
M A N N I N G

Armen Vardanyan

Also covers signals, standalone, SSR, zoneless, and more

The process of integration of new features into Angular

An idea arrives

The idea is explored.

An RFC document is compiled.

The draft is initially shared internally.

The draft is reviewed.

The RFC goes public.

Comments and feedback are gathered.

The feature is added into a release.

If the change is too revolutionary, the feature is marked as developer preview.

If the feature is successful, it is marked as stable.

Either as a GitHub
issue or an idea
from the team itself

The Angular team
privately experiments
with it and finds viable
implementations.

Core team members
and Google Developer
experts will read it first.

Now the wider community
can add feedback.

A request for comments
doc will detail the
changes, motivations,
and a draft API.

The core team discourages
the developers from using the
feature in production codebases,
instead expecting developers to
“play” with it. Usually developer
preview features appear in major
releases.

Modern Angular
ALSO COVERS SIGNALS, STANDALONE,

SSR, ZONELESS, AND MORE

ARMEN VARDANYAN

MANN I NG
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2025 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning Publications
was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

The authors and publisher have made every effort to ensure that the information in this book
was correct at press time. The authors and publisher do not assume and hereby disclaim any
liability to any party for any loss, damage, or disruption caused by errors or omissions, whether
such errors or omissions result from negligence, accident, or any other cause, or from any usage
of the information herein.

Manning Publications Co. Development editor: Ian Hough
20 Baldwin Road Technical editor: Santosh Lalchand Yadav
PO Box 761 Review editor: Dunja Nikitović
Shelter Island, NY 11964 Production editor: Deirdre Blanchfield-Hiam

Copy editor: Kari Lucke
Proofreader: Keri Hales

Technical proofreader: Tanya Wilke
Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781633436923
Printed in the United States of America

www.manning.com

 Dedicated to my sister, Marina, who bought for me all my laptops except
the one I used to write this book

iv

contents
preface x
acknowledgments xii
about this book xiv
about the author xvii
about the cover illustration xviii

1 Welcome to modern Angular 1

1.1 What to expect 2
Who will benefit from reading this book? 2 ■ What do we need to
know before getting started? 2 ■ How is the book structured? 3

1.2 How Angular was 3
Angular’s core features 4 ■ What is an Angular application? 5

1.3 Let’s start a modern Angular app 7
Using the Angular CLI 7 ■ Creating a new project 8
What changed? 9

1.4 What’s new in Angular? 11
How does Angular evolve? 11 ■ How does Angular recognize
problems? 12 ■ Current goals 13 ■ New features 14
What about the future? 16 ■ The learning process 18

CONTENTS v

2 A standalone future 19

2.1 Why abandon NgModules? 20
Hard to learn, hard to explain 20 ■ Indirectness and
boilerplate 22 ■ Other concerns with NgModules 24

2.2 Previous solutions 24
Hierarchic shared modules 25 ■ Enter SCAMs 25

2.3 Developing apps without NgModules 27
Creating our first standalone component 27 ■ Routing standalone
components and providing dependencies 31

2.4 Lazy-loading components 34
Lazy-loading with NgModules 34 ■ Lazy-loading a single
standalone component 35 ■ Lazy-loading several standalone
components 36 ■ Providing dependencies only to certain
routes 38 ■ Lazy-loading a component into another
component 39

2.5 Migrations and common pitfalls 42
Migrating by hand 42 ■ Using SCAMs 43 ■ Migrating with a
schematic command 43 ■ Handling circular dependencies 45

2.6 Exercises for the reader 46

3 Revitalized dependency injection 47

3.1 How does dependency injection work? 48
Why do we need DI? 48 ■ Let’s build a primitive DI
mechanism 49 ■ Dependency injection the Angular way 50
Injection contexts 54

3.2 The inject function 55
Another way of injecting dependencies 55 ■ Injecting dependencies
outside classes 56 ■ Why we should always use inject 58
What about the drawbacks? 61

3.3 Functional guards, resolvers, and interceptors 62
Building an AuthGuard 62 ■ Building an EmployeeResolver 64
Adding tokens to HTTP requests 66 ■ Migrating to functional
guards/resolvers/interceptors 67

3.4 DI deep dive 68
DI lookup and how to modify it 69 ■ Truncating text with DI 70

3.5 Exercises for the reader 72

CONTENTSvi

4 New capabilities of Angular building blocks 74
4.1 Powerful inputs 75

Required inputs 75 ■ Transforming input values 78
Binding routing parameters to input properties 81
Inputs for dynamic components 83

4.2 Host directives 88
Extending existing directives 88 ■ Using multiple directives
and adding inputs 89 ■ Things to know when using host
directives 90

4.3 Type-safe reactive forms 92
Downsides of using untyped forms 92 ■ Introducing type-safe
forms 93 ■ Common pitfalls when working with type-safe
forms 94 ■ Migrating to type-safe forms 95 ■ Form events 95

4.4 NgOptimizedImage 96
Adding lazy loading and remembering to set width/height 97
Prioritizing image loading 98 ■ Srcsets and image loaders 98

4.5 Other improvements 100
Self-closing component tags 100 ■ Fetch-based HttpClient 100
Support for default export components in routing 101 ■ Improved
error messages 101

4.6 Exercises for the reader 102

5 RxJS in modern Angular 103
5.1 What is reactive programming? 104
5.2 Why we (still) need RxJS 105
5.3 Unsubscribing from observables 106

Why unsubscribe? 107 ■ Problems with unsubscribing 107
Introducing DestroyRef 108 ■ The takeUntilDestroyed
operator 111

5.4 Writing our own custom RxJS operators 115
What is an RxJS operator? 115 ■ How do operators work? 117
Building custom operators 119

5.5 Exercises for the reader 124

6 Signals: A new approach to reactive programming 125
6.1 Why go beyond RxJS? 126

What are the problems with RxJS? 126 ■ What must the solution
look like? 129

CONTENTS vii

6.2 What is a signal? 130
Creating signals 131 ■ Updating signals 132 ■ Creating
signals vs. observables 134

6.3 Building Angular components with signals 134
Creating TimeOffComponent 135 ■ Handling signals in Angular
components 137

6.4 Computed signals 138
Creating computed signals 138 ■ Simplifying complex logic in
Angular components using computed signals 140

6.5 Effects 143
Creating effects 143 ■ Important things to know about
effects 144 ■ When to use effects 146

6.6 RxJS and signals interoperability 147
Converting observables to signals 147 ■ Converting signals to
observables 149

6.7 Exercises for the reader 151

7 Signals: A deep dive 152
7.1 Advanced options when dealing with signals 152

Signal equality 153 ■ Untracking dependencies 154
Manual cleanup 156 ■ Readonly signals and synchronizing
with RxJS 158

7.2 Signals under the hood 159
The nature of signals 159 ■ How changes to signals
propagate 160

7.3 State management with signals 163
State management: The task 163 ■ State management: The
implementation 164 ■ State management: The problems 167
Advanced interoperability with RxJS 170

7.4 Migrating to signals 173
Migrating RxJS-heavy Angular applications 173 ■ Migrating
more traditional Angular applications 174

7.5 The future of signals 175
Signal-based components 175 ■ Signal inputs and outputs 175
Everything else 176

7.6 Exercises for the reader 176

CONTENTSviii

8 Unit testing in modern Angular 178

8.1 Unit testing: The what and the why 179
Prerequisites 179 ■ What is a unit test? 179 ■ Why do we want
unit tests? 180

8.2 Configuring a testing environment 181
Choosing a test runner 181 ■ Setting up the test runner 182
Installing third-party tools 185

8.3 Running Angular unit tests 186
What do unit tests look like? 186 ■ Providing mock
dependencies 188 ■ Testing components 190 ■ Testing
services 194 ■ Testing signals 197

8.4 Powers of AI with Angular unit tests 204
Unit testing Angular applications with ChatGPT 204
Unit testing Angular applications with GitHub Copilot 208

8.5 The future of unit testing in Angular 209
8.6 Exercises for the reader 210

9 Modern Angular everywhere 211

9.1 What is server-side rendering? 212
SSR: The what 212 ■ SSR: The why 214
SSR: The how 216

9.2 Building Angular apps with SSR from scratch 218
How is an SSR Angular application different from a SPA? 218
Running an SSR Angular application 221 ■ Building
components in an SSR Angular application 223

9.3 Improving Angular SSR 228
HTTP caching 228 ■ Client-side hydration 231
Prerendering 233

9.4 Building an Angular application 235
What does building an Angular application mean? 235
ESBuild and Vite 236 ■ Configuring environments for
Angular applications 236 ■ Preparing to deploy Angular
applications 238

9.5 Exercises for the reader 240

CONTENTS ix

10 What’s next in modern Angular? 241
10.1 New template syntax 241

Goodbye ngIf! 242 ■ Hello @for! 246 ■ @switch 249
Migrating to the new template syntax 251

10.2 Deferrable views 252
Deferring a simple component 252 ■ Deferring depending on a
condition or trigger 254 ■ Customizing deferred loading 257

10.3 Zoneless Angular applications 259
How change detection works in Angular 259 ■ Why
change detection in Angular needs to improve 262
ChangeDetectionStrategy.OnPush 263 ■ Introducing
granular change detection 265 ■ Zoneless scheduler for
change detection 273

10.4 In other news 275

index 277

x

preface
When I started my career in the spring of 2016, Angular, as we know it today, did not
yet exist; instead, I used to be an Angular.js developer—a long-forgotten framework
that has now reached its end of life. While it offered interesting features and an
opportunity to build more organized web apps, it did have some glaring flaws. This
brings us to September 2016, when Angular 2 or, as it is known now, simply Angular
was released.

 This was huge! Everything changed at a moment’s notice: we now had TypeScript,
classes everywhere, strict organizational rules, and, soon enough, even a dedicated
CLI tool to manage over applications. Of course, this was overwhelming at first; how-
ever, upon further research, it was revealed that the framework is actually very solid
and an immediate upgrade upon anything we had prior, and that was the moment
when many frontend developers, including myself, fell in love with it.

 Of course, this new Angular, like any other tool, wasn’t without flaws either: so
began the process of continuous improvements upon the framework that we know
and love. In the few first versions the framework stabilized, then in versions 8 and 9,
we got a new rendering engine, and now we get a new phase of massive improvements
that are often referred to (even by the Angular core team itself) as the “Angular
renaissance.”

 I was always very involved with the progress and in-depth characteristics of Angular
in the sense of documenting them. I loved going to the Angular source code and trying
to figure out how the most interesting features actually work, trying out the most chal-
lenging problems, and speaking to industry experts. What I discovered is that, for me,

PREFACE xi

the best way to learn something is to write about it. I started writing articles about
Angular, going to podcasts, and in 2019 even began public speaking. All of this in the
end culminated in this book.

 But why have this book at all? Well, when this first began, we as a community didn’t
know anything about the “Angular renaissance”—we just knew Angular had sched-
uled major releases every six months, and with every release, we got some small new
interesting things. However, we noticed that the changes incrementally got more and
more revolutionary, so to speak; it was useful to write articles about all the features or
talk about them at podcasts and events, but it kept growing and growing, with more
changes that necessitated a very thorough exploration. Then it became obvious that
something more was necessary.

 And that is how this book came to be: a book that is meant to help Angular devel-
opers who are excited about these new changes, or maybe frightened by them, to
understand the new features, appreciate them, use them in their new projects, or even
migrate older projects toward a more modern approach.

 The book cannot possibly claim to be a complete guide to everything new in Angu-
lar; as I write these words, Angular keeps changing and growing. During the writing of
the book, I had to go back and change some things that were no longer current; this is
the nature of software development, and the only thing we can do is keep learning. I
know I learned a lot while writing this book, and I hope it will help you learn a thing
or two about modern Angular too.

xii

acknowledgments
This book is a huge achievement for me, and there are lots of people who helped me,
in different ways and forms, to accomplish it and who deserve this gratitude.

 First, I want to thank my girlfriend Shahane, who helped and supported me
throughout this huge endeavor.

 Next, I would love to acknowledge my editors: development editor Ian Hough and
technical editor Santosh Yadav. Ian did a tremendous job and helped me establish
myself as a writer. Santosh was a huge inspiration for me for years before I even under-
took writing a book and is probably the person with the most significant effect on
my professional career ever. Thanks as well to all the people who worked on the pro-
duction and promotion of this book at Manning—my copyeditor Kari Lucke, project
editor Deirdre Blanchfield-Hiam, as well as the rest of the team—working with all of
you was a delightful experience!

 I also want to acknowledge my friend Lars Gyrup Brink Nielsen for encouraging
me to write a book, serving as a big inspiration, and helping in the initial stages of
writing, as well as my colleagues Nune and Arsen, for helping me grow professionally
and being so enthusiastic about the book.

 Of course, I must thank the entirety of the Angular core team and everyone who
loves and contributes to our favorite framework.

 Finally, thanks to all the reviewers: Al Pezewski, Andy Robinson, Anooplal Hariha-
ran, Aurélien Marocco, Betsegaw Lemma Amersho, Daniel McAlister, Dieter Jordens,
Duncan McRae, Enrique Carro García, Eric Anderson, Frantisek Krul, Giuseppe
Catalano Javid Asgarov, Jeff Smith, Juan Luis Barreda, Junaid Ramzan, Kiran

ACKNOWLEDGMENTS xiii

Krishnamurthy, Krishna Chaitanya Anipindi, Matteo Battista, Mitchell Fox, Peter
Szabo, Rob Monhemius, Rodney A. James, Samuel Bosch, Simon Verhoeven, Steven
Edwards, Tan Wee, and Tony Sweets. Your suggestions helped make this a better book.

xiv

about this book
Modern Angular is here to help understand and embrace the most recent changes to
the Angular ecosystem, (starting from v12 up to v17), to either build new Angular
applications from scratch or to migrate existing apps to these new versions. It does not
function as a tutorial for Angular as a whole but rather helps Angular developers gain
concrete knowledge about the new features while diving a little deeper into the base
knowledge whenever necessary

Who should read this book
Modern Angular is meant to be utilized by people who are already familiar with Angu-
lar and have worked on projects before; it is good both for developers who just
learned the important basics of the framework and those already very experienced
with it. Additionally, it is useful to developers who maintain large legacy projects and
look for strategies to bring their code up to modern standards.

How this book is organized: A road map
The book consists of 10 chapters, each covering a set of distinct new features. Each
chapter first explores the old approach of doing things, then dives into the new
approach by utilizing it in a brand-new project, and finally shows ways and strategies to
help migrate existing codebases.

 Chapter 1 discusses modern Angular as a whole, why the changes are happen-
ing, how to set up a project from scratch using the recent Angular versions, and
what structure these new projects have.

ABOUT THIS BOOK xv

 Chapter 2 discusses standalone Angular building blocks, why we want them,
how to perform all common tasks with standalone components, and how to
migrate module-based components to become standalone.

 Chapter 3 dives into Angular’s dependency injection mechanism, discusses the
inject function, how it changed developers’ approaches to dependency injec-
tion, and what building blocks were affected by this change.

 Chapter 4 explores various small new additions and improvements, like the opti-
mized image loader, improved component inputs, better debugging options,
and more.

 Chapter 5 discusses RxJS and how it works with Angular as of now and the new
built-in interoperability library, tying in dependency injection improvements
from chapter 3 to new approaches with RxJS.

 Chapter 6 introduces signals, explains why they are necessary, and provides
high-level knowledge about all of their features.

 Chapter 7 dives deep into signals, explaining how they can improve application
performance and how to approach some advanced tasks like state management
and RxJS interoperability with them.

 Chapter 8 discusses unit testing in modern Angular applications and some new
useful tools that can help with the task.

 Chapter 9 talks about server-side rendering, how it can enhance application
performance, and how to build applications that utilize service-side rendering
and web page prerendering.

 Chapter 10 discusses future prospects of the Angular framework like zoneless
change detection and completely signal-based applications, and also explores
some experimental new features that are already available like the new template
syntax and deferred loading of components.

Readers are expected to read the book from start to end; however, after reading the
first two chapters, developers can feel free to read the chapters on topics that interest
them the most.

About the code
This book contains many examples of source code both in numbered listings and in
line with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text. Sometimes code is also in bold to high-
light code that has changed from previous steps in the chapter, such as when a new
feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this was not enough, and listings include line-continuation
markers (➥). Additionally, comments in the source code have often been removed

ABOUT THIS BOOKxvi

from the listings when the code is described in the text. Code annotations accompany
many of the listings, highlighting important concepts.

 Please note: in chapter 10, we take a different route by exploring some experimen-
tal features on the code we already built; to have access to both versions, readers can
use the source code repository and switch to the branch named “chapter-10” to review
the other version.

 The complete code for the examples in the book is available for download from
the Manning website at https://www.manning.com/books/modern-angular, and from
GitHub at https://github.com/Armenvardanyan95/modern-angular-hrms.

liveBook discussion forum
Purchase of Modern Angular includes free access to liveBook, Manning’s online read-
ing platform. Using liveBook’s exclusive discussion features, you can attach comments
to the book globally or to specific sections or paragraphs. It’s a snap to make notes for
yourself, ask and answer technical questions, and receive help from the author and
other users. To access the forum, go to https://livebook.manning.com/book/modern
-angular/discussion. You can also learn more about Manning’s forums and the rules
of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

https://livebook.manning.com/book/modern-angular/discussion
https://livebook.manning.com/book/modern-angular/discussion
https://livebook.manning.com/book/modern-angular/discussion
https://livebook.manning.com/discussion
https://www.manning.com/books/modern-angular

xvii

about the author
ARMEN VARDANYAN is a Google Developer Expert for Angular and a frontend team lead
with eight years of experience. He writes articles about Angular, TypeScript, RxJS, NgRx,
and other related technologies and sometimes appears as a speaker at conferences.

xviii

about the cover illustration
The figure on the cover of Modern Angular, “Jeune Fille Armenienne,” or “Young Arme-
nian girl,” is taken from a four-volume set by Auguste Wahlen, published in 1843.

 In those days, it was easy to identify where people lived and what their trade or sta-
tion in life was just by their dress. Manning celebrates the inventiveness and initiative
of the computer business with book covers based on the rich diversity of regional cul-
ture centuries ago, brought back to life by pictures from collections such as this one.

1

Welcome to
modern Angular

Angular, one of the most popular frontend development frameworks, is at a cross-
roads. The framework has seen years of improvements in performance, user expe-
rience, and new features, like the introduction of the Ivy rendering engine, which
reduced bundle sizes and improved run time. These developments have put the
framework in a beneficial position.

 Now, the community can focus on more than just improving the visible parts of
the framework and, instead, work on the parts that directly affect user experience.
Importantly, attention can also be directed toward aspects that affect the developer
experience, such as better scalability and composability, among other aspects.
These aspects are even more valuable for developers who work with the framework.
Versions of the Angular framework have improved both the user and developer
experiences, and more enhancements will continue to be added in future versions.

This chapter covers
 Our expectations of and goals for reading

this book

 A general overview of common problems in
previous versions of Angular apps

 New solutions for those problems provided
by recent versions of Angular

2 CHAPTER 1 Welcome to modern Angular

 With this goal in mind, the Angular team has delivered several important updates
in recent versions (starting in v13 and v14), which have become essential break-
throughs, putting Angular on a path of almost revolutionary changes. By the time this
book is in print, Angular v19 will be live as the latest iteration of Angular, packed with
an arsenal of modern tools built for various problems. We will cover all features, how-
ever minor, in recent releases (v12–v18) in rigorous depth, with examples, practical
guides, and exercises.

1.1 What to expect
Before discussing what’s new in Angular, let’s first define who this book might be use-
ful for, what skills and knowledge will be minimally required to grasp the concepts
fully, and how the book is structured. Let’s begin with the learning subjects.

1.1.1 Who will benefit from reading this book?

In light of the recent changes to Angular, several groups of developers who will need
to understand the new features will find this book very useful:

 New adopters of Angular—Developers may either come from other frameworks or
just have adopted Angular and want to learn about the latest features in more
detail (assuming a base level of expertise)

 Seasoned Angular developers—Even the most experienced Angular developers can
benefit from this book, as it provides a comprehensive overview of all the new
features and changes introduced in Angular v12–v18.

 Developers using an older version of Angular—This book can help those using an
older version of Angular to understand the benefits of upgrading to the latest
version—and how to do it quickly and smoothly. In addition to covering the
new features and changes introduced in recent versions, we’ll discuss other rel-
evant topics, such as changes that have been backported.

1.1.2 What do we need to know before getting started?

Certain knowledge is required to maximize the amount of information digested from
this book. It is important to understand that this book is not an Angular tutorial, which
would explain everything from scratch, but rather a guidebook of new features for
developers already familiar with Angular and seeking more in-depth knowledge of mod-
ern approaches and tools. If you are unfamiliar with some concepts, see Pro Angular 16
by Adam Freeman (Manning, 2024; https://www.manning.com/books/pro-angular-16),
which follows a tutorial-based approach and has helpful explanations of more basic
concepts. You can keep Pro Angular 16 as a reference for this one; sometimes, I will ref-
erence it to help explain some concepts.

 This book will explain (albeit briefly) some more advanced concepts necessary for
the narration. Besides those explanations, the book assumes basic-to-intermediate
knowledge of Angular, TypeScript, and HTML. Table 1.1 provides details of the mini-
mally required knowledge.

https://www.manning.com/books/pro-angular-16

31.2 How Angular was

1.1.3 How is the book structured?

As previously mentioned, many types of developers with various tasks will find this
book useful. To best accommodate all of them, the book follows a certain pattern of
explaining these new features. First, we will establish a problem that Angular develop-
ers experienced in previous versions and then cover solutions that the framework
offered in those earlier versions (or note the absence of such prior solutions). We will
then discuss the new tools available to solve that feature’s particular problem in a new,
modern Angular application. Finally, I will explain how developers can smoothly
migrate their existing Angular applications to use the new feature.

 All practical examples are structured in a brand-new Angular application. We will
create this application from scratch, using the latest Angular version and the newest
Angular features. The application will perform practical, real-life functions to maximize
the practicality of the examples. We will set up this application later in this chapter.

 Now that we have set prerequisites, we can define our starting point by understand-
ing what Angular looked like before these revolutionary changes and what problems
those changes try to address.

1.2 How Angular was
Before discussing the most recent versions, let’s identify the framework’s most import-
ant features that have been subjected to changes with the latest versions and the
approach we’ll take to building an Angular-based application.

Table 1.1 Minimally required knowledge

Technology
Level of

Expertise
Details

TypeScript Basic Knowledge of what TypeScript is; how to declare types of variables, func-
tions, and objects; and knowledge about generic types. Anything more
sophisticated will be briefly explained in the book whenever necessary.

Angular Intermediate Because Angular itself is the main focus of the book, basic knowledge is
sometimes not enough. The book assumes familiarity with the building
blocks of an Angular application (components, directives, etc.) and
knowledge about Angular’s built-in packages like Http, Routing, and so
on. Some minor advanced concepts will be explained as necessary, or a
reference to Pro Angular 16 will be provided.

RxJS Basic Only the most basic knowledge of RxJS (mainly observables, operators,
and subscriptions) is necessary.

HTML Very basic The most entry-level knowledge of HTML tags and attributes is enough to
understand the book’s materials.

CSS Very basic Knowledge of CSS selectors is enough. The book does not focus on styl-
ing, and examples of components usually will not have CSS code.

4 CHAPTER 1 Welcome to modern Angular

1.2.1 Angular’s core features

Next, we will talk about some, but not all, of the important parts of the Angular frame-
work. I mainly focus on the features undergoing a transformation via the latest releases.

OBJECT-ORIENTED PROGRAMMING

Object-oriented programming (OOP) was long seen as a signifier of large enterprise
projects, heavily popularized by languages like Java and C#. It was the go-to approach
for managing complex applications. Angular itself has a rather complex and inter-
twined relationship with OOP.

 Most Angular building blocks, like components, pipes, directives, guards, and
many more, have historically been authored with OOP. All building blocks are repre-
sented by a class, data inside of them is stored as a property, and their behavior is
described via methods. In the next chapters, especially chapters 3 and 10, we will see
that some of those building blocks do not have to be classes; in fact, representing
some of them as classes could be confusing for developers, especially those coming
from other popular frontend frameworks like React, where functions reign supreme.
We will see how this reality is about to change.

DEPENDENCY INJECTION

Dependency injection (DI) has been a very important and appealing part of the
Angular framework, and it is hard to find a developer who hasn’t utilized it in an
Angular project. Until recently, DI was completely coupled with classes and OOP: to
have DI, you needed to have a class with the @Injectable decorator; you could not
use an instance of a service, a config, or anything else from the DI-tree in a function
unless it is explicitly passed as an argument. Of course, this constraint denied us some
composability. With the addition of the new inject function, this constraint has evap-
orated, opening a new era of composability and reusability.

MODULE-BASED ARCHITECTURE

Before v14, all Angular applications were built around NgModules, an Angular-specific
concept. NgModules comprise a class that encapsulates all other building blocks and
makes them work together. NgModules were used to build application architecture,
share functionality, and more. However, many Angular developers experienced vari-
ous problems with NgModules. Now, Angular allows developers to build applications
without NgModules, a new practice known as “standalone.”

RXJS
RxJS, the reactive extensions library for JavaScript, most likely plays a huge part in
sharing the state between different parts of an Angular application. For instance,
authentication and authorization events (access granted/revoked) are, at the very
least, propagated through it. However, many applications either build some relatively
simple state management mechanism via a service with a subject or use an existing
state management solution like NgRx, which also relies on RxJS. New features have
dramatically increased the interoperability between Angular applications and RxJS.

51.2 How Angular was

CHANGE DETECTION

Change detection, the mechanism by which Angular propagates the changes in a
component’s data to the UI, is a pretty complex and somewhat suboptimal algorithm.
It relies on a third-party library (zone.js), with developers anxious to find solutions for
building applications without this overhead. In later chapters, we will learn how to
accomplish that and dive deep into the change detection mechanism.

1.2.2 What is an Angular application?

After the very first Angular release, multiple approaches to building Angular-based
applications emerged. Monorepo tools like Nx, static site generators, and different
builders have become fairly prominent and grown in communities. However, we will
examine the most “classic” Angular projects—those built purely on Angular CLI—
using the most popular (for the better or worse) approaches. In other words, we’ll
look at the types of applications you are more likely to encounter in the wild.

 Let’s imagine an Angular application around which our discussion will evolve. We
will make a series of assumptions about this app:

 It uses Angular v12, which does not include the modern features of more
recent versions.

 It does not use a dedicated state management library like NgRx or Akita.
Instead, as with many Angular projects, it gradually reinvents state management
in the form of services with a subject.

 It uses a modular architecture, not specific patterns like library-based or micro-
frontends.

 It uses a third-party UI library (Angular Material, among others). The specific
library is not important; we will just assume that dependency exists.

While these assumptions might feel a bit restrictive, they describe a large chunk of
existing Angular apps.

 Let’s pose some important questions about this application:

 What are its main parts?
 How do those parts interact, and what is the glue that bonds them?
 On an architectural level, what are the most important and frequent challenges

developers face?
 What are some challenges at the code level?
 How easy is it to onboard someone into an existing project?

With these questions in mind, let’s briefly discuss the business and unique cases of the
actual application. In our scenario, we will describe an HRMS (human resources man-
agement system) application where the entire workflow of an HR department is han-
dled. It has several key parts:

 Employees—All the data about a company’s employees, their profiles, accessible
both for the HR personnel and employees themselves

6 CHAPTER 1 Welcome to modern Angular

 Recruitment—Data about the recruitment process, interviews, and admissions,
accessible to the HR personnel and certain employees (usually the ones con-
ducting technical interviews)

 Time off—A feature where employees can request time-offs and managers can
approve them. Accessible to everyone

 Work—Data about the projects the company is working on, who reports to
whom, submitting feedback, and so on. This has granular access, and some
employees can see all of the pages, some can see only the parts of the pages,
and so on.

 Integrations—Communications with third-party apps, like email or calendar. For
example, we might want the person who is going to conduct a technical inter-
view to receive an email invitation, the event added to their calendar, and also
to allow them to see an integrated, personalized calendar in their “work” sec-
tion profile. This could mean working with third-party services like Outlook,
Google Calendar, or more.

Figure 1.1 shows a visual diagram of the application. As we can see, the application,
even on a superficial level, appears to have multiple interconnected features. This
means that the app will most certainly utilize RxJS, have performance issues (partially
related to the change detection mechanism), have multiple services and reusable
components/directives that require careful maintenance and structuring, and have
multiple NgModules. It quickly becomes obvious that all the features we mentioned in
the previous section will be significantly affected by the latest changes in Angular.

To examine this application, we will do two distinct things. First, we will begin building
this very application from scratch. Next, in every chapter, as previously promised, we
will examine scenarios in which this app already exists on an older version of Angular
so we can understand how to migrate it to use the latest features. For now, let us begin
building this application by doing a basic setup so we can build upon it in subsequent
chapters.

Third-party components

Work

Employees

Integrations
Root module

Recruitment

Figure 1.1 The relations between different parts of the application, with arrows representing relations between
different modules, like shared components or services

71.3 Let’s start a modern Angular app

1.3 Let’s start a modern Angular app
There are different ways of starting a new project with Angular, including different
custom and third-party builders, bundlers, and other tools. However, those tools,
while doubtlessly useful, are out of scope for this book; be mindful that through the
entire course of the book, we are going to use the official Angular CLI and the official
Angular CLI only.

 If you do not have the Angular CLI on your machine, use the official Angular doc-
umentation page (https://mng.bz/PNEY) for proper installation; if you have an older
version of Angular CLI, please install at least v16.0.0; if you have already done those
steps, then proceed with this chapter, as we explore what a modern Angular applica-
tion looks like.

1.3.1 Using the Angular CLI

The Angular CLI has a bunch of different commands and custom schematics. In this
book, we will gradually encounter different (some quite new) scripts that would allow
us to build using specific settings, generate environment files, migrate existing code,
and so on. For now, we will focus on the probably most well-known command, ng new,
which is used to create new projects.

 ng new has several customization options for a newly created project, and the dedi-
cated section of the Angular documentation explains them quite well. Here, however,
we will focus on six of them, as outlined in table 1.2.

Table 1.2 Important parameters for creating a new Angular project

Parameter Description
Default
value

--strict Enables strict type-checking in both templates and TypeScript files True

--inline-
template

Makes component templates inline by default. With the rise of stand-
alone components, this approach has become very popular. Throughout
the book, we will show whole components with inline templates to
ensure maximum readability, but this is not considered either a good or
bad practice and depends on developer preference.

False

--minimal Creates a project without any testing-related files. This is good for learn-
ing, but we are not going to use it, as we also cover unit testing in this
book; if you want to see a simplified version of the project tree, feel free
to use this option.

False

--package-
manager

Allows us to select which package manager to use (if we do not like npm
for whatever reason) in the project. Angular CLI commands like ng add
or ng update will use this option under the hood to install and update
dependencies. We will stick to the default in this book, but you are wel-
come to explore other options.

npm

--standalone This option is the most important for us, as it creates an application
without NgModules by default, as it does with modern-day Angular apps.
We will use this one outright.

True

https://mng.bz/PNEY

8 CHAPTER 1 Welcome to modern Angular

1.3.2 Creating a new project

Now, as we have familiarized ourselves with several command options, let us go for-
ward and finally create a new application. If you are using Angular v16, you will have
to manually specify that you want a standalone component-based application. In v17
and higher, you can skip this parameter.

 Navigate to a folder/directory of your preference and run the following command:

ng new hrms --defaults --standalone --routing

NOTE Depending on your CLI version (v16 or lower), you might see a warn-
ing that says, “Standalone application structure is new and not yet supported
by many existing 'ng add' and 'ng update' integrations with community librar-
ies.” This statement mostly applies to using third-party libraries and is not very
relevant to our application, so you can safely ignore it.

After all the installations are done, we should be able to see our new project. Let’s
open it with our chosen editor and explore the folder structure first. Most probably,
the application looks something like this:

└── hrms/
 ├── src/
 ├── angular.json
 ├── package.json
 ├── tsconfig.app.json
 ├── tsconfig.json
 └── tsconfig.spec.json

Note that there can be several other files not mentioned here, like Git-related files,
editor-specific autogenerated files, a README.md file, or more.

 Let's pay attention to three important changes, as opposed to what we used to have
in older versions:

 No environments folder—Environment files are used to store application configu-
ration data like API URLs or third-party API configurations that might differ
from environment to environment. Starting from Angular v15, environment
files are not generated by default and can be added via a separate command.
We will talk more about environments and builds/deployments in chapter 9.

 No explicit polyfills.ts file—Polyfills are used to support older browsers like IE11
or prior. Previously, an Angular project had this file by default from the very

–defaults Skips the prompt questions and uses default values without asking.
For example, it will generate an Angular routing, use CSS for styles,
and so on.

False

Table 1.2 Important parameters for creating a new Angular project (continued)

Parameter Description
Default
value

91.3 Let’s start a modern Angular app

beginning of the project, but now it is no longer autogenerated. This can also
be added manually if necessary to support older browsers.

 If we open the angular.json file, we will notice it is far shorter than we used to
have in older projects.

1.3.3 What changed?

Now, let us open the most interesting folder, src, and see what it contains:

.
└── hrms/
 └── src/
 ├── app/
 │ ├── app.component.css
 │ ├── app.component.html
 │ ├── app.component.spec.ts
 │ ├── app.component.ts
 │ ├── app.config.ts
 │ └── app.routes.ts
 ├── assets/
 ├── index.html
 ├── main.ts
 └── styles.css

Here, we can see another three differences from what we are used to:

 No app.module.ts file—The application is fully standalone and does not utilize
modules for its architecture

 app.routes.ts file instead of app.routing.module.ts—This is again because we chose
standalone

 app.config.ts file—This file will contain global configurations for our app, like
providers, routing initialization, and more.

Now, let’s start exploring the file contents themselves. app.component.html contains a
predefined welcome page, app.component.spec.ts contains some boilerplate unit
tests, and app.component.css is empty, so we will skip them. Let us now review the con-
tents of app.component.ts.

import { Component } from '@angular/core';
import { CommonModule } from '@angular/common';
import { RouterOutlet } from '@angular/router';

@Component({
 selector: 'app-root',
 standalone: true,
 imports: [CommonModule, RouterOutlet],
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.css']
})

Listing 1.1 AppComponent, the root component of the project

10 CHAPTER 1 Welcome to modern Angular

export class AppComponent {
 title = 'hrms';
}

This code looks like a fairly common Angular component, but it has two important
distinctions:

 standalone: true marks this component as standalone and not belonging to
any NgModule

 The imports array is used to import dependencies, like other modules and
standalone components/directives/pipes, as this component is standalone and
does not rely on an NgModule to locate its dependencies and instead imports
them directly. Note that in v16 it imports CommonModule, to be able to use built-
in directives and pipes, but those things are now also standalone and can be
imported directly. That is, we can write NgIf in the imports array and import
only itself instead of bringing the entire CommonModule. In v17+, CommonModule
is not imported by default.

This is how a standalone component typically looks like, but of course, there is much
more to it, as we will discuss in the next chapter. Now let's see the app.routes.ts file.

import { Routes } from '@angular/router';
export const routes: Routes = [];

We can see that it is also simpler, as it does not use the RouterModule to register
routes. Instead, those routes are only defined here and registered in the app.config.ts
file, which we will now review.

import { ApplicationConfig } from '@angular/core';
import { provideRouter } from '@angular/router';

import { routes } from './app.routes';

export const appConfig: ApplicationConfig = {
 providers: [provideRouter(routes)]
};

Again, two important things to note here:

 The ApplicationConfig interface has one property, providers, which is used
to provide DI tokens, as we previously did in NgModules with the property that
shared the same name.

 Routes are registered with a special new function called provideRouter,
which also accepts an array of our route definitions instead of RouterModule
.forRoot(routes).

Listing 1.2 Default empty route definitions

Listing 1.3 Application configuration

111.4 What’s new in Angular?

Now it seems we have reviewed all of our files because, as mentioned previously, we do
not have an app.module.ts file in a standalone setup. So, if we do not have that file,
how is our application being initialized and bootstrapped? Well, this logic fully moved
to the main.ts file.

import { bootstrapApplication } from '@angular/platform-browser';
import { appConfig } from './app/app.config';
import { AppComponent } from './app/app.component';

bootstrapApplication(AppComponent, appConfig)
 .catch((err) => console.error(err));

As we can see, main.ts now uses a special bootstrapApplication function instead of
the previous platformBrowserDynamic().bootstrapModule(AppModule) and directly
bootstraps the AppComponent instead of an AppModule. In modern Angular apps, we
do not need an NgModule, and this new function can directly create our application
using one root component and the application configuration.

 So far, we have seen changes relating to standalone components and how depen-
dencies are provided (DI). We will cover those topics in the next two chapters fully
before proceeding to other changes. Now, let’s briefly discuss all of those changes to
have our road map for learning.

1.4 What’s new in Angular?
Before we begin a slightly more hands-on acquaintance with the latest and hottest fea-
tures in Angular, let’s discuss how the Angular team identifies issues and decides on
the solutions so we can understand the reasoning behind all these new features.

1.4.1 How does Angular evolve?

Angular is an open source framework with a vibrant community of contributors and
users. As such, very often, certain wishes of the general audience eventually material-
ize into actual features and improvements in the framework code. Let’s see the pro-
cess behind this; it would be helpful to understand how certain decisions are made
and possibly participate in the process itself. For a certain idea to become a concrete
feature in the Angular framework, it has to pass through rigorous steps, as shown in
figure 1.2.

 As we can see, this is quite a long process marked with lots of milestones; also note-
worthy is the fact that there are other internal processes we are unaware of, mostly
related to upkeep. But the public process is what makes Angular (to an extent) demo-
cratic; while the core team retains the final word on changes and API structure, fairly
often contributors from the wider community either suggest changes or code directly
(via pull requests), and that is how lots of features that we are going to discuss in this
book came to life. Let’s discuss the first step in this process in more detail.

Listing 1.4 main.ts

12 CHAPTER 1 Welcome to modern Angular

1.4.2 How does Angular recognize problems?

As previously described (and, of course, what common sense tells us), the first step in
adding a new feature to the framework is to identify a common and popular demand
or a pain point for developers (maybe one of those we discussed previously). The pro-
cess uses several methods—namely, internal research by the core team, an exploration
of changes in the Web standards, GitHub issues submitted from the wider community,
and direct pull requests contributed by community members. Finally, the Angular
Developer Survey (https://mng.bz/w5q2) is an annual survey sent out to all interested
Angular developers, where they can answer common questions, write about things
they think need to change, and more.

An idea arrives

The idea is explored.

An RFC document is compiled.

The draft is initially shared internally.

The draft is reviewed.

The RFC goes public.

Comments and feedback are gathered.

The feature is added into a release.

If the change is too revolutionary, the feature is marked as developer preview.

If the feature is successful, it is marked as stable.

Either as a GitHub
issue or an idea
from the team itself

The Angular team
privately experiments
with it and finds viable
implementations.

Core team members
and Google Developer
experts will read it first.

Now the wider community
can add feedback.

A request for comments
doc will detail the
changes, motivations,
and a draft API.

The core team discourages
the developers from using the
feature in production codebases,
instead expecting developers to
“play” with it. Usually developer
preview features appear in major
releases.

Figure 1.2 The process of integration of new features into Angular

https://mng.bz/w5q2

131.4 What’s new in Angular?

 After those things are gathered, discussions are often started, where contributors
and users can vote on issues they find particularly appealing to them; this is yet
another instance of democratic decision-making in the framework and yet another
proof of how Angular is very feedback-driven and does, very often, listen to the devel-
oper community and adapt to new challenges.

 However, it is very important to know that though the democratic process drives a
lot of innovation in Angular, the core team still makes the ultimate decisions. Some-
times a highly requested feature may not be implemented, mainly because it conflicts
with some core values the team has (e.g., backward compatibility, nonalignment with
Web standards, and others we already discussed). Keeping all of this in mind, let us
see the way Angular forges its path into the future.

1.4.3 Current goals

An important source of information on how Angular chooses its direction is the offi-
cial Angular road map (https://angular.io/guide/roadmap), a detailed list of the fea-
tures Angular is going to address in future releases. We can see a large number of
topics there, but we are not going to explore any of them right now, as most of them
are speculative anyway. However, familiarizing ourselves with the road map can give us
an understanding of what we might expect in the future.

 Instead, we will explore some current core goals—significant short-term changes
that either improved the developer experience or laid a foundation for more radical
changes. Those changes will reflect something already existing in the newer versions
of Angular and are not speculative. We will examine those goals in the context of the
previously mentioned HRMS enterprise application to understand what parts of such
an application might improve.

EASE OF ADOPTION

Another famous (and at least partially correct) stereotype about Angular is that it is
hard to learn or switch to. This is mainly related to the sheer number of features
that Angular provides out of the box, including a very specific template syntax and
other purely Angular-related concepts that the framework introduced like directives,
pipes, and so on. Another important goal for the core team is to make the framework
newcomer-friendly, either through improved documentation or directly by simplify-
ing core concepts.

INCREASED COMPOSABILITY/REUSABILITY

Some Angular building blocks can be hard to reuse or repurpose. For instance, we
can have multiple routing guards or interceptors that essentially do the same thing
(like checking for certain roles or permissions, as mentioned) in different contexts
and have problems being generalized, which can result in loads of copy-pasting and
easily preventable bugs. It also severely affects the ability to refactor the codebase:
changing one routing guard may mean changing all of them. We might also want to
apply this reusability to directives that handle business logic to make our templates
more dynamic.

https://angular.io/guide/roadmap

14 CHAPTER 1 Welcome to modern Angular

REDUCED BOILERPLATE CODE

In general, Angular is considered a bit boilerplate-heavy compared to other frontend
frameworks, so one of the goals of the core team (albeit not the most important one)
is reducing the amount of code necessary to get up and running with Angular. In our
application, we may have lots of boilerplate code to make some core functionality
work, such as defining pipes and reusable components, providing services and envi-
ronments, sharing state, creating routing guards, and other handlers.

IMPROVED TYPE SAFETY

As Angular is already built on top of TypeScript, we enjoy a lot of type safety with it. How-
ever, when we dive deeper, we discover that many parts of the framework itself contain a
bunch of anys, which can and will make our apps less safe in terms of strict typing. Most
prominent are the reactive forms, which, in an enterprise application dealing with a lot
of user-generated data, can possibly be very important and widely used.

IMPROVED REACTIVITY

We saw many interconnected components and application parts in Figure 1.1, and
there’s a high possibility of connecting those elements via RxJS through Angular ser-
vices. These connections introduce complexity and a higher probability of glitches
and bugs. Simplifying that process would be of great benefit to larger apps and make
them more accessible to newcomers.

1.4.4 New features

Starting from Angular v13, interesting and sometimes drastic improvements have
been added, all addressing the topics we discussed previously. As this book is entirely
dedicated to the modern state of Angular, we will not dive too deep into it in this
chapter, but we will familiarize ourselves with a general overview of these additions.

STANDALONE BUILDING BLOCKS

We already encountered a standalone component when bootstrapping our HRMS
application. Starting from v14, having NgModules is no longer required: Angular
building blocks can now be standalone, meaning they do not require an associated
NgModule to be used in an app. In v15, this new capability was marked as “stable” and
is already widely used in many production-ready apps. We will discuss this new
approach and all of its benefits (and some new pitfalls) in the next chapter.

THE INJECT FUNCTION

Until v14, it was only possible to inject dependencies in classes marked with one of
Angular’s decorators: @Component, @Pipe, @Directive, and, of course, @Injectable. It
was impossible to use an instance of some DI value in a function (rather than a class)
unless it was passed directly via an argument. With this new function, we can over-
come this limitation and build a composable, reusable function that can be easily
shared between components with the simplest approaches. This small change (essen-
tially, the already-existing inject function was just exposed publicly by Angular) made
huge waves through the Angular community, changing approaches, allowing for

151.4 What’s new in Angular?

never-before-heard-of composability, and even resulting in the official deprecation of
some previously widely used tools. We will dive deep into new DI patterns in chapter 3.

TYPE-SAFE REACTIVE FORMS

Reactive forms have long been a source of type-related bugs, and developers resorted
to various (sometimes quite dirty) solutions to overcome these limitations. Again,
from v14, new typed reactive forms have been introduced, which are now marked as
”stable,” that quickly replaced the previous ones (which have been renamed to untyped
reactive forms to simplify migration). We will talk more about them in chapter 4.

DIRECTIVE COMPOSITION API
A new hostDirectives property has been added to the component/directive metadata
object, which allows the automatic addition of other directives, essentially allowing us
to build directives from other directives. This is a huge step up for composability,
which was previously built with other (not always really suitable) solutions like OOP
inheritance or pure DI. We will see how it simplifies both the directive/component
code and the template in chapter 4.

BETTER COMPATIBILITY WITH RXJS
An entirely new package, rxjs-interop, has been added to Angular, which will help
developers integrate RxJS code seamlessly into Angular apps. The new reactive primi-
tive allows for switching from signals to observables, and vice versa, and the package
has an easier, built-in way of unsubscribing from streams. We will explore this new
package in chapter 5.

SIGNALS

Probably the most effective addition to Angular ever, signals are a new reactive primi-
tive that is called to solve common problems we face with RxJS. Signals transform and
significantly improve the change detection mechanism, bringing it to a new, more
granular level instead of the current top-down checks system. We will talk about sig-
nals in great detail in chapters 6 and 7.

NEW TEMPLATE SYNTAX

Starting from v17, a new template syntax is available that is projected to replace ngIf,
ngSwitch, and ngFor directives. This syntax allows for more readable templates and
compiler optimizations. In v18, this syntax is already stable. We will talk about these
new commands in chapter 10.

DEFERRED LOADING OF PARTS OF A TEMPLATE

Another addition to the new template syntax allows for deferred loading of a part of a
template based on a condition or an event. This can help us build more performant
applications while also reducing the final bundle size. We will cover this approach
extensively in chapter 10.

NEW TOOLS FOR UNIT TESTING

The addition of a new unit testing framework, support for new APIs (like the previ-
ously mentioned inject function), and the emergence of AI tools have significantly

16 CHAPTER 1 Welcome to modern Angular

affected how we view and write unit tests, allowing for a faster authoring experience
and less time spent mocking data. In chapter 8, we will dive deep to understand how
unit tests are driving modern Angular development.

SERVER-SIDE RENDERING HYDRATION

The server side has long been one of the weakest points of Angular, only supporting
the most basic full rerender of the page, but recent developments have added long-
awaited features—namely, full hydration. Full hydration greatly improves the perfor-
mance of SSR apps, allowing for the reuse of the existing application state and DOM.
In chapter 9, we will review this feature and familiarize ourselves with development
experience improvements and a new experimental bundling system.

VARIOUS GRANULAR IMPROVEMENTS TO PERFORMANCE

Different small tools that improve the loading of the page and its different parts, like
the loading of images, have emerged and are already stable. We will encounter such
additions in different chapters, but mostly in chapter 3.

DEVELOPER EXPERIENCE IMPROVEMENTS
Better error messages, debugging, stack traces, and much more are already in Angu-
lar, with more improvements underway. We will examine these features in various
chapters.

FINAL THOUGHTS

As we can see, these changes are a very large addition to the framework and can very
well be hailed as “revolutionary.” Sometimes developers refer to this as “Angular 3” as
a reference to AngularJS being “Angular 1,” the framework we had before v12 being
“Angular 2,” and now these new changes are marked as “Angular 3.”

 However, these names are confusing and do not correspond with reality. The
Angular team has not made any statements referring to an entirely new framework.
Although these changes are somewhat drastic, all of them are iterative, easily adopt-
able, and, for the most part, backward compatible. AngularJS to Angular was a full
rewrite of the framework from scratch, with new concepts and approaches.

 These updates are in no way an overhaul of the entire framework (although it
would be fair to say that the difference between, let’s say, Angular v18 in the future
and Angular v12 will be very significant). So, we will refrain from calling it “Angular 3”
or whatever other label some might conceive; instead, we treat it as “modern Angular”
as in the current state of this framework.

1.4.5 What about the future?

Before moving on, let us briefly touch on two other related questions that may arise
with the readers—namely, “What can we possibly expect next?” and “What will defi-
nitely stay the same?”

 Let’s start with the future prospects (see table 1.3). Note that these aren’t speculations
of preference-based fantasies but rather some experimental things already available in
the framework for developer preview or already public RFCs (request for comments).

171.4 What’s new in Angular?

We won’t discuss them in length in this book, but they’re worth knowing about, and
it’s helpful to understand the motivations behind the changes already present.

The second question is of no less importance. The following is a list of things that we
can treat as very stable, and that won’t change in any significant way:

 DI mechanisms—While some minor improvements to DI will be present in the
future (like being able to provide an InjectionToken at the root of the app),
the DI framework itself has passed the test of time and remains one of the most
beloved features for Angular developers.

 Previous component authoring formats—While functional components might be a
possibility, class-based components are not going anywhere, at least in the fore-
seeable future.

 RxJS support—While Angular introduced a new reactive primitive, we will see in
this book how integration with RxJS will become even smoother, and even if
some developers might opt to use less RxJS in favor of signals, the core tenet of
working well with RxJS will remain.

 Routing—After the introduction of the functional guards and other minor
improvements, no significant changes are planned to the Angular routing.

 HTTP client, animations, and other optional tools—These tools are some parts of
the framework that have definitely stood the test of time.

The future of Angular looks very bright, but to understand and be better prepared for
it, we need to examine its present state.

Table 1.3 Prospects of new features in future versions of Angular

Change Description Version

Zoneless appli-
cations

Zone.js has been a required part of Angular since its very conception.
However, it increases the bundle size and is not very efficient for
change detection. With the new reactive primitive, the Angular team is
exploring possibilities for allowing completely zone-free apps. They are
possible currently with some adjustments as an experimental API but
are not there by default.

v18

Alternative com-
ponent author-
ing formats

As previously discussed, some building blocks (like route guards and
resolvers) that have only been possible with classes previously are now
available (and preferable) to be authored as functions. It is possible
that the Angular team might also allow for functional pipes, directives,
and even components, or maybe even a completely different authoring
format.

Unknown

Partial hydration
and resumability

We will discuss full-app hydration in chapter 9, as full hydration is
already a stable part of the framework; however, the core team will also
explore partial hydration of pages in SSR and application resumability.

Possibly
v19

A let keyword
for templates

This new keyword will allow developers to declare variables inside tem-
plates, simplifying the addition of complex logic to templates. These
variables will only be available inside templates.

Possibly
v18.1

18 CHAPTER 1 Welcome to modern Angular

1.4.6 The learning process

As we saw, each chapter of this book will revolve around one (or more) new concepts
and will explore their real-life applications. In this context, each chapter will be
loosely structured according to the paradigm we set out earlier: exploring a topic and
the theory behind the changes, applying it with code examples, and then challenging
the reader to code. All the solutions will be included in the GitHub repository, but I
recommend they be implemented manually to increase the reader’s skill proficiency.

 I hope that this process will be both entertaining and informative and that the
abundance of practical coding will help cement your knowledge of Angular. So, start-
ing here, we begin our deep dive to explore each new feature one by one while build-
ing our modern Angular application.

Summary
 Angular has a rich history and keeps evolving.
 The community has identified a number of outstanding problems with the

framework.
 The core team constantly proposes and implements new approaches to address

those problems.
 A huge set of new concepts has already arrived, such as new dependency injec-

tion, standalone building blocks, signals, type-safe forms, functional building
blocks, and more.

 New projects are now created using a standalone approach.

19

A standalone future

In the previous chapter, we learned about recent developments in Angular and laid
out a learning plan for this book. We also created a project and already encoun-
tered standalone components. Now it is the time to explore one of the new capabil-
ities of modern Angular, building applications without NgModules, colloquially
known as standalones, and understand both the benefits and shortcomings of this
approach. To do so, we first need to examine the reasons why teams are making a
switch away from NgModules in a more profound way.

This chapter covers
 Using Angular components, directives, and

pipes without NgModules

 Structuring applications without NgModules

 Routing and lazy-loading of standalone
components

 Migrating existing applications to standalone

20 CHAPTER 2 A standalone future

2.1 Why abandon NgModules?
As we know, before Angular v14, all Angular applications used NgModules to be able to
run. It was the very first Angular concept new developers learned about, and it was the
glue that held Angular applications together; components, in contrast, were specifi-
cally not that glue. In this context, NgModules were a fundamental part of the frame-
work. So what changed? Why change so drastically? It turns out not everyone was
happy with NgModules.

 Before we move on, we need to understand several key points about both modules
and standalones:

 NgModules still exist and are supported, and they have not deprecated. Actually,
deprecation is yet to be discussed.

 Standalone building blocks interop with NgModules just fine; you can have a
module-based project with some standalone components in it, or vice versa, and
you can use NgModules inside your standalone components.

 The goal is to make NgModules optional rather than getting rid of them com-
pletely (at least for now).

 Developers seem to love standalone setups, and it becomes more and more likely
that we, as developers, will encounter more standalone projects in the future.

 The core team itself seems to favor standalones, which makes future depreca-
tion more likely.

Now, let’s cover all the reasons why developers do not like NgModules.

2.1.1 Hard to learn, hard to explain

NgModules are difficult, both to learn for yourself and to teach or explain to others. To
understand this argument, let’s imagine two scenarios: one in which we are a new
adopter of Angular and another in which we are maintaining an Angular project
onboarding a new member.

LEARNING ANGULAR

We are students of Angular: we just finished learning JavaScript, read some things
about TypeScript, and are now ready to take the Angular world by storm! Here comes
the very first lesson: a concept called NgModules. What are they? Well, the official
explanation from the documentation states: “NgModules configure the injector and
the compiler and help organize related things together” (https://angular.io/guide/
ngmodules).

 Not super helpful. What’s an injector? What compiler? It turns out that to under-
stand NgModules, we first need to learn a bunch of other concepts that are considered
(rightfully so) pretty complex for a beginner. So what now? We can examine the
main.ts file, which is apparently the first entry point of our application, and see roughly
what is shown in the following listing.

https://angular.io/guide/ngmodules
https://angular.io/guide/ngmodules
https://angular.io/guide/ngmodules

212.1 Why abandon NgModules?

import { enableProdMode } from '@angular/core';
import { platformBrowserDynamic } from '@angular/platform-browser-dynamic';

import { AppModule } from './app/app.module';
import { environment } from './environments/environment';

if (environment.production) {
 enableProdMode();
}

platformBrowserDynamic().bootstrapModule(AppModule)
 .catch(err => console.error(err));

Our application, with all of its building blocks, is declared inside the AppModule,
which makes sense, so let’s see what goes on inside it.

@NgModule({
 declarations: [
 AppComponent,
],
 imports: [
 CommonModule,
],
 providers: [
],
 bootstrap: [AppComponent]
})
export class AppModule { }

Well, this one is weird. What is the CommonModule? What does bootstrap: [App-
Component] even mean? And why is this class empty? Of course, all of those questions
have logical answers, but they introduce even more complexity for us. So essentially,
for now, we just need to understand that modules “declare” stuff, let the app work,
and go on learning about our building blocks. This process makes the learning path a
bit nonlinear, where we will have to revisit concepts later to really understand them,
which can be discouraging for beginners.

TEACHING ANGULAR

Now let us explore the second scenario: we are a seasoned senior developer, and a new
team member just joined our team. We are onboarding them by explaining our project
step by step. Here are several questions we might hear from a new team member:

 “Why is the app structured the way it is?”
 “Do you have a shared module? Oh, you have two?”
 “Why is there both a core module and a shared module?”
 “Why are shared modules on lazy-loaded modules?”

Listing 2.1 main.ts file in an NgModule setup

Listing 2.2 AppModule

With NgModules, we needed to enable production
mode to disable some checks and assertions.

We can only bootstrap
an NgModule, not the
AppComponent directly;
only then the module will
create the component.

22 CHAPTER 2 A standalone future

Of course, many other questions may arise. We spend a lot of time managing NgModules,
and each team working on a different project has its own view on how NgModules
should be structured, whether there should be a shared module, etc. These nuances
all become quite tedious to explain to a newcomer, and every time someone switches
to a new (existing) Angular project, it feels like a very new experience where things
need to be explained all over again.

 We also have another layer of confusion, as TypeScript and JavaScript already have
a concept of a module: we call files that export something a module; in NodeJS, we
write module.exports, and in TypeScript, we use export and import statements to use
functions, classes, and variables from other files. Why have a module concept on top
of this? What’s the difference between those concepts?

 In Angular, NgModules are used to group functionality and hold all the dependen-
cies (like pipes, directives, and other components) together in a place called the com-
pilation context. The claim is that NgModules simplify this process and help us structure
our applications, but it is important to understand that this can be done in other ways,
too—ways that do not involve a high-level framework concept and can result in poorly
structured code anyway.

 As we can see, this discussion comes into the scope of one of the main goals of the
Angular team—to make Angular and projects built with it more approachable. If we
remember that this was one of Angular’s main goals, the scenarios in this chapter
alone would be reason enough to make the idea of at least optional NgModules very
appealing to both the core team and the wider community. But wait, there’s more!

2.1.2 Indirectness and boilerplate

When we write code, we tend to split it into different parts and then assemble them
as needed. For instance, we can split a large function into smaller ones, name them
appropriately, and call them whenever necessary in the larger one, making the latter
much more readable. This method also allows for the reuse of the same functionality.
In Angular, we split code into its brand building blocks: components, directives,
pipes, and injectable services. Because injectable services are not related to the tem-
plate, we will focus on the first three. Each building block usually lives in its own sep-
arate file to keep things nice and clean. So, to use, say, a child component in another
component, we need to import it. However, the import process is not direct (e.g., just
importing another component into our component’s file) and involves a more com-
plex mental model.

 Let’s see an example of a component from our HRMS application that uses a child
component in its template on a use case of a list of employees that renders individual
employee tiles.

import { Component, Input } from '@angular/core';
import { Employee } from '<path-to-type>';

Listing 2.3 Component used in a parent component

232.1 Why abandon NgModules?

@Component({
 selector: 'app-employee-list',
 template: `
 <div class="employees-container">
 <app-employee *ngFor="let employee of employees"
 [employee]="employee"></app-employee>
 </div>
 `,
})
export class EmployeeListComponent {
 @Input() employees: Employee[];
}

As we can see, this component receives a list of employees as Input and renders app-
employee components in a for loop. Obviously, it uses another component, so it must
import it somehow, right? But if we look at this component file’s import statements,
we won’t see any imports of that component being used. Of course, if we have worked
with Angular previously, we will understand this works because a module exists some-
where that does the following.

import { EmployeeComponent } from '<path-to-component>';
import { EmployeeListComponent } from <path-to-component>';

@NgModule({
 declarations: [EmployeeComponent, EmployeeListComponent]
})
export class EmployeeModule {}

This approach makes it harder to determine the dependencies of a component. Hold
on, it could be worse! EmployeeListComponent could use a component from an
entirely different module. So, if we navigated to EmployeeModule, we would then need
to find the module that exports the component we are looking for, which could have a
vague name like SharedModule. This component must, in turn, add that component
to an exports array, and so on. Modern developer tools (like the Angular Language
Service; https://mng.bz/j07z) have mitigated this problem to an extent by providing
IDE tools and extensions that help the developer navigate directly to a component/
directive/pipe from a template, but if we were trying to build a mental model of our
component tree, app structure, or the flow of data, those tools would help us only inci-
dentally. It will remain pretty hard to find where a certain dependency must be
imported, and we would still have an unnecessary degree of complexity.

 Also somewhat challenging are the providers of injectable services. NgModules do
have a providers array, but with newer options becoming available, developers have
increasingly chosen to just mark services as providedIn: 'root', to avoid dealing with
NgModules and have a clearer understanding of when and how the service is used. Ser-
vices that are not marked as providedIn: 'root', on the other hand, have to dwell

Listing 2.4 Employee module that contains both components

https://mng.bz/j07z

24 CHAPTER 2 A standalone future

inside a child route in the overall routing system but are not defined on the route,
making it hard to understand when a service is first instantiated only by looking at the
application architecture.

 Building on what we already covered, it also becomes obvious that we need to write a
lot of boilerplate code. We need pretty standard NgModule definitions all over the place
and some conventions about them. Some NgModules can grow to several hundred lines
of code. We are not going to provide an example of such an NgModule. As we have seen,
NgModules solve a problem that apparently already has a solution while also introducing
more complexity and boilerplate code. But again, there is even more.

2.1.3 Other concerns with NgModules

While we covered the main topics, several other problems also exist with NgModule
implementations.

 Scattered codebase—With NgModules, it is fairly easy to have related application
blocks inside completely different NgModules, which means they can’t be used
directly together. This is a problem in and of itself, and to mitigate it, develop-
ers come up with different solutions, increasing complexity yet again, or resort
to having modules solely dedicated to sharing functionality.

 The shared module—To group interrelated functionality, lots of projects utilize the
concept of a SharedModule, a module specifically designed to declare and export
reusable components/directives/pipes. While this solves the problem from the
previous bullet point, it introduces other concerns, like an overly large module
file or too many scattered SharedModules. If developers decide to create multiple
SharedModules, it creates another question of when such a module should be cre-
ated and what it should hold. “Should every lazy-loaded feature module have its
own SharedModule?” is a valid question with many different answers, each of
which is not really wrong. As a result, we have an inconsistent codebase.

 Circular dependencies and harder debugging—In a codebase with many NgModules,
it is fairly easy to introduce a circular dependency, which can become a very
hard problem to solve. Debugging ability will also be somewhat limited, for
instance, by making error messages harder to read, as everything in the Angular
app is wrapped in another layer of abstraction.

All these factors may convince us that we want an alternative to NgModules. So, let’s
explore how we can reduce our dependency on them. But instead of going straight to
standalone components, we will spend a bit more time on some solutions that the
wider community has come up with in years prior to the rise of standalone.

2.2 Previous solutions
Standalone Angular components first became available in v14 as a developer preview
and became stable in v15, meaning relatively recently. So, how did developers over-
come the challenges we listed previously? Let’s explore some approaches, and maybe
we’ll find a way to move to standalone with v16 and later versions more easily.

252.2 Previous solutions

2.2.1 Hierarchic shared modules

As was already mentioned, it became common for developers to use specific “share-
able” NgModules in their apps to help with code splitting and separation of concerns.
Those shared modules were useful when certain building blocks did not exactly corre-
spond to a feature inside of an application but were needed in several places at once.
We used the most primitive approach to create a single SharedModule and import it
everywhere, but we saw that it was a pretty painful approach. So instead of having one
large SharedModule, what one can often encounter in Angular codebases prior to stand-
alone is multiple SharedModules on feature levels of an application, each holding reus-
able components related to only that feature, and one a bit larger SharedModule at the
top that contains application-wide building blocks. Figure 2.1 is a diagram of how that
approach would work on the HRMS application we described.

As we can see, this process is fairly straightforward: each of those large submodules
can have its own routed submodules, and to share functionality specific to a given fea-
ture between those modules, a shared module is created. This approach makes a
medium-sized application manageable and has worked well for multiple Angular proj-
ects. However, it is hard to scale and notoriously hard to refactor: if something needs
to be moved, it can quickly devolve into a mess, with components and other building
blocks having difficulty finding their place in the app structure. So, for larger scenar-
ios with multiple teams involved, other approaches have been created.

2.2.2 Enter SCAMs

SCAMs, or Single Component Angular Modules, is an approach to building applica-
tion structures based on the principle of having a single module for every single
declarable. For example, say we have a component that does not belong to some fea-
ture module or a shared module but, instead, has a single NgModule dedicated to its
declaration and the import of its dependencies. For instance, if we review our previous

SharedModule(Integrations)

IntegrationsModule SharedModule(Root) RoutingModule

AppModule SharedModule(Work)

EmployeeModule

SharedModule(Employee)

RecruitmentModule WorkModule

Figure 2.1 Diagram
showing relations between
modules in an HRMS
application

26 CHAPTER 2 A standalone future

example (figure 2.1), we can see two components belonging to a feature module:
EmployeeComponent and EmployeeListComponent, which are both declared inside
EmployeeModule. With the SCAM approach, we would have modules specifically for
both components that would be subsequently imported into other places where they
are needed. Those specific SCAM modules are usually declared in the same file, as
they serve as the point from which that component can be imported.

import { Component, Input } from '@angular/core';
import { Employee } from '<path-to-type>';
import { EmployeeComponentModule } from '<path-to-component-scam-module>';

@Component({
 selector: 'app-employee-list',
 template: `
 <div class="employees-container">
 <app-employee *ngFor="let employee of employees"

[employee]="employee"></app-employee>
 </div>
 `,
})
export class EmployeeListComponent {
 @Input() employee: Employee[];
}

@NgModule({
 declarations: [EmployeeListComponent]
 imports: [EmployeeComponentModule]
})
export class EmployeeModule {}

Note that we name the approach Single Component Angular Module, and we have to
do the same for directives and pipes: each will also have a dedicated NgModule. Also
noteworthy is the fact that we do not add routing in these SCAMs, even if the compo-
nent is a routed component (meaning there is a route somewhere that points to it),
and these modules only serve as a place to declare the component/directive/pipe and
import its dependencies.

 This approach has a couple of benefits:

 Easier to track dependencies—They are listed in the same file.
 Easier to refactor and move around an application—We can just grab this file and

move anywhere else.
 Easier to unit-test—We only have to mock the direct dependencies of this compo-

nent, and we can use nonshallow rendering of the template (rendering the
template as is).

 Better code splitting—We can lazy-load components themselves directly, making
the application bundles very small and granular.

Listing 2.5 EmployeeComponent as a SCAM

The declaration
of the component
itself

Imports another
component via its
own SCAM module

The SCAM module of
the parent component

272.3 Developing apps without NgModules

 Easier to migrate to standalone—A new hidden benefit of SCAMs emerged with
the rise of standalone building blocks and the introduction of a migration sche-
matic, which we will discuss in the subsequent sections of this chapter; in short,
SCAMs make it very easy to run the schematic and get a fully standalone appli-
cation without any problems.

Of course, these are very nice benefits, but some of the downsides of NgModules still
remain:

 Extra boilerplate code—While the mental overhead of understanding the applica-
tion structure is reduced, boilerplate code actually goes up; we now have an
NgModule for everything.

 Still somewhat hard to explain and approach—Newcomers would still have to learn
about NgModules, and onboarding into a project will be a bit more complicated
if the new developer is unaware of the SCAM pattern.

 Other modules can still be large—For instance, we would still need to import the
CommonModule to use directives like *ngIf or [ngClass] and possibly add lots of
references to our bundles we do not use.

With all of these benefits and downsides in mind, developers were waiting for the
opportunity to try to get rid of NgModules. Next, let’s finally discuss the new standalone
approach of authoring Angular building blocks.

2.3 Developing apps without NgModules
Before we begin, let’s briefly examine what standalone will offer when we start devel-
oping with this approach:

 It is possible to build applications completely standalone, as with our new ver-
sion of the HRMS app we initialized in the previous chapter. We will learn how
all this functions without NgModules

 The standalone approach is backward compatible, so NgModules and standalone
components can (and often do) coexist in the same codebase

 Many third-party tools and libraries still have not migrated away from NgMod-
ules, so there is full interoperability between standalone and modules. We will
learn how to handle the connection between them.

We will start with building standalone components in a brand-new project, as we already
have the standalone app in place, and then move over to show how this application is
still fully compatible with other NgModules and how older tools that do not have stand-
alone APIs can be integrated with standalone building blocks. Let’s get started!

2.3.1 Creating our first standalone component

In every enterprise application (and a number of non-enterprise ones), the user’s jour-
ney begins at one starting point: the proverbial login page. Let’s build one for our
HRMS application. We’ll use template-driven forms (as they are fairly simple) and make
an HTTP call if the form is deemed valid. First, let us create the component itself.

28 CHAPTER 2 A standalone future

CREATING THE COMPONENT

Let’s start by creating a folder named pages inside the src/app directory, so we can
put our routed components inside it, including this first one. Don’t worry about archi-
tecture or folder structure right now: we will refactor and reorganize stuff down the
line. For now, let’s create a file named login.component.ts inside this folder and put
the component inside, as shown in the following listing.

@Component({
 selector: 'app-login',
 template: `
 <div class="login-container">
 <h1>Login</h1>
 <form>
 <input type="text" name="email" placeholder="Email">
 <input type="password" name="password"
 placeholder="Password">
 <button type="submit">Login</button>
 </form>
 </div>
 `,
 standalone: true,
})
export class LoginComponent {
 credentials = { email: '', password: '' };
}

Seems to be a fairly simple component, but with one key difference: in its metadata,
we can see standalone: true, which indicates that this component is standalone and
is not part of any NgModule. Therefore, we cannot declare it any NgModule, and any-
thing related to this component (e.g., what other components or directives it imports)
lives in this class.

IMPORTING NGMODULES INTO STANDALONE COMPONENTS

One very obvious question that will arise is that for this component to truly be a login
component, we need to add some interactivity to it. That is, when the user enters
something in the inputs, we want the credentials property to be updated. One of the
popular approaches to achieve this is with a ngModel directive, but here is the catch:
this component is not a part of any NgModule, so how does it import the FormsModule
to be able to use ngModel? Well, when we mark a component as standalone, we can
add a special imports property to its metadata that will list all the component’s depen-
dencies. Let’s go on and update the component.

