

Master React in
5 Days

Become a React Expert
in Under a Week

Eric Sarrion

Master React in 5 Days: Become a React Expert in Under a Week

ISBN-13 (pbk): 978-1-4842-9854-1		 ISBN-13 (electronic): 978-1-4842-9855-8
https://doi.org/10.1007/978-1-4842-9855-8

Copyright © 2023 by Eric Sarrion

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Divya Modi
Development Editor: James Markham

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
1 New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub (https://github.com/Apress/Master-React-in-5-Days-by-Eric-
Sarrion). For more detailed information, please visit https://www.apress.com/gp/services/
source-code.

Paper in this product is recyclable.

Eric Sarrion
VIRY CHATILLON, France

https://doi.org/10.1007/978-1-4842-9855-8

iii

Table of Contents

About the Author��ix

About the Technical Reviewer��xi

Acknowledgments��xiii

Introduction���xv

Chapter 1: �Day 1: Mastering Component Writing with React����������������1

Why Use React���2

React Virtual DOM��4

Step 1: Creating the Virtual DOM��4

Step 2: Reconciliation Process���5

Decomposing an Application into Components��7

Creating a First React Application��9

Analyzing the Main Files of the React Application���14

Step 1: Contents of the index.js File��15

Step 2: Contents of the index.html File��17

Step 3: Contents of the App.js File���19

JSX Syntax in React���21

Creating a First React Component���22

Step 1: Install React DevTools��26

Step 2: Incrementing the Counter with setInterval()���28

Step 3: Using the useState() Method in a Component��31

https://doi.org/10.1007/978-1-4842-9855-8_1
https://doi.org/10.1007/978-1-4842-9855-8_1#Sec1
https://doi.org/10.1007/978-1-4842-9855-8_1#Sec2
https://doi.org/10.1007/978-1-4842-9855-8_1#Sec3
https://doi.org/10.1007/978-1-4842-9855-8_1#Sec4
https://doi.org/10.1007/978-1-4842-9855-8_1#Sec5
https://doi.org/10.1007/978-1-4842-9855-8_1#Sec6
https://doi.org/10.1007/978-1-4842-9855-8_1#Sec7
https://doi.org/10.1007/978-1-4842-9855-8_1#Sec8
https://doi.org/10.1007/978-1-4842-9855-8_1#Sec9
https://doi.org/10.1007/978-1-4842-9855-8_1#Sec10
https://doi.org/10.1007/978-1-4842-9855-8_1#Sec11
https://doi.org/10.1007/978-1-4842-9855-8_1#Sec12
https://doi.org/10.1007/978-1-4842-9855-8_1#Sec13
https://doi.org/10.1007/978-1-4842-9855-8_1#Sec14
https://doi.org/10.1007/978-1-4842-9855-8_1#Sec15

iv

Step 4: Using the useEffect() Method in a Component��35

Step 5: Using Attributes in Components���44

Conclusion���49

Chapter 2: Day 2: Mastering JSX Code Writing in a React
Component��51

Using the React.Fragment Component��51

Step 1: Using the <React.Fragment> Tag��52

Step 2: Using the <Fragment> Tag��53

Step 3: Using the <> Tag���54

Inserting JavaScript Code into JSX��56

Writing a Condition in JSX���56

Step 1: Using an Immediately Invoked JavaScript Function to Write the
Conditional Test��58

Step 2: Using the JavaScript Ternary Operator to Write the Conditional Test�������61

Writing a Loop in JSX���63

Step 1: Writing the JSX Loop Using an Immediately Invoked Function����������������64

Step 2: Using the “key” Attribute in JSX Elements Displayed by a Loop�������������67

Step 3: Important Rule About the Value of the “key” Attribute in
List Elements���68

Step 4: Writing the JSX Loop Using the map( ) Method of the
JavaScript Array Class���69

Step 5: Using the map( ) Method to Display Large Lists of Elements�������������������71

Using Styles in JSX��72

Conclusion���75

Chapter 3: �Day 3: Mastering Event Handling in a React Component����77

Handling Click Events on a Button���78

Step 1: Capturing an Event in a React Component��78

Step 2: Incrementing a Counter by Clicking an Increment Button�����������������������79

Table of Contents

https://doi.org/10.1007/978-1-4842-9855-8_1#Sec16
https://doi.org/10.1007/978-1-4842-9855-8_1#Sec17
https://doi.org/10.1007/978-1-4842-9855-8_1#Sec18
https://doi.org/10.1007/978-1-4842-9855-8_2
https://doi.org/10.1007/978-1-4842-9855-8_2
https://doi.org/10.1007/978-1-4842-9855-8_2#Sec1
https://doi.org/10.1007/978-1-4842-9855-8_2#Sec2
https://doi.org/10.1007/978-1-4842-9855-8_2#Sec3
https://doi.org/10.1007/978-1-4842-9855-8_2#Sec4
https://doi.org/10.1007/978-1-4842-9855-8_2#Sec5
https://doi.org/10.1007/978-1-4842-9855-8_2#Sec6
https://doi.org/10.1007/978-1-4842-9855-8_2#Sec7
https://doi.org/10.1007/978-1-4842-9855-8_2#Sec7
https://doi.org/10.1007/978-1-4842-9855-8_2#Sec8
https://doi.org/10.1007/978-1-4842-9855-8_2#Sec9
https://doi.org/10.1007/978-1-4842-9855-8_2#Sec10
https://doi.org/10.1007/978-1-4842-9855-8_2#Sec11
https://doi.org/10.1007/978-1-4842-9855-8_2#Sec12
https://doi.org/10.1007/978-1-4842-9855-8_2#Sec12
https://doi.org/10.1007/978-1-4842-9855-8_2#Sec13
https://doi.org/10.1007/978-1-4842-9855-8_2#Sec13
https://doi.org/10.1007/978-1-4842-9855-8_2#Sec14
https://doi.org/10.1007/978-1-4842-9855-8_2#Sec15
https://doi.org/10.1007/978-1-4842-9855-8_2#Sec16
https://doi.org/10.1007/978-1-4842-9855-8_3
https://doi.org/10.1007/978-1-4842-9855-8_3#Sec1
https://doi.org/10.1007/978-1-4842-9855-8_3#Sec2
https://doi.org/10.1007/978-1-4842-9855-8_3#Sec3

v

Step 3: Starting a Periodic Counter by Clicking a Start Button����������������������������83

Step 4: Automatically Start the Counter the First Time��88

Managing the Content of an Input Field���93

Step 1: Allow Only Digits During Input���95

Step 2: Give Focus to the Input Field upon Component Rendering����������������������97

Step 3: Display Multiple Counters and Show Their Real-Time Sum�������������������100

Step 4: Give Focus to the First Displayed Counter���104

Conclusion���107

Chapter 4: �Day 4: Mastering React Hooks���109

Definition of a Hook��109

Main Rule About Hooks��110

Using the useState( ) Hook���111

Step 1: Writing the useState( ) Method���112

Step 2: Using the Latest Value of the Reactive Variable�������������������������������������115

Step 3: Avoiding Infinite Loops When Updating Reactive Variables�������������������119

Using the useContext( ) Hook���123

Step 1: Presenting the Problem to Solve��124

Step 2: Displaying the Sum of Counters Without Using the
useContext( ) Hook���127

Step 3: Displaying the Sum of Counters Using the useContext( ) Hook��������������130

Step 4: Using the createContext( ) Method in the Parent Component����������������130

Step 5: Using the useContext( ) Method in Child Components���������������������������133

Step 6: When to Use the useContext( ) Hook?��135

Using the useRef( ) Hook��135

Using the useEffect( ) Hook��142

Using the useReducer( ) Hook��153

Step 1: Counter Component Using the useState( ) Hook������������������������������������154

Table of Contents

https://doi.org/10.1007/978-1-4842-9855-8_3#Sec4
https://doi.org/10.1007/978-1-4842-9855-8_3#Sec5
https://doi.org/10.1007/978-1-4842-9855-8_3#Sec6
https://doi.org/10.1007/978-1-4842-9855-8_3#Sec7
https://doi.org/10.1007/978-1-4842-9855-8_3#Sec8
https://doi.org/10.1007/978-1-4842-9855-8_3#Sec9
https://doi.org/10.1007/978-1-4842-9855-8_3#Sec10
https://doi.org/10.1007/978-1-4842-9855-8_3#Sec11
https://doi.org/10.1007/978-1-4842-9855-8_4
https://doi.org/10.1007/978-1-4842-9855-8_4#Sec1
https://doi.org/10.1007/978-1-4842-9855-8_4#Sec2
https://doi.org/10.1007/978-1-4842-9855-8_4#Sec3
https://doi.org/10.1007/978-1-4842-9855-8_4#Sec4
https://doi.org/10.1007/978-1-4842-9855-8_4#Sec5
https://doi.org/10.1007/978-1-4842-9855-8_4#Sec6
https://doi.org/10.1007/978-1-4842-9855-8_4#Sec7
https://doi.org/10.1007/978-1-4842-9855-8_4#Sec8
https://doi.org/10.1007/978-1-4842-9855-8_4#Sec9
https://doi.org/10.1007/978-1-4842-9855-8_4#Sec9
https://doi.org/10.1007/978-1-4842-9855-8_4#Sec10
https://doi.org/10.1007/978-1-4842-9855-8_4#Sec11
https://doi.org/10.1007/978-1-4842-9855-8_4#Sec12
https://doi.org/10.1007/978-1-4842-9855-8_4#Sec13
https://doi.org/10.1007/978-1-4842-9855-8_4#Sec14
https://doi.org/10.1007/978-1-4842-9855-8_4#Sec15
https://doi.org/10.1007/978-1-4842-9855-8_4#Sec16
https://doi.org/10.1007/978-1-4842-9855-8_4#Sec17

vi

Step 2: Counter Component Using the useReducer( ) Hook�������������������������������156

Step 3: Using the “state” Parameter as an Object���159

Step 4: Using the “action” Parameter as an Object���161

Other Hooks���167

Creating Your Own Custom Hook���167

Step 1: Creating a Hook to Limit Counter Value���168

Step 2: Creating a Hook to Force Component Update��173

Step 3: Creating a Hook to Retrieve the Previous Value of a
Reactive Variable���178

Step 4: Creating a Hook to Fetch Data from a Server��184

Step 5: Creating a Hook for Data Formatting���190

Step 6: Creating a Hook That Filters the Displayed Data������������������������������������193

Conclusion���197

Chapter 5: Day 5: Practical Application—Managing a Task
List with React���199

Application Screens���200

Creating the Application with create-react-app���204

Breaking Down the Application into Components��207

Adding an Item to the List��208

Removing an Item from the List���212

Modifying an Item in the List���217

Step 1: Modifying the Item���217

Step 2: Validation of the Modification��226

Step 3: Assigning a Unique Value for the “key” Attribute�����������������������������������230

Step 4: Obtaining Focus Directly on the Input Field���236

Conclusion���239

Table of Contents

https://doi.org/10.1007/978-1-4842-9855-8_4#Sec18
https://doi.org/10.1007/978-1-4842-9855-8_4#Sec19
https://doi.org/10.1007/978-1-4842-9855-8_4#Sec20
https://doi.org/10.1007/978-1-4842-9855-8_4#Sec21
https://doi.org/10.1007/978-1-4842-9855-8_4#Sec22
https://doi.org/10.1007/978-1-4842-9855-8_4#Sec23
https://doi.org/10.1007/978-1-4842-9855-8_4#Sec24
https://doi.org/10.1007/978-1-4842-9855-8_4#Sec25
https://doi.org/10.1007/978-1-4842-9855-8_4#Sec25
https://doi.org/10.1007/978-1-4842-9855-8_4#Sec26
https://doi.org/10.1007/978-1-4842-9855-8_4#Sec27
https://doi.org/10.1007/978-1-4842-9855-8_4#Sec28
https://doi.org/10.1007/978-1-4842-9855-8_4#Sec29
https://doi.org/10.1007/978-1-4842-9855-8_5
https://doi.org/10.1007/978-1-4842-9855-8_5
https://doi.org/10.1007/978-1-4842-9855-8_5#Sec1
https://doi.org/10.1007/978-1-4842-9855-8_5#Sec2
https://doi.org/10.1007/978-1-4842-9855-8_5#Sec3
https://doi.org/10.1007/978-1-4842-9855-8_5#Sec4
https://doi.org/10.1007/978-1-4842-9855-8_5#Sec5
https://doi.org/10.1007/978-1-4842-9855-8_5#Sec6
https://doi.org/10.1007/978-1-4842-9855-8_5#Sec7
https://doi.org/10.1007/978-1-4842-9855-8_5#Sec8
https://doi.org/10.1007/978-1-4842-9855-8_5#Sec9
https://doi.org/10.1007/978-1-4842-9855-8_5#Sec10
https://doi.org/10.1007/978-1-4842-9855-8_5#Sec11

vii

Chapter 6: �JavaScript Reminders��241

Using the “let” and “var” Keywords in JavaScript���241

Using the “const” Keyword in JavaScript��243

Manipulating Objects in JavaScript���245

Step 1: Structuring an Object���245

Step 2: Object Destructuring��246

Step 3: Passing Objects as Function Parameters��247

Step 4: Using the “...” Notation with Objects��248

Manipulating Arrays in JavaScript���249

Step 1: Structuring an Array���250

Step 2: Array Destructuring��250

Step 3: Using the “...” Notation with Arrays���251

Using Import and Export of Modules in JavaScript��251

Step 1: Using Modules in HTML Files���253

Step 2: Using the “import” Statement��254

Step 3: Using the “export” Statement��255

Step 4: Using the “export default” Statement��256

Step 5: Difference Between “export” and “export default” Statements������������257

Using Arrow Functions in JavaScript���259

Step 1: Using Arrow Function Syntax���260

Step 2: Understanding the Value of “this” in Arrow Functions���������������������������262

Using the map() and filter() Methods of the JavaScript Array Class����������������263

Step 1: Using the map() Method��263

Step 2: Using the filter() Method���265

Step 3: Using the map() and filter() Methods in React�������������������������������������266

Table of Contents

https://doi.org/10.1007/978-1-4842-9855-8_6
https://doi.org/10.1007/978-1-4842-9855-8_6#Sec1
https://doi.org/10.1007/978-1-4842-9855-8_6#Sec2
https://doi.org/10.1007/978-1-4842-9855-8_6#Sec3
https://doi.org/10.1007/978-1-4842-9855-8_6#Sec4
https://doi.org/10.1007/978-1-4842-9855-8_6#Sec5
https://doi.org/10.1007/978-1-4842-9855-8_6#Sec6
https://doi.org/10.1007/978-1-4842-9855-8_6#Sec7
https://doi.org/10.1007/978-1-4842-9855-8_6#Sec8
https://doi.org/10.1007/978-1-4842-9855-8_6#Sec9
https://doi.org/10.1007/978-1-4842-9855-8_6#Sec10
https://doi.org/10.1007/978-1-4842-9855-8_6#Sec11
https://doi.org/10.1007/978-1-4842-9855-8_6#Sec12
https://doi.org/10.1007/978-1-4842-9855-8_6#Sec13
https://doi.org/10.1007/978-1-4842-9855-8_6#Sec14
https://doi.org/10.1007/978-1-4842-9855-8_6#Sec15
https://doi.org/10.1007/978-1-4842-9855-8_6#Sec16
https://doi.org/10.1007/978-1-4842-9855-8_6#Sec17
https://doi.org/10.1007/978-1-4842-9855-8_6#Sec18
https://doi.org/10.1007/978-1-4842-9855-8_6#Sec19
https://doi.org/10.1007/978-1-4842-9855-8_6#Sec20
https://doi.org/10.1007/978-1-4842-9855-8_6#Sec21
https://doi.org/10.1007/978-1-4842-9855-8_6#Sec22
https://doi.org/10.1007/978-1-4842-9855-8_6#Sec23
https://doi.org/10.1007/978-1-4842-9855-8_6#Sec24

viii

Using Promise Objects in JavaScript���267

Step 1: Promise Object Definition��267

Step 2: Without Using Promise Objects��269

Step 3: Using Promise Objects���270

Using “async” and “await” Statements in JavaScript���������������������������������������271

Creating an Asynchronous Function That Utilizes JavaScript’s “await”
Statement��273

Step 1: Using “await” with a Function That Returns a Promise Object��������������274

Step 2: Using “await” with a Function Declared with “async”���������������������������276

Conclusion of the Book��278

��Index��279

Table of Contents

https://doi.org/10.1007/978-1-4842-9855-8_6#Sec25
https://doi.org/10.1007/978-1-4842-9855-8_6#Sec26
https://doi.org/10.1007/978-1-4842-9855-8_6#Sec27
https://doi.org/10.1007/978-1-4842-9855-8_6#Sec28
https://doi.org/10.1007/978-1-4842-9855-8_6#Sec29
https://doi.org/10.1007/978-1-4842-9855-8_6#Sec30
https://doi.org/10.1007/978-1-4842-9855-8_6#Sec30
https://doi.org/10.1007/978-1-4842-9855-8_6#Sec31
https://doi.org/10.1007/978-1-4842-9855-8_6#Sec32
https://doi.org/10.1007/978-1-4842-9855-8_6#Sec33

ix

About the Author

Eric Sarrion is a trainer, web developer, and an independent consultant.

He has been involved in all kinds of IT projects for over 30 years. He is also

a longtime author of web development technologies and is renowned for

the clarity of his explanations and examples. He resides in Paris, France.

xi

About the Technical Reviewer

Kenneth Fukizi is a software engineer,

architect, and consultant with experience in

coding on different platforms internationally.

Prior to dedicated software development, he

worked as a lecturer and was then head of

IT at different organizations. He has domain

experience working with technology for

companies mainly in the financial sector.

When he’s not working, he likes reading up on

emerging technologies and strives to be an active member of the software

community. Kenneth currently leads a community of African developers,

through a startup company called AfrikanCoder.  

xiii

Acknowledgments

I would like to thank Gabriel Bieules (Austin, Texas), a specialist in React

development, for his valuable reviews and contributions to the book.

xv

Introduction

Discover how to master React in record time with the book Master React

in 5 Days. Are you dreaming of learning this revolutionary technology

without spending months on endless tutorials? This book is tailor-made

for you! In just five days, you will acquire the fundamental skills to develop

exceptional React applications.

Dive into an accelerated learning method that will propel your

progress by leaps and bounds. Each chapter is carefully designed to

teach you the essential concepts of React, such as components, props,

state, events, life cycle, and hooks, without wasting time on complex

explanations.

Thanks to clear and accessible language, you will be immersed

in the intricacies of React from the very first page. Code examples are

accompanied by detailed explanations, allowing you to quickly grasp the

nuances of this technology. You don’t need to be a programming expert;

the book is suitable for all levels, from beginners to more experienced

developers looking to acquaint themselves with React.

Each chapter includes practical exercises to immediately apply

what you learn. You’ll have the opportunity to create your own React

applications, thereby enhancing your understanding and solidifying your

skills. You’ll be amazed at how rapidly you progress with this hands-on

approach.

Master React in 5 Days is much more than just a book; it’s a

comprehensive resource that guides you step by step on your learning

journey. Whether you prefer to follow the book independently or use it in

conjunction with other online resources, it will provide you with a strong

foundation to unleash the full potential of React.

xvi

So, are you ready to take on the challenge and become a proficient

React developer in just five days? Don’t wait any longer! Dive into this

exciting adventure right now. The book Master React in 5 Days will open

the doors to a world of endless possibilities in web development.

Introduction

1

CHAPTER 1

Day 1: Mastering
Component Writing
with React
This chapter serves as our starting point for learning how to create

components using the JavaScript library React.

React is an open source library used to create interactive user

interfaces for web applications. By using React, you can build reusable

components to construct rich and scalable user interfaces.

In this chapter, you will learn the basics of creating React components

and build your first component. We will also review the fundamental

principles of JSX, a syntax used to create React elements, and how to

integrate it into our code.

You will develop a solid understanding of React’s foundational

principles by creating simple components, ready to be integrated into

larger projects. This hands-on approach will allow you to absorb the

essential basics of React while preparing you to collaborate on more

extensive projects.

Ready to get started? Let’s go!

© Eric Sarrion 2023
E. Sarrion, Master React in 5 Days, https://doi.org/10.1007/978-1-4842-9855-8_1

https://doi.org/10.1007/978-1-4842-9855-8_1#DOI

2

�Why Use React
React is an open source JavaScript library created by Facebook for building

complex user interfaces. It has gained popularity due to its ease of use and

flexibility in creating modern web applications.

Here are a few reasons why React is user-friendly and popular:

	 1.	 Reusable components: React is built on the concept

of components, which are reusable blocks of code

that can be combined to construct a complex user

interface. This approach saves time by allowing

developers to build applications from modular

building blocks.

	 2.	 Virtual DOM: React employs a technique called

the Virtual DOM to enhance user interface

performance. The Virtual DOM is an in-memory

representation of the user interface’s state. When a

user interacts with the application’s user interface,

React compares the current state of the Virtual

DOM with the previous representation and updates

the view (i.e., what is displayed) only for elements

that have changed. This approach is faster than

traditional methods of updating the user interface,

making React more efficient and performant.

	 3.	 Large community and documentation: React is

backed by a large community of developers who

regularly contribute to the library. This means

there are plenty of resources available for learning

React, including comprehensive documentation,

Chapter 1 Day 1: Mastering Component Writing with React

3

quick start guides, code examples, and educational

videos. This abundance of resources makes learning

React easier for new developers, and this book is a

part of it.

	 4.	 Multi-platform support: React can be used to

develop web, mobile, and desktop applications. It’s

also possible to integrate React with other libraries

and frameworks, making it a versatile choice for

multi-platform application development.

	 5.	 React Native: React Native is a framework that allows

developers to build native mobile applications using

React syntax. This approach enables developers to

create mobile apps from the same source code used

for web applications. This approach reduces costs

and accelerates mobile app development.

	 6.	 Comprehensive ecosystem: React integrates

well with a wide range of tools and libraries for

application development, such as Redux, GraphQL,

Next.js, Gatsby, Material UI, etc. This integration

makes it easier to create quality applications with

advanced features and superior performance.

In conclusion, React’s ease of use and popularity stem from its

modularity, Virtual DOM approach, large developer community, and

versatility for multi-platform application development. The ability to

create reusable components, along with integration with React Native

and a comprehensive ecosystem of tools and libraries, makes it an

ideal choice for developers looking to create modern and scalable web

applications.

Chapter 1 Day 1: Mastering Component Writing with React

4

�React Virtual DOM
In React, the Virtual DOM (Document Object Model) is an in-memory

representation of the actual DOM (the HTML representation of elements

displayed on the page). When changes are made to a React component,

instead of directly updating the actual DOM, React first updates the

Virtual DOM, which is a virtual representation of the real DOM. Of course,

updating the Virtual DOM is much faster than updating the actual DOM,

which is why using it is beneficial.

After updating the Virtual DOM, React performs a process called

“reconciliation,” where it compares the new Virtual DOM with the

previous version of the Virtual DOM. This process determines the minimal

number of changes that need to be made to the actual DOM to reflect the

component’s modifications (see example in the next section).

This approach offers several advantages. Firstly, it allows React to

optimize the process of updating the actual DOM, resulting in faster and

more efficient updates. Additionally, it enables developers to write their

components independently of the browser and underlying DOM, making

it easier to create complex user interfaces that are consistent across

different browsers and devices.

�Step 1: Creating the Virtual DOM
React creates a virtual tree using components defined in JavaScript

code. Each component describes how a part of the user interface should

be displayed based on the application’s state. When the state changes,

React regenerates the virtual tree by traversing the components and

updating their virtual representations. This step serves as preparation for

reconciliation, where React compares the newly created virtual tree with

the old one to determine the changes.

Chapter 1 Day 1: Mastering Component Writing with React

5

�Step 2: Reconciliation Process
Reconciliation in React is the process by which React compares the virtual

tree representing the current state of the user interface with a previous

version to determine which parts of the user interface need to be updated.

The goal of reconciliation is to optimize performance by avoiding re-

rendering the entire element tree with each update.

Here’s a simple example of reconciliation in React:

Let’s assume we have a React component called App that displays a

counter and a button to increment the counter by 1 on each click.

The code in the example that follows will be explained in the next

sections. The key point here is to understand how the reconciliation

process works.

File: App.js

import React, { useState } from 'react';

function App() {

 const [count, setCount] = useState(0);

 const handleIncrement = () => {

 setCount(count + 1);

 };

 return (

 <div>

 <h2>Counter: {count}</h2>

 <button onClick={handleIncrement}>Increment</button>

 </div>

);

};

export default App;

Chapter 1 Day 1: Mastering Component Writing with React

6

Now, let’s assume the user clicks the Increment button multiple

times. With each click, React updates the counter’s state and triggers a

reconciliation process to update the user interface.

Here’s what happens during reconciliation:

	 1.	 The user clicks the button, triggering the

handleIncrement() function.

	 2.	 The handleIncrement() function updates the

counter’s state with the new value.

	 3.	 React compares the virtual tree representing the

current state of the user interface with the previous

version.

	 4.	 React determines which parts of the user interface

have changed by comparing the differences

between the virtual trees. It recognizes that the

value 0 has become 1, following the first click on the

Increment button.

	 5.	 React updates only the parts that have changed in

the actual DOM, rather than re-rendering the entire

element tree.

For example, let’s say the counter has been incremented by 1, changing

from 0 to 1. The virtual tree before and after the update looks like this:

Before the Update

<div>

 <h2> Counter: 0</h2>

 <button>Increment</button>

</div>

Chapter 1 Day 1: Mastering Component Writing with React

7

After the Update

<div>

 <h2> Counter: 1</h2>

 <button>Increment</button>

</div>

In this example, React notices that only the counter value has changed

(0 became 1). It will update the relevant part of the DOM to reflect this

change without touching other parts of the DOM.

This is how React optimizes performance by using reconciliation to

update only the parts of the user interface that have actually changed,

minimizing the number of expensive DOM manipulation operations.

�Decomposing an Application
into Components
Decomposing an application into components, as suggested by React,

is a common practice in software development. This allows for creating

a modular structure that facilitates code maintenance, reusability, and

understanding.

Here’s a simple example of decomposing an application into

components:

Let’s say we want to build an application that displays a list of tasks to

do, each with a check box to indicate whether the task is completed or not.

The first step would be to divide the application into two main

components: a parent component TaskList and a child component

TaskItem.

The parent component TaskList would be responsible for managing

the complete list of tasks to do. It would handle retrieving the list data from

a data source (e.g., an API or a database), sorting, filtering, and passing

them down to the child component TaskItem (see Figure 1-1).

Chapter 1 Day 1: Mastering Component Writing with React

8

TaskList

TaskItem

TaskItem

TaskItem

Figure 1-1.  TaskList and TaskItem components

The child component, TaskItem, on the other hand, would be

responsible for displaying an individual task. It would display the task

name and a check box to indicate whether the task is completed or not.

This component would be reusable and display a task item each time it is

called by the parent component, TaskList.

Next, we could further decompose the TaskList component into sub-

components, such as TaskListHeader (for the list header), TaskListFooter

(for the list footer), or TaskListFilter (for managing filters in the list)

(see Figure 1-2).

TaskList

TaskListHeader

TaskListFilter

TaskListFooter

Figure 1-2.  Components TaskList, TaskListHeader, TaskListFilter,
and TaskListFooter

Chapter 1 Day 1: Mastering Component Writing with React

9

Lastly, we could also decompose the TaskItem component into

sub-components, such as TaskName (for displaying the task name),

TaskCheckbox (for displaying the check box), or TaskDueDate (for

displaying the task due date) (see Figure 1-3).

TaskItem

TaskName

TaskCheckbox

TaskDueDate

Figure 1-3.  Components TaskItem, TaskName, TaskCheckbox, and
TaskDueDate

By decomposing our application into components, we have created

a modular structure that facilitates code understanding, maintenance,

and reusability. Additionally, since each component is responsible for

a specific task, it makes debugging easier, as each part can be managed

individually.

�Creating a First React Application
The simplest way to use React in our applications is to use the create-react-

app command, which sets up the minimal architecture of a functional

React application.

The create-react-app command becomes available after installing the

create-react-app module using the npm command. The npm command

is accessible after installing Node.js. Install Node.js if it’s not already

installed.

Chapter 1 Day 1: Mastering Component Writing with React

10

Once the prerequisites are in place, you can enter the “npm install -g

create-react-app” command in a command prompt to install the create-

react-app module (see Figure 1-4).

Figure 1-4.  Installation of the create-react-app module

Once the module is installed, the create-react-app command is

accessible to enable the creation of our React applications.

Let’s then enter the command “create-react-app reactapp”. This

command creates the “reactapp” application that will work using React.

After entering this command, the application begins to be created.

The application creation process takes some time as the modules required

for the application’s functioning are downloaded from the Internet

(see Figure 1-5).

Chapter 1 Day 1: Mastering Component Writing with React

11

Figure 1-5.  React application being created

Then, at the end of the creation of the reactapp application, you will

get the screen shown in Figure 1-6.

Figure 1-6.  Completion of React application creation

Chapter 1 Day 1: Mastering Component Writing with React

12

Once the application is created, simply enter the suggested commands

in the command prompt: these commands are “cd reactapp”, followed by

“npm start”.

The “npm start” command starts an HTTP server based on Node.js,

which will allow you to view your React application in a web browser. The

server that’s started listens for connections on port 3000, as indicated in

the command prompt window in Figure 1-7.

Chapter 1 Day 1: Mastering Component Writing with React

13

Figure 1-7.  Starting the server containing the React application

Now, let’s establish a connection with the server by using the URL

http://localhost:3000 as shown in the window in Figure 1-8. Type this URL

into your web browser.

Chapter 1 Day 1: Mastering Component Writing with React

14

Figure 1-8.  Display of the URL http://localhost:3000

In the web browser, you will see the “reactapp” application that we

created using the “create-react-app” command.

The “reactapp” application is built with React and is located in the

“reactapp” directory. Now, let’s explore the files and directories within the

application directory.

�Analyzing the Main Files of the
React Application
The previously displayed page corresponds to the index.html page located

in the public directory of the application (with the application itself

situated in the reactapp directory).

Chapter 1 Day 1: Mastering Component Writing with React

15

The other main files of the React application are located in the src

directory of the application. In this directory, you will mainly find the

index.js and App.js files:

•	 The index.js file is the one loaded first when displaying

the index.html page.

•	 The App.js file represents the App component of the

application, which serves as the global component.

This file is loaded from the index.js file.

In the following sections, you’ll find the contents of these two files,

starting with the index.js file.

�Step 1: Contents of the index.js File
Let’s explore the contents of the index.js file located in the src directory of

the application.

