text)) {
// Type of text: string
console.log("Long text:", text.length);

} else {
// Type of text: undefined
console.log("Short text:", text?.length);

// ~vnan

// Error: Property 'length' does not exist on type 'never'.

Type predicates that do more than verify the type of a property or value are
easy to misuse. I generally recommend avoiding them when possible.
Simpler type predicates are sufficient for most cases.

Type Operators

Not all types can be represented using only a keyword or a name of an
existing type. It can sometimes be necessary to create a new type that
combines both, performing some transformation on the properties of an
existing type.

keyof

JavaScript objects can have members retrieved using dynamic values,
which are commonly (but not necessarily) string typed. Representing
these keys in the type system can be tricky. Using a catchall primitive such
as string would allow invalid keys for the container value.



That’s why TypeScript when using stricter configuration settings—covered
in Chapter 13, “Configuration Options”—would report an error on the
ratings[key] as seen in the next example. Type string allows values not
allowed as properties on the Ratings interface, and Ratings doesn’t
declare an index signature to allow any string keys:

interface Ratings {
audience: number;
critics: number;

}

function getRating(ratings: Ratings, key: string): number {
return ratings[key];

// s s s ot s o

// Error: Element implicitly has an 'any' type because expression
// of type 'string' can't be used to index type 'Ratings’.
// No index signature with a parameter of
// type 'string' was found on type 'Ratings’.
}

const ratings: Ratings = { audience: 66, critic: 84 };
getRating(ratings, 'audience'); // 0Ok

getRating(ratings, 'not valid'); // 0Ok, but shouldn't be

Another option would be to use a type union of literals for the allowed keys.
That would be more accurate in properly restricting to only the keys that
exist on the container value:

function getRating(ratings: Ratings, key: 'audience' 'critic'): number {
return ratings[key]; // Ok
}

const ratings: Ratings = { audience: 66, critic: 84 };
getCountLiteral(ratings, 'audience'); // 0Ok
getCountLiteral(ratings, 'not valid');

/e
// Error: Argument of type '"not valid"' is not

// assignable to parameter of type '"audience" | "critic"'.



However, what if the interface has dozens or more members? You would
have to type out each of those members’ keys into the union type and keep
them up-to-date. What a pain.

TypeScript instead provides a keyof operator that takes in an existing type
and gives back a union of all the keys allowed on that type. Place it in front
of the name of a type wherever you might use a type, such as a type
annotation.

Here, keyof Ratings is equivalent to 'audience' | 'critic' butis
much quicker to write out and won’t need to be manually updated if the
Ratings interface ever changes:

function getCountKeyof(ratings: Ratings, key: keyof Ratings): number {
return ratings[key]; // 0k
}

const ratings: Ratings = { audience: 66, critic: 84 };
getCountKeyof(ratings, 'audience'); // 0k

getCountKeyof(ratings, 'not valid');

/o e
// Error: Argument of type '"not valid"' is not

// assignable to parameter of type 'keyof Ratings'.

keyof is a great feature for creating union types based on the keys of
existing types. It also combines well with other type operators in
TypeScript, allowing for some very nifty patterns you’ll see later in this
chapter and Chapter 15, “Type Operations”.

typeof

Another type operator provided by TypeScript is typeof. It gives back the
type of a provided value. This can be useful if the value’s type would be
annoyingly complex to write manually.

Here, the adaptation variable is declared as being the same type as
original:



const original = {
medium: "movie",
title: "Mean Girls",

3
let adaptation: typeof original;

if (Math.random() > 0.5) {

adaptation = { ...original, medium: "play" }; // Ok
} else {

adaptation = { ...original, medium: 2 };

/i e

// Error: Type 'number' is not assignable to type 'string’.

Although the typeof #ype operator visually looks like the runtime typeof
operator used to return a string description of a value’s type, the two are
different. They only coincidentally use the same word. Remember: the
JavaScript operator is a runtime operator that returns the string name of a
type. The TypeScript version, because it’s a type operator, can only be used
in types and won’t appear in compiled code.

keyof typeof

typeof retrieves the type of a value, and keyof retrieves the allowed keys
on a type. TypeScript allows the two keywords to be chained together to
succinctly retrieve the allowed keys on a value’s type. Putting them
together, the typeof type operator becomes wonderfully useful for working
with keyof type operations.

In this example, the LlogRating function is meant to take in one of the keys
of the ratings value. Instead of creating an interface, the code uses keyof
typeof to indicate key must be one of the keys on the type of the ratings
value:

const ratings = {
imdb: 8.4,
metacritic: 82,

};

function logRating(key: keyof typeof ratings) {



console.log(ratings[key]);
}

logRating("imdb"); // 0Ok

logRating("invalid");
[ e

// Error: Argument of type '"missing"' is not assignable
// to parameter of type '"imdb" | "metacritic"'.

By combining keyof and typeof, we get to save ourselves the pain of
writing out—and having to update—types representing the allowed keys on
objects that don’t have an explicit interface type.

Type Assertions

TypeScript works best when your code is “strongly typed”: all the values in
your code have precisely known types. Features such as top types and type
guards provide ways to wrangle complex code into being understood by
TypeScript’s type checker. However, sometimes it’s not reasonably possible
to be 100% accurate in telling the type system how your code is meant to
work.

For example, JSON. parse intentionally returns the top type any. There’s no
way to safely inform the type system that a particular string value given to
JSON. parse should return any particular value type. (As we will see in
Chapter 10, “Generics”, adding a generic type to parse that is only used
once for a return type would violate a best practice known as The Golden
Rule of Generics.)

TypeScript provides a syntax for overriding the type system’s understanding
of a value’s type: a “type assertion,” also known as a “type cast.” On a
value that is meant to be a different type, you can place the as keyword
followed by a type. TypeScript will defer to your assertion and treat the
value as that type.

In this snippet, it is possible that the returned result from JSON. parse is
meant to be a type such as string[], [string, string], or ["grace",



"frankie"]. The snippet uses type assertions for three of the lines of code
to switch the type from any to one of those:

const rawData = "["grace", "frankie"]';

// Type: any
JSON.parse(rawData);

// Type: string[]
JSON.parse(rawData) as string[];

// Type: [string, string]
JSON.parse(rawData) as [string, string];

// Type: ["grace", "frankie"]
JSON.parse(rawData) as ["grace", "frankie"];

Type assertions exist only in the TypeScript type system. They’re removed
along with all other pieces of type system syntax when compiled to
JavaScript. The previous code would look like this when compiled to
JavaScript:

const rawData = "["grace", "frankie"]';

// Type: any
JSON.parse(rawData);

// Type: string[]
JSON.parse(rawData);

// Type: [string, string]
JSON.parse(rawData);

// Type: ["grace", "frankie"]
JSON.parse(rawData);

NOTE

If you’re working with older libraries or code, you may see a different casting syntax that looks
like <type>item instead of item as type. Because this syntax is incompatible with JSX syntax
and therefore does not work in .zsx files, it is discouraged.



TypeScript best practice is generally to avoid using type assertions when
possible. It’s best for your code to be fully typed and to not need to interfere
with TypeScript’s understanding of its types using assertions. But
occasionally there will be cases where type assertions are useful, even
necessary.

Asserting Caught Error Types

Error handling is another place where type assertions may come in handy. It
is generally impossible to know what type a caught error in a catch block
will be because the code in the try block may unexpectedly throw any
object different from what you expect. Furthermore, although JavaScript
best practice is to always throw an instance of the Error class, some
projects instead throw string literals or other surprising values.

If you are absolutely confident that an area of code will only throw an
instance of the Error class, you can use a type assertion to treat a caught
assertion as an Error. This snippet accesses the message property of a
caught error that it assumes is an instance of the Error class:

try {
// (code that may throw an error)
} catch (error) {
console.warn("Oh no!", (error as Error).message);

}

It is generally safer to use a form of type narrowing such as an instanceof
check to ensure the thrown error is the expected error type. This snippet
checks whether the thrown error is an instance of the Error class to know
whether to log that message or the error itself:

try {
// (code that may throw an error)
} catch (error) {
console.warn("Oh no!", error instanceof Error ? error.message : error);

}



Non-Null Assertions

Another common use case for type assertions is to remove null and/or
defined from a variable that only theoretically, not practically, might
include them. That situation is so common that TypeScript includes a
shorthand for it. Instead of writing out as and the full type of whatever a
value 1s excluding null and undefined, you can use a ! to signify the same
thing. In other words, the ! non-null assertion asserts that the type is not
null or undefined.

The following two type assertions are identical in that they both result in
Date and not Date | undefined:

// Inferred type: Date | undefined
let maybeDate = Math.random() > 0.5
? undefined
: new Date();

// Asserted type: Date
maybeDate as Date;

// Asserted type: Date
maybeDate!;

Non-null assertions are particularly useful with APIs such as Map.get that
return a value or undefined if it doesn’t exist.

Here, seasonCounts is a general Map<string, number>. We know that it
contains an "I Love Lucy" key so the knownValue variable can use a ! to
remove | undefined from its type:

const seasonCounts = new Map([
["I Love Lucy", 6],
["The Golden Girls", 7],

1;

// Type: string | undefined
const maybeValue = seasonCounts.get("I Love Lucy");

console.log(maybeValue. toUpperCase());

[/ s
// Error: Object is possibly 'undefined'.



// Type: string
const knownValue = seasonCounts.get("I Love Lucy")!;

console.log(knownValue.toUpperCase()); // Ok

Type Assertion Caveats

Type assertions, like the any type, are a necessary escape hatch for
TypeScript’s type system. Therefore, also like the any type, they should be
avoided whenever reasonably possible. It is often better to have more
accurate types representing your code than it is to make it easier to assert on
a value’s type. Those assertions are often wrong—either already so at the
time of writing, or they become wrong later on as the codebase changes.

For example, suppose the seasonCounts example were to change over time
to have different values in the map. Its non-null assertion might still make
the code pass TypeScript type checking, but there might be a runtime error:

const seasonCounts = new Map([
["Broad City", 5],
["Community", 6],

1);

// Type: string
const knownValue = seasonCounts.get("I Love Lucy")!;

console.log(knownValue.toUpperCase()); // No type error, but...
// Runtime TypeError: Cannot read property 'toUpperCase' of undefined.

Type assertions should generally be used sparingly, and only when you’re
absolutely certain it is safe to do so.

Assertions versus declarations

There is a difference between using a type annotation to declare a variable’s
type versus using a type assertion to change the type of a variable with an
initial value. TypeScript’s type checker performs assignability checking on
a variable’s initial value against the variable’s type annotation when both



exist. A type assertion, however, explicitly tells TypeScript to skip some of
its type checking.

The following code creates two objects of type Entertainer with the same
flaw: a missing acts member. TypeScript is able to catch the error in the
declared variable because of its : Entertainer type annotation. It is not
able to catch the error on the asserted variable because of the type
assertion:

interface Entertainer {
acts: string[];
name: string;

}

const declared: Entertainer = {
name: "Moms Mabley",
s
// Error: Property 'acts' is missing in type
// '{ one: number; }' but required in type 'Entertainer'.

const asserted = {
name: "Moms Mabley",
} as Entertainer; // 0k, but...

// Both of these statements would fail at runtime with:

// Runtime TypeError: Cannot read properties of undefined (reading
"toPrecision')

console.log(declared.acts.join(", "));
console.log(asserted.acts.join(", "));

It is therefore strongly preferable to either use a type annotation or allow
TypeScript to infer a variable’s type from its initial value.

Assertion assignability

Type assertions are meant to be only a small escape hatch, for situations
where some value’s type is slightly incorrect. TypeScript will only allow
type assertions between two types if one of the types is assignable to the
other. If the type assertion is between two completely unrelated types, then
TypeScript will notice and report a type error.



For example, switching from one primitive to another is not allowed, as
primitives have nothing to do with each other:

let myValue = "Stella!" as number;

[ e

// Error: Conversion of type 'string' to type 'number'
// may be a mistake because neither type sufficiently
// overlaps with the other. If this was intentional,
// convert the expression to 'unknown' first.

If you absolutely must switch a value from one type to a totally unrelated
type, you can use a double type assertion. First cast the value to a top type
—any or unknown—and then cast that result to the unrelated type:

let myValueDouble = "1337" as unknown as number; // 0k, but... eww.

as unknown as... double type assertions are dangerous and almost
always a sign of something incorrect in the types of the surrounding code.
Using them as an escape hatch from the type system means the type system
may not be able to save you when changes to surrounding code would cause
an issue with previously working code. I teach double type assertions only
as a precautionary tale to help explain the type system, not to encourage
their use.

Const Assertions

Back in Chapter 4, “Objects”, I introduced an as const syntax for
changing a mutable array type to a read-only tuple type and promised to use
it more later in the book. That time is now!

Const assertions can generally be used to indicate that any value—array,
primitive, value, you name it—should be treated as the constant, immutable
version of itself. Specifically, as const applies the following three rules to
whatever type it receives:

e Arrays are treated as readonly tuples, not mutable arrays.



e Literals are treated as literals, not their general primitive equivalents.

e Properties on objects are considered readonly.

You’ve already seen arrays become tuples, as with this array being asserted
as a tuple:

// Type: (number | string)[]
(o, "'1;

// Type: readonly [0, '']
[0, '"'] as const;

Let’s dig into the other two changes as const produces.

Literals to Primitives

It can be useful for the type system to understand a literal value to be that
specific literal, rather than widening it to its general primitive.

For example, similar to functions that return tuples, it might be useful for a
function to be known to produce a specific literal instead of a general
primitive. These functions also return values that can be made more specific
—here, getNameConst’s return type is the more specific "Maria Bamford"
instead of the general string:

// Type: () => string
const getName = () => "Maria Bamford";

// Type: () => "Maria Bamford"
const getNameConst = () => "Maria Bamford" as const;

It may also be useful to have specific fields on a value be more specific
literals. Many popular libraries ask that a discriminant field on a value be a
specific literal so the types of their code can more specifically make
inferences on the value. Here, the narrowJoke variable has a style of type
"one-liner" instead of string, so it can be provided in a location that
needs type Joke:



interface Joke {
quote: string;

style: "story" | "one-liner";
}
function tellJoke(joke: Joke) {
if (joke.style === "one-liner") {
console.log(joke.quote);
} else {

console.log(joke.quote.split("\n"));

}
}

// Type: { quote: string; style: "one-liner" }

const narrowJoke = {
quote: "If you stay alive for no other reason do it for spite.",
style: "one-liner" as const,

3
tellJoke(narrowJoke); // Ok

// Type: { quote: string; style: string }
const wideObject = {
quote: "Time flies when you are anxious!",
style: "one-liner",

}s

tellJoke(wideObject);

// Error: Argument of type '{ quote: string; style: string; }'
// 1s not assignable to parameter of type 'LogAction'.

// Types of property 'style' are incompatible.

// Type 'string' is not assignable to type '"story" | "one-liner"'.

Read-Only Objects

Object literals such as those used as the initial value of a variable generally
widen the types of properties the same way the initial values of let
variables widen. String values such as 'apple' become primitives such as
string, arrays are typed as arrays instead of tuples, and so on. This can be
inconvenient when some or all of those values are meant to later be used in
a place that requires their specific literal type.

Asserting a value literal with as const, however, switches the inferred type
to be as specific as possible. All member properties become readonly,



literals are considered their own literal type instead of their general
primitive type, arrays become read-only tuples, and so on. In other words,
applying a const assertion to a value literal makes that value literal
immutable and recursively applies the same const assertion logic to all its
members.

As an example, the preferencesMutable value that follows is declared
without an as const, so its names are the primitive type string and it’s
allowed to be modified. favoritesConst, however, is declared with an as
const, so its member values are literals and not allowed to be modified:

function describePreference(preference: "maybe" | "no" | "yes") {
switch (preference) {
case "maybe":
return "I suppose...";
case "no":
return "No thanks.";
case "yes":

return "Yes please!";

}

// Type: { movie: string, standup: string }
const preferencesMutable = {

movie: "maybe"

standup: "yes",

}s

describePreference(preferencesMutable.movie);

/) e

// Error: Argument of type 'string' is not assignable
// to parameter of type '"

mni

maybe" | "no" [ "yes"'.
preferencesMutable.movie = "no"; // 0Ok

// Type: readonly { readonly movie: "maybe", readonly standup: "yes" }
const preferencesReadonly = {

movie: "maybe"

standup: "yes",
} as const;

describePreference(preferencesReadonly.movie); // 0k

preferencesReadonly.movie = "no";



/o e

// Error: Cannot assign to 'movie' because it is a read-only property.

Summary

In this chapter, you used type modifiers to take existing objects and/or types
and turn them into new types:

e Top types: the highly permissive any and the highly restrictive
unknown

e Type operators: using keyof to grab the keys of a type and/or typeof
to grab the type of a value

e Using—and when not to use—type assertions to sneakily change the
type of a value

e Narrowing types using as const assertions

TIP

Now that you’ve finished reading this chapter, practice what you’ve learned on
https://learningtypescript.com/type-modifiers.

Why was the literal type being stubborn?

It had a narrow mind.


https://learningtypescript.com/type-modifiers

Chapter 10. Generics

Variables you
declare in the type system?

A whole new (typed) world!

All the type syntaxes you’ve learned about so far are meant to be used with
types that are completely known when they’re being written. Sometimes,
however, a piece of code may be intended to work with various different
types depending on how it’s called.

Take this identity function in JavaScript meant to receive an input of any
possible type and return that same input as output. How would you describe
its parameter type and return type?

function identity(input) {
return input;

}

identity("abc");
identity(123);
identity({ quote: "I think your self emerges more clearly over time." });

We could declare input as any, but then the return type of the function
would also be any:

function identity(input: any) {
return input;

}

let value = identity(42); // Type of value: any

Given that input is allowed to be any input, we need a way to say that there
is a relationship between the input type and the type the function returns.
TypeScript captures relationships between types using generics.



In TypeScript, constructs such as functions may declare any number of
generic type parameters: types that are determined for each usage of the
generic construct. These type parameters are used as types in the construct
to represent some type that can be different in each instance of the
construct. Type parameters may be provided with different types, referred to
as type arguments, for each instance of the construct but will remain
consistent within that instance.

Type parameters typically have single-letter names like T and U or
PascalCase names like Key and Value. In all of the constructs covered in
this chapter, generics may be declared using < and > brackets, like
someFunction<T> or SomeInterface<T>.

Generic Functions

A function may be made generic by placing an alias for a type parameter,
wrapped in angle brackets, immediately before the parameters parentheses.
That type parameter will then be available for usage in parameter type
annotations, return type annotations, and type annotations inside the
function’s body.

The following version of identity declares a type parameter T for its
input parameter, which allows TypeScript to infer that the return type of
the function is T. TypeScript can then infer a different type for T every time
identity is called:

function identity<T>(input: T) {
return input;

}

const numeric
const stringy

identity("me"); // Type: "me"
identity(123); // Type: 123

Arrow functions can be generic too. Their generic declarations are also
placed immediately before the ( before their list of parameters.



The following arrow function is functionally the same as the previous
declaration:

const identity = <T>(input: T) => input;

identity(123); // Type: 123

The syntax for generic arrow functions has some restrictions in .zsx files, as it conflicts with JSX
syntax. See Chapter 13, “Configuration Options” for workarounds as well as configuring JSX and
React support.

Adding type parameters to functions in this way allows them to be reused
with different inputs while still maintaining type safety and avoiding any

types.

Explicit Generic Call Types

Most of the time when calling generic functions, TypeScript will be able to
infer type arguments based on how the function is being called. For
example, in the previous examples’ identity functions, TypeScript’s type
checker used an argument provided to identity to infer the corresponding
function parameter’s type argument.

Unfortunately, as with class members and variable types, sometimes there
isn’t enough information from a function’s call to inform TypeScript what
its type argument should resolve to. This will commonly happen if a generic
construct is provided another generic construct whose type arguments aren’t
known.

TypeScript will default to assuming the unknown type for any type
argument it cannot infer.

For example, the following LlogWrapper function takes in a callback with a
parameter type set to LogWrapper’s type parameter Input. TypeScript can
infer the type argument if LogWrapper is called with a callback that



explicitly declares its parameter type. If the parameter type is implicit,
however, TypeScript has no way of knowing what Input should be:

function logWrapper<Input>(callback: (input: Input) => void) {
return (input: Input) => {
console.log("Input:", input);
callback(input);

};
}

// Type: (input: string) => void
logWrapper((input: string) => {

console.log(input.length);
1)

// Type: (input: unknown) => void
logWrapper((input) => {
console.log(input.length);
/o e

// Error: Property 'length' does not exist on type 'unknown'.

1)

To avoid defaulting to unknown, functions may be called with an explicit
generic type argument that explicitly tells TypeScript what that type
argument should be instead. TypeScript will perform type checking on the
generic call to make sure the parameter being requested matches up to
what’s provided as a type argument.

Here, the LlogWrapper seen previously is provided with an explicit string
for its Input generic. TypeScript can then infer that the callback’s input
parameter of generic type Input resolves to type string:

// Type: (input: string) => void
logWrapper<string>((input) => {

console.log(input.length);
s

logWrapper<string>((input: boolean) => {
[/ e
// Argument of type '(input: boolean) => void' is not
// assignable to parameter of type '(input: string) => void'.
// Types of parameters 'input' and 'input' are incompatible.



// Type 'string' is not assignable to type 'boolean'.
1)

Much like explicit type annotations on variables, explicit type arguments
may always be specified on a generic function but often aren’t necessary.
Many TypeScript developers generally only specify them when needed.

The following logWrapper usage explicitly specifies string both as a type
argument and as a function parameter type. Either could be removed:

// Type: (input: string) => void
logWrapper<string>((input: string) => { /* ... */ });

The Name<Type> syntax for specifying a type argument will be the same for
other generic constructs throughout this chapter.

Multiple Function Type Parameters

Functions may define any number of type parameters, separated by
commas. Each call of the generic function may resolve its own set of values
for each of the type parameters.

In this example, makeTuple declares two type parameters and returns a
value typed as a read-only tuple with one, then the other:

function makeTuple<First, Second>(first: First, second: Second) {
return [first, second] as const;

}

let tuple = makeTuple(true, "abc"); // Type of value: readonly [boolean,
string]

Note that if a function declares multiple type parameters, calls to that
function must explicitly declare either none of the generic types or all of
them. TypeScript does not yet support inferring only some of the types of a
generic call.

Here, makePair also takes in two type parameters, so either neither of them
or both of them must be explicitly specified:



function makePair<Key, Value>(key: Key, value: Value) {
return { key, value };

}

// Ok: neither type argument provided
makePair("abc", 123); // Type: { key: string; value: number }

// Ok: both type arguments provided
makePair<string, number>("abc", 123); // Type: { key: string; value: number }
makePair<"abc", 123>("abc", 123); // Type: { key: "abc"; value: 123 }

makePair<string>("abc", 123);

[ e
// Error: Expected 2 type arguments, but got 1.

TIP

Try not to use more than one or two type parameters in any generic construct. As with runtime
function parameters, the more you use, the harder it is to read and understand the code.

Generic Interfaces

Interfaces may be declared as generic as well. They follow similar generic
rules to functions: they may have any number of type parameters declared
between a < and > after their name. That generic type may later be used
elsewhere in their declaration, such as on member types.

The following Box declaration has a T type parameter for a property.
Creating an object declared to be a Box with a type argument enforces that
the inside: T property matches that type argument:

interface Box<T> {
inside: T;

}

let stringyBox: Box<string> = {
inside: "abc",

};

let numberBox: Box<number> = {
inside: 123,



}

let incorrectBox: Box<number> = {
inside: false,
// Error: Type 'boolean' is not assignable to type 'number'.

Fun fact: the built-in Array methods are defined in TypeScript as a generic
interface! Array uses a type parameter T to represent the type of data stored
within an array. Its pop and push methods look roughly like so:

interface Array<T> {

/) ...
/**

* Removes the last element from an array and returns 1it.
* If the array is empty, undefined is returned and the array is not

modified.
*/
pop(): T | undefined;

/**
* Appends new elements to the end of an array,
* and returns the new length of the array.
* @param items new elements to add to the array.

*/

push(...items: T[]): number;

/) ...

Inferred Generic Interface Types

As with generic functions, generic interface type arguments may be inferred
from usage. TypeScript will do its best to infer type arguments from the
types of values provided to a location declared as taking in a generic type.

This getLast function declares a type parameter Value that is then used for
its node parameter. TypeScript can then infer Value based on the type of
whatever value is passed in as an argument. It can even report a type error
when an inferred type argument doesn’t match the type of a value.
Providing getLast with an object that doesn’t include next, or whose



inferred Va'lue type argument is the same type, is allowed. Mismatching the
provided object’s value and next.value, though, is a type error:

interface LinkedNode<Value> {
next?: LinkedNode<Value>;
value: Value;

}

function getlLast<Value>(node: LinkedNode<Value>): Value {
return node.next ? getLast(node.next) : node.value;

}

// Inferred Value type argument: Date
let lastDate = getlLast({
value: new Date("09-13-1993"),

1)

// Inferred Value type argument: string
let lastFruit = getLast({
next: {
value: "banana",

+s

value: "apple",

1)

// Inferred Value type argument: number
let lastMismatch = getLast({
next: {
value: 123

+s

value: false,

/] e

// Error: type 'boolean' is not assignable to type 'number'.

s

Note that if an interface declares type parameters, any type annotations
referring to that interface must provide corresponding type arguments.
Here, the usage of CrateLike is incorrect for not including a type
argument:

interface CratelLike<T> {
contents: T;

}



let missingGeneric: CratelLike = {

// s~

// Error: Generic type 'Crate<T>' requires 1 type argument(s).
inside: "??"

};

Later in this chapter, I’ll show how to provide default values for type
parameters to get around this requirement.

Generic Classes

Classes, like interfaces, can also declare any number of type parameters to
be later used on members. Each instance of the class may have a different
set of type arguments for its type parameters.

This Secret class declares Key and Value type parameters, then uses them
for member properties, constructor parameter types, and a method’s
parameter and return types:

class Secret<Key, Value> {
key: Key;
value: Value;

constructor(key: Key, value: Value) {
this.key = key;
this.value = value;

}
getValue(key: Key): Value | undefined {
return this.key === key
? this.value
: undefined;

}

const storage = new Secret(12345, "luggage"); // Type: Secret<number, string>

storage.getValue(1987); // Type: string | undefined

As with generic interfaces, type annotations using a class must indicate to
TypeScript what any generic types on that class are. Later in this chapter,



I’1l show how to provide default values for type parameters to get around
this requirement for classes too.

Explicit Generic Class Types

Instantiating generic classes goes by the same type arguments inference
rules as calling generic functions. If the type argument can be inferred from
the type of a parameter to the class constructor, such as the new
Secret(12345, "luggage") earlier, TypeScript will use the inferred type.
Otherwise, if a class type argument can’t be inferred from the arguments
passed to its constructor, the type argument will default to unknown.

This CurriedCallback class declares a constructor that takes in a generic
function. If the generic function has a known type—such as from an explicit
type argument type annotation—then the class instance’s Input type
argument can be informed by it. Otherwise, the class instance’s Input type
argument will default to unknown:

class CurriedCallback<Input> {
#tcallback: (input: Input) => void;

constructor(callback: (input: Input) => void) {
this.#callback = (input: Input) => {
console.log("Input:", input);
callback(input);
I
}

call(input: Input) {
this.#callback(input);
}
}

// Type: CurriedCallback<string>

new CurriedCallback((input: string) => {
console.log(input.length);

1)

// Type: CurriedCallback<unknown>
new CurriedCallback((input) => {
console.log(input.length);
/o e



// Error: Property 'length' does not exist on type 'unknown'.

1)

Class instances may also avoid defaulting to unknown by providing explicit
type argument(s) the same way other generic function calls do.

Here, CurriedCallback from before is now being provided with an
explicit string for its Input type argument, so TypeScript can infer that
the callback’s Input type parameter resolves to string:

// Type: CurriedCallback<string>
new CurriedCallback<string>((input) => {
console.log(input.length);

1)

new CurriedCallback<string>((input: boolean) => {

/e
// Argument of type '(input: boolean) => void' is not

// assignable to parameter of type '(input: string) => void'.
// Types of parameters 'input' and 'input' are incompatible.
// Type 'string' is not assignable to type 'boolean'.

1)

Extending Generic Classes

Generic classes can be used as the base class following an extends
keyword. TypeScript will not attempt to infer type arguments for the base
class from usage. Any type arguments without defaults will need to be
specified using an explicit type annotation.

The following SpokenQuote class provides string as the T type argument
for its base class Quote<T>:

class Quote<T> {
lines: T;

constructor(lines: T) {
this.lines = lines;
}
}

class SpokenQuote extends Quote<string[]> {



speak() {
console.log(this.lines.join("\n"));

}
}

new Quote("The only real failure is the failure to try.").lines; // Type:
string
new Quote([4, 8, 15, 16, 23, 42]).lines; // Type: number[]

new SpokenQuote([
"Greed is so destructive.",
"It destroys everything",
1).lines; // Type: string[]

new SpokenQuote([4, 8, 15, 16, 23, 42]);
/e

// Error: Argument of type 'number' is not
// assignable to parameter of type 'string’.

Generic derived classes can alternately pass their own type argument
through to their base class. The type names don’t have to match; just for
fun, this AttributedQuote passes a differently named Value type
argument to the base class Quote<T>:

class AttributedQuote<Value> extends Quote<Value> {
speaker: string

constructor(value: Value, speaker: string) {
super(value);
this.speaker = speaker;

}

// Type: AttributedQuote<string>
// (extending Quote<string>)
new AttributedQuote(
"The road to success is always under construction.",

"Lily Tomlin",
);

Implementing Generic Interfaces

Generic classes may also implement generic interfaces by providing them
any necessary type parameters. This works similarly to extending a generic



base class: any type parameters on the base interface must be declared by
the class.

Here, the MoviePart class specifies the ActingCredit interface’s Role
type argument as string. The IncorrectExtension class causes a type
complaint because its role is type boolean despite it providing string|[ ]
as a type argument to ActingCredit:

interface ActingCredit<Role> {
role: Role;

}

class MoviePart implements ActingCredit<string> {
role: string;
speaking: boolean;

constructor(role: string, speaking: boolean) {
this.role = role;
this.speaking = speaking;

}

const part = new MoviePart("Miranda Priestly", true);
part.role; // Type: string

class IncorrectExtension implements ActingCredit<string> {
role: boolean;

// v~~~

// Error: Property 'role' in type 'IncorrectExtension' is not
// assignable to the same property in base type 'ActingCredit<string>'.
// Type 'boolean' is not assignable to type 'string'.

Method Generics

Class methods may declare their own generic types separate from their class
instance. Each call to a generic class method may have a different type
argument for each of its type parameters.

This generic CreatePairFactory class declares a Key type and includes a
createPair method that also declares a separate Value generic type. The



return type for createPair is then inferred to be { key: Key, value:
Value }:

class CreatePairFactory<Key> {
key: Key;

constructor(key: Key) {
this.key = key;
}

createPair<Value>(value: Value) {
return { key: this.key, value };

}
}

// Type: CreatePairFactory<string>
const factory = new CreatePairFactory("role");

// Type: { key: string, value: number }
const numberPair = factory.createPair(10);

// Type: { key: string, value: string }
const stringPair = factory.createPair("Sophie");

Static Class Generics

Static members of a class are separate from instance members and aren’t
associated with any particular instance of the class. They don’t have access
to any class instances or type information specific to any class instances. As
a result, while static class methods can declare their own type parameters,
they can’t access any type parameters declared on a class.