@Component({
 selector: 'app-login',
 template: `

Listing 2.6 Standalone LoginComponent

Listing 2.7 Standalone component importing a module

292.3 Developing apps without NgModules

 <div class="login-container">
 <h1>Login</h1>
 <form>
 <input type="text" name="email"
 placeholder="Email"
 [(ngModel)]="credentials.email" />
 <input type="password" name="password" placeholder="Password"
 [(ngModel)]="credentials.password">
 <button type="submit">Login</button>
 </form>
 </div>
 `,
 standalone: true,
 imports: [FormsModule],
})
export class LoginComponent {
 credentials = { email: '', password: '' };
}

As we can see, the imports property on the component’s metadata acts exactly like it does
in NgModules: it allows us to import NgModules with components/directives/pipes that
our component needs to function. We talked about the interoperability of the stand-
alone component, NgModule, and here we see it at play: a standalone component can act
as its own NgModule and work with NgModules. But wait, there is more. Let us now add a
validation message that will be shown as long as one of the required inputs is not filled in.

template: `
 <div class="login-container">
 <h1>Login</h1>
 <form>
 <input type="text" name="email" placeholder="Email"
 [(ngModel)]="credentials.email">
 <input type="password" name="password" placeholder="Password"
 [(ngModel)]="credentials.password">
 <button type="submit">Login</button>
 </form>
 <span class="warning" *ngIf="!credentials.email ||

!credentials.password">
 Please fill in all the required fields

 </div>
`,

IMPORTING STANDALONE DIRECTIVES INTO STANDALONE COMPONENTS

Now, we need a way to tell our component what *ngIf is. Of course, we could just add
the CommonModule, which, as we know, contains the NgIf directive, to the imports
array of our component, as we did with FormsModule, and it will certainly work. But
this will cause the import of all other components and directives that CommonModule
contains, like JsonPipe, or NgClass, and we do not need them in this component.

Listing 2.8 Using *ngIf in a standalone component

Uses the
ngModel
directive

Imports the FormsModule
directly into the component
via its own metadata

30 CHAPTER 2 A standalone future

 So how can we fix this problem? Well, the Angular team has us covered: from v15,
all entities from the CommonModule are standalone, so we can dispose of the module
and import whatever we need directly into our components. Let’s bring the NgIf
directive into the login component:

imports: [FormsModule, NgIf],

Now, our component will know what *ngIf means, match with the directive selector,
and let it run, displaying the warning until the user fills in the necessary data. If we
recall what we learned in the previous section about the SCAM approach, this can feel
eerily similar. Essentially, we do what we did with the SCAM module, but with the
added capability of just writing the previously module-related metadata directly into
the component. This is why we mention that having SCAMs in place makes it super
easy to migrate to standalone automatically.

PROVIDING SERVICES IN STANDALONE COMPONENTS

Now we move to our final concern: let’s make the component a real login component
by adding an HTTP call to an authentication API. For this purpose, we’ll create a ser-
vices folder under the app directory and add an auth.service.ts file in it, as shown in
the following listing.

import { HttpClient } from '@angular/common/http';
import { Injectable } from '@angular/core';

@Injectable()
export class AuthService {
 constructor(private http: HttpClient) { }

 login(credentials: { email: string, password: string }) {
 return this.http.post('/api/auth/login', credentials);
 }
}

This is pretty self-explanatory; the question is, how do we let the login component
know about this service? As with NgModules, we can add this service to the providers
array of the standalone component and then just use it. The following listing provides
the full component code with the HTTP call in place.

import { Component } from '@angular/core';
import { NgIf } from '@angular/common';
import { FormsModule } from '@angular/forms';

import { AuthService } from '../services/auth.service';

@Component({
 selector: 'app-login',

Listing 2.9 Authentication service

Listing 2.10 Final version of the standalone LoginComponent

312.3 Developing apps without NgModules

 template: `
 <div class="login-container">
 <h1>Login</h1>
 <form>
 <input type="text" name="email" placeholder="Email"
 [(ngModel)]="credentials.email">
 <input type="password" name="password"
 placeholder="Password" [(ngModel)]="credentials.password">
 <button type="submit" (click)="submit()">Login</button>
 </form>
 <span class="warning" *ngIf="!credentials.email ||
!credentials.password">
 Please fill in all the required fields

 </div>
 `,
 standalone: true,
 imports: [FormsModule, NgIf],
 providers: [AuthService],
})
export class LoginComponent {
 credentials = { email: '', password: '' };

 constructor(private authService: AuthService) {}

 submit() {
 if (this.credentials.email && this.credentials.password) {
 this.authService.login(this.credentials).subscribe();
 }
 }
}

We might notice that while the component is functional, it doesn’t do much, as it is
not routed or connected from anywhere to the application; it just exists by itself. Next,
let’s connect it to our application via routing and see it live.

2.3.2 Routing standalone components and providing dependencies

We already discussed how routing used to work with NgModules and discovered how it
is supposed to be defined in a standalone setup. Now, let’s figure out how to connect
our injection dependencies (DIs) and make our component routable.

 Let’s begin by remembering how DI works in Angular. We will not dive too deep, as
the next chapter is already dedicated to fully understanding DI, but we will examine
the two core principles: how a dependency is provided and how it is injected. We need
to start with the latter to better comprehend the process.

 Injecting a dependency in Angular comes down to defining a token of some-
thing and telling the framework we want it somewhere. As shown in listing 2.10, we
define what we want by adding a constructor parameter: private authService:
AuthService. Upon seeing this, Angular will (somehow) fetch us an instance of that
service.

32 CHAPTER 2 A standalone future

 But how will it know where to find the actual instance? Listing 2.9 shows that Auth-
Service is essentially just a class and can easily have multiple instances. It also receives
an instance of Angular’s HttpClient, so how will that class now know where to get that
instance? Well, here is where the second part of the equation comes into play: provid-
ers. Providers allow us to define the values for entities that can be injected. Essentially,
they are places where we say, “Dear Angular, if you see this token (for instance, Auth-
Service as in our example), please inject this value (that particular instance).”

 When working with Angular v13 or prior, we know of two ways to provide those values:
by adding to some NgModules’ or components’ providers array or by marking a service
as providedIn: 'root'. In listing 2.10, we added the AuthService directly to the Login-
Component’s providers, and we’re done with it. It is truly the simplest approach here, but
it is meant to work only for now, not when the app grows. It also raises several questions
with not very favorable answers in the case of modular apps, as outlined in table 2.1.

In the Answer with Standalone APIs column, we defined the concept of “existing stand-
alone APIs” and a function named importProvidersFrom. Let’s find out what that
means by trying to provide the HttpClient for our app. We can remember that those
dependencies resided in the @angular/common/http package under the name Http-
ClientModule. Also, in the previous chapter, we encountered a configuration object
in the src/app/app.config.ts file with a providers property. This is where dependen-
cies are provided in standalone Angular apps. Let’s add the HttpClientModule’s pro-
viders to this array. To do so, we will employ the importProvidersFrom function. Let’s
open the src/app/app.config.ts file, and we willl see the routes provided. Next to them,
we will add the new import.

export const appConfig: ApplicationConfig = {
 providers: [
 provideRouter(routes),
 importProvidersFrom(HttpClientModule),
]
};

Table 2.1 Different scenarios of providing dependencies

Question
Answer without
standalone APIs

Answer with
standalone APIs

Do I need to provide every depen-
dency in every component?

Either this or mark the service
as providedIn: 'root'.

We can use a standalone API
if one is provided.

How do I import services that are
provided in other modules (without
special standalone APIs)?

Import the module directly into
the component.

Use the importProviders-
From function in the applica-
tion main.ts file.

How do I import built-in Angular
dependencies?

Import the whole module. Use existing standalone APIs.

Listing 2.11 Adding providers from other modules

332.3 Developing apps without NgModules

The importProvidersFrom function takes a module (or several modules; we can pro-
vide more than one), extracts their providers, and transports them to wherever we
want to use them. This function is very simple in the sense that it only exists to provide
interoperability between standalone and NgModules.

 It is important to understand this method only works in the application injection
context, either in the bootstrapApplication function or some route providers (we
will talk more about route providers in the next section). Next, we should realize this
works with any NgModule; so, if we are using some third-party Angular library that has
not itself migrated to standalone, we can still use importProvidersFrom to continue
using that library in full capacity. Lastly, we can actually ditch the importProviders-
From when dealing with some built-in Angular modules. We should emphasize the
word some as not all Angular built-in APIs have moved away from NgModules. But, as we
saw with the routing (the provideRouter function), a bunch of Angular modules have
already migrated to standalone APIs, including HttpClient. Here is how we really
want to provide HttpClient in our applications, inside the app.config.ts file:

import { ApplicationConfig } from '@angular/core';
import { provideHttpClient } from '@angular/common/http';
import { provideRouter } from '@angular/router';

import { routes } from './app.routes';

export const appConfig: ApplicationConfig = {
 providers: [
 provideRouter(routes),
 provideHttpClient(),
]
};

We can note the naming convention of provideSomething. This pattern is now widely
adopted by many library authors, so we want to be prepared and recognize such func-
tions when encountering them in various codebases. Also, if we author a library, it is
considered a good practice to export providers in a similar fashion.

 So, how do we provide the AuthService? Well, we could just add it to this root-level
providers array, but instead, we are going to simply mark it as providedIn: root, so
that the app.config.ts file remains intact.

 Finally, we need to create a route for our login component so that it has the first
functioning feature of our application. We will quickly discover that essentially noth-
ing has changed regarding this.

import { Routes } from '@angular/router';
import { LoginComponent } from './pages/login.component';

Listing 2.12 Adding providers from other modules

Listing 2.13 Using HttpClient standalone API

34 CHAPTER 2 A standalone future

export const routes: Routes = [
 { path: '/login', component: LoginComponent },
];

Of course, this simple registration of a routed standalone component only works
when we have a straightforward, eagerly loaded component. What happens if we want
to lazy-load a route? We don’t have modules now, so we can’t use the old approach.
Let’s now discuss lazy loading components directly.

2.4 Lazy-loading components
Before we begin, let’s briefly remember how lazy loading used to be implemented in
Angular apps before standalone. As all components and other building blocks were
packaged inside of NgModules, we could not lazy-load components directly (actually,
we kind of could but not via routing, and we are strictly discussing routing here), and
instead, we lazy-loaded NgModules, which then, in their turn, loaded their own routing
module. It then finally loaded the components we want (or maybe even another lazy-
loaded module with the same process).

2.4.1 Lazy-loading with NgModules

In this section, we will add lazy-loaded components to our application; namely, we
want to begin implementing the Employees feature of our application and also add a
registration page. Let’s first examine how we could do the former with NgModules. Fig-
ure 2.2 illustrates how Angular lazy-loads a component via NgModules.

Navigates to "/employees/list"

Renders the matched
component to the user

Matches the URL
to "EmployeesModule"

Lazy-loads EmployeesModule

Imports EmployeesRoutingModule

Loads
its routes

User Angular EmployeesRoutingModuleEmployeesModule

User Angular EmployeesRoutingModuleEmployeesModule

Finds a route that matches the URL

Figure 2.2 Steps to lazy-load a component with NgModules

352.4 Lazy-loading components

As we can see, this is a fairly complicated process, which can be made even more difficult
if, for instance, EmployeesRoutingModule actually lazy-loaded yet another NgModule, and
so on. In addition, even if we have one component we want to lazy-load, we would
need to create a module for it (if it does not logically belong in one of our existing
feature modules). Using the SCAM approach would alleviate this problem, but we
would be pretty much constrained in other scenarios. And, of course, either way, we
end up with a bunch of boilerplate code we would like to avoid.

2.4.2 Lazy-loading a single standalone component

Now, we will explore how the same process works for standalone components.
Let’s create a registration component and make it routed. In the src/app/pages
directory, let’s create a file named registration.component.ts and add an empty
RegistrationComponent. We want to show the login page when the user first navi-
gates to our application and also have a separate /register route that will load the
RegistrationComponent lazily. The following listing provides the code we need to
accomplish this.

export const routes: Routes = [
 { path: 'login', component: LoginComponent },
 { path: 'registration', loadComponent: () => {
 return import('./pages/registration.component').then(
 (m) => m.RegistrationComponent
);
 } },
];

Note the addition of a specific loadComponent option on the route object. This option
will take a function that will import the module (in this case, by module, I mean the file
that contains the code, not NgModule) and load that particular component. In this sce-
nario, the process is much simpler than what figure 2.3 describes, mainly by entirely
skipping loading any NgModules.

 There are two important points to note:

 No changes have been made to the components themselves—The new routing approach
does not in any way affect how we author components. Essentially, when we
migrate a routed component to standalone, we only need to change its code to
mark it as standalone: true.

 The routing object is not changed either—Other than using the new loadComponent
option, nothing is different from how we defined a route previously; we can add
guards, resolvers, route or query parameters, and so on

So far, we have lazy-loaded a single component. Although it’s a valid use case, in real life,
we might want to lazy-load a block of components, which was previously accomplished

Listing 2.14 Lazy-loading a component directly

36 CHAPTER 2 A standalone future

by lazy-loading an entire NgModule with all of its routed components. Let us see how
we can accomplish the same thing without NgModules.

2.4.3 Lazy-loading several standalone components

Before we start, let us understand why we would want the ability to lazy-load several
routes at the same time. This scenario becomes important for three reasons:

 If we just keep adding more lazy-loaded components, our app.routes.ts file might
eventually get out of hand and potentially contain a thousand or more lines of
code—not very easy to navigate and reason about.

 Next, we might believe that several components that logically belong together
(e.g., EmployeeList, EmployeeDetails, CreateEmployee, and EditEmployee)
can be easily lazy-loaded together without taking a significant performance hit.
This was previously readily accomplished because those components most likely
already belonged to one feature NgModule and were lazy-loaded together. With
standalone, they can be anywhere and loaded in different ways.

 And last but not least, we also might want our folder structure to better reflect
the hierarchies within both our routing and the application in general and thus
require several routes.ts files that exist in subfolders that contain some specific
feature-related code. Yet again, standalone provides answers to all those con-
cerns without the need to resort to NgModules.

Let’s now create our first feature module and cover the Employees section of our
application. As mentioned, it will contain components that allow the user to view the
list of employees and a detailed overview of a specific employee, as well as create and
edit employees.

User Angular

Navigates to "/registration”

Matches the URL to "RegistrationComponent"

Lazy-loads RegistrationComponent

Renders the matched component to the user

RegistrationComponent

User Angular RegistrationComponent

Figure 2.3 Steps to lazy load a standalone component

372.4 Lazy-loading components

 In the src/app/pages folder, we are going to create a directory named employees,
and this directory will contain all the code related to employees. In this folder, we’ll
create all the components we mentioned. Those components are not yet routable, as
we do not want to put them inside app.routes.ts and, instead, want to have a separate
routing configuration file for them. Let’s create a file named employees.routes.ts file
in the same directory and put the code in the following listing inside it.

export const routes: Routes = [
 { path: 'list', component: EmployeeListComponent },
 { path: 'details/:id', component: EmployeeDetailsComponent },
 { path: 'create', component: CreateEmployeeComponent },
 { path: 'edit', component: EditEmployeeComponent },
];

As we can see, there is absolutely no difference between adding such feature or child
routes and just having them in app.routes.ts. However, these routes are not yet con-
nected to our root routing. We can accomplish this by adding a route with load-
Children in the root routing file but importing the routes directly without any
intermediary NgModule.

export const routes: Routes = [
 { path: 'login', component: LoginComponent },
 { path: 'registration', loadComponent: () => {
 return import('./pages/registration.component').then(
 (m) => m.RegistrationComponent
);
 } },
 { path: 'employees', loadChildren: () => {
 return import('./pages/employees/employees.routes').then(
 (m) => m.routes,
);
 } },
];

Again, the only key difference compared to NgModule setup is that the loadChildren
function imports the route instead of importing a module that imports a routing mod-
ule. The loadChildren function works in the same fashion as previously discussed and
accomplishes the same result, just in a more direct way. The mental model of this pro-
cess is also simpler than using NgModules.

 Finally, the last thing we want to tackle is being able to provide some dependencies
only to certain routes. So, for example, EmployeeService is only available in compo-
nents related to the employees feature of our application.

Listing 2.15 Adding feature level routing

Listing 2.16 Lazy-loading both single and multiple standalone components

38 CHAPTER 2 A standalone future

2.4.4 Providing dependencies only to certain routes

With NgModules, we can provide certain services and other DI tokens in specific lazy-
loaded modules by adding them to the providers array of that particular NgModule.
This method provided us with two benefits: being able to also lazy-load services, mak-
ing the app even more granular, and having different instances of some service for dif-
ferent modules (routes). The last point was especially useful for developers who use
some state management libraries like NgRx and NgXS, allowing them to provide cer-
tain pieces of application state only to specific routes and making them more isolated
from the surrounding codebase. This would both simplify the application state (instead
of one huge object, we would have several smaller ones that get picked up when the
user visits those parts of the application) and help avoid scenarios when the state is
loaded too soon. For instance, some HTTP requests might be made even if they are
not needed, resulting in stale data or unnecessary server load.

 In our standalone scenario, we do not have any NgModules to provide our new
dependencies, so we need to look for standalone-based solutions. We might have
noticed a pattern: route definitions often act as NgModules did (but in the lazy-loading
aspect of it). Turns out, it is no different this time: it is now possible to add a provid-
ers array to a route definition.

 To achieve this, let’s create an EmployeeService in the src/app/services directory
and put some code in it responsible for HTTP calls. The actual code does not matter, so
we will omit it for the time being; it just has to be not marked as providedIn: 'root'):

@Injectable()
export class EmployeeService {}

Next, we want to go to the app.routes.ts file, where we connected the lazily loaded
employee routes. We can modify that particular route definition as in the following
listing.

User Angular employees.routes.ts Component

User Angular

Navigates to "/employees/list"

Matches the URL to "employees.routes.ts"

Matches route to component

Lazy-loads employees.routes.ts

Renders the matched component to the user

employees.routes.ts Component

Figure 2.4 Loading a standalone component from a set of multiple lazy-loaded routes

392.4 Lazy-loading components

{
 path: 'employees',
 providers: [EmployeeService],
 loadChildren: () => {
 return import('./pages/employees/employees.routes').then(
 (m) => m.routes,
);
 },
},

This code will make the EmployeeService only available in the routes inside employ-
ees.routes.ts, meaning only components routed in that configuration file will have
access to this particular instance of EmployeeService. We can easily check it by navi-
gating to LoginComponent, for instance, and injecting the EmployeeService into it
via the constructor. If we check the application in the browser, we will surely see the
following error "NullInjectorError: No provider for EmployeeService!" with
some more explanatory details. We have now accomplished isolating this service
into a subset of our routing.

2.4.5 Lazy-loading a component into another component

So far, we have discussed lazy-loading components via routing (e.g., having a route
that would load its component only when the user navigates to it). But what if we
want to go even more granular? Let’s imagine the following scenario: we are build-
ing the EmployeeListComponent and put a table of employees there, which will con-
tain data about each employee like full name, age, position, and so on, and an
Actions column that would allow us to edit the employee or delete them. When the
user clicks the Delete button, we want to present them with a confirmation dialog
that asks them if they are sure they want to delete that employee. But here’s the
catch: the confirmation dialog is going to be a separate, reusable component (we
might want to have such confirmation logic on multiple pages), and we do not want
the application to download that component’s code until the user clicks Delete.
After all, the component is invisible anyway, and there is no point in having that
code until the very moment it should be used.

 In this case, we cannot rely on lazy loading through routing. We can in a sense,
accomplish this with named router outlets (https://mng.bz/yowp) and secondary routes
(https://mng.bz/M1nQ). Here, however, we do not want a separate routed compo-
nent; we just want another component that can be loaded and displayed purely on
demand. This task can be accomplished fairly easily, especially with standalone com-
ponents. Let’s first create the EmployeeListComponent. Add the code in listing 2.18 to
the src/app/pages/employees/employee-list.component.ts file.

Listing 2.17 Adding providers to a lazy-loaded route

https://mng.bz/yowp
https://mng.bz/M1nQ

40 CHAPTER 2 A standalone future

@Component({
 selector: 'app-employee-list',
 template: `
 <h2>Employee List</h2>
 <table>
 <thead>
 <tr>
 <th>Full Name</th>
 <th>Position</th>
 <th>Actions</th>
 </tr>
 </thead>
 <tbody>
 <tr *ngFor="let employee of employees$ | async">
 <td>{{ employee.firstName }} {{ employee.lastName }}</td>
 <td>{{ employee.position }}</td>
 <td>
 <button (click)="showConfirmationDialog()">Delete</button>
 </td>
 </tr>
 </tbody>
 </table>
 `,
 standalone: true,
 imports: [AsyncPipe, NgFor, NgIf, NgComponentOutlet],
})
export class EmployeeListComponent {
 employees$ = this.employeeService.getEmployees();
 isConfirmationOpen = false;

 constructor(private readonly employeeService: EmployeeService) {}

 showConfirmationDialog() {
 this.isConfirmationOpen = true;
 }
}

As we can see, we have our table but not our dialog yet. We can add a dynamically
loaded component into it with three steps:

1 Create the ConfirmationDialogComponent in a new file, src/app/shared/com-
ponents/confirmation-dialog.component.ts.

2 Add a dynamic import function call that asynchronously imports that component.
3 Pass the resulting promise to the ngComponentOutlet directive via the async

pipe.

Let’s do it in code and then examine how it works. We are going to create a new folder
called shared in the src/app directory and a components folder under it, where we are
going to put the reusable component of our application, including the Confirmation-
DialogComponent. The following listing provides the necessary code.

Listing 2.18 EmployeeListComponent

412.4 Lazy-loading components

@Component({
 selector: 'app-confirmation-dialog',
 template: `
 <dialog [open]="isConfirmationOpen">
 Are you sure you want to perform this action?

 <button (click)="isConfirmationOpen = false">Cancel</button>
 <button (click)="isConfirmationOpen = false">Confirm</button>
 </dialog>
 `,
 standalone: true,
})
export class ConfirmationDialogComponent {
 @Input() isConfirmationOpen = true;
}

As we can see, this component is very simple and does not have many capabilities, but
it will suffice for now. Next, we need to dynamically import this component when the
user clicks the Delete button. We do this by making the showConfirmationDialog
method an async function and loading and storing the component in a property to
use further in the template.

export class EmployeeListComponent {
 employees$ = this.employeeService.getEmployees();
 isConfirmationOpen = false;
 confirmDialog: any = null;

 constructor(private readonly employeeService: EmployeeService) {}

 async showConfirmationDialog() {
 this.confirmDialog = await import(
 '../../shared/components/confirmation-dialog.component'
).then((m) => m.ConfirmationDialogComponent);
 this.isConfirmationOpen = true;
 }
}

The confirmDialog property will hold the reference to the ConfirmationDialog-
Component class (importantly, the class itself, and not its instance—that one is not yet
created). As we can see, whenever the Delete button is clicked, the component we
want will be loaded dynamically at that time and not sooner. Finally, the last step
will be to render this component in the view. We can accomplish that using the
ngComponentOutlet directive. So, we add just one line of code to the bottom of our
template in the EmployeeListComponent:

<ng-container *ngComponentOutlet="confirmDialog"></ng-container>

Listing 2.19 ConfirmationDialogComponent

Listing 2.20 Importing the component on demand

42 CHAPTER 2 A standalone future

As this is a dialog component, we can probably put it anywhere in the template with-
out much difference. If we want to load the component in a specific place in our
template, we can put it in that exact place. But what is going on here? See, the
ngComponentOutlet directive receives a reference to a component class and renders it
into the ng-container on which we have put the directive. In this case, initially, the
confirmDialog property is null, so no rendering takes place, and the Confirmation-
DialogComponent has not been loaded yet. When the user clicks Delete, we load the
component class and put it into a property, triggering a rerender and showing our con-
firmation dialog both dynamically and lazily. Lazy-loading a standalone component as
opposed to one declared in a NgModule gives us the advantage of not having to import
a whole module or pass it down as an input to ngComponentOutlet.

 Ideally, we would want to have a way to communicate with the component instance
that we have dynamically created. We can do so in one of several ways, including pass-
ing inputs to the child components or taking the reference of that component and
working with it. We will study examples of such manipulations in chapter 4, where we
will explore new capabilities of components (not necessarily standalone).

2.5 Migrations and common pitfalls
So far, we have examined creating and working with standalone components from
scratch in an empty application. We also learned that we can easily create and use stand-
alone components in NgModule-based applications. But what if we want to migrate
entire existing applications to fully use standalones? What problems might we encoun-
ter after the migration is done? Let’s examine several approaches we can take and see
those issues first-hand.

2.5.1 Migrating by hand

Large projects can have multiple interwoven NgModules that can be hard to easily dis-
mantle in one go (or even automatically). If the codebase is active with multiple devel-
opers committing new code, it might be tempting to adopt an incremental approach:
as we remember, standalone components, directives, and pipes are fully interoperable
with NgModules, meaning we can pick and choose which components to convert first.
This determination can be accomplished in four steps:

1 Adopt the rule of authoring all new components, directives, and pipes as
standalones.

2 Choose components we want to convert one by one and mark them as stand-
alone: true. Move the NgModule in which this component is declared from
the declarations array to the imports array (standalone components are
declared in place and cannot be redeclared in a NgModule). If the component
is also used in another NgModule, add it to the exports array (it was probably
already there). Continue doing so in iterations of a size that is manageable for
your project.

432.5 Migrations and common pitfalls

3 Remove NgModules one by one until only AppModule remains. This will mean
that we will have to manually import our freshly standalone components manu-
ally to wherever we need them until all build errors go away.

4 When only AppModule is left, remove it and move the providers to main.ts,
also switching to the new standalone providers (provideRouter, provideHttp-
Client, etc)

This method can work more or less smoothly on small projects and maybe on medium-
sized projects that do not have too many NgModules. However, for larger projects, this
approach would take way too long, which is why we can simplify it by adopting the
SCAM approach.

2.5.2 Using SCAMs

We already discussed the SCAM approach; let’s now see how it can help us transition
to standalone. We are going to make most of the steps from the previous section, man-
ual migration, but with some modifications:

1 Again, adopt making all new building blocks standalone.
2 Choose components that we would like to transition first, but instead of making

them standalone, create a SCAM module for them and put that component in
it. Remove the component from any other NgModule. Do this whenever it is
most comfortable for the team working on the project.

3 When all components, directives, and pipes have been converted into SCAMs,
outside of those SCAM NgModules, we will be left with only feature NgModules
(like EmployeeModule, WorkModule, and so on, from our HRMS app example). As
soon as we’ve accomplished this, we can start marking all components, directives,
and pipes as standalone and remove their SCAM module. This process should be
easy, as the module will be in the same file. We would then need to find refer-
ences to the SCAM module and drop the component directly in its place. We can
do so with a simple Find and Replace. While this process looks a bit intimidating,
it can essentially be done in one go using basic IDE functionality.

4 After completing step 3, we can start removing feature modules and making
their own declarable components/directives/pipes standalone and importing
the already standalone (previously SCAM blocks) into them.

5 Now, remove AppModule and use standalone provider APIs.

This approach, while containing more steps, can be more intuitive, and the main part
can be completed in one go. It also simplifies the structure to a point where the stand-
alone migration schematic can safely do the job itself. Let’s discuss this topic next.

2.5.3 Migrating with a schematic command

In v16, the Angular team introduced a special schematic that helps automatically tran-
sition legacy NgModule-based apps to fully standalone. This task can be accomplished

44 CHAPTER 2 A standalone future

in several ways. Let’s start with the most basic: running the command right away, using
the following steps:

1 Make sure the app we want to upgrade is on version 16.
2 Open a terminal window in the root folder of this application and run ng g

@angular/core:standalone.
3 Three options will be suggested: “Convert all components, directives, and pipes

to standalone,” “Remove unnecessary NgModule classes,” and “Bootstrap the
application using standalone APIs.” As per the Angular documentation (https://
mng.bz/aV8j), we should run them in this exact order, so let’s choose the first
option.

4 The first option will make all components/directives/pipes standalone, add
whatever they need to import (e.g., directives used in their template), and
make them imported rather than declared in their NgModule. Run the applica-
tion to ensure nothing was broken during this step.

5 Next, run the same command and choose Remove Unnecessary NgModule
Classes. This step will remove all modules that are not part of the application
structure (e.g., SCAM modules), leaving us with a mostly standalone project.
Again, let’s run the app and check everything works.

6 Finally, run the command again and choose Bootstrap the Application Using
Standalone APIs. This step will remove AppModule and use the bootstrap-
Application function in main.ts instead.

Now, this migration is not bulletproof, and in most cases, we will be left with some
additional work to do:

1 First, we should search for any remaining NgModules and remove them manu-
ally (usually, there are not very many of them).

2 Next, we should visit the main.ts file and use the standalone routing (we most
likely already removed the routing modules left after the automatic migration).

3 Then, we should look into our third-party dependencies, usually provided here
via the importProvidersFrom function. If you know that more recent versions
of those dependencies have standalone APIs, consider upgrading those pack-
ages and replacing the NgModule definitions with the new standalone APIs. Ide-
ally, we want no usage of the importProvidersFrom function at all.

4 Next, you might notice that the HTTP client is provided via the following line:

provideHttpClient(withInterceptorsFromDi()).

We already met this API, but have not talked about withInterceptors-
FromDi(). We will talk about it in the next chapter.

5 Finally, if we have code-maintenance tools like linters, prettier setup, or others,
we should run those to ensure the codebase is kept pure and fix any arising
problems.

https://mng.bz/aV8j
https://mng.bz/aV8j
https://mng.bz/aV8j

452.5 Migrations and common pitfalls

2.5.4 Handling circular dependencies

With the schematic migration, we might run into a problem that could be hard to
anticipate: it may turn out some of our components have a circular dependency.
This situation can arise when components recursively render each other. For instance,
in the case of our HRMS application, we might have an EmployeeCardComponent,
which displays brief info about an employee; a ProjectCardComponent, which dis-
plays brief info about a project that has several employees; and in ProjectCard-
Component, we might render a list of EmployeeCardComponents, each of which expands
to show projects the employee is working on using the ProjectCardComponent,
meaning we get a recursion. With NgModules, this won’t be a problem, as both might
be declared in the same module or get references of each other from a shared mod-
ule; however, in standalone, they must import each other, which will result in the fol-
lowing error:

ReferenceError: Cannot access 'ProjectCardComponent' before initialization

While this problem is frustrating, it can be fixed fairly easily: we simply need to use the
forwardRef function when importing the components into each other. For instance,
the metadata for the ProjectCardComponent might look like the following listing.

@Component({
 standalone: true,
 imports: [
 forwardRef(() => EmployeeCardComponent)
],
})
export class ProjectCardComponent {
}

The forwardRef function, as per the Angular documentation, is a function designed
to allow developers to access references that are not yet defined; in other words, when
the ProjectCardComponent is registered, it takes note that this one is going to use
some reference when it is actually initialized. The other component, EmployeeCard-
Component, will be defined as usual; no forwardRef is necessary there, and thus, circu-
lar dependency is avoided.

 As we can see, standalone building blocks provide us with new capabilities to sim-
plify our code and reduce boilerplate. This new feature has become very popular with
Angular developers everywhere, with more and more teams starting their new projects
with standalone outright. Next, we will go a level deeper and see how we can simplify
sharing functionality between components with the new way of using DI.

Listing 2.21 Using forwardRef to avoid circular dependency problems

46 CHAPTER 2 A standalone future

2.6 Exercises for the reader
As mentioned in the previous chapter, I encourage you to follow the steps in building
this HRMS project with the examples and steps from this book. While following along
is very beneficial, I also encourage you to write some code for yourself to test the
knowledge you gain in a particular chapter in a practical environment. Here are sev-
eral things that can be done within the existing example application:

 Implement the other components from the feature we created (EmployeeList,
EmployeeDetails, CreateEmployee, and EditEmployee)and add some business
logic to them.

 Create the other features (work and recruitment, with empty components for
now, as we will gradually add more functionality to them in the next chapters)
and use lazy-loading practices with standalone components.

 Apply the migration schematic to an existing project with the steps described in
section 2.5.3. Migration can be used to completely move an existing app to
standalone or experimentally to see how the schematic works and what prob-
lems may arise; in the latter case, feel free to discard any changes the automa-
tion applies.

Summary
 NgModules have outstanding problems like boilerplate, increased complexity,

and a steep learning curve.
 Single Component Angular Modules (SCAMs) can mitigate those problems in

NgModule-based applications
 From v14, standalone Angular components, directives, and pipes are available,

marked as standalone: true in their metadata.
 Applications can now be built completely without NgModules using the special

bootstrapApplication function in the main.ts file.
 Standalone components, pipes, and directives can import other standalone

building blocks via an imports array in their metadata.
 Standalone building blocks can fully interop with NgModules by either importing

the module directly into components or via the importProvidersFrom function.
 Lazy-loading routes directly is now possible for standalone components instead

of whole modules.
 Existing applications can migrate to standalone either by hand or using the

schematic provided by the Angular team; the SCAM approach greatly simplifies
this process.

47

Revitalized
dependency injection

Dependency injection (DI) is famously the most loved and stable feature that
Angular provides as a framework. DI is used extensively in every single Angular
project, and it is hard to imagine a flexible and maintainable codebase without its
advantages. So what changed, and importantly, why, if it was already so stable? This
question will be our subject of exploration in this chapter, which, funny enough,
actually revolves around one single function, inject (actually not even a new func-
tion!), which, almost accidentally, made a minor revolution in Angular projects all
over the community.

This chapter covers
 How the dependency injection mechanism

works under the hood

 Injection contexts

 Using the inject function instead of constructor-
based dependency injection and the benefits of
this approach

 Using the inject function to convert class-based
guards/resolvers/interceptors to functional ones

48 CHAPTER 3 Revitalized dependency injection

3.1 How does dependency injection work?
Let’s start our exploration by diving into the DI mechanism to understand how it
works and how we can utilize it to build more flexible codebases. But first, let’s briefly
discuss what, in general, DI is and what it is not.

3.1.1 Why do we need DI?

When writing software, we often use other software in the process. For instance, we
use built-in objects in a browser to access and manipulate the DOM tree, or in the case
of Angular, we use existing directives to render content conditionally. Usually, we do it
by importing some token, most probably an object or instance of a class, and then
using its methods. In this case, that token becomes a dependency of the code we are
authoring. For instance, a class (component, directive, pipe, service, etc.) we write
may want to use Angular’s HttpClient to make HTTP calls, and HttpClient is a whole
separate class, so we want to import that one into our file. But then there is another
level: we do not just want the HttpClient class but an instance of it. Sure enough, we
can write new HttpClient() and create a new instance, but we face two problems in
this scenario.

 First, HttpClient has some dependencies it receives via its own constructor, and if
we try to provide them, too, it will become apparent they also have their own depen-
dencies, and so on. Of course, we could go on writing that sort of thing, but that
would result in more boilerplate code (writing all those constructor arguments every
time we need the HttpClient is very tedious) and reduced maintainability. If some of
the dependencies down the line are changed to depend on one more thing, we would
face a nightmare of refactoring.

 Second, just making a new instance will mean that we will have a dedicated
instance of a service we use in every building block where it is used, meaning if five
components make HTTP calls, we have five instances of HttpClient. This setup is
redundant memory-wise and limiting from the perspective of shared state; if there is
any data inside our service, we cannot change it and reflect it somewhere else because
each service consumer will have a copy of the data. This limitation can be a serious
concern when building software meant to share state between components of an
application, like state management libraries, which are an important part of modern
frontend applications.

 A functioning DI system can efficiently solve this problem. Such a system would
take tokens we want to receive references to and return the actual references without
duplicating instances and without the need to specify the entire dependency tree
manually. It can also add two more benefits: the ability to load dependencies condi-
tionally (like using different services depending on the runtime environment) and
the ability to mock dependencies, which can be very useful for unit testing purposes.

 As we have seen, such a system solves all problems we have with dependencies and
also provides an array of benefits. Now, let us discuss how such a system can work.

493.1 How does dependency injection work?

3.1.2 Let’s build a primitive DI mechanism

We are going to build (a very primitive) DI mechanism, which will allow the users to
accomplish the following two things:

 Register dependencies—Declaring some tokens (constant identifiers) and map-
ping them to concrete values, also known as “providing” the dependencies. In
this part, the “injector” will “learn” about what DI tokens exist and what to
return when someone requests that token.

 Get the dependencies—Requesting a token from the DI injector and receiving its
corresponding value.

We will accomplish this by creating a special InjectionToken class (something we
might be familiar with from Angular!) and an Injector class that handles the DI
mechanism using those InjectionToken-s (again, something that might already
sound familiar to us from Angular).

class InjectionToken<T> {
 constructor(public value: T) {}
}

class Injector {
 private readonly dependencies = new Map<
 InjectionToken<any>, any
 >();

 provide<T>(dependency: T): InjectionToken<T> {
 const token = new InjectionToken(dependency);
 this.dependencies.set(token, dependency);
 return token;
 }

 inject<T>(token: InjectionToken<T>): T {
 const dependency = this.dependencies.get(token) as T;
 return dependency;
 }
}

We can use this code anywhere to create a working DI mechanism. To use it, we would
need to define some dependency, maybe a service class, and inject other dependen-
cies into it. Let’s see it in action.

const injector = new Injector();

class HttpClient {
 get(url: string) {

Listing 3.1 Injector class for a naive implementation of a DI mechanism

Listing 3.2 Using the injector class to provide an inject to a dependency

The InjectionToken class, which is just a wrapper around
a value, will be used to map tokens to their values.

The map of dependencies;
each token has its value.

Provides a method that
allows for registering
dependencies, essentially
just adding a token to the
map with the provided
value; returns the token so
we can then retrieve the
value when needed

Inject method that
allows for retrieving
the value; receives the
token and returns the
corresponding value
from the map of
dependencies

Creates an
injector

50 CHAPTER 3 Revitalized dependency injection

 return fetch(url);
 }
}

const httpToken = injector.provide(new HttpClient());

class UserService {
 http = injector.inject(httpToken)

 getUsers() {
 return this.http.get('https://example.com/api/users');
 }
}
const userServiceToken = injector.provide(new UserService());

const userService = injector.inject(userServiceToken);

userService.getUsers();

As we can see, this code does not look in any way like what we are used to in Angu-
lar, but the mechanism is the same: in some places, we provide a dependency
(either in an NgModule providers array or by tagging it as providedIn: 'root'),
then in another place, we inject it and get the value. Notice that while we called new
HttpClient() and new UserService() in our example, we did not need to provide
them any dependencies via the constructor because they injected their own depen-
dencies using our DI mechanism. But now, a question will surely come to mind:
“Wait, doesn’t Angular require us to put dependencies in the constructor?” The
answer is, “kind of.” Let’s dive deep and see how this mechanism we just imple-
mented works in Angular.

3.1.3 Dependency injection the Angular way

Angular uses a special abstraction called Injector (the same we named our own DI
class) to handle dependency injection. This injector keeps the registry of dependen-
cies (the map we created) and allows the retrieval of values via tokens. In our previous
example, notice this line:

const injector = new Injector();

This line implies we can have multiple injectors. Each would have its own registry of
dependencies and its own inject function. So does Angular! Angular creates special
injectors when our application runs, provides dependencies, and then injects them
into components (directives, pipes, etc.) implicitly. When I say implicitly, I mean there
is no special code that does this: we just list our dependencies as constructor parame-
ters, and Angular then deduces when to inject what. It’s pretty simple and nice, but it
can feel like magic, and it limits us to using it only in classes, as we need constructor
functions to trigger DI. Later in this chapter, we will discuss how to overcome this lim-
itation, but for now, it is sufficient to know it is caused by having the injector.

Provides a
dependency and
gets a token for
later retrieval

Injects the dependency
via the token in
another class

Uses a method from an
injected class instance

513.1 How does dependency injection work?

 Any Angular application has at least one injector, known as the root injector, which is
globally created for our application at the very beginning. The services marked with
providedIn: 'root' are provided here.

 Of course, when the application gets more complex, Angular spawns more injectors.
Prior to standalone, ElementInjector and ModuleInjector were used to find depen-
dencies. ElementInjectors are injectors created for each DOM node; for example,
when we render a component somewhere in a template, it gets an ElementInjector,
which is empty by default unless something is added to that component’s providers
array. ModuleInjectors, on the other hand, were created for NgModule-level DI and
were used when ElementInjectors failed to find a dependency in their registry.

 This lookup for a dependency works hierarchically. In standalone, which we
explored in the previous chapters, we do not have ModuleInjectors, unless our stand-
alone components import some NgModules. In the case of a fully standalone app, DI
probably only uses ElementInjectors until it reaches a provider registered on a route
or the main.ts file configurations.

 In the previous chapter, we created an EmployeeListComponent, which injected
EmployeeService (see figure 2.16). Let’s consider figure 3.1 and go step by step to see
how the component will receive the reference of the EmployeeService.

 This process will repeat every time an EmployeeListComponent is created; for
example, if we run an *ngFor loop and render five EmployeeListComponents, five
ElementInjectors will be created for those component instances, and this process will
run five times. We use the example of components, but it is similarly true for direc-
tives, with each directive instance having a dedicated ElementInjector and running
through these steps.

 We can notice that this process looks like a property lookup on a JavaScript
Object’s prototype chain. When we access a property of an object, we first look at the
object itself, and if we don’t see the property there, we run to its prototype and look it
up there, and then its prototype, and on and on, until we reach the root Object. After
that, there is one more step because Object’s prototype is null; because it does not
have any properties, it will throw an error. The same is true for Angular’s DI lookup:
when we reach the root injector, there is one more level called the NullInjector,
which is the parent of the root injector. NullInjector is special, as it always throws an
error when we attempt a dependency lookup on it. This is what we see when we get
the NullInjectorError: No provider for Something! message. It means that Angu-
lar attempted to look up a dependency, reached the root level, didn’t find it there,
then went one level up to the NullInjector, and, as always, threw an error.

 All of this sounds nice; however, one question remains: Why do we need this com-
plex process? Why can’t this work as our primitive implementation from the previous
section? The answer lies in understanding that dependency. While, colloquially, it
often means just “some service,” it isn’t always an instance of a service class—very
often. A popular example is that we are able to inject references to DOM elements or
other directives or components into our components and directives. For instance, if

52 CHAPTER 3 Revitalized dependency injection

EmployeeListComponent is created.

If the instance of EmployeeService already exists (for example, the user has
already visited one of the components that depend on EmployeeService).

Existing instance is returned.

An injector is created for this component; anything listed in its
providers array is added to it.

Angular attempts to create the instance of the
EmployeeListComponent class.

Angular realizes that the component depends on Employeeservice.

Angular looks in this new injector for the EmployeeListComponent
and sees that EmployeeService is not there.

It goes up the parent injector, which is the one created for the
RouterOutlet that created this route.

There, in the providers array, we can see the EmployeeService,
which means this injector can give us this dependency.

The user navigates to the "employees/list" URL

Angular matches it with the EmployeeListComponent and starts
the process of its instantiation.

There we can see the provideHttpClient() line, which adds all
the providers necessary for an HttpClient instance.

The same process is repeated for the HttpClient, and an
instance, either new or existing, is returned.

Angular creates the EmployeeService.

If the instance does not exist.

Angular attempts to create an
instance of EmployeeService.

Angular notices that EmployeeService in
turn depends on the HttpClient.

Angular attempts to get an instance of
HttpClient to pass to EmployeeService.

Angular continues this way until reaching the root injector:
the dependencies we provided in the "app.con g.ts" le.fi fi

Angular passes the instance to the newly
created EmployeeListComponent.

Figure 3.1 The process of injecting dependencies into a component

533.1 How does dependency injection work?

we write a directive, we will very likely need the reference to the element on which the
directive is called. We do this by injecting the ElementRef, which, in turn, is provided
on the ElementInjector of this particular directive instance. The same directive can
be applied in many different parts of the application, so the ElementRef instance will
be different each time and determined by its own injector. Essentially, we have a tree
of dependencies/injectors in which the instances of the same token can be different.
Let us see this concept in a diagram, as shown in figure 3.2.

Here, we can clearly see both the relations of injectors and the path that Angular will tra-
verse to retrieve the reference to EmployeeService for the EmployeeListComponent.
This tree is incomplete: each component here has a template that renders its own
injector. For instance, we used an *ngFor directive in EmployeeListComponent, mean-
ing an injector was created specifically for that instance of the directive, and so on.

Nullinjector

Root Injector

App Component

RouterOutlet - Employee Routes

EmployeeListComponent CreateEmployeeComponent EditEmployeeComponent EmployeeDetailsComponent

HttpClient

ElementInjector

Provided in

Injects

ElementInjector

Provided in

ElementInjector ElementInjector ElementInjectorElementInjector

EmployeeService

Figure 3.2 Diagram illustrating the hierarchy of injectors and dependencies

54 CHAPTER 3 Revitalized dependency injection

Later in this chapter, we will learn how we can manipulate this lookup process to latch
onto specific instances of some services or values. We need to understand one final
concept before learning about the inject function.

3.1.4 Injection contexts
We already mentioned in passing that we rely on class constructors to inject depen-
dencies in Angular; another necessary parameter is a class decorated by one of Angu-
lar’s decorators, like Component, Directive, Pipe, or Injectable. This further limits
our ability to use DI with anything other than Angular building blocks; for instance,
we can’t write a UserModel class and use some UtilityService in it to perform some
calculations. If we want to do that, we cannot decorate the class as Injectable because
we are not going to inject that class anywhere; we want to instantiate it with new User-
Model(), meaning we again will have to pass all the dependencies. This can work on
some level, but it will become too tedious to type whenever we need the class. So why
does this limitation exist?

 In every programming language or framework, the code that we run is executed in
some sort of context; for instance, the scope of variables in JavaScript means we can
only reference variables that have been declared, and when they are available, just
naming them will help the program to access the information stored in them. In the
previous chapter, I mentioned the compilation context, meaning all the directives and
components that a certain component has access to (via being in the same module,
importing their module, or importing standalone directives/components directly into
itself). If we try to use something outside this context (i.e., not imported by this com-
ponent in any way), we will get an error.

 Angular’s dependency injection works in a similar fashion. As we have seen, the
DI happens when we try to make an instance of a component or directive, and that
instantiation may happen under different circumstances. Thus, each time when DI
is invoked, there is a different context in which this will happen: this is how we are
able to use different injectors under the hood so we can get different references
while requesting the same token (as in the ElementRef example from the previous
section).

 These contexts, unsurprisingly, are called “injection contexts” and are the culprits
of all the limitations we mentioned previously. Angular injection contexts are very spe-
cific, so let’s explore all of them and when they happen:

 Creation of a class that is instantiated by the DI system—Using Injectable, Component,
etc. (as opposed to just using the new keyword). We have already encountered
this scenario—it’s how all explicit DI worked before v14, via writing parameters
in the constructor.

 Initializer fields of such a class—Because the TypeScript gets compiled to JavaScript
in the end, all such property initializations end up in the constructor anyway.

 Factory function for the useFactory option when providing a dependency—Helps
inject all dependencies listed in the deps option into the function’s parameters.

553.2 The inject function

 Factory function for an InjectionToken—We will explore this in depth later in
this chapter (section 3.2.3).

 Within a stack frame of an injection context—If we call a function in a Component’s
constructor, this function will also be in that injection context, and any other
function it calls in its turn, and so on.

I have already mentioned that in this chapter, we will discuss the possibility of using DI
outside of classes. Before we do that, we need to understand and keep in mind that
the limitations imposed by injection contexts will still be applicable to all those scenar-
ios. We will cover those a bit deeper in later sections of this chapter. Now, let us learn
about the so-much-advertised inject function.

3.2 The inject function
I mentioned that the problem with not being able to inject dependencies in places
other than classes is primarily the absence of a constructor where we can name the
dependencies. Let’s first understand how it can be possible to avoid it.

3.2.1 Another way of injecting dependencies

If we want to circumvent this problem, we need a function that takes a token, like the
name of the service we want to inject, as a parameter and returns the value. This func-
tion works like the Injector.inject method in listing 3.1. The inject function
works exactly in this way.

 It’s time we see it in action. Let us open the EmployeeListComponent we created in
the previous chapter and change its DI mechanism to use the inject function instead
of the constructor.

import { Component, inject } from '@angular/core';
import { EmployeeService } from 'src/app/services/employee.service';

@Component({
 selector: 'app-employee-list',
 template: `...`,
 standalone: true,
})
export class EmployeeListComponent {
 employeeService = inject(EmployeeService);
 employees$ = this.employeeService.getEmployees();
 isConfirmationOpen = false;
 confirmDialog: any = null;

 async showConfirmationDialog() {
 this.confirmDialog = await import(
 '../../shared/components/confirmation-dialog.component'
).then((m) => m.ConfirmationDialogComponent);
 this.isConfirmationOpen = true;
 }
}

Listing 3.3 EmployeeListComponent using the inject function

Uses the inject
function

No need for a constructor;
we can write other methods.

56 CHAPTER 3 Revitalized dependency injection

This listing looks mildly different from constructor injection. We want to focus our
attention on a few things:

 This approach could save us one or two lines if we have multiple dependencies
listed in a constructor.

 There is no need to write an empty constructor method only for the purpose of
injecting a dependency.

 We can also drop access modifiers with the inject function. With the construc-
tor, we need to add public, private, or protected to the name of the property
in the constructor so that it is stored as a class property rather than just a con-
structor argument. In this scenario, we can drop it, and it will be inferred as
public (although it is a good practice to still mark services and dependencies as
private readonly to prevent them from being accidentally overwritten or
accessed in the wrong place).

The inject function gives us some minor nice things, but I wouldn’t have dedicated
an entire chapter to it if that was it. Further, let’s discuss how we can use this function
to escape our dependence on classes for DI.

3.2.2 Injecting dependencies outside classes

In our very first encounter with the inject function, we used it to inject Employee-
Service and get a list of employees. You might think that this scenario is common,
but in real life, it would not make sense to start wrapping all method calls in functions
just to skip one line of code in components. However, it can be useful in some scenar-
ios. For instance, imagine we want to have a way of checking whether the user is
authenticated and getting notified if they log in/out of our application. We could cre-
ate a BehaviorSubject in our AuthService and flip it when this happens. Now, it
would make sense to be able to expose that BehaviorSubject to components that might
want to consume it, but those components probably won’t need the entire package of
the AuthService. We can mitigate this problem by wrapping BehaviorSubject into a
function. First, let’s add that BehaviorSubject to our AuthService.

import { Injectable, inject } from '@angular/core';
import { HttpClient } from '@angular/common/http';
import { BehaviorSubject } from 'rxjs';
import { tap } from 'rxjs/operators';

@Injectable()
export class AuthService {
 private readonly http = inject(HttpClient);
 isAuth$ = new BehaviorSubject(false);

 login(credentials: { email: string, password: string }) {
 return this.http.post('/api/auth/login', credentials).pipe(

Listing 3.4 Showing user’s authentication status

The authentication
BehaviorSubject

573.2 The inject function

 tap(() => this.isAuth$.next(true)),
);
 }

 logout() {
 return this.http.post('/api/auth/logout', {}).pipe(
 tap(() => this.isAuth$.next(false)) ,
);
 }
}

Now, as we have the BehaviorSubject in place, we can inject the service anywhere and
use it. To simplify it a bit, let’s write a function that returns BehaviorSubject, so that
components can consume it directly. We will create a functions folder under the
shared directory and, in there, an auth.ts file.

import { inject } from '@angular/core';
import { AuthService } from '../../services/auth.service';

export function isAuth() {
 const authService = inject(AuthService);
 return authService.isAuth$.asObservable();
}

As we can see, we injected the AuthService into the function without a constructor.
We also encapsulated the isAuth$ BehaviorSubject by exposing it as an Observable
so that everyone can read it, but only AuthService can modify it. Now, we can just as
easily use it in any component.

 To illustrate, let’s create a FooterComponent, which will show some links related to
the HRMS product and legal info. However, we want to show the legal information
only to users who are not logged in and might be seeking to use the product, as
logged-in users are members of companies who are already customers of the HRMS
application. In the src/app/shared/components directory, create a new file named
footer.component.ts and put a component that uses our new function to perform con-
ditional logic in its template inside.

@Component({
 selector: 'app-footer',
 template: `
 <div>
 <h2>HRMS</h2>
 <p>Welcome to HRMS platform!</p>
 <div class="links">
 Follow us on social media:
 Linkedin
 X (former Twitter)
 </div>

Listing 3.5 Function that returns a value from an injected service

Listing 3.6 Component using a function to inject a value from another service

Flips the value to true
when the user logs in

Reverses when
the user logs out

58 CHAPTER 3 Revitalized dependency injection

 <div *ngIf="isAuth$ | async" class="legal">
 Terms of Service
 Privacy Policy
 Cookies Policy
 </div>
 </div>
 `,
 standalone: true,
 imports: [AsyncPipe, RouterLink, NgIf],
})
export class FooterComponent {
 isAuth$ = isAuth();
}

We can then use this component in the AppComponent to render the footer content on
all pages. As we can see, we no longer need to import and inject AuthService and
extract the conditional property from it; we can retrieve it directly via a function. This
can become very handy in situations where some complex logic related to a service is
duplicated in multiple places in an Angular application.

 We can use it almost anywhere. In section 3.1.4, where we discussed injection con-
texts, I mentioned that even without classes, the DI must happen in such a context.
The same is true for the inject function: we can use it to initialize fields, we can use it
in the body of a constructor, and we can use it in functions that are going to be called
in class constructors. We cannot call those functions in arbitrary places. For instance,
doing the following would result in an error:

export class FooterComponent implements OnInit {
 isAuth$: Observable<boolean>;

 ngOnInit() {
 this.isAuth$ = isAuth();
 }
}

The error occurs because ngOnInit (and all class methods but the constructor) is not
being run in an injection context, so injecting dependencies there is impossible.
Essentially, when those methods run, the class instance is already created, and DI has
already happened. Despite this limitation, inject provides us with a variety of new
capabilities outside classes and some benefits even if we ditch the constructor in com-
ponents in its favor. Later in this chapter, we will discuss those new capabilities; for
now, let us focus on the immediate benefits when we switch to inject.

3.2.3 Why we should always use inject

This function is new, and as we have seen, it does not look very different from the con-
structor DI. However, it provides a multitude of less obvious improvements. Let’s
investigate them one by one.

593.2 The inject function

IMPROVED REUSABILITY

We have already encountered the topic of improved reusability. We have seen that we
can now use DI inside functions, meaning we can extend service functionality to
places where it would not have been possible previously. Functions are known to be
better for composability (we can, for instance, return new functions from existing
ones), and adding DI to them can be a huge win for large, interconnected applica-
tions. Also, some Angular building blocks that previously needed to be classes to have
DI are now free to be written as functions. We will discuss this in detail in the next sec-
tion of this chapter.

TYPE INFERENCE OF INJECTIONTOKENS

Not all dependencies are services; sometimes, we need to be able to inject some con-
stant values or even functions directly. A good example is when large applications
have some shared constants used in various parts of the application. For instance, we
might want a specific way of formatting dates in our application. We want it to be the
same everywhere, but we also want to be able to change it easily and mock it in unit
tests to test for different scenarios. We can’t just decorate a constant with Injectable,
as it is not a class, so we will need to create an injection token. To demonstrate, let us
go into the shared project of our example application and create a constants.ts file, in
which we will create our InjectionToken and put the application-wide date format.

import { InjectionToken } from '@angular/core';

const CONSTANTS = {
 dateFormat: 'dd/MM/yyyy',
};

export const Constants = new InjectionToken('Constants', {
 factory() {
 return CONSTANTS;
 },
 providedIn: 'root',
});

We cannot use the conventional constructor DI To inject this token as it is not a ser-
vice class. Previously we had to resort to using the Inject decorator (with a capital let-
ter I, not to be confused with the new inject function) in the following way:

import { Inject } from '@angular/core';
import { Constants, CONSTANTS } from 'app/shared/constants.ts';

export class MyComponent {
 constructor(@Inject(Constants) constants: typeof CONSTANTS);
}

This approach is both a bit wordy (we type a lot and import three different things)
and somewhat insecure: even if we mistype the constants property, the Inject decorator

Listing 3.7 Injection token for application-wide constants

The actual constants

Injection token factory
that returns the value

Provides the InjectionToken in the
root (i.e., the entire application)

60 CHAPTER 3 Revitalized dependency injection

will still correctly inject the Constants InjectionToken, resulting in an incorrect typ-
ing of the property and possibly bugs down the line. This problem, however, is nonex-
istent with the inject function:

export class MyComponent {
 constants = inject(Constants);
}

constants will now correctly infer the type of the property without any need to type it
out manually.

EASIER COMPONENT INHERITANCE

In general, inheriting components is not considered a best practice; however, there
are scenarios where it can be useful, or we might be dealing with some legacy code
that already has such component inheritance. With constructor DI, we have to rede-
clare all the dependencies in the child class and pass it back to the parent constructor.
This task can be quite tedious, as, for example, in the following:

export class ParentClass {
 constructor(
 private router: Router,
) {}
}

@Component({
 ...
})
export class ChildComponent extends ParentClass {
 constructor(
 private router: Router,
 private http: HttpClient,
) {
 super(router);
 }
}

Passing dependencies to a parent component class will grow even worse if we have a
component that extends from another one that is already a child class, making this
code even more complicated. This scenario is even more popular in the case of ser-
vices, where inheritance has more accepted usage than in components. With the
inject function, however, none of these problems occur:

export class ParentClass {
 private router = inject(Router);
}

@Component({
 ...
})
export class ChildComponent extends ParentClass {
 private http = inject(HttpClient);
}

The parent class has some
dependency injected.

The child class needs to
inject it in its constructor.

The child class then adds
its own dependency.

The dependency of the parent class
needs to be passed to its constructor.

The parent class injects
something without a constructor.

The child class injects
something else, again with
no constructor; the parent
dependency (router) is also
available in the child.

613.2 The inject function

We already discussed some of the benefits related to DI usage in classes. Another ben-
efit is outside of the realm of OOP.

CUSTOM RXJS OPERATORS

More complex Angular applications tend to rely heavily on RxJS, and in some advanced
scenarios, developers also create their own custom RxJS operators. Those operators
often need a dependency from the DI tree—for instance, a utility service to help per-
form a mapping on some emitted value. In this case, before the introduction of the
inject function, the only option was to pass the reference as a parameter to the cus-
tom operator. Now, we can just inject the dependency directly in the operator and use
it (but carefully—always run it in an injection context). We will talk about such custom
operators in detail in chapter 5.

DITCHING THE CONSTRUCTOR ALTOGETHER

Almost every component we write has some initialization logic. For instance, the
EmployeeListComponent we created previously loaded the list of employees as soon as
it was created. In our example, we wrote it as a field initializer. Sometimes, developers
write that sort of code in the ngOnInit method based on when exactly they want to
load that data. What does not happen often is developers putting that sort of code in
the constructor method itself. In the vast majority of the scenarios, the constructor
function is empty and exists only to inject dependencies. It is so widespread that lots
of automatic tools (even the Angular CLI) generate component classes with empty
constructors by default. With the inject function, as we have seen, it became possible
to get by without the constructor method entirely.

3.2.4 What about the drawbacks?

So far, I have only sung praise for the inject function, but in real life, all solutions
come with some tradeoffs, and our new favorite function is no exception. Let’s see
when we might encounter problems with it.

CONFUSING USAGE

As I repeatedly mentioned, the function does not change the way the DI mechanism
functions, meaning that it still needs to be called in an injection context. For less
experienced developers, this can be a source of confusion when it is not entirely clear
why something is not working as expected. More senior developers need to pay atten-
tion to such situations to avoid bugs and blockers.

PROBLEMS WITH UNIT TESTING

The inject function generally works well with unit testing in Angular if we use default
tools like TestBed. However, especially in the case of services, developers often forgo
using TestBed when creating instances of the building blocks they want to test. Doing
so creates a problem, as just calling new MyService() is not running in an injection
context. This problem, however, can be mitigated with other tools, which we will dis-
cuss at length in chapter 8, where we will dive deep into unit testing.

62 CHAPTER 3 Revitalized dependency injection

IN SUM

So far, we have discussed the local benefits of the inject function, like reduction in
boilerplate and other code-level improvements. Of course, I would not dedicate an
entire chapter to this function if the changes were only cosmetic. Further, let us dis-
cuss how the inject function revolutionized the way we author three of the Angular
building blocks.

3.3 Functional guards, resolvers, and interceptors
In enterprise applications, it is very common to have some sort of restrictions on what
pages some categories of users can and cannot access. Historically, Angular has always
provided an official way of creating restrictions via some of its building blocks like
Guards. Let’s see how the inject function changed the way we write them.

3.3.1 Building an AuthGuard

Probably the most popular use case for this functionality is restricting access based
on the user’s authentication status. For instance, the business logic pages of the
HRMS application we build should be available to authenticated users only. We can
build a guard that handles the functionality to achieve this restriction. First, we will
do this the “old way” to see the difference between class-based guards and the new
approach.

 Let’s start by creating a guards folder in the shared directory of our project and
putting an auth.guard.ts file in it. The guard itself will look something like the fol-
lowing listing.

import { Injectable, inject } from '@angular/core';
import { CanActivate, Router, UrlTree } from '@angular/router';
import { Observable } from 'rxjs';
import { map } from 'rxjs/operators';
import { AuthService } from '../../services/auth.service';

@Injectable()
export class AuthGuard implements CanActivate {
 authService = inject(AuthService);
 router = inject(Router);

 canActivate(): Observable<boolean | UrlTree> {
 return this.authService.isAuth$.pipe(
 map((isAuth) => isAuth || this.router.createUrlTree(['/login'])),
);
 }
}

As we see, we create a class that implements a specific interface, which forces it to have
a method named canActivate, which returns a boolean or an UrlTree for redirects
depending on the user’s auth status.

Listing 3.8 Angular route guard as a class

633.3 Functional guards, resolvers, and interceptors

 Let’s examine this class a bit further. The main thing immediately noticeable is
that it has one singular purpose (which is not bad in and of itself), accomplished by
the canActivate method. Unlike a component, which might need several methods to
perform different tasks (e.g., handle multiple user events like clicks on different but-
tons), this class does not need any other methods than canActivate. Of course, we
could write some other methods to simplify canActivate itself, but doing so is not a
requirement and does not happen in the vast majority of scenarios. This class also
does not have any state of its own (data properties) because it does not keep the state
from one usage to another: each time a route requires this guard, it reuses the
instance but does not touch the state. Essentially, in most cases, the only properties
such a class has are the dependencies it injects.

 Given this discussion, we can safely arrive at the conclusion that guards in Angular
are only written as classes for the sole purpose of being able to utilize DI. But we have
already shown that with the inject function, we do not need classes to use DI! We
have already used this function to inject dependencies into this class. Let us now go
one level deeper and discard the class altogether with the help of the CanActivateFn
type that Angular now provides.

import { inject } from '@angular/core';
import { CanActivateFn, Router, } from '@angular/router';
import { map } from 'rxjs/operators';
import { AuthService } from 'src/app/services/auth.service';

export const authGuard: CanActivateFn = () => {
 const router = inject(Router);
 const authService = inject(AuthService);

 return authService.isAuth$.pipe(
 map((isAuth) => isAuth || router.createUrlTree(['/login'])),
);
}

As we see, we reduced the number of imports and lines of code and simplified the
process itself. It is now easier to explain to a newcomer. In the previous example I
described guards as a class that implements a specific interface with a method that
returns a Boolean or an observable of a Boolean. Now, we can just say that guard is a
function that returns a Boolean or an observable of a Boolean. This will also (albeit
mildly) reduce the boilerplate in unit tests.

Listing 3.9 Functional route guard

The guard is now just a function that must implement the
CanActivateFn interface, which acts like the CanActivate

interface we implemented in the previous example.

Inject dependencies
with the inject function

CanActivateFn forces our function to return a Boolean,
an observable of Boolean, or UrlTree for redirects,

same as the CanActivate interface.

The actual business logic is unchanged.

64 CHAPTER 3 Revitalized dependency injection

 So far, we have only created the guard but have not added it to any routes. Let’s go to
app.routes.ts and make the 'employees' path only accessible when the user is logged
in. This method works in exactly the same way as it used to with class-based guards.

{
 path: 'employees',
 providers: [EmployeeService],
 canActivate: [authGuard] ,
 loadChildren: () => {
 return import('./pages/employees/employees.routes').then(
 (m) => m.routes,
);
 },
},

Now, let us move forward and tackle the next routing-related building block, which
was also revolutionized by the inject function.

3.3.2 Building an EmployeeResolver

Another common task when developing complex web apps is ensuring some data is
loaded via an HTTP request before rendering the component that requires that data.
In the case of our HRMS application, we already have a list of employees. We now
want to build an EmployeeDetailsComponent; the user will be able to navigate it from
the list of employees. When the user navigates, we want to first load the employee
details via HTTP and only then the component itself to avoid a flickering UI or a situ-
ation where the call results in an error and we end up with a blank page. We can
accomplish this task using Angular’s Resolvers, which, just like guards, have also
been implemented with classes. We will skip the class implementation and write the
resolver as a function outright, utilizing the inject function.

 First, let us create a new file at src/app/infrastructure/types/employee.ts and put
the employee type definition there:

export type Employee = {
 id: number;
 firstName: string;
 lastName: string;
 email: string;
 position: 'Developer' | 'Designer' | 'QA' | 'Manager';
 level: 'Junior' | 'Middle' | 'Senior' | 'Lead';
 isAvailable: boolean;
 profilePicture: string;
}

Next, we will create a resolvers folder next to the guards folder in the shared directory
and add an employee-details.resolver.ts file there. The implementation is going to be
very straightforward and, in some ways, mimic what we did with AuthGuard.

Listing 3.10 Registering a functional route guard

We put the function in
the canActivate array.

653.3 Functional guards, resolvers, and interceptors

import { inject } from '@angular/core';
import { ActivatedRouteSnapshot, ResolveFn } from '@angular/router';
import { Employee } from 'src/app/infrastructure/types/employee';
import { EmployeeService } from 'src/app/services/employee.service';

export const employeeDetailsResolver: ResolveFn<Employee> = (

 route: ActivatedRouteSnapshot,
) => {
 const employeeService = inject(EmployeeService);
 const id = +(route.paramMap.get('id') ?? 0);

 return employeeService.getEmployee(id);
}

Next, we want to register the resolver on the appropriate route. Again, we use the
same method as we used with class-based resolvers.

{
 path: 'details/:id',
 component: EmployeeDetailsComponent,
 resolve: { employee: employeeDetailsResolver },
},

Finally, we can inject the route data into our component and get access to the
resolved data.

@Component({
 selector: 'app-employee-details',
 template: `
 <h2>Employee Details</h2>
 <div>
 <label>First Name: </label>{{ employee.firstName }}
 <label>Last Name: </label>{{ employee.lastName }}
 <label>Position: </label>{{ employee.position }}
 </div>
 `,
 standalone: true,
})
export class EmployeeDetailsComponent {
 employee = inject(ActivatedRoute).snapshot.data['employee'] as Employee;
}

Listing 3.11 Functional resolver

Listing 3.12 Registering a functional resolver

Listing 3.13 Using resolved data in a component

The function has to implement a generic ResolveFn interface, which
receives a type argument. Via this type argument, we explain what

type of data we will return from the resolver.

The current route information is
already available via an argument.

We take the id param
from the route and
convert it to a number.
In this case, we do not
handle null, but in real
life, it would need
separate logic.In the end, we return the

result of our service’s HTTP call.

66 CHAPTER 3 Revitalized dependency injection

Again, it all comes down to injecting the relevant data where it is needed. The process
is simplified, boilerplate code is reduced, and getting the data inside the component
is achieved via just one line of code. Now, as we covered tasks related to routing, let’s
move to another Angular building block that turned functional in the wake of the
introduction of the inject function.

3.3.3 Adding tokens to HTTP requests

Another common need is the ability to modify HTTP requests or responses on the fly.
Almost all enterprise applications introduce this sort of logic somewhere in their
codebase. The most common scenario is adding authentication tokens to HTTP request
headers so that the API can verify the user’s identity and permissions. Of course, we
could write out the HTTP headers every time we make an HTTP call, but large appli-
cations can potentially have up to thousands of different HTTP requests, and copy-
pasting that code everywhere we need results in unmaintainable code. To avoid this,
Angular has previously introduced the concept of an interceptor, which acts as a
middleware for HTTP calls. As with resolvers and guards, inceptors were also previ-
ously a class-based solution, but now they have become functional, too.

 Let’s go on and create our authentication interceptor, which will add the user’s
token to all HTTP requests. We will assume that the token is stored in localStorage
(for the sake of simplicity; in real life, it would probably involve some more complex
steps) and can be retrieved via a getToken method on our AuthService. To build our
interceptor, let’s create an interceptors folder in the shared directory and add a file
named auth.interceptor.ts.

import { HttpHandlerFn, HttpRequest, HttpInterceptorFn } from
'@angular/common/http';

import { inject } from '@angular/core';
import { AuthService } from 'src/app/services/auth.service';

export const authInterceptor: HttpInterceptorFn = (
 req: HttpRequest<any>,
 next: HttpHandlerFn,
) => {
 const authService = inject(AuthService);
 const token = authService.getToken();
 const newReq = req.clone({setHeaders: {
 'Authorization': `Bearer ${token}`,
 }});
 return next(newReq);
}

With this step out of our way, the last thing we need to do is register this interceptor
so that Angular knows to invoke it when an HTTP call is made. In a standalone

Listing 3.14 Authentication interceptor

The function
implements the
HttpInterceptorFn
interface to enforce
its return type and
parameters.

