

About This eBook

ePUB is an open, industry-standard format for eBooks. However, support of
ePUB and its many features varies across reading devices and applications.
Use your device or app settings to customize the presentation to your liking.
Settings that you can customize often include font, font size, single or
double column, landscape or portrait mode, and figures that you can click
or tap to enlarge. For additional information about the settings and features
on your reading device or app, visit the device manufacturer’s Web site.

Many titles include programming code or configuration examples. To
optimize the presentation of these elements, view the eBook in single-
column, landscape mode and adjust the font size to the smallest setting. In
addition to presenting code and configurations in the reflowable text format,
we have included images of the code that mimic the presentation found in
the print book; therefore, where the reflowable format may compromise the
presentation of the code listing, you will see a “Click here to view code
image” link. Click the link to view the print-fidelity code image. To return
to the previous page viewed, click the Back button on your device or app.

Modern JavaScript for the
Impatient

Modern JavaScript for the
Impatient

Cay S. Horstmann

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear
in this book, and the publisher was aware of a trademark claim, the
designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book,
but make no expressed or implied warranty of any kind and assume no
responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover
designs; and content particular to your business, training goals, marketing
focus, or branding interests), please contact our corporate sales department
at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact
governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact
intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2020934310

Copyright © 2020 Pearson Education, Inc.

Cover illustration: Morphart Creation / Shutterstock

All rights reserved. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or
by any means, electronic, mechanical, photocopying, recording, or likewise.
For information regarding permissions, request forms and the appropriate

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw

contacts within the Pearson Education Global Rights & Permissions
Department, please visit www.pearson.com/permissions/.

ISBN-13: 978-0-13-650214-2
ISBN-10: 0-13-650214-8

ScoutAutomatedPrintCode

http://www.pearson.com/permissions/

To Chi—the most patient person in my life.

Contents

Preface

About the Author

1 Values and Variables

1.1 Running JavaScript
1.2 Types and the typeof Operator
1.3 Comments
1.4 Variable Declarations
1.5 Identifiers
1.6 Numbers
1.7 Arithmetic Operators
1.8 Boolean Values
1.9 null and undefined
1.10 String Literals
1.11 Template Literals
1.12 Objects
1.13 Object Literal Syntax

1.14 Arrays
1.15 JSON
1.16 Destructuring

1.17 Advanced Destructuring

1.17.1 More about Object Destructuring
1.17.2 Rest Declarations

1.17.3 Defaults
Exercises

2 Control Structures

2.1 Expressions and Statements
2.2 Semicolon Insertion
2.3 Branches
2.4 Boolishness

2.5 Comparison and Equality Testing
2.6 Mixed Comparisons

2.7 Boolean Operators
2.8 The switch Statement

2.9 while and do Loops
2.10 for Loops

2.10.1 The Classic for Loop
2.10.2 The for of Loop
2.10.3 The for in Loop

2.11 Breaking and Continuing

2.12 Catching Exceptions
Exercises

3 Functions and Functional Programming

3.1 Declaring Functions
3.2 Higher-Order Functions
3.3 Function Literals
3.4 Arrow Functions
3.5 Functional Array Processing
3.6 Closures

3.7 Hard Objects

3.8 Strict Mode
3.9 Testing Argument Types
3.10 Supplying More or Fewer Arguments
3.11 Default Arguments
3.12 Rest Parameters and the Spread Operator
3.13 Simulating Named Arguments with Destructuring

3.14 Hoisting

3.15 Throwing Exceptions
3.16 Catching Exceptions

3.17 The finally Clause
Exercises

4 Object-Oriented Programming

4.1 Methods
4.2 Prototypes
4.3 Constructors
4.4 The Class Syntax
4.5 Getters and Setters

4.6 Instance Fields and Private Methods

4.7 Static Methods and Fields

4.8 Subclasses
4.9 Overriding Methods
4.10 Subclass Construction
4.11 Class Expressions

4.12 The this Reference

Exercises

5 Numbers and Dates

5.1 Number Literals
5.2 Number Formatting
5.3 Number Parsing
5.4 Number Functions and Constants
5.5 Mathematical Functions and Constants

5.6 Big Integers

5.7 Constructing Dates

5.8 Date Functions and Methods

5.9 Date Formatting

Exercises

6 Strings and Regular Expressions

6.1 Converting between Strings and Code Point Sequences
6.2 Substrings
6.3 Other String Methods
6.4 Tagged Template Literals

6.5 Raw Template Literals
6.6 Regular Expressions

6.7 Regular Expression Literals

6.8 Flags

6.9 Regular Expressions and Unicode

6.10 The Methods of the RegExp Class

6.11 Groups

6.12 String Methods with Regular Expressions

6.13 More about Regex Replace

6.14 Exotic Features

Exercises

7 Arrays and Collections

7.1 Constructing Arrays
7.2 The length Property and Index Properties
7.3 Deleting and Adding Elements
7.4 Other Array Mutators
7.5 Producing Elements
7.6 Finding Elements
7.7 Visiting All Elements
7.8 Sparse Arrays
7.9 Reduction

7.10 Maps
7.11 Sets
7.12 Weak Maps and Sets
7.13 Typed Arrays

7.14 Array Buffers
Exercises

8 Internationalization

8.1 The Locale Concept
8.2 Specifying a Locale
8.3 Formatting Numbers
8.4 Localizing Dates and Times

8.4.1 Formatting Date Objects
8.4.2 Ranges
8.4.3 Relative Time

8.4.4 Formatting to Parts
8.5 Collation
8.6 Other Locale-Sensitive String Methods
8.7 Plural Rules and Lists

8.8 Miscellaneous Locale Features
Exercises

9 Asynchronous Programming

9.1 Concurrent Tasks in JavaScript
9.2 Making Promises
9.3 Immediately Settled Promises
9.4 Obtaining Promise Results
9.5 Promise Chaining
9.6 Rejection Handling
9.7 Executing Multiple Promises
9.8 Racing Multiple Promises
9.9 Async Functions
9.10 Async Return Values
9.11 Concurrent Await
9.12 Exceptions in Async Functions
Exercises

10 Modules

10.1 The Module Concept
10.2 ECMAScript Modules
10.3 Default Imports
10.4 Named Imports
10.5 Dynamic Imports

10.6 Exports
10.6.1 Named Exports
10.6.2 The Default Export
10.6.3 Exports Are Variables
10.6.4 Reexporting

10.7 Packaging Modules
Exercises

11 Metaprogramming

11.1 Symbols
11.2 Customization with Symbol Properties

11.2.1 Customizing toString
11.2.2 Controlling Type Conversion
11.2.3 Species

11.3 Property Attributes
11.4 Enumerating Properties
11.5 Testing a Single Property
11.6 Protecting Objects
11.7 Creating or Updating Objects
11.8 Accessing and Updating the Prototype
11.9 Cloning Objects
11.10 Function Properties
11.11 Binding Arguments and Invoking Methods
11.12 Proxies
11.13 The Reflect Class
11.14 Proxy Invariants
Exercises

12 Iterators and Generators

12.1 Iterable Values
12.2 Implementing an Iterable
12.3 Closeable Iterators
12.4 Generators
12.5 Nested Yield
12.6 Generators as Consumers
12.7 Generators and Asynchronous Processing
12.8 Async Generators and Iterators
Exercises

13 An Introduction to Typescript

13.1 Type Annotations
13.2 Running TypeScript
13.3 Type Terminology
13.4 Primitive Types
13.5 Composite Types
13.6 Type Inference
13.7 Subtypes

13.7.1 The Substitution Rule
13.7.2 Optional and Excess Properties
13.7.3 Array and Object Type Variance

13.8 Classes
13.8.1 Declaring Classes
13.8.2 The Instance Type of a Class
13.8.3 The Static Type of a Class

13.9 Structural Typing
13.10 Interfaces

13.11 Indexed Properties

13.12 Complex Function Parameters
13.12.1 Optional, Default, and Rest Parameters
13.12.2 Destructuring Parameters
13.12.3 Function Type Variance
13.12.4 Overloads

13.13 Generic Programming

13.13.1 Generic Classes and Types
13.13.2 Generic Functions
13.13.3 Type Bounds
13.13.4 Erasure
13.13.5 Generic Type Variance
13.13.6 Conditional Types
13.13.7 Mapped Types

Exercises

Index

Preface

Experienced programmers familiar with languages such as Java, C#, C, and
C++ often find themselves in a position where they need to work with
JavaScript. User interfaces are increasingly web-based, and JavaScript is
the lingua franca of the web browser. The Electron framework extends this
capability to rich client applications, and there are multiple solutions for
producing mobile JavaScript apps. Increasingly, JavaScript is used on the
server side.

Many years ago, JavaScript was conceived as a language for “programming
in the small,” with a feature set that can be confusing and error-prone for
larger programs. However, current standardization efforts and tool offerings
go far beyond those humble beginnings.

Unfortunately, it is difficult to learn modern JavaScript without getting
bogged down with obsolete JavaScript. Most books, courses, and blog posts
are focused on transitioning from older JavaScript versions, which is not
helpful for migrants from other languages.

That is the issue that this book addresses. I assume that you, the reader, are
a competent programmer who understands branches and loops, functions,
data structures, and the basics of object-oriented programming. I explain
how to be productive with modern JavaScript, with only parenthetical
remarks about obsolete features. You will learn how to put modern
JavaScript to use, while avoiding pitfalls from the past.

JavaScript may not be perfect, but it has shown itself to be well-suited for
user interface programming and many server-side tasks. As Jeff Atwood
said presciently: “Any application that can be written in JavaScript, will
eventually be written in JavaScript.”

Work through this book, and learn how to produce the next version of your
application in modern JavaScript!

Five Golden Rules
If you avoid a small number of “classic” features of JavaScript, you can
greatly reduce the mental load of learning and using the language. These
rules probably won’t make sense to you right now, but I list them here for
your future reference, and to reassure you that they are few in number.

1. Declare variables with let or const, not var.

2. Use strict mode.

3. Know your types and avoid automatic type conversion.

4. Understand prototypes, but use modern syntax for classes, constructors,
and methods.

5. Don’t use this outside constructors or methods.

And a meta-rule: Avoid the Wat—those snippets of confusing JavaScript
code followed by a sarcastic “Wat?!” Some people find delight in
demonstrating the supposed awfulness of JavaScript by dissecting obscure
code. I have never learned anything useful from going down that rabbit
hole. For example, what is the benefit of knowing that 2 * ['21'] is 42 but
2 + ['40'] is not, if the golden rule #3 tells you not to mess with type
conversions? In general, when I run into a confusing situation, I ask myself
how to avoid it, not how to explain its gory but useless details.

The Learning Paths
When I wrote the book, I was trying to put information where you can find
it when you need it. But that’s not necessarily the right place when you read
the book for the first time. To help you customize your learning path, I tag
each chapter with an icon that indicates its basic level. Sections that are
more advanced than the chapter default get their own icons. You should
absolutely skip those sections until you are ready for them.

Here are the icons:

The impatient rabbit denotes a basic topic that even the most impatient
reader should not skip.

Alice indicates an intermediate topic that most programmers want to
understand, but perhaps not on first reading.

The Cheshire cat points to an advanced topic that puts a smile on the face
of a framework developer. Most application programmers can safely ignore
these.

Finally, the mad hatter labels a complex and maddening topic, intended
only for those with morbid curiosity.

A Tour of the Book
In Chapter 1, we get going with the basic concepts of JavaScript: values
and their types, variables, and most importantly, object literals. Chapter 2
covers control flow. You can probably skim over it quickly if you are
familiar with Java, C#, or C++. In Chapter 3, you will learn about
functions and functional programming, which is very important in
JavaScript. JavaScript has an object model that is very different from class-
based programming languages. Chapter 4 goes into detail, with a focus on
modern syntax. Chapters 5 and 6 cover the library classes that you will
most often use for working with numbers, dates, strings, and regular
expressions. These chapters are largely at the basic level, with a sprinkling
of more advanced sections.

The next four chapters cover intermediate level topics. In Chapter 7, you
will see how to work with arrays and the other collections that the standard
JavaScript library offers. If your programs interact with users from around
the world, you will want to pay special attention to the coverage of
internationalization in Chapter 8. Chapter 9 on asynchronous
programming is very important for all programmers. Asynchronous
programming used to be quite complex in JavaScript, but it has become
much simpler with the introduction of promises and the async and await
keywords. JavaScript now has a standard module system that is the topic of
Chapter 10. You will see how to use modules that other programmers have
written, and to produce your own.

Chapter 11 covers metaprogramming at an advanced level. You will want
to read this chapter if you need to create tools that analyze and transform
arbitrary JavaScript objects. Chapter 12 completes the coverage of
JavaScript with another advanced topic: iterators and generators, which are
powerful mechanisms for visiting and producing arbitrary sequences of
values.

Finally, there is a bonus chapter, Chapter 13, on TypeScript. TypeScript is a
superset of JavaScript that adds compile-time typing. It is not a part of
standard JavaScript, but it is very popular. Read this chapter to decide
whether you want to stick with plain JavaScript or use compile-time types.

The purpose of this book is to give you a firm grounding of the JavaScript
language so that you can use it with confidence. However, you will need to
turn elsewhere for the ever-changing landscape of tools and frameworks.

Why I Wrote This Book
JavaScript is one of the most used programming languages on the planet.
Like so many programmers, I knew a bit of pidgin JavaScript, and one day,
I had to learn serious JavaScript in a hurry. But how?

There are any number of books that teach a little bit of JavaScript for casual
web developers, but I already knew that much JavaScript. Flanagan’s Rhino
book1 was great in 1996, but now it burdens readers with too many
accidents from the past. Crockford’s JavaScript: The Good Parts2 was a
wake-up call in 2008, but much of its message has been internalized in
subsequent changes to the language. There are many books that bring old-
style JavaScript programmers into the world of modern standards, but they
assume an amount of “classic” JavaScript that was out of my comfort zone.

Of course, the web is awash in JavaScript-themed blogs of varying quality
—some accurate but many with a tenuous grasp of the facts. I did not find it
effective to scour the web for blogs and gauge their levels of truthfulness.

Oddly enough, I could not find a book for the millions of programmers who
know Java or a similar language and who want to learn JavaScript as it
exists today, without the historical baggage.

So I had to write it.

1. David Flanagan, JavaScript: The Definitive Guide, Sixth Edition (O’Reilly Media, 2011).
2. Published by O’Reilly Media, 2008.

Acknowledgments
I would like to once again thank my editor Greg Doench for supporting this
project, as well as Dmitry Kirsanov and Alina Kirsanova for copyediting
and typesetting the book. My special gratitude goes to the reviewers Gail
Anderson, Tom Austin, Scott Davis, Scott Good, Kito Mann, Bob
Nicholson, Ron Mak, and Henri Tremblay, for diligently spotting errors and
providing thoughtful suggestions for improvements.

Cay Horstmann
Berlin
March 2020

Register your copy of Modern JavaScript for the Impatient on the
InformIT site for convenient access to updates and/or corrections as
they become available. To start the registration process, go to
informit.com/register and log in or create an account. Enter the
product ISBN (9780136502142) and click Submit. Look on the
Registered Products tab for an Access Bonus Content link next to
this product, and follow that link to access any available bonus
materials. If you would like to be notified of exclusive offers on
new editions and updates, please check the box to receive email
from us.

http://informit.com/register

About the Author

Cay S. Horstmann is principal author of Core Java™, Volumes I & II,
Eleventh Edition (Pearson, 2018), Scala for the Impatient, Second Edition
(Addison-Wesley, 2016), and Core Java SE 9 for the Impatient (Addison-
Wesley, 2017). Cay is a professor emeritus of computer science at San Jose
State University, a Java Champion, and a frequent speaker at computer
industry conferences.

Chapter 1. Values and Variables

Topics in This Chapter

1.1 Running JavaScript

1.2 Types and the typeof Operator

1.3 Comments

1.4 Variable Declarations

1.5 Identifiers

1.6 Numbers

1.7 Arithmetic Operators

1.8 Boolean Values

1.9 null and undefined

1.10 String Literals

1.11 Template Literals

1.12 Objects

 1.13 Object Literal Syntax

1.14 Arrays

1.15 JSON

 1.16 Destructuring

 1.17 Advanced Destructuring

Exercises

In this chapter, you will learn about the data types that you can manipulate
in a JavaScript program: numbers, strings, and other primitive types, as well
as objects and arrays. You will see how to store these values in variables,
how to convert values from one type to another, and how to combine values
with operators.

Even the most enthusiastic JavaScript programmers will agree that some
language constructs—meant to be helpful for writing short programs—can
lead to unintuitive results and are best avoided. In this and the following
chapters, I will point out these issues and provide simple rules for safe
programming.

1.1 Running JavaScript
To run JavaScript programs as you read this book, you can use a number of
different approaches.

JavaScript was originally intended to execute in a browser. You can embed
JavaScript in an HTML file and invoke the window.alert method to display
values. As an example, here is such a file:

Click here to view code image

<html>

 <head>

 <title>My First JavaScript Program</title>

 <script type="text/javascript">

 let a = 6

 let b = 7

 window.alert(a * b)

 </script>

 </head>

 <body>

 </body>

</html>

Simply open the file in your favorite web browser, and the result is
displayed in a dialog box—see Figure 1-1.

Figure 1-1 Running JavaScript code in a web browser

You can type short instruction sequences into the console that is part of the
development tools of your browser. Find out the menu or keyboard shortcut
to display the development tools (for many browsers, it is the F12 key, or
the Ctrl+Alt+I, or, on the Mac, the Cmd+Alt+I key combination). Then pick
the “Console” tab and type in your JavaScript code—see Figure 1-2.

Figure 1-2 Running JavaScript code in the development tools
console

A third approach is to install Node.js from http://nodejs.org. Then, open a
terminal and execute the node program which launches a JavaScript “read-
eval-print loop,” or REPL. Type commands and see their results, as shown
in Figure 1-3.

http://nodejs.org/

Figure 1-3 Running JavaScript code with the Node.js REPL

For longer code sequences, put the instructions in a file and use the
console.log method to produce output. For example, you can put these
instructions into a file first.js:

Click here to view code image

let a = 6

let b = 7

console.log(a * b)

Then, run the command
node first.js

The output of the console.log command will be displayed in the terminal.

You can also use a development environment such as Visual Studio Code,
Eclipse, Komodo, or WebStorm. These environments let you edit and
execute JavaScript code, as shown in Figure 1-4.

Figure 1-4 Executing JavaScript code in a development
environment

1.2 Types and the typeof Operator
Every value in JavaScript is one of the following types:

A number

The Boolean values false and true

The special values null and undefined

A string

A symbol

An object

The non-object types are collectively called primitive types.

You will find out more about these types in the sections that follow, except
for symbols that are discussed in Chapter 11.

Given a value, you can find its type with the typeof operator that returns a
string 'number', 'boolean', 'undefined', 'object', 'string', 'symbol', or
one of a small number of other strings. For example, typeof 42 is the string
'number'.

 Note

Even though the null type is distinct from the object type, typeof null is the string
'object'. This is a historical accident.

 Caution

Similar to Java, you can construct objects that wrap numbers, Boolean values, and strings. For
example, typeof new Number(42) and typeof new String('Hello') are
'object'. However, in JavaScript, there is no good reason to construct such wrapper instances.
Since they can be a cause of confusion, coding standards often forbid their use.

1.3 Comments
JavaScript has two kinds of comments. Single-line comments start with //
and extend to the end of the line

// like this

Comments that are delimited by /* and */ can span multiple lines
/*

 like

 this
*/

In this book, I use a Roman font to make the comments easier to read. Of
course, your text editor will likely use some kind of color coding instead.

 Note

Unlike Java, JavaScript does not have a special form of documentation comments. However, there
are third party tools such as JSDoc (http://usejsdoc.org) that provide the same
functionality.

1.4 Variable Declarations
You can store a value in a variable with the let statement:

let counter = 0

In JavaScript, variables do not have a type. You are free to store values of
any type in any variable. For example, it is legal to replace the contents of
counter with a string:

counter = 'zero'

It is almost certainly not a good idea to do this. Nevertheless, there are
situations where having untyped variables makes it easy to write generic
code that works with different types.

If you do not initialize a variable, it has the special value undefined:

let x // Declares x and sets it to undefined

http://usejsdoc.org/

 Note

You may have noticed that the statements above are not terminated by semicolons. In JavaScript,
like in Python, semicolons are not required at the end of a line. In Python, it is considered
“unpythonic” to add unnecessary semicolons. However, JavaScript programmers are split on that
question. I will discuss the pros and cons in Chapter 2. Generally, I try not to take sides in
unproductive discussions, but for this book, I have to pick one or the other. I use the “no
semicolon” style for one simple reason: It doesn’t look like Java or C++. You can see right away
that a code snippet is JavaScript.

If you never change the value of a variable, you should declare it with a
const statement:

const PI = 3.141592653589793

If you try to modify the value contained in a const, a run-time error occurs.

You can declare multiple variables with a single const or let statement:
Click here to view code image

const FREEZING = 0, BOILING = 100

let x, y

However, many programmers prefer to declare each variable with a separate
statement.

 Caution

Avoid two obsolete forms of variable declarations, with the var keyword and with no keyword at
all:

Click here to view code image

var counter = 0 // Obsolete
coutner = 1 // Note the misspelling—creates a new variable!

The var declaration has some serious deficiencies; you can read about them in Chapter 3. The
“create upon first assignment” behavior is obviously dangerous. If you misspell a variable name, a
new variable is created. For that reason, “create upon first assignment” is an error in strict mode, a
mode that forbids certain outdated constructs. You will see in Chapter 3 how to turn on strict
mode.

 Tip

In the preface, I list the five golden rules that, if followed, eliminate most of the confusion caused
by “classic” JavaScript features. The first two golden rules are:

1. Declare variables with let or const, not var.

2. Use strict mode.

1.5 Identifiers
The name of a variable must follow the general syntax for identifiers. An
identifier consists of Unicode letters, digits, and the _ and $ characters. The
first character cannot be a digit. Names with $ characters are sometimes
used in tools and libraries. Some programmers use identifiers starting or
ending with underscores to indicate “private” features. With your own
names, it is best to avoid $ as well as _ at the start or at the end. Internal _
are fine, but many JavaScript programmers prefer the camelCase format
where uppercase letters are used for word boundaries.

You cannot use the following keywords as identifiers:

Click here to view code image

break case catch class const continue debugger default delete do

else enum export extends false finally for function if import in

instanceof

new null return super switch this throw true try typeof var void

while with

In strict mode, these keywords are also forbidden:
Click here to view code image

implements interface let package protected private public static

The following keywords are more recent additions to the language; you can
use them as identifiers for backwards compatibility, but you shouldn’t:

Click here to view code image

await as async from get of set target yield

 Note

You can use any Unicode letters or digits in identifiers, such as:

Click here to view code image

const π = 3.141592653589793

However, this is not common, probably because many programmers lack input methods for typing
such characters.

1.6 Numbers
JavaScript has no explicit integer type. All numbers are double-precision
floating-point numbers. Of course, you can use integer values; you simply
don’t worry about the difference between, say, 1 and 1.0. What about
roundoff? Any integer numbers between Number.MIN_SAFE_INTEGER (−253 +
1 or -9,007,199,254,740,991) and Number.MAX_SAFE_INTEGER (253 − 1 or
9,007,199,254,740,991) are represented accurately. That’s a larger range
than integers in Java. As long as results stay within this range, arithmetic
operations on integers are also accurate. Outside the range, you will

encounter roundoff errors. For example, Number.MAX_SAFE_INTEGER * 10

evaluates to 90071992547409900.

 Note

If the integer range is insufficient, you can use “big integers,” which can have an arbitrary number
of digits. Big integers are described in Chapter 5.

As with floating-point numbers in any programming language, you cannot
avoid roundoff errors with fractional values. For example, 0.1 + 0.2

evaluates to 0.30000000000000004, as it would in Java, C++, or Python. This
is inevitable since decimal numbers such as 0.1, 0.2, and 0.3 do not have
exact binary representations. If you need to compute with dollars and cents,
you should represent all quantities as integer multiples of a penny.

See Chapter 5 for other forms of number literals such as hexadecimal
numbers.

To convert a string to a number, you can use the parseFloat or parseInt
functions:

Click here to view code image

const notQuitePi = parseFloat('3.14') // The number 3.14
const evenLessPi = parseInt('3') // The integer 3

The toString method converts a number back to a string:
Click here to view code image

const notQuitePiString = notQuitePi.toString() // The string
'3.14'

const evenLessPiString = (3).toString() // The string '3'

 Note

JavaScript, like C++ but unlike Java, has both functions and methods. The parseFloat and
parseInt functions are not methods, so you don’t invoke them with the dot notation.

 Note

As you saw in the preceding code snippet, you can apply methods to number literals. However,
you must enclose the number literal in parentheses so that the dot isn’t interpreted as a decimal
separator.

 Caution

What happens when you use a fractional number when an integer is expected? It depends on the
situation. Suppose you extract a substring of a string. Then fractional positions are truncated to
the next smaller integer:

Click here to view code image

'Hello'.substring(0, 2.5) // The string 'He'
But when you provide a fractional index, the result is undefined:

Click here to view code image

'Hello'[2.5] // undefined

It isn’t worth figuring out when a fractional number happens to work as an integer. If you are in
such a situation, make your intent explicit by calling Math.trunc(x) to discard the fractional
part, or Math.round(x) to round to the nearest integer.

If you divide by zero, the result is Infinity or -Infinity. However, 0 / 0 is
NaN, the “not a number” constant.

Some number-producing functions return NaN to indicate a faulty input. For
example, parseFloat('pie') is NaN.

1.7 Arithmetic Operators
JavaScript has the usual operators + - * / for addition, subtraction,
multiplication, and division. Note that the / operator always yields a
floating-point result, even if both operands are integers. For example, 1 / 2
is 0.5, not 0 as it would be in Java or C++.

The % operator yields the remainder of the integer division for non-negative
integer operands, just as it does in Java, C++, and Python. For example, if k
is a non-negative integer, then k % 2 is 0 if k is even, 1 if k is odd.

If k and n are positive values, possibly fractional, then k % n is the value
that is obtained by subtracting n from k until the result is less than n. For
example, 3.5 % 1.2 is 1.1, the result of subtracting 1.2 twice. See Exercise
3 for negative operands.

The ** operator denotes “raising to a power,” as it does in Python (and all
the way back to Fortran). The value of 2 ** 10 is 1024, 2 ** -1 is 0.5, and
2 ** 0.5 is the square root of 2.

If an operand of any arithmetic operator is the “not a number” value NaN, the
result is again NaN.

As in Java, C++, and Python, you can combine assignment and arithmetic
operations:

Click here to view code image

counter += 10 // The same as counter = counter + 10

The ++ and -- operators increment and decrement a variable:
Click here to view code image

counter++ // The same as counter = counter + 1

 Caution

Just as Java and C++, JavaScript copies the C language where ++ can be applied either after or
before a variable, yielding the pre-increment or post-increment value.

Click here to view code image

let counter = 0

let riddle = counter++

let enigma = ++counter

What are the values of riddle and enigma? If you don’t happen to know, you can find out by
carefully parsing the preceding description, or by trying it out, or by tapping the fount of wisdom
that is the Internet. However, I urge you never to write code that depends on this knowledge.

Some programmers find the ++ and -- operators so reprehensible that they resolve never to use
them. And there is no real need—after all, counter += 1 is not much longer than
counter++. In this book, I will use the ++ and -- operators, but never in a situation where
their value is captured.

As in Java, the + operator is also used for string concatenation. If s is a
string and x a value of any type, then s + x and x + s are strings, obtained
by turning x into a string and joining it with s.

For example,
Click here to view code image

let counter = 7

let agent = '00' + counter // The string '007'

 Caution

As you saw, the expression x + y is a number if both operands are numbers, and a string if at
least one operand is a string. In all other cases, the rules get complex and the results are rarely
useful. Either both operands are turned into strings and concatenated, or both are converted into
numbers and added. For example, the expression null + undefined is evaluated as the
numeric addition 0 + NaN, which results in NaN (see Table 1-1).

With the other arithmetic operators, only conversion to numbers is attempted. For example, the
value of 6 * '7' is 42—the string '7' is converted to the number 7.

Table 1-1 Conversion to Numbers and Strings

Value To Number To String

A number Itself A string containing
the digits of the
number

A string containing
the digits of a
number

The number value Itself

The empty string '' 0 ''

Any other string NaN Itself

false 0 'false'

true 1 'true'

null 0 'null'

undefined NaN 'undefined'

The empty array [] 0 ''

An array containing
a single number

The number A string containing
the digits of the
number

Other arrays NaN The elements
converted to strings
and joined by
commas, such as
'1,2,3'

Objects By default, NaN, but
can be customized

By default,
'[object Object]',

Value To Number To String

but can be
customized

 Tip

Don’t rely on automatic type conversions with arithmetic operators. The rules are confusing and
can lead to unintended results. If you want to process operands that are strings or single-element
arrays, convert them explicitly.

 Tip

Prefer template literals (Section 1.11, “Template Literals,” page 15) over string concatenation.
This way, you don’t have to remember what the + operator does to non-numeric operands.

1.8 Boolean Values
The Boolean type has two values, false and true. In a condition, values of
any type will be converted to a Boolean value. The values 0, NaN, null,
undefined, and the empty string are each converted to false, all others to
true.

This sounds simple enough, but as you will see in the following chapter, it
can lead to very confusing results. To minimize confusion, it is a good idea
to use actual Boolean values for all conditions.

1.9 null and undefined
JavaScript has two ways to indicate the absence of a value. When a variable
is declared but not initialized, its value is undefined. This commonly
happens with functions. When you call a function and fail to provide a
parameter, the parameter variable has the value undefined.

The null value is intended to denote the intentional absence of a value.

Is this a useful distinction? There are two schools of thought. Some
programmers think that having two “bottom” values is error-prone and
suggest that you only use one. In that case, you should use undefined. You
can’t avoid undefined in the JavaScript language, but you can (mostly)
avoid null.

The opposing point of view is that you should never set values to undefined
and never return undefined from a function, but always use null for
missing values. Then, undefined may signal a serious problem.

 Tip

In any project, explicitly settle on one or the other approach: Use either undefined or null for
indicating the intentional absence of a value. Otherwise, you end up with pointless philosophical
discussions and unnecessary checks for both undefined and null.

 Caution

Unlike null, undefined is not a reserved word. It is a variable in the global scope. In ancient
times, you were able to assign a new value to the global undefined variable! This was clearly a
terrible idea, and now undefined is a constant. However, you can still declare local variables
called undefined. Of course, that’s also a bad idea. Don’t declare local variables NaN and
Infinity either.

1.10 String Literals
String literals are enclosed in single or double quotes: 'Hello' or "Hello".
In this book, I always use single quotes as delimiters.

If you use a quote inside a string that is delimited by the same quote type,
escape it with a backslash. You should also escape backslashes and the
control characters in Table 1-2.

For example, '\\\'\'\\\n' is a string of length 5, containing \''\ followed
by a newline.

Table 1-2 Escape Sequences for Special Characters

Escape Sequence Name Unicode Value

\b Backspace \u{0008}

\t Tab \u{0009}

\n Linefeed \u{000A}

\r Carriage
return

\u{000D}

\f Form feed \u{000C}

\v Vertical tab \u{000B}

\' Single quote \u{0027}

\" Double quote \u{0022}

\\ Backslash \u{005C}

\newline Continuation
to the next
line

Nothing—no newline is
added:

"Hel\

lo"

is the string "Hello"

To include arbitrary Unicode characters in a JavaScript string, you can just
type or paste them, provided your source file uses an appropriate encoding
(such as UTF-8):

let greeting = 'Hello '

If it is important to keep your files in ASCII, you can use the \u{code
point} notation:

let greeting = 'Hello \u{1F310}'

Unfortunately, there is a nasty twist to Unicode in JavaScript. To understand
the details, we have to delve into the history of Unicode. Before Unicode,
there was a mix of incompatible character encodings where one sequence of
bytes could mean very different things to readers in the USA, Russia, or
China.

Unicode was designed to solve these problems. When the unification effort
started in the 1980s, a 16-bit code was deemed more than sufficient to
encode all characters used in all languages in the world, with room to spare
for future expansion. In 1991, Unicode 1.0 was released, using slightly less
than half of the available 65,536 code values. When JavaScript and Java
were created in 1995, both embraced Unicode. In both languages, strings
are sequences of 16-bit values.

Of course, over time, the inevitable happened. Unicode grew beyond
65,536 characters. Now, Unicode uses 21 bits, and everyone believes that is
truly sufficient. But JavaScript is stuck with 16-bit values.

We need a bit of terminology to explain how this problem is resolved. A
Unicode code point is a 21-bit value that is associated with a character.
JavaScript uses the UTF-16 encoding which represents all Unicode code
points with one or two 16-bit values called code units. Characters up to
\u{FFFF} use one code unit. All others characters are encoded with two code
units, taken from a reserved area that doesn’t encode any characters. For
example, \u{1F310} is encoded as the sequence 0xD83C 0xDF10. (See
http://en.wikipedia.org/wiki/UTF-16 for a description of the encoding
algorithm.)

You don’t need to know the details of the encoding, but you do need to
know that some characters require a single 16-bit code unit, and others
require two.

For example, the string 'Hello ' has “length” 8, even though it contains
seven Unicode characters. (Note the space between Hello and .) You can
use the bracket operator to access the code units of a string. The expression
greeting[0] is a string consisting of a single letter 'H'. But the bracket

http://en.wikipedia.org/wiki/UTF-16

operator doesn’t work with characters that require two code units. The code
units for the character are at positions 6 and 7. The expressions
greeting[6] and greeting[7] are strings of length 1, each containing a
single code unit that doesn’t encode a character. In other words, they are not
proper Unicode strings.

 Tip

In Chapter 2, you will see how you can visit the individual code points of a string with the for
of loop.

 Note

You can provide 16-bit code units in string literals. Then, omit the braces: \uD83C\uDF10. For
code units up to \u{0xFF}, you can use “hex escapes”—for example, \xA0 instead of
\u{00A0}. I can think of no good reason to do either.

In Chapter 6, you will learn about the various methods for working with
strings.

 Note

JavaScript also has literals for regular expressions—see Chapter 6.

1.11 Template Literals
Template literals are strings that can contain expressions and span multiple
lines. These strings are delimited by backticks (`. . .`). For example,

Click here to view code image

let destination = 'world' // A regular string
let greeting = `Hello, ${destination.toUpperCase()}!` // A
template literal

The embedded expressions inside ${. . .} are evaluated, converted to a
string if necessary, and spliced into the template. In this case, the result is
the string

Hello, WORLD!

You can nest template literals inside the ${. . .} expressions:
Click here to view code image

greeting = `Hello, ${firstname.length > 0 ? `${firstname[0]}. ` :

'' } ${lastname}`

Any newlines inside the template literal are included in the string. For
example,

Click here to view code image

greeting = `<div>Hello</div>

<div>${destination}</div>

`

sets greeting to the string '<div>Hello</div>\n<div>World</div>\n' with a
newline after each line. (Windows line endings \r\n in the source file are
converted to Unix line endings \n in the resulting string.)

To include backticks, dollar signs, or backslashes in template literals,
escape them with backslashes: `\`\$\\` is the string containing the three
characters `$\.

 Note

A tagged template literal is a template literal that is preceded by a function, like this:

Click here to view code image

html`<div>Hello, ${destination}</div>`

In this example, the html function is invoked with the template fragments '<div>Hello, '
and '</div>' and the value of the expression destination.

In Chapter 6, you will see how to write your own tag functions.

1.12 Objects

JavaScript objects are very different from those in class-based languages
such as Java and C++. A JavaScript object is simply a set of name/value
pairs or “properties,” like this:

Click here to view code image

{ name: 'Harry Smith', age: 42 }

Such an object has only public data and neither encapsulation nor behavior.
The object is not an instance of any particular class. In other words, it is
nothing like an object in traditional object-oriented programming. As you
will see in Chapter 4, it is possible to declare classes and methods, but the
mechanisms are very different from most other languages.

Of course, you can store an object in a variable:
Click here to view code image

const harry = { name: 'Harry Smith', age: 42 }

Once you have such a variable, you can access the object properties with
the usual dot notation:

let harrysAge = harry.age

You can modify existing properties or add new properties:
harry.age = 40

harry.salary = 90000

 Note

The harry variable was declared as const, but as you just saw, you can mutate the object to
which it refers. However, you cannot assign a different value to a const variable.

Click here to view code image

const sally = { name: 'Sally Lee' }

sally.age = 28 // OK—mutates the object to which sally refers
sally = { name: 'Sally Albright' }

 // Error—cannot assign a different value to a const variable
In other words, const is like final in Java and not at all like const in C++.

Use the delete operator to remove a property:
delete harry.salary

Accessing a nonexistent property yields undefined:
Click here to view code image

let boss = harry.supervisor // undefined

A property name can be computed. Then, use array brackets to access the
property value:

Click here to view code image

let field = 'Age'

let harrysAge = harry[field.toLowerCase()]

1.13 Object Literal Syntax

This is the first of several intermediate-level sections in this chapter. Feel
free to skip the sections with this icon if you are just starting to learn
JavaScript.

An object literal can have a trailing comma. This makes it easy to add other
properties as the code evolves:

Click here to view code image

let harry = {

 name: 'Harry Smith',

 age: 42, // Add more properties below
}

Quite often, when declaring an object literal, property values are stored in
variables whose names are equal to the property names. For example,

Click here to view code image

let age = 43

let harry = { name: 'Harry Smith', age: age }

 // The 'age' property is set to the value of the age variable

There is a shortcut for this situation:
Click here to view code image

let harry = { name: 'Harry Smith', age } // The age property is
now 43

Use brackets for the computed property names in object literals:
Click here to view code image

let harry = { name: 'Harry Smith', [field.toLowerCase()] : 42 }

A property name is always a string. If the name doesn’t follow the rules of
an identifier, quote it in an object literal:

Click here to view code image

let harry = { name: 'Harry Smith', 'favorite beer': 'IPA' }

To access such a property, you cannot use the dot notation. Use brackets
instead:

Click here to view code image

harry['favorite beer'] = 'Lager'

Such property names are not common, but they can sometimes be
convenient. For example, you can have an object whose property names are
file names and whose property values are the contents of those files.

 Caution

There are parsing situations where an opening brace can indicate an object literal or a block
statement. In those cases, the block statement takes precedence. For example, if you type

{} - 1

into the browser console or Node.js, the empty block is executed. Then, the expression - 1 is
evaluated and displayed.

In contrast, in the expression

1 - {}

{} is an empty object that is converted to NaN. Then the result (also NaN) is displayed.

This ambiguity doesn’t normally occur in practical programs. When you form an object literal,
you usually store it in a variable, pass it as an argument, or return it as a result. In all those
situations, the parser would not expect a block.

If you ever have a situation where an object literal is falsely parsed as a block, the remedy is
simple: Enclose the object literal in parentheses. You will see an example in Section 1.16,
“Destructuring” (page 21).

1.14 Arrays
In JavaScript, an array is simply an object whose property names are the
strings '0', '1', '2', and so on. (Strings are used because numbers can’t be
property names.)

You can declare array literals by enclosing their elements in square
brackets:

Click here to view code image

const numbers = [1, 2, 3, 'many']

This is an object with five properties: '0', '1', '2', '3', and 'length'.

The length property is one more than the highest index, converted to a
number. The value of numbers.length is the number 4.

You need to use the bracket notation to access the first four properties:
numbers['1'] is 2. For your convenience, the argument inside the brackets
is automatically converted to a string. You can use numbers[1] instead,

which gives you the illusion of working with an array in a language such as
Java or C++.

Note that the element types in an array don’t need to match. The numbers
array contains three numbers and a string.

An array can have missing elements:
Click here to view code image

const someNumbers = [, 2, , 9] // No properties '0', '2'

As with any object, a nonexistent property has the value undefined. For
example, someNumbers[0] and someNumbers[6] are undefined.

You can add new elements past the end:
Click here to view code image

someNumbers[6] = 11 // Now someNumbers has length 7

Note that, as with all objects, you can change the properties of an array that
is referenced by a const variable.

 Note

A trailing comma does not indicate a missing element. For example, [1, 2, 7, 9,] has four
elements, and the highest index is 3. As with object literals, trailing commas are intended for
literals that may be expanded over time, such as:

Click here to view code image

const developers = [

 'Harry Smith',

 'Sally Lee',

 // Add more elements above
]

Since arrays are objects, you can add arbitrary properties:
numbers.lucky = true

This is not common, but it is perfectly valid JavaScript.

The typeof operator returns 'object' for an array. To test whether an object
is an array, call Array.isArray(obj).

When an array needs to be converted to a string, all elements are turned into
strings and joined with commas. For example,

'' + [1, 2, 3]

is the string '1,2,3'.

An array of length 0 becomes an empty string.

JavaScript, like Java, has no notion of multidimensional arrays, but you can
simulate them with arrays of arrays. For example,

Click here to view code image

const melancholyMagicSquare = [

 [16, 3, 2, 13],

 [5, 10, 11, 8],

 [9, 6, 7, 12],

 [4, 15, 14, 1]

]

Then, use two bracket pairs to access an element:
melancholyMagicSquare[1][2] // 11

In Chapter 2, you will see how to visit all elements of an array. Turn to
Chapter 7 for a complete discussion of all array methods.

1.15 JSON
The JavaScript Object Notation or JSON is a lightweight text format for
exchanging object data between applications (which may or may not be
implemented in JavaScript).

In a nutshell, JSON uses the JavaScript syntax for object and array literals,
with a few restrictions:

Values are object literals, array literals, strings, floating-point numbers,
and the values true, false, and null.

All strings are delimited by double quotes, not single quotes.

All property names are delimited by double quotes.

There are no trailing commas or skipped elements.

See www.json.org for a formal description of the notation.

An example of a JSON string is:
Click here to view code image

{ "name": "Harry Smith", "age": 42, "lucky numbers": [17, 29],

"lucky": false }

The JSON.stringify method turns a JavaScript object into a JSON string,
and JSON.parse parses a JSON string, yielding a JavaScript object. These
methods are commonly used when communicating with a server via HTTP.

 Caution

JSON.stringify drops object properties whose value is undefined, and it turns array
elements with undefined values to null. For example, JSON.stringify({ name:
['Harry', undefined, 'Smith'], age: undefined }) is the string '{"name":
["Harry",null,"Smith"]}'.

Some programmers use the JSON.stringify method for logging. A logging
command

console.log(`harry=${harry}`)

gives you a useless message
harry=[object Object]

A remedy is to call JSON.stringify:
Click here to view code image

console.log(`harry=${JSON.stringify(harry)}`)

Note that this problem only occurs with strings that contain objects. If you
log an object by itself, the console displays it nicely. An easy alternative is
to log the names and values separately:

Click here to view code image

console.log('harry=', harry, 'sally=', sally)

https://www.json.org/

Or even easier, put them into an object:
Click here to view code image

console.log({harry, sally}) // Logs the object { harry: { . . . },
sally: { . . . } }

1.16 Destructuring

Destructuring is a convenient syntax for fetching the elements of an array or
values of an object. As with the other intermediate-level topics in this
chapter, feel free to skip this section until you are ready for it.