Here, a BothLogger class declares an OnInstance type parameter for its
instancelog method and a separate OnStatic type parameter for its static
staticlLog method. The static method is not able to access the instance
OnInstance because OnInstance is declared for class instances:

class BothLogger<OnInstance> {
instancelLog(value: OnInstance) {
console.log(value);
return value;



static staticLog<OnStatic>(value: OnStatic) {
let fromInstance: OnInstance;
/o e

// Error: Static members cannot reference class type arguments.

console.log(value);
return value;

}

const logger = new BothLogger<number][]>;
logger.instanceLog([1, 2, 3]1); // Type: number[]

// Inferred OnStatic type argument: boolean[]
BothLogger.staticLog([false, true]);

// Explicit OnStatic type argument: string
BothLogger.staticLog<string>("You can't change the music of your soul.");

Generic Type Aliases

One last construct in TypeScript that can be made generic with type
arguments is type aliases. Each type alias may be given any number of type
parameters, such as this Nullish type receiving a T:

type Nullish<T> = T | null | undefined;

Generic type aliases are commonly used with functions to describe the type
of a generic function:

type CreatesValue<Input, Output> = (input: Input) => Output;

// Type: (input: string) => number
let creator: CreatesValue<string, number>;

text => text.length; // 0k

creator

creator = text => text.toUpperCase();

// A A A

// Error: Type 'string' is not assignable to type 'number'.



Generic Discriminated Unions

I mentioned back in Chapter 4, “Objects” that discriminated unions are my
favorite feature in all of TypeScript because they beautifully combine a
common elegant JavaScript pattern with TypeScript’s type narrowing. My
favorite use for discriminated unions is to add a type argument to create a
generic “result” type that represents either a successful result with data or a
failure with an error.

This Result generic type features a succeeded discriminant that must be

used to narrow a result to whether it’s a success or failure. This means any
operation that returns a Result can indicate an error or data result, and be
assured that consumers will need to check whether the result succeeded:

type Result<Data> = FaillureResult | SuccessfulResult<Data>;

interface FailureResult {
error: Error;
succeeded: false;

}

interface SuccessfulResult<Data> {
data: Data;
succeeded: true;

}

function handleResult(result: Result<string>) {
if (result.succeeded) {
// Type of result: SuccessfulResult<string>
console.log( We did it! ${result.data}’);

} else {
// Type of result: FailureResult
console.error( Awww... ${result.error}’);
}

result.data;

/o

// Error: Property 'data' does not exist on type 'Result<string>'.
// Property 'data' does not exist on type 'FailureResult’.



Put together, generic types and discriminated types provide a wonderful
way to model reusable types like Result.

Generic Modifiers

TypeScript includes syntax that allows you to modify the behavior of
generic type parameters.

Generic Defaults

I have stated so far that if a generic type is used in a type annotation or as
the base of a class extends or implements, it must provide a type argument
for each type parameter. You can get around explicitly providing type
arguments by placing an = sign followed by a default type after the type
parameter’s declaration. The default will be used in any subsequent type
where the type argument isn’t explicitly declared and can’t be inferred.

Here, the Quote interface takes in a T type parameter that defaults to
string if not provided. The explicit variable explicitly sets T to number
while implicit and mismatch both resolve to string:

interface Quote<T = string> {
value: T;

}
let explicit: Quote<number> = { value: 123 };

let implicit: Quote = { value: "Be yourself. The world worships the original."

};

let mismatch: Quote = { value: 123 };
//

// Error: Type 'number' is not assignable to type 'string’.

Type parameters can default to earlier type parameters in the same
declaration too. Since each type parameter introduces a new type for the
declaration, they are available as defaults for later type parameters in that
declaration.



This KeyValuePair type can have different types for its Key and Value
generics but defaults to keeping them the same—though because Key
doesn’t have a default, it does still need to be inferrable or provided:

interface KeyValuePair<Key, Value = Key> {
key: Key;
value: Value;

}

// Type: KeyValuePair<string, string>

let allExplicit: KeyValuePair<string, number> = {
key: "rating",
value: 10,

};

// Type: KeyValuePair<string>
let oneDefaulting: KeyValuePair<string> = {
key: "rating",

value: "ten",

}s

let firstMissing: KeyValuePair = {

[ s
// Error: Generic type 'KeyValuePair<Key, Value>'

// requires between 1 and 2 type arguments.
key: "rating",
value: 10,

}s

Keep in mind that all default type parameters must come last in their
declaration list, similar to default function parameters. Generic types
without a default may not follow generic types with a default.

Here, inTheEnd is allowed because all generic types without defaults come
before generic types with defaults. inTheMiddle is a problem because a
generic type without a default follows types with defaults:

function inTheEnd<First, Second, Third = number, Fourth = string>() {} // 0Ok

function inTheMiddle<First, Second = boolean, Third = number, Fourth>() {}

// /]

// Error: Required type parameters may not follow optional type parameters.



Constrained Generic Types

Generic types by default can be given any type in the world: classes,
interfaces, primitives, unions, you name it. However, some functions are
only meant to work with a limited set of types.

TypeScript allows for a type parameter to declare itself as needing to extend
a type: meaning it’s only allowed to alias types that are assignable to that
type. The syntax to constrain a type parameter is to place the extends
keyword after the type parameter’s name, followed by a type to constrain it
to.

For example, by creating a WithLength interface to describe anything that
has a length: number, we can then allow our generic function to take in
any type that has a length for its T generic. Strings, arrays, and now even
objects that just so happen to have a length: number are allowed, while
type shapes such as Date missing that numeric length result in a type
error:

interface WithLength {
length: number;

}

function logWithLength<T extends WithLength>(input: T) {
console.log( Length: ${input.length}’);
return input;

}

logWithLength("No one can figure out your worth but you."); // Type: string
logWithLength([false, truel); // Type: boolean[]
logWithLength({ length: 123 }); // Type: { length: number }

logWithLength(new Date());

[ s
// Error: Argument of type 'Date' 1is not

// assignable to parameter of type 'WithLength'.
//  Property 'length' i1s missing in type
// 'Date’ but required in type 'WithLength'.

I’ll cover more type operations you can perform with generics in
Chapter 15, “Type Operations”.



keyof and Constrained Type Parameters

The keyof operator introduced in Chapter 9, “Type Modifiers” also works
well with constrained type parameters. Using extends and keyof together
allows a type parameter to be constrained to the keys of a previous type
parameter. It is also the only way to specify the key of a generic type.

Take this simplified version of the get method from the popular library
Lodash. It takes in a container value, typed as T, and a key name of one of
the keys of T to retrieve from container. Because the Key type parameter
is constrained to be a keyof T, TypeScript knows this function is allowed
to return T[Key]:

function get<T, Key extends keyof T>(container: T, key: Key) {
return container[key];

}

const roles = {
favorite: "Fargo",
others: ["Almost Famous", "Burn After Reading", "Nomadland"],

}s

const favorite = get(roles, "favorite"); // Type: string
const others = get(roles, "others"); // Type: string[]

const missing = get(roles, "extras");

// N

// Error: Argument of type '"extras"' is not assignable
// to parameter of type '"favorite" | "others"'.

!

Without keyof, there would have been no way to correctly type the generic
key parameter.

Note the importance of the Key type parameter in the previous example. If
only T is provided as a type parameter, and the key parameter is allowed to
be any keyof T, then the return type will be the union type of all property
values in Contatiner. This less-specific function declaration doesn’t
indicate to TypeScript that each call can have a specific key via a type
argument:



function get<T>(container: T, key: keyof T) {
return container[key];

}

const roles = {
favorite: "Fargo",
others: ["Almost Famous", "Burn After Reading", "Nomadland"],

};

const found = get(roles, "favorite"); // Type: string | string[]

Be sure when writing generic functions to know when a parameter’s type
depends on a previous parameter’s type. You’ll often need to use
constrained type parameters for correct parameter types in those cases.

Promises

Now that you’ve seen how generics work, it’s finally time to talk about a
core feature of modern JavaScript that relies on their concepts: Promises!
To recap, a Promise in JavaScript represents something that might still be
pending, such as a network request. Each Promise provides methods to
register callbacks in case the pending action “resolves” (completes
successfully) or “rejects” (throws an error).

A Promise’s ability to represent similar actions on any arbitrary value types
1s a natural fit for TypeScript’s generics. Promises are represented in the
TypeScript type system as a Promise class with a single type parameter
representing the eventual resolved value.

Creating Promises

The Promise constructor is typed in TypeScript as taking in a single
parameter. That parameter’s type relies on a type parameter declared on the
generic Promise class. A reduced form would look roughly like this:

class PromiselLike<Value> {
constructor(
executor: (
resolve: (value: Value) => void,



reject: (reason: unknown) => void,
) => void,

y{/* ... %/}

Creating a Promise intended to eventually resolve with a value generally
necessitates explicitly declaring the type argument of the Promise.
TypeScript would default to assuming the parameter type is unknown
without that explicit generic type argument. Explicitly providing a type
argument to the Promise constructor would allow TypeScript to understand
the resultant Promise instance’s resolved type:

// Type: Promise<unknown>

const resolvesUnknown = new Promise((resolve) => {
setTimeout(() => resolve("Done!"), 1000);

1)

// Type: Promise<string>

const resolvesString = new Promise<string>((resolve) => {
setTimeout(() => resolve("Done!"), 1000);

1)

A Promise’s generic . then method introduces a new type parameter
representing the resolved value of the Promise it returns.

For example, the following code creates a textEventually Promise that
resolves with a string value after a second, as well as a
lengthEventually that waits an additional second to resolve with a
number:

// Type: Promise<string>

const textEventually = new Promise<string>((resolve) => {
setTimeout(() => resolve("Done!"), 1000);

1)

// Type: Promise<number>
const lengthEventually = textEventually.then((text) => text.length)



Async Functions

Any function declared in JavaScript with the async keyword returns a
Promise. If a value returned by an async function in JavaScript isn’t a
Thenable (an object with a . then() method; in practice almost always a
Promise), it will be wrapped in a Promise as if Promise.resolve was
called on it. TypeScript recognizes this and will infer the return type of an
async function to always be a Promise for whatever value is returned.

Here, lengthAfterSecond returns a Promise<number> directly, while
lengthImmediately is inferred to return a Promise<number> because it is
async and directly returns a number:

// Type: (text: string) => Promise<number>

async function lengthAfterSecond(text: string) {
awailt new Promise((resolve) => setTimeout(resolve, 1000))
return text.length;

}

// Type: (text: string) => Promise<number>
async function lengthImmediately(text: string) {
return text.length;

}

Any manually declared return type on an async function therefore must
always be a Promise type, even if the function doesn’t explicitly mention
Promises in its implementation:

// Ok
async function givesPromiseForString(): Promise<string> {
return "Done!";

}

async function givesString(): string {
/o e
// Error: The return type of an async function
// or method must be the global Promise<T> type.
return "Done!";



Using Generics Right

As in the Promise<Value> implementations earlier in this chapter, although
generics can give us a lot of flexibility in describing types in code, they can
become rather complex quite quickly. Programmers new to TypeScript
often go through a phase of overusing generics to the point of making code
confusing to read and overly complex to work with. TypeScript best
practice is generally to use generics only when necessary, and to be clear
about what they’re used for when they are.

Most code you write in TypeScript should not heavily use generics to the point of confusion.
However, types for utility libraries, particularly general-use modules, may sometimes need to
heavily use them. Understanding generics is particularly useful to be able to work effectively with
those utility types.

The Golden Rule of Generics

One quick test that can help show whether a type parameter is necessary for
a function is it should be used at least twice. Generics describe relationships
between types, so if a generic type parameter only appears in one place, it
can’t possibly be defining a relationship between multiple types.

Each function type parameter should be used for a parameter and then also
for at least one other parameter and/or the return type of the function.

For example, this LlogInput function uses its Input type parameter exactly
once, to declare its input parameter:

function logInput<Input extends string>(input: Input) {
console.log("Hi!", input);

}

Unlike the identify functions earlier in the chapter, logInput doesn’t do
anything with its type parameter such as returning or declaring more



parameters. There 1s therefore not much use to declaring that Input type
parameter. We can rewrite LogInput without it:

function logInput(input: string) {
console.log("Hi!", input);

}

Effective TypeScript by Dan Vanderkam (O’Reilly, 2019) contains several
excellent tips for how to work with generics, including a section titled “The
Golden Rule of Generics.” I highly recommend reading Effective TypeScript
and that section especially if you’re finding yourself spending a lot of time
wrestling with generics in your code.

Generic Naming Conventions

The standard naming convention for type parameters in many languages,
TypeScript included, is to default to calling a first type argument “T” (for
“type” or “template”) and if subsequent type parameters exist, calling them
“U,” “V,” and so on.

If some contextual information is known about how the type argument is
supposed to be used, the convention sometimes extends to using the first
letter of the term for that usage: for example, state management libraries
might refer to a generic state as “S.” “K” and “V” often refer to keys and
values in data structures.

Unfortunately, naming a type argument with one letter can be just as

confusing as naming a function or variable with just one character:

// What on earth are L and V?!
function labelBox<L, V>(l: L, v: V) { /* ... */ }

When the intent of a generic isn’t clear from a single-letter T, it’s best to use
descriptive generic type names that indicate what the type is used for:

// Much more clear.
function labelBox<Label, Value>(label: Label, value: Value) { /* ... */ }



Whenever a construct has multiple type parameters, or the purpose of a
single type argument isn’t immediately clear, consider using fully written
names for readability instead of single-letter abbreviations.

Summary

In this chapter, you made classes, functions, interfaces, and type aliases
“generic” by allowing them to work with type parameters:

e Using type parameters to represent types different between uses of a
construct

e Providing explicit or implicit type arguments when calling generic
functions

e Using generic interfaces to represent generic object types
e Adding type parameters to classes, and how that impacts their types

¢ Adding type parameters to type aliases, in particular with
discriminated type unions

e Modifying generic type parameters with defaults (=) and constraints
(extends)

e How Promises and async functions use generics to represent
asynchronous data flow

e Best practices with generics, including their Golden Rule and naming
conventions

Thus concludes the Features section of this book. Congratulations: you now
know all the most important syntax and type-checking features in the
TypeScript type system for most projects!

The next section, Usage, covers how to configure TypeScript to run on your
project, interact with external dependencies, and tweak its type checking



and emitted JavaScript. Those are important features for using TypeScript
on your own projects.

There are some other miscellaneous type operations available in TypeScript
syntax. You don’t need to fully understand them to work in most TypeScript
projects—but they are interesting and useful to know. I’ve thrown them in
Part IV, “Extra Credit” after Part III, “Usage” as a fun little treat if you have
the time.

TIP

Now that you’ve finished reading this chapter, practice what you’ve learned on
https://learningtypescript.com/generics.

Why do generics anger developers?

They’re always typing arguments.


https://learningtypescript.com/generics

Part lll. Usage




Chapter 11. Declaration Files

Declaration files
Have purely type system code

No runtime constructs

Even though writing code in TypeScript is great and that’s all you want to
do, you’ll need to be able to work with raw JavaScript files in your
TypeScript projects. Many packages are written directly in JavaScript, not
TypeScript. Even packages that are written in TypeScript are distributed as
JavaScript files.

Moreover, TypeScript projects need a way to be told the type shapes of
environment-specific features such as global variables and APIs. A project
running in, say, Node.js might have access to built-in Node modules not
available in browsers—and vice versa.

TypeScript allows declaring type shapes separately from their
implementation. Type declarations are typically written in files whose
names end with the .d.zs extension, known as declaration files. Declaration
files are generally either written within a project, built and distributed with
a project’s compiled npm package, or shared as a standalone “typings”
package.

Declaration Files

A .d.ts declaration file generally works similarly to a .zs file, except with the
notable constraint of not being allowed to include runtime code. .d.#s files
contain only descriptions of available runtime values, interfaces, modules,
and general types. They cannot contain any runtime code that could be
compiled down to JavaScript.

Declaration files can be imported just like any other source TypeScript file.



This #ypes.d.ts file exports a Character interface used by an index.ts file:

// types.d.ts
export interface Character {

catchphrase?: string;
name: string;

// index.ts
import { Character } from "./types";

export const character: Character = {
catchphrase: "Yee-haw!",
name: "Sandy Cheeks",

};

TIP

Declaration files create what’s known as an ambient context, meaning an area of code where you
can only declare types, not values.

This chapter 1s largely dedicated to declaration files and the most common
forms of type declarations used within them.

Declaring Runtime Values

Although definition files may not create runtime values such as functions or
variables, they are able to declare that those constructs exist with the
declare keyword. Doing so tells the type system that some external
influence—such as a <script> tag in a web page—has created the value
under that name with a particular type.

Declaring a variable with declare uses the same syntax as a normal
variable declaration, except an initial value is not allowed.

This snippet successfully declares a declared variable but receives a type
error for trying to give a value to an initializer variable:



// types.d.ts
declare let declared: string; // Ok

declare let initializer: string = "Wanda";

// ~mnnnn

// Error: Initializers are not allowed in ambient contexts.

Functions and classes are also declared similarly to their normal forms, but
without the bodies of functions or methods.

The following canGrantWish function and method are properly declared
without a body, but the grantWish function and method are syntax errors
for improperly attempting to set up a body:

// fairies.d.ts
declare function canGrantWish(wish: string): boolean; // 0k

declare function grantWish(wish: string) { return true; }
// ~

// Error: An implementation cannot be declared in ambient contexts.

class Fairy {
canGrantWish(wish: string): boolean; // 0k

grantWish(wish: string) {
// ~
// Error: An implementation cannot be declared in ambient contexts.
return true;

TIP

TypeScript’s implicit any rules work the same for functions and variables declared in ambient
contexts as they do in normal source code. Because ambient contexts may not provide function
bodies or initial variable values, explicit type annotations—including explicit return type
annotations—are generally the only way to stop them from implicitly being type any.

Although type declarations using the declare keyword are most common
in .d.ts definition files, the declare keyword can be used outside of
declaration files as well. A module or script file can use declare as well.



This can be useful when a globally available variable is only meant to be
used in that file.

Here, a myGlobalValue variable is defined in an index.ts file, so it’s
allowed to be used in that file:

// index.ts
declare const myGlobalValue: string;

console.log(myGlobalvalue); // 0Ok

Note that while type shapes such as interfaces are allowed with or without a
declare in .d.ts definition files, runtime constructs such as functions or
variables will trigger a type complaint without a declare:

// index.d.ts
interface Writer {} // 0k
declare interface Writer {} // 0Ok

declare const fullName: string; // Ok: type is the primitive string
declare const firstName: "Liz"; // Ok: type is the literal "value"

const lastName = "Lemon";
// Error: Top-level declarations in .d.ts files must
// start with either a 'declare' or 'export' modifier.

Global Values

Because TypeScript files that have no import or export statements are
treated as scripts rather than modules, constructs—including types—
declared in them are available globally. Definition files without any imports
or exports can take advantage of that behavior to declare types globally.
Global definition files are particularly useful for declaring global types or
variables available across all files in an application.

Here, a globals.d.ts file declares that a const version: string exists
globally. A version.ts file is then able to refer to a global version variable
despite not importing from globals.d.ts:



// globals.d.ts
declare const version: string;

// version.ts
export function logVersion() {

console.log( Version: ${version}'); // Ok
}

Globally declared values are most often used in browser applications that
use global variables. Although most modern web frameworks generally use
newer techniques such as ECMAScript modules, it can still be useful—
especially in smaller projects—to be able to store variables globally.

TIP

If you find that you can’t automatically access global types declared in a .d.ts file, double-check
that the .d.zs file isn’t importing and exporting anything. Even a single export will cause the whole
file to no longer be available globally!

Global Interface Merging

Variables aren’t the only globals floating around in a TypeScript project’s
type system. Many type declarations exist globally for global APIs and
values. Because interfaces merge with other interfaces of the same name,
declaring an interface in a global script context—such as a .d.ts declaration
file without any import or export statements—augments that interface
globally.

For example, a web application that relies on a global variable set by the
server might want to declare that as existing on the global Window interface.
Interface merging would allow a file such as #types/window.d.ts to declare a
variable that exists on the global window variable of type Window:

<script type="text/javascript"s
window.myVersion = "3.1.1";
</script>



// types/window.d.ts
interface Window {
myVersion: string;

}

// index.ts

export function logWindowVersion() {
console.log( Window version is: ${window.myVersion}');
window.alert("Built-in window types still work! Hooray!")

Global Augmentations

It’s not always feasible to refrain from import or export statements in a
.d.ts file that needs to also augment the global scope, such as when your
global definitions are simplified greatly by importing a type defined
elsewhere. Sometimes types declared in a module file are meant to be
consumed globally.

For those cases, TypeScript allows a syntax to declare global a block of
code. Doing so marks the contents of that block as being in a global context
even though their surroundings are not:

// types.d.ts
// (module context)

declare global {
// (global context)
}

// (module context)

Here, a types/data.d. ts file exports a Data interface, which will later be
imported by both types/globals.d.ts and the runtime index.ts:

// types/data.d.ts
export interface Data {
version: string;

}



Additionally, types/globals.d. ts declares a variable of type Data
globally inside a declare global block as well as a variable available only
in that file:

// types/globals.d.ts
import { Data } from "./data";

declare global {
const globallyDeclared: Data;

}

declare const locallyDeclared: Data;

index.ts then has access to the globallyDeclared variable without an
import, and still needs to import Data:

// index.ts
import { Data } from "./types/data";

function logData(data: Data) { // 0Ok
console.log( Data version is: ${data.version}’);

}
logData(globallyDeclared); // 0Ok

logData(locallyDeclared);
/] e

// Error: Cannot find name 'locallyDeclared'.

Wrangling global and module declarations to play well together can be
tricky. Proper usage of TypeScript’s declare and global keywords can
describe which type definitions are meant to be available globally in
projects.

Built-In Declarations

Now that you’ve seen how declarations work, it’s time to unveil their
hidden use in TypeScript: they’ve been powering its type checking the
whole time! Global objects such as Array, Function, Map, and Set are



examples of constructs that the type system needs to know about but aren’t
declared in your code. They’re provided by whatever runtime(s) your code
1s meant to run in: Deno, Node, a web browser, etc.

Library Declarations

Built-in global objects such as Array and Function that exist in all
JavaScript runtimes are declared in files with names like /ib. [target].d.ts.

target 1s the minimum support version of JavaScript targeted by your
project, such as ES5, ES2020, or ESNext.

The built-in library definition files, or “lib files,” are fairly large because
they represent the entirety of JavaScript’s built-in APIs. For example,
members on the built-in Array type are represented by a global Array
interface that starts like this:

// lib.es5.d.ts

interface Array<T> {
/**
* Gets or sets the length of the array.
* This is a number one higher than the highest index in the array.

*/

length: number;

/) ...
}

Lib files are distributed as part of the TypeScript npm package. You can
find them inside the package at paths like
node_modules/typescript/lib/lib.es5.d.ts. For IDEs such as VS Code that use
their own packaged TypeScript versions to type check code, you can find
the lib file being used by right-clicking on a built-in method such as an
array’s forEach in your code and selecting an option like Go to Definition
(Figure 11-1).



" indenty X 5 indexis TS fibaadadis X
TS indests * @ oL i hame * jodh ¥ vacode-wirver 2 Bin ¥ ¢ T2t Tead 3dTI8T 005 3d15c4 51601 57 Td 1 * #xti
1 export function logLines{linei: steing[]) { 1503 * the predicate fuactica for each elesent in the arcay ur
2 lines.forEachd ¥ idnah - § 1394 * which 1% coercible to the Boolean valwe true, or wntil
3 censole.10f  Goba DeSnition Fip 1395 * @param thisArg An object to which the this keyword can
a 1 N 1396 * If thisarg is omitted, undefined is used as the this va
Ges b Typs Dufinitian
5 ¥ sy “f
[ Go ta Inplirrsntabons Cerl+Fi2 1398 some{predicate: {value: 7, index: nusber, array: T[]} =» u
Go o Redererses ShitteF12 1399 i
Pock 5 pEICE * perforas the specified action for @ach elesent In an ar
1481 * @param callbackfn A functlon that accepts wp to three
Fired All Beferences Shifts AltsF12 1482 * @param thisArg &n object to which the this keyword can
_ 1403 o
Find All Implemasiations 14 forBRch(al lbackfn: (valee: T, index: nusber, srcay: T[]}
Shaw Call Heprarchy Shift+ AhsH 1485 o
1406 * Calls a defined callback fumctiom on each element of an
Rename Sy F 1407 * Eparas callbackfm & functles that accepts up to three a
Chargs All Deouimerse CreloF2 1484 * @param thisarg an object to which the this keyword can
Format Deoument Shiftsle+F 1463
1418 mapeUr{callbackfn: (value: T, index: nusber, array: T[]} =
Fafactor Corl#Shift+ R 1411 pee
Source Action 1412 * Beturnt the elements of an array that meet the conditic
1413 * @param predicate A fumction that accepts up to three ar
Cut Cerl+k 1414 * @paras ThisArg an object to which the this keywerd can
Capy CirlsC 1415 =
1416 filter<s extemds Tr{predicater (valwe: T, index: number, a
Paitiy Crela
1417 i
Cammand Paleste Curls Shifya P 1418 * Returnd the elesents of bn bFfay that seet the conditic
1418 * @param predicate & fumction that accepts up to three ar

Figure 11-1. Left: going to definition on a forEach; right: the resultant opened lib.es5.d.ts file

Library targets

TypeScript by default will include the appropriate lib file based on the
target setting provided to the tsc CLI and/or in your project’s
tsconfig.json (by default, "es5"). Successive lib files for newer versions of
JavaScript build on each other using interface merging.

For example, static Number members such as EPSILON and isFinite added
in ES2015 are listed in /ib.es2015.d.ts:

// lib.es2015.d.ts

interface NumberConstructor {

/'k*

* The value of Number.EPSILON is the difference between 1 and the
* smallest value greater than 1 that is representable as a Number
* value, which is approximately:

* 2.2204460492503130808472633361816 x 10-16.

*/

readonly EPSILON: number;

/'k*

* Returns true if passed value is finite.

* Unlike the global isFinite, Number.isFinite doesn't forcibly
* convert the parameter to a number. Only finite values of the



* type number result in true.
* @param number A numeric value.

*/

isFinite(number: unknown): boolean;

// ...

TypeScript projects will include the lib files for all version targets of
JavaScript up through their minimum target. For example, a project with a
target of "es2016" would include lib.es5.d.ts, lib.es2015.d.ts, and
lib.es2016.d.ts.

TIP

Language features available only in newer versions of JavaScript than your target will not be
available in the type system. For example, if your target is "es5", language features from ES2015
or later such as String.prototype.startsWith will not be recognized.

Compiler options such as target are covered in more detail in Chapter 13,
“Configuration Options”.

DOM Declarations

Outside of the JavaScript language itself, the most commonly referenced
area of type declarations is for web browsers. Web browser types, generally
referred to as “DOM?” types, cover APIs such as localStorage and type
shapes such as HTMLElement available primarily in web browsers. DOM
types are stored in a /ib.dom.d.ts file alongside the other /ib. *.d.ts
declaration files.

Global DOM types, like many built-in globals, are often described with
global interfaces. For example, the Storage interface used for
localStorage and sessionStorage and starts roughly like this:

// lib.dom.d. ts



interface Storage {
/**

* Returns the number of key/value pairs.
*/

readonly length: number;

/**
* Removes all key/value pairs, if there are any.
*/

clear(): void;

/**
* Returns the current value associated with the given key,
* or null if the given key does not exist.

*/
getItem(key: string): string | null;

// ...

TypeScript includes DOM types by default in projects that don’t override
the 1ib compiler option. That can sometimes be confusing for developers
working on projects meant to be run in nonbrowser environments such as
Node, as they shouldn’t be able to access the global APIs such as document
and localStorage that the type system would then claim to exist.
Compiler options such as 1ib are covered in more detail in Chapter 13,
“Configuration Options”.

Module Declarations

One more important feature of declaration files is their ability to describe
the shapes of modules. The declare keyword can be used before a string
name of a module to inform the type system of the contents of that module.

Here, the "my-example-1ib" module is declared as being in existence in a
modules.d. ts declaration script file, then used in an index.ts file:

// modules.d.ts
declare module "my-example-lib" {
export const value: string;

}



// index.ts
import { value } from "my-example-1ib";

console.log(value); // 0Ok

You shouldn’t have to use declare module often, if ever, in your own
code. It’s mostly used with the following section’s wildcard module
declarations and with package types covered later in this chapter.
Additionally, see Chapter 13, “Configuration Options” for information on
resolveJsonModule, a compiler option that allows TypeScript to natively
recognize imports from .json files.

Wildcard Module Declarations

A common use of module declarations is to tell web applications that a
particular non-JavaScript/TypeScript file extension is available to import
into code. Module declarations may contain a single * wildcard to indicate
that any module matching that pattern looks the same.

For example, many web projects such as those preconfigured in popular
React starters such as create-react-app and create-next-app support CSS
modules to import styles from CSS files as objects that can be used at
runtime. They would define modules with a pattern such as

"* module.css" that default exports an object of type { [1: string]:
string }:

// styles.d.ts

declare module "*.module.css" {
const styles: { [1: string]: string };
export default styles;

}

// component.ts
import styles from

./styles.module.css";

styles.anyClassName; // Type: string



WARNING

Using wildcard modules to represent local files isn’t completely type safe. TypeScript does not
provide a mechanism to ensure the imported module path matches a local file. Some projects use a
build system such as Webpack and/or generate .d.¢s files from local files to make sure imports
match up.

Package Types

Now that you’ve seen how to declare typings within a project, it’s time to
cover consuming types between packages. Projects written in TypeScript
still generally distribute packages containing compiled .js outputs. They
typically use .d.ts files to declare the backing TypeScript type system
shapes behind those JavaScript files.

declaration

TypeScript provides a declaration option to create .d.ts outputs for input
files alongside JavaScript outputs.

For example, given the following index.ts source file:

// index.ts
export const greet = (text: string) => {
console.log( ‘Hello, ${text}!");

};

Using declaration, a module of "es2015", and a target of "es2015",
the following outputs would be generated:

// index.d.ts
export declare const greet: (text: string) => void;

// index.js
export const greet = (text) => {
console.log( Hello, S${text}!");

};



Auto-generated .d.ts files are the best way for a project to create type
definitions to be used by consumers. It’s generally recommended that most
packages written in TypeScript that produce .js file outputs should also
bundle .d.zs alongside those files.

Compiler options such as declaration are covered in more detail in
Chapter 13, “Configuration Options™.

Dependency Package Types

TypeScript is able to detect and utilize .d.¢s files bundled inside a project’s
node_modules dependencies. Those files will inform the type system about
the type shapes exported by that package as if they were written inside the
same project or declared with a declare module block.