The function receives the
current request as a parameter,
which we can use to modify.

The next interceptor or handler will deal
with this request on its own line; in the
end, we must invoke it to pass the
request further until it gets executed.
This is what makes interceptors
essentially middleware.

Adds the token to the cloned request

Passes the new,
modified request
to the next
handler

673.3 Functional guards, resolvers, and interceptors

setup like ours, we can use the provideHttpClient function and a special helper
called withInterceptors in the app.config.ts file.

export const appConfig: ApplicationConfig = {
 providers: [
 provideRouter(routes),
 provideHttpClient(
 withInterceptors([authInterceptor]),
),
],
};

As we can see, we are able to add multiple interceptors, all of which will work when
any HTTP call is made in our application.

 So far, we have discussed these changes in the context of standalone applications,
where we just created those functions from scratch. However, a similarly important
scenario is where developers want to migrate their existing, class-based building
blocks to functional ones. Let’s discuss what steps can be taken to accomplish that.

3.3.4 Migrating to functional guards/resolvers/interceptors

In real life, lots of developers are still dealing with projects that have all these building
blocks as classes. If we consider a project that uses, let’s say, Angular v12, upgrading to
v15 or v16 will involve some refactoring. Class-based guards/resolvers/interceptors are
deprecated as per v15 in favor of functional ones. So, we need to think about ditching
the previous versions of those building blocks and switching to functions. Of course, as
with anything, we can manually change the codebase to reflect this change; migrating a
single resolver, let’s say, would probably not take too much time. However, refactoring
dozens of them in one go will probably result in problems, especially if we have unit tests
that also have to be refactored. Thankfully, Angular provides some utilities we can use to
provide backward compatibility until we change all the guards/resolvers/interceptors.

MIGRATING GUARDS AND RESOLVERS

Class-based building blocks related to routing can be converted to functions with a spe-
cial set of utility functions named in a convention of mapTo<name of guard/resolver
type>. For instance, if we already had our AuthGuard as a class and wanted to use it as a
function on a route’s canActivate option, we could use the mapToCanActivate func-
tion to achieve this. The following listing shows how it looks in the code.

{
 path: 'employees',
 providers: [EmployeeService],
 canActivate: mapToCanActivate([AuthGuard]),
 loadChildren: () => {

Listing 3.15 Registering an interceptor

Listing 3.16 Registering a class-based guard in a functional setup

68 CHAPTER 3 Revitalized dependency injection

 return import('./pages/employees/employees.routes').then(
 (m) => m.routes,
);
 },
},

The mapToCanActivate function will convert the array of class-based guards to an
array of CanActivateFn functions, which keeps them compatible with the new API.
We can then manually change those class-based guards to functional ones one by one
at our convenience. This function, as mentioned, is also available in other flavors to
support guards for other scenarios and resolvers:

 mapToResolve()

 mapToCanDeactivate()

 mapToCanMatch()

 mapToCanActivateChild()

Each of these functions does the same thing for a different type of routing task.

MIGRATING INTERCEPTORS

In the case of interceptors, previously, registering them worked a bit differently, with
Angular exposing a special HTTP_INTERCEPTORS InjectionToken, which we could
then use to add multiple interceptors. As we saw in listing 3.14, the process is now
simpler with the withInterceptors functions in the standalone setup. However,
older registration of class-based interceptors using the HTTP_INTERCEPTORS may still
be included.

 I briefly mentioned in the previous chapter (section 2.5.3 on the migration to
standalone) that the automatic migration using Angular’s standalone schematic will
switch to the standalone API for importing the HttpClient, and add a special func-
tion called withInterceptorsFromDi. This function, again, exists only for backward
compatibility and will basically add all of those legacy class-based interceptors to the
overall pipeline, allowing us, for a while, to use both functional and class-based inter-
ceptors. We then can remove class-based ones until we are done and finally remove
the withInterceptorsFromDi call.

 So far, we have covered everything that changed in Angular with the introduction
of the inject function. Now, let’s dive deeper and see the most profound features of
Angular’s dependency injection and explore how the inject function can help us
simplify those complex use cases.

3.4 DI deep dive
In this section, we will discuss more complex scenarios. We already covered the basic
and most common use cases for DI in Angular; now it is time we learn about manip-
ulating DI in specific ways to simplify our code further. To do so, we first need to gain
a bit of a deeper understanding of how DI functions and what can be done to alter
its behavior.

693.4 DI deep dive

3.4.1 DI lookup and how to modify it

We already talked about how dependency injection works in section 3.1: we provide a
token and then request it somewhere; Angular searches the DI tree starting from the
current component up to the NullInjector, finds the value (or fails to find one), and
returns it. However, it is possible to alter this process to some extent. For instance, we
can specify where the lookup should start (maybe we do not want to include the cur-
rent context providers and want to start from the parent immediately). We can also
specify where we want the lookup to end—maybe we only look for dependencies in
this current context. All of those tasks previously used special decorators like Self,
Optional, SkipSelf, and Host.

 Let us now discuss use cases where those can be applicable and see how the inject
function makes working with those use cases easier and our code shorter and simpler.
The decorators we mentioned do different things, so let’s first see what each of them
is used for, and then we’ll discuss how they work when we discard constructor DI and
use the inject function:

 @Optional—This decorator marks a dependency as optional, which means if
Angular does not find it, it will not go up to the NullInjector and throw an
error; instead, it will return null. This may sound useless at first glance, but it
can become handy when the developer can provide a global value for some
dependency, but a component wants to use a default one if the global one is
not provided.

 @Self—This decorator limits the search for a given dependency to the compo-
nent’s own ElementInjector or, in other words, to whatever is provided in that
component. This can be useful if the component wants to have its own separate
instance of some service, to encapsulate its data, or for any other purposes. A
good example is components that recursively render themselves and want dif-
ferent instances of the same service for child components.

 @SkipSelf—This decorator is the opposite of @Self and starts the search for a
given dependency from its parent injector. @SkipSelf can be used in some sce-
narios to enforce using a global provider instead of a local one.

 @Host—This decorator will limit the search for a dependency to the component
and its direct parent. This can be useful for components that are usually used in
pairs—for instance, ListComponent and ListItemComponent, where we want to
use the same provider as the parent list in the child item.

Before the inject function became publicly available, these modifiers were used to
add one or more of those decorators to the property declared in the constructor. It
looked something like this:

export class MyComponent {
 constructor(
 @SkipSelf() @Optional() private readonly someDependency: SomeDependency,
) {}
}

70 CHAPTER 3 Revitalized dependency injection

Now, as we are moving toward ditching the constructor DI altogether, we can’t use this
approach. Instead, the inject function can accept a second parameter, a configuration
object, where we can put our modifiers:

export class MyComponent {
 someDependency = inject(SomeDependency, {optional: true, skipSelf:

true});
}

While this code is still kind of a mouthful, this approach actually allows more flexibil-
ity when trying to combine injected properties with other Angular concepts like
inputs or outputs. Let’s build a reusable directive and see this process in action.

3.4.2 Truncating text with DI

In a large web application like the one we are building now, it is commonplace to have
lots of text data on different pages. Usually, this text is user-generated, so it can be
quite long, meaning that sometimes we might want to limit the number of characters
displayed on the page, also known as truncating the text. For instance, we have built
an EmployeeList component, and we show several columns with text in the table. For
some columns, we want to truncate this text to avoid making the table go over the
user’s viewport. We are going to build a directive that accomplishes this functionality,
but before we do, let’s set some requirements for this directive:

 This directive is going to be used in multiple places, so it has to be flexible
and reusable.

 By default, it will limit text to 80 characters.
 An optional Input can be provided to change the limit on some given element.
 If we want a different character limit globally, we can provide it and not have to

type the input every time we use the directive.
 If a global value is provided but we want a different limit in some component

(based on its relation to the viewport), we should be able to provide that limit to
that component only.

With all this in mind, let’s first build the basic version of this directive that only satisfies
the first two conditions. In the shared directory, let us add a new folder named directives
and create a truncate.directive.ts file with the content in the following listing.

import { Directive, inject, ElementRef,
 Input, AfterViewInit } from '@angular/core';

@Directive({
 selector: '[appTruncate]',
 standalone: true,
})
export class TruncateDirective implements AfterViewInit {

Listing 3.17 Basic implementation of TruncateDirective

713.4 DI deep dive

 @Input() limit = 80;
 private readonly elRef = inject(ElementRef);

 ngAfterViewInit() {
 this.elRef.nativeElement.textContent =

this.elRef.nativeElement.textContent.slice(
 0,
 this.limit,
);
 }
}

Now, this code is enough to have very basic reusability, but if we wanted to make
another global character limit, we would not be able to. To achieve that, we will
employ DI and create a special InjectionToken that will hold the value for the charac-
ter limit. We’ll then provide it wherever necessary. Let’s add it directly to the trunc-
tate.directive.ts file.

export const TruncateLimit = new InjectionToken<number>('TruncateLimit');

@Directive({
 selector: '[appTruncate]',
 standalone: true,
})
export class TruncateDirective implements AfterViewInit {
 @Input() limit = inject(TruncateLimit);
}

As we can see, we effortlessly combined the Input decorator with our InjectionToken,
something previously impossible with constructor DI. Now, we can define a global
value via the providers array in app.config.ts:

 { provide: TruncateLimit, useValue: 70 }

All the directive instances will have this configurable limit. If we want a particular
instance to have a different option, we can provide it as an Input:

 <td appTruncate [limit]="10">{{ employee.position }}</td>

Finally, what’s left to do is allow the developers not to provide global value at all if they
would like to use a default. We will use our knowledge of DI lookup modifiers to
achieve this.

export class TruncateDirective implements AfterViewInit {
 @Input() limit = inject(TruncateLimit, {optional: true}) ?? 80;
 private readonly elRef = inject(ElementRef);

Listing 3.18 Injecting a configuration into TruncateDirective

Listing 3.19 Final implementation of the TruncateDirective

Flexibility is provided
only via an Input,
providing reusability
on an element level.

After the view is initialized, the
directive will change the text
content of the target element.

Defines the token

Injecting it back
into the directive

72 CHAPTER 3 Revitalized dependency injection

 ngAfterViewInit() {
 this.elRef.nativeElement.textContent =
 this.elRef.nativeElement.textContent.slice(
 0,
 this.limit,
);
 }
}

As we can see, we used the optional flag and the ?? operator combined with an Input
to achieve all the requirements we set. If an input value is not provided, we try to inject
the globally provided limit value; if that is not provided either, we use a default value.
This also makes it possible to use components for which the value of the character
limit is entirely different from the rest of the application by manually providing that
value in the providers array of that component.

 Now that we have deeply familiarized ourselves with Angular’s modern depen-
dency injection mechanism, we can test it out on practical examples.

3.5 Exercises for the reader
After this chapter, you should create services, components, and directives utilizing the
inject function:

 Create an InterviewService for the Recruitment feature of the HRMS applica-
tion and use it in relevant components.

 Write a higher-order permission guard—a function that will return another
function that is a guard (complies with CanActivateFn). The parent function
receives the name of the user permission as a string and uses the closure to
create a guard that is specific to that permission and will not allow the user
without that permission to access certain pages. It will be used with route defi-
nition, securing multiple permissions in different places: canActivate: [has-
Permission('CreateEmployee') and hasPermission('DeleteEmployee')].
This way, we won’t be compelled to create multiple guard functions for each
permission.

 Try switching DI in some of your existing Angular codebases to use the inject
function.

Summary
 The inject function has been publicly available since Angular v14.
 The inject function will take any dependency token and return its provided value.
 The inject function can be used to inject dependencies and services into func-

tions, as opposed to only classes.
 The inject function is now commonly preferred over the constructor DI.
 Guards/resolvers/interceptors have now switched to being fully functional.

73Summary

 Legacy class-based guards/resolvers can still be used with helper functions.
 Legacy interceptors can still be used with the withInterceptorsFromDi function.
 Legacy class-based guards, etc. can be migrated to functional incrementally.
 The inject function supports dependency lookup modifiers like host, optional,

self, and skipSelf.

74

New capabilities of
Angular building blocks

Previously we covered some changes in Angular that could be deemed quite revolu-
tionary—changes that affected entire applications and their structure and even
changed the nature of some building blocks (like functional route guards, which we
covered in the previous chapter). Now it is time we go a level deeper and familiarize

This chapter covers
 Supercharging input properties to make them

required, transform their values, or bind them
to routing parameters

 Using host directives to compose new directives
from existing ones

 Switching to type-safe reactive forms to ensure
the best interaction with TypeScript and improved
developer experience, coupled with other
improvements to forms

 Improving image load time by using the new
NgOptimizedImage directive

 Using fetch-based backend instead of XHR in
HTTP requests

754.1 Powerful inputs

ourselves with some improvements that aim at reducing boilerplate and improving per-
formance, as well as bettering our code quality on a more local magnitude.

 For the purpose of learning, we will continue building our HRMS application. This
time, we will cover the “Work” feature of this application and build several compo-
nents and directives in it. This feature is related to the projects that a given organiza-
tion using the app will want to add and view. The user will be able to view the list of
projects, and their details, and see employees on days-off. In chapter 2, you were
encouraged to create those pages and the respective routes as an exercise; if you have
not done so, and still want to code along with the book, you can create only the pages
mentioned in this chapter.

 Now, as everything is set, let’s embark on a new journey and see how we can
improve reusable components that receive data through inputs.

4.1 Powerful inputs
When learning Angular, one of the very first lessons is about component interactions,
mainly how a parent component can manipulate the behavior of its child. This plays well
with the concept of having reusable components, where a component can receive data
from parents and render its UI based on that data. This is, as is commonly known,
achieved through inputs, special properties marked with the @Input decorator, which
allow us to pass data from the parent component to a child in the template similar to
HTML attributes. Such input properties have been used widely in the Angular developer
community, resulting in the discovery of several approaches and some pitfalls that we
might encounter. Starting from v15 and v16, the Angular framework acquired several new
capabilities for input properties, and this is what we are going to discuss in this section.

4.1.1 Required inputs

To understand our use case, let us start with building pages related to the “Work” fea-
ture of our application. Namely, we want a page in which the user can browse all the
projects that their company is working on. This “project list” page will contain small
snippets of data about projects but without in-depth detail. As there are not that many
projects running at any given time in a given company, it would be better from the
user experience perspective to have them displayed as a list of cards or tiles, with the
project logo and some superficial information about it.

 However, before we start implementing this component, we can analyze our appli-
cation at large and realize that such project tiles can possibly be used in multiple
places and not only in the project list page. For instance, an employee might be
enrolled in multiple projects, and on the employee details page we might want to dis-
play the tiles for the projects they are working on; alternatively, we might also want to
show such tiles of subprojects of a given project on its own details page. This has the
potential to become a reusable component, so let us start building it.

 Such a component will display a basic UI and receive data about the project via an
@Input property. We will go one step forward and make it only receive the “id” of the

76 CHAPTER 4 New capabilities of Angular building blocks

project it needs and then load its own data. In our case, this can result in many HTTP
calls, but projects that use some state management solutions (either custom or exist-
ing ones like NgRx) can mitigate this problem, so we will leave it as is, as the way the
component pulls this data from the server is not our concern in this chapter. Let us go
on and build this component.

 In the src/shared/components directory let us add a new file named project-
card.component.ts and put the code in the following listing inside of it.

@Component({
 selector: 'app-project-card',
 template: `
 <div *ngIf="project$ | async as project" class="card">

 <div class="card-body">
 <h3>{{ project.name }}</h3>
 </div>
 </div>
 `,
 imports: [NgIf, AsyncPipe],
 standalone: true,
})
export class ProjectCardComponent implements OnChanges {
 private readonly projectService = inject(ProjectService);

 @Input() projectId: number;
 project$: Observable<Project> | null = null;

 ngOnChanges(changes: SimpleChanges): void {
 if (changes['projectId']) {
 this.project$ = this.projectService.getProject(this.projectId);
 }
 }
}

As we can see, this is a fairly simple implementation. However, we can notice that Type-
Script is complaining a bit. Notably, we get this warning/error: Property 'projectId'
has no initializer and is not definitely assigned in the construc tor.ts(2564).
This is related to the fact that we do not have any default value for this projectId
property (what would a default value for an id property even be?). If we continue our
analysis, we will quickly understand that this is a problem—not a major one, but still
one that can cause problems down the line. For instance, a future developer on this
project may want to use this component but accidentally forget to set the value of the
projectId, and run into problems at runtime. A former approach to handling such
things was adding an ngOnInit method and checking if the input’s value has been
provided from the get-go:

ngOnInit() {
 if (!this.projectId) {

Listing 4.1 ProjectCardComponent initial implementation

774.1 Powerful inputs

 throw new ReferenceError('Project ID is required!');
 }
}

This solves our problem to an extent; however, it is a bit “boilerplate-y” and may
become harder to read if we have multiple such required properties. Also, it does not
cover another concern that we might have: readability. We want future developers to
open the component code and immediately see what inputs are required for the com-
ponent to function in a way that does not require them to read lots of error-throwing
code; also, we want them to see the missing input immediately in the editor, as soon as
they make the mistake, not when they open the browser and see the custom runtime
error. The error does add clarity as to what went wrong, but it still requires more steps
and a bit more complex mental model.

 To address this, Angular v16 added required input properties. From now on, we
can make any inputs required, and the compiler will ensure those values are provided
wherever necessary. As mentioned, it will be done in compile-time and will immedi-
ately show errors in the template where we use the component but omit a required
input. The process of marking an input property as required is very straightforward.
The following listing shows what our component code will look like.

export class ProjectCardComponent implements OnChanges {
 private readonly projectService = inject(ProjectService);

 @Input({required: true}) projectId!: number;

 project$: Observable<Project> | null = null;

 ngOnChanges(changes: SimpleChanges): void {
 if (changes['projectId']) {
 this.project$ = this.projectService.getProject(this.projectId);
 }
 }
}

Now if we try to use this without providing the input’s value, we will receive an error.

@Component({
 selector: 'app-project-list',
 template: `
 <div class="row">
 <app-project-card *ngFor="let project of projects$ |

async"></app-project-card>
 </div>
 `,
 standalone: true,

Listing 4.2 Input marked as required in the ProjectCardComponent

Listing 4.3 Input marked as required in the ProjectListComponent

Input marked with
{required: true}, so we
can safely put ! in front of
the property name as we
know it is guaranteed not
to be null or undefined

78 CHAPTER 4 New capabilities of Angular building blocks

 imports: [NgFor, ProjectCardComponent, AsyncPipe]
})
export class ProjectListComponent {
 private readonly projectService = inject(ProjectService);
 projects$ = this.projectService.getProjects();
}

Immediately in our code editor, we will see an error with the following text: Required
input 'projectId' from component ProjectCardComponent must be specified.ngtsc.
The error message is quite clear: the ProjectCardComponent has way less code and
focuses more on the business logic rather than implementation details and is more
readable. Next, let us discuss another scenario related to the boilerplate caused by
input properties.

4.1.2 Transforming input values

To get a grasp of what we want to achieve here, let us build another reusable compo-
nent. Our HRMS application is an enterprise, business-heavy application. So it is not
hard to imagine it has features related to document exchange. For instance, the
recruitment section will need the capability of uploading a candidate’s CV file, and
the user will probably want to be able to upload their profile picture to be recogniz-
able on the platform. For this purpose, we want a component that handles various
things related to uploading a file so that we can reuse it in multiple places. This com-
ponent will render a button that will allow the user to select a file, validate the selected
file, and emit an event when files are selected so the parent component can handle
the files as it sees fit. Let’s make a quick implementation; again, in the src/shared/
components folder, we will add a new file, file-upload.component.ts, with the func-
tionality shown in the following listing.

@Component({
 selector: 'app-file-upload',
 template: `
 <div class="file-upload">
 <label for="upload">{{ label }}</label>
 <input type="file" id="upload" (change)="onFileSelected($event)"

/>

 {{ errorMessage }}
 Only the following file types are permitted:

 <li *ngFor="let type of acceptArray">
 {{ type }}

 </div>
 `,
 standalone: true,

Listing 4.4 FileUploadComponent with an “accept” input

Shows an error
message using
the “accept”
input property

Uses a property that
is different from
“accept” to get its
values as an array

794.1 Powerful inputs

 imports: [NgIf, NgFor],
})
export class FileUploadComponent {
 @Input({required: true}) label!: string;
 @Input() accept = '';
 @Output() selected = new EventEmitter<FileList>();
 errorMessage = '';

 get acceptArray() {
 return this.accept.split(',');
 }

 onFileSelected(event: any) {
 const files: FileList = event.target.files;
 this.errorMessage = Array.from(files)
 .every(f => this.acceptArray.includes(f.type))
 ? '' : 'Invalid file type';

 if (this.errorMessage === '') {
 this.selected.emit(files);
 }
 }
}

As we can see, we are doing quite an operation here to ensure we both receive the
input value as a string and use it as an array, like the following example:

<app-file-upload label="Upload profile picture"
accept="image/jpeg,image/png"></app-file-upload>

Of course, we could argue that we can just accept an array straightaway, but that would
place an unnecessary strain on the parent component, which now will need to declare
an array binding, and also restrict our component from being dynamic. For instance,
we could receive a list of acceptable file types from the backend in some scenario, and
it probably can come just as a string list, so the approach we adopted could work bet-
ter in this case. However, it has some downsides: for instance, the readability will suf-
fer, as the getter and the actual property that it transforms can be located far from
each other in the code, and also this will trigger change detection multiple times as we
are using the getter, which is essentially a function, in the template. We will talk more
about such side effects in chapter 10; for now, it suffices to say this is not the most opti-
mal approach. So how can we remedy this?

 Thankfully, starting from Angular v16.1 we have the ability to define a transformer
function on a component/directive input. This will apply a function of our choice to
the received value and set that calculated value, which this function returns as the
actual value of our input property. Let us refactor our component.

export class FileUploadComponent {
 @Input({required: true}) label!: string;

Listing 4.5 FileUploadComponent with a transformed “accept” input

Getter to transform the
“accept” string to an
array to use for validation
and displaying

Uses the array
of accepted file
types to validate
files selected by
the user

80 CHAPTER 4 New capabilities of Angular building blocks

 @Input({
 transform: (value: string) => value.split(','),
 })
 accept: string[] = [];
 @Output() selected = new EventEmitter<FileList>();
 errorMessage = '';

 onFileSelected(event: any) {
 const files: FileList = event.target.files;
 this.errorMessage = Array.from(files)
 .every(f => this.accept.includes(f.type))
 ? '' : 'Invalid file type';

 if (this.errorMessage === '') {
 this.selected.emit(files);
 }
 }
}

This approach allows us to be way more flexible and to reap multiple benefits:

 There is no more getter function with a separate name; we use the property
as declared.

 Reading the property definition itself gives us all the information necessary to
understand its behavior.

 The transformation logic is applied every time the input property is changed,
instead of the getter being triggered on each change detection cycle, resulting
in better performance.

 Refactoring inputs gets easier: there is no need to redefine how they are passed
from the parent components.

A lot of scenarios with transforming input properties involve casting a string to a num-
ber, or a string to a Boolean. For instance, when we define a numerical input but put it
as a conventional attribute instead of an Angular binding (like <some-component
numberProperty="10"></some-component>), we will see that Angular will read and
pass on the number provided as a string (no matter what type we specified in the com-
ponent’s TypeScript file). Of course, we can use the transform option when defining
an input and provide a function that does this type-casting properly. However, the
Angular team predicted the popularity of these scenarios and added two built-in trans-
former functions specifically for those: numberAttribute and booleanAttribute.
Now we can just import them and add to any inputs and the transformation will hap-
pen automatically:

@Input({transform: booleanAttribute}) booleanProperty = false;
@Input({transform: numberAttribute}) numberProperty = 0;

Next, we can freely use them in any template without binding unnecessarily:

<some-component numberProperty="12" booleanProperty="true"></some-component>

Applies a transforming
function on an input

Uses the
transformed
input directly

814.1 Powerful inputs

Let us now discuss how we can use inputs as means of getting data into the component
other than what was passed from the templates. Let’s see if we can simplify the logic of
dealing with routing parameters and data using Angular inputs.

4.1.3 Binding routing parameters to input properties

When building user interfaces for showing data, we usually have a page that shows a
list of items, like our ProjectListComponent, and we have a specific “details” page for
each item, where we can comfortably show more data. This usually involves having a
route parameter, like an id, which we can use to make the specific HTTP call. Let us
build the ProjectDetailsComponent and see what challenges may arise and how we
can use component inputs to overcome them.

 We want our component to take the id of a particular project and make an HTTP
call to retrieve the relevant data. Additionally, we want to display the list of subprojects,
but there is a catch: the user can navigate to the subprojects, meaning they will navigate
“back” to the same component but with a different id and, thus, different data. Of
course, we do not want to reload the entire page: we want to just react to the id change
and simply make the same HTTP call with the new id and then display the new data. Let
us build this component using conventional tools Angular provides and then see how
new input capabilities can help us simplify this component. Under the src/pages/work
directory let’s add a new file named project-details.component.ts, create a Project
DetailsComponent inside it, and add it to the work.routes.ts file with a parameter:

{ path: 'projects/:id', component: ProjectDetailsComponent }

Next, let’s write the actual implementation of the component.

@Component({
 selector: 'app-project-details',
 template: `
 <div class="project-details">
 <h3>Project Details</h3>
 <div *ngIf="project$ | async as project">
 Project Name: {{ project.name }}
 Project Description: {{ project.description }}
 Logo: {{ project.image }}
 <div class="subprojects">
 Subprojects:
 <app-project-card
 *ngFor="let subProjectId of project.subProjectIds"
 [projectId]="subProjectId"
 >
 </app-project-card>
 </div>
 </div>
 </div>
 `,
 standalone: true,

Listing 4.6 Component using a routing parameter to load data

Renders
a list of
subprojects

82 CHAPTER 4 New capabilities of Angular building blocks

 imports: [NgIf, NgFor, AsyncPipe, ProjectCardComponent],
})
export class ProjectDetailsComponent implements OnInit, OnDestroy {
 private readonly route = inject(ActivatedRoute);
 private readonly projectService = inject(ProjectService);
 project$: Observable<Project> | null = null;
 destroy$ = new Subject<void>();

 ngOnInit(): void {
 this.route.paramMap.pipe(
 takeUntil(this.destroy$),
).subscribe((params) => {
 this.project$ = this.projectService.getProject(
 +params.get('id')!,
);
 });
 }

 ngOnDestroy(): void {
 this.destroy$.next();
 }
}

As we can see, this implementation is quite wordy and contains many implementation
details that are not exactly related to the business logic (e.g., unsubscribing from the
Observable). Another downside is that we just subscribed to the router parameter
Observables but did not store the value; we would need another property for this if
we want to use the id elsewhere in the TypeScript code. Additionally, we need to cast
the parameter from a string (all route parameters are strings by default) to a number
so we can pass it to the ProjectService for the HTTP call. Let’s now see how Angular
proposes to mitigate all these problems. To do this, let’s visit the app.config.ts file
once more and change how we register our routing:

provideRouter(routes, withComponentInputBinding()),

The withComponentInputBinding option became available in Angular v16, and it auto-
matically passes the value of route parameters to the respective component if that com-
ponent has an input property that has the same name as the parameter—for instance,
when we previously added the ProjectDetailsComponent to our routing with a parame-
ter :id. With this option, if we have an input property on ProjectDetailsComponent
named id, Angular will automatically pass the value of the parameter to this property!
This means we can cut a lot of boilerplate from our component code. The following
listing shows how.

export class ProjectDetailsComponent implements OnChanges {
 @Input({transform: numberAttribute}) id!: number;

Listing 4.7 Component using inputs bound to routing parameters to load data

Subscribes to the id
parameter change so we can
load the new project’s data

Actually loads
the data

Unsubscribes from the
router parameter stream
when the component is
removed from the UI

The input with the name “id” automatically receives the route
path parameter and is transformed into a number in place

834.1 Powerful inputs

 private readonly projectService = inject(ProjectService);
 project$: Observable<Project> | null = null;

 ngOnChanges(changes: SimpleChanges): void {
 if (changes['id']) {
 this.project$ = this.projectService.getProject(this.id);
 }
 }
}

The advantages of this approach are pretty clear: we inject one fewer class and we have
direct access to the id property if we need it somewhere else, no Observables and
unsubscription logic, and less boilerplate code; the component is now only focused
on the business logic. The following are several important things we need to know
about component-routing input binding:

 The binding also works with resolved data and optional query parameters.
 If there is a naming clash (e.g., if a query parameter and a path parameter have

the same name), Angular will resolve it by using the following precedence: first,
it will match the resolved data, then the path parameter, and finally, if the first two
did not match, the query parameter.

 The binding only works for routed components. If a component is rendered via
the template of another one, rather than routing, the automatic binding will
not work, and we will have to instead rely on other means of passing that infor-
mation down (most commonly, just a “usual” input that gets the data from the
template of the parent).

 It is now quickly becoming the suggested way to use this approach instead of
ActivatedRoute.

Next, let us see how input properties can work with components created programmat-
ically, rather than from the template.

4.1.4 Inputs for dynamic components

Sometimes we want to create components dynamically, rather than just spelling them
out in the template. We already encountered such a scenario in section 2.4.5, when we
lazy-loaded and then dynamically opened a confirmation popup. There are many other
scenarios—for example, rendering child components from directives when dealing with
structural directives. We haven’t discussed how we can pass inputs to those dynamic com-
ponents, as we do not invoke that component in a template to spell out a binding.

 Let us examine the following scenario: we are building a loader component, which
receives some content and, if an input property indicates so, displays a custom spin-
ning loader over it to signal to users that they should wait. Let’s first implement this
component in a new src/app/shared/components/loader.component.ts file.

@Component({
 selector: 'app-loader',

Listing 4.8 Loader component with an input and projected content

If the id has changed, just repeats
the HTTP call with the new id

84 CHAPTER 4 New capabilities of Angular building blocks

 template: `
 <div class="loading-container">
 <ng-content></ng-content>
 <div *ngIf="loading" class="blocker">
 spinner
 </div>
 </div>`,
 standalone: true,
 styles: [
 `
 .loading-container {
 position: relative;
 }
 .blocker {
 background-color: black;
 position: absolute;
 top: 0;
 z-index: 9999;
 width: 100%;
 height: 100%;
 opacity: 0.4;
 }
 `,
],
 imports: [NgIf],
})
export class LoaderComponent {
 @Input() loading = false;
}

This is not a very complicated component, but using it many times in the same tem-
plate is quite tedious, especially if loaders are nested. For instance, in the Project
DetailComponent we could have a loader for the entire page, then one on the list of
subprojects, one in parallel to it on a list of employees, and so on, resulting in lots of
nested code:

<app-loader [loading]="loading">
 <div class="p-grid">
 <div class="p-col-12">
 <p>Some content</p>
 </div>
 <app-loader [loading]="otherLoading">
 <div class="p-col-12">
 <p>Some other content</p>
 <app-loader [loading]="evenMoreLoading">
 <div class="p-col-12">
 <p>Even more content</p>
 </div>
 </app-loader>
 </div>
 </app-loader>
 </div>
</app-loader>

Where the child's
content will be projected

Some spinner to
display when necessary

css to display this content over
everything else in the template

The actual
input

854.1 Powerful inputs

This is not very beautiful. However, we can remedy this by writing a structural directive
that will dynamically create the LoaderComponent and pass the input value to it, wrapping
its template inside it. Let’s create a new file named loader.directive.ts in the
src/app/shared/directives folder and implement this directive, so we can see it in action
and familiarize ourselves with the way we can pass the component’s input dynamically.

@Directive({
 selector: '[loading]',
 standalone: true,
})
export class LoaderDirective implements OnInit, OnChanges {
 private readonly templateRef = inject(TemplateRef);
 private readonly vcRef = inject(ViewContainerRef);
 @Input() loading = false;
 templateView: EmbeddedViewRef<any>;
 loaderRef: ComponentRef<LoaderComponent>;

 ngOnInit() {
 this.templateView = this.templateRef.createEmbeddedView({});
 this.loaderRef = this.vcRef.createComponent(
 LoaderComponent,
 {
 injector: this.vcRef.injector,
 projectableNodes: [this.templateView.rootNodes],
 },
);

 this.loaderRef.setInput('loading', this.loading);
 }

 ngOnChanges() {
 this.loaderRef?.setInput('loading', this.loading);
 }
}

Now we can use this directive if we want to apply dynamic loading anywhere instead of
nesting the original component:

<p *loading="isSomeContentLoading">
 Some content

 Some other content

 <p *loading="isEvenMoreLoading">
 Even more content
 </p>
</p>

This reduces the complexity of the template significantly and improves readability.
Now one might ask: why don’t we just write this.loaderRef.instance.loading =
this.isContentLoading;? Well, in this manner, we would set the property of the

Listing 4.9 Directive that dynamically renders projected content

Reference to the
template the structural

directive is applied to
ViewContainerRef
that will create and
render the dynamic
component

Reference to our dynamically
created LoaderComponent

Creates the component

Passes the template
as content to the
dynamically created
LoaderComponent

The most important
part: passing the input
property “loading” to
the LoaderComponent

86 CHAPTER 4 New capabilities of Angular building blocks

instance class, but it won’t immediately trigger a change detection run and also will work
outside of the component life cycle, meaning if, for instance, the LoaderComponent
implemented the ngOnChanges method, it would not have been called. The setInput
method mitigates this problem and is a powerful tool when dealing with dynamic
components.

 Finally, let us talk about passing inputs to dynamic components in the template.
Let’s review a scenario in the “recruitment” feature: we have a list of candidates for
hiring that the user can see and then navigate to the details page of a given candidate.
On that page, they can see the general information about the candidate, their CV, and
so on. The candidate has a status, which can be “Pending CV review,” “Pending inter-
view,” “Pending evaluation,” “Rejected,” or “Waiting for onboarding.” For each of
these scenarios, under the candidate’s general information, we can see a different sec-
tion; for instance, for “Pending CV review,” we will see an EvaluateCVComponent
where we can write a description and approve or reject for an interview, for “Pending
Interview” we can see an InterviewPreparationComponent where we can add ques-
tions we want to ask during the interview, for “Rejected” we can see a RejectionLetter
component where we can detail reasons for rejection, and so on.

 Also, in some cases, we might not only depend on the status of the candidate but
some other information; for example, in the case of an “Approved” status we might also
want to check if the candidate also accepted the company’s offer and only then show the
OnboardingPreparationComponent and so on. This logic might be a bit too complicated
for a simple *ngSwitch in the template, so we prefer to use the *ngComponentOutlet
directive and dynamically choose the component we want in the TypeScript code of the
CandidateDetailsComponent. Let’s see how that works in action.

@Component({
 selector: 'app-candidate-details',
 template: `
 <div class="candidate-details">
 <div>
 <h2>{{ candidate.firstName }} {{ candidate.lastName }}</h2>
 <p>Email: {{ candidate.email }}</p>
 <p>{{ candidate.position }}</p>
 </div>
 <ng-container *ngComponentOutlet="actionsSection">
 </ng-container>
 </div>
 `,
 standalone: true,
 imports: [NgComponentOutlet],
})
export class CandidateDetailsComponent implements OnChanges {
 @Input() candidate!: Candidate;
 actionsSection: Type<any> | null = null;

 ngOnChanges(changes: SimpleChanges): void {

Listing 4.10 Dynamic component via NgComponentOutlet

Dynamically loads a component
using NgComponentOutlet

Candidate data
is received
from a resolver
via an input.

The reference to the component
we will choose to render

874.1 Powerful inputs

 if (changes['candidate']) {
 this.actionsSection =
 this.selectActionsComponent();
 }
 }

 private selectActionsComponent(): Type<any> {
 switch (this.candidate.status) {
 case 'CV evaluation':
 return CvEvaluationComponent;
 case 'Interview preparation':
 return InterviewPreparationComponent;
 case 'Interview Feedback':
 return InterviewFeedbackComponent;
 case 'Rejected':
 return RejectionLetterComponent;
 case 'Approved':
 return this.candidate.offerAccepted
 ? OnboardingPreparationComponent
 : CandidateFinalizationComponent;
 default:
 throw new Error(`Unknown candidate status:

${this.candidate.status}`);
 }
 }
}

As we can see, this is something we already did in chapter 2. However, there is a new
concern: how will this component know which candidate they are working with? We
need a way to send the reference to it to the child component, but as we rendered it
dynamically, without explicitly calling them in the template, it seems like this is impos-
sible! However, from Angular v16.2, there is a new way of passing inputs to compo-
nents dynamically rendered using *ngComponentOutlet. Let’s see how we can amend
this; in our case, all of the components that can be rendered receive an input called
candidateId. We can do this by passing a record as a second parameter for the
*ngComponentOutlet directive named inputs:

<ng-container *ngComponentOutlet="actionsSection; inputs: {candidateId:
candidate.id}"></ng-container>

Using this, we can easily pass any data we need from parent to child, even if the com-
ponent is rendered dynamically. Note that right now the implementation is not type-
safe, so it fully relies on spelling the inputs out correctly, but other than that, we see
no downsides and a new, improved way of intercomponent communication.

 We have seen component inputs grow to become more robust and cover many
more cases and components become simpler and more powerful than ever because
of this. Now it is time to address the second most important building block in
Angular, the directives, and see how they improved and what new capabilities they
have acquired.

When the candidate
data arrives, chooses the
component to render

Actual logic of
determining which
component to render

88 CHAPTER 4 New capabilities of Angular building blocks

4.2 Host directives
New adopters of Angular often hear a phrase like this: “A component is a directive
that has a template.” If we take this as a given (which it is, to an extent), we can say the
converse is also true to an extent: “A directive is a component without a template.”
This makes perfect sense, as directives are intended to work with individual DOM
nodes and do not require a template, so the absence of the template does not exactly
sound like a problem. However, if we analyze how we write components and try to
apply the same to directives, we will see that the absence of the template in the case of
directives poses a certain limitation.

 With components, we can use the template to invoke other components, meaning
we can compose simpler components into larger ones. With directives, we can add a
piece of template wherever the directive was called or manipulate the DOM in the
case of structural directives, but if we want to add some other directives when our
directive is called, we run out of options. Sometimes several directives are often used
together, and it makes perfect sense to us to be able to create a parent directive that
will call the other ones, instead of constantly spelling them out, or if we have a direc-
tive that uses the functionality of another directive while adding some of its own; but
again, there was no real and official way of doing this.

 The good news is, starting from Angular v15, a new concept of host directives has
been added to the framework that allows us to add directives to another directive
when the latter is applied. Let us see it in action.

4.2.1 Extending existing directives

Let us consider the following scenario: on many pages, we show links to individual
employees’ details page. We want to provide lots of information in a meaningful
way. So we think it would be nice if the user knows beforehand if the employee is
currently available or is, say, on vacation. Maybe links to employees that are not
available are grayed out, indicating we probably should not bother them. Of course,
we can write a global CSS class, say, .not-available, which will gray out the text,
and use the ngClass directive to switch it on and off depending on the employee’s
availability status.

 This sounds good, but this solution is not very scalable. First, we would need to
find all links (<a> tags with a [routerLink]) in our applications that point to the
employee details page, then pull the employee data in the parent component, and
finally apply the ngClass directive to it with the relevant class. This means lots of
manual work, but even worse, we would need to keep doing this any time we put a
link to an employee’s page somewhere. This has the potential for lots of problems
down the line. To avoid this, we will use the host directives feature to automatically
add the ngClass directive and pass the inputs to it. Let us author this new directive
in the src/app/shared/directives/employee-not-available.directive.ts file and see how
it works.

894.2 Host directives

@Directive({
 selector: 'a[routerLink]',
 hostDirectives: [NgClass],
 standalone: true,
})
export class EmployeeNotAvailableDirective implements AfterViewInit {
 private readonly ngClassRef = inject(NgClass);
 private readonly routerLinkRef = inject(RouterLink);
 private readonly employeeService = inject(EmployeeService);

 ngAfterViewInit() {
 if (
 this.routerLinkRef
 .href!.startsWith('/employees/details')
) {
 const employeeId = this.routerLinkRef
 .urlTree?.root.children['primary']
 ?.segments.at(-1)?.path;

 if (employeeId) {

this.employeeService.getEmployee(+employeeId).subscribe(employee => {
 this.ngClassRef.ngClass = {
 'not-available': !employee.isAvailable
 };
 });
 }
 }
 }
}

As seen here, it becomes very simple to combine directives and use them in other direc-
tives. Next, let’s see how we can combine multiple and automatically pass inputs to it.

4.2.2 Using multiple directives and adding inputs

Let’s say we have a tooltip directive that adds a specific message to an element that will
be shown on hover. Let’s improve our directive by adding this directive and showing a
default message saying “Employee is not available.” This should not be a problem with
the knowledge we already have:

hostDirectives: [NgClass, TooltipDirective],

Then what is left is to assign the tooltip value:

this.tooltipRef.tooltip = employee.isAvailable ? '' : 'Employee is not
available';

This solves our problem, but what if we want to be able to provide a way for the user
to show a custom tooltip in certain scenarios, instead of “Employee is not available”?

Listing 4.11 Using a host directive to add an NgClass directive on some RouterLinks

Applies the directive to all the <a>
elements that have a routerLink

Adds NgClass as a host directive to
the EmployeeNotAvailableDirective

Obtains references to the NgClass
and RouterLink directives

Checks if the link points to
the employee details page

Gets the id of the employee
from the route path

Adds or removes the class based
on the employee’s status

90 CHAPTER 4 New capabilities of Angular building blocks

Of course, we could declare an optional tooltip input on our EmployeeNotAvailable
Directive and then implement an ngOnChanges method on it and pass the input
down the line using the tooltipRef. This approach, however, is very tedious and in
the case of multiple inputs will quickly become unmanageable. But what if we could
just tell Angular to pass the input from the EmployeeNotAvailableDirective
directly to the TooltipDirective? It turns out there is a special syntax to achieve
precisely that:

hostDirectives: [NgClass, {directive: TooltipDirective, inputs:
['tooltip']}],

Instead of manually doing all the work of passing the data through, we can just
declare that we are using the input from the TooltipDirective, and Angular will act
as if EmployeeNotAvailableDirective itself has that input and will pass the value to
TooltipDirective automatically. Also, notice that, despite the “magic strings,” this is
safe and Angular will not allow using properties that do not exist on the Tooltip-
Directive or are not marked as inputs. The same approach can be used to automati-
cally pass directive outputs the opposite way. Now let us go a level deeper and learn
what caveats to expect when dealing with host directives.

4.2.3 Things to know when using host directives

As we have seen, host directives are pretty simple, but there are several things we need
to consider when using them. Let’s examine those next.

USAGE SPECIFICS

Host directives can be used only when the hosted directives in question are stand-
alone. The child directives themselves need to be declared as standalone and cannot
be a part of a NgModule. The directive that hosts, however, does not have the same con-
straint and can be either standalone or not. This is a big limitation if we work with
applications that have not yet transitioned to standalone. Currently, there is no way to
mitigate this other than to convert the directives to standalone.

 Another thing to keep in mind is that we can host directives not only on other
directives but also on components (which also need to be standalone). Any compo-
nent will be able to have a hostDirectives option in its metadata. In case of adding
host directives to a component, the directives will be automatically applied to the host
element of the components, as follows:

<my-component hostDirective1 hostDirective2></my-component>

Note that this is just a visualization; in reality, Angular does not explicitly put the direc-
tive name and just executes the functionality of it, ignoring the selectors of the host
directives. Everything else will work in the same fashion as with applying host direc-
tives to another directive.

914.2 Host directives

HIERARCHY AND EXECUTION ORDER

To understand how this whole thing functions, we first need to keep in mind that host
directives are applied during compile-time, not run-time, meaning they are static and can-
not be applied dynamically later on, posing another limitation. In our example, when
the EmployeeNotAvailableDirective uses NgClass, Angular first creates the instance
of the host directives like NgClass, then the EmployeeNotAvailableDirective; then it
passes the inputs to hosted directives and the EmployeeNotAvailableDirective receives
its inputs and host bindings. This order ensures that parent components and direc-
tives can override the host directive’s inputs and host bindings.

As we have seen, we are able to inject references to the host directives. In another
dependency injection-related concern, if both the component/directive that has host
directives and the host directives themselves provide the same token, the former will
take precedence, meaning parent providers are where the children will look for their
dependencies initially.

PERFORMANCE CONCERNS

We should be careful with host directives, especially when using them in directives
that can match a lot of elements in our DOM tree. As we saw, every time the directive
is matched, instances for all host directives are created, which can cause memory leaks
in specific scenarios. For instance, if we apply the EmployeeNotAvailableDirective
to a large table of employees, we could potentially see hundreds of Tooltip and
NgClass directives, which can affect performance. Extra care should be applied when
dealing with directives that have multiple host directives and those that have many
RxJS subscriptions. Remember to unsubscribe properly and to not subscribe to sources
that emit lots of values frequently. Use the memory profiler tool in the developer con-
sole to make sure there are no memory problems.

Angular creates the instance of the host directives like NgClass.

Angular creates the instance of the EmployeeNotAvailableDirective.

Angular passes the inputs to hosted directives.

The EmployeeNotAvailableDirective receives its inputs and host bindings.

Figure 4.1 Steps Angular undertakes when applying a host directive

92 CHAPTER 4 New capabilities of Angular building blocks

 Host directives are a powerful tool, and now we are equipped to use them in our
applications. Let’s pivot back to components for now and see what improvement
Angular has in store for those who use reactive forms.

4.3 Type-safe reactive forms
Reactive forms have always been one of the most popular features of Angular. Because
they are easy to set up, have built-in validations, and are extensible and composable,
they have been a choice for multitudes of Angular developers worldwide. They, how-
ever, are not without their own problems, including the fact that they are not type-
safe. Let’s first see how this can negatively affect our developer experience.

4.3.1 Downsides of using untyped forms

Let’s start by building a simple CreateEmployeeComponent in the file named src/app/
pages/employees/create-employee.component.ts and observing what problems will
arise. Let us also imagine for a minute that we are using Angular v13 rather than the
current version to really see the difference.

export class CreateEmployeeComponent {
 private readonly employeeService = inject(EmployeeService);
 form = new FormGroup({
 firstName: new FormControl('', Validators.required),
 lastName: new FormControl('', Validators.required),
 emali: new FormControl('', [Validators.required, Validators.email]),
 position: new FormControl('', Validators.required),
 level: new FormControl('', Validators.required),
 });

 submit() {
 if (this.form.valid) {
 const employee = this.form.value;
 this.employeeService.createEmployee(employee);
 }
 }

}

With Angular prior to version 14, when typed forms were introduced, the this.form
.value would be typed as any, meaning even with the typo we could pass the value and
the service method will accept it, make the call, and get a (possibly quite cryptic)
error from the backend, resulting in time spent trying to debug this. Furthermore,
accessing form control properties in the template is also both boilerplate-ish and
time-consuming as we get no IDE autocomplete:

form.controls['email']

Listing 4.12 Using an untyped reactive form

Notice we intentionally
made a typo.

934.3 Type-safe reactive forms

This becomes more tedious if we have nested forms. For example, if we create the
AddProjectComponent, in it our form will have a FormArray of subprojects, which in
turn are FormGroups, meaning accessing them will become something like the following:

form.controls['subprojects].at(i).controls['name']
To amend this, Angular introduced the get method, which allows us to express

these forms of control access in the following way:
form.get('subprojects.' + i + '.name')

This solves the problem, but it still looks a bit ugly and relies on magic strings again.
Moreover, as this.form.value returns any, it also overlooks the fact that, even with
validations, we cannot guarantee that all fields are filled in—a fact that developers
often overlook, resulting in more hard-to-find bugs. So what’s the solution?

4.3.2 Introducing type-safe forms

If we actually wrote the component in listing 4.12 in our HRMS application, we
would immediately notice many errors. This is because, from Angular v14, reactive
forms infer the type of the value they have, meaning the form controls we declared
when creating our forms get represented as an actual TypeScript type, rather than
any, with all the fields like name, position, and so on in place. For instance, in this
very example, if we get back to the reality of Angular v16+, we will immediately get
an error:

Argument of type 'Partial<{ firstName: string | null; lastName: string |
null; emali: string | null; position: string | null; level: string | null;
}>' is not assignable to parameter of type 'Employee'.
 Type 'Partial<{ firstName: string | null; lastName: string | null; emali:
string | null; position: string | null; level: string | null; }>' is
missing the following properties from type 'Employee': id, email,
isAvailable

While this seems somewhat confusing, in reality this error just notifies us that the reac-
tive form’s value is only Partial, meaning TypeScript thinks that any of the fields
could possibly be absent. This makes sense because, even with validations, there is no
clear guarantee that the values will be there (we could theoretically access the form’s
value before the user fills in the necessary data). However, because we already checked
the form’s validity in the if statement and all the fields have “required” validators, we
can safely assume that all fields are present and just do the following:

submit() {
 if (this.form.valid) {
 const employee = this.form.value as Employee;
 this.employeeService.createEmployee(employee);
 }
 }

We can type-cast the
form’s value because we
are sure it complies with
the “Employee” type.

94 CHAPTER 4 New capabilities of Angular building blocks

Now we have a nice working thing, but what about the typo? We can type-cast to
Employee, and TypeScript will just go with it, but the problem is still there! It turns out
that when we try to use the fields in the template, we will get a nice error message:

<input type="text" placeholder="Email" [formControl]="form.controls.email" />

This code, where we correctly used the “email” name without a typo, will immediately
throw an error:

Property 'email' does not exist on type '{ firstName: FormControl<string |
null>; lastName: FormControl<string | null>; emali: FormControl<string |
null>; position: FormControl<string | null>; level: FormControl<...>; }'. Did
you mean 'emali'?

This allows us to quickly discover the typo and fix it. Another benefit is we do not have
to use index notation (form.controls['email']) to access controls but rather the dot
notation, which is arguably somewhat more readable. Also, if we had nested form con-
trols, like the subprojects we mentioned, we can now just access them directly, without
using the form.get method: form.controls.subprojects.at(i).controls.name.
These are all very important developer experience improvements, but let’s also consider
that adding TypeScript into the equation usually means more work down the line. Let’s
see how it affects us here.

4.3.3 Common pitfalls when working with type-safe forms

If we pay closer attention, we will notice that we have already encountered one of the
complications—mainly that FormGroup by default returns a partial of the type that our
form has. In general, we will see that all the problems that arise here are in some way or
other connected to having null-ish values. For example, if we use the FormBuilder utility
to create our FormGroups, it will also have forms with values that are nullable. If we refac-
tor our code to use FormBuilder, we will have the option to create a nonnullable form:

private readonly formBuilder = inject(FormBuilder);
form = this.formBuilder.nonNullable.group({
 firstName: new FormControl('', Validators.required),
 lastName: new FormControl('', Validators.required),
 email: new FormControl('', [Validators.required, Validators.email]),
 position: new FormControl('', Validators.required),
 level: new FormControl('', Validators.required),
});

However, the name nonNullable is a bit misleading. The problem is that the non-
nullable FormBuilder only deals with null-ish values—for instance, when calling
form.reset(), all values can become null. The nonnullable does not in any way
affect the possibility of having undefined as a value, which should also be checked.
However, using the nonNullable FormBuilder is a good practice for all forms that we
definitely know cannot contain null values.

954.3 Type-safe reactive forms

 Another kind of trap can be the ability to provide a generic type for the form. We
can do this as follows, instead of relying on type inference:

type EmployeeForm = {
 firstName: FormControl<string>,
 lastName: FormControl<string>,
 email: FormControl<string>,
 position: FormControl<string>,
 level: FormControl<string>,
}

form = new FormGroup<EmployeeForm>({
 firstName: new FormControl('', {nonNullable: true, validators:

[Validators.required]}),
 lastName: new FormControl('', {nonNullable: true, validators:

[Validators.required]}),
 email: new FormControl('', {nonNullable: true, validators:

[Validators.required, Validators.email]}),
 position: new FormControl('', {nonNullable: true, validators:

[Validators.required]}),
 level: new FormControl('', {nonNullable: true, validators:

[Validators.required]}),
});

This is probably the best way to approach type-safe forms, but it introduces the possi-
bility of forgetting to set the {nonNullable: true} option and possibly then still send-
ing a null-ish value to the server, for instance.

 However, despite the mentioned pitfalls, type-safe forms represent a superior way
of dealing with forms in general, and if we are using reactive forms (rather than
template-driven ones), we should consider switching to the type-safe alternative. Let’s
see how it can be done.

4.3.4 Migrating to type-safe forms

If we use Angular v13 or prior and use the CLI upgrade command, it will automati-
cally switch our FormGroups to UntypedFormGroups and UntypedFormControls. Those
are special classes that work the same way the usual FormGroup and FormControl
classes did before switching to type-safety. Using those classes will produce no type-
related errors, meaning our codebase will continue functioning the same way it did
previously. From this point, we should manually update our forms one by one to
become type-safe. This is mostly mechanical work but will produce no breaking prob-
lems in our code itself. Rather, every time we switch a form, we can run the build and
fix type errors (if they arise, which is quite possible).

 While we are on the topic of reactive forms, let’s also address one small but effec-
tive addition to forms in Angular.

4.3.5 Form events

If you have worked with forms in the past, you know that any reactive FormControl
provides several observables that emit notifications about the changing state of the

96 CHAPTER 4 New capabilities of Angular building blocks

form. For instance, valueChanges emits when the value of the form changes (either
by user input or programmatically), and statusChanges emits when the validity of the
form control changes (for instance, it becomes valid as the user types in a required
field). However, there was no way of running some general side effects on any event.
For example, we might want to notify a parent component about the change of the
form (this is especially useful if we are implementing the ControlValueAccessor
interface to build a custom form control component), and to do this, we might be
forced to do some magic with RxJS:

merge(this.form.valueChanges, this.form.statusChanges).subscribe(() => {
 // perform some logic here
});

However, in v18, a new property called events has been added to all FormControls
(including FormGroup and FormArray). Essentially, events is an combined observable
that emits every time the control changes its value, validity, or dirty status. We can sub-
scribe to it in the same way we did with distinct event observables:

this.form.events.subscribe(() => {
 // perform some logic here
});

If we want to, we can also differentiate between different events using the instanceof
operator:

this.form.events.subscribe((event) => {
 if (event instanceof StatusChangeEvent) {
 // perform logic here
 }
});

While the change itself is small, it can be very impactful for highly dynamic applica-
tions, where multiple events are used to propagate data through the app. It is also
worth noting that previously available observables are still available and will continue
working in the same way as always, so this change is nonbreaking.

 Now that we’ve covered a lot of developer experience improvements, let’s take a
slight detour and discuss what runtime performance improvements Angular has in
store for us.

4.4 NgOptimizedImage
Putting images on web pages is one of the first exciting things we developers learn to
do. In Angular, so far, it always came down to just putting an tag somewhere in
our template. However, with large applications that serve thousands of people with
huge pages, it becomes very important to improve loading time. One useful metric
here is the Largest Contentful Paint (LCP), which is the render time of the largest
image or text block visible within the viewport (visible part of the user’s screen), start-
ing from when the page began loading.

974.4 NgOptimizedImage

 This metric allows us to understand when the user first sees a meaningful visual
representation on the page and is a better metric than, say, checking for the DOM
tree to be loaded, because the DOM tree might contain lots of images, which will need
to be loaded next for the user to see the actual contents. Another concern is the
responsiveness and the correct representation of images; for instance, we do not want
them to appear distorted, which usually happens when the width and height of images
we set do not correspond to the actual image’s aspect ratio. Let’s see how Angular
helps us address those things.

4.4.1 Adding lazy loading and remembering to set width/height

We will go back to the EmployeeListComponent we created in chapter 2 and add user
profile pictures to the table next to users’ full names. We will do so using the new
NgOptimizedImage directive Angular provides from v15, which will help us answer all
the questions we raised in this section. It is worth mentioning that this new directive
has also been backported to some earlier versions and is available even if we use Angu-
lar v13. The directive is standalone, so we pretty much just need to add it to the
imports array of the components and use it as shown in the following listing.

<tr *ngFor="let employee of employees$ | async">
 <td>
 <img
 [ngSrc]="employee.profilePicture"
 width="20" height="20"/>
 <a [routerLink]="['/employees/details', employee.id]">
 {{ employee.firstName }} {{ employee.lastName }}

 </td>
</tr>

If we now open the component in the browser and look at the resulting HTML in the
developer console, we will see the following:

<img width="20" height="20" loading="lazy" fetchpriority="auto" src="path-to-
profile-picture">

Note that now all the images are marked with loading="lazy" and fetchpriority=
"auto". Lazy loading essentially means what we might think it means: the image won’t
be loaded unless the user navigates (using scrolling or in some cases opening a closed
element) in a way that brings it to the viewport. fetchpriority indicates how “fast”
the image should load when compared to the other images on the page. We can set
this priority to be high or low, while auto, the default setting, means the browser itself
will decide which images to load first. These two attributes are very important for
improving the performance of the page, especially the LCP metric.

Listing 4.13 Using the NgOptimizedDirective

Uses ngSrc instead of src to
utilize the NgOptimizedDirective

This directive
requires us to
provide width and
height for the image.

98 CHAPTER 4 New capabilities of Angular building blocks

4.4.2 Prioritizing image loading

Now let’s examine the next use case: as the user now has a profile picture, it will make
sense to also put it in the user’s details page, to which we can navigate from the
EmployeeListComponent. Again, we are going to use the NgOptimizedImage directive,
but this time, we have an important concern: there will be multiple images on the page
(for instance, all the logos of all the projects the user is enrolled in) and the one main
profile picture. We want the profile picture to load first, to show the users exactly what
the page is about. Thankfully, now we can achieve this in a very simple fashion:

<img [ngSrc]="employee.profilePicture" width="50" height="50"
[alt]="employee.firstName" priority />

The priority input property will tell the NgOptimizedImage to put a high fetchpriority
on this particular image, resulting in fast loading time and an improved LCP metric.
While we can possibly put the priority property on multiple images on one page,
doing so is discouraged, as it would result in performance tanking again. Instead, we
should try to determine which image(s) constitute our LCP and focus on improving
that specifically. For better dynamics, we do not even need to set the priority on “low”
for the ProjectCardComponent, so that those images definitely do not interfere with
LCP, because having one prioritized image will already tell the browser how to deter-
mine which to load first. If we want those images to be loaded immediately (even
when not in the viewport), we can just set the loading input:

This way, the default lazy setting will be overridden. Now let’s see how we can further
optimize and customize the way our images are loaded.

4.4.3 Srcsets and image loaders

Sometimes we want the websites we build to be better accessible on mobile devices.
For instance, with the HRMS tool, we want employees to be able to see the application
in a responsive way when they open it on mobile phones, without the need for down-
loading an additional dedicated app. While CSS helps us accomplish most of this,
images often stand in our way. On large pages, some images may look fine, but when
switching to mobile, they might distort, or only a (wrong) part of it may become visible.

 A common practice to combat this problem is having multiple versions of the same
image, each fitting a specific viewport size, and letting the browser choose a version
that best fits the current viewport size. For instance, in the ProjectDetailsComponent,
we might want to display a large cover photo of the project with the logo and addi-
tional information and for smaller screens, only the logo. This can be done via the
srcset and sizes attributes, but with NgOptimizedDirective we can just put the sizes
we prefer and it will generate the srcset automatically for us:

<img [ngSrc]="project.image" width="100" height="100" loading="eager"
sizes="100vw, 50vw"/>

994.4 NgOptimizedImage

Content delivery networks (CDNs) have also become very popular; they both provide
faster loading times and offer various improvements for better page responsiveness, in
addition to other advantages. Such CDNs can accept some parameters to determine
what transformations to apply to an image; for instance, an image URL might look
like “some-cdn.com/https:/ /other-site.com/image.jpg/quality=low,” where the CDN
takes a picture from elsewhere, makes it low quality for a slower connection, and
returns it to our application that requested it.

 Several other image parameters can be sent via the query params, and because
most popular CDNs have specific API contracts for these parameters, Angular now
provides built-in loaders for four of them. To use a custom CDN, we first need to add a
preconnect link into our application HTML’s head. We can do this with just one line
of code:

<link rel="preconnect" href="https://my.cdn.origin" />

This will ensure that the LCP image will load as fast as possible, due to the connection
being established in the early stages of loading the page. If we do not set this, the
NgOptimizedImage directive will show a warning pushing us to provide the preconnect
link. Next, we need to provide the loader in our application’s app.config.ts file; for
example, we can add the built-in Imgix loader with the base URL of our own:

providers: [
 provideImgixLoader('https://my.base.url/'),
],

By default, Angular provides built-in CDN loaders:

 Cloudflare Image Resizing
 Cloudinary
 ImageKit
 Imgix

All of these loaders will transform attributes of our images (like width, height, and so
on) into a URL that has the previously mentioned query params to then load the
image from the respective CDN. However, if we use none of the built-in CDNs, and
instead rely on another one, we can provide a custom loader manually:

providers: [
 {
 provide: IMAGE_LOADER,
 useValue: (config: ImageLoaderConfig) => {
 return `https://another-

cdn.com/images?src=${config.src}&width=${config.width}`;
 },
 },
],

100 CHAPTER 4 New capabilities of Angular building blocks

The ImageConfig interface will contain the width and src of the image and also an
additional loaderParams property that can have any keys from the img tag that uses
this loader, which might be specific for our CDN.

 Finally, let us talk about several other, relatively minor but still very useful improve-
ments in the latest versions of Angular.

4.5 Other improvements
Apart from the major, revolutionary changes (some of which we have already dis-
cussed), the Angular team also added a couple of smaller tweaks that might help sim-
plify our development life. Let’s now briefly discuss those minor changes.

4.5.1 Self-closing component tags

As opposed to other popular frameworks like React, in Angular templates to invoke
other components we needed to provide both opening and closing tags, even if the
component did not have any projected content, resulting in lots of unnecessary code.
A typical template could look like the following:

<some-component></some-component>
<another-component></another-component>
<yet-another-component></yet-another-component>

With multiple components in the same template, this could quickly get out of
hand. However, from Angular v15, the framework allows us to have self-closing
component tags (if the component has no projected content). The same template
will look simpler now:

<some-component/>
<another-component/>
<yet-another-component/>

The method of adding content to be projected into a component remains the same.

4.5.2 Fetch-based HttpClient

One of the most well-known tools Angular provides, the HttpClient service, has previ-
ously utilized the old XMLHttpRequest API to make HTTP calls. This caused problems
when running Angular in NodeJS environments (like server-side rendering in an
Express app with Angular Universal), as NodeJS does not have an implementation of
XMLHttpRequest and instead uses fetch starting from Node v18. Angular used a spe-
cial polyfill for it, but the polyfill had some undesirable side effects, and also it would
be way better to use the latest native implementation. Now we can opt-in to use fetch
under the hood by a single line of code in app.config.ts:

provideHttpClient(withFetch())

1014.5 Other improvements

Note that this does not in any way change how we use the HttpClient; all the methods
continue to work in the same fashion as previously. However, if we ran into problems
with server-side rendering due to the polyfill, we can now forget about those problems
using this approach.

4.5.3 Support for default export components in routing

When lazy loading components, we usually import the component’s file dynamically
and use a callback to extract the component itself and provide it to loadComponent, as
we have done in chapter 2. Nowadays it can be simplified by making the component’s
class its files default export and then just dynamically importing only the file itself. For
instance, here we have some component that is a default export in a file named
some.component.ts:

@Component({
 selector: 'app-some',
 standalone: true,
 templateUrl: 'some.component.html',
})
export default class SomeComponent {}

We can now simplify its lazy loading:

const routes = [
 {path: 'some', loadComponent: () => import('some.component')},
];

While this is a small change, and it is sometimes debated whether default exports are
preferable in general, the ability to do this is a minor improvement.

4.5.4 Improved error messages

Error messages have long been a pain point for Angular developers. Because Angular
runs in the context of zone.js, error messages have very messy stack traces, showing
different callbacks from the Zone context and making it hard to understand which
function called the other. A typical error message in older versions of Angular looked
something like the following:

ERROR Error: Uncaught (in promise): Error Error

at app.component.ts:18:11 at Generator.next (<anonymous>)
at asyncGeneratorStep (asyncToGenerator.js:3:1)
at next (asyncToGenerator.js:25:1)
at _ZoneDelegate.invoke (zone.js:372:26)
at Object.onInvoke (core.mjs:26378:33)
at ZoneDelegate.invoke (zone.js:371:52)
at Zone.run (zone.js:134:43) at zone.js:1275:36
at _ZoneDelegate.invokeTask (zone.js:406:31)
at resolvePromise (zone.js:1211:31)
at zone.js:1118:17
at zone.js:1134:33

102 CHAPTER 4 New capabilities of Angular building blocks

As we can see, these stack traces are not very informative, and they are shrouded by
multiple zone-related callbacks. However, from Angular v15, these stack traces have
been improved and filtered, to deliver the best developer experience, and now look
like the following:

ERROR Error: Uncaught (in promise): Error

Error
at app.component.ts:18:11 at fetch (async) at (anonymous)

(app.component.ts:4)
at request (app.component.ts:4)
at (anonymous) (app.component.ts:17) at submit (app.component.ts:15)
at AppComponent_click_3_listener (app.component.html:4)

Now we can clearly see the sequence of steps that lead to the error, the event that
started it, the callback that handled the event, and the HTTP call that caused it in the
end. This is arguably one of the best “silent” improvements in Angular’s developer
experience and will save lots of time and energy when dealing with bugs.

4.6 Exercises for the reader
 Build a UserBadgeComponent that displays a specific icon (admin, employee,

HR team) next to the user’s profile picture. It receives the user’s data as input
and transforms it into the CSS class of the corresponding icon.

 Build an UnlessDirective that hosts NgIf but uses a negated condition.
 Build a custom image loader that adds a specific “quality” query parameter

depending on the user’s preference (stored in localStorage). Quality can be
low, normal, high, or ultra.

 In an existing project (you can use our HRMS application if you have been cod-
ing along with the book), refactor the templates to use the self-closing compo-
nent tags.

Summary
 We can now mark inputs as required, transform their values before setting on

component properties, and bind routing data (query parameters, path parame-
ters, resolved data) to them.

 It is now possible to compose directives using the new hostDirectives metadata
option, adding existing directives to new ones, and pass inputs/outputs to them.

 Angular reactive forms are now type-safe, where types could both be inferred
from the form definition or provided explicitly.

 A new NgOptimizedImage directive is available to boost image loading perfor-
mance, mark its priority, or seamlessly integrate with CDN providers.

 Angular now provides the ability to use the fetch function as basis for HTTP
calls rather than XMLHttpRequest.

 In templates, we can now use self-closing tags instead of writing out the closing
tag in its entirety.

103

RxJS in modern Angular

So far in this book, we have built many features using the different tools that Angu-
lar provides. We have already interacted with RxJS several times, mainly when mak-
ing HTTP calls and handling them in interceptors. However, we can safely say that
this is only a tiny part of all the capabilities that RxJS can give us when we are devel-
oping frontend applications. In this chapter, we are going to learn about reactive
programming and explore RxJS, the first-choice tool for working in this paradigm,
its complex (and sometimes sadly overengineered) relationship with Angular, and
learn how new modern tools provided by the Angular team help us integrate RxJS
seamlessly into our Angular applications. First, let’s understand what RxJS is used
for, and what is this “reactive programming” we keep hearing about all the time.

This chapter covers
 Reactive programming principles

 Using RxJS to build functionality that uses
reactive programming

 Unsubscribing from observables in a new way

 Using dependency injection in custom RxJS
operators

104 CHAPTER 5 RxJS in modern Angular

5.1 What is reactive programming?
To understand reactive programming, let us first understand how frontend in general
works. With Angular, we know that an app is basically a collection of interconnected
components. Each of these components takes some data, renders some UI, and then
reacts to events from that UI (let’s emphasize the word “react” here). Take this most
basic of examples, a component that shows a counter, where we can increment or dec-
rement a number, shown in the following listing.

@Component({
 selector: 'app-counter',
 template: `
 <button (click)="decrement()">-</button>
 {{ count }}
 <button (click)="increment()">+</button>
 `,
})
export class CounterComponent {
 count: number = 0;

 increment() {
 this.count++;
 }

 decrement() {
 this.count--;
 }
}

Here, the “data” is the count property, which can be changed
in the future. From now on, we refer to this data as “state,” as
this is the most popular naming convention when dealing
with this particular terminology. So the state is essentially all
the data we use to show the UI. The UI is the template we cre-
ated. Notice we used our state to display a part of this UI:
{{ count }}. Finally, we have event handlers like increment()
and decrement(), which we bound to “click” events. Thus the
life cycle of our component can be described with a very sim-
ple diagram, shown in figure 5.1.

 The dotted line in the figure indicates that events are what
change the state (which further triggers changes in the UI).
Notice that the state is the single source of truth here (to
change UI we need to change the state), and the state itself
can only be changed via (asynchronous) events. These desig-
nations are not very consequential for us right now but will become very important in
the future when we discuss change detection in Angular. What is actually important is

Listing 5.1 Counter component example

UI

State

Events

Figure 5.1 Life cycle
of a component

UI

State

Events

1055.2 Why we (still) need RxJS

that we have a system where we react to changes in a “chaotic” manner, as we do not
call the methods we defined ourselves but rather pass them to event handlers so that
they can be called later, meaning we “react” to events. Let’s further explore this dis-
tinction and introduce two new (rather simple) terms. Take the following code, for
example:

const data = getData();
alert(data)

Now this isn’t very meaningful, but it does not have to be. We call a function, get a
result, and then alert it. This is what we would call a “pull” system; we need some data
that is “stored” elsewhere, so we call a function and pull this data. We, as developers,
get the data on demand, whenever we need it in the code, and then work with it. Now
let’s look at this piece of code:

document.addEventListener('click', event => alert(event))

Here, however, we can see something that is called a push system: we wrote some
code, but it will not execute until the event listener pushes an event in our direction
and calls the callback function we provided. In this scenario, we do not make any
demands for the data we (might) work with and rather wait for another actor (the
“click” events in this case) to send the data to us.

