

Modern Full-Stack React Projects

Build, maintain, and deploy modern web apps using
MongoDB, Express, React, and Node.js

Daniel Bugl

Modern Full-Stack React Projects
Copyright © 2024 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Rohit Rajkumar
Publishing Product Manager: Kushal Dave
Book Project Manager: Aishwarya Mohan
Senior Editor: Rakhi Patel
Technical Editor: K Bimala Singha
Copy Editor: Safis Editing
Indexer: Pratik Shirodkar
Production Designer: Prashant Ghare
DevRel Marketing Coordinators: Anamika Singh and Nivedita Pandey

First published: June 2024

Production reference: 1090524

Published by Packt Publishing Ltd.
Grosvenor House
11 St Paul’s Square
Birmingham
B3 1RB, UK

ISBN 978-1-83763-795-9

www.packtpub.com

http://www.packtpub.com

To my family and friends, for supporting me during the creation of this book.

To my parents, who have supported me throughout my whole life.

To my co-founder, Georg Schelkshorn, and my business partner, Matthias Zronek, who always
challenge me and continually inspire my growth. Thank you for taking care of business while I was

writing this book.

To my amazing girlfriend, Junxian Wang, for improving my life in many ways, for making me more
productive, and for always taking care of me. I love you so much.

Without all of you, this book would not have been possible.

– Daniel Bugl

Contributors

About the author
Daniel Bugl is a full-stack developer, product designer, and entrepreneur focusing on web technologies.
He has a Bachelor of Science degree in business informatics and information systems and a Master of
Science degree in data science from the Vienna University of Technology (TU Wien). He is a contributor
to many open source projects and a member of the React community. He also founded and runs his
own hardware/software start-up, TouchLay, which helps other companies present their products and
services. At his company, he constantly works with web technologies, particularly making use of
React and Next.js. In the past couple of years, he has, together with Georg Schelkshorn and Matthias
Zronek, worked as a technical advisor and full-stack developer for large enterprises and the public
sector, among other things working on citizen services for the Austrian government.

I want to thank the people involved in the production of this book; my co-founder, Georg Schelkshorn;
my business partner, Matthias Zronek; my family and friends; and my girlfriend, Junxian Wang.

About the reviewers
Matthias Zronek is a senior software engineer and technical advisor with more than 20 years of
professional experience. He loves coding and is passionate about every new programming language
he learns. His current focus is on the development of full-stack web frameworks to enable frontend
teams to create scalable and sustainable web applications using React and TypeScript. In his free time,
he writes highly optimized applications for PC benchmarking in C++ or tries to reverse-engineer
interesting binaries. If he is not in front of a (disassembled) computer, he spends time with his loving
wife, their newborn son, and their fascinatingly weird cat.

Georg Schelkshorn is a full-stack React enthusiast with excitement for DevOps and crafting user-friendly
interfaces. Alongside Daniel Bugl, he co-manages TouchLay, a company specializing in interactive
hardware and software solutions as well as advising enterprises on successfully implementing modern
web projects. Through many challenging projects, he has gained deep knowledge of what makes a
full-stack React project work at scale. Georg loves diving into new areas of learning and hopes you’ll
enjoy exploring this book’s learning journey.

Kirill Ezhemenskii is a visionary CTO who leads a healthcare company with cutting-edge software
solutions. He is a master of functional programming and a guru of modern web and mobile development.
He leverages the power of React, Next.js, GraphQL, and TypeScript to create stunning and performant
applications that run on any platform. He is also a generous mentor who shares his expertise and
passion for React Native with aspiring developers.

Foreword

I met Daniel for the first time 14 years ago. He is a close friend of my wife’s family, so he was often
invited to family gatherings. Back then, Daniel was already a bright young mind with a curiosity for
everything. One day, he excitedly asked me to visit his “lab” – simply a room in the family’s basement
back then – to show me his latest project. Together with my wife’s cousin, he had built a touch table
out of a wooden box. It was an early prototype, but already fully functional. Daniel was only 13 years
old at that time. The years passed and I saw him diving into web development, creating a successful
business and adopting React as early as 2015.

Today, Daniel is the same age as I was back then and I am honored to review his third book. I have
also been very fortunate to work closely with Daniel for the past five years on corporate React projects.
This book reflects his well-structured approach to the challenges of enterprise web applications. He
carefully extracts the essence of complex concepts and presents them so clearly, that even the most
difficult chapters in this book will feel manageable. The provided source code prevents you from
getting sidetracked by unnecessary details.

Daniel starts your journey by handing you the basic tools you need to create a modern full-stack React
project from scratch. Every step is guided and thoroughly explained. Later on, as chapters get more
and more challenging, the focus will shift away from the basics, giving your newly learned skills the
chance to fill the gaps. That’s why it is important to work through the basics as well, so you can focus
on the advanced topic at hand.

Five years ago, I was where you, the reader, are right now. I was eager to learn full-stack React but
didn’t know where to start. I had the chance to learn from Daniel directly. With this book, you finally
have that chance as well.

Matthias Zronek
Senior Software Engineer and Technical Advisor

Preface� xvii

Part 1: Getting Started with Full-Stack
Development�

1
Preparing for Full-Stack Development� 3

Technical requirements� 3
Motivation to become a full-stack
developer� 4
What is new in this release of Full-
Stack React Projects?� 4
Getting the most out of this book� 4

Setting up the development
environment� 5
Installing VS Code and extensions� 5
Setting up a project with Vite� 8
Setting up ESLint and Prettier to enforce best
practices and code style� 11
Setting up Husky to make sure we commit
proper code� 16

Summary� 20

2
Getting to Know Node.js and MongoDB� 21

Technical requirements� 21
Writing and running scripts with
Node.js� 22
Similarities and differences between
JavaScript in the browser and in Node.js� 22
Creating our first Node.js script� 23
Handling files in Node.js� 24

Concurrency with JavaScript in the browser
and Node.js� 25
Creating our first web server� 28
Extending the web server to serve our JSON file� 29

Introducing Docker, a platform for
containers� 30
The Docker platform� 31

Table of Contents

Table of Contentsviii

Installing Docker� 32
Creating a container� 32
Accessing Docker via VS Code� 34

Introducing MongoDB, a document
database� 34
Setting up a MongoDB server� 37

Running commands directly on the database� 38
Accessing the database via VS Code� 42

Accessing the MongoDB database
via Node.js� 45
Summary� 47

Part 2: Building and Deploying Our First
Full-Stack Application with a REST API�

3
Implementing a Backend Using Express, Mongoose ODM, and Jest� 51

Technical requirements� 51
Designing a backend service� 52
Creating the folder structure for our backend
service� 53

Creating database schemas using
Mongoose� 55
Defining a model for blog posts� 56
Using the blog post model� 57
Defining creation and last update dates in the
blog post� 59

Developing and testing service
functions� 60
Setting up the test environment� 60
Writing our first service function: createPost� 63

Defining test cases for the createPost service
function� 64
Defining a function to list posts� 66
Defining test cases for list posts� 67
Defining the get single post, update and
delete post functions� 71
Using the Jest VS Code extension� 74

Providing a REST API using Express� 75
Defining our API routes� 77
Setting up Express� 77
Using dotenv for setting environment variables� 79
Using nodemon for easier development� 81
Creating our API routes with Express� 83

Summary� 90

4
Integrating a Frontend Using React and TanStack Query� 91

Technical requirements� 91
Principles of React� 92
Setting up a full-stack React project� 93

Creating the user interface for our
application� 94
Component structure� 95
Implementing static React components� 97

Table of Contents ix

Integrating the backend service
using TanStack Query� 106
Setting up TanStack Query for React� 107
Fetching blog posts� 108

Implementing filters and sorting� 110
Creating new posts� 114

Summary� 118

5
Deploying the Application with Docker and CI/CD� 119

Technical requirements� 119
Creating Docker images� 120
Creating the backend Dockerfile� 120
Creating a .dockerignore file� 122
Building the Docker image� 122
Creating and running a container from our
image� 123
Creating the frontend Dockerfile� 124
Creating the .dockerignore file for
the frontend� 126
Building the frontend Docker image� 126
Creating and running the frontend container� 127
Managing multiple images using Docker
Compose� 127
Cleaning up unused containers� 129

Deploying our full-stack application
to the cloud� 130
Creating a MongoDB Atlas database� 130

Creating an account on Google Cloud� 131
Deploying our Docker images to a Docker
registry� 132
Deploying the backend Docker image to
Cloud Run� 134
Deploying the frontend Docker image to
Cloud Run� 135

Configuring CI to automate testing� 136
Adding CI for the frontend� 137
Adding CI for the backend� 138

Configuring CD to automate the
deployment� 141
Getting Docker Hub credentials� 141
Getting Google Cloud credentials� 141
Defining the deployment workflow� 142

Summary� 146

Part 3: Practicing Development of Full-Stack
Web Applications�

6
Adding Authentication with JWT� 149

Technical requirements� 149
What is JWT?� 150
JWT header� 150

JWT payload� 151
JWT signature� 152
Creating a JWT� 152

Table of Contentsx

Using JWT� 153
Storing JWT� 155

Implementing login, signup, and
authenticated routes in the backend
using JWTs� 155
Creating the user model� 155
Creating the signup service� 156
Creating the signup route� 157
Creating the login service� 158
Creating the login route� 160
Defining authenticated routes� 162
Accessing the currently logged-in user� 164

Integrating login and signup in the
frontend using React Router and JWT�166
Using React Router to implement multiple
routes� 166
Creating the signup page� 168
Linking to other routes using the Link
component� 170
Creating the login page and storing the JWT� 172
Using the stored JWT and implementing a
simple logout� 174
Fetching the usernames� 175
Sending the JWT header when creating posts� 178

Advanced token handling� 180
Summary� 181

7
Improving the Load Time Using Server-Side Rendering� 183

Technical requirements� 183
Benchmarking the load time of our
application� 184
Rendering React components on the
server� 191
Setting up the server� 193
Defining the server-side entry point� 196
Defining the client-side entry point� 196

Updating index.html and package.json� 197
Making React Router work with server-side
rendering� 198

Server-side data fetching� 204
Using initial data� 204
Using hydration� 205

Advanced server-side rendering� 209
Summary� 212

8
Making Sure Customers Find You with Search Engine
Optimization� 213

Technical requirements� 213
Optimizing an application for search
engines� 214
Creating a robots.txt file� 215
Creating separate pages for posts� 216

Creating meaningful URLs (slugs)� 221
Adding dynamic titles� 222
Adding other meta tags� 223
Creating a sitemap� 226

Table of Contents xi

Improving social media embeds� 229
Open Graph meta tags� 229

Using the OG article meta tags� 230

Summary� 232

9
Implementing End-to-End Tests Using Playwright� 233

Technical requirements� 233
Setting up Playwright for
end-to-end testing� 234
Installing Playwright� 234
Preparing the backend for end-to-end testing� 235

Writing and running
end-to-end tests� 237
Using the VS Code extension� 238

Reusable test setups using fixtures� 244
Overview of built-in fixtures� 245
Writing our own fixture� 245
Using custom fixtures� 247

Viewing test reports and running in
CI� 248
Viewing an HTML report� 248
Running Playwright tests in CI� 250

Summary� 251

10
Aggregating and Visualizing Statistics Using MongoDB
and Victory� 253

Technical requirements� 254
Collecting and simulating events� 254
Creating the event model� 254
Defining a service function and route to track
events� 255
Collecting events on the frontend� 257
Simulating events� 258

Aggregating data with MongoDB� 262
Getting the total number of views per post� 262
Getting the number of daily views per post� 264
Calculating the average session duration� 266

Implementing data aggregation in
the backend� 268
Defining aggregation service functions� 268
Defining the routes� 271

Integrating and visualizing data on
the frontend using Victory� 272
Integrating the aggregation API� 273
Visualizing data using Victory� 275

Summary� 279

Table of Contentsxii

11
Building a Backend with a GraphQL API� 281

Technical requirements� 281
What is GraphQL?� 282
Mutations� 284

Implementing a GraphQL API in a
backend� 285
Implementing fields that query posts� 287
Defining the Post type� 289
Defining the User type� 290
Trying out deeply nested queries� 291
Implementing input types� 294

Implementing GraphQL
authentication and mutations� 296
Adding authentication to GraphQL� 296
Implementing mutations� 297
Using mutations� 299

Overview of advanced GraphQL
concepts� 301
Fragments� 302
Introspection� 303

Summary� 303

12
Interfacing with GraphQL on the Frontend Using Apollo Client� 305

Technical requirements� 305
Setting up Apollo Client and making
our first query� 306
Querying posts from the frontend using
GraphQL� 307
Resolving author usernames in a single query� 310

Using variables in GraphQL queries� 312

Using fragments to reuse parts of queries� 312

Using mutations on the frontend� 314
Migrating login to GraphQL� 316
Migrating create post to GraphQL� 317

Summary� 320

Part 4: Exploring an Event-Based Full-Stack
Architecture�

13
Building an Event-Based Backend Using Express and Socket.IO� 323

Technical requirements� 323 What are event-based applications?� 324
What are WebSockets?� 325

Table of Contents xiii

What is Socket.IO?� 326
Connecting to Socket.IO� 326
Emitting and receiving events� 327

Setting up Socket.IO� 328
Setting up a simple Socket.IO client� 329

Creating a backend for a chat app
using Socket.IO� 331
Emitting events to send chat messages from
the client to the server� 331

Broadcasting chat messages from the server
to all clients� 332
 Joining rooms to send messages in� 333
Using acknowledgments to get information
about a user� 334

Adding authentication by
integrating JWT with Socket.IO� 336
Summary� 340

14
Creating a Frontend to Consume and Send Events� 341

Technical requirements� 341
Integrating the Socket.IO client
with React� 342
Cleaning up the project� 342
Creating a Socket.IO context� 343
Hooking up the context and displaying
the status� 346
Disconnecting socket on logout� 350

Implementing chat functionality� 350
Implementing the chat components� 351
Implementing a useChat hook� 352
Implementing the ChatRoom component� 354

Implementing chat commands with
acknowledgments� 356
Summary� 358

15
Adding Persistence to Socket.IO Using MongoDB� 359

Technical requirements� 359
Storing and replaying messages
using MongoDB� 360
Creating the Mongoose schema� 360
Creating the service functions� 361
Storing and replaying messages� 361
Visually distinguishing replayed messages� 363

Refactoring the app to be more
extensible� 365
Defining service functions� 365
Refactoring the Socket.IO server to use the
service functions� 367
Refactoring the client-side code� 368

Implementing commands to join and
switch rooms� 370
Summary� 373

Table of Contentsxiv

Part 5: Advancing to Enterprise-Ready Full-Stack
Applications�

16
Getting Started with Next.js� 377

Technical requirements� 378
What is Next.js?� 378
Setting up Next.js� 379
Introducing the App Router� 382
Defining the folder structure� 384

Creating static components
and pages� 386
Defining components� 386
Defining pages� 390
Adding links between pages� 392

Summary� 395

17
Introducing React Server Components� 397

Technical requirements� 397
What are RSCs?� 398
Adding a data layer to our
Next.js app� 402
Setting up the database connection� 403
Creating the database models� 404
Defining data layer functions� 405

Using RSCs to fetch data from the
database� 409
Fetching a list of posts� 409

Fetching a single post� 410

Using Server Actions to sign up,
log in, and create new posts� 412
Implementing the signup page� 413
Implementing the login page and JWT
handling� 416
Checking if the user is logged in� 418
Implementing logout� 419
Implementing post creation� 421

Summary� 422

18
Advanced Next.js Concepts and Optimizations� 423

Technical requirements� 423
Defining API routes in Next.js� 424
Creating an API route for listing blog posts� 424

Caching in Next.js� 426
Exploring static rendering in API routes� 428
Making the route dynamic� 430

Table of Contents xv

Caching functions in the data layer� 430
Revalidating the cache via Server Actions� 433
Revalidating the cache via a Webhook� 434
Revalidating the cache periodically� 435
Opting out of caching� 436

SEO with Next.js� 436
Adding dynamic titles and meta tags� 436
Creating a robots.txt file� 437

Creating meaningful URLs (slugs)� 438
Creating a sitemap� 439

Optimized image and font loading
in Next.js� 440
The Font component� 440
The Image component� 442

Summary� 444

19
Deploying a Next.js App� 445

Technical requirements� 445
Deploying a Next.js app with Vercel� 446
Setting environment variables in Vercel� 447

Creating a custom deployment setup
for Next.js apps� 451
Summary� 454

20
Diving Deeper into Full-Stack Development� 455

Overview of other full-stack
frameworks� 455
Next.js� 456
Remix� 456
Gatsby� 457

Overview of UI libraries� 457
Material UI (MUI)� 458
Tailwind CSS� 458
React Aria� 458
NextUI� 458

Overview of advanced state
management solutions� 459
Recoil� 459

Jotai� 459
Redux� 459
MobX� 459
xstate� 460
Zustand� 460

Pointers on maintaining large-scale
projects� 460
Using TypeScript� 460
Setting up a Monorepo� 460
Optimizing the bundle size� 461

Summary� 461

Index� 463

Other Books You May Enjoy� 476

Preface

Hi there – I am Daniel, an entrepreneur, technical advisor, and full-stack developer with a focus on
technologies in the React ecosystem.

In my time as a technical advisor and developer for enterprises and the public sector, I have noticed
that more and more companies look to reduce the gap between frontend and backend developers.
Their business requirements often result in the need for a so-called “backend for frontend,” where
data is fetched from different backend systems and prepared in a way that can be easily displayed in
the frontend.

As an entrepreneur, I also have experience with starting new projects with smaller teams, where it is
essential that every developer on your team can do everything, not just the frontend or the backend.
In such cases, it often makes sense to develop the backend and frontend in the same language,
which is often JavaScript (or TypeScript), because there is a big ecosystem and a large number of
developers available.

In both cases, becoming a full-stack developer is getting increasingly more important. I have been
coaching developers to learn more about full-stack development for a long time and have noticed that
there are common issues and misunderstandings that most developers encounter when learning full-
stack development. In this book, I want to summarize all my learnings and teachings about full-stack
development, giving you pointers on where and how to learn more about the ever-growing ecosystem
of full-stack development in JavaScript.

Nowadays, many companies use a stack consisting of MongoDB, Express, React, and Node.js, called
the MERN stack. In this book, I will teach you how to build modern full-stack React applications by
using these technologies. I will teach these technologies from the ground up, using as few libraries as
possible, so that you can learn the essential concepts. This will allow you to adapt to new technologies
for years to come, even when the specific tools used in this book become outdated. Additionally, I
will teach about the deployment of apps and DevOps, as I found that this sector is often neglected
and there are not enough developers who know about it. In the last part of the book, I will introduce
Next.js as a full-stack framework and give an outlook on new developments in this sector, such as
React Server Components and Server Actions.

I hope you enjoy reading this book. If you have any questions or feedback, feel free to reach out to me!

Prefacexviii

Who this book is for
This book is for developers who already have experience with React and want to learn how to create,
integrate, and deploy various backend systems to become a full-stack developer. You should already
have a good understanding of JavaScript and React, but do not need to have any prior knowledge of
the development, creation, integration, and deployment of backend systems. If you face one of the
following challenges, this book will be perfect for you:

•	 You know how to make a frontend with React but have no idea how to properly integrate it
with a backend

•	 You want to create a full-stack project from scratch but do not know how to

•	 You want to learn more about the deployment of apps and DevOps

•	 You want to learn more about modern React development, such as React Server Components,
Server Actions, and Next.js

This book will provide you with real-world projects and includes all the steps needed to become a
full-stack developer, including but not limited to backend development, frontend development, testing
(unit tests and end-to-end tests), and deployment.

What this book covers
Chapter 1, Preparing for Full-stack Development, gives a brief overview of the contents of the book
and teaches you how to set up a project that will be used as a basis for the development of your
full-stack projects.

Chapter 2, Getting to Know Node.js and MongoDB, provides information on how to write and run
scripts with Node.js. Then, it explains how to use Docker to set up a database service. It also introduces
MongoDB, a document database, and how to access the MongoDB database via Node.js.

Chapter 3, Implementing a Backend Using Express, puts into practice what you learned in Chapter 2
by creating a backend service. Express is used to provide a REST API, Mongoose ODM to interface
with MongoDB, and Jest to write unit tests for the backend code.

Chapter 4, Integrating a Frontend Using React and TanStack Query, provides instructions on how to
create a frontend that interfaces with the previously created backend service. It uses Vite to set up
a React project, in which we create a basic user interface. Then, it teaches you how to use TanStack
Query, a data-fetching library, to handle backend state and integrate the backend API with the frontend.

Chapter 5, Deploying the Application with Docker and CI/CD, deep-dives into DevOps by teaching you
about Docker and how to package an app with it. Then, it provides instructions on how to deploy an
app to a cloud provider and how to configure CI/CD to automate the deployment.

Preface xix

Chapter 6, Adding Authentication with JWT, teaches you about JSON Web Tokens, a way to add
authentication to web applications. It also provides instructions on how to set up multiple routes
using React Router.

Chapter 7, Improving the Load Time Using Server-Side Rendering, covers benchmarking an application
and teaches you about Web Vitals. Then, it gives instructions on how to implement a way to render
React components on a server from scratch and how to pre-fetch data on the server.

Chapter 8, Making Sure Customers Find You with Search Engine Optimization, focuses on how to optimize
an app to be found by search engines, such as Google or Bing. Additionally, it provides information
on how to create meta tags for easier integration with various social media sites.

Chapter 9, Implementing End-to-End Tests Using Playwright, introduces Playwright as a tool for writing
end-to-end tests, which automatically performs actions in an app to find out whether your code still
runs as designed after making changes. It also covers how to run Playwright in CI using GitHub Actions.

Chapter 10, Aggregating and Visualizing Statistics Using MongoDB and Victory, provides instructions on
how to collect events in an app. Then, it teaches you how to aggregate data with MongoDB to generate
summary statistics, such as the number of views or session duration. Finally, it covers creating graphs
to visualize those aggregated statistics using the Victory library.

Chapter 11, Building a Backend with a GraphQL API, introduces GraphQL as an alternative to REST
APIs, and you will learn when it is useful to use and how to implement it in a backend.

Chapter 12, Interfacing with GraphQL on the Frontend Using Apollo Client, teaches you how to use
Apollo Client on the frontend to interface with the previously implemented GraphQL backend.

Chapter 13, Building an Event-Based Backend Using Express and Socket.IO, introduces an event-based
architecture, which is useful for apps that deal with real-time data, such as collaborative applications
(Google Docs or an online whiteboard) or financial applications (Kraken crypto exchange). It teaches
you about WebSockets and how to use Socket.IO to implement an event-based backend.

Chapter 14, Creating a Frontend to Consume and Send Events, implements a frontend for the previously
created event-based backend and interfaces with it using Socket.IO.

Chapter 15, Adding Persistence to Socket.IO Using MongoDB, teaches you how to properly integrate a
database into an event-based app to persist (and later replay) events.

Chapter 16, Getting Started with Next.js, introduces Next.js as an enterprise-ready full-stack web
application framework for React. It highlights the differences between using a framework and a simple
bundler such as Vite. It also teaches you about the Next.js App Router, a new paradigm for defining
routes and pages.

Chapter 17, Introducing React Server Components, teaches you about a new concept in React, Server
Components, allowing you to directly integrate React apps with a database without needing a REST
or GraphQL API. Additionally, it teaches you about Server Actions, which allow you to call functions
on the server via the frontend.

Prefacexx

Chapter 18, Advanced Next.js Concepts and Optimizations, dives deeper into the Next.js framework,
providing information on how caching works in Next.js and how it can be used to optimize applications.
It also teaches you about defining API routes in Next.js and how to add metadata for search engine
optimization. Lastly, it teaches you how to optimally load images and fonts in Next.js.

Chapter 19, Deploying a Next.js App, teaches you two ways to deploy a Next.js app. The easiest way is
using the Vercel platform, with which we can quickly get our app up and running. However, it also
teaches you how to create a custom deployment setup using Docker.

Chapter 20, Diving Deeper into Full-stack Development, briefly covers various advanced topics that
have not been covered in this book yet. It starts with an overview of other full-stack frameworks and
then summarizes concepts such as maintaining large-scale projects, optimizing the bundle size, an
overview of UI libraries, and advanced state management solutions.

To get the most out of this book

Software/hardware covered in the book Operating system requirements
Node.js v20.10.0 Windows, macOS, or Linux
Git v2.43.0
Visual Studio Code v1.84.2
Docker v24.0.6
Docker Desktop v4.25.2
MongoDB Shell v2.1.0

If you are using the digital version of this book, we advise you to type the code yourself or access
the code from the book’s GitHub repository (a link is available in the next section). Doing so will
help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Modern-Full-Stack-React-Projects. If there’s an update to the
code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Code in Action
The Code in Action videos for this book can be viewed at https://packt.link/VINfo.

https://github.com/PacktPublishing/Modern-Full-Stack-React-Projects
https://github.com/PacktPublishing/Modern-Full-Stack-React-Projects
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://packt.link/VINfo

Preface xxi

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “First,
you need to create a robots.txt file to allow search engines whether they are allowed to crawl
parts of your website, and which parts they are allowed to crawl.”

A block of code is set as follows:

export const getPostById = async (postId) => {
  const res = await fetch(`${import.meta.env.VITE_BACKEND_URL}/
posts/${postId}`)
  return await res.json()
}

When we wish to draw your attention to a particular part of a code block, the relevant lines or items
are set in bold:

      {fullPost ? (
        <h3>{title}</h3>
      ) : (
        <Link to={`/posts/${_id}`}>
          <h3>{title}</h3>
        </Link>
      )}

Any command-line input or output is written as follows:

$ npm install node-emoji

Bold: Indicates a new term, an important word, or words that you see on screen. For instance, words in
menus or dialog boxes appear in bold. Here is an example: “Connect to the database, then expand the
Playgrounds section (if it is not expanded already) and click on the Create New Playground button.”

Tips or important notes
Appear like this.

Prefacexxii

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Share Your Thoughts
Once you’ve read Modern Full-Stack React Projects, we’d love to hear your thoughts! Please click here
to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
https://packt.link/r/1837637954
https://packt.link/r/1837637954

Preface xxiii

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/978-1-83763-795-9

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/978-1-83763-795-9

Part 1:
Getting Started with

Full-Stack Development

In this part, you will learn how to set up a project and tools for full-stack development. You will
also get to know and make the first steps with Node.js, Docker, and MongoDB. After this part, you
will have a basic project setup that can be used for further projects developed throughout this book.

This part includes the following chapters:

•	 Chapter 1, Preparing For Full-Stack Development

•	 Chapter 2, Getting to Know Node.js and MongoDB

1
Preparing for Full-Stack

Development

In this chapter, I am first going to give a brief overview of the contents of the book and explain why
the skills taught in this book are important in a modern development environment. Then, we will
jump into action and set up a project that will be used as a basis for the development of our full-stack
projects. At the end of this chapter, you will have an integrated development environment (IDE)
and project set up and ready for full-stack development and will understand which tools can be used
for setting up such projects.

In this chapter, we are going to cover the following main topics:

•	 Motivation to become a full-stack developer

•	 What is new in the third edition?

•	 Getting the most out of this book

•	 Setting up the development environment

Technical requirements
This chapter will guide you through setting up all the necessary technologies needed for developing
full-stack web applications throughout this book. Before we start, please install the following, if you
do not already have them installed:

•	 Node.js v20.10.0

•	 Git v2.43.0

•	 Visual Studio Code v1.84.2

Preparing for Full-Stack Development4

Those versions are the ones used in the book. While installing a newer version should not be an issue,
please note that certain steps might work differently on a newer version. If you are having an issue
with the code and steps provided in this book, please try using the mentioned versions.

You can find the code for this chapter on GitHub: https://github.com/PacktPublishing/
Modern-Full-Stack-React-Projects/tree/main/ch1.

The CiA video for this chapter can be found at: https://youtu.be/dyf3nECvKAE.

Important
If you cloned the full repository for the book, Husky may not find the .git directory when
running npm install. In that case, just run git init in the root of the corresponding
chapter folder.

Motivation to become a full-stack developer
Understanding full-stack development is becoming increasingly important, as companies seek to
increase the cooperation – and reduce the gap – between the frontend and the backend. The frontend
is becoming more deeply integrated with the backend, using technologies such as server-side
rendering. Throughout this book, we are going to learn about the development, integration, testing,
and deployment of full-stack projects.

What is new in this release of Full-Stack React Projects?
Unlike previous releases of Full-Stack React Projects, this new release focuses more on the integration
of the frontend with the backend than the previous two editions, and thus intentionally does not
focus so much on creating a user interface (UI) or using UI libraries, such as Material UI (MUI), on
the frontend. This edition gives the essential knowledge for integrating and deploying full-stack web
applications. The deployment of apps was missing completely from previous editions, and testing was
only briefly introduced. This edition focuses more on these essential parts of full-stack development
such that, after reading this book, you will be able to develop, integrate, test, and deploy a full-stack
web application.

Getting the most out of this book
To keep the book short and to the point, we are going to use specific technologies and tools. The concepts,
however, apply to other technologies as well. We will attempt to briefly introduce alternatives so that
if something is not a good fit for your project, you can pick and choose different tools. I recommend
first trying out the technologies introduced in this book to be able to follow the instructions, but do
not hesitate to try out the alternatives on your own later.

https://github.com/PacktPublishing/Modern-Full-Stack-React-Projects/tree/main/ch1
https://github.com/PacktPublishing/Modern-Full-Stack-React-Projects/tree/main/ch1
https://youtu.be/dyf3nECvKAE

Setting up the development environment 5

It is highly recommended that you write the code on your own. Do not simply run the code examples
that are provided. It is important to write the code yourself in order to learn and understand it properly.
However, if you run into any issues, you can always refer to the code examples.

With that said, let’s start with setting up our development environment in the next section.

Setting up the development environment
In this book, we are going to use Visual Studio Code (VS Code) as our code editor. Feel free to use
whichever editor you prefer, but keep in mind that the extensions used and settings configured may
be slightly different in the editor of your choice.

Let’s now install VS Code and useful extensions, and then continue setting up all the tools needed for
our development environment.

Installing VS Code and extensions

Before we can get started developing and setting up the other tools, we need to set up our code editor
by following these steps:

1.	 Download VS Code for your operating system from the official website (at the time of writing,
the URL is https://code.visualstudio.com/). We are going to use version 1.84.2
in this book.

2.	 After downloading and installing the application, open it, and you should see the following window:

Figure 1.1 – A fresh installation of VS Code (on macOS)

https://code.visualstudio.com/

Preparing for Full-Stack Development6

3.	 To make things easier later, we are going to install some extensions, so click on the Extensions
icon, which is the fifth icon from the top on the left in the screenshot. A sidebar should open,
where you will see Search Extensions in Marketplace at the top. Enter an extension name here
and click on Install to install it. Let’s start by installing the Docker extension:

Figure 1.2 – Installing the Docker extension in VS Code

4.	 Install the following extensions:

	� Docker (by Microsoft)

	� ESLint (by Microsoft)

	� Prettier – Code formatter (by Prettier)

	� MongoDB for VS Code (by MongoDB)

Support for JavaScript and Node.js already comes built-in with VS Code.

5.	 Create a folder for the projects made in this book (for example, you can call it Full-Stack-
React-Projects). Inside this folder, create a new folder called ch1.

6.	 Go to the Files tab (first icon from top) and click the Open Folder button to open the empty
ch1 folder.

Setting up the development environment 7

7.	 If you get a dialog asking Do you trust the authors of the files in this folder?, check Trust
the authors of all files in the parent folder ‘Full-Stack-React-Projects’ and then click on the
Yes, I trust the authors button.

Figure 1.3 – Allowing VS Code to execute files in our project folder

Tip
You can safely ignore this warning in your own projects, as you can be sure that those do not
contain malicious code. When opening folders from untrusted sources, you can press No, I
don’t trust the authors, and still browse the code. However, when doing so, some features of
VS Code will be disabled.

We have now successfully set up VS Code and are ready to start setting up our project! If you
have cloned the folder from the GitHub code examples provided, a notification telling you that
a Git repository was found will also pop up. You can simply close this one, as we only want to
open the ch1 folder.

Now that VS Code is ready, let’s continue by setting up a new project with Vite.

Preparing for Full-Stack Development8

Setting up a project with Vite

For this book, we are going to use Vite to set up our project, as it is the most popular and liked
according to The State of JS 2022 survey (https://2022.stateofjs.com/). Vite also makes
it easy to set up a modern frontend project, while still making it possible to extend the configuration
later if needed. Follow these steps to set up your project with Vite:

1.	 In the VS Code menu bar, go to Terminal | New Terminal to open a new Terminal.

2.	 Inside the Terminal, run the following command:

$ npm create vite@5.0.0 .

Make sure there is a period at the end of the command to create the project in the current
folder instead of creating a new folder.

Note
To keep the instructions in this book working even when new versions are released, we pin
all packages to a fixed version. Please follow the instructions with the given versions. After
finishing this book, when starting new projects on your own, you should always try using the
latest versions but keep in mind that changes might be needed to get them working. Consult
the documentation of the respective packages and follow the migration path from the book
version to the latest version.

3.	 When asked if create-vite should be installed, simply type y and press the Return/Enter
key to proceed.

4.	 When asked about the framework, use the arrow keys to select React and press Return. If you
are being asked for a project name, press Ctrl + C to cancel, then run the command again,
making sure there is a period at the end to select the current folder.

5.	 When asked about the variant, select JavaScript.

6.	 Now, our project is set up and we can run npm install to install the dependencies.

https://2022.stateofjs.com/

Setting up the development environment 9

7.	 Afterward, run npm run dev to start the dev server, as shown in the following screenshot:

Figure 1.4 – The Terminal after setting up a project with Vite and before starting the dev server

Note
For simplicity in setting up, we just used npm directly. If you prefer yarn or pnpm, you can
instead run yarn create vite or pnpm create vite, respectively.

8.	 In the Terminal, you will see a URL telling you where your app is running. You can either hold
Ctrl (Cmd on macOS) and click on the link to open it in your browser, or manually enter the
URL in a browser.

Preparing for Full-Stack Development10

9.	 To test whether your app is interactive, click the button with the text count is 0, and it should
increase the count every time it is pressed.

Figure 1.5 – Our first React app running with Vite

Alternatives to Vite

Alternatives to Vite are bundlers, such as webpack, Rollup, and Parcel. These are highly configurable
but often do not offer a great experience for dev servers. They first must bundle all our code together
before serving it to the browser. Instead, Vite natively supports the ECMAScript module (ESM)
standard. Furthermore, Vite requires very little configuration to get started. A downside of Vite is
that it can be hard to configure certain more complex scenarios with it. An upcoming bundler that is
promising is Turbopack; however, it is still very new at the time of writing. For full-stack development
with server-side rendering, we will later get to know Next.js, which is a React framework that also
provides a dev server out of the box.

Now that our boilerplate project is up and running, let’s spend some time setting up tools that will
enforce best practices and a consistent code style.

Setting up the development environment 11

Setting up ESLint and Prettier to enforce best practices and code
style

Now that our React app is set up, we are going to set up ESLint to enforce coding best practices with
JavaScript and React. We are also going to set up Prettier to enforce a code style and automatically
format our code.

Installing the necessary dependencies

First, we are going to install all the necessary dependencies:

1.	 In the Terminal, click on the Split Terminal icon at the top right of the Terminal pane to
create a new Terminal pane. This will keep our app running while we run other commands.

2.	 Click on this newly opened pane to focus it. Then, enter the following command to install
ESLint, Prettier, and the relevant plugins:

$ npm install --save-dev prettier@3.1.0 \
  eslint@8.54.0 \
  eslint-plugin-react@7.33.2 \
  eslint-config-prettier@9.0.0 \
  eslint-plugin-jsx-a11y@6.8.0

The packages installed are the following:

	� prettier: Formats our code automatically according to a defined code style

	� eslint: Analyzes our code and enforces best practices

	� eslint-config-react: Enables rules in ESLint relevant to React projects

	� eslint-config-prettier: Disables rules relating to code style in ESLint so that
Prettier can handle them instead

	� eslint-plugin-jsx-a11y: Allows ESLint to check for accessibility (a11y) issues
in our JSX code

Note
The --save-dev flag in npm saves those dependencies as dev dependencies, which means
that they will only be installed for development. They will not be installed and included in a
deployed app. This is important in order to keep the size of our containers as small as possible later.

After the dependencies are installed, we need to configure Prettier and ESLint. We will start with
configuring Prettier.

Preparing for Full-Stack Development12

Configuring Prettier

Prettier will format the code for us and replace the default code formatter for JavaScript in VS Code.
It will allow us to spend more time writing code, automatically formatting it for us properly when we
save the file. Follow these steps to configure Prettier:

1.	 Right-click below the files list in the left sidebar of VS Code (if it is not opened, click the Files
icon) and press New file... to create a new file. Call it .prettierrc.json (do not forget
the period at the beginning of the file name!).

2.	 The newly created file should open automatically, so we can start writing the following configuration
into it. We first create a new object and set the trailingComma option to all to make sure
objects and arrays that span over multiple lines always have a comma at the end, even for the
last element. This reduces the number of touched lines when committing a change via Git:

{
  "trailingComma": "all",

3.	 Then, we set the tabWidth option to 2 spaces:

  "tabWidth": 2,

4.	 Set the printWidth to 80 characters per line to avoid long lines in our code:

  "printWidth": 80,

5.	 Set the semi option to false to avoid semicolons where not necessary:

  "semi": false,

6.	 Finally, we enforce the use of single quotes instead of double quotes:

  "jsxSingleQuote": true,
  "singleQuote": true
}

Note
These settings for Prettier are just an example of a coding style convention. Of course, you are
free to adjust these to your own preferences. There are many more options, all of which can
be found in the Prettier docs (https://prettier.io/docs/en/options.html).

https://prettier.io/docs/en/options.html

Setting up the development environment 13

Configuring the Prettier extension

Now that we have a configuration file for Prettier, we need to make sure the VS Code extension is
properly configured to format the code for us:

1.	 Open the VS Code settings by going to File | Preferences... | Settings on Windows/Linux, or
Code | Settings... | Settings on macOS.

2.	 In the newly opened settings editor, click on the Workspace tab. This ensures that we save all our
settings in a .vscode/settings.json file in our project folder. When other developers
open our project, they will automatically be using those settings as well.

3.	 Search for editor format on save and check the checkbox to enable formatting code
on save.

4.	 Search for editor default formatter and select Prettier - Code formatter from the list.

5.	 To verify that Prettier works, open the .prettierrc.json file, add some extra spaces to
the beginning of a line, and save the file. You should notice that Prettier reformatted the code
to adhere to the defined code style. It will reduce the number of spaces for indentation to two.

Now that Prettier is set up properly, we do not need to worry about formatting our code manually
anymore. Feel free to just type in code as you go and save the file to get it formatted for you!

Creating a Prettier ignore file

To improve performance and avoid running Prettier on files that should not be automatically formatted,
we can ignore certain files and folders by creating a Prettier ignore file. Follow these steps:

1.	 Create a new file called .prettierignore in the root of our project, similar to how we
created the .prettierrc.json file.

2.	 Add the following contents to it to ignore the transpiled source code:

dist/

The node_modules/ folder is automatically ignored by Prettier.

Now that we have successfully set up Prettier, we are going to configure ESLint to enforce coding
best practices.

Preparing for Full-Stack Development14

Configuring ESLint

While Prettier focuses on the style and formatting of our code, ESLint focuses on the actual code,
avoiding common mistakes or unnecessary code. Let’s configure it now:

1.	 Delete the automatically created .eslintrc.cjs file.

2.	 Create a new .eslintrc.json file and start writing the following configuration into it. First,
we set root to true to make sure ESLint does not look at parent folders for more configuration:

{
  "root": true,

3.	 Define an env object, in which we set the browser environment to true so that ESLint
understands browser-specific globals such as document and window:

  "env": {
    "browser": true
  },

4.	 Define a parserOptions object, where we specify that we are using the latest ECMAScript
version and ESM:

  "parserOptions": {
    "ecmaVersion": "latest",
    "sourceType": "module"
  },

5.	 Define an extends array to extend from recommended configurations. Specifically, we extend
from ESLint’s recommended rules and the recommended rules for the plugins we installed:

  "extends": [
    "eslint:recommended",
    "plugin:react/recommended",
    "plugin:react/jsx-runtime",
    "plugin:jsx-a11y/recommended",

6.	 As the last element of the array, we use prettier to disable all code style-related rules in
ESLint and let Prettier handle it:

    "prettier"
  ],

7.	 Now, we define settings for the plugins. First, we tell the react plugin to detect our installed
React version automatically:

  "settings": {
    "react": {

Setting up the development environment 15

      "version": "detect"
    }
  },

8.	 Finally, outside of the settings section, we define an overrides array, in which we specify
that ESLint should only lint .js and .jsx files:

  "overrides": [
    {
      "files": ["*.js", "*.jsx"]
    }
  ]
}

9.	 Create a new .eslintignore file, with the following contents:

dist/
vite.config.js

The node_modules/ folder is automatically ignored by ESLint.

10.	 Save the files and run npx eslint src in the Terminal to run the linter. You will see that
there are some errors already due to our configured rules not matching the source provided
by the default project in Vite:

Figure 1.6 – When running ESLint for the first time, we get some errors about rule violations

11.	 Fortunately, all these issues are automatically fixable by ESLint. Run npx eslint src
--fix to fix the issues automatically. Now, when you run npx eslint src again, you
will not get any output. This means that there were no linter errors!

Tip
The npx command allows us to execute commands provided by npm packages, in a similar
context as running them in package.json scripts would do. It can also run remote packages
without installing them permanently. If the package is not installed yet, it will ask you whether
it should do this.

Preparing for Full-Stack Development16

Adding a new script to run our linter

In the previous section, we have been calling the linter by running npx eslint src manually.
We are now going to add a lint script to package.json:

1.	 In the Terminal, run the following command to define a lint script in the package.json file:

$ npm pkg set scripts.lint="eslint src"

2.	 Now, run npm run lint in the Terminal. This should execute eslint src successfully,
just like npx eslint src did:

Figure 1.7 – The linter running successfully, with no errors

After setting up ESLint and Prettier, we still need to make sure that they run before we commit code.
Let’s set up Husky to make sure we commit proper code now.

Setting up Husky to make sure we commit proper code

After setting up Prettier and ESLint, we will now get our code automatically formatted on save by
Prettier and see errors from ESLint in VS Code when we make mistakes or ignore best practices.
However, we might miss some of these errors and accidentally commit code that is invalid. To avoid
this, we can set up Husky and lint-staged, which run before we commit our code to Git and ensure
that Prettier and ESLint are executed successfully on the source code before it is committed.

Important
If you cloned the full repository for the book, Husky may not find the .git directory when
running npm install. In that case, just run git init in the root of the corresponding
chapter folder.

Let’s set Husky and lint-staged up by following these steps:

1.	 Run the following command to install Husky and lint-staged as dev dependencies:

$ npm install --save-dev husky@8.0.3 \
  lint-staged@15.1.0

Setting up the development environment 17

2.	 Open the package.json file and add the following lint-staged configuration to it in
a new object after devDependencies, then save the file. This will run Prettier and ESlint
on all committed .js and .jsx files and attempt to automatically fix code style and linter
errors, if possible:

  "lint-staged": {
    "**/*.{js,jsx}": [
      "npx prettier --write",
      "npx eslint --fix"
    ]
  }

3.	 Initialize a Git repository in the ch1 folder and make an initial commit with just the package.
json file, as lint-staged does not get executed on the initial commit:

$ git init
$ git add package.json
$ git commit -m "chore: initial commit"

4.	 Add the husky install script to a prepare script in package.json, so that Husky
gets installed automatically when the project is cloned and npm install is executed:

$ npm pkg set scripts.prepare="husky install"

5.	 Since we do not need to run npm install again right now, we need to manually run the
prepare script this time:

$ npm run prepare

6.	 Add a pre-commit hook for lint-staged, so that ESLint and Prettier run every time we do
git commit:

$ npx husky add .husky/pre-commit "npx lint-staged"

7.	 Now, add all files to Git and attempt to make a commit:

$ git add .
$ git commit -m "chore: basic project setup"

If everything worked successfully, you should see husky running lint-staged, which, in turn,
runs prettier and eslint, after you run git commit. If you are getting a configuration error,
ensure that all files are saved properly and then run git commit again.

Preparing for Full-Stack Development18

Figure 1.8 – Husky and lint-staged successfully enforcing code style and best practices before we commit

Setting up commitlint to enforce a standard for our commit messages

In addition to linting our code, we can also lint our commit messages. You may have noticed that we
were prefixing our commit messages with a type already (the chore type). Types make it easier to
follow what was changed in a commit. To enforce the use of types, we can set up commitlint. Follow
these steps to set it up:

1.	 Install commitlint and a conventional config for commitlint:

$ npm install --save-dev @commitlint/cli@18.4.3 \
  @commitlint/config-conventional@18.4.3

2.	 Create a new .commitlintrc.json file in the root of our project and add the
following contents:

{
  "extends": ["@commitlint/config-conventional"]
}

3.	 Add a commit-msg hook to Husky:

$ npx husky add .husky/commit-msg \
  'npx commitlint --edit ${1}'

4.	 Now, if we try adding our changed files and committing without a type or a wrong type, we
will get an error from commitlint and will not be able to make such a commit. If we add the
correct type, it will succeed:

$ git add .
$ git commit -m "no type"
$ git commit -m "wrong: type"
$ git commit -m "chore: configure commitlint"

The following figure shows Husky in action. If we write an incorrect commit message, it will reject
it and not let us commit the code. Only if we enter a properly formatted commit message will the
commit go through:

Setting up the development environment 19

Figure 1.9 – commitlint working successfully and preventing

commits without a type and with wrong types

Commit messages in the commitlint conventional config (https://www.conventionalcommits.
org/) are structured in a way where a type must be listed first, then an optional scope follows, and
then the description follows, such as type(scope): description. Possible types are as follows:

•	 fix: For bug fixes

•	 feat: For new features

•	 refactor: For restructuring the code without adding features or fixing bugs

•	 build: For changes in the build system or dependencies

•	 ci: For changes in the CI/CD configuration

•	 docs: For changes in the documentation only

•	 perf: For performance optimizations

•	 style: For fixing code formatting

•	 test: For adding or adjusting tests

The scope is optional and best used in a monorepo to specify that changes were made to a certain
app or library within it.

https://www.conventionalcommits.org/
https://www.conventionalcommits.org/

Preparing for Full-Stack Development20

Summary
Now that we have successfully set up our project and started enforcing standards, we can continue
working on our project without worrying about a consistent code style, consistent commit messages,
or making small mistakes. ESLint, Prettier, Husky, and commitlint have got us covered.

In the next chapter, Chapter 2, Getting to Know Node.js and MongoDB, we are going to learn how to
write and run small Node.js scripts and how MongoDB, a database system, works.

2
Getting to Know Node.js

and MongoDB

In the previous chapter, we set up our IDE and a basic project for frontend development. In this chapter,
we will first learn how to write and run scripts with Node.js. Then, we will move on to introducing
Docker as a way to set up a database service. Once we have set up Docker and a container for our
database, we are going to access it to learn more about MongoDB, the document database that we will
use going forward. Finally, we will connect everything we have learned in this chapter by accessing
MongoDB via Node.js scripts.

By the end of this chapter, you will have an understanding of the most important tools and concepts
in backend development with JavaScript. This chapter gives us a good foundation to create a backend
service for our first full-stack application in the upcoming chapters.

In this chapter, we are going to cover the following main topics:

•	 Writing and running scripts with Node.js

•	 Introducing Docker, a platform for containers

•	 Introducing MongoDB, a document database

•	 Accessing the MongoDB database via Node.js

Technical requirements
Before we start, please install the following (in addition to all technical requirements from Chapter 1,
Preparing for Full-stack Development), if you do not already have them installed:

•	 Docker v24.0.6

•	 Docker Desktop v4.25.2

•	 MongoDB Shell v2.1.0

Getting to Know Node.js and MongoDB22

The versions listed are the ones used in the book. While installing a newer version should not be an
issue, please note that certain steps might work differently on a newer version. If you are having an
issue with the code and steps provided in this book, please try using the mentioned versions.

You can find the code for this chapter on GitHub: https://github.com/PacktPublishing/
Modern-Full-Stack-React-Projects/tree/main/ch2.

The CiA video for this chapter can be found at: https://youtu.be/q_LHsdJEaPo.

Important
If you cloned the full repository for the book, Husky may not find the .git directory when
running npm install. In that case, just run git init in the root of the corresponding
chapter folder.

Writing and running scripts with Node.js
For us to become full-stack developers, it is important to get familiar with backend technologies. As we
are already familiar with JavaScript from writing frontend applications, we can use Node.js to develop
backend services using JavaScript. In this section, we are going to create our first simple Node.js script
to get familiar with the differences between backend scripts and frontend code.

Similarities and differences between JavaScript in the browser
and in Node.js

Node.js is built on V8, the JavaScript engine used by Chromium-based browsers (Google Chrome, Brave,
Opera, Vivaldi, and Microsoft Edge). As such, JavaScript code will run the same way in the browser
and Node.js. However, there are some differences, specifically in the environment. The environment
is built on top of the engine and allows us to render something on a website in the browser (using the
document and window objects). In Node.js, there are certain modules provided to interface with
the operating system, for tasks such as creating files and handling network requests. These modules
allow us to create a backend service using Node.js.

Let’s have a look at the Node.js architecture versus JavaScript in the browser:

https://github.com/PacktPublishing/Modern-Full-Stack-React-Projects/tree/main/ch2
https://github.com/PacktPublishing/Modern-Full-Stack-React-Projects/tree/main/ch2
https://youtu.be/q_LHsdJEaPo

Writing and running scripts with Node.js 23

Figure 2.1 – The Node.js architecture versus JavaScript in the browser

As we can see from the visualization, both Node.js and browser JavaScript run on a JavaScript engine,
which is always V8 in Node.js, and can be V8 for Chromium-based browsers, SpiderMonkey for
Firefox, or JavaScriptCore for Safari.

Now that we know that we can run JavaScript code in Node.js, let’s try it out!

Creating our first Node.js script

Before we can start writing backend services, we need to get familiar with the Node.js environment.
So, let’s start by writing a simple “hello world” example:

1.	 Copy the ch1 folder from the previous chapter to a new ch2 folder, as follows:

$ cp -R ch1 ch2

Note
On macOS, it is important to run the command with a capitalized -R flag, not -r. The -r
flag deals differently with symlinks and causes the node_modules/ folder to break. The -r
flag only exists for historic reasons and should not be used on macOS. Always prefer using
the -R flag instead.

2.	 Open the new ch2 folder in VS Code.

Getting to Know Node.js and MongoDB24

3.	 Create a new backend folder in the ch2 folder. This will contain our backend code.

4.	 In the backend folder, create a helloworld.js file and enter the following code:

console.log('hello node.js world!')

5.	 Open a Terminal in the ch2 folder and run the following command to execute the Node.js script:

$ node backend/helloworld.js

You will see that the console output shows hello node.js world!. When writing Node.js
code, we can make use of familiar functions from the frontend JavaScript world and run the same
JavaScript code on the backend!

Note
While most frontend JavaScript code will run just fine in Node.js, not all code from the frontend
will automatically work in a Node.js environment. There are certain objects, such as document
and window, that are specific to a browser environment. This is important to keep in mind,
especially when we introduce server-side rendering later.

Now that we have a basic understanding of how Node.js works, let’s get started handling files with Node.js.

Handling files in Node.js

Unlike in the browser environment, Node.js provides functions to handle files on our computer via
the node:fs (filesystem) module. For example, we could make use of this functionality to read and
write various files or even use files as a simple database.

Follow these steps to create your first Node.js script that handles files:

1.	 Create a new backend/files.js file.

2.	 Import the writeFileSync and readFileSync functions from the node:fs internal
Node.js module. This module does not need to be installed via npm, as it is provided by the
Node.js runtime.

import { writeFileSync, readFileSync } from 'node:fs'

3.	 Create a simple array containing users, with a name and email address:

const users = [{ name: 'Adam Ondra', email: 'adam.ondra@climb.
ing' }]

4.	 Before we can save this array to a file, we first need to convert it to a string by using JSON.
stringify:

const usersJson = JSON.stringify(users)

Writing and running scripts with Node.js 25

5.	 Now we can save our JSON string to a file by using the writeFileSync function. This
function takes two arguments – first the filename, then the string to be written to the file:

writeFileSync('backend/users.json', usersJson)

6.	 After writing to the file, we can attempt reading it again using readFileSync and parsing
the JSON string using JSON.parse:

const readUsersJson = readFileSync('backend/users.json')
const readUsers = JSON.parse(readUsersJson)

7.	 Finally, we log the parsed array:

console.log(readUsers)

8.	 Now we can run our script. You will see that the array gets logged and a users.json file
was created in our backend/ folder:

$ node backend/files.js

You may have noticed that we have been using writeFileSync, and not writeFile. The default
behavior in Node.js is to run everything asynchronously, which means that if we used writeFile,
the file may not have been created yet at the time when we called readFile, as asynchronous code
is not executed in order.

This behavior might be annoying when writing simple scripts like we did, but is very useful when
dealing with, for example, network requests, where we do not want to block other users from accessing
our service while dealing with another request.

After learning about handling files with Node.js, let’s learn more about how asynchronous code is
executed in the browser and Node.js.

Concurrency with JavaScript in the browser and Node.js

An essential and special trait of JavaScript is that most API functions are asynchronous by default. This
means that code does not simply run in the sequence in which it is defined. Specifically, JavaScript is
event-driven. In the browser, this means that JavaScript code will run because of user interactions.
For example, when a button is clicked, we define an onClick handler to execute some code.

On the server side, input/output operations, such as reading and writing files, and network requests,
are handled asynchronously. This means that we can handle multiple network requests at once, without
having to deal with threads or multiprocessing ourselves. Specifically, in Node.js, libuv is responsible
for assigning threads for I/O operations while giving us, as a programmer, access to a single runtime
thread to write our code in. However, this does not mean that each connection to our backend will
create a new thread. Threads are created on the fly when advantageous. As a developer, we do not
have to deal with multi-threading and can focus on developing with asynchronous code and callbacks.

Getting to Know Node.js and MongoDB26

If code is synchronous, it is executed directly by putting it on the call stack. If code is asynchronous,
the operation is started, and the instance of that operation is stored in a queue, together with a callback
function. The Node.js runtime will first execute all code left in the stack. Then, the event loop will
come in and check whether there are any completed tasks in the queue. If that is the case, the callback
function is executed by putting it on the stack. A callback function can then again either execute
synchronous or asynchronous code. When we add an event listener – for example, an onClick
listener in the browser – when the user clicks the related element, the callback will also be put in the
task queue, which means it will be executed when nothing else is left on the stack. Similarly, in Node.
js, we can add listeners for network events, and execute a callback when a request comes in.

In contrast to multi-threaded servers, a Node.js server accepts all requests in a single thread, which
contains the event loop. Multi-threaded servers have the disadvantage that threads can block I/O
completely and slow down the server. Node.js, however, delegates operations in a fine-grained way on
the fly to threads. This results in less blocking of I/O operations by default. The downside with Node.js
is that we have less control over how the multi-threading happens and thus need to be careful to avoid
using synchronous functions whenever possible. Otherwise, we will block the main Node.js thread
and slow down our server. For simplicity, we still use synchronous functions in this chapter. Going
forward, in the next chapters, we will avoid using those and rely solely on asynchronous functions
(when possible) to get the best performance.

The following diagram visualizes the difference between multi-threaded servers and a Node.js server:

Figure 2.2 – The difference between multi-threaded servers and a Node.js server

Writing and running scripts with Node.js 27

We can see this asynchrony in action by using setTimeout, a function that you may be familiar
with from frontend code. It waits a specified number of milliseconds and then executes the code
specified in the callback function. For example, if we run the following code (with a Node.js script or
in the browser, the result is the same for both):

console.log('first')
setTimeout(() => {
  console.log('second')
}, 1000)
console.log('third')

We can see that they get printed in the following order:

first
third
second

This makes sense, because we are delaying the “second” console.log by a second. However, the
same output will happen if we execute the following code:

console.log('first')
setTimeout(() => {
  console.log('second')
}, 0)
console.log('third')

Now that we are waiting zero milliseconds before executing the code, you would think that “second”
gets printed after “first.” However, that is not the case. Instead, we get the same output as before:

first
third
second

The reason is that when we use setTimeout, the JavaScript engine calls either a web API (on the
browser) or a native API (on Node.js). This API runs in native code in the engine, tracks the timeout
internally, and puts the callback into the task queue, because the timer completes right away. While
this is happening, the JavaScript engine continues processing the other code by pushing it onto the
stack and executing it. When the stack is empty (there is no more code to execute), the event loop
advances. It sees that there is something in the task queue, so it executes that code, resulting in
“second” being printed last.

Tip
You can use the Loupe tool to visualize the inner workings of the Call Stack, web APIs, Event
Loop, and Callback/Task Queue: http://latentflip.com/loupe/

http://latentflip.com/loupe/

Getting to Know Node.js and MongoDB28

Now that we have learned how asynchronous code is handled in the browser and Node.js, let’s create
our first web server with Node.js!

Creating our first web server

Now that we have learned the basics of how Node.js works, we can use the node:http library to
create a simple web server. For our first simple server, we are just going to return a 200 OK response
and some plain text on any request. Let’s get started with the steps:

1.	 Create a new backend/simpleweb.js file, open it, and import the createServer
function from the node:http module:

import { createServer } from 'node:http'

2.	 The createServer function is asynchronous, so it requires us to pass a callback function to
it. This function will be executed when a request comes in from the server. It has two arguments,
a request object (req) and a response object (res). Use the createServer function to
define a new server:

const server = createServer((req, res) => {

3.	 For now, we will ignore the request object and only return a static response. First, we set the
status code to 200:

  res.statusCode = 200

4.	 Then, we set the Content-Type header to text/plain, such that the browser knows
what kind of response data it is dealing with:

  res.setHeader('Content-Type', 'text/plain')

5.	 Lastly, we end the request by returning a Hello HTTP world! string in the response:

  res.end('Hello HTTP world!')
})

6.	 After defining the server, we need to make sure to listen on a certain host and port. These will
define where the server will be available. For now, we use localhost on port 3000 to make sure
our server is available via http://localhost:3000/:

const host = 'localhost'
const port = 3000

Writing and running scripts with Node.js 29

7.	 The server.listen function is also asynchronous and requires us to pass a callback
function, which will execute as soon as the server is up and running. We can simply log
something here for now:

server.listen(port, host, () => {
  console.log(`Server listening on http://${host}:${port}`)
})

8.	 Run the Node.js script as follows:

$ node backend/simpleweb.js

9.	 You will notice that we get our Server listening on http://localhost:3000 log message, so we
know the server was started successfully. This time, the Terminal does not return control to
us; the script keeps running. We can now open http://localhost:3000 in a browser:

Figure 2.3 – A plaintext response from our first web server!

Now that we have set up a simple web server, we can extend it to serve a JSON file instead of simply
returning plaintext.

Extending the web server to serve our JSON file

We can now try combining our knowledge of the node:fs module with the HTTP server to create
a server that serves the previously created users.json file. Let’s get started with the steps:

1.	 Copy the backend/simpleweb.js file to a new backend/webfiles.js file.

2.	 At the beginning of the file, add an import of readFileSync:

import { readFileSync } from 'node:fs'

3.	 Change the Content-Type header to application/json:

  res.setHeader('Content-Type', 'application/json')

Getting to Know Node.js and MongoDB30

4.	 Replace the string in res.end() with the JSON string from our file. In this case, we do not
need to parse the JSON, as res.end() expects a string anyway:

  res.end(readFileSync('backend/users.json'))

5.	 If it is still running, stop the previous server script via Ctrl + C. We need to do this because we
cannot listen on the same port twice.

6.	 Run the server and refresh the page to see the JSON from the file being printed. Try changing the
users.json file and see how it is read again on the next request (when refreshing the website):

$ node backend/webfiles.js

While useful as an exercise, files are not a proper database to be used in production. As such, we are
later going to introduce MongoDB as a database. We are going to run the MongoDB server in Docker,
so let’s first briefly have a look at Docker.

Introducing Docker, a platform for containers
Docker is a platform that allows us to package, manage, and run applications in loosely isolated
environments, called containers. Containers are lightweight, are isolated from each other, and include
all dependencies needed to run an application. As such, we can use containers to easily set up various
services and apps without having to deal with managing dependencies or conflicts between them.

Note
There are also other tools, such as Podman (which even has a compatibility layer for the Docker
CLI commands), and Rancher Desktop, which also supports Docker CLI commands.

We can use Docker locally to set up and run services in an isolated environment. Doing so avoids
polluting our host environment and ensures that there is a consistent state to build upon. This
consistency is especially important when working in larger development teams, as it ensures that
everyone is working with the same state.

Additionally, Docker makes it easy to deploy containers to various cloud services and run them in a
continuous integration/continuous delivery (CI/CD) workflow.

In this section, we will first get an overview of the Docker platform. Then, we will learn how to create
a container and how to access Docker from VS Code. At the end, we will understand how Docker
works and how it can be used to manage services.

Introducing Docker, a platform for containers 31

The Docker platform

The Docker platform essentially consists of three parts:

•	 Docker Client: Can run commands by sending them to the Docker daemon, which is either
running on the local machine or a remote environment.

•	 Docker Host: Contains the Docker daemon, images, and containers.

•	 Docker Registry: Hosts and stores docker images, extensions, and plugins. By default, the
public registry Docker Hub will be used to search for images.

Figure 2.4 – Overview of the Docker platform

Docker images can be thought of as read-only templates and are used to create containers. Images
can be based on other images. For example, the mongo image, which contains a MongoDB server,
is based on the ubuntu image.

Docker containers are instances of images. They run an operating system with a configured service
(such as a MongoDB server on Ubuntu). Additionally, they can be configured, for example, to forward
some ports from within the container to the host, or to mount a storage volume in the container that
stores data on the host machine. By default, a container is isolated from the host machine, so if we
want to access ports or storage from it on the host, we need to tell Docker to allow this.

Getting to Know Node.js and MongoDB32

Installing Docker

The easiest way to set up the Docker platform for local development is using Docker Desktop. It can
be downloaded from the official Docker website (https://www.docker.com/products/
docker-desktop/). Follow the instructions to install it and start the Docker engine. After
installation, you should have a docker command available in your Terminal. Run the following
command to verify that it is working properly:

$ docker -v

This command should output the Docker version, like in the following example:

Docker version 24.0.6, build ed223bc

After installing and starting Docker, we can move on to creating a container.

Creating a container

Docker Client can instantiate a container from an image via the docker run command. Let’s now
create an ubuntu container and run a shell (/bin/bash) in it:

$ docker run -i -t ubuntu:24.04 /bin/bash

Note
The :24.04 string after the image name is called the tag, and it can be used to pin images to
certain versions. In this book, we use tags to pull specific versions of images so that the steps
are reproducible even when new versions are released. By default, if no tag is specified, Docker
will attempt to use the latest tag.

A new shell will open. We can verify that this shell is running in the container by executing the
following command to see which operating system is running:

$ uname -a

If you get a version number that ends with -linuxkit, you have successfully run a command in
the container, because LinuxKit is a toolkit to create small Linux VMs!

You can now type the following command to exit the shell and the container:

$ exit

https://www.docker.com/products/docker-desktop/
https://www.docker.com/products/docker-desktop/

Introducing Docker, a platform for containers 33

The following figure shows the result of running these commands:

Figure 2.5 – Running our first Docker container

The docker run command does the following:

•	 If you have never run a container based on the ubuntu image before, Docker will start by
pulling the image from the Docker registry (this is equivalent to executing docker pull
ubuntu).

•	 After the image is downloaded, Docker creates a new container (the equivalent to executing
docker container create).

•	 Then, Docker configures a read-write filesystem for the container and creates a default
network interface.

•	 Finally, Docker starts the container and executes the specified command. In our case, we specified
the /bin/bash command. Because we passed the -i (keeps STDIN open) and -t (allocates
a pseudo-tty) options, Docker attaches the container’s shell to our currently running Terminal,
allowing us to use the container as if we were directly accessing a Terminal on our host machine.

As we can see, Docker is very useful for creating self-contained environments for our apps and
services to run in. Later in this book, we are going to learn how to package our own apps in Docker
containers. For now, we are only going to use Docker to run services without having to install them
on our host system.

Getting to Know Node.js and MongoDB34

Accessing Docker via VS Code

We can also access Docker via the VS Code extension we installed in Chapter 1, Preparing for Full-
stack Development. To do so, click the Docker icon in the left sidebar of VS Code. The Docker sidebar
will open, showing you a list of containers, images, registries, networks, volumes, contexts, and
relevant resources:

Figure 2.6 – The Docker sidebar in VS Code

Here, you can see which containers are stopped and which ones are running. You can right-click on a
container to start, stop, restart, or remove it. You can also view its logs to debug what is going on inside
the container. Additionally, you can attach a shell to the container to get access to its operating system.

Now that we know the essentials of Docker, we can create a container for our MongoDB database server.

Introducing MongoDB, a document database
MongoDB, at the time of writing, is the most popular NoSQL database. Unlike Structured Query
Language (SQL) databases (such as MySQL or PostgreSQL), NoSQL means that the database specifically
does not use SQL to query the database. Instead, NoSQL databases have various other ways to query
the database and often have a vastly different structure of how data is stored and queried.

Introducing MongoDB, a document database 35

The following main types of NoSQL databases exist:

•	 Key-value stores (for example, Valkey/Redis)

•	 Column-oriented databases (for example, Amazon Redshift)

•	 Graph-based databases (for example, Neo4j)

•	 Document-based databases (for example, MongoDB)

Figure 2.7 – Overview of NoSQL databases

MongoDB is a document-based database, which means that each entry in the database is stored as a
document. In MongoDB, these documents are basically JSON objects (internally, they are stored as
BSON – a binary JSON format to save space and improve performance, among other advantages).
Instead, SQL databases store data as rows in tables. As such, MongoDB provides a lot more flexibility.
Fields can be freely added or left out in documents. The downside of such a structure is that we do
not have a consistent schema for documents. However, this can be solved by using libraries, such as
Mongoose, which we will learn about in Chapter 3, Implementing a Backend Using Express, Mongoose
ODM, and Jest.

Getting to Know Node.js and MongoDB36

Figure 2.8 – Comparison between MongoDB and SQL databases

MongoDB is also based on a JavaScript engine. Since version 3.2, it has been using SpiderMonkey
(the JavaScript engine that Firefox uses) instead of V8. Nevertheless, this still means we can execute
JavaScript code in MongoDB. For example, we can use JavaScript in the MongoDB Shell to help with
administrative tasks. Again, we must be careful with this, though, as the MongoDB environment is
vastly different from a browser or Node.js environment.

In this section, we will first learn how to set up a MongoDB server using Docker. Then, we will learn
more about MongoDB and how to access it directly using the MongoDB Shell for the administration
of our database and the data. We are also going to learn how to use VS Code to access MongoDB. At
the end of this section, you will have an understanding of how CRUD operations work in MongoDB.

Note
CRUD is an acronym for create, read, update, and delete, which are the common operations
that backend services usually provide.

Introducing MongoDB, a document database 37

Setting up a MongoDB server

Before we can start using MongoDB, we need to set up a server. Since we already have Docker installed,
we can make things easier for ourselves by running MongoDB in a Docker container. Doing so also
allows us to have separate, clean MongoDB instances for our apps by creating separate containers.
Let’s get started with the steps:

1.	 Make sure Docker Desktop is running and Docker is started. You can verify this by running
the following command, which lists all running containers:

$ docker ps

If Docker is not started properly, you will get a Cannot connect to the Docker daemon error.
In that case, make sure Docker Desktop is running and the Docker Engine is not paused.

If Docker is started properly, you will see the following output:
CONTAINER
ID   IMAGE     COMMAND   CREATED   STATUS    PORTS     NAMES

If you already have some containers running, it will be followed by a list of started containers.

2.	 Run the following Docker command to create a new container with a MongoDB server:

$ docker run -d --name dbserver -p 27017:27017 --restart unless-
stopped mongo:6.0.4

The docker run command creates and runs a new container. The arguments are as follows:

	� -d: Runs the container in the background (daemon mode).

	� --name: Specifies a name for the container. In our case, we named it dbserver.

	� -p: Maps a port from the container to the host. In our case, we map the default MongoDB
server port 27017 in the container to the same port on our host. This allows us to access
the MongoDB server running within our container from outside of it. If you already have
a MongoDB server running on that port, feel free to change the first number to some other
port, but make sure to also adjust the port number from 27017 to your specified port in
the following guides.

	� --restart unless-stopped: Makes sure to automatically start (and restart) the
container unless we manually stop it. This ensures that every time we start Docker, our
MongoDB server will already be running.

	� mongo: This is the image name. The mongo image contains a MongoDB server.

3.	 Install the MongoDB Shell on your host system (not within the container) by following the
instructions on the MongoDB website (https://www.mongodb.com/docs/mongodb-
shell/install/).

https://www.mongodb.com/docs/mongodb-shell/install/
https://www.mongodb.com/docs/mongodb-shell/install/

Getting to Know Node.js and MongoDB38

4.	 On your host system, run the following command to connect to the MongoDB server using
the MongoDB Shell (mongosh). After the hostname and port, we specify a database name.
We are going to call our database ch2:

$ mongosh mongodb://localhost:27017/ch2

You will see some output from the database server, and at the end, we get a shell running on
our selected database, as can be seen by the ch2> prompt. Here, we can enter commands to
be executed on our database. Interestingly, MongoDB, like Node.js, also exposes a JavaScript
engine, but with yet another different environment. So, we can run JavaScript code, such as
the following:

ch2> console.log("test")

The following figure shows JavaScript code being executed in the MongoDB Shell:

Figure 2.9 – Connecting to our MongoDB database server running in a Docker container

Now that we have a shell connected to our MongoDB database server, we can start practicing running
commands directly on the database.

Running commands directly on the database

Before we get started creating a backend service that interfaces with MongoDB, let’s spend some time
getting familiar with MongoDB itself via the MongoDB Shell. The MongoDB Shell is very important
for debugging and doing maintenance tasks on the database, so it is a good idea to get to know it well.

Introducing MongoDB, a document database 39

Creating a collection and inserting and listing documents

Collections in MongoDB are the equivalent of tables in relational databases. They store documents,
which are like JSON objects. To make it easier to understand, a collection can be seen as a very large
JSON array containing JSON objects. Unlike simple arrays, collections support the creation of indices,
which speed up the lookup of certain fields in documents. In MongoDB, a collection is automatically
created when we attempt to insert a document into it or create an index for it.

Let’s use the MongoDB Shell to insert a document into our database in the users collection:

1.	 To insert a new user document into the users collection, run the following command in the
MongoDB Shell:

> db.users.insertOne({ username: 'dan', fullName: 'Daniel Bugl',
age: 26 })

Commands that access the database are prefixed with db, then the collection name follows,
and finally comes the operation, all separated by periods.

Note
While insertOne() allows us to insert a single document into the collection, there is also an
insertMany() method, where we can pass an array of documents to add to the collection.

2.	 We can now list all documents from the users collection by running the following command:

> db.users.find()

Doing so will return an array with our previously inserted document:
[
  {
    _id: ObjectId("6405f062b0d06adeaeefc3bc"),
    username: 'dan',
    fullName: 'Daniel Bugl',
    age: 26
  }
]

As we can see, MongoDB automatically created a unique ID (ObjectId) for our document. This
ID consists of 12 bytes in hexadecimal format (so each byte is displayed as two characters). The bytes
are defined as follows:

•	 The first 4 bytes are a timestamp, representing the creation of the ID measured in seconds
since the Unix epoch

•	 The next 5 bytes are a random value unique to the machine and currently running database process

Getting to Know Node.js and MongoDB40

•	 The last 3 bytes are a randomly initialized incrementing counter

Note
The way ObjectId identifiers are generated in MongoDB ensures that IDs are unique, avoiding
ID collisions even when two ids are generated at the same time from different instances, without
requiring a form of communication between the instances, which would slow down the creation
of documents when scaling the database.

Querying and sorting documents

Now that we have inserted some documents, we can query them by accessing different fields from the
object. We can also sort the list of documents returned from MongoDB. Follow these steps:

1.	 Before we get started querying, let’s insert two more documents into our users collection:

> db.users.insertMany([
  { username: 'jane', fullName: 'Jane Doe', age: 32 },
  { username: 'john', fullName: 'John Doe', age: 30 }
])

2.	 Now we can start querying for a certain username by using findOne and passing an object with
the username field. When using findOne, MongoDB will return the first matching object:

> db.users.findOne({ username: 'jane' })

3.	 We can also query for full names, or any other field in the documents from the collection.
When using find, MongoDB will return an array of all matches:

> db.users.find({ fullName: 'Daniel Bugl' })

4.	 An important thing to watch out for is that when querying an ObjectId, we need to wrap
the ID string with an ObjectId() constructor, as follows:

> db.users.findOne({ _id: ObjectId('6405f062b0d06adeaeefc3bc')
})

Make sure to change the string passed to the ObjectId() constructor to a valid ObjectId
returned from the previous commands.

5.	 MongoDB also provides certain query operators, prefixed by $. For example, we can find
everyone above the age of 30 in our collection by using the $gt operator, as follows:

> db.users.find({ age: { $gt: 30 } })

You will notice that John Doe does not get returned, because his age is exactly 30. If we want
to match ages greater than or equal to 30, we need to use the $gte operator.

Introducing MongoDB, a document database 41

6.	 If we want to sort our results, we can use the .sort() method after .find(). For example,
we can return all items from the users collection, sorted by age ascending (1 for ascending,
-1 for descending):

> db.users.find().sort({ age: 1 })

Updating documents

To update a document in MongoDB, we combine the arguments from the query and insert operations
into a single operation. We can use the same criteria to filter documents as we did for find(). To
update a single field from the document, we use the $set operator:

1.	 We can update the age field for the user with the username dan as follows:

> db.users.updateOne({ username: 'dan' }, { $set: { age: 27 } })

Note
Just like findOne, updateOne only updates the first matching document. If we want to
update all documents that match, we can use updateMany.

MongoDB will return an object with information about how many documents matched
(matchedCount), how many were modified (modifiedCount), and how many were
upserted (upsertedCount).

2.	 The updateOne method accepts a third argument, which is an options object. One useful
option here is the upsert option, which, if set to true, will insert a document if it does not
exist yet, and update it if it does exist already. Let’s first try to update a non-existent user with
upsert: false:

> db.users.updateOne({ username: 'new' }, { $set: { fullName:
'New User' } })

3.	 Now we set upsert to true, which inserts the user:

> db.users.updateOne({ username: 'new' }, { $set: { fullName:
'New User' } }, { upsert: true })

Note
If you want to remove a field from a document, use the $unset operator. If you want to replace
the whole document with a new document, you can use the replaceOne method and pass
a new document as the second argument to it.

Getting to Know Node.js and MongoDB42

Deleting documents

To delete documents from the database, MongoDB provides the deleteOne and deleteMany
methods, which have a similar API to the updateOne and updateMany methods. The first argument
is, again, used to match documents.

Let’s say the user with the username new wants to delete their account. To do so, we need to remove
them from the users collection. We can do so as follows:

> db.users.deleteOne({ username: 'new' })

That’s all there is to it! As you can see, it is very simple to do CRUD operations in MongoDB if you
already know how to work with JSON objects and JavaScript, making it the perfect database for a
Node.js backend.

Now that we have learned how to access MongoDB using the MongoDB Shell, let’s learn about accessing
it from within VS Code.

Accessing the database via VS Code

Up until now, we have been using the Terminal to access the database. If you remember, in Chapter 1,
Preparing for Full-stack Development, we installed a MongoDB extension for VS Code. We can now
use this extension to access our database in a more visual way:

1.	 Click on the MongoDB icon on the left sidebar (it should be a leaf icon) and click on the Add
Connection button:

Figure 2.10 – The MongoDB sidebar in VS Code

Introducing MongoDB, a document database 43

2.	 A new MongoDB tab will open up. In this tab, click on Connect in the Connect with
Connection String box:

Figure 2.11 – Adding a new MongoDB connection in VS Code

3.	 A popup should open at the top. In this popup, enter the following connection string to connect
to your local database:

mongodb://localhost:27017/

Getting to Know Node.js and MongoDB44

4.	 Press Return/Enter to confirm. A new connection will be listed in the MongoDB sidebar. You
can browse the tree to view databases, collections, and documents. For example, click the first
document to view it:

Figure 2.12 – Viewing a document in the MongoDB extension in VS Code

Tip
You can also directly edit a document by editing a field in VS Code and saving the file. The
updated document will automatically be saved to the database.