A typical npm module that comes with its own .d.#s declaration files might
have a file structure something like:

1ib/
index.js
index.d.ts
package. json

As an example, the ever-popular test runner Jest is written in TypeScript
and provides its own bundled .d.¢s files in its jest package. It has a
dependency on the @jest/globals package that provides functions such as
describe and it, which jest then makes available globally:

// package.json
{
"devDependencies": {
"jest": "732.1.0"

}
}

// using-globals.d.ts
describe("MyAPI", () => {

it("works", () == { /* ... */ });
1)



// using-imported.d.ts
import { describe, it } from "@jest/globals";

describe("MyAPI", () => {
it("works", () = { /* ... */ });
3

If we were to re-create a very limited subset of the Jest typings packages
from scratch, they might look some something like these files. The
@jest/globals package exports the describe and it functions. Then, the
jest package imports those functions and augments the global scope with
describe and it variables of their corresponding function’s type:

// node_modules/@jest/globals/index.d.ts
export function describe(name: string, test: () => void): void;
export function it(name: string, test: () => void): void;

// node_modules/jest/index.d.ts
import * as globals from "@jest/globals";

declare global {
const describe: typeof globals.describe;
const it: typeof globals.it;

This structure allows projects that use Jest to refer to global versions of
describe and it. Projects can alternatively choose to import those
functions from the @jest/globals package.

Exposing Package Types

If your project is meant to be distributed on npm and provide types for
consumers, add a "types" field in the package’s package.json file to point
to the root declaration file. The types field works similarly to the main
field—and often will look the same but with the .d.ts extension instead of

JS.

For example, in this fictional package file, the ./lib/index.js main runtime
file 1s paralleled by the ./lib/index.d.ts types file:



"author": "Pendant Publishing",
"main": "./lib/index.js",
"name": "coffeetable",

"types": "./lib/index.d.ts",
"version": "0.5.22",

TypeScript would then use the contents of the ./lib/index.d.ts as what should
be provided for consuming files that import from the utilitarian
package.

NOTE

If the types field does not exist in a package’s package.json, TypeScript will assume a default
value of ./index.d.ts. This mirrors the default npm behavior of assuming an ./index.js file as the
main entry point for a package if not specified.

Most packages use TypeScript’s declaration compiler option to create
.d.ts files alongside .js outputs from source files. Compiler options are
covered in Chapter 13, “Configuration Options”.

DefinitelyTyped

Sadly, not all projects are written in TypeScript. Some unfortunate
developers are still writing their projects in plain old JavaScript without a
type checker to aide them. Horrifying.

Our TypeScript projects still need to be informed of the type shapes of the
modules from those packages. The TypeScript team and community created
a giant repository called DefinitelyTyped to house community-authored
definitions for packages. DefinitelyTyped, or DT for short, is one of the
most active repositories on GitHub. It contains thousands of packages of
.d.ts definitions, along with automation around reviewing change proposals
and publishing updates.


https://github.com/DefinitelyTyped/DefinitelyTyped

DT packages are published on npm under the @types scope with the same
name as the package they provide types for. For example, as of 2022,
@types/react provides type definitions for the react package.

NOTE

@types are generally installed as either dependencies or devDependencies, though the
distinction between those two has become blurred in recent years. In general, if your project is
meant to be distributed as an npm package, it should use dependencies so consumers of the
package also bring in the type definitions used within. If your project is a standalone application
such as one built and run on a server, it should use devDependencies to convey that the types are

just a development-time tool.

For example, for a utility package that relies on lodash—which as of 2022
has a separate @types/lodash package—the package.json would contain

lines similar to:

// package.json

{

"dependencies": {
"@types/lodash": "~4.14.182",
"lodash™: "~4.17.21",

}

}

The package.json for a standalone app built on React might contain lines

similar to:

// package. json
{

"dependencies": {
"react": "718.1.0"

s

"devDependencies"”: {
"@types/react": "~18.0.9"

1



Note that semantic versioning (“semver’”’) numbers do not necessarily match
between @types/ packages and the packages they represent. You may often
find some that are off by a patch version as with React earlier, a minor
version as with Lodash earlier, or even major versions.

As these files are authored by the community, they may lag behind the parent project or have
small inaccuracies. If your project compiles successfully yet you get runtime errors when calling
libraries, investigate if the signatures of the APIs you are accessing have changed. This is less
common, but still not unheard of, for mature projects with stable API surfaces.

Type Availability

Most popular JavaScript packages either ship with their own typings or
have typings available via Definitely Typed.

If you’d like to get types for a package that doesn’t yet have types available,
your three most common options would be:

e Send a pull request to DefinitelyTyped to create its @types/ package.

e Use the declare module syntax introduced earlier to write the types
within your project.

e Disable noImplicitAny as covered—and strongly warned against—in
Chapter 13, “Configuration Options™.

I’d recommend contributing types to DefinitelyTyped if you have the time.
Doing so helps out other TypeScript developers who may also want to use
that package.

TIP

See aka.ms/types to display whether a package has types bundled or via a separate @types/
package.


https://aka.ms/types

Summary

In this chapter, you used declaration files and value declarations to inform
TypeScript about modules and values not declared in your source code:

e Creating declaration files with .d.ts
* Declaring types and values with the declare keyword

¢ Changing global types using global values, global interface merges,
and global augmentations

e Configuring and using TypeScript’s built-in target, library, and DOM
declarations

e Declaring types of modules, including wildcard modules
e How TypeScript picks up types from packages

e Using DefinitelyTyped to acquire types for packages that don’t include
their own

TIP

Now that you’ve finished reading this chapter, practice what you’ve learned on
https://learningtypescript.com/declaration-files.

What do TypeScript types say in the American South?
“Why, I do declare!”


https://learningtypescript.com/declaration-files

Chapter 12. Using IDE Features

Programming with an
IDE the first time feels

like superpowers.

No popular programming language would be complete without syntax
highlighting and other IDE features to help developing in it. One of
TypeScript’s greatest strengths is that its language service provides a suite
of powerful development helpers for JavaScript and TypeScript code. This
chapter will cover some of the most useful items.

I highly recommend you try these IDE features out on the TypeScript
projects you’ve built alongside this book. Although all the examples and
screenshots in this chapter are of VS Code, my favorite editor, any IDE with
TypeScript support will support most or all of this chapter. As of 2022 that
includes the native support or TypeScript plugins for at least all of: Atom,
Emacs, Vim, Visual Studio, and WebStorm.

NOTE

This chapter is a nonexhaustive list of some of the more commonly useful TypeScript IDE
features, along with any default shortcuts for them in VS Code. You’ll likely find more as you
keep writing TypeScript code.

Many IDE features are generally made available in the context menu
surfaced by right-clicking on a name in code. IDEs such as VS Code
generally show keyboard shortcuts in the context menu too. Getting
comfortable with your IDE’s keyboard shortcuts can help you write code
and execute refactors much more quickly.



This screenshot shows the list of commands and their shortcuts in VS Code

for a variable in TypeScript (Figure 12-1).

TS index.ts

1 import { data } from "./data";

2

3 console.log(data.message);

4

5 Go to Definition F12
Go to Type Definition
Go to Implementations Ctrl+F12
Go to References Shift+F12

Figure 12-1. VS Code showing a list of commands in the right-click context menu for a variable

In VS Code, as with most applications, up and down arrows select drop-down options, and Enter

activates one.

Navigating Code

Peek

Find All References

Find All Implementations

Shift+Alt+F12

Show Call Hierarchy Shift+Alt+H
Rename Symbol F2
Change All Occurrences Ctrl+F2
Format Document Shift+Alt+F
Refactor... Ctrl+Shift+R
Source Action...

Cut Ctrl+X
Copy Ctrl+C
Paste Ctrl+V
Command Palette... Ctrl+Shift+P

TIP

Developers generally spend much more time reading code rather than
actively writing it. Tools that assist in navigating code are supremely useful
for speeding that time up. Many of the features provided by the TypeScript



language service are geared toward learning about code: in particular,
jumping between type definitions or values in code and where they’re used.

I’ll now go through commonly used navigation options from the context
menu along with their VS Code shortcuts.

Finding Definitions

TypeScript can start from a reference to a type definition or value and
navigate you back to its original location in code. VS Code also provides a
couple of ways to backtrace in that way:

* Go to Definition (F12) navigates directly to where a requested name
was originally defined.

e Cmd (Mac) / Ctrl (Windows) + clicking a name triggers going to
definition as well.

e Peek > Peek Definition (Option (Mac) / Alt (Windows) + F12) brings
up a Peek box showing the definition instead.

Go to Type Definition is a specialized version of Go to Definition that goes
to the definition of whatever type a value is. For an instance of a class or
interface, it will reveal the class or interface itself instead of where the
instance is defined.

These screenshots show finding the definition of a data variable imported
into a file with Go to Definition (Figure 12-2).



5 indexts * T8 index.ts X TE datats *

™ inchex iz 15 datats » [@) data
import { data } from "./data"; 1 export const data = "Hooray!";
2

1
3 console. log{dataly:
4

Go to Definition F12
Go to Type Definition

Go to Implementations Cel+F12
Go to References Shift+F12
Pesk *
Find All Referénces Shift+Alt+F12

Find All Implementations

Show Call Hierarchy Chaft+Alt+H
Rename S:,-ml::c F2
Change All Decurménces Cirl+F2
Format Document Shift+Alt+F
Refactor. Ctrl+ Shift«R

Souroe ACtON...

Cut Cirl+X
Copy Ctrl+C
Paste Ctrl+V
Command Palette, Ctrl+Shift+ P

Figure 12-2. Left: going to definition on a variable name; right: the resultant opened data.ts file

When the definition is declared in your own code, such as a relative file, the
editor will bring you to that file. Modules outside your code such as npm
packages will commonly use .d.zs declaration files instead.

Finding References

Given a type definition or value, TypeScript can show you a list of all the
references to it, or places it’s used in the project. VS Code provides a couple
ways to visualize that list.

Go to References (Shift + F12) shows a list of references to that type
definition or value—starting with itself—in an expandable Peek box just
below the right-clicked name.

For example, here’s a Go to References of a data variable’s declaration in
one file, data.ts, that shows both the declaration and its usage in another
file, index.ts (Figure 12-3).



TS indexts U TS datats U X G M -

TS datats » ..

i export const data = {
r

data.ts /home/josh/repos/traxus - References (3) *
1 export const data = { = datate 1
2 BYRsLEE export const data = {
3 name: "Lesla™, -
a }; > index.ts 2
]

Figure 12-3. Peek menu showing references to a variable

That Peek box contains a file view of the referencing file. You can use that
file—type, run editor commands, and so on—as if it were a regularly
opened file. You can also double-click in the Peek box’s view of a file to
open that file.

Clicking through the list of file names on the right of the Peek box will
switch the Peek box’s file view to the clicked file. Double-clicking a line of
a file from the list will open the file and select its matched reference.

Here, VS Code is showing the same data variable’s declaration and usage,
but expanded in the sidebar view on the right (Figure 12-4).

TS indexts U TS datats U X T.'L m --

TS5 datats » ..
1  export const data = {

S
data.ts /homefjosh/repos/traxus - References (3) *

1 export const data = { ~ datats 1
2 eyes: 1, export const data = {
3 name: "Leela™, [ .

i ~ indexts 2
4 }i =
5 import { data } from "./data”;

consolelog(data.name);

Figure 12-4. Peek menu showing an opened reference to a variable

Find All References (Option (Mac) / Alt (Windows) + Shift + F12) also
shows a list of references, but in a sidebar view that stays visible after code
navigation. This can be useful for opening or performing actions on more
than just one reference at a time (Figure 12-5).



REFERENCES O = @ TS index.ts U TS datats U X

3 results in 2 files TS data.ts » [®) data

1 export const data = {

v TS data.ts U
2 eyes: 1
export const data = { y i ’ i
3 name: "Leela",
v TS index.ts X U )
4 };
import { data } from "./data”; g

console.log(data.name);

Figure 12-5. Find All References menu for a variable

Finding Implementations

Go to Implementations (Cmd (Mac) / Ctrl (Windows) + F12) and Find All
Implementations are specialized versions of Go To / Find All References
made for interfaces and abstract class methods. They find all
implementations of an interface or abstract method in code (Figure 12-6).

REFERENCES: IMPLEMENTATIONS ) = & T8 lewlats U X T m - TS pits U
1 result in 1 file T8 leelats > ™ aits
v TS boelats u 1 import { AT } from =.fai"; 1 export interface AL {
2 stage: number;
[ t class [8ala implements Al
R e I 3 export ¢last Leela implements AL { L] advance(): void;
4 stage = @; 4 }
5 advanee(} { 5
& this.stage += 1; G
T 1 7
i } a
9 9

Figure 12-6. Find All Implementations menu for an AI interface

These are particularly helpful when you’re specifically searching for how
values typed as a type such as class or interface are used. Find All
References might be too noisy, as it will also show definitions of and other
type references to the class or interface.



Writing Code

IDE language services such as VS Code’s TypeScript service run in the
background of your editor and react to actions taken in files. They see edits
to files as you type them—even before changes are saved to files. Doing so
enables a slew of features that help automate common tasks when writing
TypeScript code.

Completing Names

TypeScript’s APIs can be used by editors to fill in names that exist in the
same file as well. When you start typing a name, such as when providing a
previously declared variable as a function argument, editors using
TypeScript will often suggest autocompletions with a list of variables with
matching names. Clicking the name in the list with your mouse or hitting
the Enter key will complete the name (Figure 12-7).

TS indexts L] TS indexts @

TS indexts T8 index.ts

1 cunsule.;cg:ﬁﬂad 1 import { data } from "./data”;
2

@) DataTransfer 3 console. log{data))
@) DataTransferItem

(@] DataTransferItemList

(@) DataView

@) Date

%2 varDate

@) FormData

@) FormDataEvent

IEE.‘I dispatchEvent

i) ImageData

@) DOMMatrix

Figure 12-7. Left: autocompletions on a variable typed as dat; right: the result of autocompleting to
an imported data

Automatic import additions will be offered for package dependencies as
well. These screenshots show a TypeScript file’s imports and module code

before and after sortBy is imported from the "lodash" package
(Figure 12-8).



15 mdexts 1 ® TS index.ts [ ]

TS indexts ife » T8 medexis
import { sortBy } from “lodash™;

* F
) sertedUnigBy ledash 3 sortdy

[ sortedIndexBy lodash
2 sortedLastIndexBy lodash

[ SourceBufferList
[# SWGFereignObjectElement

Figure 12-8. Left: autocompletions on a variable typed as sortBy, right: the result of
autocompleting to an imported sortBy from lodash

Automatic imports are one of my favorite features of the TypeScript
experience. They greatly expedite the often laborious processes of figuring
out where imports come from and then explicitly typing them out.

Similarly, if you start typing the name of a property from a typed value,
editors powered by TypeScript will offer to autocomplete to known
properties of the value’s type (Figure 12-9).

T8 indexts 1 @ T8 indexts L
TS5 indecis T8 indexts
1 import { data } from *./data”; 1 import { data } from "./data"™;
2 2
3 console. log{data) 3 console. log{data)
4 4
g :.lT.:._‘FﬂE g data.forEach

] foreach =3 For-Each Loop using =>

Figure 12-9. Left: autocompletions on a property typed as forE; right: the result of autocompleting
to . forEach

Automatic Import Updates

If you rename a file or move it from one folder to another, you may need to
update potentially many import statements for the file. Updates may need to
be made both in that file itself and in any other file that imports from it.

If you drag and drop a file or rename it to a nested folder path using the VS
Code file explorer, VS Code will offer to use TypeScript to update file paths
for you.

These screenshots show a src/logging.ts file being renamed to a
src/shared/logging.ts location, and file imports getting updated in a



corresponding manner (Figure 12-10).

TS indeats * 5 indexts b4 TS loggingis
TS indedis » TS indexts
1 import { data } from ®./data”; 1 import { data } from "./data™:
import { log } from ~.flogging”; 2 import { lpg } from ",.-'shared_."j_oﬂﬂi:!g";

£l
4 log{data); & log({data);
g

5
T8 shared/logging ts

Figure 12-10. Left: a src/index.ts file importing from ". /logging"; middle: renaming src/logging.ts
to src/shared/logging.ts; right: src/index.ts with an updated import path

TIP

Multifile edits may leave changes to files unsaved. Remember to save any changed files after
running edits on them.

Code Actions

Many of TypeScript’s IDE utilities are provided as actions you can trigger.
While some of these modify only the current file being edited, some can
modify many files at once. Using these code actions is a great way to direct
TypeScript to do many of your manual code writing tasks such as
calculating import paths and common refactors for you.

Code actions are generally represented with some kind of icon in editors
when available. VS Code, for example, shows a clickable light bulb next to
your text cursor when at least one code action is available (Figure 12-11).



TS indexts 1 ® TS |ogging.ts

src » TS index.ts

1 import { log } from "./shared/logging";

N VY S

[€] DataTransfer
[«] DataTransferItem

[#] DataTransferItemList
lexl Natali aw

Figure 12-11. Code actions lightbulb next to a name causing a type error

TIP

Editors generally expose keyboard shortcuts to operate their code actions menu or equivalent,
allowing you to trigger any action in this chapter without using a mouse. VS Code’s default
shortcut to open a code actions menu is Cmd + . on Mac and Ctrl + . on Linux/Windows. Up and

down arrows select drop-down options, and Enter activates one.

These code actions—in particular renames and refactors—are especially
powerful by virtue of being informed by TypeScript’s type system. When
applying an action to a type, TypeScript will understand which values
across all files are of that type, and can then apply any needed changes to
those values.

Renaming

Changing a name that already exists, such as that of a function, interface, or
variable can be cumbersome to perform manually. TypeScript can perform a
renaming for a name that also updates all references to the name.

The Rename Symbol (F2) context menu option creates a text box where
you can type in a new name. Triggering a rename on a function’s name, for
example, would provide a text box to rename that function and all calls to
it. Hit Enter to apply that name (Figure 12-12).



TS logging.ts X

src > shared > TS logging.ts > @ log
1 export function log(...data: unknown[]) {
.! console.log("[ logDatal ‘

.|
3 } Enter to Rename, Shift+Enter to Preview
4

Figure 12-12. Box for renaming a log function, with logData inserted

If you’d like to see what would happen before you apply the new name,
press Shift + Enter to open a Refactor Preview pane that lists all the text
changes that would happen (Figure 12-13).

TS loggingts X B tsconfig son

src > shared > TS logging.ts > @ log
1 export function log(...data: unknown[]) {
2 I?console.log("[log]", ...data);
3}
a

REFACTOR PREVIEW PROBLEMS OUTPUT DEBUG COMSOLE TERMINAL

v TS index.ts src
import { feglogData } from “./shared/logging";
teglogData(data);

~ K4 TS logging.ts src/shared
export function teglogData(...data: unknown([]) {

Figure 12-13. Refactor preview for renaming a log function, with logData previewed across two

files

Removing unused code

Many IDEs subtly change the visual appearance of code that is unused,
such as imported values and variables that are never referenced. VS Code,
for example, reduces their opacity by about a third.



TypeScript provides code actions to delete unused code. (Figure 12-14)
shows the result of asking TypeScript to remove an unused import
statement.

TS indexts U @ TS indexts U @

TS imdex.ts TS imdex.ts

=
T

Remove import from °./data’

'r_r_1r'|'.'|:'|1_ |'|.-_'|rr'.|_'(| :rnpq_'lrls {s] r1._'|||'||_"_.|_‘:.}C|_' il'r:pur[
Learn mere about J5/TS refactorings console. log(”
The candles burn out for you;
I am free.

console. log(”
The candles burn out for you;
I am free.

BH

WO s Mmoo B W R
WO s Mmoo B W R

=
L]
=
o

11

Figure 12-14. Left: selecting an unused import and opening the refactors menu, right: the file after
TBypeScript deletes it

Other quick fixes

Many TypeScript error messages are for code problems that can be quickly
rectified, such as minor typos in keywords or variable names. Other
commonly useful TypeScript quick fixes include:

e Declaring a missing property on a class or interface
e Correcting a mistyped field name
e Filling in missing properties of a variable declared as a type

I recommend checking the list of quick fixes whenever you spot an error
message you haven’t seen before. You never know what useful utilities
TypeScript has made available to resolve it!

Refactoring

The TypeScript language service provides a plethora of handy code changes
for different structures of code. Some are as simple as moving lines of code
around, while others are as complex as creating new functions for you.



When you’ve selected an area of code, VS Code will display a lightbulb
icon next to your selection. Click it to see the list of refactors available.

Here’s a developer extracting an inline array literal to a const variable
(Figure 12-15).

Extract to constant in enclosing scope

TS datads ® $ datats .
re 2 TS datats > B0 data sre > TS datats (@] data
1 export const data = Math.random() » @.5 1 const newlocal = [“first”, "second™; "third"];
2 ® » [“first®, "second”, “third") 2 export const data = Math.random() » 8.5
3 : 3 ¥ newlocal
|

Ewlocal
Extract to function in module scope =

Learn mare about J5/T5 refactonings

Figure 12-15. Left: selecting an array literal and opening the refactors menu; right: extracting to a
constant variable

Working Effectively with Errors

Reading and taking action on error messages is a fact of life for working in
any programming language. Every developer, regardless of proficiency with
the TypeScript language, will trigger a plethora of TypeScript compiler
errors each time they write TypeScript code. Using IDE features to enhance
your ability to work effectively with TypeScript compiler errors will help
you become much more productive in the language.

Language Service Errors

Editors generally surface any errors reported by the TypeScript language
service as red squigglies underneath the troublesome code. Hovering your
mouse over underlined characters will show a hover box next to them with
the text of the error (Figure 12-16).



TS indexts 1 X

src > TS index.ts
1 thisVariableDoesNotExist;

any

Cannot find name 'thisVariableDoesNotExist'. ts(2384)
View Problem  No quick fixes available

Figure 12-16. Hover information on a variable that does not exist

VS Code also shows errors for any open files in a Problems tab in its Panels
section. The bottom left View Problem link in the mouse hover box for an
error will open an inline display of the message inserted after the problem’s
line and before any subsequent lines (Figure 12-17).

TS indexts 1 X

src > TS indexts

1 EhisﬂariahleﬂoesNDtExist;

X) index.ts 1 of 1 problem

Cannot find name ‘'thisvVariableDoesNotExist'. ts(2304)

Figure 12-17. View Problem inline display for a variable that does not exist

When multiple problems exist in the same source file, their displays will
include up and down arrows that you can use to switch between them. F8
and Shift + F8 will work as shortcuts to go forward and backward through
that list of problems, respectively (Figure 12-18).



TS indexts 2 X M -

grc > TS indexts
1 thisVariableDoesNotExist;

: ;

3 thisVariableAlsoDoesNotExist;
il

(%) index.ts 2 of 2 problems Jo T X

Cannot find name ‘thisVariableAlsoDoesNotExist'. ts(23e4)

Figure 12-18. One of two View Problem inline displays for variables that do not exist

Problems tab

VS Code includes a Problems tab in its panel that, as its name suggests,
surfaces any problems in your workspace. That includes errors reported by
the TypeScript language service.

This screenshot shows a Problems tab showing two problems in a
TypeScript file (Figure 12-19).

TS indexts 2 X

src » TS index.ts
1 thisVariableDoesNotExist;
2
3 thisVariableAlsoDoesNotExist;

PROBLEMS (2 QUTPUT DEBUG CONSOLE TERMINAL Filter (e.g. text, **/*ts,

v TS index.ts src (2
& Cannot find name 'thisVariableDoesNotExist'. ts(2304) [1, 1]
%) Cannot find name 'thisVariableAlsoDoesNotExist'. ts(2304) [3, 1]

Figure 12-19. Problems tab showing two errors in a file

Clicking any error within the Problems tab will bring your text cursor to the
offending line and column in its file.

Note that VS Code will only list problems for files that are currently open.
If you want a real-time updated list of all TypeScript compiler problems,



you’ll need to run the TypeScript compiler in a terminal.

Running a terminal compiler

I recommending running the TypeScript compiler in watch mode (covered
in Chapter 13, “Configuration Options”) in a terminal while working in a
TypeScript project. Doing so will give you a real-time updated list of all
problems—not just those in files.

To do this in VS Code, open the Terminal panel and run tsc -w (or tsc -b
-w if using project references, also covered in Chapter 13, “Configuration
Options”). You should now see a terminal display showing all TypeScript
issues in your project, as in this screenshot (Figure 12-20).

TS indexts 1, U X

TS index.ts
1 thisvariableDoesNotExist;
2

PROBLEMS OUTPUT DEBUG CONSOLE TERMIMAL

[3:43:49 PM] Starting compilation in watch mode...
index.ts:1:1 - error TS23@4: Cannot find name 'thisVariableDoesNotExist'.

i thisVariableDoesNotExist;

P o P o e

[3:43:49 PM] Found 1 error. Watching for file changes.
Figure 12-20. Running tsc -win a terminal to report a problem in a file

Cmd (Mac) / Ctrl (Windows) + clicking a file name will bring your text
cursor to the offending line and column in its file as well.



TIP

Some projects use VS Code launch.json configurations to start a terminal with TypeScript
compiler in watch mode for you. See code.visualstudio.com/docs/editor/tasks for a full reference

on VS Code tasks.

Understanding types

You will sometimes find that you need to learn the type of something that’s
set up in a way that the type isn’t apparent. For any value, you can hover
your mouse over its name to see a hover box showing its type.

This screenshot shows the hover box for a variable (Figure 12-21).
TS indexts X

src » TS index.ts
1 import { getData } from "./getData";

2

3 (alias) const getData: () => string
4 import getData

5 getData;l

Figure 12-21. Hover information on a variable

Hold Ctrl while hovering to also show where the name is declared.

This screenshot shows the Ctrl hover box for the same variable as before
(Figure 12-22).


https://code.visualstudio.com/docs/editor/tasks

TS index.ts ¥

src » TS index.ts

1 import { getData } from "./getData";

: (alias) const getData: () => string

3 import getData

: export const getData = () => "Hello, world!";
6 getData;|

Figure 12-22. Expanded hover information on a variable

Hover info boxes are also available on types, such as type aliases. This
screenshot shows hovering over a keyof typeof type to see its equivalent
union of string literals (Figure 12-23).

TS types.ts *

src » T8 types.ts > [@] FruitName
1 const fruits = {

2 apple: 1,

3 broccoli: 2,

4 cherry: 3,

5 b

6 type FruitName = "apple" | "broccoli” | "cherry"
7 export type FruitName = keyof typeof fruits;

Figure 12-23. Expanded hover information on a type

One strategy I’ve found to be helpful when trying to understand
components of complex types is to create a type alias that represents just
one component of the type. You will then be able to hover your mouse over
that type alias to see what its type result is.

For the FruitsType type from before as an example, its typeof fruits
portion could be extracted into a separate intermediary type with a refactor.
That intermediary type can then be hovered to see type information
(Figure 12-24).



TS typesis K gty X
TE typeits > 68 FruitNams TS fypesis * 0 NewType

¥l
CONSE Smed b

1 censt fruits = { 1 '

1 apple: 1, 3 a type HewType = {

3 brocceli: 2, 3 b apple: number;

1 cherry: 3, 4 P broccoli: nuaber;

s 5 ¥ cherry: number;

& ; ;

B . & [ ] ]‘

7 export type FruitMame = keyof typeof fruits; 7 type I.;u:..:T:,-_'n': = typeof fruits;
B
j

Exfract to type alias

expart type FruitName = keyof NewType;

Leamn more about J5/TS refactorings
Figure 12-24. Left: extracting part of the FruitsType type; right: hovering over that extracted type

The intermediary type alias strategy is particularly useful for debugging the
type operations covered in Chapter 15, “Type Operations”.

Summary

In this chapter, you explored using TypeScript’s IDE integrations to level up
your ability to write TypeScript code:

e Opening context menus on types and values to list their available
commands

e Navigating code by finding definitions, references, and
implementations

e Automating writing code with name completions and automatic
imports

e More code actions including renames and refactors
e Strategies for viewing and understanding language service errors

e Strategies for understanding types

TIP

Now that you’ve finished reading this chapter, practice what you’ve learned on
https://learningtypescript.com/using-ide-features.


https://learningtypescript.com/using-ide-features

What do IDEs in love say to each other?

“You complete me!”



Chapter 13. Configuration
Options

Compiler options:
Types and modules and oh my!

tsc your way.

TypeScript 1s highly configurable and made to adapt to all common
JavaScript usage patterns. It can work for projects ranging from legacy
browser code to the most modern server environments.

Much of TypeScript’s configurability comes from its cornucopia of over
100 configuration options that can be provided via either:

e Command-line (CLI) flags passed to tsc
e “TSConfig” TypeScript configuration files

This chapter is not intended as a full reference for all TypeScript
configuration options. Instead, I’d suggest treating this chapter as a tour of
the most common options you’ll find yourself using. I’ve included just the
ones that tend to be more useful and widely used for most TypeScript
project setups. See aka.ms/tsc for a full reference on each of these options
and more.

tsc Options

Back in Chapter 1, “From JavaScript to TypeScript”, you used tsc
index. ts to compile an index.ts file. The tsc command can take in most of
TypeScript’s configuration options as - - flags.


https://aka.ms/tsc

For example, to run tsc on an index.ts file and skip emitting an index.js file
(so, only run type checking), pass the - -noEmit flag:

tsc index.ts --noEmit

You can run tsc --help to get a list of commonly used CLI flags. The full
list of tsc configuration options from aka.ms/tsc is viewable with tsc --
all.

Pretty Mode

The tsc CLI has the ability to output in a “pretty” mode: stylized with
colors and spacing to make them easier to read. It defaults to pretty mode if
it detects that the output terminal supports colorful text.

Here’s an example of what tsc looks like printing two type errors from a
file (Figure 13-1).

~flearningtypescript$ tsc index.ts

index.ts:1: - error TS2322: Type 'string' is not assignable to type 'number’.
i export let notNumeric: number = "Gotcha!";
index.ts:3: - error T52322: Type 'number® is not assignable to type 'string'.

i export let notString: string = 1337;

oo P o o P P P

Found 2 errors in the same file, starting at: index.ts:1

Figure 13-1. tsc reporting two errors with blue file names, yellow line and column numbers, and red
squigglies

If you’d prefer CLI output that is more condensed and/or doesn’t have
different colors, you can explicitly provide --pretty false to tell
TypeScript to use a more terse, uncolored format (Figure 13-2).

~flearningtypescript$ tsc index.ts --pretty false
index.ts(1,12): error TS2322: Type 'string' is not assignable to type 'number'.
index.ts(3,12): error TS52322: Type 'number®' is not assignable to type 'string’.

Figure 13-2. tsc reporting two errors in plain text


https://aka.ms/tsc

Watch Mode

My favorite way to use the tsc CLI is with its -w/- -watch mode. Instead of
exiting once completed, watch mode will keep TypeScript running
indefinitely and continuously updates your terminal with a real-time list of
all the errors it sees.

Running in watch mode on a file that contains two errors is shown in
Figure 13-3.

[8:48:48 AM] Starting compilation in watch mode...

index.ts:1: - error T52322: Type 'string' is not assignable to type 'number’.
i export let notNumeric: number = "Gotcha!";
index.ts:3: - error T52322: Type 'number' is not assignable to type 'string’.

i export let notString: string = 1337;

[8:48:41 AM] Found 2 errors. Watching for file changes.