File: src/index.js

import React from 'react';

import ReactDOM from 'react-dom/client';

import './index.css';

import App from './App';

import reportWebVitals from './reportWebVitals';

const root = ReactDOM.createRoot(document.

getElementById('root'));

root.render(

 <React.StrictMode>

 <App />

 </React.StrictMode>

);

Chapter 1 Day 1: Mastering Component Writing with React

16

// �If you want to start measuring performance in your app, pass

a function

// to log results (for example: reportWebVitals(console.log))

// �or send to an analytics endpoint. Learn more: https://bit.ly/

CRA-vitals

reportWebVitals();

Let’s describe the code written in the previous index.js file. We start by

importing the core React modules, namely, React and ReactDOM, into the

index.js file using JavaScript’s import statements.

The import statement in JavaScript is used to import one or more

functionalities from a directory or file where they are defined. Once these

functionalities are imported, they become accessible within the module

that imports them.

The React and ReactDOM modules are located in the node_modules

directory, which is automatically created when the “reactapp” application

is generated using the create-react-app command:

•	 The React module contains the code of the React

library.

•	 The ReactDOM module is specialized for using React in

HTML pages (React can also be used in native mobile

applications under the name React Native).

Next, we import the App component from the App.js file using the

import statement: “import App from ‘./App’”. We can see the usage of the

App component in the parameter of the root.render() method. The root.

render() method is used to indicate the HTML code that will be inserted

into the HTML element with the id “root”.

The App component is written here in the form <App />, which is

the syntax used for writing components with React. This writing style is

called JSX and is similar to XML. Notice that we write JSX code without

surrounding it with quotes (we write <App /> instead of “<App />”),

Chapter 1 Day 1: Mastering Component Writing with React

17

because what we are writing here is not a string but represents JSX code,

which is then transformed into HTML code during the execution of the

React program.

The <React.StrictMode> element included in the JSX code of the index.

js file allows displaying additional information in the JavaScript console

in case of errors. You can find more information at https://react.dev/

reference/react/StrictMode.

The JavaScript console is typically displayed by pressing the F12 key on

the keyboard.

The element with the id “root” is obtained with the instruction root =

ReactDOM.createRoot(document.getElementById(‘root’)). If you view the

contents of the index.html file located in the public directory, you will see

that the only HTML code in the index.html page corresponds to a <div>

element with the id “root” (written as <div id=“root”></div>). It is within

this <div> element that the HTML code created during the root.render()

method call will be inserted.

Let’s take a look at the contents of the index.html file.

�Step 2: Contents of the index.html File
Here is the content of the index.html file in the public directory of the

application, where we have highlighted the <div> element:

File: public/index.html

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8" />

 <link rel="icon" href="%PUBLIC_URL%/favicon.ico" />

 �<meta name="viewport" content="width=device-width,

initial-scale=1" />

Chapter 1 Day 1: Mastering Component Writing with React

https://react.dev/reference/react/StrictMode
https://react.dev/reference/react/StrictMode

18

 <meta name="theme-color" content="#000000" />

 <meta

 name="description"

 content="Web site created using create-react-app"

 />

 �<link rel="apple-touch-icon" href="%PUBLIC_URL%/

logo192.png" />

 <!--

 �manifest.json provides metadata used when your web app

is installed on a user’s mobile device or desktop. See

https://developers.google.com/web/fundamentals/web-app-

manifest/

 -->

 <link rel="manifest" href="%PUBLIC_URL%/manifest.json" />

 <!--

 Notice the use of %PUBLIC_URL% in the tags above.

 �It will be replaced with the URL of the `public` folder

during the build.

 �Only files inside the `public` folder can be referenced

from the HTML.

 �Unlike "/favicon.ico" or "favicon.ico", "%PUBLIC_URL%/

favicon.ico" will work correctly both with client-side

routing and a non-root public URL.

 �Learn how to configure a non-root public URL by running

`npm run build`.

 -->

 <title>React App</title>

 </head>

 <body>

Chapter 1 Day 1: Mastering Component Writing with React

19

 �<noscript>You need to enable JavaScript to run this app.</

noscript>

 <div id="root"></div>

 <!--

 This HTML file is a template.

 �If you open it directly in the browser, you will see an

empty page.

 �You can add webfonts, meta tags, or analytics to

this file.

 �The build step will place the bundled scripts into the

<body> tag.

 �To begin the development, run `npm start` or

`yarn start`.

 �To create a production bundle, use `npm run build` or

`yarn build`.

 -->

 </body>

</html>

�Step 3: Contents of the App.js File
Let’s now take a look at the contents of the App.js file, which corresponds

to the App component. This component is then used in the form <App />

in JSX (see src/index.js).

App Component (file src/App.js)

import logo from './logo.svg';

import './App.css';

function App() {

Chapter 1 Day 1: Mastering Component Writing with React

20

 return (

 <div className="App">

 <header className="App-header">

 <p>

 Edit <code>src/App.js</code> and save to reload.

 </p>

 <a

 className="App-link"

 href="https://reactjs.org"

 target="_blank"

 rel="noopener noreferrer"

 >

 Learn React

 </header>

 </div>

);

}

export default App;

Let’s describe the content of the preceding App component. It

corresponds to a function App() that returns JSX code. This JSX code will be

transformed into HTML code when the App component is rendered. The

App() function is then exported at the end of the module, making it accessible

for other modules that use it (especially in index.js as seen earlier).

Here, we can see that a React component is a simple JavaScript

function that returns the JSX code that will be rendered when the

component is displayed.

Now, let’s briefly explain what JSX syntax is in React. As it’s a

very important topic in React, the next chapter will also be entirely

dedicated to it.

Chapter 1 Day 1: Mastering Component Writing with React

21

�JSX Syntax in React
JSX code in React is a syntax that allows you to write UI elements by

combining JavaScript and HTML in a familiar and expressive way. This

makes creating UIs in React simpler and more readable.

The term JSX stands for JavaScript and XML. The XML elements used

here will either be traditional HTML elements written in XML syntax or

React components that we create ourselves.

In JSX, you can write UI elements as if you were writing HTML code,

but you can also embed JavaScript code inside these elements. This means

you can create custom components, manage application logic and state,

and interact with data using JavaScript, all while using a familiar syntax to

structure your UI.

Here’s an example of JSX in React:

File: App.js

import React from "react";

function App() {

 const name = "John Doe";

 const greeting = <h1>Hi, {name} !</h1>;

 return (

 <div>

 {greeting}

 <p>This is an example of JSX code in React..</p>

 <button>Click</button>

 </div>

);

};

export default App;

Chapter 1 Day 1: Mastering Component Writing with React

22

In this example, we have a functional component App that uses JSX to

define the structure of the user interface, corresponding here to the <div>

element returned by the function. We also use JavaScript variables (such as

“name”) to dynamically generate content in our user interface. JavaScript

variables used in the JSX code are enclosed in curly braces (like {name}) to

indicate that it’s a JavaScript statement we want to evaluate.

The JSX code is then converted into plain JavaScript code to be

executed in the browser. This means that JSX code is ultimately interpreted

as React function calls to create UI elements.

JSX code is widely used in the React ecosystem because it offers a

convenient and concise way to create user interfaces while harnessing the

power of JavaScript to manage application logic and state.

JSX code consists of traditional HTML elements like shown earlier, but

can also involve React components. Now, let’s see how to create our own

React components by following this pattern.

�Creating a First React Component
We want to create a Counter component that displays an incrementing

counter automatically every second. The component will be used in the

form <Counter />. We’ll learn step by step how to create this component.

The App.js file is modified to display the Counter component, used in

the form <Counter /> in JSX. The Counter component will be defined in

the Counter.js file, located in the same src directory as the App.js file.

Here’s the description of the App.js and Counter.js files:

App Component (file src/App.js)

import logo from './logo.svg';

import './App.css';

import Counter from "./Counter.js";

Chapter 1 Day 1: Mastering Component Writing with React

23

function App() {

 return (

 <Counter />

);

}

export default App;

Counter Component (file src/Counter.js)

function Counter() {

 var count = 0;

 return (

 <>

 The counter is set to: {count}

 </>

)

}

export default Counter;

We can make two (important) observations about the Counter

component code:

•	 We use an empty element without specifying any

tag inside it. This element ends with, and it allows

us to group one or more HTML elements or React

components inside it. The JSX code provided (as the

return value of the function) must be well-formed,

meaning it should have a root element that encloses

the other elements. We could have used <div> as the

root element, but that would create an unnecessary

Chapter 1 Day 1: Mastering Component Writing with React

24

<div> element that doesn’t need to be there. The

advantage of using is that this element won’t be

inserted into the DOM tree, unlike <div> which would

be inserted if used.

•	 We use the curly braces {} notation, here to display the

value of the “count” variable as {count}. React uses this

notation to write JavaScript expressions in the returned

JSX code. Here, we indicate {count} to obtain the value

of the “count” variable, but we could also have used

{count+10} as count+10 is also a JavaScript expression.

Let’s also modify the App.css file, which contains the defined styles in

the application. We replace the existing lines with these:

Application Styles (file src/App.css)

body {

 margin:10px;

}

A margin of 10px is specified around the HTML page to ensure that

displayed texts are not too close to the edges of the window.

The new page is displayed directly in the browser using the URL http://

localhost:3000. Below the window (by pressing the F12 key), the console

is displayed, allowing you to view texts displayed by console.log() in our

programs, as well as any informational or error messages (see Figure 1-9).

Chapter 1 Day 1: Mastering Component Writing with React

25

Figure 1-9.  Display of the Counter component

A helpful tip is displayed in the console, suggesting to download the

React DevTools utility, which allows you to visualize React components on

the displayed page.

Let’s click the link provided in the console and install this utility in the

browser being used.

Chapter 1 Day 1: Mastering Component Writing with React

26

�Step 1: Install React DevTools
React employs a set of specific tools, known as React DevTools, that

provide assistance in developing React applications.

Once React DevTools is installed (by clicking the previous link

displayed in the console), the console window will have two additional

tabs (Components and Profiler tabs) (see Figure 1-10).

Figure 1-10.  Using React DevTools

Chapter 1 Day 1: Mastering Component Writing with React

27

Let’s select the Components tab from the list. A description of the

React components used in the application will appear. The component

hierarchy of App and Counter can be found there. This will be particularly

useful during application debugging (see Figure 1-11).

Figure 1-11.  Display of components in React DevTools

Chapter 1 Day 1: Mastering Component Writing with React

28

Let’s continue writing the program. Now we need to increment the

displayed counter, which currently remains at 0. To achieve this, we will

use JavaScript’s setInterval() function.

In the following example, the code we are going to write may not be

exactly what we would write directly if we knew the internal workings

of React. However, the gradual approach we are taking will help us

understand how React works by discovering it step by step.

�Step 2: Incrementing the Counter
with setInterval()
JavaScript’s setInterval(callback, timeout) function allows us to trigger a

process at regular intervals. The process to be executed is specified in the

callback function provided as a parameter to the function. The process

will be executed at every timeout milliseconds, unless the clearInterval()

function is called to stop the recurring process.

Using setInterval() to increment the counter (file src/Counter.js)

function Counter() {

 var count = 0;

 setInterval(function() {

 count++;

 console.log("count =", count);

 }, 1000);

 return (

 <>

 The counter is set to: {count}

 </>

)

}

export default Counter;

Chapter 1 Day 1: Mastering Component Writing with React

29

Let’s run this program in the browser, displaying the console window

to view the value of the counter. This counter value is also displayed on the

HTML page using the expression {count} (see Figure 1-12).

Figure 1-12.  Incrementing the counter

Each line is displayed twice in the console, hence the number 2

displayed on the right for each line in the console. This is due to the use of

React’s strict mode, using the <React.StrictMode> tag in the index.js file.

To stop using this strict mode, simply remove the <React.StrictMode> tag

surrounding the <App/> tag in the index.js file.

Chapter 1 Day 1: Mastering Component Writing with React

30

We remove the <React.StrictMode> tag in the index.js file, which

becomes as follows:

File src/index.js

import React from 'react';

import ReactDOM from 'react-dom/client';

import './index.css';

import App from './App';

import reportWebVitals from './reportWebVitals';

const root = ReactDOM.createRoot(document.

getElementById('root'));

root.render(

 <App />

);

// �If you want to start measuring performance in your app, pass

a function

// to log results (for example: reportWebVitals(console.log))

// �or send to an analytics endpoint. Learn more:

https://bit.ly/CRA-vitals

 reportWebVitals();

Now let’s observe the values displayed in the browser window and in

the console. We can see that the value of the counter increments in the

console, but the display in the browser window remains at 0.

This is normal. To change the value of the “count” variable in the

displayed page, the “count” variable must be defined as a reactive

variable. Only reactive variables can be modified in the display, once the

component is rendered.

For this purpose, React uses a concept called “state”. The state in

a component represents the set of reactive variables defined in that

component.

Chapter 1 Day 1: Mastering Component Writing with React

31

To define a reactive variable in a component, we use the useState()

method defined in React. Let’s now see how to use the useState() method

in a component.

�Step 3: Using the useState() Method
in a Component
The useState() method allows us to define a reactive variable. A reactive

variable will be used to display a value in the HTML page, and since the

variable is reactive, it can be modified later in the display.

Modifying the value of the reactive variable in the program will

automatically update its display. Note that if the variable is not reactive,

changing its value will not affect the display.

When a reactive variable is modified in a component, the entire

component is re-rendered. The delay between modifying the reactive

variable and re-rendering the component is managed by React, and

although it’s very short, it’s not instantaneous.

The modification of reactive variables in the display is carried out

during the reconciliation process we mentioned earlier.

The useState() method, used to define a reactive variable, is called a

“hook”. We will see later that React defines other hooks that will be useful

in our programs.

To use the useState() method in a component, simply import it from

the “react” module defined in React. The useState() method is indeed

exported by the standard “react” module and can be used in a component.

Using the useState() method (file src/Counter.js)

import { useState } from "react";

function Counter() {

 const [count, setCount] = useState(0);

Chapter 1 Day 1: Mastering Component Writing with React

32

 setInterval(function() {

 setCount(count+1);

 console.log("count =", count);

 }, 1000);

 return (

 <>

 The counter is set to: {count}

 </>

)

}

export default Counter;

Now let’s explain the previous code:

The import statement allows access to the useState() method defined

in the “react” module.

The useState(initValue) method is used to define a reactive variable

with an initial value of initValue. The useState() method returns an array

containing two values:

•	 The first value corresponds to the name of the reactive

variable. In this case, the reactive variable will be

named count, and its initial value will be the one

specified in the parameter of the useState(0) call,

which is 0.

•	 The second value corresponds to an update function

for the reactive variable. The update function will be

named setCount(). Therefore, we will use this update

function and never a simple assignment like count =

count + 1, which won’t work properly with React. This

is why the previous display never changed even when

the “count” variable was incremented.

Chapter 1 Day 1: Mastering Component Writing with React

33

In summary, the “count” variable is read-only. It can only be modified

using the setCount(newValue) function. This allows React to update the

displayed component, which wouldn’t be possible by directly updating the

“count” variable.

Note that when writing the statement [count, setCount] = useState(0),

this is a JavaScript shortcut (called array destructuring). This shortcut is a

more concise way of expressing the following three lines of instructions:

Instead of using array destructuring for useState(), you could also write

the following:

Equivalent to const [count, setCount] = useState(0);

const stateCount = useState(0);

const count = stateCount[0];

const setCount = stateCount[1];

It is obviously simpler and faster to use array destructuring allowed by

JavaScript rather than the previous lines.

The variable name (here count) and the update function name (here

setCount) are arbitrary and chosen by the developer. It is customary to

choose the update function name as “set” followed by the name of the

reactive variable.

Notice again that the increment of the “count” variable is now

performed by setCount(count+1). If you write count++ instead (or

count=count+1), it still won’t work because the update of the displayed

component will not be executed.

Let’s see the result obtained in the browser window and also in the

console (Figure 1-13).

Chapter 1 Day 1: Mastering Component Writing with React

34

Figure 1-13.  Using useState()

Chapter 1 Day 1: Mastering Component Writing with React

35

After a certain period of time, a malfunction in the display is observed,

which is also visible in the console through the repetitive display of the

“count” variable’s value.

Indeed, the setCount() function updates the reactive variable, which

triggers the new display of the Counter component.

With each modification of the reactive variable “count”, the Counter

component updates and the Counter() function is executed again. This

initiates the start of a new timer by executing the setInterval() instruction.

As a result, the setInterval() function is executed again, causing the

counter to be displayed multiple times simultaneously. The timer set

by setInterval() should be cleared before the reactive variable “count” is

updated. The timer will be restarted during the next component display.

React has provided a way to perform a treatment at the end of

component initialization (the first display) or before or after each update

(subsequent displays, when a reactive variable of the component is

modified). We use the useEffect() method, a new hook defined by React, to

achieve this. Let’s see how to use useEffect() in our example.

�Step 4: Using the useEffect() Method
in a Component
The useEffect(callback) method defined by React allows you to group a set

of instructions to be executed during each display of a component:

•	 Either during the first display

•	 Or during subsequent updates, in the case where a

reactive variable defined by useState() is modified

The treatments to be performed during each component update are

indicated in the callback function used as a parameter for useEffect().

Chapter 1 Day 1: Mastering Component Writing with React

36

Furthermore, the useEffect() method allows for performing a treatment

before each display (i.e., before the component is updated). This is what

we’re interested in here, as we need to clear the timer before updating the

counter in the HTML page.

To perform a treatment before each component update, it is sufficient

for the useEffect() method to return a callback function. The treatment

indicated in the callback function returned by useEffect() will be executed

before each component update.

Let’s use the useEffect() method to clear the timer before each counter

display.

Using the useEffect() method (file src/Counter.js)

import { useState, useEffect } from "react";

function Counter() {

 const [count, setCount] = useState(0);

 useEffect(function() {

 var timer = setInterval(function() {

 setCount(count+1);

 console.log("count =", count);

 }, 1000);

 // If a function is returned by useEffect(),

 // it allows performing a treatment

 // before each component update

 return function() {

 clearInterval(timer);

 }

 });

Chapter 1 Day 1: Mastering Component Writing with React

37

 return (

 <>

 The counter is set to: {count}

 </>

)

}

export default Counter;

Let’s explain the previous lines of code:

The useEffect() method is imported from the “react” module, making it

usable in the component.

We incorporate the setInterval() method within the callback function

of the useEffect(callback) method. We retrieve the value of the timer

returned by setInterval() so that we can use this timer argument in the

clearInterval(timer) function call.

Note that the clearInterval() function is used within the callback

function returned by useEffect(). This ensures that the timer is cleared

before the component is updated. The timer will be reactivated in the

subsequent component update.

Let’s verify that the counter is now functioning correctly (see

Figure 1-14).

Chapter 1 Day 1: Mastering Component Writing with React

38

Figure 1-14.  Using useEffect()

The counter increments gradually. However, there is a mismatch

between the value displayed on the page (here the value 10) and the

one shown in the console (here the value 9). This is due to the fact that

updating the reactive variable “count” using the “setCount(value)”

statement is not immediate but asynchronous.

Chapter 1 Day 1: Mastering Component Writing with React

39

We can verify this by updating the value of “count” twice successively

within the useEffect() function.

Double increment of “count” in useEffect() (file src/Counter.js)

import { useState, useEffect } from "react";

function Counter() {

 const [count, setCount] = useState(0);

 useEffect(function() {

 var timer = setInterval(function() {

 setCount(count+1); // 1st increment

 setCount(count+1); // 2nd increment

 console.log("count =", count);

 }, 1000);

 // If a function is returned by useEffect(),

 // it allows performing a treatment

 // before each component update

 return function() {

 clearInterval(timer);

 }

 });

 return (

 <>

 The counter is set to: {count}

 </>

)

}

export default Counter;

One might expect the counter to increment by 2 every second.

However, as shown in Figure 1-15, the counter only increments by 1.

Chapter 1 Day 1: Mastering Component Writing with React

40

Figure 1-15.  The counter increments by 1 instead of 2 every second

The reason for the increment of 1 instead of 2 is that, during the second

call to setCount(), we are using a value of the “count” variable that is

not the latest updated value. Thus, the second increment uses a value of

Chapter 1 Day 1: Mastering Component Writing with React

41

“count” that is not the one obtained as a result of the update during the

first increment, but rather the one obtained during the initialization of the

callback function.

To handle these cases where we need the latest value of the reactive

variable, we use another form of the setCount() function that takes

a callback function as a parameter, in the form setCount(callback),

instead of the setCount(value) form. The callback function has the form

callback(value), where value is the current value of the variable. The

callback function should return the new value of the variable (calculated

from the current value value passed as a parameter).

We write it like this:

Using the setCount(callback) function (file src/Counter.js)

import { useState, useEffect } from "react";

function Counter() {

 const [count, setCount] = useState(0);

 useEffect(function() {

 var timer = setInterval(function() {

 // Instead of:

 // setCount(count+1); // 1st increment

 // setCount(count+1); // 2nd increment

 // We write:

 setCount((count)=>count+1); // 1st increment

 setCount((count)=>count+1); // 2nd increment

 console.log("count =", count);

 }, 1000);

 // If a function is returned by useEffect(),

 // it allows performing a treatment

 // before each component update

 return function() {

Chapter 1 Day 1: Mastering Component Writing with React

42

 clearInterval(timer);

 }

 });

 return (

 <>

 The counter is set to: {count}

 </>

)

}

export default Counter;

The “count” parameter of the callback function here represents the

current value of the “count” variable. The callback function here returns

count+1. This returned value is used in the second call to setCount(),

which thus uses the value that was updated during the first call to

setCount().

We can see in Figure 1-16 that the counter is now incremented by 2

every second.

Chapter 1 Day 1: Mastering Component Writing with React

43

Figure 1-16.  The counter is incremented by 2 every second

Using a callback function to update a reactive variable (via

setCount(callback)) is necessary when the variable update is performed

within a callback function such as the one used by useEffect(callback).

This approach allows us to use the most recent value of the reactive

variable, rather than an old value.

Chapter 1 Day 1: Mastering Component Writing with React

44

Let’s now look at how it’s possible to pass parameters to components.

For this purpose, we use attributes, also known as props.

�Step 5: Using Attributes in Components
It’s possible to pass parameters to a component. Each parameter is

defined as an attribute in the component. We also use the term property to

designate them. We will see how to write it in the following text.

Consider the previous Counter component, for which we want to

specify an initial value to start counting, instead of the value 0 as before.

We use the attribute “init” (or any other name) for this purpose. The value

of the “init” attribute of the Counter component is then written in the App

component in one of the following forms:

•	 As a string (enclosed in single or double quotes)

•	 As a JavaScript value (enclosed in curly braces { and })

Using the value of the “init” attribute as a string (file src/App.js)

<Counter init="5" />

Using the value of the “init” attribute as a JavaScript value (file

src/App.js)

<Counter init={5} />

If we don’t use the “init” attribute in writing the Counter component,

consider that the value of the attribute will be replaced by the value 0. This

will provide more flexibility when using the Counter component.

Chapter 1 Day 1: Mastering Component Writing with React

45

Without using the “init” attribute, which will default to 0 (file

src/App.js)

<Counter />

Let’s see how to achieve this by writing the Counter component as

follows. Attributes are passed as parameters in the component’s creation

function, in the form of an object (here named “props”, meaning properties

or attributes).

The Counter component becomes as follows:

Taking into account the “init” attribute in the component (file src/

Counter.js)

import { useState, useEffect } from "react";

function Counter(props) {

 var init = parseInt(props.init || 0);

 const [count, setCount] = useState(init);

 useEffect(function() {

 var timer = setInterval(function() {

 setCount((count)=>count+1);

 }, 1000);

 return function() {

 clearInterval(timer);

 }

 });

 return (

Chapter 1 Day 1: Mastering Component Writing with React

46

 <>

 Initial value of the counter is: {init}

 The counter is: {count}

 </>

)

}

export default Counter;

The Counter() function that defines the component now includes the

“props” parameter, making it Counter(props). This allows access to the

value props.init within the component’s body, thereby accessing the value

of the “init” attribute used in the Counter component.

The value props.init is used to initialize the initial value of the reactive

variable “count” in the state, instead of the value 0 as before, by writing the

following:

Initializing the counter with the “init” variable

const [count, setCount] = useState(init);

We also use the parseInt(props.init) function to retrieve the specified

“init” value as an integer; otherwise, we would get a value as a string if

written in the form <Counter init=“5” />. The statement props.init || 0

initializes to the value 0 if the “init” attribute is not present when using the

component.

Note that if we write <Counter init={5} /> using a JavaScript value

within curly braces, the parseInt() function becomes optional (and even

unnecessary) in this case, as the value 5 is passed to the component, not

the string “5”.

Let’s modify the App.js file of the App component to use the different

forms of writing the “init” attribute of the Counter component. We will

Chapter 1 Day 1: Mastering Component Writing with React

47

insert multiple Counter components on the page, each initialized to a

different value.

Using the Counter component with the “init” attribute (file src/App.js)

import logo from './logo.svg';

import './App.css';

import Counter from "./Counter.js";

function App() {

 return (

 <>

 �Counter defined by {"<Counter init='10'/>"} :

<Counter init='10' />

 �Counter defined by {"<Counter init={5} />"} :

<Counter init={5} />

 �Counter defined by {"<Counter />"} :
 <Counter />

 </>

)

}

export default App;

Note that in the JSX code returned by the component, we write a string

surrounded by curly braces (like {“<Counter />”}), because to interpret a

string containing a component as a string within JSX code, it needs to be

enclosed in curly braces (otherwise, it would be replaced with the HTML

code of the component).

Chapter 1 Day 1: Mastering Component Writing with React

48

Figure 1-17.  Using attributes in a component

As seen in Figure 1-17, the various forms of attribute value writing are

correctly handled, producing the expected results.

It’s common to use ES6 syntax by specifying the component attributes

as named properties of a JavaScript object.

Instead of writing

First form of writing (without using ES6 syntax)

function Counter(props) {

 var init = parseInt(props.init || 0);

One can also write, in an even more readable way

Chapter 1 Day 1: Mastering Component Writing with React

49

Second form of writing (using ES6 syntax)

function Counter({init}) {

 init = parseInt(init || 0);

Using the attributes in the form of an object {init} instead of the props

parameter allows us to directly use them within the component. Therefore,

we write init instead of props.init when using the “init” attribute in the

component.

�Conclusion
The first day of our React learning journey was dedicated to creating

React components. We learned that components are the fundamental

building blocks of React, enabling us to create reusable and modular user

interfaces. We also discovered how to create a React component using JSX

syntax and how the component’s properties and state can be leveraged to

make our user interface dynamic.

Lastly, we witnessed how React is a flexible and powerful library for

crafting dynamic and responsive user interfaces. We are ready to continue

our journey with React and further explore key concepts of this exciting

JavaScript library, especially delving into how to write JSX code more

effectively within components.

Chapter 1 Day 1: Mastering Component Writing with React

51

CHAPTER 2

Day 2: Mastering JSX
Code Writing in a
React Component
In this chapter, we will delve deeper into our understanding of JSX, a

syntax used to create React components, by using it to create complex

components.

JSX is a syntax extension that allows developers to create React

components intuitively and in a readable manner. By using JSX, you can

combine HTML and JavaScript to create more sophisticated components

tailored to the tasks you want to achieve.

Ready to enhance your React skills? Let’s get started!

�Using the React.Fragment Component
The JSX code of a React component must have a root element that

encapsulates all its descendants; otherwise, a runtime error occurs.

To address this, one could wrap the JSX elements included in the

component with an enclosing <div> element. This enclosing <div>

element, containing all the HTML elements of the component, will be the

one returned by the function that describes the component.

© Eric Sarrion 2023
E. Sarrion, Master React in 5 Days, https://doi.org/10.1007/978-1-4842-9855-8_2

https://doi.org/10.1007/978-1-4842-9855-8_2#DOI

52

However, this <div> element is artificially added in this case because

it’s not actually necessary (except for encapsulation to avoid the error).

To avoid the need to use an unnecessary <div> element in JSX code,

React has created a special element that serves to encapsulate all elements

in this root element. This root element won’t be displayed in the HTML

code returned by the component. This is the role of the React.Fragment

component (also referred to as an element).

The React.Fragment component is used in one of the following

three forms:

•	 Directly by using the <React.Fragment> tag

•	 Directly by using the <Fragment> tag

•	 By using the <> tag, which is a shorthand version of

the previous two (we had already used this tag in the

previous chapter)

Let’s see how to use each of these tags in JSX code.

�Step 1: Using the <React.Fragment> Tag
Here’s how to use the <React.Fragment> tag in the JSX code of a

component.

Using the <React.Fragment> tag (file src/App.js)

import logo from './logo.svg';

import './App.css';

import Counter from "./Counter.js";

import React from "react";

function App() {

 return (

 <React.Fragment>

Chapter 2 Day 2: Mastering JSX Code Writing in a React Component

53

 �{ /* JSX code of the components returned by the

component */ }

 �Counter defined by {"<Counter init='10'/>"} :

<Counter init='10' />

 �Counter defined by {"<Counter init={5} />"} :

<Counter init={5} />

 �Counter defined by {"<Counter />"} :
 <Counter />

 </React.Fragment>

)

}

export default App;

The React.Fragment component is defined in the “react” module,

which needs to be included in order to use this component (hence the

import React from “react” statement).

The code placed in comments is surrounded by /* and */ as well as

curly braces { and }, as in the line { /* JSX code of the components returned

by the component */ }. These curly braces are necessary to indicate

that what’s inside corresponds to JavaScript code (a comment is indeed

JavaScript code).

Note that the comment is written between /* and */ because if // is

used, in that case, the closing curly brace } must be on a separate line

(otherwise it would be seen as part of the comment and wouldn’t be

considered to end the JavaScript code).

�Step 2: Using the <Fragment> Tag
You can also use the <Fragment> tag, which is synonymous with <React.

Fragment>. You would write it as follows:

Chapter 2 Day 2: Mastering JSX Code Writing in a React Component

54

Using the <Fragment> tag (src/App.js file)

import logo from './logo.svg';

import './App.css';

import Counter from "./Counter.js";

// import React from "react";

import {Fragment } from "react";

function App() {

 return (

 <Fragment>

 �{ /* JSX code of the components returned by the

component */ }

 �Counter defined by {"<Counter init='10'/>"} :

<Counter init='10' />

 �Counter defined by {"<Counter init={5} />"} :

<Counter init={5} />

 �Counter defined by {"<Counter />"} :
 <Counter />

 </Fragment>

)

}

export default App;

We replace the inclusion of the React module with that of the Fragment

feature, but since this feature is not the default export in the “react”

module, it’s necessary to name it by enclosing its name in curly braces, in

the form import {Fragment} from “react”.

�Step 3: Using the <> Tag
Let’s write the same code using the <> tag, which is the condensed

equivalent of <React.Fragment> or <Fragment>:

Chapter 2 Day 2: Mastering JSX Code Writing in a React Component

55

Using the <> tag (src/App.js file)

import logo from './logo.svg';

import './App.css';

import Counter from "./Counter.js";

// import React from "react";

// import {Fragment } from "react";

function App() {

 return (

 <>

 �{ /* JSX code of the components returned by the

component */ }

 �Counter defined by {"<Counter init='10'/>"} :

<Counter init='10' />

 �Counter defined by {"<Counter init={5} />"} :

<Counter init={5} />

 �Counter defined by {"<Counter />"} :
 <Counter />

 </>

)

}

export default App;

Inclusion from the “react” module is no longer necessary here since

the React.Fragment component is not used directly.