 We might be tempted to equate pull-based systems to synchronous code and push-
based systems with asynchronous code, and in a vast number of scenarios this will be
the case, but practically, there is nothing that requires a system to be asynchronous to
be push-based or vice versa (we can write asynchronous code with the async keyword
and from the code perspective it will be a pull-based system). Again, right now this dis-
tinction might not seem very important to us, but in the next chapter, when we learn
about signals, we will see how large of a difference this makes.

 So what does it have to do with reactive programming? Well, to keep everything
simple, reactive programming is essentially the parts of a codebase that work with
push-based systems, and instead of providing on-demand access to data, they handle
the data whenever it arrives. Essentially, if we go back to figure 5.1, for us reactive pro-
gramming represents the “events” part of the flow and how it affects the state and,
consequently, the UI.

 Let us now dive deeper and see why Angular uses RxJS for this, what the problems
are, and what the team offers as solutions to those problems.

5.2 Why we (still) need RxJS
As mentioned earlier (and as we probably already knew anyway), for Angular applica-
tions, the go-to solution for reactive programming problems is RxJS, the Reactive Exten-
sions library for JavaScript. This immensely popular library offers framework-agnostic
building blocks like observables, subjects, operators, and so on to work with streams of

106 CHAPTER 5 RxJS in modern Angular

events, which comes in handy when working on frontend applications. Angular uses
RxJS both internally (tools like the EventEmitter, for instance, are built using Observ-
ables) and externally (for example, the HttpClient returns an Observable for develop-
ers to use, or an async pipe is available for us to put Observables in the template).

 RxJS also provides a robust set of operators (over 100!), which allow us to manipu-
late, transform, and combine observables. In addition to the existing ones, we can also
define our own custom operators specific to our applications’ business logic, making
the library super flexible. All of these things make RxJS very appealing for frontend
developers, especially those working with Angular.

 So in what situations do we use RxJS? Of course, we use it when dealing with asyn-
chronous programming. As mentioned, Angular’s HttpClient already utilizes observ-
ables as its return values for HTTP call methods. Another important use case is
reacting to events originating from the framework; for example, when working with
reactive forms, we sometimes have to react to certain changes in form values—for
instance, disabling a certain input when the user selects a specific value on another
one. To do this, we use the valueChanges observable that reactive form controls have
and that signals changes to the value of the corresponding input.

 Finally, there is the most popular use case, which is quite surprising. While RxJS is
designed to work with streams of events, we often use it to represent state (that changes
over time). In fact, we have already encountered such a scenario. In chapter 3, list-
ing 3.4, we have created an isAuth$ subject, which represents both the state of the user
being authorized or not and the event of the change of that status. This is an example of
how state is shared between components, with a subject (or BehaviorSubject) stored in
some service while its value is read (and subscribed to) in multiple other components.
This is essentially how many popular state management libraries (NgRx, NGXS, and
others) work, building an ecosystem of data exchange on top of RxJS.

 All of this theoretical information will become very important to us in the next two
chapters when we discuss the new alternative way of dealing with state that changes over
time and Angular’s change detection. For now, we contextualized RxJS in Angular and
discussed problems it solves and why we need it; now we can move on to explore prob-
lems that arise when we write RxJS code. Let’s begin with the most popular one.

5.3 Unsubscribing from observables
As we discussed, the main characteristic of observables is the ability to subscribe to the
notifications they send. Subscribing involves providing a callback function or, often,
several callbacks, that will be executed on new notifications, on errors, and upon the
stream’s completion. However, the subscription itself involves storing references to
those functions in places of the memory that we do not have access to; in simple
terms, we can imagine that the observable stores the callbacks in a big array, and then
goes through it, invoking them when a new item arrives.

1075.3 Unsubscribing from observables

5.3.1 Why unsubscribe?

The problem is that we do not “see” the array, so there is no direct way to remove
some of the subscriber callbacks (or all of them). This can become a problem when
we no longer need the observable but subscriptions remain in place. We might even
remove the observable itself (for instance, assign a null to the only variable that holds
a reference to the observable, forcing it to be garbage-collected), but the subscription
will continue to work. Take a look at the following very simple example:

let obs$ = interval(1_000);
obs$.subscribe(console.log);
obs$ = null;

Even though we immediately removed the obs$ observable, the subscription will con-
tinue to work and execute a console.log call each second. Such subscriptions that con-
tinue to work after losing the reference to the observable are colloquially known as
“zombie” subscriptions, and they can potentially cause some serious problems. If we
accumulate enough zombie subscriptions, we might overextend the RAM memory
and end up with a memory leak. Also, from the UX perspective, we probably want to
stop some subscriptions when the user, for instance, leaves a certain page, so that we
can begin fresh the next time they visit that page.

 In Angular, we often subscribe to observables in pages that are routed (i.e., the
ones that have a route path pointed to them). Subscribing to some router-related
observables like queryParams, for example, can potentially cause problems. If we for-
get to unsubscribe from those observables, a user coming and going to that page’s
component several times can result in a memory leak.

5.3.2 Problems with unsubscribing

So how do we unsubscribe from observables? From the RxJS perspective, there are two
ways to accomplish this. The first one is done from the side of the subscription. The
subscribe method, which we use to subscribe to observables, returns a special subscrip-
tion object, which holds information about the subscription and has a method named
unsubscribe, which terminates that particular subscription. The following is a short
code example:

let obs$ = interval(1_000);
const subscription = obs$.subscribe(console.log);
subscription.unsubscribe();

This achieves our stated goal but is not very good in terms of code quality. In a given
Angular component, we can have multiple subscriptions, so we will have to create as
many unsubscriptions, resulting in code clutter. We can create one “master” subscrip-
tion, add all the others to it, and unsubscribe from the main one, but that still involves
quite a lot of code.

108 CHAPTER 5 RxJS in modern Angular

 The other approach is to come from the observable and make the stream itself stop
emitting values. This can be done with a family of operators named take, takeWhile,
and takeUntil. Of particular interest to us is the takeUntil operator, which takes
another observable and terminates the source one when the other one emits. In an
Angular component, developers often create a special destroy$ subject, then use take-
Until on all subscriptions, and finally trigger unsubscription in the ngOnDestroy
method. The following listing shows a short example.

export class AppComponent implements OnInit, OnDestroy {
 destroy$ = new Subject<void>();

 ngOnInit() {
 interval(1_000).pipe(
 takeUntil(this.destroy$),
).subscribe(console.log);
 }

 ngOnDestroy() {
 this.destroy$.next();
 }

}

Now this is a very clean and concise approach, so it is not surprising that it became the
most widely used solution to the “unsubscribe” problem. However, it still has some
(albeit minor problems). First, this code will be copy-pasted in multiple places and is
never related to business logic; it is only an implementation detail. Next, different
authors might give this observable different names (destroy$, destroyed$, onDestroy$,
and so on), resulting in confusion among developers reading the code. Finally, this is
just one approach; it isn’t official in any way and it can still be mixed with other
approaches, resulting in further confusion.

 Deciding when to unsubscribe is important. From the component perspective, we
usually resort to using ngOnDestroy, which does the job pretty well. But what if we sub-
scribe to observables in, say, some reusable functions and do not have access to a com-
ponent’s life cycle method to dispose of the subscription?

 Let us now see what solutions Angular provides to these problems and start with
accessing the component life cycle from a function.

5.3.3 Introducing DestroyRef

In the previous chapter, we created a CandidateDetailsComponent but have not
implemented the CandidateListComponent yet. To see this new feature, let us go back
and actually create it so that it has a table that displays a list of candidates and an input
field that would allow the user to search for a specific candidate by full name.

Listing 5.2 Unsubscribing from an observable using the takeUntil operator

Tells RxJS to stop the emissions
from this observable when
destroy$ fires an event

Sends a notification to all
observables to complete when
the component is removed

1095.3 Unsubscribing from observables

 Note one caveat: we want to limit the number of requests that we send to the
server because the user might be typing a lot of characters, and there is no need to
send a request each time the user hits a key on their keyboard; instead it makes
more sense to send one request when the user is done typing. We will achieve this by
creating a form control and then subscribing to its valueChanges observable while
utilizing the debounceTime operator, which is an operator that ignores emissions
until there are no more notifications in a given time period (in our case, say, if the
user stops typing for 500 milliseconds). The following listing shows an implementa-
tion with the unsubscription logic.

export class CandidatesListComponent implements OnInit, OnDestroy {
 private readonly candidateService = inject(CandidateService);
 candidates$ = this.candidateService.getCandidates();
 searchControl = new FormControl('');
 destroy$ = new Subject<void>();
 search$ = this.searchControl.valueChanges.pipe(
 debounceTime(500),
 takeUntil(this.destroy$)
);

 ngOnInit(): void {
 this.search$.subscribe((value) => {
 if (value) {
 this.candidates$ = this.candidateService.getCandidatesByName(value);
 } else {
 this.candidates$ = this.candidateService.getCandidates();
 }
 });
 }

 ngOnDestroy(): void {
 this.destroy$.next();
 }

}

At this point, this is quite a clean implementation that does not really need much
improvement. However, soon we might realize that such search functionality (with
debouncing time and a form control) might be necessary in other places too—for
example, in the EmployeeListComponent.

 We can, of course, copy-paste this solution to that place, and any other component,
but that will reduce the ability to refactor our code in the future. What if we decide the
debounce time in every component needs to be 700 milliseconds and not 500? So,

Listing 5.3 Building candidate search with time delay

Creates a form control to
attach to the search input

Destroys subject for unsubscribing

Delays time before any search
can be made for 500 milliseconds

Completes the observable
when the destroy subject fires

Actually subscribes to
the search term changes

to make the HTTP call

Fires the destroy
subject to complete
all subscriptions

110 CHAPTER 5 RxJS in modern Angular

thinking of a solution, we might want to implement a function that takes a FormControl
and returns the search observable coupled with the debounce and unsubscription logic.

 Immediately we can see a problem: how can we unsubscribe upon a component’s
destruction if we are writing code in a function not a component? It turns out, in
Angular 16, we can do this using a special token called DestroyRef. Let’s see it in
action when we implement our function. In the src/app/shared/functions folder let’s
create a file named create-search.ts and put our implementation there.

import { DestroyRef, inject } from '@angular/core';
import { FormControl } from '@angular/forms';
import { Subject } from 'rxjs';
import { debounceTime, takeUntil } from 'rxjs/operators';

export function createSearch<T>(control: FormControl<T>) {
 const destroyRef = inject(DestroyRef);
 const destroy$ = new Subject<void>();
 destroyRef.onDestroy(() => destroy$.next());
 return control.valueChanges.pipe(
 debounceTime(500),
 takeUntil(destroy$),
);
}

So what is this DestroyRef? Essentially, it is a reference to the destruction of the con-
text in which the function is invoked. For example, if we invoke the function in a com-
ponent, the DestroyRef will reference us that specific component’s destruction life
cycle, meaning the callback we provided to the onDestroy method will be invoked
when the component is destroyed as if we have written that callback inside that com-
ponent’s ngOnDestroy method. Now we can use this function anywhere; for instance,
the following listing shows how it will simplify the CandidateListComponent.

export class CandidatesListComponent implements OnInit {
 private readonly candidateService = inject(CandidateService);
 candidates$ = this.candidateService.getCandidates();
 searchControl = new FormControl('');
 search$ = createSearch(this.searchControl);

 ngOnInit(): void {
 this.search$.subscribe((value) => {
 if (value) {
 this.candidates$ = this.candidateService.getCandidatesByName(value);
 } else {
 this.candidates$ = this.candidateService.getCandidates();
 }
 });
 }

}

Listing 5.4 Reusable function for performing searches with time delay

Listing 5.5 Candidate list component with the reusable search logic

1115.3 Unsubscribing from observables

As we can see, there is no further need for an ngOnDestroy method here. Of course,
this is a specific (albeit very useful) scenario. But what about unsubscribing in general
from other observables in components or directives? It turns out we have an official
way of doing that now.

5.3.4 The takeUntilDestroyed operator

We already covered in the previous two sections how using a subject that signals the
destruction of a component to unsubscribe from observables is the most popular and
clean way of dealing with the problem, and we also mentioned some downsides of this
approach. Starting from Angular v16, the core team has begun implementing a new
package, called rxjs-interop, which, as evidenced by its name, is intended to enhance
the interoperability between Angular and RxJS. The package can be found under the
core package:

import * from '@angular/core/rxjs-interop';

The package contains many useful tools, most of which we will discuss in the next
chapter when we talk about interoperability between signals and RxJS. However, one
of the tools provided is of great interest to us here and now. Previously, we briefly men-
tioned that RxJS is flexible in terms that we can add custom operators to work with
observable streams. Here the Angular team did the same thing, adding a custom RxJS
operator that binds to the Angular context (for instance, the component in which the
source observable was created) and automatically unsubscribes when that context is
destroyed. To better visualize this, let us add a new feature to our HRMS application—
one that handles user permissions. Under the src/app/services directory, let’s create a
PermissionsService that will handle permissions using observable streams.

type Permissions = 'ViewEmployees' | 'EditEmployeeGeneralDetails' |
'EditEmployeePrivateDetails' |

'DeleteEmployee' | 'CreateEmployee';

@Injectable({providedIn: 'root'})
export class PermissionsService {
 private readonly permissions$ = new BehaviorSubject<
 Partial<Record<Permissions, boolean>>
 >({
 ViewEmployees: true,
 });

 hasPermission(permission: Permissions) {
 return this.permissions$.pipe(map(permissions => permissions[permission] ??

false));
 }

 setPermissions(permissions: Partial<Record<Permissions, boolean>>) {
 this.permissions$.next({...this.permissions$.getValue(), ...permissions});
 }

Listing 5.6 Permissions service

List of all possible permissions; only
employee-related permissions are
included for the sake of brevity.

BehaviorSubject that holds
the value of the permissions

ViewEmployees permissions
set to true as an example

112 CHAPTER 5 RxJS in modern Angular

 revokePermission(permission: Permissions) {
 this.permissions$.next({...this.permissions$.getValue(), [permission]:

false});
 }
}

Now any time we want to work with permissions, all we would have to do is inject this
service, use the hasPermission method, and subscribe to the observable it returns. We
do it via an observable for a couple of reasons, mainly to be able to support real-time
(for example, an admin revoked a user’s permission while they were browsing the
application) and also to reflect changes made by the user themselves (the user edited
their information, which resulted in them gaining/losing some permissions).

 Let’s now examine a scenario where we might need to subscribe to a permission. As
we can see, we have two distinct permissions for editing the employee details: one is gen-
eral editing, which includes, for instance, contact information, which a team lead of the
given employee should be able to edit without involving human resources (HR) person-
nel. However, editing private user data (full name, email address, and so on) is a privi-
lege reserved for the members of the HR department to prevent fraud/malicious
attacks. It means in the EditEmployeeComponent we would want to subscribe to the per-
missions and see if the user has that private editing permissions and, if not, disable some
of the inputs based on that permission. Naturally, after the component is destroyed, we
want to unsubscribe from that particular stream, and we are going to do so using the
new takeUntilDestroyed operator. Let’s take a look at the EditEmployeeComponent.

import { Component, inject, DestroyRef, OnInit } from '@angular/core';
import { takeUntilDestroyed } from '@angular/core/rxjs-interop';
import { FormControl, FormGroup, Validators } from '@angular/forms';
import { EmployeeForm } from 'src/app/infrastructure/types/employee-form';
import { PermissionsService } from 'src/app/services/permissions.service';

export class EditEmployeeComponent {
 permissionsService = inject(PermissionsService);
 form = new FormGroup<EmployeeForm>({
 firstName: new FormControl('', {
 nonNullable: true,
 validators: [Validators.required],
 }),
 lastName: new FormControl('', { nonNullable: true }),
 email: new FormControl('', { nonNullable: true }),
 position: new FormControl('', { nonNullable: true }),
 level: new FormControl('', { nonNullable: true }),
 });

 constructor() {
 this.permissionsService.hasPermission('EditEmployeePrivateDetails').pipe(
 takeUntilDestroyed(),
).subscribe(hasPermission => {

Listing 5.7 Unsubscribing from an observable with takeUntilDestroyed

The actual employee
editing form

takeUntilDestroyed operator will
automatically unsubscribe from this
stream when the component is destroyed.

1135.3 Unsubscribing from observables

 if (!hasPermission) {
 this.form.controls.firstName.disable();
 this.form.controls.lastName.disable();
 this.form.controls.email.disable();
 } else {
 this.form.controls.firstName.enable();
 this.form.controls.lastName.enable();
 this.form.controls.email.enable();
 }
 });
 }
}

Now this is beautiful: we implemented our subscription and did everything we would
do anyway, and just in a single line of code we also took care of unsubscribing from
the stream we used! A real cherry on top is the fact we did not create any subjects to
signal about the destruction of the component and did not even implement the
ngOnDestroy method. This approach, besides being now the official way of unsub-
scribing, is also cleaner and easier to explain.

 We previously mentioned several ways of unsubscribing from observables; one of
them is the signaling subject. With this new approach, it would be beneficial if we had
that approach implemented in our previous, existing projects: the subject approach
makes it way easier to migrate to the new official solution. All we have to do is remove
the destroy subjects, remove the ngOnDestroy method (unless it had other, unrelated
logic in it, so we have to be careful there), and use the takeUntilDestroyed custom
operator instead of RxJS’s takeUntil.

 However, there is a small caveat that we need to discuss related to the takeUntil
Destroyed operator. Here we must dive a bit deeper and understand how it actually
works. For this, let’s go back to listing 5.4 and remember that we already used the
DestroyRef injectable to unsubscribe from an observable. There, the DestroyRef was
used to hook onto the event of the destruction of the component in which the func-
tion is called and to terminate the subscription. It turns out that takeUntilDestroyed
does the same thing; it utilizes the DestroyRef to learn about context destruction and
completes the observable on which we use it.

 But here is a catch: in chapter 3, section 3.2.2, we learned that the inject function
only operates in an injection context; as the takeUntilDestroyed function uses it to
inject the DestroyRef, it means that the takeUntilDestroyed function can only be
used in similar injection contexts. In our example, we used that operator to subscribe
to an observable inside a component’s constructor, which works as expected; but what
if we wanted to subscribe to an observable inside, say, the ngOnInit method, or any
other method for that matter?

 Thankfully, Angular has got us covered here. Because takeUntilDestroyed is a
function, it can accept an argument, so we can provide the relevant DestroyRef when-
ever we use the operator outside of an injection context. For instance, if we did the

Logic we perform
on subscription

114 CHAPTER 5 RxJS in modern Angular

same thing in the ngOnInit method, the component code would be mostly the same,
with one notable exception, as shown in the following listing.

export class EditEmployeeComponent implements OnInit {
 permissionsService = inject(PermissionsService);
 destroyRef = inject(DestroyRef);
 form = new FormGroup<EmployeeForm>({
 firstName: new FormControl('', {
 nonNullable: true,
 validators: [Validators.required],
 }),
 lastName: new FormControl('', { nonNullable: true }),
 email: new FormControl('', { nonNullable: true }),
 position: new FormControl('', { nonNullable: true }),
 level: new FormControl('', { nonNullable: true }),
 });

 ngOnInit() {
 this.permissionsService.hasPermission('EditEmployeePrivateDetails').pipe(
 takeUntilDestroyed(this.destroyRef),
).subscribe(hasPermission => {
 if (!hasPermission) {
 this.form.controls.firstName.disable();
 this.form.controls.lastName.disable();
 this.form.controls.email.disable();
 } else {
 this.form.controls.firstName.enable();
 this.form.controls.lastName.enable();
 this.form.controls.email.enable();
 }
 });
 }
}

Now we can easily use the operator in any method we want, as long as we pass the
DestroyRef to it. One important observation here would be that, back in listing 5.4,
we also used the DestroyRef (and there other scenarios where we use that injectable
in functions) when writing our createSearch function, meaning that the function will
not work outside injection contexts too. So how can we work around this? Well, we can
make it work like takeUntilDestroyed—meaning, it can accept an optional reference
to the DestroyRef as an argument. The following listing shows a slightly revised ver-
sion of that function.

export function createSearch<T>(
 control: FormControl<T>,
 destroyRef = inject(DestroyRef),
) {
 const destroy$ = new Subject<void>();

Listing 5.8 Using takeUntilDestroyed outside injection context

Listing 5.9 Passing the DestroyRef into a function as an argument

Injects the DestroyRef into the
component to pass it on to the
takeUntilDestroyed operator later

Now subscribes
inside the ngOnInit
method instead of
the constructor

Passes the component’s
DestroyRef to the
takeUntilDestroyed operator

DestroyRef is now an optional
argument on the function and
can be passed from the code
that invokes it.

1155.4 Writing our own custom RxJS operators

 destroyRef.onDestroy(() => destroy$.next());
 return control.valueChanges.pipe(debounceTime(500), takeUntil(destroy$));
}

Notice how the destroyRef still defaults to inject(DestroyRef), meaning our existing
code that uses the function without the parameter will continue working in the same
fashion. Also note that we could have used the takeUntilDestroyed operator here
instead (preferable), but we would still need to have the DestroyRef as an optional
argument to be able to pass that reference to the takeUntilDestroyed operator.

 We have explored a new, built-in custom operator in Angular, which greatly
relieved our efforts when working with RxJS code and helped us remove lots of boiler-
plate from the project. Now let us dive deeper into this topic and see how we can write
our own custom RxJS operators and how the inject function greatly improves the
developer experience when dealing with them.

5.4 Writing our own custom RxJS operators
RxJS operators are a great way of enhancing observables and providing new things
that we can do with them. There are more than 100 built-in RxJS operators, and the
nature of the library allows us to create our own operators, which can now also incor-
porate the business logic of our applications inside observables. First, let us see what
an RxJS operator is, and how a custom one can be created, and then focus on writing
an actually useful custom RxJS operator for our application. Let us start by under-
standing the nature of RxJS operators.

5.4.1 What is an RxJS operator?

RxJS is rich with different functions that we can use to enhance our experience with
the library and achieve different behaviors. Some of those functions are the creation
functions: functions we can use to create observables with different predefined behav-
iors. For example, one such function is the of function, which takes some values and
returns an observable that emits those values in the specified order:

of(1, 2, 3);

This will emit 1, 2, 3. This function is especially useful for learning examples, as we
can directly show what values are going to be emitted, so we will use it often in this sec-
tion. Next, there are combining functions, that take several existing observables and
return a new observable that somehow combines the behavior of the source observ-
ables. For example, the merge operator will take several observables and emit when-
ever one of them emits something:

merge(of(1, 2, 3), of(4, 5));

This will emit 1, 2, 3, 4, 5. These sorts of functions will become very important in the
next two chapters when we learn about signals and how they can replicate functionality
similar to what we can achieve with these functions in RxJS. For now, the topic of our

116 CHAPTER 5 RxJS in modern Angular

discussion is the third, and by far the largest and most popular, category of functions
RxJS provides: the operators.

 At this point we have used and interacted with a number of RxJS operators—
mostly the ones related to unsubscribing from streams. However, let us dive deeper
and actually understand what is going on here by examining the probably most popu-
lar built-in RxJS operator: map. This operator takes every emission from a source observ-
able and transforms it into a new value, according to a function we provided. For
instance, this code will emit 10, 20, 30:

of(1, 2, 3).pipe(map(x => x * 10));

We provided a function that multiplies a value by 10 and returns the result, and
then this function will be applied to each emission of the observable 1, 2, 3 will
become 10, 20, 30.

 Often to better visualize how a certain function or operator works, RxJS developers
use marble diagrams that show the behavior of a function when applied to an observ-
able. Figure 5.2 shows a marble diagram of the map operator.

In this section, we will utilize these sorts of diagrams to better illustrate our custom
RxJS operators (and some built-in ones too).

 From what we have seen, we can apply operators to add behaviors to the observ-
able in question. However, if we dive a bit deeper, we will understand that the phrase
“add behavior to the observable” is actually quite wrong. But how? The operators we
saw so far clearly resulted in new behaviors, so why should we not describe it as such?
Well, let us explore what an operator actually does.

 We see here that map is a function that takes a function and returns—well, we are
not yet familiar with what it really returns (and then passes to the pipe method). What
it does return is in fact something known in RxJS as an OperatorFunction. Wait, but
wasn’t the map itself the operator function? It turns out this is actually a bit of a mis-
leading naming convention, and what map itself is can be better described as an opera-
tor creator (not official nomenclature). So map will create another function that will be
then used to cast the values of the source observables into whatever the function we
provide defines. Let us now explore what kind of function this OperatorFunction is.

 An OperatorFunction is a special function that takes an observable as its argument
(this one is called the source); creates a new observable (known as destination), which

map(x=> 10* x)

1 2 3

10 20 30
Figure 5.2 Marble diagram
of the map operator

1175.4 Writing our own custom RxJS operators

internally subscribes to the source one; performs some operation; and finally returns it.
So in simple terms, an OperatorFunction is a function that takes a source observable and
returns a destination observable based on it. Now, with this information, let’s examine
how they work and what we can do with this feature to further customize our codebase.

5.4.2 How do operators work?

We have seen multiple times that to utilize RxJS operators, we need to pass them to
the pipe method of an observable. But what is this pipe method? Let’s talk a bit about
functional programming to understand what pipe is exactly.

 In the functional programming paradigm, functions are the most important build-
ing block of an application. This is in opposition to, for example, object-oriented
programming, where objects are the most important, and functions usually are just
methods on those objects. In functional programming, we can use functions not only
to express some functionality to call it later but also to build more complex functional-
ity from simpler functions. This process is known as function composition. Composing two
functions that each accept exactly one parameter (also known as unary functions) is cre-
ating a new function that takes one parameter, calls the first function with the param-
eter, then passes the result to the other function, and finally returns the result.
Essentially, composing is like chaining function calls, taking one argument and pass-
ing it through several functions. We can create a small utility function that takes two
unary functions and returns a composed function derived from them:

const compose = (f, g) => param => f(g(param));

Here we just apply the functions in the order provided. We can see it in action in a
simple example:

const increment = (n: number) => n + 1;
const double = (n: number) => n * 2;
const doubleAndIncrement = compose(increment, double);
console.log(doubleAndIncrement(5));

This piece of code here will log 11, as the functions will apply one after another (see
figure 5.3).

 But if we are attentive enough, we will notice that the functions will execute in the
reverse order! This is usually what comprising functions means. If we want the order
of functions in the arguments to reflect the order of their execution, we can do the
reverse, which in functional programming is known as piping (familiar name, right?):

const pipe = (f, g) => param => g(f(param));

Now if we build a new function from two other ones using this function, we will get the
“correct” execution order. The pipe method in RxJS is essentially this, but it accepts
an arbitrary number of functions to pipe and works only with OperatorFunctions.

118 CHAPTER 5 RxJS in modern Angular

With this knowledge, we can understand operators better. They are functions that can
be combined with the pipe operator to create one big function, which will then be
applied to the source observable. Notice the wording that we used in the previous sec-
tion: “OperatorFunction is a function that takes a source observable and returns a
destination observable based on it.” The destination observable is a new observable
that is created by combining the OperatorFunctions into one big operator and calling
it on the source observable. If we do a small coding example, this can be seen here:

const numbers$ = of(1, 2, 3);
const doubledNumbers$ = numbers$.pipe(map(n => n * 2));
doubledNumbers$.subscribe(n => console.log(n));

We can see that the doubledNumbers$ is a new observable derived from the first one,
and we subscribe to it to read the numbers that are emitted. Figure 5.4 shows what is
going on here.

 So what happens with the source? The answer is nothing. The source observable has
its own life—we just derived a new observable from it, but the source one will continue
to work in the same way it used to. That is why we say that phrases like “operators add
behavior on observables” or “operators modify how observables work” are not really
correct. What operators do is only create new observables from existing ones.

 While this might seem like a pedantic distinction or a weird limitation, it in fact
empowers us to be able to customize our RxJS-related codebases. Let’s see this in action.

We have the value of 5.

Call the composed function with the value of 5.

First, the composed function will call the double function with the argument of 5.

The double function called with the argument of 5 will return 10.

The increment function called with the argument of 10 will return 11.

Finally, the composed function named doubleAndIncrement will return the
aggregate result of the other two function calls, which will be 11.

Next, the increment function will be called with the result returned from the
double function, which was 11.

Figure 5.3 Steps
a composed function
undertakes when called
with a parameter

1195.4 Writing our own custom RxJS operators

5.4.3 Building custom operators

We already added a permissions system to our HRMS application, meaning different
functionalities now might only be possible if the user has the relevant permissions
granted to them. We used it to disable or enable inputs depending on whether the
user has permission to edit them. But more often, handling permissions boils down to
just restricting a particular feature altogether.

 In the vast majority of cases, this involves not allowing certain HTTP calls when the
permissions are not granted. Usually, we do this by removing or disabling the part of
the UI that is making this HTTP call, but sometimes the HTTP call is “implicit” and is

The map operator is applied to the numbers$ Observable.

A new Observable is created, which will map each emission from the source to its double.

New Observable is subscribed to.

A value from the source Observable arrives.

The piped function is invoked.

The map operator's callback gets invoked with the value, for
instance with the value of 1 as the rst emission from the source.fi

The resulting value is emitted from the derived Observable
named doubledNumbers$ so other consumers can get it.

The callback of the subscribe method is now invoked,
which logs the doubled result to the console.

This process continues in a cycle until the source Observable completes.

The source Observable completes, end of the life cycle.

Subscription continues until a new value arrives.

Figure 5.4 Life cycle of the map operator applied to an observable

120 CHAPTER 5 RxJS in modern Angular

caused by some cascade of actions, meaning we need to write some RxJS logic to pre-
vent, for example, a successful initial HTTP call from making the other one, for which
the user has no permissions.

 Furthermore, in certain cases, we just want to disable all HTTP calls to particular
endpoints (for instance, the user has no permission to deal with employees, so any
HTTP calls the API endpoints starting with “/employee” must be discarded), and it
would make sense to put that logic in any Angular HTTP interceptor. The case arises
for having a reusable RxJS operator that can check for some permission (or multiple
permissions) before allowing the observable to proceed with the HTTP call. Let’s
build such an operator ourselves.

 Let’s begin by understanding how a custom RxJS operator is commonly built. In
the src/app/shared directory let’s create a new folder named operators and a file
named has-permissions.operator.ts. Before we proceed, let’s review what a simple cus-
tom operator looks like, and then we will build the “real” one.

 As we already discussed, a custom operator is a function that takes some argu-
ments and then returns a function that takes a source observable and transforms it
in some way. Let us first take a look at a custom operator that logs every emission
with a special message.

function log() {
 return function<T>(source: Observable<T>) {
 return source.pipe(
 tap(item => console.log(item)),
);
 }
}

As we can see, this was a pretty simple implementation, most of which involved just
boilerplate code only. Now, this can be used as any other RxJS operator:

of(1, 2, 3).pipe(log()).subscribe();

This will log 1, 2, 3 to the console.
 We can further customize this operator by adding a string parameter that we can

use to discern between different observables that use this operator.

function log(message: string = '') {
 return function<T>(source: Observable<T>) {
 return source.pipe(

Listing 5.10 Custom RxJS operator that logs every new item

Listing 5.11 Custom RxJS operator with a configurable parameter

This is our custom operator, the function that will return
an OperatorFunction and will be used in other
Observable’s pipe method.

The OperatorFunction we
return; this is what will
be invoked with source
Observables when we
use the “log” operator.

The OperatorFunction now
subscribes to the source.

The actual logic of the
custom operator

Here we declare an
optional parameter that
the operator can take.

1215.4 Writing our own custom RxJS operators

 tap(item => console.log(`${message ? message + ': ' : ''}${item}`)),
);
 }
}

Now we can use the operator with a custom message:

of(1, 2, 3).pipe(log('Number')).subscribe();

This will log Number: 1, Number: 2, Number: 3 to the console. Now we have an opera-
tor that is itself custom and can be further customized with a parameter. But can we
do something about the boilerplate code? It would be really nice if we could just write
the business logic directly, instead of all the same code we did here. It turns out RxJS
provides tools for building such custom operators out of the box. Let’s learn about the
MonoTypeOperatorFunction type and the pipe function.

 First, let us briefly discuss the MonoTypeOperatorFunction. We already talked about
the OperatorFunction type, a generic type description of an RxJS operator. There,
OperatorFunction is a type that accepts two type parameters: one for the source observ-
able and one for the result. Note those can be different; for instance, the map operator
that we touched on in this chapter takes one type of an observable but can possibly
return another type (for instance, convert an observable of strings to numbers). The
MonoTypeOperatorFunction, on the contrary, is extended from OperatorFunction
but only takes one type parameter, because it represents an operator that does not
change the type of the source observable. For instance, the filter operator is an
example of a MonoTypeOperatorFunction, because it does not change the type (or the
value, for that matter) of emissions from the source and only restricts them on the
basis of the predicate function that we provided. Our custom log operator is also an
example of a MonoTypeOperatorFunction, as it only performs a side effect (logging to
the console) but does not interfere with the stream itself in any way.

 The other tool we mentioned is the pipe function. Note that it is different from
the pipe method, as this one is an independent function, not a method on the
Observable class. Despite being different from the code’s perspective, this function
essentially does the same thing: pipes RxJS operators to create a new large operator.
We will now use this to rewrite our log operator without all the boilerplate.

function log<T>(
 message: string = ''
): MonoTypeOperatorFunction<T> {
 return pipe(
 tap(item => console.log(`${message ? message + ': ' : ''}${item}`)),
);
}

Listing 5.12 Using RxJS built-in tools to create a custom operator

Uses the parameter to log a
customized message

We specify the return type as a MonoTypeOperator-
Function to avoid any typing problems if we make a
mistake in the actual implementation.

We use the pipe function
to invoke other operators.

122 CHAPTER 5 RxJS in modern Angular

Note that in this scenario it would have been enough to just write return tap(item
=> console.log(`${message ? message + ': ' : ''}${item}`)), without the pipe
function, as we only used a single operator. But in general, we write custom RxJS oper-
ators to be able to combine several existing operators with a sprinkle of business logic,
so the pipe function is naturally used almost always.

 Now, having familiarized ourselves with these powerful tools, let us use them to
build and test our permissions operator in action.

export function hasPermissions<T>(
 permissions: Permissions[],
 permissionsService = inject(PermissionsService),

): MonoTypeOperatorFunction<T> {

 return pipe(
 withLatestFrom(permissionsService.hasPermissions(permissions)),

 filter(([, hasPermissions]) => hasPermissions),

 map(([value]) => value)

);
}

As we can see, we did quite a lot of heavy lifting by just three to four lines of code. This
operator gets the list of permissions, injects the service, and uses it to check the exis-
tence of certain permissions, and then either allows the operator to proceed or not,
and finally, after proceeding, it returns the original emission. Let’s use this in an inter-
ceptor to see how it functions and disallow calls to employee-related APIs if the user
has no employee-related permissions. In the src/app/shared/interceptors folder, let’s
create a new file named employee-permissions.interceptor.ts and put the code in the
following listing there.

Listing 5.13 Custom RxJS operator that uses dependency injection

List of permissions to
check against before
proceeding

Yet again we inject the
service as a parameter with
a default value, so as to be
able to use the operator
outside of injection context
by providing the reference
to the PermissionsService
manually.

We use the withLatestFrom operator, which takes another stream and
adds its latest emission to the value of the current observable, making

the next emission a pair of the value of the source observable and
the latest value from the other observable.

Here we can see that the value emitted is a tuple, where the first element is the
item that the source observable has emitted, and the second one is a Boolean
returned by the hasPermissions method. We do not need the first item, as we

do not perform any logic on it, so we ignore it by putting a comma first. We
pick the second value and check if the permission is there.

We map the value back to
whatever the source observable
has emitted originally so as to
not change anything from the
perspective of the developer
who uses this operator on some
observable of theirs.

1235.4 Writing our own custom RxJS operators

export const employeePermissionsInterceptor: HttpInterceptorFn = (
 req: HttpRequest<any>,
 next: HttpHandlerFn
) => {
 return next(req).pipe(
 hasPermissions(['CreateEmployee', 'DeleteEmployee',

'EditEmployeeGeneralDetails', 'ViewEmployees']),
);
};

Here we make sure that no HTTP request made even by accident will pass through
unless the user does have the permissions; this also potentially makes the server’s life
easier, as we do not make calls that would result in, say, a “403 Forbidden” response.
Let’s visualize this with a marble diagram of our own making (see figure 5.5).

Note that this looks pretty much like the marble diagram for the filter operator (see
figure 5.6).

This is because our operator is essentially a multilayered wrapper around that opera-
tor, which is the one that performs the actual logic we want.

 Furthermore, this can be used in other scenarios; for instance, we can add such pre-
ventions on observables that are not related to HTTP calls in any way; our implementa-
tion of the operator does not include any assumptions about the source observable that

Listing 5.14 Using a custom RxJS operator in an Angular interceptor

hasPermissions(['ViewEmployees'])

a b c d e f

c d e f

Figure 5.5 Marble diagram of the hasPermissions custom operator. Initially, the user has
no permissions, but at some point in time before emission c, the permission has been granted.

filter(x => x > 10)

2 30 22 15 60

30 22 60

Figure 5.6 Marble diagram of the filter operator

124 CHAPTER 5 RxJS in modern Angular

it will be used on. This can become very handy if we use state management libraries
like NgRx, which use RxJS observables extensively.

 We also encountered a further use case for using the inject function as opposed to
the constructor DI. With the constructor approach, we would not be able to inject
dependencies and would be required to always pass them as a parameter to our custom
operators. With this added capability, writing custom RxJS operators (which in itself
was always possible) becomes more appealing, increasing the reusability of our Angu-
lar codebases and reducing code copy-pasting.

 So far, we have extensively discussed the state of RxJS in Angular, what new tools we
have, and how we can improve our coding experience when using reactive program-
ming in Angular applications. The exciting news is that this journey is far from over:
for now, we have only covered RxJS coupled with Angular as it used to be prior to
version 16. In version 16, the introduction of signals—the new reactive primitive—
happened, bringing with it a host of new problems and solutions when dealing with
RxJS. In the next two chapters, we will talk in-depth about signals and also cover the
topic of how they work together with RxJS observables, when to use which, and so on.

5.5 Exercises for the reader
 Create an isAuthorized custom operator that works like the permissions

operator but checks for the user being authorized before proceeding with an
HTTP request.

 In an existing application, convert different patterns of unsubscription logic to
use the takeUntilDestroyed operator.

Summary
 RxJS continues to be a vital part of Angular codebases.
 Reactive programming can be used to express a wide variety of scenarios devel-

opers encounter in frontend applications.
 Recent developers have added important tools that help make RxJS work with

Angular seamlessly.
 We can now inject the DestroyRef to access a component’s end-of-life event

from an outside context.
 Now we can use the takeUntilDestroyed operator to unsubscribe from RxJS

observables in Angular components.
 We can use the inject function to write custom RxJS operators that benefit

from dependency injection.

125

Signals: A new approach
to reactive programming

In the previous chapter, we talked about reactive programming, how it is useful when
working with frontend applications, and how Angular’s commonly chosen library to
work with reactivity is RxJS. We covered new approaches and tools Angular provides
for working with RxJS, but we did not cover the problems that RxJS itself has that can-
not be mitigated simply by adding new tools into the arsenal of Angular developers.
In this chapter, let’s focus on these new changes and discuss signals: a new reactive
primitive introduced by the Angular core team into the framework itself, which
allows us to read values, subscribe to them, derive new values, and execute side effects
without having to deal with RxJS at all. Let us see why this new primitive will be help-
ful and allow us to mitigate various problems with reactivity.

This chapter covers
 Problems developers face when working with

RxJS in Angular

 Introducing signals, Angular’s new reactive
primitive

 Creating new signals and side effects from
existing ones

 Signals interoperability with RxJS

126 CHAPTER 6 Signals: A new approach to reactive programming

6.1 Why go beyond RxJS?
Previously, we described RxJS as a powerful, flexible, and very capable library for
working with reactivity-related logic. So if this library is so mighty, why do we need to
introduce another approach? It turns out the vast capabilities of RxJS might actually
be a part of the problem in this case. Let’s see what the problems are and then discuss
the solutions.

6.1.1 What are the problems with RxJS?

Every Angular developer at some point has to start a phase of learning RxJS. Often,
the obstacles they encounter on their way are the same regardless of the application
they work on or the level of complexity of the problems they try to solve. So what are
those problems? Let us see.

A QUITE STEEP LEARNING CURVE

RxJS is hard, and that is no secret. In the previous chapter, we spent quite a bit of time
explaining the simplest, core concepts of RxJS like observables and operators. Lots of
stuff goes on under the hood too, like how observables work together and how to
combine them. Vertically it gets no better; when we understand how, say, operators
function, we then realize there are so many of them: RxJS has more than 120! No one
knows all of them by heart, but it makes sense to understand different “families” of
operators, which takes time. Often operators differ very, very slightly while offering
seemingly the same functionality. Observables have other related concepts like sched-
ulers, subscriptions, and so on. Learning and mastering all of those takes time and
effort that, in the case when we are not developing an extremely large application, might
be considered wasted. The Angular community long yearned for a simpler way to do
basic reactivity; hence, signals were introduced in v16.

THE STATELESS NATURE OF OBSERVABLES

To better understand this point, let us explore this simple component that uses RxJS.

@Component({
 template: `
 <div>
 <h2>Data</h2>

 <li *ngFor="let item of data$ | async">
 {{ item.name }}
 <button (click)="deleteItem(item)>Delete item</button>

 </div>
 `,
 standalone: true,
})

Listing 6.1 Subscribing to an observable for its latest value

Displays the
data with the
async pipe

1276.1 Why go beyond RxJS?

export class DataComponent implements OnInit {
 private dataService = inject(DataService);
 private permissionsService = inject(PermissionsService);
 private destroyRef = inject(DestroyRef);
 private dialogService = inject(DialogService);
 data$ = this.dataService.getData();
 permissions: Permission[] = [];

 ngOnInit() {
 this.permissionsService.hasPermissions(this.permissions).pipe(
 takeUntilDestroyed(this.destroyRef),
).subscribe(permissions => {
 this.permissions = permissions;
 });
 }

 deleteItem(item: Item) {
 if (!this.permissions.includes('DeleteItem')) {
 return this.dialogService.open('You do not have permissions to

delete this item.');
 }

this.dataService.deleteItem(item);
 }
}

As we can see, the fact that permissions are represented by observables is a problem
here. We now need to write a bunch of boilerplate code to be able to access the latest
value of the permissions. In the case of the data, this problem is mitigated by the
async pipe and the fact that we only use it in the template. In the case of the permis-
sions, its value is not displayed anywhere in the template but rather is used by the com-
ponent’s code to perform a check.

 In this case, we either need to somehow extract it in the template (even if it is not
really needed there) and pass it as an argument to the deleteItem method (which will
introduce even more complexity and confusion) or subscribe to it and extract to a
local property (what was done here). Another approach would be to convert the per-
missions observable to a BehaviorSubject so that we can access the latest valuer any
time we want, but that again would introduce some complexity, require unsubscrib-
ing under the hood, and make the component generally harder to explain to newly-
onboarded team members.

 Thus, observables not being representative of a state, but rather events (as we dis-
cussed in the previous chapter), poses a significant problem when authoring Angular
components. Larger components can have dozens of lines of code filled with such
boilerplate subscriptions, which only exist to cover up an implementation detail and
have zero relation to the actual business logic of the component. Further in this chap-
ter, we will see how signals help us avoid such scenarios. Now, let us explore the last
major problem RxJS brings into the world of Angular applications.

Data is an observable.

We cannot store permissions as
simply an observable, because we
need its value somewhere in the
component code, not the template.

A subscription that exists purely
to extract the value from the
permissions observable into a
component property to be able
to use it later

Uses the latest value of the
permissions observable

128 CHAPTER 6 Signals: A new approach to reactive programming

ASYNC VS. SYNC AND GLITCHES

We mainly talked about RxJS observables in the context of asynchronous program-
ming, but we also mentioned that observables can be either synchronous or asynchro-
nous. Thus, when combining several observables into a single stream, we can run into
hard-to-debug problems, especially when the observables are of two different “sorts.”
Again, let us consider an example component to better see the problem.

@Component({
 standalone: true,
 imports: [AsyncPipe, ReactiveFormsModule, NgIf],
 template: `
 <input placeholder="Name" [formControl]="form.controls.name"/>
 <label>Can have duplicates</label>
 <input type="checkbox" [formControl]="form.controls.allowDuplicates"/>
 <button>Save</button>
 <button *ngIf="canSaveAsDuplicate$ | async">
 Save as duplicate
 </button>
 `,
})
export class App {
 private readonly dataService = inject(DataService);
 form = new FormGroup({
 name: new FormControl(''),
 allowDuplicates: new FormControl(false),
 });

 hasDuplicates$ = this.form.controls.name.valueChanges.pipe(
 switchMap(
 name => this.dataService.checkForDuplicates(name)
),
);

 canSaveAsDuplicate$ = combineLatest([
 this.form.controls.allowDuplicates.valueChanges,
 this.hasDuplicates$,
]).pipe(
 map(
 ([allowDuplicates, hasDuplicates]) =>
 allowDuplicates || !hasDuplicates),
);
}

Now this is a solid, reactive implementation of a somewhat complex logical condition; it
is very concise and easy to read. However, it has one glaring problem: if we actually run
this code and click on the checkbox immediately, the “Save as duplicate” button will not
appear. So what is the problem here? The combineLatest operator takes several observ-
ables and emits whenever one of the source observables emits. However, it starts emitting

Listing 6.2 Combining asynchronous and synchronous observables

Lets the user decide if
duplication is allowed

Button only visible if a
condition on duplication
of names is met

Form control that is
responsible for the user being
able to allow duplicate names

Observable that
continuously checks if a
duplicate name already
exists by making an HTTP
call via a service whenever
the user changes the name

Combines the result of the
HTTP call with the local
checkbox’s value

The actual condition’s logic: either
the user allowed duplications via
the checkbox or duplicate names
do not exist anyway.

1296.1 Why go beyond RxJS?

only when all of the source observables have emitted a value at least once (otherwise,
there would be nulls all over the place when the first emission occurs). But in our case,
the hasDuplicates$ observable is asynchronous (it is making an HTTP, and that is only
after the user actually inputs some characters in the name input), but the form.allow-
Duplicates.valueChanges observable is synchronous, meaning that its combination
might have to wait a while before it actually emits a value. Thus, even if the user has
clicked on the checkbox, the button will not appear until they input some characters.

 This can be mitigated by using the startsWith operator and putting some default
value into the streams that we combine, but this introduces more complexity, and in a
large component such things can easily get overlooked only to then become bugs that
are really hard to trace and fix. This behavior of being able to be either sync or async can
also become a source of race conditions, when some data we anticipate earlier arrives
later, causing a bug, and further complicating things. Again, this all comes back to the
fact that observables represent events, but in Angular applications, developers very often
try to describe a state of things with them, rather than just streams of notifications.

 Now that we have laid the main foundational problems with RxJS in Angular, let’s
focus on the solution and find out what we expect from such a potential solution for
this problem. Afterward, we will introduce signals and explore how they fix all the
problems we mentioned here.

6.1.2 What must the solution look like?

Before we go forward and lay out the principles on which a potential solution will be
built, let’s also state that it is not possible to “fix” RxJS from inside Angular, meaning
there is no logic that the Angular core team could put, say, in the rxjs-interop package
that we mentioned in the previous chapter so that all these problems go away. The
problems are intrinsic either to RxJS itself (observables can be either sync or async,
and there’s nothing we can do about it) or to the way developers treat RxJS in Angular
apps (they are going to represent state as an observable, and we cannot expect to per-
suade everyone to stop doing this). With this in mind, let’s now set up our rules for
the new reactive primitive.

VALUE CAN ALWAYS BE READ

This one is simple: we can access the latest value of the reactive primitive whenever we
want, without the need to “subscribe” to it. Value is read synchronously, it always has
some default value, and so on.

READING THE VALUE DOES NOT AFFECT THE APPLICATION IN ANY WAY

In RxJS, as we saw, reading the value means subscribing to it. Sometimes this entails
some other effect in the application. For instance, if we subscribe to an observable cre-
ated by Angular’s HttpClient, this will trigger a new HTTP request, which is a behav-
ior that might not be obvious to developers who are not very familiar with the inner
workings of observables. Also, subscribing will entail storing the value somewhere, in
another variable or class property, to be reused later. With a new reactive primitive,
this should not be the case: value must be readily available to read.

130 CHAPTER 6 Signals: A new approach to reactive programming

VALUE CAN BE CHANGED ON THE FLY

Again, this one is simple: we can always set a new value, unlike observables, which are
immutable. The new reactive primitive represents a value (that can change over time
and notify about changes), not a stream of events.

EVERYTHING IS SYNCHRONOUS

As we have seen, some problems stemming from observables are a result of them pos-
sibly being async. As we said, the new reactive primitive should represent a state, not
events, thus it has no need to be async and should only be synchronous.

WE CAN PERFORM SIDE EFFECTS BASED ON CHANGES OF THE VALUE

An important part of having values that can change over time is the ability to per-
form actions whenever a change happens. This is what is known as a side effect. For
instance, we might want to log the latest value in the localStorage, and this would
be a side effect.

WE CAN CREATE NEW REACTIVE VALUES FROM EXISTING ONES

Another powerful and flexible capability of observables that needs to be transferred to
the new reactive primitive is the ability to construct new ones from existing ones. This
is often known as “deriving state” or “computed properties.” For instance, we might
have a list of products with their prices, and we want to display the total price for all
items. The total price does not exist in a vacuum by itself and is totally dependent on
the list of products and their quantities. Thus, we should be able to compute a new
reactive primitive with the total price of products from the list of products, and this sec-
ond computed property will always update whenever the list of products changes.
Essentially, what we do with the map operator or the combineLatest operator should
be possible with the new reactive primitive (but only synchronously).

UNSUBSCRIPTION WILL BE AUTOMATIC

This one is more about being developer-friendly. As the new reactive primitive will be
part of Angular itself, it should be possible to handle the unsubscription from it inter-
nally, without forcing the developer to write some logic in the ngOnDestroy method.

IT SHOULD INTEROPERATE WITH RXJS
Finally, as we said, the reactive primitive should be synchronous, meaning the async
stuff will still fall (rightfully so) on the mighty shoulders of RxJS, which in its stead
means that we should have a way to communicate between this new reactive primitive
and RxJS observables. Namely, we should be able to convert an observable to this new
reactive primitive and vice versa.

 With all these rules laid out, we can finally dig into signals, the new reactive primi-
tive Angular offers, and see how they fulfill all the checkboxes here and fixes all the
problems we had with RxJS. Let’s get started!

6.2 What is a signal?
Signals are the basic building blocks of the reactivity approach Angular offers. Essen-
tially, a signal is an object that is callable (can be invoked like a function) and when

1316.2 What is a signal?

called will return its latest value. While this might seem a bit like “magic,” in Java-
Script, everything is an object, including functions that we define, so a signal is essen-
tially a function that has some added properties to it. This function/object also has
several methods to update the value. As the value can be read simply by calling it as a
function, there is no need to “subscribe” to it, and all of this happens synchronously.
There are other functions that we will learn about later in this chapter that help us
create new signals from existing ones or perform side effects when a value (or multi-
ple values) changes. Let us see it in action now by familiarizing ourselves with the
actual code necessary to deal with signals.

NOTE If you are using Angular v16, signals are an experimental new feature
that is in developer preview. We encourage readers to upgrade to newer ver-
sions as they have new features for signals and stable support.

6.2.1 Creating signals

First, before we start working with signals, we have to actually create one. Signals and
everything necessary to deal with them have been added to the angular/core package.
It turns out that to create a signal, we just need to import the signal function from
the core package and use it to create a signal with an initial value:

import { signal } from '@angular/core';
const count = signal(0);

Here we have created a signal of a number whose initial value is 0. How can we see
that value? As mentioned, the signal can be called as a function to extract the value, so
we can just do the following:

import { signal } from '@angular/core';
const count = signal(0);
console.log(count());

This will log 0 to the console, as it is the latest (and incidentally, the very first) value
of this signal. The value has not been updated yet, so it will always return 0 when-
ever invoked.

 If we examine the count variable—for instance, hover over it in an IDE editor to
see its type—we will see that TypeScript says its type is WritableSignal<number>.
WritableSignal is a type of a Signal whose value can be changed (hence writable).
There are other signals, typed as simply Signal, which are immutable, meaning they
will lack the methods to update their value.

 Both Signal and WritableSignal are generic types, and their type argument indi-
cates the value that is stored inside of our signal. TypeScript is pretty smart, and the
signal function is written in a way that allows TypeScript to infer the type of the signal
from the default value. However, there are cases when inferring the value is not really
possible. For instance, we want to create a signal of an array of strings but the default

132 CHAPTER 6 Signals: A new approach to reactive programming

value is an empty array, so TypeScript has no way of guessing the overall type of this
array. In such cases, we should provide the type manually:

import { signal } from '@angular/core';
const names = signal<string[]>([]);
console.log(names())

This will log []and TypeScript will know that the names signal only accepts arrays of string.
 There are two other ways of creating signals. One is by creating a computed signal:

a signal derived from other signals. The other is by creating a signal from an observ-
able. In both of those scenarios, we will have a Signal instead of a WritableSignal,
which makes sense: their values entirely depend on either other signals or observ-
ables, so they should not be available for manual modification. Let’s now see how we
can update the value of an existing WritableSignal.

6.2.2 Updating signals

There are two ways of changing a signal: setting a value directly and updating the value
using the previous value with a callback function. Let’s examine each one in turn.

SETTING A SIGNAL’S VALUE

As signals are essentially wrappers around the actual values, there is a way to directly
and manually set a new value. Here is how it’s done:

import { signal } from '@angular/core';
const count = signal(0);
console.log(count());
count.set(1);
console.log(count());

Initially the console will log 0, as it is the default value of the signal, but the next time,
after we invoke the set method, it will log 1, as we have set a new value afterward. As we
mentioned, TypeScript inferred the type of this signal, so in the case of count, the set
method will only accept numbers. If we invoke the set method in the names signal
from the other example, it will only accept arrays of strings, as we explicitly provided
the type of value that signal can hold, meaning signals are fully type-safe. We can also
use other signals as values when setting a value of some signal; for instance, we can do
the following instead:

const count = signal(0);
console.log(count());
count.set(count() + 1);
console.log(count());

As we can see, we passed the current value of the count signal + 1 as an argument to
the set method, and it again produced 0 followed by 1 in the console. It turns out that
updating a signal based on its previous value is a pretty common task, so we have a
method for this too.

1336.2 What is a signal?

UPDATING A SIGNAL’S VALUE

The update method of a signal will accept a callback that works as follows: the argu-
ment to it will be the previous value of the signal, and whatever the callback returns
will become the new value. Here we can use it to write an increment function that will
increase the value of the count signal by 1 every time it’s called:

const count = signal(0);
const increment = () => count.update(value => value + 1);
increment();
console.log(count());

Here, the previous value used to be 0, the initial value, and when we called count
.update, what it did was invoke the callback function with the current value as argu-
ment (which was 0), and it returned 1, so 1 became the new value, which will be
logged in the console.

 The update method becomes very useful when working with arrays or objects
when we want to modify a part of the array or the object without setting the whole
value. For instance, we can write a function that adds a new name to the names signal:

const names = signal<string[]>([]);
const addName = (name: string) => names.update(value => [...value, name]);
addName('John');
console.log(names());

Here we used the update method to spread the existing items into a new array, with
the new name appended in the end. This will log ["John"] to the console. Thus, we
used the update method to change the value of the signal based on its previous value.

 The callback for the update method can be any function, and we can perform a
variety of operations and logical conditions here, provided they match the types. For
instance, the callback for the update method when called on the count signal cannot
return anything other than a number.

 However, there are some guidelines for using the update method. A common best
practice is to use pure functions as callbacks for it, meaning functions that always
return the same value when called and do not have side effects. For example, it would
be bad practice to change the value of some other property in the update callback, as
it will be very surprising for other developers as to how that other property got
changed. We should absolutely refrain from updating other signals in the update call-
back, as this could potentially cause systemic problems with how data flows through
the app. If we want to update other signals based on one we have, there are other ways
to do it cleanly, which we will explore further in this chapter.

 So far so good: we learned how to create and update signals. Let’s see how this fits
into the rules we set up in section 6.1.2.

134 CHAPTER 6 Signals: A new approach to reactive programming

6.2.3 Creating signals vs. observables

Now let’s briefly cover the rules that have already been fulfilled with signals.

VALUE CAN ALWAYS BE READ

As we have seen, we can always read the value of any signal by just invoking it as a func-
tion. So signals are compliant with this requirement, which already is a big plus when
compared to observables.

READING THE VALUE DOES NOT AFFECT THE APPLICATION IN ANY WAY

Signals created manually are just wrappers around some value, and reading the value
does not entail any “surprises,” as compared to RxJS (which we saw might do some-
thing not very expected, like initiating an HTTP request). Thus, signals are also com-
pliant with this rule.

VALUE CAN BE CHANGED ON THE FLY

There’s not much to say here, as we spent the previous section elaborating on how to
change signal values. We can safely tick this checkbox too.

EVERYTHING IS SYNCHRONOUS

While we did not explicitly say it, everything in our code suggested that signals work
synchronously. Asynchronous signals do not exist, and even signals derived from async
observables (we will learn how to do this later in this chapter) will work in a synchro-
nous fashion and always have a value ready to be read. Thus, signals are compliant
with this rule too.

UNSUBSCRIPTION WILL BE AUTOMATIC

This one is interesting, because we did not talk about what would happen after a com-
ponent that uses signals gets destroyed (if anything, we haven’t even explored such a
component). However, signals that are created manually, as in our examples in the
previous section, are just object wrappers around values, so they will be garbage col-
lected the same way other, conventional properties are. As for computed signals and
signals derived from observables, we will see how they work in the next sections. For
now, this rule is fully complied with.

 Now, with the knowledge of how signals can be created, updated, and read, we can
move on and finally start creating an actual, practical Angular component that uses them.

6.3 Building Angular components with signals
In the HRMS application that we were building throughout chapters 2 to 5, we had
several interrelated features concerning different management tasks for HR employ-
ees, like recruitment, employee management, vacations, and so on. One of the fea-
tures was a “work” feature that dealt with employee affairs; for instance, there we had
the employee list and employee details pages. Now we are going to add something
more valuable for the HR administration—namely a page that helps handle time-off
requests from employees. This page will display a list of time-off requests, allowing the
HR admin to approve or reject them; it allows searching through requests by employee
name and filtering approved/rejected/pending requests, and it shows statistical data

1356.3 Building Angular components with signals

about how many employees are off currently. We will do this by utilizing our newly
acquired knowledge of Angular’s signals and learning several new capabilities on the
way too. Let’s begin by creating our component.

6.3.1 Creating TimeOffComponent

First, let us define what a time-off request actually looks like and what properties that
object will have. In the src/app/infrastructure/types folder, let’s create a file named
time-off-request.type.ts and put the following type there.

export type TimeOffRequest = {
 id: number;
 employeeId: number;
 startDate: string;
 endDate: string;
 type: 'Vacation' | 'Sick Leave' | 'Maternity Leave' |
 'Paternity Leave' | 'Other';
 status: 'Pending' | 'Approved' | 'Rejected';
 comment?: string;
};

Now, with the general idea of what a time-off request is, let’s create a TimeOffManagement
Component. In the src/app/pages/work folder, let’s create a file named time-off-
management.component.ts and put the actual component code. One note: we will
use signals to represent the data there, and initially we will only use dummy data—
without a service to load the actual data. We will add that in a further section in this
chapter to illustrate interoperability with RxJS and async code. For now, the compo-
nent will look something like the code in the following listing.

@Component({
 selector: 'app-time-off-management',
 template: `
 <h2>Time Off Management</h2>
 <table>
 <thead>
 <tr>
 <th>Employee</th>
 <th>Start Date</th>
 <th>End Date</th>
 <th>Type</th>
 <th>Status</th>
 <th>Comment</th>
 <th>Actions</th>
 </tr>
 </thead>
 <tbody>
 <tr *ngFor="let request of requests()">

Listing 6.3 Time-off request type

Listing 6.4 Time-off management component

To read the value
of a signal in the
template, we will
just invoke the
signal, same as
always.

136 CHAPTER 6 Signals: A new approach to reactive programming

 <td>{{ request.employeeId }}</td>
 <td>{{ request.startDate | date }}</td>
 <td>{{ request.endDate | date }}</td>
 <td>{{ request.type }}</td>
 <td>{{ request.status }}</td>
 <td>{{ request.comment }}</td>
 <td>
 <button *ngIf="request.status ===

'Pending'">Approve</button>
 <button
 *ngIf="request.status === 'Pending'">
 Reject
 </button>
 <button>Delete</button>
 </td>
 </tr>
 </tbody>
 </table>
 `,
 standalone: true,
 imports: [NgFor, NgIf, DatePipe],
})
export class TimeOffManagementComponent {
 requests = signal<TimeOffRequest[]>([
 {
 id: 1,
 employeeId: 1,
 startDate: new Date().toISOString(),
 endDate: new Date().toISOString(),
 type: 'Vacation',
 status: 'Pending',
 },
 {
 id: 2,
 employeeId: 2,
 startDate: new Date().toISOString(),
 endDate: new Date().toISOString(),
 type: 'Sick Leave',
 status: 'Approved',
 comment: 'Feeling pretty sick today :(',
 },
]);
}

One question we might have is about the part where we invoke the signal in the tem-
plate like a function. We may have heard that calling functions in the template is a sort
of bad practice, so why do this here? Note that Angular will call the function each
time it suspects that there might have been a change in the data, which will need to
be reflected in the UI, meaning whatever computation the function does, it will be
re-executed. However, depending on a function, this might be something that is not
important at all or something that will take lots of (unnecessary) time to complete,
affecting performance. However, in the case of signals, this function call essentially

We will add some
actions that can be
done with time-off
requests next.

Signal that represents the
array of time-off requests;
the data is added
manually for now.

1376.3 Building Angular components with signals

immediately returns the value that is already there, meaning it is not something that will
affect performance (reading signal values does some other things too; we will learn
about them in the next chapter when we dive a bit deeper in their internal workings).

 Next, let us practice our knowledge of updating signal values by creating the func-
tions that will approve or reject time-off requests.

6.3.2 Handling signals in Angular components

Because we are working with arrays of objects, let us go forward and use the set and
update methods to handle the data changes.

export class TimeOffManagementComponent {
 requests = signal<TimeOffRequest[]>([
 {
 id: 1,
 employeeId: 1,
 startDate: new Date().toISOString(),
 endDate: new Date().toISOString(),
 type: 'Vacation',
 status: 'Pending',
 },
 {
 id: 2,
 employeeId: 2,
 startDate: new Date().toISOString(),
 endDate: new Date().toISOString(),
 type: 'Sick Leave',
 status: 'Approved',
 comment: 'Feeling pretty sick today :(',
 },
]);

 approveRequest(request: TimeOffRequest) {

 this.requests.update((requests) => {
 const index = requests.findIndex((r) => r.id === request.id);
 return requests.map(
 (item, i) => i === index ? ({
 ...item,
 status: 'Approved',
 }) : item);
 });
 }

 rejectRequest(request: TimeOffRequest) {
 this.requests.update((requests) => {
 const index = requests.findIndex((r) => r.id === request.id);
 return requests.map(
 (item, i) => i === index ? ({
 ...item,
 status: Rejected',

Listing 6.5 Changing signal values in a component

We use update to approve a
time-off request. We do it by
mapping the existing array of
requests to a new array, in
which the exact request
(corresponding to the index)
is replaced by a new request
object whose status is
“Approved.”

We do the same (but
in reverse) when
rejecting a request.

138 CHAPTER 6 Signals: A new approach to reactive programming

 }) : item);
 });
 }

 deleteRequest(request: TimeOffRequest) {
 this.requests.update((requests) =>
 requests.filter((r) => r.id !== request.id)
);
 }
}

Now we have ourselves a workable component with basic functionality, and if we run
this component, we will see how all of the UI gets updated when we click the buttons.
However, there is more that we want to do with this component. For instance, we want
to be able to search through requests by type, for example, and we also want to display
some text that shows how many pending requests are left, so an HR admin can track
their progress when reviewing multiple requests. Of course, those functionalities are
dependent on the time-off request items and should be derived from that signal. Let
us now see how it can be done.

6.4 Computed signals
With RxJS, we covered how observables are immutable and we can only create new
observables from existing ones. With signals, we saw that they are mutable, but we
haven’t yet approached the topic of creating new signals from existing ones; so far, we
only created new signals manually from scratch. However, as we saw, it is very import-
ant to be able to derive new values from existing signals that will be updated as soon as
the source signal changes its value. With RxJS, we did it with a multitude of operators,
mainly the map operator. With signals, it is far easier, as we do this just using a single,
quite straightforward function called computed. Signals created with this function are
called computed signals. Let’s dive in and see how it works and how it improves our
code readability and the flow of data across applications.

6.4.1 Creating computed signals

As mentioned, computed signals are created via the computed function. The function
is very simple; it takes a callback, which has no arguments; and the value that this call-
back returns becomes the value of the resulting signal. Then the computed function
returns that signal, which can be then used to read its value. Let us see it in action:

const count = signal(0);
const increment = () => count.update(value => value + 1);
const doubleCount = computed(() => count() * 2);
console.log(count());
console.log(doubleCount());
increment();
console.log(count());
console.log(doubleCount());

When deleting a request, we can use
the update method and just filter
out the request with a particular id.

1396.4 Computed signals

The count signal we are already familiar with and also with the increment function.
Now what is new is the computed signal called doubleCount, which is defined as the
value of the count signal times 2. This code will output 0, 0, 1, 2 in the console
when executed. Now, 0 and 0 make sense, as the initial value of count is 0, and dou-
ble count is just 0 times 2, which is still 0. What is fascinating about this code is that
when we call the increment function, we only update the value of the count signal,
but the doubleCount signal’s value is updated automatically. What is even more fasci-
nating is that we do not have to do any magical things here—just write the actual
logic of how doubleCount is derived—and the value of that signal will always be
automatically tied to the value of count. This drastically reduces the number of
implementation details we need to code, only requiring us to write down the actual
business logic.

 We can also use the computed function to create signals derived from multiple
other signals. For instance, we can calculate the sum of two different signals:

const a = signal(2);
const b = signal(3);
const sum = computed(() => a() + b());
console.log(sum());
b.set(7);
console.log(sum())

This code uses the signals a and b, and their sum is computed via the computed signal
sum. This new signal will always have the value of the sum of a and b and will update
automatically when one of them changes the value. In this instance, the console will
log 5 and then 9.

 Now we might wonder if just writing a function that returns this sum and calling
it whenever we need the sum won’t do the same job. However, that would mean the
computation will run every time we read the value of the computed signal, even if
the value has not changed at all, which might be quite costly. On the other hand, sig-
nals created with computed will recalculate their value when there are changes, and
store it, so reading their value does not result in a new run of the calculation. We can
check this by making a small modification to our computed signal and running the
following code:

const a = signal(2);
const b = signal(3);
const sum = computed(() => {
 console.log('Recalculating');
 return a() + b();
});
sum();
sum();
sum();

Despite calling the sum signal three times, we only see Recalculating in the console
once. This is because computed signals will rerun their computation only when one of

140 CHAPTER 6 Signals: A new approach to reactive programming

the signals they depend on changes, meaning that reading its value will not (in gen-
eral) trigger recalculation.

 There is another important thing to pay attention to, and that can be seen if we
just remove any reads to the computed signal:

const a = signal(2);
const b = signal(3);
const sum = computed(() => {
 console.log('Recalculating');
 return a() + b();
});

Now if we run this, we won’t see anything in the console, as the computation callback
will not be executed. This makes sense, as the computed function assumes there is no
need to perform a computation if the value is not requested by anyone.

 The final important thing to notice here is that computed returns a Signal and not a
WritableSignal. This is completely in line with what we would expect, as a computed
signal completely depends on other signals, and manually updating its value makes no
sense whatsoever. Type safety is also guaranteed, as TypeScript will infer the type of the
computed signal’s value based on the return type of the callback we provided.

WE CAN CREATE NEW REACTIVE VALUES FROM EXISTING ONES

As we can see, the rule we set up earlier is now fulfilled, and this implementation of a
reactive primitive is completely compliant with that rule. Moreover, if we try to draw
parallels between signals and RxJS, we can notice that computed is somewhat similar to
both the map operator and the combineLatest operator, with the main difference
being that it always runs synchronously.

UNSUBSCRIPTION WILL BE AUTOMATIC

As computed signals “subscribe” to other signals, a question might arise as to what
happens to that connection when it is no longer needed. Thankfully, Angular takes
care of it all by itself: a computed signal will be destroyed when the context in which it
was created is gone. For instance, if we create a computed signal in a component, it
will be destroyed together with the component when the latter is removed from the
DOM tree, meaning that computed signals continue to be compliant with this rule.