In this section, we start out with the basic syntax. The following section
covers some of the finer points.

Let’s look at arrays first. Suppose you have an array pair with two
elements. Of course, you can get the elements like this:

Click here to view code image

let first = pair[0]

let second = pair[1]

With destructuring, this becomes:
let [first, second] = pair

This statement declares variables first and second and initializes them with
pair[0] and pair[1].

The left-hand side of a destructuring assignment is not actually an array
literal. After all, first and second don’t yet exist. Think of the left-hand
side as a pattern that describes how the variables should be matched with
the right-hand side.

Consider this more complex case and observe how the variables are
matched with the array elements:

Click here to view code image

let [first, [second, third]] = [1, [2, 3]]

 // Sets first to 1, second to 2, and third to 3

The array on the right-hand side can be longer than the pattern on the left-
hand side. The unmatched elements are simply ignored:

let [first, second] = [1, 2, 3]

If the array is shorter, the unmatched variables are set to undefined:
Click here to view code image

let [first, second] = [1]

 // Sets first to 1, second to undefined

If the variables first and second are already declared, you can use
destructuring to set them to new values:

[first, second] = [4, 5]

 Tip

To swap the values of the variables x and y, simply use:

[x, y] = [y, x]

If you use destructuring for an assignment, the left-hand side doesn’t have
to consist of variables. You can use any lvalues—expressions that can be on
the left-hand side of an assignment. For example, this is valid destructuring:

Click here to view code image

[numbers[0], harry.age] = [13, 42] // Same as numbers[0] = 13;
harry.age = 42

Destructuring for objects is similar. Use property names instead of array
positions:

Click here to view code image

let harry = { name: 'Harry', age: 42 }

let { name: harrysName, age: harrysAge } = harry

This code snippet declares two variables harrysName and harrysAge and
initializes them with the name and age property values of the right-hand side
object.

Keep in mind that the left-hand side is not an object literal. It is a pattern to
show how the variables are matched with the right-hand side.

Destructuring with objects is most compelling when the property has the
same name as the variable. In that case, you can omit the property name and
colon. This statement declares two variables name and age and initializes
them with the identically named properties of the object on the right-hand
side:

let { name, age } = harry

That is the same as:
Click here to view code image

let { name: name, age: age } = harry

or, of course,
Click here to view code image

let name = harry.name

let age = harry.age

 Caution

If you use object destructuring to set existing variables, you must enclose the assignment
expression in parentheses:

({name, age} = sally)

Otherwise, the opening brace will be parsed as the start of a block statement.

1.17 Advanced Destructuring

In the preceding section, I focused on the easiest and most compelling parts
of the destructuring syntax. In this advanced section, you will see additional
features that are powerful but less intuitive. Feel free to skip this section
and come back to it when you feel comfortable with the basics.

1.17.1 More about Object Destructuring

You can destructure nested objects:
Click here to view code image

let pat = { name: 'Pat', birthday: { day: 14, month: 3, year:

2000 } }

let { birthday: { year: patsBirthYear } } = pat

 // Declares the variable patsBirthYear and initializes it to 2000

Once again, note that the left-hand side of the second statement is not an
object. It is a pattern for matching the variables with the right-hand side.
The statement has the same effect as:

Click here to view code image

let patsBirthYear = pat.birthday.year

As with object literals, computed property names are supported:
Click here to view code image

let field = 'Age'

let { [field.toLowerCase()]: harrysAge } = harry

 // Sets value to harry[field.toLowerCase()]

1.17.2 Rest Declarations

When destructuring an array, you can capture any remaining elements into
an array. Add a prefix ... before the variable name.

Click here to view code image

numbers = [1, 7, 2, 9]

let [first, second, ...others] = numbers

 // first is 1, second is 7, and others is [2, 9]

If the array on the right-hand side doesn’t have sufficient elements, then the
rest variable becomes an empty array:

Click here to view code image

let [first, second, ...others] = [42]

 // first is 42, second is undefined, and others is []

A rest declaration also works for objects:
Click here to view code image

let { name, ...allButName } = harry

 // allButName is { age: 42 }

The allButName variable is set to an object containing all properties other
than the one with key name.

1.17.3 Defaults

For each variable, you can provide a default that is used if the desired value
is not present in the object or array, or if the value is undefined. Put = and
an expression after the variable name:

Click here to view code image

let [first, second = 0] = [42]

 // Sets first to 42, second to 0 since the right-hand side has
 // no matching element
let { nickname = 'None' } = harry

 // Sets nickname to 'None' since harry has no nickname property

The default expressions can make use of previously set variables:
Click here to view code image

let { name, nickname = name } = harry

 // Both name and nickname are set to harry.name

Here is a typical application of destructuring with defaults. Suppose you are
given an object that describes certain processing details, for example
formatting instructions. If a particular property is not provided, then you
want to use a default:

Click here to view code image

let config = { separator: '; ' }

const { separator = ',', leftDelimiter = '[', rightDelimiter =

']' } = config

In the example, the separator variable is initialized with the custom
separator, and the default delimiters are used because they are not supplied
in the configuration. The destructuring syntax is quite a bit more concise
than looking up each property, checking whether it is defined, and
providing the default if it isn’t.

In Chapter 3, you will see a similar use case where destructuring is used for
function parameters.

Exercises
1. What happens when you add 0 to the values NaN, Infinity, false, true,

null, and undefined? What happens when you concatenate the empty
string with NaN, Infinity, false, true, null, and undefined? Guess first
and then try it out.

2. What are [] + [], {} + [], [] + {}, {} + {}, [] - {}? Compare the
results of evaluating the expressions at the command line and assigning
them to a variable. Explain your findings.

3. As in Java and C++ (and unlike Python which follows many centuries
of mathematical experience), n % 2 is -1 if n is a negative integer.
Explore the behavior of the % operator for negative operands. Analyze
integers and floating-point numbers.

4. Suppose angle is some angle in degrees that, after adding or subtracting
other angles, has assumed an arbitrary value. You want to normalize it
so that it is between 0 (inclusive) and 360 (exclusive). How do you do
that with the % operator?

5. List as many different ways as you can to produce the string with two
backslash characters \\ in JavaScript, using the mechanisms described
in this chapter.

6. List as many different ways as you can to produce the string with the
single character in JavaScript.

7. Give a realistic example in which a template string has an embedded
expression that contains another template string with an embedded
expression.

8. Give three ways of producing an array with a “hole” in the index
sequence.

9. Declare an array with elements at index positions 0, 0.5, 1, 1.5, and 2.

10. What happens when an array of arrays is converted to a string?

11. Make a couple of objects representing people and store them in
variables harry and sally. To each person, add a property friends that
contains an array with their best friends. Suppose harry is a friend of
sally and sally is a friend of harry. What happens when you log each
object? What happens when you call JSON.stringify?

Chapter 2. Control Structures

Topics in This Chapter

2.1 Expressions and Statements

2.2 Semicolon Insertion

2.3 Branches

 2.4 Boolishness

2.5 Comparison and Equality Testing

 2.6 Mixed Comparisons

2.7 Boolean Operators

 2.8 The switch Statement

2.9 while and do Loops

2.10 for Loops

 2.11 Breaking and Continuing

2.12 Catching Exceptions

Exercises

In this chapter, you will learn about the control structures of the JavaScript
language: branches, loops, and catching exceptions. The chapter also gives
an overview of JavaScript statements and describes the process of
automatic semicolon insertion.

2.1 Expressions and Statements
JavaScript, like Java and C++, differentiates between expressions and
statements. An expression has a value. For example, 6 * 7 is an expression
with value 42. A method call such as Math.max(6, 7) is another example of
an expression.

A statement never has a value. Instead, it is executed to achieve some effect.

For example,
let number = 6 * 7;

is a statement whose effect is to declare and initialize the number variable.
Such a statement is called a variable declaration.

Apart from variable declarations, other common statement types are
branches and loops. You will see those later in this chapter.

The simplest form of a statement is an expression statement. It consists of
an expression, followed by a semicolon. Here is an example:

console.log(6 * 7);

The expression console.log(6 * 7) has a side effect—displaying 42 on the
console. It also has a value, which happens to be undefined, since the
console.log method has chosen not to return anything more interesting.
Even if the expression had a more interesting value, it would not matter—
the value of an expression statement is discarded.

Therefore, an expression statement is only useful for an expression that has
a side effect. The expression statement

6 * 7;

is legal JavaScript, but it has no effect in a program.

It is useful to understand the difference between expressions and statements
—but in JavaScript, it is a bit tricky to see the difference between an
expression and an expression statement. As you will see in the next section,
a semicolon is automatically added if you write a line containing a single
expression, turning it into a statement. For that reason, you cannot observe
an expression in a browser’s JavaScript console or in Node.js.

For example, try typing 6 * 7. The value of the expression is displayed:
6 * 7

42

That is what a read-eval-print loop, or REPL, does: It reads an expression,
evaluates it, and prints the value.

Except, because of automatic semicolon insertion, the JavaScript REPL
actually sees the statement

6 * 7;

Statements don’t have values, but the JavaScript REPL displays values for
them anyway.

Try typing in a variable declaration:
let number = 6 * 7;

undefined

As you just saw, for an expression statement, the REPL displays the value
of the expression. For a variable declaration, the REPL displays undefined.
Exercise 1 explores what is displayed for other statements.

When you run your own experiments with the REPL, it is important that
you know how to interpret the output. For example, type in this expression
statement and observe the response:

console.log(6 * 7);

42

undefined

The first line of output is the side effect of the console.log call. The second
line is the return value of the method call. As already mentioned, the
console.log method returns undefined.

2.2 Semicolon Insertion
In JavaScript, certain statements must be terminated with semicolons. The
most common ones are variable declarations, expression statements, and
nonlinear control flow (break, continue, return, throw). However,
JavaScript will helpfully insert semicolons for you.

The basic rule is simple. When processing a statement, the parser includes
every token until it encounters a semicolon or an “offending token”—
something that could not be part of the statement. If the offending token is
preceded by a line terminator, or is a }, or is the end of input, then the parser
adds a semicolon.

Here is an example:
Click here to view code image

let a = x

 + someComplicatedFunctionCall()

let b = y

No semicolon is added after the first line. The + token at the start of the
second line is not “offending.”

But the let token at the start of the third line is offending. It could not have
been a part of the first variable declaration. Because the offending token
comes after a line terminator, a semicolon is inserted:

Click here to view code image

let a = x

 + someComplicatedFunctionCall();

let b = y

The “offending token” rule is simple, and it works well in almost all cases.
However, it fails when a statement starts with a token that could have been
a part of the preceding statement. Consider this example:

let x = a

(console.log(6 * 7))

No semicolon is inserted after a.

Syntactically,
a(console.log(6 * 7))

is valid JavaScript: It calls a function a with the value returned by the call to
console.log. In other words, the (token on the second line was not an
offending token.

Of course, this example is rather artificial. The parentheses around
console.log(6 * 7) were not necessary. Here is another commonly cited
example:

Click here to view code image

let a = x

[1, 2, 3].forEach(console.log)

Because a [can appear after x, no semicolon is inserted. In the unlikely
case that you want to loop over an array literal in this way, store the array in
a variable:

Click here to view code image

let a = x

const numbers = [1, 2, 3]

numbers.forEach(console.log)

 Tip

Never start a statement with (or [. Then you don’t have to worry about the statement being
considered a continuation of the previous line.

 Note

In the absence of a semicolon, a line starting with a template or regular expression literal can be
merged with the preceding line, for example:

Click here to view code image

let a = x

`Fred`.toUpperCase()

Here, x`Fred` is parsed as a tagged template literal. But you would never write such code in
practice. When you work with a string or regular expression, you want to use the result, and the
literal won’t be at the start of the statement.

The second semicolon rule can be more problematic. A semicolon is
inserted after a nonlinear control flow statement (break, continue, return,
throw, or yield) that is immediately followed by a line terminator. If you
write

Click here to view code image

return

 x + someComplicatedExpression;

then a semicolon is automatically added:
Click here to view code image

return ;

 x + someComplicatedExpression;

The function returns without yielding any value. The second line is an
expression statement that is never executed.

The remedy is trivial. Don’t put a line break after return. Put at least one
token of the return value expression in the same line:

return x +

 someComplicatedExpression;

You must pay attention to this rule even if you faithfully put semicolons
everywhere.

Apart from the “offending token” and “nonlinear control flow” rules, there
is another obscure rule. A semicolon is inserted if a ++ or -- is immediately
preceded by a line terminator.

According to this rule,
x

++

y

means
x;

++y;

As long as you keep the ++ on the same line as its operand, you don’t have
to worry about this rule.

The automatic insertion rules are part of the language. They work tolerably
well in practice. If you like semicolons, by all means, put them in. If you
don’t, omit them. Either way, you need to pay attention to a couple of
corner cases.

 Note

Semicolons are only inserted before a line terminator or a }. If you have multiple statements on
the same line, you need to provide semicolons:

if (i < j) { i++; j-- }

Here, the semicolon is necessary to separate the i++ and j-- statements.

2.3 Branches
If you are familiar with C, C++, Java, or C#, you can safely skip this
section.

The conditional statement in JavaScript has the form

if (condition) statement

The condition must be surrounded by parentheses.

 Tip

In the condition, you should produce either true or false, even though JavaScript allows
arbitrary values and converts them to Boolean values. As you will see in the next section, these
conversions can be unintuitive and potentially dangerous. Follow the golden rule #3 from the
preface:

Know your types and avoid automatic type conversion.

You will often want to execute multiple statements when a condition is
fulfilled. In this case, use a block statement that takes the form

Click here to view code image

{

 statement1
 statement2
 . . .

}

An optional else clause is executed when the condition is not fulfilled, for
example:

Click here to view code image

if (yourSales > target) {

 performance = 'Good'

 bonus = 100

} else {

 performance = 'Mediocre'

 bonus = 0

}

 Note

This example shows the “one true brace style” in which the opening brace is placed at the end of
the line preceding the first statement of the block. This style is commonly used with JavaScript.

If the else clause is another if statement, the following format is
conventionally used:

Click here to view code image

if (yourSales > 2 * target) {

 performance = 'Excellent'

 bonus = 1000

} else if (yourSales > target) {

 performance = 'Good'

 bonus = 100

} else {

 performance = 'Mediocre'

 bonus = 0

}

Braces are not necessary around single statements:
if (yourSales > target)

 bonus = 100

 Caution

If you don’t use braces, or if you use braces but not the “one true brace style” with an if/else
statement, then you can write code that works in a program file but fails when pasting into a
JavaScript console. Consider this example:

Click here to view code image

if (yourSales > target)

 bonus = 100

else

 bonus = 0

Some JavaScript consoles analyze the code one line at a time. Such a console will think that the
if statement is complete before the else clause. To avoid this problem, use braces or place the
entire if statement in a single line

Click here to view code image

if (yourSales > target) bonus = 100; else bonus = 0

It is sometimes convenient to have an expression analog to the if statement.
Consider computing the larger of two values:

Click here to view code image

let max = undefined

if (x > y) max = x; else max = y

It would be nicer to initialize max with the larger of x and y. Since if is a
statement, we cannot write:

Click here to view code image

let max = if (x > y) x else y // Error—if statement not expected

Instead, use the ? : operator, also called the “conditional” operator. The
expression condition ? first : second evaluates to first if the condition is
fulfilled, second otherwise. This solves our problem:

Click here to view code image

let max = x > y ? x : y

 Note

The expression x > y ? x : y is a convenient example to illustrate the conditional operator,
but you should use the standard library method Math.max if you need the largest of two or more
values.

2.4 Boolishness

This is a “mad hatter” section that describes a confusing feature of
JavaScript in some detail. Feel free to skip the section if you follow the
advice of the preceding section and only use Boolean values in conditions.

In JavaScript, conditions (such as the one in the if statement) need not be
Boolean values. The “falsish” values 0, NaN, null, undefined, and the empty
string make the condition fail. All other values are “truish” and make the
condition succeed. These are also often called “falsy” or “truthy.” None of
these is an official term in the language specification.

 Note

Boolishness also applies for loop conditions, the operands of the Boolean operators &&, ||, and
!, and the first operand of the ? : operator. All these constructs are covered later in this chapter.

The Boolean conversion rule sounds reasonable at first glance. Suppose you
have a variable performance, and you only want to use it if it isn’t
undefined. So you write:

if (performance) . . . // Danger

Sure, the test fails as expected if performance is undefined. As a freebie, it
also fails if performance is null.

But what if performance is the empty string? Or the number zero? Do you
really want to treat these values the same way as absent values? Sometimes
you do, and sometimes you don’t. Shouldn’t your code clearly indicate
what your intent is? Just write what you mean:

if (performance !== undefined) . . .

2.5 Comparison and Equality Testing
JavaScript has the usual assortment of comparison operators:

Click here to view code image

< less than
<= less than or equal
> greater than
>= greater than or equal

When used to compare numbers, these operators are unsurprising:
Click here to view code image

3 < 4 // true

3 >= 4 // false

Any comparison involving NaN yields false:
Click here to view code image

NaN < 4 // false

NaN >= 4 // false

NaN <= NaN // false

The same operators also compare strings, using lexicographic order.
Click here to view code image

'Hello' < 'Goodbye' // false—H comes after G
'Hello' < 'Hi' // true—e comes before i

When comparing values with <, <=, >, >=, be sure that both operands are
numbers or both operands are strings. Convert operands explicitly if

necessary. Otherwise, JavaScript will convert operands for you, sometimes
with undesirable results—see the following section.

Use these operators to test for equality:
Click here to view code image

=== strictly equal to
!== not strictly equal to

The strict equality operators are straightforward. Operands of different
types are never strictly equal. The undefined and null values are only
strictly equal to themselves. Numbers, Boolean values, and strings are
strictly equal if their values are equal.

Click here to view code image

'42' === 42 // false—different types
undefined === null // false

'42' === '4' + 2 // true—same string value '42'

There are also “loose equality” operators == and != that can compare values
of different types. This is not generally useful—see the following section if
you care about the details.

 Caution

You cannot use

x === NaN

to check whether x equals NaN. No two NaN values are considered to be equal to one another.
Instead, call Number.isNaN(x).

 Note

Object.is(x, y) is almost the same as x === y, except that Object.is(+0, -0) is
false and Object.is(NaN, NaN) is true.

As in Java and Python, equality of objects (including arrays) means that the

two operands refer to the same object. References to different objects are
never equal, even if both objects have the same contents.

Click here to view code image

let harry = { name: 'Harry Smith', age: 42 }

let harry2 = harry

harry === harry2 // true—two references to the same object
let harry3 = { name: 'Harry Smith', age: 42 }

harry === harry3 // false—different objects

2.6 Mixed Comparisons

This is another “mad hatter” section that describes potentially confusing
features of JavaScript in some detail. By all means, skip the section if you
follow the advice of the golden rule #3—to avoid mixed-type comparisons,
and in particular the “weak equality” operators (== and !=).

Still here? Let’s first look at mixed-type comparisons with the <, <=, >, >=
operators.

If one operand is a number, the other operand is converted to a number.
Suppose the other operand is a string. The conversion yields the numeric
value if the string happens to contain a number, 0 if the string is empty, or
NaN otherwise. Moreover, any comparison involving NaN is false—even NaN
<= NaN.

Click here to view code image

'42' < 5 // false—'42' is converted to the number 42
'' < 5 // true—'' is converted to the number 0
'Hello' <= 5 // false—'Hello' is converted to NaN
5 <= 'Hello' // false—'Hello' is converted to NaN

Now suppose the other operand is an array:

Click here to view code image

[4] < 5 // true—[4] is converted to the number 4
[] < 5 // true—[] is converted to the number 0
[3, 4] < 5 // false—[3, 4] is converted to NaN

If neither operand is a number, both are converted to strings. These
comparisons rarely yield meaningful outcomes:

Click here to view code image

[1, 2, 3] < {} // true—[1, 2, 3] is converted to '1,2,3', {} to
'[object Object]'

Next, let us look at loose equality x == y more closely. Here is how it
works:

If the two operands have the same type, compare them strictly.

The values undefined and null are loosely equal to themselves and each
other but not to any other values.

If one operand is a number and the other a string, convert the string to a
number and compare strictly.

If one operand is a Boolean value, convert both to numbers and compare
strictly.

If one operand is an object but the other is not, convert the object to a
primitive type (see Chapter 8), then compare loosely.

For example:
Click here to view code image

'' == 0 // true—'' is converted to 0
'0' == 0 // true—'0' is converted to 0
'0' == false // true—both are converted to 0
undefined == false // false—undefined is only equal to itself and null

Have another look at the strings '' and '0'. They are both “equal to” 0. But
they are not “equal to” each other:

Click here to view code image

'' == '0' // false—no conversion since both operands are strings

As you can see, the loose comparison rules are not very useful and can
easily lead to subtle errors. Avoid this quagmire by using strict equality
operators (=== and !==).

 Note

The loose comparison x == null actually tests whether x is undefined or null, and x !=
null tests whether x is neither. Some programmers who have resolved never to use loose
equality make an exception for this case.

2.7 Boolean Operators
JavaScript has three operators to combine Boolean values:

&& and
|| or
! not

The expression x && y is true if both x and y are true, and x || y is true if
at least one of x and y are. The expression !x is true if x is false.

The && and || operators are evaluated lazily. If the left operand decides the
result (falsish for &&, truish for ||), the right operand is not evaluated. This
is often useful—for example:

Click here to view code image

if (i < a.length && a[i] > 0) // a[i] > 0 is not evaluated if i ≥
a.length

The && and || operands have another curious twist if the operands are not
Boolean values. They yield one of the operands as the expression value. If
the left operand decides the result, it becomes the value of the expression,
and the right operand is not evaluated. Otherwise, the expression value is
the value of the right operand.

For example:

Click here to view code image

0 && 'Harry' // 0

0 || 'Harry' // 'Harry'

Some programmers try to take advantage of this behavior and write code
such as the following:

Click here to view code image

let result = arg && arg.someMethod()

The intent is to check that arg isn’t undefined or null before calling the
method. If it is, then result is also undefined or null. This idiom breaks
down if arg is zero, an empty string, or false.

Another use is to produce a default value when a method returns undefined
or null:

Click here to view code image

let result = arg.someMethod() || defaultValue

Again, this breaks down if the method can return zero, an empty string, or
false.

What is needed is a convenient way of using a value unless it is undefined
or null. Two operators for this are, as of early 2020, in “proposal stage 3,”
which means they are likely to be adopted in a future version of JavaScript.

The expression x ?? y yields x if x is not undefined or null, and y
otherwise. In the expression

Click here to view code image

let result = arg.someMethod() ?? defaultValue

the default value is used only when the method returns undefined or null.

The expression x?.propertyName yields the given property if x is not undefined
or null, and undefined otherwise. Consider

let recipient = person?.name

If person is neither undefined nor null, then the right-hand side is exactly
the same as person.name. But if person is undefined or null, then recipient

is set to undefined. If you had used the . operator instead of ?., then an
exception would have occurred.

You can chain the ?. operators:
Click here to view code image

let recipientLength = person?.name?.length

If person or person.name is undefined or null, then recipientLength is set
to undefined.

 Note

JavaScript also has bitwise operators & | ^ ~ that first truncate their operands to 32-bit integers
and then combine their bits, exactly like their counterparts in Java or C++. There are shift
operators << >> >>> that shift the bits, with the left operand truncated to a 32-bit integer and
the right operand truncated to a 5-bit integer. If you need to fiddle with individual bits of 32-bit
integers, go ahead and use these operators. Otherwise, stay away from them.

 Caution

Some programmers use the expression x | 0 to remove the fractional part of a number x. This
produces incorrect results if x ≥ 231. It is better to use Math.floor(x) instead.

2.8 The switch Statement

JavaScript has a switch statement that is just like the switch statement in C,
C++, Java, and C#—warts and all. Skip this section if you are familiar with
switch.

The switch statement compares an expression with many possible values.
Here is an example:

Click here to view code image

let description = ''

switch (someExpression) {

 case 0:

 description = 'zero'

 break

 case false:

 case true:

 description = 'boolean'

 break

 case '':

 description = 'empty string' // See the “Caution” note below
 default:

 description = 'something else'

}

Execution starts at the case label that strictly equals the value of the
expression and continues until the next break or the end of the switch
statement. If none of the case labels match, then execution starts at the
default label if it is present.

Since strict equality is used for matching, case labels should not be objects.

 Caution

If you forget to add a break at the end of an alternative, execution falls through to the next
alternative! This happens in the preceding example when value is the empty string. The
description is first set to 'empty string', then to 'something else'. This “fall
through” behavior is plainly dangerous and a common cause for errors. For that reason, some
developers avoid the switch statement.

 Tip

In many cases, the difference in performance between a switch statement and the equivalent set
of if statements is negligible. However, if you have a large number of cases, then the virtual
machine can use a “jump table” for efficiently jumping to the appropriate case.

2.9 while and do Loops
This is another section that you can skip if you know C, C++, Java, or C#.

The while loop executes a statement (which may be a block statement)
while a condition is fulfilled. The general form is

while (condition) statement

The following loop determines how long it will take to save a specific
amount of money for your well-earned retirement, assuming you deposit the
same amount of money per year and the money earns a specified interest
rate.

Click here to view code image

let years = 0

while (balance < goal) {

 balance += paymentAmount

 let interest = balance * interestRate / 100

 balance += interest

 years++

}

console.log(`${years} years.`)

The while loop will never execute if the condition is false at the outset. If
you want to make sure a block is executed at least once, you need to move
the test to the bottom, using the do/while loop. Its syntax looks like this:

do statement while (condition)

This loop executes the statement (which is typically a block) and then tests
the condition. If the condition is fulfilled, the statement and the test are
repeated. Here is an example. Suppose we just processed s[i] and are now
looking at the next space in the string:

Click here to view code image

do {

 i++

} while (i < s.length && s[i] != ' ')

When the loop ends, either i is past the end of the string, or s[i] is a space.

The do loop is much less common than the while loop.

2.10 for Loops
The for loop is a general construct for iterating over elements. The
following three sections discuss the variants that JavaScript offers.

2.10.1 The Classic for Loop

The classic form of the for loop works just like in C, C++, Java, or C#. It
works with a counter or similar variable that is updated after every iteration.
The following loop logs the numbers from 1 to 10:

Click here to view code image

for (let i = 1; i <= 10; i++)

 console.log(i)

The first slot of the for statement holds the counter initialization. The
second slot gives the condition that will be tested before each new pass
through the loop. The third slot specifies how to update the counter after
each loop iteration.

The nature of the initialization, test, and update depends on the kind of
traversal that you want. For example, this loop visits the elements of an
array in reverse order:

Click here to view code image

for (let i = a.length - 1; i >= 0; i--)

 console.log(a[i])

 Tip

You can place arbitrary variable declarations or expressions in the first slot, and arbitrary
expressions in the other slots of a for loop. However, it is an unwritten rule of good taste that
you should initialize, test, and update the same variable.

 Note

It is possible to cram multiple update expressions into the third slot of a for loop by using the
comma operator:

Click here to view code image

for (let i = 0, j = a.length - 1; i < j; i++, j--) {

 let temp = a[i]

 a[i] = a[j]

 a[j] = temp

}

In the expression i++, j--, the comma operator joins the two expressions i++ and j-- to a
new expression. The value of a comma expression is the value of the second operand. In this
situation, the value is unused—we only care about the side effects of incrementing and
decrementing.

The comma operator is generally unloved because it can be confusing. For example,
Math.max((9, 3)) is the maximum of the single value (9, 3)—that is, 3.

The comma in the declaration let i = 0, j = a.length - 1 is not a comma operator
but a syntactical part of the let statement. This statement declares two variables i and j.

2.10.2 The for of Loop

The for of loop iterates over the elements of an iterable object, most
commonly an array or string. (In Chapter 8, you will see how to make other
objects iterable.)

Here is an example:
Click here to view code image

let arr = [, 2, , 4]

arr[9] = 100

for (const element of arr)

 console.log(element) // Prints undefined, 2, undefined, 4,
undefined (5 times), 100

The loop visits all elements of the array from index 0 to arr.length − 1, in
increasing order. The elements at indexes 0, 2, and 4 through 8 are reported
as undefined.

The variable element is created in each loop iteration and initialized with
the current element value. It is declared as const since it is not changed in
the loop body.

The for of loop is a pleasant improvement over the classic for loop if you
need to process all elements in a array. However, there are still plenty of
opportunities to use the classic for loop. For example, you might not want
to traverse the entire array, or you may need the index value inside the loop.

When the for of loop iterates over a string, it visits each Unicode code
point. That is the behavior that you want. For example:

Click here to view code image

let greeting = 'Hello '

for (const c of greeting)

 console.log(c) // Prints H e l l o, a space, and

You need not worry about the fact that uses two code units, stored in
greeting[6] and greeting[7].

2.10.3 The for in Loop

You cannot use the for of loop to iterate over the property values of an
arbitrary object, and you probably wouldn’t want to—the property values
are usually meaningless without the keys. Instead, visit the keys with the
for in loop:

Click here to view code image

let obj = { name: 'Harry Smith', age: 42 }

for (const key in obj)

 console.log(`${key}: ${obj[key]}`)

This loop prints age: 42 and name: Harry Smith in some order.

The for in loop traverses the keys of the given object. As you will see in
Chapters 4 and 8, “prototype” properties are included in the iteration,
whereas certain “nonenumerable” properties are skipped. The order in
which the keys are traversed depends on the implementation, so you should
not rely on it.

 Note

The for of loop in JavaScript is the same as the “generalized” for loop in Java, also called the
“for each” loop. The for in loop in JavaScript has no Java equivalent.

You can use a for in loop to iterate over the property names of an array.
Click here to view code image

let numbers = [1, 2, , 4]

numbers[99] = 100

for (const i in numbers)

 console.log(`${i}: ${numbers[i]}`)

This loop sets i to '0', '1', '3', and '99'. Note that, as for all JavaScript
objects, the property keys are strings. Even though common JavaScript
implementations iterate over arrays in numerical order, it is best not to rely
on that. If the iteration order matters to you, it is best to use a for of loop or
a classic for loop.

 Caution

Beware of expressions such as numbers[i + 1] in a for in loop. For example,

Click here to view code image

if (numbers[i] === numbers[i + 1]) // Error! i + 1 is '01', '11',
and so on

The condition does not compare adjacent elements. Since i holds a string, the + operator
concatenates strings. If i is '0', then i + 1 is '01'.

To fix this problem, convert the string i to a number:

Click here to view code image

if (numbers[i] === numbers[parseInt(i) + 1])

Or use a classic for loop.

Of course, if you add other properties to your array, they are also visited:
Click here to view code image

numbers.lucky = true

for (const i in numbers) // i is '0', '1', '3', '99', 'lucky'
 console.log(`${i}: ${numbers[i]}`)

As you will see in Chapter 4, it is possible for others to add enumerable
properties to Array.prototype or Object.prototype. Those will show up in
a for in loop. Therefore, modern JavaScript etiquette strongly discourages
this practice. Nevertheless, some programmers warn against the for in loop
because they worry about legacy libraries or colleagues who paste random
code from the Internet.

 Note

In the next chapter, you will learn about another way of iterating over an array, using functional
programming techniques. For example, you can log all array elements like this:

Click here to view code image

arr.forEach((element, key) => { console.log(`${key}:

${element}`) })

The provided function is called for all elements and index keys (as numbers 0 1 3 99, not strings).

 Caution

When the for in loop iterates over a string, it visits the indexes of each Unicode code unit. That
is probably not what you want. For example:

Click here to view code image

let greeting = 'Hello '

for (const i of greeting)

 console.log(greeting[i])

 // Prints H e l l o, a space, and two broken symbols
The indexes 6 and 7 for the two code units of the Unicode character are visited separately.

2.11 Breaking and Continuing

Sometimes, you want to exit a loop as soon as you reach a goal. Suppose
you look for the position of the first negative element in an array:

Click here to view code image

let i = 0

while (i < arr.length) {

 if (arr[i] < 0) . . .

 . . .

}

Upon seeing a negative element, you just want to exit the loop, so that i
stays at the position of the element. That is what the break statement
accomplishes.

Click here to view code image

let i = 0

while (i < arr.length) {

 if (arr[i] < 0) break

 i++

}

// Get here after break or when the loop terminates normally

The break statement is never necessary. You can always add a Boolean
variable to control the loop termination—often called something like done
or found:

Click here to view code image

let i = 0

let found = false

while (!found && i < arr.length) {

 if (arr[i] < 0) {

 found = true

 } else {

 i++

 }

}

Like Java, JavaScript offers a labeled break statement that lets you break
out of multiple nested loops. Suppose you want to find the location of the
first negative element in a two-dimensional array. When you have found it,
you need to break out of two loops. Add a label (that is, an identifier
followed by a colon) before the outer loop. A labeled break jumps after the
labeled loop:

Click here to view code image

let i = 0

let j = 0

outer:

while (i < arr.length) {

 while (j < arr[i].length) {

 if (arr[i][j] < 0) break outer

 j++

 }

 i++

 j = 0

}

// Get here after break outer or when both loops terminate normally

The label in a labeled break statement must be on the same line as the break
keyword.

Labeled breaks are not common.

Finally, there is a continue statement that, like the break statement, breaks
the regular flow of control. The continue statement transfers control to the
end of the innermost enclosing loop. Here is an example—averaging the
positive elements of an array:

Click here to view code image

let count = 0

let sum = 0

for (let i = 0; i < arr.length; i++) {

 if (arr[i] <= 0) continue

 count++

 sum += arr[i]

}

let avg = count === 0 ? 0 : sum / count

When an element is not positive, the continue statement jumps immediately
to the loop header, skipping the remainder of only the current iteration.

If a continue statement is used in a for loop, it jumps to the “update” part
of the for loop, as in this example.

There is also a labeled form of the continue statement that jumps to the end
of the loop with the matching label. Such statements are very uncommon.

Many programmers find the break and continue statements confusing. They
are easily avoided, and in this book, I will not use them.

2.12 Catching Exceptions
Some methods return an error value when they are invoked with invalid
arguments. For example, parseFloat('') returns a NaN value.

However, it is not always a good idea to return an error value. There may be
no obvious way of distinguishing valid and invalid values. The parseFloat
method is a good example. The call parseFloat('NaN') returns NaN, just like
parseFloat('Infinity') returns the Infinity value. When parseFloat
returns NaN, you cannot tell whether it parsed a valid 'NaN' string or an
invalid argument.

In JavaScript, a method can take an alternative exit path if it is unable to
complete its task in the normal way. Instead of returning a value, a method
can throw an exception. In that case, execution does not resume at the code
that called the method. Instead, a catch clause is executed. If an exception
is not caught anywhere, the program terminates.

To catch an exception, use a try statement. The simplest form of this
statement is as follows:

Click here to view code image

try {

 code
 more code
 more code
} catch {

 handler
}

If any code inside the try block throws an exception, then the program
skips the remainder of the code in the try block and executes the handler
code inside the catch clause.

For example, suppose you receive a JSON string and parse it. The call to
JSON.parse throws an exception if the argument is not valid JSON. Handle
that situation in the catch clause:

Click here to view code image

let input = . . . // Read input from somewhere
try {

 let data = JSON.parse(input)

 // If execution continues here, input is valid
 // Process data
 . . .

} catch {

 // Deal with the fact that the input is invalid

 . . .

}

In the handler, you can log that information, or take some evasive action to
deal with the fact that you were handed a bad JSON string.

In Chapter 3, you will see additional variations of the try statement that
give you more control over the exception handling process. There, you will
also see how to throw your own exceptions.

Exercises
1. Browser consoles and the Node.js REPL display values when you enter

statements. What values are displayed for the following kinds of
statements?

An expression statement

A variable declaration

A block statement with at least one statement inside

An empty block statement

A while, do, or for loop whose body is executed at least once

A loop whose body is never executed

An if statement

A try statement that completes normally

A try statement whose catch clause is executed

2. What is wrong with the statement
Click here to view code image

if (x === 0) console.log('zero') else console.log('nonzero')

How do you fix the problem?

3. Consider a statement
let x = a

Which tokens could start the next line that prevent a semicolon to be
inserted? Which ones can realistically occur in an actual program?

4. What are the results of comparing undefined, null, 0, and '' values
with the operators < <= ==? Why?

5. Is a || b always the same as a ? a : b, no matter what type a and b
are? Why or why not? Can you express a && b in a similar way?

6. Use the three kinds of for loop for finding the largest value in an array
of numbers.

7. Consider this code snippet:
Click here to view code image

let arr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

for (i in arr) { if (i + 1 === 10) console.log(a[i]) }

Why doesn’t it print anything?

8. Implement a switch statement that converts digits 0 through 9 to their
English names 'zero' through 'nine'. How can you do this easily
without a switch? What about the reverse conversion?

9. Suppose n is a number between 0 and 7 and you are supposed to set the
array elements arr[k] through arr[k + n - 1] to zero. Use a switch
with fallthrough.

10. Rewrite the do loop in Section 2.9, “while and do Loops” (page 40), as
a while loop.

11. Rewrite all for loops in Section 2.10, “for Loops” (page 41), as while
loops.

12. Rewrite the labeled break example in Section 2.11, “Breaking and
Continuing” (page 44), to use two nested for loops.

13. Rewrite the labeled break example in Section 2.11, “Breaking and
Continuing” (page 44), without a break statement. Introduce a Boolean
variable to control the termination of the nested loops.

14. Rewrite the continue example in Section 2.11, “Breaking and
Continuing” (page 44), without a continue statement.

15. Consider the problem of finding the first position in which an array b
occurs as a subsequence of an array a. Write two nested loops:
Click here to view code image

let result = undefined

for (let i = 0; i < a.length - b.length; i++) {

 for (let j = 0; j < b.length; j++) {

 if (a[i + j] != b[j]) . . .

 }

 . . .

}

Complete with labeled break and continue statements. Then rewrite
without break or continue.

Chapter 3. Functions and
Functional Programming

Topics in This Chapter

3.1 Declaring Functions

3.2 Higher-Order Functions

3.3 Function Literals

3.4 Arrow Functions

3.5 Functional Array Processing

3.6 Closures

 3.7 Hard Objects

3.8 Strict Mode

3.9 Testing Argument Types

3.10 Supplying More or Fewer Arguments

3.11 Default Arguments

3.12 Rest Parameters and the Spread Operator

 3.13 Simulating Named Arguments with Destructuring

 3.14 Hoisting

3.15 Throwing Exceptions

 3.16 Catching Exceptions

 3.17 The finally Clause

Exercises

In this chapter, you will learn how to write functions in JavaScript.
JavaScript is a “functional” programming language. Functions are “first-
class” values, just like numbers or strings. Functions can consume and
produce other functions. Mastering a functional programming style is
essential for working with modern JavaScript.

This chapter also covers the JavaScript parameter passing and scope rules,
as well as the details of throwing and catching exceptions.

3.1 Declaring Functions
In JavaScript, you declare a function by providing

1. The name of the function

2. The names of the parameters

3. The body of the function, which computes and returns the function
result

You do not specify the types of the function parameters or result. Here is an
example:

Click here to view code image

function average(x, y) {

 return (x + y) / 2

}

The return statement yields the value that the function returns.

To call this function, simply pass the desired arguments:
Click here to view code image

let result = average(6, 7) // result is set to 6.5

What if you pass something other than a number? Whatever happens,
happens. For example:

Click here to view code image

result = average('6', '7') // result is set to 33.5

When you pass strings, the + in the function body concatenates them. The
resulting string '67' is converted to a number before the division by 2.

That looks rather casual to a Java, C#, or C++ programmer who is used to
compile-time type checking. Indeed, if you mess up argument types, you
only find out when something strange happens at runtime. On the flip side,
you can write functions that work with arguments of multiple types, which
can be convenient.

The return statement returns immediately, abandoning the remainder of the
function. Consider this example—an indexOf function that computes the
index of a value in an array:

Click here to view code image

function indexOf(arr, value) {

 for (let i in arr) {

 if (arr[i] === value) return i

 }

 return -1

}

As soon as a match is found, the index is returned and the function
terminates.

A function may choose not to specify a return value. If the function body
exits without a return statement, or a return keyword isn’t followed by an
expression, the function returns the undefined value. This usually happens
when a function is solely called for a side effect.

 Tip

If a function sometimes returns a result, and sometimes you don’t want to return anything, be
explicit:

return undefined

 Note

As mentioned in Chapter 2, a return statement must always have at least one token before the
end of the line, to avoid automatic semicolon insertion. For example, if a function returns an
object, put at least the opening brace on the same line:

Click here to view code image

return {

 average: (x + y) / 2,

 max: Math.max(x, y),

 . . .

}

3.2 Higher-Order Functions
JavaScript is a functional programming language. Functions are values that
you can store in variables, pass as arguments, or return as function results.

For example, we can store the average function in a variable:
let f = average

Then you can call the function:
let result = f(6, 7)

When the expression f(6, 7) is executed, the contents of f is found to be a
function. That function is called with arguments 6 and 7.

We can later put another function into the variable f:
f = Math.max

Now when you compute f(6, 7), the answer becomes 7, the result of
calling Math.max with the provided arguments.

Here is an example of passing a function as an argument. If arr is an array,
the method call

arr.map(someFunction)

applies the provided function to all elements, and returns an array of the
collected results (without modifying the original array). For example,

result = [0, 1, 2, 4].map(Math.sqrt)

sets result to
[0, 1, 1.4142135623730951, 2]

The map method is sometimes called a higher-order function: a function that
consumes another function.

3.3 Function Literals
Let us continue the example of the preceding section. Suppose we want to
multiply all array elements by 10. Of course, we can write a function

Click here to view code image

function multiplyBy10(x) { return x * 10 }

Now we can call:
Click here to view code image

result = [0, 1, 2, 4].map(multiplyBy10)

But it seems a waste to declare a new function just to use it once.

It is better to use a function literal. JavaScript has two syntactical variants.
Here is the first one:

Click here to view code image

result = [0, 1, 2, 4].map(function (x) { return 10 * x })

The syntax is straightforward. You use the same function syntax as before,
but now you omit the name. The function literal is a value that denotes the
function with the specified action. That value is passed to the map method.

By itself, the function literal doesn’t have a name, just like the array literal
[0, 1, 2, 4] doesn’t have a name. If you want to give the function a name,
do what you always do when you want to give something a name—store it
in a variable:

Click here to view code image

const average = function (x, y) { return (x + y) / 2 }

 Tip

Think of anonymous function literals as the “normal” case. A named function is a shorthand for
declaring a function literal and then giving it a name.

3.4 Arrow Functions
In the preceding section, you saw how to declare function literals with the
function keyword. There is a second, more concise form that uses the =>
operator, usually called “arrow”:

Click here to view code image

const average = (x, y) => (x + y) / 2

You provide the parameter variables to the left of the arrow and the return
value to the right.

If there is a single parameter, you don’t need to enclose it in parentheses:
Click here to view code image

const multiplyBy10 = x => x * 10

If the function has no parameters, use an empty set of parentheses:
Click here to view code image

const dieToss = () => Math.trunc(Math.random() * 6) + 1

Note that dieToss is a function, not a number. Each time you call dieToss(),
you get a random integer between 1 and 6.