The MongoDB extension is very useful for debugging our database, as it lets us visually spot problems
and quickly make edits to documents. Additionally, we can right-click on Documents and Search
for documents… to open a new window where we can run MongoDB queries, just like we did in
the Terminal. The queries can be executed on the database by clicking on the Play button in the top
right. You may need to confirm a dialog with Yes, and then the results will show in a new pane, as
can be seen in the following screenshot:

Accessing the MongoDB database via Node.js 45

Figure 2.13 – Querying MongoDB in VS Code

Now that we have learned the basics of using and debugging MongoDB databases, we can start integrating
our database in a Node.js backend service, instead of simply storing and reading information from files.

Accessing the MongoDB database via Node.js
We are now going to create a new web server that, instead of returning users from a JSON file, returns
the list of users from our previously created users collection:

1.	 In the ch2 folder, open a Terminal. Install the mongodb package, which contains the official
MongoDB driver for Node.js:

$ npm install mongodb@6.3.0

2.	 Create a new backend/mongodbweb.js file and open it. Import the following:

import { createServer } from 'node:http'
import { MongoClient } from 'mongodb'

Getting to Know Node.js and MongoDB46

3.	 Define the connection URL and database name and then create a new MongoDB client:

const url = 'mongodb://localhost:27017/'
const dbName = 'ch2'
const client = new MongoClient(url)

4.	 Connect to the database and log a message after we are connected successfully, or when there
is an error with the connection:

try {
  await client.connect()
  console.log('Successfully connected to database!')
} catch (err) {
  console.error('Error connecting to database:', err)
}

5.	 Next, create an HTTP server, like we did before:

const server = createServer(async (req, res) => {

6.	 Then, select the database from the client, and the users collection from the database:

  const db = client.db(dbName)
  const users = db.collection('users')

7.	 Now, execute the find() method on the users collection. In the MongoDB Node.js driver,
we also need to call the toArray() method to resolve the iterator to an array:

  const usersList = await users.find().toArray()

8.	 Finally, set the status code and response header, and return the users list:

  res.statusCode = 200
  res.setHeader('Content-Type', 'application/json')
  res.end(JSON.stringify(usersList))
})

9.	 Now that we have defined our server, copy over the code from before to listen to localhost
on port 3000:

const host = 'localhost'
const port = 3000
server.listen(port, host, () => {
  console.log(`Server listening on http://${host}:${port}`)
})

Summary 47

10.	 Run the server by executing the script:

$ node backend/mongodbweb.js

11.	 Open http://localhost:3000 in your browser and you should see the list of users from
our database being returned:

Figure 2.14 – Our first Node.js service retrieving data from a MongoDB database!

As we have seen, we can use similar methods that we have used in the MongoDB Shell in Node.js as
well. However, the APIs of the node:http module and the mongodb package are very low-level,
requiring a lot of code to create an HTTP API and talk to the database.

In the next chapter, we are going to learn about libraries that abstract these processes to allow for
easier creation of HTTP APIs and handling of the database. These libraries are Express and Mongoose.
Express is a web framework that allows us to easily define API routes and handle requests. Mongoose
allows us to create schemas for documents in our database to more easily create, read, update, and
delete objects.

Summary
In this chapter, we learned how to use Node.js to develop scripts that can run on a server. We also
learned how to create containers with Docker, and how MongoDB works and can be interfaced with.
At the end of this chapter, we even successfully created our first simple backend service using Node.
js and MongoDB!

In the next chapter, Chapter 3, Implementing a Backend Using Express, Mongoose ODM, and Jest, we
are going to learn how to put together what we learned in this chapter to extend our simple backend
service to a production-ready backend for a blog application.

Part 2:
Building and Deploying Our
First Full-Stack Application

with a REST API

In this part, we are going to be building and deploying our first full-stack application with a REST
API. We will start by implementing a backend service using Express and Mongoose ODM. Then, we
will create unit tests for it using Jest. After that, we will create a frontend with React and integrate it
with our backend service using TanStack Query. Finally, we will deploy the application using Docker
and learn how to set up a CI/CD pipeline.

This part includes the following chapters:

•	 Chapter 3, Implementing a Backend Using Express, Mongoose ODM, and Jest

•	 Chapter 4, Integrating a Frontend Using React and TanStack Query

•	 Chapter 5, Deploying the Application with Docker and CI/CD

3
Implementing a Backend Using

Express, Mongoose ODM,
and Jest

After learning the basics of Node.js and MongoDB, we will now put them into practice by building our
first backend service using Express to provide a REST API, Mongoose object data modeling (ODM)
to interface with MongoDB, and Jest to test our code. We will first learn how to structure a backend
project using an architectural pattern. Then, we will create database schemas using Mongoose. Next,
we will make service functions to interface with the database schemas and write tests for them using
Jest. Then, we will learn what REST is and when it is useful. Finally, we provide a REST API and serve
it using Express. At the end of this chapter, we will have a working backend service to be consumed
by a frontend developed in the next chapter.

In this chapter, we are going to cover the following main topics:

•	 Designing a backend service

•	 Creating database schemas using Mongoose

•	 Developing and testing service functions

•	 Providing a REST API using Express

Technical requirements
Before we start, please install all requirements from Chapter 1, Preparing for Full-stack Development,
and Chapter 2, Getting to Know Node.js and MongoDB.

Implementing a Backend Using Express, Mongoose ODM, and Jest52

The versions listed in those chapters are the ones used in the book. While installing a newer version
should not be an issue, please note that certain steps might work differently on a newer version. If
you are having an issue with the code and steps provided in this book, please try using the versions
mentioned in Chapters 1 and 2.

You can find the code for this chapter on GitHub at https://github.com/PacktPublishing/
Modern-Full-Stack-React-Projects/tree/main/ch3.

If you cloned the full repository for the book, Husky may not find the .git directory when running
npm install. In that case, just run git init in the root of the corresponding chapter folder.

The CiA video for the chapter can be found at: https://youtu.be/fFHVVVn03rc.

Designing a backend service
To design our backend service, we are going to use a variation of an existing architectural pattern
called model–view–controller (MVC) pattern. The MVC pattern consists of the following parts:

•	 Model: Handles data and basic data logic

•	 Controller: Controls how data is processed and displayed

•	 View: Displays the current state

In traditional full-stack applications, the backend would render and display the frontend completely,
and an interaction would usually require a full-page refresh. The MVC architecture was designed
mainly for such applications. However, in modern applications, the frontend is usually interactive
and rendered in the backend only through server-side rendering. In modern applications, we thus
often distinguish between the actual backend service(s) and the backend for frontend (which handles
static site generation and server-side rendering):

Figure 3.1 – A modern full-stack architecture, with a single backend service and a

frontend with server-side rendering (SSR) and static-site generation (SSG)

https://github.com/PacktPublishing/Modern-Full-Stack-React-Projects/tree/main/ch3
https://github.com/PacktPublishing/Modern-Full-Stack-React-Projects/tree/main/ch3
https://youtu.be/fFHVVVn03rc

Designing a backend service 53

For modern applications, the idea is that the backend service only deals with processing and serving
requests and data and does not render the user interface anymore. Instead, we have a separate
application that handles the frontend and server-side rendering of user interfaces specifically. To
adapt to this change, we adjust the MVC architectural pattern to a data-service-route pattern for the
backend service as follows:

•	 Route layer: Defines routes that consumers can access and handles user input by processing
the request parameters and body and then calling service functions

•	 Service layer: Provides service functions, such as create–read–update–delete (CRUD) functions,
which access the database through the data layer

•	 Data layer: Only deals with accessing the database and does basic validation to ensure that
the database is consistent

This separation of concerns works best for services that only expose routes and do not deal with
rendering user interfaces. Each layer in this pattern only deals with one step in processing the request.

After learning about the design of backend services, let’s get started creating a folder structure reflecting
what we have learned.

Creating the folder structure for our backend service

We are now going to create a folder structure for our backend service based on this pattern. Follow
these steps:

1.	 First, copy the ch2 folder to a new ch3 folder to create a new folder for our backend service,
as follows:

$ cp -R ch2 ch3

2.	 Open the new ch3 folder in VS Code.

3.	 Edit the .eslintrc.json file and replace the browser env with the node and es6 env,
as follows:

  "env": {
    "node": true,
    "es6": true
  },

4.	 Also, remove the react and jsx-a11y plugins from the .eslintrc.json file. We can also
remove the React-related settings and overrides now by removing the highlighted lines:

  "extends": [
    "eslint:recommended",
    "plugin:react/recommended",

Implementing a Backend Using Express, Mongoose ODM, and Jest54

    "plugin:react/jsx-runtime",
    "plugin:jsx-a11y/recommended",
    "prettier"
  ],
  "settings": {
    "react": {
      "version": "detect"
    }
  },
  "overrides": [
    {
      "files": ["*.js", "*.jsx"]
    }
  ]

5.	 Delete the index.html and vite.config.js files.

6.	 We can now also remove the vite.config.js file from the .eslintignore file:

dist/
vite.config.js

7.	 Delete the public, backend, and src folders.

8.	 Open the ch3 folder in VS Code, open a Terminal and run the following commands to remove
vite and react:

$ npm uninstall --save react react-dom
$ npm uninstall --save-dev vite @types/react \
  @types/react-dom @vitejs/plugin-react \
  eslint-plugin-jsx-a11y eslint-plugin-react

9.	 Edit the package.json file and remove the dev, build, and preview scripts from it:

  "scripts": {
    "dev": "vite",
    "build": "vite build",
    "lint": "eslint src",
    "preview": "vite preview",
    "prepare": "husky install"
  },

10.	 Now, create a new src/ folder, and within it, create src/db/ (for the data layer), src/
services/ (for the services layer), and src/routes/ (for the routes layer) folders.

Creating database schemas using Mongoose 55

Our first application is going to be a blog application. For such an application, we are going to need
the API to be able to do the following:

•	 Get a list of posts

•	 Get a single post

•	 Create a new post

•	 Update an existing post

•	 Delete an existing post

To provide these functions, we first need to create a database schema to define what a blog post object
should look like in our database. Then, we need service functions to handle CRUD functionality for
blog posts. Finally, we are going to define our REST API to query, create, update, and delete blog posts.

Creating database schemas using Mongoose
Before we can get started defining the database schemas, we first need to set up Mongoose itself.
Mongoose is a library that simplifies MongoDB object modeling by reducing the boilerplate code
needed to interface with MongoDB. It also includes common business logic such as setting createdAt
and updatedAt timestamps automatically and validation and type casting to keep the database
state consistent.

Follow these steps to set up the mongoose library:

1.	 First, install the mongoose library:

$ npm install mongoose@8.0.2

2.	 Create a new src/db/init.js file and import mongoose there:

import mongoose from 'mongoose'

3.	 Define and export a function that will initialize the database connection:

export function initDatabase() {

4.	 First, we define DATABASE_URL to point to our local MongoDB instance running via Docker
and specify blog as the database name:

  const DATABASE_URL = 'mongodb://localhost:27017/blog'

The connection string is similar to what we used in the previous chapter when directly accessing
the database via Node.js.

Implementing a Backend Using Express, Mongoose ODM, and Jest56

5.	 Then, add a listener to the open event on the Mongoose connection so that we can show a log
message once we are connected to the database:

  mongoose.connection.on('open', () => {
    console.info('successfully connected to database:',
DATABASE_URL)
  })

6.	 Now, use the mongoose.connect() function to connect to our MongoDB database and
return the connection object:

  const connection = mongoose.connect(DATABASE_URL)
  return connection
}

7.	 Create a new src/example.js file and import and run the initDatabase function there:

import { initDatabase } from './db/init.js'
initDatabase()

8.	 Run the src/example.js file using Node.js to see Mongoose successfully connecting to
our database:

$ node src/example.js

As always, you can stop the server by pressing Ctrl + C in the Terminal.

We can see our log message being printed to the Terminal, so we know that Mongoose was able to
successfully connect to our database! If there is an error, for example, because Docker (or the container)
is not running, it will hang for a while and then throw an error about the connection being refused
(ECONNREFUSED). In that case, make sure the Docker MongoDB container is running properly
and can be connected to.

Defining a model for blog posts

After initializing the database, the first thing we should do is define the data structure for blog posts.
Blog posts in our system should have a title, an author, contents, and some tags associated with the
post. Follow these steps to define the data structure for blog posts:

1.	 Create a new src/db/models/ folder.

2.	 Inside that folder, create a new src/db/models/post.js file, import the mongoose
and the Schema classes:

import mongoose, { Schema } from 'mongoose'

Creating database schemas using Mongoose 57

3.	 Define a new schema for posts:

const postSchema = new Schema({

4.	 Now specify all properties of a blog post and the corresponding types. We have a required
title, an author, and contents, which are all strings:

  title: { type: String, required: true },
  author: String,
  contents: String,

5.	 Lastly, we have tags, which are a string array:

  tags: [String],
})

6.	 Now that we have defined the schema, we can create a Mongoose model from it by using the
mongoose.model() function:

export const Post = mongoose.model('post', postSchema)

Note
The first argument to mongoose.model() specifies the name of the collection. In our case,
the collection will be called posts because we specified post as the name. In Mongoose
models, we need to specify the name of the document in singular form.

Now that we have defined the data structure and model for blog posts, we can start using it to create
and query posts.

Using the blog post model

After creating our model, let’s try using it! For now, we are simply going to access it in the src/
example.js file because we have not defined any service functions or routes yet:

1.	 Import the Post model in the src/example.js file:

import { initDatabase } from './db/init.js'
import { Post } from './db/models/post.js'

2.	 The initDatabase() function we defined earlier is an async function, so we need to
await it; otherwise, we would be attempting to access the database before we are connected to it:

await initDatabase()

Implementing a Backend Using Express, Mongoose ODM, and Jest58

3.	 Create a new blog post by calling new Post(), defining some example data:

const post = new Post({
  title: 'Hello Mongoose!',
  author: 'Daniel Bugl',
  contents: 'This post is stored in a MongoDB database using
Mongoose.',
  tags: ['mongoose', 'mongodb'],
})

4.	 Call .save() on the blog post to save it to the database:

await post.save()

5.	 Now we can use the .find() function to list all posts, and log the result:

const posts = await Post.find()
console.log(posts)

6.	 Run the example script to see our post being inserted and listed:

$ node src/example.js

You will get the following result after running the preceding script:

Figure 3.2 – Our first document inserted via Mongoose!

As you can see, using Mongoose is very similar to using MongoDB directly. However, it offers us some
wrappers around models for convenience, making it easier to deal with documents.

Creating database schemas using Mongoose 59

Defining creation and last update dates in the blog post

You may have noticed that we have not added any dates to our blog post. So, we do not know when a
blog post is created or when it was last updated. Mongoose makes implementing such functionality
simple, let’s try it out now:

1.	 Edit the src/db/models/post.js file and add a second argument to the new Schema()
constructor. The second argument specifies options for the schema. Here, we set the timestamps:
true setting:

const postSchema = new Schema(
  {
    title: String,
    author: String,
    contents: String,
    tags: [String],
  },
  { timestamps: true },
)

2.	 Now all we need to do is create a new blog post by running the example script, and we will see
that the last post inserted now has createdAt and updatedAt timestamps:

$ node src/example.js

3.	 To see if the updatedAt timestamp works, let’s try updating the created blog post by using
the findByIdAndUpdate method. Save the result of await post.save() in a
createdPost constant, then add the following code close to the end of the src/example.
js file, before the Post.find() call:

const createdPost = await post.save()

await Post.findByIdAndUpdate(createdPost._id, {
  $set: { title: 'Hello again, Mongoose!' },
})

4.	 Run the server again to see the blog posts being updated:

$ node src/example.js

Implementing a Backend Using Express, Mongoose ODM, and Jest60

You will get three posts, and the last one of them now looks as follows:

Figure 3.3 – Our updated document with the automatically updated timestamps

As we can see, using Mongoose makes dealing with MongoDB documents much more convenient! Now
that we have defined our database model, let’s start developing (and writing tests for) service functions!

Developing and testing service functions
Up until now, we have always been testing code by putting it in the src/example.js file. Now, we
are going to write some service functions and learn how to write actual tests for them by using Jest.

Setting up the test environment

First, we are going to set up our test environment by following these steps:

1.	 Install jest and mongodb-memory-server as dev dependencies:

$ npm install --save-dev jest@29.7.0 \
  mongodb-memory-server@9.1.1

Jest is a test runner used to define and execute unit tests. The mongodb-memory-server
library allows us to spin up a fresh instance of a MongoDB database, storing data only in
memory, so that we can run our tests on a fresh database instance.

2.	 Create a src/test/ folder to put the setup for our tests in.

3.	 In this folder, create a src/test/globalSetup.js file, where we will import
MongoMemoryServer from the previously installed library:

import { MongoMemoryServer } from 'mongodb-memory-server'

4.	 Now define a globalSetup function, which creates a memory server for MongoDB:

export default async function globalSetup() {
  const instance = await MongoMemoryServer.create({

Developing and testing service functions 61

5.	 When creating the MongoMemoryServer, set the binary version to 6.0.4, which is the
same version that we installed for our Docker container:

    binary: {
      version: '6.0.4',
    },
  })

6.	 We will store the MongoDB instance as a global variable to be able to access it later in the
globalTeardown function:

  global.__MONGOINSTANCE = instance

7.	 We will also store the URL to connect to our test instance in the DATABASE_URL
environment variable:

  process.env.DATABASE_URL = instance.getUri()
}

8.	 Edit src/db/init.js and adjust the DATABASE_URL to come from the environment
variable so that our tests will be using the correct database:

export function initDatabase() {
  const DATABASE_URL = process.env.DATABASE_URL

9.	 Additionally, create a src/test/globalTeardown.js file to stop the MongoDB instance
when our tests are finished and add the following code inside it:

export default async function globalTeardown() {
  await global.__MONGOINSTANCE.stop()
}

10.	 Now, create a src/test/setupFileAfterEnv.js file. Here, we will define a beforeAll
function to initialize our database connection in Mongoose before all tests run and an afterAll
function to disconnect from the database after all tests finish running:

import mongoose from 'mongoose'
import { beforeAll, afterAll } from '@jest/globals'

import { initDatabase } from '../db/init.js'

beforeAll(async () => {
  await initDatabase()
})

afterAll(async () => {

Implementing a Backend Using Express, Mongoose ODM, and Jest62

  await mongoose.disconnect()
})

11.	 Then, create a new jest.config.json file in the root of our project where we will define
the config for our tests. In the jest.config.json file, we first set the test environment
to node:

{
  "testEnvironment": "node",

12.	 Next, tell Jest to use the globalSetup, globalTeardown, and setupFileAfterEnv
files we created earlier:

  "globalSetup": "<rootDir>/src/test/globalSetup.js",
  "globalTeardown": "<rootDir>/src/test/globalTeardown.js",
  "setupFilesAfterEnv": ["<rootDir>/src/test/setupFileAfterEnv.
js"]
}

Note
In this case, <rootDir> is a special string that automatically gets resolved to the root directory
by Jest. You do not need to manually fill in a root directory here.

13.	 Finally, edit the package.json file and add a test script, which will run Jest:

  "scripts": {
    "test": "NODE_OPTIONS=--experimental-vm-modules jest",
    "lint": "eslint src",
    "prepare": "husky install"
  },

Note
At the time of writing, the JavaScript ecosystem is still in the process of moving to the ECMAScript
module (ESM) standard. In this book, we already use this new standard. However, Jest does
not support it yet by default, so we need to pass the --experimental-vm-modules
option when running Jest.

14.	 If we attempt running this script now, we will see that there are no tests found, but we can still
see that Jest is set up and working properly:

$ npm test

Developing and testing service functions 63

Figure 3.4 – Jest is set up successfully, but we have not defined any tests yet

Now that our test environment is set up, we can start writing our service functions and unit tests. It is
always a good idea to write unit tests right after writing service functions, as it means we will be able
to debug them right away while still having their intended behavior fresh in our minds.

Writing our first service function: createPost

For our first service function, we are going to make a function to create a new post. We can then
write tests for it by verifying that the create function creates a new post with the specified properties.
Follow these steps:

1.	 Create a new src/services/posts.js file.

2.	 In the src/services/posts.js file, first import the Post model:

import { Post } from '../db/models/post.js'

3.	 Define a new createPost function, which takes an object with title, author, contents,
and tags as arguments and creates and returns a new post:

export async function createPost({ title, author, contents, tags
}) {
  const post = new Post({ title, author, contents, tags })
  return await post.save()
}

We specifically listed all properties that we want the user to be able to provide here instead
of simply passing the whole object to the new Post() constructor. While we need to type
more code this way, it allows us to have control over which properties a user should be able to
set. For example, if we later add permissions to the database models, we may be accidentally
allowing users to set those permissions here, if we forget to exclude those properties. For those
security reasons, it is always good practice to have a list of allowed properties instead of simply
passing down the whole object.

Implementing a Backend Using Express, Mongoose ODM, and Jest64

After writing our first service function, let’s continue by writing test cases for it.

Defining test cases for the createPost service function

To test if the createPost function works as expected, we are going to define unit test cases for it
using Jest:

1.	 Create a new src/__tests__/ folder, which will contain all test definitions.

Note
Alternatively, test files can also be co-located with the related files that they are testing. However,
in this book, we use the __tests__ directory to make it easier to distinguish tests from
other files.

2.	 Create a new src/__tests__/posts.test.js file for our tests related to posts. In
this file, start by importing mongoose and the describe, expect, and test functions
from @jest/globals:

import mongoose from 'mongoose'
import { describe, expect, test } from '@jest/globals'

3.	 Also import the createPost function from our services and the Post model:

import { createPost } from '../services/posts.js'
import { Post } from '../db/models/post.js'

4.	 Then, use the describe() function to define a new test. This function describes a group of
tests. We can call our group creating posts:

describe('creating posts', () => {

5.	 Inside the group, we will define a test by using the test() function. We can pass an async
function here to be able to use async/await syntax. We call the first test creating posts
with all parameters should succeed:

  test('with all parameters should succeed', async () => {

6.	 Inside this test, we will use the createPost function to create a new post with some parameters:

    const post = {
      title: 'Hello Mongoose!',
      author: 'Daniel Bugl',
      contents: 'This post is stored in a MongoDB database using
Mongoose.',
      tags: ['mongoose', 'mongodb'],

Developing and testing service functions 65

    }
    const createdPost = await createPost(post)

7.	 Then, verify that it returns a post with an ID by using the expect() function from Jest and
the toBeInstanceOf matcher to verify that it is an ObjectId:

    expect(createdPost._id).toBeInstanceOf(mongoose.Types.
ObjectId)

8.	 Now use Mongoose directly to find the post with the given ID:

    const foundPost = await Post.findById(createdPost._id)

9.	 We expect() the foundPost to equal an object containing at least the properties of the
original post object we defined. Additionally, we expect the created post to have createdAt
and updatedAt timestamps:

    expect(foundPost).toEqual(expect.objectContaining(post))
    expect(foundPost.createdAt).toBeInstanceOf(Date)
    expect(foundPost.updatedAt).toBeInstanceOf(Date)
  })

10.	 Additionally, define a second test, called creating posts without title should
fail. As we defined the title to be required, it should not be possible to create a post
without one:

  test('without title should fail', async () => {
    const post = {
      author: 'Daniel Bugl',
      contents: 'Post with no title',
      tags: ['empty'],
    }

11.	 Use a try/catch construct to catch the error and expect() the error to be a Mongoose
ValidationError, which tells us that the title is required:

    try {
      await createPost(post)
     } catch (err) {
      expect(err).toBeInstanceOf(mongoose.Error.ValidationError)
      expect(err.message).toContain('`title` is required')
    }
  })

Implementing a Backend Using Express, Mongoose ODM, and Jest66

12.	 Finally, make a test called creating posts with minimal parameters should
succeed and only enter the title:

  test('with minimal parameters should succeed', async () => {
    const post = {
      title: 'Only a title',
    }
    const createdPost = await createPost(post)
    expect(createdPost._id).toBeInstanceOf(mongoose.Types.
ObjectId)
  })
})

13.	 Now that we have defined our tests, run the script we defined earlier:

$ npm test

As we can see, using unit tests we can do isolated tests on our service functions without having to
define and manually access routes or write some manual test setups. These tests also have the added
advantage that when we change code later, we can ensure that the previously defined behavior did
not change by re-running the tests.

Defining a function to list posts

After defining a function to create posts, we are now going to define an internal listPosts function,
which allows us to query posts and define a sort order. Then, we are going to use this function to define
listAllPosts, listPostsByAuthor, and listPostsByTag functions:

1.	 Edit the src/services/posts.js file and define a new function at the end of the file.

The function accepts a query and an options argument (with sortBy and sortOrder
properties). With sortBy, we can define which field we want to sort by, and the sortOrder
argument allows us to specify whether posts should be sorted in ascending or descending order.
By default, we list all posts (empty object as query) and show the newest posts first (sorted by
createdAt, in descending order):

async function listPosts(
  query = {},
  { sortBy = 'createdAt', sortOrder = 'descending' } = {},
) {

2.	 We can use the .find() method from our Mongoose model to list all posts, passing an
argument to sort them:

  return await Post.find(query).sort({ [sortBy]: sortOrder })
}

Developing and testing service functions 67

3.	 Now we can define a function to list all posts, which simply passes an empty object as query:

export async function listAllPosts(options) {
  return await listPosts({}, options)
}

4.	 Similarly, we can create a function to list all posts by a certain author by passing author to
the query object:

export async function listPostsByAuthor(author, options) {
  return await listPosts({ author }, options)
}

5.	 Lastly, define a function to list posts by tag:

export async function listPostsByTag(tags, options) {
  return await listPosts({ tags }, options)
}

In MongoDB, we can simply match strings in an array by matching the string as if it was a
single value, so all we need to do is add a query for tags: 'nodejs'. MongoDB will then
return all documents that have a 'nodejs' string in their tags array.

Note
The { [variable]: … } operator resolves the string stored in the variable to a key
name for the created object. So, if our variable contains 'createdAt', the resulting object
will be { createdAt: … }.

After defining the list post function, let’s also write test cases for it.

Defining test cases for list posts

Defining test cases for list posts is similar to create posts. However, we now need to create an initial
state where we already have some posts in the database to be able to test the list functions. We can
do this by using the beforeEach() function, which executes some code before each test case is
executed. We can use the beforeEach() function for a whole test file or only run it for each test
inside a describe() group. In our case, we are going to define it for the whole file, as the sample
posts will come in handy when we test the delete post function later:

1.	 Edit the src/__tests__/posts.js file, adjust the import statement to import the
beforeEach function from @jest/globals and import the various functions to list
posts from our services:

import { describe, expect, test, beforeEach } from '@jest/
globals'

Implementing a Backend Using Express, Mongoose ODM, and Jest68

import { createPost,
         listAllPosts,
         listPostsByAuthor,
         listPostsByTag,
} from '../services/posts.js'

2.	 At the end of the file, define an array of sample posts:

const samplePosts = [
  { title: 'Learning Redux', author: 'Daniel Bugl', tags:
['redux'] },
  { title: 'Learn React Hooks', author: 'Daniel Bugl', tags:
['react'] },
  {
    title: 'Full-Stack React Projects',
    author: 'Daniel Bugl',
    tags: ['react', 'nodejs'],
  },
  { title: 'Guide to TypeScript' },
]

3.	 Now, define an empty array, which will be populated with the created posts. Then, define a
beforeEach function, which first clears all posts from the database and clears the array of
created sample posts and then creates the sample posts in the database again for each of the
posts defined in the array earlier. This ensures that we have a consistent state of the database
before each test case runs and that we have an array to compare against when testing the list
post functions:

let createdSamplePosts = []

beforeEach(async () => {
  await Post.deleteMany({})
  createdSamplePosts = []
  for (const post of samplePosts) {
    const createdPost = new Post(post)
    createdSamplePosts.push(await createdPost.save())
  }
})

To ensure that our unit tests are modular and independent from each other, we insert posts into
the database directly by using Mongoose functions (instead of the createPost function).

Developing and testing service functions 69

4.	 Now that we have some sample posts ready, let’s write our first test case, which should simply
list all posts. We will define a new test group for listing posts and a test to verify that
all sample posts are listed by the listAllPosts() function:

describe('listing posts', () => {
  test('should return all posts', async () => {
    const posts = await listAllPosts()
    expect(posts.length).toEqual(createdSamplePosts.length)
  })

5.	 Next, make a test that verifies that the default sort order shows newest posts first. We sort the
createdSamplePosts array manually by createdAt (descending) and then compare
the sorted dates to those returned from the listAllPosts() function:

  test('should return posts sorted by creation date descending
by default', async () => {
    const posts = await listAllPosts()
    const sortedSamplePosts = createdSamplePosts.sort(
      (a, b) => b.createdAt - a.createdAt,
    )
    expect(posts.map((post) => post.createdAt)).toEqual(
      sortedSamplePosts.map((post) => post.createdAt),
    )
  })

Note
The .map() function applies a function to each element of an array and returns the result.
In our case, we select the createdAt property from all elements of the array. We cannot
directly compare the arrays with each other because Mongoose returns documents with a lot
of additional information in hidden metadata, which Jest will attempt to compare.

6.	 Additionally, define a test case where the sortBy value is changed to updatedAt, and the
sortOrder value is changed to ascending (showing oldest updated posts first):

  test('should take into account provided sorting options',
async () => {
    const posts = await listAllPosts({
      sortBy: 'updatedAt',
      sortOrder: 'ascending',
    })
    const sortedSamplePosts = createdSamplePosts.sort(
      (a, b) => a.updatedAt - b.updatedAt,
    )
    expect(posts.map((post) => post.updatedAt)).toEqual(

Implementing a Backend Using Express, Mongoose ODM, and Jest70

      sortedSamplePosts.map((post) => post.updatedAt),
    )
  })

7.	 Then, add a test to ensure that listing posts by author works:

  test('should be able to filter posts by author', async () => {
    const posts = await listPostsByAuthor('Daniel Bugl')
    expect(posts.length).toBe(3)
  })

Note
We are controlling the test environment by creating a specific set of sample posts before each
test case runs. We can make use of this controlled environment to simplify our tests. As we
already know that there are only three posts with that author, we can simply check if the function
returned exactly three posts. Doing so keeps our tests simple, and they are still safe because we
control the environment completely.

8.	 Finally, add a test to verify that listing posts by tag works:

  test('should be able to filter posts by tag', async () => {
    const posts = await listPostsByTag('nodejs')
    expect(posts.length).toBe(1)
  })
})

9.	 Run the tests again and watch them all pass:

$ npm test

Figure 3.5 – All our tests passing successfully!

Developing and testing service functions 71

As we can see, for some tests, we need to prepare an initial state. In our case, we only had to create
some posts, but this initial state may become more sophisticated. For example, on a more advanced
blogging platform, it may be necessary to create a user account first, then create a blog on the platform,
and then create blog posts for that blog. In that case, we could create test utility functions, such as
createTestUser, createTestBlog, createTestPost and import them in our tests. We
can then use these functions in beforeEach() across multiple test files instead of manually doing
it every single time. Depending on your application structure, different test utility functions may be
needed, so feel free to define them as you see fit.

After defining the test cases for the list posts function, let’s continue by defining the get single post,
update post, and delete post functions.

Defining the get single post, update and delete post functions

The get single post, update and delete post functions can be defined very similarly to the list posts
function. Let’s do that quickly now:

1.	 Edit the src/services/posts.js file and define a getPostById function as follows:

export async function getPostById(postId) {
  return await Post.findById(postId)
}

It may seem a bit trivial to define a service function that just calls Post.findById, but it
is good practice to define it anyway. Later, we may want to add some additional restrictions,
such as access control. Having the service function allows us to change it only in one place
and we do not have to worry about forgetting to add it somewhere. Another benefit is that if
we, for example, want to change the database provider later, the developer only needs to worry
about getting the service functions working again, and they can be verified with the test cases.

2.	 In the same file, define the updatePost function. It will take an ID of an existing post, and an
object of parameters to be updated. We are going to use the findOneAndUpdate function
from Mongoose, together with the $set operator, to change the specified parameters. As a
third argument, we provide an options object with new: true so that the function returns
the modified object instead of the original:

export async function updatePost(postId, { title, author,
contents, tags }) {
  return await Post.findOneAndUpdate(
    { _id: postId },
    { $set: { title, author, contents, tags } },
    { new: true },
  )
}

Implementing a Backend Using Express, Mongoose ODM, and Jest72

3.	 In the same file, also define a deletePost function, which simply takes the ID of an existing
post and deletes it from the database:

export async function deletePost(postId) {
  return await Post.deleteOne({ _id: postId })
}

Tip
Depending on your application, you may want to set a deletedOn timestamp instead of
deleting it right away. Then, set up a function that gets all documents that have been deleted
for more than 30 days and delete them. Of course, this means that we need to always filter
out already deleted posts in the listPosts function and that we need to write test cases for
this behavior!

4.	 Edit the src/__tests__/posts.js file and import the getPostById function:

  getPostById,
} from '../services/posts.js'

5.	 Add tests for getting a post by ID and failing to get a post because the ID did not exist in
the database:

describe('getting a post', () => {
  test('should return the full post', async () => {
    const post = await getPostById(createdSamplePosts[0]._id)
    expect(post.toObject()).toEqual(createdSamplePosts[0].
toObject())
  })

  test('should fail if the id does not exist', async () => {
    const post = await getPostById('000000000000000000000000')
    expect(post).toEqual(null)
  })
})

In the first test, we use.toObject() to convert the Mongoose object with all its internal
properties and metadata to a plain old JavaScript object (POJO) so that we can compare it to
the sample post object by comparing all properties.

6.	 Next, import the updatePost function:

  updatePost,
} from '../services/posts.js'

Developing and testing service functions 73

7.	 Then, add tests for updating a post successfully. We add one test to verify that the specified
property was changed and another test to verify that it does not interfere with other properties:

describe('updating posts', () => {
  test('should update the specified property', async () => {
    await updatePost(createdSamplePosts[0]._id, {
      author: 'Test Author',
    })
    const updatedPost = await Post.
findById(createdSamplePosts[0]._id)
    expect(updatedPost.author).toEqual('Test Author')
  })

  test('should not update other properties', async () => {
    await updatePost(createdSamplePosts[0]._id, {
      author: 'Test Author',
    })
    const updatedPost = await Post.
findById(createdSamplePosts[0]._id)
    expect(updatedPost.title).toEqual('Learning Redux')
  })

8.	 Additionally, add a test to ensure the updatedAt timestamp was updated. To do so, first
convert the Date objects to numbers by using .getTime(), and then we can compare them
by using the expect(…).toBeGreaterThan(…) matcher:

  test('should update the updatedAt timestamp', async () => {
    await updatePost(createdSamplePosts[0]._id, {
      author: 'Test Author',
    })
    const updatedPost = await Post.
findById(createdSamplePosts[0]._id)
    expect(updatedPost.updatedAt.getTime()).toBeGreaterThan(
        createdSamplePosts[0].updatedAt.getTime(),
      )
  })

9.	 Also add a failing test to see if the updatePost function returns null when no post with
a matching ID was found:

  test('should fail if the id does not exist', async () => {
    const post = await updatePost('000000000000000000000000', {
      author: 'Test Author',
    })

Implementing a Backend Using Express, Mongoose ODM, and Jest74

    expect(post).toEqual(null)
  })
})

10.	 Lastly, import the deletePost function:

  deletePost,
} from '../services/posts.js'

11.	 Then, add tests for successful and unsuccessful deletes by checking if the post was deleted and
verifying the returned deletedCount:

describe('deleting posts', () => {
  test('should remove the post from the database', async () => {
    const result = await deletePost(createdSamplePosts[0]._id)
    expect(result.deletedCount).toEqual(1)
    const deletedPost = await Post.
findById(createdSamplePosts[0]._id)
    expect(deletedPost).toEqual(null)
  })

  test('should fail if the id does not exist', async () => {
    const result = await deletePost('000000000000000000000000')
    expect(result.deletedCount).toEqual(0)
  })
})

12.	 Finally, run all tests again; they should all pass:

$ npm test

Writing tests for service functions may be tedious, but it will save us a lot of time in the long run.
Adding additional functionality later, such as access control, may change the basic behavior of the
service functions. By having the unit tests, we can ensure that we do not break existing behavior when
adding new functionality.

Using the Jest VS Code extension

Up until now, we have run our tests by using Jest via the Terminal. There is also a Jest extension for
VS Code, which we can use to make running tests more visual. The extension is especially helpful for
larger projects where we have many tests in multiple files. Additionally, the extension can automatically
watch and re-run tests if we change the definitions. We can install the extension as follows:

1.	 Go to the Extensions tab in the VS Code sidebar.

2.	 Enter Orta.vscode-jest in the search box to find the Jest extension.

Providing a REST API using Express 75

3.	 Install the extension by pressing the Install button.

4.	 Now go to the newly added test icon on the sidebar (it should be a chemistry flask icon):

Figure 3.6 – The Testing tab in VS Code provided by the Jest extension

The Jest extension provides us an overview of all tests that we have defined. We can hover over them
and press on the Play icon to re-run a specific test. By default, the Jest extension enables auto-run-
watch (as can be seen in Figure 3.6). If auto-run-watch is enabled, the extension will re-run tests
automatically when test definition files are saved. That’s pretty handy!

Now that we have defined and tested our service functions, we can start using them when defining
routes, which we are going to do next!

Providing a REST API using Express
Having our data and service layers set up, we have a good framework for being able to write our
backend. However, we still need an interface that lets users access our backend. This interface will be
a representational state transfer (REST) API. A REST API provides a way to access our server via
HTTP requests, which we can make use of when we develop our frontend.

Implementing a Backend Using Express, Mongoose ODM, and Jest76

Figure 3.7 – The interaction between client and server using HTTP requests

As we can see, clients can send requests to our backend server, and the server will respond to them.
There are five commonly used methods in a REST-based architecture:

•	 GET: This is used to read resources. Generally, it should not influence the database state and,
given the same input, it should return the same output (unless the database state was changed
through other requests). This behavior is called idempotence. In response to a successful GET
request, a server usually returns the resource(s) with a 200 OK status code.

•	 POST: This is used to create new resources, from the information provided in the request body.
In response to a successful POST request, a server usually either returns the newly created
object with a 201 Created status code or returns an empty response (with 201 Created status
code) with a URL in the Location header that points to the newly created resource.

•	 PUT: This is used to update an existing resource with a given ID, replacing the resource
completely with the new data provided in the request body. In some cases, it can also be used
to create a new resource with a client-specified ID. In response to a successful PUT request, a
server either returns the updated resource with a 200 OK status code, 204 No Content if it does
not return the updated resource, or 201 Created if it created a new resource.

•	 PATCH: This is used to modify an existing resource with a given ID, only updating the fields
specified in the request body instead of replacing the whole resource. In response to a successful
PATCH request, a server either returns the updated resource with 200 OK or 204 No Content
if it does not return the updated resource.

•	 DELETE: This is used to delete a resource with a given ID. In response to a successful DELETE
request, a server either returns the deleted resource with 200 OK or 204 No Content if it does
not return the deleted resource.

HTTP REST API routes are usually defined in a folder-like structure. It is always a good idea to prefix
all routes with /api/v1/ (v1 being the version of the API definition, starting with 1). If we want
to change the API definition later, we can then easily run /api/v1/ and /api/v2/ in parallel for
a while until everything is migrated.

Providing a REST API using Express 77

Defining our API routes

Now that we have learned how HTTP REST APIs work, let’s start by defining routes for our backend,
covering all functionality we have already implemented in the service functions:

•	 GET /api/v1/posts: Get a list of all posts

•	 GET /api/v1/posts?sortBy=updatedAt&sortOrder=ascending: Get a list of
all posts sorted by updatedAt (ascending)

Note
Everything after the ? symbol is called a query string and follows the format
key1=value1&key2=value2&…. The query string can be used to provide additional
optional parameters to a route.

•	 GET /api/v1/posts?author=daniel: Get a list of posts by author “daniel”

•	 GET /api/v1/posts?tag=react: Get a list of posts with the tag react

•	 GET /api/v1/posts/:id: Get a single post by ID

•	 POST /api/v1/posts: Create a new post

•	 PATCH /api/v1/posts/:id: Update an existing post by ID

•	 DELETE /api/v1/posts/:id: Delete an existing post by ID

As we can see, by putting together our already developed service functions and what we have learned
about REST APIs, we can easily define routes for our backend. Now that we have defined our routes,
let’s set up Express and our backend server to be able to expose those routes.

Note
This is just one example of how a REST API can be designed. It is intended as an example to
get you started with full-stack development. Later, on your own time, feel free to check out
other resources, such as https://standards.rest, to deepen your knowledge of REST
API designs.

Setting up Express

Express is a web application framework for Node.js. It provides utility functions to easily define routes
for REST APIs and serve HTTP servers. Express is also very extensible, and there are many plugins
for it in the JavaScript ecosystem.

https://standards.rest

Implementing a Backend Using Express, Mongoose ODM, and Jest78

Note
While Express is the most well-known framework at the time of writing, there are also newer
ones, such as Koa (https://koajs.com) or Fastify (https://fastify.dev). Koa is
designed by the team behind Express but aims to be smaller, more expressive, and more robust.
Fastify focuses on efficiency and low overhead. Feel free to check these out on your own time
to see if they fit your requirements better.

Before we can set up the routes, let’s take some time to set up our Express application and backend
server by following these steps:

1.	 First, install the express dependency:

$ npm install express@4.18.2

2.	 Create a new src/app.js file. This file will contain everything needed to set up our Express
app. In this file, first import express:

import express from 'express'

3.	 Then create a new Express app, as follows:

const app = express()

4.	 Now we can define routes on the Express app. For example, to define a GET route, we can
write the following code:

app.get('/', (req, res) => {
  res.send('Hello from Express!')
})

5.	 We export the app to be able to use it in other files:

export { app }

6.	 Next, we need to create a server and specify a port, similar to what we did before when creating
an HTTP server. To do so, we create a new src/index.js file. In this file, we import the
Express app:

import { app } from './app.js'

7.	 Then, we define a port, make the Express app listen to it, and log a message telling us where
the server is running:

const PORT = 3000
app.listen(PORT)
console.info(`express server running on http://
localhost:${PORT}`)

https://koajs.com
https://fastify.dev

Providing a REST API using Express 79

8.	 Edit package.json and add a start script to run our server:

  "scripts": {
    "start": "node src/index.js",

9.	 Run the backend server by executing the following command:

$ npm start

10.	 Now, navigate to http://localhost:3000/ in your browser and you will see Hello from
Express! Being printed, just like before with the plain http server:

Figure 3.8 – Accessing our first Express app from the browser!

That’s all there is to setting up a simple Express app! We can now keep defining routes by using app.
get() for GET routes, app.post() for POST routes, etc. However, before we start developing our
routes, let’s take some time to improve our development environment. First, we should make PORT
and DATABASE_URL configurable so that we can change them without having to change the code.
To do so, we are going to use environment variables.

Using dotenv for setting environment variables

A good way to load environment variables is using dotenv, which loads environment variables from
.env files into our process.env. This makes it easy to define environment variables for local
development while keeping it possible to set them differently in, for example, a testing environment.
Follow these steps to set up dotenv:

1.	 Install the dotenv dependency:

$ npm install dotenv@16.3.1

2.	 Edit src/index.js, import dotenv there, and call dotenv.config() to initialize the
environment variables. We should do this before we call any other code in our app:

import dotenv from 'dotenv'
dotenv.config()

Implementing a Backend Using Express, Mongoose ODM, and Jest80

3.	 Now we can start replacing our static variables with environment variables. Edit src/index.
js and replace the static port 3000 with process.env.PORT:

const PORT = process.env.PORT

4.	 We have already migrated the initDatabase function to use process.env.DATABASE_URL
earlier when we set up Jest. Now, we can edit src/index.js and import initDatabase there:

import { initDatabase } from './db/init.js'

5.	 Adjust the existing code to first call initDatabase, and only when the database initialized,
start the Express app. We can now also handle errors while connecting to the database by
adding a try/catch block:

try {
  await initDatabase()
  const PORT = process.env.PORT
  app.listen(PORT)
  console.info(`express server running on http://
localhost:${PORT}`)
} catch (err) {
  console.error('error connecting to database:', err)
}

6.	 Finally, create a .env file in the root of the project and define the two environment variables there:

PORT=3000
DATABASE_URL=mongodb://localhost:27017/blog

7.	 We should exclude the .env file from the Git repository, as it is only used for local development.
Edit .gitignore and add .env to it in a new line:

.env

At the moment, we have no sensible information in our environment variables, but it is still a
good practice to do this already now. Later, we may have some credentials in the environment
variables, which we do not want to accidentally push to a Git repository.

8.	 To make it easier for someone to get started with our project, we can create a copy of our .env
file and duplicate it to .env.template, making sure that it does not contain any sensitive
credentials, of course! Sensitive credentials could instead be stored in, for example, a shared
password manager.

Providing a REST API using Express 81

9.	 If it is still running from before, stop the server (by pressing Ctrl + C in the Terminal) and
start it again as follows:

$ npm start

You will get the following result:

Figure 3.9 – Initializing the database connection and the Express server with environment variables

As we can see, dotenv makes it easy to maintain environment variables for development while still
allowing us the possibility to change them in a continuous integration, testing, or production environment.

You may have noticed that we need to manually restart the server after making some changes. This is
a stark contrast to the hot reloading we got out of the box from Vite, where any changes we make are
applied to the frontend in the browser instantly. Let’s now spend some time to improve the development
experience by making the server auto-restart on changes.

Using nodemon for easier development

To make our server auto-restart on changes, we can use the nodemon tool. The nodemon tool allows
us to run our server, similarly to the node CLI command. However, it offers the possibility to auto-
restart the server on changes to the source files.

1.	 Install the nodemon tool as a dev dependency:

$ npm install –save-dev nodemon@3.0.2

2.	 Create a new nodemon.json file in the root of your project and add the following contents to it:

{
  "watch": ["./src", ".env", "package-lock.json"]
}

This makes sure that all code in the src/ folder is watched for changes, and it will refresh if any
files inside it are changed. Additionally, we specified the .env file in case environment variables
are changed and the package-lock.json file in case packages are added or upgraded.

Implementing a Backend Using Express, Mongoose ODM, and Jest82

3.	 Now, edit package.json and define a new "dev" script that runs nodemon:

  "scripts": {
    "dev": "nodemon src/index.js",

4.	 Stop the server (if it is currently running) and start it again by running the following command:

$ npm run dev

5.	 As we can see, our server is now running through nodemon! We can try it out by changing
the port in the .env file:

PORT=3001
DATABASE_URL=mongodb://localhost:27017/blog

6.	 Edit .env.template as well to change the port to 3001:

PORT=3001

7.	 Keep the server running.

Figure 3.10 – Nodemon automatically restarting the server after we changed the port

After making the change, nodemon automatically restarted the server for us with the new port. We
now have something like hot reloading, but for backend development—awesome! Now that we have
improved the developer experience on the backend, let’s start writing our API routes with Express.
Keep the server running (via nodemon) to see it restart and update live while coding!

Providing a REST API using Express 83

Creating our API routes with Express

We can now start creating our previously defined API routes with express. We start by defining the
GET routes:

1.	 Create a new src/routes/posts.js file and import the service functions there:

import {
  listAllPosts,
  listPostsByAuthor,
  listPostsByTag,
  getPostById,
} from '../services/posts.js'

2.	 Now create and export a new function called postsRoutes, which takes the Express app
as an argument:

export function postsRoutes(app) {

3.	 In this function, define the routes. Start with the GET /api/v1/posts route:

  app.get('/api/v1/posts', async (req, res) => {

4.	 In this route, we need to make use of query params (req.query in Express) to map them
to the arguments of our functions. We want to be able to add query params for sortBy,
sortOrder, author, and tag:

    const { sortBy, sortOrder, author, tag } = req.query
    const options = { sortBy, sortOrder }

5.	 Before we call our service functions, which might throw an error if we pass invalid data to
the database functions, we should add a try-catch block to handle potential errors properly:

    try {

6.	 We now need to check if the author or tag was provided. If both were provided, we return
a 400 Bad Request status code and a JSON object with an error message by calling res.
json():

      if (author && tag) {
        return res
          .status(400)
          .json({ error: 'query by either author or tag, not
both' })

Implementing a Backend Using Express, Mongoose ODM, and Jest84

7.	 Otherwise, we call the respective service function and return a JSON response in Express by
calling res.json(). In case an error happened, we catch it, log it, and return a 500 status code:

      } else if (author) {
        return res.json(await listPostsByAuthor(author,
options))
      } else if (tag) {
        return res.json(await listPostsByTag(tag, options))
      } else {
        return res.json(await listAllPosts(options))
      }
    } catch (err) {
      console.error('error listing posts', err)
      return res.status(500).end()
    }
  })

8.	 Next, we define an API route to get a single post. We use the :id param placeholder to be able
to access it as a dynamic parameter in the function:

  app.get('/api/v1/posts/:id', async (req, res) => {

9.	 Now, we can access req.params.id to get the :id part of our route and pass it to our
service function:

    const { id } = req.params
    try {
      const post = await getPostById(id)

10.	 If the result of the function is null, we return a 404 response because the post was not found.
Otherwise, we return the post as a JSON response:

      if (post === null) return res.status(404).end()
      return res.json(post)
    } catch (err) {
      console.error('error getting post', err)
      return res.status(500).end()
    }
  })
}

By default, Express will return the JSON response with status 200 OK.

Providing a REST API using Express 85

11.	 After defining our GET routes, we still need to mount them in our app. Edit src/app.js
and import the postsRoutes function there:

import { postsRoutes } from './routes/posts.js'

12.	 Then, call the postsRoutes(app) function after initializing our Express app:

const app = express()
postsRoutes(app)

13.	 Go to http://localhost:3001/api/v1/posts to see the route in action!

Figure 3.11 – Our first real API route in action!

Tip
You can install a JSON Formatter extension in your browser to format the JSON response
nicely, like in Figure 3.11.

After defining the GET routes, we need to define the POST routes. However, these accept a body,
which will be formatted as JSON objects. As such, we need a way to parse this JSON body in Express.

Implementing a Backend Using Express, Mongoose ODM, and Jest86

Defining routes with a JSON request body

To define routes with a JSON request body in Express, we need to use the body-parser module.
This module detects if a client sent a JSON request (by looking at the Content-Type header) and
then automatically parses it for us so that we can access the object in req.body.

1.	 Install the body-parser dependency:

$ npm install body-parser@1.20.2

2.	 Edit src/app.js and import the body-parser there:

import bodyParser from 'body-parser'

3.	 Now add the following code after our app is initialized to load the body-parser plugin as
middleware into our Express app:

const app = express()
app.use(bodyParser.json())

Note
Middleware in Express allows us to do something before and after each request. In this case,
body-parser is reading the JSON body for us, parsing it as JSON and giving us a JavaScript
object that we can easily access from our route definitions. It should be noted that only routes
defined after the middleware have access to it, so the order of defining middleware and routes
is important!

4.	 After loading the body-parser, we edit src/routes/posts.js and import the service
functions needed to make the rest of our routes:

  createPost,
  updatePost,
  deletePost,
} from '../services/posts.js'

5.	 Now, we define the POST /api/v1/posts route by using app.post and req.body,
inside of the postsRoutes function:

  app.post('/api/v1/posts', async (req, res) => {
    try {
      const post = await createPost(req.body)
      return res.json(post)
    } catch (err) {
      console.error('error creating post', err)
      return res.status(500).end()

Providing a REST API using Express 87

    }
  })

6.	 Similarly, we can define the update route, where we need to make use of the id param and
the request body:

  app.patch('/api/v1/posts/:id', async (req, res) => {
    try {
      const post = await updatePost(req.params.id, req.body)
      return res.json(post)
    } catch (err) {
      console.error('error updating post', err)
      return res.status(500).end()
    }
  })

7.	 Finally, we define the delete route, which does not require the body-parser; we just need
to get the id param here. We return 404 if the post was not found, and 204 No Content if the
post was deleted successfully:

  app.delete('/api/v1/posts/:id', async (req, res) => {
    try {
      const { deletedCount } = await deletePost(req.params.id)
      if (deletedCount === 0) return res.sendStatus(404)
      return res.status(204).end()
    } catch (err) {
      console.error('error deleting post', err)
      return res.status(500).end()
    }
  })

As we can see, Express makes defining and handling routes, requests, and responses much easier. It
already detects and sets headers for us, and thus it can read and send JSON responses properly. It also
allows us to change the HTTP status code easily.

Now that we finished defining the routes with a JSON request body, let’s allow access to our routes
from other URLs using cross-origin resource sharing (CORS).

Implementing a Backend Using Express, Mongoose ODM, and Jest88

Allowing access from other URLs using CORS

Browsers have a safety feature to only allow us to access APIs on the same URL as the page we are
currently on. To allow access to our backend from other URLs than the backend URL itself (for
example, when we run the frontend on a different port in the next chapter), we need to allow CORS
requests. Let’s set that up now by using the cors library with Express:

1.	 Install the cors dependency:

$ npm install cors@2.8.5

2.	 Edit src/app.js and import cors there:

import cors from 'cors'

3.	 Now add the following code after our app is initialized to load the cors plugin as middleware
into our Express app:

const app = express()
app.use(cors())
app.use(bodyParser.json())

Now that CORS requests are allowed, we can start trying out the routes in a browser!

Trying out the routes

After defining our routes, we can try them out by using the fetch() function in the browser:

1.	 In your browser, go to http://localhost:3001/, open the console by right-clicking on
a page and clicking Inspect, then go to the Console tab.

2.	 In the console, enter the following code to make a GET request to get all posts:

fetch('http://localhost:3001/api/v1/posts')
  .then(res => res.json())
  .then(console.log)

3.	 Now we can modify this code to make a POST request by specifying the Content-Type
header to tell the server that we will be sending JSON and then sending a body with JSON.
stringify (as the body has to be a string):

fetch('http://localhost:3001/api/v1/posts', {
    headers: { 'Content-Type': 'application/json' },
    method: 'POST',
    body: JSON.stringify({ title: 'Test Post' })
})
  .then(res => res.json())
  .then(console.log)

Providing a REST API using Express 89

4.	 Similarly, we can also send a PATCH request, as follows:

fetch('http://localhost:3001/api/v1/
posts/642a8b15950196ee8b3437b2', {
    headers: { 'Content-Type': 'application/json' },
    method: 'PATCH',
    body: JSON.stringify({ title: 'Test Post Changed' })
})
  .then(res => res.json())
  .then(console.log)

Make sure to replace the MongoDB IDs in the URL with the one returned from the POST
request made before!

5.	 Finally, we can send a DELETE request:

fetch('http://localhost:3001/api/v1/
posts/642a8b15950196ee8b3437b2', {
    method: 'DELETE',
})
  .then(res => res.status)
  .then(console.log)

6.	 When doing a GET request, we can see that our post has now been deleted again:

fetch('http://localhost:3001/api/v1/
posts/642a8b15950196ee8b3437b2')
  .then(res => res.status)
  .then(console.log)

This request should now return a 404.

Tip
Instead of the browser console, you can also use command line tools such as curl or apps
such as Postman to make the requests. Feel free to use different tools to try out the requests if
you are already familiar with them.

We have now successfully defined all routes needed to handle a simple blog post API!

Implementing a Backend Using Express, Mongoose ODM, and Jest90

Summary
The first version of our backend service is now complete, allowing us to create, read, update, and delete
blog posts via a REST API (using Express), which then get stored in a MongoDB database (using
Mongoose). Additionally, we have created service functions with unit tests, defined using the Jest test
suite. All in all, we managed to create a solid foundation for our backend in this chapter.

In the next chapter, Chapter 4, Integrating a Frontend Using React and TanStack Query, we are going to
integrate our backend into a React frontend using TanStack Query, a library to handle asynchronous
state and thus data fetched from our server. This means that, after the next chapter, we will have
developed our first full-stack application!

4
Integrating a Frontend Using

React and TanStack Query

After designing, implementing, and testing our backend service, it’s now time to create a frontend to
interface with the backend. First, we will start by setting up a full-stack React project based on the
Vite boilerplate and the backend service created in the previous chapters. Then, we are going to create
a basic user interface for our blog application. Finally, we will use TanStack Query, a data fetching
library to handle backend state, to integrate the backend API into the frontend. By the end of this
chapter, we will have successfully developed our first full-stack application!

In this chapter, we are going to cover the following main topics:

•	 Principles of React

•	 Setting up a full-stack React project

•	 Creating the user interface for our application

•	 Integrating the backend service using TanStack Query

Technical requirements
Before we start, please install all requirements from Chapter 1, Preparing for Full-stack Development,
and Chapter 2, Getting to Know Node.js and MongoDB.

The versions listed in those chapters are the ones used in the book. While installing a newer version
should not be an issue, please note that certain steps might work differently on a newer version. If
you are having an issue with the code and steps provided in this book, please try using the versions
mentioned in Chapter 1 and 2.

You can find the code for this chapter on GitHub: https://github.com/PacktPublishing/
Modern-Full-Stack-React-Projects/tree/main/ch4

https://github.com/PacktPublishing/Modern-Full-Stack-React-Projects/tree/main/ch4
https://github.com/PacktPublishing/Modern-Full-Stack-React-Projects/tree/main/ch4

Integrating a Frontend Using React and TanStack Query92

If you cloned the full repository for the book, Husky may not find the .git directory when running
npm install. In that case, just run git init in the root of the corresponding chapter folder.

The CiA video for this chapter can be found at: https://youtu.be/WXqJu2Ut7Hs

Principles of React
Before we start learning how to set up a full-stack React project, let’s revisit the three fundamental
principles of React. These principles allow us to easily write scalable web applications:

•	 Declarative: Instead of telling React how to do things, we tell it what we want it to do. As a
result, we can easily design our applications and React will efficiently update and render just the
right components when the data changes. For example, the following code, which duplicates
strings in an array is imperative, which is the opposite of declarative:

const input = ['a', 'b', 'c']
let result = []
for (let i = 0; i < input.length; i++) {
  result.push(input[i] + input[i])
}
console.log(result) // prints: ['aa', 'bb', 'cc']

As we can see, in imperative code, we need to tell JavaScript exactly what to do, step by step.
However, with declarative code, we can simply tell the computer what we want, as follows:

const input = ['a', 'b', 'c']
const result = input.map(str => str + str)
console.log(result) // prints: ['aa', 'bb', 'cc']

In this declarative code, we tell the computer that we want to map each element of the input
array from str to str + str. As you can see, declarative code is much more concise.

•	 Component-based: React encapsulates components that manage their own state and views
and then allows us to compose them in order to create complex user interfaces.

•	 Learn once, write anywhere: React does not make assumptions about your technology stack and
tries to ensure that you can develop apps without rewriting existing code as much as possible.

React’s three fundamental principles make it easy to write code, encapsulate components, and share
code across multiple platforms. Instead of reinventing the wheel, React tries to make use of existing
JavaScript features as much as possible. As a result, we will learn software design patterns that will be
applicable in many more cases than just designing user interfaces.

Now that we have learned the fundamental principles of React, let’s get started setting up a full-stack
React project!

https://youtu.be/WXqJu2Ut7Hs

Setting up a full-stack React project 93

Setting up a full-stack React project
Before we can start developing our frontend application, we first need to merge our previously created
frontend boilerplate based on Vite with the backend service created in Chapter 3, Implementing a
Backend Using Express, Mongoose ODM, and Jest. Let’s merge them now by following these steps:

1.	 Copy the ch1 folder to a new ch4 folder, as follows:

$ cp -R ch1 ch4

2.	 Copy the ch3 folder to a new ch4/backend folder, as follows:

$ cp -R ch3 ch4/backend

3.	 Delete the .git folder in the copied ch4/backend folder, as follows:

$ rm -rf ch4/backend/.git

4.	 Open the new ch4 folder in VS Code.

5.	 Remove the Husky prepare script (the line is highlighted in the code snippet) from the
backend/package.json file, as we already have Husky set up in the root directory:

  "scripts": {
    "dev": "nodemon src/index.js",
    "start": "node src/index.js",
    "test": "NODE_OPTIONS=--experimental-vm-modules jest",
    "lint": "eslint src",
    "prepare": "husky install"
  },

6.	 Also remove the following lint-staged config from the backend/package.json file:

  "lint-staged": {
    "**/*.{js,jsx}": [
      "npx prettier --write",
      "npx eslint --fix"
    ]
  }

7.	 Then, remove the backend/.husky, backend/.vscode, and backend/.git folders.

8.	 To make sure all dependencies are installed properly, run the following command in the root
of the ch4 folder:

$ npm install

Integrating a Frontend Using React and TanStack Query94

9.	 Also go to the backend/ directory and install all dependencies there:

$ cd backend/
$ npm install

10.	 We can now also remove the husky, lint-staged, and @commitlint packages from
the backend project, as we already have it set up in the main project folder:

$ npm uninstall husky lint-staged \
  @commitlint/cli @commitlint/config-conventional

Tip
It is always a good idea to regularly check which packages you still need and which you can
get rid of, to keep your project clean. In this case, we copied code from another project, but
do not need the Husky / lint-staged / commitlint setup, as we already have it set up in the root
of our project.

11.	 Now go back to the root of the ch4 folder and run the following command to start the
frontend server:

$ cd ../
$ npm run dev

12.	 Open the frontend in your browser by going to the URL shown by Vite: http://
localhost:5173/

13.	 Open src/App.jsx, change the title as follows, and save the file:

      <h1>Vite + React + Node.js</h1>

14.	 You will see that the change is reflected instantly in the browser!

After successfully setting up our full-stack project by combining our projects from previous chapters,
let’s now get started designing and creating the user interface for our blog application.

Creating the user interface for our application
When designing the structure of a frontend, we should also consider the folder structure, so that our
app can grow easily in the future. Similar to how we did for the backend, we will also put all our source
code into a src/ folder. We can then group the files in separate folders for the different features.
Another popular way to structure frontend projects is to group code by routes. Of course, it is also
possible to mix them, for example, in Next.js projects we can group our components by features and
then create another folder and file structure for the routes, where the components are used. For full-
stack projects, it additionally makes sense to first separate our code by creating separate folders for
the API integration and UI components.

Creating the user interface for our application 95

Now, let’s define the folder structure for our project:

1.	 Create a new src/api/ folder.

2.	 Create a new src/components/ folder.

Tip
It is a good idea to start with a simple structure at first, and only nest more deeply when you
actually need it. Do not spend too much time thinking about the file structure when starting
a project, because usually, you do not know upfront how files should be grouped, and it may
change later anyway.

After defining the high-level folder structure for our projects, let’s now take some time to consider
the component structure.

Component structure

Based on what we defined in the backend, our blog application is going to have the following features:

•	 Viewing a single post

•	 Creating a new post

•	 Listing posts

•	 Filtering posts

•	 Sorting posts

The idea of components in React is to have each component deal with a single task or UI element.
We should try to make components as fine-grained as possible, in order to be able to reuse code. If
we find ourselves copying and pasting code from one component to another, it might be a good idea
to create a new component and reuse it in multiple other components.

Integrating a Frontend Using React and TanStack Query96

Usually, when developing a frontend, we start with a UI mock-up. For our blog application, a mock-up
could look as follows:

Figure 4.1 – An initial mock-up of our blog application

Note
In this book, we will not cover UI or CSS frameworks. As such, the components are designed and
developed without styling. Instead, the book focuses on the full-stack aspect of the integration
of backends with frontends. Feel free to use a UI framework (such as MUI), or a CSS framework
(such as Tailwind) to style the blog application on your own.

When splitting up the UI into components, we use the single-responsibility principle, which states
that every module should have responsibility over a single encapsulated part of the functionality.

In our mock-up, we can draw boxes around each component and subcomponent, and give them
names. Keep in mind that each component should have exactly one responsibility. We start with the
fundamental components that make up the app:

Creating the user interface for our application 97

Figure 4.2 – Defining the fundamental components in our mock-up

We defined a CreatePost component, with a form to create a new post, a PostFilter component
to filter the list of posts, a PostSorting component to sort posts, and a Post component to display
a single post.

Now that we have defined our fundamental components, we are going to look at which components
logically belong together, thereby forming a group: we can group the Post components together in
PostList, then make an App component to group everything together and define the structure
of our app.

Now that we are done with structuring our React components, we can move on to implementing the
static React components.

Implementing static React components

Before integrating with the backend, we are going to model the basic features of our application as
static React components. Dealing with the static view structure of our application first makes sense,
as we can play around and re-structure the application UI if needed, before adding integration to the
components, which would make it harder and more tedious to move them around. It is also easier to
deal only with the UI first, which helps us to get started quickly with projects and features. Then, we
can move on to implementing integrations and handling state.

Let’s get started implementing the static components now.

Integrating a Frontend Using React and TanStack Query98

The Post component

We have already thought about which elements a post has during the creation of the mock-up and
the design of the backend. A post should have a title, contents, and an author.

Let’s implement the Post component now:

1.	 First, create a new src/components/Post.jsx file.

2.	 In that file, import PropTypes:

import PropTypes from 'prop-types'

3.	 Define a function component, accepting title, contents, and author props:

export function Post({ title, contents, author }) {

4.	 Next, render all props in a way that resembles the mock-up:

  return (
    <article>
      <h3>{title}</h3>
      <div>{contents}</div>
      {author && (
        
          

          Written by {author}
        
      )}
    </article>
  )
}

Tip
Please note that you should always prefer spacing via CSS, rather than using the

HTML tag. However, we are focusing on the UI structure and integration with the backend in
this book, so we simply use HTML whenever possible.

5.	 Now, define propTypes, making sure only title is required:

Post.propTypes = {
  title: PropTypes.string.isRequired,
  contents: PropTypes.string,
  author: PropTypes.string,
}

Creating the user interface for our application 99

Info
PropTypes are used to validate the props passed to React components and to ensure that we
are passing the correct props when using JavaScript. When using a type-safe language, such
as TypeScript, we can instead do this by directly typing the props passed to the component.

6.	 Let’s test out our component by replacing the src/App.jsx file with the following contents:

import { Post } from './components/Post.jsx'

export function App() {
  return (
    <Post
      title='Full-Stack React Projects'
      contents="Let's become full-stack developers!"
      author='Daniel Bugl'
    />
  )
}

7.	 Edit src/main.jsx and update the import of the App component, because we are now not
using export default anymore:

import { App } from './App.jsx'

Info
I personally tend to prefer not using default exports, as they make it harder to re-group and re-
export components and functions from other files. Also, they allow us to change the names of
the components, which could be confusing. For example, if we change the name of a component,
the name when importing it is not changed automatically.

8.	 Also, remove the following line from src/main.jsx:

import './index.css'

9.	 Finally, we can delete the index.css and App.css files, as they are not needed anymore.

Now that our static Post component has been implemented, we can move on to the
CreatePost component.

The CreatePost component

We’ll now implement a form to allow for the creation of new posts. Here, we provide fields for author
and title and a <textarea> element for the contents of the blog post.

Integrating a Frontend Using React and TanStack Query100

Let’s implement the CreatePost component now:

1.	 Create a new src/components/CreatePost.jsx file.

2.	 Define the following component, which contains a form to enter the title, author, and contents
of a blog post:

export function CreatePost() {
  return (
    <form onSubmit={(e) => e.preventDefault()}>
      <div>
        <label htmlFor='create-title'>Title: </label>
        <input type='text' name='create-title' id='create-title'
/>
      </div>
      

      <div>
        <label htmlFor='create-author'>Author: </label>
        <input type='text' name='create-author' id='create-
author' />
      </div>
      

      <textarea />
      

      

      <input type='submit' value='Create' />
    </form>
  )
}

In the preceding code block, we defined an onSubmit handler and called
e.preventDefault() on the event object to avoid a page refresh when the form is submitted.

3.	 Let’s test the component out by replacing the src/App.jsx file with the following contents:

import { CreatePost } from './components/CreatePost.jsx'

export function App() {
  return <CreatePost />
}

As you can see, the CreatePost component renders fine. We can now move on to the PostFilter
and PostSorting components.

Creating the user interface for our application 101

Tip
If you want to test out multiple components at once and keep the tests around for later, or build
a style guide for your own component library, you should look into Storybook (https://
storybook.js.org), which is a useful tool to build, test, and document UI components
in isolation.

The PostFilter and PostSorting components

Similar to the CreatePost component, we will be creating two components that provide input
fields to filter and sort posts. Let’s start with PostFilter:

1.	 Create a new src/components/PostFilter.jsx file.

2.	 In this file, we import PropTypes:

import PropTypes from 'prop-types'

3.	 Now, we define the PostFilter component and make use of the field prop:

export function PostFilter({ field }) {
  return (
    <div>
      <label htmlFor={`filter-${field}`}>{field}: </label>
      <input
        type='text'
        name={`filter-${field}`}
        id={`filter-${field}`}
      />
    </div>
  )
}

PostFilter.propTypes = {
  field: PropTypes.string.isRequired,
}

Next, we are going to define the PostSorting component.

4.	 Create a new src/components/PostSorting.jsx file.

5.	 In this file, we create a select input to select which field to sort by. We also create another
select input to select the sort order:

import PropTypes from 'prop-types'

export function PostSorting({ fields = [] }) {
  return (

https://storybook.js.org
https://storybook.js.org

Integrating a Frontend Using React and TanStack Query102

    <div>
      <label htmlFor='sortBy'>Sort By: </label>
      <select name='sortBy' id='sortBy'>
        {fields.map((field) => (
          <option key={field} value={field}>
            {field}
          </option>
        ))}
      </select>
      {' / '}
      <label htmlFor='sortOrder'>Sort Order: </label>
      <select name='sortOrder' id='sortOrder'>
        <option value={'ascending'}>ascending</option>
        <option value={'descending'}>descending</option>
      </select>
    </div>
  )
}

PostSorting.propTypes = {
  fields: PropTypes.arrayOf(PropTypes.string).isRequired,
}

Now we have successfully defined UI components to filter and sort posts. In the next step, we are going
to create a PostList component to combine the filter and sorting with a list of posts.

The PostList component

After implementing the other post-related components, we can now implement the most important
part of our blog app, that is, the feed of blog posts. For now, the feed is simply going to show a list of
blog posts.

Let’s start implementing the PostList component now:

1.	 Create a new src/components/PostList.jsx file.

2.	 First, we import Fragment, PropTypes, and the Post component:

import { Fragment } from 'react'
import PropTypes from 'prop-types'
import { Post } from './Post.jsx'

3.	 Then, we define the PostList function component, accepting a posts array as a prop. If
posts is not defined, we set it to an empty array, by default:

export function PostList({ posts = [] }) {

Creating the user interface for our application 103

4.	 Next, we render all posts by using the .map function and the spread syntax:

  return (
    <div>
      {posts.map((post) => (
        <Post {...post} key={post._id} />
      ))}
    </div>
  )
}

We return the <Post> component for each post, and pass all the keys from the post object
to the component as props. We do this by using the spread syntax, which has the same effect
as listing all the keys from the object manually as props, like so:

<Post
  title={post.title}
  author={post.author}
  contents={post.contents}
/>

Note
If we are rendering a list of elements, we have to give each element a unique key prop. React uses
this key prop to efficiently compute the difference between two lists when the data has changed.

We used the map function, which applies a function to all the elements of an array. This is
similar to using a for loop and storing all the results, but it is more concise, declarative, and
easier to read! Alternatively, we could do the following instead of using the map function:

let renderedPosts = []
let index = 0
for (let post of posts) {
  renderedPosts.push(<Post {...post} key={post._id} />)
  index++
}

return (
  <div>
    {renderedPosts}
  </div>
)

However, using this style is not recommended with React.

Integrating a Frontend Using React and TanStack Query104

5.	 We also still need to define the prop types. Here, we can make use of the prop types from the
Post component, by wrapping it inside the PropTypes.shape() function, which defines
an object prop type:

PostList.propTypes = {
  posts: PropTypes.arrayOf(PropTypes.shape(Post.propTypes)).
isRequired,
}

6.	 In the mock-up, we have a horizontal line after each blog post. We can implement this without
an additional <div> container element, by using Fragment, as follows:

      {posts.map((post) => (
        <Fragment key={post._id}>
          <Post {...post} />
          <hr />
        </Fragment>
      ))}

Note
The key prop always has to be added to the uppermost parent element that is rendered within
the map function. In this case, we had to move the key prop from the Post component
to Fragment.

7.	 Again, we test our component by editing the src/App.jsx file:

import { PostList } from './components/PostList.jsx'

const posts = [
  {
    title: 'Full-Stack React Projects',
    contents: "Let's become full-stack developers!",
    author: 'Daniel Bugl',
  },
  { title: 'Hello React!' },
]

export function App() {
  return <PostList posts={posts} />
}

Now we can see that our app lists all the posts that we defined in the posts array.

Creating the user interface for our application 105

As you can see, listing multiple posts via the PostList component works fine. We can now move
on to putting the app together.

Putting the app together

After implementing all the components, we now have to put everything together in the App component.
Then, we will have successfully reproduced the mock-up!

Let’s start modifying the App component and putting our blog app together:

1.	 Open src/App.jsx and add imports for the CreatePost, PostFilter, and
PostSorting components:

import { PostList } from './components/PostList.jsx'
import { CreatePost } from './components/CreatePost.jsx'
import { PostFilter } from './components/PostFilter.jsx'
import { PostSorting } from './components/PostSorting.jsx'

2.	 Adjust the App component to contain all the components:

export function App() {
  return (
    <div style={{ padding: 8 }}>
      <CreatePost />
      

      <hr />
      Filter by:
      <PostFilter field='author' />
      

      <PostSorting fields={['createdAt', 'updatedAt']} />
      <hr />
      <PostList posts={posts} />
    </div>
  )
}

Integrating a Frontend Using React and TanStack Query106

3.	 After saving the file, the browser should automatically refresh, and we can now see the full UI:

Figure 4.3 – Full implementation of our static blog app, according to the mock-up

As we can see, all of the static components that we defined earlier are rendered together in one
App component. Our app now looks just like a mock-up. Next, we can move on to integrating our
components with the backend service.

Integrating the backend service using TanStack Query
After finishing creating all the UI components, we can now move on to integrating them with the
backend we created in the previous chapter. For the integration, we are going to use TanStack Query
(previously called React Query), which is a data fetching library that can also help us with caching,
synchronizing, and updating data from a backend.

TanStack Query specifically focuses on managing the state of fetched data (server state). While other
state management libraries can also deal with server state, they specialize in managing client state
instead. Server state has some stark differences from client state, such as the following:

•	 Being persisted remotely in a location the client does not control directly

•	 Requiring asynchronous APIs to fetch and update state

Integrating the backend service using TanStack Query 107

•	 Having to deal with shared ownership, which means that other people can change the state
without your knowledge

•	 State becoming stale (“out of date”) at some point when changed by the server or other people

These challenges with server state result in issues such as having to cache, deduplicate multiple requests,
update “out of date” state in the background, and so on.

TanStack Query provides solutions to these issues out of the box and thus makes dealing with server
state simple. You can always combine it with other state management libraries that focus on client state
as well. For use cases where the client state essentially just reflects the server state though, TanStack
Query on its own can be good enough as a state management solution!

Note
The reason why React Query got renamed to TanStack Query is that the library now also
supports other frameworks, such as Solid, Vue, and Svelte!

Now that you know why and how TanStack Query can help us integrate our frontend with the backend,
let’s get started using it!

Setting up TanStack Query for React

To set up TanStack Query, we first have to install the dependency and set up a query client. The query
client is provided to React through a context and will store information about active requests, cached
results, when to periodically re-fetch data, and everything needed for TanStack Query to function.

Let’s get started setting it up now:

1.	 Open a new Terminal (do not quit Vite!) and install the @tanstack/react-query
dependency by running the following command in the root of our project:

$ npm install @tanstack/react-query@5.12.2

We are now going to move our current App component to a new Blog component, as we are
going to use the App component for setting up libraries and contexts instead.

2.	 Rename the src/App.jsx file to src/Blog.jsx.

Do not update imports yet. If VS Code asks you to update imports, click No.

3.	 Now, in src/Blog.jsx, change the function name from App to Blog:

export function Blog() {

Integrating a Frontend Using React and TanStack Query108

4.	 Create a new src/App.jsx file. In this file, import QueryClient and
QueryClientProvider from TanStack React Query:

import { QueryClient, QueryClientProvider } from '@tanstack/
react-query'

5.	 Also, import the Blog component:

import { Blog } from './Blog.jsx'

6.	 Now, create a new query client:

const queryClient = new QueryClient()

7.	 Define the A p p component and render the B l o g component wrapped
inside QueryClientProvider:

export function App() {
  return (
    <QueryClientProvider client={queryClient}>
      <Blog />
    </QueryClientProvider>
  )
}

That’s all there is to setting up TanStack Query! We can now make use of it inside our Blog component
(and its children).