 Next, let us explore how we can use the computed function in an Angular component.

6.4.2 Simplifying complex logic in Angular components
using computed signals

As we previously already laid out our next objectives with the TimeOffManagement
Component, let us start implementing them, beginning with a progress counter of how
many resolved time-off requests are there versus the total number of requests, so that
the users can keep track. We can easily accomplish this with computed signals.

1416.4 Computed signals

export class TimeOffManagementComponent {
 requests = signal<TimeOffRequest[]>([]);
 resolvedRequests = computed(() =>
 this.requests().filter(
 (r) => r.status !== 'Pending',
));

}

Now we have a signal that always contains only resolved requests, meaning ones that are
no longer “Pending.” We can simply drop this data somewhere in the UI—for example:

<h3>Resolved {{ resolvedRequests().length }} / {{ requests().length }}
Unresolved </h3>

The UI will also gets updated every time the list of requests changes. We can check it
by approving/rejecting or deleting some of the requests. Let us now move forward
and implement something more complex—namely, a filtering functionality based on
the type of requests. As we use signals for this, what we are going to create another sig-
nal that holds the type of request selected by the user and use a computed signal to
combine it with the requests array to derive a list of filtered requests. Let’s first create
a simple signal that will hold one of the request types:

selectedType = signal<
 'Vacation' | 'Sick Leave' | 'Maternity Leave' | 'Paternity Leave' |

'Other' | ''
 >('');

Here we are going with full type-safety and mentioning all possible variations of the
request type, plus an empty string, which represents no filter selected (which is the
default). Now let us add a select dropdown with all the options and bind it with this
new signal using a ngModel:

<select [ngModel]="selectedType()"
(ngModelChange)="selectedType.set($any($event))">

 <option value="">All</option>
 <option value="Vacation">Vacation</option>
 <option value="Sick Leave">Sick Leave</option>
 <option value="Maternity Leave">Maternity Leave</option>
 <option value="Paternity Leave">Paternity Leave</option>
 <option value="Other">Other</option>
</select>

There are two things worth paying attention to here: one is the fact that we wrote
(ngModelChange)="selectedType.set($any($event))". This is a bit unusual, as com-
monly we would write something like [(ngModel)]="selectedType". However, we

Listing 6.6 Using computed signals in a component

Mock data is omitted
for the sake of brevity.

A signal is computed from the whole list
of requests to only include requests that
are not pending anymore.

Other methods in the
component are also omitted.

142 CHAPTER 6 Signals: A new approach to reactive programming

cannot do this in v16 because [(ngModel)]="something" is actually syntactic sugar, a
shorthand syntax equivalent to [ngModel]="something" (ngModelChange)="something
= $event". However, with signals, we cannot just assign values to them and instead
need to call the set method, which is why we have to spell the logic out explicitly. In
Angular v17.3, this familiar way of binding signals to ngModel has been added, and we
can use it as we always did, but as of Angular v16, there is no signal NgModel way of
doing this, so, for now, we are going to use this syntax and will discuss the new
approach in chapter 10.

 Second, we used the $any helper function, which in Angular templates type-casts a
value to type any. We do this because, while we explicitly stated all possible values of
selectedType (which was narrower than just string), the $event here could be any
string (from TypeScript’s perspective), so we cast it to type any to let TypeScript
know we understand what we are doing.

 Now we have a signal that will update when the user changes the type from the
dropdown. Finally, we need a computed signal, which will calculate the filtered users
based on the selected type:

filteredRequests = computed(() => {
 const type = this.selectedType();
 return this.requests().filter(r => (type ? r.type === type : true));
});

Now we just check if some specific type is selected and return an array filtered based
on that. In the template, we can replace requests() (which represent all the requests,
without any filters) with the new filteredRequests computed signal:

<tr *ngFor="let request of filteredRequests()">

This will work the same way as with manually created signals. We can also compute
new signals using other computed signals. For instance, the resolvedRequests signals
can be modified to show the proportion of resolved requests among the ones filtered,
as opposed to the total number of signals:

resolvedRequests = computed(() =>
 this.filteredRequests().filter((r) => r.status !== 'Pending')
);

Here the filteredRequests is treated like any other signal, so it is irrelevant whether
it is computed or created manually.

 Now that we have learned performing complex operations with signals, let us set
up some basic rules and best practices:

 Always use computed signals instead of getter methods or functions for deriving
new values.

 Do not write to signals in a computed callback, meaning do not ever call another
signal’s set or update methods in that callback.

1436.5 Effects

 Try to refer only to properties that themselves are signals in the computed call-
back unless absolutely necessary. While using nonsignal properties in a com-
puted callback can sometimes be unavoidable, most commonly it is a code
smell and can be a sign of deeper problems with the component’s structure.

Let us move on and discuss executing side effects based on changes to signal values.

6.5 Effects
Sometimes, instead of calculating a new value that will dynamically change when a
dependency changes, we just want to perform some “unrelated” action whenever a sig-
nal changes its values. For example, we might want to send an HTTP request that
would track a user’s action or maybe set a FormControl’s value based on some signal
or something else.

6.5.1 Creating effects

Signals in Angular provide a special capability to execute side effects. This is accom-
plished via the effect function. Let’s review it in code, which is a constructor of some
Angular component:

constructor() {
 effect(() => {
 console.log(`Count is ${this.count()}`);
 });
 this.increment();
 this.increment();
 }

The callback in effect will be called when the count signal’s value changes, which it
does via calling the increment function. However, as opposed to computed, it will only
log Count is 2, skipping 0 and 1. This is because signal effects are always asynchro-
nous—no matter if the code inside the callback does not deal with any async logic.
This means that if during one function execution the value of a signal that an effect
watches changes several times, we will receive only the last one and perform the
effect’s logic on it once.

 Let’s use this to synchronize our selected type with localStorage. What we want is
for the user who leaves the TimeOffManagementComponent to see what they selected
previously from the request type dropdown and be able to continue doing what they
used to do. The following listing shows how we can implement it.

constructor() {
 effect(() => {
 localStorage.setItem('selectedType', this.selectedType());
 });
 }

Listing 6.7 Saving state to localStorage with an effect

144 CHAPTER 6 Signals: A new approach to reactive programming

As with computed signals, effects will automatically track the signals they depend on
and run the effect callback again. So every time the user selects a new time-off request
type, the localStorage will get updated and store the latest value. To bring that
value back when the user visits the page, we can just change the default value of the
selectedType signal:

selectedType = signal<
 'Vacation' | 'Sick Leave' | 'Maternity Leave' |
 'Paternity Leave' | 'Other' | ''
 >(localStorage.getItem('selectedType') as any ?? '');

Here we use the as any type-casting command because localStorage.setItem
returns a value of type string, and we mentioned a narrower type; we did it to tell
TypeScript we know what we are doing.

WE CAN PERFORM SIDE EFFECTS BASED ON CHANGES OF THE VALUE

As we can see, we ensured the new reactive primitive complies with this rule too. We
are not only able to derive values but also perform loosely related logic based on other
signals. Let’s now take a deeper look at the effects and see how they function.

6.5.2 Important things to know about effects

While computed signals were more or less simple, effects have many restrictions that
we need to be aware of. The following are the most important ones.

EFFECTS CAN ONLY RUN IN AN INJECTION CONTEXT

Similar to the inject function, we can only register effects in contexts where the DI
tree is available. This is to ensure that Angular can then safely “unsubscribe” from the
effect—for instance, when the component is removed from the DOM. If we absolutely
need to register an effect in a method that is not the constructor, we can do this by
passing a reference to the component’s injector to the effect function:

private readonly injector = inject(Injector);
someMethod() {
 effect(() => {
 console.log(this.someSignal())
 }, {injector: this.injector});
}

This will ensure that the effect will be able to be destroyed when the component is gone.

EFFECTS CAN BE STORED IN COMPONENT PROPERTIES AND DESTROYED EARLIER

Instead of just spelling out the effect in the constructor, we are able to assign the refer-
ence to the created effect to a class property to be reused later. This accomplishes two
things. First, the effect gets a name that future readers can use to immediately under-
stand what it does without reading the code in the callback. Second, we can use that
reference to terminate the effect before the component is removed from the DOM,
based on an event or a condition.

1456.5 Effects

@Component({
 standalone: true,
 template: `
 <button (click)="removeLogging()">Stop</button>
 `,
})
export class SomeComponent {
 count = signal(0);
 log = effect(() => {
 console.log(`Count is ${this.count()}`);
 });

 constructor() {
 setInterval(() => this.count.update(c => c + 1), 1_000);
 }

 removeLogging() {
 this.log.destroy();
 }
}

Now if we click the “Stop” button, we will see that logging every 1 second to the con-
sole stops. This is useful for scenarios dealing with async events or streams that only
need to be handled for a while.

WRITING TO SIGNALS FROM EFFECTS IS PROHIBITED

Sometimes we might be tempted to update some signal’s value from the effect call-
back. However, code like this will result in an error:

export class SomeComponent {
 count = signal(0);

 constructor() {
 effect(() => {
 this.count.update(c => c + 1);
 });
 }
}

If we run this code, we will receive the following error:

Error: NG0600: Writing to signals is not allowed in a `computed` or an
`effect` by default. Use `allowSignalWrites` in the `CreateEffectOptions` to
enable this inside effects.

However, as we see, the error message offers a workaround. If we absolutely need to update
another signal from an effect, we can allow it using the allowSignalWrites option:

effect(() => {
 this.count.update(c => c + 1);
}, {allowSignalWrites: true});

Listing 6.8 Stopping an effect before the component is destroyed

Stores the reference to the
effect in a component property

Logs a value of
the count signal

Increments
the count
every 1 second

Stops the effect from running using
the reference and the destroy method

146 CHAPTER 6 Signals: A new approach to reactive programming

But it is important to remember that this is a very rare case. In most scenarios, what
this means is that one signal is dependent on another one, meaning it probably can
be derived from it using a computed signal instead of an effect.

 Next let us talk about why we should, for the most part, avoid using effects too
much and how to recognize scenarios where effects are really necessary.

6.5.3 When to use effects

As the name “side effect” suggests, effects are most useful in scenarios where we want
to perform something that is out of the usual flow of a component. To better under-
stand this, let’s remember figure 5.1 from the previous chapter, which illustrated the
life cycle of the component. It postulates that the UI is rendered based on the compo-
nent’s state; then the UI sends events to the component, which in turn updates the
state, which again updates the UI, and so on. Thus, everything that falls out of this
nice circle can be considered a side effect. Let’s explore some examples.

WRITING TO EXTERNAL STORAGE

We already covered this example when we created an effect that stored a signal’s value
in localStorage. So local storage, session storage, cookies, indexed DB, and so on are
part of neither the UI nor the component’s state; thus we should use effects when
interacting with them.

CALLING THIRD-PARTY APIS
We know that it is very common to work with reactive forms in Angular applications.
Reactive forms work as a wrapper around form values, and we use methods like
FormControl.setValue or FormControl.disable to handle the behaviors of our con-
trols. There can be scenarios when we need to, for example, disable a FormControl
based on a value from some signal. We cannot express this logic via a computed signal;
thus we have to employ effects to handle such functionality. Any other third-party API
that requires such interactions will be considered a side effect.

PERFORMING UI UPDATES THAT CANNOT BE EXPRESSED VIA ANGULAR’S TEMPLATE SYNTAX

The template syntax in Angular is very powerful and versatile, but there are still cases
where it is not enough to perform some operations. For instance, we might want to set
a dynamic title on the browser tab, and the only way to achieve this with Angular is by
using the Title injectable. If we want to set the title based on some signal, we would
need an effect.

export class SomeComponent {
 name = signal('Tab name');
 title = inject(Title);

 constructor() {
 effect(() => {
 this.title.setTitle(this.name());

Listing 6.9 Setting a tab title from a signal using an effect

1476.6 RxJS and signals interoperability

 });
 }
}

Any other DOM-related operation like this, when depending on signal values, should
be implemented via an effect.

WORKING WITH CANVAS

Canvas provides a huge API to draw completely custom things outside of the usual
flow of the DOM. We might be employing a third-party library to draw charts, for
instance, or drawing an image ourselves based on values of some signals. As canvas
cannot be drawn using just HTML tags, Angular’s template syntax is powerless here,
meaning we will have to resort to using effects to express relations between signals and
whatever drawings are in the canvas.

 As we saw, effects are something that we should avoid unless dealing with some-
thing that really falls out of the usual State → UI → Events → State flow. In the next
chapter, we will explore more capabilities of effects and some pitfalls developers
might stumble upon when working with them. Now let’s move forward and finally try
to reconcile RxJS with signals and see how the two can work together to achieve amaz-
ing functionality with just a few lines of code.

6.6 RxJS and signals interoperability
We began the chapter by listing several problems with RxJS, one of which was the prob-
lem that arises from the fact that observables can be asynchronous. We saw that signals
are synchronous, meaning that RxJS will still have a job to do: handle all the async stuff.
This raises a question: how do we make RxJS work with signals? There are two ways this
is accomplished. One is being able to convert an observable to a new signal, which will
always hold its latest value. The other is converting a signal to a new observable that will
emit every time the signal changes its value. Let’s examine those cases.

6.6.1 Converting observables to signals

In listing 6.4 we began building the TimeOffManagementComponent, and we made the
initial value of the requests signal an array of mock requests. However, in real life, this
won’t be the case, and we will retrieve the requests from an API. We will have a service,
which will utilize the HttpClient and return an observable of time-off requests. But if
it is an observable, how do we use it as a signal in our code?

 Another function, named toSignal, from the rxjs-interop package that we learned
about in the previous chapter, will come to our rescue. This function will take any
observable and return a signal that always contains the latest value from that source
observable. Because signals are synchronous and observables can potentially be asyn-
chronous and thus not have an initial value for some time, this function also accepts
an options parameter, where we can specify an initial value until the observable emits.
In our case, this will be an empty array. Let’s see it in action.

148 CHAPTER 6 Signals: A new approach to reactive programming

export class TimeOffManagementComponent {
 private readonly timeOffRequestService = inject(
 TimeOffRequestService,
);
 requests = toSignal(
 this.timeOffRequestService.getRequests(),
 {initialValue: []}
);
 selectedType = signal<
 'Vacation' | 'Sick Leave' | 'Maternity Leave' |
 'Paternity Leave' | 'Other' | ''
 >(localStorage.getItem('selectedType') as any ?? '');
 resolvedRequests = computed(() =>
 this.filteredRequests().filter((r) => r.status !== 'Pending')
);
 filteredRequests = computed(() => {
 const type = this.selectedType();
 return this.requests().filter(r => (type ? r.type === type : true));
 });

}

In this case, requests continues to be a signal that contains the array of requests, so
we can use it as previously when deriving other signals from it, reading its value or dis-
playing it in the template. However, all the methods where we changed its value via
update will now throw errors. This is because the toSignal function returns a Signal,
and not a WritableSignal, which is expected, because if we have created a signal
from an observable, we expect it to depend entirely on the source observable and not
to be able to change its value manually. In real life, we wouldn’t do that anyway: when
we approve or reject requests, we make HTTP requests to the backend instead of just
changing the values in the UI.

 Because observables can be async and have three states (working, error, and com-
pleted), this has to be reflected in some way in the signal derived from it. So if an
error notification is received from the source observable, this error will be stored and
thrown the next time we attempt to read from this signal. In case of observable com-
pletion, the signal will continue as usual and always return the last value emitted by
the source observable before its completion.

 Another important thing to remember is that, similar to the effect function, the
toSignal function also only works in an injection context. This is because, under the
hood, the function subscribes to the observable and injects the DestroyRef to unsub-
scribe from it automatically when, for example, the component in which it has been
called gets destroyed. Again, as with effects, we can bypass this restriction by passing a
reference to the component’s injector and invoking the function in methods other
than the constructor.

Listing 6.10 Converting an observable to a signal

Injects the TimeOffRequestService,
which will make HTTP calls and
return observables

We make the HTTP call to retrieve
the requests and convert the
resulting observable to a signal
using toSignal with an initial value
set to an empty array.

All computed signals that used to
depend on the requeests signal
continue to work as expected.

Rest of the component code
omitted for the sake of brevity

1496.6 RxJS and signals interoperability

 Because of this, we cannot just go assigning signals derived from observables to
properties wherever we like. For instance, we could modify the deleteRequest method
to update the requests array via an HTTP call:

deleteRequest(request: TimeOffRequest) {
 this.requests = toSignal(
 this.timeOffRequestService
 .deleteRequest(request.id)
 .pipe(switchMap(() => this.timeOffRequestService.getRequests())),
 { initialValue: this.requests(), injector: this.injector }
);
}

While this seems right, in reality it will cause all of our computed signals to break, as
we are reassigning the existing requests property to a brand-new signal derived
from another HTTP call observable. To avoid such scenarios, we need to build our
HTTP calls in a manner that will make the observable emit again (instead of com-
pleting after the response arrives) so that the signals derived from them update and
show fresh data right away. Behavior like this already exists in state management sys-
tems that are based on observables, like NgRx, but in plain old Angular this does
not work out of the box and needs to be implemented manually. However, this
requires significant rethinking of our approaches and an architectural shift; thus,
we will cover this topic in intricate detail in the next chapter, when we dive deep
into how signals work and how we should build application architecture around
them. For now, let’s move on and see the reverse scenario: creating new observables
from existing signals.

6.6.2 Converting signals to observables

While the previous approach is very popular, converting signals to observables is a bit
less common as a development task. However, there are scenarios when this can be
necessary. For instance, we might have a combined stream created from multiple
observables and want to add another source only to discover that source is a signal,
not an observable. In such a scenario, it would make more sense to convert that signal
to an observable and just combine it with the rest of them, rather than convert the
other stream to a signal and use computed or effect.

 With the rxjs-interop package, another function is available to us to perform such
a conversion: the toObservable function. This function operates as the reverse of the
toSignal function, taking a signal as an argument and producing an observable that
emits each new value of the source signal. The following is a basic example:

export class SomeComponent {
 count = signal(0);
 count$ = toObservable(this.count);

 constructor() {
 this.count$.subscribe(console.log);

150 CHAPTER 6 Signals: A new approach to reactive programming

 setInterval(() => this.count.update(value => value + 1), 1_000);
 }
}

Here count$ is an observable derived from the count signal. As the count signal is
incremented by 1 each second, the output in the console will be 0, 1, 2,. . . and so on
every second. Note that toObservable works similarly to toSignal in the sense that it
can only be executed in an injection context (again this can be worked around by
passing a reference to the component injector). This is because toObservable uses an
effect under the hood to handle the connection between the source signal and the
resulting observable, and effect itself requires an injection context to properly
destroy itself on the component’s destruction.

 Another notable thing is the fact that while signals themselves are synchronous
(we read their values in place, without subscribing via a callback), they propagate
their changes asynchronously, meaning the updates to the source signal will only
be emitted after the current stack frame stops executing synchronous commands.
To better illustrate this point, let us consider the following modification to the
previous example:

export class SomeComponent {
 count = signal(0);
 count$ = toObservable(this.count);

 constructor() {
 this.count$.subscribe(console.log);
 this.count.set(1);
 this.count.set(2);
 this.count.set(3);
 }
}

In this case, we will only see the value 3 logged in the console because the signal will
wait until the current function (in this case, the constructor) stops executing before
notifying subscribers about the update, and at that point the latest updated value will
be 3. Also, if we completely remove the code that does updates to the count signal, we
will still see 0 in the console: the observable will always emit at least the default value
of the source signal when subscribed to.

IT SHOULD INTEROPERATE WITH RXJS
With this last section, we showed conclusively that signals comply with this rule too: we
can easily integrate RxJS logic with signals, and vice versa, and decide when to use
which in complete harmony with each other.

 Now with the basics of signals already covered, we are ready to embark on the
next part of our journey into the world of reactive programming: a deep dive into
how signals function under the hood, learning about which tasks should be solved
with RxJS and which with signals, how to manage state shared between components

1516.7 Summary

using signals (and should we do it at all), how to migrate certain parts of an Angu-
lar application from RxJS to signals, and how this all will affect Angular’s perfor-
mance and reusability.

6.7 Exercises for the reader
 Build a simple to-do list component from scratch using signals, with search,

deleting to-do items and marking them as complete; additionally implement
saving the data to local storage.

 Refactor previous components built in the HRMS application to use signals.
 Experiment with existing projects to try and find our cases where signals can be

used to reduce complexity when dealing with reactive programming scenarios—
for instance, large subscriptions to RxJS observables.

Summary
 RxJS is very powerful but is not fully compatible to solving all reactive program-

ming tasks in Angular and comes with its own problems.
 The Angular core team proposed a new reactive primitive called a signal, which

can be used to handle reactivity in Angular applications without RxJS observables.
 Signals are simple wrappers around values that notify other subscribers about

their value updates.
 Signal values can be changed via Angular’s set and update methods.
 New signals can be derived from existing ones using the computed functions;

these new signals will be completely dependent on their source signals and won’t
be available for manual update.

 We can also register side effects as a callback that will be executed when signals
in the callback change

 In both cases, Angular will automatically track dependencies and dispose of the
subscriptions on the component’s destruction.

 Signals fully interoperate with RxJS, allowing the conversion of observables to
signals and vice versa.

152

Signals: A deep dive

In the previous chapter, we learned about the basics of working with signals: how to
create them, change their value, derive new signals from existing ones, and make
them work with RxJS observables. Now, as advertised in the title of this chapter, we
will take a deep dive into the world of signals and learn about advanced options, best
practices, and ways to migrate existing applications to use signals. Let’s get started!

7.1 Advanced options when dealing with signals
So far, we have learned that signals are wrappers around values, which also notify us
about the changes to those values. The process is pretty straightforward, accomplished

This chapter covers
 Signal value equality and advanced manual

cleanup of effects

 The internal workings of signals

 State management across components
using signals

 Caveats of using signals with RxJS

 Migrating to signals

 The future of signals

1537.1 Advanced options when dealing with signals

via either the computed or effect functions. However, the default logic behind
those computations is sometimes not enough to describe some complex processes
and requires modification. Let’s learn about those options and when we might want
to use them.

7.1.1 Signal equality

In the previous chapter in section 6.4.1, we talked about computed signals and defined
them as signals derived from other signals, which get re-evaluated whenever the original
signal’s value changes. One question we did not ask is: what constitutes a change to the
signal’s value? While the question indeed sounds superficial, in reality, it can get quite
complex from time to time. Let’s consider the code in the following listing.

@Component({
 selector: 'some-component,
 standalone: true,
 template: `
 Full Name: {{ fullName() }}
 <button (click)="changeUser()">Change User</button>
 `,
})
export class SomeComponent {
 user = signal({
 id: 1,
 firstName: 'Jon',
 lastName: 'Snow',
 age: 20,
 })
 fullName = computed(() => {
 console.log('Re-evaluating');
 return `${this.user().firstName} ${this.user().lastName}`;
 });

 changeUser() {
 this.user.update(value => ({
 ...value,
 age: 20,
 }));
 }
}

If we run this component, we can notice that the Re-evaluating text appears in the
console every time we click the button, despite the fact that we did not really change
anything in the original object, let alone the first or last names. This happens because
update, for instance, will set a new value onto an object and just propagate a notifica-
tion to all computed signals derived from the source.

 In this case, the update method does in fact check for equality between the previous
and current value, but in the case of objects, it just uses referential equality; that is, if

Listing 7.1 Signal re-evaluating a value without an actual change

Uses a computed
signal in the
template The button will

change the signal’s
value when clicked.

A signal of an
object

We log every time
the computed
callback executes.

Notice we do not actually change
the value; this again sets the age
property’s value as 20.

154 CHAPTER 7 Signals: A deep dive

we provide a new object, even if data inside matches the original 100%, it will treat it
like a completely new one and propagate the changes.

 So what do we do about this problem? It turns out Angular has us covered here: we
can provide an equality-checking function when creating new signals! For instance, we
might decide that a user is “changed” when its id property is mutated (a simplistic
approach but could work in some cases in real life). Let’s change our code a little so
we get it working in the most efficient manner.

export class SomeComponent {
 user = signal({
 id: 1,
 firstName: 'Jon',
 lastName: 'Snow',
 age: 20,
 }, {
 equal: (previous, current) => {
 return previous.id === current.id;
 }
 })
 fullName = computed(() => {
 console.log('Re-evaluating');
 return `${this.user().firstName} ${this.user().lastName}`;
 });

 changeUser() {
 this.user.update(value => ({
 ...value,
 age: 20,
 }));
 }
}

Now if we run the code, the Re-evaluated text will appear only once in the console:
the very first time when the computed full name signal is evaluated.

 This same logic can be applied to computed signals themselves, in case we are
deriving new computed signals from them in turn somewhere down the line. So when
we create new signals, we can define an equality comparison function to make sure we
don’t run costly computations too often. Next, let’s optimize even further by ensuring
computed signals only re-evaluate in the event of some of their dependency updates
(only the important ones) instead of all the signals inside of the callback.

7.1.2 Untracking dependencies

In the previous chapter, we established that callbacks for computed and effect func-
tions will be re-executed when one of the signals read inside them changes its value.
This is great in and of itself, because we want the freshest available value, and this does
the job without any friction. However, there are scenarios where we want to execute

Listing 7.2 Using equality comparison for signals

Provides an equality
checking function for
the signal’s value

The function will check if id is the same
for the new and previous values to
determine if the object has changed.

1557.1 Advanced options when dealing with signals

the callback only when some of the signals have changed but not all of them. Let’s con-
sider the code in the following listing.

export class App {
 user = signal({
 id: 1,
 firstName: 'Jon',
 lastName: 'Snow',
 age: 20,
 });
 dateTime = toSignal(interval(900).pipe(map(() => new Date())),

{initialValue: new Date()});
 fullName = computed(() => {
 const {firstName, lastName} = this.user();
 return `${firstName} ${lastName}, last modified at

${this.dateTime().toString()}`;
 });

 changeUser() {
 this.user.update(value => ({
 ...value,
 age: 20,
 }));
 }
}

Now we use the dateTime signal to show when the computed fullName signal was last
updated, but we run into a problem: the “last updated” in the UI will show the current
date and time to the current second. This is because this new computed signal also
tracks (listens to) the changes on the dateTime signal, which in turn changes about
every second. So how do we explain to Angular that we only care about the changes on
the user signal and dateTime is only complimentary to it? It turns out that Angular has a
tool for this, called the untracked function. Here is how we can use it in our scenario:

fullName = computed(() => {
 const {firstName, lastName} = this.user();
 const dateTime = untracked(this.dateTime);
 return `${firstName} ${lastName}, last modified at

${dateTime.toString()}`;
});

The untracked function will take a signal (important note: a signal, and not its value)
and return its value without tracking it as a dependency for the derived computed sig-
nal. Now if we run the code, every time we actually change the user object, the com-
puted signal will show the very “last modified time,” but it won’t change otherwise
even though the dateTime signal does in fact notify about its new values.

 This function is especially useful in effects, where we might want to run entire
pieces of logic that interact with some signals, but only when a very specific signal
notifies. For instance, we might have a complex form that runs a significant risk of

Listing 7.3 Computed signal updated each second by an interval

Signal derived from an
observable that emits about
every second, converted to
that current date

Uses the date signal to show
when the user was last
updated

156 CHAPTER 7 Signals: A deep dive

users losing their progress if they spend too much time on it—for example, due to a
timeout; in this case, we want to run an effect that will automatically save the progress
every few minutes. However, because saving requires reading from the form signal, it
will mean that the effect will also run whenever the user changes the values of the
input fields, and we do not want that many re-executions. We can easily do this by pro-
viding a callback function to the untracked function, and whatever signals are read in
the callback will remain untracked:

constructor() {
 effect(() => {
 const dateTime = this.dateTime();
 untracked(() => {
 const formValues = this.form();
 localStorage.setItem('formValues', JSON.stringify(formValues));
 alert(`Your progress has been saved at ${dateTime}`)
 });
 });
}

As we can see, we can now run entire functions in an untracked environment, making
them independent from the effect in which they have been invoked. It is also a good
practice to wrap any calls to other functions in untracked, because they might possibly
read other signals in the future if someone changes them, causing hard-to-find bugs.
Finally, let us learn about the last advanced option signals have: the ability to manually
clean up effects or signals derived from observables.

7.1.3 Manual cleanup

In section 6.5.2, we mentioned that we can manually end an effect cycle by storing it in a
class property and calling EffectRef.destroy(). This could be useful if we want to ter-
minate an effect way before the component that initiated it gets destroyed. However,
there is a caveat: what if we invoke some asynchronous logic inside this effect—for
example, something like a setTimeout? For example, let’s modify the logic of our previ-
ous example. Now, instead of saving every 3 minutes, we will react to the change of the
form, wait for a minute, and save it to localStorage. However, this effect will be can-
celed if the user clicks the Save button and outright saves their progress to the database.
Let’s see how this looks in the following listing.

constructor() {
 effect(() => {
 const formValues = this.form();
 setTimeout(() => {
 localStorage.setItem('formValues', JSON.stringify(formValues));

Listing 7.4 Using untracked callbacks in effects

Listing 7.5 Invoking asynchronous logic in effects

Reads the dateTime signal,
which notifies every 3 minutes,

so we know when to save

Runs our saving/alerting logic
in an untracked callback so
that we do not save to
localStorage every time the
form is updated but instead
only every 3 minutes

1577.1 Advanced options when dealing with signals

 }, 1_000);
 })
}

In this case, we would run into another problem: when the user clicks “Save” and the
effect is destroyed, the callback will be executed one last time. While in this scenario
we may think “Not a big deal!”, in general, such cases can cause really hard-to-find and
hard-to-fix bugs. Also, we might want to clean the localStorage, as the values there
have been saved to the database anyway. So how do we achieve this?

 It seems we need to know the effect terminated so that the timeout callback does
not execute, but how do we know the effect is done? For this purpose, effect call-
backs have a special, optional argument, which lets us define another callback that
will run whenever the effect is destroyed (regardless if it is terminated manually or
because the component got destroyed). The following listing shows a simple modifica-
tion to our code.

constructor() {
 effect(onCleanup => {
 const formValues = this.form();
 const timeout = setTimeout(() => {
 localStorage.setItem(
 'formValues',
 JSON.stringify(formValues),
);
 }, 1_000);

 onCleanup(() => {
 clearTimeout(timeout);
 localStorage.clear();
 });
 })
 }

Now we can put aside our worries and rest assured nothing will “leak” out from our
effect. Next, let’s discuss ditching automatic cleanups and how to terminate signals
created from observables.

 In the case of effects, we already mentioned that they get destroyed automatically
when their injection context gets destroyed (most commonly the component in which
they have been defined). In very rare cases, we might want to override this behavior
and fully assume control over when an effect should be terminated. This can be
accomplished by providing a special option when defining an effect:

effect(() => {
 doSomethinWithASignal(someSignal());
}, {manualCleanup: true});

When setting manualCleanup: true, we essentially tell Angular that we will terminate
the effect ourselves, so be careful when using it so as to not cause memory problems

Listing 7.6 Cleaning up after an effect got destroyed

Obtains the reference to
the onCleanup function

Stores the reference to the
timeout so we can cancel
it later if necessary

Invokes the onCleanup with a
callback, which will be called
when the effect gets destroyed

Clears the timeout

Clears the
localStorage

158 CHAPTER 7 Signals: A deep dive

or bugs. A slightly more common scenario is wanting to terminate a signal created
from an observable before the component is destroyed. Again, the toSignal function
also accepts a manualCleanup option.

 Note that both of these scenarios are extremely uncommon and might potentially
indicate a problem within the structure of the code itself. For this reason, we do not
provide a practical example here, as such use cases will arise from implementation
details of a particular feature, rather than from business requirements. If we find our-
selves in a situation where we want to use these options, the best course of action
would be to first reconsider the code itself that resulted in such a necessity and do our
best to avoid it. Next, let’s discuss two other advanced options that signals in Angular
provide before we move on to more in-depth knowledge.

7.1.4 Readonly signals and synchronizing with RxJS
Right at the very beginning of our journey into signals, we learned about the differ-
ence between a Signal and a WritableSignal—namely that the former cannot be
modified, while the latter can. Sometimes we have a WritableSignal somewhere, usu-
ally in a service, which we want to be able to modify inside that class but not from the
outside; from the outside world (for example, a component that injects this service),
we want to be able to read only that signal’s value. This can be easily achieved via
exporting it as a readonly signal:

@Injectable({providedIn: 'root'})
export class SomeService {
 readonly #data = signal<Data>({});
 readonly data = this.#data.asReadonly();
}

NOTE Calling the asReadonly method on a WritableSignal will return a sig-
nal, which will always have the same value as the original WritableSignal but
can’t be modified. In the case of this service, internally we will use #data to be
able to modify the value, but other services or components will be able to read
only the value, never to modify. This might seem like something very specific,
but further in this chapter we will see how we can use it to our benefit when
building component interconnections with signals.

One final thing left to discuss is requiring observables to be synchronous when we
derive signals from them. In the previous chapter, we mentioned that if we do not pro-
vide an initial value to a signal created using the toSignal function, this signal can
probably be undefined, so we have to either provide a default value or check the value
every time we read it. This happens because observables can be asynchronous and not
have a value at the moment of this signal’s creation. However, if we are sure that the
observable is synchronous, we can use the requireSync option, which will immedi-
ately use the first synchronous value of the observable as the initial value of the signal:

someSignal = toSignal(of(1, 2, 3), {requireSync: true});

1597.2 Signals under the hood

In this case, the type of this signal will be number, rather than number | undefined, and
we can use it without providing an initial value manually. We know this works because
the of function produces synchronous observables by default; however, if we change it
to, say, an interval observable, we will get the following error:

Error: NG0601: `toSignal()` called with `requireSync`
but `Observable` did not emit synchronously.

So this option both makes our lives a bit easier and ensures we don’t inadvertently add
undefined values to our signals.

 Now that have covered the practical side, we can move on to the theoretical part,
so we can better understand signals and how they function under the hood and use
that knowledge to build complex features in real-life applications.

7.2 Signals under the hood
We began our journey into signals with a practical overview of what signals are, how to
use them, what options we have to modify them, and so on. Now it is time to dive into
their inner workings and find out how they fit into our view of reactive programming.
Let’s get started by figuring out what a signal is—not just as a wrapper around a value
but as a tool for achieving reactive programming.

7.2.1 The nature of signals

When we discussed RxJS, specifically in section 5.1, we introduced the concepts of
“push-based” and “pull-based” systems and illustrated that, for instance, functions are
pull-based and RxJS Observables are push-based. Another important categorization
that we have not yet mentioned is systems that have multiple values as opposed to sys-
tems that have a single value. For example, a function has a single value, while a gen-
erator function can have multiple values. Note that both are pull-based systems but
can deliver solutions to different problems. The same goes for promises versus observ-
ables: both are push-based, but a promise delivers a singular value, while an observ-
able can deliver multiple values. Again, this is something to consider when trying to
categorize signals. Table 7.1 lists these distinctions.

So where do signals fit in here? The answer is “Probably somewhere in the center.”
The thing is, signals both deliver multiple values and allow us to read the one, latest
value, and simultaneously they are both pull-based (we can just invoke them and read
the value like a function) and push-based (we can “subscribe” to another signal to get

Table 7.1 Categories of data access systems

Single value Multiple values

Pull-based Functions Generator functions

Push-based Promises Observables

160 CHAPTER 7 Signals: A deep dive

notified about its changes). This placement makes signals very powerful, but that same
versatility can be a source of problems down the line, as we will see in the next section.

 Also worth reiterating is the fact that signals are side-effect free, as opposed to
observables (observables can trigger, for instance, HTTP calls when subscribed to,
but signals would never have such side effects). However, reading a signal’s value, as
we noticed, is not always confined to “just getting the latest value.” If we do it in a
random method, then that reading operation won’t mean much in the large scheme
of things, but as we have seen, reading a signal inside a computed or effect callback
means that Angular will start following changes on those signals to recompute the
value/re-execute the effect.

 A final important thing to consider is that signals usually do not make much sense
outside of Angular. Contrary to RxJS, which is framework-agnostic and can be used
anywhere, Angular’s signals are explicitly tied in with the framework’s inner workings.
We already saw that when we could not define an effect outside of an Angular compo-
nent. This is an important thing to remember, especially when defining signals in ser-
vices to be reused in multiple components, a goal we are steadily moving toward in
this chapter.

 Now, with this knowledge aside, we can move on and figure out how computed sig-
nals and effects work and track dependencies, which at this moment still might feel
like a bit of magic.

7.2.2 How changes to signals propagate

In the previous chapter, when covering both computed signals and effects, we briefly
mentioned that they automatically track dependencies from the callback function
itself and then re-execute when the dependencies change their values. Let’s expand
on this and also discuss the order of execution of those operations.

HOW COMPUTED SIGNALS WORK

First, let’s explore how computed signals operate and refresh their value. Figure 7.1 is
a helpful graphic explaining the life cycle of a computed signal.

 While this graphic might seem somewhat intimidating, what it actually conveys can
be summed up in a sentence:

Computed signal’s callback will start executing only when it is read for the first time,
regardless of how many times the source signals might have changed previously, and then
it will only execute when source signals change, regardless of how many times we read its
computed value.

Notice that in figure 7.1, the “dependency changes its value” event only joins the party
after we have read the computed signal at least once, and afterward we do not mention
reading the signal anymore.

 This mechanism is super-optimized and uses the best possible strategy to prevent
executing callbacks multiple times, as they might perform costly operations. Why exe-
cute the computation callback if its value is not even used anywhere? And why execute

1617.2 Signals under the hood

it every time the value is read when we can only execute it when a source value has
changed (the only time the computed value could have possibly changed)? This makes
signals somewhat similar to observables, as most observables will not start producing
values unless subscribed to (there are exceptions, but the most common scenarios
work like this). What is different, though, is that reading the value won’t trigger any
other commands down the line, an important point we have repeated multiple times
in these last two chapters.

 Now let’s discuss how effects work, which is, a bit surprisingly, quite different from
how computed signals work, and how they are more integrated into Angular’s life cycle.

HOW EFFECTS WORK

From the perspective of code, effects seem to be the same as computed signals, differ-
ing only in not having a value and rather just performing some action “on the side.”
However, their behavior is very different from computed signals—and sometimes even
a bit bizarre, as we will soon see.

Computed signal is created.

Computed signal is read for the rst time.fi

Computed callback is executed for the rst time.fi

A dependency changes its value.

The computed callback is re-executed.

The new value of the computed signal is propagated to other consumers.

All source signals have been garbage collected, and signal is destroyed.the computed

During the execution, each time some other signal is read, it
is stored as a dependency of this new computed signal.

A new value is produced.

The callback is not executed until the computed signal is
read for the first time.

Figure 7.1 Life cycle of a computed signal

162 CHAPTER 7 Signals: A deep dive

 To conceptualize this, we have to have a very minimal understanding of the change
detection mechanism in Angular. In chapter 10 we will explore it in more depth, but
here it is sufficient to say that Angular runs a special algorithm to detect any changes
in components’ states (for instance, some property used to be equal to 6 and now it is
equal to 7) and then calls the special refreshView method to propagate those
changes to the UI (this is how Angular “magically” updates the UI when we change
component properties).

 This change detection runs once when the component is created and then multi-
ple times throughout the component’s lifetime, usually on some asynchronous events,
until the component is destroyed and removed from the DOM. Figure 7.2 shows how
Angular effects are very closely bound to the change detection mechanism.

As we can see, the re-execution of effects, as opposed to computed signals, is closely
tied to the change detection mechanism. This means that the following code will pro-
duce only the latest value:

export class SomeComponent {
 counter = signal(0);

An effect is registered.

The effect callback is executed for the first time.

Meanwhile, updates to the effect dependencies
arrive, possibly multiple times.

At some point, change detection runs again
and calls refreshView.

The effect callback is re-executed with the
latest values of dependencies.

Finally, the effect is destroyed either
manually or automatically.

The effect now waits for future updates
and change detection.

The component is change-detected for the
first time.

Figure 7.2 Life cycle of an effect

1637.3 State management with signals

 constructor() {
 effect(() => {
 console.log(`Value is ${this.counter()}`);
 });
 }

 update() {
 this.counter.set(7);
 this.counter.set(11);
 this.counter.set(20);
 }
}

This code will log Value is 0 and then log Value is 20 when the update method is
called. This means we should be careful with multiple updates to a given signal in the
same method (unless another update is scheduled asynchronously—for example, via
setTimeout), as from Angular’s perspective this will not make much sense.

 Now that we’ve covered the deep corners of signals, it is time to expand our
practice with them and build a custom state management approach using them.
Let’s dive in.

7.3 State management with signals
So far, we have only used signals in the context of a single component. However, the
fact that signals are capable of notifying us of their updates lends us a powerful oppor-
tunity to build functionality that extends beyond a single component and allows us to
manage data that is related to multiple parts of our application. This practice of shar-
ing data and handling a global state of things in a frontend application is usually
referred to as state management. While there are multiple state management libraries
(some of which, like NgRx, we have already mentioned), for most of them, based on
RxJS, with signals, we can create lightweight state management solutions best tailored
to our application’s needs. Let’s build one!

7.3.1 State management: The task

In the previous chapter, we introduced a page into our HRMS application that actu-
ally does handle some employee-related jobs—in this instance, time-off manage-
ment. In that scenario, an human resources employee will see lists of time-off
requests and handle them on a case-by-case basis. However, it would be useful if
employees in general receive notifications about tasks they have at hand. Of course,
one type of such notifications would be the time-off requests, but users will receive
other notifications too—for instance, their colleagues’ birthday reminders, applica-
tion maintenance notices, and more. Let’s make some ground rules for our notifica-
tions system:

 Notifications can be used in multiple components of our application; for exam-
ple, in the header we will see the list of all notifications with a counter, and in
the sidebar we could see the list of notifications regarding certain features of

164 CHAPTER 7 Signals: A deep dive

our app (like a counter of time-off related notification on the sidebar link that
navigates to the time-off management page).

 Notifications are real time, pushed from a server via a web socket connection.
We are not going to implement that particular functionality explicitly, as it is
out of the scope of this chapter, but we will assume a special SocketService that
handles that functionality and exposes an RxJS observable that emits when new
notifications arrive.

 Notifications can also be affected from outside; for instance, approving a time-
off request will result in the corresponding notification being marked as read.

 Notification data will be stored in localStorage and brought back when the ser-
vice is initialized; then it is updated via subsequent changes to the notification,
either from the web socket or from the user’s direct interaction.

With all of these conditions in mind, let’s get started!

7.3.2 State management: The implementation

First, as we begin implementing the state management service, let’s define what a noti-
fication is. Inside the HRMS project, in the src/app/infrastructure/types directory, let
us add a new file named notification.ts and put the definition of the type shown in the
following listing inside.

export type Notification = {
 id: number;
 title: string;
 message: string;
 type: 'TimeOff' | 'Birthday' | 'Maintenance' | 'Other';
 read: boolean;
 date: string;
}

This is pretty straightforward. Now, to be able to share functionality between com-
ponents, we need to create a service that hosts the relevant signals, so that different
components can inject that service and make use of those signals. So far, we have
only used signals in components, with one reason being that functions like effect
and toSignal only work inside an injection context. However, services are also cre-
ated in an injection context, meaning we can safely use signals in them. The follow-
ing listing shows a first-time, somewhat simplistic implementation of the notifications
service, without the socket connections (for now) in a new file located at src/app/
services/notification.service.ts.

@Injectable({providedIn: 'root'})
export class NotificationService {
 #notifications = signal<Notification[]>(

Listing 7.7 Notification type

Listing 7.8 Notification service

A private signal that
holds all notifications

1657.3 State management with signals

 localStorage.getItem('notifications') ?
 JSON.parse(
 localStorage.getItem('notifications')
) : [],
);
 notifications = this.#notifications.asReadonly();
 readNotifications = computed(
 () => this.#notifications().filter(
 n => n.read,
)
);
 unreadNotifications = computed(
 () => this.#notifications().filter(
 n => !n.read
)
);

 constructor() {
 effect(() => {
 localStorage.setItem('notifications',

JSON.stringify(this.#notifications()));
 })
 }

 addNotification(notification: Notification) {
 this.#notifications.update(value => [...value, notification]);
 }

 markAsRead(notification: Notification) {
 this.#notifications.update(
 value => value.map(
 n => n.id === notification.id ? {
 ...n,
 read: true,
 } : n,
)
);
 }

 markAllAsRead() {
 this.#notifications.update(
 value => value.map(n => ({
 ...n,
 read: true,
 })
)
);
 }
}

Now we have a service that essentially acts as state management for the notifications’
state in our application. Going forward, we can inject this service anywhere and use
the data from it easily. Let’s build a small HeaderComponent that will show the list of

The list of notifications is
hydrated from localStorage.

Only a read-only
version of the
notifications signal
is exposed to
components to use.

Computed
signals for read
and unread
notifications

An effect to store the latest
notifications in localStorage

Methods to modify
signals without explicitly
changing them

166 CHAPTER 7 Signals: A deep dive

the notifications in a dialog when the “bell” button is clicked. In src/app/shared/
components, let us add a new file named header.component.ts and put in the code in
the following listing.

@Component({
 selector: 'app-header',
 template: `
 <header>
 <h2>HRMS</h2>
 <button
 (click)="notificationsOpen.set(true)"
 title="View Notifications">
 You have {{ unreadNotifications.length }} unread notifications
 </button>
 </header>
 <dialog [open]="notificationsOpen()">
 <h3>Notifications</h3>

 <li *ngFor="let notification of notifications()">
 <h4>{{ notification.title }}</h4>
 {{ notification.message }}
 <button
 *ngIf="!notification.read"
 (click)="markAsRead(notification)"
 >
 Mark as Read
 </button>

 <button (click)="notificationsOpen.set(false)">Close</button>
 </dialog>
 `,
 standalone: true,
 imports: [NgFor, NgIf],
})
export class HeaderComponent {
 private readonly notificationService = inject(NotificationService);

 notifications = this.notificationService.notifications;

 unreadNotifications = this.notificationService.unreadNotifications;
 notificationsOpen = signal(false);

 markAsRead(notification: Notification) {
 this.notificationService.markAsRead(notification);
 }
}

In this scenario, the HeaderComponent is fully bound with the live data of the notifica-
tions, as in, if we update the notifications from somewhere, the result will immediately be

Listing 7.9 Header component using signal-based state management

Uses a local signal to open/
close the notifications dialog

Uses a signal from
the notification
service to show
the list of
notifications

If the notification is unread,
we can mark it as read, so
the counter will update.

Uses the local signal to
close the dialog

Injects the notification service so
we can access the data inside

Extracts
the full list of

notifications and
the list of unread

notifications to
display in the UI

Updates a notification’s
read/unread status

1677.3 State management with signals

visible in the HeaderComponent. Also, we can notice a local signal, notificationsOpen,
living in harmony with a signal extracted from another service. From the perspective
of the component, there is no difference between those two signals.

 One important question that we might want to ask is: when are the signals from
the service created? In the case of the local signal, it is fairly obvious: we put it in the
constructor; that means whenever the component is created, its signals will be created
too. In the case of the service, it is the same, but what is missing for us is when the ser-
vice itself will be instantiated. We marked the service as providedIn: 'root', so this
means it will be created the first time the service is injected in a component that is
used somewhere in the UI. If we put the HeaderComponent in the AppComponent
(which makes sense, as the header might contain navigation that we want to be visible
on all pages), it will be created at the inception of the application itself.

 However, this is not something that we would always want. In some scenarios, it
makes sense to move the creation of those signals somewhere down the application
structure. For example, the time-off request management feature we built in the previ-
ous chapter may need to have its own state management service (to share data only
between its own components and not the whole application). In this case, we may pro-
vide a hypothetical TimeOffManagementService in the providers of the time-off man-
agement feature’s routes, with the technique described in section 2.4.4, illustrated in
detail in listing 2.15.

 Now let’s figure out how to make this connected to a socket service and what
problems could arise when we try to interoperate signals with RxJS observables “a
bit too much.”

7.3.3 State management: The problems

In section 7.3.1, we mentioned that we are going to assume a service that handles the
web socket connection and not actually implement it. This service will expose several
observables that we can use to handle different socket connections. We will work with
the one related to notifications.

 In listing 7.7, we created the service for notifications and read the notifications just
from localStorage. To make them real-time, we can use this socket service and derive
the data for notifications from the observable it exposes. We can simply use the
toSignal function to convert that observable to a signal, which we will then use (let’s
forget about the localStorage thing for now).

export class NotificationService {
 private readonly socketService = inject(SocketService);
 #notifications = toSignal(this.socketService.notifications$,

{requireSync: true});

}

Listing 7.10 Using toSignal in a service

Uses the observable as the source
for our notifications signalRest of the service’s code

omitted for brevity

168 CHAPTER 7 Signals: A deep dive

For now, this will work; however, such an approach can pose certain problems in the
long run. First, the toSignal will subscribe to the observable (remember: subscribing
is the only way of reading values from observables), which in turn might cause side
effects; for example, in our scenario, a web socket might be created as soon as we sub-
scribe to this observable.

 Presently this is not a big deal (we want to receive notifications via the web socket
anyway). However, even if all the components that use notifications are destroyed, the
subscription will continue to be active. This means the web socket will continue to be
open, which will mean unnecessary load on both the user’s device (for mobile devices
this might mean a faster-draining battery) and the server (for maintainers it might
mean higher monthly costs).

 Another concern is that we can never manually terminate this subscription. We can,
of course, expose the reference to the notifications signal (instead of it being private)
and mark it as manualCleanup: true, but even in this case, because multiple compo-
nents might be using it, there will be no way to truly tell when it is safe to terminate the
connection. The only way would be if every component set up its own subscription,
which would then be disposed of when it is destroyed, and when the last component
using this subscription is gone, the connection will be closed. How can we achieve this?
Let’s rework our NotificationService and add a method that does exactly this.

@Injectable({providedIn: 'root'})
export class NotificationService {
 private readonly socketService = inject(
 SocketService,
);
 #notifications = signal<Notification[]>(
 localStorage.getItem('notifications') ?

JSON.parse(localStorage.getItem('notifications')) : [],
);
 notifications = this.#notifications.asReadonly();
 readNotifications = computed(
 () => this.#notifications().filter(
 n => n.read,
),
);
 unreadNotifications = computed(
 () => this.#notifications().filter(
 n => !n.read,
),
);

 constructor() {
 effect(() => {
 localStorage.setItem('notifications',

JSON.stringify(this.#notifications()));
 })
 }

Listing 7.11 Manually connecting a signal to an observable

Injects the
socket service

The notifications are
initially read from

localStorage; no direct
connection to the

socket/Observable here.

1697.3 State management with signals

 connect() {
 return this.socketService.notifications$.pipe(
 takeUntilDestroyed(),
).subscribe(notifications => {
 this.#notifications.set(notifications);
 });
 }

 addNotification(notification: Notification) {
 this.#notifications.update(value => [...value, notification]);
 }

 markAsRead(notification: Notification) {
 this.#notifications.update(
 value => value.map(
 n => n.id === notification.id ? {
 ...n,
 read: true,
 } : n),
);
 }

 markAllAsRead() {
 this.#notifications.update(
 value => value.map(
 n => ({...n, read: true}),
),
);
 }
}

We might notice that while we define the connect method, we never call it inside the
NotificationService itself. This is done on purpose, as we want consumers to man-
ually set up the subscription if they need to listen to notifications. This way, they
will be required to call the connect method in the constructor (otherwise the
takeUntilDestroyed operator will throw an error, as we purposefully did not provide
a DestroyRef), and then they will be able to store the subscription in a component
property (in case they want to unsubscribe manually), and finally when that compo-
nent is destroyed, this subscription will be automatically disposed of, resulting in the
exact scenario we wanted to achieve.

 We could also store all the subscriptions in an array and add a method to manu-
ally terminate them all, but this is out of the scope of this chapter. In addition, the
notifications$ observable should be set up in a way that it shares the subscription
between multiple consumers (so new components subscribing to notifications does
not result in multiple web sockets being opened), but this is deep RxJS functionality
and is again out of the scope of this chapter, so we will not implement it here.

 Finally, what is left here is to call the connect method in a component that uses
notifications; for instance, we can slightly modify our HeaderComponent.

The connect method will provide that
connection on a case-by-case scenario.

Subscribes to the notifications
observable from the web socket

Uses takeUntilDestroyed so we can
automatically unsubscribe in the

context in which we use this method

Manually sets the value of
the notifications as they
arrive via the websocket

170 CHAPTER 7 Signals: A deep dive

export class HeaderComponent {
 private readonly notificationService = inject(
 NotificationService,
);
 notifications = this.notificationService.notifications;
 unreadNotifications = this.notificationService.unreadNotifications;
 notificationsOpen = signal(false);

 markAsRead(notification: Notification) {
 this.notificationService.markAsRead(notification);
 }

 constructor() {
 this.notificationService.connect();
 }
}

Now with all this complex knowledge in place, we are ready to fix one last outstand-
ing problem. In section 6.6.1, we discussed converting observables to signals and
used that in our TimeOffManagementComponent to make HTTP calls but with a prob-
lematic solution that included passing down an injector reference and reassigning
the signal itself (instead of its internal value). Let us now refactor that part with a
state management solution based on interoperability between signals and RxJS.

7.3.4 Advanced interoperability with RxJS

Now we are going to build a state management service for time-off requests, which will
host the entire data related to time-off requests, and all their behavior, and make that
data flow only one way. This approach will have several benefits:

 Data can be easily shared with other components. For instance, we might have a
page for non-human resources employees where they can view their own time-
off requests, and that page can easily reuse this service.

 We can handle all asynchronous tasks inside this service.
 The components using this functionality will become incredibly simple. In the

next chapter we are going to talk about unit testing, and having simple compo-
nents is one of the best ways to make writing unit tests a pleasing activity.

Now let us take a look at this new state management service. It will use RxJS subjects to
represent events of deleting, rejecting, and approving a time-off request.

@Injectable({ providedIn: 'root' })
export class TimeOffManagementService {
 private readonly timeOffRequestService = inject(TimeOffRequestService);

Listing 7.12 connect method for signal/observable interop

Listing 7.13 State management with advanced RxJS interoperability

Component code is
essentially the same; no
need to modify the way

we use signals from
services with this

pattern.

We just need to call
connect from the
constructor, and that is it.

1717.3 State management with signals

 deleteRequest$ = new Subject<TimeOffRequest>();
 approveRequest$ = new Subject<TimeOffRequest>();
 rejectRequest$ = new Subject<TimeOffRequest>();
 selectedType = signal<
 'Vacation' | 'Sick Leave' | 'Maternity Leave' | 'Paternity Leave' |

'Other' | ''
 >((localStorage.getItem('selectedType') as any) ??
 '');
 requests = toSignal(
 merge(
 toObservable(this.selectedType),
 this.deleteRequest$.pipe(switchMap((r) =>

this.timeOffRequestService.deleteRequest(r.id))),
 this.approveRequest$.pipe(switchMap((r) =>

this.timeOffRequestService.approveRequest(r.id))),
 this.rejectRequest$.pipe(switchMap((r) =>

this.timeOffRequestService.rejectRequest(r.id))),
).pipe(
 switchMap(() => {
 return this.timeOffRequestService
 .getRequestsByType(
 this.selectedType(),
);
 })
),
 {
 initialValue: [] as TimeOffRequest[],
 }
);
 resolvedRequests = computed(() =>
 this.requests().filter((r) => r.status !== 'Pending')
);

 constructor() {
 effect(() => {
 localStorage.setItem('selectedType', this.selectedType());
 });
 }

 approveRequest(request: TimeOffRequest) {
 this.approveRequest$.next(request);
 }

Subjects that will propagate the
events of user deleting, approving,

and rejecting time-off requests

selectedType continues to be a
signal that can be used anywhere.

The requests signal is now derived from events
that occur when the user deletes, approves, or
rejects requests or changes the selected type.

The merge function
is used to combine
all the events into
one (we do not care
about the nature of
the event here, only
that it happened).

We convert the
selectedType signal
to an observable to
be able to merge it
with other events.

Each particular event
triggers its own HTTP
call; for instance,
deleteRequest$
Observable here
calls the API that
will delete a request.

Regardless of
what the source
observables did,
when they are
finished, we will
refresh the data
on the page.

The effect that stores the selected type
in localStorage is also moved here.

Now approving (rejecting,
deleting) a request is only a
matter of triggering an event
via the corresponding subject.

172 CHAPTER 7 Signals: A deep dive

 rejectRequest(request: TimeOffRequest) {
 this.rejectRequest$.next(request);
 }

 deleteRequest(request: TimeOffRequest) {
 this.deleteRequest$.next(request);
 }
}

This might seem a bit intimidating; however, at a second look, this actually encapsu-
lates the behavior we want to describe quite well. All we care about is the time-off
requests, and the very definition of the requests signal fully describes what that array
of requests is, what it is derived from, and what it can change. This also beautifully
explains the difference in signals and observables. Signals are a reactive state, and
observables are streams of events we can react to. Here, “the user decided to approve
a time-off request” is an event, and the requests signal is an array of time-off requests
that will react to that event; hence the first is an observable, and the latter is a signal
derived from that observable.

 Now all that is left to do is modify the TimeOffManagementComponent and just use
this state management service. This will make our component super simple, and we
don’t even have to change the template!

export class TimeOffManagementComponent {
 private readonly timeOffsService = inject(TimeOffManagementService);
 requests = this.timeOffsService.requests;
 resolvedRequests = this.timeOffsService.resolvedRequests;
 selectedType = this.timeOffsService.selectedType;

 approveRequest(request: TimeOffRequest) {
 this.timeOffsService.approveRequest(request);
 }

 rejectRequest(request: TimeOffRequest) {
 this.timeOffsService.rejectRequest(request);
 }

 deleteRequest(request: TimeOffRequest) {
 this.timeOffsService.deleteRequest(request);
 }
}

Here we do not even have that much to comment about: we just inject the state man-
agement service, assign the signal from there to some local properties to use in the
template, and define wrapper methods that delegate the functionality back to the ser-
vice. This component is short, very easy to explain and understand, and, as we will see
in the next chapter, extremely easy to test.

Listing 7.14 State management with signals used in a component

1737.4 Migrating to signals

 As we covered essentially everything we currently need to know about signals quite
in depth, we can now explore the migration of existing applications towards using sig-
nals as their basic building block.

7.4 Migrating to signals
Before we begin, let’s first briefly discuss how Angular applications handled reactivity
previously. Of course, RxJS was the only available solution for this kind of problem;
however, RxJS is not required by the Angular team (unless dealing with things that nat-
urally are observables, like HTTP requests), meaning that we have roughly two types
of Angular apps: the ones that already extensively use RxJS for reactivity and the ones
that do not. Let’s begin with the former, as it presents more different possibilities.

7.4.1 Migrating RxJS-heavy Angular applications

Angular developers who use RxJS in their applications beyond the built-in cases will
probably enjoy a smoother experience when migrating to signals than the ones who
do not. Let’s illustrate several common scenarios that developers might encounter in
such applications.

BEHAVIORSUBJECTS

When learning about signals, we might have noticed that signals are suspiciously simi-
lar to BehaviorSubjects. They both have a default value, their current value can always
be read, and they can propagate their changes. This makes the BehaviorSubjects in
our code great candidates for conversions to signals. What we need to do is convert
the BehaviorSubject to a signal (not using the toSignal function but directly, as in the
property is a signal from the get-go); then all observables derived from it become
computed properties, and if the tap operator is used for side effects, we just convert it
to a separate effect.

RXJS-BASED CUSTOM STATE MANAGEMENT

The state management solution described in the previous section can be easily imple-
mented with RxJS observables instead of signals. In fact, this has been the unofficial
approach to state management in Angular apps prior to the arrival of signals. Often in
Angular apps, we would have a service that has a subject, or a BehaviorSubject, which
would notify when a particular piece of data changes, and then different components
would subscribe to it. This has been so common that content creators have named this
approach “subject-in-a-service.”

 If we find ourselves with an app that uses such an approach, it can be easily con-
verted to signals. Here we must replace source observables/subjects with signals,
derived observables with computed signals, and usages of the tap operator to the
effect function.

 However, this scenario should be executed more carefully than the previous one,
as only synchronous observables that hold state (rather than represent events, as
explained previously) should be converted to signals. A good approach, in this case,
would be to keep the initial subject in place, wrap it in toSignal, and see if the

174 CHAPTER 7 Signals: A deep dive

application continues to work as expected. If everything works just fine, we can con-
tinue and convert all derived observables to computed signals and so on.

RXJS INTEROPERABILITY ON A LOCAL SCALE

As we repeatedly mentioned, some existing Angular APIs, like HttpClient, use observ-
ables by default. In an Angular application, we often interact with such APIs and create
lots of RxJS subscriptions. One example of this is using the FormControl.valueChanges
observable to derive some value to then use in the template. This can easily be substi-
tuted by a simple call to the toSignal function and then using the value directly as a
signal. This should be handled on a case-by-case basis. Next, let’s focus on applications
that do not extensively use RxJS.

7.4.2 Migrating more traditional Angular applications

In the case of more traditional Angular applications, we will have fewer calls to the
toSignal function and more pondering to do. Let’s examine some scenarios again.

PRIMITIVE RXJS
However remote an application is from RxJS, if it is sufficiently large, it will inevitably
have some parts that use RxJS. A good practice, in this case, would be to search the
application for usages of the async pipe and the subscribe method and then devise a
strategy to convert this logic to use signals instead. Again, this should be done care-
fully, after an in-depth examination of the actual logic; no mechanical approaches
would work here.

LOOKING FOR DERIVED VALUES

Often Angular apps that do not use RxJS rely on getter methods and pipes to con-
vert some existing values to something else. It would be good to try to replace the
pipes with computed properties and so with getter methods. In this case, we should
begin from the top, convert the source of the data that gets transformed via a
pipe/getter to signal, then remove the getters/pipes and create computed properties
instead. Again, this is done on a case-by-case basis.

EVERY PROPERTY CAN BE A SIGNAL

This one applies to the RxJS-heavy Angular applications too. It is easy to see that any
property can be a signal, rather than a plain value, and we can begin by converting
simple properties to signals. Then we can explore what other properties and function-
alities depend on that property we just converted and turn them into computed sig-
nals/effects. Finally, we might end up with an application that is fully based on signals.
In chapter 10, we shall see how this might be a good thing for the future.

 Finally, let’s remember that signals themselves are only marked stable starting from
v17, and some other more experimental features are still in the process of rolling
out (we will talk more about them in chapter 10), meaning they are very much a
work in progress. This means more changes are coming to the signals infrastructure,
and this may result in even more changes to Angular as a whole. So let us briefly,

1757.5 The future of signals

without speculation, discuss signal-related features that we can reasonably expect to
arrive in upcoming versions.

7.5 The future of signals
We could discuss at length the numerous scenarios of upcoming features that could
further improve the developer experience of signals. However, we want to be as con-
crete as possible, so instead we will only discuss features already announced in some
forms by the Angular teams in the official signals RFC (https://mng.bz/75xQ). Also,
as the API for those features will probably change, we will not provide concrete code
examples so as to not create a false impression of those features actually existing.
Let’s dive in.

7.5.1 Signal-based components

One of the more extreme features the Angular team proposes is the ability to mark
components as signal-based (with a special flag in the component metadata). What
this means is that such components will not employ traditional change detection and
instead will rely on signal notifications only for UI updates. This will significantly
improve runtime performance and application bundle size. In chapter 10, when we
dive deep into the internals of Angular’s current change detection mechanism, we will
discuss signal-based components in more detail.

7.5.2 Signal inputs and outputs

One problem with signals as they exist in v16 is that there is no real way to make sig-
nals component inputs. We could, of course, mark a signal property with the Input
decorator, but that won’t work because the Input decorator assigns any new value
arriving from a parent component that input property. This means that in the case of
signals, the signal itself will be replaced by the value, rather than the signal’s internal
value updated.

 Currently, we have a workaround for this by utilizing setter methods. The following
listing shows how it can work.

export class SomeComponent {
 #someSignal = signal('Name');

 @Input()
 set someSignal(value: string) {
 this.#someSignal.set(value);
 }
}

Obviously, this will work in case we are stuck with v16; however, it can become quite
cumbersome when we have multiple input signals. Instead, the Angular team added a
special input function starting from v17.1 (we will discuss this at length in chapter 10)

Listing 7.15 Making signal into an input property

https://mng.bz/75xQ

176 CHAPTER 7 Signals: A deep dive

that will create a signal that will also act as an input property out of the box. To also
handle the two-way data binding, the team added a new model function in v17.2 that
will create a signal that is both an input and output and can be used with two-way
bindings (again, discussed in chapter 10).

7.5.3 Everything else

To keep all those changes in line, and for the sake of consistency, the Angular team
also proposes to add signal-based functions to all the features that are currently
achieved with decorators. These include the following:

 output function—This will create an EventEmitter (just as we used to do prior
to signals), which can send events to parent components.

 viewChild and viewChildren—To access HTML elements from a component’s
template, these functions will be available and will return a signal of the HTML
element or a signal of an array of those elements correspondingly.

 contentChild and contentChildren—To access HTML elements from a com-
ponent’s projected content, these functions can be used and will return a signal
of the HTML element or a signal of an array of those elements correspondingly,
as with the previous two functions.

Angular v17, v18, and future versions will show what other new developments might
become available. Still, for now, we should keep these possibilities in mind, as they are
likely to become part of the Angular framework.

 Now we have reached an important milestone: we have covered all new code-level
tools that modern Angular provides! In the next chapters, we will focus on other tools,
like unit tests, application deployment on client and server, and future approaches to
developing projects with Angular.

 With the huge arsenal of such powerful tools, we are now ready to cover our next
topic: writing unit tests in modern Angular applications.

7.6 Exercises for the reader
 Refactor the employee feature in the HRMS application to use signals and the

state management approach from this chapter.
 Experiment with existing projects that utilize RxJS-based state management and

try to convert them to a signals-based approach.

Summary
 Signals have a multitude of customization options.
 We can change the logic of signal equality checking to prevent unnecessary

costly computations.
 We can untrack dependencies from computed signals and effects if we don’t

want to run updates on their changes.
 Effect and computed signal callbacks run in fundamentally different ways.

177Summary

 Computed signals are lazy before first read and then run on every new arriv-
ing update.

 Effects run eagerly, are tied in with Angular’s change detection, and will run
whenever Angular refreshes the UI.

 State management solutions can be built using signals.
 Converting observables to signals in services can have significant effects on

application performance, which can be mitigating by delegating the subscrip-
tion logic to consumer components.

 Existing RxJS-heavy Angular applications can be converted to use signals in rel-
atively easy steps.

178

Unit testing in
modern Angular

In previous chapters, we learned about all the modern code-level tools that Angular
now provides out of the box to make developing large frontend applications as
seamless as possible. All of those tools were confined to the code that we write itself,
helping to solve business requirement-related problems. But what about building
our applications, developer experience, deployment, search engine optimizations,
and so on? Now it is time to explore all of these topics. However, before we can
actually deploy our beautiful HRMS application, we need to ensure it works prop-
erly and is reasonably maintainable (as in “will not break easily when developers
add new changes”). And this is precisely what this chapter is about: unit testing.

This chapter covers
 What unit tests are and how they work in Angular

 Setting up a unit testing environment

 Writing unit tests for Angular building blocks

 Unit testing classes that use the inject function

 Unit testing signals

 Third-party tools that facilitate unit testing of
Angular applications

 AI tools to assist with unit testing

1798.1 Unit testing: The what and the why

8.1 Unit testing: The what and the why
Before we begin, let’s briefly discuss unit testing in more general terms, the reasons we
need it, and how to achieve it.

8.1.1 Prerequisites

In chapter 1, we laid out some requirements for the reader, which included general
knowledge of Angular and its building blocks, basic knowledge of RxJS, and so on.
However, you might have noticed that we never mentioned unit testing or anything
related to it. This was done on purpose; despite the fact that in this chapter we will
focus more on the most modern tools that aid us in testing, we will still cover the
entire topic quite in depth, so we do not require any particular knowledge of unit test-
ing to unit testing of Angular applications specifically. Rest assured, this chapter is
designed to be pretty easy to consume.

 The reason for this is that despite the fact that unit testing is a great way to ensure
an application’s stability, thousands upon thousands of Angular applications (as well
as applications generally) out in the world go on without it. Multiple factors contrib-
ute to this: often, projects are outsourced from other enterprises and the clients just
do not want to spend budget on it; young startup teams want to “move fast and break
things” and just deliver their product (such teams often make a promise to cover the
codebase with tests later, and then this promise is broken); teams do not believe in
automatic testing and leave everything for manual quality assurance. All of these stances
are understandable; however, in the next few paragraphs we will try to convince our-
selves that unit tests are, in general, quite useful and then move on to testing our
application. To do this, let’s first cover the basics.

8.1.2 What is a unit test?

As the name suggests, a unit test is an automated test that checks the functionality of
some programming unit in isolation. What programming unit, we might wonder? Any
basic building block can be a unit. A very small instance of a unit test might be a test
that essentially checks the correctness of one single method of a class.

 And what does “automated” mean, exactly? In this case, it means we will describe sce-
narios that might happen to our component/directive/service/etc. by, for instance,
calling its methods with certain data, expect some results, and clearly define which
results mean the functionality works as intended. All of this is done via functions that
we will soon become familiar with (if you are not already). After describing the sce-
nario, a special program can be called to execute those scenarios and ensure the pro-
gram we want to test works correctly.