If an arrow function is more complex, place its body inside a block
statement. Use the return keyword to return a value out of the block:

Click here to view code image

const indexOf = (arr, value) => {

 for (let i in arr) {

 if (arr[i] === value) return i

 }

 return -1

 }

 Tip

The => token must be on the same line as the parameters:

Click here to view code image

const average = (x, y) => // OK
 (x + y) / 2

const distance = (x, y) // Error
 => Math.abs(x - y)

If you write an arrow function on more than one line, it is clearer to use braces:

Click here to view code image

const average = (x, y) => {

 return (x + y) / 2

}

 Caution

If an arrow function does nothing but returns an object literal, then you must enclose the object in
parentheses:

Click here to view code image

const stats = (x, y) => ({

 average: (x + y) / 2,

 distance: Math.abs(x - y)

 })

Otherwise, the braces would be parsed as a block.

 Tip

As you will see in Chapter 4, arrow functions have more regular behavior than functions declared
with the function keyword. Many JavaScript programmers prefer to use the arrow syntax for
anonymous and nested functions. Some programmers use the arrow syntax for all functions, while
others prefer to declare top-level functions with function. This is purely a matter of taste.

3.5 Functional Array Processing

Instead of iterating over an array with a for of or for in loop, you can use
the forEach method. Pass a function that processes the elements and index
values:

Click here to view code image

arr.forEach((element, index) => { console.log(`${index}:

${element}`) })

The function is called for each array element, in increasing index order.

If you only care about the elements, you can pass a function with one
parameter:

Click here to view code image

arr.forEach(element => { console.log(`${element}`) })

The forEach method will call this function with both the element and the
index, but in this example, the index is ignored.

The forEach method doesn’t produce a result. Instead, the function that you
pass to it must have some side effect—printing a value or making an
assignment. It is even better if you can avoid side effects altogether and use
methods such as map and filter that transform arrays into their desired
form.

In Section 3.2, “Higher-Order Functions” (page 53), you saw the map
method that transforms an array, applying a function to each element. Here
is a practical example. Suppose you want to build an HTML list of items in
an array. You can first enclose each of the items in a li element:

Click here to view code image

const enclose = (tag, contents) => `<${tag}>${contents}</${tag}>`

const listItems = items.map(i => enclose('li', i))

Actually, it is safer to first escape & and < characters in the items. Let’s
suppose we have an htmlEscape function for this purpose. (You will find an
implementation in the book’s companion code.) Then we can first transform
the items to make them safe, and then enclose them:

Click here to view code image

const listItems = items

 .map(htmlEscape)

 .map(i => enclose('li', i))

Now the result is an array of li elements. Next, we concatenate all strings
with the Array.join method (see Chapter 7), and enclose the resulting
string in a ul element:

Click here to view code image

const list = enclose('ul',

 items

 .map(htmlEscape)

 .map(i => enclose('li', i))

 .join(''))

Another useful array method is filter. It receives a predicate function—a
function that returns a Boolean (or Boolish) value. The result is an array of
all elements that fulfill the predicate. Continuing the preceding example, we
don’t want to include empty strings in the list. We can remove them like
this:

Click here to view code image

const list = enclose('ul',

 items

 .filter(i => i.trim() !== '')

 .map(htmlEscape)

 .map(i => enclose('li', i))

 .join(''))

This processing pipeline is a good example of a high-level “what, not how”
style of programming. What do we want? Throw away empty strings,
escape HTML, enclose items in li elements, and join them. How is this
done? Ultimately, by a sequence of loops and branches, but that is an
implementation detail.

3.6 Closures
The setTimeout function takes two arguments: a function to execute later,
when a timeout has elapsed, and the duration of the timeout in milliseconds.
For example, this call says “Goodbye” in ten seconds:

Click here to view code image

setTimeout(() => console.log('Goodbye'), 10000)

Let’s make this more flexible:
Click here to view code image

const sayLater = (text, when) => {

 let task = () => console.log(text)

 setTimeout(task, when)

}

Now we can call:
Click here to view code image

sayLater('Hello', 1000)

sayLater('Goodbye', 10000)

Look at the variable text inside the arrow function () =>

console.log(text). If you think about it, something nonobvious is going
on. The code of the arrow function runs long after the call to sayLater has
returned. How does the text variable stay around? And how can it be first
'Hello' and then 'Goodbye'?

To understand what is happening, we need to refine our understanding of a
function. A function has three ingredients:

1. A block of code

2. Parameters

3. The free variables—that is, the variables that are used in the code but
are not declared as parameters or local variables

A function with free variables is called a closure.

In our example, text is a free variable of the arrow function. The data
structure representing the closure stores a reference to the variable when the
function is created. We say that the variable is captured. That way, its value
is available when the function is later called.

In fact, the arrow function () => console.log(text) also captures a second
variable, namely console.

But how does text get to have two different values? Let’s do this in slow
motion. The first call to sayLater creates a closure that captures the text
parameter variable holding the value 'Hello'. When the sayLater method
exits, that variable does not go away because it is still used by the closure.

When sayLater is called again, a second closure is created that captures a
different text parameter variable, this time holding 'Goodbye'.

In JavaScript, a captured variable is a reference to another variable, not its
current value. If you change the contents of the captured variable, the
change is visible in the closure. Consider this case:

Click here to view code image

let text = 'Goodbye'

setTimeout(() => console.log(text), 10000)

text = 'Hello'

In ten seconds, the string 'Hello' is printed, even though text contained
'Goodbye' when the closure was created.

 Note

The lambda expressions and inner classes in Java can also capture variables from enclosing
scopes. But in Java, a captured local variable must be effectively final—that is, its value can
never change.

Capturing mutable variables complicates the implementation of closures in JavaScript. A
JavaScript closure remembers not just the initial value but the location of the captured variable.
And the captured variable is kept alive for as long as the closure exists—even if it is a local
variable of a terminated method.

The fundamental idea of a closure is very simple: A free variable inside a
function means exactly what it means outside. However, the consequences
are profound. It is very useful to capture variables and have them accessible
indefinitely. The next section provides a dramatic illustration, by
implementing objects and methods entirely with closures.

3.7 Hard Objects

Let’s say we want to implement bank account objects. Each bank account
has a balance. We can deposit and withdraw money.

We want to keep the object state private, so that nobody can modify it
except through methods that we provide. Here is an outline of a factory
function:

Click here to view code image

const createAccount = () => {

 . . .

 return {

 deposit: amount => { . . . },

 withdraw: amount => { . . . },

 getBalance: () => . . .

 }

}

Then we can construct as many accounts as we like:
Click here to view code image

const harrysAccount = createAccount()

const sallysAccount = createAccount()

sallysAccount.deposit(500)

Note that an account object contains only methods, not data. After all, if we
added the balance to the account object, anyone could modify it. There are
no “private” properties in JavaScript.

Where do we store the data? It’s simple—as local variables in the factory
function:

Click here to view code image

const createAccount = () => {

 let balance = 0

 return {

 . . .

 }

}

We capture the local data in the methods:
Click here to view code image

const createAccount = () => {

 . . .

 return {

 deposit: amount => {

 balance += amount

 },

 withdraw: amount => {

 if (balance >= amount)

 balance -= amount

 },

 getBalance: () => balance

 }

}

Each account has its own captured balance variable, namely the one that
was created when the factory function was called.

You can provide parameters in the factory function:
Click here to view code image

const createAccount = (initialBalance) => {

 let balance = initialBalance + 10 // Bonus for opening the
account
 return {

 . . .

 }

}

You can even capture the parameter variable instead of a local variable:
Click here to view code image

const createAccount = (balance) => {

 balance += 10 // Bonus for opening the account
 return {

 deposit: amount => {

 balance += amount

 },

 . . .

 }

}

At first glance, this looks like an odd way of producing objects. But these
objects have two significant advantages. The state, consisting solely of
captured local variables of the factory function, is automatically
encapsulated. And you avoid the this parameter, which, as you will see in
Chapter 4, is not straightforward in JavaScript.

This technique is sometimes called the “closure pattern” or “factory class
pattern,” but I like the term that Douglas Crockford uses in his book How

JavaScript Works. He calls them “hard objects.”

 Note

To further harden the object, you can use the Object.freeze method that yields an object
whose properties cannot be modified or removed, and to which no new properties can be added.

Click here to view code image

const createAccount = (balance) => {

 return Object.freeze({

 deposit: amount => {

 balance += amount

 },

 . . .

 })

}

3.8 Strict Mode
As you have seen, JavaScript has its share of unusual features, some of
which have proven to be poorly suited for large-scale software
development. Strict mode outlaws some of these features. You should
always use strict mode.

To enable strict mode, place the line
'use strict'

as the first non-comment line in your file. (Double quotes instead of single
quotes are OK, as is a semicolon.)

If you want to force strict mode in the Node.js REPL, start it with
node --use-strict

 Note

In a browser console, you need to prefix each line that you want to execute in strict mode with
'use strict'; or 'use strict' followed by Shift+Enter. That is not very convenient.

You can apply strict mode to individual functions:
Click here to view code image

function strictInASeaOfSloppy() {

 'use strict'

 . . .

}

There is no good reason to use per-function strict mode with modern code.
Apply strict mode to the entire file.

Finally, strict mode is enabled inside classes (see Chapter 4) and
ECMAScript modules (see Chapter 10).

For the record, here are the key features of strict mode:

Assigning a value to a previously undeclared variable is an error and
does not create a global variable. You must use let, const, or var for all
variable declarations.

You cannot assign a new value to a read-only global property such as
NaN or undefined. (Sadly, you can still declare local variables that
shadow them.)

Functions can only be declared at the top level of a script or function,
not in a nested block.

The delete operator cannot be applied to “unqualified identifiers.” For
example, delete parseInt is a syntax error. Trying to delete a property
that is not “configurable” (such as delete 'Hello'.length) causes a
runtime error.

You cannot have duplicate function parameters (function average(x,
x)). Of course, you never wanted those, but they are legal in the “sloppy”
(non-strict) mode.

You cannot use octal literals with a 0 prefix: 010 is a syntax error, not an
octal 10 (which is 8 in decimal). If you want octal, use 0o10.

The with statement (which is not discussed in this book) is prohibited.

 Note

In strict mode, reading the value of an undeclared variable throws a ReferenceError. If you
need to find out whether a variable has been declared (and initialized), you can’t check

Click here to view code image

possiblyUndefinedVariable !== undefined

Instead, use the condition

Click here to view code image

typeof possiblyUndefinedVariable !== 'undefined'

3.9 Testing Argument Types
In JavaScript, you do not specify the types of function arguments.
Therefore, you can allow callers to supply an argument of one type or
another, and handle that argument according to its actual type.

As a somewhat contrived example, the average function may accept either
numbers or arrays.

Click here to view code image

const average = (x, y) => {

 let sum = 0

 let n = 0

 if (Array.isArray(x)) {

 for (const value of x) { sum += value; n++ }

 } else {

 sum = x; n = 1

 }

 if (Array.isArray(y)) {

 for (const value of y) { sum += value }

 } else {

 sum += y; n++

 }

 return n === 0 ? 0 : sum / n

}

Now you can call:
Click here to view code image

result = average(1, 2)

result = average([1, 2, 3], 4)

result = average(1, [2, 3, 4])

result = average([1, 2], [3, 4, 5])

Table 3-1 shows how to test whether an argument x conforms to a given
type.

Table 3-1 Type Tests

Type Test Notes

String Click here to view code
image

typeof x ===

'string' ||

 x instanceof

String

x might be
constructed as new
String(. . .)

Regular expression x instanceof

RegExp

Number Click here to view code
image

typeof x ===

'number' ||

 x instanceof

Number

x might be
constructed as new
Number(. . .)

Anything that can
be converted to a
number

typeof +x ===

'number'

Obtain the numeric
value as +x

Type Test Notes

Array Array.isArray(x)

Function typeof x ===

'function'

 Note

Some programmers write functions that turn any argument values into numbers, such as

Click here to view code image

const average = (x, y) => {

 return (+x + +y) / 2

}

Then one can call

average('3', [4])

Is that degree of flexibility useful, harmless, or a harbinger of trouble? I don’t recommend it.

3.10 Supplying More or Fewer Arguments
Suppose a function is declared with a particular number of parameters, for
example:

Click here to view code image

const average = (x, y) => (x + y) / 2

It appears as if you must supply two arguments when you call the function.
However, that is not the JavaScript way. You can call the function with
more arguments—they are silently ignored:

Click here to view code image

let result = average(3, 4, 5) // 3.5—the last argument is ignored

Conversely, if you supply fewer arguments, then the missing ones are set to
undefined. For example, average(3) is (3 + undefined) / 2, or NaN. If you
want to support that call with a meaningful result, you can:

Click here to view code image

const average = (x, y) => y === undefined ? x : (x + y) / 2

3.11 Default Arguments
In the preceding section, you saw how to implement a function that is called
with fewer arguments than parameters. Instead of manually checking for
undefined argument values, you can provide default arguments in the
function declaration. After the parameter, put an = and an expression for the
default—that is, the value that should be used if no argument was passed.

Here is another way of making the average function work with one
argument:

Click here to view code image

const average = (x, y = x) => (x + y) / 2

If you call average(3), then y is set to x—that is, 3—and the correct return
value is computed.

You can provide multiple default values:
Click here to view code image

const average = (x = 0, y = x) => (x + y) / 2

Now average() returns zero.

You can even provide a default for the first parameter and not the others:
Click here to view code image

const average = (x = 0, y) => y === undefined ? x : (x + y) / 2

If no argument (or an explicit undefined) is supplied, the parameter is set to
the default or, if none is provided, to undefined:

Click here to view code image

average(3) // average(3, undefined)

average() // average(0, undefined)

average(undefined, 3) // average(0, 3)

3.12 Rest Parameters and the Spread Operator
As you have seen, you can call a JavaScript function with any number of
arguments. To process them all, declare the last parameter of the function as
a “rest” parameter by prefixing it with the ... token:

Click here to view code image

const average = (first = 0, ...following) => {

 let sum = first

 for (const value of following) { sum += value }

 return sum / (1 + following.length)

}

When the function is called, the following parameter is an array that holds
all arguments that have not been used to initialize the preceding parameters.
For example, consider the call:

average(1, 7, 2, 9)

Then first is 1 and following is the array [7, 2, 9].

Many functions and methods accept variable arguments. For example, the
Math.max method yields the largest of its arguments, no matter how many:

Click here to view code image

let result = Math.max(3, 1, 4, 1, 5, 9, 2, 6) // Sets result to 9

What if the values are already in an array?
Click here to view code image

let numbers = [1, 7, 2, 9]

result = Math.max(numbers) // Yields NaN

That doesn’t work. The Math.max method receives an array with one
element—the array [1, 7, 2, 9].

Instead, use the “spread” operator—the ... token placed before an array
argument:

Click here to view code image

result = Math.max(...numbers) // Yields 9

The spread operator spreads out the elements as if they had been provided
separately in the call.

 Note

Even though the spread operator and rest declaration look the same, their actions are the exact
opposites of each other.

First, note that the spread operator is used with an argument, and the rest syntax applies to a
variable declaration.

Click here to view code image

Math.max(...numbers) // Spread operator—argument in function call
const max = (...values) => { /* body */}
 // Rest declaration of parameter variable

The spread operator turns an array (or, in fact, any iterable) into a sequence of values. The rest
declaration causes a sequence of values to be placed into an array.

Note that you can use the spread operator even if the function that you call
doesn’t have any rest parameters. For example, consider the average
function of the preceding section that has two parameters. If you call

result = average(...numbers)

then all elements of numbers are passed as arguments to the function. The
function uses the first two arguments and ignores the others.

 Note

You can also use the spread operator in an array initializer:

Click here to view code image

let moreNumbers = [1, 2, 3, ...numbers] // Spread operator
Don’t confuse this with the rest declaration used with destructuring. The rest declaration applies
to a variable:

Click here to view code image

let [first, ...following] = numbers // Rest declaration

 Tip

Since strings are iterable, you can use the spread operator with a string:

Click here to view code image

let greeting = 'Hello '

let characters = [...greeting]

The characters array contains the strings 'H', 'e', 'l', 'l', 'o', ' ', and ' '.

The syntax for default arguments and rest parameters are equally applicable
to the function syntax:

Click here to view code image

function average(first = 0, ...following) { . . . }

3.13 Simulating Named Arguments with
Destructuring

JavaScript has no “named argument” feature where you provide the
parameter names in the call. But you can easily simulate named arguments
by passing an object literal:

Click here to view code image

const result = mkString(values, { leftDelimiter: '(',

rightDelimiter: ')' })

That is easy enough for the caller of the function. Now, let’s turn to the
function implementation. You can look up the object properties and supply
defaults for missing values.

Click here to view code image

const mkString = (array, config) => {

 let separator = config.separator === undefined ? ',' :

config.separator

 . . .

}

However, that is tedious. It is easier to use destructured parameters with
defaults. (See Chapter 1 for the destructuring syntax.)

Click here to view code image

const mkString = (array, {

 separator = ',',

 leftDelimiter = '[',

 rightDelimiter = ']'

 }) => {

 . . .

}

The destructuring syntax { separator = ',', leftDelimiter = '[',

rightDelimiter = ']' } declares three parameter variables separator,
leftDelimiter, and rightDelimiter that are initialized from the properties
with the same names. The defaults are used if the properties are absent or
have undefined values.

It is a good idea to provide a default {} for the configuration object:
Click here to view code image

const mkString = (array, {

 separator = ',',

 leftDelimiter = '[',

 rightDelimiter = ']'

 } = {}) => {

 . . .

}

Now the function can be called without any configuration object:
Click here to view code image

const result = mkString(values) // The second argument defaults to
{}

3.14 Hoisting

In this “mad hatter” section, we take up another complex subject that you
can easily avoid by following three simple rules. They are:

Don’t use var

Use strict mode

Declare variables and functions before using them

If you want to understand what happens when you don’t follow these rules,
read on.

JavaScript has an unusual mechanism for determining the scope of a
variable—that is, is the region of a program where the variable can be
accessed. Consider a local variable, declared inside a function. In
programming languages such as Java, C#, or C++, the scope extends from
the point where the variable is declared until the end of the enclosing block.
In JavaScript, a local variable declared with let appears to have the same
behavior:

Click here to view code image

function doStuff() { // Start of block
 . . . // Attempting to access someVariable throws a
ReferenceError

 let someVariable // Scope starts here
 . . . // Can access someVariable, value is undefined
 someVariable = 42

 . . . // Can access someVariable, value is 42
} // End of block, scope ends here

However, it is not quite so simple. You can access local variables in
functions whose declarations precede the variable declaration:

Click here to view code image

function doStuff() {

 function localWork() {

 console.log(someVariable) // OK to access variable
 . . .

 }

 let someVariable = 42

 localWork() // Prints 42
}

In JavaScript, every declaration is hoisted to the top of its scope. That is, the
variable or function is known to exist even before its declaration, and space
is reserved to hold its value.

Inside a nested function, you can reference hoisted variables or functions.
Consider the localWork function in the preceding example. The function
knows the location of someVariable because it is hoisted to the top of the
body of doStuff, even though that variable is declared after the function.

Of course, it can then happen that you access a variable before executing
the statement that declares it. With let and const declarations, accessing a
variable before it is declared throws a ReferenceError. The variable is in the
“temporal dead zone” until its declaration is executed.

However, if a variable is declared with the archaic var keyword, then its
value is simply undefined until the variable is initialized.

 Tip

Do not use var. It declares variables whose scope is the entire function, not the enclosing block.
That is too broad:

Click here to view code image

function someFunction(arr) {

 // i, element already in scope but undefined
 for (var i = 0; i < arr.length; i++) {

 var element = arr[i]

 . . .

 }

 // i, element still in scope
}

Moreover, var doesn’t play well with closures—see Exercise 10.

Since functions are hoisted, you can call a function before it is declared. In
particularly, you can declare mutually recursive functions:

Click here to view code image

function isEven(n) { return n === 0 ? true : isOdd(n -1) }

function isOdd(n) { return n === 0 ? false : isEven(n -1) }

 Note

In strict mode, named functions can only be declared at the top level of a script or function, not
inside a nested block. In non-strict mode, nested named functions are hoisted to the top of their
enclosing function. Exercise 12 shows why this is a bad idea.

As long as you use strict mode and avoid var declarations, the hoisting
behavior is unlikely to result in programming errors. However, it is a good
idea to structure your code so that you declare variables and functions
before they are used.

 Note

In ancient times, JavaScript programmers used “immediately invoked functions” to limit the
scope of var declarations and functions:

Click here to view code image

(function () {

 var someVariable = 42

 function someFunction(. . .) { . . . }

 . . .

})() // Function is called here—note the ()
// someVariable, someFunction no longer in scope

After the anonymous function is called, it is never used again. The sole purpose is to encapsulate
the declarations.

This device is no longer necessary. Simply use:

Click here to view code image

{

 let someVariable = 42

 const someFunction = (. . .) => { . . . }

 . . .

}

The declarations are confined to the block.

3.15 Throwing Exceptions
If a function is unable to compute a result, it can throw an exception.
Depending on the kind of failure, this can be a better strategy than returning
an error value such as NaN or undefined.

Use a throw statement to throw an exception:
throw value

The exception value can be a value of any type, but it is conventional to
throw an error object. The Error function produces such an object with a
given string describing the reason.

Click here to view code image

let reason = `Element ${elem} not found`

throw Error(reason)

When the throw statement executes, the function is terminated immediately.
No return value is produced, not even undefined. Execution does not
continue in the function call but instead in the nearest catch or finally
clause, as described in the following sections.

 Tip

Exception handling is a good mechanism for unpredictable situations that the caller might not be
able to handle. It is not so suitable for situations where failure is expected. Consider parsing user
input. It is exceedingly likely that some users provide unsuitable input. In JavaScript, it is easy to
return a “bottom” value such as undefined, null, or NaN (provided, of course, those could
not be valid inputs). Or you can return an object that describes success or failure. For example, in
Chapter 9, you will see a method that yields objects of the form { status: 'fulfilled',
value: result } or { status: 'rejected', reason: exception }.

3.16 Catching Exceptions

To catch an exception, use a try statement. In Chapter 2, you saw how to
catch an exception if you are not interested in the exception value. If you
want to examine the exception value, add a variable to the catch clause:

Click here to view code image

try {

 // Do work
 . . .

} catch (e) {

 // Handle exceptions
 . . .

}

The variable in the catch clause (here, e) contains the exception value. As
you saw in the preceding section, an exception value is conventionally an
error object. Such an object has two properties: name and message. For
example, if you call

JSON.parse('{ age: 42 }')

an exception is thrown with the name 'SyntaxError' and message
'Unexpected token a in JSON at position 2'. (The string in this example
is invalid JSON because the age key is not enclosed in double quotes.)

The name of an object produced with the Error function is 'Error'. The
JavaScript virtual machine throws errors with names 'SyntaxError',
'TypeError', 'RangeError', 'ReferenceError', 'URIError', or
'InternalError'.

In the handler, you can record that information in a suitable place. However,
in JavaScript it is not usually productive to analyze the error object in
detail, as you might in languages such as Java or C++.

When you log an error object on the console, JavaScript execution
environments typically display the stack trace—the function and method
calls between the throw and catch points. Unfortunately, there is no
standard way of accessing the stack trace for logging it elsewhere.

 Note

In Java and C++, you can catch exceptions by their type. Then you can handle errors of certain
types at a low level and others at a higher level. Such strategies are not easily implemented in
JavaScript. A catch clause catches all exceptions, and the exception objects carry limited
information. In JavaScript, exception handlers typically carry out generic recovery or cleanup,
without trying to analyze the cause of failure.

When the catch clause is entered, the exception is deemed to be handled.
Processing resumes normally, executing the statements in the catch clause.
The catch clause can exit with a return or break statement, or it can be
completed by executing its last statement. In that case, execution moves to
the next statement after the catch clause.

If you log exceptions at one level of your code but deal with failure at a
higher level, then you want to rethrow the exception after logging it:

Click here to view code image

try {

 // Do work
 . . .

} catch (e) {

 console.log(e)

 throw e // Rethrow to a handler that deals with the failure
}

3.17 The finally Clause

A try statement can optionally have a finally clause. The code in the
finally clause executes whether or not an exception occurred.

Let us first look at the simplest case: a try statement with a finally clause
but no catch clause:

Click here to view code image

try {

 // Acquire resources
 . . .

 // Do work
 . . .

} finally {

 // Relinquish resources
 . . .

}

The finally clause is executed in all of the following cases:

If all statements in the try clause completed without throwing an
exception

If a return or break statement was executed in the try clause

If an exception occurred in any of the statements of the try clause

You can also have a try statement with catch and finally clauses:
Click here to view code image

try {

 . . .

} catch (e) {

 . . .

} finally {

 . . .

}

Now there is an additional pathway. If an exception occurs in the try
clause, the catch clause is executed. No matter how the catch clause exits
(normally or through a return/break/throw), the finally clause is executed
afterwards.

The purpose of the finally clause is to have a single location for
relinquishing resources (such as file handles or database connections) that
were acquired in the try clause, whether or not an exception occurred.

 Caution

It is legal, but confusing, to have return/break/throw statements in the finally clause.
These statements take precedence over any statements in the try and catch clauses. For
example:

Click here to view code image

try {

 // Do work
 . . .

 return true

} finally {

 . . .

 return false

}

If the try block is successful and return true is executed, the finally clause follows. Its
return false masks the prior return statement.

Exercises
1. What does the indexOf function of Section 3.1, “Declaring Functions”

(page 51), do when an object is passed instead of an array?

2. Rewrite the indexOf function of Section 3.1, “Declaring Functions”
(page 51), so that it has a single return at the end.

3. Write a function values(f, low, high) that yields an array of function
values [f(low), f(low + 1), . . ., f(high)].

4. The sort method for arrays can take an argument that is a comparison
function with two parameters—say, x and y. The function returns a
negative integer if x should come before y, zero if x and y are
indistinguishable, and a positive integer if x should come after y. Write
calls, using arrow functions, that sort:

An array of positive integers by decreasing order

An array of people by increasing age

An array of strings by increasing length

5. Using the “hard objects” technique of Section 3.7, “Hard Objects”
(page 59), implement a constructCounter method that produces counter
objects whose count method increments a counter and yields the new
value. The initial value and an optional increment are passed as
parameters. (The default increment is 1.)
Click here to view code image

const myFirstCounter = constructCounter(0, 2)

console.log(myFirstCounter.count()) // 0

console.log(myFirstCounter.count()) // 2

6. A programmer thinks that “named parameters are almost implemented
in JavaScript, but order still has precedence,” offering the following
“evidence” in the browser console:
Click here to view code image

function f(a=1, b=2){ console.log(`a=${a}, b=${b}`) }

f() // a=1, b=2

f(a=5) // a=5, b=2

f(a=7, b=10) // a=7, b=10

f(b=10, a=7) // Order is required: a=10, b=7

What is actually going on? (Hint: It has nothing to do with named
parameters. Try it in strict mode.)

7. Write a function average that computes the average of an arbitrary
sequence of numbers, using a rest parameter.

8. What happens when you pass a string argument to a rest parameter
...str? Come up with a useful example to take advantage of your
observation.

9. Complete the mkString function of Section 3.13, “Simulating Named
Arguments with Destructuring” (page 66).

10. The archaic var keyword interacts poorly with closures. Consider this
example:
Click here to view code image

for (var i = 0; i < 10; i++) {

 setTimeout(() => console.log(i), 1000 * i)

}

What does this code snippet print? Why? (Hint: What is the scope of
the variable i?) What simple change can you make to the code to print
the numbers 0, 1, 2, . . . , 9 instead?

11. Consider this declaration of the factorial function:
Click here to view code image

const fac = n => n > 1 ? n * fac(n - 1) : 1

Explain why this only works because of variable hoisting.

12. In sloppy (non-strict) mode, functions can be declared inside a nested
block, and they are hoisted to the enclosing function or script. Try out
the following example a few times:
Click here to view code image

if (Math.random() < 0.5) {

 say('Hello')

 function say(greeting) { console.log(`${greeting}!`) }

}

say('Goodbye')

Depending on the result of Math.random, what is the outcome? What is
the scope of say? When is it initialized? What happens when you
activate strict mode?

13. Implement an average function that throws an exception if any of its
arguments is not a number.

14. Some programmers are confused by statements that contain all three of
try/catch/finally because there are so many possible pathways of
control. Show how you can always rewrite such a statement using a
try/catch statement and a try/finally statement.

Chapter 4. Object-Oriented
Programming

Topics in This Chapter

4.1 Methods

4.2 Prototypes

4.3 Constructors

4.4 The Class Syntax

 4.5 Getters and Setters

 4.6 Instance Fields and Private Methods

 4.7 Static Methods and Fields

4.8 Subclasses

4.9 Overriding Methods

4.10 Subclass Construction

 4.11 Class Expressions

 4.12 The this Reference

Exercises

As you know, JavaScript has objects, but they don’t look like the objects
you have seen in object-oriented programming languages such as Java or
C++. In a JavaScript object, all properties are public, and they don’t seem to
belong to any class other than Object. It is not obvious how you might have
methods or classes or inheritance.

You can have all that in JavaScript, and this chapter shows you how.
Current versions of JavaScript provide syntax for declaring classes that
looks very similar to Java, but the underlying mechanism is completely
different. You really need to understand what goes on under the hood. For
that reason, I first show you how to declare methods and constructor
functions by hand, and then you will see how those constructs map to the
class syntax.

4.1 Methods
JavaScript, unlike most object-oriented programming languages, lets you
work with objects without first having to declare classes. You have already
seen how to produce objects:

Click here to view code image

let harry = { name: 'Harry Smith', salary: 90000 }

According to the classic definition, an object has identity, state, and
behavior. The object that you just saw certainly has identity—it is different
from any other object. The object’s state is provided by the properties. Let’s
add behavior in the form of a “method”—that is, a function-valued
property:

Click here to view code image

harry = {

 name: 'Harry Smith',

 salary: 90000,

 raiseSalary: function(percent) {

 this.salary *= 1 + percent / 100

 }

}

Now we can raise the employee’s salary with the familiar dot notation:
harry.raiseSalary(10)

Note that raiseSalary is a function declared in the harry object. That
function looks like an ordinary function, except for one twist: In the body,
we refer to this.salary. When the function is called, this refers to the
object to the left of the dot operator.

There is a shortcut syntax for declaring methods. Simply omit the colon and
the function keyword:

Click here to view code image

harry = {

 name: 'Harry Smith',

 salary: 90000,

 raiseSalary(percent) {

 this.salary *= 1 + percent / 100

 }

}

This looks similar to a method declaration in Java or C++, but it is just
“syntactic sugar” for a function-valued property.

 Caution

The this reference only works in functions declared with function or the shortcut syntax that
omits function, not with arrow functions. See Section 4.12, “The this Reference” (page 92),
for more details.

4.2 Prototypes

Suppose you have many employee objects similar to the one in the
preceding section. Then you need to make a raiseSalary property for each
of them. You can write a factory function to automate that task:

Click here to view code image

function createEmployee(name, salary) {

 return {

 name: name,

 salary: salary,

 raiseSalary: function(percent) {

 this.salary *= 1 + percent / 100

 }

 }

}

Still, each employee object has its own raiseSalary property, even though
the property value is the same function for all employees (see Figure 4-1). It
would be better if all employees could share one function.

Figure 4-1 Objects with replicated methods

That is where prototypes come in. A prototype collects properties that are
common to multiple objects. Here is a prototype object that holds the shared
methods:

Click here to view code image

const employeePrototype = {

 raiseSalary: function(percent) {

 this.salary *= 1 + percent / 100

 }

}

When creating an employee object, we set its prototype. The prototype is an
“internal slot” of the object. That is the technical term used in the
ECMAScript language specification to denote an attribute of an object that
is manipulated internally without being exposed to JavaScript programmers
as a property. You can read and write the [[Property]] internal slot (as it is
called in the specification) with the methods Object.getPrototypeOf and
Object.setPrototypeOf. This function creates an employee object and sets
the prototype:

Click here to view code image

function createEmployee(name, salary) {

 const result = { name, salary }

 Object.setPrototypeOf(result, employeePrototype)

 return result

}

Figure 4-2 shows the result of creating multiple employee objects that share
the same prototype. In the figure, the prototype slot is denoted
[[Prototype]], as in the ECMAScript specification.

Figure 4-2 Objects with the same prototype

 Caution

In many JavaScript implementations, you can access the prototype of an object as
obj.__proto__. This is not a standard notation, and you should use the
Object.getPrototypeOf and Object.setPrototypeOf methods instead.

Now consider a method call
harry.raiseSalary(5)

When looking up harry.raiseSalary, no match is found in the harry object
itself. Therefore, the property is searched in the prototype. Since harry.
[[Prototype]] has a raiseSalary property, its value is the value of
harry.raiseSalary.

As you will see later in this chapter, prototypes can be chained. If the
prototype doesn’t have a property, its prototype is searched, until the
prototype chain ends.

The prototype lookup mechanism is completely general. Here, we used it to
look up a method, but it works for any property. If a property isn’t found in

an object, then the prototype chain is searched, and the first match is the
property value.

Prototype lookup is a simple concept which it is very important in
JavaScript. Prototypes are used to implement classes and inheritance, and to
modify the behavior of objects after they have been instantiated.

 Note

Lookup in the prototype chain is only used for reading property values. If you write to a property,
the value is always updated in the object itself.

For example, suppose you change the harry.raiseSalary method:

Click here to view code image

harry.raiseSalary = function(rate) { this.salary =

Number.MAX_VALUE }

This adds a new property directly to the harry object. It does not modify the prototype. All other
employees retain the original raiseSalary property.

4.3 Constructors
In the preceding section, you saw how to write a factory function that
creates new object instances with a shared prototype. There is special
syntax for invoking such functions, using the new operator.

By convention, functions that construct objects are named after what would
be the class in a class-based language. In our example, let’s call the function
Employee, as follows:

Click here to view code image

function Employee(name, salary) {

 this.name = name

 this.salary = salary

}

When you call

Click here to view code image

new Employee('Harry Smith', 90000)

the new operator creates a new empty object and then calls the constructor
function. The this parameter points to that newly created object. The body
of the Employee function sets the object properties by using the this
parameter. The newly created object becomes the value of the new

expression.

 Caution

Do not return any result from a constructor function. Otherwise the value of the new expression is
that returned value, not the newly created object.

In addition to invoking the constructor function, the new expression carries
out another important step: It sets the object’s [[Prototype]] internal slot.

The [[Prototype]] internal slot is set to a specific object, which is attached
to the constructor function. Recall that a function is an object, so it can have
properties. Each JavaScript function has a prototype property whose value
is an object.

That object gives you a ready-made place for adding methods, like this:
Click here to view code image

Employee.prototype.raiseSalary = function(percent) {

 this.salary *= 1 + percent / 100

}

As you can see, there is a lot going on. Let us have another look at the call:
Click here to view code image

const harry = new Employee('Harry Smith', 90000)

Here are the steps in detail:

1. The new operator creates a new object.

2. The [[Prototype]] internal slot of that object is set to the
Employee.prototype object.

3. The new operator calls the constructor function with three parameters:
this (pointing to the newly created object), name, and salary.

4. The body of the Employee function sets the object properties by using
the this parameter.

5. The constructor returns, and the value of the new operator is the now
fully initialized object.

6. The variable harry is initialized with the object reference. Figure 4-3
shows the result.

Figure 4-3 Objects created with a constructor

As you can see in Figure 4-3, the Employee.prototype object has as its
prototype the Object.prototype object which contributes the toString
method and a few other methods.

The upshot of all this magic is that the new operator looks just like a
constructor call in Java, C#, or C++. However, Employee isn’t a class. It’s
just a function.

Then again, what is a class? In the textbook definition, a class is a set of
objects with the same behavior, as provided by the methods. All objects that
are obtained by calling new Employee(. . .) have the same set of methods.
In JavaScript, constructor functions are the equivalent of classes in class-
based programming languages.

You won’t often need to worry about the difference between traditional
classes and the prototype-based system of JavaScript. As you will see in the
following section, modern JavaScript syntax closely follows the
conventions of class-based languages. However, every once in a while, you
should remind yourself that a JavaScript class is nothing more than a
constructor function, and that the common behavior is achieved with
prototypes.

4.4 The Class Syntax
Nowadays, JavaScript has a class syntax that bundles up a constructor
function and prototype methods in a familiar form. Here is the class syntax
for the example of the preceding section:

Click here to view code image

class Employee {

 constructor(name, salary) {

 this.name = name

 this.salary = salary

 }

 raiseSalary(percent) {

 this.salary *= 1 + percent / 100

 }

}

This syntax does exactly the same as that of the preceding section. There
still is no actual class. Behind the scenes, the class declaration merely
declares a constructor function Employee. The constructor keyword
declares the body of the Employee constructor function. The raiseSalary
method is added to Employee.prototype.

As in the preceding section, you construct an object by calling the
constructor function with the new operator:

Click here to view code image

const harry = new Employee('Harry Smith', 90000)

 Note

As mentioned in the preceding sections, the constructor should not return any value.
However, if it does, it is ignored, and the new expression still returns the newly created object.

You should definitely use the class syntax. (This is the golden rule #4 in
the preface.) The syntax gets a number of fiddly details right that you do not
want to manage manually. Just realize that a JavaScript class is syntactic
sugar for a constructor function and a prototype object holding the methods.

 Note

A class can have at most one constructor.

If you declare a class without a constructor, it automatically gets a constructor function with
an empty body.

 Caution

Unlike in an object literal, in a class declaration you do not use commas to separate the method
declarations.

 Note

Classes, unlike functions, are not hoisted. You need to declare a class before you can construct an
instance.

 Note

The body of a class is executed in strict mode.

4.5 Getters and Setters

A getter is a method with no parameters that is declared with the keyword
get:

Click here to view code image

class Person {

 constructor(last, first) {

 this.last = last;

 this.first = first

 }

 get fullName() { return `${this.last}, ${this.first}` }

}

You call the getter without parentheses, as if you accessed a property value:
Click here to view code image

const harry = new Person('Smith', 'Harry')

const harrysName = harry.fullName // 'Smith, Harry'

The harry object does not have a fullName property, but the getter method
is invoked. You can think of a getter as a dynamically computed property.

You can also provide a setter, a method with one parameter:
Click here to view code image

class Person {

 . . .

 set fullName(value) {

 const parts = value.split(/,\s*/)

 this.last = parts[0]

 this.first = parts[1]

 }

}

The setter is invoked when assigning to fullName:
harry.fullName = 'Smith, Harold'

When you provide getters and setters, users of your class have the illusion
of using properties, but you control the property values and any attempts to
modify them.

4.6 Instance Fields and Private Methods

You can dynamically set an object property in the constructor or any
method by assigning to this.propertyName. These properties work the same
way as instance fields in a class-based language.

Click here to view code image

class BankAccount {

 constructor() { this.balance = 0 }

 deposit(amount) { this.balance += amount }

 . . .

}

Three proposals for alternative notations are in stage 3 in early 2020. You
can list the names and initial values of the fields in the class declaration,
like this:

Click here to view code image

class BankAccount {

 balance = 0

 deposit(amount) { this.balance += amount }

 . . .

}

A field is private (that is, inaccessible outside the methods of the class)
when its name starts with #:

Click here to view code image

class BankAccount {

 #balance = 0

 deposit(amount) { this.#balance += amount }

 . . .

}

A method is private if its name starts with a #.

4.7 Static Methods and Fields

In a class declaration, you can declare a method as static. Such a method
does not operate on any object. It is a plain function that is a property of the
class. Here is an example:

Click here to view code image

class BankAccount {

 . . .

 static percentOf(amount, rate) { return amount * rate / 100 }

 . . .

 addInterest(rate) {

 this.balance += BankAccount.percentOf(this.balance, rate)

 }

}

To call a static method, whether inside or outside the class, add the class
name, as in the example above.

Behind the scenes, the static method is a property of the constructor. In the
olden days, one had to do that by hand:

Click here to view code image

BankAccount.percentOf = function(amount, rate) {

 return amount * rate / 100

}

In the same way, you can define the equivalent of static fields:

Click here to view code image

BankAccount.OVERDRAFT_FEE = 30

In early 2020, a class-based syntax for static fields is in proposal stage 3:
Click here to view code image

class BankAccount {

 static OVERDRAFT_FEE = 30

 . . .

 withdraw(amount) {

 if (this.balance < amount) {

 this.balance -= BankAccount.OVERDRAFT_FEE

 }

 . . .

 }

}

A static field simply becomes a property of the constructor function. As
with static methods, you access the field through the class name, as
BankAccount.OVERDRAFT_FEE.

Private static fields and methods (prefixed with #) are also currently in
proposal stage 3.

You can declare getters and setters as static methods. As always, the setter
can do error checking:

Click here to view code image

class BankAccount {

 . . .

 static get OVERDRAFT_FEE() {

 return this.#OVERDRAFT_FEE // In a static method, this is the
constructor function
 }

 static set OVERDRAFT_FEE(newValue) {

 if (newValue > this.#OVERDRAFT_FEE) {

 this.#OVERDRAFT_FEE = newValue

 }

 }

}

4.8 Subclasses
A key concept in object-oriented programming is inheritance. A class
specifies behavior for its instances. You can form a subclass of a given class
(called the superclass) whose instances behave differently in some respect,
while inheriting other behavior from the superclass.

A standard teaching example is an inheritance hierarchy with a superclass
Employee and a subclass Manager. While employees are expected to
complete their assigned tasks in return for receiving their salary, managers
get bonuses on top of their base salary if they actually achieve what they are
supposed to do.

In JavaScript, as in Java, you use the extends keyword to express this
relationship among the Employee and Manager classes:

Click here to view code image

class Employee {

 constructor(name, salary) { . . . }

 raiseSalary(percent) { . . . }

 . . .

}

class Manager extends Employee {

 getSalary() { return this.salary + this.bonus }

 . . .

}

Behind the scenes, a prototype chain is established—see Figure 4-4. The
prototype of Manager.prototype is set to Employee.prototype. That way,
any method that is not declared in the subclass is looked up in the
superclass.

Figure 4-4 Prototype chain for inheritance

For example, you can call the raiseSalary on a manager object:
Click here to view code image

const boss = new Manager(. . .)

boss.raiseSalary(10) // Calls Employee.prototype.raiseSalary

Prior to the extends syntax, JavaScript programmers had to establish such a
prototype chain themselves.

The instanceof operator checks whether an object belongs to a class or one
of its subclasses. Technically, the operator visits the prototype chain of an
object and checks whether it contains the prototype of a given constructor
function. For example,

boss instanceof Employee

is true since Employee.prototype is in the prototype chain of boss.

 Note

In Java, the extends keyword is used to extend a fixed class. In JavaScript, extends is more
dynamic. The right hand side of extends can be any expression that yields a function (or null
to produce a class that doesn’t extend Object). Section 4.11, “Class Expressions” (page 91), has
an example.

 Note

In Java and C++, it is common to define abstract superclasses or interfaces so that you can invoke
methods that will be defined in subclasses. In JavaScript, there is no compile-time checking for
method applications, and therefore, there is no need for abstract methods.

For example, suppose you model employees and contractors, and need to get salaries from objects
of both classes. In a statically typed language, you would introduce a Salaried superclass or
interface with an abstract getSalary method. In JavaScript, you simply call
person.getSalary().