Figure 13-3. tsc reporting two errors in watch mode

Figure 13-4 shows tsc updating console output to indicate that the file was
changed in a way to fix all errors.

[8:49:18 AM] File change detected. Starting incremental compilation...

[8:49:18 AM] Found @ errors. Watching for file changes.

Figure 13-4. tsc reporting no errors in watch mode

Watch mode is particularly useful when you’re working on large changes
such as refactors across many files. You can use TypeScript’s type errors as
a checklist of sorts to see what still needs to be cleaned up.

TSConfig Files

Instead of always providing all file names and configuration options to tsc,
most configuration options may be specified in a tsconfig.json



(“TSConfig”) file in a directory.

The existence of a tsconfig.json indicates that the directory is the root of a
TypeScript project. Running tsc in a directory will read in any
configuration options in that tsconfig.json file.

You can also pass -p/--project to tsc with a path to a directory

containing a tsconfig.json or any file to have tsc use that instead:

tsc -p path/to/tsconfig.json

TSConfig files are generally strongly recommended to be used for
TypeScript projects whenever possible. IDEs such as VS Code will respect
their configuration when giving you IntelliSense features.

See aka.ms/tsconfig.json for the full list of configuration options available
in TSConfig files.

NOTE

If you don’t set an option in your tsconfig.json, don’t worry that TypeScript’s default setting for it
may change and interfere with your project’s compilation settings. This almost never happens and
if it did, it would require a major version update to TypeScript and be called out in the release
notes.

tsc --init

The tsc command line includes an - -init command to create a new
tsconfig.json file. That newly created TSConfig file will contain a link to
the configuration docs as well as most of the allowed TypeScript
configuration options with one-line comments briefly describing their use.

Running this command:
tsc --init

will generate a fully commented tsconfig.json file:


https://aka.ms/tsconfig.json

{
"compilerOptions": {
/* Visit https://aka.ms/tsconfig.json to read more about this file */

Y/
}
}

I recommend using tsc --init to create your configuration file on your
first few TypeScript projects. Its default values are applicable to most
projects, and its documentation comments are helpful in understanding
them.

CLI Versus Configuration

Looking through the TSConfig file created by tsc --init, you may notice
that configuration options in that file are within a "compilerOptions"
object. Most options available in both the CLI and in TSConfig files fall
into one of two categories:

Compiler
How each included file is compiled and/or type checked by TypeScript

File

Which files will or will not have TypeScript run on them

Other settings that we’ll talk about after those two categories, such as
project references, generally are only available in TSConfig files.

TIP

If a setting is provided to the tsc CLI, such as a one-oft change for a CI or production build, it
will generally override any value specified in a TSConfig file. Because IDEs generally read from
the tsconfig.json in a directory for TypeScript settings, it’s recommended to put most configuration
options in a tsconfig.json file.



File Inclusions

By default, tsc will run on all nonhidden .¢s files (those whose names do
not start with a .) in the current directory and any child directories, ignoring
hidden directories and directories named node modules. TypeScript
configurations can change that list of files to run on.

include

The most common way to include files is with a top-level "include"
property in a tsconfig.json. It allows an array of strings that describes what
directories and/or files to include in TypeScript compilation.

For example, this configuration file recursively includes all TypeScript
source files in a src/ directory relative to the tsconfig.json:

{

"include": ["src"]

}

Glob wildcards are allowed in include strings for more fine-grained
control of files to include:

e * matches zero or more characters (excluding directory separators).
e ? matches any one character (excluding directory separators).

e **[ matches any directory nested to any levels.

This configuration file allows only .d.ts files nested in a ¢fypings/ directory
and src/ files with at least two characters in their name before an extension:

{

"include": [
"typings/**/*.d.ts",
"src/x*[*22 %"

]

}



For most projects, a simple include compiler option such as ["src"] is
generally sufficient.

exclude

The include list of files for a project sometimes includes files not meant
for compilation by TypeScript. TypeScript allows a TSConfig file to omit
paths from include by specifying them in a top-level "exclude" property.
Similar to include, it allows an array of strings that describes what
directories and/or files to exclude from TypeScript compilation.

The following configuration includes all files in src/ except for those within
any nested external/ directory and a node modules directory:

{
"exclude": ["**/external", "node_modules"],
"include": ["src"

}

By default, exclude contains [ "node_modules", "bower_components",
"jspm_packages" ] to avoid running the TypeScript compiler on compiled
third-party library files.

TIP

If you’re writing your own exclude list, you typically won’t need to re-add "bower_components"
or "jspm_packages". Most JavaScript projects that install node modules to a folder within the
project only install to "node_modules".

Keep in mind, exclude only acts to remove files from the starting list in
include. TypeScript will run on any file imported by any included file,
even if the imported file is explicitly listed in exclude.



Alternative Extensions

TypeScript is by default able to read in any file whose extension is .zs.
However, some projects require being able to read in files with different
extensions, such as JSON modules or JSX syntax for Ul libraries such as
React.

JSX Syntax

JSX syntax like <Component /> is often used in UI libraries such as Preact
and React. JSX syntax is not technically JavaScript. Like TypeScript’s type
definitions, it’s an extension to JavaScript syntax that compiles down to
regular JavaScript:

const MyComponent = () => {
// Equivalent to:
// return React.createElement("div", null, "Hello, world!");
return <div>Hello, world!</div>;

};

In order to use JSX syntax in a file, you must do two things:

e Enable the "jsx" compiler option in your configuration options
¢ Name that file with a .zsx extension
jsx
The value used for the "jsx" compiler option determines how TypeScript

emits JavaScript code for .zsx files. Projects generally use one of these three
values (Table 13-1).






Nt odwmm i~ . NU!™" oS AR e o0AaROSm Al IS O w



u

ts

Value Input code Output code Output file extension
“preserve” <div /> <div /> Jsx

“react” <div /> React.createElement("div") .js
“react-native” <div /> <div /> Js

Values for jsx may be provided to the tsc CLI and/or in a TSConfig file.

tsc --jsx preserve

{
"compilerOptions": {
"jsx": "preserve"

}
}

If you’re not directly using TypeScript’s built-in transpiler, which is the case
when you’re transpiling code with a separate tool such as Babel, you most
likely can use any of the allowed values for "jsx". Most web apps built on
modern frameworks such as Next.js or Remix handle React configuration
and compiling syntax. If you’re using one of those frameworks you
probably won’t have to directly configure TypeScript’s built-in transpiler.

Generic arrow functions in .tsx files

Chapter 10, “Generics” mentioned that the syntax for generic arrow
functions conflicts with JSX syntax. Attempting to write a type argument
<T> for an arrow function in a .zsx file will give a syntax error for there not
being a closing tag for that opening T element:



const identity = <T>(input: T) => input;
// e

// Error: JSX element 'T' has no corresponding closing tag.

To work around this syntax ambiguity, you can add an = unknown
constraint to the type argument. Type arguments default to the unknown type
so this doesn’t change code behavior at all. It just indicates to TypeScript to
read a type argument, not a JSX element:

const identity = <T = unknown>(input: T) => input; // Ok

resolvedJsonModule

TypeScript will allow reading in .json files if the resolveJsonModule
compiler option is set to true. When it is, .json files may be imported from
as if they were .zs files exporting an object. TypeScript will infer the type of
that object as if it were a const variable.

For JSON files that contain an object, destructuring imports may be used.
This pair of files defines an "activist" string in an activist.json file and
imports it into a usesActivist.ts file:

// activist. json

{

"activist": "Mary Astell"

}

// usesActivist.ts
import { activist } from "./activist.json";

// Logs: "Mary Astell”
console.log(activist);

Default imports may be used as well if the esModuleInterop compiler
option—covered later in this chapter—is enabled:

// useActivist.ts
import data from

./activist.json";



For JSON files that contain other literal types, such as arrays or numbers,
you’ll have to use the * as import syntax. This pair of files defines an array
of strings in an activists.json file that is then imported into a useActivists.ts

file:

// activists.json

[
"Ida B. Wells",

"Sojourner Truth",
"Tawakkul Karman"

]

// useActivists.ts
import * as activists from

./activists.json";

// Logs: "3 activists"”
console.log( ${activists.length} activists');

Emit

Although the rise of dedicated compiler tools such as Babel has reduced
TypeScript’s role in some projects to solely type checking, many other
projects still rely on TypeScript for compiling TypeScript syntax to
JavaScript. It’s quite useful for projects to be able to take in a single
dependency on typescript and use its tsc command to output the
equivalent JavaScript.

outDir

By default, TypeScript places output files alongside their corresponding
source files. For example, running tsc on a directory containing
fruits/apple.ts and vegetables/zucchini.ts would result with output files
fruits/apple.js and vegetables/zucchini.js:

fruits/
apple.js
apple.ts

vegetables/



zucchini.js
zucchinti.ts

Sometimes it may be preferable to place output files in a different folder.
Many Node projects, for example, put transformed outputs in a dist or [lib
directory.

TypeScript’s outDir compiler option allows specifying a different root
directory for outputs. Output files are kept in the same relative directory
structure as input files.

For example, running tsc --outDir dist on the previous directory would
place outputs within a dist/ folder:

dist/
fruits/
apple.js
vegetables/
zucchini. js
fruits/
apple.ts
vegetables/
zucchini.ts

TypeScript calculates the root directory to place output files into by finding
the longest common subpath of all input files (excluding .d.ts declaration
files). That means that projects that place all input source files in a single
directory will have that directory treated as the root.

For example, if the above example put all inputs in a src/ directory and
compiled with - -outDir 1ib, lib/fruits/apple.js would be created instead
of lib/src/fruits/apple.js:

1ib/
fruits/
apple.js
vegetables/
zucchinti. js
src/
fruits/
apple.ts



vegetables/
zucchini.ts

A rootDir compiler option does exist to explicitly specify that root
directory, but it’s rarely necessary or used with values other than . or src.

target

TypeScript is able to produce output JavaScript that can run in
environments as old as ES3 (circa 1999!). Most environments are able to
support syntax features from much newer versions of JavaScript.

TypeScript includes a target compiler option to specify how far back in
syntax support JavaScript code needs to be transpiled. Although target
defaults to "es3" for backward compatibility reasons when not specified
and tsc --init defaults to specifying "es2016", it’s generally advisable
to use the newest JavaScript syntax possible per your target platform(s).
Supporting newer JavaScript features in older environments necessitates
creating more JavaScript code, which causes slightly larger file sizes and
slightly worse runtime performance.

TIP

As 0f 2022, all releases within the last year of browsers serving > 0.1% of worldwide users
support at least all of ECMAScript 2019 and nearly all of ECMAScript 2020-2021, while the
LTS-supported versions of Node.js support all of ECMAScript 2021. There’s very little reason not
to have a target at least as high as "es2019".

For example, take this TypeScript source containing ES2015 consts and
ES2020 ?? nullish coalescing:

function defaultNameAndLog(nameMaybe: string | undefined) {
const name = nameMaybe ?? "anonymous";
console.log("From", nameMaybe, "to", name);
return name;

}



With tsc --target es2020 or newer, both const and ?? are supported
syntax features, so TypeScript would only need to remove the : string |
undefined from that snippet:

function defaultNameAndLog(nameMaybe) {
const name = nameMaybe ?? "anonymous";
console.log("From", nameMaybe, "to", name);
return name;

}

With tsc --target es2015 through es2019, the ?? syntax sugar would be
compiled down to its equivalent in older versions of JavaScript:

function defaultNameAndLog(nameMaybe) {
const name = nameMaybe !== null && nameMaybe !== void 0
? nameMaybe
: "anonymous";
console.log("From", nameMaybe, "to", name);
return name;

With tsc --target es3 or es5, the const would additionally need to be
converted to its equivalent var:

function defaultNameAndLog(nameMaybe) {
var name = nameMaybe !== null && nameMaybe !== void 0
? nameMaybe
: "anonymous";
console.log("From", nameMaybe, "to", name);
return name;

Specifying the target compiler option to a value that matches the oldest
environment your code runs will ensure code is emitted as modern, terse
syntax that can still run without syntax errors.

Emitting Declarations

Chapter 11, “Declaration Files” covered how .d.ts declaration files may be
distributed in a package to indicate code types to consumers. Most packages



use TypeScript’s declaration compiler option to emit .d.zs output files
from source files:

tsc --declaration

{
"compilerOptions": {
"declaration": true

}
}

.d.ts output files are emitted under the same output rules as .js files,
including respecting outD1ir.

For example, running tsc --declaration on a directory containing
fruits/apple.ts and vegetables/zucchini.ts would result in output declaration
files fruits/apple.d.ts and vegetables/zucchini.d.ts alongside output .js files:

fruits/
apple.d.ts
apple.js
apple.ts

vegetables/
zucchini.d.ts
zucchinti.js
zucchini.ts

emitDeclarationOnly

An emitDeclarationOnly compiler option exists, as a specialized addition
to the declaration compiler option, that directs TypeScript to only emit
declaration files: no .js/.jsx files at all. This 1s useful for projects that use an
external tool to generate output JavaScript but still want to use TypeScript
to generate output definition files:

tsc --emitDeclarationOnly

{
"compilerOptions": {
"emitDeclarationOnly": true



If emitDeclarationOnly is enabled, either declaration or the composite
compiler option covered later in this chapter must be enabled.

For example, running tsc --declaration --emitDeclarationOnly ona
directory containing fruits/apple.ts and vegetables/zucchini.ts would result
with output declaration files fruits/apple.d.ts and vegetables/zucchini.d.ts
without any output .js files:

fruits/
apple.d.ts
apple.ts

vegetables/
zucchini.d.ts
zucchini.ts

Source Maps

Source maps are descriptions of how the contents of output files match up
to original source files. They allow developer tools such as debuggers to
display original source code when navigating through the output file.
They’re particularly useful for visual debuggers such as those used in
browser developer tools and IDEs to let you see original source file
contents while debugging. TypeScript includes the ability to output source
maps alongside output files.

sourceMap

TypeScript’s sourceMap compiler option enables outputting .js.map or
Jsx.map sourcemaps alongside .js or .jsx output files. Sourcemap files are
otherwise given the same name as their corresponding output JavaScript file
and placed in the same directory.

For example, running tsc --sourceMap on a directory containing
fruits/apple.ts and vegetables/zucchini.ts would result with output
sourcemap files fruits/apple.js.map and vegetables/zucchini.js.map
alongside output .js files:



fruits/
apple.js
apple.js.map
apple.ts

vegetables/
zucchini.js
zucchini. js.map
zucchini.ts

declarationMap

TypeScript is also able to generate source maps for .d.zs declaration files. Its
declarationMap compiler option directs it to generate a .d.ts.map source
map for each .d.ts that maps back to the original source file. Declaration
maps enable IDEs such as VS Code to go to the original source file when
using editor features such as Go to Definition.

TIP

declarationMap is particularly useful when working with project references, covered toward the
end of this chapter.

For example, running tsc --declaration --declarationMapona
directory containing fruits/apple.ts and vegetables/zucchini.ts would result
in output declaration sourcemap files fruits/apple.d.ts.map and
vegetables/zucchini.d.ts.map alongside output .d.ts and .js files:

fruits/
apple.d.ts
apple.d.ts.map
apple.js
apple.ts
vegetables/
zucchini.d.ts
zucchini.d.ts.map
zucchinti.js
zucchini.ts



noEmit

For projects that completely rely on other tools to compile source files to

output JavaScript, TypeScript can be told to skip emitting files altogether.
Enabling the noEmit compiler option directs TypeScript to act purely as a
type checker.

Running tsc --noEmit on any of the previous examples would result in no
new files created. TypeScript would only report any syntax or type errors it
finds.

Type Checking

Most of TypeScript’s configuration options control its type checker. You can
configure it to be gentle and forgiving, only emitting type-checking
complaints when it’s completely certain of an error, or harsh and strict,
requiring nearly all code be well typed.

lib
To start, which global APIs TypeScript assumes to be present in the runtime
environment is configurable with the 1ib compiler option. It takes in an

array of strings that defaults to your target compiler option, as well as dom
to indicate including browser types.

Most of the time, the only reason to customize 1ib would be to remove the
dom inclusion for a project that doesn’t run in the browser:

tsc --1ib es2020

{
"compilerOptions": {
"lib": ["es2020"]
}
}



Alternately, for a project that uses polyfills to support newer JavaScript
APIs, 1ib can include dom and any ECMAScript version:

tsc --1ib dom,es2021

{
"compilerOptions": {
"lib": ["dom", "es2021"]
}
}

Be wary of modifying 1ib without providing all the right runtime polyfills.
A project with a 1ib set to "es2021" running on a platform that only
supports up through ES2020 might have no type-checking errors but still
experience runtime errors attempting to use APIs defined in ES2021 or
later, such as String.replaceAll:

const value = "a b c";

value.replaceAll(" ", ", ");
// Uncaught TypeError: value.replaceAll is not a function

TIP

Think of the 1ib compiler option as indicating what built-in language APIs are available, whereas
the target compiler option indicates what syntax features exist.

skipLibCheck

TypeScript provides a skipLibCheck compiler option that indicates to skip
type checking in declaration files not explicitly included in your source
code. This can be useful for applications that rely on many dependencies
that may rely on different, conflicting definitions of shared libraries:

tsc --skipLibCheck

{

"compilerOptions": {



"skipLibCheck": true

}
}

skipLibCheck speeds up TypeScript performance by allowing it to skip
some type checking. For this reason, it is generally a good idea to enable it
on most projects.

Strict Mode

Most of TypeScript’s type-checking compiler options are grouped into what
TypeScript refers to as strict mode. Each strictness compiler option defaults
to false, and when enabled, directs the type checker to turn on some
additional checks.

I’1l cover the most commonly used strict options in alphabetical order later
in this chapter. From those options, noImplicitAny and
strictNullChecks are particularly useful and impactful in enforcing type-
safe code.

You can enable all strict mode checks by enabling the strict compiler
option:

tsc --strict

{
"compilerOptions": {
"strict": true

}
}

If you want to enable all strict mode checks except for certain ones, you can
both enable strict and explicitly disable certain checks. For example, this
configuration enables all strict modes except for noImplicitAny:

tsc --strict --noImplicitAny false

{

"compilerOptions”: {



"noImplicitAny": false,
"strict": true

}
}

WARNING

Future versions of TypeScript may introduce new strict type-checking compiler options under
strict. Using strict may therefore cause new type-checking complaints when you update
TypeScript versions. You can always opt out of specific settings in your TSConfig.

nolmplicitAny

If TypeScript cannot infer the type of a parameter or property, then it will
fall back to assuming the any type. It is generally best practice to not allow
these implicit any types in code as the any type is allowed to bypass much
of TypeScript’s type checking.

The noImplicitAny compiler option directs TypeScript to issue a type-
checking complaint when it has to fall back to an implicit any.

For example, writing the following function parameter without a type
declaration would cause a type error under noImplicitAny:

const logMessage = (message) => {
/o e
// Error: Parameter 'message’' implicitly has an 'any' type.
console.log( Message: ${message}!’);

}s

Most of the time, a noImplicitAny complaint can be resolved either by
adding a type annotation on the complaining location:

const logMessage = (message: string) => { // 0Ok
console.log( Message: ${message}! );

}

Or, in the case of function parameters, putting the parent function in a
location that indicates the type of the function:



type LogsMessage = (message: string) => void;

const logMessage: LogsMessage = (message) => { // Ok
console.log( Message: ${message}!’);

}

TIP

noImplicitAny is an excellent flag for ensuring type safety across a project. I highly recommend
striving to turn it on in projects written completely in TypeScript. However, if a project is still
transitioning from JavaScript to TypeScript, it may be easier to finish converting all files to
TypeScript first.

strictBindCallApply

When TypeScript was first released, it didn’t have rich enough type system
features to be able to represent the built-in Function.apply,
Function.bind, or Function.call function utilities. Those functions by
default had to take in any for their list of arguments. That’s not very type
safe!

As an example, without strictBindCallApply, the following variations
on getLength all include any in their types:

function getLength(text: string, trim?: boolean) {
return trim ? text.trim().length : text.length;

}

// Function type: (thisArg: Function, argArray?: any) => any
getLength.apply;

// Returned type: any
getlLength.bind(undefined, "abc123");

// Returned type: any
getLength.call(undefined, "abc123", true);

Now that TypeScript’s type system features are powerful enough to
represent those functions’ generic rest arguments, TypeScript allows opting
in to using more restrictive types for the functions.



Enabling strictBindCallApply enables much more precise types for the
getLength variations:

function getlLength(text: string, trim?: boolean) {
return trim ? text.trim().length : text;

}

// Function type:

// (thisArg: typeof getlLength, args: [text: string, trim?: boolean]) =>
number ;

getLength.apply;

// Returned type: (trim?: boolean) => number
getLength.bind(undefined, "abc123");

// Returned type: number
getlLength.call(undefined, "abc123", true);

TypeScript best practice is to enable strictBindCallApply. Its improved
type checking for built-in function utilities helps improve type safety for
projects that utilize them.

strictFunctionTypes

The strictFunctionTypes compiler option causes function parameter
types to be checked slightly more strictly. A function type is no longer
considered assignable to another function type if its parameters are subtypes
of that other type’s parameters.

As a concrete example, the checkOnNumber function here takes in a
function that should be able to receive a number | string, but is provided
with a stringContainsA function that expects to take in a parameter only
of type string. TypeScript’s default type checking would allow it—and the
program would crash from trying to call .match() on a number:

function checkOnNumber(containsA: (input: number | string) => boolean) {
return containsA(1337);

}

function stringContainsA(input: string) {
return !!input.match(/a/i);



}

checkOnNumber (stringContainsA);

Under strictFunctionTypes, checkOnNumber(stringContainsA) would
cause a type-checking error:

// Argument of type '(input: string) => boolean' is not assignable
// to parameter of type '(input: string | number) => boolean'.

// Types of parameters 'input' and 'input' are incompatible.

// Type 'string | number' is not assignable to type 'string’.
// Type 'number' is not assignable to type 'string'.
checkOnNumber (stringContainsA);

NOTE

In technical terms, function parameters switch from being bivariant to contravariant. You can
read more about the difference in the TypeScript 2.6 release notes.

strictNullChecks

Back in Chapter 3, “Unions and Literals”, I discussed the billion-dollar
mistake of languages: allowing empty types such as null and undefined to
be assignable to nonempty types. Disabling TypeScript’s
strictNullChecks flag roughly adds null | undefined to every type in
your code, thereby allowing any variable to receive null or undefined.

This code snippet would cause a type error for assigning null to a string
typed value only when strictNullChecks is enabled:

let value: string;

value = "abc123"; // Always ok

value = null;
// With strictNullChecks enabled:
// Error: Type 'null' is not assignable to type 'string'.

TypeScript best practice is to enable strictNullChecks. Doing so helps
prevent crashes and eliminates the billion-dollar mistake.


https://www.typescriptlang.org/docs/handbook/release-notes/typescript-2-6.html

Refer to Chapter 3, “Unions and Literals” for more details.

strictPropertylnitialization

Back in Chapter 8, “Classes”, I discussed strict initialization checking in
classes: making sure that each property on a class is definitely assigned in
the class constructor. TypeScript’s strictPropertyInitialization flag
causes a type error to be issued on class properties that have no initializer
and are not definitely assigned in the constructor.

TypeScript best practice is generally to enable
strictPropertyInitialization. Doing so helps prevent crashes from
mistakes in class initialization logic.

Refer to Chapter 8, “Classes” for more details.

useUnknownlInCatchVariables

Error handling in any language is an inherently unsafe concept. Any
function can in theory throw any number of errors from edge cases such as
reading properties on undefined or user-written throw statements. In fact,
there’s no guarantee a thrown error is even an instance of the Error class:
code can always throw "something-else".

As a result, TypeScript’s default behavior for errors is to give them type
any, as they could be anything. That allows flexibility in error handling at
the cost of relying on the not-very-type-safe any by default.

The following snippet’s error is typed any because there’s no way for
TypeScript to know what all the possible errors thrown by
someExternalFunction() could be:

try {
someExternalFunction();

} catch (error) {
error; // Default type: any

}

As with most any uses, it would be more technically sound—at the cost of
often necessitating explicit type assertions or narrowing—to treat errors as



unknown instead. Catch clause errors are allowed to be annotated as the any
or unknown types.

This snippet correction adds an explicit : unknown to error to switch it to
the unknown type:

try {
someExternalFunction();

} catch (error: unknown) {
error; // Type: unknown

}

The strict area flag useUnknownInCatchVariables changes TypeScript’s
default catch clause error type to unknown. With
useUnknownInCatchVariables enabled, both snippets would have type of
error set to be unknown.

TypeScript best practice is generally to enable
useUnknownInCatchVariables, as it’s not always safe to assume errors
will be any particular type.

Modules

JavaScript’s various systems for exporting and importing module contents
—AMD, CommonJS, ECMAScript, and so on—are one of the most
convoluted module systems in any modern programming language.
JavaScript is relatively unusual in that the way files import each other’s
contents is often driven by user-written frameworks such as Webpack.
TypeScript does its best to provide configuration options that represent
most reasonable user-land module configurations.

Most new TypeScript projects are written with the standardized
ECMAScript modules syntax. To recap, here is how ECMAScript modules
import a value (value) from another module ("my-example-1ib") and
export their own value (LogValue):



import { value } from "my-example-1ib";

export const logValue = () => console.log(value);

module

TypeScript provides a module compiler option to direct which module
system transpiled code will use. When writing source code with
ECMAScript modules, TypeScript may transpile the export and import
statements to a different module system based on the modu'le value.

For example, directing that a project written in ECMAScript be output as
CommonJS modules in either the command line:

tsc --module commonjs

or in a TSConfig:
{
"compilerOptions": {
"module": "commonjs"
}
}

The previous code snippet would roughly be output as:

const my_example_lib = require("my-example-1ib");
exports.logValue = () => console.log(my_example_lib.value);

If your target compiler option is "es3" or "es5", module’s default value
will be "commonjs". Otherwise, module will default to "es2015" to specify
outputting ECMAScript modules.

moduleResolution

Module resolution is the process by which the imported path in an import 1s
mapped to a module. TypeScript provides a moduleResolution option that



you can use to specify the logic for that process. You’ll typically want to
provide it one of two logic strategies:

e node: The behavior used by CommonJS resolvers such as traditional
Node.js

e nodenext: Aligning to the behavior specified for ECMAScript
modules

The two strategies are similar. Most projects could use either of them and
not notice a difference. You can read more on the intricacies behind the
scenes of module resolution on
hitps.//'www.typescriptlang.org/docs/handbook/module-resolution. html.

NOTE

moduleResolution does not change how TypeScript emits code at all. It’s only used to describe
the runtime environment your code is meant to be run in.

Both the following CLI snippet and JSON file snippet would work to
specify the moduleResolution compiler option:

tsc --moduleResolution nodenext

{
"compilerOptions": {
"moduleResolution”: "nodenext"

}
}

TIP

For backward compatibility reasons, TypeScript keeps the default moduleResolution value to a
classic value that was used for projects years ago. You almost certainly do not want the classic

strategy in any modern project.


https://www.typescriptlang.org/docs/handbook/module-resolution.html

Interoperability with CommondJS

When working with JavaScript modules, there is a difference between the
“default” export of a module and its “namespace” output. The default
export of a module is the .default property on its exported object. The
namespace export of a module is the exported object itself.

Table 13-2 recaps the differences between default and namespace exports
and imports.






NSRS u~malLUoffosNnsecRUSTL 53R CToxT oo rao



“ 3 TPIOT I I3

Area of syntax CommonJS ECMAScript modules

Default export module.exports.default = value; export default value;

Default import const { default: value } = import value from "...";
require("...");

Namespace export module.exports = value; Not supported

Namespace import const value = require("..."); import * as value from

n n,
* k]

TypeScript’s type system builds its understanding of file imports and
exports in terms of ECMAScript modules. If your project depends on npm
packages as most do, however, it’s likely some of those dependencies are
still published as CommonJS modules. Furthermore, although some
packages that comply with ECMAScript modules rules avoid including a
default export, many developers prefer the more succinct default-style
imports over namespace-style imports. TypeScript includes a few compiler
options that improve interoperability between module formats.



esModulelnterop

The esModulelnterop configuration option adds a small amount of logic
to JavaScript code emitted by TypeScript when modu'le is not an
ECMAScript module format such as "es2015" or "esnext". That logic
allows ECMAScript modules to import from modules even if they don’t
happen to adhere to ECMAScript modules’ rules around default or
namespace imports.

One common reason to enable esModuleInterop is for packages such as
"react" that do not ship a default export. If a module attempts to use a
default-style import from the "react" package, TypeScript would report a
type error without esModuleInterop enabled:

import React from "react";

[ e
// Module '"file:///node_modules/@types/react/index"' can

// only be default-imported using the 'esModuleInterop' flag.

Note that esModuleInterop only directly changes how emitted JavaScript
code works with imports. The following allowSyntheticDefaultImports
configuration option is what informs the type system about import
interoperability.

allowSyntheticDefaultimports

The allowSyntheticDefaultImports compiler option informs the type
system that ECMAScript modules may default import from files that are
otherwise incompatible CommonJS namespace exports.

It defaults to true only if either of the following is true:

e module is "system" (an older, rarely used module format not covered
in this book).

e esModuleInterop is true and module is not an ECMAScript modules
format such as "es2015" or "esnext".



In other words, if esModuleInterop is true but module is "esnext",
TypeScript will assume output compiled JavaScript code is not using import
interoperability helpers. It would report a type error for a default import
from packages such as "react":

import React from "react";
// Module '"file:///node_modules/@types/react/index"' can only be
// default-imported using the 'allowSyntheticDefaultImports' flag'.

isolatedModules

External transpilers such as Babel that only operate on one file at a time
cannot use type system information to emit JavaScript. As a result,
TypeScript syntax features that rely on type information to emit JavaScript
aren’t generally supported in those transpilers. Enabling the
isolatedModules compiler tells TypeScript to report an error on any
instance of a syntax that is likely to cause issues in those transpilers:

e Const enums, covered in Chapter 14, “Syntax Extensions”
e Script (nonmodule) files

e Standalone type exports, covered in Chapter 14, “Syntax Extensions”

I generally recommend enabling isolatedModules if your project uses a
tool other than TypeScript to transpile to JavaScript.

JavaScript

While TypeScript is lovely and I hope you want to always write code 1n it,
you don’t have to write all your source files in TypeScript. Although
TypeScript by default ignores files with a .jis or .jsx extension, using its
allowJs and/or checkJs compiler options will allow it to read from,
compile, and even—in a limited capacity—type check JavaScript files.



TIP

A common strategy for converting an existing JavaScript project to TypeScript is to start off with
only a few files initially converted to TypeScript. More files may be added over time until there
are no more JavaScript files left. You don’t have to go all-in on TypeScript until you’re ready to!

allowdJs

The allowJs compiler option allows constructs declared in JavaScript files
to factor into type checking TypeScript files When combined with the jsx
compiler option, .jsx files are also allowed.