Fetching blog posts

The first thing we should do is fetch the list of blog posts from our backend. Let’s implement that now:

1.	 First of all, in the second Terminal window opened (not where Vite is running), run the backend
server (do not quit Vite!), as follows:

$ cd backend/
$ npm start

If you get an error, make sure Docker and MongoDB are running properly!

Tip
If you want to develop the backend and frontend at the same time, you can start the backend
using npm run dev to make sure it hot reloads when you change the code.

Integrating the backend service using TanStack Query 109

2.	 Create a .env file in the root of the project, and enter the following contents into it:

VITE_BACKEND_URL="http://localhost:3001/api/v1"

Vite supports dotenv out of the box. All environment variables that should be available to be
accessed within the frontend need to be prefixed with VITE_. Here, we set an environment
variable to point to our backend server.

3.	 Create a new src/api/posts.js file. In this file, we are going to define a function to fetch
posts, which accepts the query params for the /posts endpoint as an argument. These query
params are used to filter by author and tag and define sorting using sortBy and sortOrder:

export const getPosts = async (queryParams) => {

4.	 Remember that we can use the fetch function to make a request to a server. We need to pass
the environment variable to it and add the /posts endpoint. After the path, we add query
params, which are prefixed with the ? symbol:

  const res = await fetch(
    `${import.meta.env.VITE_BACKEND_URL}/posts?` +

5.	 Now we need to use the URLSearchParams class to turn an object into query params. That
class will automatically escape the input for us and turn it into valid query params:

      new URLSearchParams(queryParams),

6.	 Like we did before in the browser, we need to parse the response as JSON:

  )
  return await res.json()
}

7.	 Edit src/Blog.jsx and remove the sample posts array:

const posts = [
  {
    title: 'Full-Stack React Projects',
    contents: "Let's become full-stack developers!",
    author: 'Daniel Bugl',
  },
  { title: 'Hello React!' },
]

8.	 Also, import the useQuery function from @tanstack/react-query and the getPosts
function from our api folder in the src/Blog.jsx file:

import { useQuery } from '@tanstack/react-query'
import { PostList } from './components/PostList.jsx'

Integrating a Frontend Using React and TanStack Query110

import { CreatePost } from './components/CreatePost.jsx'
import { PostFilter } from './components/PostFilter.jsx'
import { PostSorting } from './components/PostSorting.jsx'
import { getPosts } from './api/posts.js'

9.	 Inside the Blog component, define a useQuery hook:

export function Blog() {
  const postsQuery = useQuery({
    queryKey: ['posts'],
    queryFn: () => getPosts(),
  })

The queryKey is very important in TanStack Query, as it is used to uniquely identify a
request, among other things, for caching purposes. Always make sure to use unique query
keys. Otherwise, you might see requests not triggering properly.

For the queryFn option, we just call the getPosts function, without query params for now.

10.	 After the useQuery hook, we get the posts from our query and fall back to an empty array
if the posts are not loaded yet:

const posts = postsQuery.data ?? []

11.	 Check your browser, and you will see that the posts are now loaded from our backend!

Now that we have successfully fetched blog posts, let’s get the filters and sorting working!

Implementing filters and sorting

To implement filters and sorting, we need to handle some local state and pass it as query params to
postsQuery. Let’s do that now:

1.	 We start by editing the src/Blog.jsx file and importing the useState hook from React:

import { useState } from 'react'

2.	 Then we add state hooks for the author filter and the sorting options inside the Blog
component, before the useQuery hook:

  const [author, setAuthor] = useState('')
  const [sortBy, setSortBy] = useState('createdAt')
  const [sortOrder, setSortOrder] = useState('descending')

Integrating the backend service using TanStack Query 111

3.	 Then, we adjust queryKey to contain the query params (so that whenever a query param
changes, TanStack Query will re-fetch unless the request is already cached). We also adjust
queryFn to call getPosts with the relevant query params:

  const postsQuery = useQuery({
    queryKey: ['posts', { author, sortBy, sortOrder }],
    queryFn: () => getPosts({ author, sortBy, sortOrder }),
  })

4.	 Now pass the values and relevant onChange handlers to the filter and sorting components:

      <PostFilter
        field='author'
        value={author}
        onChange={(value) => setAuthor(value)}
      />
      

      <PostSorting
        fields={['createdAt', 'updatedAt']}
        value={sortBy}
        onChange={(value) => setSortBy(value)}
        orderValue={sortOrder}
        onOrderChange={(orderValue) => setSortOrder(orderValue)}
      />

Note
For simplicity’s sake, we are only using state hooks for now. A state management solution or
context could make dealing with filters and sorting much easier, especially for larger applications.
For our small blog application, it is fine to use state hooks though, as we are focusing mostly
on the integration of the backend and frontend.

5.	 Now, edit src/components/PostFilter.jsx and add the value and onChange props:

export function PostFilter({ field, value, onChange }) {
  return (
    <div>
      <label htmlFor={`filter-${field}`}>{field}: </label>
      <input
        type='text'
        name={`filter-${field}`}
        id={`filter-${field}`}
        value={value}

Integrating a Frontend Using React and TanStack Query112

        onChange={(e) => onChange(e.target.value)}
      />
    </div>
  )
}

PostFilter.propTypes = {
  field: PropTypes.string.isRequired,
  value: PropTypes.string.isRequired,
  onChange: PropTypes.func.isRequired,
}

6.	 We also do the same for src/components/PostSorting.jsx:

export function PostSorting({
  fields = [],
  value,
  onChange,
  orderValue,
  onOrderChange,
}) {
  return (
    <div>
      <label htmlFor='sortBy'>Sort By: </label>
      <select
        name='sortBy'
        id='sortBy'
        value={value}
        onChange={(e) => onChange(e.target.value)}
      >
        {fields.map((field) => (
          <option key={field} value={field}>
            {field}
          </option>
        ))}
      </select>
      {' / '}
      <label htmlFor='sortOrder'>Sort Order: </label>
      <select
        name='sortOrder'
        id='sortOrder'
        value={orderValue}

Integrating the backend service using TanStack Query 113

        onChange={(e) => onOrderChange(e.target.value)}
      >
        <option value={'ascending'}>ascending</option>
        <option value={'descending'}>descending</option>
      </select>
    </div>
  )
}

PostSorting.propTypes = {
  fields: PropTypes.arrayOf(PropTypes.string).isRequired,
  value: PropTypes.string.isRequired,
  onChange: PropTypes.func.isRequired,
  orderValue: PropTypes.string.isRequired,
  onOrderChange: PropTypes.func.isRequired,
}

7.	 In your browser, enter Daniel Bugl as the author. You should see TanStack Query re-fetch
the posts from the backend as you type, and once a match is found, the backend will return
all posts by that author!

8.	 After testing it out, make sure to clear the filter again, so that newly created posts are not filtered
by the author anymore later on.

Tip
If you do not want to make that many requests to the backend, make sure to use a debouncing
state hook, such as useDebounce, and then pass only the debounced value to the query param.
If you are interested in gaining further knowledge about the useDebounce hook and other
useful hooks, I recommend checking out my book titled Learn React Hooks.

Integrating a Frontend Using React and TanStack Query114

The application should now look as follows, with the posts being filtered by the author entered in the
field, and sorted by the selected field, in the selected order:

Figure 4.4 – Our first full-stack application – a frontend fetching posts from a backend!

Now that sorting and filtering are working properly, let’s learn about mutations, which allow us to
make requests to the server that change the state of the backend (for example, inserting or updating
entries in the database).

Creating new posts

We are now going to implement a feature to create posts. To do this, we need to use the useMutation
hook from TanStack Query. While queries are meant to be idempotent (meaning that calling them
multiple times should not affect the result), mutations are used to create/update/delete data or perform
operations on the server. Let’s get started using mutations to create new posts now:

1.	 Edit src/api/posts.js and define a new createPost function, which accepts a post
object as an argument:

export const createPost = async (post) => {

Integrating the backend service using TanStack Query 115

2.	 We also make a request to the /posts endpoint, like we did for getPosts:

  const res = await fetch(`${import.meta.env.VITE_BACKEND_URL}/
posts`, {

3.	 However, now we also set method to a POST request, pass a header to tell the backend that
we will be sending a JSON body, and then send our post object as a JSON string:

    method: 'POST',
    headers: { 'Content-Type': 'application/json' },
    body: JSON.stringify(post),

4.	 Like with getPosts, we also need to parse the response as JSON:

  })
  return await res.json()
}

After defining the createPost API function, let’s use it in the CreatePost component
by creating a new mutation hook there.

5.	 Edit src/components/CreatePost.jsx and import the useMutation hook from
@tanstack/react-query, the useState hook from React, and our createPost
API function:

import { useMutation } from '@tanstack/react-query'
import { useState } from 'react'
import { createPost } from '../api/posts.js'

6.	 Inside the CreatePost component, define state hooks for title, author, and contents:

  const [title, setTitle] = useState('')
  const [author, setAuthor] = useState('')
  const [contents, setContents] = useState('')

7.	 Now, define a mutation hook. Here, we are going to call our createPost function:

  const createPostMutation = useMutation({
    mutationFn: () => createPost({ title, author, contents }),
  })

8.	 Next, we are going to define a handleSubmit function, which will prevent the default submit
action (which refreshes the page), and instead call .mutate() to execute the mutation:

  const handleSubmit = (e) => {
    e.preventDefault()
    createPostMutation.mutate()
  }

Integrating a Frontend Using React and TanStack Query116

9.	 We add the onSubmit handler to our form:

    <form onSubmit={handleSubmit}>

10.	 We also add the value and onChange props to our fields, as we did before for the sorting
and filters:

      <div>
        <label htmlFor='create-title'>Title: </label>
        <input
          type='text'
          name='create-title'
          id='create-title'
          value={title}
          onChange={(e) => setTitle(e.target.value)}
        />
      </div>
      

      <div>
        <label htmlFor='create-author'>Author: </label>
        <input
          type='text'
          name='create-author'
          id='create-author'
          value={author}
          onChange={(e) => setAuthor(e.target.value)}
        />
      </div>
      

      <textarea
        value={contents}
        onChange={(e) => setContents(e.target.value)}
      />

11.	 For the submit button, we make sure it says Creating… instead of Create while we are
waiting for the mutation to finish, and we also disable the button if no title was set (as it is
required), or if the mutation is currently pending:

      

      

      <input
        type='submit'
        value={createPostMutation.isPending ? 'Creating...' :
'Create'}
        disabled={!title || createPostMutation.isPending}
      />

Integrating the backend service using TanStack Query 117

12.	 Lastly, we add a message below the submit button, which will be shown if the mutation is successful:

      {createPostMutation.isSuccess ? (
        <>
          

          Post created successfully!
        </>
      ) : null}
    </form>

Note
In addition to isPending and isSuccess, mutations also return isIdle (when the
mutation is idle or in a fresh/reset state) and isError states. The same states can also be
accessed from queries, for example, to show a loading animation while posts are fetching.

13.	 Now we can try adding a new post, and it seems to work fine, but the post list is not updating
automatically, only after a refresh!

The issue is that the query key did not change, so TanStack Query does not refresh the list of posts.
However, we also want to refresh the list when a new post is created. Let’s fix that now.

Invalidating queries

To ensure that the post list is refreshed after creating a new post, we need to invalidate the query. We
can make use of the query client to do this. Let’s do it now:

1.	 Edit src/components/CreatePost.jsx and import the useQueryClient hook:

import { useMutation, useQueryClient } from '@tanstack/react-
query'

2.	 Use the query client to invalidate all queries starting with the 'posts' query key. This will
work with any query params to the getPosts request, as it matches all queries starting with
'posts' in the array:

  const queryClient = useQueryClient()
  const createPostMutation = useMutation({
    mutationFn: () => createPost({ title, author, contents }),
    onSuccess: () => queryClient.invalidateQueries(['posts']),
  })

Try creating a new post, and you will see that it works now, even with active filters and sorting! As we
can see, TanStack Query is great for handling server state with ease.

Integrating a Frontend Using React and TanStack Query118

Summary
In this chapter, we learned how to create a React frontend and integrate it with our backend using
TanStack Query. We have covered the main functionality of our backend: listing posts with sorting,
creating posts, and filtering by author. Dealing with tags and deleting and editing posts are similar to
the already explained functionalities and are left as an exercise for you.

In the next chapter, Chapter 5, Deploying the Application with Docker and CI/CD, we are going to deploy
our application with Docker and set up CI/CD pipelines to automate the deployment of our application.

5
Deploying the Application

with Docker and CI/CD

Now that we have successfully developed our first full-stack application with a backend service and
a frontend, we are going to package our app into Docker images and learn how to deploy them using
continuous integration (CI) and continuous delivery (CD) principles. We have already learned how
to start Docker containers in Chapter 2, Getting to Know Node.js and MongoDB. In this chapter, we
will learn how to create our own Docker images to instantiate containers from. Then, we are going
to manually deploy our application to a cloud provider. Finally, we are going to configure CI/CD
to automate the deployment of our application. At the end of this chapter, we will have successfully
deployed our first full-stack MongoDB Express React Node.js (MERN) application, and set it up for
future automated deployments!

In this chapter, we are going to cover the following main topics:

•	 Creating Docker images

•	 Deploying our full-stack application to the cloud

•	 Configuring CI to automate testing

•	 Configuring CD to automate the deployment

Technical requirements
Before we start, please install all requirements from Chapter 1, Preparing For Full-Stack Development,
and Chapter 2, Getting to Know Node.js and MongoDB.

The versions listed in those chapters are the ones used in the book. While installing a newer version
should not be an issue, please note that certain steps might work differently on a newer version. If
you are having an issue with the code and steps provided in this book, please try using the versions
mentioned in Chapter 1 and Chapter 2.

Deploying the Application with Docker and CI/CD120

You can find the code for this chapter on GitHub: https://github.com/PacktPublishing/
Modern-Full-Stack-React-Projects/tree/main/ch5.

The CiA video for this chapter can be found at: https://youtu.be/aQplfCQGWew

Creating Docker images
In Chapter 2, Getting to Know Node.js and MongoDB, we learned that in the Docker platform, we use
Docker images to create containers, which can then run services. We have already learned how to
use the existing mongo image to create a container for our database service. In this section, we are
going to learn how to create our own image to instantiate a container from. To do so, we first need
to create a Dockerfile, which contains all the instructions needed to build the Docker image. First,
we will create a Docker image for our backend service and run a container from it. Then, we will do
the same for our frontend. Finally, we will create a Docker Compose file to start our database and
backend services together with our frontend.

Creating the backend Dockerfile

A Dockerfile tells Docker step by step how to build the image. Each line in the file is an instruction
telling Docker what to do. The format of a Dockerfile is as follows:

comment
INSTRUCTION arguments

Every Dockerfile must begin with a FROM instruction, which specifies which image the newly created
image should be based on. You can extend your image from existing images, such as ubuntu or node.

Let’s get started by creating the Dockerfile for our backend service:

1.	 Copy the ch4 folder to a new ch5 folder, as follows:

$ cp -R ch4 ch5

2.	 Create a new backend/Dockerfile file inside the ch5 folder.

3.	 In this file, we first define a base image for our image, which will be version 20 of the node image:

FROM node:20

This image is provided by Docker Hub, similar to the ubuntu and mongo images we created
containers from before.

Note
Be careful to only use official images and images created by trusted authors. The node image,
for example, is officially maintained by the Node.js team.

https://github.com/PacktPublishing/Modern-Full-Stack-React-Projects/tree/main/ch5
https://github.com/PacktPublishing/Modern-Full-Stack-React-Projects/tree/main/ch5
https://youtu.be/aQplfCQGWew

Creating Docker images 121

4.	 Then, we set the working directory, which is where all files of our service will be placed inside
the image:

WORKDIR /app

The WORKDIR instruction is similar to using cd in the terminal. It changes the working directory
so that we do not have to prefix all the following commands with the full path. Docker creates
the folder for us if it does not exist yet.

5.	 Next, we copy the package.json and package-lock.json files from our project to
the working directory:

COPY package.json package-lock.json ./

The COPY instruction copies files from your local file system into the Docker image (relative
to the local working directory). Multiple files can be specified, and the last argument to the
instruction is the destination (in this case, the current working directory of the image).

The package-lock.json file is needed to ensure that the Docker image contains the same
versions of the npm packages as our local build.

6.	 Now, we run npm install to install all dependencies in the image:

RUN npm install

The RUN instruction executes a command in the working directory of the image.

7.	 Then, we copy the rest of our application from the local file system to the Docker image:

COPY . .

Note
Are you wondering why we initially just copied package.json and package-lock.
json? Docker images are built layer by layer. Each instruction forms a layer of the image. If
something changes, only the layers following the change are rebuilt. So, in our case, if any of the
code changes, only this last COPY instruction is re-executed when rebuilding the Docker image.
Only if dependencies change are the other COPY instruction and npm install re-executed.
Using this order of instruction reduces the time required to rebuild the image immensely.

8.	 Finally, we run our application:

CMD ["npm", "start"]

The CMD instruction is not executed while building the image. Instead, it stores information in the
metadata of the image, telling Docker which command to run when a container is instantiated
from the image. In our case, the container is going to run npm start when using our image.

Deploying the Application with Docker and CI/CD122

Note
You may have noticed that we passed a JSON array to the CMD instruction instead of simply
writing CMD npm start. The JSON array version is called exec form and, if the first argument
is an executable, will run the command directly without invoking a shell. The form without
the JSON array is called shell form and will execute the command with a shell, prefixing it
with /bin/sh -c. Running a command without a shell has the advantage of allowing the
application to properly receive signals, such as a SIGTERM or SIGKILL signal when the
application is terminated. Alternatively, the ENTRYPOINT instruction can be used to specify
which executable should be used to run a certain command (it defaults to /bin/sh -c).
In some cases, you may even want to run the script directly using CMD ["node", "src/
index.js"], so that the script can properly receive all signals. However, this would require
us to implement the SIGINT signal in our backend server to allow closing the container via
Ctrl + C, so, to keep things simple, we just use npm start instead.

After creating our Dockerfile, we should also create a .dockerignore file to make sure unnecessary
files are not copied into our image.

Creating a .dockerignore file

The COPY command, where we copy all files, would also copy the node_modules folder and other
files, such as the .env file, which we do not want to go into our image. To prevent certain files from
being copied into our Docker image, we need to create a .dockerignore file. Let’s do that now:

1.	 Create a new backend/.dockerignore file.

2.	 Open it and enter the following contents to ignore the node_modules folder and all .env files:

node_modules
.env*

Now that we have defined a .dockerignore file, the COPY instructions will ignore these folders
and files. Let’s build the Docker image now.

Building the Docker image

After successfully creating the backend Dockerfile and a .dockerignore file to prevent certain files
and folders from being added to our Docker image, we can now get started building our Docker image:

1.	 Open a Terminal.

2.	 Run the following command to build the Docker image:

$ docker image build -t blog-backend backend/

We specified blog-backend as the name of our image and backend/ as the working directory.

Creating Docker images 123

After running the command, Docker will start by reading the Dockerfile and .dockerignore file.
Then, it will download the node image and run our instructions one by one. Finally, it will export all
layers and metadata into our Docker image.

The following screenshot shows the output of creating a Docker image:

Figure 5.1 – The output when creating a Docker image

Now that we have successfully created our own image, let’s create and run a container based on it!

Creating and running a container from our image

We have already created Docker containers based on the ubuntu and mongo images in Chapter 2,
Getting to Know Node.js and MongoDB. Now, we are going to create and run a container from our
own image. Let’s get started doing that now:

1.	 Run the following command to list all available images:

$ docker images

This command should return the blog-backend image that we just created, and the mongo
and ubuntu images that we previously used.

Deploying the Application with Docker and CI/CD124

2.	 Make sure the dbserver container with our database is already running.

3.	 Then, start a new container, as follows:

$ docker run -it -e PORT=3001 -e DATABASE_URL=mongodb://host.
docker.internal:27017/blog -p 3001:3001 blog-backend

Let’s break down the arguments to the docker run command:

	� -it runs the container in interactive mode (-t to allocate a pseudo Terminal and -i to
keep the input stream open).

	� -e PORT=3001 sets the PORT environment variable inside the container to 3001.

	� -e DATABASE_URL=mongodb://host.docker.internal:27017/blog sets
the DATABASE_URL environment variable. Here, we replaced localhost with host.
docker.internal, as the MongoDB service runs in a different container on the Docker
host (our machine).

	� -p 3001:3001 forwards port 3001 from inside the container to port 3001 on the host
(our machine).

	� blog-backend is the name of our image.

4.	 The blog-backend container is now running, which looks very similar to running the
backend directly on our host in the Terminal. Go to http://localhost:3001/api/
v1/posts to verify that it is running properly like before and returning all posts.

5.	 Keep the container running for now.

We have successfully packaged our backend as a Docker image and started a container from it! Now,
let’s do the same for our frontend.

Creating the frontend Dockerfile

After creating a Docker image for the backend service, we are now going to repeat the same process to create
an image for the frontend. We will do so by first creating a Dockerfile, then the .dockerignore file,
building the image, and then running a container. Now, we will start with creating the frontend Dockerfile.

In the Dockerfile for our frontend, we are going to use two images:

•	 A build image to build our project using Vite (which will be discarded, with only the build
output kept)

•	 A final image, which will serve our static site using nginx

Creating Docker images 125

Let’s make the Dockerfile now:

1.	 Create a new Dockerfile in the root of our project.

2.	 In this newly created file, first, use the node image again, but this time we tag it AS build.
Doing so enables multi-stage builds in Docker, which means that we can use another base
image later for our final image:

FROM node:20 AS build

3.	 During build time, we also set the VITE_BACKEND_URL environment variable. In Docker,
we can use the ARG instruction to define environment variables that are only relevant when
the image is being built:

ARG VITE_BACKEND_URL=http://localhost:3001/api/v1

Note
While the ARG instruction defines an environment variable that can be changed at build time
using the --build-arg flag, the ENV instruction sets the environment variable to a fixed
value, which will persist when a container is run from the resulting image. So, if we want
to customize environment variables during build time, we should use the ARG instruction.
However, if we want to customize environment variables during runtime, ENV is better suited.

4.	 We set the working directory to /build for the build stage, and then repeat the same
instructions that we defined for the backend to install all necessary dependencies and copy
over the necessary files:

WORKDIR /build
COPY package.json .
COPY package-lock.json .
RUN npm install
COPY . .

5.	 Additionally, we execute npm run build to create a static build of our Vite app:

RUN npm run build

6.	 Now, our build stage is completed. We use the FROM instruction again to create the final
stage. This time, we base it off the nginx image, which runs an nginx web server:

FROM nginx AS final

7.	 We set the working directory for this stage to /var/www/html, which is the folder that
nginx serves static files from:

WORKDIR /usr/share/nginx/html

Deploying the Application with Docker and CI/CD126

8.	 Lastly, we copy everything from the /build/dist folder (which is where Vite puts the built
static files) from the build stage into the final stage:

COPY --from=build /build/dist .

A CMD instruction is not needed in this case, as the nginx image already contains one to run
the web server properly.

We successfully created a multi-stage Dockerfile for our frontend! Now, let’s move on to creating the
.dockerignore file.

Creating the .dockerignore file for the frontend

We also need to create a .dockerignore file for the frontend. Here, we also exclude, in addition
to the node_modules/ folder and .env files, the backend/ folder containing our backend
service and the .vscode, .git, and .husky folders. Let’s create the .dockerignore file now:

1.	 Create a new .dockerignore file in the root of our project.

2.	 Inside this newly created file, enter the following contents:

node_modules
.env*
backend
.vscode
.git
.husky
.commitlintrc.json

Now that we have ignored the files not necessary for the Docker image, let’s build it!

Building the frontend Docker image

Just like before, we execute the docker build command to build the image, giving it the name
blog-frontend and specifying the root directory as the path:

$ docker build -t blog-frontend .

Docker will now use the node image to build our frontend in the build stage. Then, it will switch
to the final stage, use the nginx image, and copy over the built static files from the build stage.

Now, let’s create and run the frontend container.

Creating Docker images 127

Creating and running the frontend container

Similarly to what we did for the backend container, we can also create and run a container from the
blog-frontend image by executing the following command:

$ docker run -it -p 3000:80 blog-frontend

The nginx image runs the web server on port 80, so, if we want to use the port 3000 on our host,
we need to forward from port 80 to 3000 by passing -p 3000:80.

After running this command and navigating to http://localhost:3000 in your browser, you
should see the frontend being served properly and showing blog posts from the backend.

Now that we have created images and containers for the backend and frontend, we are going to learn
about a way to manage multiple images more easily.

Managing multiple images using Docker Compose

Docker Compose is a tool that allows us to define and run multi-container applications with Docker.
Instead of manually building and running the backend, frontend, and database containers, we can
use Compose to build and run them all together. To get started using Compose, we need to create a
compose.yaml file in the root of our project, as follows:

1.	 Create a new compose.yaml file in the root of our project.

2.	 Open the newly created file and start by defining the version of the Docker Compose
file specification:

version: '3.9'

3.	 Now, define a services object, in which we are going to define all the services that we want
to use:

services:

4.	 First, we have blog-database, which uses the mongo image and forwards port 27017:

  blog-database:
    image: mongo
    ports:
      - '27017:27017'

Note
In YAML files, the indentation of lines is very important to distinguish where properties are
nested, so please be careful to put in the correct amount of spaces before each line.

Deploying the Application with Docker and CI/CD128

5.	 Next, we have blog-backend, which uses the Dockerfile defined in the backend/ folder,
defines the environment variables for PORT and DATABASE_URL, forwards the port to the
host, and depends on blog-database:

  blog-backend:
    build: backend/
    environment:
      - PORT=3001
      - DATABASE_URL=mongodb://host.docker.internal:27017/blog
    ports:
      - '3001:3001'
    depends_on:
      - blog-database

6.	 Lastly, we have blog-frontend, which uses the Dockerfile defined in the root, defines the
VITE_BACKEND_URL build argument, forwards the port to the host, and depends on blog-
backend:

  blog-frontend:
    build:
      context: .
      args:
        VITE_BACKEND_URL: http://localhost:3001/api/v1
    ports:
      - '3000:80'
    depends_on:
      - blog-backend

7.	 After defining the services, save the file.

8.	 Then, stop the backend and frontend containers running in the terminal by using the Ctrl +
C key combination.

9.	 Also, stop the already running dbserver container, as follows:

$ docker stop dbserver

10.	 Finally, run the following command in the Terminal to start all services using Docker Compose:

$ docker compose up

Docker Compose will now create containers for the database, backend, and frontend and start all
of them. You will start seeing logs being printed from the different services. If you go to http://
localhost:3000, you can see that the frontend is running. Create a new post to verify that the
connection to the backend and database works as well.

Creating Docker images 129

The following screenshot shows the output of docker compose up creating and starting all containers:

Figure 5.2 – Creating and running multiple containers with Docker Compose

The output in the screenshot is then followed by log messages from the various services, including
the MongoDB database service and our backend and frontend services.

Just like always, you can press Ctrl + C to stop all Docker Compose containers.

Now that we have set up Docker Compose, it’s very easy to start all services at once and manage
them all in one place. If you look at your Docker containers, you may notice that there are lots of
stale containers still left over from previously building the blog-backend and blog-frontend
containers. Let’s now learn how to clean up those.

Cleaning up unused containers

After experimenting with Docker for a while, there will be lots of images and containers that are not
in use anymore. Docker generally does not remove objects unless you explicitly ask it to, causing it to
use a lot of disk space. If you want to remove objects, you can either remove them one by one or use
one of the prune commands provided by Docker:

•	 docker container prune: This removes all stopped containers

•	 docker image prune: This removes all dangling images (images not tagged and not
referenced by any container)

•	 docker image prune -a: This removes all images not used by any containers

•	 docker volume prune: This removes all volumes not used by any containers

•	 docker network prune: This cleans up networks not used by any containers

•	 docker system prune: This prunes everything except volumes

•	 docker system prune --volumes: This prunes everything

So, if you want to, for example, remove all unused containers, you should first make sure that all of
the containers that you still want to use are running. Then, execute docker container prune
in the terminal.

Now that we have learned how to use Docker locally to package our services as images and run them
in containers, let’s move on to deploying our full-stack application to the cloud.

Deploying the Application with Docker and CI/CD130

Deploying our full-stack application to the cloud
After creating Docker images and containers locally, it’s time to learn how to deploy them to the
cloud so that everyone can access our services. In this book, we are going to use Google Cloud as
an example, but the general process also applies to other providers such as Amazon Web Services
(AWS) and Microsoft Azure. For the MongoDB database, we are going to use MongoDB Atlas but
feel free to use any provider that can host a MongoDB database for you.

Creating a MongoDB Atlas database

To host our database, we are going to use the official cloud solution provided by the MongoDB team
called MongoDB Atlas. Let’s get started with registering and setting up a database now:

1.	 Go to https://www.mongodb.com/atlas and press Try Free to create a new account,
or sign in with your existing account.

Note
The following instructions may vary slightly due to updates in the MongoDB Atlas UI. If the
options are not available exactly as listed, try to follow the instructions on the website instead
to create a database and a user to access it. This applies to all cloud services that we are going
to set up throughout this chapter.

2.	 Select Database from the sidebar, then press Create to create a new database deployment. If you
made a new account, you should be asked to create a new database deployment automatically.

3.	 Select Shared / M0 Sandbox (free instance) on Google Cloud and your preferred region.

4.	 Give your cluster a name of your choice.

5.	 Press Create to create your M0 sandbox cluster. It will take some time for the database to be
accessible (typically around a minute). However, you can continue setting up the user while
waiting for the cluster to be set up.

6.	 Go to the Database section in the sidebar and click on the Connect button next to your newly
created cluster.

7.	 In the popup, select Allow Access from Anywhere and then press Add IP Address.

8.	 Set a username and password for your database user and press Create database user.

9.	 Press Choose a connection method and select Drivers.

10.	 A connection string will be shown; copy it and save it for later, inserting your previously
set password instead of the <password> string. The connection string should have the
following format:

mongodb+srv://<username>:<password>@<cluster-name>.<cluster-id>.
mongodb.net/?retryWrites=true&w=majority

https://www.mongodb.com/atlas

Deploying our full-stack application to the cloud 131

11.	 Verify that the connection string works by opening a terminal and connecting to it using
mongo shell:

$ mongosh "<connection-string>"

The following screenshot shows how the Database Deployments tab looks in MongoDB Atlas:

Figure 5.3 – A fresh M0 Sandbox database cluster deployed on MongoDB Atlas

Now that we have successfully created our MongoDB database in the cloud, we can move on to setting
up Google Cloud to deploy our backend and frontend.

Creating an account on Google Cloud

Let’s get started with Google Cloud by creating an account now. When creating an account, you need
to enter billing information, but you will get $300 in free credits to trial using Google Cloud for free:

1.	 Go to https://cloud.google.com in your browser.

2.	 Press Get started for free if you do not have an account yet or press Sign in if you already
have an account.

3.	 Log in with your Google account and follow the instructions until you have access to the
Google Cloud console.

https://cloud.google.com

Deploying the Application with Docker and CI/CD132

You should now see a screen similar to the following figure:

Figure 5.4 – The Google Cloud console after registering

Now that you have an account set up and ready, let’s start deploying our services.

Deploying our Docker images to a Docker registry

Before we can deploy a service on a cloud provider, we first need to deploy our Docker image to a
Docker registry so that the cloud provider can access it from there and create a container from it.
Follow these steps to deploy our Docker images to Docker Hub, the official Docker registry:

1.	 Go to https://hub.docker.com and log in or register an account there.

2.	 Press the Create repository button to create a new repository. The repository will contain
our image.

3.	 Enter blog-frontend as the repository name and leave the description empty and visibility
public. Then press the Create button.

4.	 Repeat Steps 2 and 3, but this time, enter blog-backend as the repository name.

https://hub.docker.com

Deploying our full-stack application to the cloud 133

5.	 Open a new terminal and enter the following command to log in to your Docker Hub account:

$ docker login

Enter your username and password from Docker Hub and press the Return key or Enter.

6.	 Rebuild your image for Linux (to be able to deploy it to Google Cloud later), tag your image
with your repository name (replace [USERNAME] with your Docker Hub username), and
push it to the repository:

$ docker build --platform linux/amd64 -t blog-frontend .
$ docker tag blog-frontend [USERNAME]/blog-frontend
$ docker push [USERNAME]/blog-frontend

7.	 Navigate to backend/ in the terminal and repeat Step 6 for the blog-backend image:

$ cd backend/
$ docker build --platform linux/amd64 -t blog-backend .
$ docker tag blog-backend [USERNAME]/blog-backend
$ docker push [USERNAME]/blog-backend

Now that both repositories are set up and the images are pushed to them, they should show up in
Docker Hub with the following information: Contains: Image | Last pushed: a few seconds ago:

Figure 5.5 – Docker Hub giving an overview of our repositories

Now that our Docker images are published on a public Docker registry (Docker Hub), we can continue
setting up Google Cloud to deploy our services.

Note
The repositories created on Docker Hub in this book are public. You can also choose to create up
to one private repository on Docker Hub for free. Otherwise, you either need to have a Docker
Hub subscription, use a different registry, or host your own registry. For example, Google
Artifact Registry could be used to deploy private Docker images on Cloud Run.

Deploying the Application with Docker and CI/CD134

Deploying the backend Docker image to Cloud Run

After successfully publishing our Docker images on the Docker Hub registry, it’s time to deploy them
using Google Cloud Run. Cloud Run is a managed compute platform. It allows us to run containers
directly on the Google Cloud infrastructure, making app deployment simple and fast. The alternatives
to Cloud Run would be Kubernetes-based infrastructure, such as AWS ECS Fargate or DigitalOcean.

Follow these steps to deploy the backend to Google Cloud Run:

1.	 Go to https://console.cloud.google.com/.

2.	 In the search bar at the top, enter Cloud Run and select the Cloud Run – Serverless for
containerized applications product.

3.	 Press the Create Service button to create a new service.

Note
You may need to first create a project before you can create a service. In that case, just follow
the instructions on the website to create a new project with a name of your choice. Afterward,
press the Create Service button to create a new service.

4.	 Enter [USERNAME]/blog-backend in the Container image URL box.

5.	 Enter blog-backend in the Service name box, select a region of your choice, leave CPU
is only allocated during request processing selected, and select All – Allow direct access to
your service from the Internet and Authentication – Allow unauthenticated invocations.

6.	 Expand the Container, Networking, Security section, scroll down to Environment variables,
and click on Add Variable.

7.	 Name the new environment variable DATABASE_URL and, as the value, enter the connection
string from MongoDB Atlas, which you saved earlier.

Note
For simplicity, we are using a regular environment variable here. To make variables that contain
credentials more secure, it should instead be added as a secret, which requires enabling the
Secrets API, adding the secret to the secret manager, and then referencing the secret and
choosing it to be exposed as an environment variable.

8.	 Leave the rest of the options as the default options and press Create.

9.	 You will get redirected to the newly created service, where the container is currently being
deployed. Wait until it finishes deploying, which can take up to a couple of minutes.

https://console.cloud.google.com/

Deploying our full-stack application to the cloud 135

10.	 When the service finishes deploying, you should see a checkmark and a URL. Click the URL
to open the backend and you will see our Hello World from Express! message, which means
that our backend was successfully deployed in the cloud!

A deployed service looks as follows in Google Cloud Run:

Figure 5.6 – A successfully deployed service on Google Cloud Run

Deploying the frontend Docker image to Cloud Run

For the frontend, we first need to rebuild the container to change the VITE_BACKEND_URL
environment variable, which is statically built into our project. Let’s do that first:

1.	 Open a terminal and run the following command to rebuild the frontend with the environment
variable set:

$ docker build --platform linux/amd64 --build-arg "VITE_BACKEND_
URL=[URL]/api/v1" -t blog-frontend .

Make sure to replace [URL] with the URL to the backend service deployed on Google Cloud Run.

2.	 Tag it with your Docker Hub username and deploy the new version of the image to Docker Hub:

$ docker tag blog-frontend [USERNAME]/blog-frontend
$ docker push [USERNAME]/blog-frontend

Now, we can repeat similar steps as we did to deploy the backend to deploy our frontend as well:

1.	 Create a new Cloud Run service, enter [USERNAME]/blog-frontend in the Container
image URL box and blog-frontend in the Service name box.

2.	 Pick a region of your choice and enable Allow unauthenticated invocations.

3.	 Expand Container, Networking, Security and change the container port from 8080 to 80.

4.	 Press Create to create the service and wait for it to be deployed.

5.	 Open the URL in your browser and you should see the deployed frontend. Adding and listing
blog posts also works now by sending a request to the deployed backend, which then stores
the posts in our MongoDB Atlas cluster.

Deploying the Application with Docker and CI/CD136

We have successfully manually deployed our first full-stack React and Node.js application with a
MongoDB database in the cloud! In the next sections, we are going to focus on automating testing
and deployment using CI/CD.

Configuring CI to automate testing
Continuous Integration (CI) covers the automation of integrating code changes to find bugs quicker
and keep the code base easily maintainable. Usually, this is facilitated by having scripts run automatically
when a developer makes a pull/merge request before the code is merged into the main branch. This
practice allows us to detect problems with our code early by, for example, running the linter and tests
before the code can be merged. As a result, CI gives us more confidence in our code and allows us to
make and deploy changes faster and more frequently.

The following figure shows a simple overview of a possible CI/CD pipeline:

Figure 5.7 – Simple overview of a CI/CD pipeline

Note
In this book, we are going to use GitHub Actions for CI/CD. While the syntax and configuration
files might look and work differently on other systems, such as GitLab CI/CD or CircleCI, the
general principles are similar.

Configuring CI to automate testing 137

In GitHub Actions, workflows can be triggered when events occur in the repository, such as pushing
to a branch, opening a new pull request, or creating a new issue. Workflows can contain one or multiple
jobs, which can either run in parallel or sequentially. Each job runs inside its own runner, which
takes instructions from the CI definition and executes them within a specified container. Inside jobs,
actions can be performed, which are either existing actions provided on GitHub, or we can write our
own actions.

Adding CI for the frontend

Let’s get started creating a workflow that will build the frontend when a pull request is created, or a
push is made to the main branch:

1.	 Create a new .github/ folder in the root of our project. Inside it, create a workflows/ folder.

2.	 Inside the .github/workflows/ folder, create a new file called frontend-ci.yaml.

3.	 Open the .github/workflows/frontend-ci.yaml file and start by giving the
workflow a name:

name: Blog Frontend CI

4.	 Then, listen to events by using the on keyword. We are going to execute the jobs when a new
pull request or push is made to the main branch:

on:
  push:
    branches:
      - main
  pull_request:
    branches:
      - main

5.	 Now, we define a job that will run the linter and build the frontend:

jobs:
  lint-and-build:

6.	 We run the job on an ubuntu-latest container:

    runs-on: ubuntu-latest

7.	 We can make use of the matrix strategy to run our tests multiple times with different variables.
In our case, we want to run it on multiple Node.js versions:

    strategy:
      matrix:
        node-version: [16.x, 18.x, 20.x]

Deploying the Application with Docker and CI/CD138

8.	 Now, we define the steps inside our job. Make sure the steps are defined on the same
indentation level as strategy:

    steps:

9.	 First, we use the actions/checkout action, which checks out our repository:

      - uses: actions/checkout@v3

10.	 Then, we use the actions/setup-node action, which sets up Node.js inside our container.
Here, we make use of the node-version variable we defined earlier:

      - name: Use Node.js ${{ matrix.node-version }}
        uses: actions/setup-node@v3
        with:
          node-version: ${{ matrix.node-version }}
          cache: 'npm'

The cache option specifies a package manager to be used for caching dependencies.

11.	 Finally, we install dependencies, run the linter, and build our frontend:

      - name: Install dependencies
        run: npm install
      - name: Run linter on frontend
        run: npm run lint
      - name: Build frontend
        run: npm run build

Adding CI for the backend

Now that we have added CI for the frontend, let’s also add CI for the backend by building and testing
it when a pull request is created or a push is made to the main branch:

1.	 Inside the .github/workflows/ folder, create a new file called backend-ci.yaml.

2.	 Open the .github/workflows/backend-ci.yaml file, start by giving it a name, and
listen to the same events as we did for the frontend CI:

name: Blog Backend CI
on:
  push:
    branches:
      - main
  pull_request:
    branches:
      - main

Configuring CI to automate testing 139

3.	 Now, we define a job that will build and test the backend. We set the default working directory
to the backend/ folder to run all actions inside that folder:

jobs:
  lint-and-test:
    runs-on: ubuntu-latest
    strategy:
      matrix:
        node-version: [16.x, 18.x, 20.x]
    defaults:
      run:
        working-directory: ./backend

4.	 Then, we use the same actions as for the frontend to check out the repository and set up Node.js:

    steps:
      - uses: actions/checkout@v3
      - name: Use Node.js ${{ matrix.node-version }}
        uses: actions/setup-node@v3
        with:
          node-version: ${{ matrix.node-version }}
          cache: 'npm'
      - name: Install dependencies
        run: npm install

5.	 Finally, we run the linter on our backend and run the tests:

      - name: Run linter on backend
        run: npm run lint
      - name: Run backend tests
        run: npm test

6.	 Save the workflow files and commit and push them to a GitHub repository by creating a new
repository on GitHub and following their instructions to push an existing repository to GitHub.

7.	 Go to the repository on GitHub and select the Actions tab. You should see your workflows
running here.

Deploying the Application with Docker and CI/CD140

The following screenshot shows our CI workflows successfully running on GitHub:

Figure 5.8 – Backend and frontend CI workflows successfully running in GitHub Actions

If we make a new pull request to the main branch, we can also see that our CI workflows are
running properly on the new code. For example, if we added a way to tag posts from the frontend
and accidentally made tags required in the backend without considering our previous rule of only
the title being required, we will see that the corresponding tests failed:

Figure 5.9 – Backend CI workflow failing in a pull request

We can also see that GitHub Actions automatically cancels the jobs running for other Node.js versions
after one of them already failed, to avoid wasting time.

Now that we have successfully set up our CI workflows, let’s continue by setting up CD to automate
the deployment of our full-stack application.

Configuring CD to automate the deployment 141

Configuring CD to automate the deployment
After the pull/merge request is merged, continuous delivery (CD) comes into play. CD automates the
release process by automatically deploying the services and applications for us. Usually, this involves
a multi-stage process, where code is first automatically deployed to a staging environment and can
then be manually deployed to other environments, up until production. If deployment to production
is also an automated process, it is called continuous deployment instead of continuous delivery.

First, we need to get the credentials to authenticate with Docker Hub and Google Cloud. Then, we
can set up the workflow for deploying our blog.

Getting Docker Hub credentials

Let’s start by getting the credentials to access Docker Hub:

1.	 Go to https://hub.docker.com/.

2.	 Click on your profile and go to your account settings.

3.	 Click on the Security tab and press the New Access Token button.

4.	 As a description, write GitHub Actions and press the Generate button. Give Read, Write,
Delete permissions.

5.	 Copy the access token and store it in a safe place.

6.	 Go to your GitHub repository and then go to Settings | Secrets and variables | Actions.

7.	 Press the New repository secret button to add a new secret. As a name, write DOCKERHUB_
USERNAME, and as a secret value, use your username on Docker Hub.

8.	 Add another secret with the name DOCKERHUB_TOKEN and paste your previously created
access token as the secret value.

Getting Google Cloud credentials

Now, we are going to create a service account to access Google Cloud Run:

1.	 Go to https://console.cloud.google.com/.

2.	 In the search box on the top, enter Service accounts and go to the IAM and admin – Service
accounts page.

3.	 Press the Create Service Account button.

4.	 In the Service account name box, enter GitHub Actions. The ID should automatically be
generated as github-actions. Press Create and Continue.

5.	 Grant the service access to the Cloud Run Admin role and press Continue.

6.	 Press Done to finish creating the service account.

https://hub.docker.com/
https://console.cloud.google.com/

Deploying the Application with Docker and CI/CD142

7.	 On the overview list, copy the email of your newly created service account and save it for later use.

8.	 Go to the default compute service account by clicking on its email address. Go to the Permissions
tab and press Grant Access.

9.	 Paste the email of your newly created service account into the New principals field and assign
the Cloud Run Service Agent role. Press Save to confirm.

10.	 On the overview list, press the three dots icon to open actions on your github-actions
service account and select Manage keys.

11.	 On the new page, press Add Key | Create New Key, and press Create in the popup. A JSON
file should be downloaded.

12.	 Go to your GitHub repository, and go to Settings | Secrets and variables | Actions. Press the
New repository secret button to add a new secret.

13.	 Add a new secret on your GitHub repository called GOOGLECLOUD_SERVICE_ACCOUNT
and paste the previously copied email of your newly created service account as a secret value.

14.	 Add a new secret on your GitHub repository called GOOGLECLOUD_CREDENTIALS and as
the secret, paste in the contents of the downloaded JSON file.

15.	 Add a new secret on your GitHub repository called GOOGLECLOUD_REGION and set the
secret value to the region you selected when creating the Cloud Run services.

Note
For better security, Google recommends using workload identity federation instead of exporting
service account key JSON credentials. However, setting up workload identity federation is a
bit more complicated. More information on how to set it up can be found here: https://
github.com/google-github-actions/auth#setup.

Defining the deployment workflow

Now that the credentials are available as secret values to our CI/CD workflows, we can get started
defining the deployment workflow:

1.	 Inside the .github/workflows/ folder, create a new file called cd.yaml.

2.	 Open the .github/workflows/cd.yaml file and start by giving it a name:

name: Deploy Blog Application

3.	 For CD, we only execute the workflow when pushing to the main branch:

on:
  push:
    branches:
      - main

https://github.com/google-github-actions/auth#setup
https://github.com/google-github-actions/auth#setup

Configuring CD to automate the deployment 143

4.	 We start defining a deploy job, in which we set environment to production and point
the URL to the deployed frontend URL:

jobs:
  deploy:
    runs-on: ubuntu-latest
    environment:
      name: production
      url: ${{ steps.deploy-frontend.outputs.url }}

We will define a step with the deploy-frontend ID later, which stores a variable in steps.
deploy-frontend.outputs.url.

5.	 For the steps, as we did before, we first need to check out our repository:

    steps:
      - uses: actions/checkout@v3

6.	 Then, we log in to Docker Hub using the credentials we set earlier in our secrets:

      - name: Login to Docker Hub
        uses: docker/login-action@v2
        with:
          username: ${{ secrets.DOCKERHUB_USERNAME }}
          password: ${{ secrets.DOCKERHUB_TOKEN }}

7.	 Next, we log in to Google Cloud using the credentials we set earlier:

      - uses: google-github-actions/auth@v1
        with:
          service_account: ${{ secrets.GOOGLECLOUD_SERVICE_
ACCOUNT }}
          credentials_json: ${{ secrets.GOOGLECLOUD_CREDENTIALS
}}

8.	 Now, we build and push the backend Docker image using docker/build-push-action,
which builds and pushes an image to a Docker registry:

      - name: Build and push backend image
        uses: docker/build-push-action@v4
        with:
          context: ./backend
          file: ./backend/Dockerfile
          push: true
          tags: ${{ secrets.DOCKERHUB_USERNAME }}/blog-
backend:latest

Deploying the Application with Docker and CI/CD144

9.	 After pushing the Docker image for the backend, we can now deploy it on Cloud Run, using
the google-github-actions/deploy-cloudrun action:

      - id: deploy-backend
        name: Deploy backend
        uses: google-github-actions/deploy-cloudrun@v1
        with:
          service: blog-backend
          image: ${{ secrets.DOCKERHUB_USERNAME }}/blog-
backend:latest
          region: ${{ secrets.GOOGLECLOUD_REGION }}

We gave this step the deploy-backend ID, as we need to use it to reference the backend
URL to build the frontend image in the next step.

10.	 After building and deploying the backend, we build the frontend in a similar way, making sure
to pass VITE_BACKEND_URL as build-args:

      - name: Build and push frontend image
        uses: docker/build-push-action@v4
        with:
          context: .
          file: ./Dockerfile
          push: true
          tags: ${{ secrets.DOCKERHUB_USERNAME }}/blog-
frontend:latest
          build-args: VITE_BACKEND_URL=${{ steps.deploy-backend.
outputs.url }}/api/v1

11.	 Finally, we can deploy the frontend, giving this step the deploy-frontend ID, such that
our environment URL can be set properly:

      - id: deploy-frontend
        name: Deploy frontend
        uses: google-github-actions/deploy-cloudrun@v1
        with:
          service: blog-frontend
          image: ${{ secrets.DOCKERHUB_USERNAME }}/blog-
frontend:latest
          region: ${{ secrets.GOOGLECLOUD_REGION }}

12.	 Save the file and commit and push your changes to the main branch. You will see Deploy Blog
Application being triggered on GitHub Actions.

Configuring CD to automate the deployment 145

The following screenshot shows the result of our blog application being successfully deployed via
GitHub Actions:

Figure 5.10 – A successful deployment of our full-stack application using GitHub Actions

You can click on the URL to open the deployed frontend and will see that it works the same way as
the manually deployed version.

Congratulations! You have successfully automated the integration and deployment of your first
full-stack application!

Note
In this book, we only created a single-stage deployment, deploying automatically directly to
production. In a real-world application, you may want to define multiple stages. For example,
CD could automatically deploy to a staging environment. Deploying to production could then
be configured to require manual confirmation.

Deploying the Application with Docker and CI/CD146

Summary
In this chapter, we started by learning how to create Docker images and how to instantiate local
containers from them. Then, we automated this process by using Docker Compose. Next, we published
our images on the Docker Hub registry to be able to deploy them on Google Cloud Run. We then
manually deployed our full-stack application on Cloud Run. Finally, we learned how to set up CI/
CD workflows with GitHub Actions to automate the running of the linter, tests, and deploying the
blog application.

Up until now, everything in our application has been publicly accessible. With no user management,
anyone can just create posts as any author. In the next chapter, Chapter 6, Adding Authentication with
JWT, we are going to learn how to implement user accounts and authentication in our full-stack blog
application. We are going to learn what JSON Web Tokens (JWTs) are and implement multiple routes
for logging in and signing up.

Part 3:
Practicing Development of

Full-Stack Web Applications

In this part, we are going to dive deeper into full-stack web development. We will start by adding
authentication to our app using JSON Web Tokens. Then, we will learn how to improve the load
time using server-side rendering. Next, we will learn how to optimize an app for search engines. We
will also implement end-to-end tests using Playwright to make sure our app stays robust. Then, we
will learn how to collect events, aggregate data using MongoDB, and create statistics to visualize the
aggregated data using Victory. Toward the end of this part, we will learn about building a backend
with a GraphQL API and how to interface with GraphQL on the frontend using Apollo Client.

This part includes the following chapters:

•	 Chapter 6, Adding Authentication with JWT

•	 Chapter 7, Improving the Load Time Using Server-Side Rendering

•	 Chapter 8, Making Sure Customers Find You with Search Engine Optimization

•	 Chapter 9, Implementing End-To-End Tests Using Playwright

•	 Chapter 10, Aggregating and Visualizing Statistics Using MongoDB and Victory

•	 Chapter 11, Building a Backend with a GraphQL API

•	 Chapter 12, Interfacing with GraphQL on the Frontend Using Apollo Client

6
Adding Authentication

with JWT

After developing and deploying our first full-stack application, we now have a way for anyone to
create posts on our blog. However, since the author is an input field, anyone could enter any author,
impersonating others! That’s not good. In this chapter, we are going to add authentication with JSON
Web Token (JWT) and functionalities to sign up and log into our application by adding additional
routes using React Router.

In this chapter, we are going to cover the following main topics:

•	 What is JWT?

•	 Implementing login, signup, and authenticated routes in the backend using JWT

•	 Integrating login and signup in the frontend using React Router and JWT

•	 Advanced token handling

Technical requirements
Before we start, please install all the requirements from Chapter 1, Preparing for Full-Stack Development,
and Chapter 2, Getting to Know Node.js and MongoDB.

The versions listed in those chapters are the ones used in this book. While installing a newer version
should not be an issue, please note that certain steps might work differently. If you are having an issue
with the code and steps provided in this book, please try using the versions mentioned in Chapter 1
and Chapter 2.

You can find the code for this chapter on GitHub: https://github.com/PacktPublishing/
Modern-Full-Stack-React-Projects/tree/main/ch6.

The CiA video for this chapter can be found at: https://youtu.be/LloHmkgRLWk.

https://github.com/PacktPublishing/Modern-Full-Stack-React-Projects/tree/main/ch6
https://github.com/PacktPublishing/Modern-Full-Stack-React-Projects/tree/main/ch6
https://youtu.be/LloHmkgRLWk

Adding Authentication with JWT150

What is JWT?
JWT, pronounced “jot”, is an open industry standard (RFC 7519) for safely passing claims between
multiple parties. Claims can be information about a certain party or object, such as the email address,
user ID, and roles of a user. In our case, we will pass JWTs between our backend and frontend.

JWT is used by many products and services and is supported by third-party authentication providers,
such as Auth0, Okta, and Firebase Auth. It is easy to parse JWTs as we only need to base64 decode
them and parse the JSON string. After verifying the signature, we can be sure that the JWT is authentic
and trust the claims within it.

JWTs consist of the following components:

•	 Header: Containing the algorithm and token type

•	 Payload: Containing the data/claims of the token

•	 Signature: For verifying that the token was created by a legit source

These three components form a JWT as they’re joined into a single string, separated by a period (.),
as follows:

header.payload.signature

Let’s look at each component separately.

JWT header

The JWT header typically consists of a token type (in our case, JWT), specified by the typ property,
and the algorithm used to create the signature (in our case, we will use HMAC SHA256, a SHA256
hash-based message authentication code), specified by the alg property. The header is defined as a
JSON object, like so:

{
  "alg": "HS256",
  "typ": "JWT"
}

This JSON object is then base64 encoded and forms the first part of the JWT.

What is JWT? 151

JWT payload

The main part of the JWT is the payload, which contains all claims. Claims are information about an
entity (such as the user) and additional data. The JWT standard distinguishes between three types
of claims:

•	 Registered claims: These are predefined claims and it’s recommended that they’re set. They
include information about the following:

	� The issuer (iss), which is the entity that created the token.

	� The expiration time (exp), which tells us when the token expires.

	� The subject (sub), which tells us about the entity identified by the token (such as the user
who generated the token during a login).

	� The audience (aud), which tells us about the intended recipients of the token.

	� The issued at time (iat), which tells us when the token was created.

	� The not before time (nbf), which specifies a time before which the token is not valid yet.

	� The JWT ID (jti), which provides a unique identifier for the JWT. It’s used to prevent
JWTs from being replayed.

Note
The JSON object properties defined in the JWT standard are all three-letter names to keep the
JWT as compact as possible.

•	 Public claims: These are additional claims that are commonly used and shared across many
services. A list of those can be found on the Internet Assigned Numbers Authority (IANA)
website: https://www.iana.org/assignments/jwt/jwt.xhtml. If we want
to store additional information, we should always consult this list first to see if we can use a
standardized claim name.

•	 Private claims: These are custom-defined claims, which are neither registered nor public. If we
need a special claim that isn’t defined yet, we can make a private claim that only our services
will understand.

All claims are optional, but it makes sense to at least include one claim to identify the subject, such
as the sub registered claim.

https://www.iana.org/assignments/jwt/jwt.xhtml

Adding Authentication with JWT152

Putting together what we’ve learned, we can create the following example payload:

{
  "sub": "1234567890",
  "name": "Daniel Bugl",
  "admin": true
}

In our example, the sub claim is a registered claim, the name claim is a public claim, and the admin
claim is a private claim.

The payload is also base64 encoded and forms the second part of the JWT. As such, this information
is publicly readable by anyone who has access to the token. Do not put secret information into the
payload or header of a JWT! However, the information cannot be changed without invalidating the
existing signature, making all claims tamper-proof. Only a backend service with access to the private
key can generate a new signature to create a valid JWT.

JWT signature

The final part of a JWT is its signature. The signature is what proves that all the information that we’ve
defined up until now has not been tampered with. The signature is created by taking the base64-
encoded header and payload, joining those strings with a period symbol, and using the specified
algorithm to sign it with a secret key:

HMACSHA256(
  base64UrlEncode(header) + "." + base64UrlEncode(payload),
  secret
)

Now that we’ve learned about the different components of a JWT, let’s put this all together to create
a valid JWT.

Creating a JWT

 Follow these steps to create a JWT:

1.	 Go to the https://jwt.io/ website and scroll down to the Debugger section.

2.	 Enter our previously defined header and payload.

3.	 Enter full-stack as the secret.

4.	 The encoded JWT should update on the fly as you’re changing the values.

https://jwt.io/

What is JWT? 153

As you can see, we have successfully created our first JWT:

Figure 6.1 – Our first JWT, created with the jwt.io debugger

The generated JWT consists of three components, each of them base64-encoded and separated by
periods. In the debugger, they are highlighted in three different colors. Try changing the base64 string
in the “Encoded” section by removing some characters; you will see that the JWT is now invalid due
to an ”Invalid Signature” issue. Now that we’ve created our first JWT, let’s learn how to use it.

Using JWT

In the login process, we are going to generate a JWT for the logged-in user in the backend. This JWT
will be returned to the user’s browser. When the user wants to access a protected route, we can send
the JWT to the backend server by using the Authorization header with the Bearer schema,
as follows:

Authorization: Bearer <token>

Adding Authentication with JWT154

The backend can then check for this header, verify the signature of the token, and grant the user
access to certain routes. By sending the token in a header instead of a cookie, we don’t have to deal
with CORS issues that we would have when dealing with cookies.

Note
Be careful not to send too much data in the header since some servers do not accept more than
8 KB in headers. This means that, for example, complex role information should not be stored
in the JWT claims as it might take up too much space. Instead, this kind of information could
be stored in the database associated with a user ID from the JWT.

An interesting advantage of using a JWT is that the authentication server and the actual backend
for our app do not have to be the same. We could have a separate authentication service, get a JWT,
and in the backend verify the signature of the JWTs to guarantee that they were generated by the
authentication service. This allows us to use external services for authentication, such as Auth0, Okta,
or Firebase Auth.

The following diagram shows the authorization flow for a JWT:

Figure 6.2 – Authorization flow for a JWT

As we can see, the application requests authorization to the authorization server, which can also be either
a third-party provider, a separate service, or part of the backend service. Then, when authorization is
granted (if the login details are correct), the authorization server returns a JWT. This JWT can then
be used to access protected routes on APIs. Before granting access, the JWT signature is validated to
ensure that it has not been tampered with.

Implementing login, signup, and authenticated routes in the backend using JWTs 155

Storing JWT

We should take great care about where we store the JWT. Local storage is not a good way to store
authentication information such as a JWT. Cross-site scripting can be used to steal all data in local storage.
For short-lived tokens, we can store them in a JavaScript runtime variable (such as a React context).
For longer-term storage, we could use an httpOnly cookie, which has additional security guarantees.

Now that we’ve learned how JWT works, let’s put theory into practice and implement login, signup,
and authenticated routes in the backend using JWT.

Implementing login, signup, and authenticated routes in
the backend using JWTs
Now that we’ve learned about JWTs, we’ll implement them in our backend. First, we need to create a
user model in our database, after which we can create routes to sign up and log into our app. Finally,
we will implement authenticated routes that are only accessible with a JWT.

Creating the user model

We’ll start the backend implementation by creating a user model, as follows:

1.	 Copy the ch5 folder to a new ch6 folder, as follows:

$ cp -R ch5 ch6

2.	 Open the ch6 folder in VS Code.

3.	 Create a new backend/src/db/models/user.js file and define a new userSchema
inside it:

import mongoose, { Schema } from 'mongoose'

const userSchema = new Schema({

4.	 A user should have a required unique username and a required password:

  username: { type: String, required: true, unique: true },
  password: { type: String, required: true },
})

5.	 Create and export the model:

export const User = mongoose.model('user', userSchema)

Adding Authentication with JWT156

6.	 At this point, let’s also adjust the post model so that we can store a reference to a user ID instead
of the username as the author. Edit backend/src/db/models/post.js, as follows:

    author: { type: Schema.Types.ObjectId, ref: 'user',
required: true },

We changed the type to ObjectId, with a reference to the user model, and made author
required (as you will need to be logged in to create a post after we add an authenticated route
later in this chapter).

Making author required means that the unit tests will need to be adjusted, but doing so is
left as an exercise for you.

Now that we’ve successfully created the user model, let’s move on to creating the signup service so
that we have a way to create new users.

Creating the signup service

When a user signs up, we need to hash the password provided by the user before storing it in the
database. We should never store passwords in plaintext as that would mean that if our database gets
leaked, an attacker will have access to the passwords of all users. Hashing is a one-way function
that turns a string into a different string in a deterministic way. This means that, for example, if
we do hash("password1"), we get a specific string every time we do it. However, if we do
hash("password2"), we get a completely different string. By choosing a good hash function,
we can ensure that reversing a hash is so computationally expensive that it is impossible to do in a
reasonable time. When the user signs up, we can store the hash of their password. When a user then
enters their password to log in, we can hash their entered password again and compare it to the hash
in the database.

Let’s start implementing the signup service with hashed passwords:

1.	 Install the bcrypt npm package. We are going to use this to hash the password before storing it:

$ cd backend
$ npm install bcrypt@5.1.1

2.	 Create a new backend/src/services/users.js file and import bcrypt and the
User model:

import bcrypt from 'bcrypt'
import { User } from '../db/models/user.js'

3.	 Define a createUser function that takes username and password values:

export async function createUser({ username, password }) {

Implementing login, signup, and authenticated routes in the backend using JWTs 157

4.	 Inside this function, we use the bcrypt.hash function to create a hash from the plaintext
password using 10 salt rounds (repeating the hashing 10 times to make it even harder to reverse it):

  const hashedPassword = await bcrypt.hash(password, 10)

5.	 Now, we can create a new user and store it in our database:

  const user = new User({ username, password: hashedPassword })
  return await user.save()
}

For brevity, we won’t cover creating tests for the user services. Refer to Chapter 3, Implementing a
Backend Service Using Express, Mongoose ODM, and Jest, for information on how to create tests for
your service functions. You can write similar tests to what we did for the posts service functions.

After creating the signup service, we can create the signup route.

Creating the signup route

Now, let’s expose the signup service function by adding an API route for it:

1.	 Create a new backend/src/routes/users.js file and import the createUser service:

import { createUser } from '../services/users.js'

2.	 Define a new userRoutes function and expose a POST /api/v1/user/signup route.
This route creates a new user from the request body and return the username:

export function userRoutes(app) {
  app.post('/api/v1/user/signup', async (req, res) => {
    try {
      const user = await createUser(req.body)
      return res.status(201).json({ username: user.username })
    } catch (err) {
      return res.status(400).json({
        error: 'failed to create the user, does the username
already exist?'
      })
    }
  })
}

In this case, we define a singular user route instead of calling it users as we are only dealing
with one user at a time. To keep things simple, the error handling is very rudimentary. It would
be a good idea to distinguish between the different errors that can happen and show a different
error message, depending on the error.

Adding Authentication with JWT158

3.	 Edit backend/src/app.js and import the userRoutes function:

import { postRoutes } from './routes/posts.js'
import { userRoutes } from './routes/users.js'

4.	 In the same file, call the userRoutes function after the postRoutes function to mount them:

postRoutes(app)
userRoutes(app)

5.	 Make sure the dbserver container is running in Docker.

6.	 Start the backend by running the following command in a Terminal inside the backend/ folder:

$ cd backend
$ npm run dev

7.	 Now, make a request to the new POST /api/v1/user/signup route. You will see that
creating a user works if username and password values are provided properly. Enter
the following code in your browser console while the backend is running, on a blank tab or
at http://localhost:3001/:

const res = await fetch('http://localhost:3001/api/v1/user/
signup', {
    method: 'POST',
    headers: { 'Content-Type': 'application/json' },
    body: JSON.stringify({ username: 'dan', password: 'hunter2'
})
})
console.log(await res.json())

8.	 If we try creating another user with the same username (by executing the same fetch again), it
will fail because the username field is defined to be unique in Mongoose.

Now that we have successfully created our first user, let’s continue by creating the login service to
allow our user to log in.

Creating the login service

So far, we have only created a user in our database. As we aren’t authorizing the user yet, we haven’t
dealt with JWTs yet. Let’s start doing that now:

1.	 Open a new Terminal and install the jsonwebtoken library, which contains functions to
deal with the creation and verification of JWTs:

$ cd backend
$ npm install jsonwebtoken@9.0.2

Implementing login, signup, and authenticated routes in the backend using JWTs 159

2.	 Edit the backend/src/services/users.js file and import jwt from the
jsonwebtoken library:

import jwt from 'jsonwebtoken'

3.	 Define a new loginUser function, which takes a username and password:

export async function loginUser({ username, password }) {

4.	 Now, fetch a user with the given username from our database:

  const user = await User.findOne({ username })
  if (!user) {
    throw new Error('invalid username!')
  }

5.	 Then, use bcrypt.compare to compare the entered password to the hashed password from
the database:

  const isPasswordCorrect = await bcrypt.compare(password, user.
password)
  if (!isPasswordCorrect) {
    throw new Error('invalid password!')
  }

6.	 If the user correctly enters a username and password, we use jwt.sign() to create a new
JWT and sign it with a secret. For the secret, we use an environment variable:

  const token = jwt.sign({ sub: user._id }, process.env.JWT_
SECRET, {
    expiresIn: '24h',
  })

In the last argument, we also specify that our token should be valid for 24 hours.

Note
We are using the user ID, not the username, to identify the user. This is done to future-proof
the system as the user ID is a value that will never change. In the future, we might want to add
a way to change the username. It would be hard to deal with such a change if we always use
the username to identify the user.

7.	 Lastly, we return the token:

  return token
}

Adding Authentication with JWT160

8.	 Now, we define the JWT_SECRET environment variable by editing the .env file:

JWT_SECRET=replace-with-random-secret

Make sure you generate a safe JWT secret for the production environment, which you never
expose or use in development environments or for debugging! If you want to deploy your
app to Google Cloud Run again, you would also need to add this secret as an environment
variable there.

9.	 We’ll also add one to .env.template as an example:

JWT_SECRET=replace-with-random-secret

After successfully creating a login service to create and sign JWTs, we can create the login route.

Creating the login route

We still need to expose the login service as an API route for users to be able to log in. Let’s do that now:

1.	 Edit the backend/src/routes/users.js file and import the loginUser function:

import { createUser, loginUser } from '../services/users.js'

2.	 Add a new POST /api/v1/user/login route inside the userRoutes function, where
we call the loginUser function and return the token:

  app.post('/api/v1/user/login', async (req, res) => {
    try {
      const token = await loginUser(req.body)
      return res.status(200).send({ token })
    } catch (err) {
      return res.status(400).send({
        error: 'login failed, did you enter the correct
username/password?'
      })
    }
  })

3.	 If the backend is not running anymore, start it again. Then, make a request to /api/v1/
user/login to test it out by entering the following code in your browser console:

const res = await fetch('http://localhost:3001/api/v1/user/
login', {
    method: 'POST',
    headers: { 'Content-Type': 'application/json' },
    body: JSON.stringify({ username: 'dan', password: 'hunter2'

Implementing login, signup, and authenticated routes in the backend using JWTs 161

})
})
console.log(await res.json())

4.	 We have successfully created a valid JWT! To verify that the JWT is valid, we can paste it into
the debugger at https://jwt.io/. Make sure that you also change the secret in the Verify
Signature section on the page, as shown in the following screenshot:

Figure 6.3 – Verifying the JWT created from the login service

Note
When copying the token from the JSON response in your browser, make sure that you are
copying the full string value, and not the truncated one (with … in the middle of the string).
Otherwise, the JWT might not decode properly in the debugger.

After successfully logging our user in and creating a token for them, we can now protect certain routes
and make sure that only logged-in users can access them.

https://jwt.io/

Adding Authentication with JWT162

Defining authenticated routes

Now that we have successfully created a valid JWT, we can start protecting routes. To do so, we are
going to use the express-jwt library, as follows:

1.	 Install the express-jwt npm package:

$ cd backend
$ npm install express-jwt@8.4.1

2.	 Create a new backend/src/middleware folder. Inside it, create a new backend/src/
middleware/jwt.js file and import expressjwt there:

import { expressjwt } from 'express-jwt'

3.	 Create and export a requireAuth middleware by using the expressjwt function and
your secret and algorithm settings:

export const requireAuth = expressjwt({
  secret: () => process.env.JWT_SECRET,
  algorithms: ['HS256'],
})

We need to use a function for the secret because dotenv isn’t initialized at import time yet,
so the environment variable will only be available later. Specifying the algorithms is required
to prevent potential downgrade attacks.

4.	 Edit backend/src/routes/posts.js and import the requireAuth middleware:

import { requireAuth } from '../middleware/jwt.js'

5.	 Add the middleware to the create route. Middleware in Express can be added to specific routes
by passing it as a second argument to the function, as follows:

  app.post('/api/v1/posts', requireAuth, async (req, res) => {

6.	 Repeat the same for the edit route:

  app.patch('/api/v1/posts/:id', requireAuth, async (req, res)
=> {

7.	 Now, do this for the delete route:

  app.delete('/api/v1/posts/:id', requireAuth, async (req, res)
=> {

Implementing login, signup, and authenticated routes in the backend using JWTs 163

8.	 Try accessing the routes without being logged in. You will see that they fail with a 401
Unauthorized status. Execute the following code into your browser console:

const res = await fetch('http://localhost:3001/api/v1/posts', {
    method: 'POST',
    headers: {
        'Content-Type': 'application/json'
    },
    body: JSON.stringify({ title: 'Test Post' })
})
console.log(await res.json())

You can see the results of executing the code in the following screenshot:

Figure 6.4 – Attempting to access a protected route without a JWT and then with a JWT

Adding Authentication with JWT164

Note
Instead of using the express-jwt library, we could also manually extract the token from the
Authorization header and use the jwt.verify function from the jsonwebtoken
library to verify it.

The routes are protected now, but we aren’t considering which user accessed them. Let’s do that now
by accessing the currently logged-in user from the token.

Accessing the currently logged-in user

After adding authenticated routes, we successfully protected some routes so that they can only be
accessed by logged-in users. However, it’s still possible to edit posts of other users or create posts under
a different username. Let’s change that:

1.	 Edit the backend/src/services/posts.js file and add a userId argument to the
createPost function, removing author from the object:

export async function createPost(userId, { title, author,
contents, tags }) {

2.	 Instead of setting the author through the request body, we will set the author to the ID of the
logged-in user:

  const post = new Post({ title, author: userId, contents, tags
})

3.	 We adjust the updatePost and deletePost functions similarly (adding the userId
argument, removing the author argument, and removing the author variable from the $set
object), ensuring that the currently logged-in user is the author of the post:

export async function updatePost(userId, postId, { title,
author, contents, tags }) {
  return await Post.findOneAndUpdate(
    { _id: postId, author: userId },
    { $set: { title, author, contents, tags } },
    { new: true },
  )
}

export async function deletePost(userId, postId) {
  return await Post.deleteOne({ _id: postId, author: userId })
}

Implementing login, signup, and authenticated routes in the backend using JWTs 165

In our case, we simply fetch a post with the given ID and an author as the current user. We could
still extend this code to first fetch the post with the given ID, check if it exists (if not, return
a 404 Not Found error), and if it does exist, verify that the author is the currently logged-in
user (if not, return a 403 Forbidden error).

Note
This is a breaking API change and requires changing the tests. For brevity, we will not go through
adjusting the tests step by step here, so this is left as an exercise for you.

4.	 Edit the backend/src/routes/posts.js file and use the req.auth.sub variable
to pass the user ID to the createPost function:

    const post = await createPost(req.auth.sub, req.body)

5.	 Do the same for the updatePost function:

    const post = await updatePost(req.auth.sub, req.params.id,
req.body)

6.	 Also, do this for the deletePost function:

    const { deletedCount } = await deletePost(req.auth.sub, req.
params.id)

7.	 Try creating a new post; you will see that it is created by the user identified in the JWT. You
can do this by executing the following code in the browser console (don’t forget to replace
<TOKEN> with your previously generated JWT):

const res = await fetch('http://localhost:3001/api/v1/posts', {
    method: 'POST',
    headers: {
        'Content-Type': 'application/json',
        'Authorization': 'Bearer <TOKEN>'
    },
    body: JSON.stringify({ title: 'Test Post' })
})
console.log(await res.json())

Editing and deleting your posts is also possible, but not for posts from other users anymore!

Adding Authentication with JWT166

Info
The express-jwt middleware stores all decoded claims from the JWT in a req.auth
object. So, we can access any claims made when creating our JWT here. Of course, the
middleware validates the JWT signature against the defined secret first, to ensure that it received
an authentic JWT.

Now that we’ve set up the login, signup, and authenticated routes, let’s continue by integrating login
and signup in the frontend.

Integrating login and signup in the frontend using React
Router and JWT
Now that we have successfully implemented authorization in the backend, let’s start extending the
frontend with signup and login pages and connecting them to the backend. First, we are going to learn
how to implement multiple pages in a React app using React Router. Then, we are going to implement
the signup UI and connect it to the backend. Afterward, we are going to implement a login UI, store
the token in the frontend, and set up automatic redirects when we are successfully logged in. Finally,
we are going to update the code for creating posts to pass the token in the Authorization header and
properly access our authenticated route.

Let’s get started with the frontend integration by setting up React Router.

Using React Router to implement multiple routes

React Router is a library that allows us to manage routing in our app by defining multiple pages on
different routes, just like what we have done in Express for API routes, but for the frontend! Let’s set
up React Router:

1.	 Install the react-router-dom library in the frontend project (the root of the ch6 folder,
not inside the backend folder):

$ npm install react-router-dom@6.21.0

2.	 Edit src/App.jsx and import the createBrowserRouter function and
RouterProvider component:

import { createBrowserRouter, RouterProvider } from 'react-
router-dom'

3.	 Create a new router and define the routes. First, we’ll define an index route for rendering
our Blog component:

const router = createBrowserRouter([
  {

Integrating login and signup in the frontend using React Router and JWT 167

    path: '/',
    element: <Blog />,
  },
])

4.	 Then, in the App component, replace the <Blog> component with <RouterProvider>,
as follows:

export function App() {
  return (
    <QueryClientProvider client={queryClient}>
      <RouterProvider router={router} />
    </QueryClientProvider>
  )
}

5.	 Start the frontend by running the following command in the root of the ch6 folder:

$ npm run dev

6.	 The blog should render the same way as before, but now, we can start defining new routes!
You can verify that React Router is working by going to a page that we did not define – for
example, http://localhost:5173/test. React Router will display the default 404
page, as shown in the following screenshot:

Figure 6.5 – The default 404 page provided by React Router

Now that we have successfully set up React Router, we can move on to creating the signup page.

Adding Authentication with JWT168

Creating the signup page

We will start by updating our folder structure so that it supports multiple pages. Then, we will implement
a Signup component and define a /signup route to link to it. Follow these steps:

1.	 Create a new src/pages/ folder.

2.	 Move the src/Blog.jsx file into the src/pages/ folder. When VS Code asks you to
update all imports, select Yes. Alternatively, update the import in src/App.jsx, as follows:

import { Blog } from './pages/Blog.jsx'

3.	 Create a new src/api/users.js file and define an API function for the signup route,
as follows:

export const signup = async ({ username, password }) => {
  const res = await fetch(`${import.meta.env.VITE_BACKEND_URL}/
user/signup`, {
    method: 'POST',
    headers: { 'Content-Type': 'application/json' },
    body: JSON.stringify({ username, password }),
  })
  if (!res.ok) throw new Error('failed to sign up')
  return await res.json()
}

We are checking for res.ok here, which will be false when the response status code is an
error code, such as 400.

4.	 Create a new src/pages/Signup.jsx file, import the useState, useMutation, and
useNavigate hooks from react-router-dom, as well as the signup function, and
define a Signup component there:

import { useState } from 'react'
import { useMutation } from '@tanstack/react-query'
import { useNavigate } from 'react-router-dom'

import { signup } from '../api/users.js'

export function Signup() {

5.	 In this component, we first create state hooks for the username and password fields:

  const [username, setUsername] = useState('')
  const [password, setPassword] = useState('')

Integrating login and signup in the frontend using React Router and JWT 169

6.	 Then, we use the useNavigate hook to get a function to navigate to a different route:

  const navigate = useNavigate()

7.	 We also define a useMutation hook to send the signup request. On success, we navigate
to the /login route, which we will define soon:

  const signupMutation = useMutation({
    mutationFn: () => signup({ username, password }),
    onSuccess: () => navigate('/login'),
    onError: () => alert('failed to sign up!'),
  })

In case of an error, we could also use the signupMutation.isError state and the response
from the backend to show a more nicely formatted error message.