4.9 Overriding Methods
Suppose both the superclass and the subclass have a getSalary method:

Click here to view code image

class Employee {

 . . .

 getSalary() { return this.salary }

}

class Manager extends Employee {

 . . .

 getSalary() { return this.salary + this.bonus }

}

Now consider a method call:
Click here to view code image

const empl = . . .

const salary = empl.getSalary()

If empl is a reference to a lowly employee, then the
Employee.prototype.getSalary method is called. If, on the other hand, empl
refers to a manager, the Manager.prototype.getSalary method is invoked.
This phenomenon—where the invoked method depends on the actual object
that is being referenced—is called polymorphism. In JavaScript,
polymorphism is a simple consequence of prototype chain lookup.

In this situation, we say that the getSalary method in the Manager class
overrides the getSalary method of the Employee class.

Sometimes, you want to invoke the superclass method from the subclass.
For example:

Click here to view code image

class Manager extends Employee {

 . . .

 getSalary() { return super.getSalary() + this.bonus }

}

In a method, super starts the lookup with the parent of the prototype object
in which the method was declared. In our example, the call
super.getSalary bypasses Manager.prototype, which is just as well because
otherwise there would be an infinite recursion. Instead, the getSalary
method in Employee.prototype is invoked.

 Note

In this section, we used the getSalary method as an example for method overriding. You can
also override getters and setters:

Click here to view code image

class Manager extends Employee {

 . . .

 get salary() { return super.salary + this.bonus }

}

4.10 Subclass Construction

In a subclass constructor, you must invoke the superclass constructor. Use
the syntax super(. . .), just like in Java. Inside the parentheses, place the
arguments that you want to pass to the superclass constructor:

Click here to view code image

class Manager extends Employee {

 constructor(name, salary, bonus) {

 super(name, salary) // Must call superclass constructor
 this.bonus = bonus // Afterwards, this is valid
 }

 . . .

}

You can only use the this reference after the call to super.

However, if you do not supply a subclass constructor, a constructor is
automatically provided. That automatically provided constructor passes all
arguments to the superclass constructor. (This is much more useful than in
Java or C++, where the no-argument constructor of the superclass is called.)

Click here to view code image

class Manager extends Employee {

 // No constructor
 getSalary() { . . . }

}

const boss = new Manager('Mary Lee', 180000) // Calls
Employee('Mary Lee', 180000)

Before the extends and super keywords were added to JavaScript, it was
quite a bit more challenging to implement a subclass constructors that
invokes the superclass constructor. This process—which is no longer
necessary—requires advanced tools that are introduced in Chapter 11.

 Note

As you know, JavaScript doesn’t really have classes. A class is just a constructor function. A
subclass is a constructor function that calls a superclass constructor.

4.11 Class Expressions

You can declare anonymous classes, just like you can declare anonymous
functions:

Click here to view code image

const Employee = class {

 constructor(name, salary) {

 this.name = name

 this.salary = salary

 }

 raiseSalary(percent) {

 this.salary *= 1 + percent / 100

 }

}

Recall that class yields a constructor function. This function is now stored
in the variable Employee. In this example, there is no benefit over the named
class notation class Employee { . . . }.

Here is a more useful application. You can provide methods that “mix in“ a
capability into an existing class:

Click here to view code image

const withToString = base =>

 class extends base {

 toString() {

 let result = '{'

 for (const key in this) {

 if (result !== '{') result += ', '

 result += `${key}=${this[key]}`

 }

 return result + '}'

 }

 }

Call this function with a class (that is, a constructor function) in order to
obtain an augmented class:

Click here to view code image

const PrettyPrintingEmployee = withToString(Employee) // A new
class
e = new PrettyPrintingEmployee('Harry Smith', 90000) // An
instance of the new class
console.log(e.toString())

 // Prints {name=Harry Smith, salary=90000}, not [object Object]

4.12 The this Reference

In this “mad hatter” section, we will have a closer look at the this
reference. You can safely skip the section if you only use this in
constructors, methods, and arrow functions, not inside named functions.

To see where this can be troublesome, first consider the new operator. What
happens if you call a constructor function without new? If you make a call
such as

Click here to view code image

let e = Employee('Harry Smith', 90000) // Forgot new

in strict mode, then the this variable is set to undefined.

Fortunately, this problem only arises with an old-style constructor function
declaration. If you use the class syntax, it is illegal to call the constructor
without new.

 Caution

If you don’t use the class syntax, it is possible to declare constructor functions so that they do
double duty, working with or without new. An example is the Number function:

Click here to view code image

const price = Number('19.95')

 // Parses the string and returns a primitive number, not an object
const aZeroUnlikeAnyOther = new Number(0)

 // Constructs a new object
Calling a constructor without new is not common in modern JavaScript usage.

Here is another potential problem. It is possible to invoke a method without
an object. In that case, this is undefined:

Click here to view code image

const doLater = (what, arg) => { setTimeout(() => what(arg),

1000) }

doLater(BankAccount.prototype.deposit, 500) // Error

When the expression what(arg) is evaluated after one second, the deposit
method is invoked. The method fails when accessing this.balance since
this is undefined.

If you want to deposit money in a specific account, just provide the
account:

Click here to view code image

doLater(amount => harrysAccount.deposit(amount), 500)

Next, consider nested functions. Inside a nested function that is declared
with the function keyword, this is undefined. You can run into grief when
you use this in a callback function:

Click here to view code image

class BankAccount {

 . . .

 spreadTheWealth(accounts) {

 accounts.forEach(function(account) {

 account.deposit(this.balance / accounts.length)

 // Error—this is undefined inside the nested function
 })

 this.balance = 0

 }

}

Here, this.balance does not refer to the balance of the bank account. It is
undefined since it occurs in a nested function.

The best remedy is to use an arrow function for the callback:
Click here to view code image

class BankAccount {

 . . .

 spreadTheWealth(accounts) {

 accounts.forEach(account => {

 account.deposit(this.balance / accounts.length) // this
correctly bound
 })

 this.balance = 0

 }

}

In an arrow function, this is statically bound to whatever this means
outside the arrow function—in the example, to the BankAccount object
invoking the spreadTheWealth method.

 Note

Before there were arrow functions, JavaScript programmers used a workaround—they initialized
another variable with this:

Click here to view code image

spreadTheWealth(accounts) {

 const that = this

 accounts.forEach(function(account) {

 account.deposit(that.balance / accounts.length)

 })

 this.balance = 0

}

Here is another obscure example. Any method call obj.method(args) can
also be written as obj['method'](args). For that reason, this is set to obj if
you make a call obj[index](args), where obj[index] is a function, even
though there is no dot operator in sight.

Let us construct such a situation, with an array of callbacks:
Click here to view code image

class BankAccount {

 constructor() {

 this.balance = 0

 this.observers = []

 }

 addObserver(f) {

 this.observers.push(f)

 }

 notifyObservers() {

 for (let i = 0; i < this.observers.length; i++) {

 this.observers[i]()

 }

 }

 deposit(amount) {

 this.balance += amount

 this.notifyObservers()

 }

 . . .

}

Now suppose you have a bank account:
const acct = new BankAccount()

And you add an observer:
Click here to view code image

class UserInterface {

 log(message) {

 . . .

 }

 start() {

 acct.addObserver(function() { this.log('More money!') })

 acct.deposit(1000)

 }

}

What is this when the function passed to addObserver is called? It is the
array of observers! That’s what it was set to in the call this.observers[i]
(). Since the array has no log method, a runtime error occurs. Again, the
remedy is to use an arrow function:

Click here to view code image

acct.addObserver(() => { this.log('More money!') })

 Tip

Having this dynamically set, subject to an arcane set of rules, is problematic. To avoid trouble,
don’t use this inside functions defined with function. It is safe to use this in methods and
constructors, and in arrow functions that are defined inside methods and constructors. That is the
golden rule #5.

Exercises
1. Implement a function createPoint that creates a point in the plane with

a given x and y coordinates. Provide methods getX, getY, translate,
and scale. The translate method moves the point by a given amount
in x and y direction. The scale method scales both coordinates by a
given factor. Use only the techniques of Section 4.1, “Methods” (page
77).

2. Repeat the preceding exercise, but now implement a constructor
function and use prototypes, as in Section 4.2, “Prototypes” (page 78).

3. Repeat the preceding exercise, but now use the class syntax.

4. Repeat the preceding exercise, but provide getters and setters for the x
and y coordinates. In the setter, make sure the argument is a number.

5. Consider this function that makes a string “greetable” by adding a
greet method:
Click here to view code image

function createGreetable(str) {

 const result = new String(str)

 result.greet = function(greeting) { return `${greeting},

${this}!` }

 return result

}

Typical usage:
Click here to view code image

const g = createGreetable('World')

console.log(g.greet('Hello'))

This function has a drawback: each greetable string has its own copy of
the greet method. Have createGreetable yield an object whose
prototype contains the greet method. Make sure that you can still
invoke all string methods.

6. Provide a method withGreeter that adds the greet method to any class,
yielding a new class:
Click here to view code image

const GreetableEmployee = withGreeter(Employee)

const e = new GreetableEmployee('Harry Smith', 90000)

console.log(e.greet('Hello'))

Hint: Section 4.11, “Class Expressions” (page 91).

7. Rewrite the Employee class using private instance fields, as shown in
Section 4.6, “Instance Fields and Private Methods” (page 85).

8. A classic example for an abstract class is a tree node. There are two
kinds of nodes: those with children (parents) and those without
(leaves).

Click here to view code image

class Node {

 depth() { throw Error("abstract method") }

}

class Parent extends Node {

 constructor(value, children) { . . . }

 depth() { return 1 + Math.max(...children.map(n =>

n.depth())) }

}

class Leaf extends Node {

 constructor(value) { . . . }

 depth() { return 1 }

}

This is how you would model tree nodes in Java or C++. But in
JavaScript, you don’t need an abstract class to be able to invoke
n.depth(). Rewrite the classes without inheritance and provide a test
program.

9. Provide a class Random with static methods
Click here to view code image

Random.nextDouble(low, high)

Random.nextInt(low, high)

Random.nextElement(array)

that produce a random number between low (inclusive) and high
(exclusive), or a random element from the given array.

10. Provide a class BankAccount and subclasses SavingsAccount and
CheckingAccount. A savings account has an instance field for the
interest and an addInterest method that adds it. A checking account
charges a fee for each withdrawal. Do not manipulate the superclass
state directly but use the superclass methods.

11. Draw a diagram of SavingsAccount and CheckingAccount objects from
the preceding exercise, similar to Figure 4-4.

12. Harry tries this code to toggle a CSS class when a button is clicked:
Click here to view code image

const button = document.getElementById('button1')

button.addEventListener('click', function () {

 this.classList.toggle('clicked')

})

It doesn’t work. Why?

Sally, after searching the wisdom of the Internet, suggests:
Click here to view code image

button.addEventListener('click', event => {

 event.target.classList.toggle('clicked')

})

This works, but Harry feels it is cheating a bit. What if the listener
hadn’t produced the button as event.target? Fix the code so that you
use neither this nor the event parameter.

13. In Section 4.12, “The this Reference” (page 92), you saw that the
following doesn’t work:
Click here to view code image

const action = BankAccount.prototype.deposit

action(1000)

Can you make it work by getting the action method from an instance,
like this:
Click here to view code image

const harrysAccount = new BankAccount()

const action = harrysAccount.deposit

action(1000)

Why or why not?

14. In the preceding exercise, we defined an action function that deposits
money into harrysAccount. It seemed a bit pointless, so let’s add some
context. The function below invokes a given function after a delay,
passing the delay as an argument.
Click here to view code image

function invokeLater(f, delay) {

 setTimeout(() => f(delay), delay)

}

That’s perfect for Harry to earn $1000 after 1000 milliseconds:
Click here to view code image

invokeLater(amount => harrysAccount.deposit(amount), 1000)

But what about Sally? Make a general function depositInto so that one
can call
Click here to view code image

invokeLater(depositInto(sallysAccount), 1000)

Chapter 5. Numbers and Dates

Topics in This Chapter

5.1 Number Literals

5.2 Number Formatting

5.3 Number Parsing

5.4 Number Functions and Constants

 5.5 Mathematical Functions and Constants

 5.6 Big Integers

 5.7 Constructing Dates

 5.8 Date Functions and Methods

 5.9 Date Formatting

Exercises

In this short chapter, we will look at the JavaScript API for working with
numbers and big integers. We will then turn to operations with dates. As
you will see, JavaScript dates can be converted to numbers—a count of
milliseconds. That conversion isn’t actually useful, but it’s an excuse for
grouping both topics into this chapter instead of having two even shorter
ones.

5.1 Number Literals
All JavaScript numbers are “double precision” values in the IEEE 754
floating-point standard, with a binary representation that occupies eight
bytes.

Integer literals can be written in decimal, hexadecimal, octal, or binary:
42

0x2A

0o52

0b101010

 Note

The archaic octal notation with a leading zero and no o (such as 052) is disallowed in strict
mode.

Floating-point literals can use exponential notation:
4.2e-3

The letters e x o b can be written in lowercase or uppercase: 4.2E-3 or 0X2A
are OK.

 Note

C++ and Java allow hexadecimal floating-point literals such as 0x1.0p-10 = 2−10 =
0.0009765625. This notation is not supported in JavaScript.

Underscores in number literals are a stage 3 proposal in 2020. You can
place underscores anywhere between digits to make the number more
legible. The underscores are only for human readers—they are removed
when the number is parsed. For example,

Click here to view code image

const speedOfLight = 299_792_458 // same as 299792458

The global variables Infinity and NaN denote the “infinity” and “not a
number” values. For example, 1 / 0 is Infinity and 0 / 0 is NaN.

5.2 Number Formatting
To format an integer in a given number base between 2 and 36, use the
toString method:

Click here to view code image

const n = 3735928559

n.toString(16) // 'deadbeef'

n.toString(8) // '33653337357'

n.toString(2) // '11011110101011011011111011101111'

You can also format floating-point numbers to a base other than 10:
Click here to view code image

const almostPi = 3.14

almostPi.toString(16) // 3.23d70a3d70a3e

The toFixed method formats a floating-point number in fixed format with a
given number of digits after the decimal point. The call x.toExponential(p)
uses exponential format with one digit before and p − 1 digits after the
decimal point, and x.toPrecision(p) shows p significant digits:

Click here to view code image

const x = 1 / 600 // 0.0016666666666666668

x.toFixed(4) // '0.0017'

x.toExponential(4) // '1.667e-3'

x.toPrecision(4) // '0.001667'

The toPrecision method switches to exponential format if it would
otherwise produce too many significant digits or zeroes—see Exercise 3.

 Note

The JavaScript standard library has no equivalent to the C printf function, but there are third-
party implementations such as https://github.com/alexei/sprintf.js.

The console.log method supports printf-style placeholders %d, %f, %s, but not width, fill,
or precision modifiers.

5.3 Number Parsing
In Chapter 1, you saw how to parse strings containing numbers:

Click here to view code image

const notQuitePi = parseFloat('3.14') // The number 3.14
const evenLessPi = parseInt('3') // The integer 3

These functions ignore whitespace prefixes and non-numeric suffixes. For
example, parseInt(' 3A') is also 3.

The result is NaN if there is no number after the optional whitespace. For
example, parseInt(' A3') is NaN.

The parseInt function accepts hexadecimal notation: parseInt('0x3A') is
58.

Sometimes you want to accept only strings that actually represent decimal
numbers in JavaScript format, without leading spaces or suffixes. In this
case, your best bet is to use a regular expression:

https://github.com/alexei/sprintf.js

Click here to view code image

const intRegex = /^[+-]?[0-9]+$/

if (intRegex.test(str)) value = parseInt(str)

For floating-point numbers, the regular expression is more complex:
Click here to view code image

const floatRegex = /^[+-]?((0|[1-9][0-9]*)(\.[0-9]*)?|\.[0-9]+)

([eE][+-]?[0-9]+)?$/

if (floatRegex.test(str)) value = parseFloat(str)

See Chapter 6 for more information about regular expressions.

 Caution

The Internet is replete with almost correct recipes for recognizing strings that represent JavaScript
numbers, but the devil is in the details. The regular expressions above accept exactly the decimal
number literals from the JavaScript standard, optionally preceded by a sign. However, embedded
underscores (such as 1_000_000) are not supported.

To parse integers in a base other than 10, supply a base between 2 and 36 as
the second argument.

Click here to view code image

parseInt('deadbeef', 16) // 3735928559

5.4 Number Functions and Constants
The functions Number.parseInt and Number.parseFloat are identical to the
global parseInt and parseFloat functions.

The call Number.isNaN(x) checks whether x is NaN, the special “not a
number” value. (You cannot check x === NaN because no two NaN values are
considered to be equal to one another.)

To check that a value x is a number other than Infinity, -Infinity, or NaN,
call Number.isFinite(x).

 Caution

Do not use the global isNaN and isFinite functions—they first convert non-numeric
arguments, which does not yield useful results:

Click here to view code image

isNaN('Hello') // true

isFinite([0]) // true

The static methods Number.isInteger and Number.isSafeInteger check
whether the argument is an integer, or an integer in the safe range where no
roundoff occurs.

That range extends from Number.MIN_SAFE_INTEGER (−253 + 1 or
−9,007,199,254,740,991) to Number.MAX_SAFE_INTEGER (253 − 1 or
9,007,199,254,740,991).

The largest number is Number.MAX_VALUE ((2 − 2−52) × 21023 or about 1.8 ×
10308). The smallest positive number is Number.MIN_VALUE (2−1074 or about 5
× 10−324). Number.EPSILON (2−52 or about 2.2 × 10−16) is the gap between 1
and the next representable number greater than 1.

Finally, Number.NaN, Number.POSITIVE_INFINITY, and
Number.NEGATIVE_INFINITY are the same as the global NaN, Infinity, and -
Infinity. You can use those values if you are nervous about someone
defining local variables named NaN and Infinity.

Table 5-1 shows the most useful features of the Number class.

Table 5-1 Useful Functions, Methods, and Constants of the
Number Class

Name Description

Functions

Name Description

isNaN(x) true if x is NaN. Note that
you cannot use === since x
=== NaN is always false.

isFinite(x) true if x is not ±Infinity,
NaN

isSafeInteger(x) true if x is an integer in the
“safe” range defined below

Methods

toString(base) The number in the given
base (between 2 and 36).
(200).toString(16) is 'c8'.

toFixed(digitsAfterDecimalPoint),
toExponential(significantDigits),
toPrecision(significantDigits)

The number in fixed or
exponential format, or the
more convenient of the two.
Formatting 0.001666 with
four digits yields '0.0017',
'1.667e-3', '0.001667'.

Constants

MIN_SAFE_INTEGER,
MAX_SAFE_INTEGER

The range of “safe” integers
that can be represented as
floating-point numbers
without roundoff

MIN_VALUE, MAX_VALUE The range of all floating-
point numbers

5.5 Mathematical Functions and Constants

The Math class defines a number of functions and constants for
mathematical computations—logarithms, trigonometry, and the like. Table
5-2 contains a complete list. Most of the functions are quite specialized.

Here are a few mathematical functions that are of general interest.

The max and min functions yield the largest and smallest of any number of
arguments:

Click here to view code image

Math.max(x, y) // The larger of x and y
Math.min(...values) // The smallest element of the array values

The Math.round function rounds to the nearest integer, rounding up for
positive numbers with fractional part ≥ 0.5 and negative numbers with
fractional part > 0.5.

Math.trunc simply truncates the fractional part.
Click here to view code image

Math.round(2.5) // 3

Math.round(-2.5) // -2

Math.trunc(2.5) // 2

The call Math.random() yields a floating-point number between 0
(inclusive) and 1 (exclusive). To obtain a random floating-point number or
integer between a (inclusive) and b (exclusive), call:

Click here to view code image

const randomDouble = a + (b - a) * Math.random()

const randomInt = a + Math.trunc((b - a) * Math.random()) //

where a, b are integers

Table 5-2 Functions and Constants in the Math class

Name Description

Functions

min(values. . .),
max(values)

These functions can be called with any
number of arguments

abs(x), sign(x) Absolute value and sign (1, 0, −1)

random() Random number 0 ≤ r < 1

round(x), trunc(x),
floor(x), ceil(x)

Round to the nearest integer, to integer
obtained by truncating the fractional
part, to the next smaller or larger
integer

fround(x), ftrunc(x),
ffloor(x), fceil(x)

Round to 32-bit floating-point number

pow(x, y), exp(x),
expm1(x), log(x),
log2(x), log10(x),
log1p(x)

xy, ex, ex − 1, ln(x), log2(x), log10(x),
ln(1 + x)

sqrt(x), cbrt(x),
hypot(x, y)

sin(x), cos(x), tan(x),
asin(x), acos(x),
atan(x), atan2(y, x)

Trigonometric functions

sinh(x), cosh(x),
tanh(x), asinh(x),
acosh(x), atanh

Hyperbolic functions

Constants

Name Description

E, PI, SQRT2, SQRT1_2,
LN2, LN10, LOG2E, LOG10E

e, π, , ln(2), ln(10), log2(e),
log10(e)

5.6 Big Integers

A big integer is an integer with an arbitrary number of digits. A big integer
literal has a suffix n, such as
815915283247897734345611269596115894272000000000n. Alternatively, you
can convert any integer-valued expression into a big integer as
BigInt(expr).

The typeof operator returns 'bigint' when applied to a big integer.

Arithmetic operators combine big integers to a new big integer result:
Click here to view code image

let result = 815915283247897734345611269596115894272000000000n *

BigInt(41)

 // Sets result to
33452526613163807108170062053440751665152000000000n

 Caution

You cannot combine a big integer and a value of another type with an arithmetic operator. For
example, 815915283247897734345611269596115894272000000000n * 41 is an
error.

When combining big integer values, the / operator yields a big integer
result, discarding the remainder. For example, 100n / 3n is 33n.

The BigInt class has just two functions that are rather technical. The calls
BigInt.asIntN(bits, n) and BigInt.asUintN(bits, n) reduce n modulo
2bits into the interval [−2bits − 1 . . . 2bits − 1 − 1] or [0 . . . 2bits − 1].

5.7 Constructing Dates

Before getting into the JavaScript API for dates, let us review a couple of
concepts about measuring time on our planet.

Historically, the fundamental time unit—the second—was derived from
Earth’s rotation around its axis. There are 24 hours or 24 × 60 × 60 = 86400
seconds in a full revolution, so it seems just a question of astronomical
measurements to precisely define a second. Unfortunately, Earth wobbles
slightly, and a more precise definition was needed. In 1967, a new
definition of a second, matching the historical definition, was derived from
an intrinsic property of atoms of caesium-133. Since then, a network of
atomic clocks keeps the official time.

Ever so often, the official time keepers synchronize the absolute time with
the rotation of Earth. At first, the official seconds were slightly adjusted, but
starting in 1972, occasional “leap seconds” were inserted as needed. (In
theory, a second might need to be removed once in a while, but that has not
yet happened.) Clearly, leap seconds are a pain, and many computer

systems instead use “smoothing” where time is artificially slowed down or
sped up just before the leap second, keeping 86,400 seconds per day. This
works because the local time on a computer isn’t all that precise, and
computers are used to synchronizing themselves with an external time
service.

Because humans everywhere on the globe prefer to have midnight
correspond to a point that is more or less in the middle of the night, there
are varying local times. But to compare times, there needs to be a common
point of reference. This is, for historical reasons, the time at the meridian
that passes through the Royal Observatory in Greenwich (not adjusted for
daylight savings time). This time is known as “Coordinated Universal
Time,” or UTC. The acronym is a compromise between the aforementioned
English and the French “Temps Universel Coordiné,” having the distinction
of being incorrect in either language.

For representing time in a computer, it is convenient to have a fixed origin
from which to count forward or backward. This is the “epoch”: midnight
UTC on Thursday, January 1, 1970.

In JavaScript, time is measured in smoothed milliseconds from the epoch,
with a valid range of ±100,000,000 days in either direction.

JavaScript uses the standard ISO 8601 format for a point in time: YYYY-MM-
DDTHH:mm:ss.sssZ, with four digits for the year, two digits for the month,
day, hours, minutes, and seconds, and three digits for the milliseconds. The
letter T separates the day and the hours, and the Z suffix denotes a zero
offset from UTC.

For example, the epoch is:
1970-01-01T00:00:00.000Z

 Note

You may be wondering how that format works with a day that is 100,000,000 days—close to
274,000 years—away from the epoch. And what about dates before the “common era”?

For those dates, the year is specified with six digits and a sign, as ±YYYYYY. The largest valid
JavaScript date is

+275760-09-13T00:00:00.000Z

The year before 0001 is 0000, and the year before that is -000001.

In JavaScript, a point in time is represented by an instance of the Date class.
Calling the class Time would have been a splendid idea, but the class takes
the name and a number of flaws from the Java Date class, and then adds its
own idiosyncrasies.

See Table 5-3 for the most useful features of the Date class.

Table 5-3 Useful Constructors, Functions, and Methods of the
Date Class

Name Description

Constructors

new Date(iso8601String) Constructs a Date from an ISO
8601 string such as '1969-07-
20T20:17:40.000Z'

new Date() Constructs a Date representing the
current time

new

Date(millisecondsFromEpoch)

new Date(year,

zeroBasedMonth, day, hours,

Uses the local time zone. At least
two arguments are required.

Name Description

minutes, seconds,

milliseconds)

Functions

UTC(year, zeroBasedMonth,

day, hours, minutes,

seconds, milliseconds)

Yields milliseconds from the
epoch, not a Date object

Methods

getUTCFullYear(),
getUTCMonth() ,
getUTCDate(), getUTCHours(),
getUTCMinutes(),
getUTCSeconds(),
getUTCMilliseconds()

Month between 0 and 11, date
between 1 and 31, hour between 0
and 23

getUTCDay() The weekday, between 0 (Sunday)
and 6 (Saturday)

getTime() Milliseconds from the epoch

toISOString() The ISO 8601 string such as
'1969-07-20T20:17:40.000Z'

toLocaleString(locale,

options),
toLocaleDateString(locale,

options),
toLocaleTimeString(locale,

options)

Humanly readable date and time,
date only, time only. See Chapter 8
for locales and a description of all
options.

You can construct a date from its ISO 8601 string, or by giving the number
of milliseconds from the epoch:

Click here to view code image

const epoch = new Date('1970-01-01T00:00:00.000Z')

const oneYearLater = new Date(365 * 86400 * 1000) // 1971-01-

01T00:00:00.000Z

Constructing a Date without arguments yields the current time.
const now = new Date()

 Caution

Don’t call the Date function without new. That call ignores any arguments and does not yield a
Date object but a string describing the current time—and not even in ISO 8601 format:

Click here to view code image

Date(365 * 86400 * 1000)

 // Ignores its argument and yields a string
 // 'Mon Jun 24 2020 07:23:10 GMT+0200 (Central European Summer Time)'

 Caution

If you use Date objects with arithmetic expressions, they are automatically converted, either into
the string format from the preceding note, or the number of milliseconds from the epoch:

Click here to view code image

oneYearLater + 1

 // 'Fri Jan 01 1971 01:00:00 GMT+0100 (Central European

Summer Time)1'

oneYearLater * 1 // 31536000000

This is only useful to compute the distance between two dates:

Click here to view code image

const before = new Date()

// Do some work
const after = new Date()

const millisecondsElapsed = after - before

You can construct a Date object in your local time zone as
Click here to view code image

new Date(year, zeroBasedMonth, day, hours, minutes, seconds,

milliseconds)

All arguments starting from day are optional. (At least two arguments are
needed to distinguish this form from the call new

Date(millisecondsFromEpoch).)

For historical reasons, the month is zero-based but the day is not.

For example, as I am writing these words, I am an hour east of the
Greenwich observatory. When I evaluate

Click here to view code image

new Date(1970, 0 /* January */, 1, 0, 0, 0, 0, 0) // Caution—
local time zone

I get
1969-12-30T23:00:00.000Z

When you try it, you may get a different result, depending on your time
zone.

 Caution

If you supply out-of-range values for zeroBasedMonth, day, hours, and so on, the date is
silently adjusted. For example, new Date(2019, 13, -2) is January 29, 2020.

5.8 Date Functions and Methods

The Date class has three static functions:

Date.UTC(year, zeroBasedMonth, day, hours, minutes, seconds,

milliseconds)

Date.parse(dateString)

Date.now()

The UTC function is similar to the constructor with multiple arguments, but it
produces the date in UTC.

The parse function parses ISO 8601 strings and may, depending on the
implementation, also accept other formats (see Exercise 17).

Date.now() produces the current date and time.

 Caution

Tragically, all three functions yield milliseconds since the epoch and not Date objects.

To actually construct a date from UTC components, call:

Click here to view code image

const deadline = new Date(Date.UTC(2020, 0 /* January */, 31))

The Date class has Java-style getter and setter methods, such as
getHours/setHours, not JavaScript get/set methods.

To get the components of a Date object, call the methods getUTCFullYear,
getUTCMonth (between 0 and 11), getUTCDate (between 1 and 31),
getUTCHours (between 0 and 23), getUTCMinutes, getUTCSeconds,
getUTCMilliseconds.

The methods without UTC (that is, getFullYear, getMonth, getDate, and so
on) yield the same information in local time. Unless you need to show local
time to a user, you probably don’t want those. And if you do display a local
time, you should use one of the date-formatting methods described in
Section 5.9, “Date Formatting” (page 110).

The getUTCDay method yields the weekday between 0 (Sunday) and 6
(Saturday):

Click here to view code image

const epoch = new Date('1970-01-01T00:00:00.000Z')

epoch.getUTCDay() // 4 (Thursday)
epoch.getDay() // 3, 4, or 5, depending on when and where the call is
made

 Note

The obsolete getYear method yields a two-digit year. Apparently, when JavaScript was created
in 1995, nobody could have predicted that two-digit years might be problematic.

JavaScript copies the Java mistake of having mutable Date objects, and
makes it worse by having setters for each time unit—see Exercise 16. The
setters silently adjust to the next valid date:

Click here to view code image

const appointment = new Date('2020-05-31T00:00:00.000Z')

appointment.setUTCMonth(5 /* June */) // appointment is now July 1

5.9 Date Formatting

The methods toString, toDateString, toTimeString, and toUTCString yield
“humanly readable” strings in a format that is not particularly human-
friendly:

Click here to view code image

'Sun Jul 20 1969 21:17:40 GMT+0100 (Mitteleuropäische

Sommerzeit)'

'Sun Jul 20 1969'

'21:17:40 GMT+0100 (Mitteleuropäische Sommerzeit)'

'Sun, 20 Jul 1969 20:17:40 GMT'

Note that the time zone (but not the weekday or month name) appears in the
user’s locale.

To actually present date and time to a human user, use the methods
toLocaleString, toLocaleDateString, or toLocaleTimeString that format a
date and time, only the date portion, or only the time portion. The format
uses the rules of the user’s current locale or a locale that you specify:

Click here to view code image

moonlanding.toLocaleDateString() // '20.7.1969' if the locale is
German
moonlanding.toLocaleDateString('en-US') // '7/20/1969'

The default format is rather short, but you can change it by supplying
formatting options:

Click here to view code image

moonlanding.toLocaleDateString(

 'en-US', { year: 'numeric', month: 'long', day: 'numeric' })

 // 'July 20, 1969'

Chapter 8 explains the locale concept and presents these options in detail.

For machine-readable dates, simply call the toISOString method which
yields an ISO 8601 string:

Click here to view code image

moonlanding.toISOString() // '1969-07-20T20:17:40.000Z'

Exercises
1. The values 0 and −0 are distinct in the IEEE 754 standard. Provide at

least two distinct implementations of a function plusMinusZero(x) that
returns +1 if x is 0, -1 if x is -0, and 0 otherwise. Hints: Object.is, 1/-0.

2. There are three kinds of IEEE 754 “double precision” floating-point
values:

“Normalized” values of the form ±1.m × 2e, where m has 52 bits and
e ranges from −1022 to 1023

±0 and “denormalized” values close to zero, of the form ±0.m ×
2−1022, where m has 52 bits

Special values ±∞, NaN

Write a function that produces a string 'normalized', 'denormalized',
or 'special' for a given floating-point number.

3. Suppose the number x, when shown in exponential format, has an
exponent of e. Give a condition depending on e and p under which the
call x.toPrecision(p) shows the result in fixed format.

4. Write a function that formats a numeric value according to a printf-
style specification. For example, format(42, "%04x") should print 002A.

5. Write a function that yields the exponent of a floating-point number—
that is, the value that would be printed after e in exponential notation.
Use binary search, and don’t call any Math or Number methods.

6. Explain the values for Number.MAX_VALUE, Number.MIN_VALUE, and
Number.EPSILON given in Section 5.4, “Number Functions and
Constants” (page 102).

7. Write a function that computes the smallest representable floating-point
number after a given integer n. Hint: What is the smallest representable
number after 1? After 2? After 3? After 4? You may want to consult an
article describing the IEEE floating-point representation. Extra credit if
you can obtain the result for an arbitrary number.

8. Produce a big integer with the digit 3 repeated a thousand times, using
no loops or recursion, in a single line of code that is no more than 80
characters long.

9. Write a function that converts a Date object into an object with
properties year, month, day, weekday, hours, minutes, seconds, millis.

10. Write a function that determines how many hours a user is away from
UTC.

11. Write a function that determines whether a year is a leap year. Provide
two different implementations.

12. Write a function that yields the weekday of a given day without calling
the Date.getUTCDay/getDay methods. Hint: The epoch fell on a
Thursday.

13. Write a function that, given a month and year (which should default to
the current month and year), prints a calendar such as
Click here to view code image

 1 2 3 4 5

6 7 8 9 10 11 12

13 14 15 16 17 18 19

20 21 22 23 24 25 26

27 28 29 30 31

14. Write a function with two Date parameters that yields the number of
days between the dates, with the fractional part indicating the fraction
of the day.

15. Write a function with two Date parameters that yields the number of
years between the dates. This is more complex than the preceding
problem because years have varying lengths.

16. Suppose you are given this deadline and you need to move it to
February 1:
Click here to view code image

const deadline = new Date(Date.UTC(2020, 0 /* January */, 31))

What is the result of
Click here to view code image

deadline.setUTCMonth(1 /* February */)

deadline.setUTCDate(1)

Perhaps one should always call setUTCDate before setUTCMonth? Give
an example where that doesn’t work.

17. Experiment which strings are accepted by Date.parse(dateString) or
new Date(dateString) in your favorite JavaScript runtime. Examples to
try:

Click here to view code image

The string returned by Date()
'3/14/2020'

'March 14, 2020'

'14 March 2020'

'2020-03-14'

'2020-03-14 '

Scarily, the last two strings yield different dates in Node.js version
13.11.0.

Chapter 6. Strings and Regular
Expressions

Topics in This Chapter

6.1 Converting between Strings and Code Point Sequences

6.2 Substrings

6.3 Other String Methods

 6.4 Tagged Template Literals

 6.5 Raw Template Literals

 6.6 Regular Expressions

 6.7 Regular Expression Literals

 6.8 Flags

 6.9 Regular Expressions and Unicode

 6.10 The Methods of the RegExp Class

 6.11 Groups

 6.12 String Methods with Regular Expressions

 6.13 More about Regex Replace

 6.14 Exotic Features

Exercises

In this chapter, you will learn about the methods that the standard library
provides for string processing. We will then turn to regular expressions,
which let you find strings that match patterns. After an introduction into the
syntax of regular expressions and the JavaScript-specific idiosyncrasies,
you will see how to use the API for finding and replacing matches.

6.1 Converting between Strings and Code Point
Sequences
A string is a sequence of Unicode code points. Each code point is an integer
between zero and 0x10FFFF. The fromCodePoint function of the String class
assembles a string from code point arguments:

Click here to view code image

let str = String.fromCodePoint(0x48, 0x69, 0x20, 0x1F310, 0x21)

// 'Hi !'

If the code points are in an array, use the spread operator:
Click here to view code image

let codePoints = [0x48, 0x69, 0x20, 0x1F310, 0x21]

str = String.fromCodePoint(...codePoints)

Conversely, you can turn a string into an array of code points:
Click here to view code image

let characters = [...str] // ['H', 'i', ' ', ' ', '!']

The result is an array of strings, each containing a single code point. You
can obtain the code points as integers:

Click here to view code image

codePoints = [...str].map(c => c.codePointAt(0))

 Caution

JavaScript stores strings as sequences of UTF-16 code units. The offset in a call such as 'Hi
'.codePointAt(i) refers to the UTF-16 encoding. In this example, valid offsets are 0, 1, 2,
3, and 5. If the offset falls in the middle of a pair of code units that make up a single code point,
then an invalid code point is returned.

If you want to traverse the code points of a string without putting them in an
array, use this loop:

Click here to view code image

for (let i = 0; i < str.length; i++) {

 let cp = str.codePointAt(i)

 if (cp > 0xFFFF) i++

 . . . // Process the code point cp
}

6.2 Substrings
The indexOf method yields the index of the first occurrence of a substring:

Click here to view code image

let index = 'Hello yellow'.indexOf('el') // 1

The lastIndexOf method yields the index of the last occurrence:
Click here to view code image

index = 'Hello yellow'.lastIndexOf('el') // 7

As with all offsets into JavaScript strings, these values are offsets into the
UTF-16 encoding:

Click here to view code image

index = 'I yellow'.indexOf('el') // 4

The offset is 4 because the “yellow heart” emoji is encoded with two
UTF-16 code units.

If the substring is not present, these methods return -1.

The methods startsWith, endsWith, and includes return a Boolean result:
Click here to view code image

let isHttps = url.startsWith('https://')

let isGif = url.endsWith('.gif')

let isQuery = url.includes('?')

The substring method extracts a substring, given two offsets in UTF-16
code units. The substring contains all characters from the first offset up to,
but not including, the second offset.

Click here to view code image

let substring = 'I yellow'.substring(3, 7) // 'yell'

If you omit the second offset, all characters until the end of the string are
included:

Click here to view code image

substring = 'I yellow'.substring(3) // 'yellow'

The slice method is similar to substring, except that negative offsets are
counted from the end of the string. -1 is the offset of the last code unit, -2
the offset of its predecessor, and so on. This is achieved by adding the string
length to a negative offset.

Click here to view code image

'I yellow'.slice(-6, -2) // 'yell', same as slice(3, 7)

The length of 'I yellow' is 9—recall that the takes two code units. The
offsets -6 and -2 are adjusted to 3 and 7.

With both the substring and slice methods, offsets larger than the string
length are truncated to the length. Negative and NaN offsets are truncated to

0. (In the slice method, this happens after adding the string length to
negative offsets.)

 Caution

If the first argument to substring is larger than the second, the arguments are switched!

Click here to view code image

substring = 'I yellow'.substring(7, 3) // 'yell', same as
substring(3, 7)

In contrast, str.slice(start, end) yields the empty string if start ≥ end.

I prefer the slice method over substring. It is more versatile, has a saner
behavior, and the method name is shorter.

Another way of taking a string apart is the split method. That method
splits a string into an array of substrings, removing the provided separator.

Click here to view code image

let parts = 'Mary had a little lamb'.split(' ')

 // ['Mary', 'had', 'a', 'little', 'lamb']

You can supply a limit for the number of parts:
Click here to view code image

parts = 'Mary had a little lamb'.split(' ', 4)

 // ['Mary', 'had', 'a', 'little']

The separator can be a regular expression—see Section 6.12, “String
Methods with Regular Expressions” (page 133).

 Caution

Calling str.split('') with an empty separator splits the string into strings that each hold a
16-bit code unit, which is not useful if str contains characters above \u{FFFF}. Use
[...str] instead.

6.3 Other String Methods
In this section, you will find miscellaneous methods of the String class.
Since strings are immutable in JavaScript, none of the string methods
change the contents of a given string. They all return a new string with the
result.

The repeat method yields a string repeated a given number of times:
Click here to view code image

const repeated = 'ho '.repeat(3) // 'ho ho ho '

The trim, trimStart, and trimEnd methods yield strings that remove leading
and trailing white space, or just leading or trailing white space. White space
characters include the space character, the nonbreaking space \u{00A0},
newline, tab, and 21 other characters with the Unicode character property
White_Space.

The padStart and padEnd methods do the opposite—they add space
characters until the string has a minimum length:

Click here to view code image

let padded = 'Hello'.padStart(10) // ' Hello', five spaces are
added

You can also supply your own padding string:
Click here to view code image

padded = 'Hello'.padStart(10, '=-') // =-=-=Hello

 Caution

The first parameter is the length of the padded string in bytes. If your padding string contains
characters that require two bytes, you may get a malformed string:

Click here to view code image

padded = 'Hello'.padStart(10, ' ')

 // Padded with two hearts and an unmatched code unit

The toUpperCase and toLowerCase methods yield a string with all characters
converted to upper- or lowercase.

Click here to view code image

let uppercased = 'Straße'.toUpperCase() // 'STRASSE'

As you can see, the toUpperCase method is aware of the fact that the
uppercase of the German character 'ß' is the string 'SS'.

Note that toLowerCase does not recover the original string:
Click here to view code image

let lowercased = uppercased.toLowerCase() // 'strasse'

 Note

String operations such as conversion to upper- and lowercase can depend on the user’s language
preferences. See Chapter 8 for methods toLocaleUpperCase, toLocaleLowerCase,
localeCompare, and normalize that are useful when you localize your applications.

 Note

See Section 6.12, “String Methods with Regular Expressions” (page 133), for string methods
match, matchAll, search, and replace that work with regular expressions.

The concat method concatenates a string with any number of arguments
that are converted to strings.

Click here to view code image

const n = 7

let concatenated = 'agent'.concat(' ', n) // 'agent 7'

You can achieve the same effect with template strings or the join method of
the Array class:

Click here to view code image

concatenated = `agent ${n}`

concatenated = ['agent', ' ', n].join('')

Table 6-1 shows the most useful features of the String class.

Table 6-1 Useful Functions and Methods of the String class

Name Description

Functions

fromCodePoint(codePoints...) Yields a string consisting of the
given code points

Methods

startsWith(s), endsWith(s),
includes(s)

true if a string starts or ends with
s, or has s as a substring

indexOf(s, start),
lastIndexOf(s, start)

The index of the first or last
occurrence of s beginning with
index start (which defaults to 0)

slice(start, end) The substring of code units with
index between start inclusive
and end exclusive. Negative
index values are counted from the
end of the string. end defaults to

Name Description

the length of the string. Prefer
this method over substring.

repeat(n) This string, repeated n times

trimStart(), trimEnd(),
trim()

This string with leading, trailing,
or leading and trailing white
space removed

padStart(minLength,

padString),
padEnd(minLength, padString)

This string, padded at the start or
end until its length reaches
minLength. The default padString
is ' '.

toLowerCase(), toUpperCase() This string with all letters
converted to lower or upper case

split(separator, maxParts) An array of parts obtained by
removing all copies of the
separator (which can be a regular
expression). If maxParts is
omitted, all parts are returned.

search(target) The index of the first match of
target (which can be a regular
expression)

replace(target, replacement) This string, with the first match
of target replaced. If target is a
global regular expression, all
matches are replaced. See Section
6.13 about replacement patterns
and functions.