Instead, we will use <> and </> to wrap multiple components.

However, it is sometimes necessary to use React.Fragment directly, as we

will see in the following texts (in cases where we use the key attribute for

an element in a list).

Chapter 2 Day 2: Mastering JSX Code Writing in a React Component

56

�Inserting JavaScript Code into JSX
It’s possible to write JavaScript code within JSX, provided that the final

result is JSX code. This means that the JavaScript code we write must

return JSX code, which will be combined with any existing JSX code. All

JSX code will then be transformed into HTML code and displayed in the

browser.

The JavaScript code we write must be enclosed in curly braces { and };

otherwise, it will be interpreted as regular HTML code.

Let’s see how to write the main forms of instructions in JSX, namely,

conditions and processing loops.

�Writing a Condition in JSX
First, let’s show how to write a conditional test that returns different JSX

code depending on whether the condition is true or false.

We’ll use the previous counters as an example, adding an “end”

attribute to the Counter component to indicate at which value we want

the counter to stop. If the “end” attribute is not specified in the component

or if it’s set to 0, the counter does not stop. The end value of the counter

is displayed below it, with the text “Counter in progress” if the counter

is running or the text “Counter stopped” if the counter is stopped. This

corresponds to the condition that we need to write in JSX.

The App.js file containing the counters is as follows:

Using the end attribute in counters (src/App.js file)

import logo from './logo.svg';

import './App.css';

import Counter from "./Counter.js";

function App() {

 return (

Chapter 2 Day 2: Mastering JSX Code Writing in a React Component

57

 <>

 �{ /* JSX code of the components returned by the

component */ }

 �Counter defined by {"<Counter init='5'

end='10'/>"} :

 <Counter init='5' end='10' />

 �Counter defined by {"<Counter init={5} end={15} />"}

:

 <Counter init={5} end={15} />

 Counter defined by {"<Counter />"} :

 <Counter />

 </>

)

}

export default App;

The first counter goes from 5 to 10, the second from 5 to 15, and the

third from 0 to infinity.

The Counter component is modified to take into account the “end”

attribute. This can be done using one of the following two methods:

•	 Either by using an immediately invoked JavaScript

function

•	 Or by using the JavaScript ternary operator

Let’s first use an immediately invoked JavaScript function.

Chapter 2 Day 2: Mastering JSX Code Writing in a React Component

58

�Step 1: Using an Immediately
Invoked JavaScript Function to Write
the Conditional Test
The first way to write the condition is to integrate it into an immediately

invoked JavaScript function. Calling the function immediately generates

the JSX code to be used.

Considering the “end” attribute in the Counter component (src/

Counter.js file)

import { useState, useEffect } from "react";

function Counter({init, end}) {

 init = parseInt(init || 0);

 end = parseInt(end || 0);

 const [count, setCount] = useState(init);

 useEffect(function() {

 if (end && count >= end) return;

 var timer = setInterval(function() {

 setCount((count)=>count+1);

 }, 1000);

 return function() {

 clearInterval(timer);

 }

 });

 return (

 <>

 Initial value of the counter is: {init}

 End of the counter at: {end}

Chapter 2 Day 2: Mastering JSX Code Writing in a React Component

59

 The counter is: {count}

 {

 (function(){

 �if (end && count >= end) return Counter stopped;

 else return <i>Counter in progress</i>;

 })()

 }

 </>

)

}

export default Counter;

Let’s explain these few lines of code here:

We provide the { init, end } component parameters for the two

attributes, init and end, used by the component. The value of end is then

displayed in the JSX code of the component.

We display the text “Counter stopped” or “Counter in progress” based

on whether the current value of the counter (variable count) is greater than

or equal to end or not.

The interesting part involves writing the conditional test. It is

integrated into an immediately executed JavaScript function (hence the

() at the end of it). Indeed, the JSX code displayed in the component

must be the result of one or more JavaScript instructions, which is why

an immediately invoked function is used here (which in turn returns the

JSX code).

After a few seconds, the first two counters are stopped while the third

one continues indefinitely (see Figure 2-1).

Chapter 2 Day 2: Mastering JSX Code Writing in a React Component

60

Figure 2-1.  Using a conditional test to display JSX code

Note that the immediately invoked function, which returns JSX code,

can be replaced by a simple test written in the following form using the

JavaScript ternary operator, denoted by a question mark. Let’s examine

this now.

Chapter 2 Day 2: Mastering JSX Code Writing in a React Component

61

�Step 2: Using the JavaScript Ternary
Operator to Write the Conditional Test
The second form of writing a conditional test involves using the JavaScript

ternary operator. It is written in the following form:

Using the JavaScript ternary operator

condition ? Statement 1 : Statement 2

Statement 1 is executed if the condition is true, while statement 2 is

executed if the condition is false.

The conditional test previously written using an immediately invoked

function (see previous section) can then be written as follows:

Writing a test with the ? operator (called the ternary operator) (src/

Counter.js file)

(end && count >= end) ? Counter stopped : <i>Counter in

progress</i>

If the expressed condition is true, the result of the block of instructions

is the first JSX code written (the one after the ? but before the :); otherwise,

it’s the second one (after the :).

The Counter component file becomes as follows:

Counter component using the ternary operator (src/Counter.js file)

import { useState, useEffect } from "react";

function Counter({init, end}) {

 init = parseInt(init || 0);

 end = parseInt(end || 0);

 const [count, setCount] = useState(init);

 useEffect(function() {

 if (end && count >= end) return;

Chapter 2 Day 2: Mastering JSX Code Writing in a React Component

62

 var timer = setInterval(function() {

 setCount((count)=>count+1);

 }, 1000);

 return function() {

 clearInterval(timer);

 }

 });

 return (

 <>

 Initial value of the counter is: {init}

 End of the counter at: {end}

 The counter is: {count}

 {

 �(end && count >= end) ? Counter stopped :

<i>Counter in progress</i>

 }

 </>

)

}

export default Counter;

This second form of writing (with the ternary operator rather than

immediately invoked function) is the most commonly used as it’s the

simplest to write.

To obtain JSX instructions as a result of a conditional test, never

directly use an if(condition) statement in a block of JavaScript code that is

not encapsulated in an immediately invoked function; otherwise, there is

no way to return the result.

Chapter 2 Day 2: Mastering JSX Code Writing in a React Component

63

We have seen how to write conditions, now let’s explore how to

perform processing loops.

�Writing a Loop in JSX
Continuing our study of JSX, let’s demonstrate how to write a loop that

returns JSX code.

We want to display three counters (each associated with the Counter

component) using a loop in JSX. Each counter starts and ends with the

following values:

•	 The first counter starts at 5 and ends at 10. This is

equivalent to a JSX instruction of the form <Counter

init=”5” end=”10” />.

•	 The second counter starts at 5 and ends at 11. This is

equivalent to a JSX instruction of the form <Counter

init=”5” end=”11” />.

•	 The third counter starts at 5 and ends at 12. This is

equivalent to a JSX instruction of the form <Counter

init=”5” end=”12” />.

Here, we’re looping through three counters, but you could create a

loop for a larger number of elements.

To write the loop of JSX instructions, there are several possible

approaches that we’ll explain in the following texts:

•	 Using an immediately invoked function

•	 Using the map() method of the JavaScript Array class

Let’s begin by explaining this using the first solution, which

involves using an immediately invoked function to write the loop of JSX

instructions.

Chapter 2 Day 2: Mastering JSX Code Writing in a React Component

64

�Step 1: Writing the JSX Loop Using an
Immediately Invoked Function
As we saw when writing the conditional test, it’s possible to produce JSX

code using an immediately invoked function. We wrap this function in

curly braces { and }.

Since the App.js file displays the Counter components, it is this file that

is modified to write the loop of JSX instructions that display the counters.

Display three Counter components using an immediately invoked

function (file src/App.js)

import logo from './logo.svg';

import './App.css';

import Counter from "./Counter.js";

function App() {

 return (

 <>

 {

 (function() {

 var jsx = [];

 for (var i=0; i<3; i++) {

 jsx.push(

 <>

 �Counter {i} defined by {`<Counter init='5'

end='${10+i}' />`} :

 <Counter init='5' end={10+i} />

 </>

);

 }

Chapter 2 Day 2: Mastering JSX Code Writing in a React Component

65

 return jsx;

 })()

 }

 </>

)

}

export default App;

The variable jsx (of the Array class) in the immediately invoked

function is initialized to an empty array. This variable is used to

accumulate the JSX instructions that will be returned by the function.

JSX instructions are accumulated in the jsx array variable using the jsx.

push() method. The end attribute indicating the end value of the counter

corresponds to 10+0 for the first counter, 10+1 for the second, and 10+2 for

the third.

Notice the use of backticks ` and ` to open and close a string and the

use of JavaScript expressions in the form ${val} to incorporate the value of

the val variable into the string.

After running the program and stopping the first and second counters,

the displayed page is shown in Figure 2-2.

Chapter 2 Day 2: Mastering JSX Code Writing in a React Component

66

Figure 2-2.  Counters displayed by a loop

Chapter 2 Day 2: Mastering JSX Code Writing in a React Component

67

Although the program is functioning correctly, we intentionally display

the console window (by pressing the F12 key on the keyboard) because

this window contains valuable information. React recommends adding a

special attribute called key for each JSX element displayed via a loop. This

key attribute, whose value must be unique for each JSX element displayed

in the loop, allows React to handle long lists more efficiently.

Let’s immediately see how to take this valuable advice from React into

account, by showing how to use the key attribute in JSX elements displayed

by a loop.

�Step 2: Using the “key” Attribute in JSX
Elements Displayed by a Loop
Let’s see how to integrate the key attribute into each element displayed in

the list.

Using the key attribute to display each element of the list

(src/App.js file)

import logo from './logo.svg';

import './App.css';

import Counter from "./Counter.js";

import React from "react";

function App() {

 return (

 <>

 {

 (function() {

 var jsx = [];

 for (var i=0; i<3; i++) {

 jsx.push(

 <React.Fragment key={i}>

Chapter 2 Day 2: Mastering JSX Code Writing in a React Component

68

 �Counter {i} defined by {`<Counter init='5'

end='${10+i}' />`} :

 <Counter init='5' end={10+i} />

 </React.Fragment>

);

 }

 return jsx;

 })()

 }

 </>

)

}

export default App;

The key attribute can be placed on any JSX element except the one

defined by and terminated by. However, you can replace this element

with its equivalent <React.Fragment>, provided you import the React

object defined in the “react” module (hence the import React from “react”

statement).

You can verify that the list now displays in the same way, but without

any error messages in the console.

�Step 3: Important Rule About the Value
of the “key” Attribute in List Elements
The value of each key attribute must be unique in the list, and each list

element must always retain the same value for its key attribute (the one

previously assigned to it), or errors may occur.

For example, if you use the index of the element in the list as the

value of the key attribute, this could lead to potential errors. The index

Chapter 2 Day 2: Mastering JSX Code Writing in a React Component

69

of an inserted element might be the same as that of a previously deleted

element. This would cause an error because two different elements would

have had the same key attribute value in the list.

It’s also important that each list element always maintains its same key

attribute value. If the key attribute is changed for an element, React will

treat it as a new element and re-create it, which can impact performance

and cause state and rendering issues.

In summary, by following these rules of unique and stable keys, React

can efficiently optimize the update of list elements, ensuring optimal

performance and preventing display errors.

�Step 4: Writing the JSX Loop Using the
map( ) Method of the JavaScript Array Class
Now that we’ve covered the main rules for correctly using the key attribute

in lists of JSX elements, let’s explore the second way to write a loop of JSX

instructions using the map() method of the JavaScript Array class.

Indeed, the map() method of the JavaScript Array class is also

commonly used for loops that return blocks of JSX code.

The map(callback) method is used on an array, and for each element

in this array, the callback(elem) function is used to return a new element

that will replace elem in the final array returned by the map() method.

The map() method allows you to construct a new array from the

initial array. In all cases, the new array will contain the same number of

elements as the initial array (in contrast, for example, to the filter() method

of the JavaScript Array class, which can return fewer elements than in the

initial array).

Let’s use the same example as before, where we displayed three

counters with different end values.

Chapter 2 Day 2: Mastering JSX Code Writing in a React Component

70

Instead of using an immediately invoked function as before, let’s now

use the map() method to loop from 0 to 2 inclusive. The map() method will

return each list element that will be displayed:

Using the map() method to create the list in JSX (src/App.js file)

import logo from './logo.svg';

import './App.css';

import Counter from "./Counter.js";

import React from "react";

function App() {

 return (

 <>

 {

 [0, 1, 2].map(function(i) {

 return (

 <React.Fragment key={i}>

 �Counter {i} defined by {`<Counter init='5'

end='${10+i}' />`} :

 <Counter init='5' end={10+i} />

 </React.Fragment>

)

 })

 }

 </>

)

}

export default App;

Chapter 2 Day 2: Mastering JSX Code Writing in a React Component

71

Each element of the initial array [0, 1, 2] is passed to the callback

function indicated in the map(callback) method. The callback function

returns a block of JSX code (the same one we constructed in the previous

section with a for loop). The new array constructed as a result of the map()

method call will be used to display the App component.

Of course, we’re using the React.Fragment component with the key

attribute, as explained in the previous sections.

�Step 5: Using the map( ) Method to Display
Large Lists of Elements
Let’s now provide some advice for cases where you want to loop using the

map() method over a larger number of elements.

We’ll explain as follows how to loop over ten elements using the map()

method, but the principle is the same for any number of elements.

So, to loop over ten elements, instead of writing an array of ten

elements like [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], you can write

Equivalent to [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

[...Array(10).keys()]

Indeed, Array(10) creates an array of ten empty elements (with a value

of undefined). The keys() method on this array returns an Array Iterator

object containing keys for each index of the array (i.e., the values 0, 1, 2, …,

9 corresponding to the indices in the array). The spread operator ... in front

lists these values, while the square brackets [and] transform this result

into a JavaScript array.

Finally, if you want to start at 1 instead of 0, you can use the slice()

method, like this

Equivalent to [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

[...Array(11).keys()].slice(1)

Chapter 2 Day 2: Mastering JSX Code Writing in a React Component

72

Indeed, the slice(1) method allows you to remove the first element

from the array (the one containing the value 0). To obtain a sequence of 10

values, you can create an array of 11 elements and keep only the last 10 by

removing the first one.

�Using Styles in JSX
To conclude our study of JSX, let’s see how to write styles in HTML

elements using JSX. For this purpose, we use the style attribute, whose

value should be a JavaScript object representing the different style

properties and values of the HTML element.

For example, you can specify { color: “red”, fontSize: “15px” }.

The CSS font-size property is written here as fontSize (camelCase

notation) when writing the style.

Notice that in JSX, you write style={{ color: “red”, fontSize: “15px” }},

using double curly braces. The first { indicates that you’re using JavaScript

code within JSX, while the second { indicates the beginning of the

JavaScript object being used.

The Counter component that displays the text “Counter stopped” in

red with a font size of 20px then becomes

Displaying a style in a JSX element (src/Counter.js file)

import { useState, useEffect } from "react";

function Counter({init, end}) {

 init = parseInt(init || 0);

 end = parseInt(end || 0);

 const [count, setCount] = useState(init);

 useEffect(function() {

 if (end && count >= end) return;

 var timer = setInterval(function() {

Chapter 2 Day 2: Mastering JSX Code Writing in a React Component

73

 setCount((count)=>count+1);

 }, 1000);

 return function() {

 clearInterval(timer);

 }

 });

 return (

 <>

 Initial value of the counter is: {init}

 End of the counter at: {end}

 The counter is: {count}

 {

 �(end && count >= end) ? <b style={{color:"red",

fontSize:"20px"}}>Counter stopped :

 �<i>Counter in

progress</i>

 }

 </>

)

}

export default Counter;

When the first counter is stopped and the others are still in progress,

the display becomes as shown in Figure 2-3.

Chapter 2 Day 2: Mastering JSX Code Writing in a React Component

74

Figure 2-3.  Using a style in a component

The text “Counter stopped” in the first counter is displayed in red with

a font size of 20px.

Chapter 2 Day 2: Mastering JSX Code Writing in a React Component

75

�Conclusion
The second day of our React learning journey was dedicated to writing JSX

code within a React component. We learned how to integrate JavaScript

code into JSX to make our user interface more dynamic, using conditional

tests and processing loops.

We are now ready to continue our learning journey with React and

explore further possibilities offered by this exciting JavaScript library,

particularly by learning how to manage user interface events.

Chapter 2 Day 2: Mastering JSX Code Writing in a React Component

77

CHAPTER 3

Day 3: Mastering
Event Handling in a
React Component
In this chapter, we will learn how to handle events in React components.

Events are actions triggered by the user, such as clicking a button or

entering text into a form. In React, you can add event handlers to your

elements to control their behavior in response to user actions.

Throughout this chapter, you will learn

•	 How to handle events in React components

•	 How to manipulate the state of your application in

response to user interface events

Ready to add interactivity to your React applications? Let’s get started!

© Eric Sarrion 2023
E. Sarrion, Master React in 5 Days, https://doi.org/10.1007/978-1-4842-9855-8_3

https://doi.org/10.1007/978-1-4842-9855-8_3#DOI

78

�Handling Click Events on a Button
Let’s begin our study of event handling in React by managing click events

on a button within a component. We’ll see how to

•	 Capture the event in the JSX code of the component

•	 Perform the processing associated with the button click

•	 Manage reactive variables used within the component

First, let’s explore how an event is handled in a React component.

�Step 1: Capturing an Event in a
React Component
Let’s now delve into how React enables event handling within

components. Capturing an event is done directly in the JSX code of the

component. If you want to learn more or understand JSX code better, refer

to the previous chapter, which explains it in detail.

To capture events in JSX code, you use HTML event attributes by

converting their names to camelCase in JSX code.

For example, you would use the onClick attribute to handle a click

on an HTML element, or onDoubleClick to handle a double-click. These

attribute names correspond to the HTML onclick and ondoubleclick

attributes.

The value associated with the attribute points to a JavaScript

processing function defined in the React component. In the attribute’s

value, you enclose the function name with curly braces { } (because the

function name is treated as a JavaScript expression, hence the surrounding

curly braces).

Chapter 3 Day 3: Mastering Event Handling in a React Component

79

For instance, you would write onClick={handleClick} to have the click

processing performed in the handleClick() function. This processing

function will be defined within the component and can access reactive

variables defined by useState() within the component.

Note that you don’t write onClick={handleClick()}. This would mean

executing the handleClick() function on every component render, while

we want it to be executed only on each button click.

Let’s see a few examples of how to handle events in a React

component.

�Step 2: Incrementing a Counter by Clicking
an Increment Button
To learn how to handle events in React components, let’s start with

something simple.

We want to use the counter from the previous chapter (Counter

component) but manage its increment by clicking a “count+1” button,

instead of incrementing it periodically every second.

The Counter component is modified to handle the click on the

“count+1” button. Here, the increment is no longer performed at regular

intervals as before but rather triggered by a click on the “count+1” button.

The modified Counter component, now handling the click on the

“count+1” button, is as follows:

Insertion of a button for incrementing the counter (src/Counter.js file)

import { useState } from "react";

function Counter({init, end}) {

 init = parseInt(init || 0);

 end = parseInt(end || 0);

 const [count, setCount] = useState(init);

Chapter 3 Day 3: Mastering Event Handling in a React Component

80

 function incr() {

 setCount((count)=>count+1);

 }

 return (

 <>

 Initial value of the counter is: {init}

 End of the counter at: {end}

 The counter is: {count}

 {

 (count < end) ?

 <>

 <i>Counter in progress</i>

 <button onClick={incr}>count+1</button>

 </>:

 Counter stopped

 }

 </>

)

}

export default Counter;

Let’s emphasize once again on the syntax of the attribute value: you

write onClick={incr} and not onClick={incr()}.

Indeed, if you write incr(), it would mean that the function incr() is

automatically called every time the component is rendered (because any

function call within JSX code is executed during component rendering). To

prevent this and ensure that the incr() call only happens upon clicking the

button, you simply write {incr}. This way, you’re providing a reference to

the click event handling function.

Chapter 3 Day 3: Mastering Event Handling in a React Component

81

The App component responsible for displaying the counters remains

the same (it’s the same file as in the previous chapter):

App component displaying the three counters (src/App.js file)

import logo from './logo.svg';

import './App.css';

import Counter from "./Counter.js";

import React from "react";

function App() {

 return (

 <>

 {

 [0, 1, 2].map(function(i) {

 return (

 <React.Fragment key={i}>

 �Counter {i} defined by {`<Counter init='5'

end='${10+i}' />`} :

 <Counter init='5' end={10+i} />

 </React.Fragment>

)

 })

 }

 </>

)

}

export default App;

By incrementing the first counter to its maximum value (10) through

clicking the button, the “count+1” button of that counter disappears

(Figure 3-1).

Chapter 3 Day 3: Mastering Event Handling in a React Component

82

Figure 3-1.  Clicks on the “count+1” button

The program functions correctly, and clicking the “count+1” buttons

produces the expected result.

Now let’s look at another example that allows starting a counter,

automatically incrementing it by 1 every second.

Chapter 3 Day 3: Mastering Event Handling in a React Component

83

�Step 3: Starting a Periodic Counter by
Clicking a Start Button
Instead of clicking the “count+1” button to modify the counter, we now use

a Start button that initiates counting until the final value is reached. The

Start button disappears when clicked and reappears once the final value is

reached, allowing the initiation of a new count.

To achieve this, we utilize a new reactive variable called “start” which

indicates whether the Start button should be displayed (start is true) or not

(start is false). The Start button is displayed during the initial component

rendering (start is initialized to true) and then disappears as soon as the

counter begins counting toward its final value (start is set to false).

Counter with Start button (file src/Counter.js)

import { useState, useEffect } from "react";

function Counter({init, end}) {

 init = parseInt(init || 0);

 end = parseInt(end || 0);

 const [count, setCount] = useState(init);

 �const [start, setStart] = useState(true); // true for

displaying the Start button

 useEffect(function() {

 if (!start) {

 // �The Start button is not displayed; you can initiate

the timer.

 var timer = setInterval(function() {

 setCount((count)=>{

 var newCount = count+1;

 if (newCount >= end) setStart(true);

 return newCount;

Chapter 3 Day 3: Mastering Event Handling in a React Component

84

 });

 }, 1000);

 }

 return function() {

 clearInterval(timer);

 }

 });

 function restart() {

 setStart(false); // Hide the Start button

 setCount(init); // Reset "count" to the initial value.

 }

 return (

 <>

 Initial value of the counter is: {init}

 End of the counter at: {end}

 The counter is: {count}

 {

 (start) ?

 <>

 Counter stopped

 <button onClick={restart}>Start</button>

 </>:

 <i>Counter in progress</i>

 }

 </>

)

}

export default Counter;

Chapter 3 Day 3: Mastering Event Handling in a React Component

85

As explained in Chapter 1, we utilize the useEffect() method to

perform an action upon component rendering or update. This enables the

initiation of the timer, incrementing the counter every second.

The restart() function manages the click on the Start button. It hides

the Start button (start is set to false) and resets the counter “count” to the

initial value “init”.

Upon program launch, the counters are paused and ready to start

(Figure 3-2).

Figure 3-2.  Counters are ready to start

Chapter 3 Day 3: Mastering Event Handling in a React Component

https://doi.org/10.1007/978-1-4842-9855-8_1

86

Let’s click the Start button associated with the second counter; it will

start counting until it reaches its end value. Here’s the display in progress

(Figure 3-3).

Figure 3-3.  The second counter is in progress

When the counter reaches the final value (here, 11 for the second

counter), the display becomes as shown in Figure 3-4.

Chapter 3 Day 3: Mastering Event Handling in a React Component

87

Figure 3-4.  The second counter is now stopped

Once the counter reaches its maximum value, the Start button is

displayed again. Clicking this Start button restarts the counter.

Let’s now enhance the program by allowing the counter to start

automatically the first time.

Chapter 3 Day 3: Mastering Event Handling in a React Component

88

�Step 4: Automatically Start the Counter
the First Time
We want to introduce a new attribute in the Counter component called

“autostart”. This “autostart” attribute indicates whether we want the

counter to start automatically the first time (without needing to click the

Start button the first time) or not:

•	 We’ll write autostart=“1” to automatically start the

counter.

•	 We’ll write autostart=“0” to not start the counter

automatically.

•	 If the “autostart” attribute is not specified, it is assumed

to have a value of 0.

We want only the first two displayed counters to start automatically,

while the following counters will need to be started by clicking their

respective Start buttons.

The App component is modified to use the “autostart” attribute in the

Counter component.

Using the “autostart” attribute in the Counter components

(file src/App.js)

import logo from './logo.svg';

import './App.css';

import Counter from "./Counter.js";

import React from "react";

function App() {

 return (

 <>

 {

Chapter 3 Day 3: Mastering Event Handling in a React Component

89

 [...Array(3).keys()].map(function(i) {

 �var val = i < 2 ? '1' : '0'; // Value of the

"autostart" attribute

 return (

 <React.Fragment key={i}>

 �Counter {i} defined by {`<Counter autostart=

'${val}' init='5' end='${10+i}' />`} :

 <Counter autostart={val} init='5' end={10+i} />

 </React.Fragment>

)

 })

 }

 </>

)

}

export default App;

The value of the “autostart” attribute is calculated based on the value

of the displayed counter’s index i.

The Counter component is modified to take the “autostart” attribute

into account:

Using the “autostart” attribute in the Counter component

(file src/Counter.js)

import { useState, useEffect } from "react";

function Counter({init, end, autostart}) {

 init = parseInt(init || 0);

 end = parseInt(end || 0);

 autostart = parseInt(autostart || 0);

 const [count, setCount] = useState(init);

Chapter 3 Day 3: Mastering Event Handling in a React Component

90

 �const [start, setStart] = useState(true); // true for

displaying the Start button

 useEffect(function() {

 if (!start) {

 // �The Start button is not displayed; you can initiate

the timer.

 var timer = setInterval(function() {

 setCount((count)=>{

 var newCount = count+1;

 if (newCount >= end) setStart(true);

 return newCount;

 });

 }, 1000);

 }

 return function() {

 clearInterval(timer);

 }

 });

 useEffect(function() {

 if (autostart) restart()

 },);

 function restart() {

 setStart(false); // Hide the Start button

 setCount(init); // Reset "count" to the initial value.

 }

 return (

 <>

 Initial value of the counter is: {init}

Chapter 3 Day 3: Mastering Event Handling in a React Component

91

 End of the counter at: {end}

 The counter is: {count}

 {

 (start) ?

 <>

 Counter stopped

 <button onClick={restart}>Start</button>

 </> :

 <i>Counter in progress</i>

 }

 </>

)

}

export default Counter;

The “autostart” attribute is integrated into the component’s parameters

(in addition to the “init” and “end” attributes).

The interesting part of the previous code is the one using the second

useEffect() method call. We use a second call to the useEffect() method

with an additional parameter, which is an empty array.

Indeed, multiple useEffect() methods can be used within a

component. Let’s explain the use of the second useEffect() method call:

In addition to executing the provided callback function as a parameter

of useEffect(callback) upon component rendering or update, we can also

specify conditions under which the callback function will be executed. For

instance, we might want to execute it only during the initial rendering of

the component (and not for subsequent updates of the component). To

achieve this, we provide an empty array as the second parameter of the

useEffect() method. This empty array indicates that the callback function

should be executed only during the initial rendering of the component.

Chapter 3 Day 3: Mastering Event Handling in a React Component

92

Thanks to this parameter set to [], the restart() function will be

called only when the component is initially rendered and not during its

subsequent updates. This behavior aligns with the desired outcome.

Upon program launch, we verify that the first two counters

automatically start (with “autostart” set to 1), while the next one waits for

the user to click its Start button (Figure 3-5).

Figure 3-5.  The first two counters start automatically

Chapter 3 Day 3: Mastering Event Handling in a React Component

93

In these sections, we have seen how to manage events on a button

through several examples. Now, let’s explore how to handle other events

related to input fields in an HTML page.

�Managing the Content of an Input Field
In this example, we simply want to display and manage an input field.

The previous counter is replaced with an input field where any value can

be entered. The entered value is also displayed below the input field. It

updates as the user types.

The App component is modified to incorporate the new Counter

component:

App component incorporating the Counter component (file src/App.js)

import logo from './logo.svg';

import './App.css';

import Counter from "./Counter.js";

import React from "react";

function App() {

 return (

 <>

 <Counter />

 </>

)

}

export default App;

Chapter 3 Day 3: Mastering Event Handling in a React Component

94

The Counter component displaying the input field becomes:

Counter component incorporating the input field (file src/Counter.js)

import { useState } from "react";

function Counter() {

 const [value, setValue] = useState("");

 function change(event) {

 setValue(event.target.value);

 }

 return (

 <>

 �Counter : <input type="text" onChange={change} />

 Input Value : {value}

 </>

)

}

export default Counter;

We use a reactive variable “value” to display the value entered in the

field on the page. We achieve this using the onChange attribute, which

allows us to receive the event indicating that the value of the field has been

modified.

Upon receiving the onChange event on the input field, the change()

function is triggered. It retrieves the value entered in the field using event.

target.value and then sets this value in the reactive variable value using the

setValue() method returned by useState().

Let’s verify that the displayed value changes as we type in the input

field (Figure 3-6).

Chapter 3 Day 3: Mastering Event Handling in a React Component

95

Figure 3-6.  Displaying a value while typing

Indeed, with each character entered in the input field, the reactive

variable displayed on the screen is appropriately updated.

Now, let’s see how to improve this program by allowing only digits to

be entered in the input field.

�Step 1: Allow Only Digits During Input
Let’s enhance the previous program by allowing only digits to be entered,

as well as allowing movement keys (ArrowLeft, ArrowRight, Tab) and

deletion keys (Backspace and Delete). In the previous program, any

character could be entered in the input field.

To allow only digits to be entered in the field, we should not use the

onChange event, as it detects changes in the field’s content but does

not filter based on the pressed key. Instead, we will use the onKeyDown

attribute, which indicates that a key on the keyboard has been pressed.

Depending on the pressed key, we will decide whether that key is

accepted or not.

Chapter 3 Day 3: Mastering Event Handling in a React Component

96

Allow only the entry of digits in the input field (file src/Counter.js)

import { useState } from "react";

function Counter() {

 const [value, setValue] = useState("");

 function change(event) {

 setValue(event.target.value);

 }

 function keydown(event) {

 // Display the pressed key in the console

 console.log(event.key);

 // �Allow the Backspace, Delete, ArrowLeft, ArrowRight, and

Tab keys

 �if (["Backspace", "Delete", "ArrowLeft", "ArrowRight",

"Tab"].includes(event.key)) return;

 // Then disallow all other keys except those from 0 to 9

 �if (event.key < "0" || event.key > "9") event.

preventDefault();

 }

 return (

 <>

 �Counter : <input type="text" onChange={change}

onKeyDown={keydown} />

 Input Value : {value}

 </>

)

}

export default Counter;

Chapter 3 Day 3: Mastering Event Handling in a React Component

97

We use the method event.preventDefault() associated with the event

object received as a parameter in the function to reject key presses of

non-numeric keys. The preventDefault() method is a JavaScript method

associated with Event class objects.