For example, take this index.ts importing a value declared in a values.js
file:

// index.ts
import { value } from

./values";

console.log( Quote: '${value.toUpperCase()}'");

// values.js
export const value = "We cannot succeed when half of us are held back.";

Without allowJs enabled, the import statement would not have a known
type. It would be implicitly any by default or trigger a type error like
“Could not find a declaration file for module ". /values".”

allowJs also adds JavaScript files to the list of files compiled to the
ECMAScript target and emitted as JavaScript. Source maps and declaration
files will be produced as well if the options to do so are enabled:

tsc --allowls

{
"compilerOptions": {
"allowJs": true
}
}



With allowJs enabled, the imported value would be type string. No type
errors would be reported.

checkdJs

TypeScript can do more than just factor JavaScript files into type checking
TypeScript files: it can type check JavaScript files too. The checkJs
compiler option serves two purposes:

e Defaulting allowJs to true if it wasn’t already
e Enabling the type checker on .js and .jsx files

Enabling checkJs will make TypeScript treat JavaScript files as if they
were TypeScript files that don’t have any TypeScript-specific syntax. Type
mismatches, misspelled variable names, and so on will all cause type errors
as they normally would in a TypeScript file:

tsc --checkJs

{
"compilerOptions": {
"checkJs": true

}
}

With check3Js enabled, this JavaScript file would cause a type-checking
complaint for an incorrect variable name:

// index.js
let myQuote = "Each person must live their life as a model for others.";

console.log(quote);

/o e

// Error: Cannot find name 'quote'. Did you mean 'myQuote'?

Without checkJs enabled, TypeScript would not have reported a type error
for that likely bug.



@ts-check

Alternately, checkJs can be enabled on a file-by-file basis by including a
// @ts-check comment on top of the file. Doing so enables the checkJs
option for just that JavaScript file:

// index. js
// @ts-check
let myQuote = "Each person must live their life as a model for others.";

console.log(quote);

// ~mnnnnn

// Error: Cannot find name 'quote'. Did you mean 'myQuote'?

JSDoc Support

Because JavaScript doesn’t have TypeScript’s rich type syntax, the types of
values declared in JavaScript files are often not as precise as those declared
in TypeScript files. For example, while TypeScript can infer the value of an
object declared as a variable in a JavaScript file, there’s no native
JavaScript way to declare in that file that the value adheres to any particular
interface.

I mentioned back in Chapter 1, “From JavaScript to TypeScript” that the
JSDoc community standard provides some ways to describe types using
comments. When allowJs and/or check3Js are enabled, TypeScript will
recognize any JSDoc definitions in code.

For example, this snippet declares in JSDoc that the sentenceCase
function takes in a string. TypeScript can then infer that it returns a
string. With checkJs enabled, TypeScript would know to report a type
error for passing it a string[ ] later:

// index.js

/**
* @aram {string} text
*/
function sentenceCase(text) {
return “${text[0].toUpperCase()} ${text.slice(1)}. ;



}

sentenceCase("hello world");// 0Ok

sentenceCase([ "hello", "world"]);

// i
// Error: Argument of type 'string[]' is not

// assignable to parameter of type 'string’.

TypeScript’s JSDoc support is useful for incrementally adding type
checking for projects that don’t have the time or developer familiarity to
convert to TypeScript.

TIP

The full list of supported JSDoc syntax is available on
https://www.typescriptlang.org/docs/handbook/jsdoc-supported-types.html.

Configuration Extensions

As you write more and more TypeScript projects, you may find yourself
writing the same project settings repeatedly. Although TypeScript doesn’t
allow configuration files to be written in JavaScript and use import or
require, it does offer a mechanism for a TSConfig file to opt into
“extending,” or copying in configuration values, from another configuration
file.

extends

A TSConfig may extend from another TSConfig with the extends
configuration option. extends takes in a path to another TSConfig file and
indicates that all settings from that file should be copied over. It behaves
similarly to the extends keyword on classes: any option declared on the
derived, or child, configuration will override any option of the same name
on the base, or parent, configuration.


https://www.typescriptlang.org/docs/handbook/jsdoc-supported-types.html

For example, many repositories that have multiple TSConfigs, such as
monorepos containing multiple packages/* directories, by convention
create a tsconfig.base.json file for tsconfig.json files to extend from:

// tsconfig.base. json
{
"compilerOptions": {
"strict": true

}

}

// packages/core/tsconfig.json

{
"extends": "../../tsconfig.base.json",
"includes": ["src"]

}

Note that compilerOptions are factored in recursively. Each compiler
option from a base TSConfig will copy over to a derived TSConfig unless
the derived TSConfig overrides that specific option.

If the previous example were to add a TSConfig that adds the allowJs
option, that new derived TSConfig would still have
compilerOptions.strict setto true:

// packages/js/tsconfig. json
{
"extends": "../../tsconfig.base.json",
"compilerOptions”: {
"allowls": true

3

"includes": ["src"]

}

Extending modules

The extends property may point to either kind of JavaScript import:
Absolute

Starting with @ or an alphabetical letter



Relative

A local file path starting with .

When an extends value is an absolute path, it indicates to extend the
TSConfig from an npm module. TypeScript will use the normal Node
module resolution system to find a package matching the name. If that
package’s package. json contains a "tsconfig" field containing a relative
path string, the TSConfig file at that path will be used. Otherwise, the
package’s tsconfig.json file will be used.

Many organizations use npm packages to standardize TypeScript compiler
options across repositories and/or within monorepos. The following
TSConfig files are what you might set up for a monorepo in a @my-org
organization. packages/js needs to specify the allowJs compiler option,
while packages/ts does not change any compiler options:

// packages/tsconfig.json
{
"compilerOptions": {
"strict": true

}
}
// packages/js/tsconfig. json
{
"extends": "@my-org/tsconfig",

"compilerOptions": {
"allowJs": true

}s
"includes": ["src"
}
// packages/ts/tsconfig. json
{
"extends": "@my-org/tsconfig",

"includes": ["src"]

}



Configuration Bases

Instead of creating your own configuration from scratch or the --init
suggestions, you can start with a premade “base” TSConfig file tailored to a
particular runtime environment. These premade configuration bases are
available on the npm package registry under @tsconfig/, such as
@tsconfig/recommended or @tsconfig/node16.

For example, to install the recommended TSConfig base for deno:

npm install --save-dev @tsconfig/deno
# or
yarn add --dev @tsconfig/deno

Once a configuration base package is installed, it can be referenced like any
other npm package configuration extension:

{

"extends": "@tsconfig/deno/tsconfig.json"

}

The full list of TSConfig bases i1s documented on
https://github.com/tsconfig/bases.

TIP

It is generally a good idea to know what TypeScript configuration options your file is using, even
if you aren’t changing them yourself.

Project References

Each of the TypeScript configuration files I’ve shown so far have assumed
they manage all the source files of a project. It can be useful in larger
projects to use different configuration files for different areas of a project.
TypeScript allows defining a system of “project references” where multiple


https://github.com/tsconfig/bases

projects can be built together. Setting up project references is a little more
work than using a single TSConfig file but comes with several key benefits:

¢ You can specify different compiler options for certain areas of code.

e TypeScript will be able to cache build outputs for individual projects,
often resulting in significantly faster build times for large projects.

e Project references enforce a “dependency tree” (only allowing certain
projects to import files from certain other projects), which can help
structure discrete areas of code.

TIP

Project references are generally used in larger projects that have multiple distinct areas of code,
such as monorepos and modular component systems. You probably don’t want to use them for
small projects that don’t have dozens or more files.

The following three sections show how to build up project settings to
enable project references:

e composite mode on a TSConfig enforces that it works in ways
suitable for multi-TSConfig build modes.

e references in a TSConfig indicate which composite TSConfigs it
relies on.

e Build mode uses composite TSConfig references to orchestrate
building their files.

composite

TypeScript allows a project to opt into the composite configuration option

to indicate that its file system inputs and outputs obey constraints that make
it easier for build tools to determine whether its build outputs are up-to-date
compared to its build inputs. When composite is true:



e The rootDir setting, if not already explicitly set, defaults to the
directory containing the TSConfig file.

e All implementation files must be matched by an include pattern or
listed in the files array.

e declaration must be turned on.

This configuration snippet matches all conditions for enabling composite
mode in a core/ directory:

// core/tsconfig. json

{
"compilerOptions": {
"declaration": true
s
"composite": true
}

These changes help TypeScript enforce that all input files to the project
create a matching .d.ts file. composite is generally most useful in
combination with the following references configuration option.

references

A TypeScript project can indicate it relies on the outputs generated by a
composite TypeScript project with a references setting in its TSConfig.
Importing modules from a referenced project will be seen in the type
system as importing from its output .d.ts declaration file(s).

This configuration snippet sets up a shell/ directory to reference a core/
directory as its inputs:

// shell/tsconfig.json
{
"references": [
{ "path": "../core" }
]
}



NOTE

The references configuration option will not be copied from base TSConfigs to derived
TSConfigs via extends.

references is generally most useful in combination with the following
build mode.

Build Mode

Once an area of code has been set up to use project references, it will be
possible to use tsc in its alternate “build” mode via the -b/--b CLI flag.
Build mode enhances tsc into something of a project build coordinator. It
lets tsc rebuild only the projects that have been changed since the last
build, based on when their contents and their file outputs were last
generated.

More precisely, TypeScript’s build mode will do the following when given a
TSConfig:

1. Find that TSConfig’s referenced projects.
2. Detect if they are up-to-date.
3. Build out-of-date projects in the correct order.

4. Build the provided TSConfig if it or any of its dependencies have
changed.

The ability of TypeScript’s build mode to skip rebuilding up-to-date
projects can significantly improve build performance.

Coordinator configurations

A common handy pattern for setting up TypeScript project references in a
repository is to set up a root-level tsconfig. json with an empty files
array and references to all the project references in the repository. That root



TSConfig won’t direct TypeScript to build any files itself. Instead it will act
purely to tell TypeScript to build referenced projects as needed.

This tsconfig. json indicates to build the packages/core and
packages/shell projects in a repository:

// tsconfig.json

{
"files": [],
"references": [
{ "path": "./packages/core" },
{ "path": "./packages/shell" }
]
}

I personally like to standardize having a script in my package. json named
build or compile that calls to tsc -b as a shortcut:

// package. json
{
"scripts": {
"build": "tsc -b"
}
}

Build-mode options
Build mode supports a few build-specific CLI options:

e --clean: deletes the outputs of the specified projects (may be
combined with --dry)

e --dry: shows what would be done but doesn’t actually build anything
e --force: acts as if all projects are out of date
e -w/--watch: similar to the typical TypeScript watch mode

Because build mode supports watch mode, running a command like tsc -b
-w can be a fast way to get an up-to-date listing of all compiler errors in a
large project.



Summary

In this chapter, you went over many of the important configuration options
provided by TypeScript:

Using tsc, including its pretty and watch modes

Using TSConfig files, including creating one with tsc --init
Changing which files will be included by the TypeScript compiler
Allowing JSX syntax in .zsx files and/or JSON syntax in .json files

Changing the directory, ECMAScript version target, declaration file,
and/or source map outputs with files

Changing the built-in library types used in compilation

Strict mode and useful strict flags such as noImplicitAny and
strictNullChecks

Supporting different module systems and changing module resolution

Allowing including JavaScript files, and opting into type checking
those files

Using extends to share configuration options between files

Using project references and build mode to orchestrate multi-
TSConfig builds

TIP

Now that you’ve finished reading this chapter, practice what you’ve learned on
https://learningtypescript.com/configuration-options.

What is a disciplinarian's favorite TypeScript compiler option?

strict.


https://learningtypescript.com/configuration-options

Part IV. Extra Credit

JavaScript has been around for a few decades at this point, and people have
done quite a lot of odd things with it. TypeScript’s syntax and type system
need to be able to represent all those odd things to enable any JavaScript
developer to work with TypeScript. As a result, there are some corners of
the TypeScript language not seen in most day-to-day code but that are
relevant, even necessary, for working with some kinds of projects.

I think of these parts of the language as “extra credit” in that you could
avoid them entirely and still be a productive TypeScript developer. In fact,
for the logical types introduced toward the end of the section, I would hope
you wouldn’t need to use them very often—if at all.



Chapter 14. Syntax Extensions

“TypeScript does not add

y

to the JavaScript runtime.’

...was that all a lie?!

When TypeScript was first released in 2012, web applications were growing
in complexity faster than plain JavaScript was adding features that
supported the deep complexity. The most popular JavaScript language
flavor at the time, CoffeeScript, had made its mark diverging from
JavaScript by introducing new and exciting syntactic constructs.

Nowadays, extending JavaScript syntax with new runtime features specific
to a superset language such as TypeScript is considered bad practice for
several reasons:

e Most importantly, runtime syntax extensions might conflict with new
syntax in newer versions of JavaScript.

e They make it more difficult for programmers new to the language to
understand where JavaScript ends and other languages begin.

* They increase complexity of transpilers that take superset language
code and emit JavaScript.

Thus, it 1s with a heavy heart and deep regret that I must inform you that the
early TypeScript designers introduced three syntax extensions to JavaScript
in the TypeScript language:

e Classes, which aligned with JavaScript classes as the spec was ratified

e Enums, a straightforward syntactic sugar akin to a plain object of keys
and values



e Namespaces, a solution predating modern modules to structure and
arrange code

NOTE

TypeScript’s “original sin” of runtime syntax extensions to JavaScript is fortunately not a design
decision the language has made since its early years. TypeScript does not add new runtime syntax
constructs until they have made significant progress through the ratification process to be added to
JavaScript itself.

TypeScript classes ended up looking and behaving almost identical to
JavaScript classes (phew!) with the exception of
useDefineForClassFields behavior (a configuration option not covered
in this book) and parameter properties (covered here). Enums are still used
in some projects because they are occasionally useful. Virtually no new
projects use namespaces anymore.

TypeScript also adopted an experimental proposal for JavaScript
“decorators” that I’ll cover as well.

Class Parameter Properties

TIP

I recommend avoiding using class parameter properties unless you’re working in a project that
heavily uses classes or a framework that would benefit from them.

It is common in JavaScript classes to want to take in a parameter in a
constructor and immediately assign it to a class property.

This Engineer class takes in a single area parameter of type string and
assigns it to an area property of type string:



class Engineer {
readonly area: string;

constructor(area: string) {
this.area = area;
console.log( I work in the ${area} area.’);

}

// Type: string
new Engineer("mechanical").area;

TypeScript includes a shorthand syntax for declaring these kinds of
“parameter properties”: properties that are assigned to a member property
of the same type at the beginning of a class constructor. Placing readonly
and/or one of the privacy modifiers—public, protected, or private—in
front of the parameter to a constructor indicates to TypeScript to also
declare a property of that same name and type.

The previous Engineer example could be rewritten in TypeScript using a
parameter property for area:

class Engineer {
constructor(readonly area: string) {
console.log( I work in the ${area} area.’);
}
}

// Type: string
new Engineer("mechanical").area;

Parameter properties are assigned at the very beginning of the class
constructor (or after the super() call if the class is derived from a base
class). They can be intermixed with other parameters and/or properties on a
class.

The following NamedEngineer class declares a regular property fullName,
a regular parameter name, and a parameter property area:

class NamedEngineer {
fullName: string;



constructor(
name: string,
public area: string,

) {

this.fullName = "${name}, ${area} engineer;

}

Its equivalent TypeScript without parameter properties looks similar, but
with a couple more lines of code to explicitly assign area:

class NamedEngineer {
fullName: string;
area: string;

constructor(
name: string,
area: string,

) {

this.area = area;
this.fullName = "${name}, ${area} engineer;

Parameter properties are a sometimes-debated issue in the TypeScript
community. Most projects prefer to avoid them categorically, as they’re a
runtime syntax extension and therefore suffer from the same drawbacks |
mentioned earlier. They also can’t be used with the newer # class private
fields syntax.

On the other hand, they’re quite nice when used in projects that heavily
favor creating classes. Parameter properties solve a convenience issue of
needing to declare the parameter property name and type twice, which is
inherent to TypeScript and not JavaScript.



Experimental Decorators

TIP

I recommend avoiding decorators if at all possible until a version of ECMAScript is ratified with
decorator syntax. If you’re working in a version of a framework such as Angular or NestJS that
recommends using TypeScript decorators, the framework’s documentation will guide how to use
them.

Many other languages that contain classes allow annotating, or decorating,
those classes and/or their members with some kind of runtime logic to
modify them. Decorator functions are a proposal for JavaScript to allow
annotating classes and members by placing a @ and the name of a function
first.

For example, the following code snippet shows just the syntax for using a
decorator on a class MyClass:

@myDecorator
class MyClass { /* ... */ }

Decorators have not yet been ratified in ECMAScript, so TypeScript does
not support them by default as of version 4.7.2. However, TypeScript does
include an experimentalDecorators compiler option that allows for an
old experimental version of them to be used in code. It can be enabled via
the tsc CLI or in a TSConfig file, shown here, like other compiler options:

"compilerOptions": {
"experimentalDecorators": true

}

Each usage of a decorator will execute once, as soon as the entity it’s
decorating is created. Each kind of decorator—accessor, class, method,



parameter, and property—receives a different set of arguments describing
the entity it’s decorating.

For example, this LogOnCall decorator used on a Greeter class method
receives the Greeter class itself, the key of the property ("log"), and a
descriptor object describing the property. Modifying descriptor.value
to log before calling the original greet method on the Greeter class
“decorates” the greet method:

function logOnCall(target: any, key: string, descriptor: PropertyDescriptor) {
const original = descriptor.value;
console.log("[logOnCall] I am decorating", target.constructor.name);

descriptor.value = function (...args: unknown[]) {
console.log( [descriptor.value] Calling '${key}' with:", ...args);
return original.call(this, ...args);

}

class Greeter {
@LlogOnCall
greet(message: string) {
console.log( [greet] Hello, ${message}!’);

}
}

new Greeter().greet("you");

// Output log:

// "[logOnCall] I am decorating"”, "Greeter"

// "[descriptor.value] Calling 'greet' with:", "you"
// "[greet] Hello, you!"

I won’t delve into the nuances and specifics of how the old
experimentalDecorators works for each of the possible decorator types.
TypeScript’s decorator support is experimental and does not align with the
latest drafts of the ECMAScript proposal. Writing your own decorators in
particular is rarely justified in any TypeScript project.



Enums

TIP

I recommend not to use enums unless you have a set of literals that are repeated often, can all be
described by a common name, and whose code would be much easier to read if switched to an
enum.

Most programming languages contain the concept of an “enum,” or
enumerated type, to represent a set of related values. Enums can be thought
of as a set of literal values stored in an object with a friendly name for each
value.

JavaScript does not include an enum syntax because traditional objects can
be used in place of them. For example, while HTTP status codes can be
stored and used as numbers, many developers find it more readable to store
them in an object that keys them by their friendly name:

const StatusCodes = {
InternalServerError: 500,
NotFound: 404,
Ok: 200,

// ...

} as const;

StatusCodes.InternalServerError; // 500

The tricky thing with enum-like objects in TypeScript is that there isn’t a
great type system way to represent that a value must be one of their values.
One common method is to use the keyof and typeof type modifiers from
Chapter 9, “Type Modifiers” to hack one together, but that’s a fair amount
of syntax to type out.

The following StatusCodeValue type uses the previous StatusCodes
value to create a type union of its possible status code number values:



// Type: 200 | 4604 | 500
type StatusCodeValue = (typeof StatusCodes)[keyof typeof StatusCodes];

let statusCodeValue: StatusCodeValue;

statusCodeValue

200; // Ok

statusCodeValue = -1;
// Error: Type '-1' is not assignable to type 'StatusCodeValue'.

TypeScript provides an enum syntax for creating an object with literal
values of type number or string. Start with the enum keyword, then a name
of an object—conventionally in PascalCase—then an {} object containing
comma-separated keys in the enum. Each key can optionally use = before
an initial value.

The previous StatusCodes object would look like this StatusCode enum:

enum StatusCode {
InternalServerError = 500,
NotFound = 404,
ok = 200,

}

StatusCode.InternalServerError; // 500

As with class names, an enum name such as StatusCode can be used as the
type name in a type annotation. Here, the statusCode variable of type
StatusCode may be given StatusCode.Ok or a number value:

let statusCode: StatusCode;

statusCode
statusCode

StatusCode.Ok; // 0Ok
200; // Ok

WARNING

TypeScript allows any number to be assigned to a numeric enum value as a convenience at the
cost of a little type safety. statusCode = -1 would have also been allowed in the previous code
snippet.



Enums compile down to an equivalent object in output compiled JavaScript.
Each of their members becomes an object member key with the
corresponding value, and vice versa.

The previous enum StatusCode would create roughly the following
JavaScript:

var StatusCode;
(function (StatusCode) {
StatusCode[StatusCode["InternalServerError"] = 500] =
"InternalServerError";
StatusCode[StatusCode[ "NotFound"] = 404] = "NotFound";
StatusCode[StatusCode["0k"] = 200] = "0Ok";
})(StatusCode || (StatusCode = {}));

Enums are a mildly contentious topic in the TypeScript community. On the
one hand, they violate TypeScript’s general mantra of never adding new
runtime syntax constructs to JavaScript. They present a new non-JavaScript
syntax for developers to learn and have a few quirks around options such as
preserveConstEnums, covered later in this chapter.

On the other hand, they’re quite useful for explicitly declaring known sets
of values. Enums are used extensively in both the TypeScript and VS Code
source repositories!

Automatic Numeric Values

Enum members don’t need to have an explicit initial value. When values
are omitted, TypeScript will start the first value off with 0 and increment
each subsequent value by 1. Allowing TypeScript to choose the values for
enum members is a good option when the value doesn’t matter beyond
being unique and associated with the key name.

This VisualTheme enum allows TypeScript to choose the values entirely,
resulting in three integers:

enum VisualTheme {
Dark, // 0@
Light, // 1



System, // 2

The emitted JavaScript looks the same as if the values had been set
explicitly:

var VisualTheme;

(function (VisualTheme) {
VisualTheme[VisualTheme[ "Dark"] = 0] = "Dark";
VisualTheme[VisualTheme["Light"] = 1] = "Light";
VisualTheme[VisualTheme["System"] = 2] = "System";

})(VisualTheme || (VisualTheme = {}));

In enums with numeric values, any members missing an explicit value will
be 1 greater than the previous value.

As an example, a Direction enum might only care that its Top member has
a value of 1 and the remaining values are also positive integers:

enum Direction {
Top = 1,
Right,
Bottom,
Left,

Its output JavaScript would also look the same as if the remaining members
had explicit values 2, 3, and 4:

var Direction;

(function (Direction) {
Direction[Direction["Top"]
Direction[Direction["Right"
Direction[Direction["Bottom"]
Direction[Direction["Left"] = 4]

1) (Direction || (Direction = {}));

1] - ”Top”;

= 2] = "Right";

= 3] = "Bottom";
= "Left";

— |l



WARNING

Modifying the order of an enum will cause the underlying number to change. If you persist these
values somewhere, such as a database, be careful of changing the enum order or removing an
entry. Your data may suddenly be corrupt because the saved number will no longer represent what
your code expects.

String-Valued Enums
Enums may also use strings for their members instead of numbers.

This LoadStyle enum uses friendly string values for its members:

enum LoadStyle {
AsNeeded = "as-needed",
Eager = "eager",

Output JavaScript for enums with string member values looks structurally
the same as enums with numeric member values:

var LoadStyle;
(function (LoadStyle) {
LoadStyle[ "AsNeeded"] = "as-needed";
LoadStyle["Eager"] = "eager";
})(LoadStyle || (LoadStyle = {}));

String valued enums are handy for aliasing shared constants under legible
names. Instead of using a type union of string literals, string valued enums
allow for more powerful editor autocompletions and renames of those
properties—as covered in Chapter 12, “Using IDE Features™.

One downside of string member values is that they cannot be computed
automatically by TypeScript. Only enum members that follow a member
with a numeric value are allowed to be computed automatically.

TypeScript would be able to provide an implicit value of 9001 in this
enum’s ImplicitNumber because the previous member value is the number



9000, but its NotAllowed member would issue an error because it follows a
string member value:

enum Wat {
FirstString = "first",
SomeNumber = 9000,
ImplicitNumber, // 0k (value 9001)
AnotherString = "another",

NotAllowed,
// Error: Enum member must have initializer.

TIP

In theory, you could make an enum with both numeric and string member values. In practice, that
enum would likely be unnecessarily confusing, so you probably shouldn’t.

Const Enums

Because enums create a runtime object, using them produces more code
than the common alternative strategy of unions of literal values. TypeScript
allows declaring enums with the const modifier in front of them to tell
TypeScript to omit their objects definition and property lookups from
compiled JavaScript code.

This DisplayHint enum is used as a value for a displayHint variable:

const enum DisplayHint {
Opaque = 0,
Semitransparent,
Transparent,

}

let displayHint = DisplayHint.Transparent;

The output compiled JavaScript code would be missing the enum
declaration altogether and would use a comment for the enum’s value:



let displayHint = 2 /* DisplayHint.Transparent */;

For projects where it’s still desirable to create enum object definitions, a
preserveConstEnums compiler option does exist that would keep the enum
declaration itself in existence. Values would still directly use literals instead
of accessing them on the enum object.

The previous code snippet would still omit the property lookup in its
compiled JavaScript output:

var DisplayHint;

(function (DisplayHint) {
DisplayHint[DisplayHint["Opaque"] = 0] = "Opaque";
DisplayHint[DisplayHint["Semitransparent"] = 1] = "Semitransparent";
DisplayHint[DisplayHint["Transparent"] = 2] = "Transparent";

1) (DisplayHint || (DisplayHint = {}));

let displayHint = 2 /* Transparent */;

preserveConstEnums can help reduce the size of emitted JavaScript code,
though not all ways to transpile TypeScript code support it. See Chapter 13,
“Configuration Options” for more information on the isolatedModules
compiler option and when const enums may not be supported.

Namespaces

WARNING

Unless you are authoring DefinitelyTyped type definitions for an existing package, do not use
namespaces. Namespaces do not match up to modern JavaScript module semantics. Their
automatic member assignments can make code confusing to read. I only mention them because
you may come across them in .d.zs files.

Back before ECMAScript modules were ratified, it wasn’t uncommon for
web applications to bundle much of their output code into a single file
loaded by the browser. Those giant single files often created global



variables to hold references to important values across different areas of the
project. It was simpler for pages to include that one file than to set up an old
module loader such as RequireJS—and oftentimes more performant to load,
since many servers didn’t yet support HTTP/2 download streaming.
Projects made for a single-file output needed a way to organize sections of
code and those global variables.

The TypeScript language provided one solution with the concept of
“internal modules,” now referred to as namespaces. A namespace is a
globally available object with “exported” contents available to call as
members of that object. Namespaces are defined with the namespace
keyword followed by a {} block of code. Everything in that namespace
block is evaluated inside a function closure.

This Randomized namespace creates a value variable and uses it internally:

namespace Randomized {
const value = Math.random();
console.log( My value is ${value} );

Its output JavaScript creates a Randomized object and evaluates the
contents of the block inside a function, so the value variable isn’t available
outside of the namespace:

var Randomized;
(function (Randomized) {
const value = Math.random();
console.log( My value is ${value} );
})(Randomized || (Randomized = {}));

WARNING

Namespaces and the namespace keyword were originally called “modules” and "module,”
respectively, in TypeScript. That was a regrettable choice in hindsight given the rise of modern
module loaders and ECMAScript modules. The module keyword is still occasionally found in
very old projects, but can—and should—be safely replaced with namespace.



Namespace Exports

The key feature of namespaces that made them useful was that a namespace
could “export” contents by making them a member of the namespace
object. Other areas of code can then refer to that member by name.

Here, a Settings namespace exports describe, name, and version values
used internally and externally to the namespace:

namespace Settings {
export const name = "My Application";
export const version = "1.2.3";

export function describe() {
return “${Settings.name} at version ${Settings.version};

}

console.log("Initializing", describe());

}

console.log("Initialized", Settings.describe());

The output JavaScript shows that the values are always referenced as
members of Settings (e.g., Settings.name) in both internal and external
usage:

var Settings;
(function (Settings) {
Settings.name = "My Application";
Settings.version = "1.2.3";
function describe() {
return ‘${Settings.name} at version ${Settings.version}’;
}
Settings.describe = describe;
console.log("Initializing", describe());
})(Settings || (Settings = {}));
console.log("Initialized", Settings.describe());

By using a var for the output object and referencing exported contents as
members of those objects, namespaces by design work well when split
across multiple files. The previous Settings namespace could be rewritten
across multiple files:



// settings/constants.ts

namespace Settings {
export const name = "My Application”;
export const version = "1.2.3";

}

// settings/describe.ts
namespace Settings {
export function describe() {
return ‘${Settings.name} at version ${Settings.version}’;

}

console.log("Initializing", describe());
}
// index.ts

console.log("Initialized", Settings.describe());

The output JavaScript, concatenated together, would look roughly like:

// settings/constants.ts
var Settings;
(function (Settings) {
Settings.name = "My Application"”;
Settings.version = "1.2.3";
1) (Settings || (Settings = {}));
// settings/describe.ts
(function (Settings) {
function describe() {
return "${Settings.name} at version ${Settings.version} ;
}
Settings.describe = describe;
console.log("Initialized", describe());
1) (Settings || (Settings = {}));
console.log("Initialized", Settings.describe());

In both the single-file and multiple-file declaration forms, the output object
at runtime is one with three keys. Roughly:

const Settings = {
describe: function describe() {
return '${Settings.name} at version ${Settings.version}’;

P

name: "My Application”,



version: "1.2.3",

}s

The key difference with using a namespace is that it can be split across
different files and members can still refer to each other under the
namespace’s name.

Nested Namespaces

Namespaces can be “nested” to indefinite levels by either exporting a
namespace from within another namespace or putting one or more . periods
inside a name.

The following two namespace declarations would behave identically:

namespace Root.Nested {
export const valuel = true;

}

namespace Root {
export namespace Nested {
export const value2 = true;

}

They both compile to structurally identical code:

(function (Root) {
let Nested;
(function (Nested) {
Nested.value2 = true;
})(Nested || (Nested = {}));

}(Root [| (Root = {}));

Nested namespaces are a handy way to enforce more delineation between
sections within larger projects organized with namespaces. Many
developers opted to use a root namespace by the name of their project—
perhaps inside a namespace for their company and/or organization—and
child namespaces for each major area of the project.



Namespaces in Type Definitions

The only redeeming quality for namespaces today—and the only reason
why I opted to include them in this book—is that they can be useful for
DefinitelyTyped type definitions. Many JavaScript libraries—particularly
older web application staples such as jQuery—are set up to be included in
web browsers with a traditional, non-module <script> tag. Their typings
need to indicate that they create a global variable available to all code—
structure perfectly captured by namespaces.

Additionally, many browser-capable JavaScript libraries are set up both to
be imported in more modern module systems and also to create a global
namespace. TypeScript allows a module type definition to include an
export as namespace, followed by a global name, to indicate the module
is also available globally under that name.