Name Description

match(regex) An array of matches if regex is
global, null if there is no match,
and the match result otherwise.
The match result is an array of all
group matches, with properties
index (the index of the match)
and groups (an object mapping
group names to matches).

matchAll(regex) An iterable of the match results

Finally, there are global functions for encoding URL components and entire
URLs—or, more generally, URIs using schemes such as mailto or tel—
into their “URL encoded” form. That form uses only characters that were
considered “safe” when the Internet was first created. Suppose you need to
produce a query for translating a phrase from one language into another.
You might construct a URL like this:

Click here to view code image

const phrase = 'à coté de'

const prefix = 'https://www.linguee.fr/anglais-

francais/traduction'

const suffix = '.xhtml'

const url = prefix + encodeURIComponent(phrase) + suffix

The phrase is encoded into '%C3%A0%20cot%C3%A9%20de', the result of
encoding characters into UTF-8 and encoding each byte into a code %hh with
two hexadecimal digits. The only characters that are left alone are the
“safe” characters

A-Z a-z 0-9 ! ' () * . _ ~ -

In the less common case, if you need to encode an entire URI, use the
encodeURI function. It also leaves the characters

$ & + , / : ; = ? @

unchanged since they can have special meanings in URIs.

6.4 Tagged Template Literals

In Chapter 1, you saw template literals—strings with embedded
expressions:

Click here to view code image

const person = { name: 'Harry', age: 42 }

message = `Next year, ${person.name} will be ${person.age + 1}.`

Template literals insert the values of the embedded expressions into the
template string. In this example, the embedded expressions person.name and
person.age + 1 are evaluated, converted to strings, and spliced with the
surrounding string fragments. The result is the string

'Next year, Harry will be 43.'

You can customize the behavior of template literals with a tag function. As
an example, we will be writing a tag function strong that produces an
HTML string, highlighting the embedded values. The call

Click here to view code image

strong`Next year, ${person.name} will be ${person.age + 1}.`

will yield an HTML string
Click here to view code image

'Next year, Harry will be 43.'

The tag function is called with the fragments of the literal string around the
embedded expressions, followed by the expression values. In our example,
the fragments are 'Next year, ', ' will be ', and '.', and the values are
'Harry' and 43. The tag function combines these pieces. The returned value
is turned into a string if it is not already one.

Here is an implementation of the strong tag function:

Click here to view code image

const strong = (fragments, ...values) => {

 let result = fragments[0]

 for (let i = 0; i < values.length; i++)

 result += `${values[i]}${fragments[i + 1]}`

 return result

}

When processing the template string
Click here to view code image

strong`Next year, ${person.name} will be ${person.age + 1}.`

the strong function is called like this:
Click here to view code image

strong(['Next year, ', ' will be ', '.'], 'Harry', 43)

Note that all string fragments are put into an array, whereas the expression
values are passed as separate arguments. The strong function uses the
spread operator to gather them all in a second array.

Also note that there is always one more fragment than there are expression
values.

This mechanism is infinitely flexible. You can use it for HTML templating,
number formatting, internationalization, and so on.

6.5 Raw Template Literals

If you prefix a template literal with String.raw, then backslashes are not
escape characters:

path = String.raw`c:\users\nate`

Here, \u does not denote a Unicode escape, and \n is not turned into a
newline character.

 Caution

Even in raw mode, you cannot enclose arbitrary strings in backticks. You still need to escape all `
characters, $ before {, and \ before ` and {.

That doesn’t quite explain how String.raw works, though. Tag functions
have access to a “raw” form of the template string fragments, in which
backslash combinations such as \u and \n lose their special meanings.

Suppose we want to handle strings with Greek letters. We follow the
convention of the LATEX markup language for mathematical formulas. In
that language, symbols start with backslashes. Therefore, raw strings are
attractive—users want to write \nu and \upsilon, not \\nu and \\upsilon.
Here is an example of a string that we want to be able to process:

greek`\nu=${factor}\upsilon`

As with any tagged template string, we need to define a function:
Click here to view code image

const greek = (fragments, ...values) => {

 const substitutions = { alpha: 'α', . . ., nu: 'ν', . . . }

 const substitute = str => str.replace(/\\[a-z]+/g,

 match => substitutions[match.slice(1)])

 let result = substitute(fragments.raw[0])

 for (let i = 0; i < values.length; i++)

 result += values[i] + substitute(fragments.raw[i + 1])

 return result

}

You access the raw string fragments with the raw property of the first
parameter of the tag function. The value of fragments.raw is an array of
string fragments with unprocessed backslashes.

In the preceding tagged template literal, fragments.raw is an array of two
strings. The first string is \nu=, and the second string is \upsilon.

\${\nu\upsilon{

including three backslashes. The second string has two characters:
}}

Note the following:

The \n in \nu is not turned into a newline.

The \u in \upsilon is not interpreted as a Unicode escape. In fact, it
would not be syntactically correct. For that reason, fragments[1] cannot
be parsed and is set to undefined.

${factor} is an embedded expression. Its value is passed to the tag
function.

The greek function uses regular expression replacement, which is explained
in detail in Section 6.13, “More about Regex Replace” (page 135).
Identifiers starting with a backslash are replaced with their substitutions,
such as ν for \nu.

6.6 Regular Expressions

Regular expressions specify string patterns. Use them whenever you need to
locate strings that match a particular pattern. For example, suppose you
want to find hyperlinks in an HTML file. You need to look for strings of the
form . But wait—there may be extra spaces, or the URL
may be enclosed in single quotes. Regular expressions give you a precise
syntax for specifying what sequences of characters are legal matches.

In a regular expression, a character denotes itself unless it is one of the
reserved characters

. * + ? { | () [\ ^ $

For example, the regular expression href only matches the string href.

The symbol . matches any single character. For example, .r.f matches
href and prof.

The * symbol indicates that the preceding construct may be repeated 0 or
more times; with the + symbol, the repetition is 1 or more times. A suffix of
? indicates that a construct is optional (0 or 1 times). For example, be+s?
matches be, bee, and bees. You can specify other multiplicities with { }—
see Table 6-2.

A | denotes an alternative: .(oo+|ee+)f matches beef or woof. Note the
parentheses—without them, .oo+|ee+f would be the alternative between
.oo+ and ee+f. Parentheses are also used for grouping—see Section 6.11,
“Groups” (page 131).

A character class is a set of character alternatives enclosed in brackets,
such as [Jj], [0-9], [A-Za-z], or [^0-9]. Inside a character class, the -
denotes a range (all characters whose Unicode values fall within the two
bounds). However, a - that is the first or last character in a character class
denotes itself. A ^ as the first character in a character class denotes the
complement—all characters except those specified. For example, [^0-9]
denotes any character that is not a decimal digit.

There are six predefined character classes: \d (digits), \s (white space), \w
(word characters), and their complements \D (non-digits), \S (nonwhite
space), and \W (nonword characters).

The characters ^ and $ match the beginning and end of input. For example,
^[0-9]+$ matches a string entirely consisting of digits.

Be careful about the position of the ^ character. If it is the first character
inside brackets, it denotes the complement: [^0-9]+$ matches a string of
non-digits at the end of input.

 Note

I have a hard time remembering that ^ matches the start and $ the end. I keep thinking that $
should denote start, and on the US keyboard, $ is to the left of ^. But it’s exactly the other way
around, probably since the archaic text editor QED used $ to denote the last line.

Table 6-2 summarizes the JavaScript regular expression syntax.

If you need to have a literal . * + ? { | () [\ ^ $, precede it by a
backslash. Inside a character class, you only need to escape [and \,
provided you are careful about the positions of] - ^. For example, []^-] is
a class containing all three of them.

Table 6-2 Regular Expression Syntax

Expression Description Example

Characters

A character other
than . * + ? { | (
) [\ ^ $

Matches only the
given character

J

. Matches any
character except
\n, or any
character if the
dotAll flag is set

\u{hhhh}, \u{hhhhh} The Unicode
code point with
the given hex
value (requires
unicode flag)

\u{1F310}

Expression Description Example

\uhhhh, \xhh The UTF-16 code
unit with the
given hex value

\xA0

\f, \n, \r, \t, \v Form feed (\x0C),
newline (\x0A),
carriage return
(\x0D), tab (\x09),
vertical tab (\x0B)

\n

\cL, where L is in
[A-Za-z]

The control
character
corresponding to
the character L

\cH is Ctrl-H or
backspace (\x08)

\c, where c is not in
[0-

9BDPSWbcdfknprstv]

The character c \\

Character Classes

[C1C2. . .], where Ci
are characters, ranges
c-d, or character
classes

Any of the
characters
represented by
C1, C2, . . .

[0-9+-]

[^. . .] Complement of a
character class

[^\d\s]

\p{BooleanProperty}
\p{Property=Value}
\P{. . .}

A Unicode
property (see
Section 6.9); its
complement

\p{L} are Unicode
letters

Expression Description Example

(requires the
unicode flag)

\d, \D A digit [0-9]; the
complement

\d+ is a sequence of
digits

\w, \W A word character
[a-zA-Z0-9_]; the
complement

\s, \S A space from
[\t\n\v\f\r

\xA0] or 18
additional
Unicode space
characters; same
as
\p{White_Space}

\s*,\s* is a comma
surrounded by
optional white space

Sequences and Alternatives

XY Any string from
X, followed by
any string from Y

[1-9][0-9]* is a
positive number
without leading zero

X|Y Any string from X
or Y

http|ftp

Grouping

(X) Captures the
match of X into a
group—see
Section 6.11

'([^']*)' captures
the quoted text

Expression Description Example

\n Matches the nth
group

(['"]).*\1 matches
'Fred' or "Fred" but
not "Fred'

(?<name>X) Captures the
match of X with
the given name

'(?<qty>[0-9]+)'

captures the match
with name qty

\k<name> The group with
the given name

\k<qty> matches the
group with name qty

(?:X) Use parentheses
without capturing
X

In
(?:http|ftp)://(.*),
the match after :// is
\1

Other (?. . .) See Section 6.14

Quantifiers

X? Optional X \+? is an optional +
sign

X*, X+ 0 or more X, 1 or
more X

[1-9][0-9]+ is an
integer ≥ 10

X{n}, X{n,},
X{m,n}

n times X, at least
n times X,
between m and n
times X

[0-9]{4,6} are four to
six digits

X*? or X+? Reluctant
quantifier,
attempting the

.*(<.+?>).* captures
the shortest sequence

Expression Description Example

shortest match
before trying
longer matches

enclosed in angle
brackets

Boundary Matches

^ $ Beginning, end of
input (or
beginning, end of
line if the
multiline flag is
set)

^JavaScript$ matches
the input or line
JavaScript

\b, \B Word boundary,
nonword
boundary

\bJava\B matches
JavaScript but not
Java code

6.7 Regular Expression Literals

A regular expression literal is delimited by slashes:
Click here to view code image

const timeRegex = /^([1-9]|1[0-2]):[0-9]{2} [ap]m$/

Regular expression literals are instances of the RegExp class.

The typeof operator, when applied to a regular expression, yields 'object'.

Inside the regular expression literal, use backslashes to escape characters
that have special meanings in regular expressions, such as the . and +

characters:
Click here to view code image

const fractionalNumberRegex = /[0-9]+\.[0-9]*/

Here, the escaped . means a literal period.

In a regular expression literal, you also need to escape a forward slash so
that it is not interpreted as the end of the literal.

To convert a string holding a regular expression into a RegExp object, use
the RegExp function, with or without new:

Click here to view code image

const fractionalNumberRegex = new RegExp('[0-9]+\\.[0-9]*')

Note that the backslash in the string must be escaped.

6.8 Flags

A flag modifies a regular expression’s behavior. One example is the i or
ignoreCase flag. The regular expression

/[A-Z]+\.com/i

matches Horstmann.COM.

You can also set the flag in the constructor:
const regex = new RegExp(/[A-Z]+\.com/, 'i')

To find the flag values of a given RegExp object, you can use the flags
property which yields a string of all flags. There is also a Boolean property
for each flag:

Click here to view code image

regex.flags // 'i'

regex.ignoreCase // true

JavaScript supports six flags, shown in Table 6-3.

Table 6-3 Regular Expression Flags

Single
Letter

Property Name Description

i ignoreCase Case-insensitive match

m multiline ^, $ match start, end of
line

s dotAll . matches newline

u unicode Match Unicode
characters, not code units
—see Section 6.9

g global Find all matches—see
Section 6.10

y sticky Match must start at
regex.lastIndex—see
Section 6.10

The m or multiline flag changes the behavior of the start and end anchors ^
and $. By default, they match the beginning and end of the entire string. In
multiline mode, they match the beginning and end of a line. For example,

/^[0-9]+/m

matches digits at the beginning of a line.

With the s or dotAll flag, the . pattern matches newlines. Without it, .
matches any non-newline character.

The other three flags are explained in later sections.

You can use more than one flag. The following regular expression matches
upper- or lowercase letters at the start of each line:

/^[A-Z]/im

6.9 Regular Expressions and Unicode

For historical reasons, regular expressions work with UTF-16 code units,
not Unicode characters. For example, the . pattern matches a single UTF-16
code unit. For example, the string

'Hello '

does not match the regular expression
/Hello .$/

The character is encoded with two code units. The remedy is to use the u
or unicode flag:

/Hello .$/u

With the u flag, the . pattern matches a single Unicode character, no matter
how it is encoded in UTF-16.

If you need to keep your source files in ASCII, you can embed Unicode
code points into regular expressions, using the \u{ } syntax:

/[A-Za-z]+ \u{1F310}/u

 Caution

Without the u flag, /\u{1F310}/ matches the string 'u{1F310}'.

When working with international text, you should avoid patterns such as
[A-Za-z] for denoting letters. These patterns won’t match letters in other
languages. Instead, use \p{Property}, where Property is the name of a
Boolean Unicode property. For example, \p{L} denotes a Unicode letter.
The regular expression

/Hello, \p{L}+!/u

matches
'Hello, värld!'

and
'Hello, !'

Table 6-4 shows the names of other common Boolean properties.

For Unicode properties whose values are not Boolean, use the syntax
\p{Property=Value}. For example, the regular expression

/p{Script=Han}+/u

matches any sequence of Chinese characters.

Using an uppercase \P yields the complement: \P{L} matches any character
that is not a letter.

Table 6-4 Common Boolean Unicode Properties

Name Description

L Letter

Lu Uppercase letter

Name Description

Ll Lowercase letter

Nd Decimal number

P Punctuation

S Symbol

White_Space White space, same as \s

Emoji Emoji characters, modifiers, or
components

6.10 The Methods of the RegExp Class

The test method yields true if a string contains a match for the given
regular expression:

/[0-9]+/.test('agent 007') // true

To test whether the entire string matches, your regular expression must use
start and end anchors:

/^[0-9]+$/.test('agent 007') // false

The exec method yields an array holding the first matched subexpression, or
null if there was no match.

For example,

/[0-9]+/.exec('agents 007 and 008')

returns an array containing the string '007'. (As you will see in the
following section, the array can also contain group matches.)

In addition, the array that exec returns has two properties:

index is the index of the subexpression

input is the argument that was passed to exec

In other words, the array returned by the preceding call to exec is actually
Click here to view code image

['007', index: 7, input: 'agents 007 and 008']

To match multiple subexpressions, use the g or global flag:
let digits = /[0-9]+/g

Now each call to exec returns a new match:
Click here to view code image

result = digits.exec('agents 007 and 008') // ['007', index: 7, .

. .]

result = digits.exec('agents 007 and 008') // ['008', index: 15,

. . .]

result = digits.exec('agents 007 and 008') // null

To make this work, the RegExp object has a property lastIndex that is set to
the first index after the match in each successful call to exec. The next call
to exec starts the match at lastIndex. The lastIndex property is set to zero
when a regular expression is constructed or a match failed.

You can also set the lastIndex property to skip a part of the string.

With the y or sticky flag, the match must start exactly at lastIndex:
Click here to view code image

digits = /[0-9]+/y

digits.lastIndex = 5

result = digits.exec('agents 007 and 008') // null

digits.lastIndex = 8

result = digits.exec('agents 007 and 008') // ['07', index: 8, .

. .]

 Note

If you simply want an array of all matched substrings, use the match method of the String
class instead of repeated calls to exec—see Section 6.12, “String Methods with Regular
Expressions” (page 133).

Click here to view code image

let results = 'agents 007 and 008'.match(/[0-9]+/g) // ['007',

'008']

6.11 Groups

Groups are used for extracting components of a match. For example, here is
a regular expression for parsing times with groups for each component:

Click here to view code image

let time = /([1-9]|1[0-2]):([0-5][0-9])([ap]m)/

The group matches are placed in the array returned by exec:
Click here to view code image

let result = time.exec('Lunch at 12:15pm')

 // ['12:15pm', '12', '15', 'pm', index: 9, . . .]

As in the preceding section, result[0] is the entire matched string. For i >
0, result[i] is the match for the ith group.

Groups are numbered by their opening parentheses. This matters if you
have nested parentheses. Consider this example. We want to analyze line
items of invoices that have the form

Blackwell Toaster USD29.95

Here is a regular expression with groups for each component:

Click here to view code image

/(\p{L}+(\s+\p{L}+)*)\s+([A-Z]{3})([0-9.]*)/u

In this situation, group 1 is 'Blackwell Toaster', the substring matched by
the expression (\p{L}+(\s+\p{L}+)*), from the first opening parenthesis to
its matching closing parenthesis.

Group 2 is ' Toaster', the substring matched by (\s+\p{L}+).

Groups 3 and 4 are 'USD' and '29.95'.

We aren’t interested in group 2; it only arose from the parentheses that were
required for the repetition. For greater clarity, you can use a noncapturing
group, by adding ?: after the opening parenthesis:

Click here to view code image

/(\p{L}+(?:\s+\p{L}+)*)\s+([A-Z]{3})([0-9.]*)/u

Now 'USD' and '29.95' are captured as groups 2 and 3.

 Note

When you have a group inside a repetition, such as (\s+\p{L}+)* in the example above, the
corresponding group only holds the last match, not all matches.

If the repetition happened zero times, then the group match is set to undefined.

You can match against the contents of a captured group. For example,
consider the regular expression:

/(['"]).*\1/

The group (['"]) captures either a single or double quote. The pattern \1
matches the captured string, so that "Fred" and 'Fred' match the regular
expression but "Fred' does not.

 Caution

Even though they are supposed be outlawed in strict mode, several JavaScript engines still
support octal character escapes in regular expressions. For example, \11 denotes \t, the
character at code point 9.

However, if the regular expression has 11 or more capturing groups, then \11 denotes a match of
the 11th group.

Numbered groups are rather fragile. It is much better to capture by name:
Click here to view code image

let lineItem = /(?<item>\p{L}+(\s+\p{L}+)*)\s+(?<currency>[A-Z]

{3})(?<price>[0-9.]*)/u

When a regular expression has one or more named groups, the array
returned by exec has a property groups whose value is an object holding
group names and matches:

Click here to view code image

let result = lineItem.exec('Blackwell Toaster USD29.95')

let groupMatches = result.groups

 // { item: 'Blackwell Toaster', currency: 'USD', price: '29.95'

}

The expression \k<name> matches against a group that was captured by
name:

Click here to view code image

/(?<quote>['"]).*\k<quote>/

Here, the group with the name “quote” matches a single or double quote at
the beginning of the string. The string must end with the same character.
For example, "Fred" and 'Fred' are matches but "Fred' is not.

The features of the RegExp are summarized in Table 6-5.

Table 6-5 Features of the RegExp Class

Name Description

Constructors

new RegExp(regex,

flags)

Constructs a regular expression from
the given regex (a string, regular
expression literal, or RegExp object) and
the given flags

Properties

flags A string of all flags

ignoreCase, multiline,
dotAll, unicode, global,
sticky

Boolean properties for all flag types

Methods

test(str) true if str contains a match for this
regular expression

exec(str) Match results for the current match of
this regular expression inside str. See
Section 6.10 for details. The match and
matchAll methods of the String class
are simpler to use than this method.

6.12 String Methods with Regular Expressions

As you saw in Section 6.10, “The Methods of the RegExp Class” (page 130),
the workhorse method for getting match information is the exec method of
the RegExp class. But its API is far from elegant. The String class has
several methods that work with regular expressions and produce commonly
used results more easily.

For a regular expression without the global flag set, the call
str.match(regex) returns the same match results as regex.exec(str):

Click here to view code image

'agents 007 and 008'.match(/[0-9]+/) // ['007', index: 7, . . .]

With the global flag set, match simply returns an array of matches, which is
often just what you want:

Click here to view code image

'agents 007 and 008'.match(/[0-9]+/g) // ['007', '008']

If there is no match, the String.match method returns null.

 Note

RegExp.exec and String.match are the only methods in the ECMAScript standard library
that yield null to indicate the absence of a result.

If you have a global search and want all match results without calling exec
repeatedly, you will like the matchAll method of the String class that is
currently a stage 3 proposal. It returns an iterable of the match results. Let’s
say you want to look for all matches of the regular expression

Click here to view code image

let time = /([1-9]|1[0-2]):([0-5][0-9])([ap]m)/g

The loop
Click here to view code image

for (const [, hours, minutes, period] of input.matchAll(time)) {

 . . .

}

iterates over all match results, using destructuring to set hours, minutes, and
period to the group matches. The initial comma ignores the entire matched
expression.

The matchAll method yields the matches lazily. It is efficient if there are
many matches but only a few are examined.

The search method returns the index of the first match or -1 if no match is
found:

Click here to view code image

let index = 'agents 007 and 008'.search(/[0-9]+/) // Yields index
7

The replace method replaces the first match of a regular expression with a
replacement string. To replace all matches, set the global flag:

Click here to view code image

let replacement = 'agents 007 and 008'.replace(/[0-9]/g, '?')

 // 'agents ??? and ???'

 Note

The split method can have a regular expression as argument. For example,

str.split(/\s*,\s*/)

splits str along commas that are optionally surrounded by white space.

6.13 More about Regex Replace

In this section, we have a closer look at the replace method of the String
class.

The replacement string parameter can contain patterns starting with a $ that
are processed as shown in Table 6-6.

Table 6-6 Replacement String Patterns

Pattern Description

$`, $' The portion before or after the matched
string

$& Matched string

$n The nth group

$<name> The group with the given name

$$ Dollar sign

For example, the following replacement repeats each vowel three times:
Click here to view code image

'hello'.replace(/[aeiou]/g, '$&$&$&') // 'heeellooo'

The most useful pattern is the group pattern. Here, we use groups to match
the first and last name of a person in each line and flip them:

Click here to view code image

let names = 'Harry Smith\nSally Lin'

let flipped = names.replace(

 /^([A-Z][a-z]+) ([A-Z][a-z]+)/gm, "$2, $1")

 // 'Smith, Harry\nLin, Sally'

If the number after the $ sign is larger than the number of groups in the
regular expression, the pattern is inserted verbatim:

Click here to view code image

let replacement = 'Blackwell Toaster $29.95'.replace('\$29',

'$19')

 // 'Blackwell Toaster $19.95'—there is no group 19

You can also use named groups:
Click here to view code image

flipped = names.replace(/^(?<first>[A-Z][a-z]+) (?<last>[A-Z][a-

z]+)$/gm,

 "$<last>, $<first>")

For more complex replacements, you can provide a function instead of a
replacement string. The function receives the following arguments:

The string that was matched by the regular expression

The matches of all groups

The offset of the match

The entire string

In this example, we just process the group matches:
Click here to view code image

flipped = names.replace(/^([A-Z][a-z]+) ([A-Z][a-z]+)/gm,

 (match, first, last) => `${last}, ${first[0]}.`)

 // 'Smith, H.\nLin, S.'

 Note

The replace method also works with strings, replacing the first match of the string itself:

Click here to view code image

let replacement = 'Blackwell Toaster $29.95'.replace('$',

'USD')

 // Replaces $ with USD
Note that the $ is not interpreted as an end anchor.

 Caution

If you call the search method with a string, it is converted to a regular expression:

Click here to view code image

let index = 'Blackwell Toaster $29.95'.search('$')

 // Yields 24, the end of the string, not the index of $
Use indexOf to search for a plain string.

6.14 Exotic Features

In the final section of this chapter, you will see several complex and
uncommon regular expression features.

The + and * repetition operators are “greedy”—they match the longest
possible strings. That’s generally desirable. You want /[0-9]+/ to match the
longest possible string of digits, and not a single digit.

However, consider this example:
'"Hi" and "Bye"'.match(/".*"/g)

The result is
'"Hi" and "Bye"'

because .* greedily matches everything until the final ". That does not help
us if we want to match quoted substrings.

One remedy is to require non-quotes in the repetition:
'"Hi" and "Bye"'.match(/"[^"]*"/g)

Alternatively, you can specify that the match should be reluctant, by using
the *? operator:

'"Hi" and "Bye"'.match(/".*?"/g)

Either way, now each quoted string is matched separately, and the result is
['"Hi"', '"Bye"']

There is also a reluctant version +? that requires at least one repetition.

The lookahead operator p(?=q) matches p provided it is followed by q, but
does not include q in the match. For example, here we find the hours that
precede a colon.

Click here to view code image

let hours = '10:30 - 12:00'.match(/[0-9]+(?=:)/g) // ['10, 12']

The inverted lookahead operator p(?!q) matches p provided it is not
followed by q.

Click here to view code image

let minutes = '10:30 - 12:00'.match(/[0-9][0-9](?!:)/g) // ['10,

12']

There is also a lookbehind (?<=p)q that matches q as long as it is preceded
by p.

Click here to view code image

minutes = '10:30 - 12:00'.match(/(?<=[0-9]+:)[0-9]+/g) // ['30',

'00']

Note that the argument inside (?<=[0-9]+:) is itself a regular expression.

Finally, there is an inverted lookbehind (?<!p)q, matching q as long as it is
not preceded by p.

Click here to view code image

hours = '10:30 - 12:00'.match(/(?<![0-9:])[0-9]+/g)

Regular expressions such as this one may have motivated Jamie Zawinski’s
timeless quote, “Some people, when confronted with a problem, think: ‘I
know, I’ll use regular expressions.’ Now they have two problems.”

Exercises
1. Write a function that, given a string, produces an escaped string

delimited by ' characters. Turn all non-ASCII Unicode into \u{. . .}.
Produce escapes \b, \f, \n, \r, \t, \v, \', \\.

2. Write a function that fits a string into a given number of Unicode
characters. If it is too long, trim it and append an ellipsis … (\u{2026}).
Be sure to correctly handle characters that are encoded with two UTF-
16 code units.

3. The substring and slice methods are very tolerant of bad arguments.
Can you get them to yield an error with any arguments? Try strings,
objects, array, no arguments.

4. Write a function that accepts a string and returns an array of all
substrings. Be careful about characters that are encoded with two UTF-
16 code units.

5. In a more perfect world, all string methods would take offsets that
count Unicode characters, not UTF-16 code units. Which String
methods would be affected? Provide replacement functions for them,
such as indexOf(str, sub) and slice(str, start, end).

6. Implement a printf tagged template function that formats integers,
floating-point numbers, and strings with the classic printf formatting
instructions, placed after embedded expressions:

Click here to view code image

const formatted = printf`${item}%-40s | ${quantity}%6d |

${price}%10.2f`

7. Write a tagged template function spy that displays both the raw and
“cooked” string fragments and the embedded expression values. In the
raw string fragments, remove the backslashes that were needed for
escaping backticks, dollar signs, and backslashes.

8. List as many different ways as you can to produce a regular expression
that matches only the empty string.

9. Is the m/multiline flag actually useful? Couldn’t you just match \n?
Produce a regular expression that can find all lines containing just
digits without the multiline flag. What about the last line?

10. Produce regular expressions for email addresses and URLs.

11. Produce regular expressions for US and international telephone
numbers.

12. Use regular expression replacement to clean up phone numbers and
credit card numbers.

13. Produce a regular expression for quoted text, where the delimiters
could be matching single or double quotes, or curly quotes “”.

14. Produce a regular expression for image URLs in an HTML document.

15. Using a regular expression, extract all decimal integers (including
negative ones) from a string into an array.

16. Suppose you have a regular expression and you want to use it for a
complete match, not just a match of a substring. You just want to
surround it with ^ and $. But that’s not so easy. The regular expression
needs to be properly escaped before adding those anchors. Write a
function that accepts a regular expression and yields a regular
expression with the anchors added.

17. Use the replace method of the String class with a function argument to
replace all °F measurements in a string with their °C equivalents.

18. Enhance the greek function of Section 6.5, “Raw Template Literals”
(page 122), so that it handles escaped backslashes and $ symbols. Also
check whether a symbol starting with a backslash has a substitution. If
not, include it verbatim.

19. Generalize the greek function of the preceding exercise to a general
purpose substitution function that can be called as
subst(dictionary)`templateString`.

Chapter 7. Arrays and Collections

Topics in This Chapter

7.1 Constructing Arrays

7.2 The length Property and Index Properties

7.3 Deleting and Adding Elements

7.4 Other Array Mutators

7.5 Producing Elements

7.6 Finding Elements

7.7 Visiting All Elements

 7.8 Sparse Arrays

 7.9 Reduction

7.10 Maps

7.11 Sets

 7.12 Weak Maps and Sets

 7.13 Typed Arrays

 7.14 Array Buffers

Exercises

Whenever you learn a new programming language, you want to know how
to store your data. The traditional data structure of choice for sequential
data is the humble array. In this chapter, you will learn the various array
methods that the JavaScript API provides. We then turn to typed arrays and
array buffers—advanced constructs for efficient handling of binary data
blocks. Unlike Java or C++, JavaScript does not provide a rich set of data
structures, but there are simple map and set classes that we discuss at the
end of the chapter.

7.1 Constructing Arrays
You already know how to construct an array with a given sequence of
elements—simply write a literal:

Click here to view code image

const names = ['Peter', 'Paul', 'Mary']

Here is how to construct an empty array with ten thousand elements, all
initially undefined:

const bigEmptyArray = []

bigEmptyArray.length = 10000

In an array literal, you can place spreads of any iterable. Arrays and strings,
the sets and maps that you will see later in this chapter, as well as NodeList
and HTMLCollection from the DOM API, are iterable. For example, here is
how to form an array containing the elements of two iterables a and b:

const elements = [...a, ...b]

As you will see in Chapter 9, an iterable object has a somewhat complex
structure. The Array.from method collects elements from a simpler array-
like object. An array-like object is an object with an integer-valued property

with name 'length' and properties with names '0', '1', '2', and so on. Of
course, arrays are array-like, but some methods of the DOM API yield
array-like objects that aren’t arrays or iterables. Then you can call
Array.from(arrayLike) to place the elements into an array.

Click here to view code image

const arrayLike = { length: 3 , '0': 'Peter', '1': 'Paul', '2':

'Mary'}

const elements = Array.from(arrayLike)

 // elements is the array ['Peter', 'Paul', 'Mary']
 // Array.isArray(arrayLike) is false, Array.isArray(elements)
is true

The Array.from method accepts an optional second argument, a function
that is called for all index values from 0 up to length − 1, passing the
element (or undefined for missing elements) and the index. The results of
the function are collected into an array. For example,

Click here to view code image

const squares = Array.from({ length: 5 }, (element, index) =>

index * index)

 // [0, 1, 4, 9, 16]

 Caution

There is a constructor for constructing an array with given elements that you can invoke with or
without new:

Click here to view code image

names = new Array('Peter', 'Paul', 'Mary')

names = Array('Peter', 'Paul', 'Mary')

But it has a pitfall. Calling new Array or Array with a single numeric argument has an
entirely different effect. The single argument denotes the length of the array:

Click here to view code image

numbers = new Array(10000)

The result is an array of length 10000 and no elements!

I suggest to stay away from the Array constructor and use array literals:

Click here to view code image

names = ['Peter', 'Paul', 'Mary']

numbers = [10000]

 Note

The factory function Array.of doesn’t suffer from the problem of the Array constructor:

Click here to view code image

names = Array.of('Peter', 'Paul', 'Mary')

littleArray = Array.of(10000) // An array of length 1, same as
[10000]

But it offers no advantage over array literals either. (Exercise 2 shows a subtle and uncommon use
case for the of method.)

7.2 The length Property and Index Properties
Every array has a 'length' property whose value is an integer between 0
and 232 − 1. The properties whose numeric values are non-negative integers
are called index properties. For example, the array

Click here to view code image

const names = ['Peter', 'Paul', 'Mary']

is an object with a 'length' property (whose value is 3) and index
properties '0', '1', '2'. Recall that property keys are always strings.

The length is always one more than the highest index:
Click here to view code image

const someNames = [, 'Smith', , 'Jones'] // someNumbers.length
is 4

The length is adjusted when a value is assigned to an index property:
Click here to view code image

someNames[5] = 'Miller' // Now someNames has length 6

You can adjust the length manually:
Click here to view code image

someNames.length = 100

If you decrease the length, any element whose index is at least the new
length gets deleted.

Click here to view code image

someNames.length = 4 // someNames[4] and beyond are deleted

There is no requirement that an array has an index property for every index
between 0 and length − 1. The ECMAScript standard uses the term missing
elements for gaps in the index sequence.

To find out whether an element is missing, you can use the in operator:
Click here to view code image

'2' in someNames // false—no property '2'
3 in someNames // true; there is a property '3'
 // Note that the left operand is converted to a string

 Note

An array can have properties that are not index properties. This is occasionally used to attach
other information to an array. For example, the exec method of the RegExp class yields an array
of matches, with additional properties index and input.

Click here to view code image

/([1-9]|1[0-2]):([0-5][0-9])([ap]m)/.exec('12:15pm')

 // ['12:15pm', '12', '15', 'pm', index: 0, input: '12:15pm']

 Caution

A string containing a negative number, such as '-1', is a valid property, but it is not an index
property.

Click here to view code image

const squares = [0, 1, 4, 9]

squares[-1] = 1 // [0, 1, 4, 9, '-1': 1]

7.3 Deleting and Adding Elements
The calls

Click here to view code image

let arr = [0, 1, 4, 9, 16, 25]

const deletedElement = arr.pop() // arr is now [0, 1, 4, 9, 16]
const newLength = arr.push(x) // arr is now [0, 1, 4, 9, 16, x]

delete or add an element at the end of an array, adjusting the length.

 Note

Instead of calling pop and push, you could write

Click here to view code image

arr.length--

arr[arr.length] = x

I prefer pop and push since they indicate the intent better.

To delete or add the initial element, call
Click here to view code image

arr = [0, 1, 4, 9, 16, 25]

const deletedElement = arr.shift() // arr is now [1, 4, 9, 16,
25]

const newLength = arr.unshift(x) // arr is now [x, 1, 4, 9, 16,
25]

The push and unshift methods can add any number of elements at once:
Click here to view code image

arr = [9]

arr.push(16, 25) // 16, 25 are appended; arr is now [9, 16, 25]
arr.unshift(0, 1, 4) // 0, 1, 4 are prepended; arr is now [0, 1, 4,
9, 16, 25]

Use the splice method to delete or add elements in the middle:
Click here to view code image

const deletedElements = arr.splice(start, deleteCount, x1, x2, .

. .)

First, deleteCount elements are removed, starting at offset start. Then the
provided elements are inserted at start.

Click here to view code image

arr = [0, 1, 12, 24, 36]

const start = 2

// Replace arr[start] and arr[start + 1]
arr.splice(start, 2, 16, 25) // arr is now [0, 1, 16, 25, 36]

// Add elements at index start
arr.splice(start, 0, 4, 9) // arr is now [0, 1, 4, 9, 16, 25,
36]

// Delete the elements at index start and start + 1
arr.splice(start, 2) // arr is now [0, 1, 16, 25, 36]
// Delete all elements at index start and beyond
arr.splice(start) // arr is now [0, 1]

If start is negative, it is counted from the end of the array (that is, it is
adjusted by adding arr.length).

Click here to view code image

arr = [0, 1, 4, 16]

arr.splice(-1, 1, 9) // arr is now [0, 1, 4, 9]

The splice method returns an array of the removed elements.
Click here to view code image

arr = [1, 4, 9, 16]

const spliced = arr.splice(1, 2) // spliced is [4, 9], arr is [1,
16]

7.4 Other Array Mutators
In this section, you will see the mutator methods of the Array class other
than those for deleting and adding elements.

The fill method overwrites existing elements with a new value:
arr.fill(value, start, end)

The copyWithin method overwrites existing elements with other elements
from the same array:

Click here to view code image

arr.copyWithin(targetIndex, start, end)

With both methods, start defaults to 0 and end to arr.length.

If start, end, or targetIndex are negative, they count from the end of the
array.

Here are some examples:
Click here to view code image

let arr = [0, 1, 4, 9, 16, 25]

arr.copyWithin(0, 1) // arr is now [1, 4, 9, 16, 25, 25]
arr.copyWithin(1) // arr is now [1, 1, 4, 9, 16, 25]
arr.fill(7, 3, -1) // arr is now [1, 1, 4, 7, 7, 25]

arr.reverse() reverses arr in place:
Click here to view code image

arr = [0, 1, 4, 9, 16, 25]

arr.reverse() // arr is now [25, 16, 9, 4, 1, 0]

The call
arr.sort(comparisonFunction)

sorts arr in place. The comparison function compares two elements x, y and
returns

A negative number if x should come before y

A positive number if x should come after y

0 if they are indistinguishable

For example, here is how you can sort an array of numbers:
Click here to view code image

arr = [0, 1, 16, 25, 4, 9]

arr.sort((x, y) => x - y) // arr is now [0, 1, 4, 9, 16, 25]

 Caution

If the comparison function is not provided, the sort method turns elements to strings and
compares them—see Exercise 5. For numbers, this might be the world’s worst comparison
function:

Click here to view code image

arr = [0, 1, 4, 9, 16, 25]

arr.sort() // arr is now [0, 1, 16, 25, 4, 9]

The most useful methods of the Array class are summarized in Table 7-1.

Table 7-1 Useful Functions and Methods of the Array Class

Name Description

Functions

from(arraylike, f) Produces an array from any object
with properties named 'length',
'0', '1', and so on. If present, the
function f is applied to each
element.

Mutating Methods

pop(), shift() Removes and returns the last
element

push(value), unshift(value) Appends or prepends value to this
array and returns the new length

fill(value, start, end) Overwrites the given range with
value. For this and the following
methods, the following apply
unless otherwise mentioned: If

Name Description

start or end are negative, they are
counted from the end of the array.
The range includes start and
excludes end. The default for
start and end are 0 and the array
length. The method returns this
array.

copyWithin(targetIndex,

start, end)

Copies the given range to the
target index

reverse() Reverses the elements of this
array

sort(comparisonFunction) Sorts this array

splice(start, deleteCount,

values...)

Removes and returns deleteCount
elements at index start, then
inserts the given values at start

Nonmutating Methods

slice(start, end) Returns the elements in the given
range

includes(target, start),
firstIndex(target, start),
lastIndex(target, start)

If the array includes target at or
after index start, these methods
return true or the index;
otherwise, false or -1

flat(k) Returns the elements of this array,
replacing any arrays of dimension
≤k with their elements. The
default for k is 1.

Name Description

map(f), flatMap(f),
forEach(f)

Calls the given function on each
element and returns an array of
the results, or the flattened results,
or undefined

filter(f) Returns all elements for which f
returns a truish result

findIndex(f), find(f) Return the index or value of the
first element for which f returns a
truish value. The function f is
called with three arguments: the
element, index, and array.

every(f), some(f) Return true if f returns a truish
value for every, or at least one,
element

join(separator) Returns a string consisting of all
elements turned to strings and
separated by the given separator
(which defaults to ',')

For sorting strings in a human language, the localeCompare method can be a
good choice:

Click here to view code image

const titles = . . .

titles.sort((s, t) => s.localeCompare(t))

Chapter 8 has more information about locale-based comparisons.

 Note

Since 2019, the sort method is guaranteed to be stable. That is, the order of indistinguishable
elements is not disturbed. For example, suppose you have a sequence of messages that was
previously sorted by date. If you now sort it by the sender, then messages with the same sender
will continue to be sorted by date.

7.5 Producing Elements
All methods that are introduced from this point on do not mutate the array
on which they operate.

The following methods produce arrays containing elements from an
existing array.

The call
arr.slice(start, end)

yields an array containing the elements in the given range. The start index
defaults to 0, end to arr.length.

arr.slice() is the same as [...arr].

The flat method flattens multidimensional arrays. The default is to flatten
one level.

[[1, 2], [3, 4]].flat()

is the array
[1, 2, 3, 4]

In the unlikely case that you have an array of more than two dimensions,
you can specify how many levels you want to flatten. Here is a flattening
from three dimensions to one:

Click here to view code image

[[[1, 2], [3, 4]], [[5, 6], [7, 8]]].flat(2) // [1, 2, 3, 4, 5,

6, 7, 8]

The call

arr.concat(arg1, arg2, . . .)

yields an array starting with arr, to which the arguments are appended.
However, there is a twist: Array arguments are flattened.

Click here to view code image

const arr = [1, 2]

const arr2 = [5, 6]

const result = arr.concat(3, 4, arr2) // result is [1, 2, 3, 4,
5, 6]

Since you can nowadays use spreads in array literals, the concat method is
no longer very useful. A simpler way of achieving the same result is:

Click here to view code image

const result = [...arr, 3, 4, ...arr2]

There is one remaining use case for the concat method: to concatenate a
sequence of items of unknown type and flatten just those that are arrays.

 Note

You can control the flattening with the isConcatSpreadable symbol. (Symbols are covered
in Chapter 8.)

If the symbol is false, arrays are not flattened:

Click here to view code image

arr = [17, 29]

arr[Symbol.isConcatSpreadable] = false

[].concat(arr) // An array with a single element [17, 29]
If the symbol is true, then array-like objects are flattened:

Click here to view code image

[].concat({ length: 2, [Symbol.isConcatSpreadable]: true,

 '0': 17, '1': 29 }) // An array with two elements 17, 29

7.6 Finding Elements

The following calls check whether a specific value is contained in an array.
Click here to view code image

const found = arr.includes(target, start) // true or false
const firstIndex = arr.indexOf(target, start) // first index or -1
const lastIndex = arr.lastIndexOf(target, start) // last index or -1

The target must match the element strictly, using the === comparison.

The search starts at start. If start is less than 0, it counts from the end of
the array. If start is omitted, it defaults to 0.

If you want to find a value that fulfills a condition, then call one of the
following:

Click here to view code image

const firstIndex = arr.findIndex(conditionFunction)

const firstElement = arr.find(conditionFunction)

For example, here is how you can find the first negative number in an array:
Click here to view code image

const firstNegative = arr.find(x => x < 0)

For this and the subsequent methods of this section, the condition function
receives three arguments:

The array element

The index

The entire array

The calls
Click here to view code image

arr.every(conditionFunction)

arr.some(conditionFunction)

yield true if conditionFunction(element, index, arr) is true for every
element or at least one element.

For example,

Click here to view code image

const atLeastOneNegative = arr.some(x => x < 0)

The filter method yields all values that fulfill a condition:
Click here to view code image

const negatives = [-1, 7, 2, -9].filter(x => x < 0) // [-1, -9]

7.7 Visiting All Elements
To visit all elements of an array, you can use a for of loop to visit all
elements in order, or the for in loop to visit all index values.