We can confirm that only numeric keys and movement keys are being

considered in the field.

�Step 2: Give Focus to the Input Field upon
Component Rendering
Let’s enhance the previous program by giving immediate focus to the input

field upon component rendering (without needing to click it).

We achieve this using the focus() method defined in JavaScript, which

is used on the DOM element that we want to give focus to. To do this, we

need to access the DOM element from JavaScript or JSX code.

React introduces the concept of references, simply called refs, to

address this. React provides the useRef() method, which returns a

reference that can be placed in JSX code using the HTML ref attribute.

Let’s modify the Counter component’s code to implement focus

management using this functionality:

Automatically give focus to the input field (file src/Counter.js)

import { useState, useEffect, useRef } from "react";

function Counter() {

 const [value, setValue] = useState("");

 const refCounter = useRef();

 useEffect(function() {

 �refCounter.current.focus(); // refCounter.current

represents the DOM element associated with that reference

 },);

Chapter 3 Day 3: Mastering Event Handling in a React Component

98

 function change(event) {

 setValue(event.target.value);

 }

 function keydown(event) {

 // Display the pressed key in the console

 console.log(event.key);

 // �Allow the Backspace, Delete, ArrowLeft, ArrowRight, and

Tab keys

 �if (["Backspace", "Delete", "ArrowLeft", "ArrowRight",

"Tab"].includes(event.key)) return;

 // Then disallow all other keys except those from 0 to 9

 �if (event.key < "0" || event.key > "9") event.

preventDefault();

 }

 return (

 <>

 �Counter : <input type="text" onChange={change}

onKeyDown={keydown} ref={refCounter} />

 Input Value : {value}

 </>

)

}

export default Counter;

Let’s explain the previous code:

First, we obtain a reference named refCounter by using the statement

refCounter = useRef(). This refCounter reference is also indicated in the

JSX code using the ref attribute, where you write ref={refCounter} within

the <input> element. This establishes the connection between the JSX

code and the JavaScript code earlier.

Chapter 3 Day 3: Mastering Event Handling in a React Component

99

Next, we need to be able to give focus to the element referenced by

refCounter. To achieve this, we use the useEffect(callback,) method, where

we provide an empty array as the second parameter. This empty array

signifies that the callback function should only be executed once, after the

component is created.

Accessing the referenced DOM element is done via the current

property of refCounter, which is refCounter.current. Calling the focus()

method on this DOM element gives it focus directly when the component

is rendered.

We verify that the input field receives focus immediately upon program

launch (Figure 3-7).

Figure 3-7.  The input field gains focus immediately

In the following section, we further enhance the program by allowing

multiple counters to be displayed, and we display their total sum as digits

are entered into the fields.

Chapter 3 Day 3: Mastering Event Handling in a React Component

100

�Step 3: Display Multiple Counters and Show
Their Real-Time Sum
Now, we want to display multiple counters and show the total of all

counters as digits are entered in the input fields.

For example, with three counters, and entering 10 in the first, 20 in the

second, and 30 in the third, a total of 60 will be displayed as in Figure 3-8.

Figure 3-8.  Calculation of the sum of three counters

Chapter 3 Day 3: Mastering Event Handling in a React Component

101

To achieve this, we modify the App and Counter components. The

App component incorporates a new reactive variable named “total”, which

will display the total of the three counters. This reactive variable “total” is

initialized to 0.

App component displaying the counters and the total sum

(file src/App.js)

import { useState } from "react";

import logo from './logo.svg';

import './App.css';

import Counter from "./Counter.js";

import React from "react";

function App() {

 const [total, setTotal] = useState(0);

 return (

 <>

 <Counter setTotal={setTotal} /> <hr />

 <Counter setTotal={setTotal} /> <hr />

 <Counter setTotal={setTotal} /> <hr />

 Total : {total}

 </>

)

}

export default App;

The “total” variable is placed in the state of the App component and

is initialized to 0. The setTotal() function returned by useState() is used to

update this reactive variable.

This setTotal() function is passed as an attribute to the Counter

component so that it can be used to update the displayed total.

Chapter 3 Day 3: Mastering Event Handling in a React Component

102

The Counter component, which uses the setTotal() function passed as

an attribute, becomes as follows:

Counter component using the setTotal() method defined in the App

component (file src/Counter.js)

import { useState, useEffect, useRef } from "react";

function Counter({setTotal}) {

 const [value, setValue] = useState("");

 const refCounter = useRef();

 useEffect(function() {

 �refCounter.current.focus(); // refCounter.current

represents the DOM element associated with that reference

 }, []);

 function change(event) {

 var newValue = parseInt(event.target.value||0);

 // New value in the field

 setValue(newValue);

 // New Total

 �setTotal((total)=>(total-value)); // �Subtract the

old value

 setTotal((total)=>(total+newValue)); // Add the new value

 }

 function keydown(event) {

 // Display the pressed key in the console

 console.log(event.key);

 // �Allow the Backspace, Delete, ArrowLeft, ArrowRight, and

Tab keys

Chapter 3 Day 3: Mastering Event Handling in a React Component

103

 �if (["Backspace", "Delete", "ArrowLeft", "ArrowRight",

"Tab"].includes(event.key)) return;

 // Then disallow all other keys except those from 0 to 9

 �if (event.key < "0" || event.key > "9") event.

preventDefault();

 }

 return (

 <>

 �Counter : <input type="text" onChange={change}

onKeyDown={keydown} ref={refCounter} />

 Input Value : {value}

 </>

)

}

export default Counter;

The calculation of the new total is performed as follows:

•	 We subtract the old value of the field from the total.

•	 Then we add the new value of the field to the total.

For example, if we type 30 in the last counter, when entering the 0, we

subtract the value 3 from the total and then add the value 30.

Notice that we pass the setTotal() function to the Counter component,

but we don’t pass the “total” variable. It’s not necessary to pass the

“total” variable because we use the setTotal(callback) function, using the

callback function as a parameter to update the total (the total is passed as a

parameter in the callback function).

Now, let’s see how to further improve the functionality of this program.

Chapter 3 Day 3: Mastering Event Handling in a React Component

104

�Step 4: Give Focus to the First
Displayed Counter
When you launch the previous program, you might notice that the input

field of the last displayed counter is the one that gains focus. This is

because the Counter component gives focus to the input field, and thus the

last displayed counter obtains focus in the end.

Instead, we want to assign focus to the input field of the Counter

component for which a new attribute, let’s call it “focus”, is indicated. The

presence of the “focus” attribute in a Counter component will indicate that

this Counter component should have focus:

•	 If multiple Counter components have this attribute, the

last indicated Counter component will receive focus.

•	 If no Counter component has the “focus” attribute,

focus will not be assigned to any field.

Both the App and Counter components are modified. In the App

component, we indicate that the first Counter component should receive

focus by using the “focus” attribute in that component:

App component indicating the “focus” attribute in a Counter

component (file src/App.js)

import { useState } from "react";

import logo from './logo.svg';

import './App.css';

import Counter from "./Counter.js";

import React from "react";

function App() {

 const [total, setTotal] = useState(0);

 return (

 <>

Chapter 3 Day 3: Mastering Event Handling in a React Component

105

 <Counter focus setTotal={setTotal} /> <hr />

 <Counter setTotal={setTotal} /> <hr />

 <Counter setTotal={setTotal} /> <hr />

 Total : {total}

 </>

)

}

export default App;

So, we indicate the “focus” attribute in the first Counter component. It

is not necessary to provide a value for this attribute; its presence alone is

sufficient to indicate that this component should have focus.

The Counter component incorporating the “focus” attribute and

assigning focus to the component that uses this attribute becomes

Counter component using the “focus” attribute (file src/Counter.js)

import { useState, useEffect, useRef } from "react";

function Counter({setTotal, focus}) {

 const [value, setValue] = useState("");

 const refCounter = useRef();

 useEffect(function() {

 // �Give focus to the field if the "focus" attribute is

indicated

 if (focus) refCounter.current.focus();

 }, []);

 function change(event) {

 var newValue = parseInt(event.target.value||0);

 // New value in the field

 setValue(newValue);

Chapter 3 Day 3: Mastering Event Handling in a React Component

106

 // New Total

 �setTotal((total)=>(total-value)); // �Subtract the

old value

 setTotal((total)=>(total+newValue)); // Add the new value

 }

 function keydown(event) {

 // Display the pressed key in the console

 console.log(event.key);

 // �Allow the Backspace, Delete, ArrowLeft, ArrowRight, and

Tab keys

 �if (["Backspace", "Delete", "ArrowLeft", "ArrowRight",

"Tab"].includes(event.key)) return;

 // Then disallow all other keys except those from 0 to 9

 �if (event.key < "0" || event.key > "9") event.

preventDefault();

 }

 return (

 <>

 �Counter : <input type="text" onChange={change}

onKeyDown={keydown} ref={refCounter} />

 Input Value : {value}

 </>

)

}

export default Counter;

Chapter 3 Day 3: Mastering Event Handling in a React Component

107

We verify that the first counter now has the focus (Figure 3-9).

Figure 3-9.  The first displayed counter gains focus

�Conclusion
The third day of our journey into learning React was dedicated to event

handling with React. We learned how to create event handlers in our React

components to make our user interface more interactive.

We are now prepared to continue our exploration of React and delve

deeper into the possibilities offered by this exciting JavaScript library, as

we move on to a comprehensive study of React hooks.

Chapter 3 Day 3: Mastering Event Handling in a React Component

109

CHAPTER 4

Day 4: Mastering
React Hooks
In this chapter, we will dive deeper into a feature of React: hooks.

In the previous pages, we covered some hooks, such as useState(),

useEffect(), and useRef(). We will now recap this knowledge, dive deeper,

and also discover new hooks we haven’t used yet.

Hooks are a feature introduced in React 16.8 that allows developers to

reuse component logic by separating state and effects logic from display

logic. Hooks are functions that allow access to state, effects, and other

React features in functional components.

Throughout this chapter, you will learn how to better utilize hooks in

your components, how to create custom hooks, and how to reuse logic in

your React applications.

Are you ready to dive into React hooks? Let’s get started!

�Definition of a Hook
React hooks, introduced in recent versions of React (starting from version

16.8), have simplified the design and programming of React components.

They have notably brought reactivity to components defined as JavaScript

functions, which previously was only possible with components described

as JavaScript classes. This has greatly simplified component programming

with React.

© Eric Sarrion 2023
E. Sarrion, Master React in 5 Days, https://doi.org/10.1007/978-1-4842-9855-8_4

https://doi.org/10.1007/978-1-4842-9855-8_4#DOI

110

In general, a hook corresponds to a method defined in React. To use

a hook in a component, you need to import the corresponding method

using the JavaScript import statement.

Hooks defined by React all start with the word use, followed by

the name of the hook you want to use. For example, useState is used

to manage state, that is, reactive variables, while useEffect is used for

managing effects. You can also define your own custom hooks and use

them like those defined by React.

�Main Rule About Hooks
The main rule about hooks can be summarized in the following

two points:

•	 Hooks must be used sequentially.

•	 Hooks must be used only in functions that define React

components.

Using hooks sequentially means that they cannot be used, for example,

within a condition or a loop. The use instructions associated with hooks

must be used directly in the function that defines the component, at the

top level of the function.

Regardless of the conditions of use for the component that uses one or

more hooks, the order of hook calls inside the component must always be

the same and should not be used, for example, within a condition.

React has defined a number of standard hooks for common use cases.

For example,

•	 The useState() method is used to define a reactive

variable. Modifying the variable in the program will

automatically update it (thanks to React) wherever the

variable is used in the displayed page.

Chapter 4 Day 4: Mastering React Hooks

111

•	 The useRef() method is used to define a nonreactive

variable. Modifying the variable in the program will not

affect its displayed value on the page (as long as the

component is not updated due to a modification of one

of its reactive variables).

•	 The useEffect() method is used to define blocks of code

that will be executed when the component is created or

updated under certain conditions.

•	 The useReducer() method is used to manage a

reactive variable based on actions defined in the

program. It offers more possibilities than the previous

useState() method.

Let’s see in the following sections how to use each of these methods.

Note that we have already used and explained some of these methods

in the previous pages of this book. The goal here is to centralize

the explanations to provide a better understanding of how these

methods work.

�Using the useState( ) Hook
The useState(initValue) method is used to create a reactive variable. A

variable is considered reactive if its internal modification (within the

program) changes the displayed value in the HTML page wherever that

variable is used. React internally uses a process to update the DOM

whenever a reactive variable is modified.

The useState(initValue) method can be used to create as many reactive

variables as desired. These variables will be local to the component in

which they are created. The initValue parameter corresponds to the initial

value of the variable. If not specified, the initial value is undefined.

Chapter 4 Day 4: Mastering React Hooks

112

�Step 1: Writing the useState( ) Method
The useState() method returns an array containing two values:

•	 The first value of the returned array (at index 0)

corresponds to the value of the reactive variable.

•	 The second value of the returned array (at index 1)

is a function used to update the value of this reactive

variable. Indeed, a reactive variable is not updated

directly by assigning it a new value; you should

exclusively use the update function returned by the

useState() method.

It is common to use array destructuring, a feature allowed by recent

versions of JavaScript, which can be written as follows:

Using destructuring to retrieve the result of useState()

const [value, setValue] = useState();

The variable value corresponds to the value of the reactive variable,

while setValue is the function that allows updating this variable using

setValue(newValue).

Let’s write a Counter component that increments a variable value

upon clicking a button. The variable value represents the counter value

and is displayed next to the button.

Counter component for incrementing a variable (file src/Counter.js)

import { useState } from "react";

function Counter() {

 const [value, setValue] = useState(0);

 function incrValue() {

 setValue(value+1);

Chapter 4 Day 4: Mastering React Hooks

113

 }

 return (

 <>

 <button onClick={incrValue}>value + 1</button>

 =>

 value = {value};

 </>

)

}

export default Counter;

We have described the Counter component here. It utilizes the reactive

variable value which will be incremented upon clicking the button.

The Counter component is then used within the App component. We

place it in two locations within the App component, thus displaying two

counters. This demonstrates that each Counter component has its own

independent reactive variables (separate from other components).

App component using the Counter component (file src/App.js)

import logo from './logo.svg';

import './App.css';

import Counter from "./Counter.js";

import React from "react";

function App() {

 return (

 <>

 Counter#1 : <Counter />

 �<hr style={{margin:'10px', height:'3px',

backgroundColor:'gray'}}/>

Chapter 4 Day 4: Mastering React Hooks

114

 Counter#2 : <Counter />

 </>

)

}

export default App;

A horizontal rule <hr> separates the two displayed Counter

components (Figure 4-1).

Figure 4-1.  Counters incremented by clicking a button

Let’s click twice on the first button and three times on the second

(Figure 4-2).

Chapter 4 Day 4: Mastering React Hooks

115

Figure 4-2.  Counters incrementation

This shows that each reactive variable “value” is independent within

each component.

�Step 2: Using the Latest Value of the
Reactive Variable
There are cases where a reactive variable is modified in the program, but

its new value is not immediately assigned. For example, if we increment

the counter twice in a row with each button click, only the first increment

is considered:

Counter component that increments a variable only once (file src/

Counter.js)

import { useState, useEffect } from "react";

function Counter() {

 const [value, setValue] = useState(0);

Chapter 4 Day 4: Mastering React Hooks

116

 function incrValue() {

 setValue(value+1); // The value of "value" is modified,

 setValue(value+1); �// but here we are using the old

value of "value"

 �// (not the one that has just been

incremented).

 }

 return (

 <>

 <button onClick={incrValue}>value + 1</button>

 =>

 value = {value};

 </>

)

}

export default Counter;

Each button click increases “value” by 1 instead of 2 as expected

(Figure 4-3).

Figure 4-3.  Incrementing by 1 instead of 2

Chapter 4 Day 4: Mastering React Hooks

117

In this program, when the incrValue() function is called, it updates

the value of “value” twice in a row by calling the setValue() function twice.

However, each call to setValue() triggers a new component render, but the

value update isn’t immediate.

Instead, React schedules the value update for the next render, due

to how state updates are handled asynchronously. As a result, when

setValue(value+1) is called twice in a row, the value of “value” is actually

updated only once.

Reconciliation Process:

When a reactive variable is defined with useState() and modified in the

program, the modification isn’t immediately visible because React uses a

process called “reconciliation.” This means React compares the new state

of the variable with its previous state and determines what has changed.

Then, React updates the DOM to reflect those changes.

This reconciliation process is what makes React highly performant,

as it updates only the parts of the DOM that need to be updated, rather

than reloading the entire page. However, it also means that updates are

not instantaneous. This can sometimes lead to issues if parts of the code

depend on the current state of the variable before reconciliation is done.

In other words, the second call to setValue() uses the initial value of

“value” instead of the value that has just been updated. This means the

final value of “value” will only increment by 1 with each click, even if there

are two successive calls to setValue().

To avoid this issue, you should use the version of the update function

setValue(callback) that takes a callback function as a parameter. The

callback function in the form callback(value) will then use the latest value

of the “value” variable as a parameter.

Counter component using setValue(callback) (file src/Counter.js)

import { useState } from "react";

function Counter() {

Chapter 4 Day 4: Mastering React Hooks

118

 const [value, setValue] = useState(0);

 function incrValue() {

 // setValue(value+1);

 // setValue(value+1);

 �setValue(function(value) { return value+1 }); // "value"

is updated,

 �setValue(function(value) { return value+1 }); // then we

use its new value.

 }

 return (

 <>

 <button onClick={incrValue}>value + 1</button>

 =>

 value = {value};

 </>

)

}

export default Counter;

It is especially the second increment of the variable using setValue()

that requires using it in the form of setValue(callback).

With each button click, the value is now incremented twice

(Figure 4-4).

Chapter 4 Day 4: Mastering React Hooks

119

Figure 4-4.  Increment of 2 instead of 1

�Step 3: Avoiding Infinite Loops When
Updating Reactive Variables
When a reactive variable is updated, it triggers an update of the displayed

component during the reconciliation process, leading to the execution

of the associated component function. However, if a reactive variable

is updated during this display, it triggers another update of the display,

potentially causing an endless loop.

This can be observed in the following program, which updates the

reactive variable “value” during the component display:

Counter component with infinite loop (file src/Counter.js)

import { useState } from "react";

function Counter() {

 const [value, setValue] = useState(0);

Chapter 4 Day 4: Mastering React Hooks

120

 function incrValue() {

 setValue(value+1);

 }

 setValue(1);

 return (

 <>

 <button onClick={incrValue}>value + 1</button>

 =>

 value = {value};

 </>

)

}

export default Counter;

The previous program triggers an infinite loop because setValue(1) is

called each time the component is rendered. This sets off a chain reaction

where the component is constantly updated, leading to an endless

rendering loop.

The incrValue() function, triggered when clicking the button, also calls

setValue(), but it doesn’t cause an infinite loop because setValue(value+1)

is asynchronously invoked (only upon button click) and doesn’t

immediately update the value of “value”.

On the other hand, the line setValue(1) outside the incrValue()

function is synchronously executed every time the component is

rendered, causing the value update to be constantly triggered, creating an

infinite loop.

As a result, the Counter component cannot be displayed in the

window, and an error message is shown in Figure 4-5 (including in the

console).

Chapter 4 Day 4: Mastering React Hooks

121

Figure 4-5.  Error “Too many re-renders"

To solve the infinite loop problem in the program using useState(), you

can use the useEffect() hook to execute the reactive variable update code

under certain conditions. This can be achieved by passing the “conditions”

parameter in the dependency array of useEffect(callback, conditions).

Counter component using the useEffect() hook (file src/Counter.js)

import { useState, useEffect } from "react";

function Counter() {

 const [value, setValue] = useState(0);

 function incrValue() {

Chapter 4 Day 4: Mastering React Hooks

122

 setValue(value+1);

 }

 useEffect(function() {

 setValue(1);

 }, []); �// conditions = [] means that setValue(1) is

executed only on the initial display.

 return (

 <>

 <button onClick={incrValue}>value + 1</button>

 =>

 value = {value};

 </>

)

}

export default Counter;

The instruction setValue(1) is now executed only once, during the

initial display of the component (after it has been rendered). This is

because of the “conditions” parameter of the useEffect() method initialized

as [], which means to execute the hook’s processing only after the

initial component rendering. We can see in Figure 4-6 that the error has

disapeared.

Chapter 4 Day 4: Mastering React Hooks

123

Figure 4-6.  The “value” variable is directly set to 1

We can observe that there are no more error messages, either on

the screen or in the console, and therefore no more infinite loop. This is

achieved thanks to the use of the useEffect() hook.

�Using the useContext( ) Hook
The useContext() method allows us to define elements (variables, objects,

functions) that can be passed and used in internal components.

To better understand the benefit of this hook, let’s consider a scenario

where we want to display the sum of the previous two counters. We will

approach this in two different ways: first, without using the useContext()

Chapter 4 Day 4: Mastering React Hooks

124

hook and then by using it. But let’s begin by explaining the problem we

want to solve. Once the problem is explained, we will proceed to solve it

with or without the useContext() hook.

�Step 1: Presenting the Problem to Solve
We want to display the sum of the two counters. Each counter can be

incremented by clicking the associated button. Clicking the button not

only increments the counter’s value but also needs to increment the total

sum of the counters, displayed at the bottom of the page.

The sum of the reactive variables defined in each Counter component

will be displayed in the App component using a new reactive variable

named “total”, which will be updated with each button click.

The App component that displays the total values of the counters

becomes as follows:

App component displaying the total values of the counters

(file src/App.js)

import { useState } from "react";

import logo from './logo.svg';

import './App.css';

import Counter from "./Counter.js";

import React from "react";

function App() {

 const [total, setTotal] = useState(0);

 return (

 <>

 Counter#1 : <Counter />

 �<hr style={{margin:'10px', height:'3px', background

Color:'gray'}}/>

 Counter#2 : <Counter />

Chapter 4 Day 4: Mastering React Hooks

125

 �<hr style={{margin:'10px', height:'3px',

backgroundColor:'gray'}}/>

 Total value = {total}

 </>

)

}

export default App;

The “total” variable is managed by useState(), which also returns the

setTotal() method for updating the reactive variable “total”.

The Counter component is the same as before. It is reproduced here to

show the modifications that will be applied to it later.

Counter component managing the counter increment (file src/

Counter.js)

import { useState } from "react";

function Counter() {

 const [value, setValue] = useState(0);

 function incrValue() {

 setValue(value+1);

 }

 return (

 <>

 <button onClick={incrValue}>value + 1</button>

 =>

 value = {value};

 </>

)

}

export default Counter;

Chapter 4 Day 4: Mastering React Hooks

126

We then obtain the display in Figure 4-7. You will notice that the total

of the counters (at the bottom of the page) is not being updated after

clicking the buttons.

Figure 4-7.  The total of the counters is not being updated

The total of the counters is not being updated. Indeed, we are using

a reactive variable “total” (initialized to 0) that should be incremented

with each click on the Counter component’s button. For this purpose, the

setTotal() method returned by useState() must be used within the Counter

component, as it is the only way to update the reactive variable “total”.

Updating a reactive variable can only be done using the specialized

function returned by useState(), at index 1 of the array returned by

useState().

The problem is that the Counter component is not aware of the

setTotal() method, as it belongs to the parent App component. We will

explore how to allow the Counter component to access the setTotal()

method using the useContext() hook or without using it.

Let’s start by explaining how to proceed in the case where the

useContext() hook is not used.

Chapter 4 Day 4: Mastering React Hooks

127

�Step 2: Displaying the Sum of Counters
Without Using the useContext( ) Hook
The problem to solve is to enable the Counter component to know about

the setTotal() method (which is defined in the parent App component)

so that the Counter component can use it when the button “value + 1” is

clicked to increment the counter’s value.

If we are not using the useContext() hook, the only way to enable the

Counter component to access the setTotal() method defined in the parent

App component is to pass this method as an attribute to the Counter

component when creating it within the App component.

We use an attribute named setTotal (or any other name, but setTotal is

easier to remember for later use) in the Counter component. This attribute

setTotal will be initialized to a value that is a reference to the setTotal()

function. Therefore, we use the Counter component in the form <Counter

setTotal={setTotal} />. The setTotal attribute will now be part of the

attributes of the Counter component.

The App component is modified to pass the setTotal attribute to the

Counter component:

App component using the setTotal attribute when using the Counter

component (file src/App.js)

import { useState } from "react";

import logo from './logo.svg';

import './App.css';

import Counter from "./Counter.js";

import React from "react";

function App() {

 const [total, setTotal] = useState(0);

Chapter 4 Day 4: Mastering React Hooks

128

 return (

 <>

 Counter#1 : <Counter setTotal={setTotal} />

 �<hr style={{margin:'10px', height:'3px',

backgroundColor:'gray'}}/>

 Counter#2 : <Counter setTotal={setTotal} />

 �<hr style={{margin:'10px', height:'3px',

backgroundColor:'gray'}}/>

 Total value = {total}

 </>

)

}

export default App;

The setTotal attribute is placed wherever the Counter component is

used, which includes when writing the two Counter components.

Then, the Counter component is also modified to consider the setTotal

attribute and use it to increment the total of the counters:

Counter component using the setTotal attribute (file src/Counter.js)

import { useState } from "react";

function Counter({setTotal}) {

 const [value, setValue] = useState(0);

 function incrValue() {

 setValue(value+1);

 setTotal((total)=>total+1);

 }

 return (

Chapter 4 Day 4: Mastering React Hooks

129

 <>

 <button onClick={incrValue}>value + 1</button>

 =>

 value = {value};

 </>

)

}

export default Counter;

Note that the setTotal() function uses the setTotal(callback) form, in

which the callback function has the “total” parameter, which represents

the current value of the reactive variable “total”. Indeed, there is no other

way to know the value of the “total” variable than to use this form of

the setTotal(callback) method; otherwise, the “total” variable would be

inaccessible (outside of the callback function).

Let’s verify that the total of the counters is now displayed correctly (see

Figure 4-8).

Figure 4-8.  The total of the counters is displayed correctly

Chapter 4 Day 4: Mastering React Hooks

130

We have seen the first way of passing data to a child component,

using attributes. Let’s now explore the second way, which is to use the

useContext() hook provided by React.

�Step 3: Displaying the Sum of Counters
Using the useContext( ) Hook
Instead of passing the setTotal() function as an attribute to the Counter

component, we make this function available to all components that are

descendants. This means that from the App component, we make the

setTotal() function available to child components, here, available in the

Counter components used within the parent App component.

To achieve this, React provides us with the createContext() and

useContext() methods:

•	 The createContext() method is used in the parent

component that makes certain functionalities available.

•	 The useContext() method is used in child components

to use the functionalities made available.

Let’s now see how to use each of these two methods, starting with the

createContext() method.

�Step 4: Using the createContext( ) Method
in the Parent Component
Let’s first see how to use the createContext() method in the parent App

component.

Chapter 4 Day 4: Mastering React Hooks

131

Using the createContext() method in the App component (file src/App.js)

import { useState, createContext } from "react";

import logo from './logo.svg';

import './App.css';

import Counter from "./Counter.js";

import React from "react";

const TotalContext = createContext();

function App() {

 const [total, setTotal] = useState(0);

 return (

 <>

 <TotalContext.Provider value={[total, setTotal]}>

 Counter#1 : <Counter />

 �<hr style={{margin:'10px', height:'3px',

backgroundColor:'gray'}}/>

 Counter#2 : <Counter />

 �<hr style={{margin:'10px', height:'3px',

backgroundColor:'gray'}}/>

 Total value = {total}

 </TotalContext.Provider>

 </>

)

}

// export default App;

export { App, TotalContext };

The createContext() method is first imported from the “react”

module. Next, we create a context (here named TotalContext) using the

createContext() method. This provides us with the new TotalContext.

Provider component, whose value attribute indicates the resources made

available to child components.

Chapter 4 Day 4: Mastering React Hooks

132

In this case, we want to make the reactive variable “total” and its

setTotal() update function available. To provide other information, you

can simply include them in the array placed in the value attribute of the

TotalContext.Provider component.

Furthermore, we want the TotalContext context to be accessible in

child components, including the Counter component. To achieve this,

we need to export this element. Therefore, we replace the export default

App statement with export { App, TotalContext } to make both the App and

TotalContext objects available.

If you use export { App, TotalContext } instead of export default App

in the App.js file, you also need to modify the index.js file, which imports

the App component. Replace the import App from ’./App’; statement with

import { App } from ’./App’;.

This results in the following modified index.js file:

Modifying the index.js file (file src/index.js)

import React from 'react';

import ReactDOM from 'react-dom/client';

import './index.css';

// import App from './App';

import { App } from './App';

import reportWebVitals from './reportWebVitals';

const root = ReactDOM.createRoot(document.

getElementById('root'));

root.render(

 <App />

);

// If you want to start measuring performance in your app, pass

a function

// to log results (for example: reportWebVitals(console.log))

Chapter 4 Day 4: Mastering React Hooks

133

// or send to an analytics endpoint. Learn more: https://bit.

ly/CRA-vitals

reportWebVitals();

The desired elements have now been made available in the parent

component, and the next step is to use them in the child components. Let’s

see how to do that.

�Step 5: Using the useContext( ) Method
in Child Components
Once the elements are made available in the parent component, the

next step is to use them in the child components. To do this, we use

the useContext() hook in the child Counter component. The setTotal()

function made available will thus be accessible in the Counter component.

Using the useContext() method in the Counter component (file src/

Counter.js)

import { useState, useContext } from "react";

import { TotalContext } from "./App";

function Counter() {

 const [value, setValue] = useState(0);

 const [total, setTotal] = useContext(TotalContext);

 function incrValue() {

 setValue(value+1);

 setTotal((total)=>total+1);

 }

 return (

 <>

 <button onClick={incrValue}>value + 1</button>

 =>

Chapter 4 Day 4: Mastering React Hooks

134

 value = {value};

 </>

)

}

export default Counter;

The useContext() hook is imported from the “react” module, while the

TotalContext context is imported from the App component.

The useContext(TotalContext) method allows us to retrieve the value

of the value attribute set in the TotalContext.Provider component. This

way, we retrieve the array [total, setTotal], which allows us to use the

setTotal() function that modifies the reactive variable “total”.

Let’s verify that the functionality is correct (see Figure 4-9).

Figure 4-9.  The total is incremented correctly

Chapter 4 Day 4: Mastering React Hooks

135

�Step 6: When to Use the useContext( )
Hook?
As seen earlier, using the useContext() hook requires some preparation

in different files to set it up. This approach can be beneficial if multiple

components need access to higher-level reactive variables, or if many

reactive variables need to be shared with various components.