For example, this declaration file for a module exports a value and is
available globally:

// node_modules/@types/my-example-lib/index.d. ts
export const value: number;
export as namespace libExample;

The type system would know that both import("my-example-1ib") and
window. libExample would give back the module, with a value property of
type number:

// src/index. ts
import * as libExample from "my-example-1lib"; // 0k
const value = window.libExample.value; // 0k

Prefer Modules Over Namespaces

Instead of using namespaces, the previous examples’ settings/constants.ts
file and settings/describe.ts file could be rewritten for modern standards
with ECMAScript modules:



// settings/constants.ts
export const name = "My Application";
export const version = "1.2.3";

// settings/describe.ts
import { name, version } from

./constants";

export function describe() {
return “${Settings.name} at version ${Settings.version};

}

console.log("Initializing", describe());

// index.ts
import { describe } from

./settings/describe";

console.log("Initialized", describe());

TypeScript code structured with namespaces can’t be easily tree-shaken
(have unused files removed) in modern builders such as Webpack because
namespaces create implicit, rather than explicitly declared, ties between
files the way ECMAScript modules do. It is generally strongly preferred to
write runtime code using ECMAScript modules and not TypeScript
namespaces.

NOTE

As 0f 2022, TypeScript itself is written in namespaces, but the TypeScript team is working on
migrating over to modules. Who knows, maybe by the time you’re reading this, they’ll have
finished that conversion! Fingers crossed.

Type-Only Imports and Exports

I’d like to end this chapter on a positive note. One last set of syntax
extensions, type-only imports and exports, can be quite useful and don’t add
any complexity to output emitted JavaScript.



TypeScript’s transpiler will remove values used only in the type system
from imports and exports in files because they aren’t used in runtime
JavaScript.

For example, the following index.?s file creates an action variable and an
ActivistArea type, then later exports both of them with a standalone
export declaration. When compiling it to index.js, TypeScript’s transpiler
would know to remove ActivistArea from that standalone export
declaration:

// index.ts
const action = { area: "people", name: "Bella Abzug", role: "politician" };

type ActivistArea = "nature" | "people";

export { action, ActivistArea };

// index. js
const action = { area: "people", name: "Bella Abzug", role: "politician" };

export { action };

Knowing to remove re-exported types such as that ActivistArea requires
knowledge of the TypeScript type system. Transpilers such as Babel that act
on a single file at a time don’t have access to the TypeScript type system to
know whether each name is only used in the type system. TypeScript’s
isolatedModules compiler option, covered in Chapter 13, “Configuration
Options”, helps make sure code will transpile in tools other than
TypeScript.

TypeScript allows adding the type modifier in front of individual imported
names or the entire {...} object in export and import declarations. Doing
so indicates they’re only meant to be used in the type system. Marking a
default import of a package as type is allowed as well.

In the following snippet, only the value import and export are kept when
index.ts 1s transpiled to the output index.js:



// index.ts

import { type TypeOne, value } from "my-example-types";
import type { TypeTwo } from "my-example-types";

import type DefaultType from "my-example-types";

export { type TypeOne, value };
export type { DefaultType, TypeTwo };

// index.js
import { value } from "my-example-types";

export { value };

Some TypeScript developers even prefer to opt into using type-only imports
to make it more clear which imports are only used as types. If an import is
marked as type-only, attempting to use it as a runtime value will trigger a
TypeScript error.

The following ClassOne is imported normally and can be used at runtime,
but ClassTwo cannot because it is imported as a type:

import { ClassOne, type ClassTwo } from "my-example-types";
new ClassOne(); // Ok

new ClassTwo();

[/

// Error: 'ClassTwo' cannot be used as a value
// because it was imported using 'import type'.

Instead of adding complexity to emitted JavaScript, type-only imports and
exports make it clear to transpilers outside of TypeScript when it’s possible
to remove pieces of code. Most TypeScript developers therefore don’t treat
them with the distaste given to the previous syntax extensions covered in
this chapter.

Summary

In this chapter, you worked with some of the JavaScript syntax extensions
included in TypeScript:



e Declaring class parameter properties in class constructors
e Using decorators to augment classes and their fields
e Representing groups of values with enums

e Using namespaces to create groupings across files or in type
definitions

e Type-only imports and exports

TIP

Now that you’ve finished reading this chapter, practice what you’ve learned on
https://learningtypescript.com/syntax-extensions.

What do you call the cost of supporting legacy JavaScript extensions in
TypeScript?

b

“Sin tax.’


https://learningtypescript.com/syntax-extensions

Chapter 15. Type Operations

Conditionals, maps
With great power over types

comes great confusion

TypeScript gives us awesome levels of power to define types in the type
system. Even the logical modifiers from Chapter 10, “Generics” pale in
comparison to the capabilities of the type operations in this chapter. Once
you’ve completed this chapter, you’ll be able to mix, match, and modify
types based on other types—giving you powerful ways to represent types in
the type system.

Most of these fancy types are techniques you generally don’t want to use very frequently. You’ll
want to understand them for the cases where they are useful, but beware: they can be difficult to
read through when overused. Have fun!

Mapped Types

TypeScript provides syntax for creating a new type based on the properties
of another type: in other words, mapping from one type to another. A
mapped type in TypeScript is a type that takes in another type and performs
some operation on each property of that type.

Mapped types create a new type by creating a new property under each key
in a set of keys. They use a syntax similar to index signatures, but instead of
using a static key type with : like [1: string], they use a computed type
from the other type with in like [K in OriginalType]:



type NewType = {
[K in OriginalType]: NewProperty;
3

One common use case for mapped types is to create an object whose keys
are each of the string literals in an existing union type. This AnimalCounts
type creates a new object type where the keys are each of the values from
the Animals union type and each of the values is number:

n n

type Animals = "alligator" | "baboon" | "cat";

type AnimalCounts = {

[K in Animals]: number;
3
// Equivalent to:

/A
// alligator: number;

//  baboon: number;
// cat: number;

//}

Mapped types based on existing literals of unions are a convenient way to
save space in declaring big interfaces. But mapped types really shine when
they can act on other types and even add or remove modifiers from
members.

Mapped Types from Types

Mapped types commonly act on existing types using the keyof operator to
grab the keys of that existing type. By instructing a type to map over the
keys of an existing type, we can map from that existing type to a new one.

This AnimalCounts type ends up being the same as the AnimalCounts type
from before by mapping from the AnimalVariants type to a new
equivalent one:

interface AnimalVariants {
alligator: boolean;
baboon: number;
cat: string;



}

type AnimalCounts = {
[K in keyof AnimalVariants]: number;

s
// Equivalent to:

/A
// alligator: number;

//  baboon: number;
//  cat: number;

/7 }

The new type keys mapped over a keyof—mnamed K in the previous
snippets—are known to be keys of the original type. That means each
mapped type member value is allowed to reference the original type’s
corresponding member value under the same key.

If the original object is SomeName and the mapping is [K in keyof

SomeName ], then each member in the mapped type would be able to refer to

the equivalent SomeName member’s value as SomeName[K].

This NullableBirdVariants type takes an original BirdVariants type
and adds | null to each member:

interface Birdvariants {
dove: string;
eagle: boolean;

}

type NullableBirdVariants = {

[K in keyof BirdVariants]: BirdVariants[K] | null,
3
// Equivalent to:

/A
// dove: string | null;

// eagle: boolean | null;
//}

Instead of painstakingly copying each field from an original type to any
number of other types, mapped types let you define a set of members once
and re-create new versions of them en masse as many times as you need.



Mapped types and signatures

In Chapter 7, “Interfaces”, I introduced that TypeScript provides two ways
of declaring interface members as functions:

e Method syntax, like member(): void: declaring that a member of the
interface 1s a function intended to be called as a member of the object

e Property syntax, like member: () => void: declaring that a member
of the interface is equal to a standalone function

Mapped types don’t distinguish between method and property syntaxes on
object types. Mapped types treat methods as properties on original types.

This ResearcherProperties type contains both the property and method
members of Researcher:

interface Researcher {
researchMethod(): void;
researchProperty: () => string;

}

type JustProperties<T> = {
[K in keyof T]: T[K];
};

type ResearcherProperties = JustProperties<Researcher>;
// Equivalent to:

/A
//  researchMethod: () => void;

// researchProperty: () => string;
//}

The distinction between methods and properties does not show up very
often in most practical TypeScript code. It’s rare to find a practical use of a
mapped type that takes in a class type.

Changing Modifiers

Mapped types can also change the access control modifiers—readonly and
? optionality—on the original type’s members. readonly or ? can be placed



on members of mapped types using the same syntax as typical interfaces.

The following ReadonlyEnvironmentalist type makes a version of the
Environmentalist interface with all members given readonly, while
OptionalReadonlyConservationist goes one step further and makes
another version that adds ? to all the ReadonlyEnvironmentalist
members:

interface Environmentalist {
area: string;
name: string;

}

type ReadonlyEnvironmentalist = {
readonly [K in keyof Environmentalist]: Environmentalist[K];
s
// Equivalent to:
/A

// readonly area: string;
// readonly name: string;

//}

type OptionalReadonlyEnvironmentalist = {
[K in keyof ReadonlyEnvironmentalist]?: ReadonlyEnvironmentalist[K];
s
// Equivalent to:
/A

// readonly area?: string;
// readonly name?: string;

/1 }

NOTE

The OptionalReadonlyEnvironmentalist type could alternately be written with readonly [K
in keyof Environmentalist]?: Environmentalist[K].

Removing modifiers is done by adding a - before the modifier in a new
type. Instead of writing readonly or ?:, you can write -readonly or -?:,
respectively.



This Conservationist type contains ? optional and/or readonly members
that are made writable in WritableConservationist and then also
required in RequiredWritableConservationist:

interface Conservationist {
name: string;
catchphrase?: string;
readonly born: number;
readonly died?: number;

}

type WritableConservationist = {
-readonly [K in keyof Conservationist]: Conservationist[K];
s
// Equivalent to:
/A
// name: string;
// catchphrase?: string;
//  born: number;
// died?: number;

/7 }

type RequiredWritableConservationist = {
[K in keyof WritableConservationist]-?: WritableConservationist[K];
3
// Equivalent to:
/A

// name: string;
// catchphrase: string;
//  born: number;
// died: number;

//}

NOTE

The RequiredWritableConservationist type could alternately be written with -readonly [K
in keyof Conservationist]-?: Conservationist[K].

Generic Mapped Types

The full power of mapped types comes from combining them with generics,
allowing a single kind of mapping to be reused across different types.



Mapped types are able to access the keyof any type name in their scope,
including a type parameter on the mapped type itself.

Generic mapped types are frequently useful for representing how data
morphs as it flows through an application. For example, it may be desirable
for an area of the application to be able to take in values of existing types
but not be allowed to modify the data.

This MakeReadonly generic type takes in any type and creates a new
version with the readonly modifier added to all its members:

type MakeReadonly<T> = {
readonly [K in keyof T]: T[K];
}

interface Species {
genus: string;
name: string;

}

type ReadonlySpecies = MakeReadonly<Species>;
// Equivalent to:

/L
// readonly genus: string;

// readonly name: string;

//}

Another transform developers commonly need to represent is a function
that takes in any amount of an interface and returns a fully filled-out
instance of that interface.

The following MakeOptional type and createGenusData function allow
for providing any amount of the GenusData interface and getting back an
object with the defaults filled in:

interface GenusData {
family: string;
name: string;

}

type MakeOptional<T> = {
[K in keyof T]?: T[K];



}
// Equivalent to:

/A
//  family?: string;
// name?: string;

//}
/**

* Spreads any {overrides} on top of default values for GenusData.

*

/

function createGenusData(overrides?: MakeOptional<GenusData>): GenusData {
return {

family: 'unknown',
name: 'unknown',
...overrides,

Some operations done by generic mapped types are so useful that
TypeScript provides utility types for them out-of-the-box. Making all
properties optional, for example, 1s achievable using the built-in
Partial<T> type. You can find a list of those built-in types on
https://www.typescriptlang.org/docs/handbook/utility-types. html.

Conditional Types

Mapping existing types to other types is nifty, but we haven’t yet added
logical conditions into the type system. Let’s do that now.

TypeScript’s type system is an example of a logic programming language.
It allows creating new constructs (types) based on logically checking
previous types. It does so with the concept of a conditional type: a type that
resolves to one of two possible types, based on an existing type.

Conditional type syntax looks like ternaries:

LeftType extends RightType ? IfTrue : IfFalse

The logical check in a conditional type is always on whether the left type
extends, or 1s assignable to, the right type.


https://www.typescriptlang.org/docs/handbook/utility-types.html

The following CheckStringAgainstNumber conditional type checks
whether string extends number—or in other words, whether the string
type is assignable to the number type. It’s not, so the resultant type is the “if
false” case: false:

// Type: false
type CheckStringAgainstNumber = string extends number ? true : false;

Much of the rest of this chapter will involve combining other type system
features with conditional types. As the code snippets get more complex,
remember: each conditional type is purely a piece of boolean logic. Each
takes in some type and results in one of two possible results.

Generic Conditional Types

Conditional types are able to check any type name in their scope, including
a type parameter on the conditional type itself. That means you can write
reusable generic types to create new types based on any other types.

Turning the previous CheckStringAgainstNumber type into a generic
CheckAgainstNumber gives a type that is either true or false based on
whether the previous type is assignable to number. string is still not true,
while number and © | 1 both are:

type CheckAgainstNumber<T> = T extends number ? true : false;

// Type: false
type CheckString

CheckAgainstNumber<'parakeet's;

// Type: true
type CheckString

CheckAgainstNumber<1891>;

// Type: true
type CheckString

CheckAgainstNumber<number>;

The following CallableSetting type is a little more useful. It takes in a
generic T and checks whether T is a function. If T is, then the resultant type
1s T—as with GetNumbersSetting where T is () => number[]. Otherwise,



the resultant type is a function that returns T, as with StringSetting where
T is string, and so the resultant type is () => string:

type CallableSetting<T> =
T extends () => any
2T
t () =T

// Type: () => number[]
type GetNumbersSetting = CallableSetting<() => number[]>;

// Type: () => string
type StringSetting = CallableSetting<string>;

Conditional types are also able to access members of provided types with
the object member lookup syntax. They can use that information both in
their extends clause and/or in the resultant types.

One pattern used by JavaScript libraries that lends itself well to conditional
generic types is to change the return type of a function based on an options
object provided to the function.

For example, many database functions or equivalents might use a property
like throwIfNotFound to change the function to throw an error instead of
returning undefined if a value isn’t found. The following QueryResult
type models that behavior by resulting in the more narrow string instead
of string | undefined if the options’ throwIfNotFound is specifically
known to be true:

interface QueryOptions {
throwIfNotFound: boolean;

}

type QueryResult<Options extends QueryOptions> =
Options["throwIfNotFound"] extends true ? string : string | undefined;

declare function retrieve<Options extends QueryOptions>(
key: string,
options?: Options,

): Promise<QueryResult<Options>>;

// Returned type: string | undefined



awailt retrieve("Biruté Galdikas");

// Returned type: string | undefined
awailt retrieve("Jane Goodall", { throwIfNotFound: Math.random() > 0.5 });

// Returned type: string
await retrieve("Dian Fossey", { throwIfNotFound: true });

By combining a conditional type with a generic type parameter, that
retrieve function is more precise in telling the type system how it will
change its program’s control flow.

Type Distributivity

Conditional types distribute over unions, meaning their resultant type will
be a union of applying that conditional type to each of the constituents
(types in the union type). In other words, ConditionalType<T | Us>is the
same as Conditional<T> | Conditional<Us.

Type distributivity is a mouthful to explain but is important for how
conditional types behave with unions.

Consider the following ArrayifyUnlessString type that converts its type
parameter T to an array unless T extends string. HalfArrayified is
equivalent to string | number[] because
ArrayifyUnlessString<string | numbers is the same as
ArrayifyUnlessString<string> | ArrayifyUnlessString<numbers:

type ArrayifyUnlessString<T> = T extends string ? T : T[];

// Type: string | number[]
type HalfArrayified = ArrayifyUnlessString<string | number>;

If TypeScript’s conditional types didn’t distribute across unions,
HalfArrayified would be (string | number)[] because string |
number is not assignable to string. In other words, conditional types apply
their logic to each constituent of a union type, not the whole union type.



Inferred Types

Accessing members of provided types works well for information stored as
a member of a type, but it can’t capture other information such as function
parameters or return types. Conditional types are able to access arbitrary
portions of their condition by using an infer keyword within their extends
clause. Placing the infer keyword and a new name for a type within an
extends clause means that new type will be available inside the conditional
type’s true case.

This ArrayItems type takes in a type parameter T and checks whether the T
is an array of some new Item type. If it is, the resultant type is Item; if not,
it’s T:

type Arrayltems<T> =
T extends (infer Item)[]
? Item
: T

// Type: string
type StringItem = ArraylItems<string>;

// Type: string
type StringArrayItem = Arrayltems<string[]>;

// Type: string[]
type String2DItem = ArrayItems<string[][]>;

Inferred types can work to create recursive conditional types too. The
ArrayItems type seen previously could be extended to retrieve the item
type of an array of any dimensionality recursively:

type ArrayltemsRecursive<T> =
T extends (infer Item)[]
? ArrayItemsRecursive<Item>
T,

// Type: string
type StringItem = ArrayItemsRecursive<string>;

// Type: string
type StringArrayItem = ArrayItemsRecursive<string[]>;



// Type: string
type String2DItem = ArrayItemsRecursive<string[][]>;

Note that while ArrayItems<string[ ][ ]> resulted in string[],
ArrayItemsRecursive<string[ ][ ]> resulted in string. That ability for
generic types to be recursive allows them to keep applying modifications—
such as retrieving the element type of an array here.

Mapped Conditional Types

Mapped types apply a change to every member of an existing type.
Conditional types apply a change to a single existing type. Put together,
they allow for applying conditional logic to each member of a generic
template type.

This MakeAllMembersFunctions type turns each nonfunction member of a
type into a function:

type MakeAllMembersFunctions<T> = {
[K in keyof T]: T[K] extends (...args: any[]) => any
? T[K]
¢ () = T[K]
s

type MemberFunctions = MakeAllMembersFunctions<{
alreadyFunction: () => string,
notYetFunction: number,

3>

// Type:

/A

// alreadyFunction: () => string,

//  notYetFunction: () => number,

/1 }

Mapped conditional types are a convenient way to modify all properties of
an existing type using some logical check.



never

In Chapter 4, “Objects”, I introduced the never type, a bottom type, which
means it can have no possible values and can’t be reached. Adding a never
type annotation in the right place can tell TypeScript to be more aggressive
about detecting never-hit code paths in the type system as well as in the
previous examples of runtime code.

never and Intersections and Unions

Another way of describing the never bottom type is that it’s a type that
can’t exist. That gives never some interesting behaviors with & intersection
and | union types:

e never in an & intersection type reduces the intersection type to just
never.

e never in a | union type is ignored.

These NeverIntersection and NeverUnion types illustrate those
behaviors:

type NeverIntersection = never & string; // Type: never
type NeverUnion = never | string; // Type: string

In particular, the behavior of being ignored in union types makes never
useful for filtering out values from conditional and mapped types.

never and Conditional Types

Generic conditional types commonly use never to filter out types from
unions. Because never is ignored in unions, the result of a generic
conditional on a union of types will only be those that are not never.

This OnlyStrings generic conditional type filters out types that aren’t
strings, so the RedOrBlue type filters out @ and null from the union:



type OnlyStrings<T> = T extends string ? T : never;

type RedOrBlue = OnlyStrings<'"red" | "blue" | 0 | false>;
// Equivalent to: "red" | "blue”

never is also commonly combined with inferred conditional types when
making type utilities for generic types. Type inferences with infer have to
be in the true case of a conditional type, so if the false case is never meant
to be used, never is a suitable type to put there.

This FirstParameter type takes in a function type T, checks if it’s a
function with an arg: infer Arg, and returns that Arg if so:

type FirstParameter<T extends (...args: any[]) => any> =
T extends (arg: infer Arg) => any
? Arg
: never;

type GetsString = FirstParameter<

(arg0: string) => void
>; // Type: string

Using never in the false case of the conditional type allowed
FirstParameter to extract the type of the function’s first parameter.

never and Mapped Types

The never behavior in unions makes it useful for filtering out members in
mapped types too. It’s possible to filter out keys of an object using the
following three type system features:

e never is ignored in unions.
e Mapped types can map members of types.

e Conditional types can be used to turn types into never if a condition is
met.

Putting the three of those together, we can create a mapped type that
changes each member of the original type either to the original key or to



never. Asking for the members of that type with [keyof T], then,
produces a union of all those mapped type results, filtering out never.

The following OnlyStringProperties type turns each T[K] member into
either the K key if that member is a string, or never if not:

type OnlyStringProperties<T> = {
[K in keyof T]: T[K] extends string ? K : never;
} keyof T];

interface AllEventData {
participants: string[];
location: string;
name: string;
year: number;

}

type OnlyStringEventData = OnlyStringProperties<AllEventData>;
// Equivalent to: "location" | "name"

Another way of reading the OnlyStringProperties<T> type is that it
filters out all non-string properties (switches them to never), then gives
back all the remaining keys ([keyof T]).

Template Literal Types

We’ve covered a lot on conditional and/or mapped types now. Let’s switch
to less logic-intensive types and focus on strings for a while instead. So far
I’ve brought up two strategies for typing string values:

e The primitive string type: for when the value can be any string in the
world

e Literal types such as "" and "abc": for when the value can only be that
one type (or a union of them)

Sometimes, however, you may want to indicate that a string matches some
string pattern: part of the string is known, but part of it is not. Enter
template literal types, a TypeScript syntax for indicating that a string type



adheres to a pattern. They look like template literal strings—hence their
name—but with primitive types or unions of primitive types interpolated.

This template literal type indicates that the string must start with "Hello"
but can end with any string (string). Names that start with "Hello" such
as "Hello, world!" match, but not "World! Hello!" or "hi":

type Greeting = ‘"Hello${string} ;
let matches: Greeting = "Hello, world!"; // 0Ok

let outOfOrder: Greeting = "World! Hello!";

[/ s
// Error: Type '"World! Hello!"' is not assignable to type '‘Hello

S{string} '.

let missingAltogether: Greeting = "hi";

[/ s
// Error: Type '"hi"' is not assignable to type '‘Hello S{string}’'.

String literal types—and unions of them—may be used in the type
interpolation instead of the catchall string primitive to restrict template
literal types to more narrow patterns of strings. Template literal types can be
quite useful for describing strings that must match a restricted set of
allowed strings.

Here, BrightnessAndColor matches only strings that start with a
Brightness, end with a Color, and have a - hyphen in-between:

type Brightness = "dark" | "light";
type Color = "blue" | "red";

type BrightnessAndColor = “${Brightness}-${Color}";
// Equivalent to: "dark-red" | "light-red" | "dark-blue" | "light-blue"

let colorOk: BrightnessAndColor = "dark-blue"; // 0k
let colorWrongStart: BrightnessAndColor = "medium-blue";

[/ s

// Error: Type '"medium-blue"' is not assignable to type
// '"dark-blue" | "dark-red" | "light-blue" | "light-red"’'.

let colorWrongEnd: BrightnessAndColor = "light-green";



[/
// Error: Type '"light-green"' is not assignable to type

// '"dark-blue" | "dark-red" | "light-blue" | "light-red"'.

ni

Without template literal types, we would have had to laboriously write out
all four combinations of Brightness and Color. That would get
cumbersome if we added more string literals to either of them!

TypeScript allows template literal types to contain any primitives (other
than symbol) or a union thereof: string, number, bigint, boolean, null,
or undefined.

This ExtolNumber type allows any string that starts with "much ", includes
a string that looks like a number, and ends with "wow":

type ExtolNumber = ‘much ${number} wow";
function extol(extolee: ExtolNumber) { /* ... */ }

extol('much @ wow'); // Ok
extol('much -7 wow'); // Ok
extol('much 9.001 wow'); // Ok

extol('much false wow');

[/ e
// Error: Argument of type '"much false wow"

// assignable to parameter of type '

I

is not
‘much S{number} wow''.

Intrinsic String Manipulation Types

To assist in working with string types, TypeScript provides a small set of
intrinsic (meaning: they’re built into TypeScript) generic utility types that
take in a string and apply some operation to the string. As of TypeScript
4.7.2, there are four:

e Uppercase: Converts a string literal type to uppercase.
e Lowercase: Converts a string literal type to lowercase.

e Capitalize: Converts a first character of string literal type to
uppercase.



e Uncapitalize: Converts a first character of string literal type to
lowercase.

Each of these can be used as a generic type that takes in a string. For
example, using Capitalize to capitalize the first letter in a string:

type FormalGreeting = Capitalize<"hello.">; // Type: "Hello."

These intrinsic string manipulation types can be quite useful for
manipulating property keys on object types.

Template Literal Keys

Template literal types are a half-way point between the primitive string
and string literals, which means they’re still strings. They can be used in
any other place where you’d be able to use string literals.

For example, you can use them as the index signature in a mapped type.
This ExistenceChecks type has a key for every string in DataKey, mapped
with check${Capitalize<DataKey>}:

type DataKey = "location" | "name" | "year";

type ExistenceChecks = {
[K in ‘check${Capitalize<DataKey>}"]: () => boolean;
3
// Equivalent to:
/A
//  checkLocation: () => boolean;
//  checkName: () => boolean;
//  checkYear: () => boolean;
//}

function checkExistence(checks: ExistenceChecks) {
checks.checkLocation(); // Type: boolean
checks.checkName(); // Type: boolean

checks.checkWrong();
V] e

// Error: Property 'checkWrong' does not exist on type 'ExistenceChecks'.



Remapping Mapped Type Keys

TypeScript allows you to create new keys for members of mapped types
based on the original members using template literal types. Placing the as
keyword followed by a template literal type for the index signature in a
mapped typed changes the resultant type’s keys to match the template literal
type. Doing so allows the mapped type to have a different key for each
mapped property while still referring to the original value.

Here, DataEntryGetters is a mapped type whose keys are getLocation,
getName, and getYear. Each key 1s mapped to a new key with a template
literal type. Each mapped value is a function whose return type is a
DataEntry using the original K key as a type argument:

interface DataEntry<T> {
key: T;
value: string;

}

type DataKey = "location" | "name" | "year";

type DataEntryGetters = {

[K in DataKey as ‘get${Capitalize<K>}"]: () => DataEntry<K>;
3
// Equivalent to:

/A
// getlLocation: () => DataEntry<"location">;

// getName: () => DataEntry<"name">;
// getYear: () => DataEntry<"year"s;
//}

Key remappings can be combined with other type operations to create
mapped types that are based on existing type shapes. One fun combination
is using keyof typeof on an existing object to make a mapped type off
that object’s type.

This ConfigGetter type is based on the config type, but each field is a
function that returns the original config, and the keys are modified from the
original key:



const config = {
location: "unknown",
name: "anonymous",
year: 0,

};

type LazyValues = {
[K in keyof typeof config as "${K}Lazy ]: () => Promise<typeof config[K]>;
s
// Equivalent to:
/L

//  location: Promise<string>;
//  name: Promise<string>;
//  year: Promise<numbers>;

/1 }

async function withLazyValues(configGetter: LazyValues) {
await configGetter.locationLazy; // Resultant type: string

await configGetter.missinglLazy();

// st i i i i i

// Error: Property 'missinglazy' does not exist on type 'LazyValues'.

};

Note that in JavaScript, object keys may be type string or Symbol—and
Symbol keys aren’t usable as template literal types because they’re not
primitives. If you try to use a remapped template literal type key in a
generic type, TypeScript will issue a complaint that symbol can’t be used in
a template literal type:

type TurnIntoGettersDirect<T> = {
[K in keyof T as ‘get${K}']: () => T[K]
// ~
// Error: Type 'keyof T' is not assignable to type
// 'string | number | bigint | boolean | null | undefined’.
// Type 'string | number | symbol' is not assignable to type
// 'string | number | bigint | boolean | null | undefined'.
// Type 'symbol' is not assignable to type
// 'string | number | bigint | boolean | null | undefined’.
I

To get around that restriction, you can use a string & intersection type to
enforce that only types that can be strings are used. Because string &



symbol results in never, the whole template string will reduce to never and
TypeScript will ignore it:

const someSymbol = Symbol("");

interface HasStringAndSymbol {
StringKey: string;
[someSymbol]: number;

}

type TurnIntoGetters<T> = {
[K in keyof T as ‘get${string & K} ]: () => T[K]
};

type GettersJustString = TurnIntoGetters<HasStringAndSymbols>;
// Equivalent to:

/7o
// getStringKey: () => string;

//}

TypeScript’s behavior of filtering out never types from unions is proving
itself useful yet again!

Type Operations and Complexity

Debugging is twice as hard as writing the code in the first place.
Therefore, if you write the code as cleverly as possible, you are, by
definition, not smart enough to debug it.

—Brian Kernighan

The type operations described in this chapter are among the most powerful,
cutting-edge type system features in any programming language today.
Most developers are not yet familiar enough with them to be able to debug
errors in significantly complex uses of them. Industry-standard
development tools such as IDE features I cover in Chapter 12, “Using IDE
Features” aren’t generally made for visualizing multilayered type operations
used with each other.



If you do find a need to use type operations, please—for the sake of any
developer who has to read your code, including a future you—try to keep
them to a minimum if possible. Use readable names that help readers
understand the code as they read it. Leave descriptive comments for
anything you think future readers might struggle with.

Summary

In this chapter, you unlocked the true power of TypeScript by operating on
types in its type system:

e Using mapped types to transform existing types into new ones
e Introducing logic into type operations with conditional types

e Learning how never interacts with intersections, unions, conditional
types, and mapped types

e Representing patterns of string types using template literal types

e Combining template literal types and mapped types to modify type
keys

TIP

Now that you’ve finished reading this chapter, practice what you’ve learned on
https://learningtypescript.com/type-operations.

When you 're lost in the type system, what do you use?

A mapped type!


https://learningtypescript.com/type-operations

Glossary

ambient context

An area in code where you can declare types but cannot declare
implementations. Generally used in reference to .d.ts declaration files.

See also declaration file.

any

A type that is allowed to be used anywhere and can be given anything.
any can act as a top type, in that any type can be provided to a location
of type any. Most of the time, you probably want to use unknown for
more accurate type safety.

See also unknown, top type

argument

Something being provided as an input, used to refer to a value being
passed to a function. For functions, an argument 1s the value being
passed to a call, while a parameter is the value inside the function.

See also parameter

assertion, type assertion

An assertion to TypeScript that a value is of a different type than what
TypeScript would otherwise expect.

assignable, assignability

Whether one type is allowed to be used in place of another.

billion-dollar mistake



The catchy industry term for many type systems allowing values such as
null to be used in places that require a different type. Coined by Tony
Hoare in reference to the amount of damage it seems to have caused.

See also strict null checking

bottom type

A type that has no possible values—the empty set of types. No type is
assignable to the bottom type. TypeScript provides the never keyword
to indicate a bottom type.

See also never.

call signature
Type system description of how a function may be called. Includes a list
of parameters and a return type.

camel case

A naming convention where the first letter of each compound word after
the first in a name is capitalized, like camelCase. The convention for
names of members in many TypeScript type system constructs,
including members of classes and interfaces.

class
JavaScript syntax sugar around functions that assign to a prototype.
TypeScript allows working with JavaScript classes.

compile

Turning source code into another format. TypeScript includes a
compiler that, in addition to type checking, turns TypeScript source
code into JavaScript and/or declaration files.