Click here to view code image

for (const e of arr) {

 // Do something with the element e
}

for (const i in arr) {

 // Do something with the index i and the element arr[i]
}

 Note

The for of loop looks up elements for all index values between 0 and length − 1, yielding
undefined for missing elements. In contrast, the for in loop only visits keys that are
present.

In other words, the for in loop views an array as an object, whereas the for of loop views
an array as an iterable. (As you will see in Chapter 12, iterables are sequences of values without
gaps.)

If you want to visit both the index values and elements, use the iterator that
the entries method returns. It produces arrays of length 2 holding each
index and element. This loop uses the entries method, a for of loop, and
destructuring:

Click here to view code image

for (const [index, element] of arr.entries())

 console.log(index, element)

 Note

The entries method is defined for all JavaScript data structures, including arrays. There are
corresponding methods keys and values that yield iterators over the keys and values of the
collection. These are useful for working with generic collections. If you know that you are
working with an array, you won’t need them.

The call arr.forEach(f) invokes f(element, index, arr) for each element,
skipping missing elements. The call

Click here to view code image

arr.forEach((element, index) => console.log(index, element))

is equivalent to
Click here to view code image

for (const index in arr) console.log(index, arr[index])

Instead of specifying an action for each element, it is often better to
transform the elements and collect the results. The call arr.map(f) yields an
array of all values returned from f(arr[index], index, arr):

Click here to view code image

[1, 7, 2, 9].map(x => x * x) // [1, 49, 4, 81]

[1, 7, 2, 9].map((x, i) => x * 10 ** i) // [1, 70, 200, 9000]

Consider a function that returns an array of values:
Click here to view code image

function roots(x) {

 if (x < 0) {

 return [] // No roots
 } else if (x === 0) {

 return [0] // Single root
 } else {

 return [Math.sqrt(x), -Math.sqrt(x)] // Two roots
 }

}

When you map this function to an array of inputs, you get an array of the
array-valued answers:

Click here to view code image

[-1, 0, 1, 4].map(roots) // [[], [0], [1, -1], [2, -2]]

If you want to flatten out the results, you can call map followed by flat, or
you can call flatMap which is slightly more efficient:

Click here to view code image

[-1, 0, 1, 4].flatMap(roots) // [0, 1, -1, 2, -2]

Finally, the call arr.join(separator) converts all elements to strings and
joins them with the given separator. The default separator is ','.

Click here to view code image

[1,2,3,[4,5]].join(' and ') // '1 and 2 and 3 and 4,5'

 Note

The forEach, map, filter, find, findIndex, some, and every methods (but not sort
or reduce), as well as the from function, take an optional argument after the function
argument:

Click here to view code image

arr.forEach(f, thisArg)

The thisArg argument becomes the this parameter of f. That is,

Click here to view code image

thisArg.f(arr[index], index, arr)

is called for each index.

You only need the thisArg argument if you pass a method instead of a function. Exercise 4
shows how you can avoid this situation.

7.8 Sparse Arrays

An array with one or more missing elements is called sparse. Sparse arrays
can arise in four situations:

1. Missing elements in an array literal:
Click here to view code image

const someNumbers = [, 2, , 9] // No index properties 0, 2

2. Adding an element beyond the length:
Click here to view code image

someNumbers[100] = 0 // No index properties 4 to 99

3. Increasing the length:
Click here to view code image

const bigEmptyArray = []

bigEmptyArray.length = 10000 // No index properties

4. Deleting an element:
Click here to view code image

delete someNumbers[1] // No longer an index property 1

Most methods in the array API skip over the missing elements in sparse
arrays. For example, [, 2, , 9].forEach(f) only invokes f twice. No call
is made for the missing elements at indices 0 and 2.

As you have seen in Section 7.1, “Constructing Arrays” (page 141),
Array.from(arrayLike, f) is an exception, invoking f for every index.

You can use Array.from to replace missing elements with undefined:
Click here to view code image

Array.from([, 2, , 9]) // [undefined, 2, undefined, 9]

The join method turns missing and undefined elements into empty strings:
Click here to view code image

[, 2, undefined, 9].join(' and ') // ' and 2 and and 9'

Most methods that produce arrays from given arrays keep the missing
elements in place. For example, [, 2, , 9].map(x => x * x) yields [,

4, , 81].

However, the sort method places missing elements at the end:
Click here to view code image

let someNumbers = [, 2, , 9]

someNumbers.sort((x, y) => y - x) // someNumbers is now [9, 2, ,
,]

(Eagle-eyed readers may have noted that there are four commas. The last
comma is a trailing comma. If it had not been present, then the preceding
comma would have been a trailing comma and the array would only have
had one undefined element.)

The filter, flat, and flatMap skip missing elements entirely.

A simple way of eliminating missing elements from an array is to filter with
a function that accepts all elements:

Click here to view code image

[, 2, , 9].filter(x => true) // [2, 9]

7.9 Reduction

This section discusses a general mechanism for computing a value from the
elements of an array. The mechanism is elegant, but frankly, it is never
necessary—you can achieve the same effect with a simple loop. Feel free to
skip this section if you don’t find it interesting.

The map method applies a unary function to all elements of a collection. The
reduce and reduceRight methods that we discuss in this section combine
elements with a binary operation. The call arr.reduce(op) applies op to
successive elements like this:

Click here to view code image

 .

 .

 .

 op

 / \

 op arr[3]

 / \

 op arr[2]

 / \

arr[0] arr[1]

For example, here is how to compute the sum of array elements:
Click here to view code image

const arr = [1, 7, 2, 9]

const result = arr.reduce((x, y) => x + y) // ((1 + 7) + 2) + 9

Here is a more interesting reduction that computes the value of a decimal
number from an array of digits:

Click here to view code image

[1, 7, 2, 9].reduce((x, y) => 10 * x + y) // 1729

This tree diagram shows the intermediate results:
Click here to view code image

 1729

 / \

 172 9

 / \

 17 2

 / \

 1 7

In most cases, it is useful to start the computation with an initial value other
than the initial array element. The call arr.reduce(op, init) computes

Click here to view code image

 .

 .

 .

 op

 / \

 op arr[2]

 / \

 op arr[1]

 / \

init arr[0]

Compared with the tree diagram of reduce without an initial value, this
diagram is more regular. All array elements are on the right of the tree. Each
operation combines an accumulated value (starting with the initial value)
and an array element.

For example,
Click here to view code image

[1, 7, 2, 9].reduce((accum, current) => accum - current, 0)

is

0 − 1 − 7 − 2 − 9 = −19

Without the initial value, the result would have been 1 − 7 − 2 − 9, which is
not the difference of all elements.

The initial value is returned when the array is empty. For example, if you
define

Click here to view code image

const sum = arr => arr.reduce((accum, current) => accum +

current, 0)

then the sum of the empty array is 0. Reducing an empty array without an
initial value throws an exception.

The callback function actually takes four arguments:

The accumulated value

The current array element

The index of the current element

The entire array

In this example, we collect the positions of all elements fulfilling a
condition:

Click here to view code image

function findAll(arr, condition) {

 return arr.reduce((accum, current, currentIndex) =>

 condition(current) ? [...accum, currentIndex] : accum, [])

}

const odds = findAll([1, 7, 2, 9], x => x % 2 !== 0)

 // [0, 1, 3], the positions of all odd elements

The reduceRight method starts at the end of the array, visiting the elements
in reverse order.

Click here to view code image

 op

 / \

 . arr[0]

 .

 .

 /

 op

 / \

 op arr[n-2]

 / \

 init arr[n-1]

For example,
Click here to view code image

[1, 2, 3, 4].reduceRight((x, y) => [x, y], [])

is
[[[[[], 4], 3], 2], 1]

 Note

Right reduction in JavaScript is similar to a right fold in Lisp-like languages, but the order of the
operands is reversed.

Reducing can be used instead of a loop. Suppose, for example, that we want
to count the frequencies of the letters in a string. One way is to visit each
letter and update an object.

Click here to view code image

const freq = {}

for (const c of 'Mississippi') {

 if (c in freq) {

 freq[c]++

 } else {

 freq[c] = 1

 }

}

Here is another way of thinking about this. At each step, combine the
frequency map and the newly encountered letter, yielding a new frequency
map. That’s a reduction:

Click here to view code image

 .

 .

 .

 op

 / \

 op 's'

 / \

 op 'i'

 / \

empty map 'M'

What is op? The left operand is the partially filled frequency map, and the
right operand is the new letter. The result is the augmented map. It becomes
the input to the next call to op, and at the end, the result is a map with all
counts. The code is

Click here to view code image

[...'Mississippi'].reduce(

 (freq, c) => ({ ...freq, [c]: (c in freq ? freq[c] + 1 : 1) }),

 {})

In the reduction function, a new object is created, starting with a copy of the
freq object. Then the value associated with the c key is set either to an
increment of the preceding value if there was one, or to 1.

Note that in this approach, no state is mutated. In each step, a new object is
computed.

It is possible to replace any loop with a call to reduce. Put all variables
updated in the loop into an object, and define an operation that implements

one step through the loop, producing a new object with the updated
variables. I am not saying this is always a good idea, but you may find it
interesting that loops can be eliminated in this way.

7.10 Maps
The JavaScript API provides a Map class that implements the classic map
data structure: a collection of key/value pairs.

Of course, every JavaScript object is a map, but there are advantages of
using the Map class instead:

Object keys must be strings or symbols, but Map keys can be of any type.

A Map instance remembers the order in which elements were inserted.

Unlike objects, maps do not have a prototype chain.

You can find out the number of entries with the size property.

To construct a map, you can provide an iterable with [key, value] pairs:
Click here to view code image

const weekdays = new Map(

 [["Mon", 0], ["Tue", 1], ["Wed", 2], ["Thu", 3], ["Fri", 4],

["Sat", 5], ["Sun", 6],])

Or you can construct an empty map and add entries later:
Click here to view code image

const emptyMap = new Map()

You must use new with the constructor.

The API is very straightforward. The call
Click here to view code image

map.set(key, value)

adds an entry and returns the map for chaining:
Click here to view code image

map.set(key1, value1).set(key2, value2)

To remove an entry, call:
Click here to view code image

map.delete(key) // Returns true if the key was present, false
otherwise

The clear method removes all entries.

To test whether a key is present, call
Click here to view code image

if (map.has(key)) . . .

Retrieve a key’s value with
Click here to view code image

const value = map.get(key) // Returns undefined if the key is not
present

A map is an iterable yielding [key, value] pairs. Therefore, you can easily
visit all entries with a for of loop:

Click here to view code image

for (const [key, value] of map) {

 console.log(key, value)

}

Alternatively, use the forEach method:
Click here to view code image

map.forEach((key, value) => {

 console.log(key, value)

})

Maps are traversed in insertion order. Consider this map:
Click here to view code image

const weekdays = new Map([['Mon', 0], ['Tue', 1], . . ., ['Sun',

6]])

Both the for of loop and the forEach method will respect the order in
which you inserted the elements.

 Note

In Java, you would use a LinkedHashMap to visit elements in insertion order. In JavaScript,
tracking insertion order is automatic.

 Note

Maps, like all JavaScript collections, have methods keys, values, and entries that yield
iterators over the keys, values, and key/value pairs. If you just want to iterate over the keys, you
can use a loop:

for (const key of map.keys()) . . .

In programming languages such as Java and C++, you get the choice
between hash maps and tree maps, and you have to come up with a hash or
comparison function. In JavaScript, you always get a hash map, and you
have no choice of the hash function.

The hash function for a JavaScript Map is compatible with key equality: ===
except that all NaN are equal. Hash values are derived from primitive type
values or object references.

This is fine if your keys are strings or numbers, or if you are happy to
compare keys by identity. For example, you can use a map to associate
values with DOM nodes. That is better than adding properties directly into
the node objects.

But you have to be careful when you use other objects as keys. Distinct
objects are separate keys, even if their values are the same:

Click here to view code image

const map = new Map()

const key1 = new Date('1970-01-01T00:00:00.000Z')

const key2 = new Date('1970-01-01T00:00:00.000Z')

map.set(key1, 'Hello')

map.set(key2, 'Epoch') // Now map has two entries

If that’s not what you want, consider choosing different keys, such as the
date strings in this example.

7.11 Sets
A Set is a data structure that collects elements without duplicates.

Construct a set as
Click here to view code image

const emptySet = new Set()

const setWithElements = new Set(iterable)

where iterable produces the elements.

As with maps, the size property yields the number of elements.

The API for sets is even simpler than that for maps:
Click here to view code image

set.add(x)

 // Adds x if not present and returns set for chaining
set.delete(x)

 // If x is present, deletes x and returns true, otherwise returns false
set.has(x) // Returns true if x is present
set.clear() // Deletes all elements

To visit all elements of a set, you can use a for of loop:
Click here to view code image

for (const value of set) {

 console.log(value)

}

Alternatively, you can use the forEach method:
Click here to view code image

set.forEach(value => {

 console.log(value)

})

Just like maps, sets remember their insertion order. For example, suppose
you add weekday names in order:

Click here to view code image

const weekdays = new Set(['Mon', 'Tue', 'Wed', 'Thu', 'Fri',

'Sat', 'Sun'])

Then the for of loop and forEach method iterate over the elements in this
order.

 Note

A set is considered as a map of [value, value] pairs. Both the keys and values methods
yield an iterator over the values, and the entries method yield an iterator over [value,
value] pairs. None of these methods are useful when you work with a known set. They are
intended for code that deals with generic collections.

As with maps, sets are implemented as hash tables with a predefined hash
function. Set elements are considered to be the same if they are the same
primitive type values or the same object references. In addition, NaN values
equal each other.

7.12 Weak Maps and Sets

An important use case for JavaScript maps and sets is to attach properties to
DOM nodes. Suppose we want to categorize certain nodes to indicate
success, work in progress, or an error. We could attach the properties
directly to the nodes:

node.outcome = 'success'

That generally works fine, but it is a bit fragile. DOM nodes have lots of
properties, and trouble lies ahead if someone else, or a future version of the
DOM API, uses the same property.

It is more robust to use a map:
Click here to view code image

const outcome = new Map()

. . .

outcome.set(node, 'success')

DOM nodes come and go. If a particular node is no longer needed, it should
be garbage-collected. However, if a node reference resides in the outcome
map, that reference will keep the node object alive.

That is where weak maps come in. If a key in a weak map is the only
reference to an object, that object is not kept alive by the garbage collector.

Simply use a weak map to collect properties:
const outcome = new WeakMap()

Weak maps have no traversal methods, and the map objects are not iterable.
The only methods are set, delete, has, and get. That is enough to set
properties and to check the properties of a given object.

If the property that you want to monitor is binary, you can use a WeakSet
instead of a WeakMap. Then the only methods are set, delete, and has.

The keys of weak maps and the elements of weak sets can only be objects,
not primitive type values.

7.13 Typed Arrays

JavaScript arrays store sequences of elements of any kind, possibly with
missing elements. If all you want to store is a sequence of numbers, or the
raw bytes of an image, a generic array is quite inefficient.

If you need to store sequences of numbers of the same type efficiently, you
can use a typed array. The following array types are available:

Click here to view code image

Int8Array

Uint8Array

Uint8ClampedArray

Int16Array

Uint16Array

Int32Array

Uint32Array

Float32Array

Float64Array

All elements are of the given type. For example, an Int16Array stores 16-bit
integers between −32768 and 32767. The Uint prefix denotes unsigned
integers. An UInt16Array holds integers from 0 to 65535.

When constructing an array, specify the length. You cannot change it later.
Click here to view code image

const iarr = new Int32Array(1024)

Upon construction, all array elements are zero.

There are no typed array literals, but each typed array class has a function
named of for constructing an instance with given values:

Click here to view code image

const farr = Float32Array.of(1, 0.5, 0.25, 0.125, 0.0625,

0.03215, 0.015625)

As with arrays, there is a from function that takes elements from any
iterable, with an optional mapping function:

Click here to view code image

const uarr = Uint32Array.from(farr, x => 1 / x)

 // An Uint32Array with elements [1, 2, 4, 8, 16, 32, 64]

Assigning to a numerical array index that is not an integer between 0 and
length − 1 has no effect. However, as with regular arrays, you can set other
properties:

Click here to view code image

farr[-1] = 2 // No effect
farr[0.5] = 1.414214 // No effect
farr.lucky = true // Sets the lucky property

When you assign a number to an integer array element, any fractional part
is discarded. Then the number is truncated to fit into the integer range.

Consider this example:
Click here to view code image

iarr[0] = 40000.25 // Sets iarr[0] to -25536

Only the integer part is used. Since 40000 is too large to fit in the range of
32-bit integers, the last 32 bits are taken, which happen to represent
−25536.

An exception to this truncation process is the Uint8ClampedArray which sets
an out-of-range value to 0 or 255 and rounds non-integer values to the
nearest integer.

The Uint8ClampedArray type is intended for use with HTML canvas images.
The getImageData method of a canvas context yields an object whose data
property is an Uint8ClampedArray containing the RGBA values of a
rectangle on a canvas:

Click here to view code image

const canvas = document.getElementById('canvas')

const ctx = canvas.getContext('2d')

ctx.drawImage(img, 0, 0)

let imgdata = ctx.getImageData(0, 0, canvas.width, canvas.height)

let rgba = imgdata.data // an Uint8ClampedArray

The companion code for this book has a sample program that turns the
canvas contents into negative when you click on it—see Figure 7-1.

Click here to view code image

canvas.addEventListener('click', event => {

 for (let i = 0; i < rgba.length; i++) {

 if (i % 4 != 3) rgba[i] = 255 - rgba[i]

 }

 ctx.putImageData(imgdata, 0, 0)

})

Figure 7-1 The canvas content turns into negative when
clicked

Typed arrays have all methods of regular arrays, except for:

push, pop, shift, unshift—you can’t change the size of a typed array

flat, flatMap—a typed array can’t hold arrays

concat—use set instead

There are two methods that regular arrays don’t have. The set method
copies values from an array or typed array at an offset:

Click here to view code image

targetTypedArray.set(source, offset)

By default, the offset is zero. The source must fit entirely into the target. If
the offset and source length exceed the target length, a RangeError is
thrown. (This means you cannot use this method to shift elements of a
typed array.)

The subarray method yields a view into a subrange of the elements:
Click here to view code image

const sub = iarr.subarray(16, 32)

If omitted, the end index is the length of the array, and the start index is
zero.

This seems to be just the same as the slice method, but there is an
important difference. The array and subarray share the same elements.
Modifying either is visible in the other.

Click here to view code image

sub[0] = 1024 // Now iarr[16] is also 1024

7.14 Array Buffers

An array buffer is a contiguous byte sequence that can hold data from a file,
a data stream, an image, and so on. The data from typed arrays are also
stored in array buffers.

A number of web APIs (including the File API, XMLHttpRequest, and
WebSockets) yield array buffers. You can also construct an array buffer
with a given number of bytes:

Click here to view code image

const buf = new ArrayBuffer(1024 * 2)

Usually, the binary data in an array buffer has a complex structure, such as
an image or sound file. Then use a DataView to look at the data inside:

const view = new DataView(buf)

Read values at a given offset with the DataView methods getInt8, getInt16,
getInt32, getUInt8, getUInt16, getUInt32, getFloat32, getFloat64:

Click here to view code image

const littleEndian = true // false or omitted for big-endian byte
order
const value = view.getUint32(offset, littleEndian)

Write data with the set method:
Click here to view code image

view.setUint32(offset, newValue, littleEndian)

 Note

There are two ways of storing binary data as a sequence of bytes, called “big-endian” and “little-
endian.” Consider the 16-bit value 0x2122. In the big-endian way, the more significant byte
comes first: 0x21 followed by 0x22. Little-endian is the other way around: 0x22 0x21.

Most modern processors are little-endian, but a number of common file formats (such as PNG and
JPEG) use big-endian numbers.

The “big-endian” and “little-endian” terms, while eminently sensible on their own, are actually
borrowed from a satirical passage in Gulliver’s Travels.

The buffer of a typed array always uses the endianness of the host platform.
If the entire buffer data is an array, and you know that the endianness
matches that of the host platform, you can construct a typed array from the
buffer contents:

Click here to view code image

const arr = new Uint16Array(buf) // An array of 1024 Uint16, backed
by buf

Exercises
1. Implement a function that works exactly like the from function of the

Array class. Pay careful attention to missing elements. What happens
with objects that have keys whose numeric values are ≥ the length
property? With properties that are not index properties?

2. The Array.of method was designed for a very specific use case: to be
passed as a “collector” to a function that produces a sequence of values
and sends them to some destination—perhaps printing them, summing
them, or collecting them in an array. Implement such a function:
mapCollect(values, f, collector)

The function should apply f to all values and then send the result to the
collector, a function with a variable number of arguments. Return the
result of the collector.

Explain the advantage of using Array.of over Array (i.e.,
(...elements) => new Array(...elements)) in this context.

3. An array can have properties whose numeric values are negative
integers, such as '-1'. Do they affect the length? How can you iterate
over them in order?

4. Google for “JavaScript forEach thisArg” to find blog articles explaining
the thisArg parameter of the forEach method. Rewrite the examples
without using the thisArg parameter. If you find a call such as
Click here to view code image

arr.forEach(function() { . . . this.something() . . . },

thisArg)

where thisArg is this, replace the function with an arrow function.
Otherwise, replace the inner this with whatever thisArg is. If the call
has the form
arr.forEach(method, thisArg)

use an arrow function invoking thisArg.method(. . .). Can you come
up with any situation where thisArg is required?

5. If you do not supply a comparison function in the sort method of the
Array class, then elements are converted to strings and
lexicographically compared by UTF-16 code units. Why is this a
terrible idea? Come up with arrays of integers or objects where the sort
results are useless. What about characters above \u{FFFF}?

6. Suppose an object representing a message has properties for dates and
for senders. Sort an array of messages first by date, then by sender.
Verify that the sort method is stable: Messages with the same sender
continue to be sorted by date after the second sort.

7. Suppose an object representing a person has properties for first and last
names. Provide a comparison function that compares last names and
then breaks the ties using first names.

8. Implement a comparison function that compares two strings by their
Unicode code points, not their UTF-16 code units.

9. Write a function that yields all positions of a target value in an array.
For example, indexOf(arr, 0) yields all array index values i where
arr[i] is zero. Use map and filter.

10. Write a function that yields all positions at which a given function is
true. For example, indexOf(arr, x => x > 0) yields all array index
values i where arr[i] is positive.

11. Compute the spread (that is, the difference between maximum and
minimum) of an array using reduce.

12. Given an array of functions [f1, f2, . . . , fn], obtain the
composition function x => f1(f2(. . . (fn(x)) . . .)) using
reduceRight.

13. Implement functions map, filter, forEach, some, every for sets.

14. Implement functions union(set1, set2), intersection(set1, set2),
difference(set1, set2) that yield the union, intersection, or difference
of the sets, without mutating the arguments.

15. Write a function that constructs a Map from an object, so that you can
easily construct a map as toMap({ Monday: 1, Tuesday: 2, . . . }).

16. Suppose you use a Map whose keys are point objects of the form { x:.
. ., y:. . . }. What can go wrong when you make queries such as
map.get({ x: 0, y: 0 })? What can you do to overcome that?

17. Show that weak sets really work as promised. Start Node.js with the
flag --expose-gc. Call process.memoryUsage() to find out how much of
the heap is used. Allocate an object:
Click here to view code image

let fred = { name: 'Fred', image: new Int8Array(1024*1024) }

Verify that the heap usage has gone up by about a megabyte. Set fred to
null, run the garbage collector by calling global.gc(), and check that
the object was collected. Now repeat, inserting the object into a weak

set. Verify that the weak set allows the object to be collected. Repeat
with a regular set and show that the object won’t be collected.

18. Write a function to find the endianness of host platform. Use an array
buffer and view it both as a data view and a typed array.

Chapter 8. Internationalization

Topics in This Chapter

8.1 The Locale Concept

8.2 Specifying a Locale

8.3 Formatting Numbers

8.4 Localizing Dates and Times

8.5 Collation

8.6 Other Locale-Sensitive String Methods

 8.7 Plural Rules and Lists

 8.8 Miscellaneous Locale Features

Exercises

There’s a big world out there, and hopefully many of its inhabitants will be
interested in your software. Some programmers believe that all they need to
do to internationalize their application is to support Unicode and translate

the messages in the user interface. However, as you will see, there is a lot
more to internationalizing programs. Dates, times, currencies, even
numbers are formatted differently in different parts of the world. In this
chapter, you will learn how to use the internationalization features of
JavaScript so that your programs present and accept information in a way
that makes sense to your users, wherever they may be.

8.1 The Locale Concept
When you look at an application that is adapted to an international
audience, the most obvious difference is the language. But there are many
more subtle differences; for example, numbers are formatted differently in
different countries. The number

123,456.78

should be displayed as
123.456,78

for a German user—that is, the roles of the decimal point and the decimal
comma separator are reversed. In other locales, users prefer different digits.
Here is the same number in Thai digits:

๑๒๓,๔๕๖.๗๘

There are similar variations in the display of dates. In the United States,
dates are displayed as month/day/year; Germany uses the less idiosyncratic
order of day/month/year, whereas in China, the usage is the even more
sensible year/month/day. Thus, the American date

3/22/61

should be presented as
22.03.1961

to a German user. If the month names are written out explicitly, then the
difference in languages becomes even more apparent. The English

March 22, 1961

should be presented as
22. März 1961

in German, or
1961年3月22日

in Chinese.

A locale specifies the language and location of a user, which allows
formatters to take user preferences into account. The following sections
show you how to specify a locale and how to control the locale settings of a
JavaScript program.

8.2 Specifying a Locale
A locale consists of up to five components:

1. A language, specified by two or three lowercase letters, such as en
(English), de (German), or zh (Chinese). Table 8-1 shows common
codes.

2. Optionally, a script, specified by four letters with an initial uppercase,
such as Latn (Latin), Cyrl (Cyrillic), or Hans (simplified Chinese
characters). This can be useful because some languages, such as
Serbian, are written in Latin or Cyrillic, and some Chinese readers
prefer the traditional over the simplified characters.

3. Optionally, a country or region, specified by two uppercase letters or
three digits, such as US (United States) or CH (Switzerland). Table 8-2
shows common codes.

4. Optionally, a variant. Variants are rarely used nowadays. There used to
be a “Nynorsk” variant of Norwegian, but it is now expressed with a
different language code, nn. What used to be variants for the Japanese
imperial calendar and Thai numerals are now expressed as extensions
(see below).

5. Optionally, an extension. Extensions describe local preferences for
calendars (such as the Japanese calendar), numbers (Thai instead of

Western digits), and so on. The Unicode standard specifies some of
these extensions. These extensions start with u- and a two-letter code
specifying whether the extension deals with the calendar (ca), numbers
(nu), and so on. For example, the extension u-nu-thai denotes the use of
Thai numerals. Other extensions are entirely arbitrary and start with x-,
such as x-java.

Table 8-1 Common Language Codes

Language Code Language Code

Chinese zh Japanese ja

Danish da Korean ko

Dutch du Norwegian no

English en Portugese pt

French fr Spanish es

Finnish fi Swedish sv

Italian it Turkish tr

Table 8-2 Common Country Codes

Country Code Country Code

Austria AT Japan JP

Belgium BE Korea KR

Country Code Country Code

Canada CA The
Netherlands

NL

China CN Norway NO

Denmark DK Portugal PT

Finland FI Spain ES

Germany DE Sweden SE

Great Britain GB Switzerland CH

Greece GR Taiwan TW

Ireland IE Turkey TR

Italy IT United States US

Rules for locales are formulated in the “Best Current Practices” memo BCP
47 of the Internet Engineering Task Force
(http://tools.ietf.org/html/bcp47). You can find a more accessible
summary at www.w3.org/International/articles/language-tags.

 Note

The codes for languages and countries seem a bit random because some of them are derived from
local languages. German in German is Deutsch, Chinese in Chinese is zhongwen—hence de and
zh. And Switzerland is CH, derived from the Latin term Confoederatio Helvetica for the Swiss
confederation.

Locales are described by tags—hyphenated strings of locale elements such
as 'en-US'.

http://tools.ietf.org/html/bcp47
http://www.w3.org/International/articles/language-tags

In Germany, you would use a locale 'de-DE'. Switzerland has four official
languages (German, French, Italian, and Rhaeto-Romance). A German
speaker in Switzerland would want to use a locale 'de-CH'. This locale uses
the rules for the German language, but currency values are expressed in
Swiss francs, not euros.

Pass the locale tags to locale-sensitive functions. For example:
Click here to view code image

const newYearsEve = new Date(1999, 11, 31, 23, 59)

newYearsEve.toLocaleString('de') // Yields the string '31.12.1999
23:59:00'

Instead of a single locale tag, you can provide an array in decreasing
priority: ['de-CH', 'de', 'en']. With such a locale tag array, a locale-
sensitive method can use a fallback locale if it cannot support the preferred
one.

Additional options can be specified in an object that follows the locale tag:
Click here to view code image

newYearsEve.toLocaleString('de', { timeZone: 'Asia/Tokyo' })

 // The date as viewed in the given time zone, such as '1.1.2000,
07:59:00'

If you omit the locale and options, the default locale is used with no
options. For the default locale with options, you can provide an empty
locale tag array:

Click here to view code image

newYearsEve.toLocaleString([], { timeZone: 'Asia/Tokyo' })

 Note

The toLocaleString method is defined in the Object class. You can override it in any class
—see Exercise 1.

8.3 Formatting Numbers

To format numbers, invoke the toLocaleString method of the Number
method and pass the locale tag as an argument:

Click here to view code image

let number = 123456.78

let result = number.toLocaleString('de') // '123,456.78'

Alternatively, you can construct an instance of the Intl.NumberFormat class
and invoke its format method:

Click here to view code image

let formatter = new Intl.NumberFormat('de')

result = formatter.format(number) // '123,456.78'

In the perhaps unlikely case that you need to analyze such a result further,
the formatToParts method yields an array of the parts. For example,
formatter.formatToParts(number) is the following array:

Click here to view code image

[{ type: 'integer', value: '123' },

 { type: 'group', value: ',' },

 { type: 'integer', value: '456' },

 { type: 'decimal', value: '.' },

 { type: 'fraction', value: '78' }]

For any locale-specific methods, you want to know which locale tag
extensions and options are supported. Table 8-3 shows this information for
the toLocaleString method of the Number class and the format method of
the Intl.NumberFormat class.

Recall that locale tag extensions are prefixed with u. The format method
recognizes the u-nu extension, such as:

Click here to view code image

number.toLocaleString('th-u-nu-thai')

new Intl.NumberFormat('th-u-nu-thai').format(number)

 // Both yield '๑๒๓,๔๕๖.๗๘'

The options are provided as a second argument following the locale tag:
Click here to view code image

number.toLocaleString('de', { style: 'currency', currency: 'EUR'

})

formatter = new Intl.NumberFormat('de', { style: 'currency',

currency: 'EUR' })

formatter.format(number)

 // Both yield '123.456,78 €'

As you can see, if you need to repeatedly carry out complex formatting, it
makes sense to construct a formatter object.

Exercise 2 asks you to explore various options.

 Note

A stage 3 proposal adds more formatting options for measurement units ('299,792,458
m/s'), scientific notation ('6.022E23'), and compact decimals ('8.1 billion').

 Caution

Unfortunately, there is currently no standard way for parsing localized numbers with grouping
separators or digits other than 0−9.

Table 8-3 Configuring toLocaleString for Numbers and the
Intl.NumberFormat Constructor

Name Value

Locale Tag Extensions

nu (numbering) latn, arab, thai, . . .

Options

style decimal (default), currency, percent

currency ISO 4217 currency code such as USD
or EUR. Required for currency style.

Name Value

currencyDisplay symbol (€, default), code (EUR), name
(Euro)

useGrouping true (default) to use grouping
separators

minimumIntegerDigits,
minimumFractionDigits,
maximumFractionDigits,
minimumSignificantDigits,
maximumSignificantDigits

Bounds on the digits before and after
the decimal separator, or the total
number of digits

8.4 Localizing Dates and Times
When formatting date and time, there are many locale-dependent issues:

1. The names of months and weekdays should be presented in the local
language.

2. There will be local preferences for the order of year, month, and day.

3. The Gregorian calendar might not be the local preference for expressing
dates.

4. The time zone of the location must be taken into account.

In the following sections, you will see how to localize Date objects, date
ranges, and relative dates (such as “in 3 days”).

8.4.1 Formatting Date Objects

Given a Date object, you can format its date part, time part, or both:

Click here to view code image

const newYearsEve = new Date(1999, 11, 31, 23, 59)

newYearsEve.toLocaleDateString('de') // '31.12.1999'

newYearsEve.toLocaleTimeString('de') // '23:59:00'

newYearsEve.toLocaleString('de') // '31.12.1999, 23:59:00'

As with number formatting, you can also construct a formatter for a given
locale and invoke its format method:

Click here to view code image

const germanDateTimeFormatter = new Intl.DateTimeFormat('de')

germanDateTimeFormatter.format(newYearsEve) // '31.12.1999'

You can provide options to control how each of the parts is formatted:
Click here to view code image

newYearsEve.toLocaleDateString('en', {

 year: 'numeric',

 month: 'short',

 day: 'numeric',

}) // 'Dec 31, 1999'

new Intl.DateTimeFormat('de', {

 hour: 'numeric',

 minute: '2-digit'

}).format(newYearsEve) // '23:59'

However, this approach is cumbersome and illogical. After all, the format of
each part, and even which parts to include, is a locale-specific preference.
The ECMAScript specification prescribes a tedious algorithm for matching
the requested format with one that makes sense for a given locale, and a
formatMatcher option to choose between the specification algorithm and a
potentially better one. That complexity should have tipped them off that
they were on the wrong track. There is a stage 3 proposal to fix this mess.
You specify which style you want for the date and time part (full, long,
medium, or short). Then the formatter picks appropriate fields and formats
for the locale:

Click here to view code image

newYearsEve.toLocaleDateString('en', { dateStyle: 'medium' })

 // 'Dec 31, 1999'

newYearsEve.toLocaleDateString('de', { dateStyle: 'medium' })

 // '31.12.1999'

Table 8-4 shows all locale tag extensions and options.

Table 8-4 Formatting Options for Dates

Name Value

Locale Tag Extensions

nu (numbering) latn, arab, thai

ca (calendar) gregory, hebrew, buddhist, . . .

hc (hour cycle) h11, h12, h23, h24

Options

timeZone UTC, Europe/Berlin, . . . (default: local
time)

dateStyle, timeStyle
(stage 3)

full, long, medium, short. If you can
use these, avoid the options below.

hour12 true, false (whether to use 12 hour
time; default is locale-dependent)

hourCycle h11, h12, h23, h24

month 2-digit (09), numeric (9), narrow (S),
short (Sep), long (September)

year, day, hour, minute,
second

2-digit, numeric

weekday, era long, short, narrow

Name Value

timeZoneName short (GMT+9), long (Japan Standard
Time)

formatMatcher basic (a standard algorithm for
matching the requested format with
those provided by the locale), best fit
(default, a potentially better
implementation by the JavaScript
runtime)

8.4.2 Ranges

The formatRange method of the Intl.DateTimeFormat class formats a range
between two dates as concisely as possible:

Click here to view code image

const christmas = new Date(1999, 11, 24)

const newYearsDay = new Date(2000, 0, 1)

const formatter = new Intl.DateTimeFormat('en', { dateStyle:

'long' })

formatter.formatRange(christmas, newYearsEve) // 'December 24 —

31, 1999'

formatter.formatRange(newYearsEve, newYearsDay) // 'December 31,

1999 — January 1, 2000'

8.4.3 Relative Time

The Intl.RelativeTimeFormat class produces expressions such as
“yesterday” or “in 3 hours”:

Click here to view code image

new Intl.RelativeTimeFormat('en', { numeric: 'auto'}).format(-1,

'day') // 'yesterday'

new Intl.RelativeTimeFormat('fr').format(3, 'hours') // 'dans 3

heures'

The format method has two arguments: a quantity and a unit. The unit is
one of year, quarter, month, week, day, hour, minute, or second. The plural
form is also accepted, such as years.

You can specify the following options:

numeric: always (1 day ago, default), auto (yesterday)

style: long, short, narrow

8.4.4 Formatting to Parts

As with number formatters, the Intl.DateTimeFormat and
Intl.RelativeTimeFormat classes have formatToParts methods that produce
arrays of objects describing each part of the formatted result. Here are a
couple of examples:

The call
Click here to view code image

new Intl.RelativeTimeFormat('fr').formatToParts(3, 'hours')

returns the array
Click here to view code image

[

 { type: 'literal', value: 'dans '},

 { type: 'integer', value: '3', unit: 'hour' },

 { type: 'literal', value: ' heures'}

]

The call
Click here to view code image

Intl.DateTimeFormat('en',

 {

 dateStyle: 'long',

 timeStyle: 'short'

 }).formatToParts(newYearsEve)

yields an array with eleven entries, describing the parts of the string
'December 31, 1999 at 11:59 PM', namely

Click here to view code image

{ type: 'month', value: 'December' },

{ type: 'literal', value: ' ' },

{ type: 'day', value: '31' },

and so on.

8.5 Collation
In JavaScript, you can compare strings with the <, <=, >, and >= operators.
Unfortunately, when interacting with human users, these operators are not
very useful. They lead to absurd results, even in English. For example, the
following five strings are ordered according to the < operator:

Athens

Zulu

able

zebra

Ångström

For dictionary ordering, you would want to consider upper case and lower
case equivalent, and accents should not be significant. To an English
speaker, the sample list of words should be ordered as

able

Ångström

Athens

zebra

Zulu

However, that order would not be acceptable to a Swedish user. In Swedish,
the letter Å is different from the letter A, and it is collated after the letter Z!
That is, a Swedish user would want the words to be sorted as

able

Athens

zebra

Zulu

Ångström

Whenever you need to sort strings that are provided by a human user, you
should use a locale-aware comparison.

The simplest way is to use the localeCompare method of the String class.
Pass the locale as a second argument:

Click here to view code image

const words = ['Alpha', 'Ångström', 'Zulu', 'able', 'zebra']

words.sort((x, y) => x.localeCompare(y, 'en'))

 // words is now ['able', 'Alpha', 'Ångström', 'zebra',
'Zulu']

Alternatively, you can construct a collator object:
Click here to view code image

const swedishCollator = new Intl.Collator('sv')

Then pass the collator’s compare function to the Array.sort method:
Click here to view code image

words.sort(swedishCollator.compare)

 // words is now ['able', 'Alpha', 'zebra', 'Zulu',
'Ångström']

Table 8-5 shows the extensions and options supported by the localeCompare
method and the Intl.Collator constructor.

A useful extension is numeric sort, where numeric substrings are sorted in
increasing order:

Click here to view code image

const parts = ['part1', 'part10', 'part2', 'part9']

parts.sort((x, y) => x.localeCompare(y, 'en-u-kn-true'))

 // Now parts is ['part1', 'part2', 'part9', 'part10']

Many of the other constructs are of limited use. For example, in German
phonebooks (but not dictionaries), Ö is considered the same as Oe. The
following call does not modify the given array:

Click here to view code image

['Österreich', 'Offenbach'].sort((x, y) => x.localeCompare(y,

'de-u-co-phonebk'))

Table 8-5 String Collation with localeCompare and the
Intl.Collator Constructor

Name Value

Locale Tag Extensions

co (collation) phonebook, phonetic, reformed, pinyin, . . .

kn (numeric
collation)

true ('1' < '2' < '10'), false (default)

kf (case first) upper, lower, false (default)

Options

sensitivity base (a = A = Å), accent (a = A ≠ Å), case
(a ≠ A = Å), variant (a, A, Å all different;
default)

ignorePunctuation true, false (default)

numeric, caseFirst true, false (default)—see kn, kf above

usage sort (use for sorting, default), search (use
for searching, where only equality matters)

8.6 Other Locale-Sensitive String Methods
The String class has several methods that work with locales. You have
already seen the localeCompare method in the preceding section. The
toLocaleUpperCase and toLocaleLowerCase methods take language rules
into account. For example, in German, the uppercase of the “double s”
character ß is a sequence of two S:

Click here to view code image

'Großhändler'.toLocaleUpperCase('de') // 'GROSSHÄNDLER'

The localeCompare method accepts options just like the Intl.Collator
constructor of the preceding section. For example, the comparison

Click here to view code image

'part10'.localeCompare('part2', 'en', { numeric: true })

yields a positive number because with numeric comparison, 'part10'
comes after 'part2'.

A character or sequence of characters can sometimes be described in more
than one way in Unicode. For example, an Å (\u{00C5}) can also be
expressed as a plain A (\u{0041}) followed by a combining ring above
(\u{030A}).

You might want to convert strings into a normalized form when you store
them or communicate with another program. The Unicode standard defines
four normalization forms (C, D, KC, and KD)—see
www.unicode.org/unicode/reports/tr15/tr15-23.xhtml. In the
normalization form C, accented characters are always composed. For
example, a sequence of A and is combined into a single character Å. In
form D, accented characters are always decomposed into their base letters
and combining accents: Å is turned into A followed by . In forms KC and
KD, characters such the trademark symbol ™ (\u{2122}) are decomposed.
The W3C recommends that you use the normalization form C for
transferring data over the Internet.

The normalize method of the String class carries out this process. Let’s try
it with all four modes. For each mode, we spread out the result of the call to
normalize, so that you can clearly see the individual characters.

Click here to view code image

const str = 'Å™'

['NFC', 'NFD', 'NFKC', 'NFKD'].map(mode =>

[...str.normalize(mode)])

 // Yields ['Å', '™'], ['A', '°', '™'], ['Å', 'T', 'M'], ['A',
'°', 'T', 'M']

http://www.unicode.org/unicode/reports/tr15/tr15-23.xhtml

8.7 Plural Rules and Lists

Many languages have special forms for small quantities. In English, we
count 0 dollars, 1 dollar, 2 dollars, 3 dollars and so on. The form for a
quantity of 1 is special.

With Russian rubles, it is more complex. There are special forms for one
and for “a few”: 0 рублей, 1 рубль, 2, 3, or 4 рубля. With 5 or more, it is
again рублей.

You need to know about these rules when you format messages such as
“Found n matches”.

The Intl.PluralRules class helps with this problem. The select method
yields a key that describes which word form is required for a given quantity.
Here are the results in English and Russian:

Click here to view code image

[0, 1, 2, 3, 4, 5].map(i => (new

Intl.PluralRules('en').select(i)))

 // ['other', 'one', 'other', 'other', 'other', 'other']

[0, 1, 2, 3, 4, 5].map(i => (new

Intl.PluralRules('ru').select(i)))

 // ['many', 'one', 'few', 'few', 'few', 'many']

The PluralRules class just produces the English form names. They still
need to be mapped to the localized word forms. Provide a map for each
language:

Click here to view code image

dollars = { one: 'dollar', other: 'dollars' }

rubles = { one: 'рубль', few: 'рубля', many: 'рублей' }

Then you can call

Click here to view code image

dollars[new Intl.PluralRules('en').select(i)]

rubles[new Intl.PluralRules('ru').select(i)]

The select method has one option:

type: cardinal (default), ordinal

Let’s try out English ordinals:
Click here to view code image

const rules = new Intl.PluralRules('en', { type: 'ordinal' })

[0, 1, 2, 3, 4, 5].map(i => rules.select(i))

 // ['other', 'one', 'two', 'few', 'other', 'other']

What is going on? It turns out that the English language is no simpler than
Russian: English ordinals are 0th, 1st, 2nd, 3rd, 4th, 5th, and so on.