8.	 Then, we define a function to handle the submission of the form, as we did for the
CreatePost component:

  const handleSubmit = (e) => {
    e.preventDefault()
    signupMutation.mutate()
  }

9.	 Now, we create a simple form to enter a username, password, and a button to submit the request,
similar to the CreatePost component:

  return (
    <form onSubmit={handleSubmit}>
      <div>
        <label htmlFor='create-username'>Username: </label>
        <input
          type='text'
          name='create-username'
          id='create-username'
          value={username}
          onChange={(e) => setUsername(e.target.value)}
        />
      </div>
      

      <div>
        <label htmlFor='create-password'>Password: </label>
        <input
          type='password'
          name='create-password'
          id='create-password'

Adding Authentication with JWT170

          value={password}
          onChange={(e) => setPassword(e.target.value)}
        />
      </div>
      

      <input
        type='submit'
        value={signupMutation.isPending ? 'Signing up...' :
'Sign Up'}
        disabled={!username || !password || signupMutation.
isPending}
      />
    </form>
  )
}

10.	 Edit src/App.jsx and import the Signup page component:

import { Signup } from './pages/Signup.jsx'

11.	 Add a new /signup route that points to the Signup page component:

const router = createBrowserRouter([
  {
    path: '/',
    element: <Blog />,
  },
  {
    path: '/signup',
    element: <Signup />,
  },
])

After defining the signup page, we still need a way to link to it. Let’s add the link now.

Linking to other routes using the Link component

Now that we have multiple pages in our blog app, we need to link between them. To do this, we can
use the Link component provided by React Router. We could also use a normal link by using , but that would cause a full page refresh. The Link component uses client-side routing
and thus avoids doing a full refresh of the page. Instead, it immediately renders the new component
on the client side.

Integrating login and signup in the frontend using React Router and JWT 171

Follow these steps to create a link from the index page to the signup page:

1.	 Create a new src/components/Header.jsx file and import the Link component
from react-router-dom:

import { Link } from 'react-router-dom'

2.	 Define a component and return the Link component to define a link to the signup route,
as follows:

export function Header() {
  return (
    <div>
      <Link to='/signup'>Sign Up</Link>
    </div>
  )
}

3.	 Edit src/pages/Blog.jsx and import the Header component:

import { Header } from '../components/Header.jsx'

4.	 Then, render the Header component in the Blog component:

  return (
    <div style={{ padding: 8 }}>
      <Header />
      

      <hr />
      

      <CreatePost />

5.	 Edit src/pages/Signup.jsx and import the Link component:

import { useNavigate, Link } from 'react-router-dom'

6.	 Add the Link component to link back to the index page:

  return (
    <form onSubmit={handleSubmit}>
      <Link to='/'>Back to main page</Link>
      <hr />
      

Now that we’ve successfully linked our signup page, let’s continue by creating the login page.

Adding Authentication with JWT172

Creating the login page and storing the JWT

Now that we have successfully defined the signup page, we can create the login page. However, first,
we need to come up with a way to store the JWT. We shouldn’t store it in local storage as a potential
attacker can steal the token from there (through, for example, script injection). In a single-page
application (SPA), where we have no page reloads, a safe and simple way to store the token is to store
it in the runtime using a React context. Let’s do that now:

1.	 Create a new src/contexts/ folder. Inside it, create a src/contexts/AuthContext.
jsx file and import the createContext, useState, and useContext functions
from react:

import { createContext, useState, useContext } from 'react'
import PropTypes from 'prop-types'

2.	 Then, define the following context:

export const AuthContext = createContext({
  token: null,
  setToken: () => {},
})

3.	 Next, define an AuthContextProvider component that provides the context with a
state hook:

export const AuthContextProvider = ({ children }) => {
  const [token, setToken] = useState(null)
  return (
    <AuthContext.Provider value={{ token, setToken }}>
      {children}
    </AuthContext.Provider>
  )
}

AuthContextProvider.propTypes = {
  children: PropTypes.element.isRequired,
}

4.	 Also, define a hook to use the context with a useState-like API:

export function useAuth() {
  const { token, setToken } = useContext(AuthContext)
  return [token, setToken]
}

Integrating login and signup in the frontend using React Router and JWT 173

5.	 Edit src/App.jsx and import AuthContextProvider:

import { AuthContextProvider } from './contexts/AuthContext.jsx'

6.	 Wrap RouterProvider with AuthContextProvider to make it available to all pages:

      <AuthContextProvider>
        <RouterProvider router={router} />
      </AuthContextProvider>

7.	 Edit src/api/users.js and define a new login function:

export const login = async ({ username, password }) => {
  const res = await fetch(`${import.meta.env.VITE_BACKEND_URL}/
user/login`, {
    method: 'POST',
    headers: { 'Content-Type': 'application/json' },
    body: JSON.stringify({ username, password }),
  })
  if (!res.ok) throw new Error('failed to login')
  return await res.json()
}

8.	 Copy over the src/pages/Signup.jsx file to a new src/pages/Login.jsx file
and adjust the import and component name. Also, add a new import for the useAuth hook:

import { login } from '../api/users.js'
import { useAuth } from '../contexts/AuthContext.jsx'

export function Login() {

9.	 Next, edit src/pages/Login.jsx, add the useAuth hook, adjust the signupMutation
to call login, set the token, and navigate to the index page upon successfully logging in:

  const [, setToken] = useAuth()

  const loginMutation = useMutation({
    mutationFn: () => login({ username, password }),
    onSuccess: (data) => {
      setToken(data.token)
      navigate('/')
    },
    onError: () => alert('failed to login!'),
  })

  const handleSubmit = (e) => {
    e.preventDefault()

Adding Authentication with JWT174

    loginMutation.mutate()
  }

10.	 Adjust the submit button, as follows:

      <input
        type='submit'
        value={loginMutation.isPending ? 'Logging in...' : 'Log
In'}
        disabled={!username || !password || loginMutation.
isPending}
      />

11.	 Edit src/App.jsx and import the Login page:

import { Login } from './pages/Login.jsx'

12.	 Lastly, define the /login route, as follows:

  {
    path: '/login',
    element: <Login />,
  },

With that, our signup and login pages are working properly, but we still need to link to the login page
and show the currently logged-in user on the index page. Let’s do that now.

Using the stored JWT and implementing a simple logout

In this section, we are going to check if the user is logged in already by checking if there is a valid
JWT stored in the context. Then, we are going to use the auth context hook to log our user out again
by simply removing the token from it. This is not a full logout as the JWT is still technically valid. For
a full logout, we would have to invalidate the token in the backend (for example, by blacklisting that
token in the authentication service database). This process is called token revocation.

Let’s start using the stored JWT and implement a simple logout:

1.	 Install the jwt-decode library in the root of our project (the frontend):

$ npm install jwt-decode@4.0.0

2.	 Edit src/components/Header.jsx and import the jwtDecode function and the
useAuth hook:

import { jwtDecode } from 'jwt-decode'
import { useAuth } from '../contexts/AuthContext.jsx'

Integrating login and signup in the frontend using React Router and JWT 175

3.	 Get the token from the useAuth hook in the Header component:

export function Header() {
  const [token, setToken] = useAuth()

4.	 Add a check for if the token is properly set. If it is, parse the token and render the user ID from it:

  if (token) {
    const { sub } = jwtDecode(token)
    return (
      <div>
        Logged in as {sub}

Note
In this case, we are only decoding the token in one place. If this functionality is used in multiple
places, it would make sense to abstract the decoding into a separate hook.

5.	 Additionally, we’ll show a button to log out here, which just resets the token:

        

        <button onClick={() => setToken(null)}>Logout</button>
      </div>
    )
  }

6.	 While we’re at it, let’s also add a link to the login page to the header, if the user isn’t logged in yet:

  return (
    <div>
      <Link to='/login'>Log In</Link> | <Link to='/signup'>Sign
Up</Link>
    </div>
  )

Congratulations! We have successfully implemented a simple JWT user authentication flow. However,
you may have noticed that all the users in our blog appear as their user ID, not with their username.
Let’s change that.

Fetching the usernames

To show the usernames instead of the user IDs, we are going to create a User component that will
fetch user information from an endpoint in our backend, which we are going to create now. For now,
we will only show the username, but in the future, this feature could be used to fetch other information,
such as the avatar or full name of the user.

Adding Authentication with JWT176

Implementing the backend endpoint

Let’s get started by implementing the backend endpoint for fetching user information:

1.	 Edit backend/src/services/users.js and add a new function to get user information
by id. As a fallback, we return the user ID if we can’t find a matching user:

export async function getUserInfoById(userId) {
  try {
    const user = await User.findById(userId)
    if (!user) return { username: userId }
    return { username: user.username }
  } catch (err) {
    return { username: userId }
  }
}

We specifically make sure we only return the username here, to avoid leaking the password or
other sensitive user information!

2.	 Edit backend/src/routes/users.js and import the newly defined function there:

import { createUser, loginUser, getUserInfoById } from '../
services/users.js'

3.	 Then, define a new route inside the userRoutes function, which will get a user with a
specific ID. For this route, we use the plural users as we are dealing with multiple users here:

  app.get('/api/v1/users/:id', async (req, res) => {
    const userInfo = await getUserInfoById(req.params.id)
    return res.status(200).send(userInfo)
  })

4.	 Since we are already working on the backend, let’s also change the existing author filter so
that it works with usernames. Edit backend/src/services/posts.js and import
the User model:

import { User } from '../db/models/user.js'

5.	 Refactor the listPostsByAuthor function by finding a user with the given username,
then listing all posts by the user ID (if one was found):

export async function listPostsByAuthor(authorUsername, options)
{
  const user = await User.findOne({ username: authorUsername })
  if (!user) return []
  return await listPosts({ author: user._id }, options)
}

Integrating login and signup in the frontend using React Router and JWT 177

Now that we have an endpoint that returns user information for a given user ID, let’s use it in the frontend!

Implementing a User component to fetch and render the username

In the frontend, we are going to create a component that will fetch and render the username. React
Query helps us a lot here because we don’t need to worry about fetching the same user IDs multiple
times – it will cache the result for us and instantly return it, instead of making another request.

Follow these steps to implement a User component:

1.	 First, we need to define the API function. Edit src/api/users.js and add a function to
get the user info by id:

export const getUserInfo = async (id) => {
  const res = await fetch(`${import.meta.env.VITE_BACKEND_URL}/
users/${id}`, {
    method: 'GET',
    headers: { 'Content-Type': 'application/json' },
  })
  return await res.json()
}

2.	 Create a new src/components/User.jsx file and import useQuery, PropTypes,
and the API function:

import { useQuery } from '@tanstack/react-query'
import PropTypes from 'prop-types'
import { getUserInfo } from '../api/users.js'

3.	 Now, define the component and get the user info via the query hook:

export function User({ id }) {
  const userInfoQuery = useQuery({
    queryKey: ['users', id],
    queryFn: () => getUserInfo(id),
  })
  const userInfo = userInfoQuery.data ?? {}

4.	 We render the username if available and fall back to the ID otherwise:

  return {userInfo?.username ?? id}
}

Adding Authentication with JWT178

5.	 Lastly, we define the prop types for the component:

User.propTypes = {
  id: PropTypes.string.isRequired,
}

6.	 Now, we can make use of the newly created component and import it in src/components/
Header.jsx:

import { User } from './User.jsx'

7.	 Then, we can edit the existing code to render the User component instead of directly rendering
the user ID:

        Logged in as <User id={sub} />

8.	 Next, we repeat the same process for src/components/Post.jsx and import the
User component:

import { User } from './User.jsx'

9.	 Then, we adjust the code to render the User component:

          Written by <User id={author} />

Now, our usernames will all render properly again, as shown in the following screenshot:

Figure 6.6 – Properly fetching and showing the username

Now that usernames show up properly, we need to do one more thing: send the JWT header when
creating posts.

Sending the JWT header when creating posts

When creating a post, we don’t need to send the author anymore. Instead, we need to send the JWT
with the Authentication header.

Integrating login and signup in the frontend using React Router and JWT 179

Let’s refactor the code so that we can do this:

1.	 Edit src/api/posts.jsx and adjust the createPost function so that it accepts a JWT
as the first argument, which is then passed on inside an Authentication header:

export const createPost = async (token, post) => {
  const res = await fetch(`${import.meta.env.VITE_BACKEND_URL}/
posts`, {
    method: 'POST',
    headers: {
      'Content-Type': 'application/json',
     Authorization: `Bearer ${token}`,
    },
    body: JSON.stringify(post),
  })
  return await res.json()
}

2.	 Edit src/components/CreatePost.jsx and import the useAuth hook:

import { useAuth } from '../contexts/AuthContext.jsx'

3.	 Get the JWT from the useAuth hook inside the component:

export function CreatePost() {
  const [token] = useAuth()

4.	 Remove the author state:

  const [author, setAuthor] = useState('')

5.	 Also, remove the author state from the createPost function and instead pass in the
token state as the first argument:

     mutationFn: () => createPost(token, { title, author,
contents }),

6.	 Before rendering the component, check if the user is logged in by checking if a token exists. If
the user is not logged in, we tell them to log in first:

  if (!token) return <div>Please log in to create new posts.</
div>

  return (
    <form onSubmit={handleSubmit}>

Adding Authentication with JWT180

7.	 Remove the following code to remove the author field:

      

      <div>
        <label htmlFor='create-author'>Author: </label>
        <input
          type='text'
          name='create-author'
          id='create-author'
          value={author}
          onChange={(e) => setAuthor(e.target.value)}
        />
      </div>

Now, creating a post works successfully again! It stores the user ID of the currently logged-in user in
the database as the author and resolves it to the username when showing the post.

Next, we’ll learn about advanced token handling.

Advanced token handling
You may have noticed that our simple authentication solution is still missing some features that a
fully-fledged solution should have, such as the following:

•	 Using asymmetric keys for the tokens so that we can verify the authenticity (using the public
key) without exposing our secret (the private key) to all services. Up until now, we have been
using a symmetric key, which means that we need the same secret to generate and verify a JWT.

•	 Storing tokens in safe httpOnly cookies so that they can be accessed again, even when the
page is refreshed or closed.

•	 Invalidating tokens after logging out on the backend.

Implementing these things requires a lot of effort manually, so it is best practice to use an authentication
solution such as Auth0 or Firebase Auth. These solutions work similarly to our simple JWT implementation,
but they provide an external authentication service to create and handle the tokens for us. This chapter
intended to introduce how those providers work behind the scenes so that you can easily understand
and integrate any of the providers as you see fit in your projects.

So far, all users have been considered equal, with everyone being allowed to create posts, but only
update and delete their own posts. For a public blog, it would be good to have a way for administrators
to delete other people’s posts to moderate the content on the platform. A good way to add roles is
to store and fetch them from the database. While adding roles in the JWT is technically possible, it
has some downsides, such as the need to invalidate existing tokens and create a new token when the
roles change.

Summary 181

Summary
In this chapter, we learned how JWTs work in depth. First, we learned about the theory of authentication
and JWTs, and how to manually create them. Then, we implemented login, signup, and authenticated
routes in the backend. Next, we integrated these routes in the frontend by creating new pages and routing
between them using React Router. Finally, we wrapped up this chapter by learning about advanced
token handling and giving pointers on more things to learn about authentication and role management.

In the next chapter, Chapter 7, Improving the Load Time Using Server-Side Rendering, we are going
to learn how to implement server-side rendering to improve the initial load time of our blog. We are
already doing a lot of requests on the first load (fetching all blog posts, then the usernames of each
author). We can bundle them together by doing this on the backend.

7
Improving the Load Time

Using Server-Side Rendering

After implementing authentication using JWTs, let’s focus on optimizing the performance of our
blog app. We are going to start by benchmarking the current load time of our application and learn
about various metrics to consider. Then, we are going to learn how to render React components and
fetch data on the server. At the end of this chapter, we are going to briefly cover advanced server-side
rendering concepts.

In this chapter, we are going to cover the following main topics:

•	 Benchmarking the load time of our application

•	 Rendering React components on the server

•	 Server-side data fetching

•	 Advanced server-side rendering

Technical requirements
Before we start, please install all requirements mentioned in Chapter 1, Preparing For Full-Stack
Development, and Chapter 2, Getting to Know Node.js and MongoDB.

The versions listed in those chapters are the ones used in the book. While installing a newer version
should not be an issue, please note that certain steps might work differently on a newer version. If
you are having an issue with the code and steps provided in this book, please try using the versions
mentioned in Chapters 1 and 2.

You can find the code for this chapter on GitHub: https://github.com/PacktPublishing/
Modern-Full-Stack-React-Projects/tree/main/ch7.

The CiA video for this chapter can be found at: https://youtu.be/0OlmicibYWQ

https://github.com/PacktPublishing/Modern-Full-Stack-React-Projects/tree/main/ch7
https://github.com/PacktPublishing/Modern-Full-Stack-React-Projects/tree/main/ch7
https://youtu.be/0OlmicibYWQ

Improving the Load Time Using Server-Side Rendering184

Benchmarking the load time of our application
Before we can get started improving the load time, we first must learn about the metrics to benchmark
the performance of our application. The main metrics for measuring the performance of web applications
are called Core Web Vitals, and they are as follows:

•	 First Contentful Paint (FCP): This measures the loading performance of an app by reporting
the time until the first image or text block is rendered on the page. A good target would be to
get this metric below 1.8 seconds.

•	 Largest Contentful Paint (LCP): This measures the loading performance of an app by reporting
the time until the largest image or text block is visible within the viewport. A good target would
be to get this metric below 2.5 seconds.

•	 Total Blocking Time (TBT): This measures the interactivity of an app by reporting the time
between the FCP and a user being able to interact with the page. A good target would be to
get this metric below 200 milliseconds.

•	 Cumulative Layout Shift (CLS): This measures the visual stability of an app by reporting
unexpected movement on the page during loading, such as a link first being loaded on the top
of the page, but then getting pushed further down to the bottom when other elements load.
While this metric does not directly measure the actual performance of the app, it is still an
important metric to consider, as it can lead to annoying the users when they attempt to click
on something, but the layout shifts.

All these metrics can be measured by using the open-source Lighthouse tool, which is also available
from the Google Chrome DevTools under the Lighthouse panel. Let’s get started benchmarking our
app now:

1.	 Copy the ch6 folder to a new ch7 folder, as follows:

$ cp -R ch6 ch7

2.	 Open the ch7 folder in VS Code, open a Terminal, and run the frontend with the
following command:

$ npm run dev

3.	 Make sure the dbserver container is running in Docker.

4.	 Open a new Terminal and run the backend with the following command:

$ cd backend
$ npm run dev

5.	 Go to http://localhost:5173 in Google Chrome and open the inspector (right-click
and then press Inspect).

Benchmarking the load time of our application 185

Note
It would be best to do this in an incognito tab so that extensions do not interfere with
the measurements.

6.	 Open the Lighthouse tab (it might be hidden by the >> menu). It should look as follows:

Figure 7.1 – The Lighthouse tab in Google Chrome DevTools

7.	 In the Lighthouse tab, leave all options as their default settings and click on the Analyze page
load button.

Lighthouse will start analyzing the website and give a report with metrics such as First Contentful
Paint, Largest Contentful Paint, Total Blocking Time, and Cumulative Layout Shift. As we
can see, our app already performs quite well in terms of TBT and CLS but performs particularly
badly in terms of FCP and LCP. See the following screenshot for reference:

Improving the Load Time Using Server-Side Rendering186

Figure 7.2 – Lighthouse results when analyzing our app in development

mode (while hovering the cursor over the performance score)

Benchmarking the load time of our application 187

There are two reasons why the paint takes so long. Firstly, we are running the server in dev mode,
which generally makes everything slower. Additionally, we are rendering everything on the client side,
which means that the browser first must download and execute our JavaScript code before it can start
rendering the interface. Let’s statically build our frontend and benchmark again now:

1.	 Install the serve tool globally with the following command, which is a tool that runs a simple
web server:

$ npm install -g serve

2.	 Build the frontend with this command (execute it in the root of our project):

$ npm run build

3.	 Statically serve our app by running the following command:

$ serve dist/

4.	 Open http://localhost:3000 in Google Chrome and run Lighthouse again (you may have
to clear the old reports or click the list in the top left and select (new report) to analyze again).

You should see the results of the new benchmark on the statically served frontend, which is
closer to how it would be served in production. You can see an example of the results in the
following screenshot:

Figure 7.3 – Lighthouse report results on our statically built app

Improving the Load Time Using Server-Side Rendering188

Now, the results are pretty good! However, it could still be improved further. Additionally, Core Web
Vitals do not take into account the cascading requests to get the author usernames. While the first and
largest contentful paints are fast in our app, the author names are not even loaded yet at that point.
In addition to the Lighthouse report, we can also take a look at the Network tab to further debug the
performance of our app, as follows:

1.	 In DevTools, go to the Network tab.

2.	 Refresh the page while the tab is open. You will see a waterfall diagram and the measured time
to make requests, as shown in the following screenshot:

Figure 7.4 – The waterfall diagram on the Network tab

But the times are extremely low (all below 10 ms). This is because our backend is running locally,
so there is no network delay. This is not a realistic scenario. In production, we would have latency
on every request that we make, so we would first have to wait for the blog posts to be pulled, then
fetch the names of authors for each author separately. We can use the DevTools to simulate a slower
network connection; let’s do that now:

1.	 At the top of the Network tab, click on the No throttling dropdown.

Benchmarking the load time of our application 189

2.	 Select the Slow 3G preset. See the following screenshot for reference:

Figure 7.5 – Simulating slow networks in Google Chrome DevTools

Note
Lighthouse has a form of throttling built in, which is like the network throttling we are using
here, but not the same. While the network throttling in DevTools is a fixed delay added to all
requests, the throttling in Lighthouse attempts to simulate a more realistic scenario by adjusting
the throttling based on the data observed in the initial unthrottled load.

3.	 Refresh the page. You will now see the app slowly loading the main layout, then a list of all
posts, and finally resolving the author IDs to usernames.

Improving the Load Time Using Server-Side Rendering190

This is how our page would load on slow networks. Now, the overall time to finish loading our app is
almost nine seconds! You can look at the waterfall diagram to see why this is happening:

Figure 7.6 – Checking the waterfall diagram with Slow 3G throttling on

The issue in our app is that the requests are cascading. First, the HTML document loads, which then
loads the JavaScript file for our app. This JavaScript file is then executed and starts rendering the layout
and fetching the list of posts. After the posts are loaded, multiple requests are made in parallel to resolve
the author names. As each request takes a bit over two seconds on our simulated slow network, we
end up with a total load time of over eight seconds.

Now that we have learned how to benchmark a web application and found a performance bottleneck
in our app (the cascading requests), let’s learn how to improve the performance!

Rendering React components on the server 191

Rendering React components on the server
In the previous section, we identified cascading requests as the problem for our bad performance on
slow connections. Possible solutions to this problem are as follows:

•	 Bundled requests: Fetch everything on the server and then serve everything at once to the client
in a single request. This would solve the cascading requests when fetching author names, but
not the initial waiting time between the HTML page being loaded and the JavaScript executing
to start fetching the data. With a latency of two seconds per request, that’s still four seconds
added (two seconds for loading the JavaScript and two seconds for making the request) after
the HTML is fetched.

•	 Server-side rendering: Render the initial user interface with all data on the server and serve
it instead of the initial HTML that just contains a URL to the JavaScript file. This would mean
that no additional requests are needed to fetch the data or JavaScript and we can show the
blog posts right away. Another advantage of this approach is that it allows for caching the
results, so, we only need to regenerate the page on the server when a blog post gets added. A
downside of this approach is that it puts more strain on the server, especially when the pages
are complex to render.

In cases where data does not change so frequently or the same data is accessed by all users, server-
side rendering is beneficial. In cases where data frequently changes or is personalized to each user,
it might make more sense to bundle the requests into one by making a new route or using a system
that can aggregate requests, such as GraphQL, which we will learn more about later in this book, in
Chapter 11, Building a Backend With a GraphQL API. In this chapter, however, we will focus on the
server-side rendering approach.

Let’s have a look at the differences between server-side rendering as opposed to client-side rendering:

•	 In client-side rendering, the browser downloads a minimal HTML page, which, most of the
time, only contains information on where to download a JavaScript bundle, which contains
all the code that will render the app.

•	 In server-side rendering, the React components are rendered on the server and served as
HTML to the browser. This ensures that the app can be rendered immediately. The JavaScript
bundle can be loaded later.

Improving the Load Time Using Server-Side Rendering192

Figure 7.7 – The differences between client-side rendering and server-side rendering

It is also possible to combine the two into isomorphic rendering. This involves rendering the initial
page on the server side, and then continuing to render changes on the client side. Isomorphic rendering
combines the best of both worlds.

In addition to the performance improvements, server-side rendering is also good for search engine
optimization (SEO), because search engine crawlers do not need to run JavaScript to see the page.
We are going to learn more about SEO in the next chapter, Chapter 8, Making Sure Customers Find
You With Search Engine Optimization.

Rendering React components on the server 193

Now that we have learned about server-side rendering, let’s get started implementing it in our frontend,
as follows:

•	 Setting up the server

•	 Defining the server-side entry point

•	 Defining the client-side entry point

•	 Updating index.html and package.json

•	 Making React Router work with server-side rendering

Let’s start by setting up the server.

Setting up the server

Before we can get started with server-side rendering, we need to set up some boilerplate for running an
Express server in tandem with Vite, so that we do not lose the benefits of Vite, such as hot reloading.
Let’s follow these steps to set up the server:

1.	 Install the express and dotenv dependencies in the root of our project (the frontend);
we are going to use them to create a small web server to serve our server-side rendered page:

$ npm install express@4.18.2 dotenv@16.3.1

2.	 Edit .eslintrc.json and add the node env, as we are going to add server-side code to
our frontend now:

  "env": {
    "browser": true,
    "node": true
  },

3.	 Create a new server.js file in the ch7 folder, and import the fs, path, url, express,
and dotenv dependencies:

import fs from 'fs'
import path from 'path'
import { fileURLToPath } from 'url'

import express from 'express'
import dotenv from 'dotenv'
dotenv.config()

Improving the Load Time Using Server-Side Rendering194

4.	 Save the current path in a variable to be used later to reference other files in our project, using
the ESM-compatible import.meta.url variable, which contains a file:// URL to
our project:

const __dirname = path.dirname(fileURLToPath(import.meta.url))

We convert this URL to a regular path here.

5.	 Define a new createDevServer function, where we will create a Vite dev server with hot
reloading and server-side rendering:

async function createDevServer() {

6.	 Inside this function, we first define the Express app:

  const app = express()

7.	 Then, import and create a Vite dev server. We use the dynamic import syntax here so that
we don’t need to import Vite when we define the production server later:

  const vite = await (
    await import('vite')
  ).createServer({
    server: { middlewareMode: true },
    appType: 'custom',
  })
  app.use(vite.middlewares)

Middleware mode runs Vite as a middleware in an existing Express server. Setting appType as
custom disables Vite’s own serving logic so that we can control which HTML will be served.

8.	 Now, define a route that matches all paths and start by loading the index.html file:

  app.use('*', async (req, res, next) => {
    try {
      const templateHtml = fs.readFileSync(
        path.resolve(__dirname, 'index.html'),
        'utf-8',
      )

Make sure to load it in UTF-8 mode to support various languages and emojis in index.html.

9.	 Next, inject the Vite hot-module-replacement client to allow for hot reloading:

      const template = await vite.transformIndexHtml(
        req.originalUrl,
        templateHtml
      )

Rendering React components on the server 195

10.	 Load the entry point file for our server-side rendered app, which we will define in the next step:

      const { render } = await vite.ssrLoadModule('/src/entry-
server.jsx')

The ssrLoadModule function in Vite automatically transforms the ESM source code so
that it is usable in Node.js. This means we can hot-reload the entry point file without having
to run a manual build.

11.	 Render the app using React. We will define the render function later in the server-side entry
point. For now, we just call the function:

      const appHtml = await render()

12.	 Insert the rendered HTML from our app into the HTML template by matching a placeholder
string, which we will define later in the index.html file:

      const html = template.replace(`<!--ssr-outlet-->`,
appHtml)

13.	 Return a 200 OK response with the final HTML contents:

      res.status(200).set({ 'Content-Type': 'text/html'
}).end(html)

14.	 To wrap up the server creation, catch all errors and let Vite fix the stack trace, mapping source
files in the stack trace back to the actual source code. Then, return the created Express app:

    } catch (e) {
      vite.ssrFixStacktrace(e)
      next(e)
    }
  })

  return app
}

15.	 Lastly, execute the createDevServer function and make the app listen on a defined port:

const app = await createDevServer()
app.listen(process.env.PORT, () =>
  console.log(
    `ssr dev server running on http://localhost:${process.env.
PORT}`,
  ),
)

Improving the Load Time Using Server-Side Rendering196

16.	 Let’s not forget to define the PORT environment variable in the .env file. Edit the .env file
and add the PORT environment variable, as follows:

VITE_BACKEND_URL="http://localhost:3001/api/v1"
PORT=5173

Now that we have successfully created the Express server with Vite integration, we continue by
implementing the server-side entry point.

Defining the server-side entry point

The server-side entry point will use ReactDOMServer to render our React components on the
server. We need to distinguish this entry point from the client-side entry point because not everything
React can do is supported on the server side. Specifically, some hooks such as effect hooks will not
run on the server side. Also, we will have to handle the router differently on the server side, but more
on that later.

Now, let’s get started defining the server-side entry point:

1.	 First, create a new src/entry-server.jsx file and import ReactDOMServer and
the App component:

import ReactDOMServer from 'react-dom/server
import { App } from './App.jsx'

2.	 Define and export the render function, which returns the App component using the
ReactDOMServer.renderToString function:

export async function render() {
  return ReactDOMServer.renderToString(
    <App />,
  )
}

After defining the server-side entry point, we are going to continue by defining the client-side entry point.

Defining the client-side entry point

The client-side entry point uses regular ReactDOM to render our React components. However, we
need to let React know to make use of the already server-side rendered DOM. Instead of rendering,
we hydrate the existing DOM. Like when adding water to plants, hydration makes the DOM “come
alive” by adding all React functionality to the server-side rendered static DOM.

Rendering React components on the server 197

Follow these steps to define the client-side entry point:

1.	 Rename the existing src/main.jsx file to src/entry-client.jsx.

2.	 Replace the createRoot function with the hydrateRoot function, as follows:

ReactDOM.hydrateRoot(
  document.getElementById('root'),
  <React.StrictMode>
    <App />
  </React.StrictMode>,
)

The hydrateRoot function accepts the component as a second argument, and does not
require us to call .render().

Now that we have defined both entry points, let’s update index.html and package.json.

Updating index.html and package.json

We still need to add the placeholder string to the index.html file and adjust package.json to
execute our custom server instead of the vite command directly. Let’s do that now:

1.	 Edit index.html and add a placeholder where the server-rendered HTML will be injected:

    <div id="root"><!--ssr-outlet--></div>

2.	 Adjust the module import to point to the client-side entry point:

    <script type="module" src="/src/entry-client.jsx"></script>

3.	 Now, edit package.json and replace the dev script with the following:

    "dev": "node server",

4.	 Additionally, replace the build command with commands to build the server and client:

    "build": "npm run build:client && npm run build:server",
    "build:client": "vite build --outDir dist/client",
    "build:server": "vite build --outDir dist/server --ssr src/
entry-server.jsx",

Our setup is now ready for server-side rendering. However, when you start the server, you will
immediately notice that React Router does not work with our current setup. Let’s fix that now.

Improving the Load Time Using Server-Side Rendering198

Making React Router work with server-side rendering

To make React Router work with server-side rendering, we need to use StaticRouter on the server
side and BrowserRouter on the client side. We can reuse the same route definitions for both sides.
Let’s get started refactoring our code to make React Router work on the server side:

1.	 Edit src/App.jsx and remove the router-related imports (the highlighted lines) from it:

import { QueryClient, QueryClientProvider } from '@tanstack/
react-query'
import { createBrowserRouter, RouterProvider } from 'react-
router-dom'

import { AuthContextProvider } from './contexts/AuthContext.jsx'
import { Blog } from './pages/Blog.jsx'
import { Signup } from './pages/Signup.jsx'
import { Login } from './pages/Login.jsx'

2.	 Import PropTypes, as we will need it later:

import PropTypes from 'prop-types'

3.	 Next, remove the following route definitions from it; we will put them in a new file soon:

const router = createBrowserRouter([
  {
    path: '/',
    element: <Blog />,
  },
  {
    path: '/signup',
    element: <Signup />,
  },
  {
    path: '/login',
    element: <Login />,
  },
])

4.	 Adjust the function to accept children and replace RouterProvider with {children}:

export function App({ children }) {
  return (
    <QueryClientProvider client={queryClient}>
      <AuthContextProvider>
        {children}

Rendering React components on the server 199

      </AuthContextProvider>
    </QueryClientProvider>
  )
}

5.	 We also need to add the propTypes definitions for the App component now:

App.propTypes = {
  children: PropTypes.element.isRequired,
}

6.	 Create a new src/routes.jsx file and import the previously removed imports there:

import { Blog } from './pages/Blog.jsx'
import { Signup } from './pages/Signup.jsx'
import { Login } from './pages/Login.jsx'

7.	 Then, add the route definitions and export them:

export const routes = [
  {
    path: '/',
    element: <Blog />,
  },
  {
    path: '/signup',
    element: <Signup />,
  },
  {
    path: '/login',
    element: <Login />,
  },
]

Now that we have refactored our app structure in a way where we can reuse the routes on the client-
side and server-side entry points, let’s redefine the router in the client entry point.

Defining the client-side router

Follow these steps to re-define the router in the client entry point:

1.	 Edit src/entry-client.jsx and import RouterProvider , the
createBrowserRouter function, and routes:

import React from 'react'
import ReactDOM from 'react-dom/client'

Improving the Load Time Using Server-Side Rendering200

import { createBrowserRouter, RouterProvider } from 'react-
router-dom'
import { App } from './App.jsx'
import { routes } from './routes.jsx'

2.	 Then, create a new browser router based on the routes definition:

const router = createBrowserRouter(routes)

3.	 Adjust the render function to render App with RouterProvider:

ReactDOM.hydrateRoot(
  document.getElementById('root'),
  <React.StrictMode>
    <App>
      <RouterProvider router={router} />
    </App>
  </React.StrictMode>,
)

Next, let’s define the server-side router.

Mapping the Express request to a Fetch request

On the server side, we will get an Express request, which we first need to convert to a Fetch request,
so that React Router can understand it. Let’s do that now:

1.	 Create a new src/request.js file and define a createFetchRequest function there,
which takes an Express request as an argument:

export function createFetchRequest(req) {

2.	 First, define the origin for the request and build the URL:

  const origin = `${req.protocol}://${req.get('host')}`
  const url = new URL(req.originalUrl || req.url, origin)

We need to use req.originalUrl first (if available), to take into account the Vite middleware
potentially changing the URL.

3.	 Then, we define a new AbortController to handle when the request is closed:

  const controller = new AbortController()
  req.on('close', () => controller.abort())

Rendering React components on the server 201

4.	 Next, we map the Express request headers to Fetch headers:

  const headers = new Headers()

  for (const [key, values] of Object.entries(req.headers)) {
    if (!values) continue
    if (Array.isArray(values)) {
      for (const value of values) {
        headers.append(key, value)
      }
    } else {
      headers.set(key, values)
    }
  }

5.	 Now, we can build the init object for the Fetch request, which consists of method, headers,
and AbortController:

  const init = {
    method: req.method,
    headers,
    signal: controller.signal,
  }

6.	 If our request was not a GET or HEAD request, we also get body, so, let’s add that to the Fetch
request, too:

  if (req.method !== 'GET' && req.method !== 'HEAD') {
    init.body = req.body
  }

7.	 Finally, let’s create the Fetch Request object from our extracted information:

  return new Request(url.href, init)
}

Now that we have a utility function to convert an Express request to a Fetch request, we can make use
of it to define the server-side router.

.

Improving the Load Time Using Server-Side Rendering202

Defining the server-side router

The server-side router works very similarly to the client-side router, except that we are getting the
request info from Express instead of the page, and using StaticRouter, because the route cannot
change on the server side. Follow these steps to define the server-side router:

1.	 Edit src/entry-server.jsx and import StaticRouterProvider and the
createStaticHandler and createStaticRouter functions. Also, import the
routes definition and the createFetchRequest function we just defined:

import ReactDOMServer from 'react-dom/server'
import {
  createStaticHandler,
  createStaticRouter,
  StaticRouterProvider,
} from 'react-router-dom/server'
import { App } from './App.jsx'
import { routes } from './routes.jsx'
import { createFetchRequest } from './request.js'

2.	 Define a static handler for the routes:

const handler = createStaticHandler(routes)

3.	 Adjust the render function to accept an Express request object and then create a Fetch request
from it using our previously defined function:

export async function render(req) {
  const fetchRequest = createFetchRequest(req)

4.	 We can now use this converted request to pass it to our static handler, which creates context
for the route, allowing React Router to see which route we are trying to access and with
which parameters:

  const context = await handler.query(fetchRequest)

5.	 From the routes defined by the handler and the context, we can create a static router:

  const router = createStaticRouter(handler.dataRoutes, context)

6.	 Finally, we can adjust the rendering to render the static router and our refactored App structure:

  return ReactDOMServer.renderToString(
    <App>
      <StaticRouterProvider router={router} context={context} />
    </App>,

Rendering React components on the server 203

  )
}

7.	 There’s still one more thing left to do. We need to pass the Express request to the render()
function of the server-side entry point. Edit the following line in the server.js file:

      const appHtml = await render(req)

8.	 If the frontend and backend are already running, make sure to quit them.

9.	 Start the frontend, as follows:

$ npm run dev

10.	 Also, start the backend in a separate Terminal:

$ cd backend
$ npm run dev

The frontend will now output ssr dev server running on http://localhost:5173
and successfully server-side render all our pages! You can verify that it is server-side rendered by
opening the DevTools, clicking on the cog icon in the top right, scrolling down in the Settings |
Preferences pane to the Debugger section, and checking the box for Disable JavaScript, as follows:

Figure 7.8 – Disabling JavaScript in the DevTools

Now, refresh the page, and you will see that part of the app still gets rendered. Only the top part of the
app is fully rendered by the server side right now. The posts list is not rendered on the server side yet.
This is because the useQuery hooks internally use an effect hook to fetch data after the component
has mounted. As such, they do not work with server-side rendering. However, we can still get data
fetching working with server-side rendering. Let’s learn about that in the next section.

Improving the Load Time Using Server-Side Rendering204

Server-side data fetching
As we have seen, data fetching does not work out of the box on the server side. There are two approaches
for server-side data fetching with React Query:

•	 Initial data approach: Use the initialData option in the useQuery hook to pass
prefetched data in. This approach is enough for fetching a list of posts but would be tricky for
fetching deeply nested data, such as the usernames of each author.

•	 Hydration approach: This allows us to prefetch any requests and store the result by their query
key and prefetch any request on the server side, even if it is deeply nested within the app, without
having to pass the prefetched data down using props or a context.

We are first going to use the initialData option to fetch the list of blog posts, and then extend
our solution to the hydration approach so that we can get a feeling for how both approaches work
and what their pros and cons are.

Using initial data

React Router allows us to define loaders in routes, which we can use to fetch data on the server side
and client side when the route is loaded. We can then pass the data fetched from the loaders into
the Blog component and the useQuery hook via the initialData option. Let’s do that now:

1.	 Edit src/routes.jsx and import the useLoaderData hook from react-router-
dom and the getPosts function:

import { useLoaderData } from 'react-router-dom'
import { Blog } from './pages/Blog.jsx'
import { Signup } from './pages/Signup.jsx'
import { Login } from './pages/Login.jsx'
import { getPosts } from './api/posts.js'

2.	 Adjust the route to define a loader function, in which we simply call the getPosts function.
We can then define a Component() method in which we use the useLoaderData hook
to get the data from the loader, and pass it into the Blog component, as follows:

export const routes = [
  {
    path: '/',
    loader: getPosts,
    Component() {
      const posts = useLoaderData()
      return <Blog initialData={posts} />
    },
  },

Server-side data fetching 205

3.	 Edit src/pages/Blog.jsx and import PropTypes there, so that we can define a new
prop for the component later:

import PropTypes from 'prop-types'

4.	 Then, add the initialData prop to the Blog component:

export function Blog({ initialData }) {

5.	 Pass the initialData prop into the useQuery hook, as follows:

  const postsQuery = useQuery({
    queryKey: ['posts', { author, sortBy, sortOrder }],
    queryFn: () => getPosts({ author, sortBy, sortOrder }),
    initialData,
  })

6.	 Lastly, define propTypes for the Blog component:

Blog.propTypes = {
  initialData: PropTypes.shape(PostList.propTypes.posts),
}

Refresh the frontend page (with JavaScript disabled) and it will now show the post list, but without
resolving the author usernames. As we can see, the initial data approach is quite simple. However, if
we wanted to fetch the usernames of all authors, we would have to store them somewhere and then
pass them down into the user components using either props or a context, both of which would be
quite tedious and would not scale well if we need to make more requests later. Thankfully, there is
another, more advanced approach, which we are going to learn about now.

Using hydration

With the hydration approach, we create a query client to prefetch any requests we want to make, and then
dehydrate it, pass it to the component using a loader, and hydrate it again there. Using this approach,
we can simply make any query and store it using a query key. If a component uses the same query key,
it will be able to render the results on the server side. Let’s implement the hydration approach now:

1.	 Edit src/routes.jsx and import QueryClient, the dehydrate function, and the
Hydrate component from React Query:

import { QueryClient, dehydrate, HydrationBoundary } from '@
tanstack/react-query'

2.	 Also, import the getUserInfo function, as we are going to fetch usernames too now:

import { getUserInfo } from './api/users.js'

Improving the Load Time Using Server-Side Rendering206

3.	 Adjust the loader; we are now going to create a query client there:

  {
    path: '/',
    loader: async () => {
      const queryClient = new QueryClient()

4.	 Then, we simulate the getPosts request from the Blog component by passing in the same
default arguments to it as the component would:

      const author = ''
      const sortBy = 'createdAt'
      const sortOrder = 'descending'
      const posts = await getPosts({ author, sortBy, sortOrder
})

Note
This duplication of default arguments is a bit problematic. However, with our current server-side
rendering solution, the data fetching and component rendering are too separated to properly
share the code between them. A more sophisticated server-side rendering solution, such as
Next.js or Remix, can deal with this pattern better.

5.	 Now, we can call queryClient.prefetchQuery, with the same query key as the one that
will be used by the useQuery hook in the component, to prefetch the results of the query:

      await queryClient.prefetchQuery({
        queryKey: ['posts', { author, sortBy, sortOrder }],
        queryFn: () => posts,
      })

6.	 Next, we use the fetched posts array to get a unique list of author IDs from them:

      const uniqueAuthors = posts
        .map((post) => post.author)
        .filter((value, index, array) => array.indexOf(value)
=== index)

7.	 We now loop through all author IDs and prefetch their information:

      for (const userId of uniqueAuthors) {
        await queryClient.prefetchQuery({
          queryKey: ['users', userId],
          queryFn: () => getUserInfo(userId),
        })
      }

Server-side data fetching 207

8.	 Now that we have prefetched all the necessary data, we need to call dehydrate on queryClient
to return it in a serializable format:

      return dehydrate(queryClient)
    },

9.	 In the Component() method, we get this dehydrated state and use the Hydrate component
to hydrate it again. This hydration process makes the data accessible to the server-side rendered
query client:

    Component() {
      const dehydratedState = useLoaderData()
      return (
        <HydrationBoundary state={dehydratedState}>
          <Blog />
        </HydrationBoundary>
      )
    },
  },

10.	 Finally, we can revert the src/pages/Blog.jsx component to the previous state. We start
by removing the PropTypes import:

import PropTypes from 'prop-types'

11.	 Then, we remove the initialData prop:

export function Blog({ initialData }) {

12.	 We also remove it in the useQuery hook:

  const postsQuery = useQuery({
    queryKey: ['posts', { author, sortBy, sortOrder }],
    queryFn: () => getPosts({ author, sortBy, sortOrder }),
    initialData,
  })

13.	 Lastly, we remove the propTypes definition:

Blog.propTypes = {
  initialData: PropTypes.shape(PostList.propTypes),
}

14.	 Quit the frontend via Ctrl + C, then restart it as follows:

$ npm run dev

Improving the Load Time Using Server-Side Rendering208

15.	 Refresh the page and you will see that the full blog post list, including all author names, is
properly rendered on the server side now, even with JavaScript disabled!

Let’s do another benchmark to see how the performance has improved:

1.	 Open the Chrome DevTools.

2.	 Enable JavaScript again by going to the cog wheel, Settings | Preferences, and unchecking
Disable JavaScript.

3.	 Go to the Lighthouse tab. Click on Analyze page load to generate a new report.

Figure 7.9 – The Lighthouse Performance score of the server-side rendered app with the dev server

Advanced server-side rendering 209

The FCP and LCP times are almost half of the previously reported times from client-side rendering
in production mode. Looking at the waterfall diagram in the Network tab, we can now see that there
is only one request to fetch the initial page.

Let’s now wrap up the chapter by learning about advanced server-side rendering.

Advanced server-side rendering
In the previous sections, we have successfully created a server that can do server-side rendering with
hot reloading, which is very useful for development but will worsen the performance in production.
Let’s create another server function for a production server now, which will build files, use compression,
and not load Vite middleware for hot reloading. Follow these steps to create the production server:

1.	 In the root of our project, install the compression dependency with the following command:

$ npm install compression@1.7.4

2.	 Edit server.js and define a new function for the production server, above the
createDevServer function:

async function createProdServer() {

3.	 In this function, we define a new Express app and use the compression package and the
serve-static package to serve our client:

  const app = express()

  app.use((await import('compression')).default())
  app.use(
    (await import('serve-static')).default(
      path.resolve(__dirname, 'dist/client'),
      {
        index: false,
      },
    ),
  )

4.	 Then, we define a route that catches all paths again, this time loading the template from the
built files in the dist/ folder:

  app.use('*', async (req, res, next) => {
    try {
      let template = fs.readFileSync(
        path.resolve(__dirname, 'dist/client/index.html'),
        'utf-8',
      )

Improving the Load Time Using Server-Side Rendering210

5.	 We also directly import and render the server-side entry point now:

      const render = (await import('./dist/server/entry-server.
js')).render

6.	 As before, we render the React app, replace the placeholder in index.html with the rendered
app, and return the resulting HTML:

      const appHtml = await render(req)
      const html = template.replace(`<!--ssr-outlet-->`,
appHtml)
      res.status(200).set({ 'Content-Type': 'text/html'
}).end(html)

7.	 For the error handling, we simply pass it on to the next middleware now and return the app:

    } catch (e) {
      next(e)
    }
  })

  return app
}

8.	 At the bottom of the server.js file, where we created the dev server, we now do a check
for the NODE_ENV environment variable and use it to decide whether to start the production
server or the development server:

if (process.env.NODE_ENV === 'production') {
  const app = await createProdServer()
  app.listen(process.env.PORT, () =>
    console.log(
      `ssr production server running on http://
localhost:${process.env.PORT}`,
    ),
  )
} else {
  const app = await createDevServer()
  app.listen(process.env.PORT, () =>
    console.log(
      `ssr dev server running on http://localhost:${process.env.
PORT}`,
    ),
  )
}

Advanced server-side rendering 211

9.	 Install the cross-env package, as follows:

$ npm install cross-env@7.0.3

10.	 Edit package.json and add a start script, which starts the server in production mode:

    "start": "cross-env NODE_ENV=production node server",

11.	 Quit the frontend dev server, build, and start the production server:

$ npm run build
$ npm start

As we can see, our server still serves the app just fine, but now we are not in development mode
anymore, so we do not have hot reloading available. This wraps up our implementation of server-side
rendering! As you can imagine, the server-side rendering implementation in this chapter is somewhat
basic, and there are still multiple things we would need to handle:

•	 Redirects and proper HTTP status codes

•	 Static-site generation (caching resulting HTML pages so we don’t have to server-side render
them again every time)

•	 Better data fetching functionality

•	 Better code splitting between the server and client

•	 Better handling of environment variables between the server and client

To solve these issues, it is better to use a fully-fledged server-side rendering implementation in a
web framework, such as Next.js or Remix. These frameworks already provide ways to do server-side
rendering, data fetching, and routing out of the box, and do not require us to manually get everything
to work in tandem. We are going to learn more about Next.js in Chapter 16, Getting Started with Next.js.

Improving the Load Time Using Server-Side Rendering212

Summary
In this chapter, we first learned how to benchmark web applications using Lighthouse and Chrome
DevTools. We also learned about useful metrics for such benchmarks, called Core Web Vitals. Then,
we learned about rendering React components on the server and the differences between client-side
rendering and server-side rendering. Next, we implemented server-side rendering for our app using
Vite and React Router. Then, we implemented server-side data fetching using React Query. We then
benchmarked our app again and saw an improvement in the performance of more than 40%. Lastly,
we learned about getting our server-side rendering server ready for production and concepts that a
more sophisticated server-side rendering framework needs to deal with.

In the next chapter, Chapter 8, Making Sure Customers Find You with Search Engine Optimization, we
are going to learn how to make our web app more accessible to search engine crawlers, increasing
the SEO score that we saw in the Lighthouse report. We are going to add meta tags to have more
information about our web app and add integrations for various social media sites.

8
Making Sure Customers

Find You with Search
Engine Optimization

When we optimized the performance of our blog in the previous chapter, you may have noticed that
the Lighthouse report also includes a Search Engine Optimization (SEO) score, which our app
scored relatively low on. This score tells us how optimized our app is for being indexed properly and
found by search engines such as Google or Bing. After successfully developing a working blog app,
of course, we want our blog to be found by users. In this chapter, we are going to learn the basics of
SEO and how to optimize the SEO score for our React application. Then, we are going to learn how
to create meta tags for easier integration on various social media sites.

In this chapter, we are going to cover the following main topics:

•	 Optimizing an application for search engines

•	 Improving social media embeds

Technical requirements
Before we start, please install all requirements from Chapter 1, Preparing For Full-Stack Development,
and Chapter 2, Getting to Know Node.js and MongoDB.

The versions listed in those chapters are the ones used in the book. While installing a newer version
should not be an issue, please note that certain steps might work differently on a newer version. If
you are having an issue with the code and steps provided in this book, please try using the versions
mentioned in Chapters 1 and 2.

You can find the code for this chapter on GitHub: https://github.com/PacktPublishing/
Modern-Full-Stack-React-Projects/tree/main/ch8.

https://github.com/PacktPublishing/Modern-Full-Stack-React-Projects/tree/main/ch8
https://github.com/PacktPublishing/Modern-Full-Stack-React-Projects/tree/main/ch8

Making Sure Customers Find You with Search Engine Optimization214

The CiA video for this chapter can be found at: https://youtu.be/1xN3l0MMTbY

If you cloned the full repository for the book, Husky may not find the .git directory when running
npm install. In that case, just run git init in the root of the corresponding chapter folder.

Optimizing an application for search engines
Before we get started optimizing our app for search engines, let’s briefly learn how search engines
work. Search engines work by storing information about websites in an index. The index contains the
location, content, and meta information of websites. Adding or updating pages in the index is called
indexing and done by a crawler. A crawler is an automated software that fetches websites and indexes
them. It is called a crawler because it follows further links on the website to find more websites. More
advanced crawlers, such as the Googlebot, can also detect whether JavaScript is required to render
the contents of a website and even render it.

The following graphic visualizes how a search engine crawler works:

Figure 8.1 – Visualization of how a search engine crawler works

As we can see, a search crawler has a queue containing URLs that it needs to crawl and index. It then
visits the URLs one by one, fetches the HTML and, if it is an advanced crawler, detects whether it needs
to execute JavaScript to render the content. In that case, the URL is added to a render queue and the
rendered HTML is passed back into the crawler later. Then, the crawler extracts all the links to other
pages and adds them to the queue. Finally, the parsed content is added to the index.

https://youtu.be/1xN3l0MMTbY

Optimizing an application for search engines 215

To see whether a website is already indexed by a search engine, most search engines provide a
site: operator, which can be used to check whether a URL is already indexed by it. For example,
site:wikipedia.org shows various URLs on Wikipedia that are already indexed. If your website
is not indexed yet, you can submit it to tools such as the Google Search Console. The Google Search
Console also has a detailed overview of the indexing status and any problems with indexing. However,
it is not necessary to submit our site for it to be found, because most search engines automatically
crawl the web and will eventually find our website.

If your website still does not get indexed, this might be because it is improperly configured. First, you
need to create a robots.txt file to specify whether search engines are allowed to crawl parts of
your website, and which parts they are allowed to crawl.

Note
The robots.txt should not be used to hide web pages from Google search results. Instead,
it is used to reduce traffic from crawlers on unimportant or similar pages. If you want to
completely hide web pages from Google search results, either password-protect them, or use
the noindex meta tag.

Next, you need to make sure the contents of your website are visible to the crawler. Server-side
rendering can help here by allowing crawlers to view the contents of your website without running
JavaScript. Additionally, adding meta information using special HTML tags helps crawlers to get
additional information about your website. For small websites, pages need to be linked properly or
add a manual sitemap. For larger websites, such as a blog with many posts, a sitemap should always
be defined. Finally, having good performance, fast load times, and a good user experience makes your
website rank higher on search engines.

We have already added server-side rendering to speed up crawling by serving content immediately
without relying on JavaScript to render it. Now, let’s further optimize our app for search engines. We
start by creating a robots.txt file.

Creating a robots.txt file

First, let’s ensure that crawlers are explicitly allowed to access our app and index all pages on it. To
do so, we need to create a robots.txt file, which crawlers will read to find out which pages they
are allowed to access (if any). Follow these steps to create a robots.txt file that allows access for
all crawlers to all pages:

1.	 Copy the ch7 folder to a new ch8 folder, as follows:

$ cp -R ch7 ch8

2.	 Open the ch8 folder in VS Code.

Making Sure Customers Find You with Search Engine Optimization216

3.	 Create a new public/robots.txt file in the root of our project.

4.	 Open the newly created file and enter the following contents to allow all crawlers to index
all pages:

User-agent: *
Allow: /

The robots.txt works by defining blocks, each block being defined by matching a user
agent. The user agent can match various crawlers, such as Googlebot for Google, or you can
use * to match all crawlers. After the user agent, one or multiple Allow and/or Disallow
statements can be made, that decide which paths a crawler is allowed or not allowed to access.
In our case, we are allowing access to all paths. Additionally, a Sitemap can be specified, but
we’ll see more on that later in the Creating a sitemap subsection.

5.	 Open a Terminal pane and start the frontend by running the following command:

$ npm run dev

6.	 Open another Terminal pane and start the backend by running the following commands:

$ cd backend
$ npm run dev

7.	 Go to http://localhost:5173/robots.txt in your browser to see the robots.
txt file being served properly.

Now that we have successfully allowed crawlers to access our app, we should improve our URL
structure. Let’s do that by creating separate pages for each post.

Creating separate pages for posts

At the moment, it is not possible to view only a single post in our blog app, we can only view the list
of all posts. That is not good for SEO, as it means a search engine will always link to the index page,
which might already contain different articles than what the user was searching for. Let’s refactor our
app a bit to only show post titles and authors on the main page, and then link to separate pages for
each blog post:

1.	 Edit src/components/Post.jsx to allow displaying a single full post while displaying a
smaller version of the post in the list, with a link to the full version. First, we import the Link
component from react-router-dom:

import { Link } from 'react-router-dom'

Optimizing an application for search engines 217

2.	 Then, we add an _id prop and a fullPost prop to the Post component. The fullPost
prop will be set to false by default (when displayed in the post list) and set to true when
using it in the single-post page:

export function Post({
  title,
  contents,
  author,
  _id,
  fullPost = false,
}) {

3.	 We make some adjustments to the component to show a link to the single-post page if we are
not on a single-post page yet:

      {fullPost ? (
        <h3>{title}</h3>
      ) : (
        <Link to={`/posts/${_id}`}>
          <h3>{title}</h3>
        </Link>
      )}

4.	 Additionally, we only show the contents of the blog post on a single-post page, and adjust the
spacing of the author info accordingly:

      {fullPost && <div>{contents}</div>}
      {author && (
        
          {fullPost &&
}
          Written by <User id={author} />
        
      )}

5.	 Adjust the prop types to add the newly defined props:

Post.propTypes = {
  title: PropTypes.string.isRequired,
  contents: PropTypes.string,
  author: PropTypes.string,
  _id: PropTypes.string.isRequired,
  fullPost: PropTypes.bool,
}

Making Sure Customers Find You with Search Engine Optimization218

6.	 Edit src/api/posts.js and add a new function to get a single post by id:

export const getPostById = async (postId) => {
  const res = await fetch(`${import.meta.env.VITE_BACKEND_URL}/
posts/${postId}`)
  return await res.json()
}

7.	 Create a new src/pages/ViewPost.jsx file, and start by importing all the components
and functions that we are going to need:

import { Link } from 'react-router-dom'
import PropTypes from 'prop-types'
import { useQuery } from '@tanstack/react-query'
import { Header } from '../components/Header.jsx'
import { Post } from '../components/Post.jsx'
import { getPostById } from '../api/posts.js'

8.	 Then, define a component that accepts a postId as props:

export function ViewPost({ postId }) {

9.	 In the component, we use a query hook to fetch a single post by id:

  const postQuery = useQuery({
    queryKey: ['post', postId],
    queryFn: () => getPostById(postId),
  })
  const post = postQuery.data

10.	 Next, render the header and a link back to the main page:

  return (
    <div style={{ padding: 8 }}>
      <Header />
      

      <hr />
      <Link to='/'>Back to main page</Link>
      

      <hr />

11.	 Then, if we managed to fetch a post with the given ID, render a post with the fullPost prop
set. Otherwise, we show a not found message:

      {post ? <Post {...post} fullPost /> : `Post with id
${postId} not found.`}
    </div>

Optimizing an application for search engines 219

  )
}

12.	 Lastly, define the prop types for the ViewPost component:

ViewPost.propTypes = {
  postId: PropTypes.string.isRequired,
}

13.	 Edit src/routes.jsx and import the ViewPost component and the getPostById
function (for server-side rendering):

import { ViewPost } from './pages/ViewPost.jsx'
import { getPosts, getPostById } from './api/posts.js'

14.	 Define a new /posts/:postId route for viewing a single post. In the loader, we fetch the
single blog post and an author, if it has one. We then return the dehydrated state and the post ID:

  {
    path: '/posts/:postId',
    loader: async ({ params }) => {
      const postId = params.postId

      const queryClient = new QueryClient()

      const post = await getPostById(postId)
      await queryClient.prefetchQuery({
        queryKey: ['post', postId],
        queryFn: () => post,
      })

      if (post?.author) {
        await queryClient.prefetchQuery({
          queryKey: ['users', post.author],
          queryFn: () =>
            getUserInfo(post.author),
        })
      }

      return { dehydratedState: dehydrate(queryClient), postId }
    },

Making Sure Customers Find You with Search Engine Optimization220

15.	 Define a Component method for the route, where we get dehydratedState and postId
and pass them on to the ViewPost component, as follows:

    Component() {
      const { dehydratedState, postId } = useLoaderData()
      return (
        <HydrationBoundary state={dehydratedState}>
          <ViewPost postId={postId} />
        </HydrationBoundary>
      )
    },
  },

16.	 Go to http://localhost:5173/ in your browser and you will see that all blog posts
in the list now have a link in their title. Click on the link to see the full blog post, as shown in
the following screenshot:

Figure 8.2 – Viewing a single blog post on a separate page

Now our blog app is already much more organized, as we do not see the full contents of all blog posts
on the main page. We only see the title and author now and can then decide whether the article is
interesting to us or not. Furthermore, a search engine can provide separate entries for each blog post,
making it easier to find posts on our app. There is still room for improvement with the URL structure
though, as it currently only contains the post ID. Let’s introduce more meaningful URLs in the next step.

Optimizing an application for search engines 221

Creating meaningful URLs (slugs)

Websites often put keywords in the URLs to make it easier for users to see what they will be opening
just by looking at the URL. Keywords in URLs are also a ranking factor for search engines, albeit a
not-so-strong one. The strongest one is always good content. Nevertheless, having a good URL structure
improves the user experience. For example, if the link is /posts/64a42dfd6a7b7ab47009f5e3/
making-sure-customers-find-you-with-search-engine-optimization instead
of just /posts/64a42dfd6a7b7ab47009f5e3, it is already clear from the URL alone what
content they will find on the page. Such keywords in the URL are called a URL slug, named after
“slugs” in journalism, which refers to using short descriptions of articles as internal names. Let’s get
started introducing slugs on our post pages:

1.	 Edit src/routes.jsx and adjust the path to allow for optionally including a slug:

    path: '/posts/:postId/:slug?',

Note
We are not doing any checks on whether the slug is correct or not. In fact, this is not really
necessary, and many pages do not do this. As long as we have a correct ID, we can render the
blog post. We only need to make sure that the links to the page all include the correct slug.
However, we could additionally add a <link> element with the rel="canonical" attribute
to a page, specifying the canonical page with the correct slug. This would tell crawlers not to
index duplicate pages when incorrect slugs are used.

2.	 In the root of our project, install the slug npm package, which contains a function to properly
slugify a title:

$ npm install slug@8.2.3

This package already handles unicode and returns URL-safe strings. So, we do not need to
worry about sanitizing the title string ourselves.

3.	 Edit src/components/Post.jsx and import the slug function:

import slug from 'slug'

4.	 Then, adjust the link to the blog post by adding the slug, as follows:

        <Link to={`/posts/${_id}/${slug(title)}`}>

5.	 Now, when we open a link from the list, the URL will look as follows:

http://localhost:5173/posts/64a42dfd6a7b7ab47009f5e3/
making-sure-customers-find-you-with-search-engine-
optimization

Making Sure Customers Find You with Search Engine Optimization222

Now we have human readable URLs for our blog posts! However, you might have noticed that the
title is still Vite + React on all pages of our app. Let’s change that now by introducing dynamic titles
and including the blog post title in the page title.

Adding dynamic titles

The title of a page is even more important for SEO than keywords in the URL, as that is the title that
will be shown in the search results in most cases. So, we should choose our title wisely, and if we have
dynamic content (like in our blog), we should also dynamically adjust the title to fit the content. We
can use the React Helmet library to facilitate changes in the <head> section of the HTML document.
This library allows us to render a special Helmet component. The children of this component will
replace existing tags in the <head> section. Follow these steps to use React Helmet to dynamically
set the title:

1.	 First of all, let’s change the general title of our app, as it is still Vite + React. Edit index.
html in the root of our project and change the title. We are going to call our blog app Full-
Stack React Blog:

    <title>Full-Stack React Blog</title>

2.	 In the root of our project, install the react-helmet-async dependency to be able to
dynamically change the title:

$ npm install react-helmet-async@1.3.0

Note
React Helmet Async is a fork of the original React Helmet that adds support for newer
React versions.

3.	 Edit src/pages/ViewPost.jsx and import the Helmet component from react-
helmet-async:

import { Helmet } from 'react-helmet-async'

4.	 Render the Helmet component and define the <title> tag inside it, as follows:

  return (
    <div style={{ padding: 8 }}>
      {post && (
        <Helmet>
          <title>{post.title} | Full-Stack React Blog</title>
        </Helmet>
      )}

Optimizing an application for search engines 223

5.	 Edit src/pages/Blog.jsx and import Helmet:

import { Helmet } from 'react-helmet-async'

6.	 Then, reset the title to Full-Stack React Blog in the Blog component:

  return (
    <div style={{ padding: 8 }}>
      <Helmet>
        <title>Full-Stack React Blog</title>
      </Helmet>

7.	 Edit src/App.jsx and import the HelmetProvider:

import { HelmetProvider } from 'react-helmet-async'

8.	 Then, adjust the App component to render HelmetProvider:

export function App({ children }) {
  return (
    <HelmetProvider>
      <QueryClientProvider client={queryClient}>
        <AuthContextProvider>
          {children}
        </AuthContextProvider>
      </QueryClientProvider>
    </HelmetProvider>
  )
}

9.	 Click on a single post in the app and you will see that the title now updates to include the post title!

Now that we have successfully set a dynamic title, let’s pay some attention to other important information
in the <head> section, the meta tags.

Adding other meta tags

Meta tags, as the name tells us, contain meta information about a page. Besides the title, we can set
meta information such as a short description, or information on how the browser should render a
website. In this section, we will cover the most important SEO-relevant meta tags, starting with the
description meta tag.

Making Sure Customers Find You with Search Engine Optimization224

Description meta tag

The description meta tag contains a short description of the contents of the page. Similarly to the title
tag, we can also dynamically set this tag, as follows:

1.	 Edit src/pages/Blog.jsx and add the following generic description <meta> tag:

      <Helmet>
        <title>Full-Stack React Blog</title>
        <meta
          name='description'
          content='A blog full of articles about full-stack
React development.'
        />
      </Helmet>

Now, let’s add a dynamic meta description tag for each blog post. The meta description should
have between 50 and 160 characters, and since we do not have a short summary of our blog
posts, let’s just use the full contents and truncate them after 160 characters. Of course, it would
be even better to let authors add a short summary when creating posts, but for simplicity, we
just truncate the description here.

2.	 Edit the src/pages/ViewPost.jsx file and define a simple function to truncate a string:

function truncate(str, max = 160) {
  if (!str) return str
  if (str.length > max) {
    return str.slice(0, max - 3) + '...'
  } else {
    return str
  }
}

We limit the string to 160 characters, and if it’s above 160, we truncate it to 157 characters and
add three dots at the end.

3.	 Add the truncated content as a meta description tag to the Helmet component, as follows:

      {post && (
        <Helmet>
          <title>{post.title} | Full-Stack React Blog</title>
        <meta name='description' content={truncate(post.
contents)} />

After adding the description meta tag, let’s learn about other meta tags that could be used.

Optimizing an application for search engines 225

Robots meta tag

The robots meta tag tells crawlers whether and how they should crawl web pages. It can be used
in addition to robots.txt, but we should only use it if we want to dynamically restrict the way a
certain page is crawled. It looks as follows:

<meta name="robots" content="index, follow">

The index keyword tells crawlers to index the page, the follow keyword tells crawlers to crawl
further links on the page. The index and follow keywords can be toggled off by using noindex
and nofollow, respectively.

Viewport meta tag

Another important meta tag to add is the viewport tag, which tells the browser (and crawlers) that
your website is mobile friendly. See the following example of how the meta tag affects how pages are
rendered on mobile:

Figure 8.3 – A blog post rendering before and after adding the viewport meta tag

Making Sure Customers Find You with Search Engine Optimization226

Vite already added this meta tag automatically for us in the index.html template it provided. You
can see it by looking at the index.html file:

<meta name="viewport" content="width=device-width, initial-scale=1.0"
/>

After learning about the viewport tag, we continue by learning about the charset meta tag.

Charset meta tag

The charset meta tag tells the browser and crawlers about the character encoding of the web page.
Usually, you want to set this to UTF-8 to ensure all Unicode characters are rendered properly. Again,
Vite already added this meta tag automatically for us:

<meta charset="UTF-8" />

Now that we have learned about the relevant meta tags, let’s move on to creating a sitemap, which
helps crawlers find all the pages on our app more easily.

Other relevant meta information

There is additional meta information that can be relevant for a website, such as setting the language
in the <html> tag, as follows:

<html lang="en">

Setting a favicon also improves the search snippet, which is what users see when deciding whether
they should click on a link.

Creating a sitemap

A sitemap contains a list of URLs that are part of an app, so that crawlers can easily detect new content
and crawl the app more efficiently. It also makes sure that all content is found, which is especially
important for content-based apps with a large number of pages/posts. Usually, sitemaps are provided
in XML format. They are not mandatory for SEO, but will make it easier and faster for crawlers to
pick up content on your app. As we have dynamic content on our blog app, we should also create a
dynamic sitemap. Follow these steps to create a dynamic sitemap for our blog app:

1.	 First, we are going to need a base URL for our (deployed) frontend to prefix all paths on our
sitemap with. For now, we are simply going to set this to our localhost URL, but in production,
this environment variable should be changed to the proper base URL of the app. Edit .env in
the root of our project and add a FRONTEND_URL environment variable:

FRONTEND_URL="http://localhost:5173"

Optimizing an application for search engines 227

2.	 Create a new generateSitemap.js file in the root of our project, start by importing the
slug function and dotenv:

import slug from 'slug'
import dotenv from 'dotenv'
dotenv.config()

3.	 Then, save the previously created environment variable in a baseUrl variable:

const baseUrl = process.env.FRONTEND_URL

4.	 Now, define an async function to generate a sitemap. In this function, we start by fetching a
list of blog posts, as we want each blog post to be part of the sitemap:

export async function generateSitemap() {
  const postsRequest = await fetch(`${process.env.VITE_BACKEND_
URL}/posts`)
  const posts = await postsRequest.json()

5.	 Next, we return a string containing the XML for the sitemap. We start by defining the XML
header and a <urlset> tag:

  return `<?xml version="1.0" encoding="UTF-8"?>
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">

6.	 Inside the <urlset> tag, we can use <url> tags with <loc> tags to link to various pages.
We first list all the static pages:

    <url>
        <loc>${baseUrl}</loc>
    </url>
    <url>
        <loc>${baseUrl}/signup</loc>
    </url>
    <url>
        <loc>${baseUrl}/login</loc>
    </url>

7.	 Then, we loop over all posts that we fetched from the backend and generate a <url> tag for
each of them, constructing the URLs from the post ID and the slug:

    ${posts
      .map(
        (post) => `
    <url>
        <loc>${baseUrl}/posts/${post._id}/${slug(post.title)}</
loc>

Making Sure Customers Find You with Search Engine Optimization228

8.	 We can also optionally specify a <lastmod> tag, telling the crawler when the content was
last modified:

        <lastmod>${post.updatedAt ?? post.createdAt}</lastmod>

9.	 Lastly, we join all generated <url> tags together into a single string and close the <urlset> tag:

    </url>`,
      )
      .join('')}
</urlset>`
}

Now that we have a function to dynamically generate a sitemap, we still need to include a route
to it in our server.

10.	 Edit server.js and import the generateSitemap function there:

import { generateSitemap } from './generateSitemap.js'

11.	 Then, go to the first app.use('*') declaration inside the createProdServer function and
check whether the URL is /sitemap.xml. If yes, generate the sitemap and return it as XML:

  app.use('*', async (req, res, next) => {
    if (req.originalUrl === '/sitemap.xml') {
      const sitemap = await generateSitemap()
      return res
        .status(200)
        .set({ 'Content-Type': 'application/xml' })
        .end(sitemap)
    }

Note
In a more sophisticated setup, we could cache the generated sitemap either on our Express
server, our own web server, or a separate caching service.

12.	 We do the same change as in the previous step for the second app.use('*') declaration
inside the createDevServer function.

13.	 Restart the server and go to http://localhost:5173/sitemap.xml to see the sitemap
being dynamically generated, with links to all created posts and their last modified timestamps.

14.	 We can now link to the sitemap in the robots.txt file. As an example, we are going to set
the URL to localhost. In a production app, you would adjust this URL to point to the sitemap on
the URL of the deployed application. Edit public/robots.txt and add the following line:

Sitemap: http://localhost:5173/sitemap.xml

Improving social media embeds 229

Now that we have successfully implemented measures to improve our app for search engines, let’s
take a look at our SEO score in the Lighthouse report:

Figure 8.4 – Our Lighthouse SEO score is now 100!

As we can see, our SEO score is now 100 (from 91 before). This might only seem like a slight
improvement, but the Lighthouse report only takes into account basic checks, such as having a title,
description, viewport tag, and a robots.txt file. We have done much more to optimize the user
experience for visitors and search engines, such as improving the URL structure and adding dynamic
titles and descriptions.

We could still further optimize our app by serving static assets via a Content Delivery Network (CDN)
and using responsive images (serving images in different sizes to optimize performance on slower
connections and avoid loading the full-size images). However, that is outside the scope of this book.

To wrap up this chapter, we are going to take a look at improving embeds on social media sites.

Improving social media embeds
We have already added the important meta tags for search engines. However, social media websites,
such as Facebook and X (formerly Twitter), read additional meta tags to improve the embedding of
your app on their sites and apps. Most social networks use a standard called Open Graph Meta Tags,
which was originally created at Facebook. These tags can contain additional information on the type of
page, a special title, the description, and an image for embedding the page on a social media website.

Open Graph meta tags

The Open Graph (OG) meta tags have four generic properties that every page can have:

•	 og:type: Describes the type of the page; specific types may have additional properties

•	 og:title: Describes the title of the page as it should appear on embeds

•	 og:image: An URL to an image that should be used for the embed

•	 og:url: An URL to a link that should be used for the embed

Making Sure Customers Find You with Search Engine Optimization230

The og:type meta tag describes the type of content available on the page. It tells the social media
sites how the embed should be formatted. Among others, the following values are possible:

•	 website: The default value, a basic embed

•	 article: This is for news and blog posts, and has additional parameters for published_
time, modified_time, author, section, and tag

•	 profile: For user profiles, with additional parameters for first_name, last_name,
username, and gender

•	 book: For books, with additional parameters for author, isbn, release_date, and tag

•	 music types: This includes music.song, music.album, music.playlist, and
music.radio_station, each of them having different additional parameters

•	 video types: This includes video.movie, video.episode, video.tv_show, and
video.other, each of them having different additional parameters

A full description of the OG meta tags and all possible values can be found on their official
website: https://ogp.me/.

Info
Most social media sites support OG meta tags for embeds. However, some websites, including
X (formerly Twitter), have their own meta tags, which take priority over OG meta tags, if
provided. X can still read OG meta tags though, so it is enough to only provide those.

Now, we are going to focus on the article type, as we are developing a blog application, so we can
use this type to provide better embeds for the blog posts.

Using the OG article meta tags

As we have learned, the article type allows us to include meta information about the published
time, modified time, and author of an article on our page. Let’s do this now for our single-post page:

1.	 Edit src/pages/ViewPost.jsx and import the getUserInfo API function, as we
will need to resolve the author name for the corresponding meta tag:

import { getUserInfo } from '../api/users.js'

https://ogp.me/

Improving social media embeds 231

2.	 Inside the ViewPost component after we fetch the post, fetch the author name. We make
sure to only do this call if the post?.author attribute exists by using the enabled option
of the useQuery hook:

  const userInfoQuery = useQuery({
    queryKey: ['users', post?.author],
    queryFn: () => getUserInfo(post?.author),
    enabled: Boolean(post?.author),
  })
  const userInfo = userInfoQuery.data ?? {}

3.	 Inside the Helmet component, we define the og:type tag as article and define the title,
published time, and modified time:

      {post && (
        <Helmet>
          <title>{post.title} | Full-Stack React Blog</title>
          <meta name='description' content={truncate(post.
contents)} />
          <meta property='og:type' content='article' />
          <meta property='og:title' content={post.title} />
          <meta property='og:article:published_time'
content={post.createdAt} />
          <meta property='og:article:modified_time'
content={post.updatedAt} />

4.	 Then, we set the og:article:author to the resolved username:

          <meta property='og:article:author' content={userInfo.
username} />

5.	 Lastly, we loop through the tags (if there are none, we default to an empty array) and define a
meta tag for each tag:

          {(post.tags ?? []).map((tag) => (
            <meta key={tag} property='og:article:tag'
content={tag} />
          ))}
        </Helmet>
      )}

Arrays in OG meta tags work by redefining the same property multiple times.

Now that we have successfully added meta tags, our blog app is optimized for search engines and
social media sites!

Making Sure Customers Find You with Search Engine Optimization232

Summary
In this chapter, we first briefly learned how search engines work. Then, we created a robots.txt
file, along with separate pages for each blog post, to better optimize our blog for search engines. Next,
we created meaningful URLs (slugs) and set dynamic titles and meta tags. Then, we created a sitemap
and evaluated the SEO score of our blog after all optimizations. Finally, we learned how social media
embeds work and which meta tags can be used to improve embeds for articles, such as blog posts.

In the next chapter, Chapter 9, Implementing End-to-End Tests Using Playwright, we are going to learn
how to write end-to-end tests for our user interface by setting up Playwright. Then, we are going to
write some frontend tests for our blog application.

9
Implementing End-to-End Tests

Using Playwright

In the previous chapters, we have written unit tests for our backend using Jest. Now, we are going to
learn how to write and run end-to-end tests on our user interface using Playwright. First, we set up
Playwright in our project and VS Code to allow for running frontend tests. Then, we are going to
write some frontend tests for our application. Next, we are going to learn about reusing test setups
with fixtures. Finally, we are going to learn how to view test reports and run Playwright in CI using
GitHub Actions.

In this chapter, we are going to cover the following main topics:

•	 Setting up Playwright for end-to-end testing

•	 Writing and running end-to-end tests

•	 Reusable test setups using fixtures

•	 Viewing test reports and running in CI

Technical requirements
Before we start, please install all requirements from Chapter 1, Preparing for Full-Stack Development,
and Chapter 2, Getting to Know Node.js and MongoDB.