 Finally, we mentioned that a unit test is a test in isolation. How is it isolated? A unit
test kind of assumes that everything else in the world works fine, and we are just test-
ing this particular component (or anything else). This means that if, for instance, a ser-
vice is using Angular’s HttpClient, we are not going to actually provide the real

180 CHAPTER 8 Unit testing in modern Angular

HttpClient and perform real HTTP calls; we will just check if our own service properly
calls the correct methods of the HttpClient and assume it will work correctly in the
real world.

 This makes sense on two levels: first, we don’t really want to make our unit tests
slower by actually performing HTTP calls (and possibly altering database data in
unexpected ways); and second, the HttpClient is built and maintained by a team of
professionals and is covered by its own unit tests. There is nothing that we can add to
this reliability that may improve it, so it makes sense to just forget about it.

 This also applies to our internal code blocks: if component A uses component B
somewhere in its template, then component A’s unit tests do not test if component
B works properly. Component B has its own tests, and if they work fine, and A works
fine, then from the perspective of unit tests both components are good to go. To
achieve this isolation, we often provide empty substitutes for dependencies that our
test subject has (so instead of the real HttpClient we might provide an empty ser-
vice that has the same methods but does nothing) in a practice known as “mocking
dependencies.” We will learn about this and many other things in the next sections
of this chapter.

 Now that we’ve figured out what a unit test is, let’s move forward and understand
why unit tests are so important.

8.1.3 Why do we want unit tests?

After seven chapters, we already have an application at our disposal that is moderately
complex. Of course, this application is far from being really big, but we have a lot of
features and quite a lot of code—and, of course, more lines of code means a higher
probability of bugs. How do we catch bugs? Obviously we test our application, to this
point exclusively manually. However, unit testing can lend a helping hand in case our
application grows (which any enterprise application very well can). Let’s see some
benefits we can draw from unit tests.

EARLIER BUG DETECTION

Unit testing will allow us to catch bugs and problems early in the development pro-
cess. By writing tests for individual units or components of an Angular application, we
can identify and fix errors, bugs, and impossible scenarios well before they escalate
into more complex problems, saving time and effort in the long run.

EASIER REFACTORING
Refactoring is a common part of the development process; after all, we spent lots of
time in this book describing various approaches for the migration of existing projects
to newer Angular features; this is, in fact, a type of refactoring. Unit tests act as safety
nets during such refactorings. With unit tests, we can confidently make changes,
knowing that if any existing functionality is affected, the tests will fail, indicating the
need for adjustments.

1818.2 Configuring a testing environment

CONTINUOUS INTEGRATION AND DEPLOYMENT

In modern software development, continuous integration and deployment pipe-
lines are the go-to approach for deploying and publishing applications. Unit tests
make this process way easier, as they can safeguard us from various situations in
which terrible bugs might appear in production environments. If unit tests pass, it
indicates that the new changes haven’t introduced regressions, allowing for confi-
dent automated deployments.

OVERALL IMPROVEMENT OF APPLICATION DESIGN
Writing unit tests often leads to more modular and loosely coupled code. Develop-
ers are encouraged to create components and services that are easier to test inde-
pendently. This emphasis on testability naturally leads to better design decisions,
resulting in a more maintainable and extensible codebase. We will notice that, say,
a component that is easy to test is also quite simple to read and understand by a
human developer.

 Of course, unit tests also offer a plethora of other benefits, but these four points
should hopefully be enough to convince you to start thinking about how to cover our
HRMS application with tests. So, without further ado, let’s get started!

8.2 Configuring a testing environment
Let’s imagine the following scenario: we have been working on the HRMS application
for a while, implementing cutting-edge features and being super excited about the
future. We confidently report that the app is ready for an MVP release; however,
upper management has some concerns.

 One morning we gather during a standup and someone from management shows
up to ask a question that feels a bit out of place initially: “Are we sure the application
is ready? Is it tested enough?” We excitedly tell them what an amazing job the man-
ual testing team has done and how many bugs have we identified and fixed. But the
follow-up to it is this: “But the users will find some problems after the launch. Also,
they will report things that aren’t bugs, but just don’t feel right, and they are expect-
ing improvements. Are we sure we can deliver them? What if we break something
while fixing something else? We want to apply those changes as fast as possible before
the initial users are turned away.” And, sure enough, someone comes up with the
bright idea of covering the existing codebase with unit tests. An hour of discussions
later, we are now tasked with setting up an environment in the project for developers
to write and run unit tests. Let’s see how it goes.

8.2.1 Choosing a test runner

First, we need to set up a test runner to actually execute tests. A test runner is a pro-
gram that identifies test files and testing scenarios in them (usually called specs) and
then runs them and reports their success or failure and whatever problems that
were found. Different test runners exist for applications written in JavaScript, but

182 CHAPTER 8 Unit testing in modern Angular

for Angular applications, usually the choice boils down to Jest or Karma. Table 8.1
lists the differences between them.

Despite the differences, these test runners also have a lot in common: both integrate
easily with testing frameworks, have a vibrant community that provides tooling and
libraries, and, most importantly, include aliases for commands from each other, mean-
ing the tests written with Karma will mostly execute the same way with Jest.

 However, here we should note that, despite being the default test runner for Angu-
lar applications for almost a decade, Angular is now moving away from Karma (https://
mng.bz/JNjz), as Karma is now deprecated (https://mng.bz/w5NB) and no longer
adds improvements and newer versions. For this purpose. Angular is now looking for
alternatives (which we will discuss later), and because Jest is already possible to be
integrated into an Angular application manually (several community-driven projects
already exist and are widely used), starting from v16 Jest has official, experimental
support in Angular applications.

 We say “experimental”; however, this test runner as it is currently will be sufficient
for us to write and run the unit tests for our HRMS application, so we will be choosing
Jest as our test runner. In the last section of this chapter, we will also discuss some
other steps the Angular team is undertaking in regard to the test runners, but for now,
let’s focus on setting up our Jest-based testing environment.

8.2.2 Setting up the test runner

First, let us understand how we actually run our tests. For this purpose, the Angular
CLI has provided a specific command. Let us spin up a command line terminal at the
root of our HRMS application and run this command:

ng test

Table 8.1 Karma vs. Jest

Karma Jest

Developed by the Angular team Developed by Facebook

Runs in a real browser Runs in a NodeJS environment

Has to spin up the browser itself and then run the
tests inside it, sometimes resulting in
slower performance

Runs as an independent JS program, with no
browser, and can be faster

No need to mock the browser’s built-in functionality,
as it already runs in a real browser

We can’t directly use browser APIs here, as Jest
runs in a NodeJS runtime; for instance, if our
component calls localStorage, we will have
to mock it for the tests to run correctly

Allows for cross-browser testing: if our application
uses APIs that might not exist in some older brows-
ers, we can configure Karma to use several different
browsers and see if the tests pass on all of them

No real cross-browser testing

https://mng.bz/JNjz
https://mng.bz/JNjz
https://mng.bz/JNjz
https://mng.bz/w5NB

1838.2 Configuring a testing environment

Let’s see what it does. If we have not added or removed anything related to the tests in
the app, we should see an error:

AppComponent should create the app FAILED
 NullInjectorError: R3InjectorError(Standalone[AppComponent])
 [AuthService -> AuthService -> HttpClient -> HttpClient]:
 NullInjectorError: No provider for HttpClient!

This is expected, as we developed some functionality in the AppComponent without updat-
ing their respective unit tests, which means the test has some problems creating an
instance of the AppComponent class. But why does it run tests for AppComponent anyway?
We surely have not written any tests, have we? Well, if we created the application without
the --minimal flag (see chapter 1, section 1.3.1, table 1.2), then Angular automatically
set up a default testing environment and some dummy tests for the AppComponent (the
only component that existed at the time of the application’s inception).

 But how does Angular know where the tests are? Well, there is a specific configura-
tion file, called tsconfig.spec.json at the very root of the project, which tells it how to
function. The contents of the file are pretty simple, as shown in the following listing.

{
 "extends": "./tsconfig.json",
 "compilerOptions": {
 "outDir": "./out-tsc/spec",
 "types": [
 "Jest"
]
 },
 "include": [
 "src/**/*.spec.ts",
 "src/**/*.d.ts"
]
}

As we can see, this config tells the test runner to grab all the files ending with .spec.ts
and run the tests inside them. In our application, only one such file exists, located at
src/app/app.component.spec.ts, which contains the tests that just failed when we first
ran ng test. However, before moving to fix this problem, let’s remember that this is
the default configuration of the testing environment, meaning it runs Karma, and we
have chosen to use Jest instead. Thankfully, this is an easy change. In the angular.json
file we will find a section dedicated to unit testing. We need to alter it a bit to use Jest,
so it will look like the following listing.

{

 "projects": {

Listing 8.1 Testing configuration file

Listing 8.2 angular.json configuration to use Jest as test runner

This TypeScript configuration will
just use the same as the overall app
while adding some options.

We switch to Jest types instead of
Jasmine, which was the testing
framework that Karma used.

All files that end with
.spec.ts will be run.

Rest of the file
omitted for brevity

184 CHAPTER 8 Unit testing in modern Angular

 "hrms": {
 "projectType": "application",
 "architect": {

 "test": {
 "builder": "@angular-devkit/build-angular:jest",
 "options": {
 "polyfills": [
 "zone.js",
 "zone.js/testing"
],
 "tsConfig": "tsconfig.spec.json"

 }
 }
 }
 }
 }
}

Now if we try to run ng test again, we will get a new error:

Jest is not installed, most likely you need to run
`npm install jest --save-dev` in your project.

Continuing this, we will get other errors, so to jump to the point where the Jest test
runner works, we need to run the following commands:

npm install jest --save-dev
npm install jest-environment-jsdom --save-dev
npm i --save-dev @types/jest

After, we can rerun ng test and see the same error (regarding the injection of
HttpClient) that we saw when running tests initially; however, notice that the tests
are now running with Jest (different format of reporting from the command). This
means we successfully switched to Jest.

 One concern for us down the line is being able to configure some options for our
Jest test runner. To be able to do this, we need to provide a configuration file and a file
that will do our custom setup. First, let’s create a file named jest.config.ts at the root of
our project folder, and put the following code there:

module.exports = {
 setupFilesAfterEnv: ['<rootDir>/setup-jest.ts'],
};

When we run the tests, Jest will automatically scan the root directory searching for a
file named jest.config.ts, which we just created, and in it we tell Jest to look for a setup-
jest.ts file and run it to get the additional supporting configuration. Let us also create
this setup-jest.ts file at the root of our project and leave it empty for now (we will add
some configurations later).

Other architect
options also omitted

We put build-
angular:jest:
instead of build-
angular:karma.

Karma config included other
options like “assets,” which
are not needed with Jest, so
we removed them.

1858.2 Configuring a testing environment

 We are almost done setting up our testing environment; however, before we begin
fixing the tests for the AppComponent, let us finalize our setup with the addition of
some third-party tools that will become useful in the process of writing the actual tests.

8.2.3 Installing third-party tools

Angular provides many built-in tools for unit testing out of the box (as we shall soon
see when we start interacting with the unit tests for the AppComponent). However,
community-driven projects also provide a lot of functionality. Let’s explore these.

MOCKING DEPENDENCIES

As mentioned in section 8.1.2, in unit tests, we test functionality in isolation, so a com-
ponent is tested without actually testing the other components that it uses in its tem-
plate or services that it injects. But how can we accomplish this if the component, for
instance, calls a method from that service?

 The way we do this is by mocking the dependencies of the particular class/function/
whatever we are testing. Mocking essentially means providing an empty, barebones
replacement for a dependency, which has the same API but does nothing and only
checks if our test subject calls the correct methods and properties of this “fake” depen-
dency in the correct order. For instance, if our component uses another component,
we can write a mock version of this component that has the same inputs and outputs
and test the original component that way.

 We will discuss doing this in code in the next section, but first we need to under-
stand that this process can become quite cumbersome. A given component can use
multiple other components and inject lots of services, so we would need to provide
drop-in replacements for them both. In large projects, this can result in a huge amount
of boilerplate code.

 To counter this, a community project called ng-mocks has been developed, which
provides functionality that allows to automatically mock existing services, compo-
nents, pipes, and other Angular building blocks for unit testing purposes. Let’s install
it so we can use it next:

npm install ng-mocks --save-dev

Now, as we have it in place, let’s discuss problems we may have when testing compo-
nents specifically and what community solutions we can use to address them.

TESTING ANGULAR COMPONENTS

Testing most of the Angular building blocks boils down to creating an instance of the
class we want to test (service, directive, pipe, and so on) and then playing with its
methods in various scenarios. However, components do stand apart a bit in this case:
they also have a template.

 With Angular components, we don’t just want to call some of the class methods
and ensure they work properly but also to check if, say, some content has been ren-
dered properly in the UI or some event caused the proper handler method to be

186 CHAPTER 8 Unit testing in modern Angular

called. While Angular provides built-in solutions for this, with them, we only work with
prerendered instances of component classes and not the actual DOM nodes. The
built-in approach also involves a lot of boilerplate.

 We will begin with this approach and then move on to a community-driven solu-
tion known as the Angular Testing Library. Let’s install it (and another relevant pack-
age we will use later) and then move on to fix our unit tests:

npm install @testing-library/angular --save-dev
npm install @testing-library/jest-dom --save-dev

Next, for Jest to actually pick up the new functionality from the Angular Testing
Library, we need to add the following line in the setup-jest.ts file we created earlier:

import '@testing-library/jest-dom';

We will see what this affects in the next section. Now we can call our setting-up phase
done and finally begin working with the unit tests! Let’s fix our AppComponent
unit tests.

8.3 Running Angular unit tests
As you recall, we left our exploration of unit tests at the point where running ng test
resulted in errors when trying to run tests from src/app/app.component.spec.ts. Let’s
see what this file contains, how the tests there are structured, and what we can do to
make them work.

8.3.1 What do unit tests look like?

Before we begin, let us remember what our actual AppComponent contains, which we
can do by addressing the app.component.ts file in the HRMS project folder (the one
we created in chapter 1, section 1.3, listing 1.1). We can easily see that the component
is as simple as it gets—just a class that has a property called title and some imports in
its metadata. We can also vaguely remember that some unit tests for this component
were generated by the Angular CLI when we first created the project. Let’s now see
the automatic tests generated for it.

import { TestBed } from '@angular/core/testing';
import { AppComponent } from './app.component';

describe('AppComponent', () => {
 beforeEach(() => TestBed.configureTestingModule({
 imports: [AppComponent]
 }));

Listing 8.3 Automatic unit tests generated for AppComponent

The “describe” block contains and groups multiple test cases. Before each test, we need
to configure a testing
module, where we will
either import or mock
dependencies of the
component we test.
Otherwise, this block can
also be used to set up
different routines we may
want to perform before
each test case is run.

1878.3 Running Angular unit tests

 it('should create the app', () => {
 const fixture = TestBed.createComponent(AppComponent);
 const app = fixture.componentInstance;
 expect(app).toBeTruthy();
 });

 it(`should have the 'hrms' title`, () => {
 const fixture = TestBed.createComponent(AppComponent);
 const app = fixture.componentInstance;
 expect(app.title).toEqual('hrms');
 });

 it('should render title', () => {
 const fixture = TestBed.createComponent(AppComponent);
 fixture.detectChanges();
 const compiled = fixture.nativeElement as HTMLElement;
 expect(compiled.querySelector('.content

span')?.textContent).toContain('hrms app is running!');
 });
});

As we can see, the tests follow a specific pattern: first, we initialize whatever we want
to test in the beforeEach block; then in each testing scenario we take the testing
instance, do something with it, and then expect a result with a function with the
most descriptive name of expect. Also notice that test cases, or “specs” as they are
more commonly referred to, follow a descriptive pattern that reads like actual
English language: “It should render title,” “It should create the app,” and so on.
Also, all of the specs are contained within a describe block that “describes”
the AppComponent.

 In general, running ng test will execute all the tests and their setup commands. It
is done in a cyclic fashion where Jest finds the describe block, beforeEach and it
commands (and many more) and runs them. Figure 8.1 illustrates the life cycle of the
unit-testing process.

 This test group contains three unit tests. The first one is just checking if Angular
can initialize the component at all (commonsense check), and the second one
checks for the existence and content of the title property. These two make sense,
but the third one is a bit off: it does check in the template, and we can see that our
AppComponent has moved very far from what the unit test expects here. However, we
do not get that error, because our very first spec fails as it cannot initialize the
AppComponent. Let’s see why and how we can fix that.

A test case is described with an “it” block, which
has a name that describes what it does and then

a callback that implements the testing process.

We create an instance of the component we want to test; here we
receive an instance of the component wrapped in a fixture, a special

object used for testing components.

An actual testing
expectation. Here we
expect the component
to be successfully
initialized.

188 CHAPTER 8 Unit testing in modern Angular

8.3.2 Providing mock dependencies

When we first ran ng test, we encountered an error that was related to dependency
injection, when our component tried to inject the HttpClient. However, if we take a
look at the component code, we can see that nowhere do we attempt any injection of
this service. So why this error?

Jest nds a spec.ts le and starts executing it.fi fi

Jest finds the block.describe

Jest runs the block before all the specs.beforeAll

Jest finds and then executes the next spec.

Jest runs the block.afterEach

All specs in a given le successfully executed.fi

Jest runs the block.afterAll

No new .spec.ts les are found. A test spec fails.fi

Jest reports about the success or failure
of the tests and testing ends.

Tests are run by calling , and the testng test

runner (Jest in our case) starts working.

Moves to the next spec

Jest moves to the next .spec.ts le.fi

Jest runs the block before each spec.beforeEach

Figure 8.1 Execution of unit tests by the Jest test runner

1898.3 Running Angular unit tests

 If we open the src/app/app.component.html file, we can see that it contains a
simple template:

<app-header/>
<router-outlet></router-outlet>
<app-footer/>

Now, the FooterComponent resides in the src/app/shared/components/footer.com-
ponent.ts file (the one we created in chapter 3, section 3.2.2, listing 3.6), and is used
here. If we look inside that component, we will see that it calls a function named
isAuth, which in turn injects the AuthService, which finally injects the HttpClient,
which is not provided anywhere (remember we set up a testing module that is inde-
pendent of the applications itself, and it imports only the AppComponent at this point—
nothing else).

 So what do we do about this? We could provide the HttpClient in the TestBed
.configureTestingModule command, but we do not really need to do this. It is suffi-
cient to remember that unit tests are tests in isolation, so we not only do not need the
HttpClient (it is already tested and trusted within the Angular framework), but we do
not even need the FooterComponent and HeaderComponent, as they will have their
own separate tests. Essentially, our component depends on these two components
and RouterOutlet.

 We can fix the RouterOutlet problems by using the RouterTestingModule, a spe-
cific module that mocks router-related building blocks for unit-testing purposes and
the problem with the other two components using MockComponents, a special function
provided by the ng-mocks library. This function will take a list of components and pro-
vide mock replacements for them—essentially components without templates, with-
out injected dependencies, and with the same selectors and inputs/outputs as the
components we provided, so we can use them and not bother about their problems
when testing the AppComponent. Our tests will now look like the following listing.

import { TestBed } from '@angular/core/testing';
import {
 RouterTestingModule,
} from '@angular/router/testing';
import { MockComponents } from 'ng-mocks';
import { AppComponent } from './app.component';
import { HeaderComponent } from './shared/components/header.component';
import { FooterComponent } from './shared/components/footer.component';

describe('AppComponent', () => {
 beforeEach(() =>
 TestBed.configureTestingModule({
 imports: [
 AppComponent,
 RouterTestingModule,
 MockComponents(HeaderComponent, FooterComponent),

Listing 8.4 Mocking dependencies to test AppComponent

Imports the router mock from
Angular router’s testing package

Provides the
mock router

Mocking
components that
are used within
AppComponent

190 CHAPTER 8 Unit testing in modern Angular

],
 })
);

});

Hopefully, this will at least fix the first two specs. Indeed, if we run ng test again, we
will encounter a new error:

 AppComponent
 √ should create the app (83 ms)
 √ should have the 'hrms' title (21 ms)
 × should render title (19 ms)

 ● AppComponent › should render title

 expect(received).toContain(expected) // indexOf

 Matcher error: received value must not be null nor undefined

 Received has value: undefined

As we can see, the first two specs did actually run successfully, and only the third one
failed for obvious reasons: the template now contains references to some components
and no text that reads “hrms app is running!” This is good news, as now we have a test-
ing expectation fail and not a problem with how we set up the test. Let’s move forward
and explore how we can fix this.

8.3.3 Testing components

As mentioned previously, testing components is a bit different from other building
blocks, because it involves also testing the template. There is a debate within the
Angular community as to whether we should test the template of a component or not;
however, Angular provides the necessary tools, and the template itself is a very import-
ant part of the component (probably the most important), so in this book, we will
assume that the testing of the template is necessary.

TESTING COMPONENT TEMPLATE WITH ANGULAR’S BUILT-IN TOOLS

AppComponent class itself has a very simple implementation (essentially it only imports
things to use in the template), so what is left for us is to test the template itself. The
template is just calling three other directives, so to make sure AppComponent works
properly, it should be sufficient to check if the proper components are rendered (only
calls to them, without actually rendering them, as we use their mocked versions
instead). Let’s do exactly that by removing the third spec and writing a new one that
checks the template.

it('should render header, footer and a router outlet', () => {
 const fixture = TestBed.createComponent(AppComponent);

Listing 8.5 Testing AppComponent’s template

Rest of the tests
omitted for now

1918.3 Running Angular unit tests

 fixture.detectChanges();
 const header = fixture.debugElement.query(
 By.css('app-header'),
);
 expect(header).toBeTruthy();
 const footer = fixture.debugElement.query(
 By.css('app-footer'),
);
 expect(footer).toBeTruthy();
 const routerOutlet = fixture.debugElement.query(By.css('router-outlet'));
 expect(routerOutlet).toBeTruthy();
});

Now if we rerun our tests, we will see that all three execute successfully, meaning we
just completed unit testing our first component! Congratulations are in order.

 However, we can see that this code is a bit too wordy. We use different tools—for
instance, the By object imported from @angular/platform-browser—to query the
rendered DOM by a CSS selector, we manually trigger change detection, and so on.
For now, we tested a routed component, which tends to be not so heavy on the tem-
plate, often calling other, more reusable components to do the actual rendering (as
in this case).

 But what will happen when we test other components that accept inputs, call other
components again, and change data and output events? Are we doomed to repeat the
boilerplate code forever? It turns out, not really. Let’s test one of our reusable compo-
nents and see how the Angular Testing Library can help us reduce the noise and focus
on checking the produced DOM.

TESTING COMPONENT TEMPLATE WITH ANGULAR TESTING LIBRARY

Previously, we built a ProjectCardComponent in the src/app/shared/components/
project-card.component.ts file (see chapter 4, section 4.1.1, listing 4.1), which
received a projectId as an input and made an HTTP call via the ProjectService
to retrieve data about the given project and display it in the UI. The component itself
is not particularly complex, but it is somewhat template-heavy: it uses the NgOptimized-
Directive and injects a service that we built, so we need to learn to mock both and
use the tools provided by the Angular Testing Library to easily check the DOM.

 Let’s see this unit test in action. In the src/app/shared/components directory, cre-
ate a file named project-card.component.spec.ts and put the test shown in the follow-
ing listing there.

import { AsyncPipe, NgIf, NgOptimizedImage } from '@angular/common';
import { RouterLink } from '@angular/router';
import { RenderResult, render } from '@testing-library/angular';
import { MockDirective, MockProvider } from 'ng-mocks';

Listing 8.6 Testing ProjectComponent’s template

Angular’s change detection does not work
automatically in unit tests, so whenever we want to
check for new templates rendered, we need to call it
manually using the fixture object.

Finds the reference to
the header component

Checks if it exists

Repeats the same for
other components

192 CHAPTER 8 Unit testing in modern Angular

import { ProjectService } from 'src/app/services/project.service';
import { ProjectCardComponent } from './project-card.component';

let component: RenderResult<ProjectCardComponent>;

describe('ProjectCardComponent', () => {
 beforeEach(async () => {
 component = await render(ProjectCardComponent, {
 imports: [
 AsyncPipe,
 NgIf,
 RouterTestingModule,
 MockDirective(NgOptimizedImage),
],
 providers: [MockProvider(ProjectService)],
 });
 });

 it('should create', () => {
 expect(component).toBeTruthy();
 });
});

If we run the tests now, they will execute successfully; however, we haven’t yet tested
for much—we only set up our testing space. What we really need to check is whether
when the projectId property changes, the UI will update accordingly. To achieve this,
we need a bit smarter version of the ProjectService, which will have the method
getProject mocked separately and return some mock data for the UI to consume.
Let’s implement this in the following listing.

const mockProjects: Project[] = [
 {
 id: 1,
 name: 'Project 1',
 description: 'Project 1 description',
 image: 'path-to-image1.png',
 employees: [],
 subProjectIds: [],
 },
 {
 id: 2,

Listing 8.7 Mocking a service method separately

In this variable we will store the reference to the
rendered component created in the beforeEach block.

We use the render function provided by the
testing library instead of TestBed to create

and render our component.

We do not mock the AsyncPipe and the NgIf directive
as we want to test the UI too and need conditional
statements and observable values there.

We can just mock the
NgOptimizedDirective as
we do not need to test its
functionality.

We use the MockProvider
function from the ng-mocks
library to mock the
ProjectService; now, our
component will receive a
dummy version of this service
with the same methods that
do nothing when called.

An array of
mock “projects”

1938.3 Running Angular unit tests

 name: 'Project 2',
 description: 'Project 2 description',
 image: 'path-to-image2.png',
 employees: [],
 subProjectIds: [],
 },
];

describe('ProjectCardComponent', () => {
 beforeEach(async () => {
 component = await render(ProjectCardComponent, {
 imports: [
 AsyncPipe,
 NgIf,
 RouterTestingModule,
 MockDirective(NgOptimizedImage),
],
 providers: [
 MockProvider(ProjectService, {
 getProject(id) {
 return of(mockProjects.find((project) => project.id === id)!);
 },
 }),
],
 });
 });

});

Now we can imagine that an HTTP call is happening behind the scenes (which it is
not) and we get the observable of these mock projects. What is left here is to test for
the sequence of “id changed, then ProjectService was called, then the UI was
updated.” It turns out this complex scenario is pretty easy to implement with the
testing library. First, let’s create the component with an input given by default and
check the UI.

import { RenderResult, render, screen } from '@testing-library/angular';

let component: RenderResult<ProjectCardComponent>;

describe('ProjectCardComponent', () => {
 beforeEach(async () => {
 component = await render(ProjectCardComponent, {
 imports: [
 AsyncPipe,
 NgIf,
 RouterTestingModule,
 MockDirective(NgOptimizedImage),
],
 providers: [
 MockProvider(ProjectService, {

Listing 8.8 Testing component UI with the Angular Testing Library

MockProvider accepts a second
argument, with which we can
provide mock implementations of
any methods a given service has.

Mock implementation will find the
mock project with the corresponding
id and return its observable (for the

AsyncPipe to consume in the UI).
Test omitted for now

Rest of the imports
and mock data
omitted

194 CHAPTER 8 Unit testing in modern Angular

 getProject(id) {
 return of(mockProjects.find((project) => project.id === id)!);
 },
 }),
],
 componentInputs: {
 projectId: 1,
 },
 });
 });

 it('should render the project name', () => {
 expect(screen.getByText('Project 1')).toBeInTheDocument();
 });
});

As we can see, testing this scenario boiled down to just a single line of code, thanks to
the Angular Testing Library. However, this is the default scenario, and we also want to
check that if the input changes, the component successfully updates the UI using the
HTTP “call.” Let’s amend our test spec a bit.

it('should render the project name', () => {
 expect(screen.getByText('Project 1')).toBeInTheDocument();
 component.fixture.componentRef.setInput('projectId', 2);
 component.fixture.detectChanges();
 expect(screen.getByText('Project 2')).toBeInTheDocument();
});

With that we have a full scope of this component’s functionality. From now on, it
would be trivial to add checking for other cases (for instance, checking for an error).
Next, we will explore another addition to Angular unit testing by diving into the unit
testing process of Angular services.

8.3.4 Testing services

At this point, we should be able to deduce that the testing of services is going to be a
simpler process than, say, components. After all, services do not have a template and
usually incorporate some straightforward functionality. Let’s now see in action what
potential problems we might face.

 Let’s begin with a very foundational service in our application: AuthService. It is a
good candidate for exploring here because it is both very important and contains
some out-of-the-ordinary functionality like a BehaviorSubject that tracks the user’s
authentication status and also calls the localStorage object. We will begin by writing
a simple test that just creates the instance of the service, and then we can play with it.

Listing 8.9 Testing component UI when inputs change

We can provide values
for component’s inputs
with “render.”

A simple line of code checks the existence of the
title in the UI generated by the components.

Tests the initial
scenario

Sets a new value
for the input
using the Angular
reference to the
component

Triggers change
detection so
that UI updatesChecks the UI for

the latest text

1958.3 Running Angular unit tests

 For this purpose, let’s create a new test file in the src/app/services directory
named auth.service.spec.ts and put the setup code from the following listing inside.

import { AuthService } from './auth.service';

let service: AuthService;

describe('AuthService', () => {
 beforeEach(() => {
 service = new AuthService();
 });

 it('should be successfully instantiated', () => {
 expect(service).toBeTruthy();
 });
});

While this code looks both familiar and very understandable if we run the tests now,
we will be confronted with an error:

NG0203: inject() must be called from an injection context
such as a constructor, a factory function,
a field initializer, or a function used
with `runInInjectionContext`.

Here we forgot that this service (as all others we authored in the project) uses the
inject function to get its dependencies, and chapter 3 taught us that this function
only works in specific places, so just calling new AuthService() will not work. What we
have to do is set up a testing module, provide dependencies, and then use a special
new method that allows us to run code in an injection context while unit testing.

 Our service only uses the built-in HttpClient, but, as we mentioned previously, we
don’t really want to make HTTP calls inside unit tests, so it is better to mock it. For this
purpose, Angular provides a special testing controller that allows us to emulate HTTP
calls and check for the mocked data received. Let’s configure it.

import { HttpClientTestingModule, HttpTestingController } from
'@angular/common/http/testing';

import { TestBed } from '@angular/core/testing';
import { AuthService } from './auth.service';

let service: AuthService;
let httpMock: HttpTestingController;

describe('AuthService', () => {
 beforeEach(() => {
 TestBed.configureTestingModule({
 imports: [HttpClientTestingModule],

Listing 8.10 Setup for the testing of a service

Listing 8.11 Initializing a service in unit tests

We will use the test
controller in the next specs
to emulate HTTP calls.

Configures a module
for mocked providers

Provides the HTTP testing
module so we do not make
real HTTP calls

196 CHAPTER 8 Unit testing in modern Angular

 });
 TestBed.runInInjectionContext(() => {
 service = new AuthService();
 });
 httpMock = TestBed.inject(
 HttpTestingController,
);
 });

 it('should be successfully instantiated', () => {
 expect(service).toBeTruthy();
 });
});

Now we can see that our test here runs correctly, and the service is being initialized. Next,
let us add a unit test that checks some real functionality—namely the login method. For
this purpose, we have to send some mock token data via the HttpTestingController
(we will soon see how), check that it arrived successfully, and also check that the
isAuth$ BehaviorSubject has been switched to true. Here is how we are going to do
this in a new test spec, shown the following listing.

it('should log the user is', () => {
 service.login({email: 'test', password: 'test'}).subscribe((res) => {
 expect(res).toBe({token: 'mock token'});
 expect(service.isAuth$.getValue()).toBe(true);
 });

 const request = httpMock.expectOne({
 url: '/api/auth/login',
 method: 'POST',
 });

 request.flush({token: 'mock token'});
 });

Now we know how we can unit test a service that makes HTTP calls. There is one thing
left for us here to learn, and that is the getToken method of our service. We want to
check if it really does return a token from localStorage. However, if we just write
expect(service.getToken()).toBe('mock token');, we will be disappointed. Because
(as we mentioned), Jest runs in Node.js rather than a browser (as opposed to Karma),
localStorage doesn’t really exist in this context. localStorage also isn’t an Angular

Listing 8.12 Testing an HTTP call

TestBed now supports calling some
functions in its own injection
context, which in our case allows for
the initialization of the AuthService.

We also get the reference to the
testing controller to use later.

We call the method that handles
login and wait for its result.

We expect to
receive a mock
token.

We also expect
that the isAuth$
BehaviorSubject
will be flipped to
true, as the user is
now authenticated.

We use
HttpTestingController
to check if the
method we called
actually completed
the HTTP request.We check if the URL is correct.

We also check if the method is correct.

Finally, we send the mock data that will
be checked in the “subscribe” callback.

1978.3 Running Angular unit tests

construct, so we have to come up with a custom way of mocking it. We can do this by
utilizing some methods that Jest itself provides.

let localStorageMock: Pick<Storage, 'getItem'>;

describe('AuthService', () => {
 beforeEach(() => {
 TestBed.configureTestingModule({
 imports: [HttpClientTestingModule],
 });
 TestBed.runInInjectionContext(() => {
 service = new AuthService();
 });
 httpMock = TestBed.inject(HttpTestingController);

 localStorageMock = {
 getItem: jest
 .fn()
 .mockImplementation((arg) => 'mock token'),
 };
 Object.defineProperty(window, 'localStorage', {
 value: localStorageMock,
 });
 });

 it('should return the token', () => {
 expect(service.getToken()).toBe('mock token');
 });
});

Finally, we have the full arsenal of both modern and existing tools to help us test ser-
vices in Angular projects. Next, we are going to move to the biggest modern feature
Angular has, the signals, and see how we can unit-test them.

8.3.5 Testing signals

Signals, as you remember, are a quite big topic (after all, we spent two chapters discuss-
ing them!). However, in this section, we will see that using signals actually simplifies the
testing process. We already did ourselves good by creating a TimeOffManagement-
Service in the src/app/services/time-off-management.service.ts file (we created it in
chapter 7, section 7.3.4, listing 7.12), which acts as a state management service for
components related to the time-off feature. This both simplified the respective com-
ponent but also allowed us to encapsulate the logic in a service, which we already
know is easy to test.

 The fact that we can always retrieve the value of a signal plays a major role in this
simplification: we can just call the value, then change it, then expect some new value,
and that’s it: our test is done! Let’s see this on the example of this very service, after

Listing 8.13 Mocking localStorage

We define a mock abject for
localStorage which only has
the getItem method.

We create the
mock object.

Jest provides
utilities for mocking
functions, and
mockImplementation
allows us to run any
function when the
function we want to
mock is called.

We then override
the localStorage
and place our mock
object instead.

Rest of the
specs omitted

Finally, we check that
our method does, in
fact, return the mock
data from the mock
localStorage.

198 CHAPTER 8 Unit testing in modern Angular

which we will also move on and show how this approach simplifies testing the Tim-
eOffManagementComponent.

 This service uses another service that makes the HTTP calls that are related to time-
offs. As we already know how to test such services; we will just assume it is already cov-
ered by unit tests and works properly, and we only need to mock it in a specific way to
test the TimeOffManagementService. While this service looks a bit intimidating, we can
see that after mocking its dependent service, testing its own functionality will become
extremely easy. Let us see it in action. First, let’s mock the dependencies of the service.

const mockRequests: TimeOffRequest[] = [
 {
 id: 1,
 type: 'Vacation',
 status: 'Pending',
 startDate: new Date().toISOString(),
 endDate: new Date().toISOString(),
 employeeId: 1,
 },
 {
 id: 2,
 type: 'Sick Leave',
 status: 'Pending',
 startDate: new Date().toISOString(),
 endDate: new Date().toISOString(),
 employeeId: 1,
 },
];

const MockTimeOffRequestService: Partial<
 TimeOffRequestService
> = {
 getRequestsByType: jest.fn()
 .mockReturnValue(
 of(mockRequests),
),
 approveRequest: jest.fn()
 .mockImplementation(
 (id) => {
 const request = mockRequests
 .find(
 (r) =>
 r.id === id
);
 if (request) {
 request.status = 'Approved';
 }
 return of({});
 }),
 rejectRequest: jest.fn().mockImplementation((id) => {
 const request = mockRequests.find((r) => r.id === id);
 if (request) {

Listing 8.14 Mocking the dependencies of a service with signals

Some mock requests
to test with

Mocks the
TimeOffRequestService

Mocks this method to
immediately return an
observable of our mock requests

Mocks methods for
approval/rejection/
deletion of time-off
requests to work with
the mock requests.
We return an empty
observable in the end
for the service events
to work.

1998.3 Running Angular unit tests

 request.status = 'Rejected';
 }
 return of({});
 }),
 deleteRequest: jest.fn().mockImplementation((id) => {
 const index = mockRequests.findIndex((r) => r.id === id);
 if (index !== -1) {
 mockRequests.splice(index, 1);
 }
 return of({});
 }),
};

let localStorageMock: Pick<
 Storage, 'getItem' | 'setItem'
>;
let selectedType = '';

let service: TimeOffManagementService;

describe('TimeOffManagementService', () => {
 beforeEach(() => {
 TestBed.configureTestingModule({
 providers: [
 MockProvider(
 TimeOffRequestService,
 MockTimeOffRequestService,
)
],
 });
 localStorageMock = {
 getItem: jest.fn()
 .mockReturnValue(
 () => selectedType,
),
 setItem: jest.fn().mockImplementation((key, value) => {
 selectedType = value;
 })
 };
 Object.defineProperty(window, 'localStorage', {
 value: localStorageMock,
 });
 TestBed.runInInjectionContext(() => {
 service = new TimeOffManagementService();
 });
 });

 it('should be successfully instantiated', () => {
 expect(service).toBeTruthy();
 });
});

As we can see, while this seems a bit wordy, most of this code is pure boilerplate to set
up the actual test, which, as we promised, is going to be quite simple. We will test the
following scenarios:

Mocks localStorage
with a local variable

Getting from localStorage
should return that variable.

Setting an item in
localStorage will just
change that variable.

Initialization of the service
will work fine now.

200 CHAPTER 8 Unit testing in modern Angular

 Initial mock requests are loaded.
 Changing the selectedType results in updates to the requests.
 selectedType is stored in localStorage.
 Rejection/approval/deletion of a request results in updates to the requests

signal array.

However, when we implement the first test case, we will see that just doing
expect(service.requests()).toEqual(mockRequests); does not yield the result we
expect. So why is that? In the previous chapter, we learned that computed signals cre-
ated from observables and effects are tied in with Angular’s change detection, meaning
in this case we need to trigger change detection to see the results update. In tests, we
can only trigger change detection manually when we create a component to test, but
we do not have a component now—we are testing a service!

 The solution to this is creating an empty component for our testing purposes
(such things are often called “stubs”), injecting our service into it, and triggering
change detection on it to test the service. It can be achieved pretty easily, as shown in
the following listing.

@Component({
 selector: 'app-stub',
 template: '',
 standalone: true,
})
export class StubComponent {
 constructor(private readonly service: TimeOffManagementService) {}
}

describe ('TimeOffManagementService', () => {
 beforeEach(() => {
 TestBed.configureTestingModule({
 providers: [MockProvider(TimeOffRequestService,

MockTimeOffRequestService)],
 imports: [StubComponent],
 });
 localStorageMock = {
 getItem: jest.fn().mockReturnValue(() => selectedType),
 setItem: jest.fn().mockImplementation((key, value) => {
 selectedType = value;
 })
 };
 Object.defineProperty(window, 'localStorage', {
 value: localStorageMock,
 });
 service = TestBed.inject(
 TimeOffManagementService,
);
 });

Listing 8.15 Using a stub component to test a service with signals

Our stub component is
empty and only injects the
service we want to test.

We import the stub component
into the testing module.

We now use TestBed.inject to
get the reference to our service,
so that the component’s
reference to the service is that
same as the one we are testing.

2018.3 Running Angular unit tests

 it('should be successfully instantiated', () => {
 expect(service).toBeTruthy();
 });

 it('should have all requests loaded initially, () => {
 const fixture = TestBed.createComponent(StubComponent);
 fixture.detectChanges();
 expect(service.requests())
 .toEqual(mockRequests);
 });
});

As we can see, the only downside here is having to use the TestBed and manually trig-
gering change detection before checking. Otherwise, all the tests are very simple, and
we can just list them.

it('should be successfully instantiated', () => {
 expect(service).toBeTruthy();
});

it('should have all requests loaded initially', () => {
 const fixture = TestBed.createComponent(StubComponent);
 fixture.detectChanges();
 expect(service.requests()).toEqual(mockRequests);
});

it('should update requests when approved', () => {
 const fixture = TestBed.createComponent(StubComponent);
 service.approveRequest(mockRequests[0]);
 fixture.detectChanges();
 expect(service.requests()[0].status).toEqual('Approved');
});

it('should update requests when rejected', () => {
 const fixture = TestBed.createComponent(StubComponent);
 service.rejectRequest(mockRequests[0]);
 fixture.detectChanges();
 expect(service.requests()[0].status).toEqual('Rejected');
 expect(service.resolvedRequests()).toEqual([mockRequests[0]]);
});

it(`should write the values in
 localStorage when selectedType
 has change`, () => {
 const fixture = TestBed.createComponent(StubComponent);
 service.selectedType.set('Vacation');
 fixture.detectChanges();
 expect(selectedType).toBe('Vacation');
});

These tests are so straightforward we don’t even need to dive that deep into them: we
call a method on our service, detect changes, and ensure the signals have changed

Listing 8.16 Unit tests for a service with signals

We call detectChanges before
we check for the values in the
computed signal.

This finally works.

202 CHAPTER 8 Unit testing in modern Angular

their values to whatever we expect them to be. As promised, other than the setup
phase (which as we saw was a bit boilerplate-y), testing services with signals is easy, and
there’s no need to worry about asynchronous code, promises, or observables.

 Next let us see how this testing approach will work with the TimeOffManagement-
Component, which of course uses the service we just covered with tests. In that case, it will
be even simpler: we only have to mock the TimeOffManagementService with some
mock signal and then use the testing library to essentially test the DOM. For this pur-
pose, we will create a new test file in the src/app/pages/work directory named time-off-
management.component.spec.ts and put the tests shown in the following listing in it.

const MockTimeOffManagementService: any = {
 requests: signal(mockRequests),
 selectedType: signal(''),
 resolvedRequests: computed(() => {
 return MockTimeOffManagementService.requests()
 .filter(
 (r: TimeOffRequest) => r.status !== 'Pending',
);
 }),

 approveRequest: jest.fn().mockImplementation((request) => {
 const index = mockRequests.findIndex((r) => r.id === request.id);
 if (index !== -1) {
 mockRequests[index].status = 'Approved';
 }
 MockTimeOffManagementService.requests.set(mockRequests);
 }),

 rejectRequest: jest.fn().mockImplementation((request) => {
 const index = mockRequests.findIndex((r) => r.id === request.id);
 if (index !== -1) {
 mockRequests[index].status = 'Rejected';
 }
 MockTimeOffManagementService.requests.set(mockRequests);
 }),

 deleteRequest: jest.fn().mockImplementation((request) => {
 const index = mockRequests.findIndex((r) => r.id === request.id);
 if (index !== -1) {
 mockRequests.splice(index, 1);
 }
 MockTimeOffManagementService.requests.set(mockRequests);
 }),
} as const;

let component: RenderResult<TimeOffManagementComponent>;

describe('TimeOffManagementComponent', () => {
 beforeEach(async () => { component = await render(

Listing 8.17 Unit tests for a component with signals

Mocks the service that
we already tested before

We can just use the same mock
requests from listing 8.13.

We can implement
this signal here to do
the logic of filtration
internally instead of
making an HTTP call.

2038.3 Running Angular unit tests

 TimeOffManagementComponent,
 {
providers: [
 {
 provide: TimeOffManagementService,
useValue:
 MockTimeOffManagementService,
},
],
});
 });

 it('should render the component', () => {
 expect(component).toBeTruthy();
 });

 it('should render the requests', () => {
 expect(component.getAllByRole('row').length)
 .toEqual(3);
 });

 it('should update the UI with new buttons if a request is approved', ()
=> {

 const approveButton = component.getAllByText('Approve')[0];
 fireEvent.click(approveButton);
 expect(
 component.getAllByText('Approve').length,
).toEqual(1);
 expect(component.getAllByText('Reject').length).toEqual(1);
 });
});

Evidently, with this state management approach and with the power of the Angular
Testing Library, testing components essentially boils down to mocking services and
checking for UI updates after simulated events. As we can see, the main problem for
us so far has been the boilerplate: writing tests requires a lot of typing. Although we
have finished covering the testing process of all the new features we explored in
this book, it would also be helpful to consider a tool that may remedy the afore-
mentioned tedium of writing tests. At the time of writing this book, AI tools have
started popping up everywhere; most people are finding ways to integrate these
tools into their workflow to make life easier and more productive. In the next sec-
tion, we discuss how we can utilize modern AI tools to significantly cut down on
some of the more laborious manual aspects of unit testing, which can cause us
stress and lost time.

Simple setup of the
testing environment

We can initially
check that we have
only three rows
(one for the table
column names +
two for our mock
requests).

We use the utility functions from the Angular Testing Library
to simulate a click on the first Approve Request button.

We then expect the number of buttons to change
accordingly; previously we had two of both as we had two

pending requests, and now we have only one of each.

204 CHAPTER 8 Unit testing in modern Angular

8.4 Powers of AI with Angular unit tests
The beginning of the third decade of the 21st century is marked by a rapid increase in
the capabilities of AI-powered tools, ranging from text and image generation to
problem-solving and, of course, writing code. Various tools now exist that can help
developers, and, in the context of unit tests, we will soon see that those tools become
extremely useful when trying to make the unit testing experience enjoyable (let’s be
honest, no one likes mocking dependencies!).

 A multitude of coding-related tools exist nowadays, both as plugins for editors and
as standalone tools; however, in this section, we will focus on two of the most popular—
ChatGPT and GitHub Copilot—and see how they can be specifically tailored to our
unit testing needs. Let’s begin with ChatGPT, which is the more “brute force” way of
writing unit tests.

8.4.1 Unit testing Angular applications with ChatGPT

ChatGPT is an online, AI-powered chatbot that can be accessed on any browser
(https://chat.openai.com/). It has a very simple interface, where we can write any text
(generally referred to as a “prompt”) and ChatGPT will give us an answer. Prompts
can vary a lot, but in general, we can ask any question, including those related to soft-
ware development. ChatGPT can code in any programming language, but, of course,
the addition of a reference to the technology we use will help it generate a more rele-
vant response (i.e., “I am testing an Angular component, and …”). So how can we use
it? There are several approaches to it as related to unit tests.

MOCKING DATA

In listing 8.13, we wrote some mock time-off requests to unit-test our service. We wrote
only two, for the sake of simplicity, but in general, we might want to have more to be
able to exercise more testing scenarios. Typing that out (even when copy-pasting) is
a bit of a hassle, so it might make sense to ask ChatGPT to do it for us. Let’s craft a
small prompt, using the type definition of the request, and see how ChatGPT might
respond to us.

 The prompt is

Provide an array of objects that conform to the following TypeScript type:

type TimeOffRequest = {
 id: number;
 employeeId: number;
 startDate: string;
 endDate: string;
 type: 'Vacation' | 'Sick Leave' | 'Maternity Leave' |
 'Paternity Leave' | 'Other';
 status: 'Pending' | 'Approved' | 'Rejected';
 comment?: string;
};

https://chat.openai.com/

2058.4 Powers of AI with Angular unit tests

ChatGPT’s output is

const timeOffRequests: TimeOffRequest[] = [
 {
 id: 1,
 employeeId: 101,
 startDate: '2023-11-01',
 endDate: '2023-11-03',
 type: 'Vacation',
 status: 'Approved',
 comment: 'Going on a short vacation'
 },
 {
 id: 2,
 employeeId: 102,
 startDate: '2023-11-05',
 endDate: '2023-11-07',
 type: 'Sick Leave',
 status: 'Pending'
 },
];

It actually provided some more text output (something along the lines of “here is the
array you wanted”) and yielded five objects in this array; however, we omitted the rest
for the sake of brevity. We can also indicate how many results we want—for instance,
“give me 10 objects like this.”

NOTE ChatGPT is a nondeterministic AI tool that generates responses based
on its own learning data, which changes constantly. Trying the same prompt
can (and most probably will) yield at least slightly different results.

Of course, saving time on mocking data is very valuable, but what else can we do?

MOCKING DEPENDENCIES
As we saw, we spent most time mocking, say, services rather than data (the latter is
mainly a mechanical job). On the contrary, mocking services involves some critical
thinking on our part, so let us see if ChatGPT can handle it on the mock of the
TimeOffRequestService we created in the same listing 8.13. The prompt is

Provide a mock object that mocks all of the methods in this service; use
Jest as the testing framework. Do not provide the tests, and do not make the
methods into spies, just provide mock implementations of the methods, and
use Observables
<the code of the service we want to mock goes here>

As we can see, we had to add some additional parameters to the prompt, asking it to
skip tests themselves and to use observables. Let’s see what we got in response (omit-
ting all but the essentials for brevity):

export class TimeOffRequestServiceMock {
 getRequests(query = ''): Observable<TimeOffRequest[]> {

206 CHAPTER 8 Unit testing in modern Angular

 // Mock implementation of getRequests method
 return of([]);
 }

 getRequestsByType(query = ''): Observable<TimeOffRequest[]> {
 // Mock implementation of getRequestsByType method
 return this.getRequests().pipe(
 map(requests => {
 return query === ''
 ? requests
 : requests.filter(r => r.type === query);
 })
);
 }

 rejectRequest(id: number): Observable<any> {
 // Mock implementation of rejectRequest method
 return of({});
 }

 approveRequest(id: number): Observable<any> {
 // Mock implementation of approveRequest method
 return of({});
 }

 deleteRequest(id: number): Observable<any> {
 // Mock implementation of deleteRequest method
 return of({});
 }
}

Now we received something that is close to the mock object we created in listing 8.13.
We can modify the getRequests method to return the mock time-off requests we cre-
ated with the previous prompt, and we received a decent mock implementation of our
service. So far, so good: but can ChatGPT write unit tests?

GENERATING UNIT TESTS

Large components (services, directives, etc.) that have specific business logic might be
hard for ChatGPT to generate meaningful tests for; however, small and reusable com-
ponents are good candidates. Let’s try some with the ConfirmationDialogComponent
from the src/app/shared/components/confirmation-dialog.component.ts file that
we authored in chapter 2, section 2.4.5, listing 2.17. The prompt is

Generate unit tests for this Angular component,
use Jest and the Angular Testing Library
<component code goes here>

Now let’s actually fly the generated unit tests generated by ChatGPT and create a new
file named confirmation-dialog.component.spec.ts in the src/app/shared/components
directory and put the tests generated by ChatGPT in response to the prompt there.

2078.4 Powers of AI with Angular unit tests

import { render, fireEvent } from '@testing-library/angular';
import { ConfirmationDialogComponent } from './confirmation-dialog.component';

describe('ConfirmationDialogComponent', () => {
 it('should create', async () => {
 const component = await render(ConfirmationDialogComponent);
 expect(component).toBeTruthy();
 });

 it('should set isConfirmationOpen to true by default', async () => {
 const { component } = await render(ConfirmationDialogComponent);
 expect(component.isConfirmationOpen).toBe(true);
 });

 it('should close confirmation dialog on Cancel button click', async () => {
 const { getByText, component } = await

render(ConfirmationDialogComponent);
 const cancelButton = getByText('Cancel');
 fireEvent.click(cancelButton);
 expect(component.isConfirmationOpen).toBe(false);
 });

 it('should close confirmation dialog on Confirm button click', async () => {
 const { getByText, component } = await

render(ConfirmationDialogComponent);
 const confirmButton = getByText('Confirm');
 fireEvent.click(confirmButton);
 expect(component.isConfirmationOpen).toBe(false);
 });

 it('should have a dialog element with open attribute set to true',
 async () => {
 const { getByRole } = await render(ConfirmationDialogComponent);
 const dialogElement = getByRole('dialog');
 expect(dialogElement).toBeTruthy();
 expect(dialogElement.getAttribute('open')).toBe('true');
 });
 });

Just by looking at these tests, we can see that they are pretty comprehensive. However,
if we run them, we will see they cause a problem—mainly the last test. In the compo-
nent, we set the dialog’s open attribute to true, which results in the dialog element
being rendered with a present but empty open attribute; however, the unit test expects
the attribute to have a value of 'true'. To amend this, we can simply change the very
last expectation to the following:

expect(dialogElement.hasAttribute('open')).toBe(true);

Obviously, despite the results not always being completely perfect, ChatGPT can still
be a great tool to help us skip many repetitive steps when writing unit tests and even just

Listing 8.18 Unit tests generated by ChatGPT

208 CHAPTER 8 Unit testing in modern Angular

generate them outright. This comes with the caveat that the tool should always be
used with caution, and the user must have an understanding of what they are asking
ChatGPT to do so that any errors and problems in the output can be identified and
resolved.

 However, it is somewhat difficult to tailor the ChatGPT experience to the needs of
our own projects, as ChatGPT treats every prompt as a separate question (to an
extent, it still preserves the context of the chat window, but that’s it), and oftentimes
we have to provide a lot of context for it to generate a really relevant result. Next, let’s
discuss a tool aimed at solving that very problem.

8.4.2 Unit testing Angular applications with GitHub Copilot

GitHub Copilot (https://github.com/features/copilot) is an AI coding assistant devel-
oped by GitHub. It trained on public, open source repositories on GitHub itself,
making it very proficient in a number of programming languages and frameworks,
including, of course, JavaScript/TypeScript and Angular.

 GitHub Copilot is a paid service (a free trial period might apply) that is used as a
plugin installed in the developer’s IDE of choice (VSCode, WebStorm, and so on). It
acts as an enhancement to the code completion feature that most IDEs already have;
however, it uses AI to infer the context of a given file or project and generate way
more relevant completions. Later versions also include a built-in chat (like ChatGPT),
which we can prompt with questions, generation of commit messages, and more.
We won’t dive too deep into it, and readers can try it out in their editor (unlike
ChatGPT, it can be demonstrated only when actually typing out the code). Also, we
already covered chatting with AI to generate code, so instead we will discuss some
approaches that help GitHub Copilot generate better code in Angular applications
specifically.

EXPLICIT TYPING IS BETTER FOR AI
Often, when we write code, especially unit tests, we tend to omit some typing declara-
tions and either rely on TypeScript’s (very powerful but still not perfect) type infer-
ence or leave some variable or property of type any altogether. For AI-powered tools
like Copilot, this can pose a problem, as it may mean less context for it to infer and
apply in the code that it generates. This is, of course, a relatively easy problem to fix, and
the best approach here would be to provide explicit types for all mocks, component/
service/etc. references, and so on.

GOOD SPEC NAMES WILL GENERATE BETTER TESTS

As we have noted previously when writing test specs with the it function, we provide a
spec name (expectation of what the test subject, be it a component, service, or any-
thing else we think should do) as the first argument. This spec name achieves several
things, such as describing the spec in the English language to other developers who
might read it, showing a meaningful report when the tests are run, and helping to
locate a test that is failing. With Copilot, a good spec name also becomes a great way to
hint at what we might want it to generate. Consider the second test spec from listing 8.17

https://github.com/features/copilot

2098.5 The future of unit testing in Angular

that we generated with ChatGPT. Let’s delete the implementation callback and just
leave the spec name:

it('should set isConfirmationOpen to true by default', async () => {

This description itself is pretty much enough for Copilot to generate a meaningful
test. This can work both in simple and very complex scenarios.

COMMENTS CAN HELP BETTER DESCRIBE TESTS

Sometimes, specs are too complex to be explained just by their name, so if we want
Copilot to better understand exactly what we want, we can also use plain old com-
ments. Copilot not only understands code but can also read the comments and treat
them as inline commands. For instance, we might write something like the following:

// add a test spec that checks that when users log in or out,
// the footer component toggles the visibility of the links section

Copilot then can easily generate at least a simple spec (which we can modify further
manually if necessary) for us to use. After we are done, we can remove the comment.

 Comments are also great at explaining code. Sometimes a spec is hard, and a
descriptive comment explaining some specific scenario can help Copilot generate
more of those. On the other hand, code comments might also help Copilot generate
more code like that or tests that cover that particular case.

 Over the course of this section, we have built up an increasing awareness of the full
arsenal of tools we have at our disposal when unit testing an Angular application, from
built-in tools and third-party libraries to the power of AI. Now let us close this chapter with
a brief discussion of what to expect next in the Angular framework in regard to unit tests.

8.5 The future of unit testing in Angular
At the beginning of this chapter, we discussed choosing a test runner and discussed
Karma, the fact that it is deprecated, and the experimental support of Jest. When we
combine these two facts, we will notice that at the time of writing this book (v16-17 of
Angular), the framework does not have a stable and supported test runner that comes
out of the box.

 While Jest support will improve, and it will most likely become stable in the next
versions of Angular, the Angular team itself thinks that running in a purely Node.js
environment is still inferior to having them run in a real browser. With this in mind,
the Angular team, in parallel with announcing Jest, has also announced future sup-
port for the Web Test Runner (https://modern-web.dev/docs/test-runner/overview/),
a browser-based test runner that, by the words of the Angular team themselves, has
quite impressive performance.

 Support for this runner is still not available as default (although it can be set up
manually in an experimental manner), but as its future addition is confirmed, it could
be a good idea for the readers of this book to familiarize themselves with it and see
how it can be used, what sort of performance it has, and so on.

https://modern-web.dev/docs/test-runner/overview/

210 CHAPTER 8 Unit testing in modern Angular

 Of course, as we mentioned previously, the choice of the test runner is ultimately
up to the team of developers who are going to actually write the tests, so if your team
thinks that, for example, Jest is enough, then most possibly Angular will have a variety
of options in the future, Jest included.

 As we developed our HRMS application and covered it with unit tests, it is now
time to deploy it, so that users will be able to see it. In the next chapter, we are going
to talk about building, deploying, and improving the performance of Angular applica-
tions, server-side rendering, and other modern tools that Angular now provides out of
the box.

8.6 Exercises for the reader
When writing unit tests in this chapter, we skipped some scenarios. This was deliber-
ate, as we want to provide the opportunity for the reader of this book to write those
test scenarios.

 In the AuthService tests, add a spec that tests the logout method.
 Write unit tests for the HTTP calls in the TimeOffRequestService.
 Add a spec in the tests for TimeOffManagementService that checks that chang-

ing the selected type of requests the UI updates accordingly. (Note: you might
want to change a bit both the mock data and the mock implementation of the
TimeOffRequestService to achieve this.)

 If you have an existing project that runs unit tests on Karma, try to use the
instructions from this chapter to switch it to Jest, and then study and resolve the
problems that might arise.

Summary
 Unit tests are a great way to ensure the stability of Angular applications.
 Historically, Angular used Karma to run unit tests.
 Karma is deprecated, so Angular added experimental support for Jest.
 Libraries like ng-mocks and the Angular Testing Library can be a great asset

when unit testing.
 Services that use the inject function can use the new TestBed.runInInjection-

Context method to initialize.
 There are no serious differences in testing standalone and module-based

components.
 AI tools can be used and tailored to provide a better experience when writing

unit tests for Angular apps.
 The Angular team has announced future support of the Web Test Runner.

211

Modern Angular
everywhere

Congratulations! During the previous eight chapters, we have successfully built an
enterprise Angular application and even covered it with unit tests to ensure its sta-
bility. Next, we are preparing to go into production, so our concerns are now with
building pipelines and application performance. Let’s see how we move our appli-
cation to a server and how we make it marketable.

This chapter covers
 Server-side rendering

 Why server-side rendering can be necessary
and the performance benefits it provides

 Building a project from scratch with
server-side rendering

 Adding server-side rendering to an existing
Angular application

 Configuring static site generation with
page prerendering

 Configuring application build to use ESBuild
for improved build time

212 CHAPTER 9 Modern Angular everywhere

9.1 What is server-side rendering?
While the developers working on the HRMS project we have been building so far
rejoice in having completed a minimum viable product, the marketing team arrives
with a big new task before we can move the project into production.

 The team gathers with the marketing reps, and they lay out their vision of how the
product will be promoted to potential buyers:

What we want is to have a separate, landing-page-style website that displays information
about the product, and also uses statistics from the app itself; for example, we would like
to have some banners that say that our product is used by X companies and has Y active
users; that data, of course, has to be correct and reflect the situation in our databases.

We might think, sure, it will be easy to throw around a new small Angular app that
makes some requests for statistical data and largely displays static content. But the
marketing team pushes on:

We also want lightning-fast performance. The performance of the HRMS product itself is
decent, but it has terrible initial load time; this is not a problem for the users, as this is an
enterprise tool used in offices; but for a landing page, we want almost instantaneous
interaction. We are going to promote the platform online, and potential buyers will
arrive at the landing page, possibly using mobile devices, so the initial load speed is of
paramount importance.

Then a discussion ensues, which inevitably ends with someone suggesting that the
landing page website is built using server-side rendering (SSR). Is Angular capable of
this? Well, it was capable of SSR for quite a long time with the separate Angular Uni-
versal package, but recently it received a powerful upgrade and got integrated with
other Angular packages itself. So before we begin building this landing page, let’s fig-
ure out what SSR is, what benefits it brings, and how it works in Angular.

9.1.1 SSR: The what

When the internet first began, it mostly consisted of servers providing static pages to a
client’s browsers. It was a pretty simple schema, exchanging HTML documents between
computers, as figure 9.1 suggests.

Client

Browser requests a URL

Returns an HTML document

Server

Client Server

T
im

e

Figure 9.1 Serving static
HTML documents

2139.3 Improving Angular SSR

When in this sequence the client receives the HTML document, it is ready for consump-
tion, and the browser renders the document and paints it as UI for the user to view.
Even today many websites use this very schema of just serving static content. However,
with time, both the server and the client sides became more and more dynamic.

 First, a necessity arose for server-side dynamic pages; for instance, when a user nav-
igates to a certain URL, depending on whether they are logged in or not, they should
see different pages, meaning the server now has to “manually” generate an HTML
document and serve it, instead of just grabbing a readily available one. Figure 9.2
shows how it looked with that approach.

Now the “Renders a dynamic HTML document” part is what we usually refer to as
SSR. But what does it have to do with Angular? With the progress of rendering on the
server side, the client side also received new tools. At this point, JavaScript was used
almost everywhere to provide dynamic interactions in the browser (as continues to be
the case to this day), opening popups, tracking user activity, validating forms, and so
on. At some point, web developers figured we could just forgo the server part and ren-
der the page in the browser, with the backend only providing dynamic data as JSON.
This is what we have been doing with Angular so far, and this is how single-page appli-
cations (SPAs) were born. They provided a number of benefits:

 Websites could now feel like mobile applications for users.
 Navigating from one page to another no longer involved destroying the entire

previous page and repainting a new one.
 We could serve such single-page applications from static content servers like

content delivery networks (CDNs) instead of large servers.
 The server and the client became very decoupled.

With SPAs, the process from figure 9.2 became more complicated, as evidenced by
figure 9.3.

 This approach ushered us into an era when all websites started looking like fully
fledged applications and provided very powerful interactions and instantaneous

Client

Browser requests a URL.

Renders a dynamic
HTML document

Returns an HTML document

Server

Client Server

T
im

e

Figure 9.2 Rendering HTML
documents on a server

214 CHAPTER 9 Modern Angular everywhere

feedback for the user (no need to “refresh” the page to deliver some data from a form
to the server, for example). So far, this approach seems like an obvious upgrade from
just SSR, so why are we discussing SSR in Angular in this chapter? Let’s discuss what
problems SPAs have.

9.1.2 SSR: The why

Despite all the aforementioned benefits, SPAs carry with them several problems that
strike particularly painfully for websites intended to be accessed by millions that are
dealing with marketing or are mobile-heavy. Let’s discuss each of these in turn.

INFERIOR INITIAL LOAD TIME

If we take a closer look at figure 9.3, we will see that rendering the page now involves
several steps; first, we need to load a page, which will contain some bare-bones HTML
and links to relevant JavaScript files. In the case of Angular, applications by default are
single-page, so if we build and serve them, every time someone accesses them, they
will first receive this “initial” HTML. We can see this in action if we run ng serve, open
the page, and inspect its source code. We can do this with the HRMS application we
already have and will see the code shown in the following listing.

<!doctype html>
<html lang="en">

<head>
 <meta charset="utf-8">

Listing 9.1 index.html file of an Angular single-page application

Client CDN

Returns dynamic data as JSON

Requests for some dynamic data

Returns a simple index.html that has references to relevant JavaScript lesfi

Browser requests a Page from a SPA

Starts rendering
the single page

application

Uses the dynamic
data to nalizefi

rendering the page

Server

Client CDN Server

T
im

e

Figure 9.3 Life cycle of the relation between a SPA and server/CDN

2159.3 Improving Angular SSR

 <title>Hrms</title>
 <base href="/">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="icon" type="image/x-icon" href="favicon.ico">
 <link rel="stylesheet" href="styles.css">
</head>

<body>
 <app-root></app-root>
 <script src="runtime.js" type="module"></script>
 <script src="polyfills.js" type="module"></script>
 <script src="styles.js" defer></script>
 <script src="vendor.js" type="module"></script>
 <script src="main.js" type="module"></script>
</body>

</html>

As we can see, the page is essentially empty, with just a reference to our root compo-
nent (AppComponent) and some scripts. To render the actual content, in the next step,
the browser will have to load those scripts (some of which contain the code for Angu-
lar itself). Finally, the browser will execute those scripts, which will in turn render the
page the user really wants to see.

 Obviously, this process is far more resource-heavy than what we described as SSR,
as, instead of just getting some prepared HTML and rendering it, the browser will
have to go through all of those steps, download the JavaScript files, and execute them,
and only then will the rendering even begin.

 Obviously, this affects a number of important metrics, one of which is Largest Con-
tentful Paint, which we discussed in relation to images in chapter 4, section 4.4. This
also makes the time-to-interactive (time that passes between the user navigating to a
page and them being able to trigger events like clicks in it) metric worsen by quite a
lot. Essentially, if we take any Angular SPA and run Chrome’s built-in Lighthouse per-
formance monitoring tool, we will see quite poor results.

 All of these make Angular as a SPA an unappealing choice for websites aimed at
passing-by users. As we mentioned, for enterprise tools, such metrics can be not very
important (who cares how fast a page you load every day goes to interactive?), but for
websites like blogs, landing pages, marketing sites, and so on, poor performance in
such categories can mean reduced traffic, which in turn devolved into lost revenue.
However, such websites have an even bigger concern that is affected by SPAs.

WORSENED SEO
Search engine optimization (SEO) is a practice of making web pages more suitable
for search engines like Google, Bing, etc. Essentially, it means adding specific key-
words and building websites in such a way that search engine web crawlers can easily
find and index them.

 Search engines use these special programs, called crawlers, to automatically go
around the web and find new pages, extract information from them, and make

216 CHAPTER 9 Modern Angular everywhere

them related to keywords for which users might potentially search in the future. For
instance, if we build a website for a legal company in Albuquerque, those web crawl-
ers can find pages inside them and index keywords from them, and then when
someone searches for “lawyer in ABQ,” they will be presented with this particular
website.

 Obviously, having one’s website on the Google search’s front page is a huge boost
to website traffic, which can and will translate to actual revenue. For this purpose,
SEO has evolved into a huge science, where experts configure specific keywords, links,
and structures to make websites easier to find.

 However, all of those tricks and approaches are utterly defeated by the very
nature of SPAs, because those web crawlers we talked about are not web browsers.
They perform the initial load of a website, crawl it for keywords, index it in their
database, and move to the links they found on the page; however, they will not exe-
cute any client-side JavaScript, and as we see from listing 9.1, our initial HTML file
contains essentially nothing, and anything potentially useful for web crawlers is
rendered by JavaScript.

 These two points are already pretty bad from the financial perspective; however,
they both become even worse when we consider that not all visitors to a website use
desktop computers or laptops.

AFFECTED MOBILE EXPERIENCE

A worse initial page time for mobile users is even more damning for mobile users, as
browsers on mobile devices tend to be a bit slower than their desktop counterparts.
Also, users of mobile phones might get frustrated by a long page load far easier, as
they commonly use mobile applications more often than websites, meaning they can
be used to better load performance.

 On the other hand, downloading lots of JavaScript (which as we saw was crucial for
showing any content to the user at all) can negatively affect users with a sensitive data
plan and quite literally cost them money, thus making SSR a preferable choice over a
SPA for websites that want to be mobile-friendly.

 With these strong arguments made for SSR, we can now discuss how it is possible
to implement it within Angular applications.

9.1.3 SSR: The how

As we said, so far we have only run the HRMS application on the client side. For this pur-
pose, when we run ng serve, Angular bootstraps a very simple server, which essentially
only serves static files that we receive in the browser. Subsequently, if we then choose to
deploy our app somewhere to become available to end users, we can run ng build and
the command will generate some static HTML and JavaScript files, which we can easily
host on some CDN (more on build commands later in this chapter).

 However, for SSR, we are going to need a server. Traditionally, for Angular SSR,
the role of such a server was played by Node.js and Express, a Node framework.
Other setups can be configured; however, they are out of the scope of this book, as

2179.3 Improving Angular SSR

Express is now the default choice for SSR in Angular. So let us talk a bit about Node.js
and Express before we move to actually create an SSR Angular app.