However, if you only need to provide access to a few reactive variables

or components, you might prefer the first solution, which is to pass the

reactive variable update function in the attributes of the components that

will use it.

�Using the useRef( ) Hook
The useRef() hook is used in two distinct cases:

•	 It is used if you want to access specific DOM elements

defined in the JSX code of the component. In this case,

you will use the ref attribute when writing this element

in the JSX code, and the correspondence with the value

returned by the useRef() hook will be established in a

useEffect() method. We saw this case in the previous

chapter when we wanted to give focus to an input field.

•	 It is also used if you want to create nonreactive

variables, which can be updated without causing the

component to re-render.

The first use case of useRef() has already been explained earlier. Let’s

now examine the second use case in detail.

Chapter 4 Day 4: Mastering React Hooks

136

The useRef(initValue) hook allows you to create nonreactive variables,

meaning that updating them will not trigger a re-render of the containing

component. This functionality enables you to update variables (created

using useRef()) in a component without causing it to re-render:

•	 Updating a reactive variable created using useState()

triggers a re-render of the component in which it is

created.

•	 Conversely, updating a nonreactive variable created

using useRef() does not trigger a re-render of the

component in which it is created.

Let’s demonstrate how to use useRef() to maintain information without

using a reactive variable.

We will use the Counter component, which now displays two buttons

for incrementing two types of variables:

•	 The “value + 1” button increments the reactive variable

“value” created using useState(), as seen previously,

and displays it next to the button.

•	 The “ref + 1” button increments the “ref” variable

created using useRef(). The value of this “ref” variable

is displayed next to the button.

The Counter component’s file is modified to handle these two types

of variables. This allows us to visualize the difference in behavior between

reactive and nonreactive variables.

Updating variables defined using useState() and useRef()

(file src/Counter.js)

import { useState, useRef } from "react";

function Counter() {

Chapter 4 Day 4: Mastering React Hooks

137

 const [value, setValue] = useState(0);

 const valueRef = useRef(0);

 function incrValue() {

 setValue(value+1);

 }

 function incrRef() {

 valueRef.current += 1;

 }

 return (

 <>

 <button onClick={incrValue}>value + 1</button>

 =>

 value = {value};

 <button onClick={incrRef}>ref + 1</button>

 =>

 ref = {valueRef.current};

 </>

)

}

export default Counter;

The value of the variable created using useRef() is obtained through

the “current” property of the object returned by useRef(). The variable is

initialized to the value specified in the initValue parameter, or to undefined

if no value is provided in this parameter.

The file of the App component is restored to its original content, which

displays the two Counter components separated by a horizontal line.

Chapter 4 Day 4: Mastering React Hooks

138

App component displaying the two Counter components

(file src/App.js)

import logo from './logo.svg';

import './App.css';

import Counter from "./Counter.js";

function App() {

 return (

 <>

 Counter#1 : <Counter />

 �<hr style={{margin:'10px', height:'3px',

backgroundColor:'gray'}}/>

 Counter#2 : <Counter />

 </>

)

}

export default App;

Also, the index.js file is restored to its previous version:

File src/index.js

import React from 'react';

import ReactDOM from 'react-dom/client';

import './index.css';

import App from './App';

import reportWebVitals from './reportWebVitals';

const root = ReactDOM.createRoot(document.

getElementById('root'));

root.render(

 <App />

);

Chapter 4 Day 4: Mastering React Hooks

139

// If you want to start measuring performance in your app, pass

a function

// to log results (for example: reportWebVitals(console.log))

// or send to an analytics endpoint. Learn more: https://bit.

ly/CRA-vitals

reportWebVitals();

The display in Figure 4-10 is obtained.

Figure 4-10.  Using a variable with useRef()

The “value + 1” button increments the reactive variable “value”, while

the “ref + 1” button increments the nonreactive variable “ref”.

Let’s click once each “value + 1” button: the reactive variable “value”

displayed next to each button increments upon clicking, which is an

expected behavior since updating a reactive variable refreshes the

component in which it is used (Figure 4-11).

Chapter 4 Day 4: Mastering React Hooks

140

Figure 4-11.  Incrementing the reactive variable “value"

Now let’s click once each “ref + 1” button (Figure 4-12).

Figure 4-12.  Incrementing the nonreactive variable “ref"

We observe that the increment of the nonreactive variable “ref” is not

visible on the screen. While the “ref” variable is incremented, since it is not

reactive (meaning it doesn’t trigger a re-render of the containing displayed

component), its displayed value remains unchanged. To view the updated

Chapter 4 Day 4: Mastering React Hooks

141

value of the “ref” variable, you simply need to refresh the component

that contains it. To do this, let’s click once the first “value + 1” button

(Figure 4-13). This action, which updates the reactive variable “value” of

the first displayed Counter component, also triggers the display of the new

value of the nonreactive “ref” variable within the refreshed component.

Figure 4-13.  Refreshing the first Counter component

We can see that the displayed “ref” variable in the first component

has been refreshed, as updating a reactive variable triggers an update

of the containing component. Additionally, the “value” variable of this

component, being reactive, has also incremented due to the click.

To trigger the update of the “ref” variable in the second Counter

component, it is sufficient to update the reactive “value” variable

associated with that component. Let’s click the second “value + 1” button

(Figure 4-14).

Chapter 4 Day 4: Mastering React Hooks

142

Figure 4-14.  Refreshing the second Counter component

The “ref” variable of the second Counter component has now been

updated. The useRef() hook is ideal for storing persistent values without

triggering re-renders, providing an alternative to useState(). This makes

it perfect for DOM elements, counters, and temporary values. Therefore,

useState() is used to manage state affecting display, while useRef() is used

for persistence without disrupting the user interface.

�Using the useEffect( ) Hook
The useEffect(callback, dependencies) method used within a component

allows you to group a set of instructions that will be executed under certain

conditions. The instructions to be executed are expressed within the

callback function, while the conditions are specified by the dependencies

parameter.

It’s possible to use the useEffect() method multiple times in a

component, with different instructions specified in each callback function,

or different dependencies for each of them. During the initial render of

the component, the callback function is always executed regardless of the

Chapter 4 Day 4: Mastering React Hooks

143

conditions specified. During subsequent updates of the component, the

callback function is executed based on the conditions expressed in the

dependencies parameter.

Remember that an update to a component occurs if any of its reactive

variables are modified. In all cases, the callback functions registered in the

useEffect() methods are executed after the component has been displayed

or updated.

The dependencies parameter is the second parameter of the

useEffect(callback, dependencies) method. It is used when component updates

occur. It corresponds to an array that can have three types of values, indicating

whether or not to execute the callback function specified as the first parameter:

If the dependencies parameter is not specified (or is

null or undefined), the callback function specified

in useEffect(callback, dependencies) is executed for

the initial render and for each subsequent update of

the component.

If the dependencies parameter is an empty array,

the callback function specified in useEffect(callback,

dependencies) will be executed only during the

initial render of the component. If the component is

updated, the callback function will not be executed.

If the dependencies parameter is a non-empty

array [value1, value2, ...], the callback function

specified in useEffect(callback, dependencies) will

be executed for the initial render of the component

and then for subsequent updates if at least one of

the values valueX in the array has changed since the

last execution of the callback function.

Furthermore, each callback function can return a cleanup function that

will be executed before the component is updated. This allows for preparation

of the following update (e.g., stopping a timer before restarting it later).

Chapter 4 Day 4: Mastering React Hooks

144

To better visualize and understand these explanations, here is a

program that uses the previous Counter component. We utilize three

useEffect() methods in the program, each using one of the three types of

conditions mentioned earlier:

•	 The first useEffect() method doesn’t use any

conditions. Therefore, it will be executed during the

initial render and with each subsequent update of the

component.

•	 The second useEffect() method uses an empty array

as conditions. Thus, it will be executed only during the

initial render of the component.

•	 The third useEffect() method uses an array containing

valueRef.current as conditions. As a result, it will

be executed during the initial render and with each

subsequent update of the component, only if this value

has changed since the previous execution. Recall that

this value is modified by clicking the “ref + 1” button.

Each of the callback functions associated with the aforementioned

useEffect() methods displays a message in the console to indicate which

counter it is using, which useEffect() method it pertains to, and the values

of the variables value and valueRef. In each of the useEffect() methods, we

return a cleanup function. Recall that a function returned by useEffect()

will be called before the next update of the component. We will display

similar console messages as before, to demonstrate the execution of this

function.

The App and Counter components are modified to achieve this. Let’s

start by describing the App component. It uses a new attribute called

“name” in the Counter component, allowing each counter to be named.

This helps identify which counter is performing its display or update. It is

used as follows:

Chapter 4 Day 4: Mastering React Hooks

145

App component that uses the “name” attribute for the Counter

component (file src/App.js)

import logo from './logo.svg';

import './App.css';

import Counter from "./Counter.js";

function App() {

 return (

 <>

 Counter#1 : <Counter name="Counter#1" />

 �<hr style={{margin:'10px', height:'3px',

backgroundColor:'gray'}}/>

 Counter#2 : <Counter name="Counter#2" />

 </>

)

}

export default App;

Here is now the Counter component containing the various uses of

useEffect() described earlier:

Counter component using useEffect() (file src/Counter.js)

import { useState, useEffect, useRef } from "react";

function Counter({name}) {

 const [value, setValue] = useState(0);

 const valueRef = useRef(0);

 function incrValue() {

 setValue(value+1);

 }

 function incrRef() {

 valueRef.current += 1;

 }

Chapter 4 Day 4: Mastering React Hooks

146

 // useEffect#1: used without conditions

 useEffect(function() {

 console.log(

 �${name} useEffect#1: value = ${value}, valueRef.current

= ${valueRef.current}`

);

 return function() {

 console.log(

 �${name} return useEffect#1: value = ${value},

valueRef.current = ${valueRef.current}`

);

 };

 });

 // useEffect#2: used with conditions = []

 useEffect(function() {

 console.log(

 �${name} useEffect#2: value = ${value}, valueRef.current

= ${valueRef.current}`

);

 return function() {

 console.log(

 �${name} return useEffect#2: value = ${value},

valueRef.current = ${valueRef.current}`

);

 };

 }, []);

 // useEffect#3: used with conditions = [valueRef.current]

 useEffect(function() {

 console.log(

Chapter 4 Day 4: Mastering React Hooks

147

 �${name} useEffect#3: value = ${value}, valueRef.current

= ${valueRef.current}`

);

 return function() {

 console.log(

 �${name} return useEffect#3: value = ${value},

valueRef.current = ${valueRef.current}`

);

 };

 }, [valueRef.current]);

 console.log(`${name} Outside of useEffect()`);

 return (

 <>

 <button onClick={incrValue}>value + 1</button>

 =>

 value = {value};

 <button onClick={incrRef}>ref + 1</button>

 =>

 ref = {valueRef.current};

 </>

)

}

export default Counter;

In addition to the logs used within the useEffect() methods, we display

a log outside of the useEffect() methods. This allows us to verify that the

code inside the useEffect() methods is executed after the component is

displayed or updated.

Chapter 4 Day 4: Mastering React Hooks

148

We also use a new attribute in the Counter component, which is the

“name” attribute, passed from the App component. This attribute will

display the name of the Counter component that shows the message in the

console logs.

Let’s observe the messages displayed in the console based on the

button clicks.

Upon launching the program, we have the display in Figure 4-15.

Figure 4-15.  At program launch

Chapter 4 Day 4: Mastering React Hooks

149

Upon launching the program corresponding to the initial display of

components, the code outside of any effects is executed first, and then the

effects are executed in the order they are written in the component (for

each of the components).

In order to clearly view the upcoming console messages, let’s clear the

currently displayed messages (by clicking the associated trash button).

Next, we click the “ref + 1” button associated with the first counter. No

message is displayed in the console, and no changes appear on the screen.

This is normal because the component is not refreshed since no reactive

variable has been updated.

Then, let’s click the “value + 1” button associated with the first counter.

Since the “value” variable is reactive, the first component is refreshed, and

the useEffect() methods are executed (Figure 4-16).

Chapter 4 Day 4: Mastering React Hooks

150

Figure 4-16.  Following the modification of a reactive
variable “value”

The executed effects are #1 and #3, which correspond to the effect

executed in all cases (for effect #1, no expressed conditions) and the

effect executed only if “valueRef.current” is modified (for effect #3, with

conditions = [valueRef.current]). Indeed, we have modified the value of

“valueRef.current” by clicking the “ref + 1” button previously.

Chapter 4 Day 4: Mastering React Hooks

151

Effect #2 is no longer executed, as it only concerns the initial display of

the component (this is done using the parameter conditions = []).

We also observe that the functions indicated as the effect’s return are

executed before updating the component (value is 0 in the function and

then becomes 1 afterward).

Let’s clear the console messages once again, and then let’s directly

click the first “value + 1” button of the first counter. Thus, the value of

“valueRef.current” is not modified here (Figure 4-17).

Chapter 4 Day 4: Mastering React Hooks

152

Figure 4-17.  Modifying “value” without modifying “valueRef.
current”

Here, we can observe that effect #3 is no longer executed, as the value

of “valueRef.current” (which is part of the conditions for effect #3) is not

modified. Only effect #1, executed in all cases, is executed here.

In summary, by adjusting the values in the conditions array of

useEffect(), we control when effects are executed, taking into account the

application’s performance and specific needs:

Chapter 4 Day 4: Mastering React Hooks

153

•	 If no condition is specified: The effect runs after

each display or update. This may result in reduced

performance if the effect is not necessary with every

component update.

•	 If an empty conditions array is provided: The effect

runs only once after the initial render. This is useful for

initializations but does not respond to updates.

•	 If a conditions array with values is provided: The

effect runs on the initial display and when the values

in the array change between updates. This optimizes

the execution of effects by triggering them only

when necessary, thus improving the application’s

performance.

Now that we have examined the useEffect() hook in detail, let’s move

on to using the useReducer() hook, which allows us to manage reactive

variables in a different way than the previously used useState() hook.

�Using the useReducer( ) Hook
The useReducer() hook is used to manage reactive variables in a

component without using useState(). The useReducer() hook is employed

when we can consider that the new value of one or more reactive variables

depends on their previous value and an action to be performed.

For example, when incrementing a reactive variable “value” (as seen

before), we can consider that the new value depends on the old value,

upon which we perform the increment action. We could also provide

a decrement action. Additionally, we could include in an additional

parameter of the action the value by which the variable is incremented or

decremented.

Chapter 4 Day 4: Mastering React Hooks

154

Let’s use the Counter component, where we’ll use the “value + 1” and

“value - 1” buttons to increment or decrement the value of the reactive

variable “value”.

We will first use the useState() hook, followed by the useReducer()

hook. This will allow us to observe the differences between the two

approaches.

�Step 1: Counter Component Using
the useState( ) Hook
The following are the App and Counter components, using the useState()

method to manage the reactive variable “value”.

The App component is as follows:

App Component that displays the Counter components (file

src/App.js)

import logo from './logo.svg';

import './App.css';

import Counter from "./Counter.js";

function App() {

 return (

 <>

 Counter#1 : <Counter />

 �<hr style={{margin:'10px', height:'3px',

backgroundColor:'gray'}}/>

 Counter#2 : <Counter />

 </>

)

}

export default App;

Chapter 4 Day 4: Mastering React Hooks

155

The Counter component that uses the useState() method is as follows:

Counter component that displays buttons and the value of the

reactive variable (file src/Counter.js)

import { useState } from "react";

function Counter() {

 const [value, setValue] = useState(0);

 function incrValue() {

 setValue(value+1);

 }

 function decrValue() {

 setValue(value-1);

 }

 return (

 <>

 <button onClick={incrValue}>value + 1</button>

 <button onClick={decrValue}>value - 1</button>

 =>

 value = {value};

 </>

)

}

export default Counter;

We display the two buttons “value + 1” and “value - 1” that update the

reactive variable “value”. After clicking multiple times on the buttons of

each component, we get the screen shown in Figure 4-18, demonstrating

its proper functionality.

Chapter 4 Day 4: Mastering React Hooks

156

Figure 4-18.  Counters with increment and decrement buttons

Now let’s see how to achieve the same functionality using the

useReducer() hook instead of useState().

�Step 2: Counter Component Using the
useReducer( ) Hook
The useReducer(reducer, initState) hook is used to manage the evolution

of one or more reactive variables in the component that utilizes this

hook. The reactive variables (one or more) managed by useReducer() are

grouped into what is called the state, which corresponds to an object or a

simple variable (as needed).

Let’s explain the reducer and initState parameters of the

useReducer(reducer, initState) method:

•	 The reducer parameter corresponds to a callback

function in the form reducer(state, action). The

reducer(state, action) function updates the state

variable based on the action performed. The current

Chapter 4 Day 4: Mastering React Hooks

157

state and the action to be performed are both passed

as parameters to the callback function. The callback

function returns the new state to be used once the

action is performed.

•	 The initState parameter corresponds to the initial value

of the state, which can be any value (numeric value,

array, object, etc.).

When using the useReducer() hook, you first need to determine the

variables that will be managed in the state and the actions that will cause

them to progress. In our example, we can see that the state is represented

by the single variable “value”, while the actions that progress this variable

are two actions named “INCR” (for incrementing the value) and “DECR”

(for decrementing the value).

It is common to name actions as strings, but any other type of value

would work as well, as we will see later.

Let’s see how to use the useReducer() method in the Counter

component. The App component remains the same as before.

Counter component using the useReducer() hook (file src/Counter.js)

import { useReducer } from "react";

function Counter() {

 �const [value, dispatch] = useReducer(function(value,

action) {

 if (action == "INCR") value += 1;

 if (action == "DECR") value -= 1;

 return value;

 }, 0);

 function incrValue() {

 dispatch("INCR");

 }

Chapter 4 Day 4: Mastering React Hooks

158

 function decrValue() {

 dispatch("DECR");

 }

 return (

 <>

 <button onClick={incrValue}>value + 1</button>

 <button onClick={decrValue}>value - 1</button>

 =>

 value = {value};

 </>

)

}

export default Counter;

The useReducer() hook returns an array of two values:

•	 The first element of the array (at index 0) represents the

new value of the state.

•	 The second element of the array (at index 1) represents

a function (usually named dispatch) that allows

you to update the state based on an action to be

performed. The dispatch() function is used in the form

dispatch(action).

In our example, we use the dispatch(“INCR”) method to increment

the value and the dispatch(“DECR”) method to decrement the value.

Calling these two methods triggers the execution of the reducer’s callback

function. The callback function uses the two parameters, value (the

current value of the state) and action (the action to be executed to modify

the state), to calculate and then return the new value of the state.

Chapter 4 Day 4: Mastering React Hooks

159

Let’s verify that the functionality remains identical to the previous

example that used useState() (see Figure 4-19).

Figure 4-19.  Counters using the useReducer() hook

In this example, we used the useReducer() method instead of the

useState() method. The useReducer() method offers more possibilities,

particularly by allowing the use of a state that groups multiple values

together, rather than just a single value as before.

Now, let’s see how to manage state in the useReducer() hook when the

state is represented as an object (which groups multiple properties) rather

than a single value.

�Step 3: Using the “state” Parameter
as an Object
The “state” parameter used by the useReducer() method is often an object

rather than a simple variable, as previously shown. This allows you to

group multiple reactive variables within the same object, using object

properties.

Chapter 4 Day 4: Mastering React Hooks

160

We can adapt the previous program to use a state object in the form {

value1, value2, ... } instead of a simple variable “value”.

Let’s see how to proceed. The Counter component is modified:

Counter component using state as an object (file src/Counter.js)

import { useReducer } from "react";

function Counter() {

 �const [state, dispatch] = useReducer(function(state,

action) {

 if (action == "INCR") state.value += 1;

 if (action == "DECR") state.value -= 1;

 �return { ...state }; // Definitely do not write return

state; !!!

 }, {value : 0});

 function incrValue() {

 dispatch("INCR");

 }

 function decrValue() {

 dispatch("DECR");

 }

 return (

 <>

 <button onClick={incrValue}>value + 1</button>

 <button onClick={decrValue}>value - 1</button>

 =>

Chapter 4 Day 4: Mastering React Hooks

161

 value = {state.value};

 </>

)

}

export default Counter;

The value of the reactive variable “value” is now stored in an object

named “state” in the form { value }. The state contains only the “value”

property since we are only managing this variable here, but it could

contain other properties if needed.

Note that the state is initialized using this object as { value: 0 }, and

access to the “value” property of the state is done everywhere using

“state.value”.

The interesting point to note is that the reducer returns the new value

of the state, but it doesn’t simply do “return state” as one might think. In

fact, when you write “return state”, you are returning a reference to the

state object (i.e., its memory address), which is not modified in this case

(it’s the content of the memory address that is modified by “state.value +=

1”, not the address itself).

So, in order for React to realize that the state has changed (and refresh

the displayed component), the memory address of the returned state

object needs to be changed. This is achieved by using { ...state }, which

creates a new memory object with the same content as the state object.

�Step 4: Using the “action” Parameter
as an Object
The “action” parameter is currently used as a string, such as “INCR” or

“DECR”. We can also use it as an object, which will allow us to provide

additional parameters when using the dispatch() method.

Chapter 4 Day 4: Mastering React Hooks

162

For now, let’s consider that the “action” parameter is an object. The

name of the action to be performed corresponds, for example, to the “type”

property of this object. It’s a common practice to use the “type” attribute to

contain the name of the action to be executed.

Let’s modify the previous Counter component to use the “action” as an

object { type }.

Counter component using the “action” as an object (file src/

Counter.js)

import { useReducer } from "react";

function Counter() {

 �const [state, dispatch] = useReducer(function(state,

action) {

 if (action.type == "INCR") state.value += 1;

 if (action.type == "DECR") state.value -= 1;

 �return { ...state }; // Definitely do not write return

state; !!!

 }, {value : 0});

 function incrValue() {

 dispatch({type : "INCR"});

 }

 function decrValue() {

 dispatch({type : "DECR"});

 }

 return (

 <>

 <button onClick={incrValue}>value + 1</button>

 <button onClick={decrValue}>value - 1</button>

 =>

Chapter 4 Day 4: Mastering React Hooks

163

 value = {state.value};

 </>

)

}

export default Counter;

We verify that the Counter component works in the same way as before

(see Figure 4-20).

Figure 4-20.  The useReducer() hook uses action as an object

The advantage of passing the action as an object is the ability to add

other attributes to the action. For example, we can include the “value”

attribute to indicate how much we want to increment or decrement the

counter.

Thus, to increment the counter by 10 instead of 1, we would write

dispatch({type: “INCR”, value: 10}).

The Counter component is modified to use this new “value” attribute

in the action:

Chapter 4 Day 4: Mastering React Hooks

164

Counter component using the “value” attribute in the dispatched

action (file src/Counter.js)

import { useReducer } from "react";

function Counter() {

 �const [state, dispatch] = useReducer(function(state,

action) {

 if (action.type == "INCR") state.value += action.value;

 if (action.type == "DECR") state.value -= action.value;

 �return { ...state }; // Definitely do not write return

state; !!!

 }, {value : 0});

 function incrValue() {

 dispatch({type : "INCR", value : 10});

 }

 function decrValue() {

 dispatch({type : "DECR", value : 10});

 }

 return (

 <>

 <button onClick={incrValue}>value + 1</button>

 <button onClick={decrValue}>value - 1</button>

 =>

 value = {state.value};

 </>

)

}

export default Counter;

And we get the screen shown in Figure 4-21.

Chapter 4 Day 4: Mastering React Hooks

165

Figure 4-21.  The counter increments and decrements by 10

Each click on one of the buttons results in an increment or decrement

of 10. However, it would be better if the buttons displayed +10 instead

of +1, and -10 instead of -1. Let’s use the variables “valueIncr” and

“valueDecr” to hold the increment and decrement steps.

Using the “valueIncr” and “valueDecr” variables to increment the

state (file src/Counter.js)

import { useReducer } from "react";

function Counter() {

 const valueIncr = 10; // +10 for each increment

 const valueDecr = 10; // -10 for each decrement

 �const [state, dispatch] = useReducer(function(state,

action) {

 if (action.type == "INCR") state.value += action.value;

 if (action.type == "DECR") state.value -= action.value;

 �return { ...state }; // Definitely do not write return

state; !!!

Chapter 4 Day 4: Mastering React Hooks

166

 }, {value : 0});

 function incrValue() {

 dispatch({type : "INCR", value : valueIncr});

 }

 function decrValue() {

 dispatch({type : "DECR", value : valueDecr});

 }

 return (

 <>

 <button onClick={incrValue}>value + {valueIncr}</button>

 <button onClick={decrValue}>value - {valueDecr}</button>

 =>

 value = {state.value};

 </>

)

}

export default Counter;

The display is now as follows (Figure 4-22).

Chapter 4 Day 4: Mastering React Hooks

167

Figure 4-22.  Button texts are updated

�Other Hooks
We have seen the main hooks provided by React, namely, useState(),

useEffect(), useRef(), useContext(), and useReducer().

React offers other hooks with specific functionalities. For example,

useCallback() is used to optimize performance by avoiding the re-creation

of functions on every component render, while useMemo() allows costly

calculations to be memoized for improved performance.

Furthermore, for specific needs, it’s possible to create your own custom

hook, which we will explain now.

�Creating Your Own Custom Hook
A hook is simply a function. It is recommended to prefix the function

name with the word “use” to quickly distinguish the hooks used in our

applications.

Chapter 4 Day 4: Mastering React Hooks

168

Since a hook is a function, it can accept 0 to n parameters and return

the desired data. Often, a hook returns an array of data, such as with

the useState() hook that returns the value of a reactive variable and the

function to update it (written concisely as [count, setCount]).

A hook can also utilize other hooks (both those defined in React

and those you’ve already created). Of course, the main rule of hooks

(sequential usage) applies to our custom hooks as well.

The benefit of creating your own custom hook is to better structure the

program that uses it and to be able to reuse it across multiple components.

Let’s explore how to create and use our own custom hooks through a

few examples.

�Step 1: Creating a Hook to Limit
Counter Value
We want to create a hook that limits the value of a counter.

The counters are similar to the ones displayed earlier, but now they

have a maximum value which is passed in the “max” attribute of the

Counter component.

When clicking the “value + 1” increment button, if the maximum

value is reached, an error message appears and the increment becomes

impossible. Clicking the “value - 1” decrement button removes the error

message and decrements the counter value.

The functionality of the Counter component that uses this hook would

be as follows. When the value of the first counter reaches 5 (the value of the

“max” attribute), a message appears below it, and the counter is locked at

that value (Figure 4-23).

Chapter 4 Day 4: Mastering React Hooks

169

Figure 4-23.  The first counter displays a message and locks at value 5

Both the App and Counter components are modified. The App component

becomes the following, which includes the “max” attribute for each counter:

App component that displays the counters (file src/App.js)

import logo from './logo.svg';

import './App.css';

import Counter from "./Counter.js";

function App() {

 return (

 <>

 Counter#1 : <Counter max={5} />

 �<hr style={{margin:'10px', height:'3px',

backgroundColor:'gray'}}/>

 Counter#2 : <Counter max={10} />

 </>

)

}

export default App;

Chapter 4 Day 4: Mastering React Hooks

170

The App component uses two counters. The first counter can

increment up to a value of 5, while the second can increment up to a

value of 10. This is indicated using the “max” attribute of the Counter

component.

Now, we will create the useCounterMax(max) hook, where “max”

represents the maximum value the counter should not exceed. We will

write the hook in the useCounterMax.js file. This file will later be imported

into components that want to use this hook.

To create this hook, we need to ask ourselves the following questions:

What are its parameters, and what data or functionalities does it return?

These are the questions you should always ask when creating your

own hook.

Here are the answers to these two questions:

The parameter of the hook will be the maximum value to reach (“max”

parameter).

The data returned by the hook could include

•	 The current value of the counter (stored in the “value”

variable)

•	 An increment function for the “value” variable

(named incr())

•	 A decrement function for the “value” variable

(named decr())

•	 An optional error message, which will be displayed if

the maximum counter value is reached (stored in the

“error” variable)

These four pieces of data will be placed in an array that will be

returned by the hook.

Here is the hook described in the useCounterMax.js file:

Chapter 4 Day 4: Mastering React Hooks

171

useCounterMax hook (file src/useCounterMax.js)

import { useState } from "react";

function useCounterMax(max) {

 const [value, setValue] = useState(0);

 function incr() {

 if (value < max) setValue(value+1);

 }

 function decr() {

 setValue(value-1);

 }

 var error = "";

 �if (value >= max) error = `Message: the maximum (${max}) is

reached`;

 return [value, incr, decr, error];

}

export default useCounterMax;

The hook creates a reactive variable “value” using the useState() hook.

The functions incr() and decr() are created and modify the value of the

“value” variable. The message associated with the “error” variable is set

to an empty string (“”) by default unless the counter value has reached

the maximum. Finally, the array [value, incr, decr, error] is returned by the

hook. This array can be used in the component that utilizes the hook.

Now, let’s use the new hook in the Counter component:

Counter component that uses the useCounterMax() hook (file src/

Counter.js)

import useCounterMax from "./useCounterMax";

function Counter({max}) {

 �if (!max) max = 5; // If max is not specified, it

defaults to 5

Chapter 4 Day 4: Mastering React Hooks

172

 const [value, incr, decr, error] = useCounterMax(max);

 function incrValue() {

 incr();

 }

 function decrValue() {

 decr();

 }

 return (

 <>

 <button onClick={incrValue}>value + 1</button>

 <button onClick={decrValue}>value - 1</button>

 =>

 value = {value};

 {error}

 </>

)

}

export default Counter;

The hook is imported into the component using the JavaScript import

statement. The hook is used by calling it directly as useCounterMax(max).

This call returns an array of four values in the order that the hook has

positioned them in the returned array. These returned data can then be

used in our Counter component.

Notice that the useState() hook is not used directly in the Counter

component, but it is now used through the new useCounterMax() hook

that we created.

Chapter 4 Day 4: Mastering React Hooks

173

�Step 2: Creating a Hook to Force
Component Update
We know that a component updates when one of its reactive variables is

modified or when a parent component updates.

Sometimes it’s useful to force a component update. For instance,

when we previously used the useRef() hook, we noticed that updating

the variable returned by useRef() didn’t trigger a refresh of the containing

component (see the section “Using the useRef() Hook”). In such cases, we

could create a new hook that forces the component update.

Let’s revisit the previously mentioned example that uses the following

App and Counter components.