The versions listed in those chapters are the ones used throughout the book. While installing a newer
version should not be an issue, please note that certain steps might work differently on a newer version.
If you are having an issue with the code and steps provided in this book, please try using the versions
mentioned in the Technical requirements section of Chapters 1 and 2.

You can find the code for this chapter on GitHub: https://github.com/PacktPublishing/
Modern-Full-Stack-React-Projects/tree/main/ch9.

https://github.com/PacktPublishing/Modern-Full-Stack-React-Projects/tree/main/ch9
https://github.com/PacktPublishing/Modern-Full-Stack-React-Projects/tree/main/ch9

Implementing End-to-End Tests Using Playwright234

If you cloned the full repository for the book, Husky may not find the .git directory when running
npm install. In that case, just run git init in the root of the corresponding chapter folder.

The CiA link for this chapter can be found at: https://youtu.be/WjwEwUR8g2c

Setting up Playwright for end-to-end testing
Playwright is a test runner to facilitate end-to-end testing on various web rendering engines, such as
Chromium (Chrome, Edge, Opera, etc.), WebKit (Safari), and Firefox. It can run tests on Windows,
Linux, and macOS, locally or on CI. There are two ways of running Playwright:

•	 Headed: Opens a browser window where it can be seen what Playwright is doing

•	 Headless: Runs the rendering engine in the background and only displays the results of the
tests in the Terminal or a generated test report

In this chapter, we are going to explore both ways of running Playwright. Let’s now install Playwright
in our project.

Installing Playwright

To install Playwright, we can use npm init playwright, which runs a command that installs
Playwright, creates a folder for end-to-end tests for us, adds a GitHub Actions workflow to run tests
in CI, and installs Playwright browsers so it can run tests in various engines. Follow these steps to
install Playwright:

1.	 Copy the existing ch8 folder to a new ch9 folder, as follows:

$ cp -R ch8 ch9

2.	 Open the ch9 folder in VS Code and open a new Terminal.

3.	 Run the following command:

$ npm init playwright@1.17.131

Note
Usually, it is a good idea to install the latest version here by running npm init playwright@
latest. However, to make sure the instructions in this book are reproducible even when new
versions with breaking changes are released, we pin the version here.

4.	 When asked if you want to proceed with installing the create-playwright package, press
Return/Enter to confirm it. Then select JavaScript. As for the directory name, keep the tests
default name and press Return/Enter to confirm it. Type y to add a GitHub Actions workflow.
Type y again to install Playwright browsers. It will now take a while to download and install
the different browser engines.

https://youtu.be/WjwEwUR8g2c

Setting up Playwright for end-to-end testing 235

5.	 We need to adjust some files to make Playwright work with ES modules. Edit playwright.
config.js and change the line with the require() import at the beginning of the file
to the following:

import { defineConfig, devices } from '@playwright/test'

6.	 Also, change the export from module.exports to the following:

export default defineConfig({

7.	 Delete the tests-examples/ folder and the tests/example.spec.js file.

After installing Playwright, we need to prepare our backend for end-to-end testing, so let’s do that now.

Preparing the backend for end-to-end testing

To prepare the backend for end-to-end testing, we need to start an instance of the backend with the
in-memory MongoDB server, similarly to what we did for the Jest tests. Let’s do that now:

1.	 Create a new backend/src/e2e.js file. Inside it, import dotenv, globalSetup, and
the app and initDatabase functions:

import dotenv from 'dotenv'
dotenv.config()

import globalSetup from './test/globalSetup.js'
import { app } from './app.js'
import { initDatabase } from './db/init.js'

2.	 Then, define a new async function to run a testing server:

async function runTestingServer() {

3.	 Inside this function, we first run the globalSetup function, which runs an in-memory
MongoDB server. Then, we initialize the database and run the Express app:

  await globalSetup()
  await initDatabase()
  const PORT = process.env.PORT
  app.listen(PORT)
  console.info(`TESTING express server running on http://
localhost:${PORT}`)
}

4.	 Finally, we run the defined function:

runTestingServer()

Implementing End-to-End Tests Using Playwright236

5.	 Edit backend/package.json and add a new script to run the e2e.js file:

    "e2e": „node src/e2e.js",

6.	 In the root of the project, install concurrently, a tool to run two commands in parallel:

$ npm install --save-dev concurrently@8.2.2

We are going to use this tool to run the backend and frontend in parallel.

7.	 Edit package.json in the root of the project and define an e2e script that will run
e2e:client and e2e:server scripts in parallel:

    "e2e": "concurrently \"npm run e2e:client\" \"npm run
e2e:server\"",

8.	 Now, define the e2e:client script, in which we just run the prebuilt frontend:

    "e2e:client": "npm run build && npm run start",

For performance reasons, we do not run the dev server. Otherwise, we would be slowing down
our end-to-end tests. We could omit the build script here, but then we must remember to build
our frontend after making changes before running tests, and we must do this in CI as well.
Alternatively, when running the tests locally, especially when we are only running certain tests
and not all of them, we could run the dev server instead of building.

9.	 Then, we define the e2e:server script, which runs the e2e script in the backend folder:

    "e2e:server": "cd backend/ && npm run e2e",

10.	 Edit playwright.config.js and set the baseURL by changing the following line:

  use: {
    /* Base URL to use in actions like `await page.goto('/')`.
*/
    baseURL: 'http://localhost:5173',

11.	 Finally, edit playwright.config.js and replace the webServer config at the bottom
of the file with the following:

  webServer: {
    command: 'npm run e2e',
    url: 'http://localhost:5173',
  },

Now that we have successfully set up Playwright and prepared the backend for end-to-end testing,
let’s get started writing and running end-to-end tests!

Writing and running end-to-end tests 237

Writing and running end-to-end tests
We are now going to write and run our first end-to-end test with Playwright. Let’s start with a simple
test, which just verifies that we have properly optimized our title for search engines. Follow these steps
to write and run your first end-to-end test:

1.	 Create a new tests/seo.spec.js file. Inside this file, we are going to check whether the
title of our page is set properly.

2.	 Inside this newly created file, first import the test and expect functions from @playwright/
test:

import { test, expect } from '@playwright/test'

3.	 Then, we define a test in which we check whether the title of the blog is set properly:

test('has title', async ({ page }) => {

As you can see, the test function is similar to how we defined tests in Jest. Playwright additionally
allows us to access special contexts in our test, called fixtures. The page fixture is the most
essential fixture in Playwright and allows us to access browser features and interact with a page.

4.	 Inside the test, we first navigate to the URL of our frontend by using the page.goto function:

  await page.goto('/')

5.	 Then, we use the expect function to check whether the page displays the correct title:

  await expect(page).toHaveTitle('Full-Stack React Blog')
})

As we can see, the syntax of Playwright is very similar to Jest. We also have an expect function
to make assertions, such as the page having a certain title.

6.	 Before running the tests, make sure the dbserver Docker container is running.

7.	 We can now run this test by opening a new Terminal and executing the following command:

$ npx playwright test

Make sure you are in the root of our project (ch9 folder), and not inside the backend folder,
when running this command!

Implementing End-to-End Tests Using Playwright238

You will see that Playwright runs our test three times (on Chromium, Firefox, and Webkit) and that
all of them passed successfully. The following screenshot shows the result of running Playwright in
the command line:

Figure 9.1 – Running our first test in Playwright!

Now that we have successfully executed our test, let’s move on to running tests using the VS Code extension.

Using the VS Code extension

Instead of manually running all tests via the command line, we can also run specific tests (or all tests)
using a VS Code extension, similar to what we did for Jest. Additionally, the extension also allows us
to get a visual overview of which tests are succeeding (or not), allows us to inspect tests while running
in a browser, and can even record our interactions in the browser and generate tests from it!

Let’s start by setting up the VS Code extension and running our test from it:

1.	 Open the Extensions tab in VS Code and search for Playwright.

2.	 Click the Install button to install Playwright Test for VS Code by Microsoft.

3.	 Click on the Testing tab in VS Code (the flask icon), which we also used for the Jest extension.
Here, you will now see Jest and Playwright in the list.

4.	 Expand the Playwright | tests path, click on seo.spec.js to load the file, and then click on the
Play icon next to seo.spec.js to run the test.

Writing and running end-to-end tests 239

As we can see in the following screenshot, the test was executed successfully, and all tests are passing:

Figure 9.2 – Our playwright test successfully running from the VS Code extension!

Now that we have successfully run the tests in the VS Code extension in headless mode, let’s move
on to running them in headed mode, where we show what Playwright is doing in the browser while
running tests.

Showing the browser while running tests

The Playwright VS Code extension also has a useful Show browser option, which opens the browser
while running the tests. This allows us to debug tests or the frontend while the tests are running. Let’s
try it out now:

1.	 On the bottom of the Testing sidebar, check the Show browser box at the bottom of the sidebar
and run the test again.

A browser window will open and run the test. However, our test is very quick and simple, so
it runs within a short amount of time and there is not much to see.

Implementing End-to-End Tests Using Playwright240

2.	 To better inspect the test, we can use the trace viewer. Check Show trace viewer at the bottom
of the Testing sidebar and run the test again. You will see the following window open:

Figure 9.3 – The Playwright trace viewer

As we can see, the Playwright trace viewer shows us that the test ran page.goto and then expect.
toHaveTitle. It also shows the state of the app at each step of the test. In our case, we only have
one step though. This feature is especially useful when developing larger and more complex tests.

Note
It is also possible to run Playwright in UI mode, which opens the Playwright app in a separate
window that allows us to run the tests separately and look at them being executed, similar to
using the Show trace viewer function in the VS Code extension. You can run Playwright in UI
mode by executing the following command: npx playwright test --ui

Now that we have learned about using the extension to run tests, we can move on to a very useful
feature of the extension: recording actions to create a new test. Let’s do that now.

Writing and running end-to-end tests 241

Recording a test

The Playwright extension can also record new tests. Let’s now create a new test for the signup page
by using the test recording functionality of the VS Code extension:

1.	 Unlike running a Playwright test, the test recorder does not automatically start our frontend
and backend, so we need to start them manually first. Open a new Terminal and execute the
following command:

$ npm run e2e

2.	 In the bottom section of the Testing sidebar, click on Record new. A browser window should open.

3.	 In the browser window, navigate to the frontend by pasting http://localhost:5173/
into the URL bar.

Figure 9.4 – The Playwright test recorder while hovering over the “Sign Up” link

4.	 Then, click on the Sign Up link. The sign-up page should open.

5.	 On this new page, enter a username and password; for example, test and test. Then press
the Sign Up button.

6.	 You will get redirected to the login page. Now, log in with the same username and password
as before.

7.	 You will get redirected to the main page and will be logged in as test. You can now close the
browser window. You will see that inside VS Code you now have a new test-1.spec.ts
file containing all the actions we just did in the browser!

Implementing End-to-End Tests Using Playwright242

8.	 Save the file and quit the e2e script running the backend and frontend. You will now see the
test-1.spec.ts file in the Testing sidebar. If you try running the test, you will notice
that it gets stuck on the login part, because our test currently does not wait for the redirect to
the login page.

While recording tests is a useful feature to speed up writing end-to-end tests, it cannot always write
functioning tests for us. We now need to clean up our recorded test and add assertions to it.

For reference, here is the full code generated by the Playwright test recorder:

import { test, expect } from '@playwright/test'

test('test', async ({ page }) => {
  await page.goto('http://localhost:5173/')
  await page.getByRole('link', { name: 'Sign Up' }).click()
  await page.getByLabel('Username:').click()
  await page.getByLabel('Username:').fill('test')
  await page.getByLabel('Password:').click()
  await page.getByLabel('Password:').fill('test')
  await page.getByRole('button', { name: 'Sign Up' }).click()
  await page.getByLabel('Username:').click()
  await page.getByLabel('Username:').fill('test')
  await page.getByLabel('Password:').click()
  await page.getByLabel('Password:').fill('test')
  await page.getByRole('button', { name: 'Log In' }).click()
})

Now that we have recorded a test, let’s clean it up to make it run properly.

Cleaning up and finalizing the recorded test

If you have a look at the test, you will see that it has all the actions we performed in the browser, but
it does not verify that we have been successfully logged in. It also does not wait for pages to finish
loading and some matchers do not match the proper text. Let’s fix those problems now:

1.	 Rename tests/test-1.spec.ts to tests/auth.spec.js.

2.	 Edit tests/auth.spec.js and rename the test to allows sign up and log in:

test('allows sign up and log in', async ({ page }) => {

3.	 We need to define a unique username to be able to run our test multiple times without having
to restart the backend to clear the MongoDB memory server:

  const testUser = 'test' + Date.now()

Writing and running end-to-end tests 243

Note
It is important to not sign up twice with the same username, as the in-memory MongoDB
database is reused for all the tests. Make sure that tests can run independently from each other
and do not rely on data from other test files, as the test files could run in any order. Only the
order within a single test file is guaranteed. Using Date.now() returns the current time in
milliseconds and is mostly collision-safe as long as we do not run too many tests in parallel.
For a more collision-safe solution, you could use a UUID generator instead.

4.	 Change the page.goto() URL to / to ensure it uses the baseURL we set up earlier:

  await page.goto('/')

5.	 Fill in the generated username when signing up:

  await page.getByLabel('Username:').fill(testUser)

6.	 After the click on the Sign Up button, wait for the URL to update by using the following function:

  await page.getByRole('button', { name: 'Sign Up' }).click()
  await page.waitForURL('**/login')

Waiting for the next page to load is necessary because the recording does not support page-
loading detection right now and it would otherwise fire the commands on the old page or
during the redirect, which would cause the test to fail.

7.	 For the login, we also fill in the generated username:

  await page.getByLabel('Username:').fill(testUser)

8.	 After that, make the test click on on the Log In button and wait for the URL to update again:

  await page.getByRole('button', { name: 'Log In' }).click()
  await page.waitForURL('**/')

9.	 To more easily match the Header React component, edit src/components/Header.
jsx and turn the <div> elements into <nav> elements:

export function Header() {
  const [token, setToken] = useAuth()

  if (token) {
    const { sub } = jwtDecode(token)
    return (
      <nav>
        Logged in as <User id={sub} />
        

        <button onClick={() => setToken(null)}>Logout</button>

Implementing End-to-End Tests Using Playwright244

      </nav>
    )
  }

  return (
    <nav>
      <Link to='/login'>Log In</Link> | <Link to='/signup'>Sign
Up</Link>
    </nav>
  )
}

10.	 At the end of the test, we now add an assertion that checks whether the Header (<nav> element)
contains the text Logged in as and the generated username:

  await expect(page.locator('nav')).toContainText('Logged in as
' + testUser)
})

Using toContainText instead of toHaveText ensures that the text does not have to be
exactly the provided string. In our case, the Logout text is also part of the <nav> element, so
the full text would be Logged in as testXXXXLogout.

11.	 Run the test either using the VS Code extension or by running the npx playwright test
command in the Terminal (whichever you prefer), and you will see that it passes successfully now!

Note
If the test does not execute successfully, you might have accidentally recorded some additional
actions and not cleaned them up properly. Compare your test to the code example provided
by this book to make sure the test is properly defined and cleaned.

Now that we know how defining basic tests works in Playwright, let’s learn about reusable test setups
using fixtures.

Reusable test setups using fixtures
After creating the authentication test, you might be thinking: what if I want to define a test for creating
a new post now? We would have to first sign up, then log in, then create the post. This is quite tedious
and the more complex our tests get; the more tedious defining tests would get. Fortunately, Playwright
has a solution for these kinds of problems. Playwright introduces a concept called fixtures, which are
contexts for the test that can contain reusable functions. For example, we could define an auth fixture
to provide sign-up and log-in functions to all tests.

Reusable test setups using fixtures 245

When we used Jest, we were using before/after hooks to prepare the common environment for
multiple tests. Fixtures have some advantages over before/after hooks. Mainly, they encapsulate setup
and teardown in the same place and are reusable between test files, composable, and more flexible.
Additionally, fixtures are provided on demand, which means that Playwright will only set up the
fixtures necessary for running a certain test.

Playwright also includes some fixtures out of the box, which we are going to learn about now.

Overview of built-in fixtures

Playwright comes with some built-in fixtures, one of which we have already learned about: the page
fixture. We are now going to briefly introduce the most important built-in fixtures Playwright provides
out of the box:

•	 browser: Allows controlling browser features, such as opening a new page

•	 browserName: Contains the name of the browser that is currently running the test

•	 page: By far the most important built-in fixture, used to control interactions with the page,
visiting URLs, matching elements, doing actions, and much more

•	 context: An isolated context for the current test run

•	 request: Used to make API requests from Playwright

Now that we have learned about the built-in fixtures Playwright provides, let’s continue by defining
our own fixture.

Writing our own fixture

Signing up and logging in are common actions that we will need to do often in our end-to-end tests,
so they are the perfect case for creating a fixture. Follow these steps to create a new auth fixture:

1.	 Create a new tests/fixtures/ folder.

2.	 Inside it, create a new tests/fixtures/AuthFixture.js file, where we define an
AuthFixture class:

export class AuthFixture {

3.	 This class will receive the page fixture in the constructor:

  constructor(page) {
    this.page = page
  }

Implementing End-to-End Tests Using Playwright246

4.	 Define a signUpAndLogIn method, which follows the actions from the auth test to generate
a unique username, then sign up and log in the user:

  async signUpAndLogIn() {
    const testUser = 'test' + Date.now()
    await this.page.goto('/signup')
    await this.page.getByLabel('Username:').fill(testUser)
    await this.page.getByLabel('Password:').fill('password')
    await this.page.getByRole('button', { name: 'Sign Up'
}).click()
    await this.page.waitForURL('**/login')
    await this.page.getByLabel('Username:').fill(testUser)
    await this.page.getByLabel('Password:').fill('password')
    await this.page.getByRole('button', { name: 'Log In'
}).click()
    await this.page.waitForURL('**/')
    return testUser
  }
}

5.	 Create a new tests/fixtures/index.js file. Inside it, import the test function from
Playwright (renaming it to baseTest) and the AuthFixture we just defined:

import { test as baseTest } from '@playwright/test'
import { AuthFixture } from './AuthFixture.js'

6.	 Then, define and export a new test function, extending the baseTest function from
Playwright by defining a new auth fixture inside it:

export const test = baseTest.extend({
  auth: async ({ page }, use) => {
    const authFixture = new AuthFixture(page)
    await use(authFixture)
  },
})

Tip
It is also possible to do additional setup of the fixture context before calling the use()
function, and additional breakdown after calling it. This can be used to, for example, create a
set of example posts before executing tests and deleting them again afterward. If the backend
had a way to delete a user, creating a temporary user and deleting the created username again
after using the fixture would be a better option to deal with the issue of username collisions.

Reusable test setups using fixtures 247

7.	 Additionally, re-export the expect function from Playwright to make it easier to import
from our fixtures:

export { expect } from '@playwright/test'

Now that we have defined our custom fixture, let’s use it while creating a new test!

Using custom fixtures

We are now going to define an end-to-end test for creating a new post. To create a post, we need to be
logged in so we can use our auth fixture for preparing the environment. Follow these steps to define
the new test and use our custom fixture:

1.	 Create a new tests/create-post.spec.js file. To use the custom fixture, we now need
to import the test and expect functions from the fixtures/index.js file:

import { test, expect } from './fixtures/index.js'

2.	 Define a new test to verify that post creation works, using the page and auth fixtures:

test('allows creating a new post', async ({ page, auth }) => {

3.	 We can now use the signUpAndLogIn method from our custom auth fixture to create
and log in a new user:

  const testUser = await auth.signUpAndLogIn()
})

4.	 We can make use of Playwright code generation again to record our test. First, save the file and
execute the create-post.spec.js test with Show browser enabled.

5.	 Then, create a new line after the auth.signUpAndLogIn function is called and press
Record at cursor.

6.	 Now we can record actions from the already opened browser window (which is also already
logged in, because the fixture methods were called already!). Click into the title field and enter
Test Post as the post title, then press Tab to go to the next field, enter Hello World! as
the post content, then press Tab again and press Return/Enter to create a new post.

Note
The post does not actually get created, because Playwright closes the backend right after it
finishes running it, so at the time of recording, the backend is already shut down. If you want
to record with the backend running, explore the webServer.reuseExistingServer
setting in playwright.config.js.

Implementing End-to-End Tests Using Playwright248

7.	 Go back to the file, and you will see that all actions were properly recorded! The following code
should have been recorded:

  await page.getByLabel('Title:').click()
  await page.getByLabel('Title:').fill('Test Post')
  await page.getByLabel('Title:').press('Tab')
  await page.locator('textarea').fill('Hello World!')
  await page.locator('textarea').press('Tab')
  await page.getByRole('button', { name: 'Create'
}).press('Enter')

8.	 Now, we just need to add a check whether the post was created successfully:

  await expect(page.getByText(`Test PostWritten by
${testUser}`)).toBeVisible()
})

As we are controlling the test environment, it is enough to check that the text Test PostWritten
by testXXX (without a space between “Post” and “Written”) is visible on the page. This will tell
us that the post was created in the list.

9.	 Run the test, and you will see that it passes successfully!

We could create additional fixtures for handling posts (creating, editing, deleting) and use these to,
for example, verify that the link to a single post works properly and adjusts the title accordingly.
However, extending end-to-end tests like that is similar to what we have already done and is thus left
as an exercise for you.

Viewing test reports and running in CI
After successfully creating some end-to-end tests for our blog application, let’s wrap up the chapter
by learning how to view HTML test reports and how to run Playwright in CI.

Viewing an HTML report

Playwright automatically generates HTML reports of test runs. We can generate these by executing
the following command to run all tests:

$ npx playwright test

Then, run the following command to serve and view the HTML report of the last run:

$ npx playwright show-report

Viewing test reports and running in CI 249

The report should open in a new browser window, and look as follows:

Figure 9.5 – An HTML test report generated by Playwright

As we can see, our three tests were successfully run on all three browsers. Click on one of the test runs
to view all executed test steps in detail.

Implementing End-to-End Tests Using Playwright250

Running Playwright tests in CI

When we initialized Playwright, we were asked if we want to generate a GitHub Actions CI file. We
agreed, so Playwright automatically generated a CI configuration for us in the .github/workflows/
playwright.yml file. This workflow checks out the repository, installs all dependencies, installs
Playwright browsers, runs all Playwright tests, and then uploads the report as an artifact so it can be
viewed from the CI run. We still need to adjust the CI workflow to also install dependencies for our
backend, so let’s do that now:

1.	 Edit .github/workflows/playwright.yml and add the following step to it:

      - name: Install dependencies
        run: npm ci
      - name: Install backend dependencies
        run: cd backend/ && npm ci

The npm ci command ensures that the project already has a package-lock.json file
and does not write a lock file, ensuring a clean state for CI to run on.

2.	 Add, commit, and push everything to a GitHub repository to see Playwright running in CI.

Note
Make sure to create a new repository from just the contents of the ch9 folder (not the whole
Full-Stack-React-Projects folder!), otherwise GitHub Actions will not detect the
.github folder.

3.	 Go to GitHub, click on the Actions tab, select the Playwright Tests workflow on the sidebar,
and then click on the latest workflow run.

4.	 At the bottom of the run, there is an Artifacts section, which contains a playwright-report
object that can be downloaded to view the HTML report.

The following screenshot shows the Playwright tests running in GitHub Actions, with the report
provided as an artifact:

Summary 251

Figure 9.6 – Playwright running in GitHub Actions

As we can see, running Playwright in CI by using the provided template is simple and straightforward.

Summary
In this chapter, we learned about using Playwright for end-to-end testing. We first set up Playwright
in our project and prepared our backend for end-to-end testing. Then, we wrote and ran our first test.
Next, we learned about fixtures to make reusable test contexts. Finally, we viewed the generated HTML
report and set up CI to run Playwright, generate a report, and save it as an artifact in the pipeline.

In the next chapter, Chapter 10, Aggregating and Visualizing Statistics Using MongoDB and Victory,
we are going to learn how to aggregate data using MongoDB and expose this aggregated data via a
backend. Then, we are going to consume the aggregated data in the frontend and visualize it using
Victory with various visualization types.

10
Aggregating and Visualizing

Statistics Using MongoDB
and Victory

In this chapter, we are going to learn how to collect, aggregate, and visualize statistics for our blog
application using MongoDB and Victory. We start out by learning how we can collect events from
users viewing blog posts. Then, we randomly generate some events to have a dataset to work with. We
use this dataset to learn how to aggregate data with MongoDB and generate summary statistics, such
as the number of views per post, or the average session duration on a post. This kind of information
will help authors know how well their posts are doing. Finally, we create some graphs to visualize
these aggregated statistics using the Victory library.

In this chapter, we are going to cover the following main topics:

•	 Collecting and simulating events

•	 Aggregating data with MongoDB

•	 Implementing data aggregation in the backend

•	 Integrating and visualizing data on the frontend using Victory

Aggregating and Visualizing Statistics Using MongoDB and Victory254

Technical requirements
Before we start, please install all requirements from Chapter 1, Preparing for Full-Stack Development,
and Chapter 2, Getting to Know Node.js and MongoDB.

The versions listed in those chapters are the ones used in the book. While installing a newer version
should not be an issue, please note that certain steps might work differently on a newer version. If
you are having an issue with the code and steps provided in this book, please try using the versions
mentioned in Chapters 1 and 2.

You can find the code for this chapter on GitHub: https://github.com/PacktPublishing/
Modern-Full-Stack-React-Projects/tree/main/ch10.

If you cloned the full repository for the book, Husky may not find the .git directory when running
npm install. In that case, just run git init in the root of the corresponding chapter folder.

The CiA video for this chapter can be found at: https://youtu.be/DmSq2P_IQQs.

Collecting and simulating events
Before we can get started aggregating and visualizing statistics, we first need to collect (and later
simulate) events, which we are going to use to create the statistics. We will start by thinking about
which data we want to collect, and which data would be useful for us. We will focus on post views for
now, so we would like to show the following statistics per post:

•	 Total number of views on a post

•	 Daily views on a post

•	 Daily average viewing duration on a post

Let’s start by creating the database model for events that will allow us to show these statistics.

Creating the event model

To create these statistics, we need to collect events from users. Events will contain a reference to a
post, a session ID to track events from the same viewing, an action (started viewing, ended viewing),
and a date of when the event happened.

Let’s get started defining the database model for events:

1.	 Copy the existing ch9 folder to a new ch10 folder, as follows:

$ cp -R ch9 ch10

2.	 Open the ch10 folder in VS Code.

https://github.com/PacktPublishing/Modern-Full-Stack-React-Projects/tree/main/ch10
https://github.com/PacktPublishing/Modern-Full-Stack-React-Projects/tree/main/ch10
https://youtu.be/DmSq2P_IQQs

Collecting and simulating events 255

3.	 Create a new backend/src/db/models/event.js file. Inside this file, define a schema
that contains a reference to a post:

import mongoose, { Schema } from 'mongoose'

const eventsSchema = new Schema(
  {
    post: { type: Schema.Types.ObjectId, ref: 'post', required:
true },

4.	 Then define a session, action, and date:

    session: { type: String, required: true },
    action: { type: String, required: true },
    date: { type: Date, required: true },
  },
  { timestamps: true },
)

5.	 Finally, export the model:

export const Event = mongoose.model('events', eventsSchema)

Now that we have defined the database model, let’s continue by defining a service function and route
to track events.

Defining a service function and route to track events

Now that we have successfully defined our database model for events, let’s create a service function
and route to track new events, as follows:

1.	 To generate session IDs, we are going to use the uuid library, which generates universally
unique identifiers (UUIDs) for us. Install it by running the following commands:

$ cd backend/
$ npm install uuid@9.0.1

2.	 Create a new backend/src/services/events.js file. Inside it, import the v4 function
from uuid and the Event model and define a function to create a new event document,
as follows:

import { v4 as uuidv4 } from 'uuid'
import { Event } from '../db/models/event.js'

export async function trackEvent({
  postId,
  action,

Aggregating and Visualizing Statistics Using MongoDB and Victory256

  session = uuidv4(),
  date = Date.now(),
}) {
  const event = new Event({ post: postId, action, session, date
})
  return await event.save()
}

In the arguments to the function, we set the default session ID to a randomly generated UUID
and the date to the current date.

3.	 Create a new backend/src/routes/events.js file. Inside it, import the trackEvent
function and the getPostById function:

import { trackEvent } from '../services/events.js'
import { getPostById } from '../services/posts.js'

4.	 Define a new POST /api/v1/events route, in which we get the postId, session,
and action from the body:

export function eventRoutes(app) {
  app.post('/api/v1/events', async (req, res) => {
    try {
      const { postId, session, action } = req.body

5.	 Then, we check whether a post with the given ID exists in the database. If not, we return a 400
Bad Request status code:

      const post = await getPostById(postId)
      if (post === null) return res.status(400).end()

6.	 If the post exists, we get the session ID and use the trackEvent function to create a new event:

      const event = await trackEvent({ postId, session, action
})
      return res.json({ session: event.session })
    } catch (err) {
      console.error('error tracking action', err)
      return res.status(500).end()
    }
  })
}

7.	 Edit backend/src/app.js and import eventRoutes:

import { eventRoutes } from './routes/events.js'

Collecting and simulating events 257

8.	 Then mount the routes to the app:

postRoutes(app)
userRoutes(app)
eventRoutes(app)

9.	 Start the backend as follows (and keep it running for future development):

$ cd backend/
$ npm run dev

Now that we have successfully defined a backend route to track events, let’s implement event collection
on the frontend.

Collecting events on the frontend

After defining the route, let’s create the API function for the frontend and define a way to track when
a user started and ended viewing a post. Follow these steps to collect events on the frontend:

1.	 Create a new src/api/events.js file and define a postTrackEvent function, which
takes an event object and sends it to the previously defined route:

export const postTrackEvent = (event) =>
  fetch(`${import.meta.env.VITE_BACKEND_URL}/events`, {
    method: 'POST',
    headers: {
      'Content-Type': 'application/json',
    },
    body: JSON.stringify(event),
  }).then((res) => res.json())

2.	 Edit src/pages/ViewPost.jsx and import the useEffect, useState, and
useMutation hooks:

import { useEffect, useState } from 'react'
import { useQuery, useMutation } from '@tanstack/react-query'

3.	 Additionally, import the postTrackEvent API function:

import { postTrackEvent } from '../api/events.js'

4.	 Now, inside the ViewPost function, define a new state hook to store the session ID, and a
mutation to track the events. When an event is successfully tracked, we get a session ID from
the backend. We store this in the state hook:

  const [session, setSession] = useState()
  const trackEventMutation = useMutation({

Aggregating and Visualizing Statistics Using MongoDB and Victory258

    mutationFn: (action) => postTrackEvent({ postId, action,
session }),
    onSuccess: (data) => setSession(data?.session),
  })

5.	 Then, define a new effect hook in which we track a startView event a second after the user
opened the post (to prevent tracking accidental events, such as from quick refreshes), and an
endView event when the effect hook unmounts. We give it no dependencies to ensure the
effect hook is only triggered when the page mounts and unmounts:

  useEffect(() => {
    let timeout = setTimeout(() => {
      trackEventMutation.mutate('startView')
      timeout = null
    }, 1000)
    return () => {
      if (timeout) clearTimeout(timeout)
      else trackEventMutation.mutate('endView')
    }
  }, [])

6.	 Start the frontend as follows (and keep it running for future development):

$ npm run dev

Make sure to run this command in the root of the ch10 folder, not inside the backend folder.

If you now open a post in your browser and take a look at the Network tab of the inspector, you will
see that after a second, the startView event is tracked. When we navigate away from the page, the
endView event is tracked.

Let’s now move on to simulating events so that we have more data to aggregate and visualize later.

Simulating events

Simulating events is a great way to generate sample data to be used for testing the aggregations and
visualizations. In our simulation, we first clear all current users from the database and then create a set
of sample users. We repeat the same process for posts, and then for events, simulating that a random
user creates a post and that someone views a random post for a random amount of time.

Follow these steps to implement a simulation:

1.	 First of all, we should change the database to avoid losing any data we previously created in the
other chapters. Edit backend/.env and change the following line from blog to blog-
simulated:

DATABASE_URL=mongodb://localhost:27017/blog-simulated

Collecting and simulating events 259

2.	 Now, create a new backend/simulateEvents.js file, in which we import dotenv, the
initDatabase function, and all the relevant models and service functions:

import dotenv from 'dotenv'
dotenv.config()

import { initDatabase } from './src/db/init.js'
import { Post } from './src/db/models/post.js'
import { User } from './src/db/models/user.js'
import { Event } from './src/db/models/event.js'
import { createUser } from './src/services/users.js'
import { createPost } from './src/services/posts.js'
import { trackEvent } from './src/services/events.js'

3.	 Define a start time for the simulation, which here is set to 30 days ago (30 days * 24 hours * 60
minutes * 60 seconds * 1000 milliseconds), and an end time, which is now:

const simulationStart = Date.now() - 1000 * 60 * 60 * 24 * 30
const simulationEnd = Date.now()

4.	 We also define the number of users, posts, and views to simulate:

const simulatedUsers = 5
const simulatedPosts = 10
const simulatedViews = 10000

5.	 Then, define the simulateEvents function, in which we first initialize the database:

async function simulateEvents() {
  const connection = await initDatabase()

6.	 Next, delete all existing users and create new users by initializing an empty array with the
number of users to be simulated and mapping over it:

  await User.deleteMany({})
  const createdUsers = await Promise.all(
    Array(simulatedUsers)
      .fill(null)
      .map(
        async (_, u) =>
          await createUser({
            username: `user-${u}`,
            password: `password-${u}`,
          }),
      ),

Aggregating and Visualizing Statistics Using MongoDB and Victory260

  )
  console.log(`created ${createdUsers.length} users`)

Info
The Array(X) function can be used to create an array with X entries, which then needs to
be filled with an initial value before it can be iterated over.

7.	 Now, repeat the same process for posts:

  await Post.deleteMany({})
  const createdPosts = await Promise.all(
    Array(simulatedPosts)
      .fill(null)
      .map(async (_, p) => {
        const randomUser =
          createdUsers[Math.floor(Math.random() *
simulatedUsers)]
        return await createPost(randomUser._id, {
          title: `Test Post ${p}`,
          contents: `This is a test post ${p}`,
        })
      }),
  )
  console.log(`created ${createdPosts.length} posts`)

Info
We use Math.floor(Math.random() * maxNumber) to create a random integer
between 0 and maxNumber (non-inclusive), which is perfect to be used for indexing an array.

8.	 Lastly, we repeat the same for events:

  await Event.deleteMany({})
  const createdViews = await Promise.all(
    Array(simulatedViews)
      .fill(null)
      .map(async () => {
        const randomPost =
          createdPosts[Math.floor(Math.random() *
simulatedPosts)]

Collecting and simulating events 261

9.	 Here, we start the session at a random time within the defined simulation dates:

        const sessionStart =
          simulationStart + Math.random() * (simulationEnd -
simulationStart)

10.	 And we end it randomly after 0 to 5 minutes:

        const sessionEnd =
          sessionStart + 1000 * Math.floor(Math.random() * 60 *
5)

11.	 Now, we simulate the event collection, first by creating a startView event:

        const event = await trackEvent({
          postId: randomPost._id,
          action: 'startView',
          date: new Date(sessionStart),
        })

12.	 And then we simulate an endView event, where we use the session ID returned from the
first event:

        await trackEvent({
          postId: randomPost._id,
          session: event.session,
          action: 'endView',
          date: new Date(sessionEnd),
        })
      }),
  )
  console.log(`successfully simulated ${createdViews.length}
views`)

13.	 Lastly, we disconnect from the database and call the function:

  await connection.disconnect()
}

simulateEvents()

14.	 Our simulation is now ready to be used! Execute the following command to start it:

$ cd backend/
$ node simulateEvents.js

Aggregating and Visualizing Statistics Using MongoDB and Victory262

You will see that the simulation first creates 5 users, then 10 posts, and finally simulates 10,000 views.

In the next section, we are going to use this dataset to try out some aggregations with MongoDB!

Aggregating data with MongoDB
Sometimes, we do not just want to simply retrieve data from the database, but instead, we want to
create some statistics from the data by combining and summarizing it. This process is called data
aggregation, and it can help us understand more about the data. For example, we can count the total
number of views per post, get the number of daily views per post, or calculate the average session
duration when viewing a post.

MongoDB supports a special aggregation syntax using the .aggregate() function on a collection.
Using this aggregation functionality from MongoDB allows us to efficiently query and process documents.
The operations it provides are similar to what can be done with Structured Query Language (SQL)
queries. Mainly, we are going to use the following aggregation operations:

•	 $match: Used to filter documents

•	 $group: Used to group documents by a certain property

•	 $project: Used to map properties to different properties, or process them

•	 $sort: Used to sort documents

Info
MongoDB provides many more advanced aggregation operations, all of which can be found in
their documentation (https://www.mongodb.com/docs/manual/aggregation/).
They are also constantly adding more operations to make aggregation even more powerful.

The aggregate function works by providing an array of objects, each of which defines a stage of
the aggregation pipeline. We are going to learn more about aggregations in this chapter by using
them in practice.

Getting the total number of views per post

The first aggregation that we are going to define is a way to get the total number of views per post. For
such an aggregation, we are going to need $match to filter all startView actions (otherwise we
would be counting views twice, because there is also an endView action for each blog post view), and
$group to group the results by post ID and then return the number of documents using $count.

https://www.mongodb.com/docs/manual/aggregation/

Aggregating data with MongoDB 263

Follow these steps to create your first aggregation pipeline:

1.	 Create a new backend/playground/ folder for our playground scripts.

2.	 Click on the MongoDB extension (the leaf icon) in the VS Code sidebar.

3.	 Connect to the database, then expand the Playgrounds section (if it is not expanded already),
and click on the Create New Playground button.

A new file will open up with some code already predefined for us. Delete all predefined code,
as we are going to replace it with our own.

4.	 First, define the use and db globals, which the MongoDB Playground provides for us:

/* global use, db */

5.	 Then, use the blog-simulated database:

use('blog-simulated')

6.	 Now, execute the following aggregation function:

db.getCollection('events').aggregate([

7.	 The first stage of the pipeline will be matching all startView actions:

  {
    $match: { action: 'startView' },
  },

8.	 Then, we group by post. The $group stage requires us to define an _id, which contains the
property to be grouped by. We need to use the $ operator to resolve the variable to be used, so
$post will access the event.post property (which contains a post ID):

  {
    $group: {
      _id: '$post',
      views: { $count: {} },
    },
  },
])

9.	 Save the script as a backend/playground/views-per-post.mongodb.js file.

Aggregating and Visualizing Statistics Using MongoDB and Victory264

10.	 Click on the Play icon at the top right to run the script. A new tab will open with the results
of the aggregation:

Figure 10.1 – Our first MongoDB aggregation result!

After creating and executing our first simple aggregation, let’s continue practicing by writing more
advanced aggregations.

Getting the number of daily views per post

Now that we are already familiar with the general process of writing MongoDB aggregations, let’s try
writing a bit more complicated aggregation: getting the number of daily views per post. Follow these
steps to create it:

1.	 Create a new playground file, as before, with the following aggregation function:

/* global use, db */
use('blog-simulated')
db.getCollection('events').aggregate([

Aggregating data with MongoDB 265

2.	 Again, we first match only the startView actions:

  {
    $match: { action: 'startView' },
  },

3.	 Then we use $project to keep the post property, and define a new day property, which
uses the $dateTrunc function to simplify the date property to only cover days (instead of
containing the full timestamp):

  {
    $project: {
      post: '$post',
      day: { $dateTrunc: { date: '$date', unit: 'day' } },
    },
  },

An important thing to keep in mind with $project is that only properties that are listed
here will be passed on to further stages in the pipeline, so we need to list all properties that we
are still going to need later here!

4.	 Finally, we use $group to group the documents by post and day by passing an object to
the _id property. We use $count again to count the number of documents in each group:

  {
    $group: {
      _id: { post: '$post', day: '$day' },
      views: { $count: {} },
    },
  },
])

5.	 Save the script as a backend/playground/views-per-post-per-day.mongodb.
js file.

6.	 Run this script by clicking on the Play button and you will see that we are now getting a list
of documents grouped by post and day, and the corresponding number of views of a certain
post on a certain day:

Aggregating and Visualizing Statistics Using MongoDB and Victory266

Figure 10.2 – Showing the number of views per post per day

After getting the number of daily views per post, let’s continue practicing by calculating the average
session duration.

Calculating the average session duration

As you may remember, we are first sending a startView action, and then later an endView action,
both of which have a separate date. Let’s use aggregations to group these two actions together into
a single document, and then compute the duration of a session:

1.	 Create a new playground file, and start writing an aggregation that first creates some new
properties using $project, and keeps the session property, as we will need it later:

/* global use, db */
use('blog-simulated')
db.getCollection('events').aggregate([
  {
    $project: {
      session: '$session',

Aggregating data with MongoDB 267

      startDate: {
        $cond: [{ $eq: ['$action', 'startView'] }, '$date',
undefined],
      },
      endDate: { $cond: [{ $eq: ['$action', 'endView'] },
'$date', undefined] },
    },
  },

Here, we are using the $cond operator to create a conditional (kind of like a ternary/if
statement). It accepts an array with three elements: the first being a condition, the next a result
if the condition matches, and lastly, a result if the condition does not match. In our case, we
check whether the action property is startView (using the $eq operator). If true, then
we set the date to the startDate property. Otherwise, we do not define the startDate
property. Similarly, if the action is endView, we create an endDate property.

2.	 Now, we can group the documents by the session ID and select the lowest start date and the
highest end date of a session:

  {
    $group: {
      _id: '$session',
      startDate: { $min: '$startDate' },
      endDate: { $max: '$endDate' },
    },
  },

There should only be one startView and endView action per session anyway, but we cannot
guarantee this, so we need to aggregate them down into a single value!

3.	 Finally, we use $project again to rename the _id property to session, and calculate the
duration by subtracting the startDate from the endDate:

  {
    $project: {
      session: '$_id',
      duration: { $subtract: ['$endDate', '$startDate'] },
    },
  },
])

4.	 Save the script as a backend/playground/session-duration.mongodb.js file.

Aggregating and Visualizing Statistics Using MongoDB and Victory268

5.	 Run the script and you will see a list of documents with a session ID and a corresponding
duration in milliseconds:

Figure 10.3 – Aggregation result of the session durations

Now that we are more familiar with how data aggregation works in MongoDB, let’s implement similar
aggregations in our backend!

Implementing data aggregation in the backend
For our backend, we are going to use very similar aggregation pipelines. However, we need to adjust
them slightly, as we always want to get the data for a single post only. As such, we will first be using
$match to filter our documents. This also ensures that the aggregation stays fast, even if we have
millions of events in our database, because we are first filtering down to all events of a single post!

Defining aggregation service functions

Follow these steps to implement the aggregation functions in the backend:

1.	 Edit backend/src/services/events.js and define a new function to get the total
number of views for a post. In this case, we can simplify our code by using the countDocuments
function instead of the aggregate function:

export async function getTotalViews(postId) {
  return {

Implementing data aggregation in the backend 269

    views: await Event.countDocuments({ post: postId, action:
'startView' }),
  }
}

2.	 Next, define a new function to get the daily views of a post with a given ID. We now use the
$match operation to only get the startView actions of a certain post:

export async function getDailyViews(postId) {
  return await Event.aggregate([
    {
      $match: {
        post: postId,
        action: 'startView',
      },
    },

3.	 Then, we use the $group operation in combination with $dateTrunc to get the views per
day, just like we did before in the MongoDB Playground script:

    {
      $group: {
        _id: {
          $dateTrunc: { date: '$date', unit: 'day' },
        },
        views: { $count: {} },
      },
    },

4.	 Lastly, we use the $sort operation to sort the resulting documents by _id (which contains
the day):

    {
      $sort: { _id: 1 },
    },
  ])
}

5.	 For the last function, we use our session duration aggregation, but extend it a little bit to give
the average duration per day. Again, we first need to match a post ID:

export async function getDailyDurations(postId) {
  return await Event.aggregate([
    {
      $match: {
        post: postId,

Aggregating and Visualizing Statistics Using MongoDB and Victory270

      },
    },

6.	 Then, we use the same $project and $group operations to get the session, startDate,
and endDate, just like we did before:

    {
      $project: {
        session: '$session',
        startDate: {
          $cond: [{ $eq: ['$action', 'startView'] }, '$date',
undefined],
        },
        endDate: {
          $cond: [{ $eq: ['$action', 'endView'] }, '$date',
undefined],
        },
      },
    },
    {
      $group: {
        _id: '$session',
        startDate: { $min: '$startDate' },
        endDate: { $max: '$endDate' },
      },
    },

7.	 Now, we use the $project operation to get day from our startDate, like we did in the
previous aggregation where we got the number of daily views of a post:

    {
      $project: {
        day: { $dateTrunc: { date: '$startDate', unit: 'day' }
},
        duration: { $subtract: ['$endDate', '$startDate'] },
      },
    },

8.	 We group the results per day, and calculate the average duration of a day:

    {
      $group: {
        _id: '$day',
        averageDuration: { $avg: '$duration' },
      },
    },

Implementing data aggregation in the backend 271

9.	 Finally, we sort the results per day:

    {
      $sort: { _id: 1 },
    },
  ])
}

As we can see, aggregation pipelines are extremely powerful and allow us to do a lot of data processing
directly in the database! In the next section, we are going to create routes for these aggregation functions.

Defining the routes

Defining the routes is pretty straightforward; we simply check whether a post with the given ID exists,
and if it does, we return the results from the corresponding aggregation service function. Let’s start
defining the routes:

1.	 Edit backend/src/routes/events.js and import the getTotalViews,
getDailyViews, and getDailyDurations functions:

import {
  trackEvent,
  getTotalViews,
  getDailyViews,
  getDailyDurations,
} from '../services/events.js'

2.	 Next, inside the eventRoutes function, define a new route for getting the total number of
views of a post, as follows:

  app.get('/api/v1/events/totalViews/:postId', async (req, res)
=> {
    try {
      const { postId } = req.params
      const post = await getPostById(postId)
      if (post === null) return res.status(400).end()
      const stats = await getTotalViews(post._id)
      return res.json(stats)
    } catch (err) {
      console.error('error getting stats', err)
      return res.status(500).end()
    }
  })

Aggregating and Visualizing Statistics Using MongoDB and Victory272

3.	 Then define a similar route for the number of daily views of a post:

  app.get('/api/v1/events/dailyViews/:postId', async (req, res)
=> {
    try {
      const { postId } = req.params
      const post = await getPostById(postId)
      if (post === null) return res.status(400).end()
      const stats = await getDailyViews(post._id)
      return res.json(stats)
    } catch (err) {
      console.error('error getting stats', err)
      return res.status(500).end()
    }
  })

4.	 And finally, define a route for the daily average viewing duration of a post:

  app.get('/api/v1/events/dailyDurations/:postId', async (req,
res) => {
    try {
      const { postId } = req.params
      const post = await getPostById(postId)
      if (post === null) return res.status(400).end()
      const stats = await getDailyDurations(post._id)
      return res.json(stats)
    } catch (err) {
      console.error('error getting stats', err)
      return res.status(500).end()
    }
  })

Now that we have successfully defined routes for our aggregation functions, it’s time to integrate them
into the frontend and start visualizing the data we have been simulating and collecting!

Integrating and visualizing data on the frontend using
Victory
In this final section, we are going to integrate the aggregation endpoints we previously defined.
Then, we are going to introduce the Victory library in the frontend to create graphs to visualize our
aggregated data!

Integrating and visualizing data on the frontend using Victory 273

Integrating the aggregation API

First of all, we need to integrate the API routes in the frontend, as follows:

1.	 Edit the src/api/events.js file and add three new API functions to get the total views,
daily views, and daily durations of a post:

export const getTotalViews = (postId) =>
  fetch(`${import.meta.env.VITE_BACKEND_URL}/events/
totalViews/${postId}`).then(
    (res) => res.json(),
  )

export const getDailyViews = (postId) =>
  fetch(`${import.meta.env.VITE_BACKEND_URL}/events/
dailyViews/${postId}`).then(
    (res) => res.json(),
  )

export const getDailyDurations = (postId) =>
  fetch(
    `${import.meta.env.VITE_BACKEND_URL}/events/
dailyDurations/${postId}`,
  ).then((res) => res.json())

2.	 Create a new src/components/PostStats.jsx file, in which we are going to query these
new API routes. Start by importing useQuery, PropTypes, and the three API functions:

import { useQuery } from '@tanstack/react-query'
import PropTypes from 'prop-types'
import {
  getTotalViews,
  getDailyViews,
  getDailyDurations,
} from '../api/events.js'

3.	 Define a new component that takes a postId and fetches all the stats that we aggregated on
the backend using query hooks:

export function PostStats({ postId }) {
  const totalViews = useQuery({
    queryKey: ['totalViews', postId],
    queryFn: () => getTotalViews(postId),
  })
  const dailyViews = useQuery({
    queryKey: ['dailyViews', postId],

Aggregating and Visualizing Statistics Using MongoDB and Victory274

    queryFn: () => getDailyViews(postId),
  })
  const dailyDurations = useQuery({
    queryKey: ['dailyDurations', postId],
    queryFn: () => getDailyDurations(postId),
  })

4.	 While the stats are loading, we display a simple loading message:

  if (
    totalViews.isLoading ||
    dailyViews.isLoading ||
    dailyDurations.isLoading
  ) {
    return <div>loading stats...</div>
  }

5.	 Once the stats are finished loading, we can display them. For now, we simply display the total
number of views and the JSON responses from the other two API requests:

  return (
    <div>
      {totalViews.data?.views} total views
      <pre>{JSON.stringify(dailyViews.data)}</pre>
      <pre>{JSON.stringify(dailyDurations.data)}</pre>
    </div>
  )
}

6.	 We still need to define the prop types for this component, as follows:

PostStats.propTypes = {
  postId: PropTypes.string.isRequired,
}

7.	 Now we can render the PostStats component in our ViewPost page component. Edit
src/pages/ViewPost.jsx and import the PostStats component there:

import { PostStats } from '../components/PostStats.jsx'

8.	 Then, at the bottom of the component, render the stats as follows:

      {post ? (
        <div>
          <Post {...post} fullPost />
          <hr />

Integrating and visualizing data on the frontend using Victory 275

          <PostStats postId={postId} />
        </div>
      ) : (
        `Post with id ${postId} not found.`
      )}
    </div>
  )
}

If you open a post on the frontend now (you may need to refresh the frontend if you see an error),
you will see that all the stats are properly fetched! Now, all that’s left to do is visualize the daily stats
using Victory!

Visualizing data using Victory

Victory is a React library that provides modular components that can be used to create charts and
all kinds of data visualizations. It even supports interactive visualization tools, such as brushing and
grouping (where you, for example, select a certain section of a graph to more closely inspect it on
other graphs). In this chapter, we are only going to scratch the surface of what Victory can do, as data
visualization in React is a big topic on its own.

You can find more information about Victory on their official website: https://commerce.
nearform.com/open-source/victory/

Creating a bar chart

Let’s get started visualizing our data using Victory now:

1.	 Install the library by executing the following command in the root of the project:

$ npm install victory@36.9.1

2.	 Edit src/components/PostStats.jsx and import the following components from Victory:

import {
  VictoryChart,
  VictoryTooltip,
  VictoryBar,
  VictoryLine,
  VictoryVoronoiContainer,
} from 'victory'

https://commerce.nearform.com/open-source/victory/
https://commerce.nearform.com/open-source/victory/

Aggregating and Visualizing Statistics Using MongoDB and Victory276

3.	 Replace the <pre> tags at the end of the component with the following charts, starting with
the daily views chart:

  return (
    <div>
      {totalViews.data?.views} total views
      <div style={{ width: 512 }}>
        <h3>Daily Views</h3>
        <VictoryChart domainPadding={16}>

The VictoryChart component is a wrapper, used to combine all elements of a Victory chart.
We set domainPadding to 16 pixels, which is a padding inside of the graph. It makes sure
that the lines and bar charts do not stick to the edges of the graph, making it look slightly better.

4.	 Then, define a bar chart with VictoryBar, using VictoryTooltip to display the labels:

          <VictoryBar
            labelComponent={<VictoryTooltip />}

The tooltip looks like this:

Figure 10.4 – A tooltip on a bar chart in Victory

5.	 Now we get to the most important part, the data. Here, we map over our dailyViews data
returned by the query hook to bring it into a format that Victory understands:

            data={dailyViews.data?.map((d) => ({

6.	 We map the _id property to the x-axis value (parsing it as a date), and the views property
to the y-axis value:

              x: new Date(d._id),
              y: d.views,

7.	 Then we create a label, where we turn the day into a local date string and then show the number
of views on the given day:

              label: `${new Date(d._id).toLocaleDateString()}:
${d.views} views`,
            }))}

Integrating and visualizing data on the frontend using Victory 277

          />
        </VictoryChart>
      </div>
    </div>
  )
}

We have successfully created our first visualization using Victory! The chart will now look as follows:

Figure 10.5 – Our first chart in Victory – a bar chart!

As you can see, Victory automatically formatted the dates for us and adjusted the axes to fit our chart
into the allotted space!

Let’s visualize the daily average viewing duration next.

Creating a line chart

Creating a line chart in Victory is pretty similar to creating a bar chart, with one exception: the tooltips.
In line charts, we cannot use tooltips directly, as lines could theoretically be continuous (not discrete
blocks of data), so it is unclear where to place the tooltip. Instead, we use a Voronoi container for
displaying tooltips on line charts in Victory. The name Voronoi comes from mathematics, where a
Voronoi diagram partitions a region into multiple sections. In simple terms, the Voronoi container
makes an intersection between the mouse position and the line chart, gets the data from that intersection
point, and then displays a tooltip there.

Aggregating and Visualizing Statistics Using MongoDB and Victory278

With that in mind, let’s now get started creating the line chart for the daily average viewing duration:

1.	 Edit src/components/PostStats.jsx and continue where we left off with the other
chart, adding a new VictoryChart after the container of the bar chart:

        </VictoryChart>
      </div>
      <div style={{ width: 512 }}>
        <h4>Daily Average Viewing Duration</h4>
        <VictoryChart
          domainPadding={16}

2.	 In the VictoryChart component, we now define containerComponent, which will
contain our VictoryVoronoiContainer:

          containerComponent={
            <VictoryVoronoiContainer
              voronoiDimension='x'

We defined it to only intersect with the values on the x-axis, meaning that the mouse pointer
will only intersect with the days on our chart.

3.	 We can now define labels for our container, using the datum property to get the data entry
that intersects with the mouse pointer to create a label. Our label should display the current
date and the viewing duration in minutes, fixed to two decimal points:

              labels={({ datum }) =>
                `${datum.x.toLocaleDateString()}:
${datum.y.toFixed(2)} minutes`
              }

4.	 Again, we use VictoryTooltip to display these labels:

              labelComponent={<VictoryTooltip />}
            />
          }
        >

5.	 Now we can finally define the VictoryLine chart, in which we map the data again, parsing
dates and dividing the average duration to convert it from milliseconds to minutes:

          <VictoryLine
            data={dailyDurations.data?.map((d) => ({
              x: new Date(d._id),
              y: d.averageDuration / (60 * 1000),
            }))}
          />

Summary 279

        </VictoryChart>
      </div>
    </div>
  )
}

As you can see, the rest was pretty simple and similar to creating the bar chart! It looks as follows:

Figure 10.6 – A line chart using Victory, displaying the daily average viewing duration of a post!

As you can see, Victory is a pretty powerful library for creating charts with React, and we have only
scratched the surface of what it can do! You can still customize the theme of the charts and create all
sorts of complex visualizations. In this chapter, however, we focused on the most essential and widely
used charts: bar and line charts.

Summary
In this chapter, we learned about tracking events using our backend and frontend. Then, we simulated
events to be used as a sample dataset for our aggregations and visualizations. Next, we learned how to
aggregate data with MongoDB using the MongoDB Playground. Then, we implemented data aggregation
functions in our backend. Finally, we integrated and visualized the data on the frontend using Victory.

In the next chapter, Chapter 11, Building a Backend with a GraphQL API, we are going to learn how
to use an alternative to REST, called GraphQL, to query deeply nested objects more easily.

11
Building a Backend with

a GraphQL API

Up until now, we have only been interfacing with REST APIs. For more complex APIs that have
deeply nested objects, we can use GraphQL to allow selective access to certain parts of large objects.
In this chapter, we are first going to learn what GraphQL is and when it is useful. Then, we are going
to experiment with making GraphQL queries and mutations. After that, we are going to implement
GraphQL in a backend. Finally, we are going to briefly cover advanced GraphQL concepts.

In this chapter, we are going to cover the following main topics:

•	 What is GraphQL?

•	 Implementing a GraphQL API in a backend

•	 Implementing GraphQL authentication and mutations

•	 Overview of advanced GraphQL concepts

Technical requirements
Before we start, please install all requirements from Chapter 1, Preparing for Full-Stack Development,
and Chapter 2, Getting to Know Node.js and MongoDB.

The versions listed in those chapters are the ones used in the book. While installing a newer version
should not be an issue, please note that certain steps might work differently on a newer version. If
you are having an issue with the code and steps provided in this book, please try using the versions
mentioned in Chapters 1 and 2.

You can find the code for this chapter on GitHub: https://github.com/PacktPublishing/
Modern-Full-Stack-React-Projects/tree/main/ch11.

If you cloned the full repository for the book, Husky may not find the .git directory when running
npm install. In that case, just run git init in the root of the corresponding chapter folder.

https://github.com/PacktPublishing/Modern-Full-Stack-React-Projects/tree/main/ch11
https://github.com/PacktPublishing/Modern-Full-Stack-React-Projects/tree/main/ch11

Building a Backend with a GraphQL API282

The CiA video for this chapter can be found at: https://youtu.be/6gP0uM-XaVo.

What is GraphQL?
Before we start learning how to use GraphQL, let’s first focus on what GraphQL is. Like REST, it is a
way to query APIs. However, it is also much more than that. GraphQL includes a server-side runtime
for executing queries and a type system to define your data. It works with many database engines and
can be integrated into your existing backend.

GraphQL services are created by defining types (such as a User type), fields on types (such as a
username field), and functions to resolve values of fields. Let’s assume we have defined the following
User type with a function to get a username:

type User {
  username: String
}

function User_username(user) {
  return user.getUsername()
}

We could then define a Query type and a function to get the current user:

type Query {
  currentUser: User
}

function Query_currentUser(req) {
  return req.auth.user
}

Info
The Query type is a special type that defines the “entry point” into the GraphQL schema. It
allows us to define which fields are allowed to be queried using the GraphQL API.

Now that we have defined types with fields and functions to resolve those fields, we can make a GraphQL
query to get the username of the current user. GraphQL queries look like JavaScript objects, but they
only list the field names that you want to query. The GraphQL API will then return a JavaScript object
that has the same structure as the query, but with the values filled in. Let’s find out how a query to get
the username of the current user would look like:

{
  currentUser {

https://youtu.be/6gP0uM-XaVo

What is GraphQL? 283

    username
  }
}

That query would then return a JSON result that looks like this:

{
  "data": {
    "currentUser": {
      "username": "dan"
    }
  }
}

As you can see, the result has the same shape as the query. This is one of the essential concepts of
GraphQL: the client can specifically ask for the fields that it needs, and the server will return exactly
those fields. If we need more data about a user, we can just add new fields to the type and query.

GraphQL validates queries and results against the defined types. This ensures that we do not break the
contract between the client and server. The GraphQL types serve as that contract between the client
and server. After validating the query, it is executed by a GraphQL server, which then returns a result
that looks exactly like the shape requested by the query. Each requested field executes a function on
the server. These functions are called resolvers.

Figure 11.1 – Interaction between GraphQL client and server

Building a Backend with a GraphQL API284

Types and queries can also be deeply nested. For example, a user could have a field that returns all the
posts that this user is an author of. We can then make a sub-selection of fields in those post objects
as well. This works for objects within objects and even arrays of objects within objects, in multiple
nesting levels. GraphQL will keep resolving fields until only simple values (scalars), such as strings
and numbers are left. For example, the following query could fetch the IDs and titles of all posts that
the current user created:

{
  currentUser {
    username
    posts {
      id
      title
    }
  }
}

Additionally, GraphQL allows us to define arguments for fields, which will be passed to the functions
that resolve our fields. We can use arguments to, for example, get all posts with a certain tag. In GraphQL
we can pass arguments to any field, even when they are deeply nested. Arguments can even be passed
to single value fields, for instance, to transform a value. For example, the following query would get
a post by ID and return the post title:

{
  postById(id: "1234") {
    title
  }
}

GraphQL is especially useful if you build the backend yourself or with it in mind, as it can allow for
patterns where deeply nested and interconnected data can be queried easily. However, if there are
existing REST backends that you are not in control of, it is usually not worth it to add GraphQL as a
separate, independent layer, due to its schema-based restrictions.

Having learned about queries, let’s move on to mutations.

Mutations

In REST, any request could cause a side effect (such as writing data to the database). But, as we have
learned, GET requests should only return data, and should not cause such side effects. Only POST/
PUT/PATCH/DELETE requests should cause data in the database to change. In GraphQL, there is a
similar concept: theoretically, any field function could cause the database state to change. However,
in GraphQL, we define a mutation instead of a query to explicitly state that we want to change the
database state. Besides being defined with the mutation keyword, mutations have the same structure

Implementing a GraphQL API in a backend 285

as queries. There is one difference, though: queries fetch fields in parallel, while mutations run in
series, executing the first field function first, then the next, and so on. This behavior ensures that we
do not end up with race conditions in mutations.

Info
In addition to the built-in Query type, there is also a Mutation type to define the allowed
mutation fields.

Now that we have learned the basics of what GraphQL is and how it works, let’s get started using it in
practice by implementing GraphQL in our blog application backend!

Implementing a GraphQL API in a backend
We are now going to set up GraphQL in our existing blog application backend in addition to the REST
API. Doing so will allow us to see how GraphQL compares to and differs from a REST API. Follow
these steps to get started setting up GraphQL on the backend:

1.	 Copy the existing ch10 folder to a new ch11 folder, as follows:

$ cp -R ch10 ch11

2.	 Open the ch11 folder in VS Code.

3.	 First, let’s install a VS Code extension to add GraphQL language support. Go to the Extensions
tab and search for the GraphQL.vscode-graphql extension developed by the GraphQL
Foundation. Install the extension.

4.	 Next, install the graphql and @apollo/server libraries in the backend using the
following commands:

$ cd backend/
$ npm install graphql@16.8.1 @apollo/server@4.10.0

Apollo Server is a production-ready GraphQL server implementation that supports multiple
backend web frameworks, including Express.

5.	 Create a new backend/src/graphql/ folder. Inside it, create a backend/src/
graphql/query.js file, inside which we define a Query schema, which is the entry point
of our GraphQL API (listing all supported queries for our backend), as follows:

export const querySchema = `#graphql
  type Query {
    test: String
  }
`

Building a Backend with a GraphQL API286

It is important to add a #graphql directive at the beginning of the template string, so that
the string is recognized as GraphQL syntax and properly highlighted in a code editor. Inside
our schema, we defined a test field, for which we define a resolver now.

6.	 Define a queryResolver object which contains a function to resolve the test field to a
static string:

export const queryResolver = {
  Query: {
    test: () => {
      return 'Hello World from GraphQL!'
    },
  },
}

7.	 Create a new backend/src/graphql/index.js file and import the querySchema
and queryResolver there:

import { querySchema, queryResolver } from './query.js'

8.	 Then, export an array called typeDefs, which includes all schemas (for now, only the query
schema) and an array called resolvers, which contains all resolvers (for now, only the
query resolver):

export const typeDefs = [querySchema]
export const resolvers = [queryResolver]

9.	 Edit backend/src/app.js and import ApolloServer and expressMiddleware
from the @apollo/server library:

import { ApolloServer } from '@apollo/server'
import { expressMiddleware } from '@apollo/server/express4'

10.	 Then, import typeDefs and resolvers:

import { typeDefs, resolvers } from './graphql/index.js'

11.	 After all other middleware and before the route definitions, create a new Apollo server using
the schema type definitions and defined resolvers:

const apolloServer = new ApolloServer({
  typeDefs,
  resolvers,
})

Implementing a GraphQL API in a backend 287

12.	 Then, after the server is ready, mount expressMiddleware to a /graphql route, as follows:

apolloServer
  .start()
  .then(() => app.use('/graphql',
expressMiddleware(apolloServer)))

13.	 Start the backend in development mode by running the following command:

$ npm run dev

14.	 Go to http://localhost:3001/graphql in your browser; you should see the Apollo
interface to input a query on the left side, and the results on the right side.

15.	 Remove all comments from the editor on the left and input the following GraphQL query:

query ExampleQuery {
  test
}

16.	 Press the Play button to run the query, and you will see the following result:

Figure 11.2 – Successful execution of our first GraphQL query!

As you can see, our query for the test field returns our previously defined static string!

After implementing a basic field, let’s implement some fields that access our service functions and
retrieve data from MongoDB.

Implementing fields that query posts

Follow these steps to implement the fields to query posts:

1.	 Edit backend/src/graphql/query.js and import the relevant service functions:

import {
  getPostById,
  listAllPosts,

Building a Backend with a GraphQL API288

  listPostsByAuthor,
  listPostsByTag,
} from '../services/posts.js'

2.	 Adjust the schema to include a posts field, which returns an array of posts:

export const querySchema = `#graphql
  type Query {
    test: String
    posts: [Post!]!

In GraphQL, the [Type] syntax means that something is an array of Type. We will define the
Post type later. Type! is the non-null modifier and means that a type is not null (required),
so [Type!] means that each element is a Type, and not null (the array can still be empty,
though). [Type!]! means that the array will always exist and never be null (but the array
can still be empty).

3.	 Additionally, define fields for querying posts by author and tag, both of which accept a
required argument:

    postsByAuthor(username: String!): [Post!]!
    postsByTag(tag: String!): [Post!]!

4.	 Lastly, define a field to query a post by id:

    postById(id: ID!): Post
  }
`

5.	 Now that we have defined the schema, we still need to provide resolvers for all those fields.
Thanks to our service functions, this is quite straightforward: we can simply call our service
functions with the relevant arguments in async functions, as follows:

export const queryResolver = {
  Query: {
    test: () => {
      return 'Hello World from GraphQL!'
    },
    posts: async () => {
      return await listAllPosts()
    },
    postsByAuthor: async (parent, { username }) => {
      return await listPostsByAuthor(username)
    },
    postsByTag: async (parent, { tag }) => {
      return await listPostsByTag(tag)

Implementing a GraphQL API in a backend 289

    },
    postById: async (parent, { id }) => {
      return await getPostById(id)
    },
  },
}

The resolver functions always receive the parent object as the first argument and an object
with all arguments as a second argument.

Now we have successfully defined fields to query posts. However, the Post type is not defined yet,
so our GraphQL queries will not work yet. Let’s do that next.

Defining the Post type

After defining the Query type, we continue by defining the Post type, as follows:

1.	 Create a new backend/src/graphql/post.js file, where we import the
getUserInfoById function to resolve the author of a post later:

import { getUserInfoById } from '../services/users.js'

2.	 Then, define postSchema. Note that Post consists of id, title, author, contents,
tags, and the createdAt and updatedAt timestamps:

export const postSchema = `#graphql
  type Post {
    id: ID!
    title: String!
    author: User
    contents: String
    tags: [String!]
    createdAt: Float
    updatedAt: Float
  }
`

In this case, we use [String!] for the tags, and not [String!]!, because the tags field
can also be non-existent/null.

The createdAt and updatedAt timestamps are too large to fit into a 32-bit signed integer,
so their type needs to be Float instead of Int.

Building a Backend with a GraphQL API290

3.	 Next, define a resolver for the author field that gets the user using the service function:

export const postResolver = {
  Post: {
    author: async (post) => {
      return await getUserInfoById(post.author)
    },
  },
}

The resolvers for getting posts are already part of the Query schema, so we do not need to
define how to get a post here. GraphQL knows that the query fields return Post arrays and
then allows us to resolve further fields on the posts.

4.	 Edit backend/src/graphql/index.js and add the postSchema and postResolver:

import { querySchema, queryResolver } from './query.js'
import { postSchema, postResolver } from './post.js'

export const typeDefs = [querySchema, postSchema]
export const resolvers = [queryResolver, postResolver]

After defining the Post type, let’s continue with the User type.

Defining the User type

When defining the Post type, we used the User type to define the author of a post. However, we
have not defined the User type yet. Let’s do that now:

1.	 Create a new backend/src/graphql/user.js file and import the listPostsByAuthor
function here, as we are going to add a way to resolve the posts of a user when getting a user
object, to show how GraphQL can deal with deeply nested relations:

import { listPostsByAuthor } from '../services/posts.js'

2.	 Define userSchema. Each User in our GraphQL schema has username and a posts
field, in which we will resolve all posts that the user has written:

export const userSchema = `#graphql
  type User {
    username: String!
    posts: [Post!]!
  }
`

Implementing a GraphQL API in a backend 291

Info
We do not specify any other properties here, as we are only returning the username in our
getUserInfoById service function. If we wanted to get the user ID here too, we would
have to return it from that function. We are not just returning the full user object, as that could
be a potential security vulnerability, exposing internal data such as the password (or billing
info in some apps).

3.	 Next, define userResolver, which gets all posts from the current user:

export const userResolver = {
  User: {
    posts: async (user) => {
      return await listPostsByAuthor(user.username)
    },
  },
}

4.	 Edit backend/src/graphql/index.js and add the userSchema and userResolver:

import { querySchema, queryResolver } from './query.js'
import { postSchema, postResolver } from './post.js'
import { userSchema, userResolver } from './user.js'

export const typeDefs = [querySchema, postSchema, userSchema]
export const resolvers = [queryResolver, postResolver,
userResolver]

After defining the User type, let’s try out some deeply nested queries!

Trying out deeply nested queries

Now that we have successfully defined our GraphQL schemas and resolvers, we can start querying
our database using GraphQL!

For example, we can now get a full list of all posts, with their ID, title, and the username of the author,
as follows:

query GetPostsOverview {
  posts {
    id
    title
    author {
      username
    }
  }
}

Building a Backend with a GraphQL API292

Execute the preceding query in the Apollo interface. As we can see, the query gets all posts, selects
id, title, and author for each post, and then resolves username for each author instance.
This query allows us to get all the data we need on the overview page in a single request, and we do
not need to make separate requests to resolve the author usernames anymore!

Info
We did not specify the password field on the User type, so GraphQL will not allow us to
access it, even if the resolver function returns a user object that contains the password.

Now, let’s try out a query that gets a post by ID and then finds other posts by the same author. This
could be used to, for example, recommend other articles to view from the same author after someone
has finished reading a post:

1.	 We can automatically generate a query in the Apollo interface by clearing the contents of
the Operation textbox and then selecting Query from Root Types in the Documentation
sidebar on the left. Now click on the + button next to the postById field on the left, which
automatically defines a query variable for us, which looks as follows:

query PostById($postByIdId: ID!) {
  postById(id: $postByIdId) {

Figure 11.3 – Automatically generating a query using the Apollo interface

Implementing a GraphQL API in a backend 293

2.	 Within the post, we can now get the title, contents, and author values of the post:

    title
    contents
    author {

3.	 Inside the author field, we get username and the IDs and titles of their posts:

      username
      posts {
        id
        title
      }
    }
  }
}

4.	 At the bottom of the Apollo interface, there is a Variables section, which we need to fill with
an ID that exists in our database:

{
  "postByIdId": "<ENTER ID FROM DATABASE>"
}

5.	 Run the query, and you will see that the post and author are resolved, and all posts written by
that same author are also listed properly, as shown in the following screenshot:

Building a Backend with a GraphQL API294

Figure 11.4 – Running deeply nested queries in GraphQL

Next, let’s learn how to provide arguments to fields by defining input types.

Implementing input types

We have already learned how to define regular types in GraphQL, but what if we have a common way
to provide arguments to fields? For example, the options to query posts are always the same (sortBy
and sortOrder). We cannot use a regular type for this, instead, we need to define an input type.
Follow these steps to implement query options in GraphQL:

1.	 Edit backend/src/graphql/query.js and define an input type in the schema:

export const querySchema = `#graphql
  input PostsOptions {
    sortBy: String
    sortOrder: String
  }

Implementing a GraphQL API in a backend 295

2.	 Then, use the input type as an argument to fields, as follows:

  type Query {
    test: String
    posts(options: PostsOptions): [Post!]!
    postsByAuthor(username: String!, options: PostsOptions):
[Post!]!
    postsByTag(tag: String!, options: PostsOptions): [Post!]!
    postById(id: ID!, options: PostsOptions): Post
  }
`

3.	 Now, edit the resolvers to pass on options to the service functions:

    posts: async (parent, { options }) => {
      return await listAllPosts(options)
    },
    postsByAuthor: async (parent, { username, options }) => {
      return await listPostsByAuthor(username, options)
    },
    postsByTag: async (parent, { tag, options }) => {
      return await listPostsByTag(tag, options)
    },

4.	 Try out the following query to see whether the posts are sorted properly:

query SortedPosts($options: PostsOptions) {
  posts(options: $options) {
    id
    title
    createdAt
    updatedAt
  }
}

5.	 Set the following variables:

{
  "options": {
    "sortBy": "updatedAt",
    "sortOrder": "ascending"
  }
}

6.	 Run the query by pressing the Play button, and you should see that the response is sorted by
the updatedAt timestamp ascending!

Building a Backend with a GraphQL API296

Now that we have successfully implemented functionality to query our database using GraphQL, let’s
move on to implementing a way to create a new post using GraphQL Mutations.

Implementing GraphQL authentication and mutations
We are now going to implement a way to create new posts using GraphQL. To define fields that
change the database state, we need to create them under the mutation type. Before we can do that,
however, we first need to implement authentication in GraphQL, so that we can access the currently
logged-in user when creating a post.

Adding authentication to GraphQL

Because we are using GraphQL with Express, we can use any Express middleware with GraphQL and
pass it to our resolvers as context. As such, we can use the existing express-jwt middleware
to parse the JWT. Let’s get started adding authentication to GraphQL now:

1.	 Our current configuration of the requireAuth middleware ensures that the user is logged
in and throws an error if they are not. However, this is an issue when passing the auth context
to GraphQL, because not all queries require authentication. We are now going to create a new
optionalAuth middleware that does not require credentials to process a request. Edit
backend/src/middleware/jwt.js and define the following new middleware:

export const optionalAuth = expressjwt({
  secret: () => process.env.JWT_SECRET,
  algorithms: ['HS256'],
  credentialsRequired: false,
})

2.	 Now, edit backend/src/app.js and import the optionalAuth middleware there:

import { optionalAuth } from './middleware/jwt.js'

3.	 Edit the app.use() call where we defined the /graphql route and add the optionalAuth
middleware to it, similarly to how we did it for routes:

apolloServer.start().then(() =>
  app.use(
    '/graphql',
    optionalAuth,

Implementing GraphQL authentication and mutations 297

4.	 Then, add a second argument to the Apollo expressMiddleware, defining a context
function that provides req.auth to the GraphQL resolvers as context:

    expressMiddleware(apolloServer, {
      context: async ({ req }) => {
        return { auth: req.auth }
      },
    }),
  ),
)

Next, let’s move on to implementing mutations in GraphQL.

Implementing mutations

Now that we have added authentication to GraphQL, we can define our mutations. Follow these steps
to create mutations for signup, login, and creating posts:

1.	 Create a new backend/src/graphql/mutation.js file and import GraphQLError
(for throwing an UNAUTHORIZED error when the user is not logged in), as well as the
createUser, loginUser, and createPost functions:

import { GraphQLError } from 'graphql'
import { createUser, loginUser } from '../services/users.js'
import { createPost } from '../services/posts.js'

2.	 Define mutationSchema, in which we first define fields to sign up and log in users. The
signupUser field returns a user object, and the loginUser field returns a JWT:

export const mutationSchema = `#graphql
type Mutation {
      signupUser(username: String!, password: String!): User
      loginUser(username: String!, password: String!): String

3.	 Then, define a field to create a new post from some given title, contents (optional), and
tags (optional). It returns a newly created post:

      createPost(title: String!, contents: String, tags:
[String]): Post
    }
`

Building a Backend with a GraphQL API298

4.	 Define the resolver, in which we first define the signupUser and loginUser fields, which
are quite straightforward:

export const mutationResolver = {
  Mutation: {
    signupUser: async (parent, { username, password }) => {
      return await createUser({ username, password })
    },
    loginUser: async (parent, { username, password }) => {
      return await loginUser({ username, password })
    },

5.	 Next, we define the createPost field. Here, we first access the arguments passed to the
field, and as a third argument to the resolver function, we get the context we created earlier:

    createPost: async (parent, { title, contents, tags }, { auth
}) => {

6.	 If the user is not logged in, the auth context will be null. We throw an error in that case
and do not create a new post:

      if (!auth) {
        throw new GraphQLError(
          'You need to be authenticated to perform this
action.',
          {
            extensions: {
              code: 'UNAUTHORIZED',
            },
          },
        )
      }

7.	 Otherwise, we use auth.sub (which contains the user ID) and the provided arguments to
create a new post:

      return await createPost(auth.sub, { title, contents, tags
})
    },
  },
}

8.	 Edit backend/src/graphql/index.js and add the mutationSchema
and mutationResolver:

import { querySchema, queryResolver } from './query.js'
import { postSchema, postResolver } from './post.js'

Implementing GraphQL authentication and mutations 299

import { userSchema, userResolver } from './user.js'
import { mutationSchema, mutationResolver } from './mutation.js'

export const typeDefs = [querySchema, postSchema, userSchema,
mutationSchema]
export const resolvers = [
  queryResolver,
  postResolver,
  userResolver,
  mutationResolver,
]

After implementing mutations, let’s learn how to use them.