See also transpile



conditional type
A type that resolves to one of two possible types, based on an existing
type.

const assertion
as const type assertion shorthand that tells TypeScript to use the most
literal, read-only possible form of a value’s type.

constituent, constituent type

One of the types in an intersection or union type.

declaration file

A file with the .d.#s extension. Declaration files create an ambient
context, meaning they can only declare types and cannot declare
implementations.

See also ambient context

decorator

An experimental JavaScript proposal to allow annotating a class or class
member with a function marked by a @. Doing so would have the
function be run on that class or class member upon creation.

DefinitelyTyped

The massive repository of community-authored type definitions for
packages (DT for short). It contains thousands of .d.ts definitions along
with automation around reviewing change proposals and publishing
updates. Those definitions are published as packages under the @types/
organization on npm, such as @types/react.

derived interface

An interface that extends at least one other interface, referred to as a
base interface. Doing so copies all the members of the base interface



into the derived interface.

discriminant

A member of a discriminated union that has the same name but different
type in each constituent.

discriminated union, discriminated type union

A union of types where a “discriminant” member exists with the same
name but different value in each constituent type. Checking the value of
the discriminant acts as a form of type narrowing.

distributivity

A property of TypeScript’s conditional types when given union template
types: their resultant type will be a union of applying that conditional
type to each of the constituents (types in the union type).
ConditionalType<T | Us> is the same as Conditional<T> |
Conditional<U>.

duck typed

A common phrase for how JavaScript’s type system behaves. It comes
from the phrase, “If it looks like a duck and quacks like a duck, it’s
probably a duck.” It means that JavaScript allows any value to be
passed anywhere; if an object is asked for a member that doesn’t exist,
the result will be undefined.

See also structurally typed

dynamically typed, dynamic typing

A classification of programming language that does not natively include
a type checker. Examples of dynamically typed programming languages
include JavaScript and Ruby.

emit, emitted Code



The output from a compiler, such as .js files often produced by running
tsc. The TypeScript compiler’s JavaScript and/or declaration file emits
can be controlled by its compiler options.

enum

A set of literal values stored in an object with a friendly name for each
value. Enums are a rare example of a TypeScript-specific syntax
extension to vanilla JavaScript.

evolving any

A special case of implicit any for variables who don’t have a type

annotation or initial value. Their type will be evolved to whatever they
are used with.

See also implicit any

extending an interface

When an interface declares that it extends another interface. Doing so
copies all members of the original interface into the new one.

See also interface

function overload, overloaded function

A way to describe a function able to be called with drastically different
sets of parameters.

generic

Allowing a different type to be substituted for a construct each time a
new usage of the construct is created. Classes, interfaces, and type
aliases may be made generic.

generic type argument, type argument

A type provided as the type parameter to a generic construct.



generic type parameter, type parameter

A substituted type for a generic. Generic type parameters may be
provided with different type arguments for each instance of the
construct but will remain consistent within that instance.

global variable

A variable that exists in the global scope, such as setTimeout in
environments such as browsers, Deno, and Node.

IDE, Integrated Development Environment

Program that provides developer tooling on top of a text editor for
source code. IDEs generally come with debuggers, syntax highlighting,
and plugins that surface complaints from programming languages such
as type errors. This book uses VS Code for its IDE examples, but others
include Atom, Emacs, Vim, Visual Studio, and WebStorm.

implementation signature

The final signature declared on an overloaded function, used for its
implementation’s parameters.

See also function overload

implicit any

When TypeScript cannot immediately deduce the type of a class
property, function parameter, or variable, it implicitly assumes the type
to be any. Implicit any types for class properties and function
parameters may be configured to be type errors using the
noImplicitAny compiler option.

interface

A named set of properties. TypeScript will know a value that’s declared
to be of a particular interface’s type will have that interface’s declared
properties.



interface merging
A property of interfaces that when multiple interfaces with the same
name are declared in the same scope, they combine into one interface
instead of causing a type error about conflicting names. This is most
commonly used by definition authors to augment global interfaces such
as Window.

intersection type
A type that uses the & operator to indicate it has all the properties of
both its constituents.

JSDoc

A standard for /** ... */ block comments that describe pieces of
code such as classes, functions, and variables. Often used in JavaScript
projects to roughly describe types.

literal

A value that is known to be a distinct instance of a primitive.

mapped types
A type that takes in another type and performs some operation on each
member of that type. In other words, it maps from members of one type
into a new set of members.

module

A file with a top-level export or import. These are generally either
files in your source code or files in node_modules/ packages.

See also script.

module resolution

The set of steps used to determine what file a module import resolves
to. The TypeScript compiler can have this specified by its



moduleResolution compiler option.

namespace

An old construct in TypeScript that creates a globally available object
with “exported” contents available to call as members of that object.
Namespaces are a rare example of a TypeScript-specific syntax
extension to vanilla JavaScript. These days, they’re mostly used in .d.ts
declaration files.

never

The TypeScript type representing the bottom type: a type that can have
no possible values.

See also bottom type.

non-null assertion

A shorthand ! that asserts a type is not null or undefined.

null

One of the two primitive types in JavaScript that represents a lack of
value. null represents an intentional lack of value, while undefined
represents a more general lack of value.

See also undefined.

optional

A function parameter, class property, or member of an interface or
object type that doesn’t need to be provided. Indicated by placing a ?
after its name, or for function parameters and class properties,
alternately indicated by providing a default value with a =.

overload signature

One of the signatures declared on an overloaded function to describe a
way it may be called.



See also function overload

override

Redeclaring a property on a subclass-derived interface object that
already exists on the base.

parameter

A received input, commonly referring to what a function declares. For
functions, an argument 1s the value being passed to a call, while a
parameter is the value inside the function.

See also argument

parameter property

A TypeScript syntax extension for declaring a property assigned to a
member property of the same type at the beginning of a class
constructor.

Pascal case

A naming convention where the first letter of each compound word in a
name is capitalized, like PascalCase. The convention for names of many
TypeScript type system constructs, including generics, interfaces, and
type aliases.

project references

A feature of TypeScript configuration files where they can reference
other configuration files’ projects as dependencies. This allows you to
use TypeScript as a build coordinator to enforce a project dependency
tree.

primitive

An immutable data type built into JavaScript that is not an object. They
are: null, undefined, boolean, string, number, bigint, and symbol.



privacy, private field
A feature of JavaScript where class members whose names begin with #
can only be accessed inside that same class.
readonly
A TypeScript type system feature where adding the readonly keyword
in front of a class or object member indicates it can’t be reassigned.
refactor

A change to code that keeps most or all of its behaviors the same. The
TypeScript language service is able to perform some refactors on source
code when asked, such as moving complex lines of code into a const
variable.

return type

The type that must be returned by a function. If multiple return
statements exist in the function with different types, it will be a union of
all those possible types. If the function cannot possibly return, it will be
never.

Rick Roll

An internet meme where users are tricked into listening to and/or
watching a music video of Rick Astley’s seminal classic “Never Gonna
Give You Up.” I have hidden several in this book.

See also https://oreil ly/rickroll

script
Any source code file that is not a module.

See also module.

strict mode


https://oreil.ly/rickroll

A collection of compiler options that increase the amount of strictness
and number of checks the TypeScript type checker performs. This can
be enabled for tsc with the - -strict flag and in TSConfiguration files
with the "strict": true compilerOption.

strict null checking

A strict mode for TypeScript where null and undefined are no longer
allowed to be provided to types that don’t explicitly include them.

See also billion-dollar mistake

structurally typed

A type system where any value that happens to satisfy a type is allowed
to be used as an instance of that type.

See also duck typed

subclass

A class that extends another class, referred to as a base class. Doing so
copies members of the base class prototype to the child class prototype.

target

The TypeScript compiler option to specify how far back in syntax
support JavaScript code needs to be transpiled, such as "es5 or
"es2017". Although target defaults to "es3" for backward
compatibility reasons, it’s advisable use as new JavaScript syntax as
possible per your target platform(s), as supporting newer JavaScript
features in older environments necessitates creating more JavaScript
code.

Thenable

A JavaScript object with a . then method that takes in up to two
callback functions and returns another Thenable. Most commonly



implemented by the built-in Promise class, but user-defined classes and
objects can work like a Thenable as well.

top type

A type that can represent any possible type in a system.

See also any, unknown

transpile

A term for compilation that turns source code from one human-readable
programming language into another. TypeScript includes a compiler that
turns .zs/.tsx TypeScript source code into .js files, which is sometimes
referred to as transpilation.

See also compile

TSConfig

A JSON configuration file for TypeScript. Most commonly named
tsconfig.json or in the pattern tsconfig. * json. Editors such as VS Code
will read from a #sconfig.json file in a directory to determine TypeScript
language service configuration options.

tuple

An array of a fixed size where each element is given an explicit type.

For example, [number, string | undefined] is a tuple of size two
where the first element is type number and the second element is type
string | undefined.

lype

An understanding of what members and capabilities a value has. These
can be primitives such as string, literals such as 123, or more complex
shapes like functions and objects.

type annotation



An annotation after a name used to indicate its type. Consists of : and
the name of a type.

type guard

A piece of runtime logic that can be understood in the type system to
only allow some logic if a value is a particular type.

type narrowing
When TypeScript can deduce a more specific type for a value inside a
block of code that is gated on a type guard.

type predicate

A function with a return type annotated to act as a type guard. Type
predicate functions return a boolean value that indicates whether a
value is a type.

type system

The set of rules for how a programming language understands what
types the constructs in a program may have.

undefined

One of the two primitive types in JavaScript that represents a lack of
value. null represents an intentional lack of value, while undefined
represents a more general lack of value.

See also null.

union

A type describing a value that can be two or more possible types.
Represented by the | pipe between each possible type.

unknown



The TypeScript concept representing the top type. unknown does not
allow arbitrary member access without type narrowing.

See also any, top type

visibility
Specifying whether a class member is visible to code outside the class.
Indicated before the member’s declaration with the public, protected,
and private keywords. Visibility and its keywords predate JavaScript’s
true # member privacy and exist only in the TypeScript type system.

See also privacy.

void
A type indicating the lack of returned value from a function, represented

by the void keyword in TypeScript. Functions are thought of as
returning void if they have no return statements that return a value.



IndeXx

Symbols
I (exclamation point)
 disabling initialization checking, Definitely assigned properties
e non-null type assertions, Non-Null Assertions
# (pound sign), private class members, Member Visibility-Member
Visibility
& (ampersand), intersection types, Intersection Types

() (parentheses)

e arrays and, Array and Function Types

e in function types, Function Type Parentheses
... (ellipsis), spread operator, Rest Parameters

e for arrays, Spreads

e tuples as rest parameters, Tuples as rest parameters
? (question mark)

e optional parameters, Optional Parameters

e optional properties, Optional Properties-Optional Properties
(@ts-check comment, @ts-check

| (pipe) operator, Union Types



A

abstract classes

e described, Abstract Classes-Abstract Classes

e finding implementations of, Finding Implementations-Finding
Implementations

access control modifiers, changing, Changing Modifiers-Changing
Modifiers

allowJs compiler option, allowlJs

allowSyntheticDefaultImports compiler option,
allowSyntheticDefaultimports

ambient contexts, Declaration Files, Declaring Runtime Values
ampersand (&), intersection types, Intersection Types
any type

e ambient contexts, Declaring Runtime Values

e described, any, Again-any, Again

e evolving any, Type Annotations, Evolving Any Arrays

e nolmplicitAny compiler option, nolmplicitAny

e useUnknownInCatchVariables compiler option,
useUnknownInCatchVariables-useUnknownInCatchVariables

arrays
e described, Arrays
* joining with spread operator, Spreads

e members, retrieving, Array Members-Caveat: Unsound Members



e rest parameters as, Rest Parameters-Rest Parameters

e tuples

assignability, Tuple Assignability

const assertions, Const asserted tuples-Const asserted tuples
described, Tuples

explicit types, Explicit tuple types

inferring, Tuple Inferences

as rest parameters, Tuples as rest parameters

* as types

evolving any arrays, Evolving Any Arrays
function types and, Array and Function Types
multidimensional arrays, Multidimensional Arrays
type annotations for, Array Types

union types and, Union-Type Arrays-Union-Type Arrays

as const operator, Const asserted tuples-Const asserted tuples

as keyword, Type Assertions

assertions (see const assertions; type assertions)

assignability

e described, Assignability

e errors, Understanding Assignability Errors

for function types, Function Types

for intersection types, Long assignability errors



e of literals, Literal Assignability

e of subclasses, Extension Assignability-Extension Assignability

e of tuples, Tuple Assignability

e of type assertions, Assertion assignability
assignment narrowing, Assignment Narrowing-Assignment Narrowing
async functions, Promises and, Async Functions

autocompletion when writing code, Stronger Developer Tooling-Stronger
Developer Tooling, Completing Names-Completing Names

automatic numeric values with enums, Automatic Numeric Values-
Automatic Numeric Values

B

Babel, Compiling Syntax, Emit, Type-Only Imports and Exports

bigint primitive, What’s in a Type?

billion-dollar mistake, Strict Null Checking-The Billion-Dollar Mistake
bivariant function parameters, strictFunctionTypes

boolean primitive, What’s in a Type?, Literal Types

bottom types, never

build mode (tsc command), Build Mode-Build-mode options

built-in declarations

e DOM types, DOM Declarations-DOM Declarations
e library files, Library Declarations-Library targets

e purpose of, Built-In Declarations



C

call signatures in interfaces, Call Signatures
checkJs compiler option, checkJs-@ts-check
class generics for arrays, Array Types

classes
e abstract

e described, Abstract Classes-Abstract Classes

e finding implementations of, Finding Implementations-Finding
Implementations

e constructors
e overriding, Overridden Constructors
e parameters, Class Methods
e extending, Extending a Class
¢ assignability, Extension Assignability-Extension Assignability
e constructor overrides, Overridden Constructors
¢ method overrides, Overridden Methods
e property overrides, Overridden Properties
e generics for
e declaring, Generic Classes-Generic Classes

e explicit types, Explicit Generic Class Types-Explicit Generic
Class Types

e extending, Extending Generic Classes-Extending Generic Classes

e implementing interfaces, Implementing Generic Interfaces



e method generics, Method Generics
e static class generics, Static Class Generics

e interfaces and, Classes and Interfaces-Implementing Multiple
Interfaces

e member visibility, Member Visibility-Static Field Modifiers
¢ methods of, Class Methods-Class Methods

e parameter properties, Class Parameter Properties-Class Parameter
Properties

e properties
e declaring, Class Properties-Class Properties
¢ disabling initialization checking, Definitely assigned properties
e as functions, Function Properties-Function Properties

e initialization checking, Initialization Checking-Initialization
Checking

e optional, Optional Properties

read-only, Read-Only Properties-Read-Only Properties
e strictPropertylnitialization compiler option, strictPropertylnitialization
e as types, Classes as Types-Classes as Types

code actions when writing code

e purpose of, Code Actions-Code Actions

quick fixes, Other quick fixes

refactoring with, Refactoring

e renaming with, Renaming



code navigation

e implementations, finding, Finding Implementations-Finding
Implementations

e references, finding, Finding References-Finding References
e type definitions, finding, Finding Definitions-Finding Definitions
code style in TypeScript, A Remedy for Bad Code

code writing

e autocompletion, Completing Names-Completing Names

e code actions

e purpose of, Code Actions-Code Actions
e quick fixes, Other quick fixes
e refactoring with, Refactoring
e renaming with, Renaming
e import updates, Automatic Import Updates-Automatic Import Updates
combining type aliases, Combining Type Aliases

CommonlS interoperability, Interoperability with CommonJS-
allowSyntheticDefaultlmports

compilers
e compiling TypeScript, Compiling Syntax
e definition of, TypeScript!

e error handling, Running Locally, Working Effectively with Errors-
Understanding types

composite compiler option, composite



conditional checks, narrowing with, Conditional Checks
conditional types
e distributivity, Type Distributivity
e generic, Generic Conditional Types-Generic Conditional Types
e inferred, Inferred Types
e mapped types and, Mapped Conditional Types
e never type and, never and Conditional Types
e purpose of, Conditional Types
configuration bases (TSConfig), Configuration Bases
configuration options
e emitting JavaScript, Emit
e declaration compiler option, Emitting Declarations
e emitDeclarationOnly compiler option, emitDeclarationOnly
e noEmit compiler option, noEmit
e outDir compiler option, outDir-outDir
e source maps, Source Maps-declarationMap
e target compiler option, target-lib
¢ file extensions
e JSON files, resolveJsonModule
e JSX syntax, JSX Syntax-Generic arrow functions in .tsx files

e for JavaScript files, JavaScript

e allowlJs compiler option, allowJs



e checklJs compiler option, checkJs-@ts-check
e JSDoc support, JSDoc Support-JSDoc Support

e for module import/export, Modules

e CommonlS interoperability, Interoperability with CommonJS-
allowSyntheticDefaultlmports

e isolatedModules compiler option, isolatedModules

e module compiler option, module

e moduleResolution compiler option, moduleResolution
e project references

e build mode, Build Mode-Build-mode options

e composite compiler option, composite

e purpose of, Project References

e references compiler option, references
e tsc command, tsc Options-Watch Mode

e TSConfig files
e CLI vs., CLI Versus Configuration

e configuration bases, Configuration Bases

e creating, tsc --init

e extends compiler option, extends-Extending modules
e file inclusions, File Inclusions-exclude

e purpose of, TSConfig Files-TSConfig Files

e for type checking



e lib compiler option, lib
e skipLibCheck compiler option, skipLibCheck
e strict mode, Strict Mode-useUnknownInCatchVariables

const assertions, Const asserted tuples-Const asserted tuples

e literals as literals, Literals to Primitives

e purpose of, Const Assertions

e read-only objects, Read-Only Objects
const enums, Const Enums-Const Enums
const variables, Literal Types
constituents, Union Types

constrained generics, Constrained Generic Types-keyof and Constrained
Type Parameters

constructors (of classes)

e overriding, Overridden Constructors
e parameters, Class Methods
context menus in IDEs, Using IDE Features-Using IDE Features

contravariant function parameters, strictFunctionTypes

D

declaration compiler option, declaration, Emitting Declarations

declaration files
e built-in declarations

e DOM types, DOM Declarations-DOM Declarations



e library files, Library Declarations-Library targets
e purpose of, Built-In Declarations
e declarationMap compiler option, declarationMap
e emitting, Emitting Declarations-emitDeclarationOnly
e for modules, Module Declarations-Wildcard Module Declarations
e package types
e declaration compiler option, declaration
e DefinitelyTyped repository, Definitely Typed-Type Availability
e dependency, Dependency Package Types
e exposing, Exposing Package Types
e purpose of, Declaration Files-Declaration Files

e for runtime values

e declare keyword, Declaring Runtime Values-Declaring Runtime
Values

e global augmentations, Global Augmentations
e global values, Global Values
* interface merging, Global Interface Merging
declarationMap compiler option, declarationMap
declare keyword, Declaring Runtime Values-Declaring Runtime Values
declaring
e classes as generics, Generic Classes-Generic Classes
e functions

e as generics, Generic Functions



¢ in interfaces, Functions and Methods-Functions and Methods
* interfaces as generics, Generic Interfaces
e objects, Declaring Object Types
e properties of classes, Class Properties-Class Properties

e runtime values

e with declare keyword, Declaring Runtime Values-Declaring
Runtime Values

e for global augmentations, Global Augmentations
e as global values, Global Values
e for interface merging, Global Interface Merging
e unions, Declaring Union Types
decorators, Experimental Decorators-Experimental Decorators
default generics, Generic Defaults-Generic Defaults
default parameters, Default Parameters
DefinitelyTyped repository, Definitely Typed-Type Availability
dependency package types, Dependency Package Types
derived classes (see subclasses)
derived interfaces, overridden properties of, Overridden Properties

developer tools

e IDEs (see IDEs)
e for JavaScript, Weaker Developer Tooling

e for TypeScript, Stronger Developer Tooling-Stronger Developer
Tooling



disabling initialization checking, Definitely assigned properties
discriminants, Discriminated Unions

discriminated unions

¢ described, Discriminated Unions-Discriminated Unions
e generics for, Generic Discriminated Unions
distributivity of conditional types, Type Distributivity

documentation

e 1in JavaScript, Loose Documentation, JSDoc Support-JSDoc Support
e in TypeScript, Precise Documentation

DOM declarations, DOM Declarations-DOM Declarations

double type assertions, Assertion assignability

duck typing, Structural Typing

dynamically typed languages, Costly Freedom

E

ECMAScript

e module import/export, Modules-Interoperability with CommonJS

e new versions, History of JavaScript
ECMAScript Modules (ESM), Modules, Prefer Modules Over Namespaces
editor features (TypeScript), Editor Features
Eich, Brendan, History of JavaScript

ellipsis (. . .), spread operator, Rest Parameters

e for arrays, Spreads



e tuples as rest parameters, Tuples as rest parameters
emitDeclarationOnly compiler option, emitDeclarationOnly
emitting JavaScript, Emit

e declaration compiler option, Emitting Declarations

e emitDeclarationOnly compiler option, emitDeclarationOnly

e noEmit compiler option, noEmit

e outDir compiler option, outDir-outDir

e source maps, Source Maps-declarationMap

target compiler option, target-lib
enums

¢ automatic numeric values, Automatic Numeric Values-Automatic
Numeric Values

e const enums, Const Enums-Const Enums

e purpose of, Enums-Enums

e string values, String-Valued Enums-String-Valued Enums
error handling

o with IDEs, Working Effectively with Errors-Language Service Errors

¢ Problems tab, Problems tab

e running terminal compiler, Running a terminal compiler

¢ type information, Understanding types-Understanding types
e with type assertions, Asserting Caught Error Types

e useUnknownInCatchVariables compiler option,
useUnknownInCatchVariables-useUnknownInCatchVariables



errors
e assignability errors, Understanding Assignability Errors

e for function types, Function Types
e for intersection types, Long assignability errors
e syntax errors, Syntax errors
e type errors, Type errors
ESM (ECMAScript Modules), Modules, Prefer Modules Over Namespaces
esModulelnterop compiler option, esModulelnterop
evolving any type, Type Annotations, Evolving Any Arrays

excess property checking in structural typing, Excess Property Checking-
Excess Property Checking

exclamation point (!)

¢ disabling initialization checking, Definitely assigned properties
e non-null type assertions, Non-Null Assertions
exclude property, exclude

experimentalDecorators compiler option, Experimental Decorators-
Experimental Decorators

explicit return types, Explicit Return Types
explicit tuple types, Explicit tuple types
explicit type annotations, Declaring Runtime Values

explicit type arguments

e for generic classes, Explicit Generic Class Types-Explicit Generic
Class Types



e for generic functions, Explicit Generic Call Types-Explicit Generic
Call Types

explicit unions of objects, Explicit Object-Type Unions-Explicit Object-
Type Unions

exporting
e namespaces and, Namespace Exports-Namespace Exports

e type-only imports and exports, Type-Only Imports and Exports-Type-
Only Imports and Exports

¢ via modules, Modules-Modules
e configuration options for, Modules-isolatedModules
exposing package types, Exposing Package Types
extending
e classes, Extending a Class

e assignability, Extension Assignability-Extension Assignability
¢ constructor overrides, Overridden Constructors
¢ method overrides, Overridden Methods
e property overrides, Overridden Properties
e generic classes, Extending Generic Classes-Extending Generic Classes

e interfaces

e multiple interfaces, Extending Multiple Interfaces
e overridden properties of, Overridden Properties
e purpose of, Interface Extensions-Interface Extensions

extends compiler option, extends-Extending modules



F

falsiness, Truthiness Narrowing

file extensions

e JSON files, resolveJsonModule

e JSX syntax, JSX Syntax-Generic arrow functions in .tsx files

file inclusions, File Inclusions-exclude

finding

e implementations in code, Finding Implementations-Finding
Implementations

e references in code, Finding References-Finding References

¢ type definitions in code, Finding Definitions-Finding Definitions

fixed-size arrays (see tuples)

freedom

 in JavaScript, Costly Freedom
e in TypeScript, Freedom Through Restriction
functions
e async, Promises and, Async Functions
» of classes, properties as, Function Properties-Function Properties

e generics for

e declaring, Generic Functions

e explicit type arguments, Explicit Generic Call Types-Explicit
Generic Call Types

e multiple type arguments, Multiple Function Type Parameters



¢ in interfaces

e declaring, Functions and Methods-Functions and Methods
e overloading, Member Naming Conflicts
e overloading, Function Overloads-Call-Signature Compatibility

e parameters

e default, Default Parameters

optional, Optional Parameters-Optional Parameters

required, Required Parameters

rest, Rest Parameters-Rest Parameters

type annotations for, Function Parameters-Function Parameters

e return types
e described, Return Types
e explicit, Explicit Return Types
e never, Never Returns

¢ void, Void Returns-Void Returns

e strictBindCallApply compiler option, strictBindCallApply-
strictBindCallApply

e strictFunctionTypes compiler option, strictFunctionTypes
e type predicates, Type Predicates-Type Predicates

* as types
e array types and, Array and Function Types

e described, Function Types-Function Types



G

inferring parameter types, Parameter Type Inferences
parentheses in, Function Type Parentheses

type aliases for, Function Type Aliases-Function Type Aliases

generic arrow functions in .tsx files, Generic arrow functions in .tsx files

generic conditional types, Generic Conditional Types-Generic Conditional

Types

generic mapped types, Generic Mapped Types

generics

e for classes

declaring, Generic Classes-Generic Classes

explicit types, Explicit Generic Class Types-Explicit Generic
Class Types

extending, Extending Generic Classes-Extending Generic Classes
implementing interfaces, Implementing Generic Interfaces
method generics, Method Generics

static class generics, Static Class Generics

constrained, Constrained Generic Types-keyof and Constrained Type

Parameters

defaults, Generic Defaults-Generic Defaults
for discriminated unions, Generic Discriminated Unions

for functions

declaring, Generic Functions



e explicit type arguments, Explicit Generic Call Types-Explicit
Generic Call Types

e multiple type parameters, Multiple Function Type Parameters

e for interfaces, Generic Interfaces-Inferred Generic Interface Types,
Implementing Generic Interfaces

e naming conventions, Generic Naming Conventions

e purpose of, Generics

 for type aliases, Generic Type Aliases

e when to use, Using Generics Right-The Golden Rule of Generics
global augmentations, Global Augmentations
global interface merging, Global Interface Merging

global values, declaring runtime values as, Global Values

H

Hejlsberg, Anders, History of JavaScript, TypeScript!
history

e of JavaScript, History of JavaScript

e of TypeScript, TypeScript!
Hoare, Tony, The Billion-Dollar Mistake

hover boxes (IDEs) for type information, Understanding types-
Understanding types

IDEs (Integrated Development Environments)



e code navigation

e implementations, finding, Finding Implementations-Finding
Implementations

 references, finding, Finding References-Finding References

e type definitions, finding, Finding Definitions-Finding Definitions
e code writing

e autocompletion, Completing Names-Completing Names

e code actions, Code Actions-Refactoring

e import updates, Automatic Import Updates-Automatic Import
Updates

e context menus and keyboard shortcuts, Using IDE Features-Using IDE
Features

e error handling, Working Effectively with Errors-Language Service
Errors

¢ Problems tab, Problems tab

e running terminal compiler, Running a terminal compiler

e type information, Understanding types-Understanding types
if statements, narrowing with, Conditional Checks

implementations

e finding in code, Finding Implementations-Finding Implementations
e signatures, Function Overloads-Call-Signature Compatibility

import updates when writing code, Automatic Import Updates-Automatic
Import Updates

importing



e type-only imports and exports, Type-Only Imports and Exports-Type-
Only Imports and Exports

¢ via modules, Modules-Modules

e configuration options for, Modules-isolatedModules
include property, include
including files, File Inclusions-exclude

index signatures in interfaces

e numeric, Numeric index signatures

e properties and, Mixing properties and index signatures-Mixing
properties and index signatures

e purpose of, Index Signatures-Index Signatures
infer, variable types, What’s in a Type?
inferred tuples, Tuple Inferences
inferred types, Inferred Types
inferred unions of objects, Inferred Object-Type Unions
--init command (tsc command), tsc --init
initial values, lacking, Variables Without Initial Values

initialization checking of class properties, Initialization Checking-
Initialization Checking

installing TypeScript, Getting Started Locally
Integrated Development Environments (see IDEs)
interface keyword, Aliased Object Types

interfaces



call signatures, Call Signatures
classes and, Classes and Interfaces-Implementing Multiple Interfaces

extensions

e of multiple interfaces, Extending Multiple Interfaces
e overridden properties of, Overridden Properties
e purpose of, Interface Extensions-Interface Extensions

finding implementations of, Finding Implementations-Finding
Implementations

functions in, declaring, Functions and Methods-Functions and
Methods

generics for, Generic Interfaces-Inferred Generic Interface Types,
Implementing Generic Interfaces

index signatures

e numeric, Numeric index signatures

e properties and, Mixing properties and index signatures-Mixing
properties and index signatures

e purpose of, Index Signatures-Index Signatures

merging, Interface Merging-Member Naming Conflicts, Global
Interface Merging

nested, Nested Interfaces
properties
e optional, Optional Properties

e read-only, Read-Only Properties-Read-Only Properties



e type aliases vs., Type Aliases Versus Interfaces-Type Aliases Versus
Interfaces

intersection types

e dangers of, Dangers of Intersection Types-never

e described, Intersection Types

e never type and, never and Intersections and Unions
intrinsic string types, Intrinsic String Manipulation Types

isolatedModules compiler option, isolatedModules

J

JavaScript

e compiling Typescript into, Compiling Syntax

e configuration options for, JavaScript
e allowlJs compiler option, allowJs
e checklJs compiler option, checkJs-@ts-check
e JSDoc support, JSDoc Support-JSDoc Support

e emitting, Emit
e declaration compiler option, Emitting Declarations
e emitDeclarationOnly compiler option, emitDeclarationOnly
e noEmit compiler option, noEmit
e outDir compiler option, outDir-outDir
e source maps, Source Maps-declarationMap

e target compiler option, target-lib



e history of, History of JavaScript

e limitations of, Vanilla JavaScript’s Pitfalls-Weaker Developer Tooling
e primitives, What’s in a Type?

e relationship with TypeScript, Extensions to JavaScript (Mostly)

e speed compared to TypeScript, Slower Than JavaScript

e syntax extensions

 class parameter properties, Class Parameter Properties-Class
Parameter Properties

e decorators, Experimental Decorators-Experimental Decorators
¢ enums, Enums-Const Enums

e limitations of, Syntax Extensions

e namespaces, Namespaces-Prefer Modules Over Namespaces

e type-only imports and exports, Type-Only Imports and Exports-
Type-Only Imports and Exports

e type aliases and, Type Aliases Are Not JavaScript
e type annotations, Extensions to JavaScript (Mostly)
e vanilla, Vanilla JavaScript’s Pitfalls
joining arrays with spread operator, Spreads
JSDoc, Loose Documentation, JSDoc Support-JSDoc Support
JSON files, resolveJsonModule
jsx compiler option, jsx