 We should already be at least a little bit familiar with Node.js, as Angular itself uses
it to build and serve applications. We also use npm, the Node.js default package man-
ager, to install and update dependencies like libraries, tooling, and Angular itself.
While Node.js itself can be used to bootstrap a server that will render our Angular
application, developers commonly use some frameworks to facilitate building back-
end applications. Express is one of the most common tools in this regard.

 The good news about Express is that we don’t need to know much about it. After
all, we are not doing backend development here. However, we need to know a bit
about it. As already mentioned, Express is a Node.js framework aimed at building
backend applications of all kinds. It is particularly simple and easy to adopt. For
instance, we can bootstrap a working Express backend with a couple of lines of code,
as shown in the following listing.

const express = require('express');
const app = express();

app.get('/', function(req, res){
 res.send("Hello world!");
});

app.listen(3000);

If we install Express using the npm install express command and run this file with
Node.js, a server will start working and listening on port 3000. If we navigate to
http://localhost:3000, we will see the “Hello world!” text rendered in the browser.

 Express allows registering callbacks for different routes, and when an HTTP
request arrives at that URL, those callbacks will be executed and some data will be
sent as a response. Express can also be used to render HTML files and serve them
dynamically, meaning it can be used for SSR, which Angular does.

 Express applications also allow for so-called middlewares, functions that execute
between requests and add some functionality to the existing application. Middlewares
can be used to add plugins for Express-based applications and will be important in the
next section, where we actually implement SSR and try to understand how it works.

 Previously, Angular used Express to make SSR applications in a dedicated package
called Angular Universal, which kind of existed outside of Angular itself (despite
being developed by the same team). Starting from v17, however, SSR became a special
package inside Angular itself, which we can either add to an existing project or use to
begin a project with it from the very start.

 Now, having all of this knowledge, let us build a promotional, landing-page-style
Angular SSR application; explore it; find caveats; and prepare to build and deploy it
with the HRMS app itself.

Listing 9.2 Simple Express server

218 CHAPTER 9 Modern Angular everywhere

9.2 Building Angular apps with SSR from scratch
As already mentioned, previously we had to build an Angular app as usual, then add
Angular Universal to it, and then configure it to be able to enjoy the benefits of SSR.
However, now we can begin a new Angular app by following two simple steps:

1 Ensure we have Angular version 17 or higher.
2 Run the ng new hrms-promo --ssr command.

These steps will, as expected, generate a new Angular project for our promotional
website. The --ssr argument will tell Angular to create an application that runs on
the server side by default. Let us run this command, open the project in the editor of
our choice, and explore it.

9.2.1 How is an SSR Angular application different from a SPA?

First things first: let’s explore the package.json file. Not much has changed there; how-
ever, we might notice that dependencies now include “express” (naturally) and also a
new package called @angular/ssr. This new package is where all the Angular function-
ality necessary to render the application on the server side resides.

 Next, let’s open up the angular.json file and see how it is different from what we
might expect. For the most part, it is business as usual; however, the architect.build
configuration now has some interesting properties.

"build": {
 "builder": "@angular-devkit/build-angular:application",
 "options": {

 "server": "src/main.server.ts",
 "prerender": true,
 "ssr": {
 "entry": "server.ts"
 }
 },
}

Evidently, these options pretty much tell Angular that this particular application is
meant to run on a server and how to start it. The next thing foreshadowed by this
file is that we have multiple main.ts files and that we also have a special server.ts file
at the root of our application. Let us open it and explore it further in the following
listing.

Listing 9.3 angular.json file of an SSR application

The rest of the options are omitted.

Entry point for Angular
when it runs on the server
as opposed to the browser

We will explore this option
later in this chapter.

This option indicates the file from
which the server must start running
to serve rendered Angular pages.

2199.3 Improving Angular SSR

import { APP_BASE_HREF } from '@angular/common';
import { CommonEngine } from '@angular/ssr';
import express from 'express';
import { fileURLToPath } from 'node:url';
import { dirname, join, resolve } from 'node:path';
import bootstrap from './src/main.server';

export function app(): express.Express {
 const server = express();
 const serverDistFolder = dirname(fileURLToPath(import.meta.url));
 const browserDistFolder = resolve(serverDistFolder, '../browser');
 const indexHtml = join(serverDistFolder, 'index.server.html');

 const commonEngine = new CommonEngine();

 server.set('view engine', 'html');
 server.set('views', browserDistFolder);

 server.get('*.*', express.static(browserDistFolder, {
 maxAge: '1y'
 }));

 server.get('*', (req, res, next) => {
 const { protocol, originalUrl, baseUrl, headers } = req;

 commonEngine
 .render({
 bootstrap,
 documentFilePath: indexHtml,
 url: `${protocol}://${headers.host}${originalUrl}`,
 publicPath: browserDistFolder,
 providers: [{ provide: APP_BASE_HREF, useValue: baseUrl }],
 })
 .then((html) => res.send(html))
 .catch((err) => next(err));
 });

 return server;
}

function run(): void {
 const port = process.env['PORT'] || 4000;

 const server = app();
 server.listen(port, () => {
 console.log(`Node Express server listening on http://localhost:${port}`);
 });
}

run();

Listing 9.4 Configuring the server to render the Angular pages

Base HREF for the files to load correctly
The CommonEngine will
be used to render the
page on the server.

All node dependencies are
imported with the node: prefix.

This function will create a server and export
it for the case when developers want to use
Angular on a serverless function.

Tells Express what engine to use when
rendering; different options exist, but
with Angular SSR just HTML is used.

All routes containing a dot will be identified as static
assets (like images we might have in the assets folder,

and a middleware will be used to serve them.

All routes will invoke this callback, which will
render the corresponding Angular component

to an HTML document and return it.

Common engine is used to
render the HTML document.

A server is bootstrapped
and listens on a port.

220 CHAPTER 9 Modern Angular everywhere

While this file can seem a bit intimidating, the good news is we do not really need to
understand all of it, as it is preconfigured and will work well, unless we want to heavily
customize it. For the purpose of this chapter, we don’t need to know more about it
than we already covered, so we can move to explore the two main.ts files. The main.ts
file is completely the same as with a common SPA setup:

import { bootstrapApplication } from '@angular/platform-browser';
import { appConfig } from './app/app.config';
import { AppComponent } from './app/app.component';

bootstrapApplication(AppComponent, appConfig)
 .catch((err) => console.error(err));

We already encountered such a setup in chapter 1, when we initialized the HRMS
application itself, so we shouldn’t have any surprises here. The main.server.ts file, on
the other hand, has some minor differences:

import { bootstrapApplication } from '@angular/platform-browser';
import { AppComponent } from './app/app.component';
import { config } from './app/app.config.server';

const bootstrap = () => bootstrapApplication(AppComponent, config);

export default bootstrap;

As we can see, it is generally the same; however, it uses a different config than main.ts,
and also, instead of bootstrapping the application outright, it just exports a function
that does it. Again, this is done to help Angular run on any server environment, not
just Express (although Express is the default).

 Finally, let us see how the configs are different before we build some components
and actually run the application. The app.config.ts configuration, unsurprisingly, is
almost unchanged:

import { ApplicationConfig } from '@angular/core';
import { provideRouter } from '@angular/router';

import { routes } from './app.routes';
import { provideClientHydration } from '@angular/platform-browser';

export const appConfig: ApplicationConfig = {
 providers: [provideRouter(routes), provideClientHydration()]
};

The provideClientHydration() option is a new SSR-related feature that we will
explore in more depth later in this chapter. As we can see, it is a best practice to use it,
as it is included in an SSR setup by default. Otherwise, this file is mostly the same as
the one we received when bootstrapping the HRMS application in chapter 1. Finally,
let’s see the app.config.server.ts file:

2219.3 Improving Angular SSR

import { mergeApplicationConfig, ApplicationConfig } from '@angular/core';
import { provideServerRendering } from '@angular/platform-server';
import { appConfig } from './app.config';

const serverConfig: ApplicationConfig = {
 providers: [
 provideServerRendering()
]
};

export const config = mergeApplicationConfig(appConfig, serverConfig);

As we can see, this config provides SSR and merges itself with the normal config we
have in the other file. Nothing else of interest is going on here, so we finish exploring
the new files and move to run our application and then add some content to it.

9.2.2 Running an SSR Angular application

Previously we used the ng serve command to bootstrap a small server locally so that
we could view and debug the Angular application that we were working on. Thank-
fully, nothing has changed, and with an SSR setup, we can just as easily run the same
command and it will start serving the Angular application as rendered on the server.
Before we run it, let’s visit the AppComponent and change its template by removing the
default blocks generated by Angular and putting some text in it for the time being.

@Component({
 selector: 'app-root',
 standalone: true,
 imports: [RouterOutlet],
 template: `
 <div>This is the {{ title }} app!</div>
 <router-outlet></router-outlet>
 `,
 styleUrls: ['./app.component.scss'],
})
export class AppComponent {
 title = 'hrms-promo';
}

As we can see, we haven’t done much to it and just used some plain text with an Angu-
lar binding. Let’s now run it: go to http://localhost:4200 and view the page’s source to
see what we get with SSR.

<!DOCTYPE html>
<html lang="en">

<head>
 <script type="module" src="/@vite/client"></script>

Listing 9.5 AppComponent in an SSR setup

Listing 9.6 SSR Angular app served in the browser

222 CHAPTER 9 Modern Angular everywhere

 <meta charset="utf-8">
 <title>HrmsPromo</title>
 <base href="/">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="icon" type="image/x-icon" href="favicon.ico">
 <link rel="stylesheet" href="styles.css">
</head>

<body><!--nghm-->
 <app-root _nghost-ng-c2553731897=""
 ng-version="17.0.0-rc.1" ngh="0"
 ng-server-context="ssr">
 <div _ngcontent-ng-c2553731897="">This is the hrms-promo

app!</div><router-outlet
 _ngcontent-ng-c2553731897=""></router-outlet><!--container-->
 </app-root>
 <script src="polyfills.js" type="module"></script>
 <script src="main.js" type="module"></script>

 <script id="ng-state"
type="application/json">{"__nghData__":[{"c":{"2":[]}}]}</script>

</body>

</html>

Again, for the most part, this is the same as what we received with the HRMS app in
listing 9.1; however, there is a big difference: the <app-root> element is no longer
empty, and it now contains the template of the AppComponent readily rendered and
served directly to the browser! Thus, we know our SSR setup works correctly.

 We can also notice that the Angular binding we used in the template also worked
during SSR and displayed the application title in the resulting HTML. But what about
interactivity? Will we be able to change component properties in the UI on the fly?
Let’s do a small experiment with the AppComponent and figure this out.

@Component({
 selector: 'app-root',
 standalone: true,
 imports: [RouterOutlet],
 template: `
 <div>This is the {{ title }} app!</div>
 <button (click)="changeTitle()">Change title</button>
 <router-outlet></router-outlet>
 `,
 styleUrls: ['./app.component.scss'],
})
export class AppComponent {
 title = 'hrms-promo';

 changeTitle() {
 this.title = 'Dynamic title';
 }
}

Listing 9.7 Interactivity added to an SSR Angular app

2239.3 Improving Angular SSR

Here we added a button that will change the title property when clicked. If we rerun
the application and click on that button, we will see the text change, as we would
expect in a “normal” SPA Angular application. We can also check the source and see
that the button itself is also rendered on the server.

 This is enough to prove to ourselves that while with the SSR setup the application
is initially rendered on the server and readily served to the browser, other Angular
functionality works as expected. Let’s explore building functionality in SSR applica-
tions and find some caveats that challenge this assumption.

9.2.3 Building components in an SSR Angular application

The most important question for us right now is whether our components will
encounter any limitations when rendering on the server side. To understand this, we
need to figure out how Angular renders UI in the first place.

 Of course, we know that Angular provides us the opportunity to write HTML that
is enhanced with Angular’s special template syntax, allowing us to perform condi-
tional checking, render lists of elements, bind attributes and textual values to compo-
nent properties, and so on. What might elude us is that while we write those templates
that are marked as .html, we don’t usually deal with the DOM directly. We just write a
declarative template showcasing what we want to see in the UI, and Angular takes care
of the rest.

 So how does it work? To run an Angular application, we first need to compile it.
Compilation involves various steps, such as converting our .ts files containing our
components, directives, and everything else into JavaScript, and many other things.
But the key thing is the compilation of the templates. It’s true that when an Angular
application runs in a browser, it does not deal with any HTML. What it does instead is
translate our templates written in HTML into JavaScript commands that it can then
run in the browser to render our UI.

 The process of translating it or the actual commands it outputs are not really
important to us here; what matters is that the application has to be compiled before it
can run. When we execute ng serve, it performs something known as just-in-time com-
pilation, meaning it bootstraps the basic things the application needs to run and then
it compiles the templates into those commands in the browser. This of course makes
performance quite poor; however, the development process becomes way faster, and
when developing the application the build time is the only thing we care about (later
in this chapter we will discuss how we can improve it).

 When deploying to production, however, we first run ng build to get a precom-
piled version of the application, where no HTML exists and the browser can execute
the commands to render the UI outright. This is known as ahead-of-time compilation.

 In both of these cases, we need to compile the template. The very nature of this
step makes Angular capable of rendering pages on the server side. As long as the
commands are the ones generated by Angular itself, it can verified that those com-
mands are platform-agnostic and can run the same way both on the server and in the

224 CHAPTER 9 Modern Angular everywhere

browser. So, at the end of the day, we cannot write any code in our templates that can
cause problems on the server.

 We can, however, write such code inside our components or directives, where we
can deal directly with HTML DOM nodes and elements. Before we figure this out, let
us first build some components and make our landing page more user-friendly and
then try to implement some functionality that might push the boundaries of SSR.

 We are going to implement four components for our application:

 Header and footer components (for the purpose of this chapter we can just copy-
paste them from the HRMS application and remove the login/logout logic).

 An “About Us” page.
 A “Subscriptions” page where potential customers can find out ways of paying

and using the HRMS product.
 In the AppComponent, several sections with detailed information about the prod-

uct, a cover picture, and so on. The goal is to make the page large enough so
that it has some scrolling on desktops.

We are only going to provide the code for the AppComponent template so that we can
move forward. You can either author the other components as you see fit or use the
ones from the example repository. The following listing shows how the AppComponent
will look.

@Component({
 selector: 'app-root',
 standalone: true,
 imports: [
 RouterOutlet,
 HeaderComponent,
 FooterComponent,
 NgOptimizedImage,
 RouterOutlet,
 RouterLink,
],
 template: `
 <app-header />
 <div class="page">
 <div class="cover">
 <img ngSrc="./assets/images/cover-picture.jpg"
 alt="Cover Picture" width="1900"
 height="1000"/>
 </div>
 </div>
 <div class="information">
 <p>You can learn more about us here</p>
 <p>
 Learn about our available subscriptions
 here
 </p>

Listing 9.8 AppComponent with content

A large cover
picture

2259.3 Improving Angular SSR

 </div>
 <div class="container">
 <router-outlet />
 </div>
 <app-footer />
 `,
 styleUrls: ['./app.component.scss'],
})
export class AppComponent {}

Now we have a workable component. As we have some content and a big cover pic-
ture, the page will get some scrolling on most desktop computers. What we want to do
is for the user to be able to scroll back to the top of the page quickly. For this reason,
let us implement a ScrollToTopComponent that will render a button that will become
visible when the user has scrolled some distance from the top of the page and will
scroll back when clicked. In the src/app folder let’s create a new folder named com-
ponents and put the scroll-to-top.component.ts file inside of it with the component
code shown in the following listing.

@Component({
 selector: 'app-scroll-to-top',
 template: `
 <button *ngIf="isVisible" (click)="scrollToTop()">Scroll To Top</button>
 `,
 styles: [
 `
 button {
 position: fixed;
 bottom: 20px;
 right: 20px;
 z-index: 99;
 font-size: 18px;
 border: none;
 outline: none;
 background-color: #333;
 color: #fff;
 cursor: pointer;
 padding: 15px;
 border-radius: 4px;
 }
 `
],
 standalone: true,
 imports: [NgIf],
})
export class ScrollToTopComponent implements OnInit {
 isVisible = false;

 scrollToTop() {
 window.scrollTo({ top: 0, behavior: 'smooth' });
 }

Listing 9.9 ScrollToTopComponent

Routed components will
only begin in the middle
of the application UI.

Button to scroll to top, only visible
when the user has scrolled away

from the top of the page

When the button is
clicked, the page will
be scrolled back to
the very top.

226 CHAPTER 9 Modern Angular everywhere

 ngOnInit() {
 window.addEventListener('scroll', () => {
 if (window.scrollY > 100) {
 this.isVisible = true;
 } else {
 this.isVisible = false;
 }
 });
 }
}

Other than the styles to make the button more appealing, the component is pretty
straightforward: we listen to scroll events on the browser’s window, and if the user has
scrolled a bit too far, we toggle the button to become visible and vice versa. However, if
we add this component to the AppComponent and run the application, we will receive
the following compilation error:

ERROR ReferenceError: window is not defined
 at _ScrollToTopComponent.ngOnInit

Wait, this can’t be right: why is window undefined? If we remember that the applica-
tion is being rendered on the server side, we will realize that window (and other
browser’s built-in objects like document, location, and so on) are not available in that
context. SSR will run all the component’s life cycle methods, including ngOnInit, and
encounter a reference to window and throw this error.

 So how do we tell Angular that this code only needs to run on the client side?
Here Angular has us covered. Starting from v16, the framework provides two spe-
cial functions, afterRender and afterNextRender, which will take a callback and
run it only on the client. As their names suggest, they both run after SSR is done;
however, afterNextRender runs only once, while afterRender runs each time the
application is rendered.

 Let’s modify our component to use afterNextRender and achieve our desired
functionality.

export class ScrollToTopComponent {
 isVisible = false;
 cdRef = inject(ChangeDetectorRef);

 constructor() {
 afterNextRender(() => {
 window.addEventListener('scroll', () => {
 if (window.scrollY > 100) {
 this.isVisible = true;
 this.cdRef.detectChanges();
 } else {
 this.isVisible = false;
 this.cdRef.detectChanges();
 }

Listing 9.10 Using afterNextRender in the ScrollToTopComponent

We listen to scroll events
to check if the user has
scrolled too far from
the top of the page.

We use an arbitrary distance
to determine if we want to
show the button already.

We are going to need to manually trigger
change detection in afterNextRender.

We call afterNextRender with
our initialization callback in
the constructor.

Calls detectChanges
when we change the
visibility of the button

2279.3 Improving Angular SSR

 });
 });
 }

 scrollToTop() {
 window.scrollTo({ top: 0, behavior: 'smooth' });
 }
}

Now if we open our page and scroll, we will see that the button appears when we
scroll a bit and vanishes when we get back to the top of the page, thus accomplish-
ing our task.

 We used afterNextRender because we wanted the callback to only run once, as
we were essentially registering an event listener that would then work on its own. In
scenarios where we want to, say, update the DOM manually (for instance, in struc-
tural directives) after the change of some state in the component, we should use
afterRender, which will run each time. Other than that, there is no difference
between these two functions.

 Optionally, these functions can accept a second argument after the callback that
will configure some options. We can provide an injector (if we intend to use depen-
dency injection in the callback), or we can provide a special phase option. This option
will configure when exactly in the life cycle of rendering will the callback be invoked,
so changing it can positively affect the performance of our application. There are sev-
eral options and some scenarios where they can be used (see table 9.1).

Now that we have figured out how to run code meant for the client side in Angular
applications that are generally rendered server-side and how to optimize that process,

Table 9.1 Phase options for afterRender/afterNextRender

Option Description Scenario

EarlyRead This option can be used to perform a
reading from the DOM to render some UI
that is not natively supported.

Implementing a custom scrollbar,
calculating the previous position from
the DOM

Write This option should be used if we are only
writing to the DOM. Never use it to read
DOM elements or their attributes.

Updating the DOM when reacting to inter-
section events; for instance, implement-
ing infinite scrolling functionality

MixedReadWrite This option is used when we can both
read and write to the DOM. This is the
default option.

Implementing a directive that shows a
comparison between two instances of
the same component; for example, an
altered financial offer displayed side-
by-side with another one, or a Git tree
comparison

Read This option is used when we only want to
read from a DOM element. Never use it
to update the DOM manually.

Implementing a directive that reads data
from a third-party library to pass it to
another component

228 CHAPTER 9 Modern Angular everywhere

we can move forward and see what other options Angular SSR provides for the improve-
ment of application performance.

9.3 Improving Angular SSR
Over the course of this chapter, we learned how to set up a new Angular project that
uses SSR from the get-go. But, to be completely honest, outside the two functions we
just used, we didn’t do many new things: all the components we built were just regular
Angular components, and the rest was generated by the --ssr option when bootstrap-
ping the application. This is, of course, a good thing: this proves we don’t have to care
about lots of stuff when using SSR with Angular; however, there are several things
worth exploring and ways to improve the performance or customize the behavior of
an Angular SSR application. Let’s dive into them now.

9.3.1 HTTP caching

So far we have built components that mainly just rendered some static content. How-
ever, if we remember the introduction to this chapter, we envisioned an application
that would also make HTTP calls to display real statistics about the HRMS application.
So now let us do exactly this, and see how Angular’s HttpClient will perform when
running on the server side.

 For this purpose, in the src/app folder let us create a new file named api.service.ts.
As we are only going to make a couple of HTTP requests, we can just create a simple
service and put all those methods together. The following listing shows what that ser-
vice will look like.

@Injectable({
 providedIn: 'root',
})
export class ApiService {
 private readonly http = inject(HttpClient);

 getCompaniesCount() {
 return this.http.get<unknown[]>('/companies').pipe(
 map(items => items.length),
);
 }

 getEmployeesCount() {
 return this.http.get<unknown[]>('/employees').pipe(
 map(items => items.length),
);
 }
}

Now, with this service in place, we can move and create a component that displays sta-
tistics about our (arguably amazing) product. To do this, we will create a new file in

Listing 9.11 ApiService

We don’t really
care about the
type of objects
we receive,
only the count.

Maps the resulting
array to the count
of objects received

2299.3 Improving Angular SSR

the src/app/component directory named statistics.component.ts and put the compo-
nent in the following listing there.

@Component({
 selector: 'app-statistics',
 template: `
 <div class="container">
 <div class="block">
 <p>

 {{ companiesCount() }}
 companies already use the HRMS platform!

 </p>
 </div>
 <div class="block">
 <p>

 {{ employeesCount() }}
 employees active on the HRMS platform!

 </p>
 </div>
 </div>`,
 standalone: true,
})
export class StatisticsComponent {
 apiService = inject(ApiService);
 companiesCount = toSignal(
 this.apiService.getCompaniesCount(),
 {initialValue: 0},
);
 employeesCount = toSignal(
 this.apiService.getEmployeesCount(),
 {initialValue: 0},
);
}

Here we make the HTTP calls we just created, convert the results to signals, and dis-
play it in the UI. Indeed, if we open the application now and take a look, we will see
something like “3 companies already use the HRMS platform! 10 employees active on
the HRMS platform!”, meaning everything works as intended.

 However, there is a catch: if we open the browser’s developer console and go to
the Network tab, we will see that there are no HTTP requests made to the URLs we
used in our service. So how does the data appear in the UI? It turns out the requests
to those endpoints have already been performed on the server, and the UI has been
rendered as prepared HTML and delivered to the browser, thus eliminating the need
to perform the request on the client.

Listing 9.12 StatisticsComponent to display promotional data

We are going to use the
ApiService to get the
statistics data in this
component.

We make the HTTP calls and
convert the results to signals
with default initial values.

230 CHAPTER 9 Modern Angular everywhere

 This is a feature of client hydration that was already enabled in the app.config.ts
file generated by Angular when we first bootstrapped the application (we will talk
more about what hydration is in the next section). To verify this we can remove the
provideClientHydration() line from the app.config.ts file and see that now those
requests are performed on the client side and visible in the Network tab.

 This is known as HTTP transfer caching (or simply HTTP caching), and it means that
the requests are first performed during rendering on the server side; then their results
are cached and passed onto the client, so the client does not have to re-execute those
potentially costly operations. The HttpClient checks this cache and if it finds the results
there, it just returns it without performing the actual request.

 By default, only HTTP GET and HTTP HEAD method requests are cached. This makes
sense, as we usually make other types of requests when the user triggers some opera-
tion (say, saving some data). However, there can be scenarios when an application
makes a POST request to retrieve data rather than save it (for instance, some requests
might require too many parameters that just don’t fit as query parameters in the URL
and the developers resort to using an HTTP POST request). In such cases, we can pro-
vide a specific configuration in the app.config.ts file to also cache the POST requests:

provideClientHydration(withHttpTransferCacheOptions({
 includePostRequests: true,
})),

The withHttpTransferCacheOptions we can configure the caching of POST requests
and a number of other things. For instance, we can set the includeHeaders option
and provide an array of specific header names that we also want to cache from the
server; for instance, we might want to cache headers that provide metadata about
some response (e.g., number of items in a collection passed as a header from some
API, like “X-Total-Count”). By default, HTTP headers are not cached, and we have to
provide a list of headers to cache manually.

 Finally, we can also provide a filter option, which will take a function that
receives the request object and return a Boolean that will indicate whether to cache
some particular request. For instance, we might want to cache responses from our
own API but not from third-party APIs like a cloud provider or others. The following is
an example of how we can do it with the filter option:

provideClientHydration(withHttpTransferCacheOptions({
 filter: (req) => req.url.startsWith('https://our.api.com'),
})),

Now evidently all of these options given to the provideClientHydration() function
are only possible because of said client hydration. So let us talk about it and finally
understand what it means, how it improves performance, and why it is important to
have it turned on in our SSR Angular applications.

2319.3 Improving Angular SSR

9.3.2 Client-side hydration

In section 9.2.3 we discussed how Angular works on the server side as opposed to the
client side. We mentioned that it involves a compilation step, and on the client, Angu-
lar actually executes JavaScript code that will render the UI. During that rendering
process, Angular will not only paint the UI but also apply its bindings on certain ele-
ments, so that future changes in the application state result in an updated UI. This is
what happens, for instance, when we bind a property of an HTML element to a prop-
erty in our component class with the bracket syntax, as follows:

<input [placeholder]="customPlaceholder"/>

As we know, those bindings are the essence of Angular and the reason why we have
interactive web apps built with it at all. This happens in the client, but what about
SSR? With SSR, the browser is already served with a prepared HTML page, so how
does Angular function then? We already saw that Angular apps rendered on the server
continue to work as usual on the client, but how is that achieved if Angular on the cli-
ent didn’t render the DOM items itself? Well, it turns out that before SSR, it did, again
and from scratch in the browser!

 Figure 9.4 is a diagram illustrating how SSR worked before the arrival of client-
side hydration.

Obviously, this is not a very performant operation. Essentially, we render the applica-
tion twice (and also hit the backend APIs twice!), once on the server and then on the
client. Of course, even with this more primitive approach, we get benefits like improved

Client

Angular works again, rebuilds the
application on the client side, and

replaces the original document with it.

Server returns a fully prepared HTML document.

Browser requests a Page from an SSR Angular app.

Server renders
the page fully.

Server

Client Server

T
im

e

Figure 9.4 Angular in the client with SSR before client-side hydration

232 CHAPTER 9 Modern Angular everywhere

Largest Contentful Pain and better SEO support, but the application’s own perfor-
mance in the browser is still not great. So how can we improve this?

 Enter client-side hydration. Client-side hydration is the practice of reconciling Angu-
lar and its bindings with the DOM that has been rendered on the server. Essentially,
when the server-rendered DOM arrives, Angular performs a series of clever tricks to
attach itself to the existing DOM nodes and make bindings work without destroying
and then recreating the DOM in the browser again.

 This significantly improves client-side performance, user experience, and other
metrics we discussed previously. For instance, the application will become stable sooner
and users won’t see flickering screens and too many loadings. As we already saw, this
option also allows us to limit the number of unnecessary HTTP requests to the same
endpoint: when performed on the server side, the request’s response will be cached
and then just simply reused on the client side.

 The best thing about hydration is that outside some (not even required) options
we already explored, it does not require anything from the developer—only to drop
provideClientHydration() in the application configuration. As this option is easy to
adopt and leads to better performance, it is good practice to always use it when doing
SSR; as we saw, Angular itself generated this new application with the client-side hydra-
tion enabled by default.

 While hydration itself is a very useful feature, it has some room for improvements,
one of which is the event replay feature that was added in Angular v18. In figure 9.5 we
see that there is a time gap between “the browser renders the prepared HTML” and
“Angular binds to rendered DOM nodes.” Usually, such a time is minuscule and not
noticeable for the end user. However, if the user has a relatively slow connection, they

T
im

e

Client

Angular binds to rendered
DOM nodes without

destroying them and starts
working as usual.

Server renders
the prepared HTML

Server returns a fully prepared HTML
document (possibly with HTTP transfer cache).

Browser requests a Page from an SSR Angular app.

Server renders
the page fully.

Server

Client Server

Figure 9.5 Angular in the client with client-side hydration

2339.3 Improving Angular SSR

might trigger some events on the UI (for example, click a button or input some text)
before hydration completes, and the UI actually becomes interactive. In this scenario,
these events will be lost, and the user will (and rightfully so!) think that the UI is lagging.

 However, to prevent this, a new option has been introduced called event replay.
What it does is record the events that the user triggers before the completion of client-
side hydration and, when it is done, replays them in the same order, so no user inter-
action is lost. It is very simple to set up: the only thing needed is to include it when
providing client-side hydration:

provideClientHydration(withEventReplay())

Now that we have explored HTTP transfer caching and client-side hydration to
improve client-side performance, we can move forward and next discuss an option
that, this time, improves SSR itself.

9.3.3 Prerendering

So far we have actually only created one component that the user can see: the
AppComponent (the rest were used inside it in some way), although we promised to
create two more (AboutUsComponent and SubscriptionsComponent). If we had those
components, connected to the application via defined routes, that would mean the
server would have more tasks to do. When the user enters, say, the “about-us” route, it
will have to render that component every single time. While this approach provides all
the benefits we mentioned earlier, it can be optimized even further using a technique
called prerendering.

 Prerendering is the practice of rendering (mainly static) pages from Angular
applications at build time, rather than on user’s demand. This can be achieved by set-
ting a prerender option in the angular.json file. In fact, if we revisit listing 9.3 we can
see that this option is set to true. This means that if we build our application, Angular
should look into our routing system, discover what pages exist within our application,
and prerender them into static HTML, which can be served right away.

 To check this, we would first need to have at least one route. For this purpose, let
us create two files in the src/app/components directory named about-us.compo-
nent.ts and subscriptions.component.ts and put these two components into them,
shown in the following two listings, respectively.

@Component({
 selector: 'app-about-us',
 template: `
 <div class="container">
 <div class="block">
 <p>

 HRMS is a platform that allows companies to manage their employees.

Listing 9.13 AboutUsComponent

234 CHAPTER 9 Modern Angular everywhere

 </p>
 </div>
 </div>
 `,
 standalone: true,
})
export class AboutUsComponent {}

@Component({
 selector: 'app-subscriptions',
 template: ` <div class="container">
 <div class="block">
 <p>
 Subscriptions
 </p>
 </div>
 </div>`,
 standalone: true,
})
export class SubscriptionsComponent {}

These are of course very simplistic implementations, but for this experiment, it won’t
matter anyway. Next, we need to connect them via routing, so, in the src/app/app
.routes.ts file we should put the config in the following listing.

import { Routes } from '@angular/router';
import { AboutUsComponent } from './components/about-us.component';
import { SubscriptionsComponent } from

'./components/subscriptions.component';

export const routes: Routes = [
 { path: 'about-us', component: AboutUsComponent },
 { path: 'subscriptions', component: SubscriptionsComponent },
];

Now all we need to do is run ng build and observe. Angular will build the application
and output a dist folder in the root of our application. This folder contains all the arti-
facts we need to deploy and run our application. Let’s look inside that folder. Immedi-
ately, we can see two nested folders, server and browser, with the former containing
JavaScript files necessary to run the server that will render and serve our pages and the
latter containing prerendered HTML files. Indeed, in the dist/hrms-promo/browser/
about-us folder we can find an index.html file that is actually a prerendered version of
the “About Us” page, ready to be immediately served.

 Of course, the “About Us” page is a quite simple page that just displays static con-
tent. But how about more complex cases? For instance, our routes can have path
parameters that might be dynamic. In this case, we might have a page named “Product

Listing 9.14 SubscriptionsComponent

Listing 9.15 Application routing config

2359.3 Improving Angular SSR

Details,” which is not actually a single page but rather a collection of a multitude of
pages, like “/products/1,” “/products/34,” and so on.

 In this case, by default, the prerendering won’t work for obvious reasons: Angular
cannot guess what parameters are there, and the possibilities are nearly endless. How-
ever, if we personally know all the variations of a parameter, we can help Angular dis-
cover those dynamic routes and still prerender them. For this purpose, we have to
slightly modify the prerender option in angular.json and, instead of just setting pre-
render to true, provide a configuration object with the following options:

"prerender": {
 "routesFile": "routes.txt"
},

Next we can create this routes.txt file at the root of our application and put any route
variations there:

/products/1
/products/2
/product/17

Obviously this approach can’t work if we really do have a plethora of parameters, but
it can really help when we have a predetermined set of options as a route parameter.

 As we already mentioned, the prerendering approach has all the benefits of the
usual SSR (that’s why it is enabled by default), but it also improves another key metric
that the usual SSR cannot: time-to-first-byte (TTFB). This metric shows how much
time passes since sending an HTTP request for a particular page and until the very
first byte of the response arrives. In the case of SSR, when the server receives a request
for a page, it starts rendering it before it can send the resulting document back, which
takes time, affecting the TTFB. However, with prerendering, lots of pages can be
served right away, resulting in an incredibly great TTFB.

 Now that we now know all the specifics of SSR, it is time to discuss our last
topic—actually building our application and preparing it for deployment—and see
how Angular also improved these processes in versions 16 and 17.

9.4 Building an Angular application
Unsurprisingly, this whole section is going to revolve around a single command: ng
build, the command that is used to compile our application down to such files that
can be deployed on some server or device so the end users can access and use it. Such
files are usually called build artifacts. First, let’s see what building an Angular applica-
tion means in general terms.

9.4.1 What does building an Angular application mean?

In most frameworks of the modern web, developers usually code in a setup that is quite
drastically different from what will be eventually shipped to the browser. For instance,

236 CHAPTER 9 Modern Angular everywhere

React developers create components using JSX, Angular has its own template syntax and
uses TypeScript, and other frameworks and libraries have other approaches.

 However, the browsers only understand HTML, CSS, and JavaScript. This means
that to actually run applications in the browser, we need a build process that will con-
vert our source files (TypeScript, template syntax, etc.) to HTML, JS, and CSS files. It
would also make sense to minify the JS and CSS files to make them load faster and
apply other optimizations.

 For this purpose, different frameworks use different programs, all of which are
known as bundlers: programs that produce a bundle that can be deployed somewhere
and served. While there are multiple different bundlers for the web, up until v16,
Angular has been using Webpack, a quite successful tool used by a wide community of
web developers. However, with time, even better bundlers emerged, so now Angular is
in the process of adopting new approaches for this. Let us discuss them next.

9.4.2 ESBuild and Vite

While Angular was still running on Webpack, a number of modern frameworks
adopted Vite, a new tool built around ESBuild, a super-fast web bundler. Vite provides
a superior experience and faster build time, so, starting from v16, Angular added
experimental support for it.

 The good news here is that we don’t have to do much to activate it. We can do it on
the example of the HRMS application. All we need to do is slightly change one line in
the angular.json file, so instead of the following:

 "builder": "@angular-devkit/build-angular:browser"

we have

 "builder": "@angular-devkit/build-angular:browser-esbuild",

This will make the ng serve command use the ESBuild bundler. If we go on and run
our application locally, we will see a vastly improved build and serve time.

NOTE Please keep in mind that as of v16, support for ESBuild is only experi-
mental and meant for developer preview. It will only be possible to use when
serving the application locally for development, so please refrain from using
it in any production build pipelines.

With improved build time, there is one last concern to address before deploying the
application: environments.

9.4.3 Configuring environments for Angular applications

In any real-world application, especially if it is a bit large, it is common practice to
have it deployed to multiple places for various purposes. Of course, there is the pro-
duction itself, where real-life users actually use the application. But there might be

2379.3 Improving Angular SSR

other places, like one for internal testing, one for user acceptance testing or beta test-
ing, and so on.

 These “places” are usually called environments, and the thing about them is that,
depending on the environment, an Angular application might need to behave at least
slightly differently. For example, on the developer’s computer, we would like to have
the HttpClient call the http://localhost:5000 API, while on production we want the
HTTP calls to go to https://our.application.example.com/api.

 For this very purpose, Angular has the concept of environment files. If we had
worked with older Angular versions, we might have already encountered them—say
environment.ts or environment.prod.ts and so on—as Angular used to generate those
files out of the box when we first bootstrapped an application. However, starting with
v15, default environment files have been removed, and we now have to add and con-
figure them manually.

 To do this, we need to use the Angular CLI to first generate a folder for environ-
ment files and a base environment. This can be done with a simple command. Let’s
run it on the hrms-promo application:

ng generate environments

This command will generate an environment folder in the src/app directory, with two
files inside: environment.ts and environment.development.ts. Both files contain the
same single line of code:

export const environment = {};

This object is the environment configuration. Note that we only ever import this object
from the environment.ts file, not the other ones. This works as when using a different
environment, Angular replaces the file with the contents of the other environment—
the one that we are targeting. This is achieved with angular.json, which now has a
configurations option that contains all of our environments. If we take a look at the
angular.json file in the hrms-promo application, we shall find a new configuration
named development, with the following options:

"development": {
 "optimization": false,
 "extractLicenses": false,
 "sourceMap": true,
 "fileReplacements": [
 {
 "replace": "src/environments/environment.ts",
 "with": "src/environments/environment.development.ts"
 }
]
}

The fileReplacements option will tell Angular which environment file to sweep
instead of the base one. We can easily add new environments by copy-pasting this

https://our.application.example.com/api

238 CHAPTER 9 Modern Angular everywhere

config, making necessary adjustments, and adding a new environment file with its own
configuration. Then we can run a specific environment by specifying its configura-
tion; for instance, if we have a “qa” environment, we can run the following command:

ng build --configuration qa

This will make Angular run the build process using the contents of the environment
.qa.ts file. Note that the --configuration option can also be used when just serving
the application locally (for instance, to debug problems that only happen in a certain
environment). Finally, as we have everything ready to build our app, let’s briefly dis-
cuss what we need to know before we deploy it.

9.4.4 Preparing to deploy Angular applications

While we are not going to discuss the specifics of the deployment process itself (this is
a book about Angular and not, say, Google Cloud Platform, after all), we will briefly
discuss some scenarios to be prepared for deployment on any platform or cloud pro-
vider. There are several types of deployment.

CLIENT-SIDE RENDERING

This is, of course, the most “classic” scenario. We already have an example of a CSR
Angular application (the HRMS platform), so let’s build it and see what we need to do
to deploy it:

ng build

This will generate a dist folder, so let’s explore it and pay attention to the most import-
ant details. Inside we can see an hrms folder, which contains JavaScript, HTML, and
CSS files. This means our application has been bundled and is ready to be deployed.
As this is a CSR app, what we essentially need to do is just deliver the index.html file to
the client browser, and everything will work correctly from there. So, at the end of the
day, irrelevant from the hosting service we chose, we would just need to copy this hrms
folder to a designated place from where the server can respond with these files when
users navigate to our application, and that will be it.

 One small concern relates to the way single-page applications work. They first
need to serve the index.html file and load the JavaScript, and only then can they fig-
ure out the routing and how to show a particular page. However, if the user directly
navigates to a particular route, say, /products, the server that hosts our files will itself
try to load that route and serve a (nonexistent) products.html file, resulting in a 404
error. This can be mitigated by configuring the server itself, usually done through a
configuration file at the root of our application, to make it return the index.html file
whenever a route is not found, instead of throwing a 404 error. This will make the
routing work on the client side (see figure 9.6).

 The configuration file itself will differ from server to server, so we are not going to
provide an example; however, it is mostly a simple process to add that configuration.
Next, let us discuss an even simpler scenario.

2399.3 Improving Angular SSR

PRERENDERED STATIC WEBSITE
Prerendering, which we discussed in the previous section, is also often known as static
site generation. This makes sense, as the fact that we serve already rendered pages
means we have a fully static website. We also have an example of this; as hrms-promo
does not have dynamic routes and is mostly just text and images with prerendering
configured, it can be considered a static website. We already mentioned that it gener-
ates a browser folder when we run ng build. If we look inside that folder, we will find
something that is quite similar to the previous CSR example, except it will be more
HTML files and less JavaScript. Again, this is all we need to deploy it the same way we
did in the CSR scenario. One thing we need to note is that the “404 error” scenario
also applies here and can be addressed in the same way. This leaves us with the final,
most complex scenario.

SSR
With SSR, we indicate that our application is going to be (at least partially) dynami-
cally rendered before being served. Of course, with prerendering enabled, some of
the pages will be served immediately from the browser folder as mentioned earlier,
and some routes (say, routes with dynamic parameters) will need to be rendered on
the server on a per-request basis. This means we will need a hosting or cloud provider
that will be able to run Node.js. There are, again, a multitude of possibilities here that
prevent us from really discussing the deployment process itself; however, it is worth
keeping in mind that most often it will boil down to making the server run the generated

Client

Angular works on the client side and
finds the correct component to render

or handles the missing path itself.

Server returns the index.html le.fi

User navigates to "/products".

Server tries to ndfi
"products.html" and fails.

Server is con gured tofi
return "index.html" itself.

Server

Client Server

T
im

e

Figure 9.6 Server + Angular handling a direct request to a particular route

240 CHAPTER 9 Modern Angular everywhere

server.js file in the server folder and also configuring a port for the application to lis-
ten on. In the server.ts file we saw the following code:

const port = process.env['PORT'] || 4000;

 const server = app();
 server.listen(port, () => {
 console.log(`Node Express server listening on http://localhost:${port}`);
 });

Here the application will listen to requests on a port that it chooses based on an envi-
ronment variable. A cloud provider will usually provide some ports that we can set as
environment variables for this file to read and use.

 Congratulations again! We are now reasonably prepared to create, configure, opti-
mize, build, and finally deploy a modern Angular application from scratch. Next, we
are going to discuss the future of Angular: the direction the framework is taking, very
experimental features that already exist in developer previews, emerging approaches,
and some mild speculations.

9.5 Exercises for the reader
 Run the ng add @angular/ssr command on the HRMS app itself to add SSR on

it and fix any emerging problems.
 Configure environments for the HRMS application.

Summary
 SSR can provide better performance and SEO for Angular applications than

classic client-side rendering.
 SSR by default runs on a Node.js server.
 Applications can now be built with SSR from scratch.
 Client-side hydration can improve the reconciliation of client-side Angular with

the DOM rendered on the server.
 HTTP transfer cache can prevent making the same HTTP call twice.
 Prerendering can be used to serve HTML documents generated at build time

to improve TTFB.
 Angular apps can now be built faster with ESBuild + Vite.
 Environments can be configured manually to support different needs like test-

ing, debugging, beta testing, and production.
 Build artifacts can be deployed in different ways depending on the scenario we

choose (CSR, static-site generation, SSR).

241

What’s next in
modern Angular?

So far, almost everything we have discussed has involved stable, ready-to-use mod-
ern tools provided by the Angular team for cutting-edge solutions. Now, in this last
chapter, it is time to enter the experimental realm and discuss the direction that
the Angular framework will be taking in the near future and the features that are
currently available for us in the “developer preview” status. Let’s begin!

10.1 New template syntax
We have already built and deployed not one but two modern Angular applications, and
now we are in the sweet period of maintaining that application. Of course, maintaining
it means following the new releases of all dependencies (framework, libraries, build
tools, and so on) and trying our best to keep our application as up-to-date as possible.

This chapter covers
 New template syntax

 Built-in conditional expressions in templates

 Deferred views and advanced lazy loading of
components

 Change detection in depth

 Building zoneless applications

242 CHAPTER 10 What’s next in modern Angular?

 If we had started the HRMS application when Angular v16 was the latest version,
then by the time of this book’s release it would have already had two newer versions:
v17 and v18, which brought with them some powerful new features. In fact, we have
already discussed things from v17 in previous chapters [mainly things in relation to
server-side rendering (SSR)], but there is more to explore.

NOTE If you are using Angular v16 or lower, you can use the official Angular
update guide (https://update.angular.io/?v=16.0-17.0) to upgrade to v17 or
v18; otherwise, feel free to continue with this chapter.

As of v17, Angular introduced massive additions to the existing template syntax in an
effort to make it both easier to read and learn and more performant. These changes
are experimental for now; however, the changes will definitely become stable and the
go-to solutions to the problems they are addressing. All the changes are related to
conditional statements (ifs, for loops, and so on) in the template; that’s why it is also
referred to as the new control flow syntax. So let us explore these new control flow
statements and see how they transform our templates.

WARNING All features and approaches relevant to the template syntax
described in this chapter are experimental in v17 and are marked for developer
preview by the Angular team. In Angular v18 they are marked as stable. If
using Angular v17, we discourage using these features in production-ready
applications and encourage using them in testing or experimental applica-
tions. For versions higher than 17, please refer to the latest Angular docu-
mentation to get information on how to upgrade to those versions to be able
to use those features in production applications.

10.1.1 Goodbye ngIf!

When learning Angular, we quickly encounter the concept of structural directives—
directives that not just alter the behavior of their host elements but manipulate
entire DOM structures. Immediately we are introduced to directives like *ngFor and
*ngSwitch, but of course, the first one we usually encounter is *ngIf—the all-too-
familiar directive that empowers us to add or remove DOM elements (part of UI)
depending on some conditions.

 In chapter 2 we learned that NgIf is a standalone directive now, so all we need to
do is import it into our component directly and use it. So far so good; however, this
still brings some disadvantages:

 The directive still needs to be imported.
 The directive itself has some code that will be added to our final application

bundle.
 Implementing if-else-if-else blocks can quickly become very messy.

The last point is especially painful, as it requires using ng-templates that increase the
level of nesting in our templates, are not very readable, and are not required to be

https://update.angular.io/?v=16.0-17.0

24310.1 New template syntax

placed after each other in the actual template. The following is a hypothetical exam-
ple of implementing such a block:

<div *ngIf="condition1; else template2">Content 1</div>
<ng-template #template2>
 <div *ngIf="condition2 else template3">Content 2</div>
 <ng-template #template3>Content 3</div>
</ng-template>

As we can see, simply expressing “if condition 1, show Content 1, else if condition 2 show
content 2, else show Content 3” quickly devolved into having two ng-templates and lots of
custom expressions. Of course, in the case of real-life examples, such code will become
even messier, as it will involve way more content and possibly even more conditions. Such
code is not very readable and can potentially be hard to debug and maintain.

 One natural question we might have here is: what if we could just use JavaScript if-
else statements in the template? Of course, this is a perfectly valid question; after all,
an Angular template is a syntax invented by the Angular team, and it already has cus-
tom features like bindings, interpolation, and template variables, so why not just have
the capability to also directly use conditional statements?

 It turns out the Angular team was thinking the same thing, and starting from v17,
we have access to a special form of template syntax that allows for built-in conditional
statements. To be able to preview this feature, we need to move our HRMS application
to v17. To do this, run the following command at the root of the project (skip this step
if you already use Angular v17 or higher in the HRMS project):

ng update @angular/core@17 @angular/cli@17

TIP If you are using the Angular Language Service extension with VSCode,
make sure to upgrade it to the latest version to enjoy syntax highlighting with
the new control flow statements. In addition to this, if you wish to work
directly with Angular v18, after running this command, rerun it with the num-
ber “17” changed to “18.” This is not necessary to continue reading this chap-
ter and running the example project.

Now we have the 17th version of Angular installed, with all the new things coming
along. To preview the new syntax, let us choose an existing component that shows
parts of its UI conditionally and switch its template to the new approach. For
instance, in chapter 7 we added some functionality to the HeaderComponent (located
at src/app/shared/components/header.component.ts) so that it displays notifica-
tions, and when a notification is unread, we show a button that allows the user to mark
it as read. Let’s change that logic to use the built-in control flow syntax.

@Component({
 selector: 'app-header',
 template: `

Listing 10.1 @if control flow statement example

244 CHAPTER 10 What’s next in modern Angular?

 <header>
 <h2>HRMS</h2>
 <button (click)="notificationsOpen.set(true)" title="View

Notifications">
 You have {{ unreadNotifications.length }} unread notifications
 </button>
 </header>
 <dialog [open]="notificationsOpen()">
 <h3>Notifications</h3>

 <li *ngFor="let notification of notifications()">
 <h4>{{ notification.title }}</h4>
 {{ notification.message }}
 @if (!notification.read) {
 <button (click)="markNotificationAsRead(notification)">
 Mark as Read
 </button>
 }

 <button (click)="notificationsOpen.set(false)">Close</button>
 </dialog>
 `,
 standalone: true,
 imports: [NgFor],
})
export class HeaderComponent {

}

This new syntax works the same way as NgIf and will dynamically add or remove the
elements inside of the curly braces when the condition changes. However, it has a
number of benefits:

 There are no imports, as we have seen.
 We can place multiple unrelated DOM elements inside the curly braces, while

NgIf only worked on a single element.
 It is more readable.
 There is no confusion as to where an if statement starts and ends.

Now let’s see some even more powerful benefits. Let’s suppose we have a new task at
hand: when the notification is read, instead of showing nothing, we show a small “tick”
icon to let the user know they have already covered that task; with the new syntax, it is
going to be as easy as an if-else statement in conventional JavaScript.

<header>
 <h2>HRMS</h2>
 <button (click)="notificationsOpen.set(true)" title="View

Notifications">
 You have {{ unreadNotifications.length }} unread notifications

Listing 10.2 @else control flow statement example

We now use a new
built-in syntax @if and
curly braces to show or
hide a block of UI.

No more *ngIf on
the button itself.

No import for NgIf either;
the new statements are
built-in.

The rest of the
component code is
omitted for brevity.

24510.1 New template syntax

 </button>
 </header>
 <dialog [open]="notificationsOpen()">
 <h3>Notifications</h3>

 <li *ngFor="let notification of notifications()">
 <h4>{{ notification.title }}</h4>
 {{ notification.message }}
 @if (!notification.read) {
 <button (click)="markNotificationAsRead(notification)">
 Mark as Read
 </button>
 } @else {
 ?
 }

 <button (click)="notificationsOpen.set(false)">Close</button>
 </dialog>

With this approach, we now have a template that is more readable and easier to digest.
Also, in fact, this syntax also supports @else if statements, just like regular condi-
tional statements in JavaScript, so we can create multiple interdependent conditions.
We can also easily nest more conditional statements inside, making for high-level code
structure in the templates.

 On top of this, we are still able to use the as syntax, which is handy when using the
async pipe. We use this approach with NgIf in the ProjectCardComponent we built in
chapter 4 (you can find it in src/app/shared/components/project-card.component.ts),
so let us refactor it with the new syntax and use the as modifier.

@Component({
 selector: 'app-project-card',
 template: `
 @if (project$ | async; as project) {
 <div class="card">
 <img
 [ngSrc]="project.image"
 width="100"
 height="100"
 loading="eager"
 sizes="100vw, 50vw"
 />
 <div class="card-body">
 <a [routerLink]="['/work/projects', project.id]">{{

project.name }}
 </div>
 </div>
 }
 `,

Listing 10.3 @if with the as keyword

@else block is used to display content in
case a condition for @if is not satisfied.

Displays a “tick”
symbol if the
notification is read

We can extract the value from
an observable via the async
pipe with an @if statement.
Note the semicolon!

246 CHAPTER 10 What’s next in modern Angular?

 imports: [AsyncPipe, RouterLink, NgOptimizedImage],
 standalone: true,
})
export class ProjectCardComponent implements OnChanges {
 private readonly projectService = inject(ProjectService);

 @Input({ required: true }) projectId!: number;
 project$: Observable<Project> | null = null;

 ngOnChanges(changes: SimpleChanges): void {
 if (changes['projectId']) {
 this.project$ = this.projectService.getProject(this.projectId);
 }
 }
}

As we can see, the new syntax has the same benefits as NgIf used to have but solves
essentially all the problems the former approach had. Next, let us learn about the new
syntax for creating loops in templates and improve this component’s code even further.

10.1.2 Hello @for!

When displaying lists of data, our go-to tool for almost a decade has been the NgFor
directive. Of course, it did its job reasonably well, but it suffered from the same prob-
lems as those we discussed with NgIf in the previous section. In addition, it had the
trackBy problem, wherein, for optimization reasons, we had to provide a callback
function that allowed the directive to differentiate between DOM elements rendered
in a loop to update the UI faster. However, many Angular developers just skipped the
trackBy function, and providing it was a bit cumbersome when we had to declare a
simplistic method that essentially just returned a property of the object we were ren-
dering in a loop.

 Now there is a new syntax available for rendering DOM elements in a loop, and it
not only solves the trackBy problem but also adds some new benefits. Let us refactor
the HeaderComponent even further to see the new approach.

@Component({
 selector: 'app-header',
 template: `
 <header>
 <h2>HRMS</h2>
 <button (click)="notificationsOpen.set(true)" title="View Notifications">
 You have {{ unreadNotifications.length }} unread notifications
 </button>
 </header>
 <dialog [open]="notificationsOpen()">
 <h3>Notifications</h3>

 @for (

Listing 10.4 @for loops in Angular templates

24710.1 New template syntax

 notification of notifications();
 track notification.id
) {

 <h4>{{ notification.title }}</h4>
 {{ notification.message }}
 @if (!notification.read) {
 <button (click)="markNotificationAsRead(notification)">
 Mark as Read
 </button>
 } @else {
 ?
 }

 }

 <button (click)="notificationsOpen.set(false)">Close</button>
 </dialog>
 `,
 standalone: true,

})
export class HeaderComponent {

}

As we can see, providing the property by which we can track the objects rendered is
even simpler now thanks to the special syntax: we can directly point to the very prop-
erty, as we have done here by telling Angular to use the id of a notification to differen-
tiate between two notifications.

 In addition, we can now choose to show some UI if the list we try to render is
empty. In this case, if the user has no notifications, it makes more sense to display
some text about that fact rather than just an empty dialog. The following listing shows
how we can accomplish this.

<header>
 <h2>HRMS</h2>
 <button (click)="notificationsOpen.set(true)" title="View Notifications">
 You have {{ unreadNotifications.length }} unread notifications
 </button>
 </header>
 <dialog [open]="notificationsOpen()">
 <h3>Notifications</h3>

 @for (notification of notifications(); track notification.id) {

 <h4>{{ notification.title }}</h4>
 {{ notification.message }}
 @if (!notification.read) {
 <button (click)="markNotificationAsRead(notification)">

Listing 10.5 Showing default UI when the list is empty

@for syntax now requires
a “track” property.

No more imports, as the entire
control flow is built-in now.

The rest of the component’s
code is omitted for brevity.

248 CHAPTER 10 What’s next in modern Angular?

 Mark as Read
 </button>
 } @else {
 ?
 }

 } @empty {
 No notifications to display
 }

 <button (click)="notificationsOpen.set(false)">Close</button>
 </dialog>

Now this is already a serious upgrade over NgFor; furthermore, we can even use con-
textual variables to determine the current index of an iteration, whether it is the first
or last element, or more. Let’s use this knowledge to provide more context to the user
and display a counter next to each notification that will display the index of the cur-
rent notification as opposed to all notifications left (like “2/17”).

 @for (notification of notifications(); track notification.id) {

 <h4>
 {{ notification.title }}
 {{$index + 1}}/{{$count}}
 </h4>
 {{ notification.message }}
 @if (!notification.read) {
 <button (click)="markNotificationAsRead(notification)">
 Mark as Read
 </button>
 } @else {
 ?
 }

 } @empty {
 No notifications to display
 }

While these variables prefixed with $ are available everywhere inside a @for loop, we
can also choose to extract them into a local variable:

@for(item of items; let i = $index, count = $count)

This can be useful if we have nested @for loops so we do not confuse the variables of
one loop with ones from another. Table 10.1 shows a full list of all the contextual vari-
ables available within @for loops.

Listing 10.6 Using @for block contextual variables

@empty contains the UI that will be
displayed if there are no notifications.

The message to
show when empty

$count represents the total
number of items in the array, and
$index represents the number of
the current iteration (starts at 0).

24910.1 New template syntax

With this knowledge, we can now address the final control flow improvement that
allows us to choose between multiple UI blocks.

10.1.3 @switch

To dynamically choose between multiple UI items, the NgSwitch directive has been
the go-to tool for Angular developers. Yet again, it has the same problems as NgIf, and
with the new syntax, we can now ditch the directive and use a built-in approach.

 In chapter 4, we worked on the CandidateDetailsComponent and had a case of
complex logic to select which child component to show in the UI. To avoid clutter in
the template, we used a method on the component itself to retrieve the reference to
the correct component and then render it dynamically in the template. However, with
the new syntax, we can refactor our component, simplify the TypeScript code, and put
the switch statement directly in the template. Let’s open the component’s file located
at src/app/pages/recruitment/candidate-details.component.ts and change it as shown
in the following listing.

@Component({
 selector: 'app-candidate-details',
 template: `
 <div class="candidate-details">
 <div>
 <h2>{{ candidate.firstName }} {{ candidate.lastName }}</h2>

Table 10.1 Contextual variables in @for loops

Variable Name Description Potential use cases

$count Number of items in the array Can be used if we do not want to reference
“array.length” inside

$index Index of the current iteration (starts
at 0)

Can be used to pass it to component meth-
ods that need to know which item they are
working with

$first Boolean that indicates if the current
item is the first one in the array

Can be used to display a title before the first
iteration or apply specific styles to only the
first item

$last Boolean that indicates if the current
item is the last one in the array

Essentially the same use cases can apply as
with $first

$even Boolean indicating if the current itera-
tion $index is an even number

Can be used to dynamically apply styling to
differentiate between rows in a table, for
instance, showing some lines as they are,
and some lines as grayed out

$odd Boolean indicating if the current itera-
tion $index is an odd number

The same use cases apply as with $even

Listing 10.7 Using @switch for complex template logic

250 CHAPTER 10 What’s next in modern Angular?

 <p>Email: {{ candidate.email }}</p>
 <p>{{ candidate.position }}</p>
 </div>
 @switch (candidate.status) {
 @case ('CV evaluation') {
 <app-cv-evaluation [candidateId]="candidate.id" />
 }
 @case ('Interview preparation') {
 <app-interview-preparation [candidateId]="candidate.id" />
 }
 @case ('Interview Feedback') {
 <app-interview-feedback [candidateId]="candidate.id" />
 }
 @case ('Rejected') {
 <app-rejection-letter [candidateId]="candidate.id" />
 }
 @case ('Approved') {
 @if (candidate.offerAccepted) {
 <app-onboarding-preparation [candidateId]="candidate.id" />
 } @else {
 <app-candidate-finalization [candidateId]="candidate.id" />
 }
 }
 @default {
 Unknown candidate status
 }
 }
 </div>
 `,
 standalone: true,
 imports: [
 CvEvaluationComponent,
 InterviewPreparationComponent,
 InterviewFeedbackComponent,
 RejectionLetterComponent,
 OnboardingPreparationComponent,
 CandidateFinalizationComponent,
],
})
export class CandidateDetailsComponent {
 @Input() candidate!: Candidate;
}

As we can see, this approach greatly simplified the component, which is now just
reduced to getting a candidate object and rendering the UI, and the complex logic is
eloquently described in the template itself. And, of course, we do not need to import
NgSwitch anymore to enjoy this functionality!

WARNING @switch, despite looking a lot like the native switch-case block of
JavasScript, does not support fall-through and has no break statement. In cases
where this might be preferable, opt in for the usage of @if-@else if-@else
constructs instead.

@switch works just like JavaScript switch-
case construct but in an Angular template.

Cases can be
matched with the
@case keyword.

We can easily nest blocks with
the new template syntax.

@default can optionally be used
to show a block of UI when no
condition has been matched.

25110.1 New template syntax

One other benefit of this new template syntax is the performance improvement.
Rather than directly performing the operations at runtime via the structural direc-
tives, Angular is now capable of generating template code ahead of time in such a way
that it already incorporates these statements as native JavaScript into the application’s
flow itself.

 Now that we have covered all the new template syntax options, let us discuss
migrating existing codebases to using this new approach.

10.1.4 Migrating to the new template syntax

As with other migration guides in this book, it is always possible to migrate codebases
manually, in an incremental fashion (do one migration at a time, test, deploy, repeat).
However, in this case, we also get an Angular schematic that allows us to easily migrate
(while being a bit cautious about it).

 To automatically change our codebase from structural directives to the new syntax,
all we need is to ensure that our project runs Angular v17 or higher and then run the
following command:

ng generate @angular/core:control-flow

This is a specific command that will modify our templates to fully use the new syntax.
The command will prompt us to choose a directory that is to be changed (by default it
will begin from the very root of the project so conversion will affect all HTML files and
inline templates). This allows us to adopt an incremental strategy when instead of con-
verting the entire project and dealing with a big mess, we can convert only some sub-
directories, see how it goes, fix problems, maybe even deploy, and then address
another subdirectory, and so on until the entire project is converted.

WARNING The schematic will only affect HTML files and inline templates.
We will still need to manually remove imports for NgFor, NgIf, and NgSwitch
directives.

While the semantic works impressively well, on larger projects we still need to verify that
the correct fixes have been applied. One easy tip for this can be to initially search for ref-
erences to *ngIf in the codebase, remember the count, and then, after the schematic
runs, search for references of the @if keyword to verify those counts are the same.

TIP As the @for syntax requires a track modifier, if a trackBy function was
not provided for an NgFor directive, the schematic will automatically put the
reference to the object itself as a tracking item. This is not very useful, so a
good practice would be to run through @for instances and provide more
meaningful properties for tracking, for instance “item.id.”

Because the process is automatic, it is also important to perform some regression test-
ing to figure out if new bugs have not emerged. If the project has unit tests, it is very
important to run them first to try to catch new bugs. It is worth noting that if the tests

252 CHAPTER 10 What’s next in modern Angular?

use references to NgIf or other structural directives in component tests (not a good
practice anyway), we will also need to manually modify those tests, so running tests is
even more important than just “finding bugs” in this case.

WARNING The @switch syntax is using strict equality checks (===) for match-
ing cases, while NgSwitch has been using loose equality checks (==). This
might cause problems if our NgSwitch clauses have been relying on loose
checking prior to migration, so it is worth checking and testing the switch
cases to ensure their correct operation

Regardless of the problems that might arise, this migration schematic is a powerful
tool that will help us to easily convert our projects to conform to the best standards
and improve performance, so I strongly recommend using it.

 Now with the knowledge about this new template syntax, we are ready to learn about
a template keyword that offers completely new functionality: deferring UI loading.

10.2 Deferrable views
In chapter 2, we discussed some techniques to improve the bundle size and loading
times of our application related to the concept of lazy loading of components, when
we load some components either when the user navigates to a certain route or in a
customized fashion directly in the template. Recall that it involved some boilerplate
code and wasn’t very flexible in general.

 However, with the new template syntax, the Angular template introduced a special
new keyword, “defer,” which will help us to lazily load components directly in the tem-
plate and provide amazing flexibility as to how, when, and in what fashion the lazy
loading should be performed. Let us spend this section discussing this new keyword.

10.2.1 Deferring a simple component

In chapter 2 we created a reusable component named ConfirmationDialogComponent
(located at src/app/shared/components/confirmation-dialog.component.ts) and used
it in the EmployeeListComponent (src/app/pages/employees/employee-list.component
.ts) while also loading it lazily, only when the user clicked a button to delete an employee
record. Let us introduce this new keyword and make the confirmation dialog lazy-
loaded using defer.

@Component({
 selector: 'app-employee-list',
 template: `
 <h2>Employee List</h2>
 <table>
 <thead>
 <tr>
 <th>Full Name</th>
 <th>Position</th>
 <th>Actions</th>

Listing 10.8 Simply deferring the loading of a component

25310.2 Deferrable views

 </tr>
 </thead>
 <tbody>
 <tr *ngFor="let employee of employees$ | async">
 <td>

 <a [routerLink]="['/employees/details', employee.id]">
 {{ employee.firstName }} {{ employee.lastName }}

 </td>
 <td appTruncate [limit]="10">{{ employee.position }}</td>
 <td>
 <button (click)="isConfirmationOpen = true">Delete</button>
 </td>
 </tr>
 </tbody>
 </table>
 @defer {
 <app-confirmation-dialog
 [isConfirmationOpen]="isConfirmationOpen"/>
 }
 `,
 standalone: true,
 imports: [
 AsyncPipe,
 NgFor,
 NgIf,
 NgComponentOutlet,
 RouterLink,
 TruncateDirective,
 EmployeeNotAvailableDirective,
 NgOptimizedImage,
 ConfirmationDialogComponent,
],
})
export class EmployeeListComponent {
 employeeService = inject(EmployeeService);
 employees$ = this.employeeService.getEmployees();
 isConfirmationOpen = false;
}

Now if we open the browser’s console and go to the Network tab, among the usual
JavaScript files like main.js of polyfills.js we will also see a confirmation-dialog.compo-
nent.js, meaning Angular bundled this component separately and only served it when
the user navigated to this page.

WARNING Only standalone components can be deferred, as the non-stand-
alone components will be loaded with their respective NgModules. We can still
put non-standalone components inside @defer blocks; however, this will not
change the manner in which they are loaded.

Because we did not specify any specific clause, Angular deferred the loading of this
component in the simplest possible way: it started loading it as soon as we visited

Converts a Boolean to
open the dialog

Using the
@defer block

We use the
component here as if
it is already loaded

Notice we still import the component in the
component’s metadata; Angular will then
use the @defer keyword to determine in
what bundle to include and load a
particular component.

254 CHAPTER 10 What’s next in modern Angular?

this page. But previously, this component used to be loaded dynamically, when the
user clicked on the Delete button. Now let us see how we can achieve this with the
new keyword.

10.2.2 Deferring depending on a condition or trigger

There are actually two ways of achieving this in our case. Let’s first see how we can do
it with a Boolean.

<h2>Employee List</h2>
 <table>
 <thead>
 <tr>
 <th>Full Name</th>
 <th>Position</th>
 <th>Actions</th>
 </tr>
 </thead>
 <tbody>
 <tr *ngFor="let employee of employees$ | async">
 <td>

 <a [routerLink]="['/employees/details', employee.id]">
 {{ employee.firstName }} {{ employee.lastName }}

 </td>
 <td appTruncate [limit]="10">{{ employee.position }}</td>
 <td>
 <button (click)="isConfirmationOpen = true">
 Delete
 </button>
 </td>
 </tr>
 </tbody>
 </table>
 @defer (when isConfirmationOpen) {
 <app-confirmation-dialog [isConfirmationOpen]="isConfirmationOpen" />
 }

WARNING Defer-loading conditionally with a Boolean only works one time,
and if the Boolean becomes false again in the future, the component will not
disappear; if we want it to be removed in that case, we will need to use a com-
bination of @defer and @if.

This solves our problem, but here we have to rely on a Boolean, meaning, in this case,
some other functionality has to change it, making the connection somewhat indirect.
Thankfully, Angular provides a way of achieving this directly.

Listing 10.9 Deferring a component until a condition is satisfied

The when keyword
is used to indicate
that the block
needs to be loaded
when the condition
becomes true.

25510.2 Deferrable views

<h2>Employee List</h2>
 <table>
 <thead>
 <tr>
 <th>Full Name</th>
 <th>Position</th>
 <th>Actions</th>
 </tr>
 </thead>
 <tbody>
 <tr *ngFor="let employee of employees$ | async">
 <td>

 <a [routerLink]="['/employees/details', employee.id]">
 {{ employee.firstName }} {{ employee.lastName }}

 </td>
 <td appTruncate [limit]="10">{{ employee.position }}</td>
 <td>
 <button (click)="isConfirmationOpen = true" #deleteButton>
 Delete
 </button>
 @defer (on interaction(deleteButton)) {
 <app-confirmation-dialog
 [isConfirmationOpen]="isConfirmationOpen"
 />
 }
 </td>
 </tr>
 </tbody>
 </table>

The interaction option here helps define an event, which will trigger Angular to
load the deferred component. Interaction in this context for Angular means either a
click event or a keydown event. A hover event can also be specified instead to load the
component when the Delete button is hovered.

 Another popular scenario could be loading a component when the page is scrolled
so far that it should become visible, a scenario that is usually referred to as “entering
the viewport.” Angular now provides a way of doing this directly with the defer block.
To see this, let’s entertain the following scenario: in chapter 4, we built a Footer-
Component (you can find it at src/app/shared/components/footer.component.ts),
which displays some information about the HRMS application. If we want to super-
charge our application’s performance, we might consider deferring its loading up
until the point when the user actually scrolls down to see the footer. The following list-
ing shows how we can accomplish it in the AppComponent.

Listing 10.10 Deferring a component until a UI interaction

We put a
template variable

on the delete
button so we can
reference it later

to load the
component when

it is clicked.

The on keyword allows specifying
events for when to start the deferred
loading; in this case, we specify that

it should load when the delete
button is interacted with.