Using mutations

After defining the possible mutations, we can use them by running them in the Apollo interface. Follow
these steps to first sign up a user, then log them in, and finally create a post – all using GraphQL:

1.	 Go to http://localhost:3001/graphql to view the Apollo interface. Define a new
mutation that signs up a user with a given username and password, and returns the username
if the signup was successful:

mutation SignupUser($username: String!, $password: String!) {
  signupUser(username: $username, password: $password) {
    username
  }
}

Tip
You can use the Documentation section on the left by going back to Root Types, clicking on
Mutation, and then clicking on the + icon next to signupUser. Then, click on the + icon next
to the username field. This will automatically create the preceding code.

2.	 Edit the variables at the bottom and enter a username and password:

{
  "username": "graphql",
  "password": "gql"
}

3.	 Execute the SignupUser mutation by pressing the play button.

Building a Backend with a GraphQL API300

4.	 Next, create a new mutation to log in a user:

mutation LoginUser($username: String!, $password: String!) {
  loginUser(username: $username, password: $password)
}

5.	 Enter the same variables as before and press the play button, the response contains a JWT. Copy
and store the JWT somewhere for later use.

6.	 Define a new mutation to create a post. This mutation returns Post, so we can get the id,
title, and username values for author:

mutation CreatePost($title: String!, $contents: String, $tags:
[String]) {
  createPost(title: $title, contents: $contents, tags: $tags) {
    id
    title
    author {
      username
    }
  }
}

This is an example of where GraphQL really shines. We can resolve the username of the author
after creating the post to see whether it was really created with the correct user, because we
can access the resolvers defined for Post, even in mutations! As you can see, GraphQL is
very flexible.

7.	 Enter the following variables:

{
  "title": "GraphQL Post",
  "contents": "This is posted from GraphQL!"
}

8.	 Select the Headers tab, press the New header button, enter Authorization for header
key, and Bearer <Paste previously copied JWT here> for value. Then press
the Play button to submit the mutation.

Overview of advanced GraphQL concepts 301

Figure 11.5 – Adding the Authorization header in the Apollo interface

9.	 In the response, you can see that the post was successfully created, and the author is set and
resolved correctly!

Having implemented GraphQL queries and mutations for our blog applications, let’s wrap up the
chapter by giving an overview of advanced GraphQL concepts.

Overview of advanced GraphQL concepts
Out of the box, GraphQL comes with a set of scalar types:

•	 Int: A signed 32-bit integer

•	 Float: A signed double-precision floating-point value

•	 String: A UTF-8 encoded character sequence

•	 Boolean: Can be true or false

•	 ID: A unique identifier, serialized as a String, but meant to signify that it is not human readable

GraphQL also allows the definition of enums, which are a special kind of scalar. They are restricted to
certain values. For example, we could have the following enum to distinguish different types of posts:

enum PostType {
  UNPUBLISHED,
  UNLISTED,
  PUBLIC
}

In Apollo, enums will be handled as strings that can only have certain values, but this may be different
in other GraphQL implementations.

Building a Backend with a GraphQL API302

Many GraphQL implementations also allow defining custom scalar types. Apollo, for example, supports
the definition of custom scalar types.

Fragments

When the same kind of fields are regularly accessed, we can create a fragment to simplify and standardize
access to them. For example, if we often resolve users, and users have fields such as username,
profilePicture, fullName, and biography, we could create the following fragment:

fragment UserInfo on User {
  username
  profilePicture
  fullName
  biography
}

This fragment can then be used in queries. For example, see this snippet:

{
  posts {
    author {
      ...UserInfo
    }
  }
}

Fragments are especially useful when the same kind of field structure is used multiple times in the
same query. For example, if an author had followedBy and follows fields, we could resolve all
users like this:

{
  posts {
    author {
      ...UserInfo
      followedBy {
        ...UserInfo
      }
      follows {
        ...UserInfo
      }
    }
  }
}

Summary 303

Introspection

Introspection allows us to query the defined schemas themselves to get a feeling for the data that the
server can provide for us. It is essentially querying the schemas defined by the GraphQL server. We can
use the __schema field to get all schemas. A schema consists of types, which have name values.

For example, we can use the following query to get all types defined by our server:

{
  __schema {
    types {
      name
    }
  }
}

If you execute this query on our server, you will get (among other types) our defined Query, Post,
User, and Mutation types.

Introspection queries are very powerful, and you can get a lot of information about the possible queries
and mutations from it. Actually, the Apollo interface uses introspection to render the Documentation
sidebar and to auto-complete fields for us!

Summary
In this chapter, we learned what GraphQL is and how it can be more flexible than REST while requiring
less boilerplate code, especially when querying deeply nested objects. Then, we implemented GraphQL
in our backend and created various types, queries, and mutations. We also learned how to integrate
JWT authentication in GraphQL. Finally, we wrapped up the chapter by learning about advanced
concepts, such as the type system, fragments, and introspection.

In the next chapter, Chapter 12, Interfacing with GraphQL on the Frontend Using Apollo Client, we
are going to learn how to access and integrate GraphQL in our frontend using React and the Apollo
Client library.

12
Interfacing with GraphQL

on the Frontend Using
Apollo Client

After successfully implementing a GraphQL backend using Apollo Server in the previous chapter, we
are now going to interface with our new GraphQL API on the frontend using Apollo Client. Apollo
Client is a library that makes it easier and more convenient to interact with GraphQL APIs. We’ll start
by replacing the fetching of the post list with GraphQL queries, then resolve the author usernames
without needing extra queries, showing the power of GraphQL. Next, we’ll add variables to the query
to allow setting filters and sorting options. Finally, we’ll learn how to use mutations on the frontend.

In this chapter, we are going to cover the following main topics:

•	 Setting up Apollo Client and making our first query

•	 Using variables in GraphQL queries

•	 Using mutations on the frontend

Technical requirements
Before we start, please install all requirements from Chapter 1, Preparing For Full-Stack Development,
and Chapter 2, Getting to Know Node.js and MongoDB.

The versions listed in those chapters are the ones used in the book. While installing a newer version
should not be an issue, please note that certain steps might work differently on a newer version. If
there is an issue with the code and steps provided in this book, please try using the versions mentioned
in Chapters 1 and 2.

You can find the code for this chapter on GitHub: https://github.com/PacktPublishing/
Modern-Full-Stack-React-Projects/tree/main/ch12.

https://github.com/PacktPublishing/Modern-Full-Stack-React-Projects/tree/main/ch12
https://github.com/PacktPublishing/Modern-Full-Stack-React-Projects/tree/main/ch12

Interfacing with GraphQL on the Frontend Using Apollo Client306

The CiA video for this chapter can be found at: https://youtu.be/Gl_5i9DR_xA.

If you cloned the full repository for the book, Husky may not find the .git directory when running
npm install. In that case, just run git init in the root of the corresponding chapter folder.

Setting up Apollo Client and making our first query
Before we can get started making GraphQL queries on the frontend, we first need to set up Apollo
Client. Apollo Client is the frontend counterpart to Apollo Server, which we have already been using
on the backend. While it is not required to use Apollo Client (we could also simply make a POST
request to the /graphql endpoint), Apollo Client makes interacting with GraphQL much easier
and more convenient. It also includes additional features, such as caching, out of the box.

Follow these steps to set up Apollo Client:

1.	 Copy the existing ch11 folder to a new ch12 folder, as follows:

$ cp -R ch11 ch12

2.	 Open the ch12 folder in VS Code.

3.	 Install the @apollo/client and graphql dependencies:

$ npm install @apollo/client@3.9.5 graphql@16.8.1

4.	 Edit .env and add a new environment variable, pointing to the endpoint for our GraphQL server:

VITE_GRAPHQL_URL="http://localhost:3001/graphql"

5.	 Edit src/App.jsx and import ApolloClient, InMemoryCache, and ApolloProvider
from the @apollo/client package:

import { ApolloProvider } from '@apollo/client/react/index.js'
import { ApolloClient, InMemoryCache } from '@apollo/client/
core/index.js'

At the time of writing, there is an issue with ESM imports in Apollo Client, so we need to
import directly from the index.js files.

6.	 Create a new instance of Apollo Client, pointing to the GraphQL endpoint and
using InMemoryCache:

const apolloClient = new ApolloClient({
  uri: import.meta.env.VITE_GRAPHQL_URL,
  cache: new InMemoryCache(),
})

https://youtu.be/Gl_5i9DR_xA

Setting up Apollo Client and making our first query 307

7.	 Adjust the App component to add ApolloProvider, providing the Apollo Client context
to our whole app:

export function App({ children }) {
  return (
    <HelmetProvider>
      <ApolloProvider client={apolloClient}>
        <QueryClientProvider client={queryClient}>
          <AuthContextProvider>{children}</AuthContextProvider>
        </QueryClientProvider>
      </ApolloProvider>
    </HelmetProvider>
  )
}

8.	 We are also going to create a GraphQL config file now so that the VS Code GraphQL extension
can autocomplete and validate queries for us. Create a new graphql.config.json file in
the root of the project, with the following contents:

{
  "schema": "http://localhost:3001/graphql",
  "documents": "src/api/graphql/**/*.{js,jsx}"
}

The schema defines the URL to the GraphQL endpoint, and documents defines where to
find files that contain GraphQL queries. We are going to put the GraphQL queries in the src/
api/graphql/ folder later.

9.	 Make sure Docker and the database container are running, then start the backend, as follows:

$ cd backend/
$ npm run dev

Keep the backend running throughout this chapter, so that the GraphQL extension can access
the GraphQL endpoint.

10.	 Restart the VS Code GraphQL extension. You can do so by accessing the VS Code command
palette (Ctrl + Shift + P on Windows/Linux and Cmd + Shift + P on macOS) and typing in
GraphQL: Manual Restart.

Querying posts from the frontend using GraphQL

Now that Apollo Client is set up and ready to be used, let’s define our first GraphQL query: a simple
query to fetch all posts.

Interfacing with GraphQL on the Frontend Using Apollo Client308

Follow these steps to define the query and use it in our app:

1.	 Create a new src/api/graphql/ folder, where we will put our GraphQL queries.

2.	 Inside this folder, create a new src/api/graphql/posts.js file.

3.	 In the src/api/graphql/posts.js file, import the gql function from @apollo/
client:

import { gql } from '@apollo/client/core/index.js'

4.	 Define a new GET_POSTS query, which retrieves all the relevant properties for a post (except
the author, which will come later):

export const GET_POSTS = gql`
  query getPosts {
    posts {
      id
      title
      contents
      tags
      updatedAt
      createdAt
    }
  }
`

You should see that the GraphQL extension is offering us autocomplete options for the types
we defined in our backend! If we enter the wrong field name, it will also warn us that this field
does not exist on the type.

5.	 Edit src/pages/Blog.jsx and import the useQuery hook from @apollo/client:

import { useQuery as useGraphQLQuery } from '@apollo/client/
react/index.js'

We renamed the useQuery hook from Apollo Client to useGraphQLQuery to avoid
confusion with the useQuery hook from TanStack React Query.

6.	 Import the previously defined GET_POSTS query:

import { GET_POSTS } from '../api/graphql/posts.js'

7.	 Remove the imports to useQuery and getPosts:

import { useQuery } from '@tanstack/react-query'
import { getPosts } from '../api/posts.js'

Setting up Apollo Client and making our first query 309

8.	 Remove the existing useQuery hook:

  const postsQuery = useQuery({
    queryKey: ['posts', { author, sortBy, sortOrder }],
    queryFn: () => getPosts({ author, sortBy, sortOrder }),
  })
  const posts = postsQuery.data ?? []

9.	 Replace it with the following hook:

  const postsQuery = useGraphQLQuery(GET_POSTS)
  const posts = postsQuery.data?.posts ?? []

10.	 Make sure you are in the root of the project, then run the frontend as follows:

$ npm run dev

Now, open the frontend on http://localhost:5173/ and you will see that the post titles are
properly shown. However, the links to posts do not work and there is an error in the console. There
is a slight difference in the results from GraphQL and the REST API: the REST API returns the ID of
posts as an _id property, while GraphQL returns them as an id property.

Let’s adjust our code to accommodate this change now:

1.	 Edit src/components/Post.jsx and change the _id prop to id:

export function Post({
  title,
  contents,
  author,
  id,

2.	 Also, update the variable name where it is used:

        <Link to={`/posts/${id}/${slug(title)}`}>

3.	 Make sure to update propTypes as well:

Post.propTypes = {
  title: PropTypes.string.isRequired,
  contents: PropTypes.string,
  author: PropTypes.string,
  id: PropTypes.string.isRequired,

Interfacing with GraphQL on the Frontend Using Apollo Client310

4.	 Now that the prop is changed, edit src/pages/ViewPost.jsx and pass in the new prop,
as follows:

      {post ? (
        <Post {...post} id={postId} fullPost />
      ) : (
        `Post with id ${postId} not found.`
      )}

After saving all files, the frontend should refresh and properly render the list of all posts with working
links. Now all that’s left to do to restore the original functionality is to show the author usernames.

Resolving author usernames in a single query
Instead of resolving each author username separately, we can now get them all at once in a single
query, thanks to the power of GraphQL! Let’s make use of this power to refactor our code a bit to
make it simpler and improve the performance:

1.	 Start by editing the GraphQL query in src/api/graphql/posts.js, adding the author.
username field, as follows:

export const GET_POSTS = gql`
  query getPosts {
    posts {
      author {
        username
      }

2.	 Then, edit the src/components/User.jsx component. Replace the whole component
with the following, simpler component:

import PropTypes from 'prop-types'

export function User({ username }) {
  return {username}
}

User.propTypes = {
  username: PropTypes.string.isRequired,
}

It is not necessary to fetch the user info here anymore, as we can directly display the username
from the GraphQL response.

3.	 Next, edit src/components/Post.jsx and pass the whole author object to the User
component, as follows:

          Written by <User {...author} />

Setting up Apollo Client and making our first query 311

4.	 We also need to adjust propTypes now to accept a full author object for the Post
component, instead of a user ID:

  author: PropTypes.shape(User.propTypes),

5.	 Edit src/pages/ViewPost.jsx and pass the whole author object to the Post component:

        <Post {...post} id={postId} author={userInfo} fullPost
/>

Thankfully, we are already resolving the username for the meta tags on this page, so we do not
need to make an additional query here either.

6.	 However, in Header, we do need to make an additional query to resolve the username when
a user is logged in.

Edit src/components/Header.jsx and import the useQuery hook and the
getUserInfo API function:

import { useQuery } from '@tanstack/react-query'
import { getUserInfo } from '../api/users.js'

7.	 Then, adjust the component to get the user ID from the token (the sub field of the JWT) and
make a query for the user info:

export function Header() {
  const [token, setToken] = useAuth()

  const { sub } = token ? jwtDecode(token) : {}
  const userInfoQuery = useQuery({
    queryKey: ['users', sub],
    queryFn: () => getUserInfo(sub),
    enabled: Boolean(sub),
  })
  const userInfo = userInfoQuery.data

8.	 Lastly, we check whether we were able to resolve the query for user info (instead of just checking
for token). If so, we pass the user info to the User component:

  if (token && userInfo) {
    return (
      <nav>
        Logged in as <User {...userInfo} />

We also removed the token decoding here, like we already did earlier.

Interfacing with GraphQL on the Frontend Using Apollo Client312

Now we are using GraphQL to fetch the list of posts and resolve the author usernames in one single
request! However, the filters and sorting do not work anymore, as we are not passing this information
to the GraphQL query yet.

In the next section, we are going to introduce variables for filtering and sorting our GraphQL queries.

Using variables in GraphQL queries
To add support for filters and sorting, we need to add variables to our GraphQL query. We can then
fill in these variables when executing the query.

Follow these steps to add variables to the query:

1.	 Edit src/api/graphql/posts.js and adjust the query to accept an $options variable:

export const GET_POSTS = gql`
  query getPosts($options: PostsOptions) {

2.	 Then, pass the $options variable to the posts resolver, for which we already implemented
an options argument in the previous chapter:

    posts(options: $options) {

3.	 Now, we just need to pass the options when executing the query. Edit src/pages/Blog.
jsx and pass the variable, as follows:

  const postsQuery = useGraphQLQuery(GET_POSTS, {
    variables: { options: { sortBy, sortOrder } },
  })

4.	 Go to the blog frontend and change the sort order to ascending to see the variable in action!

Using fragments to reuse parts of queries

Now that sorting is working, we just need to add filtering by author. To do this, we need to add a
second query for postsByAuthor. As you can imagine, this query should return the same fields
as the posts query. We can make use of a fragment to reuse the fields for both queries, as follows:

1.	 Edit src/api/graphql/posts.js and define a new fragment in GraphQL that contains
all the fields that we need from a post:

export const POST_FIELDS = gql`
  fragment PostFields on Post {
    id
    title
    contents

Using variables in GraphQL queries 313

    tags
    updatedAt
    createdAt
    author {
      username
    }
  }
`

The fragment is defined by giving it a name (PostFields) and specifying which type it can
be used on (on Post). Then, all fields from the specified type can be queried in the fragment.

2.	 To use the fragment, we first have to include its definition in the GET_POSTS query:

export const GET_POSTS = gql`
  ${POST_FIELDS}
  query getPosts($options: PostsOptions) {

3.	 Now, instead of listing all fields manually, we can use the fragment:

    posts(options: $options) {
      ...PostFields
    }
  }
`

The syntax for using a fragment is like object destructuring in JavaScript, where all properties
defined in an object are spread into another object.

Note
Sometimes the VS Code GraphQL extension needs to be restarted to be able to detect fragments
properly. You can do so by accessing the VS Code command palette (Ctrl + Shift + P on Windows/
Linux and Cmd + Shift + P on macOS) and typing in GraphQL: Manual Restart.

4.	 Next, we define a second query, where we query posts by author, and get all necessary fields
with the fragment:

export const GET_POSTS_BY_AUTHOR = gql`
  ${POST_FIELDS}
  query getPostsByAuthor($author: String!, $options:
PostsOptions) {
    postsByAuthor(username: $author, options: $options) {
      ...PostFields
    }
  }
`

Interfacing with GraphQL on the Frontend Using Apollo Client314

We defined the $author variable as required for this query (by using an exclamation mark
after the type). We need to do this because the postsByAuthor field also requires the first
argument (username) to be set.

5.	 Edit src/pages/Blog.jsx and import the newly defined query:

import { GET_POSTS, GET_POSTS_BY_AUTHOR } from '../api/graphql/
posts.js'

6.	 Then, adjust the hook to use the GET_POSTS_BY_AUTHOR query if author is defined:

  const postsQuery = useGraphQLQuery(author ? GET_POSTS_BY_
AUTHOR : GET_POSTS, {

7.	 Pass the author variable to the query:

    variables: { author, options: { sortBy, sortOrder } },
  })

8.	 Lastly, we need to adjust how we select the results because the postsByAuthor field from
the GET_POSTS_BY_AUTHOR query will return the results in data.postsByAuthor,
while the GET_POSTS query uses the posts field, which returns results in data.posts.
As there is no case where both fields are returned at once, we can simply do the following:

  const posts = postsQuery.data?.postsByAuthor ?? postsQuery.
data?.posts ?? []

9.	 Go to the frontend and try filtering by author. The filter works again now!

As we can see, fragments are very useful for reusing the same fields for multiple queries! Now that our
post list is fully refactored to use GraphQL, let’s move on to using mutations on the frontend, allowing
us to migrate the signup, login, and create post functionalities to GraphQL.

Using mutations on the frontend
As we learned in the previous chapter, mutations in GraphQL are used to change the state of the
backend (similar to POST requests in REST). We are now going to implement mutations for signing
up and logging in to our app.

Follow these steps:

1.	 Create a new src/api/graphql/users.js file and import gql:

import { gql } from '@apollo/client/core/index.js'

Using mutations on the frontend 315

2.	 Then, define a new SIGNUP_USER mutation, which takes a username and a password and
calls the signupUser mutation field:

export const SIGNUP_USER = gql`
  mutation signupUser($username: String!, $password: String!) {
    signupUser(username: $username, password: $password) {
      username
    }
  }
`

3.	 Edit src/pages/Signup.jsx and replace the current useMutation hook from TanStack
React Query with the one from Apollo Client. As we did before for useQuery, we are also
going to rename this hook to useGraphQLMutation to avoid confusion:

import { useMutation as useGraphQLMutation } from '@apollo/
client/react/index.js'

4.	 Additionally, replace the import of the signup function with an import of the SIGNUP_
USER mutation:

import { SIGNUP_USER } from '../api/graphql/users.js'

5.	 Replace the existing mutation hook with the following:

  const [signupUser, { loading }] = useGraphQLMutation(SIGNUP_
USER, {
    variables: { username, password },
    onCompleted: () => navigate('/login'),
    onError: () => alert('failed to sign up!'),
  })

As can be seen, the Apollo Client mutation hook has a slightly different API than the TanStack
React Query mutation hook. It returns an array with a function to call the mutation, and an
object with the loading state, error state, and data. Similar to the useGraphQLQuery hook,
it also accepts the mutation as the first argument and an object with variables as the second
argument. Moreover, the onSuccess function is called onCompleted in Apollo Client.

6.	 Change the handleSubmit function as follows:

  const handleSubmit = (e) => {
    e.preventDefault()
    signupUser()
  }

Interfacing with GraphQL on the Frontend Using Apollo Client316

7.	 Lastly, change the submit button as follows:

      <input
        type='submit'
        value={loading ? 'Signing up...' : 'Sign Up'}
        disabled={!username || !password || loading}
      />

Now the signup functionality is successfully migrated to GraphQL. Next, let’s migrate the login functionality.

Migrating login to GraphQL

Refactoring the login functionality to GraphQL is very similar to the signup functionality, so let’s
quickly go through the steps:

1.	 Edit src/api/graphql/users.js and define a mutation for logging in:

export const LOGIN_USER = gql`
  mutation loginUser($username: String!, $password: String!) {
    loginUser(username: $username, password: $password)
  }
`

2.	 Edit src/pages/Login.jsx and replace the imports to TanStack React Query and the
login function with the following:

import { useMutation as useGraphQLMutation } from '@apollo/
client/react/index.js'
import { LOGIN_USER } from '../api/graphql/users.js'

3.	 Update the hook as well:

  const [loginUser, { loading }] = useGraphQLMutation(LOGIN_
USER, {
    variables: { username, password },
    onCompleted: (data) => {
      setToken(data.loginUser)
      navigate('/')
    },
    onError: () => alert('failed to login!'),
  })

Using mutations on the frontend 317

4.	 Update the handleSubmit function:

  const handleSubmit = (e) => {
    e.preventDefault()
    loginUser()
  }

5.	 Finally, update the submit button:

      <input
        type='submit'
        value={loading ? 'Logging in...' : 'Log In'}
        disabled={!username || !password || loading}
      />

Now that signup and login are using GraphQL mutations, let’s move on to migrating the create post
functionality to GraphQL.

Migrating create post to GraphQL

The create post functionality is a bit trickier to implement, as it requires us to be logged in (which
means that we need to send the JWT header), and invalidate the post list queries, so that the list gets
updated after creating a new post.

Now let’s get started on implementing this with Apollo Client:

1.	 First, let’s define the mutation. Edit src/api/graphql/posts.js and add the following code:

export const CREATE_POST = gql`
  mutation createPost($title: String!, $contents: String, $tags:
[String!]) {
    createPost(title: $title, contents: $contents, tags: $tags)
{
      id
      title
    }
  }
`

For this mutation, we are going to use the response to get the id and title of the created
post. We are going to make use of this data to show a link to the post upon successful creation.

2.	 Then, edit src/components/CreatePost.jsx and replace the TanStack React Query
import with an import of the mutation hook:

import { useMutation as useGraphQLMutation } from '@apollo/
client/react/index.js'

Interfacing with GraphQL on the Frontend Using Apollo Client318

3.	 Also, import the Link component and slug function to show a link to the created post:

import { Link } from 'react-router-dom'
import slug from 'slug'

4.	 Replace the import of the createPost function with imports of the CREATE_POST mutation
and the GET_POSTS and GET_POSTS_BY_AUTHOR queries. We are going to use these query
definitions to make Apollo Client re-fetch them for us later:

import {
  CREATE_POST,
  GET_POSTS,
  GET_POSTS_BY_AUTHOR,
} from '../api/graphql/posts.js'

5.	 Replace the existing query client and mutation hooks with the following GraphQL mutation,
where we pass the title and contents variables:

  const [createPost, { loading, data }] =
useGraphQLMutation(CREATE_POST, {
    variables: { title, contents },

6.	 Next, we provide the JWT header as context to the mutation:

    context: { headers: { Authorization: `Bearer ${token}` } },

7.	 Then, we provide a refetchQueries option to the mutation, telling Apollo Client to re-fetch
certain queries after the mutation was called:

    refetchQueries: [GET_POSTS, GET_POSTS_BY_AUTHOR],
  })

Note
As re-fetching after a mutation is a common operation, Apollo Client provides a simple way
to do this in the mutation hook. Simply pass all queries that should be re-fetched there, and
Apollo Client will take care of it.

8.	 Adjust the handleSubmit function:

  const handleSubmit = (e) => {
    e.preventDefault()
    createPost()
  }

Using mutations on the frontend 319

9.	 Adjust the submit button:

      <input
        type='submit'
        value={loading ? 'Creating...' : 'Create'}
        disabled={!title || loading}
      />

10.	 Lastly, we are going to change the success message, showing a link to the created post:

      {data?.createPost ? (
        <>
          

          Post{' '}
          <Link
            to={`/posts/${data.createPost.id}/${slug(data.
createPost.title)}`}
          >
            {data.createPost.title}
          </Link>{' '}
          created successfully!
        </>
      ) : null}

Because of the way types and resolvers work in GraphQL, it easily allows us to access fields
from the result of a mutation, the same way as if we were fetching a single post. For example,
we could even tell GraphQL to fetch the username of the author of the created post here!

11.	 Try creating a new post, and you will see that the success message now shows a link to the
created post, and the post list automatically re-fetches for us!

The following screenshot shows a new post being successfully created, showing the link to the
new post in the success message, and the new post in the post list (automatically re-fetched
by Apollo Client):

Interfacing with GraphQL on the Frontend Using Apollo Client320

Figure 12.1: Creating a post using GraphQL mutations, with a re-fetching post list

Now that we have successfully implemented creating posts with GraphQL, our blog app is fully
connected to our GraphQL server.

There are many more advanced concepts in GraphQL that we have not covered yet in this book, such
as advanced re-fetching, subscriptions (getting real-time updates from the GraphQL server), error
handling, suspense, pagination, and caching. The GraphQL chapters in this book only serve as an
introduction to GraphQL.

If you wish to learn more about GraphQL and Apollo, I recommend checking out the extensive Apollo
docs (https://www.apollographql.com/docs/), which contain detailed information and
hands-on examples about using Apollo Server and Apollo Client.

Summary
In this chapter, we connected our previously created GraphQL backend to the frontend using Apollo
Client. We started by setting up Apollo Client and making a GraphQL query to fetch all posts. Then,
we improved the performance of the post list by fetching author usernames in a single request,
leveraging the power of GraphQL.

Next, we introduced variables in our query and re-implemented sorting and filtering by author. We
also introduced fragments in our queries to reuse the same fields. Lastly, we implemented GraphQL
mutations in the frontend to sign up, log in, and create posts. We also learned about re-fetching queries
in Apollo Client along the way and briefly mentioned advanced concepts of GraphQL and Apollo.

In the next chapter, Chapter 13, Building a Backend Based on Event-Driven Architecture Using Express
and Socket.IO, we are going to depart from traditional full-stack architectures and build a new app
using a special kind of full-stack architecture: an event-based application.

https://www.apollographql.com/docs/

Part 4:
Exploring an Event-Based

Full-Stack Architecture

In this part of the book, we will depart from traditional full-stack architectures and explore a special kind
of full-stack architecture: event-based applications. Examples of event-based applications are apps that
deal with real-time data, such as collaborative applications (e.g., Google Docs, online whiteboard, etc.)
or financial applications (e.g., Kraken crypto exchange). We are first going to develop an event-based
backend using Express and Socket.IO. Then, we are going to create a frontend to consume and send
events. Lastly, we will add persistence and functionality to replay events to our app using MongoDB.

This part includes the following chapters:

•	 Chapter 13, Building an Event-Based Backend Using Express and Socket.IO

•	 Chapter 14, Creating a Frontend to Consume and Send Events

•	 Chapter 15, Adding Persistence to Socket.IO Using MongoDB

13
Building an Event-Based

Backend Using Express
and Socket.IO

In this chapter, we will learn about event-based applications and the tradeoffs of using such an
architecture versus a more traditional one. Then, we are going to learn about WebSockets and how
they work. Afterward, we are going to implement a backend using Socket.IO and Express. Finally, we
are going to learn how to integrate authentication by using JWT with Socket.IO.

In this chapter, we are going to cover the following main topics:

•	 What are event-based applications?

•	 Setting up Socket.IO

•	 Creating a backend for a chat app using Socket.IO

•	 Adding authentication by integrating JWT with Socket.IO

Technical requirements
Before we start, please install all the requirements from Chapter 1, Preparing For Full-Stack Development,
and Chapter 2, Getting to Know Node.js and MongoDB.

Building an Event-Based Backend Using Express and Socket.IO324

The versions listed in those chapters are the ones used in this book. While installing a newer version
should not be an issue, please note that certain steps might work differently. If you are having an issue
with the code and steps provided in this book, please try using the versions mentioned in Chapters
1 and 2.

You can find the code for this chapter on GitHub: https://github.com/PacktPublishing/
Modern-Full-Stack-React-Projects/tree/main/ch13.

If you cloned the full repository for this book, Husky may not find the .git directory when running
npm install. In that case, just run git init in the root of the corresponding chapter folder.

The CiA video for this chapter can be found at: https://youtu.be/kHGvkopIHf4.

What are event-based applications?
In contrast to traditional web applications, where we have a request-response pattern, in event-based
applications, we are dealing with events. The server and client stay connected and each side can send
events, which the other side listens to and reacts to.

The following diagram shows the difference between implementing a chat app in a request-response
pattern versus an event-based pattern:

Figure 13.1 – A chat app implementation with request-response and event-based patterns

https://github.com/PacktPublishing/Modern-Full-Stack-React-Projects/tree/main/ch13
https://github.com/PacktPublishing/Modern-Full-Stack-React-Projects/tree/main/ch13
https://youtu.be/kHGvkopIHf4

What are event-based applications? 325

For example, to implement a chat application in a request-response pattern, we would need to regularly
send a request to a GET /chat/messages endpoint to refresh the list of messages sent in a chat
room. This process of periodically sending requests is called short polling. To send a chat message, we
would make a request to POST /chat/messages. In an event-based pattern, we could instead send
a chat.message event from the client to the server, which then sends a chat.message event
to all connected users. The clients then listen to chat.message events and display the messages
as they come in; no periodic requests are required!

Of course, each pattern comes with its advantages and disadvantages:

•	 REST/request-response:

	� Good for when data does not change frequently

	� Responses can be cached easily

	� Requests are stateless, making it easy to scale backends

	� Bad at real-time updates (requires periodic polling)

	� More overhead per request (bad when sending many short responses)

•	 WebSockets/event-based:

	� Good for applications that require frequent updates

	� More efficient because a persistent connection between the client and server is re-used for
multiple requests

	� Less overhead per request

	� There might be connection issues with (corporate) proxies

	� They are stateful, which can make it harder to scale an app

As we can see, for fetching data that does not change so frequently (and can be cached), such as blog
posts, a request-response pattern fits better. For applications where data is frequently changing, such
as a chat room, an event-based pattern fits better.

What are WebSockets?

The WebSocket API is a browser feature that allows web applications to create an open connection
between the client and the server, similar to Unix-style sockets. With WebSockets, communication
can happen in both directions at the same time. This is in contrast to HTTP requests, where both
parties can communicate, but not simultaneously.

WebSockets use HTTP to establish a connection between the client and the server, and then upgrade
the protocol from HTTP to the WebSocket protocol. While both HTTP and WebSockets depend on the
Transmission Control Protocol (TCP), they are distinct protocols on the application layer (Layer 7)
of the Open Systems Interconnection (OSI) model.

Building an Event-Based Backend Using Express and Socket.IO326

A connection to a WebSocket is established by sending an HTTP request with the Upgrade:
websocket header and other parameters to establish a secure WebSocket connection. The server
then responds with an HTTP 101 Switching Protocols response code and information to
establish the connection. Then, the client and server continue talking on the WebSocket protocol.

What is Socket.IO?

Socket.IO is an implementation of an event-based server and client library. In most cases, it establishes
a connection to the server using a WebSocket. If a WebSocket connection is not possible (due to lacking
browser support or firewall settings), Socket.IO can also fall back to HTTP long-polling. However,
Socket.IO isn’t a pure WebSocket implementation as it adds additional metadata to each packet. It
only uses WebSockets internally to transmit data.

In addition to providing a way to send events between the client and server, Socket.IO offers the
following features over plain WebSockets:

•	 Fallback to HTTP long-polling: This occurs if the WebSocket connection cannot be
established. This can be especially useful for companies using proxies or firewalls that block
WebSocket connections.

•	 Automatic reconnection: If the WebSocket connection is interrupted.

•	 Buffering packets: When the client gets disconnected, packets can be re-sent again automatically
upon reconnection.

•	 Acknowledgments: A convenient way to send events in a request-response pattern, which can
sometimes be useful even in event-based applications.

•	 Broadcasting: Sending an event to all (or a subset of all) connected clients.

•	 Multiplexing: Socket.IO implements namespaces, which can be used to create “channels” that
only certain users can send events to and receive events from, such as an “admin-only channel.”

Now that we have learned the essentials of what Socket.IO is, let’s dive deeper into how the connection
and emitting/receiving events work.

Connecting to Socket.IO

The following diagram shows how a connection is established with Socket.IO:

Figure 13.2 – Establishing a connection with Socket.IO

What are event-based applications? 327

First, Socket.IO sends a handshake from the client (on the frontend) to the server (on the backend),
which can contain information to authenticate with the server, or query parameters to provide
additional information when establishing the connection.

If a connection via WebSockets cannot be established, Socket.IO connects to the server via HTTP
long polling, which means making a request to the server that is kept active until an event occurs, at
which point the server sends a response to the request. This allows waiting for events without having
to periodically make a request to see if there are any new events. Of course, this is not as performant
as WebSockets, but it is a good fallback for when WebSockets aren’t available.

Emitting and receiving events

Once connected to Socket.IO, we can start emitting (sending) and receiving events. Events are handled
by registering event handler functions, which are called when a certain type of event is received by
either the client or the server. Both the client and the server can emit and receive events. Additionally,
events can be broadcast from the server to multiple clients. The following diagram shows an example
of how events are emitted and received in a chat application:

Figure 13.3 – Emitting and receiving events with Socket.IO

As we can see, User 1 sends a Hello everyone message, which the server (backend) then broadcasts to
all other clients (frontend). In this case, the message gets broadcast back to User 1, as well as to User 2.

If we want to restrict the clients that receive certain events, Socket.IO allows the creation of rooms.
Clients can join a room, and on the server, we can also broadcast events to only specific rooms. This
concept can be used for chat rooms, but also for collaborating on a specific project (such as editing a
document together in real time).

In addition to emitting and receiving events asynchronously, Socket.IO offers a way to send an event
that expects a response via acknowledgments. These can be used to model request-response patterns
in Socket.IO. For example, we could request information about a certain user using a user.info
event and synchronously wait for the server response (acknowledgment). We can see this in the
preceding diagram, where User 2 requests information about a certain user, and then gets a response
containing the user’s information.

Building an Event-Based Backend Using Express and Socket.IO328

Now that we’ve learned about event-based applications, WebSockets, and Socket.IO, let’s put this
theory into practice and set up Socket.IO.

Setting up Socket.IO
To set up the Socket.IO server, we are going to base our code on what we had in Chapter 6, Adding
Authentication and Roles with JWT, as it already includes some boilerplate for a backend and frontend
with JWT authentication. Later in this chapter, in the Adding authentication by integrating JWT with
Socket.IO section, we are going to make use of JWT to add authentication to Socket.IO:

1.	 Copy the existing ch6 folder to a new ch13 folder, as follows:

$ cp -R ch6 ch13

2.	 Open the ch13 folder in VS Code.

3.	 Now, we can start setting up Socket.IO. First, install the socket.io package in the backend
folder by running the following commands:

$ cd backend/
$ npm install socket.io@4.7.2

4.	 Edit backend/.env and change DATABASE_URL so that it points to a new chat database:

DATABASE_URL=mongodb://localhost:27017/chat

5.	 Edit backend/src/app.js and import the createServer function from node:http
and the Server function from socket.io:

import { createServer } from 'node:http'
import { Server } from 'socket.io'

We are going to need to create a node:http server as we cannot directly connect Socket.IO
to Express. Instead, Socket.IO attaches to a node:http server.

6.	 Thankfully, Express can also be easily attached to a node:http server. Edit backend/src/
app.js and, before app is exported, create a new node:http server from the Express app,
as follows:

const server = createServer(app)

7.	 Now, create a new Socket.IO server from the node:http server:

const io = new Server(server, {
  cors: {
    origin: '*',
  },
})

Setting up Socket.IO 329

Warning
Setting the origin to * makes it possible for phishing sites to imitate your website and send
requests to your backend. In production, the origin should be set to the deployed URL of
your frontend.

8.	 We can use the Socket.IO server to listen to connections from clients and print a message:

io.on('connection', (socket) => {
  console.log('user connected:', socket.id)

9.	 The active client connection can be tracked by using the socket object. For example, we can
listen to disconnect events from the client like so:

  socket.on('disconnect', () => {
    console.log('user disconnected:', socket.id)
  })
})

10.	 Lastly, change the export so that it uses the node:http server instead of the Express app directly:

export { server as app }

11.	 Start the backend by running the following commands:

$ cd backend/
$ npm run dev

Don’t forget to get Docker and the database container up and running before starting the
backend. Keep the backend running for the rest of this chapter.

Now that we have set up a simple Socket.IO server, let’s continue by setting up the client.

Setting up a simple Socket.IO client

We are going to use the existing frontend for now. In the next chapter, Chapter 14, Creating a Frontend
to Consume and Send Events, we are going to remove the blog components and create a new React
frontend for our chat app. Let’s start setting up a simple Socket.IO client:

1.	 In the root of the project, install the socket.io-client package for the frontend by
running the following command:

$ npm install socket.io-client@4.7.2

Make sure that you aren’t in the backend folder anymore!

2.	 Edit src/App.jsx and import the io function from socket.io-client:

import { io } from 'socket.io-client'

Building an Event-Based Backend Using Express and Socket.IO330

3.	 Define a new instance of the Socket.IO client by using the io function and passing a hostname
and port:

const socket = io(import.meta.env.VITE_SOCKET_HOST)

Here, we will be passing localhost:3001 through an environment variable. We cannot pass
the HTTP URL here as Socket.IO will try to connect to the hostname and port using WebSockets.

4.	 Listen to the connect event and print out a message if we successfully connected to the
Socket.IO server:

socket.on('connect', () => {
  console.log('connected to socket.io as', socket.id)
})

5.	 Additionally, listen to the connect_error event and log an error message in case connecting
to the Socket.IO server failed:

socket.on('connect_error', (err) => {
  console.error('socket.io connect error:', err)
})

6.	 Edit .env and add the following environment variable:

VITE_SOCKET_HOST="localhost:3001"

7.	 Run the frontend, as follows:

$ npm run dev

8.	 Now, open the frontend in your browser by going to http://localhost:5173/. Keep
the frontend running for the rest of this chapter.

You will see a message stating connected to socket.io in the browser console. In the server output,
you will see that the client connected successfully. Try refreshing the page to see it disconnecting and
connecting again (with a new socket ID):

Figure 13.4 – Seeing the Socket.IO client connect to and disconnect from our server

Now that we have successfully set up a Socket.IO server, let’s continue by creating a backend for a
chat app using Socket.IO.

Creating a backend for a chat app using Socket.IO 331

Creating a backend for a chat app using Socket.IO
We can now start implementing a chat app using Socket.IO. We will be developing the following
functionality for our chat app:

•	 Emitting events to send chat messages from the client to the server

•	 Broadcasting chat messages from the server to all clients

•	 Joining rooms to send messages in

•	 Using acknowledgments to get information about a user

Let’s get started!

Emitting events to send chat messages from the client to the
server

We’ll start by emitting a chat.message event from the client to the server. For now, we are going
to emit this event right after connecting. Later, we are going to integrate this into a frontend. Follow
these steps to send chat messages from the client and receive them on the server:

1.	 Edit backend/src/app.js and cut/remove the following code:

io.on('connection', (socket) => {
  console.log('user connected:', socket.id)
  socket.on('disconnect', () => {
    console.log('user disconnected:', socket.id)
  })
})

2.	 Create a new backend/src/socket.js file, define a handleSocket function there,
and paste the following code inside it:

export function handleSocket(io) {
  io.on('connection', (socket) => {
    console.log('user connected:', socket.id)
    socket.on('disconnect', () => {
      console.log('user disconnected:', socket.id)
    })

3.	 Now, add a new listener that listens to the chat.message event and logs the message sent
from the client:

    socket.on('chat.message', (message) => {
      console.log(`${socket.id}: ${message}`)
    })

Building an Event-Based Backend Using Express and Socket.IO332

  })
}

4.	 Edit backend/src/app.js and import the handleSocket function:

import { handleSocket } from './socket.js'

5.	 Once the Socket.IO server has been created, call the handleSocket function:

const io = new Server(server, {
  cors: {
    origin: '*',
  },
})
handleSocket(io)

6.	 Edit src/App.jsx and emit a chat.message event with some text, as follows:

socket.on('connect', () => {
  console.log('connected to socket.io as', socket.id)
  socket.emit('chat.message', 'hello from client')
})

Info
Socket.IO allows us to send any kind of serializable data structures in an event, not just strings!
For example, it is possible to send objects and arrays.

The backend and frontend should automatically refresh and the server will log the following message:

XXmWHjA_5zew70VIAAAM: hello from client

If not, make sure you (re-)start the backend and frontend and refresh the page manually.

As you can see, it is quite simple to send and receive events asynchronously in real time using Socket.IO.

Broadcasting chat messages from the server to all clients

Now that the backend server can receive messages from a client, we need to broadcast the messages
to all other clients so that others can see the chat messages that were sent. Let’s do that now:

1.	 Edit backend/src/socket.js and extend the chat.message event listener so that it
calls io.emit and sends the chat message to everyone:

    socket.on('chat.message', (message) => {
      console.log(`${socket.id}: ${message}`)
      io.emit('chat.message', {

Creating a backend for a chat app using Socket.IO 333

        username: socket.id,
        message,
      })
    })

Note
Alternatively, you can use socket.broadcast.emit to send an event to every client
except the one that sent the message.

2.	 We also need to add a listener for chat messages on the client side. This works the same way as
on the server. Edit src/App.jsx and add the following event listener:

socket.on('chat.message', (msg) => {
  console.log(`${msg.username}: ${msg.message}`)
})

3.	 Now, you should see the message being logged on the server and the client. Try opening a
second window; you will see messages from both clients in your browser!

Figure 13.5 – Receiving messages from another client

 Joining rooms to send messages in

While having a working chat where messages get relayed to everyone is nice, often, we don’t want to
broadcast our messages to everyone. Instead, we might want to only send messages to a certain group
of people. To facilitate this, Socket.IO provides rooms. Rooms can be used to group clients together so
that events are only sent to all other clients in the room. This feature can be used to create chat rooms,
but also for collaborating on a project together (by creating a new room for each project). Let’s learn
how rooms can be used in Socket.IO:

1.	 Socket.IO allows us to pass a query string during the handshake. We can access this query
string to get the room that the client wants to join. Edit backend/src/socket.js and
get the room from the handshake query:

  io.on('connection', (socket) => {
    console.log('user connected:', socket.id)
    const room = socket.handshake.query?.room ?? 'public'

Building an Event-Based Backend Using Express and Socket.IO334

2.	 Now, use socket.join to join the client into the selected room:

    socket.join(room)
    console.log(socket.id, 'joined room:', room)

3.	 Then, inside the chat.message handler, use .to(room) to make sure chat messages from
that client are only sent to a certain room:

      io.to(room).emit('chat.message', {
        username: socket.id,
        message,
      })

4.	 In the client, we need to pass a query string to tell the server which room we would like to join.
Edit src/App.jsx, as follows:

const socket = io(import.meta.env.VITE_SOCKET_HOST, {
  query: window.location.search.substring(1),
})

The Socket.IO query string is a URL query string, so we can simply pass the query string of
the current page to it (without ? at the beginning of the string).

5.	 Open http://localhost:5173/ and http://localhost:5173/?room=test
in two separate browser windows and send messages from both. You will see that the message
from the second window doesn’t get sent to the first window. However, if you open another
window with the ?room=test query string and send a message there, you will see the message
being forwarded to the second window (but not the first).

As we can see, we can use rooms to have more fine-grained control over which clients receive certain
events. As the server controls which rooms a client joins, we can also add permission checks before
allowing a client to join a room.

Using acknowledgments to get information about a user

As we have seen, events are a great way to send asynchronous messages. Sometimes, however, we
want a more traditional synchronous request-response API, like we had with REST. In Socket.IO, we
can implement synchronous events by using acknowledgments. We can use acknowledgments to,
for example, get more information about a user in the current chat room. For now, we are only going
to return the rooms that the user is in. Later, when we add authentication, we are going to fetch the
user object from the database here. Let’s get started implementing acknowledgments:

1.	 Edit backend/src/socket.js and define a new event listener:

    socket.on('user.info', async (socketId, callback) => {

Note how we are passing a callback function as the last argument. This is what makes the event
an acknowledgment.

Creating a backend for a chat app using Socket.IO 335

2.	 In this event listener, we are going to fetch all sockets in the room with the ID of our socket:

      const sockets = await io.in(socketId).fetchSockets()

Internally, Socket.IO creates a room for each connected socket, to make it possible to send
events to a single socket.

Note
We could directly access the sockets of the current instance, but that wouldn’t work anymore
when we scale our service to multiple instances in a cluster. To make it work even in a cluster,
we need to use the room functionality to get a socket by ID.

3.	 Now, we must check if we found a socket with the given ID. If not, we return null:

      if (sockets.length === 0) return callback(null)

4.	 Otherwise, we return the socket ID and a list of rooms that the user is in:

      const socket = sockets[0]
      const userInfo = {
        socketId,
        rooms: Array.from(socket.rooms),
      }
      return callback(userInfo)
    })

5.	 Now, we can emit the user.info event on the client. Edit src/App.jsx and start by
making the connect event listener an async function:

socket.on('connect', async () => {
  console.log('connected to socket.io as', socket.id)
  socket.emit('chat.message', 'hello from client')

6.	 To emit an event with an acknowledgment, we can use the emitWithAck function, which
returns a Promise that we can await:

  const userInfo = await socket.emitWithAck('user.info', socket.
id)
  console.log('user info', userInfo)
})

Building an Event-Based Backend Using Express and Socket.IO336

7.	 After saving the code, go to the browser window; you will see the user’s information being
logged in the console:

Figure 13.6 – Getting user information with an acknowledgment

Now that we have learned how to send various kinds of events, let’s get into a more advanced topic:
authentication with Socket.IO.

Adding authentication by integrating JWT with Socket.IO
So far, all chat messages have been sent with the socket ID as the “username.” This is not a very good way
to identify users in a chat room. To fix this, we are going to introduce user accounts by authenticating
sockets with JWT. Follow these steps to implement JWT with Socket.IO:

1.	 Edit backend/src/socket.js and import jwt from the jsonwebtoken package and
getUserInfoById from our service functions:

import jwt from 'jsonwebtoken'
import { getUserInfoById } from './services/users.js'

2.	 Inside the handleSocket function, define a new Socket.IO middleware by using io.use().
Middleware in Socket.IO works similarly to middleware in Express – we define a function that
runs before requests are processed, as follows:

export function handleSocket(io) {
  io.use((socket, next) => {

3.	 Inside this function, we check if the token was sent via the auth object (similar to how we
passed room earlier via the query string). If no token was passed, we pass an error to the
next() function and cause the connection to fail:

    if (!socket.handshake.auth?.token) {
      return next(new Error('Authentication failed: no token
provided'))
    }

Adding authentication by integrating JWT with Socket.IO 337

Note
It is important not to pass a JWT via the query string since this is part of the URL. It is exposed
in the browser address bar and thus potentially stored in the browser history, where it could
be extracted by a potential attacker. Instead, the auth object is sent via the request payload
during the handshake, which is not exposed in the address bar.

4.	 Otherwise, we call jwt.verify to verify the token by using the existing JWT_SECRET
environment variable:

    jwt.verify(
      socket.handshake.auth.token,
      process.env.JWT_SECRET,

5.	 If the token is invalid, we once again return an error in the next() function:

      async (err, decodedToken) => {
        if (err) {
          return next(new Error('Authentication failed: invalid
token'))
        }

6.	 Otherwise, we save the decoded token to socket.auth:

        socket.auth = decodedToken

7.	 Additionally, we fetch the user information from the database and, for convenience, store it
in socket.user:

        socket.user = await getUserInfoById(socket.auth.sub)
        return next()
      },
    )
  })

Note
Make sure that next() is always called in Socket.IO middleware. Otherwise, Socket.IO will
keep the connection open until it is closed after a given timeout.

8.	 The user object contains a username value. Now, we can replace the socket ID in the chat
message with the username:

         socket.on('chat.message', (message) => {
      console.log(`${socket.id}: ${message}`)
      io.to(room).emit('chat.message', {
        username: socket.user.username,

Building an Event-Based Backend Using Express and Socket.IO338

        message,
      })
    })

9.	 We can also return the user information from the user.info event:

      const userInfo = {
        socketId,
        rooms: Array.from(socket.rooms),
        user: socket.user,
      }

10.	 We still need to send the auth object from the client side, edit src/App.jsx, and get the
token from localStorage, as follows:

const socket = io(import.meta.env.VITE_SOCKET_HOST, {
  query: window.location.search.substring(1),
  auth: {
    token: window.localStorage.getItem('token'),
  },
})

Note
For simplicity, we store and read the JWT in localStorage for this example. However, it is
not a good idea to store a JWT like this in production as localStorage could be read by an
attacker if they find a way to inject JavaScript. A better way to store a JWT would be by using
a cookie with the Secure, HttpOnly, and SameSite="Strict" attributes.

11.	 Now that the server side is set up, we can try logging in on the client. Initially, we are going to
see an error message:

Figure 13.7 – An error message from Socket.IO because no JWT was provided

12.	 To get a token, we can sign up and log in normally using the existing blog frontend. Then, we
can check the Network tab of the inspector to find the /login request with a token inside
the response:

Adding authentication by integrating JWT with Socket.IO 339

Figure 13.8 – Copying the JWT from the Network tab

13.	 Copy this token and add it to localStorage by running localStorage.
setItem('token', '<JWT>') in the browser console (replacing <JWT> with the
copied token). Upon refreshing the page, it should work! As we can see, when logged in with
two different users, we can see their messages with their respective usernames:

Figure 13.9 – Receiving messages from different users

Our chat backend is now fully functional! In the next chapter, we are going to create a frontend to
complete our chat app.

Building an Event-Based Backend Using Express and Socket.IO340

Summary
In this chapter, we learned about event-based applications, WebSockets, and Socket.IO. Then, we
set up Socket.IO on the backend (server) and frontend (client). Afterward, we learned how to send
messages between the server and client, how to join rooms, and how to broadcast messages. We also
used acknowledgments to get information about a user in a request-response pattern with Socket.
IO. Finally, we implemented authentication using JWT in Socket.IO, finalizing our chat app backend.

In the next chapter, Chapter 14, Creating a Frontend to Consume and Send Events, we are going to create
a frontend for our chat app, which is going to interact with the backend we created in this chapter.

14
Creating a Frontend to

Consume and Send Events

After successfully creating a Socket.IO backend in the previous chapter, and doing our first experiments
with the Socket.IO client, let’s now focus on implementing a frontend to connect to the backend and
consume and send events.

We are first going to clean up our project by removing files from the previously created blog app. Then,
we are going to implement a React Context to initialize and store our Socket.IO instance, making
use of the existing AuthProvider to provide the token for authenticating with the backend. After
that, we are going to implement an interface for our chat app and a way to send chat messages, as
well as displaying received chat messages. Finally, we are going to implement chat commands with
acknowledgments to show which rooms we are currently in.

In this chapter, we are going to cover the following main topics:

•	 Integrating the Socket.IO client with React

•	 Implementing chat functionality

•	 Implementing chat commands with acknowledgments

Technical requirements
Before we start, please install all the requirements from Chapter 1, Preparing for Full-Stack Development,
and Chapter 2, Getting to Know Node.js and MongoDB.

The versions listed in those chapters are the ones used in the book. While installing a newer version
should not be an issue, please note that certain steps might work differently on a newer version. If
you have an issue with the code and steps provided in this book, please try using the versions listed
in Chapters 1 and 2.

Creating a Frontend to Consume and Send Events342

You can find the code for this chapter on GitHub: https://github.com/PacktPublishing/
Modern-Full-Stack-React-Projects/tree/main/ch14.

If you cloned the full repository for the book, Husky may not find the .git directory when running
npm install. In that case, just run git init in the root of the corresponding chapter folder.

The CiA video for this chapter can be found at: https://youtu.be/d_TZK6S_XDU.

Integrating the Socket.IO client with React
Let’s start by cleaning up the project and deleting all old files copied over from the blog app. Then,
we are going to set up a Socket.IO context to make it easier to initialize and use Socket.IO in React
components. Finally, we are going to create our first component that utilizes this context to show the
status of our Socket.IO connection.

Cleaning up the project

Let’s first delete the folders and files from the blog application we created earlier:

1.	 Copy the existing ch13 folder to a new ch14 folder, as follows:

$ cp -R ch13 ch14

2.	 Open the ch14 folder in VS Code.

3.	 Delete the following folders and files, as they were only required for the blog application backend:

	� backend/src/__tests__/

	� backend/src/example.js

	� backend/src/db/models/post.js

	� backend/src/routes/posts.js

	� backend/src/services/posts.js

4.	 In backend/src/app.js, remove the following import:

import postRoutes from './routes/posts.js'

5.	 Also, remove postRoutes:

postRoutes(app)

https://github.com/PacktPublishing/Modern-Full-Stack-React-Projects/tree/main/ch14
https://github.com/PacktPublishing/Modern-Full-Stack-React-Projects/tree/main/ch14
https://youtu.be/d_TZK6S_XDU

Integrating the Socket.IO client with React 343

6.	 Delete the following folders and files, as they were only required for the blog application frontend:

	� src/api/posts.js

	� src/components/CreatePost.jsx

	� src/components/Post.jsx

	� src/components/PostFilter.jsx

	� src/components/PostList.jsx

	� src/components/PostSorting.jsx

	� src/pages/Blog.jsx

Now that we have cleaned up our project, let’s get started with implementing a Socket.IO context for
our new chat app.

Creating a Socket.IO context

Up until now, we have been initializing the Socket.IO client instance in the src/App.jsx component.
However, doing this has some downsides:

•	 To access the socket in other components, we would need to pass it down via props.

•	 We can only have one socket connection for the whole app.

•	 It is not possible to get the token dynamically from AuthContext, requiring us to store the
token in local storage instead.

•	 Our app requires a full refresh to be able to load the new token and connect with it.

•	 We still try to connect and get an error when not logged in.

To solve these issues, we can instead create a Socket.IO context. We can then use the provider
component to do the following:

•	 Connect to Socket.IO only when the token is available in AuthContext.

•	 Store the status of the Socket.IO connection and use it within components to, for example, only
show the chat interface when logged in.

•	 Store the error object and display errors in the user interface.

Creating a Frontend to Consume and Send Events344

The following diagram shows how the status of our connection will be tracked:

Figure 14.1 – The different states of the connection

As can be seen, the socket connection is initially waiting for the user to log in. Once the token is
available, we attempt to establish a socket connection. If successful, the status changes to connected,
otherwise to error. If the socket disconnects (for example, when the internet connection is lost),
the state is set to disconnected.

Now, let’s get started with creating a Socket.IO context:

1.	 Create a new src/contexts/SocketIOContext.jsx file.

2.	 Inside this file, import the following functions from react, socket.io-client, and prop-
types:

import { createContext, useState, useContext, useEffect } from
'react'
import { io } from 'socket.io-client'
import PropTypes from 'prop-types'

3.	 Additionally, import the useAuth hook from AuthContext to get the current token:

import { useAuth } from './AuthContext.jsx'

4.	 Now, define a React Context with some initial values for socket, status and error:

export const SocketIOContext = createContext({
  socket: null,
  status: 'waiting',
  error: null,
})

Integrating the Socket.IO client with React 345

5.	 Next, define a provider component, in which we first create state hooks for the different values
of the context:

export const SocketIOContextProvider = ({ children }) => {
  const [socket, setSocket] = useState(null)
  const [status, setStatus] = useState('waiting')
  const [error, setError] = useState(null)

6.	 Then, use the useAuth hook to get the JWT (if available):

  const [token] = useAuth()

7.	 Create an effect hook that checks whether the token is available, and if so, attempts to connect
to the Socket.IO backend:

  useEffect(() => {
    if (token) {
      const socket = io(import.meta.env.VITE_SOCKET_HOST, {
        query: window.location.search.substring(1),
        auth: { token },
      })

Just like before, we pass the host, the query string, and the auth object. However, now we
get the token from the useAuth hook instead of local storage.

8.	 Create handlers for the connect, connect_error, and disconnect events and set the
status string and the error object, respectively:

      socket.on('connect', () => {
        setStatus('connected')
        setError(null)
      })
      socket.on('connect_error', (err) => {
        setStatus('error')
        setError(err)
      })
      socket.on('disconnect', () => setStatus('disconnected'))

9.	 Set the socket object and list all necessary dependencies for the effect hook:

      setSocket(socket)
    }
  }, [token, setSocket, setStatus, setError])

Creating a Frontend to Consume and Send Events346

10.	 Now we can return the provider, passing all values from the state hooks to it:

  return (
    <SocketIOContext.Provider value={{ socket, status, error }}>
      {children}
    </SocketIOContext.Provider>
  )
}

11.	 Finally, we set PropTypes for the context provider component and define a useSocket
hook that will simply return the whole context:

SocketIOContextProvider.propTypes = {
  children: PropTypes.element.isRequired,
}

export function useSocket() {
  return useContext(SocketIOContext)
}

Now that we have a context to initialize our Socket.IO client, let’s hook it up and display the status of
the socket connection.

Hooking up the context and displaying the status

We can now remove the code to connect to Socket.IO from the App component and use the provider
instead, as follows:

1.	 Edit src/App.jsx and remove the following import:

import { io } from 'socket.io-client'

2.	 Add an import to SocketIOContextProvider:

import { SocketIOContextProvider } from './contexts/
SocketIOContext.jsx'

3.	 Then, remove the following code related to the Socket.IO connection:

const socket = io(import.meta.env.VITE_SOCKET_HOST, {
  query: window.location.search.substring(1),
  auth: {
    token: window.localStorage.getItem('token'),
  },
})

socket.on('connect', async () => {

Integrating the Socket.IO client with React 347

  console.log('connected to socket.io as', socket.id)
  socket.emit('chat.message', 'hello from client')
  const userInfo = await socket.emitWithAck('user.info', socket.
id)
  console.log('user info', userInfo)
})

socket.on('connect_error', (err) => {
  console.error('socket.io connect error:', err)
})

socket.on('chat.message', (message) => {
  console.log(message)
})

4.	 Inside the App component, render the context provider:

export function App() {
  return (
    <QueryClientProvider client={queryClient}>
      <AuthContextProvider>
        <SocketIOContextProvider>
          <RouterProvider router={router} />
        </SocketIOContextProvider>
      </AuthContextProvider>
    </QueryClientProvider>
  )
}

After hooking up the Socket.IO context, let’s move on to creating a Status component to display
the status.

Creating a Status component

Now, let’s create a Status component to display the current status of the socket:

1.	 Create a new src/components/Status.jsx file.

2.	 Inside it, import the useSocket hook from our SocketIOContext:

import { useSocket } from '../contexts/SocketIOContext.jsx'

3.	 Define a Status component, in which we get the status string and error object from
the hook:

export function Status() {
  const { status, error } = useSocket()

Creating a Frontend to Consume and Send Events348

4.	 Render the socket status:

  return (
    <div>
      Socket status: {status}

5.	 If we have an error object, we can additionally display the error message now:

      {error && <i> - {error.message}</i>}
    </div>
  )
}

Now that we have a Status component, let’s create a Chat page component, where we render the
Header and Status components.

Creating a Chat page component

We previously had a Blog page for our blog app, which we deleted earlier in this chapter. Let’s now
create a new Chat page component for our chat app:

1.	 Create a new src/pages/Chat.jsx file.

2.	 Inside it, import the Header component (which we are going to reuse from the Blog app)
and the Status component:

import { Header } from '../components/Header.jsx'
import { Status } from '../components/Status.jsx'

3.	 Render a Chat component in which we display the Header and Status components:

export function Chat() {
  return (
    <div style={{ padding: 8 }}>
      <Header />
      

      <hr />
      

      <Status />
    </div>
  )
}

4.	 Edit src/App.jsx and locate the following import:

import { Blog } from './pages/Blog.jsx'

Integrating the Socket.IO client with React 349

Replace it with an import to the Chat component:
import { Chat } from './pages/Chat.jsx'

5.	 Finally, replace the <Blog /> component in the main path in our router with the <Chat
/> component:

const router = createBrowserRouter([
  {
    path: '/',
    element: <Chat />,
  },

Starting and testing our chat app frontend

We can now start and test out our chat app frontend:

1.	 Run the frontend, as follows:

$ npm run dev

2.	 Run the backend, as follows (make sure Docker and the database container are running!):

$ cd backend/
$ npm run dev

3.	 Now go to http://localhost:5173/ and you should see the following interface:

Figure 14.2 – Socket connection waiting for user to be logged in

4.	 Log in (create a new user if you do not have one yet), and the socket should connect successfully:

Figure 14.3 – Socket connected after user is logged in

Creating a Frontend to Consume and Send Events350

Disconnecting socket on logout

You may have noticed that when pressing Logout, the socket stays connected. Let’s fix that now, by
disconnecting the socket when logging out:

1.	 Edit src/components/Header.jsx and import the useSocket hook:

import { useSocket } from '../contexts/SocketIOContext.jsx'

2.	 Get the socket from the useSocket hook, as follows:

export function Header() {
  const [token, setToken] = useAuth()
  const { socket } = useSocket()

3.	 Define a new handleLogout function, which disconnects the socket and resets the token:

  const handleLogout = () => {
    socket.disconnect()
    setToken(null)
  }

4.	 Lastly, set the onClick handler to the handleLogout function:

        <button onClick={handleLogout}>Logout</button>

Now, when you log out, the socket will be disconnected, as can be seen in the following screenshot:

Figure 14.4 – Socket disconnected after logging out

Now that the Socket.IO client is successfully integrated with our React frontend, we can continue by
implementing chat functionality in the frontend.

Implementing chat functionality
We are now going to implement functionality to send and receive messages in our chat app. First, we
are going to implement all the components that we need. Then, we are going to create a useChat
hook to implement the logic to interface with the socket connection and provide functions to send/
receive messages. Lastly, we are going to put it all together by creating a chat room.

Implementing chat functionality 351

Implementing the chat components

We are going to implement the following chat components:

•	 ChatMessage: To display chat messages

•	 EnterMessage: A field to enter new messages and a button to send them

Implementing the ChatMessage component

Let’s start by implementing the ChatMessage component:

1.	 Create a new src/components/ChatMessage.jsx file, which will render a chat message.

2.	 Import PropTypes and define a new function with username and message props:

import PropTypes from 'prop-types'

export function ChatMessage({ username, message }) {

3.	 Render the username in bold and the message next to it:

  return (
    <div>
      {username}: {message}
    </div>
  )
}

4.	 Define the prop types, as follows:

ChatMessage.propTypes = {
  username: PropTypes.string.isRequired,
  message: PropTypes.string.isRequired,
}

Implementing the EnterMessage component

Now, let’s create the EnterMessage component, which will allow users to send a new chat message:

1.	 Create a new src/components/EnterMessage.jsx file.

2.	 Import the useState hook and PropTypes:

import { useState } from 'react'
import PropTypes from 'prop-types'

3.	 Define a new EnterMessage component, which receives an onSend function as props:

export function EnterMessage({ onSend }) {

Creating a Frontend to Consume and Send Events352

4.	 We store the current state of the message entered:

  const [message, setMessage] = useState('')

5.	 Then, we define a function to handle sending the request and clearing the field afterward:

  function handleSend(e) {
    e.preventDefault()
    onSend(message)
    setMessage('')
  }

Reminder
Because we are submitting a form using a submit button, we need to call e.preventDefault()
to prevent the form from refreshing the page.

6.	 Render a form with an input field to enter the message and a button to send it:

  return (
    <form onSubmit={handleSend}>
      <input
        type='text'
        value={message}
        onChange={(e) => setMessage(e.target.value)}
      />
      <input type='submit' value='Send' />
    </form>
  )
}

7.	 Define the prop types, as follows:

EnterMessage.propTypes = {
  onSend: PropTypes.func.isRequired,
}

Implementing a useChat hook

To bundle all the logic together, we are going to implement a useChat hook, which is going to deal
with sending and receiving messages, as well as storing all current messages in a state hook. Follow
these steps to implement it:

1.	 Create a new src/hooks/ folder. Inside it, create a new src/hooks/useChat.js file.

Implementing chat functionality 353

2.	 Import the useState and useEffect hooks from React:

import { useState, useEffect } from 'react'

3.	 Import the useSocket hook from our context:

import { useSocket } from '../contexts/SocketIOContext.jsx'

4.	 Define a new useChat function, where we get the socket from the useSocket hook, and
define a state hook to store an array of messages:

export function useChat() {
  const { socket } = useSocket()
  const [messages, setMessages] = useState([])

5.	 Next, define a receiveMessage function, which appends a new message to the array:

  function receiveMessage(message) {
    setMessages((messages) => [...messages, message])
  }

6.	 Now, create an effect hook, in which we create a listener using socket.on:

  useEffect(() => {
    socket.on('chat.message', receiveMessage)

7.	 We need to make sure to remove the listener again using socket.off when the effect hook
unmounts, otherwise we might end up with multiple listeners when the component re-renders
or unmounts:

    return () => socket.off('chat.message', receiveMessage)
  }, [])

8.	 Now, receiving messages should work fine. Let’s move on to sending messages. To do this, we
create a sendMessage function, which uses socket.emit to send the message:

  function sendMessage(message) {
    socket.emit('chat.message', message)
  }

9.	 Lastly, return the messages array and the sendMessage function so that we can use them
in our components:

  return { messages, sendMessage }
}

Now that we have successfully implemented the useChat hook, let’s use it!

Creating a Frontend to Consume and Send Events354

Implementing the ChatRoom component

Finally, we can put it all together and implement a ChatRoom component. Follow these steps to
get started:

1.	 Create a new src/components/ChatRoom.jsx file.

2.	 Import the useChat hook and the EnterMessage and ChatMessage components:

import { useChat } from '../hooks/useChat.js'
import { EnterMessage } from './EnterMessage.jsx'
import { ChatMessage } from './ChatMessage.jsx'

3.	 Define a new component, which gets the messages array and the sendMessage function
from the useChat hook:

export function ChatRoom() {
  const { messages, sendMessage } = useChat()

4.	 Then, render the list of messages as ChatMessage components:

  return (
    <div>
      {messages.map((message, index) => (
        <ChatMessage key={index} {...message} />
      ))}

5.	 Next, render the EnterMessage component and pass the sendMessage function as the
onSend prop:

      <EnterMessage onSend={sendMessage} />
    </div>
  )
}

6.	 Edit src/pages/Chat.jsx and import the ChatRoom component and the useSocket hook:

import { ChatRoom } from '../components/ChatRoom.jsx'
import { useSocket } from '../contexts/SocketIOContext.jsx'

7.	 Get the status from the useSocket hook in the Chat page component:

export function Chat() {
  const { status } = useSocket()

Implementing chat functionality 355

8.	 If the status is connected, we show the ChatRoom component:

  return (
    <div style={{ padding: 8 }}>
      <Header />
      

      <hr />
      

      <Status />
      

      <hr />
      

      {status === 'connected' && <ChatRoom />}

9.	 Now, go to http://localhost:5173/ in your browser and log in with a username and
password. The socket connects and the chat room is rendered. Enter a chat message and send
it by pressing Return/Enter or by clicking the Send button. You will see that the message is
received and displayed!

10.	 Open a second browser window and log in with a second user. Send another message there. You
will see that the message is received by both users, as can be seen in the following screenshot:

Figure 14.5 – Sending and receiving messages from different users

Now that we have a basic chat app working, let’s explore how we could implement chat commands
using acknowledgments.

Creating a Frontend to Consume and Send Events356

Implementing chat commands with acknowledgments
In addition to sending and receiving messages, chat apps often offer a way to send commands to the
client and/or server. For example, we could send a /clear command to clear our local messages
list. Or we could send a /rooms command to get a list of rooms that we are in. Follow these steps
to implement chat commands:

1.	 Edit src/hooks/useChat.js and adjust the sendMessage function inside it. First,
let’s make it an async function:

  async function sendMessage(message) {

2.	 Replace the contents of the function with the following. We first check whether the message
starts with a slash (/). If so, then we get the command by removing the slash and use a
switch statement:

    if (message.startsWith('/')) {
      const command = message.substring(1)
      switch (command) {

3.	 For the clear command, we simply set the array of messages to an empty array:

        case 'clear':
          setMessages([])
          break

4.	 For the rooms command, we get the user info by using socket.emitWithAck and our
own socket.id:

        case 'rooms': {
          const userInfo = await socket.emitWithAck('user.info',
socket.id)

5.	 Then, we get the list of rooms, filtering out our own room (with the name of our socket.
id) that we automatically join in Socket.IO:

          const rooms = userInfo.rooms.filter((room) => room !==
socket.id)

6.	 We reuse the receiveMessage function to send a message from the server, telling us the
rooms that we are in:

          receiveMessage({
            message: `You are in: ${rooms.join(', ')}`,
          })
          break
        }

Implementing chat commands with acknowledgments 357

Note that we are not sending a username here, just a message. We will have to adapt the
ChatMessage component to accommodate that later.

7.	 If we receive any other command, we show an error message:

        default:
          receiveMessage({
            message: `Unknown command: ${command}`,
          })
          break
      }

8.	 Otherwise (if the message did not start with a slash), we simply emit the chat message, as before:

    } else {
      socket.emit('chat.message', message)
    }
  }

9.	 Finally, edit src/components/ChatMessage.jsx and adapt the component to render
a system message if no username was given:

export function ChatMessage({ username, message }) {
  return (
    <div>
      {username ? (
        
          {username}: {message}
        
      ) : (
        <i>{message}</i>
      )}
    </div>
  )
}

10.	 Do not forget to adjust PropTypes to make the username optional (by removing .isRequired
from the username prop):

ChatMessage.propTypes = {
  username: PropTypes.string,

Creating a Frontend to Consume and Send Events358

11.	 Go to http://localhost:5173/ in your browser and try sending a couple messages.
Then, type /clear and you will see all messages were cleared. Next, type /rooms to get the
list of rooms that you are in, as you can see in the following screenshot:

Figure 14.6 – Sending the /rooms command

Note
Joining different rooms currently does not work due to the query parameter getting cleared
after logging in. In the next chapter, we are going to refactor the chat app and implement a /
join command to join a different room.

Summary
In this chapter, we implemented a frontend for our chat app backend. We started by integrating the Socket.
IO client with React by making a context and a custom hook for it. Then, we used AuthProvider to
get the token to authenticate a user when connecting to the socket. After that, we displayed the status
of our socket. Then, we implemented a chat app interface to send and receive messages. Finally, we
implemented chat commands by using acknowledgments to get the rooms that we are in.

In the next chapter, Chapter 15, Adding Persistence to Socket.IO Using MongoDB, we are going to learn
how to store and replay previously sent messages using MongoDB with Socket.IO.

15
Adding Persistence to

Socket.IO Using MongoDB

Now that we have implemented a Socket.IO backend and frontend, let’s spend some time integrating
it with the MongoDB database by temporarily storing messages in the database and replaying them
when a new user joins, so that users can see the chat history after they join. Additionally, we will
refactor our chat app to be ready for future expansions and maintenance. Finally, we will test out the
new structure by implementing new commands to join and switch rooms.

In this chapter, we are going to cover the following main topics:

•	 Storing and replaying messages using MongoDB

•	 Refactoring the app to be more extensible

•	 Implementing commands to join and switch rooms

Technical requirements
Before we start, please install all requirements from Chapter 1, Preparing for Full Stack Development,
and Chapter 2, Getting to Know Node.js and MongoDB.

The versions listed in those chapters are the ones used in the book. While installing a newer version
should not be an issue, please note that certain steps might work differently on a newer version. If
you are having an issue with the code and steps provided in this book, please try using the versions
mentioned in Chapters 1 and 2.

You can find the code for this chapter on GitHub: https://github.com/PacktPublishing/
Modern-Full-Stack-React-Projects/tree/main/ch15.

If you cloned the full repository for the book, Husky may not find the .git directory when running
npm install. In that case, just run git init in the root of the corresponding chapter folder.

The CiA video for this chapter can be found at: https://youtu.be/Mi7Wj_jxjhM.

https://github.com/PacktPublishing/Modern-Full-Stack-React-Projects/tree/main/ch15
https://github.com/PacktPublishing/Modern-Full-Stack-React-Projects/tree/main/ch15
https://youtu.be/Mi7Wj_jxjhM

Adding Persistence to Socket.IO Using MongoDB360

Storing and replaying messages using MongoDB
Currently, if a new user joins the chat, they will not see any messages until someone actively sends
messages. As such, new users will not be able to participate well in ongoing discussions. To solve this
issue, we can store messages in the database and replay them when a user joins.

Creating the Mongoose schema

Follow these steps to create a Mongoose schema for storing chat messages:

1.	 Copy the existing ch14 folder to a new ch15 folder, as follows:

$ cp -R ch14 ch15

2.	 Open the new ch15 folder in VS Code.

3.	 Create a new backend/src/db/models/message.js file.

4.	 Inside it, define a new messageSchema, which we are going to use to store chat messages
in the database:

import mongoose, { Schema } from 'mongoose'

const messageSchema = new Schema({

5.	 The message schema should contain username (person who sent the message), message,
a room that it was sent in, and a sent date for when the message was sent:

  username: { type: String, required: true },
  message: { type: String, required: true },
  room: { type: String, required: true },
  sent: { type: Date, expires: 5 * 60, default: Date.now,
required: true },
})

For the sent date, we specify expires to make the messages automatically expire after 5
minutes (5 * 60 seconds). This ensures that our database does not get cluttered with lots
of chat messages. We also set the default value to Date.now so that all messages are by
default tagged as being sent at the current time.

Info
MongoDB only actually checks for data expiration once a minute, so the expired documents
might persist for up to a minute past their defined expiration time.

Storing and replaying messages using MongoDB 361

6.	 Create a model from the schema and export it:

export const Message = mongoose.model('message', messageSchema)

After creating the Mongoose schema and model, let’s move on to creating the service functions for
dealing with chat messages.