JSX syntax, JSX Syntax-Generic arrow functions in .tsx files



K

Kernighan, Brian, Type Operations and Complexity

keyboard shortcuts
e 1in IDEs, Using IDE Features-Using IDE Features

e opening code actions menu, Code Actions

keyof type operator
e constrained type parameters, keyof and Constrained Type Parameters
e described, keyof-keyof
e mapped types, Mapped Types from Types-Mapped Types from Types

keyof typeof type operator, keyof typeof

L

language services, definition of, TypeScript!
lib compiler option, lib, lib
library declaration files, Library Declarations-Library targets

literals

e assignability, Literal Assignability
e described, Literal Types-Literal Types

e as literals, Literals to Primitives

mapped types



changing access control modifiers, Changing Modifiers-Changing
Modifiers

conditional types and, Mapped Conditional Types

from existing types, Mapped Types from Types-Mapped Types from
Types

generic, Generic Mapped Types
never type and, never and Mapped Types
purpose of, Mapped Types-Mapped Types

remapping keys, Remapping Mapped Type Keys-Remapping Mapped
Type Keys

signatures and, Mapped types and signatures-Mapped types and
signatures

member visibility for classes, Member Visibility-Static Field Modifiers

members of arrays, retrieving, Array Members-Caveat: Unsound Members

merging interfaces, Interface Merging-Member Naming Conflicts, Global
Interface Merging

methods

e of classes

e described, Class Methods-Class Methods

e overriding, Overridden Methods

e generics for, Method Generics

e of interfaces

¢ function declarations, Functions and Methods-Functions and
Methods



e overloading, Member Naming Conflicts

e mapped types, Mapped types and signatures-Mapped types and
signatures

modifiers, changing, Changing Modifiers-Changing Modifiers
module compiler option, module

module resolution, moduleResolution

moduleResolution compiler option, moduleResolution

modules
e configuration options for, Modules

e CommonlJS interoperability, Interoperability with CommonJS-
allowSyntheticDefaultImports

e isolatedModules compiler option, isolatedModules
e module compiler option, module

e moduleResolution compiler option, moduleResolution

declaration files, Module Declarations-Wildcard Module Declarations

described, Modules-Modules

e extending, Extending modules

e namespaces vs., Namespaces, Prefer Modules Over Namespaces
multidimensional arrays, Multidimensional Arrays

multiple interfaces

e extending, Extending Multiple Interfaces

e implementing in classes, Implementing Multiple Interfaces-
Implementing Multiple Interfaces



multiple type arguments for generic functions, Multiple Function Type
Parameters

N

namespaces

exports, Namespace Exports-Namespace Exports

modules vs., Namespaces, Prefer Modules Over Namespaces
nested, Nested Namespaces

purpose of, Namespaces-Namespaces

in type definitions, Namespaces in Type Definitions

naming conflicts in merged interfaces, Member Naming Conflicts

naming conventions

for generics, Generic Naming Conventions

for type parameters, Generics

narrowing

with assignment narrowing, Assignment Narrowing-Assignment
Narrowing

class properties, Read-Only Properties

with conditional checks, Conditional Checks
described, Unions and Literals, Narrowing
objects, Narrowing Object Types

with truthiness narrowing, Truthiness Narrowing

with typeof operator, Typeof Checks



navigating code

e implementations, finding, Finding Implementations-Finding
Implementations

 references, finding, Finding References-Finding References

e type definitions, finding, Finding Definitions-Finding Definitions
nested interfaces, Nested Interfaces
nested namespaces, Nested Namespaces
nested objects, Nested Object Types-Nested Object Types

never type, never

e conditional types and, never and Conditional Types

e as function return type, Never Returns

intersections and unions, never and Intersections and Unions

mapped types and, never and Mapped Types

purpose of, never
noEmit compiler option, noEmit
nolmplicitAny compiler option, nolmplicitAny
non-null type assertions, Non-Null Assertions-Non-Null Assertions
null type
e as primitive, What’s in a Type?, Literal Types
e strictNullChecks compiler option, strictNullChecks
number primitive, What’s in a Type?, Literal Types

numeric index signatures, Numeric index signatures



(0

objects

e declaring, Declaring Object Types

described, Object Types-Object Types

interfaces (see interfaces)

primitives vs., What’s in a Type?

read-only, Read-Only Objects

structural typing

described, Structural Typing-Structural Typing

excess property checking, Excess Property Checking-Excess
Property Checking

nested objects, Nested Object Types-Nested Object Types
optional properties, Optional Properties-Optional Properties

usage checking, Usage Checking

e type aliases for, Aliased Object Types

e type shapes, Type Shapes-Type Shapes

e unions of

discriminated unions, Discriminated Unions-Discriminated
Unions

explicit unions, Explicit Object-Type Unions-Explicit Object-
Type Unions

inferred unions, Inferred Object-Type Unions

narrowing, Narrowing Object Types



optional parameters, Optional Parameters-Optional Parameters
optional properties

e of classes, Optional Properties

e of interfaces, Optional Properties

e of objects, Optional Properties-Optional Properties
outDir compiler option, outDir-outDir
output (see emitting JavaScript)
overload signatures, Function Overloads-Call-Signature Compatibility
overloading interface functions, Member Naming Conflicts
overriding

¢ class constructors, Overridden Constructors

¢ class methods, Overridden Methods

e class properties, Overridden Properties

e interface properties, Overridden Properties

P

package types

e declaration compiler option, declaration
e DefinitelyTyped repository, Definitely Typed-Type Availability
e dependency, Dependency Package Types
e exposing, Exposing Package Types
parameters

¢ class constructors, Class Methods



e default, Default Parameters

* inferring types, Parameter Type Inferences

e optional, Optional Parameters-Optional Parameters

e properties, Class Parameter Properties-Class Parameter Properties
e required, Required Parameters

* rest

e as arrays, Rest Parameters-Rest Parameters
e tuples as, Tuples as rest parameters
e type annotations for, Function Parameters-Function Parameters

parentheses ()

e arrays and, Array and Function Types
e in function types, Function Type Parentheses
pipe (|) operator, Union Types

Playground, Getting Started in the TypeScript Playground-Compiling
Syntax

pound sign (#), private class members, Member Visibility-Member
Visibility
pretty mode (tsc command), Pretty Mode
primitives, What’s in a Type?-What’s in a Type?
e literals

e assignability, Literal Assignability
e described, Literal Types-Literal Types

e as literals, Literals to Primitives



e never type, never

e objects vs., What’s in a Type?
private class members, Member Visibility-Member Visibility
Problems tab (VS Code), Problems tab
programming languages, definition of, TypeScript!
project references

e build mode, Build Mode-Build-mode options

e composite compiler option, composite

e purpose of, Project References

e references compiler option, references
Promises

¢ async functions and, Async Functions

e creating, Creating Promises-Creating Promises

e purpose of, Promises
properties

e of classes

e declaring, Class Properties-Class Properties
e disabling initialization checking, Definitely assigned properties
e as functions, Function Properties-Function Properties

e initialization checking, Initialization Checking-Initialization
Checking

e optional, Optional Properties

e overriding, Overridden Properties



read-only, Read-Only Properties-Read-Only Properties

e excess property checking, Excess Property Checking-Excess Property
Checking

e of interfaces

as functions, Functions and Methods-Functions and Methods

index signatures and, Mixing properties and index signatures-
Mixing properties and index signatures

naming conflicts, Member Naming Conflicts
nested, Nested Interfaces

optional, Optional Properties

overridden, Overridden Properties

read-only, Read-Only Properties-Read-Only Properties

e mapped types, Mapped types and signatures-Mapped types and
signatures

e of objects, optional, Optional Properties-Optional Properties

e of parameters, Class Parameter Properties-Class Parameter Properties

e of unions, Union Properties-Union Properties

protected class members, Member Visibility-Member Visibility

public class members, Member Visibility-Member Visibility

Q

question mark (?)

e optional parameters, Optional Parameters

e optional properties, Optional Properties-Optional Properties



R

read-only objects, Read-Only Objects

read-only properties

e of classes, Read-Only Properties-Read-Only Properties

e of interfaces, Read-Only Properties-Read-Only Properties
refactoring with code actions, Refactoring
references compiler option, references
references, finding in code, Finding References-Finding References

remapping mapped type keys, Remapping Mapped Type Keys-Remapping
Mapped Type Keys

renaming with code actions, Renaming
required parameters, Required Parameters
resolveJsonModule compiler option, resolveJsonModule

rest parameters

e as arrays, Rest Parameters-Rest Parameters
e tuples as, Tuples as rest parameters
restrictions in TypeScript, Freedom Through Restriction
retrieving array members, Array Members-Caveat: Unsound Members

return types

e described, Return Types
e explicit, Explicit Return Types

e never, Never Returns



¢ void, Void Returns-Void Returns
running

e terminal compiler, Running a terminal compiler

e TypeScript locally, Running Locally-Running Locally
runtime syntax extensions (see syntax extensions)

runtime values, declaring

e with declare keyword, Declaring Runtime Values-Declaring Runtime
Values

e for global augmentations, Global Augmentations
e as global values, Global Values

e for interface merging, Global Interface Merging

S

scripts, Modules-Modules

sharing code via modules, Modules-Modules
skipLibCheck compiler option, skipLibCheck
source maps, Source Maps-declarationMap
sourceMap compiler option, sourceMap

spread operator (. . .), Rest Parameters

e for arrays, Spreads
e tuples as rest parameters, Tuples as rest parameters
static class generics, Static Class Generics

static keyword, Static Field Modifiers



strict compiler option, Strict Mode-Strict Mode
strict mode (type checking), Strict Mode-useUnknownInCatchVariables

strict null checking

e billion-dollar mistake, Strict Null Checking-The Billion-Dollar
Mistake

¢ with no initial values, Variables Without Initial Values

e with truthiness narrowing, Truthiness Narrowing

strictBindCallApply compiler option, strictBindCallApply-
strictBindCallApply

strictFunctionTypes compiler option, strictFunctionTypes
strictNullChecks compiler option, strictNullChecks
strictPropertylnitialization compiler option, strictPropertylnitialization
string primitive, What’s in a Type?, Literal Types

string-valued enums, String-Valued Enums-String-Valued Enums

strings, template literal types

e intrinsic types, Intrinsic String Manipulation Types
e purpose of, Template Literal Types-Template Literal Types

e remapping mapped type keys, Remapping Mapped Type Keys-
Remapping Mapped Type Keys

e template literal keys, Template Literal Keys

structural typing

e described, Structural Typing-Structural Typing



e excess property checking, Excess Property Checking-Excess Property
Checking

* nested objects, Nested Object Types-Nested Object Types
e optional properties, Optional Properties-Optional Properties
e usage checking, Usage Checking

subclasses, Extending a Class

e assignability, Extension Assignability-Extension Assignability
¢ constructor overrides, Overridden Constructors
¢ method overrides, Overridden Methods
e property overrides, Overridden Properties
super keyword, Overridden Constructors
symbol primitive, What’s in a Type?
syntax errors, Syntax errors

syntax extensions

e class parameter properties, Class Parameter Properties-Class Parameter
Properties

e decorators, Experimental Decorators-Experimental Decorators

¢ Cnums

e automatic numeric values, Automatic Numeric Values-Automatic
Numeric Values

e const enums, Const Enums-Const Enums
e purpose of, Enums-Enums

e string values, String-Valued Enums-String-Valued Enums



e limitations of, Syntax Extensions

¢ namespaces

e exports, Namespace Exports-Namespace Exports

e modules vs., Namespaces, Prefer Modules Over Namespaces
* nested, Nested Namespaces

e purpose of, Namespaces-Namespaces

e in type definitions, Namespaces in Type Definitions

e type-only imports and exports, Type-Only Imports and Exports-Type-
Only Imports and Exports

syntax validity, type errors and, Running Locally

T

target compiler option, target-lib

targets for library declaration files, Library targets-Library targets
TC39, History of JavaScript, Extensions to JavaScript (Mostly)
template literal keys, Template Literal Keys

template literal types

e intrinsic types, Intrinsic String Manipulation Types
e purpose of, Template Literal Types-Template Literal Types

e remapping mapped type keys, Remapping Mapped Type Keys-
Remapping Mapped Type Keys

terminal compiler, running, Running a terminal compiler

ternary statement, narrowing with, Typeof Checks



Thenable, Async Functions

top types, Top Types-unknown

truthiness narrowing, Truthiness Narrowing

@ts-check comment, @ts-check

tsc command, Getting Started Locally-Running Locally

build mode, Build Mode-Build-mode options
configuration options, tsc Options-Watch Mode
--1nit command, tsc --init

pretty mode, Pretty Mode

TSConfig files vs., CLI Versus Configuration
watch mode, Watch Mode-Watch Mode

TSConfig files, Running Locally

CLI vs., CLI Versus Configuration

configuration bases, Configuration Bases

creating, tsc --init

extends compiler option, extends-Extending modules
file inclusions, File Inclusions-exclude

project references

e build mode, Build Mode-Build-mode options
e composite compiler option, composite
e purpose of, Project References

e references compiler option, references



e purpose of, TSConfig Files-TSConfig Files
tsconfig.json file (see TSConfig files)
.tsx files, generic arrow functions in, Generic arrow functions in .tsx files
tuples

e assignability, Tuple Assignability

e const assertions, Const asserted tuples-Const asserted tuples

described, Tuples

explicit types, Explicit tuple types

inferring, Tuple Inferences
e as rest parameters, Tuples as rest parameters
type aliases
e combining, Combining Type Aliases
e described, Type Aliases
e for functions, Function Type Aliases-Function Type Aliases
e generics for, Generic Type Aliases

e interfaces vs., Type Aliases Versus Interfaces-Type Aliases Versus
Interfaces

e JavaScript and, Type Aliases Are Not JavaScript
e for objects, Aliased Object Types

type annotations

e for arrays, Array Types

e described, Type Annotations-Unnecessary Type Annotations



explicit, Declaring Runtime Values

for function parameters, Function Parameters-Function Parameters
for function return types, Explicit Return Types

in JavaScript, Extensions to JavaScript (Mostly)

type assertions vs., Assertions versus declarations

for unions, Literal Types

type arguments

for generic discriminated unions, Generic Discriminated Unions

for generic functions

e explicit arguments, Explicit Generic Call Types-Explicit Generic
Call Types

e multiple arguments, Multiple Function Type Parameters

for generic type aliases, Generic Type Aliases

type assertions

assignability, Assertion assignability

error handling with, Asserting Caught Error Types
non-null, Non-Null Assertions-Non-Null Assertions
purpose of, Type Assertions-Type Assertions

type annotations vs., Assertions versus declarations

when to use, Type Assertion Caveats

type casts (see type assertions)

type checking



configuration options for

e lib compiler option, lib

e skipLibCheck compiler option, skipLibCheck

¢ strict mode, Strict Mode-useUnknownInCatchVariables
definition of, TypeScript!

in TypeScript, TypeScript in Action-TypeScript in Action, What’s in a
Type?-Type Systems

type definitions

finding in code, Finding Definitions-Finding Definitions

namespaces in, Namespaces in Type Definitions

type errors, Running Locally, Type errors

type guards, Narrowing

type operations

complexity of, Type Operations and Complexity

conditional types, Conditional Types-Mapped Conditional Types
mapped types, Mapped Types-Generic Mapped Types

never type, never-never and Mapped Types

template literal types, Template Literal Types-Remapping Mapped
Type Keys

type operators

keyof, keyof-keyof
keyof typeof, keyof typeof
purpose of, Type Operators



e typeof, typeof
type parameters

e for constrained generics, Constrained Generic Types-keyof and
Constrained Type Parameters

» for generic classes

e declaring, Generic Classes-Generic Classes

e explicit types, Explicit Generic Class Types-Explicit Generic
Class Types

e implementing interfaces, Implementing Generic Interfaces

e method generics, Method Generics

static class generics, Static Class Generics

for generic defaults, Generic Defaults-Generic Defaults

for generic functions, Generic Functions

for generic interfaces, Generic Interfaces-Inferred Generic Interface
Types

naming conventions, Generics
e purpose of, Generics-Generics
type predicates, Type Predicates-Type Predicates
type shapes, Type Shapes-Type Shapes
type systems, Type Systems-Type Systems

type-only imports and exports, Type-Only Imports and Exports-Type-Only
Imports and Exports

typeof operator



e described, typeof
e narrowing with, Typeof Checks

types

e arrays as

e evolving any arrays, Evolving Any Arrays

function types and, Array and Function Types

multidimensional arrays, Multidimensional Arrays
e type annotations for, Array Types

e union types and, Union-Type Arrays-Union-Type Arrays

assignability, Assignability

bottom types, never

classes as, Classes as Types-Classes as Types

conditional types
e distributivity, Type Distributivity
e generic, Generic Conditional Types-Generic Conditional Types
e inferred, Inferred Types
e mapped types and, Mapped Conditional Types
e never type and, never and Conditional Types
e purpose of, Conditional Types
e declaration files (see declaration files)
e DefinitelyTyped repository, Definitely Typed-Type Availability
e described, What’s in a Type?-What’s in a Type?



e duck typing, Structural Typing

e evolving any, Type Annotations

e function return types

described, Return Types
explicit, Explicit Return Types
never, Never Returns

void, Void Returns-Void Returns

e functions as

array types and, Array and Function Types
described, Function Types-Function Types
inferring parameter types, Parameter Type Inferences
parentheses in, Function Type Parentheses

type aliases for, Function Type Aliases-Function Type Aliases

e generics

for classes, Generic Classes-Static Class Generics

constrained, Constrained Generic Types-keyof and Constrained
Type Parameters

defaults, Generic Defaults-Generic Defaults
for discriminated unions, Generic Discriminated Unions

for functions, Generic Functions-Multiple Function Type
Parameters

for interfaces, Generic Interfaces-Inferred Generic Interface
Types, Implementing Generic Interfaces



e naming conventions, Generic Naming Conventions

 for type aliases, Generic Type Aliases

e when to use, Using Generics Right-The Golden Rule of Generics
e information in IDEs, Understanding types-Understanding types

e Intersections

e dangers of, Dangers of Intersection Types-never
e described, Intersection Types
e literals
e assignability, Literal Assignability
e described, Literal Types-Literal Types

e mapped types

e changing access control modifiers, Changing Modifiers-Changing
Modifiers

e from existing types, Mapped Types from Types-Mapped Types
from Types

e generic, Generic Mapped Types
e never type and, never and Mapped Types
e purpose of, Mapped Types-Mapped Types

e signatures and, Mapped types and signatures-Mapped types and
signatures

* narrowing

e with assignment narrowing, Assignment Narrowing-Assignment
Narrowing



¢ with conditional checks, Conditional Checks
e described, Unions and Literals, Narrowing
e with typeof operator, Typeof Checks

® never

e conditional types and, never and Conditional Types
¢ intersections and unions, never and Intersections and Unions
e mapped types and, never and Mapped Types
e purpose of, never
e objects
e declaring, Declaring Object Types
e described, Object Types-Object Types

¢ discriminated unions, Discriminated Unions-Discriminated
Unions

e explicit unions, Explicit Object-Type Unions-Explicit Object-
Type Unions

e inferred unions, Inferred Object-Type Unions

* interfaces (see interfaces)

e narrowing, Narrowing Object Types

¢ type aliases for, Aliased Object Types
e primitives and, What’s in a Type?-What’s in a Type?
e strict null checking

e billion-dollar mistake, Strict Null Checking-The Billion-Dollar
Mistake



with no initial values, Variables Without Initial Values

with truthiness narrowing, Truthiness Narrowing

e structural typing

described, Structural Typing-Structural Typing

excess property checking, Excess Property Checking-Excess
Property Checking

nested objects, Nested Object Types-Nested Object Types
optional properties, Optional Properties-Optional Properties

usage checking, Usage Checking

e template literal types

intrinsic types, Intrinsic String Manipulation Types
purpose of, Template Literal Types-Template Literal Types

remapping mapped type keys, Remapping Mapped Type Keys-
Remapping Mapped Type Keys

template literal keys, Template Literal Keys

e top types, Top Types-unknown

e tuples as

e const assertions, Const asserted tuples-Const asserted tuples

e explicit tuple types, Explicit tuple types

e unions

e array types and, Union-Type Arrays-Union-Type Arrays

e combined with intersections, Intersection Types

e declaring, Declaring Union Types



e described, Unions and Literals-Union Types
e properties, Union Properties-Union Properties
e type aliases, Type Aliases-Combining Type Aliases
e type annotations, Literal Types
TypeScript
e compiling syntax, Compiling Syntax
e constant changes in, Finished Evolving

e developer tools, Stronger Developer Tooling-Stronger Developer
Tooling

¢ documentation, Precise Documentation

e editor features, Editor Features

e freedom and restrictions, Freedom Through Restriction

e history of, TypeScript!

e installing, Getting Started Locally

e limitations of, What TypeScript Is Not-Finished Evolving
¢ modules, Modules-Modules

e Playground, Getting Started in the TypeScript Playground-Compiling
Syntax

e purpose of, TypeScript!
e running locally, Running Locally-Running Locally
e speed compared to JavaScript, Slower Than JavaScript

e type checking in, TypeScript in Action-TypeScript in Action, What’s in
a Type?-Type Systems



e type system in, Type Systems-Type Systems

U

undefined primitive, What’s in a Type?, Literal Types

e for default parameters, Default Parameters
e lacking initial values and, Variables Without Initial Values
e for optional parameters, Optional Parameters
e optional properties vs., Optional Properties
e void return type vs., Void Returns
unions
e array types and, Union-Type Arrays-Union-Type Arrays
e combined with intersections, Intersection Types
e declaring, Declaring Union Types
e described, Unions and Literals-Union Types

e discriminated unions, Discriminated Unions-Discriminated Unions,
Generic Discriminated Unions

e distributivity of conditional types, Type Distributivity
e never type and, never and Intersections and Unions

e of objects

e explicit unions, Explicit Object-Type Unions-Explicit Object-
Type Unions

¢ inferred unions, Inferred Object-Type Unions

e narrowing, Narrowing Object Types



e properties, Union Properties-Union Properties

e type aliases

e combining, Combining Type Aliases
e described, Type Aliases
e JavaScript and, Type Aliases Are Not JavaScript

e type annotations, Literal Types

unknown type

e described, unknown-unknown

e useUnknownInCatchVariables compiler option,
useUnknownInCatchVariables-useUnknownInCatchVariables

unsound array members

updating import statements, Automatic Import Updates-Automatic Import
Updates

usage checking in structural typing, Usage Checking

useUnknownInCatchVariables compiler option,
useUnknownInCatchVariables-useUnknownInCatchVariables

Vv

vanilla JavaScript, Vanilla JavaScript’s Pitfalls

variables, What’s in a Type?

e (see also types)
e assignability of types, Assignability
e const, Literal Types

e evolving any type, Type Annotations



e global augmentations, Global Augmentations
¢ lacking initial values, Variables Without Initial Values
e type annotations, Type Annotations-Unnecessary Type Annotations
e type shapes, Type Shapes-Type Shapes
visibility of class members, Member Visibility-Static Field Modifiers
void return type, Void Returns-Void Returns

VS Code, Using IDE Features
e (see also IDEs)

e opening code actions menu, Code Actions

e TypeScript support in, Editor Features

w

watch mode (tsc command), Watch Mode-Watch Mode
widening class properties, Read-Only Properties
wildcard module declarations, Wildcard Module Declarations
writing code

e autocompletion, Completing Names-Completing Names

e code actions

e purpose of, Code Actions-Code Actions
e quick fixes, Other quick fixes

e refactoring with, Refactoring

e renaming with, Renaming

e import updates, Automatic Import Updates-Automatic Import Updates



About the Author

Josh Goldberg is a frontend developer from New York with a passion for
open source, static analysis, and the web. He 1s a full-time open source
maintainer who contributes regularly to TypeScript and open source
projects in its ecosystem, such as typescript-eslint and TypeStat. His past
work includes spearheading Codecademy’s usage of TypeScript, helping
create its Learn TypeScript course, and architecting rich client applications
at Microsoft. His projects range from static analysis to meta-languages to
re-creating retro games in the browser. Also cats.



Colophon

The animal on the cover of Learning Typescript is a sun conure (Aratinga
solstitialis), a colorful parrot native to northeastern South America.

Sun conures, also known as sun parakeets, are mostly yellow with green
wing tips and an orange face and chest. They are olive green at birth, with
bright colors developing gradually over time in both males and females.
They are monogamous, and females lay three to four eggs in a clutch with
23 to 27 days of incubation. Their typical diet is fruits, flowers, seeds, nuts,
and insects.

Sun conures are popular as pets because of their beautiful plumage and
endearing personalities. They are curious birds but can also be quite loud.

Many of the animals on O’Reilly covers are endangered; all of them are
important to the world.

The cover illustration 1s by Karen Montgomery, based on an antique line
engraving from George Shaw’s Zoology. The cover fonts are Gilroy
Semibold and Guardian Sans. The text font is Adobe Minion Pro; the
heading font 1s Adobe Myriad Condensed; and the code font is Dalton
Maag’s Ubuntu Mono.



	Preface
	Who Should Read This Book
	Why I Wrote This Book
	Navigating This Book
	Examples and Projects

	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	I. Concepts
	1. From JavaScript to TypeScript
	History of JavaScript
	Vanilla JavaScript’s Pitfalls
	Costly Freedom
	Loose Documentation
	Weaker Developer Tooling

	TypeScript!
	Getting Started in the TypeScript Playground
	TypeScript in Action
	Freedom Through Restriction
	Precise Documentation
	Stronger Developer Tooling
	Compiling Syntax

	Getting Started Locally
	Running Locally
	Editor Features

	What TypeScript Is Not
	A Remedy for Bad Code
	Extensions to JavaScript (Mostly)
	Slower Than JavaScript
	Finished Evolving

	Summary

	2. The Type System
	What’s in a Type?
	Type Systems
	Kinds of Errors

	Assignability
	Understanding Assignability Errors

	Type Annotations
	Unnecessary Type Annotations

	Type Shapes
	Modules

	Summary

	3. Unions and Literals
	Union Types
	Declaring Union Types
	Union Properties

	Narrowing
	Assignment Narrowing
	Conditional Checks
	Typeof Checks

	Literal Types
	Literal Assignability

	Strict Null Checking
	The Billion-Dollar Mistake
	Truthiness Narrowing
	Variables Without Initial Values

	Type Aliases
	Type Aliases Are Not JavaScript
	Combining Type Aliases

	Summary

	4. Objects
	Object Types
	Declaring Object Types
	Aliased Object Types

	Structural Typing
	Usage Checking
	Excess Property Checking
	Nested Object Types
	Optional Properties

	Unions of Object Types
	Inferred Object-Type Unions
	Explicit Object-Type Unions
	Narrowing Object Types
	Discriminated Unions

	Intersection Types
	Dangers of Intersection Types

	Summary

	II. Features
	5. Functions
	Function Parameters
	Required Parameters
	Optional Parameters
	Default Parameters
	Rest Parameters

	Return Types
	Explicit Return Types

	Function Types
	Function Type Parentheses
	Parameter Type Inferences
	Function Type Aliases

	More Return Types
	Void Returns
	Never Returns

	Function Overloads
	Call-Signature Compatibility

	Summary

	6. Arrays
	Array Types
	Array and Function Types
	Union-Type Arrays
	Evolving Any Arrays
	Multidimensional Arrays

	Array Members
	Caveat: Unsound Members

	Spreads and Rests
	Spreads
	Spreading Rest Parameters

	Tuples
	Tuple Assignability
	Tuple Inferences

	Summary

	7. Interfaces
	Type Aliases Versus Interfaces
	Types of Properties
	Optional Properties
	Read-Only Properties
	Functions and Methods
	Call Signatures
	Index Signatures
	Nested Interfaces

	Interface Extensions
	Overridden Properties
	Extending Multiple Interfaces

	Interface Merging
	Member Naming Conflicts

	Summary

	8. Classes
	Class Methods
	Class Properties
	Function Properties
	Initialization Checking
	Optional Properties
	Read-Only Properties

	Classes as Types
	Classes and Interfaces
	Implementing Multiple Interfaces

	Extending a Class
	Extension Assignability
	Overridden Constructors
	Overridden Methods
	Overridden Properties

	Abstract Classes
	Member Visibility
	Static Field Modifiers

	Summary

	9. Type Modifiers
	Top Types
	any, Again
	unknown

	Type Predicates
	Type Operators
	keyof
	typeof

	Type Assertions
	Asserting Caught Error Types
	Non-Null Assertions
	Type Assertion Caveats

	Const Assertions
	Literals to Primitives
	Read-Only Objects

	Summary

	10. Generics
	Generic Functions
	Explicit Generic Call Types
	Multiple Function Type Parameters

	Generic Interfaces
	Inferred Generic Interface Types

	Generic Classes
	Explicit Generic Class Types
	Extending Generic Classes
	Implementing Generic Interfaces
	Method Generics
	Static Class Generics

	Generic Type Aliases
	Generic Discriminated Unions

	Generic Modifiers
	Generic Defaults

	Constrained Generic Types
	keyof and Constrained Type Parameters

	Promises
	Creating Promises
	Async Functions

	Using Generics Right
	The Golden Rule of Generics
	Generic Naming Conventions

	Summary

	III. Usage
	11. Declaration Files
	Declaration Files
	Declaring Runtime Values
	Global Values
	Global Interface Merging
	Global Augmentations

	Built-In Declarations
	Library Declarations
	DOM Declarations

	Module Declarations
	Wildcard Module Declarations

	Package Types
	declaration
	Dependency Package Types
	Exposing Package Types

	DefinitelyTyped
	Type Availability

	Summary

	12. Using IDE Features
	Navigating Code
	Finding Definitions
	Finding References
	Finding Implementations

	Writing Code
	Completing Names
	Automatic Import Updates
	Code Actions

	Working Effectively with Errors
	Language Service Errors

	Summary

	13. Configuration Options
	tsc Options
	Pretty Mode
	Watch Mode

	TSConfig Files
	tsc --init
	CLI Versus Configuration

	File Inclusions
	include
	exclude

	Alternative Extensions
	JSX Syntax
	resolveJsonModule

	Emit
	outDir
	target
	Emitting Declarations
	Source Maps
	noEmit

	Type Checking
	lib
	skipLibCheck
	Strict Mode

	Modules
	module
	moduleResolution
	Interoperability with CommonJS
	isolatedModules

	JavaScript
	allowJs
	checkJs
	JSDoc Support

	Configuration Extensions
	extends
	Configuration Bases

	Project References
	composite
	references
	Build Mode

	Summary

	IV. Extra Credit
	14. Syntax Extensions
	Class Parameter Properties
	Experimental Decorators
	Enums
	Automatic Numeric Values
	String-Valued Enums
	Const Enums

	Namespaces
	Namespace Exports
	Nested Namespaces
	Namespaces in Type Definitions
	Prefer Modules Over Namespaces

	Type-Only Imports and Exports
	Summary

	15. Type Operations
	Mapped Types
	Mapped Types from Types
	Changing Modifiers
	Generic Mapped Types

	Conditional Types
	Generic Conditional Types
	Type Distributivity
	Inferred Types
	Mapped Conditional Types

	never
	never and Intersections and Unions
	never and Conditional Types
	never and Mapped Types

	Template Literal Types
	Intrinsic String Manipulation Types
	Template Literal Keys
	Remapping Mapped Type Keys

	Type Operations and Complexity
	Summary

	Glossary
	Index
	About the Author