256 CHAPTER 10 What’s next in modern Angular?

<app-header/>
<router-outlet></router-outlet>
@defer (on viewport) {
 <app-footer/>
}

However, if we do it just like this, we will get the following error:

"viewport" trigger with no parameters can only be placed on an @defer that
has a @placeholder block

If we think about this error, it makes perfect sense: we mention the component com-
ing into the viewport, but the component is not even loaded: it obviously is not in the
viewport! So how can Angular know the user scrolled this far and it is time to load the
component? We have two options: either we provide an argument to the viewport trig-
ger as we did with the interaction trigger, or we provide a special @placeholder block,
which will be displayed before the deferred component loads and replaces it. Now
when this placeholder block comes into the viewport, it will trigger the loading of the
component.

<app-header/>
<router-outlet></router-outlet>
@defer (on viewport) {
 <app-footer/>
} @placeholder {
 <div>Footer</div>
}

This provides us with a high level of flexibility in choosing our scenarios for deferred
loading. We will talk more about other defer blocks (there are more than just @place-
holder) in the next section when we explore very custom scenarios. For now, let’s
finalize our knowledge of deferred loading triggers with table 10.2, which illustrates
all the possible triggers.

Listing 10.11 Deferring a component until it is in the viewport

Listing 10.12 Deferring a component with a placeholder

Table 10.2 Triggers for deferred loading

Trigger Name Description Potential use cases

on idle Will trigger loading when the application
becomes idle (no animations, painting,
and current HTTP requests). Uses the
requestIdleCallback API (https://
mng.bz/q0KN) under the hood. This is
the default behavior.

Can be used to simply defer the loading of
some components to reduce the final bun-
dle. For example, we can defer large but
not very important components near the
application root so that they load when
possible but do not block the main func-
tionality of the application.

The viewport trigger will
activate as soon as the
component enters the view.

The placeholder content to
show before the deferred
component is loaded

We display the “Footer” text, which will
be then replaced by the actual footer.

https://mng.bz/q0KN
https://mng.bz/q0KN

25710.2 Deferrable views

Now that we have explored all the possible triggers and conditions for deferred load-
ing, we can dive even deeper and make the best possible user experience for people
using the application.

10.2.3 Customizing deferred loading

There are several ways of improving the UX when using deferred loading, which
means covering two important scenarios: handling different loading scenarios and
prefetching. Let us explore both.

LOADING AND ERROR STATES

We already explored the @placeholder block, which allowed us to display some con-
tent before it is replaced with the actual deferred component. We can, however, add
further blocks to display some UI when the loading is in process and also display some
fallback content when the deferred loading has failed (for instance, the user got dis-
connected from the internet while loading). This can be achieved with two blocks
with pretty telling names.

<app-header/>
<router-outlet></router-outlet>

on viewport Loads when the placeholder content
enters the browser’s viewport. Can also be
used with another element provided via an
argument. Uses the Intersection-
Observer API (https://mng.bz/75oV)
under the hood.

Can be used to load components far from
the top of the pages dynamically, as we
did with the FooterComponent.

on interaction Loads when the placeholder content is
interacted with (click, keydown). Can also
be used with another element provided via
an argument.

Can be used to load a component on the
user’s demand, as we did with
ConfirmationDialogComponent.

on hover Loads when the placeholder content is
hovered. Can also be used with another
element provided via an argument.

The same scenarios apply as with
on interaction.

on immediate Loads when the parent component fin-
ishes rendering.

Can be used to simply reduce the bundle
size for some heavy components that are
needed anyway.

on timer Loads when the indicated timespan has
elapsed. Accepts time in milliseconds or
seconds [on timer (500 ms) or on
timer (2 s)].

Can be used to apply time-related logic to
deferred loading; for instance, we can
choose to wait a while before loading a
component that is in the viewport but
does not depend on an external trigger
and is not too important to load right away.

Listing 10.13 Deferring a component with error/loading

Table 10.2 Triggers for deferred loading (continued)

Trigger Name Description Potential use cases

https://mng.bz/75oV

258 CHAPTER 10 What’s next in modern Angular?

@defer (on viewport) {
 <app-footer/>
} @placeholder {
 <div>Footer</div>
} @loading {
 <div>Loading...</div>
} @error {
 <div>An error occurred when trying to display the application's

footer</div>
}

Now, having provided the users with detailed messages about the loading of the com-
ponents, let us try to customize the loading process itself.

PREFETCHING

To understand this concept better, let’s again explore the FooterComponent’s loading.
At this point, we have deferred its loading to the moment when the user scrolls down
to the placeholder; however, this might not be the best strategy in terms of UX. This
means the user will always have to see the placeholder first (especially on a slow con-
nection), and if this component is something that we always want present (we have no
other conditions for its loading), then it might make sense to defer its loading but
start the loading anyway under the hood after some time.

 This strategy is known as prefetching, and the @defer block also provides instru-
ments to add it to our deferred loading flow. For instance, we can signify that we want to
load the component either when the placeholder enters the viewport or after a given
amount of time regardless of user interactions. This means that the component will be
defer-loaded, but if the user scrolls to the footer later, they will see the component itself
already and not the placeholder. This can be achieved by one simple modifier.

<app-header/>
<router-outlet></router-outlet>
@defer (on viewport; prefetch on timer(2s)) {
 <app-footer/>
} @placeholder {
 <div>Footer</div>
} @loading {
 <div>Loading...</div>
} @error {
 <div>An error occurred when trying to display the application's

footer</div>
}

Now with a single, simple command we added prefetching and maximized our UX
improvements; let us also note that everything we did in this section we did in the tem-
plate, without any code added to the component’s code itself. Such is the power of the
@defer block.

Listing 10.14 Prefetching of a component with timer

This content will be
displayed while loading.

This content will be displayed
if the loading fails.

Prefetch trigger added
to the defer clause

25910.3 Zoneless Angular applications

TIP We can use both on and when clauses with prefetch and apply any of the
triggers listed in table 10.2

As we close in on our learning journey of the latest features already available (at least
for developer preview), it is now time to venture into the unexplored territory of mas-
sive performance optimizations that are planned to arrive in Angular that may finally
make us able to ditch Zone.js. So next let us consider what Zone.js is, why we want to
get rid of it, and what Angular might look like without it.

10.3 Zoneless Angular applications
One of the most important Angular-related concepts that we have touched on very little
so far is change detection. We have referenced it once or twice (mainly in chapters related
to signals), but in general, for an Angular developer who has not dived too deep under
its hood, change detection is a mysterious engine that makes Angular’s magic work. So,
in this section, let’s explore what change detection is, how it works, how it is intercon-
nected with Zone.js, and how we (and the Angular team!) want to improve it.

10.3.1 How change detection works in Angular

First and foremost, let us begin with the very concept itself to understand what it
means and why we need it. Let’s begin by examining (or maybe re-examining) how
frontend applications work so that we can figure out where the change detection
comes in the grand scheme of things.

WHAT IS CHANGE DETECTION?
In chapter 5, we presented a simple diagram that explained the relation between the
three core components of any frontend application (figure 5.1): the application state,
events, and the UI itself. Next we explained that the state is used to render the UI, UI
can send events, and event handlers can modify the state to rerender the UI again,
and so on. We did this in the context of RxJS + Angular; however, we did not focus too
much attention on the fact that this process works the same way even without RxJS.
Consider the following code:

@Component({
 selector: 'app-some-component',
 template: `
 <p>{{name}}</p>
 <button (click)="name = 'Alex'">Change name</button>
 `,
 standalone: true,
})
export class SomeComponent {
 name = 'John';
}

Of course, we don’t have to have years of experience to understand that an Angular
component like this one will first display the name “John” and then, when the button

260 CHAPTER 10 What’s next in modern Angular?

is clicked, display the name “Alex”. But we didn’t use any reactivity like RxJS or signals,
so how does Angular know that the name property has changed and the UI needs to
be updated?

 Here is where change detection comes in. When the state is updated, Angular
checks the bindings that we have in a given component and applies changes to the UI.
In the previous example, we have binding in the template {{name}}, which Angular
will check, see that the name has changed, and apply the new name. Figure 10.1 is a
revised version of figure 5.1.

Change detection in this loop is what actually propagates the changes to the UI,
resulting in something new that the user will see on their screen. So now we under-
stand that after the state changes, Angular will perform template binding checks and
render a new UI if necessary. But one question remains unanswered: how does Angu-
lar know that the state has changed at all?

WHY DO WE NEED ZONE.JS?
In a classic, “vanilla” if you will, JavaScript application, there is no concept of change
detection; all we can do is render some UI and manually listen to events. This means
we will need to react to some asynchronous events to rerender the UI—for example,
“the user clicked this button, let’s now render a popup that will appear in the middle
of the page.” Of course, in Angular, we do not do this directly but change some state
to update the UI using the logic declared in a template. Actually, if we think about it,
it is easy to see that this always happens without change detection, and Angular’s
change detection just allows us to skip the middle step (manually updating the DOM).

 The Angular team thought that, after initially rendering the application’s UI, the
only way it might ever change is as a result of some asynchronous operation (browser
event, promise resolved, timeouts, or intervals). So why not listen to those events, see
how many there are, and check the existing DOM to see if any bindings have been
changed and start rerendering from that point? Here is where Zone.js comes in.

 Zone.js is a JavaScript library that allows developers to create special execution
contexts (called zones) and run some code inside those zones. Whatever code runs in a

State

UI

Events

Change
dedication

Figure 10.1 Change detection’s role
in the life cycle of a component

26110.3 Zoneless Angular applications

zone, we can easily track asynchronous events happening in that context and react to
things that we haven’t even explicitly subscribed to. Zone.js accomplishes this by mon-
key-patching the browser’s async-related APIs (like promises and others) and notifying
about events within a zone.

 Angular uses Zone.js heavily for the purpose of change detection. What essentially
happens is the entire Angular application runs inside a zone, and we can react to asyn-
chronous events and perform change detection (it is more complex than this, but for
the purpose of this chapter, it is good enough to understand change detection).

 What Angular then does is listen to Zone.js, receive notifications, and start perform-
ing change detection each time there has been such a notification. It is very important
to note that regardless of where the notification originated, Angular will perform a
checking top-down, meaning it will start from the very root component and change
detect every single component in our application. Figure 10.2 visualizes that process.

From the diagram alone we can see some problems with this process, but Zone.js-
based change detection has worked relatively well for Angular applications so far, so
let us spend some time discussing the problems that exist within this implementation
and see what a working solution to those problems must entail.

Parent–child relation between
components

Event propagation

Propagation of change detection

BA C

F

K

GD E H

L

I

Angular starts change detection from the root component.

User clicked a button in component D.

Zone.js receives the noti cation about the click.fi

AppComponent

Figure 10.2 Single iteration of change detection

262 CHAPTER 10 What’s next in modern Angular?

10.3.2 Why change detection in Angular needs to improve

The process we just described can seem like a bit of overkill if we consider the magni-
tude of checking that Angular might perform on a sizable application. What’s worse is
that all those checks are performed in an “erratic” fashion; Angular often has no idea
whether a change really happened but has to check the view anyway because Zone.js
has notified it that an async event has happened; whether the event handler resulted
in some relevant state change is yet to be seen. This means additional load on the run-
time, unnecessary pollution of memory, and potentially race conditions—situations
where something depends on another thing being executed previously but that other
thing fails to execute.

 Another concern is the checking itself; because Angular also reacts to changes to
deeply nested properties inside objects, this means that the algorithm might have to
perform a very long and deep introspection of multiple large objects (and, as per the
previous point, this might still be for nothing!), resulting in poorer performances and
a delay to the actual update of the UI (which is the only thing we care about at the end
of the day).

 Next there is the problem with calling functions in templates. Consider this simple
Angular code:

@Component({
 selector: 'app-root',
 standalone: true,
 template: `
 <p (click)="handle()">{{ fullName() }}</p>
 `,
})
export class App {
 firstName = 'John';
 lastName = 'Doe';

 fullName() {
 console.log('This function has been called');
 return `${this.firstName} ${this.lastName}`;
 }

 handle() {}
}

Here we use a function to combine the first and last name, and while it works, we can
notice the function is being called multiple times. This is because Angular has no way
of determining if the return value of a function has changed without calling it, mean-
ing it will call the fullName function on every change detection cycle. Because change
detection is triggered on async events, clicking on the full name in the UI will result in
new multiple calls to the fullName function, despite the fact that the handle function
is literally empty and can’t possibly modify the value of the full name. This is why we
have pipes in Angular—mainly to overcome such change detection problems (more
on that later).

26310.3 Zoneless Angular applications

 Finally, Zone.js itself is a bit of a problem: it adds to our final bundle, and because
it is how change detection functions, it means the user has to download it and execute
it, and only then will the application function properly, resulting in a pretty poor time-
to-interactive metric.

 So far, we have established a number of problems with the existing approach to
change detection. Now the stage is set to discuss what a potential solution to this prob-
lem might look like. Please keep in mind the following is the approach that the Angu-
lar team publicly adopted; however, it might go through a number of modifications
until it is stable and ready to replace Zone.js.

10.3.3 ChangeDetectionStrategy.OnPush

To better understand what is going on, we first need to revisit the only optimization
technique we currently have in Angular in regard to change detections: the OnPush
change detection strategy. When performing change detection, Angular has two strat-
egies for approaching the task: one is the default strategy, which we already discussed,
and the other is OnPush. Let us see what optimizations this approach brings us. When
a component is marked as OnPush, Angular will do the following:

 Trigger change detection on changes to @Input properties.
 Trigger change detection on events from inside the component.
 Trigger change detection when explicitly called for via ChangeDetectorRef.
 Check @Input properties only via references (in case of objects).
 Check only the ancestor of the component instead of the entire component tree.

It’s easy to see how this can significantly limit the amount of change detection cycles
and improve performance. In figure 10.3 we revisit figure 10.2 but with a component
that is now marked as OnPush.

 As we can see, now only three components get change-detected instead of all of
them. We can see this in action if we run the following simple components:

@Component({
 selector: 'app-some',
 standalone: true,
 template: `
 <p (click)="handle()">{{user.firstName}}</p>
 `,
 changeDetection: ChangeDetectionStrategy.OnPush,
})
export class SomeComponent {
 @Input({ required: true }) user!: { firstName: string; lastName: string };

 handle() {}
}

@Component({
 selector: 'app-root',
 standalone: true,
 template: `

264 CHAPTER 10 What’s next in modern Angular?

 <app-some [user]="user"/>
 `,
 imports: [SomeComponent],
})
export class App {
 user = { firstName: 'John', lastName: 'Doe' };

 constructor() {
 setTimeout(() => {
 this.user.firstName = 'Alex';
 }, 1_000);
 }
}

Here, if we wait for 1 second, the UI will not get updated. This is because the event of
updating happened in the parent component of a component that is marked OnPush,
and despite it being passed via an input, its reference has not been changed, thus not
triggering a change detection cycle. However, if we click on the text in the child

AppComponent

User clicked a button in component D.

Zone.js receives the noti cation about the click.fi

B A C

F

K

G D E H

L

I

Parent–child relation between
components

Event propagation

Propagation of change detection

Angular checks only the ancestor of D.

Figure 10.3 Change detection when a component is marked OnPush

26510.3 Zoneless Angular applications

component, the first name will get instantly updated. To have updates immediately
from the parent, we can simply change the logic of changing the first name to change
the entire reference of the object:

this.user = {...this.user, firstName: 'Alex'};

The OnPush strategy, as we can see, offers some improvement over the default change
detection; in large applications, it might make sense to mark the heaviest, most inter-
active components as OnPush to cut down the amount of unnecessary change detec-
tion cycles at runtime. Some teams go so far as to make all components OnPush to
enjoy the best runtime performance.

 However, the OnPush strategy is not something new in and of itself; so what changed
in more recent versions of Angular? Having the necessary knowledge of change detec-
tion, we can now discuss the new benefits and some upcoming approaches that will fur-
ther optimize the process of updating the UI in Angular applications.

10.3.4 Introducing granular change detection

In this section, we will discuss two new concepts that have become possible with the
advance of signals in Angular. One approach already exists and does not require any
particular changes, and the other is an overhaul of how we think about Angular
change detection and might possibly help us ditch Zone.js for good.

LOCAL CHANGE DETECTION

So far we have discussed the OnPush strategy with the usual Angular components,
which has simple properties for which Angular could not possibly automatically learn
about their updates (hence the need for Zone.js and all that). However, a massive
game-changer landed in v16, which we discussed extensively: the signals. While signals
are wrappers around the same values we stored as simple properties previously, they
also have the massive advantage of being able to tell Angular about their own updates,
meaning they can potentially result in us not needing Zone.js anymore (more about
that in the next section).

 While this prospect is still looming in the future, right now we already can enjoy
some of the benefits of signals in regard to change detection. Here we are referring to
a concept added in Angular v17 known as local change detection. Essentially, now if we
mark our component with OnPush, and use only signals, then those signal changes will
update the UI but will not trigger change detection for parent components (if they are
also OnPush).

 This update is both a massive improvement in performance and also easy to adopt.
We can iteratively bring our components to this state to be able to enjoy runtime opti-
mization while not disrupting the logic of our applications. All we need is to adopt the
“all components should be OnPush” strategy, and with time the entire application will
be OnPush. The approach of using signals exclusively can also bring us closer to the
zoneless future, which we will discuss soon. However, before we can proceed, we must

266 CHAPTER 10 What’s next in modern Angular?

address a problem that arises if we want to turn everything into signals, and that prob-
lem is: how do the component inputs work then?

SIGNAL INPUTS

So far, whenever we talked about component inputs, we perceived them as simple
component properties that just have been marked with the @Input decorator. This
allows Angular to work its magic and pass the value from the parent component right
into the child component.

 However, this also comes with some downsides. First, it gets somewhat hard to react
to changes to input properties; we have to use either ngOnChanges or a getter/setter
mechanism. For instance, in chapter 4, listing 4.6, we used the ngOnChanges approach
to build the ProjectDetailsComponent, which received an id as an input property (it
utilized component-input binding to get a parameter from the URL) and then used
ngOnChanges to make an HTTP call to retrieve the project details data and display in
the UI. It looked like the following:

export class ProjectDetailsComponent implements OnChanges {
 @Input({transform: numberAttribute}) id!: number;
 private readonly projectService = inject(ProjectService);
 project$: Observable<Project> | null = null;

 ngOnChanges(changes: SimpleChanges): void {
 if (changes['id']) {
 this.project$ = this.projectService.getProject(this.id);
 }
 }
}

As we can see, this has a lot of code that is essentially boilerplate and can become
tedious to maintain when the component gets bigger. Another downside to this
approach is that when working with observables and signals, properties that are nei-
ther can become hard to maintain; in the real world, we might want our signals and
observables to interact with input properties and also react to their changes, which is
hard to accomplish with simple, nonreactive properties.

 However, with Angular v17.1, a new concept has been added that will make this
very easy to achieve: signal inputs. This is a new way to declare input properties on
components, which uses a function instead of a decorator and creates an input that
is already a signal! This allows us to use a host of tools like effects, computed proper-
ties, and RxJS interoperability with inputs, making it easy to switch between inputs,
signals, and observables. Let us refactor the ProjectDetailsComponent and see it
in action.

import { Component, input, inject, numberAttribute } from '@angular/core';
import { toObservable, toSignal } from '@angular/core/rxjs-interop';
import { switchMap } from 'rxjs/operators';

Listing 10.15 Component using signal inputs

26710.3 Zoneless Angular applications

import { ProjectService } from 'src/app/services/project.service';
import {
 ProjectCardComponent,
} from 'src/app/shared/components/project-card.component';

@Component({
 selector: 'app-project-details',
 template: `
 <div class="project-details">
 <h3>Project Details</h3>
 @if (project(); as project) {
 <div>
 Project Name: {{ project.name }}
 Project Description: {{ project.description }}
 Logo: {{ project.image }}
 <div class="subprojects">
 Subprojects:
 <app-project-card
 *ngFor="let subProjectId of project.subProjectIds"
 [projectId]="subProjectId"
 >
 </app-project-card>
 </div>
 </div>
 }
 </div>
 `,
 standalone: true,
 imports: [ProjectCardComponent],
})
export class ProjectDetailsComponent {
 private readonly projectService = inject(ProjectService);
 id = input(null, { transform: numberAttribute });
 project = toSignal(
 toObservable(this.id).pipe(
 switchMap(id => this.projectService.getProject(id!))
)
);
}

As we can see, this approach made our code more understandable, everything flows in
one direction, and our component has fewer lines of code and also only properties
(no methods). This results in a codebase that is easy to debug, reason about and, ulti-
mately, maintain in general.

In this case, we used a nullable signal input, meaning the type of id will be num-
ber | null, and that is why we used this.projectService.getProject(id!) to
perform the HTTP call (notice the ! operator). If we, however, are assured
that the id will not be null, we can define a required input:

id = input.required({ transform: numberAttribute });
project = toSignal(
 toObservable(this.id).pipe(

Now we use “project”
as a signal instead of
an observable and
ditch the async pipe.

Using signal inputs
and built-in control
flow allows us to only
import other
components instead
of NgIf, AsyncPipe,
NgFor, and so on.

“id” is now a signal
input with a default
null value, and
incoming string values
get transformed into
numbers. TypeScript
automatically infers
the type.

Next, we can create an
observable for the HTTP
call that will retrieve the
project details and
convert it to a signal to
use in the template.

We convert the
“id” input signal
to an observable
to perform an
HTTP call.

We switch the observable of “id” to the
Observable of the HTTP call that will then

get converted back to a signal.

268 CHAPTER 10 What’s next in modern Angular?

 switchMap(id => this.projectService.getProject(id))
)
);

The parameters object (the one we passed the transform attribute to) also accepts the
alias option from the @Input decorator, making signal inputs equivalent in function-
ality to the decorator input, with the distinction of only producing signals.

NOTE While conventional input properties allow us to modify their values in
the child component, signal inputs disallow this, and they do not have set or
update methods, so their only source of new data is the parent component.
Be careful when refactoring to use signal inputs.

Now a sensible question arises: what about outputs? Of course, outputs are event emit-
ters and do not store data, so they are not signals. However, for the sake of consistency,
the Angular team introduced a function for creating output properties instead of rely-
ing on the @Output decorator. Let’s see it in action next.

SIGNAL OUTPUTS

In chapter 4, listing 4.4, we created a FileUploadComponent (src/app/shared/compo-
nents/file-upload.component.ts) to explore transforming inputs. It also had an output
named selected, which transferred the FileList of the files that the user had selected.
Of course, this is a prime candidate for refactoring both its inputs and outputs. We will
use the new output function, introduced in Angular v17.3, to achieve this.

import { Component, input, output } from '@angular/core';

@Component({
 selector: 'app-file-upload',
 template: `
 <div class="file-upload">
 <label for="upload">{{ label }}</label>
 <input type="file" id="upload" (change)="onFileSelected($event)" />
 @if (errorMessage) {

 {{ errorMessage }}
 Only following file types are permitted:

 @for (let type of accept(); track type) {
 {{ type }}
 }

 }
 </div>
 `,
 standalone: true,
})

Listing 10.16 Component using signal outputs

“accept” is now
a signal input.

26910.3 Zoneless Angular applications

export class FileUploadComponent {
 label = input.required<string>();
 accept = input([], { transform: (value: string) => value.split(',') });
 selected = output<FileList>();
 errorMessage = '';

 onFileSelected(event: any) {
 const files: FileList = event.target.files;
 this.errorMessage = Array.from(files).every((f) =>
 this.accept().includes(f.type)
)
 ? ''
 : 'Invalid file type';

 if (this.errorMessage === '') {
 this.selected.emit(files);
 }
 }
}

As we can see, this change is mainly cosmetic and does not break anything; all code
and logic for component intercommunication remains the same. However, we do
have an edge case. It might not be very popular, but with the @Output decorator, it is
possible to turn any observable into a vehicle for sending events to the parent compo-
nent, not just the EventEmitter. To do this, we could just add the decorator to an
observable property:

@ViewChild('containerElement') containerElement: ElementRef<HTMLDivElement>;
@Output() clicked = fromEvent(this.containerElement, 'click');

In this case, we pick the reference to a div element in the template and, using RxJS,
transfer it to the parent component, where we can just read those clicks with the usual
(clicked)="handleClick($event)" syntax. However, with these new outputs, it is a
bit different. We can still use this observable, but we have to resort to another function
instead of output, and that is the outputFromObservable function, which is (and this
is very important) imported from the @angular/core/rxjs-interop package and not
directly from @angular/core. As we mentioned in chapters 5 and 6, Angular is work-
ing toward reducing its dependency on RxJS (with the goal of eventually making it
fully optional), so having the output function work with observables would introduce
a dependency from @angular/core to RxJS, mandating every app depends on it. This
way, developers who want to use RxJS can still enjoy a higher level of interoperability,
while others are free to ditch RxJS if they so choose.

 With this function, the previous code would be seamlessly transformed in the fol-
lowing, while retaining the same capabilities:

@ViewChild('containerElement') containerElement: ElementRef<HTMLDivElement>;
clicked = outputFromObservable(fromEvent(this.containerElement, 'click'));

The output function is used to
define the “selected” property as
en EventEmitter and output.

Nothing changes in the syntax of sending
an event to the parent component; we
just call “selected.emit()”.

270 CHAPTER 10 What’s next in modern Angular?

So now we can say that we have achieved both parent-to-child and child-to-parent
component intercommunication separately. But what about the cases when we want
both combined—the approach that is better known as two-way binding? Let’s explore
what modern Angular has to offer.

MODEL PROPERTIES

In the past, to create a two-way binding we had to create a pairing of @Input/@Output
properties with a clever syntactic trick (naming the @Output the same name as the @Input
but suffixed with “Change”). A two-way binding looked a lot like the following code:

@Input() property: string;
@Output() propertyChange = new EventEmitter<string>();

This way, in the templates that used this component, we could take advantage of the
Angular template’s syntactic sugar and do the following:

<app-component [(property)]="someProperty"/>

However, with signals, this becomes irrelevant, and a new way of creating two-way
bindings has been added in Angular v17.2, which is the model signal. To define a
model signal, we just need to use the model function:

property = model();

This will create a signal that is also an input, and every time its value changes, it will
emit that new value to the parent component as if it were an output. This means we
can just bind to it in templates just the same way we did in the previous example with
a “traditional” two-way binding.

 Finally, before we go on to signal-based components, we have one last thing to discuss.

SIGNAL-BASED VIEWCHILDREN AND CONTENTCHILDREN

As we know, sometimes we need to grab a reference to some HTML elements (or
other components) from a given component’s template. This is usually accomplished
via @ViewChild and @ContentChild (if the elements we seek are inside the content pro-
jected via <ng-content>) or their plural counterparts (@ViewChildren and @Content-
Children) in case we want to get multiple elements/components. From the previous
few subsections, it becomes evident that Angular is moving away from decorators and
toward signal-based functions. The same scenario is playing out here as in Angular
v17.3: functions with similar names have been introduced to replace the aforemen-
tioned decorators:

@ViewChild('container') containerDiv: ElementRef<HTMLDivElement>;

Instead of doing this, we can use the much simpler viewChild function:

containerDiv = viewChild<ElementRef<HTMLDivElement>>('container');

27110.3 Zoneless Angular applications

Notice that while this looks purely cosmetic to just remove the decorators, in this case
we won’t just get an ElementRef but a signal of ElementRef. This means we can create
computed signals from view children and also apply effects with them as tracked
dependencies. This becomes especially useful with viewChildren, which now lets us
know when new elements have been added to the QueryList and when some have
been removed. This was previously only possible with a setter function and another
property that we would set whenever the list changed, but it now works out of the box.
Similar functions named contentChild and contentChildren are also now available
to use with projected content.

 With this set, we are now ready to move on to a discussion of signal-based compo-
nents and the prospect of going completely zoneless.

SIGNAL-BASED COMPONENTS AND ZONELESS APPLICATIONS

In chapter 7, section 7.5.1, we mentioned that the Angular team proposed signal-
based components that are meant to overhaul the current change detection mecha-
nism. Let’s see how it will potentially work.

 With the proposed approach, developers will be able to mark their components as
signal-based via a flag in the component’s metadata. This will result in the following
modifications to the component’s behavior:

 Component will not be part of Zone.js-based change detection.
 Component will be change-detected only when some of its signal properties

change.
 It will be completely safe to invoke functions in the template.
 All of its inputs will be signals.
 Change detection will be view-based (more on this later).

This will be a huge improvement over the current setup. Essentially, if we mark all the
components in the application as signal-based, we can easily ditch Zone.js and con-
tinue as usual. This also means adopting a more reactive approach to building Angu-
lar applications and a departure from “magical” update mechanisms.

 Of course, this change itself raises some questions; let’s try to address them next.
The first question might be: what will happen to non-signal-based components? (We
refer to them as zone-based components.) As the Angular team promises, we can use
zone-based components in conjunction with signal-based ones. In that case, we will be
unable to remove Zone.js; however, this will allow us to iteratively transition an exist-
ing Angular project to zoneless.

 The next question we might have is: how will change detection work then? The
answer is that in signal-based components, Angular will listen to signal updates
(and signal updates only) and then perform checking based on a corresponding
view (this is view-based change detection). Views are either a template of a compo-
nent or an ng-template inside of it. All structural directives automatically create
ng-templates. The following listing shows a small example of a component tem-
plate with different views annotated.

272 CHAPTER 10 What’s next in modern Angular?

<div>
 <p *ngIf="condition()">

 <li *ngFor="let item of items">
 {{item().name}}

 </p>
</div>

Each view has its own context and contains a number of bindings; for instance, in this
example, the view created by the NgFor directive has a binding on the item signal. In
signal-based components, Angular will keep track of views and which signal is being
used in which view, meaning that when it receives a notification about some signal’s
change, it can proceed to immediately check (and maybe update) the views that con-
tain bindings to that particular signal (and those views only!). This will be a massive
improvement over the current setup, with the only tradeoff being having to convert
all properties to signals.

TIP Binding to ordinary properties (not signals) in the template might still
work; however, those bindings will get updated only when some other signal
changes its value. The Angular team is considering disallowing binding to
ordinary properties in signal-based components altogether.

As mentioned, signal-based components are still a work in progress, meaning in v18
we are still unable to even preview them. However, with the current understanding of
how things will be, we know that it will not affect the code itself and will be more simi-
lar (but not exactly the same) as a new change detection strategy. The following listing
shows an example of a hypothetical signal-based component that uses all the features
we just discussed.

@Component({
 selector: 'app-root',
 standalone: true,
 template: `
 <div>
 <input placeholder="Search for product..." [(ngModel)]="query"/>

 @for (product of filteredProducts(); track product.id) {

 {{product.name}}

 }

 </div>
 `,
})

Listing 10.17 Template with multiple views

Listing 10.18 Hypothetical signal-based component with model bindings

View of the
component itself

View created with
the NgIf directive

View created with
the NgFor directive

Binds to a signal in a
two-way fashion

27310.3 Zoneless Angular applications

export class App {
 private readonly productService = inject(ProductService);
 type = input<number>();
 query = signal('');
 allProducts = computed(() =>

this.productService.getProductsByType(this.type()));
 filteredProducts = computed(() => {
 return this.allProducts.filter(product =>

product.name.includes(this.query()))
 });
}

As we can see, with this approach, we can describe quite complex interfaces and rela-
tions in a declarative and eloquent fashion, without the need to even write methods,
and enjoy the benefits of zoneless change detection.

WARNING All the features mentioned in this section are hypothetical and not
available as of Angular v17. They have been proposed by the Angular team
and will almost certainly undergo changes until they become publicly avail-
able. Read more in the Angular signals RFC (https://mng.bz/mRYy) on signal-
based components.

Finally, another aspect of existing Angular projects that might be affected is the pipes.
Pipes have been historically used to circumvent a limitation of zone-based change
detection, that being the inability (or rather it not being welcomed) of invoking func-
tions in templates. However, with zoneless change detection and the advancement of
the inject function, pipes might no longer be necessary to reuse pieces of logic within
different templates.

 Next, let us discuss the most concrete advancement in the Angular change detec-
tion story, which we can already try out in v18: the new change detection scheduler
that allows us to (experimentally) go zoneless right now.

10.3.5 Zoneless scheduler for change detection

Now that we understand Zone.js and the internal mechanisms of change detection,
we can notice that zones act as schedulers for change detection, rather than perform-
ing the change detection itself (which is still a function of Angular and will not
change or go away even with the zoneless approach).

 It logically follows that, to go zoneless, Angular first needs to introduce another
scheduling mechanism. This has been successfully achieved in v18. Starting from this
version, under the hood, Angular will actually employ two mechanisms at once: the
conventional zone-based scheduler and the new zoneless one in parallel. This new
scheduler will start change detection cycles depending only on some particular events

 ChangeDetectorRef.markForCheck—This is the method that is used by the
async pipe to trigger change detection.

 ComponentRef.setInput—We used this previously to pass on changed inputs to
dynamically render child components.

Signal input to
read from a URL
parameter view
component-
router input
binding

Computed
signal derived
from an HTTP
call observableComputed signal filtering

products based on user’s input

https://mng.bz/mRYy

274 CHAPTER 10 What’s next in modern Angular?

 Changing a value of a signal that is used in a template.
 Event listener callbacks.
 Attaching new views that are already dirty (as a result of one of the previous points).

As we can see, these requirements mean that if we had to turn off zone-based change
detection, the only way of triggering change detection (and consequently updates to
the UI) is either by using observables/signals or manually. However, we should again
note that, currently, this new scheduler works in parallel to Zone.js, meaning nothing
is going to break if we upgrade an existing application to v18.

 We can try out a completely zoneless experience by simply enabling experimental
zoneless support with a simple function in the application configuration (the app.con-
fig.ts file at the root of the project):

bootstrapApplication(AppComponent, {providers: [
 provideExperimentalZonelessChangeDetection(),
]});

As we can see, the function name itself contains the word “experimental,” which
should act as a hint for us to avoid moving such changes into production-ready appli-
cations, as this will fully disable Zone.js and might very possibly result in bugs until we
change our application in ways that fully conform to the list of requirements men-
tioned previously. However, this should not discourage us from starting early and
adopting these requirements to be ready for a fully zoneless future.

PREPARING FOR ZONELESS

Outside of the points we mentioned earlier, there are some other ways in which we
can inadvertently become reliant on Zone.js, and that is mainly through the NgZone
injectable. This injectable provides functions to work with Zone.js through an Angu-
lar wrapper, and some of those functions are not compatible with zoneless. These
functions are NgZone.onMicrotaskEmpty, NgZone.onUnstable, NgZone.isStable, and
NgZone.onStable. If we are using any of these functions in our application, we must
start by removing references to them, as the tasks performed by them will become
unnecessary with zoneless. It is also important to note that NgZone.run and
NgZone.runOutsideAngular are zoneless-compatible and there is no need to remove
references to them. Thankfully, most common Angular applications (especially enter-
prise ones) very rarely use these functions; the most widely used is runOutsideAngular
anyway, so this step should be relatively easy for most Angular developers.

 Another step to consider is to make sure our server-side functionality stays intact.
The way that Angular SSR works is that it essentially emulates the rendering process
that happens on the frontend (with HTTP calls and everything else) and then con-
verts the results to HTML to send back to the client in a process called serialization.

 To know when the app is ready to be serialized, Angular SSR internally relies on
Zone.js to know when the app is stable (for example, all necessary HTTP requests
have been completed to render the final UI). However, sometimes with zoneless,

27510.4 In other news

there might be cases where we want to postpone that to await an async task, like a nav-
igation redirect (a useful example is when the app refreshes the user’s credentials and
then redirects to a dashboard page).

 In these cases, we need to have access to a mechanism that can manually tell Angular
to wait with the serialization; starting from v18, a specific injectable called Experimental-
PendingTasks has been added, which gives us exactly that sort of functionality and
helps fix any problems with SSR. It can be easily used with any async task:

const tasks = inject(ExperimentalPendingTasks);
const cleanup = tasks.add();
await someAsyncTask();
cleanup();

This way, Angular will hold off the serialization until the cleanup function is called,
helping us avoid any problems or race conditions bugs. The “experimental” prefix
again gives us a hint not to rush with deploying this specific approach to production.

 With these simple steps, in addition to converting to signals/observables, we can
make sure that, in the future, when zoneless becomes the golden standard, our exist-
ing application can easily become more performant and lightweight by ditching
Zone.js completely. Finally, to wrap the book up, let’s discuss some other updates to
the Angular ecosystem and have some musings on the direction that the framework
will be taking.

10.4 In other news
As of version 18, Angular is undergoing a process that the core team and contributors
refer to with the bombastic word “renaissance,” which is warranted; after all, we just
dedicated an entire book to all the new changes and approaches that have emerged
from v13 to v18. This renaissance is marked by a very important landmark that is unre-
lated to code, which is the launch of the new Angular documentation website and the
new home for all things Angular: angular.dev (https://angular.dev/).

 The new website is scheduled to become the primary resource for learning about
Angular, with new tutorials, rewritten documentation, and built-in playgrounds,
where we can test out Angular code snippets without the need to bootstrap a whole
new application.

 This new documentation also includes a revised and improved road map (https://
angular.dev/roadmap) of future additions to the framework; some of them, like stable
deferred loading or zoneless applications are already covered in this chapter. Some
other potential improvements that are worth noting are

 Partial hydration—Instead of hydrating the entire page, SSR applications might
become able to hydrate only the parts of the DOM that are in the viewport,
resulting in even faster time-to-interactive metrics

 Improvements for debugging—In particular, it might become possible to debug
Angular applications that run inside iframes and also debug signals.

https://angular.dev/
https://angular.dev/roadmap
https://angular.dev/roadmap
https://angular.dev/roadmap

276 CHAPTER 10 What’s next in modern Angular?

 Class struggle—Potential new component/directive/pipe authoring format, pos-
sibly without classes; still in the discussion stage.

 Improvements to Angular material—Support for new CDK primitives, improved
tooling, and more.

As we’ve seen throughout this book, both the Angular team and the wider community
put great care into the development of this beloved framework, which leads us to
believe that no matter what, Angular steps into a very bright future.

Summary
 Angular introduced a built-in template syntax for control flow.
 Instead of structural directives like NgIf, NgFor, and NgSwitch we can now use

@if, @for, and @switch.
 From v17, it is possible to lazy-load standalone components directly from the

template with @defer.
 Deferred loading can be customized to show a placeholder, loader content, and

error content.
 Deferred loading can be enhanced with prefetching and specific loading triggers.
 Angular is making steps toward a zoneless future.
 OnPush components that use signals will now benefit from more optimized local

change detection.
 Angular has introduced a new documentation website and a road map for amaz-

ing future improvements.

277

index

Symbols

?? operator 72

A

afterNextRender function
226–227

afterRender function 226–227
AI-powered tools 204–209

ChatGPT 204–208
GitHub Copilot 208–209

comments 209
explicit typing 208
spec names 209

alias option 268
allowSignalWrites option 145
Angular 1

applications 5–6
configuring environments

for Angular applications
237

CSR 238
ESBuild and Vite 236
overview of 236
preparing to deploy

238–240
prerendered static

websites 239
SSR 240

building 235–240
building components in SSR

Angular application 223
core features of 3

change detection 5
DI (dependency

injection) 4
module-based

architecture 4
OOP (object-oriented

programming) 4
RxJS 4

evolution of 11
features of 11–16

better compatibility with
RxJS 15

deferred loading of parts
of a template 15

developer experience
improvements 16

directive composition
API 15

inject function 15
new template syntax 15
new tools for unit

testing 16
server-side rendering

hydration 16
signals 15
standalone building

blocks 14
type-safe reactive forms 15
various granular improve-

ments to
performance 16

future of 16, 241, 275
goals of 13

ease of adoption 13

improved reactivity 14
improved type safety 14
increased composability/

reusability 13
reduced boilerplate code 14

knowledge required before
getting started 2

learning process 18
overview of 3
recognizing problems 12
signals

computed 138–143
testing components 185
zoneless applications 259

Angular apps, building with SSR
from scratch 218

Angular CLI, overview of 7
@angular/core/rxjs-interop

package 269
AppComponent 167, 215
AppComponent class 183
ApplicationConfig interface 10
<app-root> element 222
apps, starting 7–11

changes in 9–11
creating new project 8
using Angular CLI 7

as any type-casting
command 144

asReadonly method 158
async keyword 105
async pipe 127
AuthGuard 62–64
AuthService 32, 56, 194

INDEX278

B

beforeEach block 187
BehaviorSubjects 173
bootstrapApplication

function 11, 33
bugs, earlier detection of 180
building blocks of Angular

74
host directives 88–92

extending existing
directives 88

hierarchy and execution
order 91

performance concerns 91
usage specifics 90
using multiple directives

and adding inputs 89
inputs 75
transforming input values

78
type-safe reactive forms

92–96
form events 96
migrating to 95
overview of 93
pitfalls of 94
untyped forms 92

C

CanActivateFn function 68, 72
CanActivateFn type 63
canActivate method 62–63
CandidateDetailsComponent

249
CDNs (content delivery

networks) 99, 213
change detection 5

See also zoneless Angular appli-
cations

ChangeDetectionStrategy
.OnPush 263

ChatGPT 204–208
generating unit tests 206
mocking data 204
mocking dependencies 205

circular dependencies 24
handling 45

classes, injecting dependencies
outside 56–58

click event 255

client-side hydration 231–233
client-side rendering (CSR) 238
combineLatest operator

129–130, 140
CommonModule 21, 29
compilation context 22
compile-time 91
components

building with signals
135–138

handling signals in
components 137

TimeOffComponent
135–137

creating, standalone
components 28

default export components in
routing 101

fetch-based HttpClient 100
self-closing component

tags 100
simplifying complex logic in

using computed
signals 140–143

testing 190
with Angular’s built-in

tools 190
with Angular testing

library 191
computed function 138
computed signals 138–143

creating 138–140
reactive values 140
unsubscription 140

overview of 160
simplifying complex logic in

components 140–143
ConfirmationDialogComponent

252
connect method 169
ContentChildren 270
continuous integration 181
control flow syntax 242
ControlValueAccessor

interface 96
count$ observable 150
count property 104
count signal 139, 150
count variable 131
createSearch function 114
CSR (client-side rendering)

238

D

debounceTime operator 109
decrement() function 104
default export components in

routing 101
@defer block 258
deferrable views 252–259

customizing deferred
loading 257

loading and error
states 257

prefetching 258
deferring depending on

condition or trigger
254–257

deferring simple
components 252

deleteItem method 127
deleteRequest method 149
dependencies, providing in

standalone
components 31–34

dependency injection (DI) 4
functional guards, resolvers,

and interceptors
62–68

deployment, continuous 181
derived values 174
describe block 187
destroyed$ observable 108
destroy$ observable 108
DestroyRef 108–111, 113–114
destroyRef 115
DestroyRef injectable 113
DestroyRef token 110
destroy$ subject 108
destroy subjects 113
DI (dependency injection) 4, 47

functional guards, resolvers,
and interceptors 67–68

adding tokens to HTTP
requests 66

building AuthGuard 62–64
building

EmployeeResolver 64
migrating to functional

guards/resolvers/interc
eptors 67–68

inject function 55–62
benefits of 58–61
custom RxJS operators 61

INDEX 279

DI (dependency injection),
inject function (continued)
ditching constructor

altogether 61
drawbacks of 61
easier component

inheritance 60
improved reusability 59
injecting dependencies 55
injecting dependencies

outside classes 56–58
type inference of

InjectionTokens 59
lookup and modifying 69
overview 48–55

Angular DI 50–54
building primitive DI

mechanism 49
injection contexts 54
reasons for using 48

truncating text with 70–72
directives

extending existing
directives 88

standalone, importing
into standalone
components 29

using multiple directives and
adding inputs 89

doubleCount signal 139
dynamic components, inputs

for 83

E

EditEmployeeComponent 112
effect function 143–144, 148,

164, 173
EffectRef.destroy() method 156
effects 143–147

creating 143
important things to know

about 144–146
effects can be stored in

component properties
and destroyed
earlier 144

effects can only run in an
injection context 144

writing to signals from
effects is
prohibited 145

overview of 161
when to use 146

calling third-party APIs 146
performing UI updates that

cannot be expressed via
Angular’s template
syntax 146

working with canvas 147
writing to external storage

146
ElementInjector 51, 69
EmployeeComponent 26
EmployeeListComponent 23,

26, 51, 54, 252
EmployeeList component 70
EmployeeModule 23, 26
EmployeeResolver 64
EmployeeService 51, 54, 56
environments, configuring for

Angular applications 237
ESBuild 236
ExperimentalPendingTasks

injectable 275
exports array 23
export statement 22

F

fetch-based HttpClient 100
fetchpriority 97
FileUploadComponent 268
filter operator 121
FooterComponent 255
@for loops 246, 248–249
form.allowDuplicates.valueC-

hanges observable 129
FormBuilder utility 94
FormControl class 95
form events 96
form.get method 94
FormGroup class 95
functional guards, resolvers, and

interceptors 62–68
adding tokens to HTTP

requests 66
building AuthGuard 62–64
building

EmployeeResolver 64
migrating to

guards 67
interceptors 68
resolvers 67

G

getToken method 66, 197
GitHub Copilot 208–209

comments 209
explicit typing 208
spec names 209

guards, migrating 67

H

hasDuplicates$ observable 129
hasPermission method 112
HeaderComponent 166–167,

169, 243
hierarchic shared modules 25
@Host decorator 69
Host decorator 69
host directives 88–92

extending existing
directives 88

hierarchy and execution
order 91

performance concerns 91
usage specifics 90
using multiple directives and

adding inputs 89
hostDirectives option 90
HRMS (human resources man-

agement system) applica-
tion

server-side rendering
(SSR) 212–217

impacted mobile experi-
ence 216

implementing 216
inferior initial load

time 214
overview of 212
problems with 214–216
worsened SEO 215

transforming input values 78
HTTP caching 228–230
HttpClient 32
HttpClient class 48
HttpClientModule 32
HttpClient service 100
HTTP GET method 230
HTTP HEAD method 230
HTTP_INTERCEPTORS

InjectionToken 68
HttpTestingController 196

INDEX280

I

@if keyword 251
ImageConfig interface 100
images, NgOptimizedImage

96–100
prioritizing image loading

98
srcsets and image loaders

98–100
importProvidersFrom

function 32–33
imports array 29, 97
imports property 28–29
import statement 22
includeHeaders option 230
increment function 104, 133,

139, 143
inheritance, components 60
@Injectable decorator 4
inject(DestroyRef) 115
inject function 4, 50, 55–64, 66,

68–69, 72, 113, 115, 124,
144, 195

benefits of 58–61
custom RxJS operators 61
ditching constructor

altogether 61
easier component

inheritance 60
improved reusability 59
type inference of

InjectionTokens 59
drawbacks of 61

confusing usage 61
problems with unit

testing 61
injecting dependencies 55
injecting dependencies out-

side classes 56–58
InjectionToken 71
InjectionToken class 49
InjectionTokens 59
Injector class 49–50
Injector.inject method 55
@Input decorator 75, 268
Input decorator 71, 175
input function 176
input properties, binding

routing parameters
to 81

@Input property 76

inputs 75
adding 89
for dynamic components 83
required 75
transforming input values 78

interaction option 255
interceptors, migrating 68
interoperability, RxJS on a

local scale 174
InterviewService 72
isAuth$ BehaviorSubject 196
isAuth function 189
isAuthorized custom

operator 124
it command 187

K

keydown event 255

L

lazy loading 97
into another component

39–42
providing dependencies only

to certain routes 38
several standalone compo-

nents 36
single standalone compo-

nent 35
standalone components

34–42
with NgModules 34

LCP (Largest Contentful
Paint) 96

ListComponent 69
ListItemComponent 69
loadChildren function 37
loadComponent option 35
loaderParams property 100
local change detection 265
localStorage object 194, 197
login method 196
log operator 121

M

manualCleanup option 158
map operator 116, 121, 130, 140
mapToCanActivate function

67–68

merge operator 115
migrations 42–45

handling circular
dependencies 45

migrating by hand 42
migrating with schematic

command 44
MockComponents function 189
mocking data, ChatGPT 204
mocking dependencies 185, 188

ChatGPT 205
model function 176, 270
model properties 270
module-based architecture 4
module.exports 22
ModuleInjector 51
MonoTypeOperatorFunction

type 121

N

ng add @angular/ssr
command 240

ng add command 8
ng build command 223, 235
ngClass directive 88
*ngComponentOutlet directive

86–87
ngComponentOutlet directive

40–42
NgFor directive 246, 248, 251,

272
*ngFor directive 54
NgIf directive 29, 251–252
ng-mocks library 189
ngModel directive 28
NgModules

importing into standalone
components 28

lazy-loading components
with 34

reasons for abandoning 20–24
indirectness and

boilerplate 22–24
learning and teaching

20–22
other concerns 24

ng new command 7
ngOnChanges 266
ngOnChanges method 86, 90
ngOnDestroy method 108,

110–111, 113, 130

INDEX 281

ngOnInit method 76, 113–114
NgOptimizedImage 96–100

adding lazy loading and set-
ting width/height 97

prioritizing image loading 98
srcsets and image loaders

98–100
ng serve command 221, 223
NgSwitch directive 249–252
ng update command 8
NgZone injectable 274
NgZone.isStable function 274
NgZone.onMicrotaskEmpty

function 274
NgZone.onStable function 274
NgZone.onUnstable

function 274
NgZone.run function 274
NgZone.runOutsideAngular

function 274
NotificationService 168–169
notifications$ observable 169
notificationsOpen signal 167
npm install express

command 217
NullInjector 51, 69

O

object-oriented programming
(OOP) 4

Observable class 121
observables

converting signals to 149
converting to signals 147–149
signals vs. 134

everything is synchronous
134

reading value does not
affect application 134

unsubscription will be
automatic 134

value can always be
read 134

value can be changed on
the fly 134

unsubscribing from 106–115
DestroyRef 108–111
problems with 107
reasons for 107
takeUntilDestroyed

operator 111–115

of function 115, 159
onDestroy method 110
onDestroy$ observable 108
OOP (object-oriented

programming) 4
OperatorFunction 116, 121
@Optional decorator 69
Optional decorator 69
optional flag 72
@Output decorator 268–269
outputFromObservable

function 269
output function 268

P

partial hydration 275
PermissionsService 111
phase option 227
pipe function 121–122
pipe method 116, 121
@placeholder block 256–257
prerendered static websites 239
prerendering 233–235
private authService:

AuthService 31
ProjectDetailsComponent 266
projectId property 76
properties, every property can

be a signal 174
provideClientHydration()

function 230
provideClientHydration()

method 220
provideHttpClient function 67
provideRouter function 10, 33
providers array 24, 32, 51
providers property 32

R

reactive programming 104–105
computed signals 138–143

reactive values 140
refactoring, unit testing and 180
refreshView method 162
required inputs 75
requireSync option 158
resolvers, migrating 67
reusability, improved 59
root injector 51
RouterTestingModule 189

routing
default export components

in 101
standalone components

31–34
routing parameters, binding to

input properties 81
rxjs-interop package 111
RxJS (Reactive Extensions for

JavaScript) 4, 103
advanced interoperability

with 170–173
custom operators 61
more traditional Angular

applications
every property can be a

signal 174
looking for derived

values 174
primitive RxJS 174

problems with 126–129
async vs. sync and

glitches 128–129
stateless nature of

Observables 126
steep learning curve 126

reactive programming
104–105

reasons for using 106
RxJS-heavy Angular

applications 173
BehaviorSubjects 173
RxJS-based custom state

management 173
RxJS interoperability on a

local scale 174
signals and interoperability

with 147–151
converting observables to

signals 147–149
converting signals to

observables 149
signals and synchronizing

with 158
signals vs. 126–130
solution for 129–130

creating new reactive values
from existing ones 130

everything is synchronous
130

interoperating with
RxJS 130

INDEX282

RxJS (Reactive Extensions for
JavaScript), solution for
(continued)
performing side effects

based on changes of
value 130

reading value does not
affect application 129

unsubscription will be
automatic 130

value can be changed on
the fly 130

unsubscribing from observ-
ables 106–115

DestroyRef 108–111
problems with 107
reasons for 107
takeUntilDestroyed

operator 111–115
writing custom operators

115–124
building custom operators

119–124
how operators work

117–118
overview of 115–117

S

SCAMs (Single Component
Angular Modules) 26–27

using 43
scattered codebase 24
schematic command, migrating

with 44
ScrollToTopComponent 225
self-closing component tags

100
@Self decorator 69
Self decorator 69
SEO (search engine

optimization) 215
server-side rendering

(SSR) 212–217, 240
implementing 216
overview of 212
problems with 214–216

impacted mobile
experience 216

inferior initial load
time 214

worsened SEO 215

services
providing in standalone

components 30
testing 194

setInput method 86
set method 132, 137, 268
SharedModule 23–25
shared modules, hierarchic 25
showConfirmationDialog

method 41
signal function 131–132
signal inputs 266–268
signal outputs 268–270
signals 125, 152, 159–163

advanced options 153–159
manual cleanup 156–158
readonly signals and syn-

chronizing with
RxJS 158

signal equality 153–154
untracking dependencies

155–156
building components

with 135–138
handling signals in compo-

nents 137
TimeOffComponent

135–137
computed signals 140–143

creating 138–140
simplifying complex logic in

components 140–143
creating 131
effects 143–147

creating 143
important things to know

about 144–146
overview of 161
when to use 146

exercises 176
exercises for reader 151
future of 175–176

other features 176
signal-based components 175
signal inputs and

outputs 175
migrating to 173–175

more traditional Angular
applications 174

RxJS-heavy Angular
applications 173

nature of 159

observables vs. 134
everything is synchronous

134
reading value does not

affect application 134
unsubscription will be

automatic 134
value can always be read 134
value can be changed on

the fly 134
overview 131–134
propagation of changes

to 160–163
RxJS and interoperability

with 147–151
converting observables to

signals 147–149
converting signals to

observables 149
RxJS vs. 126–130
state management with

163–173
advanced interoperability

with RxJS 170–173
implementation 164–167
problems 167–170
task 163

testing 197
updating 132–133

setting signal value 132
updating signal value 133

Signal type 131–132
sizes attribute 98
@SkipSelf decorator 69
SkipSelf decorator 69
SPA (single-page application)

213
SSR vs. 218

srcsets 98–100
--ssr option 228
SSR (server-side rendering)

212, 228–235, 240, 242
building Angular apps with

SSR from scratch 218
building components in SSR

Angular application 223
client-side hydration 231–233
HTTP caching 228–230
prerendering 233–235
running SSR Angular

application 221
SPA vs. 218

INDEX 283

standalone apps
developing apps without

NgModules 27–34
standalone components and

providing dependencies
31–34

standalone components 19
creating 27–31
exercises for reader 46
importing NgModules into 28
importing standalone direc-

tives into 29
lazy-loading 34–42

into another component
39–42

providing dependencies
only to certain routes 38

several standalone compo-
nents 36

single standalone compo-
nent 35

with NgModules 34
migrations and common

pitfalls 42–45
handling circular depen-

dencies 45
migrating by hand 42
migrating with schematic

command 44
using SCAMs 43

previous solutions 24–27
hierarchic shared

modules 25
SCAMs 26–27

providing dependencies
31–34

providing services in 30
reasons for abandoning

NgModules 20–24
indirectness and

boilerplate 22–24
learning and teaching

20–22
other concerns 24

routing 31–34
standalone directives, importing

into standalone
components 29

startsWith operator 129
state management 163–173

advanced interoperability with
RxJS 170–173

implementation 164–167
problems 167–170
RxJS-based custom state

management 173
task 163

static websites 239
structural directives 251
@switch directive 249
@switch syntax 252

T

take operator 108
takeUntilDestroyed

function 113–114
takeUntilDestroyed

operator 111–113, 115,
124, 169

takeUntil operator 108, 113
takeWhile operator 108
tap operator 173
template syntax 241–252

@for loops 246–249
migrating to new 251
ngIf directive 242–246
@switch directive 249

TestBed.configureTestingMod-
ule command 189

testing
Angular components 185
unit testing

providing mock dependen-
cies 188

running unit tests 186
test runners

choosing 182
setting up 182–185

third-party tools, installing 185
mocking dependencies 185
testing Angular

components 185
TimeOffComponent 135–137
TimeOffManagementComponent

135, 170, 172, 202
TimeOffManagementService

167
title property 187
toObservable function 149–150
toSignal function 147–150, 158,

164, 167
trackBy function 246, 251
TTFB (time-to-first-byte) 235

type-safe reactive forms 92–96
form events 96
migrating to 95
overview of 93
pitfalls of 94
untyped forms 92

U

unit testing 61, 178–179
AI-powered tools 204–209

ChatGPT 204–208
GitHub Copilot 208–209

benefits of 180
continuous integration and

deployment 181
earlier bug detection 180
easier refactoring 180
overall improvement of

application design 181
configuring testing

environment 181–186
choosing test runner 182
installing third-party

tools 185
setting up test runner

182–185
defined 179
exercises 210
future of 209
overview of 186
prerequisites for 179
providing mock

dependencies 188
running unit tests 186
testing components 190

with Angular’s built-in
tools 190

with Angular testing
library 191

testing services 194
testing signals 197

UnlessDirective 102
unsubscribe method 107
unsubscribing from

observables 106–115
DestroyRef 108–111
problems with 107
reasons for 107
takeUntilDestroyed

operator 111–115
unsubscription 140

INDEX284

untyped forms 92
update method 133, 137, 268
UserBadgeComponent 102
UserModel class 54
UtilityService class 54

V

valueChanges observable 109
viewChild function 270
ViewChildren 270
views, deferrable 252–259

customizing deferred
loading 257

loading and error
states 257

prefetching 258
deferring depending on con-

dition or trigger 254–257
deferring simple

components 252
Vite 236

W

width/height 97
window object 226
withComponentInputBinding

option 82
withHttpTransferCacheOptions

230
withInterceptorsFromDi

function 68
WritableSignal 131–132, 140,

148

X

XMLHttpRequest API 100

Z

zoneless Angular applications,
change detection and
259–275

ChangeDetectionStrategy.On
Push 263

granular change
detection 265–273

local change detection
265

model properties 270
need for improvement 262
need for Zone.js 260
overview 259
preparing for zoneless 274
signal-based components and

Zoneless applications
271–273

signal-based ViewChildren
and ContentChildren
270

signal inputs 266–268
signal outputs 268–270
zoneless scheduler for

change detection
273–275

Important parameters for creating a new Angular project

Parameter Description
Default
value

--strict Enables strict type-checking in both templates and TypeScript files True

--inline-
template

Makes component templates inline by default. With the rise of stand-
alone components, this approach has become very popular. Throughout
the book, we will show whole components with inline templates to
ensure maximum readability, but this is not considered either a good or
bad practice and depends on developer preference.

False

--minimal Creates a project without any testing-related files. This is good for learn-
ing, but we are not going to use it, as we also cover unit testing in this
book; if you want to see a simplified version of the project tree, feel free
to use this option.

False

--package-
manager

Allows us to select which package manager to use (if we do not like npm
for whatever reason) in the project. Angular CLI commands like ng add
or ng update will use this option under the hood to install and update
dependencies. We will stick to the default in this book, but you are wel-
come to explore other options.

npm

--standalone This option is the most important for us, as it creates an application
without NgModules by default, as it does with modern-day Angular apps.
We will use this one outright.

True

–defaults Skips the prompt questions and uses default values without asking.
For example, it will generate an Angular routing, use CSS for styles,
and so on.

False

Armen Vardanyan

M
odern web applications have to handle serious chall-
enges, such as complex state management, reactive
programming, and SEO. With a host of new features,

ecosystem tools, and programming practices, the Angular web
framework tackles modern web development head on. If you
haven’t tried modern Angular, you’re in for a treat!

Modern Angular updates your web development skills to take
advantage of new Angular features like signals, server-side ren-
dering, and zoneless change detection. Each chapter explores
an exciting capability by adding it hands-on to a full-featured
app for managing HR systems. Along the way, you’ll explore
dependency injection, RxJS, and standalone components, and
pick up techniques for upgrading legacy apps.

What’s Inside
● Advanced testing strategies
● RxJS and custom operators
● Performance and search engine optimization
● Migrate legacy Angular projects

For experienced Angular developers. Covers Angular versions
12 and later.

Armen Vardanyan is a developer, educator, and Google Deve-
loper Expert for Angular. He writes articles about Angular,
TypeScript, NgRx, and is a panelist for the popular Adventures
in Angular podcast.

For print book owners, all digital formats are free:
https://www.manning.com/freebook

Modern Angular

SOFTWARE DEVELOPMENT

M A N N I N G

“Th e best and most up-to
-date Angular book on

 the market!”
—Lars Gyrup Brink Nielsen,
Angular Hero of Education,

 Co-founder of Th is is Angular

“Sheds light on the essence of
what makes Angular great.”

—Peter Szabo, AgileWare

“Th e best source you can fi nd
today for staying at the forefront

of web development.”—Enrique Carro García
GMV Aerospace and Defence

“Whether you’re an
experienced developer or

a newcomer, this book is your
 ultimate guide!”—Daniel Glejzner, founder of

Angular Space, Nx Champion

ISBN-13: 978-1-63343-692-3

See first page

	Modern Angular
	contents
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized: A road map
	About the code
	liveBook discussion forum

	about the author
	about the cover illustration
	1 Welcome to modern Angular
	1.1 What to expect
	1.1.1 Who will benefit from reading this book?
	1.1.2 What do we need to know before getting started?
	1.1.3 How is the book structured?
	1.2 How Angular was
	1.2.1 Angular’s core features
	1.2.2 What is an Angular application?
	1.3 Let’s start a modern Angular app
	1.3.1 Using the Angular CLI
	1.3.2 Creating a new project
	1.3.3 What changed?
	1.4 What’s new in Angular?
	1.4.1 How does Angular evolve?
	1.4.2 How does Angular recognize problems?
	1.4.3 Current goals
	1.4.4 New features
	1.4.5 What about the future?
	1.4.6 The learning process
	Summary

	2 A standalone future
	2.1 Why abandon NgModules?
	2.1.1 Hard to learn, hard to explain
	2.1.2 Indirectness and boilerplate
	2.1.3 Other concerns with NgModules
	2.2 Previous solutions
	2.2.1 Hierarchic shared modules
	2.2.2 Enter SCAMs
	2.3 Developing apps without NgModules
	2.3.1 Creating our first standalone component
	2.3.2 Routing standalone components and providing dependencies
	2.4 Lazy-loading components
	2.4.1 Lazy-loading with NgModules
	2.4.2 Lazy-loading a single standalone component
	2.4.3 Lazy-loading several standalone components
	2.4.4 Providing dependencies only to certain routes
	2.4.5 Lazy-loading a component into another component
	2.5 Migrations and common pitfalls
	2.5.1 Migrating by hand
	2.5.2 Using SCAMs
	2.5.3 Migrating with a schematic command
	2.5.4 Handling circular dependencies
	2.6 Exercises for the reader
	Summary

	3 Revitalized dependency injection
	3.1 How does dependency injection work?
	3.1.1 Why do we need DI?
	3.1.2 Let’s build a primitive DI mechanism
	3.1.3 Dependency injection the Angular way
	3.1.4 Injection contexts
	3.2 The inject function
	3.2.1 Another way of injecting dependencies
	3.2.2 Injecting dependencies outside classes
	3.2.3 Why we should always use inject
	3.2.4 What about the drawbacks?
	3.3 Functional guards, resolvers, and interceptors
	3.3.1 Building an AuthGuard
	3.3.2 Building an EmployeeResolver
	3.3.3 Adding tokens to HTTP requests
	3.3.4 Migrating to functional guards/resolvers/interceptors
	3.4 DI deep dive
	3.4.1 DI lookup and how to modify it
	3.4.2 Truncating text with DI
	3.5 Exercises for the reader
	Summary

	4 New capabilities of Angular building blocks
	4.1 Powerful inputs
	4.1.1 Required inputs
	4.1.2 Transforming input values
	4.1.3 Binding routing parameters to input properties
	4.1.4 Inputs for dynamic components
	4.2 Host directives
	4.2.1 Extending existing directives
	4.2.2 Using multiple directives and adding inputs
	4.2.3 Things to know when using host directives
	4.3 Type-safe reactive forms
	4.3.1 Downsides of using untyped forms
	4.3.2 Introducing type-safe forms
	4.3.3 Common pitfalls when working with type-safe forms
	4.3.4 Migrating to type-safe forms
	4.3.5 Form events
	4.4 NgOptimizedImage
	4.4.1 Adding lazy loading and remembering to set width/height
	4.4.2 Prioritizing image loading
	4.4.3 Srcsets and image loaders
	4.5 Other improvements
	4.5.1 Self-closing component tags
	4.5.2 Fetch-based HttpClient
	4.5.3 Support for default export components in routing
	4.5.4 Improved error messages
	4.6 Exercises for the reader
	Summary

	5 RxJS in modern Angular
	5.1 What is reactive programming?
	5.2 Why we (still) need RxJS
	5.3 Unsubscribing from observables
	5.3.1 Why unsubscribe?
	5.3.2 Problems with unsubscribing
	5.3.3 Introducing DestroyRef
	5.3.4 The takeUntilDestroyed operator
	5.4 Writing our own custom RxJS operators
	5.4.1 What is an RxJS operator?
	5.4.2 How do operators work?
	5.4.3 Building custom operators
	5.5 Exercises for the reader
	Summary

	6 Signals: A new approach to reactive programming
	6.1 Why go beyond RxJS?
	6.1.1 What are the problems with RxJS?
	6.1.2 What must the solution look like?
	6.2 What is a signal?
	6.2.1 Creating signals
	6.2.2 Updating signals
	6.2.3 Creating signals vs. observables
	6.3 Building Angular components with signals
	6.3.1 Creating TimeOffComponent
	6.3.2 Handling signals in Angular components
	6.4 Computed signals
	6.4.1 Creating computed signals
	6.4.2 Simplifying complex logic in Angular components using computed signals
	6.5 Effects
	6.5.1 Creating effects
	6.5.2 Important things to know about effects
	6.5.3 When to use effects
	6.6 RxJS and signals interoperability
	6.6.1 Converting observables to signals
	6.6.2 Converting signals to observables
	6.7 Exercises for the reader
	Summary

	7 Signals: A deep dive
	7.1 Advanced options when dealing with signals
	7.1.1 Signal equality
	7.1.2 Untracking dependencies
	7.1.3 Manual cleanup
	7.1.4 Readonly signals and synchronizing with RxJS
	7.2 Signals under the hood
	7.2.1 The nature of signals
	7.2.2 How changes to signals propagate
	7.3 State management with signals
	7.3.1 State management: The task
	7.3.2 State management: The implementation
	7.3.3 State management: The problems
	7.3.4 Advanced interoperability with RxJS
	7.4 Migrating to signals
	7.4.1 Migrating RxJS-heavy Angular applications
	7.4.2 Migrating more traditional Angular applications
	7.5 The future of signals
	7.5.1 Signal-based components
	7.5.2 Signal inputs and outputs
	7.5.3 Everything else
	7.6 Exercises for the reader
	Summary

	8 Unit testing in modern Angular
	8.1 Unit testing: The what and the why
	8.1.1 Prerequisites
	8.1.2 What is a unit test?
	8.1.3 Why do we want unit tests?
	8.2 Configuring a testing environment
	8.2.1 Choosing a test runner
	8.2.2 Setting up the test runner
	8.2.3 Installing third-party tools
	8.3 Running Angular unit tests
	8.3.1 What do unit tests look like?
	8.3.2 Providing mock dependencies
	8.3.3 Testing components
	8.3.4 Testing services
	8.3.5 Testing signals
	8.4 Powers of AI with Angular unit tests
	8.4.1 Unit testing Angular applications with ChatGPT
	8.4.2 Unit testing Angular applications with GitHub Copilot
	8.5 The future of unit testing in Angular
	8.6 Exercises for the reader
	Summary

	9 Modern Angular everywhere
	9.1 What is server-side rendering?
	9.1.1 SSR: The what
	9.1.2 SSR: The why
	9.1.3 SSR: The how
	9.2 Building Angular apps with SSR from scratch
	9.2.1 How is an SSR Angular application different from a SPA?
	9.2.2 Running an SSR Angular application
	9.2.3 Building components in an SSR Angular application
	9.3 Improving Angular SSR
	9.3.1 HTTP caching
	9.3.2 Client-side hydration
	9.3.3 Prerendering
	9.4 Building an Angular application
	9.4.1 What does building an Angular application mean?
	9.4.2 ESBuild and Vite
	9.4.3 Configuring environments for Angular applications
	9.4.4 Preparing to deploy Angular applications
	9.5 Exercises for the reader
	Summary

	10 What’s next in modern Angular?
	10.1 New template syntax
	10.1.1 Goodbye ngIf!
	10.1.2 Hello @for!
	10.1.3 @switch
	10.1.4 Migrating to the new template syntax
	10.2 Deferrable views
	10.2.1 Deferring a simple component
	10.2.2 Deferring depending on a condition or trigger
	10.2.3 Customizing deferred loading
	10.3 Zoneless Angular applications
	10.3.1 How change detection works in Angular
	10.3.2 Why change detection in Angular needs to improve
	10.3.3 ChangeDetectionStrategy.OnPush
	10.3.4 Introducing granular change detection
	10.3.5 Zoneless scheduler for change detection
	10.4 In other news
	Summary

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Adobe Gray - 20% Dot Gain)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /RUS <FEFF005b041d04300020043e0441043d043e043204350020044104420438043b044f00200027005000720069006e00650072006700790020005000610067006500730027005d0020005b041d04300020043e0441043d043e043204350020044104420438043b044f00200027005000720069006e00650072006700790020005000610067006500730027005d0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