The original App component was as follows:

App component displaying two Counter components (file src/App.js)

import logo from './logo.svg';

import './App.css';

import Counter from "./Counter.js";

function App() {

 return (

 <>

 Counter#1 : <Counter />

 �<hr style={{margin:'10px', height:'3px',

backgroundColor:'gray'}}/>

 Counter#2 : <Counter />

 </>

)

}

export default App;

Chapter 4 Day 4: Mastering React Hooks

174

The Counter component was as follows:

Updating variables defined by useState() and useRef() (file src/

Counter.js)

import { useState, useRef } from "react";

function Counter() {

 const [value, setValue] = useState(0);

 const valueRef = useRef(0);

 function incrValue() {

 setValue(value+1);

 }

 function incrRef() {

 valueRef.current += 1;

 }

 return (

 <>

 <button onClick={incrValue}>value + 1</button>

 =>

 value = {value};

 <button onClick={incrRef}>ref + 1</button>

 =>

 ref = {valueRef.current};

 </>

)

}

export default Counter;

Chapter 4 Day 4: Mastering React Hooks

175

When we run the application and click multiple times on the “ref + 1”

button, the value of the “ref” reference doesn’t update with each click.

This is because you need to click the “value + 1” button, which updates

the reactive variable “value” and triggers a refresh of the component

(see Figure 4-24).

We want to include a new “Refresh” button that updates the displayed

“ref” references without modifying the reactive “value” variables.

For instance, you can click multiple times on the “ref + 1” buttons

without clicking the “value + 1” buttons. Normally, the “ref” values are not

modified with each click, but clicking the “Refresh” button automatically

updates them (see Figure 4-25).

Figure 4-24.  The reference updates only if the “value” variable
is updated

Chapter 4 Day 4: Mastering React Hooks

176

Figure 4-25.  Updating references by clicking the “Refresh” button

To achieve this, we create a hook named, for example,

useForceUpdate(). It returns the function forceUpdate(), which allows us

to update the component in which it is called. If the component contains

other components, they are also updated according to React’s internal

mechanisms.

Regarding the questions to consider when creating a new hook:

•	 What are its parameters for usage: No parameters are

necessary here.

•	 What values does it return? It returns the forceUpdate()

function, which allows for updating the component.

Now let’s see how to write the content of the useForceUpdate() hook.

The forceUpdate() function it returns should use a reactive variable that

is modified with each call of the function. When a reactive variable is

modified within a component, it triggers React to update the component

(as well as any components included within it).

Chapter 4 Day 4: Mastering React Hooks

177

For this purpose, we use a simple boolean reactive variable that is

inverted with each call: if it’s true, we set it to false, and if it’s false, we set it

to true. Another approach could be using a counter that we increment with

each call, achieving the same component refresh.

Description of the useForceUpdate() hook (file src/useForceUpdate.js)

import { useState, useEffect } from "react";

function useForceUpdate() {

 const [value, setBoolean] = useState(true);

 function forceUpdate() {

 �setBoolean(!value); // Invert the value of the reactive

variable

 }

 return forceUpdate;

}

export default useForceUpdate;

The hook is now used in the App component, triggered by clicking the

“Refresh” button.

Usage of the useForceUpdate() hook in the App component (file

src/App.js)

import logo from './logo.svg';

import './App.css';

import Counter from "./Counter.js";

import useForceUpdate from "./useForceUpdate.js";

function App() {

 const forceUpdate = useForceUpdate();

 function refresh() {

 forceUpdate();

 }

Chapter 4 Day 4: Mastering React Hooks

178

 return (

 <>

 Counter#1 : <Counter />

 �<hr style={{margin:'10px', height:'3px',

backgroundColor:'gray'}}/>

 Counter#2 : <Counter />

 <button onClick={refresh}>Refresh</button>

 </>

)

}

export default App;

The Counter component remains unchanged.

�Step 3: Creating a Hook to Retrieve
the Previous Value of a Reactive Variable
The useState() hook allows us to know the current value of a reactive

variable and set its next value. However, there are times when it’s useful to

know the previous value of this reactive variable.

For instance, let’s use an input field in the Counter component. This

field corresponds to a reactive variable that is modified with each character

entered. The previous value of the reactive variable corresponds to the

content of the field before the last character was introduced. For example,

if we’ve entered the characters “abcde” in that order, the previous value of

the field would be “abcd”.

We display the previous content of the input field below the input field

(Figure 4-26).

Chapter 4 Day 4: Mastering React Hooks

179

Figure 4-26.  Displaying the previous value of an input field

For this purpose, we create the usePreviousState(state) hook, which

returns the previous value of the reactive variable “state” associated with

the content of the input field. The reactive variable “state” is modified each

time a character is entered into the input field, using the onChange event.

Before describing the content of the usePreviousState() hook, let’s first

see how to use it in the Counter component.

Using the usePreviousState() hook to manage an input field (file src/

Counter.js)

import { useState, useRef } from "react";

import usePreviousState from "./usePreviousState";

function Counter() {

 �const [value, setValue] = useState(""); // Current content

of the input field

 �const prevValue = usePreviousState(value); // Previous

content of the input field

 function change(event) {

 var value = event.target.value;

Chapter 4 Day 4: Mastering React Hooks

180

 setValue(value);

 }

 return (

 <>

 �Current Value : <input type="text" onChange={change} />

 Previous value : {prevValue}

 </>

)

}

export default Counter;

The App component that uses the Counter component is as follows:

App component that uses the Counter component (file src/App.js)

import logo from './logo.svg';

import './App.css';

import Counter from "./Counter.js";

function App() {

 return (

 <>

 <Counter />

 </>

)

}

export default App;

Let’s now write the content of the usePreviousState(state) hook.

To store the previous value of the “state” variable, we use a reference

obtained through useRef(state) which will memorize it. Using a reference

rather than a reactive variable to store it prevents an infinite loop: indeed,

Chapter 4 Day 4: Mastering React Hooks

181

if we memorize a reactive variable by creating a new reactive variable, the

creation of this reactive variable will trigger the creation of another one,

and so on indefinitely, resulting in an infinite loop (this was explained in a

previous section of this chapter).

Content of the usePreviousState(state) hook

(file src/usePreviousState.js)

import { useRef } from "react";

function usePreviousState(state) {

 var ref = useRef();

 var oldValue = ref.current;

 ref.current = state;

 return oldValue;

}

export default usePreviousState;

The variable “ref.current” holds the previous value of the reactive

variable “state” passed as a parameter. This value is returned by the hook,

and then the “state” variable is updated with the new value.

We verify that this works as indicated previously. However, a slight

issue arises when attempting to clear the content of the field using, for

example, the Backspace or Delete key. Indeed, by erasing all the content of

the field, the last character is retained in the display of the previous value

(Figure 4-27).

Chapter 4 Day 4: Mastering React Hooks

182

Figure 4-27.  The last character of the previous value doesn’t
get erased

The issue stems from the fact that the Counter component doesn’t

update when we press Backspace or Delete for a second time when the

input field is empty. Indeed, the reactive variable “value” associated with

the field is no longer being modified since its value is already an empty

string. However, it’s only the modification of a reactive variable that

triggers the component update.

To address this, let’s use the previously mentioned “useForceUpdate()”

hook. This hook enables component updates through its returned method,

forceUpdate(). We should invoke this method when the Backspace or

Delete key is pressed during input. For this purpose, we’ll utilize the new

onKeyDown event within the input field.

Using the useForceUpdate() hook during the onKeyDown event (file

src/Counter.js)

import { useState, useRef } from "react";

import usePreviousState from "./usePreviousState";

import useForceUpdate from "./useForceUpdate";

function Counter() {

Chapter 4 Day 4: Mastering React Hooks

183

 �const [value, setValue] = useState(""); // Current content

of the input field

 �const prevValue = usePreviousState(value); // Previous

content of the input field

 const forceUpdate = useForceUpdate();

 function change(event) {

 var value = event.target.value;

 setValue(value);

 }

 function keydown(event) {

 �if (event.key == "Backspace" || event.key == "Delete")

forceUpdate();

 }

 return (

 <>

 �Current Value : <input type="text" onChange={change}

onKeyDown={keydown} />

 Previous value : {prevValue}

 </>

)

}

export default Counter;

We verify that the previous value is reset to “” (empty) upon the second

press of the Backspace key when the input field is empty (Figure 4-28).

Chapter 4 Day 4: Mastering React Hooks

184

Figure 4-28.  The previous value is now erased if the input field
is empty

�Step 4: Creating a Hook to Fetch Data
from a Server
Here’s a highly useful hook that enables communication with any server.

We will make use of the fetch(url) method in JavaScript, which allows

us to retrieve data from a server based on the provided URL parameter.

The purpose of this hook, named useFetch(url) in this context, will be

to fetch data from a server and provide it to requesting components. As

an example, we’ll utilize the service provided by the server https://

restcountries.com. The URL https://restcountries.com/v3.1/all

allows us to retrieve JSON-formatted details about different countries

worldwide.

In Figure 4-29, we display this URL, which lets us visualize the

characteristics of the first country returned by the service—Barbados,

in this case. It’s possible that Barbados might not be the first country

displayed when you use this URL, as the server’s display order of countries

could have changed since then.

Chapter 4 Day 4: Mastering React Hooks

https://restcountries.com
https://restcountries.com
https://restcountries.com/v3.1/all

185

To display the result in the format shown in Figure 4-29, in Firefox,

click the Raw Data tab and then the Pretty Print button.

To employ the useFetch() hook within our React programs, we will

do so using the Countries component, which we will develop gradually

according to our needs.

Figure 4-29.  Using the https://restcountries.com/v3.1/all
service

Chapter 4 Day 4: Mastering React Hooks

https://restcountries.com/v3.1/all

186

The Countries component is utilized within the App component (in

place of the previous Counter component):

App component utilizing the Countries component (file src/App.js)

import logo from './logo.svg';

import './App.css';

import Countries from "./Countries.js";

function App() {

 return (

 <>

 <Countries />

 </>

)

}

export default App;

Now, let’s describe the useFetch(url) hook, which allows us to retrieve

the data provided by the specified URL and return either that data or an

error. The return value of this hook is a tuple [data, error] containing the

data (data) or the error (error). Each of these two elements is set to null if it

doesn’t exist.

The useFetch.js file outlines the useFetch() hook:

useFetch() hook (file src/useFetch.js)

import { useState, useEffect } from "react";

const useFetch = function(url) {

 const [data, setData] = useState("");

 const [error, setError] = useState("");

 useEffect(function() {

 fetch(url)

 .then((res) => res.text())

Chapter 4 Day 4: Mastering React Hooks

187

 .then((data) => setData(data.toString()))

 .catch((err) => setError(err.toString()))

 ;

 }, [url]);

 return [data, error];

};

export default useFetch;

First, let’s explain the fetch(url) method. It returns a Promise object,

allowing the invocation of the first then() method. The res.text() method

also returns a Promise object, enabling the invocation of the second then()

method. The catch() method specified at the end is used to handle errors.

Next, let’s explain the two reactive variables, data and error, used here.

Why use reactive variables in this case?

Suppose we don’t use reactive variables. The fetch() method makes

a server call that returns data or an error, with a certain latency. If the

variables returned by the useFetch() method are not reactive, the returned

values will be the initial values, not the ones obtained in response from

the server (as the latter arrive after the useFetch() function returns these

values). While the server data will eventually arrive, the component using

them won’t see their modification because the associated variables are not

reactive.

If the returned variables are reactive, their subsequent modification

will be considered in the component using them, resulting in an update of

the server-obtained data in the component.

Finally, let’s explain why we use the useEffect() hook. It allows us to

condition the execution of the fetch(url) function on the modification of

the url parameter. If the component using useFetch(url) is refreshed, the

fetch() method will not be used again because the url parameter remains

unchanged.

Now, let’s write the Countries component that uses the

useFetch() hook.

Chapter 4 Day 4: Mastering React Hooks

188

Countries component using the useFetch() hook (file src/Countries.js)

import useFetch from "./useFetch";

function Countries() {

 �const [data, error] = useFetch("https://restcountries.com/

v3.1/all");

 return (

 <>

 { (!error && !data) ? <>Waiting</> :

 (error ? <>{error}</> : <>{data}</>)

 }

 </>

)

}

export default Countries;

If the variables data and error are empty, we display the message

“Waiting”. Otherwise, we display the error message returned by error, or

the data returned by data.

As explained earlier, the fact that the data and error variables are

reactive in the useFetch() hook allows the Countries component, which

uses this hook, to benefit from their reactivity and display their value

changes if they occur.

Upon launching the program, the screen in Figure 4-30 is displayed.

Chapter 4 Day 4: Mastering React Hooks

189

Figure 4-30.  The program is awaiting data from the server

When the data is received from the server, it is displayed instead of the

waiting message (Figure 4-31).

Chapter 4 Day 4: Mastering React Hooks

190

Figure 4-31.  The data has been received from the server

We have seen how to obtain information from the server. Let’s now see

how to format it on the displayed page.

�Step 5: Creating a Hook for Data Formatting
The information returned by the server was previously displayed directly

on the HTML page (in the form of JSON strings) without any formatting.

Now, we want to display only the name of each country, in alphabetical

order of names.

Chapter 4 Day 4: Mastering React Hooks

191

To achieve this, we create a new hook named useCountries(). This new

hook will use the previous useFetch() hook. It will be directly used within

the Countries component, replacing useFetch().

useCountries() hook (file src/useCountries.js)

import useFetch from "./useFetch";

const useCountries = function() {

 �const [data, error] = useFetch("https://restcountries.com/

v3.1/all");

 var countries;

 if (data) {

 countries = JSON.parse(data).map(function(elem) {

 return elem.name.common;

 });

 countries = countries.sort((n1, n2) => (n1 > n2));

 }

 return countries;

};

export default useCountries;

The JavaScript-defined method JSON.parse() allows us to transform

a string of characters into a JSON-format object, in this case, an array of

elements. The map() method enables us to iterate through the elements

of this array and return the name of each country, recorded in the name.

common property of each element. The resulting array of returned names

is then sorted in alphabetical order using the sort() method. Subsequently,

the array is returned by the hook to be used within the Countries

component.

Chapter 4 Day 4: Mastering React Hooks

192

The Countries component, which utilizes the new hook, becomes as

follows:

Countries component using the useCountries() hook (file src/

Countries.js)

import useCountries from "./useCountries";

import { Fragment } from "react";

function Countries() {

 const countries = useCountries();

 return (

 <>

 { (!countries) ? <>Waiting</> :

 (

 <>{

 countries.map(function(name, index) {

 �return <Fragment key={index}>{name}

</Fragment>

 })

 }</>

)

 }

 </>

)

}

export default Countries;

Once the countries have been passed to the browser, they are displayed

on the HTML page in alphabetical order (Figure 4-32).

Chapter 4 Day 4: Mastering React Hooks

193

Figure 4-32.  List of countries displayed in alphabetical order

Now let’s see how to further enhance the Countries component by

allowing the filtering of countries based on their names.

�Step 6: Creating a Hook That Filters the
Displayed Data
We aim to improve the useCountries() hook by passing a string of

characters that should be contained in the names of the countries to

be displayed. For this purpose, we use an input field displayed above

the list of countries. As we type in the input field, the list of countries is

updated to display only those whose names contain the entered string

(see Figure 4-33).

Chapter 4 Day 4: Mastering React Hooks

194

Figure 4-33.  List of countries containing the string “fr"

The useCountries() hook is modified to use the parameter “name,

which will be used to filter the country names containing the string

specified by the “name” parameter.

useCountries(name) hook (file src/useCountries.js)

import useFetch from "./useFetch";

const useCountries = function(name) {

 �const [data, error] = useFetch("https://restcountries.com/

v3.1/all");

 var countries;

 if (data) {

Chapter 4 Day 4: Mastering React Hooks

195

 countries = JSON.parse(data).map(function(elem) {

 return elem.name.common;

 });

 countries = countries.sort((n1, n2) => (n1 > n2));

 �if (name) countries = countries.filter((n) =>

n.toUpperCase().includes(name.toUpperCase()));

 }

 return countries;

};

export default useCountries;

The filter() method defined on the JavaScript Array class allows us to

retain only the country names in the “countries” array that contain the

specified “name” string. To avoid issues with capitalization, the names are

compared after converting them to uppercase.

The Countries component uses the “name” parameter provided by the

hook. This “name” parameter is specified in the attributes of the Countries

component. The “name” parameter will be passed to the Countries

component through the App component, which displays the Countries

component.

Countries component using the name attribute (file src/Countries.js)

import useCountries from "./useCountries";

import { Fragment } from "react";

function Countries({name}) {

 const countries = useCountries(name);

 return (

 <>

 { (!countries) ? <>Waiting</> :

 (

 <>{

Chapter 4 Day 4: Mastering React Hooks

196

 countries.map(function(name, index) {

 �return <Fragment key={index}>{name}

</Fragment>

 })

 }</>

)

 }

 </>

)

}

export default Countries;

Now, we need to modify the App component to enable the entry of

letters from the country names to be displayed. We insert an <input>

element into the JSX code of the App component.

App component enabling country name filtering (file src/App.js)

import logo from './logo.svg';

import './App.css';

import Countries from "./Countries.js";

import { useState } from "react";

function App() {

 const [name, setName] = useState("");

 function change(event) {

 var value = event.target.value;

 setName(value);

 }

 return (

 </>

 �Country: <input type="text" onChange={change}/>

Chapter 4 Day 4: Mastering React Hooks

197

 <Countries name={name} />

 </>

)

}

export default App;

We create the new reactive variable “name” within the App

component. It is passed in the attributes of the Countries component.

As the variable is reactive, the Countries component will be updated

whenever the value of the variable changes, since this reactive variable is

passed to it in the attributes.

�Conclusion
The fourth day of our React learning journey was dedicated to the

use of hooks. We learned how hooks can be used to manage state and

component life cycle more efficiently.

Hooks are a powerful tool for managing state and component life cycle

in React. We are now equipped to use hooks to make our code cleaner,

more efficient, and more easily maintainable. We are ready to continue our

React learning journey and explore further the possibilities offered by this

exciting JavaScript library, using all the accumulated knowledge to create a

task list management application with React.

Chapter 4 Day 4: Mastering React Hooks

199

CHAPTER 5

Day 5: Practical
Application—
Managing a Task List
with React
In this chapter, we will put into practice all the knowledge gained in the

previous days by creating an application that manages a task list.

We will use components, events, and hooks to create a dynamic and

interactive user interface that allows users to add, edit, and delete tasks

in a list. We will also see how to manage data in a React application using

state and form handling.

By creating this application, you will not only practice the concepts

learned in the previous chapters, but you will also discover how to put

all these elements together to create a complete React application, step

by step.

Ready to put your React skills into practice? Let’s get started!

© Eric Sarrion 2023
E. Sarrion, Master React in 5 Days, https://doi.org/10.1007/978-1-4842-9855-8_5

https://doi.org/10.1007/978-1-4842-9855-8_5#DOI

200

�Application Screens
Let’s start by displaying the screens of our application to explain its

functionality. We will write the React code in the remainder of this chapter.

Initially, the task list is empty. The “Add Item” button in Figure 5-1

allows you to insert a new item into the list with each click.

Figure 5-1.  Application launch screen

Let’s click the “Add Item” button multiple times (three times here,

see Figure 5-2).

Chapter 5 Day 5: Practical Application—Managing a Task List with React

201

Figure 5-2.  After three clicks on the “Add Item” button

Each inserted item is assigned an index (starting from 1) in the list

(Item 1, Item 2, etc.). A “Remove” button and a “Modify” button are added

next to each item in the list.

Let’s click the “Modify” button on the second row (Item 2). The text

of the item is replaced by an input field, where the cursor blinks to allow

editing (see Figure 5-3).

Chapter 5 Day 5: Practical Application—Managing a Task List with React

202

Figure 5-3.  The second item in the list can be modified

Let’s edit the text in the input field by typing “Modified Item 2”

(Figure 5-4).

Figure 5-4.  Editing a list item

Chapter 5 Day 5: Practical Application—Managing a Task List with React

203

To apply the modification of the item, you need to exit the input field

by clicking elsewhere on the page (Figure 5-5).

Figure 5-5.  Modification of the item is applied

Finally, let’s click the “Remove” button on the first and third rows

(Figure 5-6).

Chapter 5 Day 5: Practical Application—Managing a Task List with React

204

Figure 5-6.  After removing the first and last items

Now let’s see how to create this application using React.

�Creating the Application with
create-react-app
We create the “list” application by entering the command “create-react-

app list” in a command prompt. We will use the directory structure created

by this command, especially by using or creating new files in the “src”

directory of the created application.

Chapter 5 Day 5: Practical Application—Managing a Task List with React

205

Figure 5-7.  Creation of the “list” application

Once the application is finished being created, the commands to start

the server are displayed at the end of the application creation process

(Figure 5-8).

Chapter 5 Day 5: Practical Application—Managing a Task List with React

206

Figure 5-8.  End of application creation

To start the application located at the URL http://localhost:3000,

simply enter the commands “cd list” and then “npm start”.

Chapter 5 Day 5: Practical Application—Managing a Task List with React

207

�Breaking Down the Application
into Components
With the previously listed application screens, we can already identify the

main components of our application:

•	 The App component is the primary application

component that contains the other components.

•	 The Items component corresponds to the list of items.

•	 The Item component corresponds to an individual item

in the list.

Therefore, the App component will encompass the “Add Item” button

and the Items component.

To manage the list of items, we will use a reactive variable “items”,

which will be an array containing the name of each item in the list.

This reactive variable “items” will be updated whenever an item is

inserted, removed, or modified. Since it needs to be accessible when

clicking the “Add Item” button located in the App component, we will

integrate this reactive variable into the App component.

Now, let’s explore how to execute the various list manipulations,

specifically

•	 Adding an item to the list

•	 Removing an item from the list

•	 Modifying an item in the list

Let’s start by studying how to add an item to the list.

Chapter 5 Day 5: Practical Application—Managing a Task List with React

208

�Adding an Item to the List
We will implement the App, Items, and Item components as described

earlier. These components will be adjusted as we incorporate additional

functionalities. At this point, our focus will be on handling the click event

of the “Add Item” button.

These files are situated in the “src” directory of the “list” application.

We will modify the App.js file of the App component and generate the

necessary files for the Items and Item components.

The App component is outlined as follows:

App component (file src/App.js)

import logo from './logo.svg';

import './App.css';

import { useState } from "react";

import Items from "./Items";

function App() {

 const [items, setItems] = useState([]);

 function add() {

 var item = "Item " + (items.length + 1);

 items.push(item);

 setItems([...items]);

 }

 return (

 <>

 <button onClick={add}>Add Item</button>

 <Items items={items} />

 </>

);

}

export default App;

Chapter 5 Day 5: Practical Application—Managing a Task List with React

209

Explanation:

•	 We use the useState() hook to define the reactive

variable “items”, initialized to an empty array [ ]. This

variable will hold strings associated with the items

in the list, constructed in the format “Item” + (items.

length + 1). The list is initially empty, hence the

initialization to [ ].

•	 To modify the content of this reactive variable, we use

the setItems() method returned by useState(). When

modifying the list using setItems(), we pass a new array

as a parameter, as updating the reference of the array

triggers the variable update, not modifying its content.

Hence, we use [...items] to create a new array (with

a different memory reference) containing the same

content.

•	 The JSX code returned by the App component includes

the “Add Item” button, which has an onClick event to

handle button clicks, and also includes the list of items

to display, associated with the Items component. We

pass the list of items contained in the reactive variable

“items” to this component. The Items component will

use this “items” parameter to display the list of items it

contains.

Note that the returned JSX code must always have a root element that

encompasses all other elements. Since the <button> and <Items> elements

don’t have a common root element, we add a fictitious one using <> and </>.

We also modify the App.css file that contains the application styles. We

simply want to add a margin of 10 pixels between the displayed elements

and the window edges.

Chapter 5 Day 5: Practical Application—Managing a Task List with React

210

Application styles (file src/App.css)

body {

 margin : 10px;

}

Let’s move on to describing the other components of the application.

Let’s start with the Items component, which is used to display the list as

a whole.

The Items component is as follows:

Items component (file src/Items.js)

import Item from "./Item";

function Items({ items }) {

 return (

 <ul style={{ listStyleType: "none" }}>

 {items.map(function (item, index) {

 return <Item key={index} name={item} />;

 })}

);

}

export default Items;

In the parameter of the Items component, we specify the name of

the items attribute that is passed to it, in the form of {items}. This items

parameter is then used through the map() method to return the JSX code

to be displayed for each item in the list.

Chapter 5 Day 5: Practical Application—Managing a Task List with React

211

For each item in the list, we return a new component, named Item

here, to which we pass the text of the item to display (in the item attribute)

and the index of the item in the list (in the key attribute), as we know that

React requires each element in a displayed list to have a key attribute with

a unique value in the list.

Now let’s see the description of the Item component, which is the final

component of our application. This Item component displays an item

from the list using the “name” attribute (containing the text of the item to

display) that is passed to it.

The Item component is as follows:

Item component (file src/Item.js)

function Item({ name }) {

 return (

 <li style={{ marginTop: "5px" }}>

 {name}

 <button>Modify</button>

 <button>Remove</button>

);

}

export default Item;

The Item component displays the text of the list item (contained in

the “item” attribute) and the two Modify and Remove buttons, which are

currently inactive.

Let’s verify that we can add items to the list by clicking the Add Item

button (Figure 5-9).

Chapter 5 Day 5: Practical Application—Managing a Task List with React

212

Figure 5-9.  Insertion of three items into the list

Insertion into the list works. Now, let’s see how to remove an item from

the list.

�Removing an Item from the List
Removing an item from the list is done by clicking the Remove button

within the Item component. We will create a method named remove() in

the Item component that will be responsible for removing the item from

the list.

When removing an item from the list, the reactive variable “items”

within the App component needs to be updated. This update can only be

achieved by using the setItems() function returned by useState() in the

App component.

Therefore, the Item component needs to be able to access and update

this reactive variable “items”, which is located in a parent component (the

App component). To achieve this, we will pass the setItems() method as an

Chapter 5 Day 5: Practical Application—Managing a Task List with React

213

attribute. We will introduce a new attribute named, for example, setItems,

with a value of {setItems}. This attribute will be passed from the App

component to the Items component, and then to the Item component.

This will allow the Item component to update the reactive variable “items”

located within the App component.

It’s worth noting that we could also use the useContext() hook, which

enables data sharing between a component and its children, whether

direct or nested. This would eliminate the need to pass the setItems()

update function to the other components.

Furthermore, we need to transmit the index of the item to be deleted

from the list. To achieve this, we use the “index” attribute within the Item

component. This “index” attribute is set within the Items component when

creating each Item component.

Please observe that the item’s index is also used with the “key”

attribute, but this attribute is internal to React and cannot be directly used

within our components.

The App component is modified to incorporate the setItems attribute

when creating the Items component within the App component.

The App component now becomes as follows:

App component (src/App.js file)

import logo from './logo.svg';

import './App.css';

import { useState } from "react";

import Items from "./Items";

function App() {

 const [items, setItems] = useState();

 function add() {

 var item = "Item " + (items.length + 1);

 items.push(item);

Chapter 5 Day 5: Practical Application—Managing a Task List with React

214

 setItems([...items]);

 }

 return (

 <>

 <button onClick={add}>Add Item</button>

 <Items items={items} setItems={setItems} />

 </>

);

}

export default App;

The Items component is modified to take into account the setItems

attribute that is passed to it, and to add the index attribute when creating

each Item component.

The Items component now becomes as follows:

Items component (src/Items.js file)

import Item from "./Item";

function Items({ items, setItems }) {

 return (

 <ul style={{ listStyleType: "none" }}>

 {items.map(function (item, index) {

 �return <Item key={index} name={item} index={index}

setItems={setItems} />;

 })}

);

}

export default Items;

Chapter 5 Day 5: Practical Application—Managing a Task List with React

215

Finally, the Item component is modified to accommodate the handling

of the Remove button using the added remove() method within the

Item component. The index and setItems attributes are passed to this

component.

The Item component now becomes as follows:

Item component (src/Item.js file)

function Item({name, index, setItems}) {

 function remove() {

 setItems(function(items) {

 items = items.filter(function(item, i) {

 if (index == i) return false;

 else return true;

 });

 return [...items];

 });

 }

 return (

 <li style={{marginTop:"5px"}}>

 {name}

 <button>Modify</button>

 <button onClick={remove}>Remove</button>

);

}

export default Item;

Chapter 5 Day 5: Practical Application—Managing a Task List with React

216

The function setItems(), passed through the component’s attributes,

becomes accessible within the Item component. The reactive variable

“items” is also accessible here by using the callback function within

setItems(callback).

To remove an item from the list, it’s sufficient to update the reactive

variable “items” using the setItems() function. The filter() method of the

Array class allows us to return a new array, where we return true for the

elements we want to keep and false for the elements we want to remove.

In this case, we are keeping all elements except the one with the specified

index attribute.

Furthermore, to trigger an update of the reactive variable, we need

to return a new reference of it, hence the creation of a new array using [...

items]. This creates a new array with a new memory address, containing

the same elements as before.

Note T he filter() method in JavaScript returns a new array with a
new memory reference. Therefore, it's not necessary here to use
array destructuring with return [...items], and we can simply use the
instruction return items.

Let’s verify that this works. We create four items in the list; then we

remove the second and third items. Only the first and fourth items remain

(see Figure 5-10).

Chapter 5 Day 5: Practical Application—Managing a Task List with React

217

Figure 5-10.  Removing items from the list

We have seen how to add and remove items from the list. Now let’s see

how to modify them.

�Modifying an Item in the List
Modifying an item in the list is a bit more complex to implement. Let’s

proceed through different steps to understand the requirements.

First, we need to transform the text of the list item into an input field

that initially contains the text of the list item. The changes to the program

will take place within the Item component.

�Step 1: Modifying the Item
To display either an input field or plain text (depending on whether the

Modify button has been clicked or not), we use a new reactive variable

named “modifyOn”, which is a boolean variable set to true if the input

Chapter 5 Day 5: Practical Application—Managing a Task List with React

218

field is displayed (Modify button clicked) or false if only the plain text is

displayed (Modify button not clicked). This reactive variable “modifyOn”

is initialized to false and becomes true when the Modify button is clicked.

Using a reactive variable allows us to dynamically change the display

when the variable is modified, which is the role of a reactive variable.

Therefore, the Item component becomes as follows. It will be further

modified in the following pages to progressively reach the final goal for

better understanding.

Item component (src/Item.js file)

import { useState } from "react";

function Item({name, index, setItems}) {

 const [modifyOn, setModifyOn] = useState(false);

 function remove() {

 setItems(function(items) {

 items = items.filter(function(item, i) {

 if (index == i) return false;

 else return true;

 });

 return [...items];

 });

 }

 function modify() {

 setModifyOn(!modifyOn);

 }

 return (

 <li style={{marginTop:"5px"}}>

 { modifyOn ?

 <input type="text" value={name} /> :

Chapter 5 Day 5: Practical Application—Managing a Task List with React

219

 {name}

 }

 <button onClick={modify}>Modify</button>

 <button onClick={remove}>Remove</button>

);

}

export default Item;

As explained earlier, we use the reactive variable “modifyOn”

initialized to false. This variable is modified when clicking the Modify

button, within the modify() function triggered by the Modify button click.