The Intl.ListFormat class helps with formatting lists of values. It is easiest
to understand with an example:

Click here to view code image

let list = ['Goethe', 'Schiller', 'Lessing']

new Intl.ListFormat('en', { type: 'conjunction' }).format(list)

 // Yields the string 'Goethe, Schiller, and Lessing'

As you can see, the format method knows about the conjunction word
“and” and the Oxford comma.

When the type is 'disjunction', the elements are joined with “or”. Let’s try
it in German:

Click here to view code image

new Intl.ListFormat('de', { type: 'disjunction' }).format(list)

 // 'Goethe, Schiller oder Lessing'

The format method has the following options:

type: conjunction (default), disjunction, unit

style: long (default), short, narrow (with unit type only)

The unit type is for unit lists like “7 pounds 11 ounces.” Unfortunately,
with the 'long' and 'short' styles, the formatter produces commas in
English:

Click here to view code image

list = ['7 pounds', '11 ounces']

new Intl.ListFormat('en', { type: 'unit', style: 'long'

}).format(list)

 // '7 pounds, 11 ounces'

The Chicago and AP style guides would not approve.

8.8 Miscellaneous Locale Features

In modern browsers, the navigator.languages property is an array of the
user’s preferred locale tags, in decreasing preference. The value
navigator.language is the most preferred locale tag, the same as
navigator.languages[0]. Browsers typically use the locale of the host
operating system unless users personalize the browser’s language settings.

You can use navigator.languages as the locale argument of the various
locale-sensitive methods and constructors that you saw in the preceding
sections.

The Intl.getCanonicalLocales accepts a locale tag or an array of locale
tags and returns an array with cleaned-up tags, removing duplicates.

Each of the formatter classes described in the preceding sections has a
supportedLocalesOf method. Pass a locale tag or array of locale tags.
Unsupported tags are dropped, and supported tags are normalized. For
example, assuming your browser’s Intl.NumberFormat class does not
support Welsh, the call

Click here to view code image

Intl.NumberFormat.supportedLocalesOf(['cy', 'en-uk'])

returns ['en-UK'].

When you pass an array of locale choices to a locale-sensitive method, it is
up to the browser to find the best available locale that matches the
preferences. All locale-specific functions support the localeMatcher option
for setting the matching algorithm. The option has two values:

'lookup' uses a standard algorithm that is specified in ECMA-402.

'best fit' (default) allows the JavaScript runtime to find a better
match.

At this point, the common JavaScript runtimes use the standard algorithm,
so this option is not something to worry about.

 Note

If you want to present your users with a locale choice, you need to be able to display that choice
in a language that your users understand. A stage 3 proposal defines a class
Intl.DisplayNames for this purpose. Here are a few usage samples:

Click here to view code image

const regionNames = new Intl.DisplayNames(['fr'], { type:

'region' })

const languageNames = new Intl.DisplayNames(['fr'], { type:

'language' })

const currencyNames = new Intl.DisplayNames(['zh-Hans'],

 { type: 'currency' })

regionNames.of('US') // 'États-Unis'

languageNames.of('fr') // 'Français'

currencyNames.of('USD') // '美元'

To obtain more information about the properties of an internationalization
object, call the resolvedOptions method. For example, given the following
collator object:

Click here to view code image

const collator = new Intl.Collator('en-US-u-kn-true', {

sensitivity: 'base' })

the call
collator.resolvedOptions()

returns the object
Click here to view code image

{

 locale: 'en-US',

 usage: 'sort',

 sensitivity: 'base',

 ignorePunctuation: false,

 numeric: true,

 caseFirst: 'false',

 collation: 'default'

}

 Note

A stage 3 proposal is the Intl.Locale class that provides a convenient way for denoting a
locale with options:

Click here to view code image

const germanCurrency = new Intl.Locale('de-DE',

 { style: 'currency', currency: 'EUR' })

Exercises
1. Implement a class Person with instance fields for the first name, last

name, sex, and marital status. Provide a toLocaleString method that
formats names, for example 'Ms. Smith', 'Frau Smith', 'Mme Smith'.
Look up the honorific forms for a few languages and design options for
variations such as Ms. vs. Mrs./Miss.

2. Write a program that formats a value as a number, percentage, and
dollar amount. Explore all currency display options. Turn grouping on
and off, and show the meanings of the various bounds on the number of
digits.

3. Show how numbers look different when using English, Arabic, and
Thai numerals. What other numerals can you produce?

4. Write a program that demonstrates the date and time formatting styles
in France, China, Egypt, and Thailand (with Thai digits).

5. Make an array with all two-letter (ISO 639-1) language codes. For each
of them, format a date and time. How many different formats do you
find?

6. Write a program that lists all Unicode characters that are expanded to
two or more ASCII characters in normalization form KC or KD.

7. Provide examples to demonstrate the different sensitivity options for
collation.

8. What happens with the Turkish locale when you form the uppercase of
'i' or the lowercase of 'I'? Suppose you write a program that checks
for a particular HTTP header, If-Modified-Since. HTTP headers are
case-insensitive. How do you find the header so that your program
works everywhere, including Turkey?

9. The Java library has a useful concept of a “message bundle” where you
can look up localized messages by locale, with fallbacks. Provide a
similar mechanism for JavaScript. For each locale, there is a map of
keys to translated messages.
Click here to view code image

{ de: { greeting: 'Hallo', farewell: 'Auf Wiedersehen' },

 'de-CH' : { greeting: 'Grüezi' },

 fr: { greeting: 'Bonjour', farewell: 'Au revoir' },

 . . .

}

When looking for a message, first look at the most specific locale, then
move to more general ones. Support overrides for more specialized
locales. For example, when looking up a message with key 'greeting'
in the locale 'de-CH', locate 'Grüezi', but for 'farewell', fall back to
'de'.

10. The Java library has a useful class for formatting locale-dependent
messages. Consider the template '{0} has {1} messages'. The French
version would be 'Il y a {1} messages pour {0}'. When formatting
the message, you provide the items in a fixed order, irrespective of the
order required by the language. Implement a function messageFormat

that accepts a template string and a variable number of items. Come up
with a mechanism for including literal braces.

11. Provide a class for locale-dependent display of paper sizes, using the
preferred dimensional unit and default paper size in the given locale.
Everyone on the planet, with the exception of the United States and
Canada, uses ISO 216 paper sizes. Only three countries in the world
have not yet officially adopted the metric system: Liberia, Myanmar
(Burma), and the United States.

Chapter 9. Asynchronous
Programming

Topics in This Chapter

9.1 Concurrent Tasks in JavaScript

9.2 Making Promises

9.3 Immediately Settled Promises

9.4 Obtaining Promise Results

9.5 Promise Chaining

9.6 Rejection Handling

9.7 Executing Multiple Promises

9.8 Racing Multiple Promises

9.9 Async Functions

9.10 Async Return Values

9.11 Concurrent Await

9.12 Exceptions in Async Functions

Exercises

In this chapter, you will learn how to coordinate tasks that must be executed
at some point in the future. We start with an in-depth look at the notion of
promises. A promise is just what it sounds: an action that will produce a
result at some point in the future, unless it dies with an exception. As you
will see, promises can be executed in sequence or in parallel.

One drawback of promises is that you need to use method calls to combine
them. The async/await constructs give you a much more pleasant syntax.
You write code that uses regular control flow, and the compiler translates
your code to a chain of promises.

Ideally, you could skip promises and move straight to the async/await
syntax. However, I think it would be quite a challenge to understand the
complexities and limitations of the syntax without knowing what it does
behind your back.

We end the chapter with a discussion of asynchronous generators and
iterators. All but the last section of this chapter should be required reading
for intermediate JavaScript developers because asynchronous processing is
ubiquitous in web applications.

9.1 Concurrent Tasks in JavaScript
A program is “concurrent” when it manages multiple activities with
overlapping timelines. Concurrent programs in Java or C++ use multiple
threads of execution. When a processor has more than one core, these
threads truly run in parallel. But there is a problem—programmers must be
careful to protect data, so that there is no corruption when a value is
updated by different threads at the same time.

In contrast, a JavaScript program runs in a single thread. In particular, once
a function starts, it will run to completion before any other part of your
program starts running. That is good. You know that no other code will

corrupt the data that your function uses. No other code will try to read any
of the data until after the function returns. Inside your function, you can
modify the program’s variables to your heart’s content, as long as you clean
up before the function returns. You never have to worry about mut or
deadlocks.

The problem with having a single thread is obvious: If a program needs to
wait for something to happen—most commonly, for data across the Internet
—it cannot do anything else. Therefore, time-consuming operations in
JavaScript are always asynchronous. You specify what you want, and
provide callback functions that are invoked when data is available or when
an error has occurred. The current function continues execution so that
other work can be done.

Let us look at a simple example: loading an image. The following function
loads an image with a given URL and appends it to a given DOM element:

Click here to view code image

const addImage = (url, element) => {

 const request = new XMLHttpRequest()

 request.open('GET', url)

 request.responseType = 'blob'

 request.addEventListener('load', () => {

 if (request.status == 200) {

 const blob = new Blob([request.response], { type:

'image/png' })

 const img = document.createElement('img')

 img.src = URL.createObjectURL(blob)

 element.appendChild(img)

 } else {

 console.log(`${request.status}: ${request.statusText}`)

 }

 })

 request.addEventListener('error', event => console.log('Network

error'));

 request.send()

}

The details of the XMLHttpRequest API are not important, except for one
crucial fact. The image data are processed in a callback—the listener to the
load event.

If you call addImage, the call returns immediately. The image is added to the
DOM element much later, once the data is loaded.

Consider this example, where we load four images (taken from the Japanese
Hanafuda card deck—see https://en.wikipedia.org/wiki/Hanafuda):

Click here to view code image

const imgdiv = document.getElementById('images')

addImage('hanafuda/1-1.png', imgdiv)

addImage('hanafuda/1-2.png', imgdiv)

addImage('hanafuda/1-3.png', imgdiv)

addImage('hanafuda/1-4.png', imgdiv)

All four calls to addImage return immediately. Whenever the data for an
image arrive, a callback is invoked and the image is added. Note that you
do not need to worry about corruption by concurrent callbacks. The
callbacks are never intermingled. They run one after another in the single
JavaScript thread. However, they can come in any order. If you load the
web page with this program multiple times, the image order can change—
see Figure 9-1.

https://en.wikipedia.org/wiki/Hanafuda

 Note

All sample programs in this chapter are designed to be run in a web browser. The companion code
has web pages that you can load into your browser and code snippets that you can paste into the
development tools console.

To experiment with these files on your local system, you need to run a local web server. You can
install light-server with the command

npm install -g light-server

Change to the directory containing the files to serve and run the command

light-server -s .

Then point your browser to URLs such as http://localhost:4000/images.xhtml.

Figure 9-1 Images may load out of order

When loading images, it is fairly easy to cope with out-of-order arrival—
see Exercise 1. But consider a more complex situation. Suppose you need to
read remote data, and then, depending on the received data, read more data.
For example, a web page might contain the URL of an image that you want
to load.

In that case, you need to asynchronously read the web page, with a callback
that scans the contents for the image URL. Then that image must be

http://localhost:4000/images.xhtml

retrieved asynchronously, with another callback that adds the image to the
desired location. Each retrieval requires error handling, which leads to more
callbacks. With a few levels of processing, this programming style turns
into “callback hell”—deeply nested callbacks with hard-to-understand
success and failure paths.

In the following sections, you will learn how promises allow you to
compose asynchronous tasks without nested callbacks.

A promise is an object that promises to produce a result eventually,
hopefully. The result may not be available right away, and it might never be
available if an error occurs.

That does not sound very promising, but as you will soon see, it is much
easier to chain completion and error actions with promises than with
callbacks.

9.2 Making Promises
In this section and the next, you will see how to make promises. This is a bit
technical, and you rarely need to do it yourself. It is much more common to
call library functions that return a promise. Feel free to gloss over these
sections until you actually need to construct promises yourself.

 Note

A typical example for an API that produces promises is the Fetch API that all modern browsers
support. The call

Click here to view code image

fetch('https://horstmann.com/javascript-

impatient/hanafuda/index.xhtml')

returns a promise that will yield the response from the HTTP request when it is available.

The Promise constructor has a single argument, a function that has two
arguments: handlers for success and failure outcomes. This function is
called the “executor function.”

Click here to view code image

const myPromise = new Promise((resolve, reject) => {

 // Body of the executor function
})

In the body of the executor function, you start the task that yields the
desired result. Once the result is available, you pass it to the resolve
handler. Or, if you know that there won’t be a result, you invoke the reject
handler with the reason for failure. When work is completed
asynchronously, these handlers will be invoked in some callback.

Here is an outline of the process:
Click here to view code image

const myPromise = new Promise((resolve, reject) => {

 const callback = (args) => {

 . . .

 if (success) resolve(result) else reject(reason)
 }

 invokeTask(callback)

})

Let us put this to work in the simplest case: delivering a result after a delay.
This function yields a promise to do that:

Click here to view code image

const produceAfterDelay = (result, delay) => {

 return new Promise((resolve, reject) => {

 const callback = () => resolve(result)

 setTimeout(callback, delay)

 })

}

In the executor function that is passed to the constructor, we call setTimeout
with a callback and the given delay. The callback will be invoked when the
delay has passed. In the callback, we pass the result on to the resolve
handler. We don’t need to worry about errors, and the reject handler is
unused.

Here is a more complex function that yields a promise whose result is an
image:

Click here to view code image

const loadImage = url => {

 return new Promise((resolve, reject) => {

 const request = new XMLHttpRequest()

 const callback = () => {

 if (request.status == 200) {

 const blob = new Blob([request.response], { type:

'image/png' })

 const img = document.createElement('img')

 img.src = URL.createObjectURL(blob)

 resolve(img)

 } else {

 reject(Error(`${request.status}: ${request.statusText}`))

 }

 }

 request.open('GET', url)

 request.responseType = 'blob'

 request.addEventListener('load', callback)

 request.addEventListener('error', event =>

reject(Error('Network error')));

 request.send()

 })

 }

The executor function configures an XMLHttpRequest object and sends it.
Upon receipt of the response, a callback produces an image and invokes the
resolve handler to pass it on. If an error occurs, it is passed to the reject
handler.

Let us look at the control flow of a promise in slow motion.

1. The Promise constructor is called.

2. The executor function is called.

3. The executor function initiates an asynchronous task with one or more
callbacks.

4. The executor function returns.

5. The constructor returns. The promise is now in the pending state.

6. The code invoking the constructor runs to completion.

7. The asynchronous task finishes.

8. A task callback is invoked.

9. That callback calls the resolve or reject handler, and the promise
transitions to the fulfilled or rejected state. In either case, the promise is
now settled.

 Note

There is one variation of the last step in the control flow. You can call resolve with another
promise. Then the current promise is resolved but not fulfilled. It stays pending until the
subsequent promise is settled. For this reason, the handler function is called resolve and not
fulfill.

Be sure to always call resolve or reject in your task callbacks, or the
promise never exits the pending state.

That means that you have to pay attention to exceptions in task callbacks. If
a task callback terminates with an exception instead of calling resolve or
reject, then the promise cannot settle. In the loadImage example, I carefully
vetted the code to ensure that no exception was going to be thrown. In
general, it is a good idea to use a try/catch statement in the callback and
pass any exceptions to the reject handler.

However, if an exception is thrown in the executor function, you don’t need
to catch it. The constructor simply yields a rejected promise.

9.3 Immediately Settled Promises
The call Promise.resolve(value) makes a promise that is fulfilled
immediately with the given value. This is useful in methods that returns
promises, and where the answer is available right away in some cases:

Click here to view code image

const loadImage = url => {

 if (url === undefined) return Promise.resolve(brokenImage)

 . . .

}

If you have a value that might be a promise or a plain value, the result of
Promise.resolve(value) definitely turns it into a promise. If the value is

already a promise, it is simply returned.

 Note

For compatibility with libraries that predate standard ECMAScript promises, the
Promise.resolve method provides special treatment for “thenable” objects—that is, objects
with a then method. The then method is invoked with a resolve handler and a reject handler,
and returns a promise that is settled when either of the two handlers is called—see Exercise 6.

The call Promise.reject(error) yields a promise that is immediately
rejected with the given error.

Use it when a promise-producing function fails:
Click here to view code image

const loadImage = url => {

 if (url === undefined) {

 return Promise.reject(Error('No URL'))

 } else {

 return new Promise(. . .)

 }

}

9.4 Obtaining Promise Results
Now that you know how to construct a promise, you will want to obtain its
result. You do not wait for the promise to settle. Instead, you provide
actions that process the result or error once the promise has settled. Those
actions will execute at some point after the end of the function that has
scheduled them.

Use the then method to specify an action that should be carried out once the
promise is resolved. The action is a function that consumes the result.

Click here to view code image

const promise1 = produceAfterDelay(42, 1000)

promise1.then(console.log) // Log the value when ready

const promise2 = loadImage('hanafuda/1-1.png')

promise2.then(img => imgdiv.appendChild(img)) // Append the image
when ready

 Note

The then method is the only way to get a result out of a promise.

You will see in Section 9.6, “Rejection Handling” (page 194), how to deal
with rejected promises.

 Caution

When you experiment with the loadImage or fetch function with different URLs, you will
likely run into “cross-origin” errors. The JavaScript engine inside a browser will not allow
JavaScript code to see results of web requests from third-party hosts unless those hosts agree that
the access is safe and set a response header. Unfortunately, few sites have gone through the
trouble. You can fetch the URLs at https://horstmann.com/javascript-impatient
or (as I write this) https://developer.mozilla.org and
https://aws.random.cat/meow. If you want to experiment with other sites, you can use a
CORS proxy or a browser plugin to overcome the browser check.

9.5 Promise Chaining
In the preceding section, you saw how to obtain the result of a promise.
Now we tackle a more interesting case, where the promise result is passed
to another asynchronous task.

If the action that you pass to then yields another promise, the result is that
other promise. To process its result, call the then method once again.

Here is an example. We load an image, and then another:
Click here to view code image

const promise1 = loadImage('hanafuda/1-1.png')

const promise2 = promise1.then(img => {

 imgdiv.appendChild(img)

 return loadImage('hanafuda/1-2.png') // Another promise

https://horstmann.com/javascript-impatient
https://developer.mozilla.org/
https://aws.random.cat/meow

})

promise2.then(img => {

 imgdiv.appendChild(img)

})

There is no need to save each promise in a separate variable. Normally, one
processes a chain of promises as a “pipeline.”

Click here to view code image

loadImage('hanafuda/1-1.png')

 .then(img => {

 imgdiv.appendChild(img)

 return loadImage('hanafuda/1-2.png')

 })

 .then(img => imgdiv.appendChild(img))

 Note

With the Fetch API, you need to chain promises to read the contents of a web page:

Click here to view code image

fetch('https://developer.mozilla.org')

 .then(response => response.text())

 .then(console.log)

The fetch function returns a promise yielding the response, and the text method yields
another promise for the text content of the page.

You can intermingle synchronous and asynchronous tasks:
Click here to view code image

loadImage('hanafuda/1-1.png')

 .then(img => imgdiv.appendChild(img)) // Synchronous
 .then(() => loadImage('hanafuda/1-2.png')) // Asynchronous
 .then(img => imgdiv.appendChild(img)) // Synchronous

Technically, if a then action yields a value that isn’t a promise, the then
method returns an immediately fulfilled promise. This allows further
chaining with another then method.

 Tip

You can make promise pipelines more symmetric by starting out with an immediately fulfilled
promise:

Click here to view code image

Promise.resolve()

 .then(() => loadImage('hanafuda/1-1.png'))

 .then(img => imgdiv.appendChild(img))

 .then(() => loadImage('hanafuda/1-2.png'))

 .then(img => imgdiv.appendChild(img))

The preceding examples showed how to compose a fixed number of tasks.
You can build an arbitrarily long pipeline of tasks with a loop:

Click here to view code image

let p = Promise.resolve()

for (let i = 1; i <= n; i++) {

 p = p.then(() => loadImage(`hanafuda/1-${i}.png`))

 .then(img => imgdiv.appendChild(img))

}

 Caution

If the argument of the then method is not a function, the argument is discarded! The following is
wrong:

Click here to view code image

loadImage('hanafuda/1-1.png')

 .then(img => imgdiv.appendChild(img))

 .then(loadImage('hanafuda/1-2.png'))

 // Error—argument of then isn’t a function
 .then(img => imgdiv.appendChild(img))

Here, then is called with the return value of loadImage—that is, a Promise. If you call
p.then(arg) with an argument that is not a function, there is no error message. The argument
is discarded, and the then method returns a promise with the same result as p. Also, note that the
second call to loadImage happens right after the first, without waiting for the first promise to
settle.

9.6 Rejection Handling
In the preceding section, you saw how to carry out multiple asynchronous
tasks in sequence. We focused on the “happy day” scenario when all of the
tasks succeeded. Handling error paths can greatly complicate the program
logic. Promises make it fairly easy to propagate errors through a pipeline of
tasks.

You can supply a rejection handler when calling the then method:
Click here to view code image

loadImage(url)

 .then(

 img => { // Promise has settled
 imgdiv.appendChild(img)

 },

 reason => { // Promise was rejected
 console.log({reason})

 imgdiv.appendChild(brokenImage)

 })

However, it is usually better to use the catch method:
Click here to view code image

loadImage(url)

 .then(

 img => { // Promise has settled
 imgdiv.appendChild(img)

 })

 .catch(

 reason => { // A prior promise was rejected
 console.log({reason})

 imgdiv.appendChild(brokenImage)

 })

That way, errors in the resolve handler are also caught.

The catch method yields a new promise based on the returned value,
returned promise, or thrown exception of its handler argument.

If the handler returns without throwing an exception, then the resulting
promise is resolved, and you can keep the pipeline going.

Often, a pipeline has a single rejection handler that is invoked when any of
the tasks fails:

Click here to view code image

Promise.resolve()

 .then(() => loadImage('hanafuda/1-1.png'))

 .then(img => imgdiv.appendChild(img))

 .then(() => loadImage('hanafuda/1-2.png'))

 .then(img => imgdiv.appendChild(img))

 .catch(reason => console.log({reason}))

If a then action throws an exception, the then method yields a rejected
promise. Chaining a rejected promise with another then simply propagates
that rejected promise. Therefore, the catch handler at the end will handle a
rejection at any stage of the pipeline.

The finally method invokes a handler whether or not a promise has settled.
The handler has no arguments since it is intended for cleanup, not for
analyzing the promise result. The finally method returns a promise with
the same outcome as the one on which it was invoked, so that it can be
included in a pipeline:

Click here to view code image

Promise.resolve()

 .then(() => loadImage('hanafuda/1-1.png'))

 .then(img => imgdiv.appendChild(img))

 .finally(() => { doCleanup(. . .) })

 .catch(reason => console.log({reason}))

9.7 Executing Multiple Promises
When you have multiple promises and you want them all resolved, you can
place them into an array or any iterable, and call Promise.all(iterable).
You then obtain a promise that is resolved when all promises in the iterable
are resolved. The value of the combined promise is an iterable of all
promise results, in the same order as the promises themselves.

This gives us an easy way to load a sequence of images and append them in
order:

Click here to view code image

const promises = [

 loadImage('hanafuda/1-1.png'),

 loadImage('hanafuda/1-2.png'),

 loadImage('hanafuda/1-3.png'),

 loadImage('hanafuda/1-4.png')]

Promise.all(promises)

 .then(images => { for (const img of images)

imgdiv.appendChild(img) })

The Promise.all does not actually run tasks in parallel. All tasks are
executed sequentially in a single thread. However, the order in which they
are scheduled is not predictable. For example, in the image loading
example, you don’t know which image data arrives first.

As already mentioned, Promise.all returns a promise for an iterable. That
iterable contains the results of the individual promises in the correct order,
regardless of the order in which they were obtained.

In the preceding sample code, the then method is invoked when all images
have been loaded, and they are appended from the images iterable in the
correct order.

If the iterable that you pass to Promise.all contains non-promises, they are
simply included in the result iterable.

If any of the promises is rejected, then Promise.all yields a rejected
promise whose error is that of the first rejected promise.

If you need more fine-grained control over rejections, use the
Promise.allSettled method instead. It yields a promise for an iterable
whose elements are objects of the form

Click here to view code image

{ status: 'fulfilled', value: result }

or
Click here to view code image

{ status: 'rejected', reason: exception }

Exercise 8 shows how to process the results.

9.8 Racing Multiple Promises
Sometimes, you want to carry out tasks in parallel, but you want to stop as
soon as the first one has completed. A typical example is a search where
you are satisfied with the first result. The Promise.race(iterable) runs the
promises in the iterable until one of them settles. That promise determines
the outcome of the race.

 Caution

If the iterable has non-promises, then one of them will be the result of the race. If the iterable is
empty, then Promise.race(iterable) never settles.

It is possible that a rejected promise wins the race. In that case, all other
promises are abandoned, even though one of them might produce a result. A
more useful method, Promise.any, is currently a stage 3 candidate.

The Promise.any method continues until one of the tasks has resolved. In
the unhappy case that all promises are rejected, the resulting promise is
rejected with an AggregateError that collects all reasons for rejection.

Click here to view code image

Promise.any(promises)

 .then(result => . . .) // Process the result of the first settled
promise
 .catch(error => . . .) // None of the promises settled

9.9 Async Functions
You have just seen how to build pipelines of promises with the then and
catch methods, and how to execute a sequence of promises concurrently
with Promise.all and Promise.any. However, this programming style is not
very convenient. Instead of using familiar statement sequences and control
flow, you need to set up a pipeline with method calls.

The await/async syntax makes working with promises much more natural.

The expression
let value = await promise

waits for the promise to settle and yields its value.

But wait. . .didn’t we learn at the beginning of this chapter that it is a
terrible idea to keep waiting in a JavaScript function? Indeed it is, and you
cannot use await in a normal function. The await operator can only occur in
a function that is tagged with the async keyword:

Click here to view code image

const putImage = async (url, element) => {

 const img = await loadImage(url)

 element.appendChild(img)

}

The compiler transforms the code of an async function so that any steps that
occur after an await operator are executed when the promise resolves. For
example, the putImage function is equivalent to:

Click here to view code image

const putImage = (url, element) => {

 loadImage(url)

 .then(img => element.appendChild(img))

}

Multiple await are OK:
Click here to view code image

const putTwoImages = async (url1, url2, element) => {

 const img1 = await loadImage(url1)

 element.appendChild(img1)

 const img2 = await loadImage(url2)

 element.appendChild(img2)

}

Loops are OK too:
Click here to view code image

const putImages = async (urls, element) => {

 for (url of urls) {

 const img = await loadImage(url)

 element.appendChild(img)

 }

}

As you can see from these examples, the rewriting that the compiler does
behind the scenes is not trivial.

 Caution

If you forget the await keyword when calling an async function, the function is called and
returns a promise, but the promise just sits there and does nothing. Consider this scenario, adapted
from one of many confused blogs:

Click here to view code image

const putImages = async (urls, element) => {

 for (url of urls)

 putImage(url, element) // Error—no await for async putImage
}

This function produces and forgets a number of Promise objects, then returns a
Promise.resolve(undefined). If all goes well, the images will be appended in some
order. But if an exception occurs, nobody will catch it.

You can apply the async keyword to the following:

Arrow functions:
Click here to view code image

async url => { . . . }

async (url, params) => { . . . }

Methods:

Click here to view code image

class ImageLoader {

 async load(url) { . . . }

}

Named and anonymous functions:

Click here to view code image

async function loadImage(url) { . . . }

async function(url) { . . . }

Object literal methods:

Click here to view code image

obj = {

 async loadImage(url) { . . . },

 . . .

}

 Note

In all cases, the resulting function is an AsyncFunction instance, not a Function, even
though typeof still reports 'function'.

9.10 Async Return Values
An async function looks as if it returned a value, but it always returns a
promise. Here is an example. The URL https://aws.random.cat/meow
serves up locations of random cat pictures, returning a JSON object such as
{ file: 'https://purr.objects-us-east-1.dream.io/i/mDh7a.jpg' }.

Using the Fetch API, we can get a promise for the content like this:
Click here to view code image

const result = await fetch('https://aws.random.cat/meow')

const imageJSON = await result.json()

The second await is necessary because in the Fetch API, JSON processing
is asynchronous—the call result.json() yields another promise.

Now we are ready to write a function that returns the URL of the cat image:
Click here to view code image

const getCatImageURL = async () => {

 const result = await fetch('https://aws.random.cat/meow')

 const imageJSON = await result.json()

 return imageJSON.file

}

Of course, the function must be tagged as async because it uses the await
operator.

https://aws.random.cat/meow

The function appears to return a string. The point of the await operator is to
let you work with values, not promises. But that illusion ends when you
leave an async function. The value that appears in a return statement
always becomes a promise.

What can you do with an async function? Since it returns a promise, you
can harvest the result by calling then:

Click here to view code image

getCatImageURL()

 .then(url => loadImage(url))

 .then(img => imgdiv.appendChild(img))

Or you can get the result with the await operator:
Click here to view code image

const url = await getCatImageURL()

const img = await loadImage(url)

imgdiv.appendChild(img)

The latter looks nicer, but it has to happen in another async function. As you
can see, once you are in the async world, it is hard to leave.

Consider the last line in this async function:
Click here to view code image

const loadCatImage = async () => {

 const result = await fetch('https://aws.random.cat/meow')

 const imageJSON = await result.json()

 return await loadImage(imageJSON.file)

}

You can omit the last await operator:
Click here to view code image

const loadCatImage = async () => {

 const result = await fetch('https://aws.random.cat/meow')

 const imageJSON = await result.json()

 return loadImage(imageJSON.file)

}

Either way, this method returns a promise for the image that is
asynchronously produced by the call to loadImage.

I find the first version easier to understand since the async/await syntax
consistently hides all promises.

 Caution

Inside a try/catch statement, there is a subtle difference between return await

promise and return promise—see Exercise 11. Here, you do not want to drop the await
operator.

If an async function returns a value before ever having called await, the
value is wrapped into a resolved promise:

Click here to view code image

const getJSONProperty = async (url, key) => {

 if (url === undefined) return null

 // Actually returns Promise.resolve(null)
 const result = await fetch(url)

 const json = await result.json()

 return json[key]

}

 Note

The async functions of this section return a single value in the future. In Chapter 12, you will
see how an async iterator produces a sequence of values in the future. Here is an example that
yields a range of integers, with a given delay between them.

Click here to view code image

async function* range(start, end, delay) {

 for (let current = start; current < end; current++) {

 yield await produceAfterDelay(current, delay)

 }

}

Don’t worry about the syntax of this “async generator function.” You are unlikely to implement
one, but you might use one that is provided by a library. You can harvest the results with a for
await of loop:

Click here to view code image

for await (const value of range(0, 10, 1000)) {

 console.log(value)

}

This loop must be inside an async function since it awaits all values.

9.11 Concurrent Await
Successive calls to await are done one after another:

Click here to view code image

const img1 = await loadImage(url)

const img2 = await loadCatImage() // Only starts after the first image
was loaded

It would be more efficient to load the images concurrently. Then you need
to use Promise.all:

Click here to view code image

const [img1, img2] = await Promise.all([loadImage(url),

loadCatImage()])

To make sense of this expression, it is not sufficient to understand the
async/await syntax. You really need to know about promises.

The argument of Promise.all is an iterable of promises. Here, the
loadImage function is a regular function that returns a promise, and
loadCatImage is an async function that implicitly returns a promise.

The Promise.all method returns a promise, so we can call await on it. The
result of the promise is an array that we destructure.

If you don’t understand what goes on under the hood, it is easy to make
mistakes. Consider this statement:

Click here to view code image

const [img1, img2] = Promise.all([await loadImage(url), await

loadCatImage()])

 // Error—still sequential

The statement compiles and runs. But it does not load the images
concurrently. The call await loadImage(url) must complete before the call
await loadCatImage() is initiated.

9.12 Exceptions in Async Functions
Throwing an exception in an async function yields a rejected promise.

Click here to view code image

const getAnimalImageURL = async type => {

 if (type === 'cat') {

 return getJSONProperty('https://aws.random.cat/meow', 'file')

 } else if (type === 'dog') {

 return

getJSONProperty('https://dog.ceo/api/breeds/image/random',

'message')

 } else {

 throw Error('bad type') // Async function returns rejected
promise
 }

}

Conversely, when the await operator receives a rejected promise, it throws
an exception. The following function catches the exception from the await

operator:
Click here to view code image

const getAnimalImage = async type => {

 try {

 const url = await getAnimalImageURL(type)

 return loadImage(url)

 } catch {

 return brokenImage

 }

}

You do not have to surround every await with a try/catch statement, but
you need some strategy for error handling with async functions. Perhaps
your top-level async function catches all asynchronous exceptions, or you
document the fact that its callers must call catch on the returned promise.

When a promise is rejected at the top level in Node.js, a stern warning
occurs, stating that future versions of Node.js may instead terminate the
process—see Exercise 12.

Exercises
1. The sample program in Section 9.1, “Concurrent Tasks in JavaScript”

(page 185), may not load the images in the correct order. How can you
modify it without using futures so that the images are always appended
in the correct order, no matter when they arrive?

2. Implement a function invokeAfterDelay that yields a promise, invoking
a given function after a given delay. Demonstrate by yielding a promise
for a random number between 0 and 1. Print the result on the console
when it is available.

3. Invoke the produceRandomAfterDelay function from the preceding
exercise twice and print the sum once the summands are available.

4. Write a loop that invokes the produceRandomAfterDelay function from
the preceding exercises n times and prints the sum once the summands
are available.

5. Provide a function addImage(url, element) that is similar to that in
Section 9.1, “Concurrent Tasks in JavaScript” (page 185). Return a
promise so that one can chain the calls:
Click here to view code image

addImage('hanafuda/1-1.png')

 .then(() => addImage('hanafuda/1-2.png', imgdiv))

 .then(() => addImage('hanafuda/1-3.png', imgdiv))

 .then(() => addImage('hanafuda/1-4.png', imgdiv))

Then use the tip in Section 9.5, “Promise Chaining” (page 192), to
make the chaining more symmetrical.

6. Demonstrate that the Promise.resolve method turns any object with a
then method into a Promise. Supply an object whose then method
randomly calls the resolve or reject handler.

7. Often, a client-side application needs to defer work until after the
browser has finished loading the DOM. You can place such work into a
listener for the DOMContentLoaded event. But if document.readyState !=
'loading', the loading has already happened, and the event won’t fire
again. Capture both cases with a function yielding a promise, so that
one can call
whenDOMContentLoaded().then(. . .)

8. Make an array of image URLs, some good, and some failing because of
CORS (see the note at the end of Section 9.2, “Making Promises,” page
188). Turn each into a promise:
const urls = [. . .]

const promises = urls.map(loadImage)

Call allSettled on the array of promises. When that promise resolves,
traverse the array, append the loaded images into a DOM element, and
log those that failed:
Click here to view code image

Promise.allSettled(promises)

 .then(results => {

 for (result of results)

 if (result.status === 'fulfilled') . . . else . . .

 })

9. Repeat the preceding exercise, but use await instead of then.

10. Implement a function sleep that yields a promise so that one can call
await sleep(1000)

11. Describe the difference between
Click here to view code image

const loadCatImage = async () => {

 try {

 const result = await fetch('https://aws.random.cat/meow')

 const imageJSON = await result.json()

 return loadImage(imageJSON.file)

 } catch {

 return brokenImage

 }

}

and
Click here to view code image

const loadCatImage = async () => {

 try {

 const result = await fetch('https://aws.random.cat/meow')

 const imageJSON = await result.json()

 return await loadImage(imageJSON.file)

 } catch {

 return brokenImage

 }

}

Hint: What happens if the future returned by loadImage is rejected?

12. Experiment with calling an async function that throws an exception in
Node.js. Given
Click here to view code image

const rejectAfterDelay = (result, delay) => {

 return new Promise((resolve, reject) => {

 const callback = () => reject(result)

 setTimeout(callback, delay)

 })

}

try

Click here to view code image

const errorAfterDelay = async (message, delay) =>

 await rejectAfterDelay(new Error(message), delay)

Now invoke the errorAfterDelay function. What happens? How can
you avoid this situation?

13. Explain how the error message from the preceding exercise can be
useful for locating a forgotten await operator, such as
Click here to view code image

const errorAfterDelay = async (message, delay) => {

 try {

 return rejectAfterDelay(new Error(message), 1000)

 } catch(e) { console.error(e) }

}

14. Write complete programs that demonstrate the Promise.all and
Promise.race functions of Section 9.7, “Executing Multiple Promises”
(page 196).

15. Write a function produceAfterRandomDelay that produces a value after a
random delay between 0 and a given maximum milliseconds. Then
produce an array of futures where the function is applied to 1, 2, . . . ,
10, and pass it to Promise.all. In which order will the results be
collected?

16. Use the Fetch API to load a (CORS-friendly) image. Fetch the URL,
then call blob() on the response to get a promise for the BLOB. Turn it
into an image as in the loadImage function. Provide two
implementations, one using then and one using await.

17. Use the Fetch API to obtain the HTML of a (CORS-friendly) web page.
Search all image URLs and load each image.

18. When work is scheduled for the future, it may happen that due to
changing circumstances the work is no longer needed and it should be
canceled. Design a scheme for cancellation. Consider a multistep
process, such as in the preceding exercise. At each stage, you will want
to be able to abort the process. There is no standard way yet of doing
this in JavaScript, but typically, APIs provide “cancellation tokens.” A
fetchImages function might receive an additional argument

Click here to view code image

const token = new CancellationToken()

const images = fetchImages(url, token)

The caller can later decide to call
token.cancel()

In the implementation of an cancelable async function, the call
Click here to view code image

token.throwIfCancellationRequested()

throws an exception if cancellation was indeed requested. Implement
this mechanism and demonstrate it with an example.

19. Consider this code that carries out some asynchronous work such as
fetching remote data, handles the data, and returns the promise for
further processing:
Click here to view code image

const doAsyncWorkAndThen = handler => {

 const promise = asyncWork();

 promise.then(result => handler(result));

 return promise;

}

What happens if handler throws an exception? How should this code
be reorganized?

20. What happens when you add async to a function that doesn’t return
promises?

21. What happens if you apply the await operator to an expression that
isn’t a promise? What happens if the expression throws an exception?
Is there any reason why you would want to do this?

Chapter 10. Modules

Topics in This Chapter

10.1 The Module Concept

10.2 ECMAScript Modules

10.3 Default Imports

10.4 Named Imports

 10.5 Dynamic Imports

10.6 Exports

10.7 Packaging Modules

Exercises

When providing code to be reused by many programmers, it is important to
separate the public interface from the private implementation. In an object-
oriented programming language, this separation is achieved with classes. A
class can evolve by changing the private implementation without affecting

its users. (As you saw in Chapter 4, hiding private features is not yet fully
supported in JavaScript, but this will surely come.)

A module system provides the same benefits for programming at larger
scales. A module can make certain classes and functions available, while
hiding others, so that the module’s evolution can be controlled.

Several ad-hoc module systems were developed for the JavaScript. In 2015,
ECMAScript 6 codified a simple module system that is the topic of this
short chapter.

10.1 The Module Concept
A module provides features (classes, functions, or other values) for
programmers, called the exported features. Any features that are not
exported are private to the module.

A module also specifies on which other modules it depends. When a
module is needed, the JavaScript runtime loads it together with its
dependent modules.

Modules manage name conflicts. Since the private features of a module are
hidden from the public, it does not matter what they are called. They will
never clash with any names outside the module. When you use a public
feature, you can rename it so that it has a unique name.

 Note

In this regard, JavaScript modules differ from Java packages or modules which rely on globally
unique names.

It is important to understand that a module is different from a class. A class
can have many instances, but a module doesn’t have instances. It is just a
container for classes, functions, or values.

10.2 ECMAScript Modules
Consider a JavaScript developer who wants to make features available to
other programmers. The developer places those features into a file. The
programmers who use the features include the file in their project.

Now suppose a programmer includes such files from multiple developers.
There is a good chance that some of those feature names will conflict with
each other. More ominously, each file contains quite a few helper functions
and variables whose names give rise to further conflicts.

Clearly, there needs to be some way of hiding implementation details. For
many years, JavaScript developers have simulated modules through
closures, placing helper functions and classes inside a wrapper function.
This is similar to the “hard objects” technique from Chapter 3. They also
developed ad-hoc ways of publishing exported features and dependencies.

Node.js implements a module system (called Common.js) that manages
module dependencies. When a module is needed, it and its dependencies are
loaded. That loading happens synchronously, as soon as the demand for a
module occurs.

The AMD (Asynchronous Module Definition) standard defines a system for
loading modules asynchronously, which is better suited for browser-based
applications.

ECMAScript modules improve on both of these systems. They are parsed to
quickly establish their dependencies and exports, without having to execute
their bodies first. This allows asynchronous loading and circular
dependencies. Nowadays, the JavaScript world is transitioning to the
ECMAScript module system.

 Note

For Java programmers, an analog of a JavaScript module is a Maven artifact, or, since Java 9, a
Java platform module. Artifacts provide dependency information but no encapsulation (beyond
that of Java classes and packages). Java platform modules provide both, but they are quite a bit
more complex than ECMAScript modules.

10.3 Default Imports
Only a few programmers write modules; many more programmers consume
them. Let us therefore start with the most common activity: importing
features from an existing module.

Most commonly, you import functions and classes. But you can also import
objects, arrays, and primitive values.

A module implementor can tag one feature (presumably the most useful
one) as the default. The import syntax makes it particularly easy to import
the default feature. Consider this example where we import a class from a
module that provides an encryption service:

Click here to view code image

import CaesarCipher from './modules/caesar.mjs'

This statement specifies the name that you choose to give to the default
feature, followed by the file that contains the module implementation. For
more details on specifying module locations, see Section 10.7, “Packaging
Modules” (page 217).

The choice of the feature name in your program is entirely yours. If you
prefer, you can give it a shorter name:

import CC from './modules/caesar.mjs'

If you work with modules that provide their services as a default feature,
that is all you need to know about the ECMAScript module system.

 Note

In a browser, the module location must be a full URL or a relative URL that starts with ./, ../,
or /. This restriction leaves open the possibility of special handling for well-known package
names or paths in the future.

In Node.js, you can use a relative URL that starts with ./, ../, or a file:// URL. You can
also specify a package name.

10.4 Named Imports
A module can export named features in addition to, or instead of, the
default. The module implementor gives a name to each nondefault feature.
You can import as many of these named features as you like.

Here we import two functions that the module calls encrypt and decrypt:
Click here to view code image

import { encrypt, decrypt } from './modules/caesar.mjs'

Of course, there is a potential pitfall. What if you want to import encryption
functions from two modules, and they both call it encrypt? Fortunately, you
can rename the imported features:

Click here to view code image

import { encrypt as caesarEncrypt, decrypt as caesarDecrypt }

 from './modules/caesar.mjs'

In this way, you can always avoid name clashes.