Creating the service functions

We need to create service functions to save a new message in the database and to get all messages
sent in a given room, sorted by sent date, showing the oldest messages first. Follow these steps to
implement the service functions:

1.	 Create a new backend/src/services/messages.js file.

2.	 Inside it, import the Message model:

import { Message } from '../db/models/message.js'

3.	 Then, define a function to create a new Message object in the database:

export async function createMessage({ username, message, room })
{
  const messageDoc = new Message({ username, message, room })
  return await messageDoc.save()
}

4.	 Also, define a function to get all messages from a certain room, listing the oldest messages first:

export async function getMessagesByRoom(room) {
  return await Message.find({ room }).sort({ sent: 1 })
}

Next, we are going to use these service functions in our chat server.

Storing and replaying messages

Now that we have all the functions, we need to implement storing and replaying messages in our chat
server. Follow these steps to implement the functionality:

1.	 Edit backend/src/socket.js and import the service functions we defined earlier:

import { createMessage, getMessagesByRoom } from './services/
messages.js'

Adding Persistence to Socket.IO Using MongoDB362

2.	 When a new user connects, get all messages from the current room, and send (replay) them
to the user using socket.emit:

export function handleSocket(io) {
  io.on('connection', async (socket) => {
    const room = socket.handshake.query?.room ?? 'public'
    socket.join(room)
    console.log(socket.id, 'joined room:', room)

    const messages = await getMessagesByRoom(room)
    messages.forEach(({ username, message }) =>
      socket.emit('chat.message', { username, message }),
    )

3.	 Additionally, when a user sends a message, store it in the database:

    socket.on('chat.message', (message) => {
      console.log(`${socket.id}: ${message}`)
      io.to(room).emit('chat.message', {
        username: socket.user.username,
        message,
      })
      createMessage({ username: socket.user.username, message,
room })
    })

4.	 Start the frontend server as follows:

$ npm run dev

5.	 Then, start the backend server (do not forget to start the Docker container for the database!):

$ cd backend/
$ npm run dev

6.	 Go to http://localhost:5173/, log in and send some messages. Then, open a new tab,
log in with a different user, and you will see the messages sent earlier get replayed:

Storing and replaying messages using MongoDB 363

Figure 15.1 – Successfully replaying stored messages

Note
The screenshot in Figure 15.1 is from a later version of the app, where we show messages when
a user joins a room (we are going to implement these messages later in this chapter). Here, we
use these messages to show that replaying works when the user joins after a message was sent.

If you wait 5 minutes and then join the chat again, you will see that the existing messages have expired
and are not replayed anymore.

Now, let’s make it clearer which messages were replayed in the user interface.

Visually distinguishing replayed messages

Currently, it looks like the other user sent the message right after we joined. It is not clear that the
message was replayed from the server. To solve this issue, we can visually distinguish replayed messages
by, for example, making them slightly grayer. Let’s do that now, as follows:

1.	 Edit backend/src/socket.js and add a replayed flag to the replayed messages:

    const messages = await getMessagesByRoom(room)
    messages.forEach(({ username, message }) =>
      socket.emit('chat.message', { username, message, replayed:
true }),
    )

Adding Persistence to Socket.IO Using MongoDB364

2.	 Now, edit src/components/ChatMessage.jsx, and if the replayed flag was set,
display the messages with a lower opacity:

export function ChatMessage({ username, message, replayed }) {
  return (
    <div style={{ opacity: replayed ? 0.5 : 1.0 }}>

3.	 Do not forget to update propTypes and add the replayed flag:

ChatMessage.propTypes = {
  username: PropTypes.string,
  message: PropTypes.string.isRequired,
  replayed: PropTypes.bool,
}

4.	 Go to http://localhost:5173/ again and repeat the same procedure (sending messages
from one user, then logging in with a different user in another tab), and you will see that replayed
messages are now easy to distinguish from new messages:

Figure 15.2 – Replayed messages are now displayed in a lighter color

Now that we have successfully stored our message history in the database, let’s focus a bit on refactoring
the chat app to make it more extensible and maintainable in the future.

Refactoring the app to be more extensible 365

Refactoring the app to be more extensible
For the refactoring, we will start by defining service functions for all chat functionality that our
server provides.

Defining service functions

Follow these steps to get started defining service functions for the chat functionality:

1.	 Create a new backend/src/services/chat.js file.

2.	 Inside it, import the service functions related to messages:

import { createMessage, getMessagesByRoom } from './messages.js'

3.	 Define a new function to send a private message directly to a user:

export function sendPrivateMessage(
  socket,
  { username, room, message, replayed },
) {
  socket.emit('chat.message', { username, message, room,
replayed })
}

Private messages will be used to, for example, replay messages to a specific user, and are not
stored in the database.

4.	 Also, define a function to send a system message:

export function sendSystemMessage(io, { room, message }) {
  io.to(room).emit('chat.message', { message, room })
}

System messages will be used to, for example, announce that a user joined a room. We also do
not want to store these in the database.

5.	 Then, define a function to send a public message:

export function sendPublicMessage(io, { username, room, message
}) {
  io.to(room).emit('chat.message', { username, message, room })
  createMessage({ username, message, room })
}

Public messages will be used to send regular chat messages to a room. These messages are
stored in the database so that we can replay them later.

Adding Persistence to Socket.IO Using MongoDB366

6.	 We also define a new function to join a given socket to a room:

export async function joinRoom(io, socket, { room }) {
  socket.join(room)

7.	 Inside this function, send a system message telling everyone in the room that someone joined:

  sendSystemMessage(io, {
    room,
    message: `User "${socket.user.username}" joined room
"${room}"`,
  })

8.	 Then, replay all messages that were sent to the room privately to the user that just joined it:

  const messages = await getMessagesByRoom(room)
  messages.forEach(({ username, message }) =>
    sendPrivateMessage(socket, { username, message, room,
replayed: true })
  )
}

9.	 Lastly, define a service function to get the user info from the socketId. We simply copy and
paste the code we have previously had in backend/src/socket.js here:

export async function getUserInfoBySocketId(io, socketId) {
  const sockets = await io.in(socketId).fetchSockets()
  if (sockets.length === 0) return null
  const socket = sockets[0]
  const userInfo = {
    socketId,
    rooms: Array.from(socket.rooms),
    user: socket.user,
  }
  return userInfo
}

Now that we have created the service functions for the chat functionality, let’s use them in the
Socket.IO server.

Refactoring the app to be more extensible 367

Refactoring the Socket.IO server to use the service functions

Now that we have defined service functions, let’s refactor the chat server code to use them. Follow
these steps to do so:

1.	 Open backend/src/socket.js and find the following import:

import { createMessage, getMessagesByRoom } from './services/
messages.js'

Replace the preceding import with the following import to the new chat service functions:
import {
  joinRoom,
  sendPublicMessage,
  getUserInfoBySocketId,
} from './services/chat.js'

2.	 Replace the whole handleSocket function with the following new code. When a connection
is made, we automatically join the public room using the joinRoom service function:

export function handleSocket(io) {
  io.on('connection', (socket) => {
    joinRoom(io, socket, { room: 'public' })

3.	 Then, define a listener for the chat.message event and send it to the given room by using
the sendPublicMessage service function:

    socket.on('chat.message', (room, message) =>
      sendPublicMessage(io, { username: socket.user.username,
room, message }),
    )

Note
We changed the signature of the chat.message event to require passing a room now, so
that we can implement a better way to deal with multiple rooms later. Later, we need to make
sure to adjust the client code to accommodate this.

4.	 Next, define a listener for the user.info event, in which we use the async service function
getUserInfoBySocketId and return the result of it in callback to turn this event
into an acknowledgment:

    socket.on('user.info', async (socketId, callback) =>
      callback(await getUserInfoBySocketId(io, socketId)),
    )
  })

Adding Persistence to Socket.IO Using MongoDB368

5.	 Finally, we can re-use the authentication middleware from before:

  io.use((socket, next) => {
    if (!socket.handshake.auth?.token) {
      return next(new Error('Authentication failed: no token
provided'))
    }
    jwt.verify(
      socket.handshake.auth.token,
      process.env.JWT_SECRET,
      async (err, decodedToken) => {
        if (err) {
          return next(new Error('Authentication failed: invalid
token'))
        }
        socket.auth = decodedToken
        socket.user = await getUserInfoById(socket.auth.sub)
        return next()
      },
    )
  })
}

Now that our chat server is refactored, let’s continue with refactoring the client-side code.

Refactoring the client-side code

Now that our server-side code uses service functions to encapsulate the functionality of the chat app,
let’s do a similar refactoring of the client-side code by extracting client-side commands into separate
functions, as follows:

1.	 Edit src/hooks/useChat.js and within the useChat hook, define a new function to
clear the messages:

  function clearMessages() {
    setMessages([])
  }

2.	 Then, define an async function to get all rooms that the user is in:

  async function getRooms() {
    const userInfo = await socket.emitWithAck('user.info',
socket.id)
    const rooms = userInfo.rooms.filter((room) => room !==
socket.id)

Refactoring the app to be more extensible 369

    return rooms
  }

3.	 We can now use these functions in the sendMessage function, as follows:

  async function sendMessage(message) {
    if (message.startsWith('/')) {
      const command = message.substring(1)
      switch (command) {
        case 'clear':
          clearMessages()
          break
        case 'rooms': {
          const rooms = await getRooms()
          receiveMessage({
            message: `You are in: ${rooms.join(', ')}`,
          })
          break
        }

4.	 Lastly, we adjust the chat.message event to send room in addition to message. For now,
we always send messages to the 'public' room:

        default:
          receiveMessage({
            message: `Unknown command: ${command}`,
          })
          break
      }
    } else {
      socket.emit('chat.message', 'public', message)
    }
  }

In the next section, we will expand this to be able to switch between different rooms.

5.	 Go to http://localhost:5173/ and verify that the chat app still works the same way
as before.

Now that we have successfully refactored our chat app to be more extensible, let’s test out the flexibility
of the new structure by implementing new commands to join and switch rooms.

Adding Persistence to Socket.IO Using MongoDB370

Implementing commands to join and switch rooms
Let’s now test out the new structure by implementing commands to join and switch rooms on the
chat app, as follows:

1.	 Edit backend/src/socket.js and define a new listener below the chat.message
listener, which will call the joinRoom service function when we receive a chat.join event
from the client:

    socket.on('chat.join', (room) => joinRoom(io, socket, { room
}))

As we can see, having a joinRoom service function makes it really simple to reuse the code to
join a new room here. It already sends a system message telling everyone that someone joined
the room, just like it does when the user joins the public room by default upon connection.

2.	 Edit src/components/ChatMessage.jsx and display room:

export function ChatMessage({ room, username, message, replayed
}) {
  return (
    <div style={{ opacity: replayed ? 0.5 : 1.0 }}>
      {username ? (
        
          <code>[{room}]</code> {username}: {message}
        

3.	 Add the room prop to the propTypes definition:

ChatMessage.propTypes = {
  username: PropTypes.string,
  message: PropTypes.string.isRequired,
  replayed: PropTypes.bool,
  room: PropTypes.string,
}

4.	 Now, edit src/hooks/useChat.js and define a state hook to store the room we are
currently in:

export function useChat() {
  const { socket } = useSocket()
  const [messages, setMessages] = useState([])
  const [currentRoom, setCurrentRoom] = useState('public')

By default, we are in the public room.

Implementing commands to join and switch rooms 371

5.	 Define a new function to switch rooms:

  function switchRoom(room) {
    setCurrentRoom(room)
  }

At the moment, we are only calling setCurrentRoom here, but we might want to extend
this function later, so it is good practice to abstract it in advance into a separate function.

6.	 Define a new function to join a room by sending the chat.join event and switching the
current room:

  function joinRoom(room) {
    socket.emit('chat.join', room)
    switchRoom(room)
  }

7.	 Change the sendMessage function to accept arguments for commands, as follows:

  async function sendMessage(message) {
    if (message.startsWith('/')) {
      const [command, ...args] = message.substring(1).split(' ')
      switch (command) {

We can now send commands such as /join <room-name> and the room name will be
stored in args[0].

8.	 Define a new command to join a room, in which we first check whether arguments were passed
to the command:

        case 'join': {
          if (args.length === 0) {
            return receiveMessage({
              message: 'Please provide a room name: /join
<room>',
            })
          }

9.	 Then, we ensure that we have not already joined the room by using the getRooms function:

          const room = args[0]
          const rooms = await getRooms()
          if (rooms.includes(room)) {
            return receiveMessage({
              message: `You are already in room "${room}".`,
            })
          }

Adding Persistence to Socket.IO Using MongoDB372

10.	 Finally, we can join the room by using the joinRoom function:

          joinRoom(room)
          break
        }

11.	 Similarly, we can implement the /switch command as follows:

        case 'switch': {
          if (args.length === 0) {
            return receiveMessage({
              message: 'Please provide a room name: /switch
<room>',
            })
          }
          const room = args[0]
          const rooms = await getRooms()
          if (!rooms.includes(room)) {
            return receiveMessage({
              message: `You are not in room "${room}". Type "/
join ${room}" to join it first.`,
            })
          }
          switchRoom(room)
          receiveMessage({
            message: `Switched to room "${room}".`,
          })
          break
        }

In this case, we are checking whether the user is in the room already. If not, we tell them that
they must join the room first before switching to it.

12.	 Adjust the chat.message event to send to the currentRoom, as follows:

    } else {
      socket.emit('chat.message', currentRoom, message)
    }

13.	 Go to http://localhost:5173/, send a message to the public room, then join the react
room by executing the /join react command. Send a different message to that room.

14.	 Open another browser window, log in with a different user, and you will see that the first
message from the public room gets replayed. However, we do not see the message from the
react room, because we have not joined it yet!

Summary 373

15.	 Now, in the second browser window, call /join react as well. You will see that the second
message gets replayed now.

16.	 Try using /switch public to switch back to the public room and send another message
there. You will see that both clients receive it because they are both in the public room.

The result of these actions can be seen in the following screenshot:

Figure 15.3 – Chatting in different rooms

Summary
In this chapter, we first connected our chat app to the database by storing messages in MongoDB. We
also learned how to make documents expire after a certain amount of time. Then, we implemented
functionality to replay messages when a new user joins the chat. Next, we spent some time refactoring
the chat app to make it more extensible and maintainable in the future. Finally, we implemented ways
to join new rooms and switch between rooms.

Up until now, we have only been using libraries to develop our apps. In the next chapter, Chapter 16,
Getting Started with Next.js, we will learn how to use a full-stack React framework for developing
apps. Frameworks, such as Next.js, provide more structure for our apps and offer us a lot of features,
such as server-side rendering, out of the box.

Part 5:
Advancing to Enterprise-Ready

Full-Stack Applications

In this part, we will introduce Next.js as an enterprise-ready full-stack application framework. We
will learn how it works and what its advantages are over using React alone. Then, we will create an
app using Next.js and the new App Router paradigm. After that, we will introduce React Server
Components and Server Actions as a way to directly interface with the database, without requiring a
REST or GraphQL API. Then, we will dive deeper into the Next.js framework and learn about caching,
API routes, adding metadata, and how to optimally load images and fonts. Next, we will learn how
to deploy a Next.js app using Vercel and a custom deployment setup using Docker. Finally, we give
an overview and briefly cover various advanced topics in full-stack development that have not been
covered in this book yet. This includes concepts such as maintaining large-scale projects, optimizing
the bundle size, an overview of UI libraries, and advanced state management solutions.

This part includes the following chapters:

•	 Chapter 16, Getting Started with Next.js

•	 Chapter 17, Introducing React Server Components

•	 Chapter 18, Advanced Next.js Concepts and Optimizations

•	 Chapter 19, Deploying a Next.js App

•	 Chapter 20, Diving Deeper into Full-Stack Development

16
Getting Started with Next.js

Up until now, we have been using various libraries and tools to develop full-stack web applications.
Now, we introduce Next.js as an enterprise-ready full-stack web application framework for React.
Next.js combines all the functions and tools you need for full-stack web development in one package.
In this book, we use Next.js because it is currently the most popular framework supporting all new
React features, such as React Server Components and Server Actions, which are the future of full-stack
React development. However, there are other frameworks for full-stack React, such as Remix, which
have recently also started supporting the new React features.

In this chapter, we will learn how Next.js works and what its advantages are. Then, we will re-create
our blog project in Next.js to highlight the differences between using a simple bundler such as Vite,
and a full framework such as Next.js. Along the way, we will learn how the Next.js App Router works.
Finally, we are going to re-create our (static) blog app by creating components and pages and then
defining links between them.

In this chapter, we are going to cover the following main topics:

•	 What is Next.js?

•	 Setting up Next.js

•	 Introducing the App Router

•	 Creating static components and pages

Getting Started with Next.js378

Technical requirements
Before we start, please install all the requirements from Chapter 1, Preparing for Full-Stack Development,
and Chapter 2, Getting to Know Node.js and MongoDB.

The versions listed in those chapters are the ones used in the book. While installing a newer version
should not be an issue, please note that certain steps might work differently on a newer version. If
you are having an issue with the code and steps provided in this book, please try using the versions
mentioned in Chapters 1 and 2.

You can find the code for this chapter on GitHub: https://github.com/PacktPublishing/
Modern-Full-Stack-React-Projects/tree/main/ch16.

The CiA video for this chapter can be found at: https://youtu.be/jQFCZqCspoc.

What is Next.js?
Next.js is a React framework that puts together everything you need to create a full-stack web application
with React. Its main features are as follows:

•	 Good developer experience out of the box, including hot module reloading, error handling,
and more.

•	 File-based routing and nested layouts, route handlers to define API endpoints, all from Next.js.

•	 Internationalization (i18n) support in routing, allowing us to create internationalized routes.

•	 Enhanced server-side and client-side data fetching with caching out of the box.

•	 Middleware to run code before requests are completed.

•	 Options to run API endpoints on serverless runtimes.

•	 Out-of-the-box support for static generation of pages.

•	 Dynamic streaming of components when they are needed, allowing us to show an initial page
quickly, and then load other components later.

•	 Advanced client and server rendering, allowing us to not only render React components on
the server side (server-side rendering (SSR)) but also make use of React Server Components,
which allow us to render React components exclusively on the server without sending additional
JavaScript to the client.

•	 Server Actions to progressively enhance forms and actions sent from the client to the server,
allowing us to submit forms even without JavaScript on the client.

•	 Built-in optimizations for images, fonts, and scripts to improve Core Web Vitals.

•	 Additionally, Next.js provides a platform to easily deploy our apps on – Vercel.

https://github.com/PacktPublishing/Modern-Full-Stack-React-Projects/tree/main/ch16
https://github.com/PacktPublishing/Modern-Full-Stack-React-Projects/tree/main/ch16
https://youtu.be/jQFCZqCspoc

Setting up Next.js 379

All in all, Next.js puts together everything we have learned about full-stack development throughout
this book, refines each concept and makes it more advanced and customizable, and provides all of
that in one single package. We are now going to re-create the blog application from earlier chapters,
but from scratch with Next.js. Doing so will allow us to see the differences between developing an
app with and without a full-stack framework.

Setting up Next.js
We are now going to set up a new project using the create-next-app tool, which sets up everything
automatically for us. Follow these steps to get started:

1.	 Open a new Terminal window. Make sure you are outside of any project folders. Run the
following command to create a new folder and initialize a Next.js project there:

$ npx create-next-app@14.1.0

2.	 When asked if it’s Ok to proceed?, press y and confirm by pressing Return/Enter.

3.	 Give the project a name, such as ch16.

4.	 Answer the questions as follows:

	� Would you like to use TypeScript?: No

	� Would you like to use ESLint?: Yes

	� Would you like to use Tailwind CSS?: No

	� Would you like to use `src/` directory?: Yes

	� Would you like to use App Router?: Yes

	� Would you like to customize the default import alias?: No

5.	 After answering all the questions, a new Next.js app will be created in the ch16 folder. The
output should look as follows:

Getting Started with Next.js380

Figure 16.1 – Creating a new Next.js project

6.	 Open the newly created ch16 folder in VS Code.

7.	 In the new VS Code window, open a Terminal and run the project with the following command:

$ npm run dev

8.	 Open http://localhost:3000 in your browser to see the Next.js app running! The app
should look as follows:

Setting up Next.js 381

Figure 16.2 – Our newly created Next.js app running in the browser

9.	 Unfortunately, create-next-app does not set up Prettier for us, so let’s quickly do that
now. Install Prettier by running the following command:

$ npm install --save-dev prettier@2.8.4 \
  eslint-config-prettier@8.6.0

10.	 Create a new .prettierrc.json file in the root of the project, with the following contents:

{
  "trailingComma": "all",
  "tabWidth": 2,
  "printWidth": 80,
  "semi": false,
  "jsxSingleQuote": true,
  "singleQuote": true
}

Getting Started with Next.js382

11.	 Edit the existing .eslintrc.json to extend from prettier, as follows:

{
  "extends": ["next/core-web-vitals", "prettier"]
}

12.	 Go to the VS Code workspace settings, change the Editor: Default Formatter setting to Prettier,
and check the checkbox for Editor: Format On Save.

Now we have successfully created a new Next.js project with ESLint and Prettier! We could still set
up Husky and lint-staged, just like we have done before, but for now, we are going to stick with this
simple setup. Next, we are going to learn more about how apps are structured in Next.js.

Introducing the App Router
Next.js comes with a special paradigm for structuring applications called the App Router. The App
Router makes use of the folder structure in the src/app/ folder to create routes for our apps. The
root folder (/ path) is src/app/. If we want to define a path, such as /posts, we need to create a
src/app/posts/ folder. To make this folder a valid route, we need to put a page.js file inside
it, which contains the page component that will be rendered when visiting that route.

Note
Alternatively, we can put a route.js file into a folder to turn it into an API route instead of
rendering a page. We are going to learn more about API routes in Chapter 18, Advanced Next.
js Concepts and Optimizations.

Additionally, Next.js allows us to define a layout.js file, which will be used as the layout for a
certain path. The layout component accepts children, which can contain other layouts or pages. This
flexibility allows us to define nested routes with sub-layouts.

There are other special files in the App Router paradigm, such as the error.js file, which will be
rendered when there is an error on the page, and the loading.js file, which will be rendered while
the page is loading (using React Suspense).

Introducing the App Router 383

Take a look at the following example of a folder structure with the App Router:

Figure 16.3 – Example of a folder structure with the App Router

In the preceding example, we have a dashboard/settings/ route, defined by the dashboard and
settings folders. The dashboard folder does not have a page.js file, so going to dashboard/
will result in a 404 Not Found error. However, the dashboard folder has a layout.js file,
which defines the main layout of the dashboard. The settings folder has another layout.
js file, which defines the layout of the settings page on the dashboard. It also has a page.js file,
which will be rendered when the dashboard/settings/ route is visited. Additionally, it has a
loading.js file, which is rendered inside the settings layout, while the settings page is loading.
It also contains an error.js file, which is rendered inside the settings layout if there is an error
while loading the settings page.

As we can see, the App Router makes it easy to implement common use cases, such as nested routes,
layouts, errors, and loading components. Let’s now get started with defining the folder structure for
our blog app.

Getting Started with Next.js384

Defining the folder structure

Let’s recap and refine the routing structure of the blog application from previous chapters:

•	 / – the index page of our blog, containing a list of posts

•	 /login – the login page to login to an existing account

•	 /signup – the signup page to create a new account

•	 /create – a page to create a new blog post (this route is new)

•	 /posts/:id – a page to view a single blog post

All of these pages share a common layout with a navigation bar at the top, allowing us to navigate
between the various pages of our app.

Let’s now create this routing structure as a folder structure in the App Router:

1.	 Delete the existing src/app/ folder.

2.	 Create a new src/app/ folder. Inside it, create a src/app/layout.js file with the
following contents:

export const metadata = {
  title: 'Full-Stack Next.js Blog',
  description: 'A blog about React and Next.js',
}

export default function RootLayout({ children }) {
  return (
    <html lang="en">
      <body>
        <main>{children}</main>
      </body>
    </html>
  )
}

The metadata object is a special exported object in Next.js used to provide meta tags, such
as the <title> and <meta name="description"> tags.

The default export of files in the App Router needs to be the component that should be rendered
for the respective layout/page.

3.	 Create a new src/app/page.js file, with the following placeholder contents:

export default function HomePage() {
  return Blog home page
}

Introducing the App Router 385

4.	 Create a new src/app/login/ folder. Inside it, create a src/app/login/page.js
file with the following placeholder contents:

export default function LoginPage() {
  return Login
}

5.	 Create a new src/app/signup/ folder. Inside it, create a src/app/signup/page.
js file with the following placeholder contents:

export default function SignupPage() {
  return Signup
}

6.	 Create a new src/app/create/ folder. Inside it, create a src/app/create/page.
js file with the following placeholder contents:

export default function CreatePostPage() {
  return CreatePost
}

7.	 Create a new src/app/posts/ folder. Inside it, create a new src/app/posts/[id]/
folder. This is a special folder containing a route parameter id, which we can use when
rendering the page.

8.	 Create a new src/app/posts/[id]/page.js file with the following placeholder contents:

export default function ViewPostPage({ params }) {
  return ViewPost {params.id}
}

As you can see, we are getting the id from the params object provided by Next.js.

9.	 If it’s not running anymore, start the Next.js dev server with the following command:

$ npm run dev

10.	 Then go to http://localhost:3000/ (or refresh the page) in your browser to see the
main route working. Go to the different routes, such as /login and /posts/123, to see
the different pages being rendered and the route param working!

Now that we defined the folder structure for our project, let’s continue by creating static components
and pages.

Getting Started with Next.js386

Creating static components and pages
For the components in our blog, we can reuse a lot of the code we wrote in previous chapters, as it
is not that much different in Next.js than it is in plain React. Only specific components, such as the
navigation bar, will be different, because Next.js has its own router. We are going to create most of our
components in a separate src/components/ folder. This folder will only contain React components
that can be reused across multiple pages. All page and layout components will still be in src/app/.

Note
In Next.js, it is also possible to co-locate regular components with the page and layout
components, which should be done in large-scale projects for components that are only used
on those specific pages. In small projects, it does not really matter as much, and we can just
put all our regular components in a separate folder to make them easier to distinguish from
page and layout components.

Defining components

Let’s now get started with creating the components for our blog app:

1.	 Create a new src/components/ folder.

2.	 Create a new src/components/Login.jsx file. Inside it, define a <form> with a
username field, a password field, and a submit button:

export function Login() {
  return (
    <form>
      <div>
        <label htmlFor='username'>Username: </label>
        <input type='text' name='username' id='username' />
      </div>
      

      <div>
        <label htmlFor='password'>Password: </label>
        <input type='password' name='password' id='password' />
      </div>
      

      <input type='submit' value='Log In' />
    </form>
  )
}

Creating static components and pages 387

Note
We use uncontrolled input fields (so, no useState hooks) here on purpose, as it is not
necessary to make controlled input fields for submitting forms with Server Actions, which we
are going to learn about in the next chapter, Chapter 17, Introducing React Server Components.
However, it is important to properly define the name property of input fields, as that is what
will be used to identify the field when the form is submitted.

3.	 In a similar fashion, create a new src/components/Signup.jsx file and define a form
with the same fields:

export function Signup() {
  return (
    <form>
      <div>
        <label htmlFor='username'>Username: </label>
        <input type='text' name='username' id='username' />
      </div>
      

      <div>
        <label htmlFor='password'>Password: </label>
        <input type='password' name='password' id='password' />
      </div>
      

      <input type='submit' value='Sign Up' />
    </form>
  )
}

4.	 Create a new src/components/CreatePost.jsx file and define a form with a required
title input field, a textarea to define the contents, and a submit button:

export function CreatePost() {
  return (
    <form>
      <div>
        <label htmlFor='title'>Title: </label>
        <input type='text' name='title' id='title' required />
      </div>
      

      <textarea name='contents' id='contents' />
      

      

      <input type='submit' value='Create' />
    </form>

Getting Started with Next.js388

  )
}

5.	 Create a new src/components/Post.jsx file. As an improvement over the structure
from previous chapters, the Post component will be used in the PostList, and only show
the title and author of a blog post, with a link to the full post:

import PropTypes from 'prop-types'

export function Post({ _id, title, author }) {
  return (
    <article>
      <h3>{title}</h3>
      
        Written by {author.username}
      
    </article>
  )
}

6.	 We also need to define propTypes. In this case, we will use a structure similar to the result
from a database query, as we will be able to directly use database results when we introduce
React Server Components in the next chapter:

Post.propTypes = {
  _id: PropTypes.string.isRequired,
  title: PropTypes.string.isRequired,
  author: PropTypes.shape({
    username: PropTypes.string.isRequired,
  }).isRequired,
  contents: PropTypes.string,
}

7.	 Create a new src/components/PostList.jsx file. Here, we are going to reuse the
propTypes from the Post component, so let’s also import the Post component:

import { Fragment } from 'react'
import PropTypes from 'prop-types'
import { Post } from './Post.jsx'

8.	 Then, we define the PostList component, which renders each blog post with the
Post component:

export function PostList({ posts = [] }) {
  return (
    <div>

Creating static components and pages 389

      {posts.map((post) => (
        <Fragment key={`post-${post._id}`}>
          <Post _id={post._id} title={post.title} author={post.
author} />
          <hr />
        </Fragment>
      ))}
    </div>
  )
}

Note
It is best practice to use a unique ID for the key prop, such as a database ID, so that React can
keep track of items changing in a list.

9.	 We now define the propTypes for the PostList component by making use of the
existing Post.propTypes:

PostList.propTypes = {
  posts: PropTypes.arrayOf(
    PropTypes.shape(Post.propTypes)
  ).isRequired,
}

10.	 Lastly, we create a new src/components/FullPost.jsx file, in which we display the
full post with all its contents:

import PropTypes from 'prop-types'

export function FullPost({ title, contents, author }) {
  return (
    <article>
      <h3>{title}</h3>
      <div>{contents}</div>
      

      
        Written by {author.username}
      
    </article>
  )
}

Getting Started with Next.js390

11.	 Instead of reusing propTypes from the Post component, we are redefining them here,
because the FullPost component needs different props than the Post component (it does
not have the _id prop, but instead has the contents prop):

FullPost.propTypes = {
  title: PropTypes.string.isRequired,
  author: PropTypes.shape({
    username: PropTypes.string.isRequired,
  }).isRequired,
  contents: PropTypes.string,
}

Now that we have defined all the components we are going to need for our blog app, let’s move on to
properly defining the page components.

Defining pages

After creating various components that we are going to need for our blog app, let’s now replace the
placeholder page components with proper pages that render the appropriate components. Follow
these steps to get started:

1.	 Edit src/app/login/page.js and import the Login component, then render it:

import { Login } from '@/components/Login'

export default function LoginPage() {
  return <Login />
}

Note
Remember when we set up Next.js and were asked if we wanted to customize the default
import alias? This import alias allows us to reference the src/ folder of our project, making
our imports absolute rather than relative. By default, this is done using the @ alias. So, we can
now just import from @/components/Login to import from the src/components/
Login.jsx file, instead of having to import from ../../components/Login.jsx.
Absolute imports with import aliases become especially useful in large projects and make it
easy to re-structure projects later.

2.	 Edit src/app/signup/page.js and, in a similar fashion, import and render the
Signup component:

import { Signup } from '@/components/Signup'

export default function SignupPage() {

Creating static components and pages 391

  return <Signup />
}

3.	 Repeat the process by editing the src/app/create/page.js file as follows:

import { CreatePost } from '@/components/CreatePost'

export default function CreatePostPage() {
  return <CreatePost />
}

4.	 Now, edit the src/app/posts/[id]/page.js file and import the FullPost component:

import { FullPost } from '@/components/FullPost'

5.	 Then, define a sample post object:

export default function ViewPostPage({ params }) {
  const post = {
    title: `Hello Next.js (${params.id})`,
    contents: 'This will be fetched from the database later',
    author: { username: 'Daniel Bugl' },
  }

To show that the param still works, we also put the id into the title.

6.	 Render the FullPost component, as follows:

  return (
    <FullPost
      title={post.title}
      contents={post.contents}
      author={post.author}
    />
  )
}

7.	 Lastly, edit src/app/page.js by importing the PostList component, creating an
example posts array, and rendering the PostList component:

import { PostList } from '@/components/PostList'

export default function HomePage() {
  const posts = [
    { _id: '123', title: 'Hello Next.js', author: { username:
'Daniel Bugl' } },
  ]

Getting Started with Next.js392

  return <PostList posts={posts} />
}

8.	 Go to http://localhost:3000/posts/123 to see the FullPost component being
rendered with the id param in the title. Feel free to change the id in the URL to see how the
title changes. The following screenshot shows the FullPost component being rendered on
the /posts/123 path:

Figure 16.4 – Rendering the FullPost component with a Next.js route param in the title

After successfully defining all our pages, we still need a way to navigate between them, so let’s continue
by adding links between pages.

Adding links between pages

As mentioned earlier in this chapter, Next.js provides its own routing solution – the App Router. The
routes are defined by the folder structure in the src/app/ directory, and they all work already. All
that’s left to do now is to add links between them. To do this, we need to use the Link component
from next/link. Follow these steps to get started with implementing a navigation bar:

1.	 Create a new src/components/Navigation.jsx file, where we import the Link
component and PropTypes:

import Link from 'next/link'
import PropTypes from 'prop-types'

Creating static components and pages 393

2.	 Define a UserBar component, which will be rendered when the user is logged in and allow
a user to access the Create Post page and log out:

export function UserBar({ username }) {
  return (
    <form>
      <Link href='/create'>Create Post</Link> | Logged in as{'
'}
      {username} <button>Logout</button>
    </form>
  )
}

UserBar.propTypes = {
  username: PropTypes.string.isRequired,
}

3.	 Then, define a LoginSignupLinks component, which will be rendered when the user is
not logged in yet. It provides links to the /login and /signup pages to allow users to sign
up and log in to our app:

export function LoginSignupLinks() {
  return (
    <div>
      <Link href='/login'>Log In</Link> | <Link href='/
signup'>Sign Up</Link>
    </div>
  )
}

4.	 Next, define a Navigation component, which adds a link to the home page, and then
conditionally renders either the UserBar component, or the LoginSignupLinks
component, depending on whether the user is logged in or not:

export function Navigation({ username }) {
  return (
    <>
      <Link href='/'>Home</Link>
      {username ? <UserBar username={username} /> :
<LoginSignupLinks />}
    </>
  )
}

Getting Started with Next.js394

Navigation.propTypes = {
  username: PropTypes.string,
}

5.	 Now we just need to render the Navigation component. To make sure it appears on all
pages of our blog app, we are going to put it in the root layout. Edit src/app/layout.js
and import the Navigation component:

import { Navigation } from '@/components/Navigation'

6.	 Then, define a sample user object to simulate a user being logged in:

export default function RootLayout({ children }) {
  const user = { username: 'dan' }

7.	 Render the Navigation component, as follows:

  return (
    <html lang='en'>
      <body>
        <nav>
          <Navigation username={user?.username} />
        </nav>
        

        <main>{children}</main>
      </body>
    </html>
  )
}

8.	 We still need to add a link from a single post in the list to the full post page. Edit src/
components/Post.jsx and import the Link component:

import Link from 'next/link'

9.	 Then, add a link to the title, as follows:

export function Post({ _id, title, author }) {
  return (
    <article>
      <h3>
        <Link href={`/posts/${_id}`}>{title}</Link>
      </h3>

10.	 Go to http://localhost:3000/ and you will see the navigation bar being rendered
with the UserBar component.

Summary 395

11.	 Click on the Create Post link to go to the corresponding page, then go back using the Home link.
Also, try going to the full post page by clicking on the title of the blog post on the home page.

The following screenshot shows the Home page being rendered after we added the navigation bar:

Figure 16.5 – Our (static) blog app re-created in Next.js!

Summary
In this chapter, we first learned what Next.js is and how it can be useful for full-stack development.
Then, we set up a new Next.js project and learned about the App Router paradigm. Finally, we re-created
the blog app in Next.js by creating components, pages, and a navigation bar, making use of the
Next.js Link component to navigate between the different pages in our app.

In the next chapter, Chapter 17, Introducing React Server Components, we are going to learn how to
make our blog app interactive by creating React Server Components, which are components that run
on the server and can, for example, execute database queries. Additionally, we are going to learn about
Server Actions, which are used to submit forms, such as the Login, Signup, and Create Post forms.

17
Introducing React

Server Components

After implementing our static blog app in Next.js, it’s time to introduce some interactivity to it. Instead
of using the traditional pattern of writing a separate backend server, which the frontend fetches data
from and makes requests to, we are going to use a new pattern called React Server Components
(RSCs). This new pattern allows us to directly access the database from React components by executing
certain React components (so-called server components) only on the server. Together with Server
Actions (a way to call functions on the server from the client), this new pattern allows us to easily and
quickly develop full-stack apps. In this chapter, we are going to learn what RSCs and Server Actions
are, why they matter, what their advantages are, and how to implement them properly and securely.

In this chapter, we are going to cover the following main topics:

•	 What are RSCs?

•	 Adding a data layer to our Next.js app

•	 Using RSCs to fetch data from the database

•	 Using Server Actions to sign up, log in, and create new posts

Technical requirements
Before we start, please install all the requirements from Chapter 1, Preparing For Full-Stack Development,
and Chapter 2, Getting to Know Node.js and MongoDB.

The versions listed in those chapters are the ones used in this book. While installing a newer version
should not be an issue, please note that certain steps might work differently. If you are having an
issue with the code and steps provided in this book, please try using the versions mentioned in
Chapters 1 and 2.

Introducing React Server Components398

You can find the code for this chapter on GitHub: https://github.com/PacktPublishing/
Modern-Full-Stack-React-Projects/tree/main/ch17.

The CiA video for this chapter can be found at: https://youtu.be/4hGZJRmZW6E.

What are RSCs?
So far, we have been using the traditional React architecture, where all components are client components.
We started with client-side rendering. However, there are some downsides to client-side rendering:

•	 The JavaScript client bundle must be downloaded from the server before the client can start
rendering anything, delaying the first contentful paint (FCP) for the user.

•	 Data must be fetched from the server (after all JavaScript is downloaded and executed) to show
anything meaningful, delaying the first meaningful paint (FMP) for the user.

•	 Most of the load is on the client, even for pages that are not interactive, which is especially
problematic for clients with slow processors, such as low-end mobile devices or old laptops. It
also uses more battery to load a heavy client-side rendered page.

•	 In certain cases, data is fetched sequentially (for example, loading posts first and then resolving
the authors of each post), which is especially a problem for slow connections with high latency.

To solve these problems, server-side rendering (SSR) was introduced, but it still has a big downside:
the initial page load can be slow due to everything being rendered on the server. This slowdown
happens because of the following reasons:

•	 Data must be fetched from the server before any of it can be shown.

•	 The JavaScript client bundle must be downloaded from the server before the client can be
hydrated with it. Hydration means that the page is ready to be interacted with by a user. To
refresh your knowledge of how hydration works, check out Chapter 7.

•	 Hydration has to be completed on the client before anything can be interacted with.

Even when a client component is pre-rendered on the server, its code will be bundled and sent to the
client for hydration. This means that client components can run on both the server (for SSR) and the
client, but they need to at least be able to run on the client.

In a traditional full-stack React architecture with only client components, if we needed to access the
filesystem of the server or a database, we needed to write a separate backend using Node.js and expose
an API (such as a REST API). Then, this API was queried in client components, for example, using
TanStack Query. These queries can also be made on the server side (as we saw in Chapter 7, Improving
the Load Time Using Server-Side Rendering), but they need to at least be executable on the client. This
means we cannot directly access the filesystem or database from a React component, even if that code
could run on the server; it would be bundled and sent to the client, where running it would not work
(or expose internal information, such as credentials, to the database):

https://github.com/PacktPublishing/Modern-Full-Stack-React-Projects/tree/main/ch17
https://github.com/PacktPublishing/Modern-Full-Stack-React-Projects/tree/main/ch17
https://youtu.be/4hGZJRmZW6E

What are RSCs? 399

Figure 17.1 – The architecture of a full-stack app without and with RSCs

React 18 introduced a new feature called RSCs, which allows us to define components that will be
solely executed on the server, with only the output sent to the client. Server components can, for
example, fetch data from a database or the filesystem, and then render interactive client components,
passing that data as props to them. This new feature allows for an architecture where we can more
easily write a full-stack application using only React, without having to deal with the overhead of
defining a REST API.

Introducing React Server Components400

Note
It might still make sense to define REST APIs for certain apps, especially if the backend is
developed by another team in a larger-scale project, or if it is consumed by other services
and frontends.

RSCs solve the aforementioned issues with client-side rendering and SSR by allowing us to execute code
exclusively on the server (no hydration needed on the client!) and selectively streaming components
(so we don’t have to wait for everything to pre-render before serving components to the client).

The following figure compares client-side rendering (CSR) with SSR and RSCs:

Figure 17.2 – Comparison between CSR, SSR and RSC

As you see, RSCs are not only faster overall (as a result of fewer roundtrips over the network), but they
can also display the layout of an app immediately while waiting for the rest of the components to load.

Let’s sum up the most important features of RSCs:

•	 They can run ahead of time and are excluded from the JavaScript bundle, reducing bundle size
and improving performance.

•	 They can run either during build time (resulting in static HTML) or be executed on the fly when
a request comes in. Interestingly, server components can also be exclusively executed during
build time, resulting in a static HTML bundle. This can be useful for statically built CMS apps
or personal blogs. RSCs also allow a mix, where the initial cache is primed with a static build,
and then later revalidated through Server Actions or Webhooks. We are going to learn more
about caching in Chapter 18, Advanced Next.js Concepts and Optimizations.

•	 They can pass (serializable) data to client components. Additionally, client components can
still be server-side rendered to further improve performance!

What are RSCs? 401

•	 Inside a server component, other server components can be passed as props to client components,
allowing for composition patterns where server components are “slotted into” interactive client
components. However, all components that are imported inside client components will be
considered client components; they cannot be server components anymore.

In frameworks such as Next.js, by default, a React component is considered a server component. If
we want to turn it into a client component, we need to write the "use client" directive at the
beginning of a file. We need to do this to make it possible to add interactivity (event listeners) or use
state/life cycle effects and browser-only APIs.

Note
The "use client" directive defines a network boundary between server and client components.
All data sent from a server component to a client component will be serialized and sent over
the network. When using the "use client" directive in a file, all other modules that are
imported into it, including child components, are considered to be part of the client bundle.

The following figure provides an overview of when to use a server component or a client component:

Figure 17.3 – Overview of when to use server components and client components

Introducing React Server Components402

In general, RSCs are an optimization over client components. You could simply write "use client"
at the top of every file and be done with it, but you would be leaving all the advantages of RSCs behind!
So, try to use server components whenever possible, but do not hesitate to fall back to defining
something as a client component if it turns out to be too complicated to split it up into server-side
and client-side parts. It can always be optimized later.

This new way of writing full-stack React applications can be hard to grasp in theory, so feel free to come
back to this section again at the end of this chapter. For now, we’ll move on and implement RSCs in our
Next.js app as this will help us understand how the new concepts work in practice. First, we’ll start by
adding a data layer to our Next.js app, which will allow us to access the database from RSCs later on.

Adding a data layer to our Next.js app
In the traditional backend structure, we had the database layer, the services layer, and the routes
layer. In a modern full-stack Next.js app, we don’t need the routes layer of our backend because we
can directly interface with it in RSCs. So, we only need to have the database layer and a data layer
to provide functions that access the database. Theoretically, we could directly access the database in
RSCs, but it is best practice to have specific functions that access it in certain ways. Defining such
functions allows us to clearly define what data is accessible (and thus avoid accidentally leaking too
much information). They are also more reusable and make it easier to unit-test and find potential
vulnerabilities (for example, via a penetration test) in the data layer.

To recap, there are three main data-handling approaches:

•	 HTTP APIs: We used these in previous chapters to implement our blog app. These can be useful
when separate teams are working on the backend and frontend. Due to this, this approach is
recommended for existing large projects and organizations.

•	 Data access layer: This is the pattern we are going to use in this section. It is recommended for
new projects that make use of the RSC architecture as it makes it easier to implement full-stack
projects by separating concerns of dealing with data (and all the security challenges associated
with that) and the user interface (displaying the data in React components). Dealing with
each problem on its own is easier to solve and less error-prone than handling the complexity
of both at once.

•	 Component-level data access: This is a pattern where the database is queried directly in RSCs.
This approach can be useful for rapid prototyping and learning. However, it should not be used
in a production app due to scalability issues and the potential introduction of security problems.

It is not recommended to mix these approaches, so it’s better to pick one and stick to it. In our case, we
are going with the “data access layer” approach as it is the safest approach for a modern RSC architecture.

Adding a data layer to our Next.js app 403

Setting up the database connection

Let’s start by setting up the necessary packages and initializing a database connection:

1.	 Copy the existing ch16 folder to a new ch17 folder, as follows:

$ cp -R ch16 ch17

2.	 Open the ch17 folder in VS Code and open a Terminal.

3.	 We are going to use a package called server-only to make sure code from the database and
data layer are only executed on the server-side, and not accidentally imported on the client.
Install it, as follows:

$ npm install server-only@0.0.1

4.	 We are also going to need the mongoose package to connect to the database and create
database schemas and models. Run the following command to install it:

$ npm install mongoose@8.0.2

5.	 Create a new src/db/ folder.

6.	 Inside this folder, create a new src/db/init.js file, in which we first import the
server-only package to make sure the code is only executed on the server:

import 'server-only'

7.	 Next, import mongoose:

import mongoose from 'mongoose'

8.	 Define and export an async function to initialize the database:

export async function initDatabase() {
  const connection = await mongoose.connect(process.env.
DATABASE_URL)
  return connection
}

9.	 Now, we need to define DATABASE_URL in a .env file. So, create a new .env file in the root
of the project and add the following line:

DATABASE_URL=mongodb://localhost:27017/blog

Now that the database connection has been set up, we can move on to creating the database models.

Introducing React Server Components404

Creating the database models

Now, we are going to create database models for posts and users. These are going to be very similar
to the ones we created for our blog app in previous chapters. Follow these steps to start creating the
database models:

1.	 Create a new src/db/models/ folder.

2.	 Inside it, create a new src/db/models/user.js file, where we first import the server-
only and mongoose packages:

import 'server-only'
import mongoose, { Schema } from 'mongoose'

3.	 Define userSchema, which consists of a unique required username and a required password:

const userSchema = new Schema({
  username: { type: String, required: true, unique: true },
  password: { type: String, required: true },
})

4.	 We create the Mongoose model if it has not been created yet:

export const User = mongoose.models.user ?? mongoose.
model('user', userSchema)

Note
Returning the model if it already exists and only creating a new one if it does not is necessary
to avoid an OverwriteModelError issue, which happens when the model is imported
(and thus redefined) multiple times.

5.	 Create a new src/db/models/post.js file, where we first import the server-only
and mongoose packages:

import 'server-only'
import mongoose, { Schema } from 'mongoose'

6.	 Define postSchema, which consists of a required title and author (referencing the
user model), and optional contents:

const postSchema = new Schema(
  {
    title: { type: String, required: true },
    author: { type: Schema.Types.ObjectId, ref: 'user',
required: true },
    contents: String,

Adding a data layer to our Next.js app 405

  },
  { timestamps: true },
)

7.	 We create the Mongoose model if it has not been created yet:

export const Post = mongoose.models.post ?? mongoose.
model('post', postSchema)

8.	 Create a new src/db/models/index.js file and re-export the models:

import 'server-only'
export * from './user'
export * from './post'

We re-export the models from this folder to ensure that we can, for example, load a post and
resolve the author by querying the corresponding user. This would require defining the user
model, although it is not directly used. To avoid issues like these, we simply load models from
a file that defines all models upon importing them.

After defining the database models, we can define the data layer functions, which will provide various
ways to access the database.

Defining data layer functions

Now that we have a database connection and schemas, let’s start defining data layer functions that
access the database.

Defining the posts data layer

We’ll start by defining the data layer for posts. This allows us to access all the relevant functions for
dealing with posts in our app:

1.	 Create a new src/data/ folder.

2.	 Inside it, create a new src/data/posts.js file, where we import the server-only
package and the Post model:

import 'server-only'
import { Post } from '@/db/models'

3.	 Define a createPost function that takes a userId, title, and contents and creates
a new post:

export async function createPost(userId, { title, contents }) {
  const post = new Post({ author: userId, title, contents })
  return await post.save()
}

Introducing React Server Components406

4.	 Next, define a listAllPosts function, which first gets all posts from the database sorted
by creation date descending (showing the newest posts first):

export async function listAllPosts() {
  return await Post.find({})
    .sort({ createdAt: 'descending' })

5.	 Then, we must populate the author field by resolving the user model and getting the
username value from it:

    .populate('author', 'username')

In Mongoose, the populate function works like a JOIN statement in SQL: it takes the ID
stored in the author field and then checks which model the ID references by looking at the
post schema. In the post schema, we defined that the author field references the user
schema, so Mongoose will query the user model for the given ID and return a user object.
By providing the second argument, we specify that we only want to get the username value
from the user object (the ID will always be returned anyway). This is done to avoid leaking
internal information, such as the (hashed) password of a user.

6.	 After populating the post objects, we use .lean() to turn it into a plain, serializable
JavaScript object:

    .lean()
}

Having a serializable object is necessary to be able to pass the data from an RSC to a regular
client-side component later since all data passed to the client needs to cross the network
boundary, and thus needs to be serializable.

7.	 Lastly, we must define a getPostById function, which finds a single post by ID, populates
the author field, and turns the result into a plain JavaScript object by using lean():

export async function getPostById(postId) {
  return await Post.findById(postId)
    .populate('author', 'username')
    .lean()
}

Defining the data layer for users

We are now going to define the data layer for users. This will involve creating a JWT for authentication.
Again, a lot of the code will be very similar to what we previously implemented for our blog app.
Follow these steps to start defining the data layer for users:

1.	 Install bcrypt (for hashing the user password) and jsonwebtoken (for handling JWTs):

$ npm install bcrypt@5.1.1 jsonwebtoken@9.0.2

Adding a data layer to our Next.js app 407

2.	 Create a new src/data/users.js file, where we import server-only, bcrypt, jwt,
and the User model:

import 'server-only'
import bcrypt from 'bcrypt'
import jwt from 'jsonwebtoken'
import { User } from '@/db/models'

3.	 Define a createUser function, where we hash the given password and then create a new
instance of the User model and save it:

export async function createUser({ username, password }) {
  const hashedPassword = await bcrypt.hash(password, 10)
  const user = new User({ username, password: hashedPassword })
  return await user.save()
}

4.	 Next, define a loginUser function, which first tries to find a user with the given username
and throws an error if no user is found:

export async function loginUser({ username, password }) {
  const user = await User.findOne({ username })
  if (!user) {
    throw new Error('invalid username!')
  }

Note
Depending on your security requirements, you might want to consider not telling a potential
attacker that a username exists and instead return a generic message such as “Invalid username
or password.” However, in our case, the usernames are assumed to be public information because
each user is an author on the blog and their usernames are published with their articles.

5.	 Then, use bcrypt to compare the provided password against the hashed password from the
database and throw an error if the password is invalid:

  const isPasswordCorrect = await bcrypt.compare(password, user.
password)
  if (!isPasswordCorrect) {
    throw new Error('invalid password!')
  }

Introducing React Server Components408

6.	 Lastly, generate, sign, and return a JWT:

  const token = jwt.sign({ sub: user._id }, process.env.JWT_
SECRET, {
    expiresIn: '24h',
  })
  return token
}

7.	 Now, we are going to define a function to get the user information (for now, we’re only going
to get the username, but this could be extended later) from a user ID. If the user ID does not
exist, we throw an error:

export async function getUserInfoById(userId) {
  const user = await User.findById(userId)
  if (!user) throw new Error('user not found!')
  return { username: user.username }
}

8.	 Next, define a function to get the user ID from a token, making sure to verify the token signature
in addition to decoding the JWT, by using jwt.verify:

export function getUserIdByToken(token) {
  if (!token) return null
  const decodedToken = jwt.verify(token, process.env.JWT_SECRET)
  return decodedToken.sub
}

9.	 Finally, define a function to get the user information from a token by combining the
getUserIdByToken and getUserInfoById functions:

export async function getUserInfoByToken(token) {
  const userId = getUserIdByToken(token)
  if (!userId) return null
  const user = await getUserInfoById(userId)
  return user
}

10.	 We still need to define the JWT_SECRET environment variable for our code to work. Edit
.env and add it, as follows:

JWT_SECRET=replace-with-random-secret

Using RSCs to fetch data from the database 409

Note
This is a very basic implementation of authentication with Next.js. For a large-scale project, it is
recommended to look into a fully-fledged authentication solution, such as Auth.js (formerly next-
auth), Auth0, or Supabase. Check out the Next.js docs for more information on authentication
with Next.js: https://nextjs.org/docs/app/building-your-application/
authentication.

Now that we have a data layer to access the database, we can start implementing RSCs and Server
Actions, which are going to call functions from the data layer to access information from the database
and render React components that display it, turning our static blog app into a fully functional blog.

Using RSCs to fetch data from the database
As we have learned, when using Next.js, React components are considered to be Server Components
by default, so all page components are already executed and rendered on the server. Only if we need
to use client-only functions, such as hooks or input fields, do we need to turn our components into
a client component by using the "use client" directive. For all components that do not require
user interaction, we can simply keep them as server components, and they will only be statically
rendered and served as as HTML (encoded in the RSC payload) and not hydrated on the client. To
the client (the browser), it will seem as if these React components don’t even exist as the browser will
only see static HTML code. This pattern greatly improves the performance of our web application as
the client doesn’t need to load JavaScript to render such components. It also reduces the bundle size
because less JavaScript code is needed to load our web application.

Now, let’s implement RSCs to fetch data from the database.

Fetching a list of posts

We’ll start by implementing the HomePage, where we fetch and render a list of posts:

1.	 Edit src/app/page.js and import the initDatabase and listAllPosts functions:

import { initDatabase } from '@/db/init'
import { listAllPosts } from '@/data/posts'

2.	 Turn the HomePage component into an async function, which allows us to wait until the
data is fetched before rendering the component:

export default async function HomePage() {

3.	 Replace the sample posts array with the following code:

  await initDatabase()
  const posts = await listAllPosts()

https://nextjs.org/docs/app/building-your-application/authentication
https://nextjs.org/docs/app/building-your-application/authentication

Introducing React Server Components410

Fetching a single post

Now that we can view a list of posts, let’s continue by implementing the process of fetching a single
post for ViewPostPage. Follow these steps to get started:

1.	 Edit src/app/posts/[id]/page.js and import the notFound, getPostById,
and initDatabase functions:

import { notFound } from 'next/navigation'
import { getPostById } from '@/data/posts'
import { initDatabase } from '@/db/init'

2.	 Turn the page component into an async function:

export default async function ViewPostPage({ params }) {

3.	 Replace the sample post object with calls to initDatabase and getPostById:

  await initDatabase()
  const post = await getPostById(params.id)

If no post was found, we call the notFound function, which throws a NEXT_NOT_FOUND
error and terminates the rendering of the route segment:

  if (!post) notFound()

Now, we need to create a not-found.js file to catch the error and render a different
component instead.

4.	 Create a new src/app/posts/[id]/not-found.js file, where we render a “Post not
found!” message, as follows:

export default function ViewPostError() {
  return Post not found!
}

Tip
We can also add an app/not-found.js file to handle unmatched URLs for the whole
application. If users access a path that is not defined by the app, the component defined in that
file will be rendered instead.

Using RSCs to fetch data from the database 411

5.	 Additionally, we can create an error component that will be rendered for any errors, such as
not being able to connect to the database. Create a new src/app/posts/[id]/error.
js file, where we render an “Error while loading the post!” message, as follows:

'use client'

export default function ViewPostError() {
  return Error while loading the post!
}

Error pages need to be client components, so we added a 'use client' directive.

Info
The reason why error pages need to be client components is that they use the React
ErrorBoundary feature, which is implemented as class components (using
componentDidCatch). React class components cannot be server components, so we need
to make the error page a client component.

6.	 We still need to make a small adjustment to the Post component because the _id is now
actually not a string anymore; instead, it’s an ObjectId object. Edit src/components/
Post.jsx and change the type, as follows:

Post.propTypes = {
  _id: PropTypes.object.isRequired,

7.	 Make sure Docker and the MongoDB container are running properly!

8.	 Run the dev server, as follows:

$ npm run dev

9.	 Go to http://localhost:3000 and click on one of the posts in the list; you will see that
the post loads successfully. If a post does not exist (for example, if you change a single digit in
the ID), the “Post not found!” message will be shown. If there was any other error (for example,
an invalid ID), the “Error while loading the post!” message will be shown:

Figure 17.4 – Showing a post and the not found/error components

Introducing React Server Components412

Note
If there are no posts in your database yet, either create a new post by using the blog app from
earlier chapters or wait until we implement the create post functionality using Next.js at the
end of this chapter.

After implementing RSCs for fetching posts, our blog app is now connected to the database. However,
all it can do right now is show posts; there is no way for the user to interact with the app yet. Let’s
move on to making our blog app interactive by adding Server Actions to it.

Using Server Actions to sign up, log in, and create new
posts
So far, we have only been fetching data from the database on the server and sending it to the client,
but for user interactivity, we need to be able to send data back from the client to the server. To be able
to do this, React introduced a pattern called Server Actions.

Server Actions are functions that are executed on the server side but can be triggered from the client
side, for example, through a form submission. This can be done even with JavaScript disabled on the
client, which will then submit the form using regular form submission. When JavaScript is enabled,
the form will be progressively enhanced and not require a full refresh to submit. These functions are
defined by tagging regular JavaScript functions with the "use server" directive, and then either
importing them into a client component or passing them to a client component via props. While
regular JavaScript functions cannot be passed to client components (because they aren’t serializable),
Server Actions can be.

Note
You can define a whole file to be full of Server Actions by adding the "use server" directive
at the beginning of a file. This will tell the bundler that all functions in this file are Server
Actions; it does not define components inside it as server components (to enforce something
to be executed on the server, use the server-only package instead, as explained). You can
then import functions from such a file in client components.

In client components, we can make use of the useFormState hook, which has a similar signature
to useState but allows us to execute server actions (on the server) and get back the result on the
client. The useFormState hook’s signature looks as follows:

const [state, formAction] = useFormState(fn, initialState)

Using Server Actions to sign up, log in, and create new posts 413

Note
In the React 19 release, useFormState hook will be renamed to useActionState. See
https://react.dev/reference/react/useActionState for more information.

As we can see, we pass in a function (Server Action) and an initial state. The hook then returns the
current state and a formAction function. The state is initially set to the initial state, and updated
to the result of the Server Action after the formAction function is called. On the server side, the
Server Action signature looks as follows:

function exampleServerAction(previousState, formData) {
  "use server"
  // …do something…
}

As we can see, the Server Action function accepts previousState (which will initially be set to
initialState from the client) and a formData object (which is a regular formData object
from the XMLHttpRequest API web standard). The formData object contains all information
submitted in form fields. This allows us to easily submit forms to perform an action on the server
and return the result to the client.

Now, let’s start using Server Actions to implement the signup page in our blog app.

Implementing the signup page

The first action a user needs to take to interact with the blog app is signing up, so let’s start by
implementing this feature. Follow these steps to get started:

1.	 We start by implementing the client component. Edit src/components/Signup.jsx
and mark it as a client component, then import the useFormState hook and PropTypes:

'use client'
import { useFormState } from 'react-dom'
import PropTypes from 'prop-types'

2.	 The Signup component now needs to accept a signupAction, which we are going to
define on the server side later:

export function Signup({ signupAction }) {

3.	 Define a useFormState hook, which takes a Server Action and an initial state (in our case,
an empty object), and returns the current state and an action:

  const [state, formAction] = useFormState(signupAction, {})

https://react.dev/reference/react/useActionState

Introducing React Server Components414

4.	 Now, we can add action to the <form> tag, as follows:

  return (
    <form action={formAction}>

The action will automatically be called when the form is submitted. Alternatively, Server Actions
can be called by executing them like a regular async function – for example, by calling await
formAction() inside an onClick handler function.

5.	 Additionally, we can show an error message below the “Sign Up” button if we get a state.
error message back from the server:

      <input type='submit' value='Sign Up' />
      {state.error ? Error signing up: {state.error}</
strong> : null}
    </form>
  )
}

6.	 Let’s not forget to define propTypes for the Signup component. signupAction is
a function:

Signup.propTypes = {
  signupAction: PropTypes.func.isRequired,
}

7.	 Now, we can start implementing the actual server action. Edit src/app/signup/page.js
and import the redirect function from next/navigation (to navigate to the login page
after successfully signing up), as well as the createUser and initDatabase functions:

import { redirect } from 'next/navigation'
import { createUser } from '@/data/users'
import { initDatabase } from '@/db/init'
import { Signup } from '@/components/Signup'

8.	 Then, outside of the SignupPage component, define a new async function that accepts
the previous state (in our case, this is the empty object we defined as the initial state, so we can
ignore it) and a formData object:

async function signupAction(prevState, formData) {

9.	 We need to tag the function with the 'use server' directive to turn it into a Server Action:

  'use server'

Using Server Actions to sign up, log in, and create new posts 415

10.	 Then, we can initialize the database and attempt to create a user:

  try {
    await initDatabase()
    await createUser({
      username: formData.get('username'),
      password: formData.get('password'),
    })

As you can see, Server Actions build upon existing web APIs and use the FormData API
for form submission. We can simply call .get() with the name of the input field and it will
contain the value provided in the respective input field.

11.	 If there is an error, we return the error message (which will then be shown in the Signup
client component):

  } catch (err) {
    return { error: err.message }
  }

12.	 Otherwise, if everything went well, we redirect to the login page:

  redirect('/login')
}

13.	 After defining the Server Action, we can pass it to the Signup component, as follows:

export default function SignupPage() {
  return <Signup signupAction={signupAction} />
}

Alternatively, the client component could directly import the signupAction function from
a file. So long as the function has the 'use server' directive, it will be executed on the
server. In this case, we only need the function on this specific page, so it makes more sense to
define it on the page and pass it to the component.

14.	 Run the dev server, as follows:

$ npm run dev

15.	 Go to http://localhost:3000/signup and try entering a username and password.
It should work successfully and redirect you to the login screen (the change is subtle, but the
submit button changes from Sign Up to Log In).

Introducing React Server Components416

16.	 Go to http://localhost:3000/signup again and try entering the same username.
You will get the following error:

Figure 17.5 – An error is shown when the username already exists

Of course, this error message is not very user-friendly, so we could do some work to improve
the error messages here. But for now, this is sufficient as an example to show how Server
Actions work.

As you can see, RSCs and Server Actions make implementing features that interface with the database
straightforward. As an additional bonus, all Server Actions that are submitted via <form> even work
with JavaScript disabled – try it out by repeating Steps 15 and 16 with JavaScript disabled!

Implementing the login page and JWT handling

Now that users can sign up, we need a way for them to log in. This also means that we will need to
implement functionality to create and store JWT. Now that we have more control over the server-client
interaction with Next.js, we can store the JWT in a cookie instead of in memory. This means that the
user session will persist even when they refresh the page.

Let’s start implementing the login page and JWT handling:

1.	 We’ll start by implementing the client component. Edit src/components/Login.jsx
and turn it into a client component:

'use client'

2.	 Then, import the useFormState hook and PropTypes:

import { useFormState } from 'react-dom'
import PropTypes from 'prop-types'

3.	 Accept loginAction as props. We are going to use this to define the useFormState hook:

export function Login({ loginAction }) {
  const [state, formAction] = useFormState(loginAction, {})

4.	 Pass formAction, which was returned from the hook, to the <form> element:

  return (
    <form action={formAction}>

Using Server Actions to sign up, log in, and create new posts 417

5.	 Now, we can display potential errors at the end of the component:

      <input type='submit' value='Log In' />
      {state.error ? Error logging in: {state.error}</
strong> : null}
    </form>
  )
}

6.	 Lastly, define propTypes, as follows:

Login.propTypes = {
  loginAction: PropTypes.func.isRequired,
}

7.	 Now, we can create the loginAction Server Action. Edit src/app/login/page.js
and import the cookies and redirect functions from Next.js, as well as the loginUser
and initDatabase functions from our data layer:

import { cookies } from 'next/headers'
import { redirect } from 'next/navigation'
import { loginUser } from '@/data/users'
import { initDatabase } from '@/db/init'
import { Login } from '@/components/Login'

8.	 Define a new loginAction outside of the LoginPage component, in which we attempt
to log in with the given username and password:

async function loginAction(prevState, formData) {
  'use server'
  let token
  try {
    await initDatabase()
    token = await loginUser({
      username: formData.get('username'),
      password: formData.get('password'),
    })

9.	 If this fails, we return the error message:

  } catch (err) {
    return { error: err.message }
  }

Introducing React Server Components418

10.	 Otherwise, we set an AUTH_TOKEN cookie with an expiry of 24 hours (the same expiry time
as the JWT we created), and make it secure and httpOnly:

  cookies().set({
    name: 'AUTH_TOKEN',
    value: token,
    path: '/',
    maxAge: 60 * 60 * 24,
    secure: true,
    httpOnly: true,
  })

Note
The httpOnly attribute makes sure cookies cannot be accessed by client JavaScript, reducing
the possibility of cross-site scripting attacks in our app. The secure attribute ensures that the
cookie is set on the HTTPS version of the website. To improve the development experience,
this doesn’t apply to localhost.

11.	 After setting the cookie, we redirect to the home page:

  redirect('/')
}

12.	 Finally, we pass the loginAction to the Login component:

export default function LoginPage() {
  return <Login loginAction={loginAction} />
}

13.	 Go to http://localhost:3000/login and try entering a username that doesn’t exist;
you will get an error. Then, try entering the same username and password that you used to sign
up earlier. It should work successfully and redirect you to the home page.

Checking if the user is logged in

You may have noticed that after the user logs in, the navigation bar doesn’t change. We still have to
check if the user is logged in and then adjust the navigation bar accordingly. Let’s do that now:

1.	 Edit src/app/layout.js and import the cookies function from Next.js and the
getUserInfoByToken function from our data layer:

import { cookies } from 'next/headers'
import { getUserInfoByToken } from '@/data/users'
import { Navigation } from '@/components/Navigation'

Using Server Actions to sign up, log in, and create new posts 419

2.	 Turn RootLayout into an async function:

export default async function RootLayout({ children }) {

3.	 Get the AUTH_TOKEN cookie and pass its value to the getUserInfoByToken function to
get the user object, replacing the sample user object we defined earlier:

  const token = cookies().get('AUTH_TOKEN')
  const user = await getUserInfoByToken(token?.value)

4.	 If you still have the home page open from earlier, it should hot reload automatically and show
your username and the logout button.

We are already passing user?.username to the Navigation component, so that’s all there is to it!

Implementing logout

Now that we can show a different navigation bar when the user is logged in, we can finally see the
logout button. However, it doesn’t work yet. We’ll implement the logout button now:

1.	 Edit src/app/layout.js and define a logoutAction Server Action outside of the
RootLayout component:

async function logoutAction() {
  'use server'

2.	 Inside this action, we simply delete the AUTH_TOKEN cookie:

  cookies().delete('AUTH_TOKEN')
}

3.	 Pass logoutAction to the Navigation component, as follows:

          <Navigation
            username={user?.username}
            logoutAction={logoutAction}
          />

4.	 Edit src/components/Navigation.jsx and add logoutAction to UserBar and
the logout form:

export function UserBar({ username, logoutAction }) {
  return (
    <form action={logoutAction}>

Introducing React Server Components420

5.	 Add the action to propTypes of the UserBar component, as follows:

UserBar.propTypes = {
  username: PropTypes.string.isRequired,
  logoutAction: PropTypes.func.isRequired,
}

6.	 Then, add logoutAction as props to the Navigation component and pass it down to
the UserBar component:

export function Navigation({ username, logoutAction }) {
  return (
    <>
      <Link href='/'>Home</Link>
      {username ? (
        <UserBar
          username={username}
          logoutAction={logoutAction}
        />
      ) : (
        <LoginSignupLinks />
      )}
    </>
  )
}

7.	 Finally, change propTypes of the Navigation component, as follows:

Navigation.propTypes = {
  username: PropTypes.string,
  logoutAction: PropTypes.func.isRequired,
}

8.	 Click the Logout button to see the navigation bar change back to show the Log In and Sign
Up links.

Now, our users can finally log in and log out again successfully. Let’s move on to implementing
post creation.

Using Server Actions to sign up, log in, and create new posts 421

Implementing post creation

The last feature missing in our blog app is post creation. We can use Server Actions and a JWT to
authenticate the user and allow them to create a post. Follow these steps to implement post creation:

1.	 This time, we start by implementing the Server Action. Edit src/app/create/page.
js and import the cookies, redirect, createPost, getUserIdByToken, and
initDatabase functions:

import { cookies } from 'next/headers'
import { redirect } from 'next/navigation'
import { createPost } from '@/data/posts'
import { getUserIdByToken } from '@/data/users'
import { initDatabase } from '@/db/init'
import { CreatePost } from '@/components/CreatePost'

2.	 Inside the CreatePostPage component, get the token from the cookie:

export default function CreatePostPage() {
  const token = cookies().get('AUTH_TOKEN')

3.	 Still inside the CreatePostPage component, define a Server Action:

  async function createPostAction(formData) {
    'use server'

We won’t be using the useFormState hook this time because we don’t need to handle the state
or result of the action on the client side. So, the Server Action does not have the (prevState,
formData) signature and instead has a (formData) signature.

4.	 Inside the Server Action, we get the userId value from the token, then initialize the database
connection and create a new post:

    const userId = getUserIdByToken(token?.value)
    await initDatabase()
    const post = await createPost(userId, {
      title: formData.get('title'),
      contents: formData.get('contents'),
    })

5.	 Lastly, we redirect to the ViewPost page of the newly created post:

    redirect(`/posts/${post._id}`)
  }

Introducing React Server Components422

6.	 If the user isn’t logged in, we can now show an error message:

  if (!token?.value) {
    return You need to be logged in to create posts!</
strong>
  }

7.	 Otherwise, we render the CreatePost component, passing createPostAction to it:

  return <CreatePost createPostAction={createPostAction} />
}

8.	 Now, we can adjust the CreatePost component. We don’t need to turn it into a client component
this time because we won’t be using the useFormState hook. Edit src/components/
CreatePost.jsx and import PropTypes:

import PropTypes from 'prop-types'

9.	 Then, add the createPostAction as props and pass it to the form element:

export function CreatePost({ createPostAction }) {
  return (
    <form action={createPostAction}>

10.	 Finally, define propTypes, as follows:

CreatePost.propTypes = {
  createPostAction: PropTypes.func.isRequired,
}

11.	 Go to http://localhost:3000, log in again, and then click the Create Post link. Enter a
title and some contents and click the Create button; you should get redirected to the ViewPost
page of the newly created blog post!

Summary
In this chapter, we learned about RSCs, why they were introduced, what their advantages are, and how
they fit into our full-stack architecture. Then, we learned how to safely implement RSCs by introducing
a data layer into our app. Afterward, we fetched data from our database and rendered components
using RSCs. Finally, we learned about Server Actions and added interactive features to our blog app.
Now, our blog app is fully functional again!

In the next chapter, Chapter 18, Advanced Next.js Concepts and Optimizations, we are going to dive
deep into how Next.js works and how we can further optimize our app when using it. We are going to
learn about caching, image and font optimizations, and how to define metadata for SEO optimization.

18
Advanced Next.js Concepts

and Optimizations

Now that we’ve learned about the essential features of Next.js and React Server Components (RSCs),
let’s dive a bit deeper into the Next.js framework. In this chapter, we are going to learn how caching
works in Next.js and how it can be used to optimize our applications. We are also going to learn how
to implement API routes in Next.js. Then, we are going to learn how to optimize a Next.js app for
search engines and social media by adding metadata. Finally, we are going to learn how to optimally
load images and fonts in Next.js.

In this chapter, we are going to cover the following main topics:

•	 Defining API routes in Next.js

•	 Caching in Next.js

•	 Search engine optimization (SEO) with Next.js

•	 Optimized image and font loading in Next.js

Technical requirements
Before we start, please install all the requirements from Chapter 1, Preparing For Full-Stack Development,
and Chapter 2, Getting to Know Node.js and MongoDB.

The versions listed in those chapters are the ones used in this book. While installing a newer version
should not be an issue, please note that certain steps might work differently. If you are having an issue
with the code and steps provided in this book, please try using the versions mentioned in Chapter 1
and 2.

You can find the code for this chapter on GitHub: https://github.com/PacktPublishing/
Modern-Full-Stack-React-Projects/tree/main/ch18.

The CiA video for this chapter can be found at: https://youtu.be/jzCRoJPGoG0.

https://github.com/PacktPublishing/Modern-Full-Stack-React-Projects/tree/main/ch18
https://github.com/PacktPublishing/Modern-Full-Stack-React-Projects/tree/main/ch18
https://youtu.be/jzCRoJPGoG0

Advanced Next.js Concepts and Optimizations424

Defining API routes in Next.js
In the previous chapter, we used RSCs to access our database via a data layer; no API routes were
needed for that! However, sometimes, it still makes sense to expose an external API. As an example,
we might want to allow third-party apps to query blog posts. Thankfully, Next.js also has a feature to
define API routes, called Route Handlers.

Route Handlers are also defined inside the src/app/ directory but in a route.js file instead of a
page.js file (a path can only be either a route or a page, so only one of these files should be placed
inside a folder). Instead of exporting a page component, we need to export functions that handle
various types of requests there. For example, to handle a GET request, we must define and export the
following function:

export async function GET() {

Next.js supports the following HTTP methods for Route Handlers: GET, POST, PUT, PATCH,
DELETE, HEAD, and OPTIONS. For unsupported methods, Next.js will return a 405 Method
Not Allowed response.

Next.js supports the native Request (https://developer.mozilla.org/en-US/docs/
Web/API/Request) and Response (https://developer.mozilla.org/en-US/docs/
Web/API/Response) web APIs but extends them into NextRequest and NextResponse
APIs, which make handling cookies and headers easier. We used the cookies() function from
Next.js to easily create, get, and delete a cookie for the JWT in the previous chapter. The headers()
function makes it easy to get headers from a request. These functions can be used in the same way in
RSCs and Route Handlers.

Creating an API route for listing blog posts

Let’s start by defining an API route for listing blog posts:

1.	 Copy the existing ch17 folder to a new ch18 folder, as follows:

$ cp -R ch17 ch18

2.	 Open the ch18 folder in VS Code.

3.	 To make the API routes easier to distinguish from pages on our app, create a new src/app/
api/ folder.

4.	 Inside the src/app/api/ folder, create a new src/app/api/v1/ folder to make sure
our API is versioned for potential changes to the API later.

5.	 Next, create a src/app/api/v1/posts/ folder for the /api/v1/posts route.

https://developer.mozilla.org/en-US/docs/Web/API/Request
https://developer.mozilla.org/en-US/docs/Web/API/Request
https://developer.mozilla.org/en-US/docs/Web/API/Response
https://developer.mozilla.org/en-US/docs/Web/API/Response

Defining API routes in Next.js 425

6.	 Create a new src/app/api/posts/route.js file, where we import the initDatabase
function and the listAllPosts function from the data layer:

import { initDatabase } from '@/db/init'
import { listAllPosts } from '@/data/posts'

7.	 Then, define and export a GET function. This is going to handle HTTP GET requests to the
/api/v1/posts route:

export async function GET() {

8.	 Inside it, we must initialize the database and get a list of all posts:

  await initDatabase()
  const posts = await listAllPosts()

9.	 Use the Response web API to generate a JSON response:

  return Response.json({ posts })
}

10.	 Make sure Docker and the MongoDB container are running properly!

11.	 Start the Next.js app, as follows:

$ npm run dev

12.	 Now, go to http://localhost:3000/api/v1/posts to see the posts being returned
as JSON, as shown in the following figure:

Advanced Next.js Concepts and Optimizations426

Figure 18.1 – JSON response with posts generated from the Next.js Route Handler

Now, third-party apps can also get the posts via our API! Let’s continue by learning more about
caching in Next.js.

Caching in Next.js
So far, we have always been using Next.js in dev mode. In dev mode, most of the caching that Next.
js does is turned off to make it easy for us to develop our apps with hot reloading and always up-to-
date data. However, once we switch to production mode, static rendering and caching are turned on
by default. Static rendering means that if a page only contains static components (such as an “About
Us” or “Imprint” page, which only contains static content), it will be statically rendered and served as
HTML, or as static text/JSON for routes. Additionally, Next.js will try to cache data and server-side
rendered components as much as possible to keep your app performant.

Caching in Next.js 427

Next.js has four main types of cache:

•	 Data cache: A server-side cache for storing data across user requests and deployments. This
is persistent but can be revalidated.

•	 Request memoization: A server-side cache for return values of functions if they are called
multiple times in a single request.

•	 Full route cache: A server-side cache of Next.js routes. This cache is persistent but can
be revalidated.