The JSX code of the component utilizes the value of the reactive

variable “modifyOn” to display either the input field or the text element. In

both cases, we display the value of the item {name} within the input field

or the text element.

Let’s execute this program while also displaying the console using F12,

which contains any potential error messages. We insert an item and then

click the Modify button (Figure 5-11).

Chapter 5 Day 5: Practical Application—Managing a Task List with React

220

Figure 5-11.  Clicking the Modify button

We observe that clicking the Modify button toggles the display between

the input field and the element as text. Indeed, modifying a reactive

variable (here, modifyOn) within the component triggers the component’s

update and therefore its re-rendering. The message in the console (in this

case, a warning) informs us that we need to implement the onChange

event in the input field. Since we initialized the “value” property of this

field, we also need to handle its potential changes.

Chapter 5 Day 5: Practical Application—Managing a Task List with React

221

Let’s implement the handling of the onChange event in the input field.

For now, we are displaying its content in the console (i.e., the value of

event.target.value).

Handling the onChange event in the input field (src/Item.js file)

import { useState } from "react";

function Item({name, index, setItems}) {

 const [modifyOn, setModifyOn] = useState(false);

 function remove() {

 setItems(function(items) {

 items = items.filter(function(item, i) {

 if (index == i) return false;

 else return true;

 });

 return [...items];

 });

 }

 function modify() {

 setModifyOn(!modifyOn);

 }

 function change(event) {

 console.log(event.target.value);

 }

Chapter 5 Day 5: Practical Application—Managing a Task List with React

222

 return (

 <li style={{marginTop:"5px"}}>

 { modifyOn ?

 �<input type="text" value={name}

onChange={change} /> :

 {name}

 }

 <button onClick={modify}>Modify</button>

 <button onClick={remove}>Remove</button>

);

}

export default Item;

Let’s type characters into the input field, for example, “a”, then “b”, then

“c”, then “d”, and finally “e” (see Figure 5-12).

Chapter 5 Day 5: Practical Application—Managing a Task List with React

223

Figure 5-12.  Modifying the input field: it isn’t updated

We can see that the characters are captured correctly by the onChange

event but are not visible in the input field, which remains unchanged.

Indeed, to modify the input field, we need to update the component’s

display, as the input field’s “value” property is initially set to the initial

value, which is the text of the item, that is, {name}. The “value” property of

the input field needs to reflect the current value in the input field for each

typed character.

To achieve this, we use a new reactive variable, here named “text”,

which will be used to store and display the value in the input field.

Chapter 5 Day 5: Practical Application—Managing a Task List with React

224

Let’s use the reactive variable “text” within the Item component to

handle the modification of the input field:

Modifying the input field (src/Item.js file)

import { useState } from "react";

function Item({name, index, setItems}) {

 const [modifyOn, setModifyOn] = useState(false);

 const [text, setText] = useState(name);

 function remove() {

 setItems(function(items) {

 items = items.filter(function(item, i) {

 if (index == i) return false;

 else return true;

 });

 return [...items];

 });

 }

 function modify() {

 setModifyOn(!modifyOn);

 }

 function change(event) {

 console.log(event.target.value);

 setText(event.target.value);

 }

Chapter 5 Day 5: Practical Application—Managing a Task List with React

225

 return (

 <li style={{marginTop:"5px"}}>

 { modifyOn ?

 �<input type="text" value={text}

onChange={change} /> :

 {text}

 }

 <button onClick={modify}>Modify</button>

 <button onClick={remove}>Remove</button>

);

}

export default Item;

The “text” variable is updated as characters are typed, triggered by the

onChange event. This “text” variable is reactive and is the one displayed

in the JSX code instead of the “name” variable, which is not reactive. This

enables the updating of the text displayed in the input field for each typed

character.

Let’s display the input field and enter characters as before. We can see

that the typed characters are correctly displayed in both the console and

the input field (Figure 5-13).

Chapter 5 Day 5: Practical Application—Managing a Task List with React

226

Figure 5-13.  Modifying the input field: it's finally updated

Next, let’s proceed to the next step, which involves considering the

modification of the input field.

�Step 2: Validation of the Modification
The input field has become editable. Now we need to handle leaving the

input field (onBlur event) by redisplaying the text element (in place of the

input field) and updating this element in the list of items (in the reactive

“items” variable):

Chapter 5 Day 5: Practical Application—Managing a Task List with React

227

•	 To restore the text element in place of the input field,

simply set the reactive variable “modifyOn” to false.

•	 To modify the value of the element in the reactive

“items” variable, update the element in the “items”

array and then return a new array using return

[...items].

Let’s modify the Item component to incorporate these changes.

Item component (src/Item.js file)

import { useState } from "react";

function Item({name, index, setItems}) {

 const [modifyOn, setModifyOn] = useState(false);

 const [text, setText] = useState(name);

 function remove() {

 setItems(function(items) {

 items = items.filter(function(item, i) {

 if (index == i) return false;

 else return true;

 });

 console.log(items);

 return [...items];

 });

 }

 function modify() {

 setModifyOn(!modifyOn);

 }

Chapter 5 Day 5: Practical Application—Managing a Task List with React

228

 function change(event) {

 // console.log(event.target.value);

 setText(event.target.value);

 }

 function blur(event) {

 // Remove the input field

 setModifyOn(false);

 // Modify the item in items variable

 setItems(function(items) {

 items[index] = event.target.value;

 return [...items];

 });

 }

 return (

 <li style={{marginTop:"5px"}}>

 { modifyOn ?

 �<input type="text" value={text} onChange={change}

onBlur={blur} /> :

 {text}

 }

 <button onClick={modify}>Modify</button>

 <button onClick={remove}>Remove</button>

);

}

export default Item;

Chapter 5 Day 5: Practical Application—Managing a Task List with React

229

We have also added a console log displaying the reactive variable

“items” after each removal of an item from the list. This helps verify if the

removal is still functioning correctly.

Let’s insert three items into the list and then remove the first item

from the list. Observe the value of the reactive variable “items” displayed

in the console and compare it with the list displayed on the page

(see Figure 5-14).

Figure 5-14.  List after removing the first item

Chapter 5 Day 5: Practical Application—Managing a Task List with React

230

We observe that the “items” variable in the console matches the

expected outcome, but the display is not updated! It still includes the first

list item even though it should have been removed.

What could be the reason for this inconsistency?

In React, the “key” attribute is used to help React identify each item in

a list. When React updates the contents of a list, it compares the new list

to the old one based on the keys (“key” attributes) of the list items. This

enables React to determine which item was added, removed, or modified.

It’s important for each list item to have a unique key, as this allows React

to distinguish each item and update them correctly in case of changes.

If two items have the same key, React won’t know which one to update,

potentially leading to unexpected behavior.

Furthermore, each list item should always maintain the same key it

was previously assigned. This ensures that React doesn’t create new items

every time a list is updated, which could lead to performance issues.

In summary, the use of unique and consistent keys in lists is crucial to

ensure React functions properly when updating list content.

Therefore, the program needs to be modified so that each list item is

associated with a unique key, which cannot be the index of the item in the

list. Using the index as the key would not be unique in cases where the list

is modified due to item removal.

�Step 3: Assigning a Unique Value
for the “key” Attribute
To assign a unique value for the “key” attribute of each list item, we

use a reactive variable named “key”, which will be updated using the

setKey(value) method returned by useState().

An item placed in the “items” array will now be an object { name, key },

allowing us to know the unique “key” associated with each list item.

Chapter 5 Day 5: Practical Application—Managing a Task List with React

231

The App component is thus modified:

App component (src/App.js file)

import logo from './logo.svg';

import './App.css';

import { useState } from "react";

import Items from "./Items";

function App() {

 const [items, setItems] = useState();

 const [key, setKey] = useState(1);

 function add() {

 var name = "Item " + key; // Item 1, Item 2, ...

 �setKey(key+1); // Obtaining the next key associated with

the list item

 items.push({name, key});

 setItems([...items]);

 console.log(items);

 }

 return (

 <>

 <button onClick={add}>Add Item</button>

 <Items items={items} setItems={setItems} />

 </>

);

}

export default App;

The Items component needs to be modified to accommodate the new

structure of the “items” array.

Chapter 5 Day 5: Practical Application—Managing a Task List with React

232

Items component (src/Items.js file)

import Item from "./Item";

function Items({ items, setItems }) {

 return (

 <ul style={{ listStyleType: "none" }}>

 {items.map(function (item) {

 var {name, key} = item;

 �return <Item key={key} name={name} index={key}

setItems={setItems} />;

 })}

);

}

export default Items;

The “key” attribute, now used in the Item component, is unique for

each list item. The “index” attribute is also set to the value of the “key” key.

The Item component is also modified so that modifications or

removals of an item are performed based on the value of the “key” key

associated with the item (set in the “index” attribute).

Why use two attributes (“key” and “index”) to refer to the same value?

React requires, for its internal functioning, the use of the “key”

attribute, which must have a unique value for each item in the list.

However, this “key” attribute cannot be used directly in our programs,

hence the use of another attribute named “index” here, which holds

the same value. It is this “index” attribute that we can manipulate in our

programs to perform the operations.

Chapter 5 Day 5: Practical Application—Managing a Task List with React

233

Item component (src/Item.js file)

import { useState } from "react";

function Item({name, index, setItems}) {

 const [modifyOn, setModifyOn] = useState(false);

 const [text, setText] = useState(name);

 function remove() {

 setItems(function(items) {

 items = items.filter(function(item) {

 // Removal of the item where index = item.key

 if (index == item.key) return false; // Remove

 else return true; // Keep

 });

 console.log(items);

 return [...items];

 });

 }

 function modify() {

 setModifyOn(!modifyOn);

 }

 function change(event) {

 // console.log(event.target.value);

 setText(event.target.value);

 }

 function blur(event) {

 // Remove the input field

 setModifyOn(false);

 // Modify the item in items variable

 setItems(function(items) {

Chapter 5 Day 5: Practical Application—Managing a Task List with React

234

 items = items.map(function(item) {

 // Modification of the item where index = item.key

 if (index == item.key) item.name = event.target.value;

 return item;

 });

 return [...items];

 });

 }

 return (

 <li style={{marginTop:"5px"}}>

 { modifyOn ?

 �<input type="text" value={text} onChange={change}

onBlur={blur} /> :

 {text}

 }

 <button onClick={modify}>Modify</button>

 <button onClick={remove}>Remove</button>

);

}

export default Item;

Let’s verify that these modifications produce the expected changes. We

create three list items and then remove the first one. The previous bug has

now been resolved (see Figure 5-15).

Chapter 5 Day 5: Practical Application—Managing a Task List with React

235

Figure 5-15.  Correct display after modification and removal
of an item

Chapter 5 Day 5: Practical Application—Managing a Task List with React

236

In this example, we have demonstrated the importance of assigning

a unique value to the “key” attribute in list items within React. This value

must be unique regardless of the existing or future items in the list.

�Step 4: Obtaining Focus Directly
on the Input Field
Finally, we need to ensure that the input field receives focus directly when

clicking the Modify button, rather than having to click inside the field to

give it focus.

To achieve this, we will use the useRef() hook, which we explained

in the previous chapter. We will set the “ref” attribute in the <input>

element of the JSX code in the Item component. The “ref” attribute should

have the value obtained from calling the useRef() hook earlier in the

component’s code.

For example, if we define const refInput = useRef(), we will use

ref={refInput} in the JSX code of the <input> element. The focus() method

can then be called using the statement refInput.current.focus().

When to use this instruction?

This instruction should be used when the input field appears in the

Item component, that is, after clicking the Modify button. React allows

performing actions after each component’s rendering or update using the

useEffect() hook, which is called at that moment. Indeed, transforming a

text field into an input field in a component corresponds to updating the

component.

However, it’s necessary to ensure that the component’s update involves

displaying the input field (the Item component can be displayed or

updated without the input field being present). To achieve this, simply test

within the useEffect() hook whether the value of refInput.current exists. If

Chapter 5 Day 5: Practical Application—Managing a Task List with React

237

it exists, it means the input field is present during rendering, and we can

use the focus() method on this variable. Otherwise, an error occurs when

rendering the items because the input field does not exist.

Let’s use the useRef() and useEffect() hooks to give focus to the input

field when it is created.

Item component (src/Item.js file)

import { useState, useEffect, useRef } from "react";

function Item({name, index, setItems}) {

 const [modifyOn, setModifyOn] = useState(false);

 const [text, setText] = useState(name);

 const refInput = useRef();

 useEffect(function() {

 // If the input field exists, give it focus

 if (refInput.current) refInput.current.focus();

 });

 function remove() {

 setItems(function(items) {

 items = items.filter(function(item) {

 // Removal of the item where index = item.key

 if (index == item.key) return false; // Remove

 else return true; // Keep

 });

 console.log(items);

 return [...items];

 });

 }

Chapter 5 Day 5: Practical Application—Managing a Task List with React

238

 function modify() {

 setModifyOn(!modifyOn);

 }

 function change(event) {

 // console.log(event.target.value);

 setText(event.target.value);

 }

 function blur(event) {

 // Remove the input field

 setModifyOn(false);

 // Modify the item in items variable

 setItems(function(items) {

 items = items.map(function(item) {

 // Modification of the item where index = item.key

 if (index == item.key) item.name = event.target.value;

 return item;

 });

 return [...items];

 });

 }

 return (

 <li style={{marginTop:"5px"}}>

 { modifyOn ?

 �<input type="text" value={text} onChange={change}

onBlur={blur} ref={refInput} /> :

 {text}

 }

 <button onClick={modify}>Modify</button>

Chapter 5 Day 5: Practical Application—Managing a Task List with React

239

 <button onClick={remove}>Remove</button>

);

}

export default Item;

Let’s click the Modify button of the first item in the list, and the focus is

directly given to the input field (Figure 5-16).

Figure 5-16.  The input field receives focus directly

�Conclusion
This chapter has been an exploration of creating and managing lists with

React. We learned how to handle list items with unique keys and how to

dynamically update a list in response to user events.

Chapter 5 Day 5: Practical Application—Managing a Task List with React

240

The skills acquired in this chapter are highly useful for creating various

types of web applications, including enterprise dashboards, to-do list apps,

or ecommerce applications. By utilizing these skills, you’re capable of

creating dynamic and interactive lists, thereby enabling users to efficiently

manipulate and visualize data.

We have now completed our study of React in just 5 days! You have the

essential elements in this book to effectively use React, having understood

its internal functioning. If this book has satisfied you, I kindly ask you to

post a comment on the social media platforms you use. In addition to

purchasing this book, that would be my best reward!

In the next chapter, we provide you with a summary of the JavaScript

features we’ve used previously.

Chapter 5 Day 5: Practical Application—Managing a Task List with React

241

CHAPTER 6

JavaScript Reminders
Here’s the final chapter, “JavaScript Reminders,” of our book Master React

in 5 Days. Before diving into the world of React, it’s important to recall the

basics of JavaScript. This chapter aims to help you remember and brush up

on the key concepts of JavaScript that are used throughout the book.

We will cover key concepts such as variables, arrays, objects, arrow

functions, and modules. We will also explore more advanced concepts like

asynchronous functions.

•	 If you’re already familiar with JavaScript, this chapter

will help you recall and ensure you have the necessary

foundation to understand the code examples in React.

•	 If you’re new to the world of JavaScript, this chapter

will provide you with a solid groundwork to grasp the

concepts we’ll be using throughout the book.

Ready to strengthen your JavaScript knowledge? Let’s get started!

�Using the “let” and “var” Keywords
in JavaScript
In JavaScript, “let” and “var” are two keywords used for declaring variables.

The main difference between the two lies in the variable’s scope.

© Eric Sarrion 2023
E. Sarrion, Master React in 5 Days, https://doi.org/10.1007/978-1-4842-9855-8_6

https://doi.org/10.1007/978-1-4842-9855-8_6#DOI

242

The “var” keyword has function scope, meaning the variable is

accessible inside the function in which it is declared, as well as everywhere

inside that function.

For example:

Using “var” to define a variable

function example() {

 var x = 10;

 if (true) {

 �var x = 20; // The variable x is accessible inside the

function example()

 }

 console.log(x); // Displays 20

}

In this example, the variable x is declared inside the function

example(), but it is also accessible within the “if” block, because “var”

has function scope. Therefore, writing “var x = 20;” does not create a new

variable, as the variable x was declared earlier and is directly accessible

within the “if” block. By writing “var x = 20;”, we are only modifying the

value of the previously created variable.

On the other hand, the “let” keyword has block scope, which means

the variable is accessible only within the block in which it is declared and

in all nested blocks inside that block.

For example:

Using “let” to define a variable

function example() {

 let x = 10;

 if (true) {

Chapter 6 JavaScript Reminders

243

 �let x = 20; // The variable x is accessible only within the

"if" block

 }

 console.log(x); // Displays 10

}

In this example, the variable “x” is declared inside the function

example(). However, the second declaration of x inside the “if” block

creates a new variable “x”, which is accessible only within that block. The

variable x outside the “if” block retains its initial value of 10.

In summary, the main difference between “let” and “var” is the

variable’s scope: “var” has function scope, and “let” has block scope. It is

generally recommended to use “let” rather than “var” in JavaScript code,

as it provides better control over variable scope and helps avoid accidental

variable reuse across different blocks.

�Using the “const” Keyword in JavaScript
In JavaScript, the “const” keyword is used to declare a variable that cannot

be reassigned after its initial value has been assigned. It creates a variable

with a constant, unchangeable reference to a value. This means that once a

value is assigned to a “const” variable, you cannot reassign it to a different

value later in the code.

Here’s an explanation of how the “const” keyword works and its key

characteristics:

When declaring a variable using “const”, you must immediately assign

a value to it. Unlike the “var” or “let” keywords, you cannot declare a

“const” variable without initializing it.

Declaration and initialization

const pi = 3.14159;

Chapter 6 JavaScript Reminders

244

Once a value is assigned to a “const” variable, its value cannot be

changed. Attempting to reassign a “const” variable will result in an error.

Value immutability

const pi = 3.14159;

pi = 3.14; // This will result in an error

Like variables declared with “let”, “const” variables are block-scoped.

They are only accessible within the block (enclosed by curly braces) where

they are defined.

Block scope

if (true) {

 const message = "Hello";

 console.log(message); // OK

}

console.log(message); // Error: 'message' is not defined

You cannot declare another variable with the same name in the same

scope if you’ve already declared it with “const”.

No redeclaration

const value = 42;

const value = 100; // Error: Identifier 'value' has already

been declared

When using “const” with objects and arrays, the reference to the object

or array itself is immutable, but the properties or elements within the

object or array can still be modified.

Chapter 6 JavaScript Reminders

245

Modifying object's properties and array's elements

const person = { name: "Alice", age: 30 };

person.age = 31; // Valid, modifies a property inside

the object

const numbers = [1, 2, 3];

numbers.push(4); // Valid, adds an element to the array

In summary, the “const” keyword is used to declare variables that

are meant to remain constant after their initial assignment. It ensures

immutability of the variable reference, but the properties or elements within

objects and arrays declared with “const” can still be modified. Use “const”

for values that should not be changed throughout the scope of the variable.

�Manipulating Objects in JavaScript
In JavaScript, structuring and destructuring objects are techniques that

allow for efficient data manipulation.

�Step 1: Structuring an Object
Structuring an object involves defining a data structure for that object.

You can create an object with a list of properties and their corresponding

values. For example, you can create a person object with properties like

name, age, and city as follows:

Creating the person object

const person = {

 name: "Gaby",

 age: 40,

 city: "Austin"

};

Chapter 6 JavaScript Reminders

246

This allows us to access the values person.name (which is “Gaby”),

person.age (which is 40), and person.city (which is “Austin”).

�Step 2: Object Destructuring
Object destructuring, on the other hand, allows you to extract object

properties and use them independently. For instance, you can extract the

name and age properties from the person object as follows:

Destructuring the person object

const { name, age } = person;

In this example, we create two variables, name and age, that

correspond to properties of the same names in the person object. We

can now use these variables independently of the rest of the object.

Destructuring can also be used to pass arguments to a function in a more

concise way. For example, you can create a function that takes an object

person as an argument and displays the person’s name and age:

Using destructuring in function definition

function displayNameAge({ name, age }) {

 console.log(`The name is ${name} and the age is ${age}`);

}

In this example, we use destructuring to extract the properties name

and age from the person object that is passed as an argument. We can now

call this function with the person object as follows:

Using the function

displayNameAge(person);

This will display “The name is Gaby and the age is 40” in the console.

Chapter 6 JavaScript Reminders

247

In summary, object structuring and destructuring in JavaScript

are powerful techniques that allow for efficient and concise data

manipulation.

�Step 3: Passing Objects as Function
Parameters
In JavaScript, the notation { key1, key2 } is used in function parameters

to perform object destructuring. This notation allows you to destructure

a literal object by extracting the values associated with the specified

properties and assigning them to variables with the same names as the

properties.

Here’s an example to illustrate its usage:

Object as a function parameter

function displayDetails({ name, age }) {

 console.log(`Name: ${name}`);

 console.log(`Age: ${age}`);

}

const person = {

 name: "Gaby",

 age: 40,

 city: "Austin",

 profession: "Developer",

};

displayDetails(person); // �Displays "Name: Gaby" and

"Age: 40"

Chapter 6 JavaScript Reminders

248

In this example, the displayDetails() function takes an object as a

parameter and destructures the object to extract values associated with the

name and age properties. The extracted values are then used to display the

person’s details.

It’s important to note that if a specified property in the destructuring

notation does not exist in the object, its value will be undefined.

Additionally, it’s possible to rename the extracted variables using the

syntax { property: newVariable }.

In summary, the { key1, key2 } notation in function parameters allows

for object destructuring, extracting values associated with specified

properties. This leads to more concise and readable code, avoiding direct

property access within the function body.

�Step 4: Using the “...” Notation with Objects
Let’s now explain the “...” (three consecutive dots) notation with objects.

The “...” notation in JavaScript, also known as the spread or rest operator, is

used to spread or gather the elements of an array or an object.

When used with an object, the “...” notation creates a shallow copy

of the original object, including all its properties and their values. For

example:

Using the “...” notation with objects

const object1 = { x: 1, y: 2 };

const object2 = { ...object1 };

console.log(object2); // { x: 1, y: 2 }

In this example, the “...” notation is used to spread the properties of

object1 into object2. This creates a shallow copy of object1, with the same

properties and values.

Chapter 6 JavaScript Reminders

249

If you write const object2 = object1;, it does not do the same thing at

all! This statement creates a variable object2 that has the same memory

reference as object1, thus referencing the same content as object1. If you

modify the content of object1 or object2, the other object will be modified

in the same way.

The “...” notation can also be used to merge multiple objects into one.

For example:

Merging objects with “...”

const object1 = { x: 1, y: 2 };

const object2 = { z: 3 };

const object3 = { ...object1, ...object2 };

console.log(object3); // { x: 1, y: 2, z: 3 }

In this example, the “...” notation is used to merge the properties of

objects object1 and object2 into a new object object3.

It’s important to note that the “...” notation creates only a shallow copy

of the original object. If the object contains properties that are themselves

objects or arrays, these properties are not deeply copied and are still

shared between the original object and the copy (since it’s the references

to objects or arrays that are copied, thus shared between the original

object and the new object).

�Manipulating Arrays in JavaScript
In JavaScript, an array is a data structure that allows you to store and access

multiple elements as an ordered list.

Chapter 6 JavaScript Reminders

250

�Step 1: Structuring an Array
Structuring arrays in JavaScript refers to creating, initializing, and

manipulating arrays to store and organize data.

Creating an array in JavaScript can be done in several ways. The most

common way is to declare an empty array and add elements using the

push() method. For example:

Creating an array using the push() method

let array = [];

array.push(1);

array.push(2);

array.push(3);

console.log(array); // [1, 2, 3]

Another common method to create an array is by using the array literal

notation, which allows you to declare and initialize an array in a single

step. For example:

Creating an array using []

let array = [1, 2, 3];

console.log(array); // [1, 2, 3]

�Step 2: Array Destructuring
Array destructuring in JavaScript refers to extracting elements from an

array into separate variables. This feature is useful for manipulating arrays

in a more concise and readable manner. For example:

Chapter 6 JavaScript Reminders

251

Array destructuring into separate variables

let array = [1, 2, 3];

let [firstElement, secondElement, thirdElement] = array;

console.log(firstElement); // 1

console.log(secondElement); // 2

console.log(thirdElement); // 3

�Step 3: Using the “...” Notation with Arrays
Destructuring also allows you to retrieve a portion of an array using the “...”

syntax. For example:

Destructuring an array using the “...” notation

let array = [1, 2, 3, 4, 5];

let [a, b, ...rest] = array;

console.log(a); // 1

console.log(b); // 2

console.log(rest); // [3, 4, 5]

In this example, the “...” notation is used to retrieve the remaining

elements of the array after assigning the first two elements to the variables

“a” and “b”. The variable “rest” will contain the elements 3, 4, and 5 as an

array, that is, [3, 4, 5].

�Using Import and Export of Modules
in JavaScript
In JavaScript, modules are code files that can contain functions, variables,

and classes, which can be imported and used in other code files. Modules

allow for structuring and organizing JavaScript code, making it more

modular and easier to maintain.

Chapter 6 JavaScript Reminders

252

There are several ways to define and import modules in JavaScript, but

the most common method is using the import and export syntax. Modules

can be exported using the export and export default keywords, and they

can be imported using the import keyword.

Here’s a simple example to illustrate the creation and usage of modules

in JavaScript (file myModule.js):

File: myModule.js

export const myVariable = "Hello world";

export function myFunction() {

 console.log("This is my function");

}

export default class MyClass {

 constructor() {

 console.log("This is my class");

 }

}

We export the variable myVariable, the function myFunction(), and the

JavaScript class MyClass in the module myModule.js.

In another JavaScript file (e.g., test.js), we import these previously

exported elements:

File: test.js

import { myVariable, myFunction } from './myModule.js';

import MyClass from './myModule.js';

console.log(myVariable);

myFunction();

const myInstance = new MyClass();

Chapter 6 JavaScript Reminders

253

You can also write the “import” statement on a single line as follows:

File: test.js

import MyClass, { myVariable, myFunction } from

'./myModule.js';

console.log(myVariable);

myFunction();

const myInstance = new MyClass();

This way, we have access to the exported elements from the

myModule.js file in the test.js file.

�Step 1: Using Modules in HTML Files
To use JavaScript modules in an HTML file, we use the <script> tag with

the “type” attribute set to “module”.

Here’s an example of HTML code that imports a module named

myModule.js:

File: index.html

<!DOCTYPE html>

<html>

<head>

 <title>Example of Using Modules in HTML</title>

</head>

<body>

 <h1>Example of Using Modules in HTML</h1>

Chapter 6 JavaScript Reminders

254

 <script type="module">

 import { myFunction } from './myModule.js';

 myFunction();

 </script>

</body>

</html>

The message “This is my function” is displayed in the browser console,

demonstrating that the myFunction() is successfully accessible in the

JavaScript code of the HTML file.

�Step 2: Using the “import” Statement
The “import” statement is used in JavaScript to import modules from one

JavaScript file to another. The basic syntax for importing a module is as

follows:

Importing data from a module

import { variableName, functionName } from './path/to/module';

This syntax allows you to import specific variables or functions from

a module. The path to the module should be relative to the current

JavaScript file.

Here are some examples of using the “import” statement in JavaScript:

Using “import” in a module

// Importing a specific variable

import { myVariable } from './myModule.js';

console.log(myVariable);

Chapter 6 JavaScript Reminders

255

// Importing multiple variables and a function

import { myVar1, myVar2, myFunction } from './myModule.js';

console.log(myVar1);

console.log(myVar2);

myFunction();

// Importing all exported variables and functions

import * as myModule from './myModule.js';

console.log(myModule.myVar1);

console.log(myModule.myVar2);

myModule.myFunction();

In these examples, the “import” statement is used to import specific

variables and functions from a module. In the last example, all exported

variables and functions are imported using the * operator, and an alias

myModule is created to access the exported elements.

It’s important to note that the “import” statement can only be used in

a module context. A JavaScript file must be explicitly marked as a module

by using the “type=module” directive in the <script> tag of the calling

HTML file.

�Step 3: Using the “export” Statement
The “export” statement in JavaScript is used to export variables, functions,

classes, or other elements from one JavaScript file to another. The

exported elements can be used in other files by importing the module that

contains them.

There are two main ways to export elements in JavaScript: using the

“export” syntax or “export default” syntax.

Chapter 6 JavaScript Reminders

256

The “export” syntax is used to export named elements. For example,

to export a named variable myVariable and a named function myFunction

from a file myModule.js, you can use the following syntax:

Exporting variables (file myModule.js)

export const myVariable = "Hello world";

export function myFunction() {

 console.log("This is my function");

}

The exported elements can then be imported into another file using

the “import” statement. Here’s an example:

Importing variables in another module

import { myVariable, myFunction } from './myModule.js';

console.log(myVariable); // Displays "Hello world"

myFunction(); // Displays "This is my function"

�Step 4: Using the “export default”
Statement
The “export default” syntax is used to export a default element from a

module. For example, to export a default class from a file myModule.js, you

can use the following syntax:

Using export default (file myModule.js)

export default class MyClass {

 constructor() {

 console.log("This is my class");

 }

}

Chapter 6 JavaScript Reminders

257

In this example, the MyClass class is exported as the default. It can be

imported into another file using the following syntax:

Importing variables in another module

import MyClass from './myModule.js';

const myInstance = new MyClass(); // Creates a new instance of

the MyClass class

In summary, the export statement in JavaScript allows you to export

elements from a module to make them available in other JavaScript files.

It can be used to export variables, functions, classes, or other elements

and can be combined with the import statement to create modular and

reusable JavaScript applications.

�Step 5: Difference Between “export”
and “export default” Statements
The decision to use “export” or “export default” in JavaScript depends on

how you want to expose module elements and import them later.

The export syntax is used to export multiple named elements from

a module. This means that when a module is imported, the exported

elements must be imported with their original names and enclosed in

curly braces.

For example:

Using export, then import

// In the file "myModule.js"

export const myVar1 = "Hello";

export const myVar2 = "World";

export function myFunction() {

Chapter 6 JavaScript Reminders

258

 console.log("This is my function");

}

// In the file that imports the module

import { myVar1, myVar2, myFunction } from './myModule.js';

// with curly braces

In this example, the exported elements must be imported using their

original names and enclosed in curly braces. If we try to import an element

with a different name than the one specified in the export, an error will be

generated.

The export default syntax is used to export a default element from a

module. This means that the element exported as default can be imported

later using a name of our choice. Only one element can be exported as

default in a module, to avoid confusion.

JavaScript will understand that we want to import the default exported

element in a module because we import it without using the curly braces

notation, unlike elements exported using the “export” statement, which

are imported with the curly braces notation.

For example:

Using export default, then import

// In the file "myModule.js"

export default class MyClass {

 constructor() {

 console.log("This is my class");

 }

}

// In the file that imports the module

import MyCustomName from './myModule.js'; // �without using

curly braces

const myInstance = new MyCustomName();

Chapter 6 JavaScript Reminders

259

In this example, the default exported element (the MyClass class) can

be imported using a name of our choice (MyCustomName in this case).

This can be useful if we want to give a more meaningful name to the

imported element or avoid naming conflicts.

In summary, “export” is used to export multiple named elements from

a module, while “export default” is used to export an element that will be

considered the default one during import. The decision to use one or the

other depends on how we want to expose module elements and how we

want to import them into other files.

�Using Arrow Functions in JavaScript
Arrow functions are a new function syntax introduced in ECMAScript 6

(ES6) to write functions in a more concise and readable way. Here are the

main differences between arrow functions and traditional functions:

•	 More concise syntax: Arrow functions have a more

concise syntax than traditional functions. Instead of the

classic function() {function body}, arrow functions are

written like this: () => {function body}.

•	 No bound “this” keyword: In traditional functions,

the “this” keyword is bound to the object that calls the

function. In arrow functions, “this” is bound to the

lexical context in which the function is defined. This

means that “this” in an arrow function refers to “this”

in the parent scope (the value of “this” in an arrow

function will be the same as that of the parent).

Apart from the concise writing aspect of arrow functions, the deciding

factor to use them in JavaScript code is mostly the desired value for the

“this” variable.

Chapter 6 JavaScript Reminders

260

Let’s now look at the syntax of these functions and then explain the

value of “this” in each use case.

�Step 1: Using Arrow Function Syntax
Let’s start by examining the writing syntax of these functions. Here’s an

example:

Using traditional functions and arrow functions

// Traditional function to calculate the square of a number

function square(x) {

 return x * x;

}

// Arrow function to calculate the square of a number

const square2 = (x) => x * x;

// Using the function

console.log(square2(5)); // Result: 25

In this example, the first function is a traditional function that

calculates the square of a number. The second function is the arrow

version of the same function, which uses a more concise syntax. Both

functions have the same functionality, but the arrow version is more

concise and easier to read.

Note that the arrow function syntax includes parentheses around

the parameters (in this case, x), followed by the arrow =>, and then the

function body (in this case, x * x). The arrow version doesn’t require the

return keyword here because it automatically returns the calculated value.

Here’s an example of an arrow function in JavaScript that uses the

return statement:

Chapter 6 JavaScript Reminders

261

Functions using the return keyword

// Traditional function to find the largest number in an array

function findLargest(array) {

 let largest = 0;

 for (let i = 0; i < array.length; i++) {

 if (array[i] > largest) {

 largest = array[i];

 }

 }

 return largest;

}

// Arrow function to find the largest number in an array

const findLargest2 = (array) => {

 let largest = 0;

 for (let i = 0; i < array.length; i++) {

 if (array[i] > largest) {

 largest = array[i];

 }

 }

 return largest;

}

// Using the function

console.log(findLargest2([4, 8, 2, 10, 5])); // Result: 10

In this example, the first function is a traditional function that finds the

largest number in an array. The second function is the arrow version of the

same function, which uses a more concise syntax. Both functions have the

same functionality, and the arrow version also uses the return statement to

return the calculated value.

Chapter 6 JavaScript Reminders

262

Note that the arrow function syntax still includes parentheses around

the parameters and the => arrow, but this time there are also curly braces

to delimit the function body. The return statement is used to return the

calculated value.

�Step 2: Understanding the Value of “this”
in Arrow Functions
The value of “this” in an arrow function is determined by the lexical

context in which the function is defined, unlike traditional functions where

“this” is determined by how the function is called.

In an arrow function, “this” refers to the value of “this” in the parent

scope. This means that if the arrow function is defined within an object,

for example, “this” in the arrow function refers to the parent object, not the

object that calls the function.

Here’s an example to illustrate this concept:

Values of “this” in traditional functions and arrow functions

const obj = {

 name: "John",

 sayHello: function() {

 �console.log(`Hello, my name is ${this.name}`);

// "John" (this refers to obj)

 },

 sayHelloArrow: () => {

 �console.log(`Hello, my name is ${this.name}`);

// undefined (this refers to the parent of obj)

 }

}

obj.sayHello(); // Result: "Hello, my name is John"

obj.sayHelloArrow(); // Result: "Hello, my name is undefined"

Chapter 6 JavaScript Reminders

263

In this example, the object “obj” contains two functions: sayHello()

and sayHelloArrow(). sayHello() is a regular function that uses “this” to

access the “name” property of the object, while sayHelloArrow() is an

arrow function that also uses “this” to access the “name” property.

When the sayHello() function is called, “this” refers to the “obj” object,

allowing access to the “name” property and displaying it in the console.

However, when the sayHelloArrow() function is called, “this” refers to

the lexical context in which the function was defined, which is the global

context in this case. Therefore, this.name is undefined in the arrow

function, and undefined is displayed in the console.

Depending on the value of “this” that we want to access, we will use

either a regular function or an arrow function.

�Using the map() and filter() Methods
of the JavaScript Array Class
The map(callback) and filter(callback) methods are two commonly used

high-level functions in JavaScript for manipulating arrays (or collections

of objects). They are often used with React. Here’s an explanation of

each method.

�Step 1: Using the map() Method
The map(callback) method creates a new array by applying a given

function, here named callback(), to each element of the original array. The

map() method takes a callback() function as a parameter.

Chapter 6 JavaScript Reminders

264

The callback() function is then applied to each element of the original

array. This function can take up to three arguments:

•	 element: The current element being processed

•	 index (optional): The index of the current element

being processed in the array

•	 array (optional): The original array on which we are

applying the function

The map() method then returns a new array with the results of

applying the callback() function to each original element. The resulting

array will have the same length as the original array.

Here’s a simple example for better understanding:

Using the map() method

const array = [1, 2, 3, 4, 5];

const doubledArray = array.map(function(element) {

 return element * 2;

});

console.log(doubledArray); // [2, 4, 6, 8, 10]

Here, we created an array with numbers, and then we used the map()

method to create a new array with the same numbers, but multiplied by 2.

The map() method returns a new array constructed from the elements

of the original array. The resulting array will have the same number of

elements as the original array.

To reduce the number of elements in the resulting array, we will use

the filter() method, which allows us to select the elements to be included

in the resulting array (but without modifying them). Let’s now look at the

filter() method.

Chapter 6 JavaScript Reminders

265

�Step 2: Using the filter() Method
The filter(callback) method also creates a new array, but it filters the

elements of the original array that satisfy a specified condition. This

method also takes a callback() function as an argument, which will be

applied to each element of the original array. This callback() function

must return a boolean value: true if the element should be retained in the

resulting array returned by the filter() method, false otherwise.

The callback() filter function also takes up to three arguments:

•	 element: The current element being processed

•	 index (optional): The index of the current element

being processed in the array

•	 array (optional): The original array on which the

function is being applied

The filter() method then returns a new array with all the elements of

the original array that satisfy the specified condition.

Here’s a simple example to better understand:

Using the filter() method

const array = [1, 2, 3, 4, 5];

const filteredArray = array.filter(function(element) {

 return element % 2 === 0; // Returns true if the element is

even (element is kept), otherwise false

});

console.log(filteredArray); // [2, 4]

Here, we’ve created an array with numbers, and then we used the

filter() method to create a new array with only the even numbers.

Chapter 6 JavaScript Reminders

266

�Step 3: Using the map() and filter()
Methods in React
The map() and filter() methods are widely used in React to manipulate

data arrays and generate user interface elements.

Here are some reasons why these methods are useful in React:

•	 List rendering:

When you have a list of data in your React application,

you can use the map() method to dynamically

generate a list of user interface elements. For

example, if you have a list of names that you want to

display on the screen, you can use map() to generate a

list item for each name in the list.

•	 Data filtering:

The filter() method is useful for filtering a list of data

based on certain conditions. For instance, you can

filter a list of products to display only the products

that are in stock or have a certain price.

•	 Data manipulation:

By using the map() method, you can also manipulate

the data in a list to create new data that can be used

to generate user interface elements. For example, you

can take a list of raw data and use map() to create a

new list with elements transformed based on certain

business rules.

Chapter 6 JavaScript Reminders

267

•	 Performance:

Using map() and filter() in React is often preferred

over traditional “for” loops as it can improve

performance. Indeed, the map() and filter()

methods are optimized for array processing and can

often be executed more efficiently than “for” loops.

In summary, the map() and filter() methods are useful in React for

dynamically generating user interface elements from data lists, filtering

data based on certain conditions, manipulating data to create new data,

and improving performance.

�Using Promise Objects in JavaScript
Promise objects in JavaScript are used for handling asynchronous tasks,

which are tasks that don’t complete immediately. A Promise object

represents a value that may not be available immediately but will be

resolved (i.e., become available) at some point in the future.

�Step 1: Promise Object Definition
Promise objects are often created as return values from functions

because they provide a clearer and more structured way of handling

asynchronous tasks.

When an asynchronous task is executed, it doesn’t immediately return

a result, as it needs to perform an operation that may take time (such

as an HTTP request or file reading). While waiting for this operation to

complete, the code that follows continues to execute, potentially causing

synchronization and blocking issues.

Chapter 6 JavaScript Reminders

268

Promise objects are used to address this issue. They provide a clear

and structured way to handle asynchronous tasks by returning an object

that represents the promise of a future result. This object can be used to

attach callback functions that will be called once the asynchronous task is

completed, and the result is available.

For example, a function that performs an HTTP request can return a

Promise object representing the promise of the request’s result. Callbacks

can then be attached to this Promise object using the then() and catch()

methods to handle successful results or errors that may occur during the

execution of the asynchronous task.

In summary, the Promise object is created as a return value from

a function to handle asynchronous tasks in a structured manner by

returning an object representing the promise of a future result and

attaching callbacks to handle results or errors.

A Promise object can be in one of the following three states:

•	 “pending”: The initial state of the Promise object,

indicating that the asynchronous task is currently being

executed

•	 “resolved”: The state in which the Promise object is

resolved with a value

•	 “rejected”: The state in which the Promise object is

rejected with an error reason

The Promise object exposes two methods for handling the results of

the asynchronous task:

•	 The then() method: Used to handle the result if the task

is successfully resolved

•	 The catch() method: Used to handle errors that occur if

the task is rejected

Chapter 6 JavaScript Reminders

269

By using Promise objects, it’s possible to perform asynchronous

tasks in JavaScript more efficiently and in a way that’s easier to read and

maintain.

To understand the use of Promise objects, let’s take an example where

we don’t use them and then the same example where we do.

�Step 2: Without Using Promise Objects
Here’s an example without using Promise objects:

Let’s say we want to load images from a server and display them in our

application. Without Promise objects, we would have to use callbacks to

handle the asynchrony:

Without using Promise objects

function loadImage(url, callback) {

 const img = new Image();

 img.onload = function() {

 // no error

 callback(null, img);

 };

 img.onerror = function() {

 // error

 callback("Unable to load the image.", null);

 };

 img.src = url; // image loading

}

loadImage("https://example.com/image.jpg",

function(error, img) {

 if (error) {

 console.error(error);

Chapter 6 JavaScript Reminders

270

 } else {

 document.body.appendChild(img);

 }

});

This example uses the Image object to load an image from the server.

The loadImage() function takes the image URL and a callback function

as arguments. This callback will be invoked once the image has been

loaded. After the image is loaded, further processing can take place

within the callback function, allowing for handling of the asynchrony. The

callback function has two arguments: a possible error and the loaded img

(image) itself.

�Step 3: Using Promise Objects
Now, here’s the same example using Promise objects:

Using Promise objects

function loadImage(url) {

 return new Promise(function(resolve, reject) {

 const img = new Image();

 img.onload = function() {

 // no error

 resolve(img);

 };

 img.onerror = function() {

 // error

 reject("Unable to load the image.");

 };

 img.src = url; // image loading

 });

}

Chapter 6 JavaScript Reminders

271

loadImage("https://example.com/image.jpg")

 .then(function(img) {

 document.body.appendChild(img);

 })

 .catch(function(error) {

 console.error(error);

 });

Here, the loadImage() function returns a Promise object that is

resolved with the image if the image loading succeeds, or is rejected with

an error message if it fails. By using the then() method, we can handle

the image once it has been loaded, and with the catch() method, we can

handle errors that occur.

The use of Promise objects in this example makes the code more

readable and easier to understand and provides simplified error handling.

�Using “async” and “await” Statements
in JavaScript
The “async” and “await” statements are features of JavaScript that make

working with Promise objects even more readable and understandable for

handling asynchronous tasks.

By using “async” and “await” statements, code can be written

synchronously (i.e., with sequentially following instructions) while still

effectively managing asynchronous tasks. The “async” statement is used to

mark a function as asynchronous, allowing the use of the “await” statement

within that function.

The “await” statement is used to wait for the resolution of a Promise

object before continuing the code execution. This avoids the use of

callbacks and results in code that is easier to read and understand.

Chapter 6 JavaScript Reminders

272

For example, here’s a usage example of Promise objects to make an

HTTP request. We will then see how to write the same code using “async”

and “await” statements.

Using Promise objects to make an HTTP request

fetch("https://api.example.com/data")

 .then(response => response.json())

 .then(data => console.log(data))

 .catch(error => console.error(error));

The fetch() and json() methods in JavaScript each return a Promise

object, enabling the use of the then() and catch() methods on these

methods.

Now, here’s how we can rewrite this code using “async” and “await”

statements:

Using “async” and “await” statements to make an HTTP request

async function getData() {

 try {

 �const response = await fetch("https://api.example.

com/data");

 const data = await response.json();

 console.log(data);

 } catch (error) {

 console.error(error);

 }

}

getData();

Chapter 6 JavaScript Reminders

273

Here, the getData() function is marked as “async”, which allows (within

the getData() function) the use of the “await” statement to wait for the

resolution of Promise objects returned by the fetch() function and the

json() method. The use of “async” and “await” statements enables writing

code that is more readable and easier to understand while efficiently

managing asynchronous tasks.

In summary, the use of “async” and “await” statements provides an

easier and more readable way to utilize Promise objects for handling

asynchronous tasks. This helps avoid the use of callbacks and reduces

code complexity.

�Creating an Asynchronous Function That
Utilizes JavaScript’s “await” Statement
Let’s now see how to create an asynchronous function that can use the

“await” statement. For this purpose, the function using “await” should fall

into one of the following two cases:

•	 The function returns a Promise object. This is the

case, for example, with the previous fetch() and json()

methods.

•	 The function is declared with the “async” keyword. In

this case, the function’s return is always considered

as a Promise object (even if the function returns

another value).

Let’s examine these two cases now.

Chapter 6 JavaScript Reminders

274

�Step 1: Using “await” with a Function That
Returns a Promise Object
For “await” to be used with a function, the function can return a Promise

object or be declared with the “async” keyword.

Here’s an example of a function that returns a Promise object:

Function returning a Promise object

function wait(ms) {

 return new Promise(resolve => setTimeout(resolve, ms));

}

The wait(ms) function takes a number of milliseconds as input and

returns a Promise object that will resolve after the specified number of

milliseconds. The function utilizes the setTimeout() function to trigger the

resolution of the Promise object after a specified delay.

To use the wait(ms) function with the “await” statement, you simply

need to call it within a function marked with “async”, like this:

Usage of “await” in an “async” function

async function myFunction() {

 console.log("Start"); // Display "Start"

 await wait(2000); // Wait for 2 seconds

 console.log("End"); // Then display "End" (after 2

seconds)

}

myFunction();

Chapter 6 JavaScript Reminders

275

This myFunction() function uses the “await” statement to wait for

the resolution of the Promise object returned by the wait() function. The

function prints “Start” to the console, waits for two seconds using “await

wait(2000)”, and then prints “End” to the console.

In cases where the wait(ms) function wants to return a value, you can

simply provide that value (“value”) as a parameter in the resolve(value)

function call.

The wait(ms) function becomes as follows:

Function wait(ms) that returns a value

function wait(ms) {

 return new Promise(resolve => setTimeout(() =>

resolve("Waiting for " + ms + " ms"), ms));

}

We can no longer simply indicate setTimeout(resolve, ms) as before,

because now we need to explicitly call the resolve() function and pass

the return value as a parameter. Hence, the new syntax is written as

setTimeout(() => resolve(value), ms).

We use the value returned by the wait(ms) function as follows:

Using the value returned by the wait(ms) function

async function myFunction() {

 console.log("Start"); // Display "Start"

 const result = await wait(2000); // Wait for 2 seconds

 console.log(result); // �Display the result

returned by the wait()

function

 console.log("End"); // Then display "End"

}

myFunction();

Chapter 6 JavaScript Reminders

276

�Step 2: Using “await” with a Function
Declared with “async”
This is the second way to use the “await” statement when calling a

function. The function must have been declared using the “async” keyword

during its definition.

A function declared with the “async” keyword is considered to return a

Promise object. Therefore, it can be used when called with the then() and

catch() methods or used with the “await” keyword.

Using the myFunction() function with “await”

function wait(ms) {

 return new Promise(resolve => setTimeout(() =>

resolve("Waiting for " + ms + " ms"), ms));

}

async function myFunction() {

 console.log("Start"); // Display "Start"

 const result = await wait(2000); // Wait for 2 seconds

 �console.log(result); // �Display the result

returned by the wait()

function

 console.log("End"); // Then display "End"

 return "myFunction(): Waiting for 2000ms";

}

async function myMainFunction() {

 const result = await myFunction();

 console.log("result =", result);

}

myMainFunction();

Chapter 6 JavaScript Reminders

277

Since the myFunction() is declared with “async”, it can be used within

a new function called myMainFunction() using the “await” keyword.

The result returned by myFunction() will be used as the return value in

myMainFunction(), asynchronously (after waiting for two seconds).

The same process can be written using promises and the then() /

catch() methods:

Using promises instead of await

function wait(ms) {

 console.log("wait(" + ms + ")");

 return new Promise(resolve => setTimeout(() =>

resolve("Waiting for " + ms + " ms"), ms));

}

async function myFunction() {

 console.log("Start"); // Display "Start"

 const result = await wait(2000); // Wait for 2 seconds

 �console.log(result); // �Display the result

returned by the wait()

function

 console.log("End"); // Then display "End"

 return "myFunction(): Waiting for 2000ms";

}

myFunction().then((res) => { console.log(res) });

The then(res) method used on the promise myFunction() allows

retrieving the result of the promise, which is the string “myFunction() :

Waiting for 2000ms”, in the parameter res.

Chapter 6 JavaScript Reminders

278

�Conclusion of the Book
Master React in 5 Days is a comprehensive guide that enables the reader

to learn the fundamentals of the JavaScript library React in just five days.

The book covered key concepts of component creation, JSX usage, event

handling, hooks utilization, and much more.

The reader has gained a strong understanding of React and can now

use it to build modern web applications. The skills acquired from the

book enable the reader to work on real projects and create interactive user

interfaces, forms and controls, dashboards, ecommerce applications, and

much more.

Furthermore, the reader can use the skills acquired from the book to

continue learning and exploring React. Online resources are plentiful, and

there are numerous complementary tools and libraries that can be utilized

to enhance React skills.

In summary, Master React in 5 Days has been an enriching educational

experience for you, I hope! The book has provided a solid understanding

of the React library and has enabled the reader to develop practical web

development skills. The skills gained from the book serve as a strong

foundation for becoming a competent and efficient React developer

and for continuing to explore the many possibilities that React offers in

the future.

Chapter 6 JavaScript Reminders

279

Index

A, B
App() function, 20
Autostart, 88–91

C
callback() function, 264, 265
catch() methods, 187, 268, 272
change() function, 94
clearInterval() function, 28, 37
“const” keyword, 243
Counter() function, 35, 46
createContext() method, 130, 131
create-react-app command, 9, 16
Custom hook

component update, 173–178
data formatting, 190–193
fetch data from server, 184, 186,

187, 189, 190
filters displayed data,

193, 195–197
limits counter value, 168–172
reactive variable, 178–183

D
DevTools utility, 25
displayDetails() function, 248

Document object model
(DOM), 4, 6, 7

E
Ecommerce applications, 240
Event handling

click events, button
capturing an event, 78, 79
component, 78
counter component, 88–92
increment button, 79–82
periodic counter, start

button, 83–87
elements, 77
input field

App component, 93, 94
digits, 95, 97
displayed counter, 104–107
display value, 95
focus() method, 97, 99
real-time sum, 100–103

F
fetch() and json() methods, 272
fetch(url) method, 184, 187
filter() method, 69, 195, 216, 265

© Eric Sarrion 2023
E. Sarrion, Master React in 5 Days, https://doi.org/10.1007/978-1-4842-9855-8

https://doi.org/10.1007/978-1-4842-9855-8#DOI

280

focus() method, 97
forceUpdate() function, 176

G
getData() function, 273

H
handleClick() function, 79
handleIncrement() function, 6
Hooks

definition, 109
functions, 109
main rule, 110, 111
useContext() method

child component, 133, 134
parent App

component, 130–132
reactive variables, 135
solve problem, 124–126
useContext() hook, 127,

128, 130
useEffect(), 142–148, 150,

152, 153
useReducer() hook

action parameters, 161,
163, 165–167

counter component, 156–159
functionalities, 167
state parameters, 159–161
useState(), 154, 155

useRef(), 135–142
useState(initValue), 111

useState() method, 112, 114, 115
infinite loops, 119–122
reactive variable, 115–118

I
incrValue() function, 117, 120

J
JavaScript library, 49, 75, 107,

197, 278
JavaScript reminders

arrow functions, 259–262
async and await statements,

271, 272
asynchronous functions,

241, 273–277
const keyword, 243, 244
import/export modules

example, 252, 253
export default statement,

256, 257
export vs. export default

statement, 257–259
functions, 251
HTML file, 253, 254
statement, 254, 255

let and var keywords, 241, 242
manipulating arrays

destructuring, 250
notation, 251
structuring, 250

manipulating object

INDEX

281

function parameters,
247, 248

notation objects, 248, 249
object destructuring,

246, 247
structuring, 245

map()/filter() methods, 263–266
promise objects

definition, 267–269
using objects, 270
without using objects,

269, 270
json() methods, 272, 273
JSX code

HTML and JavaScript, 51
JavaScript, 75
JavaScript code, 56
React.Fragment

component, 51
styles, 72–74
writing condition, 56

App.js file, 56, 57
end attribute, 57
JavaScript function, 58–60
JavaScript ternary

operator, 61, 62
writing loop

invoked function, 64–67
key attribute, 67, 68
key attribute, list

elements, 68
list elements, map()

method, 71, 72
map() method, 69, 70

values, 63
jsx.push() method, 65

K
“key” attribute, 230

L
loadImage() function, 270, 271

M
map(callback) method, 263
map() method, 63, 69, 71, 210, 264
modify() function, 219
myFunction() function, 275

N
npm command, 9

O
onChange event, 94, 95, 179,

220, 221
onClick attribute, 78
ondoubleclick attributes, 78
onKeyDown attribute, 95

P, Q
parseInt() function, 46
parseInt(props.init) function, 46
preventDefault() method, 97

INDEX

282

R
React

analyzing main files
App.js file, 19, 20
directory, 15
index.html file, 17, 18
index.js file, 15, 16

components, 1
create-react-app command,

9–11, 13, 14
creating component

App.css file, 24
App.js/Counter.js files, 22
attributes, 44–46, 48, 49
counter component

code, 23
DevTools, install, 26, 27
display counter, 25
setInterval(), 28, 29
useEffect() method,

35–37, 39–44
useState() method,

31–33, 35
decomposing application,

components, 7–9
definition, 1
JSX syntax, 21, 22
reconciliation process, 5–7
user-friendly, 2, 3
virtual DOM, 4
virtual tree, creating, 4

ReactDOM, 16
React.Fragment component

forms, 52
<Fragment> tag, 53, 54
HTML element, 51
<React.Fragment> tag, 52, 53
<> tag, 54, 55

React library, 278
React Native, 3, 16
remove() method, 215
restart() function, 85, 92
res.text() method, 187
root.render() method, 16

S
sayHelloArrow() function, 263
sayHello() function, 263
setCount() function, 35, 41
setCount(newValue)

function, 33
setInterval() function, 28, 35
setInterval() method, 37
setItems attributes, 215
setItems() function, 216
setItems() method, 209, 212
setKey(value) method, 230
setTimeout() function, 274
setTotal attribute, 127, 128
setTotal() function, 101, 103, 127,

129, 130, 133
setTotal() method, 125–127
setValue() function, 117
setValue() method, 94
sort() method, 191
“src” directory, 15, 204, 208

INDEX

283

T
Task list

adding item, 208–212
application screens, 200–204
components, 207
create-react-app, 204, 205
modifying item, 217

input field, 236, 238, 239
key attribute, 230–232,

234, 235
modifyOn, 217, 218, 220–226
validation, 226–230

removing item, 212, 214–216
then() method, 271

U
useContext() hook, 124, 127, 130
useContext() method, 123, 130

useEffect(callback)
method, 35, 37

useEffect() method, 35–37, 85, 91,
111, 142, 144

useFetch() method, 187
useReducer() method, 111
useRef() hook, 135, 142, 173, 236
useRef() method, 97, 111
useState() hook, 168, 178
useState(initValue)

method, 32, 111
useState() method, 31, 32,

110–112, 154

V, W, X, Y, Z
“var” keyword, 241, 242
Virtual DOM, 2, 3

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Day 1: Mastering Component Writing with React
	Why Use React
	React Virtual DOM
	Step 1: Creating the Virtual DOM
	Step 2: Reconciliation Process
	Decomposing an Application into Components
	Creating a First React Application
	Analyzing the Main Files of the React Application
	Step 1: Contents of the index.js File
	Step 2: Contents of the index.html File
	Step 3: Contents of the App.js File
	JSX Syntax in React
	Creating a First React Component
	Step 1: Install React DevTools
	Step 2: Incrementing the Counter with setInterval()
	Step 3: Using the useState() Method in a Component
	Step 4: Using the useEffect() Method in a Component
	Step 5: Using Attributes in Components
	Conclusion

	Chapter 2: Day 2: Mastering JSX Code Writing in a React Component
	Using the React.Fragment Component
	Step 1: Using the <React.Fragment> Tag
	Step 2: Using the <Fragment> Tag
	Step 3: Using the <> Tag
	Inserting JavaScript Code into JSX
	Writing a Condition in JSX
	Step 1: Using an Immediately Invoked JavaScript Function to Write the Conditional Test
	Step 2: Using the JavaScript Ternary Operator to Write the Conditional Test
	Writing a Loop in JSX
	Step 1: Writing the JSX Loop Using an Immediately Invoked Function
	Step 2: Using the “key” Attribute in JSX Elements Displayed by a Loop
	Step 3: Important Rule About the Value of the “key” Attribute in List Elements
	Step 4: Writing the JSX Loop Using the map() Method of the JavaScript Array Class
	Step 5: Using the map() Method to Display Large Lists of Elements
	Using Styles in JSX
	Conclusion

	Chapter 3: Day 3: Mastering Event Handling in a React Component
	Handling Click Events on a Button
	Step 1: Capturing an Event in a React Component
	Step 2: Incrementing a Counter by Clicking an Increment Button
	Step 3: Starting a Periodic Counter by Clicking a Start Button
	Step 4: Automatically Start the Counter the First Time
	Managing the Content of an Input Field
	Step 1: Allow Only Digits During Input
	Step 2: Give Focus to the Input Field upon Component Rendering
	Step 3: Display Multiple Counters and Show Their Real-Time Sum
	Step 4: Give Focus to the First Displayed Counter
	Conclusion

	Chapter 4: Day 4: Mastering React Hooks
	Definition of a Hook
	Main Rule About Hooks
	Using the useState() Hook
	Step 1: Writing the useState() Method
	Step 2: Using the Latest Value of the Reactive Variable
	Step 3: Avoiding Infinite Loops When Updating Reactive Variables
	Using the useContext() Hook
	Step 1: Presenting the Problem to Solve
	Step 2: Displaying the Sum of Counters Without Using the useContext() Hook
	Step 3: Displaying the Sum of Counters Using the useContext() Hook
	Step 4: Using the createContext() Method in the Parent Component
	Step 5: Using the useContext() Method in Child Components
	Step 6: When to Use the useContext() Hook?
	Using the useRef() Hook
	Using the useEffect() Hook
	Using the useReducer() Hook
	Step 1: Counter Component Using the useState() Hook
	Step 2: Counter Component Using the useReducer() Hook
	Step 3: Using the “state” Parameter as an Object
	Step 4: Using the “action” Parameter as an Object
	Other Hooks
	Creating Your Own Custom Hook
	Step 1: Creating a Hook to Limit Counter Value
	Step 2: Creating a Hook to Force Component Update
	Step 3: Creating a Hook to Retrieve the Previous Value of a Reactive Variable
	Step 4: Creating a Hook to Fetch Data from a Server
	Step 5: Creating a Hook for Data Formatting
	Step 6: Creating a Hook That Filters the Displayed Data
	Conclusion

	Untitled
	Chapter 5: Day 5: Practical Application—Managing a Task List with React
	Application Screens
	Creating the Application with create-react-app
	Breaking Down the Application into Components
	Adding an Item to the List
	Removing an Item from the List
	Modifying an Item in the List
	Step 1: Modifying the Item
	Step 2: Validation of the Modification
	Step 3: Assigning a Unique Value for the “key” Attribute
	Step 4: Obtaining Focus Directly on the Input Field
	Conclusion

	Chapter 6: JavaScript Reminders
	Using the “let” and “var” Keywords in JavaScript
	Using the “const” Keyword in JavaScript
	Manipulating Objects in JavaScript
	Step 1: Structuring an Object
	Step 2: Object Destructuring
	Step 3: Passing Objects as Function Parameters
	Step 4: Using the “...” Notation with Objects
	Manipulating Arrays in JavaScript
	Step 1: Structuring an Array
	Step 2: Array Destructuring
	Step 3: Using the “...” Notation with Arrays
	Using Import and Export of Modules in JavaScript
	Step 1: Using Modules in HTML Files
	Step 2: Using the “import” Statement
	Step 3: Using the “export” Statement
	Step 4: Using the “export default” Statement
	Step 5: Difference Between “export” and “export default” Statements
	Using Arrow Functions in JavaScript
	Step 1: Using Arrow Function Syntax
	Step 2: Understanding the Value of “this” in Arrow Functions
	Using the map() and filter() Methods of the JavaScript Array Class
	Step 1: Using the map() Method
	Step 2: Using the filter() Method
	Step 3: Using the map() and filter() Methods in React
	Using Promise Objects in JavaScript
	Step 1: Promise Object Definition
	Step 2: Without Using Promise Objects
	Step 3: Using Promise Objects
	Using “async” and “await” Statements in JavaScript
	Creating an Asynchronous Function That Utilizes JavaScript’s “await” Statement
	Step 1: Using “await” with a Function That Returns a Promise Object
	Step 2: Using “await” with a Function Declared with “async”
	Conclusion of the Book

	Index
	df-Capture.PNG