•	 Router cache: A client-side cache of routes to reduce server requests on navigation, for a single
user session or time-based.

The first two types of cache (data cache and request memoization) mainly apply to using the
fetch() function on the server side to, for example, pull data from a third-party API. However,
recently, it is also possible to use these two types of caches for any function by wrapping them with
the unstable_cache() function. Despite its name, this function can already safely be used in
production. It is only called “unstable” because the API might change and require code changes when
new Next.js versions are released. See https://nextjs.org/docs/app/api-reference/
functions/unstable_cache for more information.

Note
Alternatively, the React cache() function could be used to memoize return values of functions,
but the Next.js unstable_cache() function is more flexible, allowing us to dynamically
revalidate the cache via a path or tag. We are going to learn more about cache revalidation
later in this section.

The full route cache is an additional cache that makes sure that when data doesn’t change, we don’t
even need to re-render pages on the server side so that Next.js can directly return pre-rendered static
HTML and the RSC payload. However, invalidating the data cache will also invalidate the corresponding
full route cache and trigger a re-render.

The router cache is a client-side cache and is mainly used when the user navigates between pages,
allowing us to instantly show pages that they have already visited without having to fetch them from
the server again.

Additionally, if Next.js detects that a page or route only contains static content, it will pre-render and
store it as static content. Static content cannot be revalidated anymore, so we need to be careful and
ensure that all dynamic content on our apps is considered “dynamic” by Next.js and not accidentally
detected as “static” content.

Note
In this book, we call this process static rendering. However, on other resources, it may also be
called “automatic static optimization” or “static site generation.”

https://nextjs.org/docs/app/api-reference/functions/unstable_cache
https://nextjs.org/docs/app/api-reference/functions/unstable_cache

Advanced Next.js Concepts and Optimizations428

Next.js will opt out of static rendering and consider a page or route dynamic in the following instances:

•	 When using a dynamic function, such as cookies(), headers(), or searchParams

•	 When setting export const dynamic = 'force-dynamic' or export const
revalidate = 0

•	 When a Route Handler handles a non-GET request

For more in-depth information on the different types of caching, have a look at the Next.js documentation
on caching: https://nextjs.org/docs/app/building-your-application/caching.

Now, let’s explore how static rendering works in practice by looking at how our route behaves in a
production build of our app.

Exploring static rendering in API routes

In this chapter, we implemented a Route Handler for getting blog posts. Now, let’s explore how this
route behaves in dev and production mode:

1.	 Edit src/app/api/v1/posts/route.js and add a currentTime value with Date.
now() to the response, as follows:

  return Response.json({ posts, currentTime: Date.now() })

2.	 Refresh the page on http://localhost:3000/api/v1/posts a couple of times; you
will see that currentTime is always the latest timestamp.

3.	 Quit the Next.js development server by using Ctrl + C.

4.	 Build the Next.js app for production and start it, as follows:

$ npm run build
$ npm start

5.	 Refresh the page on http://localhost:3000/api/v1/posts a couple of times. Now,
currentTime doesn’t change at all! Even if we restart the Next.js server, currentTime
still doesn’t change. The response of the GET /api/v1/posts route is statically rendered
during build time.

Static rendering works similarly for routes and pages, so pages will also be statically rendered by default.
This means that RSCs do not require a server, per se; they can also run during build time. We only need
a Node.js server if we want to have dynamic pages/routes. This means we could, for example, create
a blog or website in Next.js and export a static bundle, allowing us to host it on a simple web server.

https://nextjs.org/docs/app/building-your-application/caching

Caching in Next.js 429

Note
Exporting a Next.js app as a static bundle can be achieved by specifying the output:
'export' option in the next.config.js file.

Interestingly, if we create a new blog post, our home page does get updated. However, that is only
the case because RootLayout uses cookies() to check if the user is logged in, making all pages
on our blog app dynamic (and thus not statically rendered). This can also be seen by looking at the
output of npm run build:

Figure 18.2 – Seeing which routes are statically and dynamically rendered in the build output

As can be seen from Figure 18.2, the /api/v1/posts route is “prerendered as static content,” while
all other routes are “server-rendered on demand using Node.js.”

Advanced Next.js Concepts and Optimizations430

Note
If we wanted to statically render some pages in our blog, we would have to make sure the user bar
isn’t visible on those pages. For example, we could create a route group (https://nextjs.
org/docs/app/building-your-application/routing/route-groups) for
all pages that have a user bar, with a separate layout that contains the user bar. Then, we can
remove the user bar from the root layout. That way, we could create, for example, an About
page that is statically rendered while keeping the rest of the blog dynamic.

As we have seen, in Next.js, pages and routes are statically rendered by default (if possible). However, in
the case of our API route, this is not what we want! We want to be able to dynamically fetch posts from
the API. Static rendering and caching in Next.js can be confusing when we’re starting out developing
apps with it, but it becomes a powerful tool for keeping our apps optimized.

Now, let’s learn how to properly handle the cache to make our pages and routes dynamic when they
need to be while keeping them cached whenever possible.

Making the route dynamic

To make the route dynamic, we need to set the export const dynamic = 'force-dynamic'
flag on it. Follow these steps:

1.	 Edit src/app/api/v1/posts/route.js and add the following code:

export const dynamic = 'force-dynamic'

2.	 Quit the currently running Next.js server.

3.	 Build the Next.js app for production and start it, as follows:

$ npm run build
$ npm start

4.	 Refresh the page on http://localhost:3000/api/v1/posts a couple of times. Now,
the API route behaves the same way as it did on the development server!

Unfortunately, we now have completely disabled the cache, so we also don’t get any of the benefits of
using a cache. Next, we’ll learn how to turn on the cache for specific functions.

Caching functions in the data layer

To cache functions from our data layer, we can use the unstable_cache() function from Next.js.
The unstable_cache(fetchData, keyParts, options) function accepts three arguments:

•	 fetchData: The first argument is the function to be called. The function can also have arguments.

https://nextjs.org/docs/app/building-your-application/routing/route-groups
https://nextjs.org/docs/app/building-your-application/routing/route-groups

Caching in Next.js 431

•	 keyParts: The second argument is an array of unique keys that identify the function in the
cache. Arguments that are passed to the function in the first argument will automatically be
added to this array as well.

•	 options: The third argument is an object containing options for the cache, where we can
specify tags to revalidate the cache later, and a revalidate timeout to automatically
revalidate the cache after a certain number of seconds.

Now, let’s enable this cache for all functions where it makes sense. Follow these steps to get started:

1.	 Edit src/data/posts.js and import the unstable_cache() function, aliasing it
as cache():

import { unstable_cache as cache } from 'next/cache'

2.	 Wrap the listAllPosts function with cache(), as follows:

export const listAllPosts = cache(
  async function listAllPosts() {
    return await Post.find({})
      .sort({ createdAt: 'descending' })
      .populate('author', 'username')
      .lean()
  },
  ['posts', 'listAllPosts'],
  { tags: ['posts'] },
)

As the cache key, we defined an array containing the filename (posts) and the function name
(listAllPosts) to uniquely identify the function in our data layer. Additionally, we added a
posts tag, which we are going to use later to revalidate the cache when new posts are created.

3.	 Next, wrap the getPostById function:

export const getPostById = cache(
  async function getPostById(postId) {
    return await Post.findById(postId).populate('author',
'username').lean()
  },
  ['posts', 'getPostById'],
)

Advanced Next.js Concepts and Optimizations432

4.	 You may notice that there is now an error when getting posts because ObjectId from
MongoDB is getting serialized into a string by the cache. Edit src/components/Post.
jsx and adjust propType, as follows:

Post.propTypes = {
  _id: PropTypes.string.isRequired,

5.	 Edit src/data/users.js and import unstable_cache there:

import { unstable_cache as cache } from 'next/cache'

6.	 Wrap the getUserInfoById function:

export const getUserInfoById = cache(
  async function getUserInfoById(userId) {
    const user = await User.findById(userId)
    if (!user) throw new Error('user not found!')
    return { username: user.username }
  },
  ['users', 'getUserInfoById'],
)

7.	 Quit the currently running Next.js server.

8.	 Rebuild and start the app in production. You will notice that after creating a new post, it does
not update the home page (or the API route) anymore:

$ npm run build
$ npm start

That’s because our posts are now cached!

9.	 This cache even works in dev mode. Quit the Next.js server and start it again, as follows:

$ npm run dev

10.	 Create a new post; you will see that neither the home page nor the API route has the newly
created post in the list.

Now that caching has been configured, let’s learn how to deal with revalidating the cache (causing
data in the cache to be updated).

Caching in Next.js 433

Revalidating the cache via Server Actions

The best way of dealing with stale data is to revalidate the cache when new data comes in, for example,
via Server Actions. To do this, we have two options:

•	 Revalidating all route segments at a specific path by using the revalidatePath function

•	 Revalidating with a specific tag (and thus potentially revalidating multiple paths) by using the
revalidateTag function

Revalidation means that the next time data is requested from the cached function, the function will
be called, and new data will be returned and cached (instead of returning previously cached data).
Both functions revalidate the data cache and thus revalidate the full router cache and the client-side
router cache as well.

Follow these steps to call the revalidateTag function after creating new posts:

1.	 Edit src/app/create/page.js and import the revalidateTag function:

import { revalidateTag } from 'next/cache'

2.	 Inside createPostAction, call the revalidateTag function on the posts tag after
creating the new post:

  async function createPostAction(formData) {
    'use server'
    const userId = getUserIdByToken(token?.value)
    await initDatabase()
    const post = await createPost(userId, {
      title: formData.get('title'),
      contents: formData.get('contents'),
    })
    revalidateTag('posts')
    redirect(`/posts/${post._id}`)
  }

3.	 Now, create a new post and go to the home page. You will see that the newly created post appears
in the list! The API route will also show the newly created post now.

Revalidating the cache when data is changed via Server Actions is the most direct way of updating
the cache. However, sometimes, we will be fetching data from third-party APIs, where revalidating
is not possible. We’ll explore this case now.

Advanced Next.js Concepts and Optimizations434

Revalidating the cache via a Webhook

If the data comes from a third-party source, we can revalidate the cache via a Webhook. Webhooks
are APIs that can be used as callbacks. For example, when data changes, the third-party source calls
our API endpoint to let us know that we need to re-fetch the data.

Integrating a third-party API

Before we can start implementing a Webhook, let’s integrate a third-party API into our app. For this
example, we are going to use the WorldTimeAPI (https://worldtimeapi.org/), but feel free
to use any API of your choice.

Let’s start implementing a page that fetches from a third-party API:

1.	 Create a new src/app/time/ folder. Inside it, create a new src/app/time/page.js file.

2.	 Edit src/app/time/page.js and define an asynchronous page component:

export default async function TimePage() {

3.	 Inside the component, fetch the current time from the WorldTimeAPI and parse the response
as JSON:

  const timeRequest = await fetch('https://worldtimeapi.org/api/
timezone/UTC')
  const time = await timeRequest.json()

4.	 Render the current timestamp:

  return <div>Current timestamp: {time?.datetime}</div>
}

5.	 If you go to the http://localhost:3000/time page in your browser, you will see
that it shows the current time. However, when refreshing, the time never updates. That is
because requests with fetch are cached by default, similar to what happened after we added
unstable_cache() to our data layer functions.

Implementing the Webhook

Now, let’s create a Webhook API endpoint in our app that, when called, revalidates the cache for the
third-party data:

1.	 Create a new src/app/api/v1/webhook/ folder. Inside it, create a new src/app/
api/v1/webhook/route.js file.

2.	 Edit src/app/api/v1/webhook/route.js and import the revalidatePath function:

import { revalidatePath } from 'next/cache'

https://worldtimeapi.org/

Caching in Next.js 435

3.	 Now, define a new GET Route Handler that calls revalidatePath on the /time page and
then returns a response telling us that it was successful:

export async function GET() {
  revalidatePath('/time')
  return Response.json({ ok: true })
}

export const dynamic = 'force-dynamic'

Usually, Webhooks are defined as POST Route Handlers (because they influence the state of
the app), but to make it simpler to trigger the Webhook by visiting the page in our browser,
we defined it as a GET Route Handler. A POST route would opt out of static rendering, but a
GET route does not, so we need to specify force-dynamic.

4.	 Visit http://localhost:3000/api/v1/webhook in your browser, then visit http://
localhost:3000/time again; you should see that the time has been updated! In the real
world, we would be adding our Webhook URL to the interface of the third-party website that
provides the API.

Note
Alternatively, we could add a tag to the request by passing the next.tags option in the
fetch() function, as follows: fetch('https://worldtimeapi.org/api/
timezone/UTC', { next: { tags: ['time'] } }). Then, we could revalidate
the cache by calling revalidateTag('time').

As we can see, revalidating the cache using Webhooks works great. However, sometimes, we cannot
even add a Webhook to a third-party API. Let’s explore what to do when we have no control over the
third-party API.

Revalidating the cache periodically

If we have no control whatsoever over the third-party data source, we can tell Next.js to periodically
revalidate the cache. Let’s set that up now:

1.	 Edit src/app/time/page.js and adjust the fetch() function, adding the next.
revalidate option to it:

  const timeRequest = await fetch('https://worldtimeapi.org/api/
timezone/UTC', {
    next: { revalidate: 10 },
  })

In this case, we told Next.js to revalidate the data cache the next time the API is requested if
at least 10 seconds have passed since the last request.

Advanced Next.js Concepts and Optimizations436

Note
With unstable_cache(), we can pass the revalidate option in the third argument.
For routes and pages, we can specify export const revalidate = 10, which will
revalidate the corresponding route/page.

2.	 Refresh the http://localhost:3000/time page in your browser. You will see the time
update. Refresh the page again; the time will not update again. If you refresh after at least 10
seconds, the time will update again.

Now that we have learned about revalidating the cache periodically, let’s learn about opting out of caching.

Opting out of caching

Sometimes, you may want to opt out of caching completely for certain requests. To do this, pass the
following option to the fetch function:

fetch('<URL>', { cache: 'no-store' })

For pages/routes, we can define export const dynamic = 'force-dynamic' to opt out
of the full route cache (the data may still be cached though!).

Now that we’ve learned how to use the cache in Next.js to optimize our app, let’s learn about SEO
with Next.js.

SEO with Next.js
In Chapter 8, we learned about SEO in full-stack apps. Next.js provides functionality for SEO out of
the box. Let’s explore this functionality now, starting with adding dynamic titles and meta tags.

Adding dynamic titles and meta tags

In Next.js, we can statically define metadata by exporting a metadata object from a page.js file, or
we can dynamically define metadata by exporting a generateMetadata function. We have already
added static metadata to the root layout, as can be seen in src/app/layout.js:

export const metadata = {
  title: 'Full-Stack Next.js Blog',
  description: 'A blog about React and Next.js',
}

SEO with Next.js 437

Now, let’s dynamically generate metadata for our post pages:

1.	 Edit src/app/posts/[id]/page.js and define the following function outside of the
page component:

export async function generateMetadata({ params }) {
  const id = params.id

2.	 Fetch the post; if it does not exist, call notFound():

  const post = await getPostById(id)
  if (!post) notFound()

3.	 Otherwise, return a title and description:

  return {
    title: `${post.title} | Full-Stack Next.js Blog`,
    description: `Written by ${post.author.username}`,
  }
}

That’s all there is to it! Next.js will set the title and meta tags appropriately for us.

Note
Metadata is inherited from layouts. So, it is possible to define defaults for metadata in the layout
and then selectively override it for specific pages.

Now that we have successfully added a dynamic title and meta tags, let’s continue by creating a
robots.txt file so that search engines know they are allowed to index our blog app.

Creating a robots.txt file

Next.js has two ways of creating a robots.txt file:

•	 Creating a static robots.txt file in src/app/robots.txt

•	 Creating a dynamic robots.txt file by creating a src/app/robots.js script, which
returns a special object that is turned into a robots.txt file by Next.js

Note
If you need a refresher on what a robots.txt file is and how search engines work, please
check out Chapter 8.

Advanced Next.js Concepts and Optimizations438

We are only going to create a static robots.txt file as there is no need for a dynamic file for now.
Follow these steps to get started:

1.	 Create a new src/app/robots.txt file.

2.	 Edit src/app/robots.txt and add the following contents to allow all crawlers to index
all pages:

User-agent: *
Allow: /

Now that we have created a robots.txt file, let’s create meaningful URLs.

Creating meaningful URLs (slugs)

Now, we are going to create slugs for our blog posts, similar to what we did in Chapter 8. Let’s get started:

1.	 Rename the src/app/posts/[id]/ folder to src/app/posts/[...path]/. This
turns it into a catch-all route, matching everything that comes after /posts.

2.	 Edit src/app/posts/[...path]/page.js and adjust the code to get the first part of
the URL (the id value) from the path param:

export default async function ViewPostPage({ params }) {
  await initDatabase()
  const [id] = params.path
  const post = await getPostById(id)

3.	 Also, adjust the code for the generateMetadata function:

export async function generateMetadata({ params }) {
  const [id] = params.path

With that, our router has been set up to accept an optional slug in the URL.

4.	 Install the slug npm package:

$ npm install slug@8.2.3

5.	 Edit src/components/Post.jsx and import the slug function:

import slug from 'slug'

6.	 Adjust the link to the blog post by adding the slug, as follows:

        <Link href={`/posts/${_id}/${slug(title)}`}>{title}</
Link>

7.	 Open a link from the post list; you will see that the URL now contains the slug.

SEO with Next.js 439

Now that we’ve made sure our URLs are meaningful, we’ll wrap up this section by creating a sitemap
for our blog app.

Creating a sitemap

As we learned in Chapter 8, a sitemap contains a list of URLs that are part of an app so that crawlers
can easily detect new content and crawl the app more efficiently, making sure that all content on our
blog is found.

Follow these steps to set up a dynamic sitemap in Next.js:

1.	 First, define a BASE_URL for our app as an environment variable. Edit .env and add the
following line:

BASE_URL=http://localhost:3000

2.	 Create a new src/app/sitemap.js file, where we import the initDatabase,
listAllPosts, and slug functions:

import { initDatabase } from '@/db/init'
import { listAllPosts } from '@/data/posts'
import slug from 'slug'

3.	 Define and export a new asynchronous function that will generate the sitemap:

export default async function sitemap() {

4.	 First, we list all the static pages:

  const staticPages = [
    {
      url: `${process.env.BASE_URL}`,
    },
    {
      url: `${process.env.BASE_URL}/create`,
    },
    {
      url: `${process.env.BASE_URL}/login`,
    },
    {
      url: `${process.env.BASE_URL}/signup`,
    },
    {
      url: `${process.env.BASE_URL}/time`,
    },
  ]

Advanced Next.js Concepts and Optimizations440

5.	 Then, we get all the posts from the database:

  await initDatabase()
  const posts = await listAllPosts()

6.	 Generate an entry for each post by building the URL and adding a lastModified timestamp:

  const postsPages = posts.map((post) => ({
    url: `${process.env.BASE_URL}/posts/${post._id}/${slug(post.
title)}`,
    lastModified: post.updatedAt,
  }))

7.	 Finally, return staticPages and postsPages in an array:

  return [...staticPages, ...postsPages]
}

8.	 Go to http://localhost:3000/sitemap.xml in your browser; you will see that
Next.js generated the XML for us from the array of objects!

Note
It is best practice to add the sitemap to the robots.txt file, but we would need to turn it
into a dynamic robots.js file so that we can provide the full URL to the sitemap (using the
BASE_URL environment variable). Doing this is left as an exercise for you.

Now that we’ve optimized our blog app for search engines, let’s learn about optimized image and font
loading in Next.js.

Optimized image and font loading in Next.js
Loading images and fonts in an optimized way can be tedious, but Next.js makes it very simple by
providing the Font and Image components.

The Font component

Often, you’ll want to use a specific font for your page to make it unique and stand out. If your font is
on Google Fonts, you can have Next.js automatically self-host it for you. No requests will be sent to
Google by your browser if you use this feature. Additionally, the fonts will be loaded optimally with
zero layout shift.

Optimized image and font loading in Next.js 441

Let’s find out how Google Fonts can be self-hosted with Next.js:

1.	 We are going to load the Inter font by importing it from next/font/google. Edit src/
app/layout.js and add the following import:

import { Inter } from 'next/font/google'

2.	 Now, load the font, as follows:

const inter = Inter({
  subsets: ['latin'],
  display: 'swap',
})

Inter is a variable font, so we don’t need to specify the weight that we want to load. If the
font isn’t a variable font, don’t forget to specify the weight. The display: 'swap' property
means that the font gets an extremely small block period to be loaded. If it does not load by
then, a fallback font will be used. Once the font has been loaded, it will be swapped in.

3.	 Specify the font in the <html> tag, as follows:

    <html lang='en' className={inter.className}>

4.	 Go to http://localhost:3000/ in your browser; you will see that our blog app is now
using the Inter font! See the following screenshot for reference:

Figure 18.3 – Our blog app rendered with the Inter font

As you can see, it’s very simple to use self-hosted Google Fonts with Next.js!

Advanced Next.js Concepts and Optimizations442

Note
If you want to use a font that is not on Google Fonts, use the localFont function from
next/font/local. This allows you to load a font from a file in your project. For more
information on the Font component, check out the Next.js docs: https://nextjs.org/
docs/app/building-your-application/optimizing/fonts.

Next, we are going to learn about the Image component, which allows us to easily load images in
an optimized way.

The Image component

Images make up a large portion of the download size of your web application, and can thus have a
big impact on the Last Contentful Paint (LCP) performance. Next.js offers the Image component,
which extends the element by doing the following:

•	 Automatically serving resized images for each device and resolution

•	 Automatically preventing layout shift when images are loading

•	 Only loading images when they enter the viewport (“lazy loading”), with optional blurred
placeholder images

•	 Offering on-demand resizing for images, even if they are stored remotely

Using the Image component is simple – just import it and load your images as you would with the
 element. Let’s try it out now:

1.	 Get an image to be used as a logo for your blog. Any image can be used, but make sure it is
a non-vector format (such as PNG). For vector formats, resizing is not necessary, so you will
not see any effect.

2.	 Save the image as a src/app/logo.png file.

3.	 Edit src/app/layout.js and import the Image component and the logo:

import Image from 'next/image'
import logo from './logo.png'

4.	 Above the <nav> element, render the <Image> component, as follows:

  return (
    <html lang='en' className={inter.className}>
      <body>
        <Image
          src={logo}
          alt='Full-Stack Next.js Blog Logo'
          width={500}

https://nextjs.org/docs/app/building-your-application/optimizing/fonts
https://nextjs.org/docs/app/building-your-application/optimizing/fonts

Optimized image and font loading in Next.js 443

          height={47}
        />
        <nav>
          <Navigation username={user?.username}
logoutAction={logoutAction} />
        </nav>

It is important to specify the width and height of the image so that Next.js can infer the correct
aspect ratio and prevent layout shift when the image loads in.

5.	 Go to http://localhost:3000/ in your browser; you will see the logo being displayed
properly! See the following screenshot for reference:

Figure 18.4 – Using the Image component to display a logo for our blog

If you inspect the image in the browser, you will see that it has the srcset property with different
sizes provided so that the browser can choose which one to load depending on the screen resolution.

Note
In this example, we loaded a local image, but the Image component also supports loading
images from a remote server, and it will still resize them properly! To use external URLs, allow
the remote server by using the images.remotePatterns setting in the next.config.
js file, then simply pass a URL instead of a local file to the Image component.

Advanced Next.js Concepts and Optimizations444

Summary
In this chapter, we learned how to define API routes in Next.js. Then, we learned about caching,
how to revalidate the cache, and how to opt out of the cache. Next, we learned about SEO in Next.
js by adding metadata to our pages, creating meaningful URLs, defining a robots.txt file, and
generating a sitemap. Finally, we learned about the Font and Image components, which allowed
us to load fonts and images easily and optimally in our app.

There are still many more features that Next.js offers that we have not covered yet in this book, such
as the following:

•	 Internationalization: Allows us to configure the process of routing and rendering content for
multiple languages

•	 Middleware: Allows us to run code before requests are completed, similar to how middleware
works in Express

•	 Serverless Node.js and Edge runtimes: Allow us to scale our apps even more by not running
a full Node.js server

•	 Advanced routing: Allows us to model complex routing scenarios, such as parallel routes
(displaying two pages at once)

In the next chapter, Chapter 19, Deploying a Next.js App, we are going to learn how to deploy a Next.
js app using Vercel and a custom deployment setup.

19
Deploying a Next.js App

After learning about advanced Next.js concepts, it’s time to learn how to deploy a Next.js app. The
easiest way to deploy Next.js apps is by using the Vercel platform, provided by the company that
develops the Next.js framework. After learning how to deploy our app on the Vercel platform, we are
going to learn how to create a custom deployment setup using Docker.

In this chapter, we are going to cover the following main topics:

•	 Deploying a Next.js app with Vercel

•	 Creating a custom deployment setup for Next.js apps

Technical requirements
Before we start, please install all requirements from Chapter 1, Preparing for Full-Stack Development,
and Chapter 2, Getting to Know Node.js and MongoDB.

The versions listed in those chapters are the ones used in the book. While installing a newer version
should not be an issue, please note that certain steps might work differently on a newer version. If
you are having an issue with the code and steps provided in this book, please try using the versions
mentioned in Chapter 1 and 2.

You can find the code for this chapter on GitHub: https://github.com/PacktPublishing/
Modern-Full-Stack-React-Projects/tree/main/ch19.

The CiA video for this chapter can be found at: https://youtu.be/ERBFy5mHwek.

https://github.com/PacktPublishing/Modern-Full-Stack-React-Projects/tree/main/ch19
https://github.com/PacktPublishing/Modern-Full-Stack-React-Projects/tree/main/ch19
https://youtu.be/ERBFy5mHwek

Deploying a Next.js App446

Deploying a Next.js app with Vercel
We are going to start by deploying our app on Vercel, a platform where we can deploy our apps for free
in a simple and convenient way. Follow these steps to get started deploying our Next.js app with Vercel:

1.	 Copy the existing ch18 folder to a new ch19 folder by running the following command:

$ cp -R ch18 ch19

2.	 Open the ch19 folder in VS Code.

3.	 Install the Vercel CLI tool as a global package with the following command:

$ npm install -g vercel@33.5.3

4.	 Run the Vercel CLI:

$ vercel

5.	 You will be asked to log in to Vercel. Select either of the login methods and follow the steps
provided by Vercel to log in.

6.	 After successfully logging in, you will be asked questions about the deployment of your project,
confirm all of them with the default values provided by pressing Enter/Return until the Vercel
CLI attempts to build your project.

Figure 19.1 – Attempting to deploy our app to Vercel

Deploying a Next.js app with Vercel 447

7.	 While the project is building, you can visit the URL provided in the CLI to see the current state
of the build process (make sure you are logged in to Vercel in the same browser), as shown in
the following screenshot:

Figure 19.2 – Monitoring the build process in the browser

8.	 Unfortunately, the build fails because the DATABASE_URL environment variable is set
to mongodb://localhost:27017/blog.

We now need to adjust this environment variable in Vercel.

Setting environment variables in Vercel

Follow these steps to set up the necessary environment variables in Vercel:

1.	 Re-use the existing database cluster created in MongoDB Atlas or follow the steps in the Creating
a MongoDB Atlas database section of Chapter 5 to create a new database cluster. You should
now have a connection string for your database.

Deploying a Next.js App448

2.	 Verify that the connection string works by executing the following command:

$ mongosh "<connection-string>"

3.	 If you are re-using the existing database cluster, make sure to clear the database/collections,
as the posts and users used to have a slightly different format in Chapter 5! Run the following
commands inside the MongoDB Shell to clear the collections:

> db.posts.drop()
> db.users.drop()

4.	 Go to https://vercel.com/ and log in with the same login provider you used earlier.

5.	 You should see an overview of your projects, including the ch19 project we created earlier via
the Vercel CLI, as shown in the following screenshot:

Figure 19.3 – The Vercel dashboard

6.	 Click on the ch19 project, then go to the Settings tab, select Environment Variables on the
sidebar, and create a new environment variable by entering DATABASE_URL as the Key and
the previously obtained connection string as Value, as shown in the following screenshot:

https://vercel.com/

Deploying a Next.js app with Vercel 449

Figure 19.4 – Adding an environment variable in Vercel

Note
For production apps, you would also set the JWT_SECRET environment variable to a random
secret here. Additionally, you would set the BASE_URL environment variable to the URL of
the production deployment of your app. For example, if the public URL of your blog is going
to be https://ch19-omnidan.vercel.app/, you would set the BASE_URL to that.

7.	 Click the Save button below the environment variables to save your changes.

8.	 Run the Vercel CLI again to attempt another deployment:

$ vercel

Alternatively, you can trigger a rebuild from the Vercel web UI.

Deploying a Next.js App450

9.	 You will see that it deploys successfully now, visit the Preview URL provided by the Vercel CLI
in your browser to see our blog application loading successfully:

Figure 19.5 – Working “Preview” deployment of our app

Interestingly, Vercel CLI now made a Preview deployment for us. This is the default behavior
in Vercel. It will first deploy to a Preview environment, where we can test everything out to
make sure our app works fine. The Preview environment is only accessible if you are logged
in via Vercel. We can also invite others to test our app here and add comments to it via the
Vercel toolbar at the bottom.

10.	 Now that we have confirmed our app works, we can deploy it to production, as follows:

$ vercel --prod

The following screenshot shows a Preview and a Production deployment being made with
the Vercel CLI:

Figure 19.6 – Deploying our app to “Preview” and “Production” environments with the Vercel CLI

Creating a custom deployment setup for Next.js apps 451

Now our app is deployed on the Production environment and is accessible to anyone, without
having to log in via Vercel!

Note
The URL provided in the Vercel CLI output is not accessible to anyone; you need to use one
of the domains specified in the Domains section on the Vercel dashboard. The default should
be https://ch19-<vercel-username>.vercel.app/.

As we can see, deploying our app with Vercel is very easy and convenient. However, in some cases,
we want to deploy our app on our own infrastructure. Let’s learn how to create a custom deployment
setup for Next.js apps now.

Creating a custom deployment setup for Next.js apps
We are now going to learn how to set up a custom deployment for Next.js apps using Docker. We
have already learned the basics of deploying apps using Docker in Chapter 5, so please refer to that
chapter if anything is unclear, or if you need a refresher on Docker. Let’s get started setting up our
Next.js app for a Docker deployment now:

1.	 First, we need to change the output format for Next.js to standalone. This option tells
Next.js to create a .next/standalone folder that only contains the necessary files for a
production deployment, including only the necessary node_modules. This folder can then
be deployed without having to install node_modules again. Edit next.config.mjs and
adjust the config, as follows:

/** @type {import('next').NextConfig} */
const nextConfig = {
  output: 'standalone',
}

export default nextConfig

2.	 Now, we create a .dockerignore file to ignore certain files that should not be included in
our image:

node_modules
.env*
.vscode
.git

3.	 Create a new Dockerfile, start by defining a base image from node:20:

FROM node:20 AS base

Deploying a Next.js App452

4.	 Then, define a new image for building the app, based on the base image:

FROM base AS build

5.	 Set the working directory to the /app folder and copy over the package.json and
package-lock.json files:

WORKDIR /app
COPY package.json .
COPY package-lock.json .

6.	 Now, install all dependencies, and additionally install sharp, which is used by Next.js to resize
and optimize images in production:

RUN npm install
RUN npm install sharp

7.	 Copy over all files from our project:

COPY . .

8.	 Next, define the arguments for the build process. We are going to define all environment variables
here because Next.js also uses them during the build process to statically build certain routes:

ARG DATABASE_URL
ARG JWT_SECRET
ARG BASE_URL

9.	 We can now run the build command, as follows:

RUN npm run build

10.	 Define a new image for the final app, based on the base image as well:

FROM base AS final

11.	 We also define the working directory:

WORKDIR /app

12.	 We set up the permissions to run our app as a special nextjs user instead of root:

RUN addgroup --system --gid 1001 nodejs
RUN adduser --system --uid 1001 nextjs

Creating a custom deployment setup for Next.js apps 453

13.	 Now, copy over the necessary files to run a standalone Next.js server from the build image:

COPY --from=build /app/public ./public
RUN mkdir -p .next
RUN chown nextjs:nodejs .next
COPY --from=build /app/.next/standalone ./
COPY --from=build /app/.next/static ./.next/static

14.	 We define the PORT, HOSTNAME, and NODE_ENV variables:

EXPOSE 3000
ENV PORT 3000
ENV HOSTNAME "0.0.0.0"
ENV NODE_ENV production

15.	 Then, we execute the standalone Next.js server as the nextjs user we defined earlier:

USER nextjs
CMD ["node", "server.js"]

16.	 Make sure the database server is running in a Docker container.

17.	 Now we can build the Docker image by running the following command:

$ docker build \
  -t blog-nextjs \
  --build-arg "DATABASE_URL=mongodb://host.docker.
internal:27017/blog" \
  --build-arg "JWT_SECRET=replace-with-random-secret" \
  --build-arg "BASE_URL=http://localhost:3000" \
  .

In the preceding command, we specified blog-nextjs as the name for our image and
the necessary environment variables for building the image. Do not forget the dot (.) at the
end of the command, as that is what specifies the build context, including where to look for
the Dockerfile!

Note
You can check out the official example Dockerfile from Next.js for an up-to-date
version: https://github.com/vercel/next.js/blob/canary/examples/
with-docker/Dockerfile

https://github.com/vercel/next.js/blob/canary/examples/with-docker/Dockerfile
https://github.com/vercel/next.js/blob/canary/examples/with-docker/Dockerfile

Deploying a Next.js App454

18.	 Finally, run a new Docker container, as follows:

$ docker run \
  -d \
  --name blog-app \
  -p 3000:3000 \
  -e "DATABASE_URL=mongodb://host.docker.internal:27017/blog" \
  -e "JWT_SECRET=replace-with-random-secret" \
  -e "BASE_URL=http://localhost:3000" \
  --restart unless-stopped \
  blog-nextjs

In the preceding command, we specified the running of a container with the name blog-app
in the background (daemon mode) published to port 3000, then specified the environment
variables and told Docker to restart the container if it crashes. Lastly, we specified the image
name, which is blog-nextjs (the image we built in the previous step).

19.	 Visit http://localhost:3000 and you will see the blog running successfully!

Now that we have a Docker container, we could deploy it to a cloud service (or our own server), just
like we did in Chapter 5. While it is slightly more effort to set up a custom deployment for a Next.js
app, it is still quite straightforward to do a simple setup!

For more advanced setups, such as multiple instances, you would need to set up a shared volume between
the instances so the cache and optimized images can be shared (on Vercel, this is done automatically
behind the scenes). However, such a setup is out of the scope of this book. You can check out the Next.
js docs on self-hosting for more information on how to do this: https://nextjs.org/docs/
app/building-your-application/deploying#self-hosting.

Summary
In this chapter, we first learned how to deploy a Next.js app using Vercel. Then, we learned how to
create a custom deployment setup using Docker.

In the next and final chapter, Chapter 20, Diving Deeper into Full-stack Development, we are going to
briefly cover various advanced full-stack development topics that have been left out of this book so far,
giving you an idea of how to continue your journey of learning full-stack web development with React.

https://nextjs.org/docs/app/building-your-application/deploying#self-hosting
https://nextjs.org/docs/app/building-your-application/deploying#self-hosting

20
Diving Deeper into

Full-Stack Development

After learning how to build and deploy Next.js apps, we are done with our journey into full-stack
development with React. In this final chapter, I want to give you an overview and briefly cover various
advanced topics that have been left out in this book. This includes concepts such as maintaining large-
scale projects, optimizing the bundle size, an overview of user interface (UI) libraries, and advanced
state management solutions.

In this chapter, we are going to cover the following main topics:

•	 Overview of other full-stack frameworks

•	 Overview of UI libraries

•	 Overview of advanced state management solutions

•	 Pointers on maintaining large-scale projects

Note
As this chapter only gives an overview of advanced topics in full-stack development with links
for further reading, there are no code examples, and as such also no technical requirements
for this chapter.

Overview of other full-stack frameworks
In this book, we learned about Next.js, the most popular full-stack framework for React. However,
other full-stack frameworks might be of interest to you, each coming with its own pros and cons.

Diving Deeper into Full-Stack Development456

Before we can compare the frameworks, though, let’s recap the different methods of rendering in React:

•	 Client-side rendering (CSR): Renders components in the browser

•	 Server-side rendering (SSR): Renders components on the server and serves the result

•	 Static site generation (SSG): Renders components on the server and stores them as static
HTML, then serves the static HTML

•	 Incremental static generation (ISR): Does SSG on the fly and caches the result for a certain
amount of time

•	 Deferred site generation (DSG): Caches all data upon build time and when pages are re-rendered,
makes use of that cached data

Additionally, many frameworks (and cloud providers) support the Edge Runtime, a subset of standard
web APIs that are used to run code on the “edge.” The “edge” in this case refers to serverless compute
environments that can be deployed in many locations as close to the customer as possible. For example,
if someone accesses your website from Austria, the code will run on the closest server, which may be
in Austria or Germany. For someone from the United States, however, the code will run on a server
in the United States. This reduces network latency and makes our app load faster.

Now, let’s have a look at the different full-stack frameworks.

Next.js

We have already learned about Next.js in this book – it is the most popular full-stack web framework
at the time of writing, supporting CSR, SSR, SSG, and ISR. Lately, Next.js defaults to SSG to keep
your app as performant as possible, but it still offers the ability to revalidate cached pages and provide
SSR when necessary.

Next.js also supports the Edge Runtime, but you have to specifically opt into using it instead of the
(default) Node.js runtime. Certain features are also not available on the Edge Runtime.

You can check out Next.js here: https://nextjs.org/.

Remix

Remix is a full-stack framework that focuses on web standards.

Unlike Next.js, it does not offer SSG and instead focuses on improving dynamic rendering performance
and integration with web infrastructure via SSR. As Remix is fully built on web standards, it does not
require Node.js to run, so it can run natively on edge runtimes, such as Cloudflare Workers.

Currently, Remix does not support React Server Components (RSCs), but it has its own patterns
that result in the same advantages as using RSCs.

https://nextjs.org/

Overview of UI libraries 457

Like Next.js, it supports nested routes (with nested layouts), dynamic routing, and parallel rendering on
the server. The Remix router is based on React Router, which makes it easy to understand if you have
already worked with React Router. It also supports loading/error states, and a form of Server Actions.

Overall, Remix is a really good alternative to Next.js, especially if you prefer working with standard
web APIs and care about edge runtime support. Its goal is to make web development simple again by
relying on standards as much as possible.

You can check out Remix here: https://remix.run/.

Gatsby

Gatsby mainly focuses on SSG. While it can now also do SSR, the framework authors encourage using
SSG as much as possible. Instead of ISR, Gatsby offers DSG, which makes data more consistent on
big websites, but at the cost of potentially serving stale data.

Gatsby has recently started offering RSC support and also supports the Edge Runtime. However,
like Next.js, it also depends on Node.js APIs and as such only offers a subset of its features for the
Edge Runtime.

One advantage of Gatsby is its vast plugin ecosystem, allowing developers to easily integrate new features.

However, one downside of Gatsby is that it does not support nested routes with nested layouts.

While both Next.js and Remix offer support for REST and GraphQL, Gatsby focuses mainly on
GraphQL, supporting REST APIs only as a second-class citizen. However, this allows Gatsby to offer
plugins that easily integrate various data sources.

Overall, Gatsby can be a great framework if you mainly want SSG, the ability to integrate data from
various sources, and an easy-to-learn tool. Instead of throwing all the complexity of a framework at
you at once, Gatsby progressively discloses complexity through its plugin ecosystem.

You can check out Gatsby here: https://www.gatsbyjs.com/.

Next, we’ll provide an overview of a few selected UI libraries.

Overview of UI libraries
In this book, I have purposefully left out UI libraries as they are very opinionated, constantly changing,
and would make the code examples significantly longer. In this section, I would like to provide an
overview of some selected UI libraries. Feel free to explore them on your own and keep an eye out
for other options and new releases in this field!

https://remix.run/
https://www.gatsbyjs.com/

Diving Deeper into Full-Stack Development458

Material UI (MUI)

MUI is one of the most popular component libraries for React. It supports a wide range of components,
including complex components such as data tables. It also has a very extensible theming system, allowing
you to adjust it to your style. However, its styling engine, at the time of writing, is incompatible with
RSCs, which is something that will be improved in upcoming versions. Use MUI if you generally like
its style but want to customize the colors, typography, and spacings to make it your own.

You can check out MUI here: https://mui.com/.

Tailwind CSS

Tailwind CSS is a utility-first CSS framework and does not require React. However, it plays well
together with React, allowing you to easily style your custom components. As it is CSS-only, you can
tailor the React components exactly to your needs. It also means that RSCs are fully supported because
Tailwind is simply a set of CSS classes. Use Tailwind if you want to implement a fully custom style for
your apps quickly and simply compared to directly using CSS.

You can check out Tailwind CSS here: https://tailwindcss.com/.

Tailwind UI

The makers of Tailwind CSS also provide a set of pre-made style-only components that use Tailwind
CSS, called Tailwind UI. Check it out if you need inspiration for creating components with Tailwind
here: https://tailwindui.com/.

React Aria

React Aria is a simple set of components that have great support for accessibility and internationalization
out of the box. By default, the components are style-free, allowing you to build a custom design. You
can also use it in combination with Tailwind. Use React Aria if you want to create a design system but
do not want to deal with the challenges of creating accessible components.

You can check out React Aria here: https://react-spectrum.adobe.com/react-aria/.

NextUI

NextUI is an upcoming UI library using the style of Vercel (the company behind Next.js). It is built
on top of Tailwind CSS but offers various components built on top of React Aria, ensuring first-class
accessibility support. Like MUI, it also offers many components and is very customizable through
themes. Additionally, it supports RSC because it is based on Tailwind CSS. Use NextUI if you like
the style and want to customize it a bit, especially if you are developing with a framework that has
RSC support.

You can check out NextUI here: https://nextui.org/.

https://mui.com/
https://tailwindcss.com/
https://tailwindui.com/
https://react-spectrum.adobe.com/react-aria/
https://nextui.org/

Overview of advanced state management solutions 459

Next, we’ll provide an overview of advanced state management solutions.

Overview of advanced state management solutions
In this book, we focused on simple state management solutions in React, such as useState and
contexts. However, in large-scale projects, it might make sense to use advanced state management
libraries to deal with complex state. I will give an overview of some selected state management libraries
here, but keep in mind that there are many more libraries out there, so feel free to check them out and
decide which one fits your project best.

Recoil

Recoil is a state management library for React built by Facebook Open Source. As such, it shares many
of the principles of React. It is a very simple but powerful system, where state is stored in atoms, and
then derived via selectors. This allows us to, for example, store only the user input of a form in atoms,
and a resulting payload in a selector, which derives its state from the atoms.

You can check out Recoil here: https://recoiljs.org/.

Jotai

Jotai takes a similar approach to Recoil but simplifies the system by getting rid of selectors and only
dealing with atoms. Atoms can then derive state from other atoms. If you want a state management
solution that is still simple, but more powerful than useState, Jotai is a great solution.

You can check out Jotai here: https://jotai.org.

Redux

Redux takes a different approach, offering a central store where all your state is contained, and then
only allowing you to change it through actions. This ensures your application behaves consistently, and
that the same user actions always result in the same state changes. Redux can be great for applications
where actions are essential and when undo/redo functionality is needed (such as certain editors).

You can check out Redux here: https://redux.js.org.

MobX

MobX is a signal-based state management library that uses observables to track state changes. When
a value is made observable, it can be mutated directly, just like a regular JavaScript variable, but all
changes to it trigger observers of the state to execute and re-render components.

You can check out MobX here: https://mobx.js.org/.

https://recoiljs.org/
https://jotai.org
https://redux.js.org
https://mobx.js.org/

Diving Deeper into Full-Stack Development460

xstate

xstate is a state machine library, which can be very useful when you have complex user interfaces with
various states that need to be kept track of.

You can check out xstate here: https://stately.ai/docs/xstate.

Zustand

Zustand is a small state management library with a hook-based API that combines values and functions
that change the values in stores. Each store then exposes a hook where its values and functions can
be used.

You can check out Zustand here: https://docs.pmnd.rs/zustand/getting-started/
introduction.

Now, let’s wrap up by learning about some pointers on maintaining large-scale projects.

Pointers on maintaining large-scale projects
To keep this book as short and to the point as possible, as well as available to a wide audience, I
intentionally left out some topics and technologies. However, these are still very important to get to
know when maintaining large-scale projects, so I want to cover them briefly here.

Using TypeScript

TypeScript is JavaScript extended with syntax for types. A type system can be very useful in catching
bugs early and give confidence when refactoring a large code base. While it can take some time to get
used to typing everything, it becomes a blessing when you realize all problems appear as type errors
in your code editor instead of runtime errors for your users.

I would recommend using TypeScript for all new projects. It is easy to learn when you already know
JavaScript and integrates well with frameworks such as Next.js.

You can learn more about TypeScript here: https://www.typescriptlang.org.

Setting up a Monorepo

In this book, we were always dealing with a single app at a time. However, large-scale projects often
consist of multiple apps, with potentially multiple internal libraries shared between them. For example,
you might have two apps, which share UI components in a common UI library. Having all those
libraries and apps in separate git repositories can often lead to organizational overhead.

https://stately.ai/docs/xstate
https://docs.pmnd.rs/zustand/getting-started/introduction
https://docs.pmnd.rs/zustand/getting-started/introduction
https://www.typescriptlang.org

Summary 461

To keep things simple, development teams often decide to set up a Monorepo, which contains all apps
and libraries in a single repository. This also makes it easier to keep the code base consistent and keep
track of large-scale refactorings.

You can learn more about Monorepos here: https://monorepo.tools.

To set up a Monorepo, use a package manager that supports workspaces, such as pnpm (https://
pnpm.io) or yarn (https://yarnpkg.com). Certain tools make creating and maintaining
Monorepos easier, such as Turborepo. Check out the guides on https://turbo.build to learn
how to set up a Monorepo with Turborepo.

Optimizing the bundle size

As your project grows, the JavaScript bundle that’s sent to the browser also grows. This can be problematic
for devices on slower connections or with slower processors. Sometimes, certain dependencies add
a lot to the bundle size, so it is a good idea to regularly check how changes in your project affect the
bundle size.

For Vite, you can use vite-bundle-visualizer to find out which dependencies are increasing
your bundle size: https://github.com/KusStar/vite-bundle-visualizer.

For Next.js, you can use the official @next/bundle-analyzer plugin: https://nextjs.
org/docs/app/building-your-application/optimizing/bundle-analyzer.

Summary
In this book, we started with the motivation to become a full-stack developer. Then, we set up our
development environment and learned about tools that make our lives easier. Next, we got to know
Node.js and MongoDB, taking our first steps as backend developers. Then, we implemented a backend
for a blog application using Express and Mongoose, and we wrote unit tests for it using Jest. Afterward,
we integrated a frontend with our backend using React and TanStack Query, and as such, created
our first full-stack web application. Next, we learned how to deploy our application with Docker, and
we learned how to set up CI/CD. Then, we added authentication to our application using JWT. We
learned how to improve the load time of our app using SSR and developed our own (simple) SSR
solution in the process. We then learned how search engines work, and how to make sure customers
can find our web application by facilitating SEO and providing metadata for social media embeds.
Next, we implemented end-to-end tests using Playwright, making sure that our app always works as
expected. Then, we learned how to aggregate and visualize statistics using MongoDB and Victory.

https://monorepo.tools
https://pnpm.io
https://pnpm.io
https://yarnpkg.com
https://turbo.build
https://github.com/KusStar/vite-bundle-visualizer
https://nextjs.org/docs/app/building-your-application/optimizing/bundle-analyzer
https://nextjs.org/docs/app/building-your-application/optimizing/bundle-analyzer

Diving Deeper into Full-Stack Development462

Afterward, we took a detour from REST APIs and developed a backend with a GraphQL API, learning
what GraphQL is and what its benefits are. We then developed a frontend that consumes this GraphQL
API. Next, we took a break from our blog application and built an event-based chat app using Socket.
IO. While doing so, we learned how to create a backend and a frontend, and how to add persistence,
in the event-based paradigm. In the last few chapters of this book, we learned about Next.js, a full-
stack web development framework. We introduced the app router, a new way to structure your apps,
and RSCs, which allowed us to merge the backend and frontend even more, reducing the need for
boilerplate code to create APIs, and instead allowing us to directly access code from a data layer inside
RSCs. We also learned about advanced concepts and optimizations in Next.js, such as caching, SEO,
and optimized font and image loading. Finally, we learned how to deploy a Next.js app using Vercel,
a cloud platform provided by the makers of Next.js, and we created a custom deployment setup using
Docker so that we can deploy our app on any other cloud provider (or our own servers).

It has been a long journey. But, as we have seen in this chapter, there are still many more topics to dive
deeper into, and the web development ecosystem is changing fast. New technologies keep coming
out all the time, especially in terms of RSCs and Server Actions, which, at the time of writing, are still
new and upcoming. I expect many more features to be released in this space, so keep an eye out for
ground-breaking announcements in the React world!

“Stay hungry. Stay foolish. Never let go of your appetite to go after new ideas, new
experiences, and new adventures.” – Steve Jobs

Index

A
acknowledgments 327, 334
actions 137
advanced GraphQL concepts 301

fragments 302
introspection 303

advanced server-side rendering 209-211
advanced state management solutions 459

Jotai 459
MobX 459
Recoil 459
Redux 459
xstate 460
Zustand 460

advanced token handling 180
aggregation API

integrating 273, 274
Amazon Web Services (AWS) 130
API routes

creating, for listing blog posts 424, 425
creating, with Express 83, 84
defining 77
defining, in Next.js 424
dynamic, making 430
static rendering 428-430

Apollo Client 306
setting up 306, 307

Apollo docs
reference link 320

Apollo Server 285
application

load time, benchmarking 184-190
application, optimizing for search engines

dynamic titles, adding 222, 223
meaningful URLs (slugs), creating 221, 222
meta tags, adding 223
robots.txt file, creating 215, 216
separate pages, creating for posts 216-220
sitemap, creating 226-228

App Router 382, 383
routing structure, as folder

structure 384, 385
authenticated routes

defining 162, 163
authentication

adding, to GraphQL 296

B
backend Dockerfile

creating 120-122

Index464

backend Docker image
deploying, to Cloud Run 134, 135

backend endpoint
implementing, for fetching

user information 176
backend for chat app, with Socket.IO 331

acknowledgments, using to get
information of user 334, 335

chat messages, broadcasting from
server to clients 332, 333

events, emitting to send chat messages
from client to server 331, 332

rooms, joining to send messages 333, 334
backend service

designing 52, 53
folder structure, creating 53-55

bar chart
creating, in Victory 275-277

blog app
putting, together 105, 106

blog post model
using 57, 58

blog posts
creation and last update dates,

defining 59, 60
fetching 108-110
model, defining for 56, 57

built-in fixtures 245
bundled requests 191

C
cache

invalidating, periodically 435, 436
revalidating, via Server Actions 433
revalidating, via Webhook 434

caching
opting out of 436

caching, in Next.js 426, 427
data cache 427
full route cache 427
reference link 428
request memoization 427
router cache 427

call stack 26
charset meta tag 226
chat app frontend

starting 349
testing 349

chat commands
implementing, with

acknowledgments 356-358
chat components

implementing 351
chat functionality

implementing 350
ChatMessage component

implementing 351
Chat page component

creating 348, 349
ChatRoom component

implementing 354, 355
client components 398
client-side code

refactoring 368, 369
client-side rendering (CSR) 398, 456

downsides 398
cloud

full-stack application, deploying to 130
Cloud Run 133

backend Docker image,
deploying to 134, 135

frontend Docker image, deploying to 135
collections 39

Index 465

commands
implementing, to join and switch

rooms on chat app 370-373
commitlint

setting up 18
commitlint conventional config

URL 19
commit messages

in commitlint conventional config 19
component-level data access 402
components

creating, for blog app 386-390
concurrency

with JavaScript in browser,
and Node.js 25-27

containers 30
creating 32, 33

Content Delivery Network (CDN) 229
continuous delivery (CD) 119
continuous deployment (CD)

configuring, to automate deployment 141
continuous integration (CI) 119

adding, for backend 138, 139
adding, for frontend 137, 138
configuring, to automate testing 136, 137
Playwright tests, running 250, 251

continuous integration/continuous
delivery (CI/CD) 30

controller 52
Core Web Vitals 184, 188
crawler 214
CreatePost component

implementing 99, 100
createPost service function

test cases, defining for 64-66
writing 63

create, read, update, and delete
(CRUD) 42, 53

cross-origin resource sharing (CORS) 87
used, for allowing access from

other URLs 88
Cumulative Layout Shift (CLS) 184
custom deployment setup

creating, for Next.js apps 451-454
custom fixtures

using 247, 248

D
data access layer 402
data aggregation, in backend

aggregation service functions,
defining 268-271

implementing 268
routes, defining 271, 272

database connection
setting up 403

database models
creating 404, 405

data-handling approaches
component-level data access 402
data access layer 402
HTTP APIs 402

data layer 53
defining, for users 406-408
functions, caching 430-432

data layer functions
defining 405

deferred site generation (DSG) 456
delete post function

defining 71-74
dependencies

installing 11
deployment workflow

defining 142-144
description meta tag 224

Index466

Docker 30
accessing, via VS Code 34
installing 32

Docker Client 31
docker-compose

multiple images, managing 127, 128
Docker Compose 127
Docker Compose file 120
Docker containers 31
Docker daemon 31
Docker Desktop

download link 32
Docker extension

installing 6
Dockerfile 120
Docker Host 31
Docker Hub 31
Docker Hub credentials

obtaining 141
.dockerignore file

creating 122
creating, for frontend 126

Docker images 31
container, creating 123
container, running 124
creating 120, 122, 123
deploying, to Docker registry 132, 133

Docker Registry 31
dotenv

used, for setting environment
variables 79-81

E
ECMAScript module (ESM) standard 10, 62
Edge Runtime 456

end-to-end tests
running 237
writing 237

EnterMessage component
implementing 351, 352

environment variables
setting, with dotenv 79-81

ESLint 11
configuring 14, 15
new script, adding to run linter 16

event-based applications 324, 325
event loop 26
event model

creating 254, 255
events 137

collecting, on frontend 257, 258
simulating 258-261

exec form 122
Express 77

API routes, creating with 83, 84
routes, defining with JSON

request body 86, 87
setting up 78, 79

F
Fastify

URL 78
files

handling, in Node.js 24, 25
filters

implementing 110-113
first contentful paint (FCP) 184, 398
first meaningful paint (FMP) 398
fixtures 237

for reusable test setups 244
writing 245-247

Index 467

Font component 440, 441
reference link 442

fragments 302
frontend container

creating 127
running 127

frontend Dockerfile
creating 124-126

frontend Docker image
creating 126
deploying, to Cloud Run 135

full-stack application
deploying, to cloud 130

full-stack frameworks 455
Gatsby 457
Next.js 456
Remix 456

full stack React project
setting up 93, 94

functions
caching, in data layer 430-432
defining, to list posts 66, 67

G
Gatsby 457

URL 457
get single post function

defining 71-74
GitHub Actions 136
Google Artifact Registry 133
Googlebot 214
Google Cloud

account, creating 131
credentials, obtaining 141, 142

Google Search Console 215

GraphQL 282-284
authentication, adding to 296
author usernames, resolving in

single query 310, 311
create post functionality,

migrating to 317-319
login functionality, migrating to 316, 317
mutations 284, 285
mutations, implementing 297, 298
mutations, using 299-301
posts, querying from frontend 307-310

GraphQL API, implementing
in backend 285-287

deeply nested queries, trying 291-293
fields, implementing to query posts 287-289
input types, implementing 294, 295
Post type, defining 289, 290
User type, defining 290, 291

GraphQL queries
fragments, using to reuse parts

of queries 312-314
variables, using 312

H
HTML report, of test runs

viewing 248, 249
HTTP APIs 402
Husky 16

setting up 16, 17

I
idempotence 76
Image component 442, 443
incremental static generation (ISR) 456
index 214

Index468

integrated development
environment (IDE) 3

internationalization (i18n) 378
Internet Assigned Numbers

Authority (IANA) 151
introspection 303
isomorphic rendering 192

J
JavaScript, in browser

versus Node.js architecture 22
Jest VS Code extension

using 74, 75
jobs 137
Jotai 459

URL 459
JSON Formatter extension 85
JSON Web Token (JWT) 149, 150

creating 152, 153
header 150
header, sending on creating posts 178-180
payload 150, 151
private claims 151
public claims 151
registered claims 151
signature 150, 152
storing 155, 172-174
using 153, 154

K
Koa

URL 78

L
large-scale projects, maintaining 460

bundle size, optimizing 461
Monorepo, setting up 460
TypeScript, using 460

Largest Contentful Paint (LCP) 184
Last Contentful Paint (LCP) 442
libuv 25
Lighthouse tool 184
line chart

creating, in Victory 277-279
Link component

used, for linking to other routes 170, 171
lint-staged 16

setting up 16, 17
list of posts

fetching 409
list posts

test cases, defining for 67-71
listPosts function

defining 66, 67
loaders 204
logged-in user

accessing 164, 165
login page

creating 172-174
login route

creating 160
login service

creating 158-160
Loupe tool

reference link 27

M
Material UI (MUI) 4, 458

URL 458

Index 469

messages
replaying 361, 362
storing 361, 362

meta tags 223
charset meta tag 226
description meta tag 224
robots meta tag 225
viewport meta tag 225, 226

MobX 459
URL 459

model 52
defining, for blog posts 56, 57

model-view-controller (MVC) pattern 52
MongoDB 34-36, 262

document, deleting 42
document, inserting into collection 39, 40
document, querying and sorting 40, 41
document, updating 41

MongoDB Atlas 130
MongoDB Atlas database

creating 130, 131
MongoDB database

accessing, via Node.js 45-47
MongoDB Express React Node.js

(MERN) application 119
MongoDB, for data aggregation

average session duration,
calculating 266-268

number of daily views per post,
obtaining 264-266

total number of views per post,
obtaining 262-264

MongoDB server
setting up 37, 38

MongoDB Shell 36, 38
Mongoose 55
mongoose library

setting up 55, 56

Mongoose schema
creating, for storing chat messages 360, 361

Monorepo 460
URL 461

mutations 284, 285
using, on frontend 314-316

N
Next.js 378, 455, 456

API routes, defining in 424
features 378
setting up 379-382
URL 456

Next.js app
custom deployment setup,

creating for 451-454
deploying, with Vercel 446, 447

NextUI 458
URL 458

Node.js 22
files, handling 24, 25
MongoDB database, accessing via 45-47

Node.js architecture
versus JavaScript in browser 22

Node.js script
creating 23, 24

nodemon
using 81, 82

NoSQL databases
types 35

O
object data modeling (ODM) 51
OG article meta tags

using 230, 231

Index470

Open Graph (OG) meta tags 229, 230
Open Systems Interconnection

(OSI) model 325

P
pages

creating 386
creating, for blog app 390-392
link, adding between 392-395

plain old JavaScript object (POJO) 72
Playwright 234

backend, preparing for
end-to-end testing 235, 236

headed 234
headless 234
installing 234, 235

Playwright tests
running, in CI 250, 251

pnpm
URL 461

Podman 30
Post component

implementing 98, 99
PostFilter component

implementing 101
PostList component

implementing 102-104
posts

creating 114-117
queries, invalidating 117

posts data layer
defining 405, 406

PostSorting component
implementing 101

Prettier 11
configuring 12

Prettier docs
URL 12

Prettier extension
configuring 13

Prettier ignore file
creating 13

project
cleaning up 342, 343
setting up, with Vite 8-10

R
Rancher Desktop 30
React

principles 92
Socket.IO client, integrating with 342
TanStack Query, setting up for 107, 108

React Aria 458
URL 458

React components, rendering
on server 191, 192

client-side entry point, defining 196, 197
index.html, updating 197
package.json, updating 197
server setup 193-196
server-side entry point, defining 196

React Router 166
using, to implement multiple routes 166, 167

React Router, with server-side
rendering 198, 199

client-side router, defining 199
Express request, mapping to

Fetch request 200, 201
server-side router, defining 202, 203

React Server Components
(RSCs) 397-399, 402, 423, 456

data, fetching from database 409
features 400, 401

Index 471

list of posts, fetching 409
single post, fetching 410, 411

Recoil 459
URL 459

Redux 459
URL 459

relevant meta information 226
Remix 456

URL 457
replayed messages

distinguishing, visually 363, 364
representational state transfer

(REST) API 75
routes, defining 77

REST-based architecture, methods
DELETE 76
GET 76
PATCH 76
POST 76
PUT 76

REST/request-response
advantages 325
disadvantages 325

reusable test setups
with fixtures 244

robots meta tag 225
robots.txt file 215

creating 215, 216
rooms 327, 333
route group 430
route layer 53
routes

defining, to track events 255-257
trying out, in browser 88, 89

runner 137

S
search engine crawler 214
search engine optimization (SEO) 192

score 213
search engines 214
Secrets API 134
SEO, with Next.js 436

dynamic titles, adding 436, 437
meaningful URLs (slugs), creating 438
meta tags, adding 436, 437
robots.txt file, creating 437
sitemap, creating 439, 440

Server Actions 412, 413
cache, revalidating via 433
JWT handling 416-418
login page, implementing 416-418
logout, implementing 419, 420
post creation, implementing 421, 422
signup page, implementing 413-416
user login, checking 418, 419

server-side data fetching 204
hydration approach 204-209
initial data approach 204, 205

server-side rendering
(SSR) 191, 378, 398, 456

service functions
creating, to deal with chat messages 361
defining, for chat functionality 365, 366
defining, to track events 255-257

service layer 53
shell form 122
signup page

creating 168-170
signup route

creating 157, 158
signup service

creating 156, 157

Index472

simple logout
implementing 174, 175

single-page application (SPA) 172
single post

fetching 410, 411
single-responsibility principle 96
sitemap 226

creating 226-228
social media embeds

improving 229
socket

disconnecting, on logout 350
Socket.IO 326

authentication, adding by
integrating JWT 336-339

backend, creating for chat app 331
connecting to 326
events, emitting 327
events, receiving 327
features 326
setting up 328, 329

Socket.IO client
integrating, with React 342
setting up 329, 330

Socket.IO context
creating 343-346
hooking up 346, 347

Socket.IO server
refactoring, to use service functions 367

sorting
implementing 110-113

static components
creating 386

static React components
implementing 97

static rendering
in API routes 428-430

static site generation (SSG) 456
Status component

creating 347, 348
stored JWT

using 174, 175
Structured Query Language

(SQL) databases 34
Structured Query Language

(SQL) queries 262

T
tag 32
Tailwind CSS 458

URL 458
Tailwind UI

URL 458
TanStack Query

setting up, for React 107, 108
used, for integrating backend service 106

test cases
defining, for createPost service

function 64-66
defining, for list posts 67-71

test environment
setting up 60-62

third-party API
integrating 434

token revocation 174
Total Blocking Time (TBT) 184
Transmission Control Protocol (TCP) 325
Turborepo

URL 461
TypeScript 460

URL 460

Index 473

U
universally unique identifiers (UUIDs) 255
unused containers

cleaning up 129
update post function

defining 71-74
useChat hook

implementing 352, 353
User component

implementing, to fetch and render
username 177, 178

user interface (UI) 4
user interface (UI) libraries 455, 457

Material UI (MUI) 458
NextUI 458
React Aria 458
Tailwind CSS 458

user model
creating 155, 156

usernames
fetching 175

V
variables

using, in GraphQL queries 312
Vercel

environment variables, setting 447-450
Next.js app, deploying with 446, 447
URL 448

Victory 275
bar chart, creating 275, 276
line chart, creating 277-279
reference link 275

view 52
viewport meta tag 225, 226

Visual Studio Code (VS Code) 5
installing 5-7
URL 5

Vite 8, 124
alternatives 10
project, setting up 8-10

Voronoi container 277
VS Code

database, accessing via 42-44
Docker, accessing via 34

VS Code extension
browser, showing while running

tests 239, 240
end-to-end tests, running 238
recorded test, cleaning up 242-244
recorded test, finalizing 244
tests, recording 241, 242

W
Webhook

cache, revalidating via 434
implementing 434, 435

web server
creating 28, 29
executing, to serve JSON file 29

WebSockets 325
WebSockets/event-based

advantages 325
disadvantages 325

workflows 137
workload identity federation 142

X
xstate 460

URL 460

Index474

Y
yarn

URL 461

Z
Zustand 460

URL 460

packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packtpub.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://packtpub.com
http://packtpub.com
mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Learn React Hooks

Daniel Bugl

ISBN: 978-1-83864-144-3

•	 Understand the fundamentals of React Hooks and how they modernize state management in
React apps

•	 Build your own custom Hooks and learn how to test them

•	 Use community Hooks for implementing responsive design and more

•	 Learn the limitations of Hooks and what you should and shouldn’t use them for

•	 Get to grips with implementing React context using Hooks

•	 Refactor your React-based web application, replacing existing React class components with Hooks

•	 Use state management solutions such as Redux and MobX with React Hooks

https://www.amazon.com/dp/1838641440

477Other Books You May Enjoy

Micro State Management with React Hooks

Daishi Kato

ISBN: 978-1-80181-237-5

•	 Understand micro state management and how you can deal with global state

•	 Build libraries using micro state management along with React Hooks

•	 Discover how micro approaches are easy using React Hooks

•	 Understand the difference between component state and module state

•	 Explore several approaches for implementing a global state

•	 Become well-versed with concrete examples and libraries such as Zustand, Jotai, and Valtio

https://www.amazon.com/dp/1801812373

478

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

http://authors.packtpub.com

479

Share Your Thoughts
Hi,

I am Daniel Bugl author of Modern Full-Stack React Projects. I really hope you enjoyed reading this
book and found it useful for increasing your productivity and efficiency using React.

It would really help me (and other potential readers!) if you could leave a review on Amazon sharing
your thoughts on this book.

Go to the link below to leave your review:

https://packt.link/r/1837637954

Your review will help me to understand what’s worked well in this book, and what could be
improved upon for future editions, so it really is appreciated.

Best Wishes,

Daniel Bugl

https://packt.link/r/1837637954

480

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/978-1-83763-795-9

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/978-1-83763-795-9

	Cover
	Title Page
	Copyright and Credits
	Dedication
	Contributors
	Foreword
	Table of Contents
	Preface
	Part 1:
Getting Started with
Full-Stack Development
	Chapter 1: Preparing for Full-Stack Development
	Technical requirements
	Motivation to become a full-stack developer
	What is new in this release of Full-Stack React Projects?
	Getting the most out of this book
	Setting up the development environment
	Installing VS Code and extensions
	Setting up a project with Vite
	Setting up ESLint and Prettier to enforce best practices and code style
	Setting up Husky to make sure we commit proper code

	Summary

	Chapter 2 Getting to Know Node.js
and MongoDB
	Technical requirements
	Writing and running scripts with Node.js
	Similarities and differences between JavaScript in the browser and in Node.js
	Creating our first Node.js script
	Handling files in Node.js
	Concurrency with JavaScript in the browser and Node.js
	Creating our first web server
	Extending the web server to serve our JSON file

	Introducing Docker, a platform for containers
	The Docker platform
	Installing Docker
	Creating a container
	Accessing Docker via VS Code

	Introducing MongoDB, a document database
	Setting up a MongoDB server
	Running commands directly on the database
	Accessing the database via VS Code

	Accessing the MongoDB database via Node.js
	Summary

	Part 2:
Building and Deploying Our First Full-Stack Application with a REST API
	Chapter 3: Implementing a Backend Using Express, Mongoose ODM,
and Jest
	Technical requirements
	Designing a backend service
	Creating the folder structure for our backend service

	Creating database schemas using Mongoose
	Defining a model for blog posts
	Using the blog post model
	Defining creation and last update dates in the blog post

	Developing and testing service functions
	Setting up the test environment
	Writing our first service function: createPost
	Defining test cases for the createPost service function
	Defining a function to list posts
	Defining test cases for list posts
	Defining the get single post, update and delete post functions
	Using the Jest VS Code extension

	Providing a REST API using Express
	Defining our API routes
	Setting up Express
	Using dotenv for setting environment variables
	Using nodemon for easier development
	Creating our API routes with Express

	Summary

	Chapter 4: Integrating a Frontend Using React and TanStack Query
	Technical requirements
	Principles of React
	Setting up a full-stack React project
	Creating the user interface for our application
	Component structure
	Implementing static React components

	Integrating the backend service using TanStack Query
	Setting up TanStack Query for React
	Fetching blog posts
	Implementing filters and sorting
	Creating new posts

	Summary

	Chapter 5: Deploying the Application
with Docker and CI/CD
	Technical requirements
	Creating Docker images
	Creating the backend Dockerfile
	Creating a .dockerignore file
	Building the Docker image
	Creating and running a container from our image
	Creating the frontend Dockerfile
	Creating the .dockerignore file for the frontend
	Building the frontend Docker image
	Creating and running the frontend container
	Managing multiple images using Docker Compose
	Cleaning up unused containers

	Deploying our full-stack application to the cloud
	Creating a MongoDB Atlas database
	Creating an account on Google Cloud
	Deploying our Docker images to a Docker registry
	Deploying the backend Docker image to Cloud Run
	Deploying the frontend Docker image to Cloud Run

	Configuring CI to automate testing
	Adding CI for the frontend
	Adding CI for the backend

	Configuring CD to automate the deployment
	Getting Docker Hub credentials
	Getting Google Cloud credentials
	Defining the deployment workflow

	Summary

	Part 3:
Practicing Development of Full-Stack Web Applications
	Chapter 6: Adding Authentication
with JWT
	Technical requirements
	What is JWT?
	JWT header
	JWT payload
	JWT signature
	Creating a JWT
	Using JWT
	Storing JWT

	Implementing login, signup, and authenticated routes in the backend using JWTs
	Creating the user model
	Creating the signup service
	Creating the signup route
	Creating the login service
	Creating the login route
	Defining authenticated routes
	Accessing the currently logged-in user

	Integrating login and signup in the frontend using React Router and JWT
	Using React Router to implement multiple routes
	Creating the signup page
	Linking to other routes using the Link component
	Creating the login page and storing the JWT
	Using the stored JWT and implementing a simple logout
	Fetching the usernames
	Sending the JWT header when creating posts

	Advanced token handling
	Summary

	Chapter 7: Improving the Load Time
Using Server-Side Rendering
	Technical requirements
	Benchmarking the load time of our application
	Rendering React components on the server
	Setting up the server
	Defining the server-side entry point
	Defining the client-side entry point
	Updating index.html and package.json
	Making React Router work with server-side rendering

	Server-side data fetching
	Using initial data
	Using hydration

	Advanced server-side rendering
	Summary

	Chapter 8: Making Sure Customers
Find You with Search
Engine Optimization
	Technical requirements
	Optimizing an application for search engines
	Creating a robots.txt file
	Creating separate pages for posts
	Creating meaningful URLs (slugs)
	Adding dynamic titles
	Adding other meta tags
	Creating a sitemap

	Improving social media embeds
	Open Graph meta tags
	Using the OG article meta tags

	Summary

	Chapter 9: Implementing End-to-End Tests Using Playwright
	Technical requirements
	Setting up Playwright for end-to-end testing
	Installing Playwright
	Preparing the backend for end-to-end testing

	Writing and running end-to-end tests
	Using the VS Code extension

	Reusable test setups using fixtures
	Overview of built-in fixtures
	Writing our own fixture
	Using custom fixtures

	Viewing test reports and running in CI
	Viewing an HTML report
	Running Playwright tests in CI

	Summary

	Chapter 10: Aggregating and Visualizing Statistics Using MongoDB
and Victory
	Technical requirements
	Collecting and simulating events
	Creating the event model
	Defining a service function and route to track events
	Collecting events on the frontend
	Simulating events

	Aggregating data with MongoDB
	Getting the total number of views per post
	Getting the number of daily views per post
	Calculating the average session duration

	Implementing data aggregation in the backend
	Defining aggregation service functions
	Defining the routes

	Integrating and visualizing data on the frontend using Victory
	Integrating the aggregation API
	Visualizing data using Victory

	Summary

	Chapter 11: Building a Backend with
a GraphQL API
	Technical requirements
	What is GraphQL?
	Mutations

	Implementing a GraphQL API in a backend
	Implementing fields that query posts
	Defining the Post type
	Defining the User type
	Trying out deeply nested queries
	Implementing input types

	Implementing GraphQL authentication and mutations
	Adding authentication to GraphQL
	Implementing mutations
	Using mutations

	Overview of advanced GraphQL concepts
	Fragments
	Introspection

	Summary

	Chapter 12: Interfacing with GraphQL
on the Frontend Using
Apollo Client
	Technical requirements
	Setting up Apollo Client and making our first query
	Querying posts from the frontend using GraphQL
	Resolving author usernames in a single query

	Using variables in GraphQL queries
	Using fragments to reuse parts of queries

	Using mutations on the frontend
	Migrating login to GraphQL
	Migrating create post to GraphQL

	Summary

	Part 4:
Exploring an Event-Based Full-Stack Architecture
	Chapter 13: Building an Event-Based Backend Using Express
and Socket.IO
	Technical requirements
	What are event-based applications?
	What are WebSockets?
	What is Socket.IO?
	Connecting to Socket.IO
	Emitting and receiving events

	Setting up Socket.IO
	Setting up a simple Socket.IO client

	Creating a backend for a chat app using Socket.IO
	Emitting events to send chat messages from the client to the server
	Broadcasting chat messages from the server to all clients
	 Joining rooms to send messages in
	Using acknowledgments to get information about a user

	Adding authentication by integrating JWT with Socket.IO
	Summary

	Chapter 14: Creating a Frontend to Consume and Send Events
	Technical requirements
	Integrating the Socket.IO client with React
	Cleaning up the project
	Creating a Socket.IO context
	Hooking up the context and displaying the status
	Disconnecting socket on logout

	Implementing chat functionality
	Implementing the chat components
	Implementing a useChat hook
	Implementing the ChatRoom component

	Implementing chat commands with acknowledgments
	Summary

	Chapter 15: Adding Persistence to
Socket.IO Using MongoDB
	Technical requirements
	Storing and replaying messages using MongoDB
	Creating the Mongoose schema
	Creating the service functions
	Storing and replaying messages
	Visually distinguishing replayed messages

	Refactoring the app to be more extensible
	Defining service functions
	Refactoring the Socket.IO server to use the service functions
	Refactoring the client-side code

	Implementing commands to join and switch rooms
	Summary

	Part 5:
Advancing to Enterprise-Ready Full-Stack Applications
	Chapter 16: Getting Started with Next.js
	Technical requirements
	What is Next.js?
	Setting up Next.js
	Introducing the App Router
	Defining the folder structure

	Creating static components and pages
	Defining components
	Defining pages
	Adding links between pages

	Summary

	Chapter 17: Introducing React
Server Components
	Technical requirements
	What are RSCs?
	Adding a data layer to our Next.js app
	Setting up the database connection
	Creating the database models
	Defining data layer functions

	Using RSCs to fetch data from the database
	Fetching a list of posts
	Fetching a single post

	Using Server Actions to sign up, log in, and create new posts
	Implementing the signup page
	Implementing the login page and JWT handling
	Checking if the user is logged in
	Implementing logout
	Implementing post creation

	Summary

	Chapter 18: Advanced Next.js Concepts
and Optimizations
	Technical requirements
	Defining API routes in Next.js
	Creating an API route for listing blog posts

	Caching in Next.js
	Exploring static rendering in API routes
	Making the route dynamic
	Caching functions in the data layer
	Revalidating the cache via Server Actions
	Revalidating the cache via a Webhook
	Revalidating the cache periodically
	Opting out of caching

	SEO with Next.js
	Adding dynamic titles and meta tags
	Creating a robots.txt file
	Creating meaningful URLs (slugs)
	Creating a sitemap

	Optimized image and font loading in Next.js
	The Font component
	The Image component

	Summary

	Chapter 19: Deploying a Next.js App
	Technical requirements
	Deploying a Next.js app with Vercel
	Setting environment variables in Vercel

	Creating a custom deployment setup for Next.js apps
	Summary

	Chapter 20: Diving Deeper into
Full-Stack Development
	Overview of other full-stack frameworks
	Next.js
	Remix
	Gatsby

	Overview of UI libraries
	Material UI (MUI)
	Tailwind CSS
	React Aria
	NextUI

	Overview of advanced state management solutions
	Recoil
	Jotai
	Redux
	MobX
	xstate
	Zustand

	Pointers on maintaining large-scale projects
	Using TypeScript
	Setting up a Monorepo
	Optimizing the bundle size

	Summary

	Index
	Other Books You May Enjoy