If you want to import both the default feature and one or more named
features, combine the two syntax elements:

Click here to view code image

import CaesarCipher, { encrypt, decrypt } from

'./modules/caesar.mjs'

or

Click here to view code image

import CaesarCipher, { encrypt as caesarEncrypt, decrypt as

caesarDecrypt} . . .

 Note

Be sure to use braces when importing a single nondefault feature:

Click here to view code image

import { encrypt } from './modules/caesar.mjs'

Without the braces, you would give a name to the default feature.

If a module exports many names, then it would be tedious to name each of
them in the import statement. Instead, you can pour all exported features
into an object:

Click here to view code image

import * as CaesarCipherTools from './modules/caesar.mjs'

You then use the imported functions as CaesarCipherTools.encrypt and
CaesarCipherTools.decrypt. If there is a default feature, it is accessible as
CaesarCipherTools.default. You can also name it:

Click here to view code image

import CaesarCipher, * as CaesarCipherTools . . .

You can use the import statement without importing anything:
import './app/init.mjs'

Then the statements in the file are executed but nothing is imported. This is
not common.

10.5 Dynamic Imports

A stage 4 proposal allows you to import a module whose location is not
fixed. Loading a module on demand can be useful to reduce the start-up
cost and footprint of an application.

For dynamic import, use the import keyword as if it were a function with
the module location as argument:

import(`./plugins/${action}.mjs`)

The dynamic import statement loads the module asynchronously. The
statement yields a promise for an object containing all exported features.
The promise is fulfilled when the module is loaded. You can then use its
features:

Click here to view code image

import(`./plugins/${action}.mjs`)

 .then(module => {

 module.default()

 module.namedFeature(args)
 . . .

 })

Of course you can use the async/await notation:
Click here to view code image

async load(action) {

 const module = await import(`./plugins/${action}.mjs`)

 module.default()

 module.namedFeature(args)
 . . .

}

When you use a dynamic import, you do not import features by name, and
there is no syntax for renaming features.

 Note

The import keyword is not a function, even though it looks like one. It is just given a function-
like syntax. This is similar to the super(. . .) syntax of the super keyword.

10.6 Exports
Now that you have seen how to import features from modules, let us switch
to the module implementor’s perspective.

10.6.1 Named Exports

In a module, you can tag any number of functions, classes, or variable
declarations with export:

Click here to view code image

export function encrypt(str, key) { . . . }

export class Cipher { . . . }

export const DEFAULT_KEY = 3

Alternatively, you can provide an export statement with the names of the
exported features:

Click here to view code image

function encrypt(str, key) { . . . }

class Cipher { . . . }

const DEFAULT_KEY = 3

. . .

export { encrypt, Cipher, DEFAULT_KEY }

With this form of the export statement, you can provide different names for
exported features:

Click here to view code image

export { encrypt as caesarEncrypt, Cipher, DEFAULT_KEY }

Keep in mind that the export statement defines the name under which the
feature is exported. As you have seen, an importing module may use the
provided name or choose a different name to access the feature.

 Note

The exported features must be defined at the top-level scope of the module. You cannot export
local functions, classes, or variables.

10.6.2 The Default Export

At most one function or class can be tagged as export default:
export default class Cipher { . . . }

In this example, the Cipher class becomes the default feature of the module.

You cannot use export default with variable declarations. If you want the
default export to be a value, do not declare a variable. Simply write export
default followed by the value:

Click here to view code image

export default 3 // OK
export default const DEFAULT_KEY = 3

 // Error—export default not valid with const/let/var

It isn’t likely that someone would make a simple constant the default value.
A more realistic choice would be to export an object with multiple features:

Click here to view code image

export default { encrypt, Cipher, DEFAULT_KEY }

You can use this syntax with an anonymous function or class:
Click here to view code image

export default (s, key) => { . . . } // No need to name this
function

or
Click here to view code image

export default class { // No need to name this class
 encrypt(key) { . . . }

 decrypt(key) { . . . }

}

Finally, you can use the renaming syntax to declare the default feature:
export { Cipher as default }

 Note

The default feature is simply a feature with the name default. However, since default is a
keyword, you cannot use it as an identifier and must use one of the syntactical forms of this
section.

10.6.3 Exports Are Variables

Each exported feature is a variable with a name and a value. The value may
be a function, a class, or an arbitrary JavaScript value.

The value of an exported feature can change over time. Those changes are
visible in importing modules. In other words, an exported feature captures a
variable, not just a value.

For example, a logging module might export a variable with the current
logging level and a function to change it:

Click here to view code image

export const Level = { FINE: 1, INFO: 2, WARN: 3, ERROR: 4 }

export let currentLevel = Level.INFO

export const setLevel = level => { currentLevel = level }

Now consider a module that imports the logging module with the statement:
Click here to view code image

import * as logging from './modules/logging.mjs'

Initially, in that module, logging.currentLevel has value Level.INFO or 2.
If the module calls

Click here to view code image

logging.setLevel(logging.Level.WARN)

the variable is updated, and logging.currentLevel has value 3.

However, in the importing module, the variable is read-only. You cannot set
Click here to view code image

logging.currentLevel = logging.Level.WARN

 // Error—cannot assign to imported variable

The variables holding exported features are created as soon as the module is
parsed, but they are only filled when the module body is executed. This
enables circular dependencies between modules (see Exercise 6).

 Caution

If you have a cycle of modules that depends on each other, then it can happen that an exported
feature is still undefined when it is used in another module—see Exercise 11.

10.6.4 Reexporting

When you provide a module with a rich API and a complex
implementation, you will likely depend on other modules. Of course, the
module system takes care of dependency management, so the module user
doesn’t have to worry about that. However, it can happen that one of the
modules contains useful features that you want to make available to your
users. Instead of asking users to import those features themselves, you can
reexport them.

Here, we reexport features from another module:
Click here to view code image

export { randInt, randDouble } from './modules/random.mjs'

Whoever imports this module will have the features randInt and
randDouble from the './modules/random.mjs' module available, as if they
had been defined in this module.

If you like, you can rename features that you reexport:

Click here to view code image

export { randInt as randomInteger } from './modules/random.mjs'

To reexport the default feature of a module, refer to it as default:
Click here to view code image

export { default } from './modules/stringutil.mjs'

export { default as StringUtil } from './modules/stringutil.mjs'

Conversely, if you want to reexport another feature and make it the default
of this module, use the following syntax:

Click here to view code image

export { Random as default } from './modules/random.mjs'

Finally, you can reexport all nondefault features of another module.
Click here to view code image

export * from './modules/random.mjs'

You might want to do this if you split up your project into many smaller
modules and then provide a single module that is a façade for the smaller
ones, reexporting all of them.

The export * statement skips the default feature because there would be a
conflict if you were to reexport default features from multiple modules.

10.7 Packaging Modules
Modules are different from plain “scripts”:

The code inside a module always executes in strict mode.

Each module has its own top-level scope that is distinct from the global
scope of the JavaScript runtime.

A module is only processed once even if it is loaded multiple times.

A module is processed asynchronously.

A module can contain import and export statements.

When the JavaScript runtime reads the module content, it must know that it
is processing a module and not a plain script.

In a browser, you load a module with a script tag whose type attribute is
module.

Click here to view code image

<script type="module" src="./modules/caesar.mjs"></script>

In Node.js, you can use the file extension .mjs to indicate that a file is a
module. If you want to use a plain .js extension, you need to mark modules
in the package.json configuration file. When invoking the node executable
in interactive mode, use the command-line option --input-type=module.

It seems simplest to always use the .mjs extension for modules. All
runtimes and build tools recognize that extension.

 Note

When you serve .mjs files from a web server, the server needs to be configured to provide the
header Content-Type: text/javascript with the response.

 Caution

Unlike regular scripts, browsers fetch modules with CORS restrictions. If you load modules from
a different domain, the server must return an Access-Control-Allow-Origin header.

 Note

The import.meta object is a stage 3 proposal to provide information about the current module.
Some JavaScript runtimes provide the URL from which the module was loaded as
import.meta.url.

Exercises

1. Find a JavaScript library for statistical computation (such as
https://github.com/simple-statistics/simple-statistics). Write a
program that imports the library as an ECMAScript module and
computes the mean and standard deviation of a data set.

2. Find a JavaScript library for encryption (such as
https://github.com/brix/crypto-js). Write a program that imports the
library as an ECMAScript module and encrypts a message, then
decrypts it.

3. Implement a simple logging module that supports logging messages
whose log level exceeds a given threshold. Export a log function,
constants for the log level, and a function to set the threshold.

4. Repeat the preceding exercise, but export a single class as a default
feature.

5. Implement a simple encryption module that uses the Caesar cipher
(adding a constant to each code point). Use the logging module from
one of the preceding exercises to log all calls to decrypt.

6. As an example of a circular dependency between modules, repeat the
preceding exercise, but provide an option to encrypt the logs in the
logging module.

7. Implement a simple module that provides random integers, arrays of
random integers, and random strings. Use as many different forms of
the export syntax as you can.

8. What is the difference between
Click here to view code image

import Cipher from './modules/caesar.mjs'

and
Click here to view code image

import { Cipher } from './modules/caesar.mjs'

9. Explain the difference between

https://github.com/simple-statistics/simple-statistics
https://github.com/brix/crypto-js

Click here to view code image

export { encrypt, Cipher, DEFAULT_KEY }

and
Click here to view code image

export default { encrypt, Cipher, DEFAULT_KEY }

10. Which of the following are valid JavaScript?
Click here to view code image

export function default(s, key) { . . . }

export default function (s, key) { . . . }

export const default = (s, key) => { . . . }

export default (s, key) => { . . . }

11. Trees have two kinds of nodes: those with children (parents) and those
without (leaves). Let’s model that with inheritance:
Click here to view code image

class Node {

 static from(value, ...children) {

 return children.length === 0 ? new Leaf(value)

 : new Parent(value, children)

 }

}

class Parent extends Node {

 constructor(value, children) {

 super()

 this.value = value

 this.children = children

 }

 depth() {

 return 1 + Math.max(...this.children.map(c => c.depth()))

 }

}

class Leaf extends Node {

 constructor(value) {

 super()

 this.value = value

 }

 depth() {

 return 1

 }

}

Now a module-happy developer wants to put each class into a separate
module. Do that and try it out with a demo program:
Click here to view code image

import { Node } from './node.mjs'

const myTree = Node.from('Adam',

 Node.from('Cain', Node.from('Enoch')),

 Node.from('Abel'),

 Node.from('Seth', Node.from('Enos')))

console.log(myTree.depth())

What happens? Why?

12. Of course, the issue in the preceding exercise could have been easily
avoided by not using inheritance, or by placing all classes into one
module. In a larger system, those alternatives may not be feasible. In
this exercise, keep each class in its own module and provide a façade
module tree.mjs that reexports all three modules. In all modules,
import from './tree.mjs', not the individual modules. Why does this
solve the issue?

Chapter 11. Metaprogramming

Topics in This Chapter

11.1 Symbols

11.2 Customization with Symbol Properties

11.3 Property Attributes

11.4 Enumerating Properties

11.5 Testing a Single Property

11.6 Protecting Objects

11.7 Creating or Updating Objects

11.8 Accessing and Updating the Prototype

11.9 Cloning Objects

11.10 Function Properties

11.11 Binding Arguments and Invoking Methods

11.12 Proxies

11.13 The Reflect Class

11.14 Proxy Invariants

Exercises

This chapter is a deep dive into advanced APIs that you can use to create objects that
have nonstandard behavior, and to write code that works with generic objects.

We start by looking at symbols, the only type other than strings that can be used for
object property names. By defining properties with certain “well-known” symbols,

you can customize the behavior of certain API methods.

Then we look at object properties in detail. Properties can have attributes, and you
will learn how to analyze, create, and update properties with the appropriate
attributes. As an application, we will walk through a robust clone function for
making deep copies.

We then turn to function objects and methods for binding parameters and invoking
functions with given parameters. Finally, you will see how proxies can intercept
every aspect of working with objects. We will study two applications in detail:
spying on object access and dynamically creating properties.

11.1 Symbols
As you have seen throughout this book, a JavaScript object has keys of type String.
However, using strings as keys has some limitations. Modern JavaScript provides a
second type that you can use for object keys—the Symbol type.

Symbols have string labels, but they are not strings. Create a symbol like this:
const sym = Symbol('label')

Symbols are unique. If you create a second symbol
const sym2 = Symbol('label')

then sym !== sym2.

This is the principal advantage of symbols. If you wanted to have a string key that is
guaranteed to be unique, you might add a counter or a time stamp or a random
number, and you’d still fret if that was good enough.

 Note

You cannot use new to make a symbol: new Symbol('label') throws an exception.

Since symbols are not strings, you cannot use the dot notation for symbol keys.
Instead, use the bracket operator:

Click here to view code image

let obj = { [sym]: initialValue }

obj[sym] = newValue

If you want to attach some property to an existing object, such as a DOM node, it
isn’t a good idea to use a string key:

node.outcome = 'success'

Even if nodes don’t currently have a key named outcome, they might in the future.

But a symbol is completely safe:
Click here to view code image

let outcomeSymbol = Symbol('outcome')

node[outcomeSymbol] = 'success'

Note that you need to save the symbol in a variable or object, so that it is available
when you need it.

For example, the Symbol class has “well-known” symbols in the fields
Symbol.iterator and Symbol.species that we will study in the next section.

If you need to share symbols across “realms” (such as different iframes or web
workers), you can use the global symbol registry. To create or retrieve a previously
created global symbol, call the Symbol.for method. Supply a key that should be
globally unique:

Click here to view code image

let sym3 = Symbol.for('com.horstmann.outcome')

 Note

The typeof operator yields the string 'symbol' when applied to a symbol.

11.2 Customization with Symbol Properties
Symbol properties are used in the JavaScript API for customizing the behavior of
classes. The Symbol class defines a number of “well-known ” symbol constants for
this purpose, shown in Table 11-1. The following subsections examine three of them
in detail.

Table 11-1 Well-Known Symbols

Symbol Description

toStringTag Customizes the toString method of the Object class
—see Section 11.2.1

toPrimitive Customizes conversion to a primitive type—see
Section 11.2.2

species A constructor function to create a result collection,
used by methods such as map and filter—see
Section 11.2.3

iterator,
asyncIterator

Define iterators (Chapter 9) and asynchronous
iterators (Chapter 10)

hasInstance Customize the behavior of instanceof:
class Iterable {

 static [Symbol.hasInstance](obj) {

 return Symbol.iterator in obj

 }

}

[1, 2, 3] instanceof Iterable

match, matchAll,
replace, search,
split

Called from the String methods with the same name.
Redefine for objects other than RegExp—see Exercise
2.

isConcatSpreadable Used in the concat method of Array:
const a = [1, 2]

const b = [3, 4]

a[Symbol.isConcatSpreadable] = false

[].concat(a, b) ⇒ [[1, 2], 3, 4]

11.2.1 Customizing toString

You can change the behavior of the toString method in the Object class. By default,
it yields '[object Object]'. But if an object has a property with the key
Symbol.toStringTag, then that property value is used instead of Object. For
example:

Click here to view code image

const harry = { name: 'Harry Smith', salary: 100000 }

harry[Symbol.toStringTag] = 'Employee'

console.log(harry.toString())

 // Now toString yields '[object Employee]

When you define a class, you can set the property in the constructor:
Click here to view code image

class Employee {

 constructor(name, salary) {

 this[Symbol.toStringTag] = 'Employee'

 . . .

 }

 . . .

}

Or you can provide a get method, using the following special syntax:
Click here to view code image

class Employee {

 . . .

 get [Symbol.toStringTag]() { return JSON.stringify(this) }

}

The point is that the well-known symbol provides a hook for customizing the
behavior of an API method.

11.2.2 Controlling Type Conversion

The Symbol.toPrimitive symbol gives you additional control over the conversion to
primitive types if overriding the valueOf method is not sufficient. Consider this class
representing percentages:

Click here to view code image

class Percent {

 constructor(rate) { this.rate = rate }

 toString() { return `${this.rate}%` }

 valueOf() { return this.rate * 0.01 }

}

Now consider:
Click here to view code image

const result = new Percent(99.44)

console.log('Result: ' + result) // Prints Result: 0.9944

Why not '99.44%'? The + operator uses the valueOf method when it is available. The
remedy is to add a method with key Symbol.toPrimitive:

Click here to view code image

[Symbol.toPrimitive](hint) {

 if (hint === 'number') return this.rate * 0.01

 else return `${this.rate}%`

}

The hint parameter is:

'number' with arithmetic other than + and comparisons

'string' with ` ${. . .} ` or String(. . .)

'default' with + or ==

In practice, this mechanism is of limited utility because the hint doesn’t give you
enough information. What you really want is the type of the other operand—see
Exercise 1.

11.2.3 Species

By default, the Array method map produces the same collection that it received:
Click here to view code image

class MyArray extends Array {}

let myValues = new MyArray(1, 2, 7, 9)

myValues.map(x => x * x) // Yields a MyArray

That’s not always appropriate. Suppose we have a class Range extending Array that
describes a range of integers.

Click here to view code image

class Range extends Array {

 constructor(start, end) {

 super()

 for (let i = 0; i < end - start; i++)

 this[i] = start + i

 }

}

Transforms of ranges aren’t usually ranges:
Click here to view code image

const myRange = new Range(10, 99)

myRange.map(x => x * x) // Should not be a Range

Such a collection class can specify a different constructor as the value of the
Symbol.species property:

Click here to view code image

class Range extends Array {

 . . .

 static get [Symbol.species]() { return Array }

}

This constructor function is used by the Array methods that create new arrays: map,
filter, flat, flatMap, subarray, slice, splice, and concat.

11.3 Property Attributes
In this and the following sections, we will examine all functions and methods of the
Object class that are summarized in Table 11-2.

Table 11-2 Object Functions and Methods

Name Description

Functions

defineProperty(obj, name, descriptor)

defineProperties(obj,

 { name1: descriptor1, . . . })

Define one or multiple
property descriptors

getOwnPropertyDescriptor(obj, name)

getOwnPropertyDescriptors(obj)

getOwnPropertyNames(obj)

getOwnPropertySymbols(obj)

Gets one or all noninherited
descriptors of an object, or
just their string
names/symbols

keys(obj)

values(obj)

entries(obj)

The names, values, and
[name, value] pairs of own
enumerable properties

preventExtensions(obj)

seal(obj)

freeze(obj)

Disallow prototype change
and property addition; also,
property deletion and

Name Description

configuration; also, property
change

isExtensible(obj)

isSealed(obj)

isFrozen(obj)

Checks if obj has been
protected by one of the
functions from the preceding
row

create(prototype,

 { name1: descriptor1, . . . })

fromEntries([[name1, value1], . . .])

Creates a new object with
the given properties

assign(target, source1, source2, . . .)
Copies all enumerable own
properties from the sources
to the target. Use a spread
instead.

getPrototypeOf(obj)

setPrototypeOf(obj, proto)

Gets or sets the prototype

Methods

hasOwnProperty(stringOrSymbol)

propertyIsEnumerable(stringOrSymbol)

true if the object has the
given property, or if it is
enumerable

isPrototypeOf(other) Checks if this object is a
prototype of another

Let us start out with a close look at working with object properties. Every property
of a JavaScript object has three attributes:

1. enumerable: When true, the property is visited in for in loops.

2. writable: When true, the property value can be updated.

3. configurable: When true, the property can be deleted and its attributes can be
modified.

When you set a property in an object literal or by assignment, all three attributes are
true, with one exception. Properties with symbol keys are not enumerable.

Click here to view code image

let james = { name: 'James Bond' }

 // james.name is writable, enumerable, configurable

On the other hand, the length property of an array is writable but not enumerable or
configurable.

 Note

The writable and configurable attributes are enforced in strict mode by throwing an exception. In
non-strict mode, violations are silently ignored.

You can dynamically define properties with arbitrary names and attribute values by
calling the Object.defineProperty function:

Click here to view code image

Object.defineProperty(james, 'id', {

 value: '007',

 enumerable: true,

 writable: false,

 configurable: true

})

The last argument is called the property descriptor.

When you define a new property and do not specify an attribute, it is set to false.

You can use the same function to change the attributes of an existing property,
provided the property is configurable.

Click here to view code image

Object.defineProperty(james, 'id', {

 configurable: false

}) // Now james.id can’t be deleted, and its attributes can’t be changed

You can define getter and setter properties by providing functions with keys get and
set:

Click here to view code image

Object.defineProperty(james, 'lastName', {

 get: function() { return this.name.split(' ')[1] },

 set: function(last) { this.name = this.name.split(' ')[0] + ' ' + last

}

})

Note that you can’t use arrow functions here since you need the this parameter.

The get function is invoked when using the property as a value:
Click here to view code image

console.log(james.lastName) // Prints Bond

The set function is invoked when a new value is assigned to the property:
Click here to view code image

james.lastName = 'Smith' // Now james.name is 'James Smith'

 Note

You saw in Chapter 4 how to define getters and setters in a class: by prefixing a method with get or set. As
you just saw, you don’t need to define a class to have getters and setters.

Finally, the Object.defineProperties function can define or update multiple
properties. Pass an object whose keys are property names and whose values are
property descriptors.

Click here to view code image

Object.defineProperties(james, {

 id: { value: '007', writable: false, enumerable: true, configurable:

false },

 age: { value: 42, writable: true, enumerable: true, configurable: true

}

})

11.4 Enumerating Properties
In the preceding section, you saw how to define one or multiple properties. The
getOwnPropertyDescriptor/getOwnPropertyDescriptors functions yield property
descriptors in the same format as the arguments to the
defineProperty/defineProperties functions. For example,

Click here to view code image

Object.getOwnPropertyDescriptor(james, 'name')

yields the descriptor

Click here to view code image

{ value: 'James Bond',

 writable: true,

 enumerable: true,

 configurable: true }

To get all descriptors, call
Click here to view code image

Object.getOwnPropertyDescriptors(james)

The result is an object whose keys are property names and whose values are
descriptors:

Click here to view code image

{ name:

 { value: 'James Bond',

 writable: true,

 enumerable: true,

 configurable: true },

 lastName:

 { get: [Function: get],

 set: [Function: set],

 enumerable: false,

 configurable: false }

 . . .

}

The function is called getOwnPropertyDescriptors since it only yields the properties
that are defined with the object itself, not those inherited from the prototype chain.

 Tip

Object.getOwnPropertyDescriptors is very useful to “spy” on an object since it lists all
properties, including those that are not enumerable—see Exercise 9.

If you don’t want the firehose of information that
Object.getOwnPropertyDescriptors yields, you can call
Object.getOwnPropertyNames(obj) or Object.getOwnPropertySymbols(obj) to get all
string or symbol-valued property keys, whether enumerable or not, and then look up
those property descriptors that interest you.

Finally, there are Object.keys, Object.values, and Object.entries functions that
yield the names, values, and [name, value] pairs of own enumerable properties. These
are similar to the keys, values, and entries methods of the Map class that you saw in
Chapter 7. However, they are not methods, and they yield arrays, not iterators.

Click here to view code image

const obj = { name: 'Fred', age: 42 }

Object.entries(obj) // [['name', 'Fred'], ['age', 42]]

You can iterate over the properties with this loop:
Click here to view code image

for (let [key, value] of Object.entries(obj))

 console.log(key, value)

11.5 Testing a Single Property
The condition

stringOrSymbol in obj

checks whether a property exists in an object or within its prototype chain.

Why not simply check whether obj[stringOrSymbol] !== undefined? The in
operator yields true for properties whose value is undefined. Given the object

Click here to view code image

const harry = { name: 'Harry', partner: undefined }

the condition 'partner' in harry is true.

Sometimes you may not want to look into the prototype chain. To find out whether
an object itself has a property with a given name, call

Click here to view code image

obj.hasOwnProperty(stringOrSymbol)

To test for the presence of an enumerable property, call
Click here to view code image

obj.propertyIsEnumerable(stringOrSymbol)

Note that using these methods has a potential downside. An object can override the
methods and lie about its properties. In this regard, it is safer to use the in operator
and functions such as Object.getOwnPropertyDescriptior.

11.6 Protecting Objects
The Object class has three functions for protecting objects to increasing degrees:

1. Object.preventExtensions(obj): Own properties cannot be added, and the
prototype cannot be changed.

2. Object.seal(obj): In addition, properties cannot be deleted or configured.

3. Object.freeze(obj): In addition, properties cannot be set.

The three functions return the object that is being protected. For example, you can
construct and freeze an object like this:

Click here to view code image

const frozen = Object.freeze({ . . . })

Note that these protections only apply in strict mode.

Even freezing doesn’t make an object entirely immutable since property values
might be mutable:

Click here to view code image

const fred = Object.freeze({ name: 'Fred', luckyNumbers: [17, 29] })

fred.luckyNumbers[0] = 13 // OK—luckyNumbers isn’t frozen

If you want complete immutability, you need to recursively freeze all dependent
objects—see Exercise 8.

To find out whether an object has been protected through one of these functions, call
Object.isExtensible(obj), Object.isSealed(obj), or Object.isFrozen(obj).

11.7 Creating or Updating Objects
The Object.create function gives you complete control over creating a new object.
Specify the prototype and the names and descriptors of all properties:

Click here to view code image

const obj = Object.create(proto, propertiesWithDescriptors)

Here, propertiesWithDescriptors is an object whose keys are property names and
whose values are descriptors, as in Section 11.4, “Enumerating Properties” (page
228).

If you have the property names and values in an iterable of key/value pair arrays,
then call the Object.fromEntries function to make an object with these properties:

Click here to view code image

let james = Object.fromEntries([['name', 'James Bond'], ['id', '007']])

The call Object.assign(target, source1, source2, . . .) copies all enumerable
own properties from the sources into the target and returns the updated target:

Click here to view code image

james = Object.assign(james, { salary: 300000 }, genericSpy)

These days, there is no good reason to use Object.assign. Just use a spread {
...james, salary: 300000, ...genericSpy }.

11.8 Accessing and Updating the Prototype
As you know, the prototype chain is a key concept in JavaScript programming. If
you use the class and extends keywords, the prototype chain is established for you.
In this section, you will learn how to manage it manually.

To get the prototype of an object (that is, the value of the internal [[Prototype]] slot),
call:

Click here to view code image

const proto = Object.getPrototypeOf(obj)

For example,
Click here to view code image

Object.getPrototypeOf('Fred') === String.prototype

When you have an instance of a class that was created with the new operator, such as
Click here to view code image

 const obj = new ClassName(args)

then Object.getPrototypeOf(obj) is the same as ClassName.prototype. But you can
set the prototype of any object by calling

Click here to view code image

Object.setPrototypeOf(obj, proto)

We have done this briefly in Chapter 4 before introducing the new operator.

However, changing the prototype of an existing object is a slow operation for
JavaScript virtual machines because they speculatively assume that object
prototypes do not change. If you need to make an object with a custom prototype, it
is better to use the Object.create method from Section 11.7, “Creating or Updating
Objects” (page 231).

The call proto.isPrototypeOf(obj) returns true if proto is in the prototype chain of
obj. Unless you set a special prototype, you can just use the instanceof operator:
obj instanceof ClassName is the same as
ClassName.prototype.isPrototypeOf(obj).

 Note

Unlike all other prototype objects, Array.prototype is actually an array!

11.9 Cloning Objects
As an application of the material of the preceding sections, let us develop a function
that can make a deep copy or “clone” of an object.

A naïve approach makes use of the spread operator:
Click here to view code image

const cloned = { ...original } // In general, not a true clone

However, this only copies the enumerable properties. And it does nothing about
prototypes.

We can copy the prototype and all properties:
Click here to view code image

const cloned = Object.create(Object.getPrototypeOf(original),

 Object.getOwnPropertyDescriptors(original)) // Better, but still shallow

Now the clone has the same prototype and the same properties as the original, with
all property attributes faithfully copied.

But the copy is still shallow. Mutable property values are not cloned. To see the
problem with shallow copies, consider this object:

Click here to view code image

const original = { radius: 10, center: { x: 20, y: 30 } }

Then the original.center and clone.center are the same object, as you can see in
Figure 11-1. Mutating original also mutates clone:

Click here to view code image

original.center.x = 40 // clone.center.x is also changed

Figure 11-1 A shallow copy

The remedy is to recursively clone all values:
Click here to view code image

const clone = obj => {

 if (typeof obj !== 'object' || Object.isFrozen(obj)) return obj

 const props = Object.getOwnPropertyDescriptors(obj)

 let result = Object.create(Object.getPrototypeOf(obj), props)

 for (const prop in props)

 result[prop] = clone(obj[prop])

 return result

}

However, this version fails when there are circular references.

Consider two people who are each other’s best friend (see Figure 11-2):
Click here to view code image

const fred = { name: 'Fred' }

const barney = { name: 'Barney' }

fred.bestFriend = barney

barney.bestFriend = fred

Figure 11-2 Circular references

Now suppose we recursively clone fred. The result is a new object
Click here to view code image

cloned = { name: 'Fred', bestFriend: clone(barney) }

What does clone(barney) do? It makes an object { name: 'Barney', bestFriend:
clone(fred) }. But that is not right. We get an infinite recursion. And even if we
didn’t, we would get an object with the wrong structure. We expect an object so that

Click here to view code image

cloned.bestFriend.bestFriend === cloned

We need to refine the recursive cloning process. If an object has already been
cloned, don’t clone it again. Instead, use the reference to the existing clone. This can
be implemented with a map from original to cloned objects. When a previously
uncloned object is encountered, add the references to the original and the clone to
the map. When the object has already been cloned, just look up the clone.

Click here to view code image

const clone = (obj, cloneRegistry = new Map()) => {

 if (typeof obj !== 'object' || Object.isFrozen(obj)) return obj

 if (cloneRegistry.has(obj)) return cloneRegistry.get(obj)

 const props = Object.getOwnPropertyDescriptors(obj)

 let result = Object.create(Object.getPrototypeOf(obj), props)

 cloneRegistry.set(obj, result)

 for (const prop in props)

 result[prop] = clone(obj[prop], cloneRegistry)

 return result

}

This is getting very close to the perfect clone function. However, it does not work
for arrays. Calling clone([1, 2, 3]) yields an array-like object whose prototype is
Array.prototype. However, it is not an array—Array.isArray returns false.

The remedy is to copy arrays with Arrays.from, not Object.create. Here is the final
version:

Click here to view code image

const clone = (obj, cloneRegistry = new Map()) => {

 if (typeof obj !== 'object' || Object.isFrozen(obj)) return obj

 if (cloneRegistry.has(obj)) return cloneRegistry.get(obj)

 const props = Object.getOwnPropertyDescriptors(obj)

 let result = Array.isArray(obj) ? Array.from(obj)

 : Object.create(Object.getPrototypeOf(obj), props)

 cloneRegistry.set(obj, result)

 for (const prop in props)

 result[prop] = clone(obj[prop], cloneRegistry)

 return result

}

11.10 Function Properties
Now that we have discussed the methods of the Object class, let us move on to
function objects. Every function that is an instance of the class Function has these
three nonenumerable properties:

name: the name with which the function was defined or, for anonymous
functions, the name of the variable to which the function was assigned (see
Exercise 14)

length: the number of arguments, not counting a rest argument

prototype: an object intended to be filled with prototype properties

Recall that in classic JavaScript, there is no difference between functions and
constructors. Even in strict mode, every function can be called with new. Therefore,
every function has a prototype object.

Let us look at the prototype object of a function more closely. It has no enumerable
properties and one nonenumerable property constructor that points back to the
constructor function—see Figure 11-3. For example, suppose we define a class
Employee. The constructor function, Employee, like any function, has a prototype
property, and

Click here to view code image

Employee.prototype.constructor === Employee

Any object inherits the constructor property from the prototype. Therefore, you can
get the class name of an object as

obj.constructor.name

Figure 11-3 The constructor property

 Note

Inside a constructor, the odd-looking expression new.target evaluates to the function with which the
object is constructed. You can use this expression to find out whether an object is constructed as an instance
of a subclass, which may be of some utility—see Exercise 11. You can also tell if the function was called
without new. In that case, new.target === undefined.

11.11 Binding Arguments and Invoking Methods
Given a function, the bind method yields a different function that has locked in the
initial arguments:

Click here to view code image

const multiply = (x, y) => x * y

const triple = multiply.bind(null, 3)

triple(14) // Yields 42, or multiply(3, 14)

Because one argument of multiply is locked in by the bind method, the result is a
function triple with a single argument.

The first argument of the bind method is the binding for the this parameter. Here is
an example:

Click here to view code image

const isPet = Array.prototype.includes.bind(['cat', 'dog', 'fish'])

You can use bind for turning a method into a function:
Click here to view code image

button.onclick = this.handleClick.bind(this)

There is no need to use bind in any of these cases. You can define an explicit
function:

Click here to view code image

const triple = y => multiply(3, y)

const isPet = x => ['cat', 'dog', 'fish'].includes(x)

button.onclick = (...args) => this.handleClick(...args)

The call method is similar to bind. However, all arguments are supplied, and the
function or method is invoked. For example:

Click here to view code image

let answer = multiply.call(null, 6, 7)

let uppercased = String.prototype.toUpperCase.call('Hello')

Of course, it would be much simpler to call multiply(6, 7) or
'Hello'.toUpperCase().

However, there is one situation where a direct function call does not work. Consider
this example:

Click here to view code image

const spacedOut = Array.prototype.join.call('Hello', ' ') // 'H e l l o'

We can’t call
'Hello'.join(' ')

because join is not a method of the String class. It is a method of the Array class
that happens to work with strings.

Finally, apply is like call, but the arguments other than this are in an array (or
array-like object):

Click here to view code image

String.prototype.substring.apply('Hello', [1, 4]) // 'ell'

If you need to apply an arbitrary function, stored in a variable f, to arbitrary
arguments, it is simpler to use the expression f(...args) instead of f.apply(null,
args). But if the variable f holds a method, then you have no choice. You cannot call
obj.f(...args) and must use f.apply(obj, args).

 Note

Before JavaScript had the super keyword, you had to use bind, call, or apply to invoke a superclass
constructor—see Exercise 16.

11.12 Proxies
A proxy is an entity that appears to its user as if it were an object, but that intercepts
property access, prototype access, and method invocations. When intercepted, these
actions can do arbitrary work.

For example, an ORM (object-relational mapper) might support method names such
as

Click here to view code image

const result = orm.findEmployeeById(42)

where Employee matches a database table. But if there is no matching table, the
method would produce an error.

Here, orm is a proxy object that intercepts all method invocations. When invoked
with a method whose name is find...ById, the intercepting code extracts the table
name from the method name and makes a database lookup.

This is a powerful concept that can be used for very dynamic and powerful effects.
Examples are:

Automatic logging of property access or mutation

Controlling property access, such as validation or protection of sensitive data

Dynamic properties, for example DOM elements or database columns

Making remote calls as if they were local

To construct a proxy, provide two objects:

The target is the object whose operations we want to control.

The handler is an object with trap functions that are invoked when the proxy is
being manipulated.

There are thirteen possible trap functions, shown in Table 11-3.

Let us start with a simple example, where we log property reads and writes to an
object obj. In the handler, we set two trap functions.

Click here to view code image

const obj = { name: 'Harry Smith', salary: 100000 }

const logHandler = {

 get(target, key, receiver) {

 const result = target[key]

 console.log(`get ${key.toString()} as ${result}`)

 return result

 },

 set(target, key, value, receiver) {

 console.log(`set ${key.toString()} to ${value}`)

 target[key] = value

 return true

 }

}

const proxy = new Proxy(obj, logHandler)

In the get and set functions, the target parameter is the target object of the proxy
(here, obj). The receiver is the object whose property was accessed. That is the
proxy object unless it is in the prototype chain of another object.

Now we must give the proxy, not the original object, to any code that we want to
monitor.

Suppose someone changes the salary:
proxy.salary = 200000

Then a message is generated:
set salary to 200000

Operations that are not trapped are passed to the target. In our example, calling
delete proxy.salary

will delete the salary field from the target.

Table 11-3 Trap Functions

Name Description

get(target, key, receiver) receiver[key], receiver.key

set(target, key, value,

receiver)

receiver[key] = value, receiver.key =
value

deleteProperty(target, key) delete proxy[key], delete proxy.key

Name Description

has(target, key) key in target

getPrototypeOf(target) Object.getPrototypeOf(proxy)

setPrototypeOf(target, proto) Object.setPrototypeOf(proxy, proto)

isExtensible(target) Object.isExtensible(proxy)

preventExtensions(target) Object.preventExtensions(proxy)

getOwnPropertyDescriptor(target,

key)

Object.getOwnPropertyDescriptor(proxy,

key), Object.keys(proxy)

ownKeys(target) Object.keys(proxy),
Object.getOwnProperty(Names|Symbols)
(proxy)

defineProperty(target, key,

descriptor)

Object.defineProperty(proxy, key,

descriptor)

apply(target, thisArg, args) thisArg.proxy(...args), proxy(...args),
proxy.apply(thisArg, args),
proxy.call(thisArg, ...args)

construct(target, args,

newTarget)

new proxy(args), or invocation through
super

The JavaScript API provides one useful proxy implementation that allows you to
hand a proxied object to code that you trust, and then revoke access because you
don’t trust what might happen later.

Obtain the proxy as:
Click here to view code image

const target = . . .

const p = Proxy.revocable(target, {})

The Proxy.revocable function returns an object with a property proxy, the proxied
object, and a revoke method that revokes all access to the proxy.

Hand the proxy to the code that you trust. All operations access the target object.

After you call

p.revoke() // p.proxy is no longer usable

all operations on the proxy throw an exception.

You are required to supply a handler for intercepting traps. If you are happy with the
default behavior, supply an empty object. See Exercise 24 for an example with a
nontrivial handler.

11.13 The Reflect Class
The Reflect class implements the thirteen trap operations from Table 11-3.

You can call the corresponding Reflect functions instead of implementing their
actions manually:

Click here to view code image

const logHandler = {

 get(target, key, receiver) {

 console.log(`get ${key.toString()}`)

 return Reflect.get(target, key, receiver)

 // Instead of return target[key]
 },

 set(target, key, value, receiver) {

 console.log(`set ${key.toString()}`)

 return Reflect.set(target, key, value, receiver)

 // Instead of target[key] = value; return true
 }

}

Now suppose we want to log all trappable operations. Note that the code looks the
same for each handler function, except for the function name. Instead of writing
many almost identical handler functions, you can write a second proxy that traps the
getter for the function name:

Click here to view code image

const getHandler = {

 get(target, trapKey, receiver) {

 return (...args) => {

 console.log(`Trapping ${trapKey}`)

 return Reflect[trapKey](...args);

 }

 }

}

const logEverythingHandler = new Proxy({}, getHandler)

const proxy = new Proxy(obj, logEverythingHandler)

To understand what is happening, let us look at a specific scenario.

1. The proxy user sets a property:
proxy.name = 'Fred'

2. The appropriate method of the logEverythingHandler is invoked:
Click here to view code image

logEverythingHandler.set(obj, 'name', 'Fred', proxy)

3. To make this call, the virtual machine must locate the set method of
logEverythingHandler.

4. Since logEverythingHandler is itself a proxy, the get method of that proxy’s
handler is invoked:
Click here to view code image

getHandler.get({}, 'set', logEverythingHandler)

5. That call returns a function
Click here to view code image

(...args) => { console.log(`Trapping set`); return

Reflect.set(...args) }

as the value of logEverythingHandler.set.

6. Now the function call that was started in step 2 can proceed. The function is
invoked with arguments (obj, 'name', 'Fred', proxy).

7. A console message is printed, followed by the call
Click here to view code image

Reflect.set(obj, 'name', 'Fred', proxy)

8. This call causes obj.name to be set to 'Fred'.

If you want to log the arguments to the trap functions (which include the target and
proxy), you have to be very careful to avoid infinite recursion. One way to do this is
to keep a map of known objects that are printed by name, instead of calling toString
which would cause further trap calls.

Click here to view code image

const knownObjects = new WeakMap()

const stringify = x => {

 if (knownObjects.has(x))

 return knownObjects.get(x)

 else

 return JSON.stringify(x)

}

const logEverything = (name, obj) => {

 knownObjects.set(obj, name)

 const getHandler = {

 get(target, trapKey, receiver) {

 return (...args) => {

 console.log(`Trapping ${trapKey}(${args.map(stringify)})`)

 return Reflect[trapKey](...args);

 }

 }

 }

 const result = new Proxy(obj, new Proxy({}, getHandler))

 knownObjects.set(result, `proxy of ${name}`)

 return result

}

Now you can call:
Click here to view code image

const fred = { name: 'Fred' }

const proxyOfFred = logEverything('fred', fred)

proxyOfFred.age = 42

You will see the following logging statements:
Click here to view code image

Trapping set(fred,age,42,proxy of fred)

Trapping getOwnPropertyDescriptor(fred,age)

Trapping defineProperty(fred,"age",{"value":42,

 "writable":true,"enumerable":true,"configurable":true})

The Reflect class was designed for use with proxies, but three of its methods are
useful on their own because they are a bit more convenient than their classic
counterparts:

1. Reflect.deleteProperty returns a boolean to tell whether the deletion was
successful. The delete operator doesn’t.

2. Reflect.defineProperty returns a boolean to indicate whether the definition
succeeded. Object.defineProperty throws an exception upon failure.

3. Reflect.apply(f, thisArg, args) is guaranteed to call
Function.prototype.apply, but f.apply(thisArg, args) might not since the
apply property can be redefined.

11.14 Proxy Invariants
When you implement proxy operations, the virtual machine checks that they do not
yield nonsense values. For example:

construct must return an object.

getOwnPropertyDescriptor must return a descriptor object or undefined.

getPrototypeOf must return an object or null.

In addition, the virtual machine carries out consistency checks for proxy operations.
A proxy must respect certain aspects of its target, including:

Nonwritable target properties

Nonconfigurable target properties

Nonextensible targets

The ECMAScript specification describes “invariants” that a proxy must fulfill. For
example, the description of the get operation on proxies includes this requirement:
“The value reported (by get) for a property must be the same as the value of the
corresponding target object property if the target object property is a nonwritable,
nonconfigurable own data property.”

Similarly, if a target property is not configurable, then has cannot hide it. If a target
is not extensible, then the getPrototypeOf operation must yield the actual prototype,
and has and getOwnPropertyDescriptor must report the actual properties.

These invariants make sense when a proxy augments an existing object without
adding any properties of its own. Unfortunately, they force us to lie about the
properties that the proxy adds. Consider an array-like object that stores a range of
values, say the integers between 10 and 99. There is no need to store the values. We
can compute them dynamically. That’s what proxies are good at. Here is a function
that creates such a range proxy:

Click here to view code image

const createRange = (start, end) => {

 const isIndex = key =>

 typeof key === 'string' && /^[0-9]+$/.test(key) && parseInt(key) <

end - start

 return new Proxy({}, {

 get: (target, key, receiver) => {

 if (isIndex(key)) {

 return start + parseInt(key)

 } else {

 return Reflect.get(target, key, receiver)

 }

 }

 })

}

The get trap produces range values on demand:
Click here to view code image

const range = createRange(10, 100)

console.log(range[10]) // 20

However, we can’t yet iterate over the keys:
Click here to view code image

console.log(Object.keys(range)) // []

That is not surprising. We first need to define the ownKeys trap:
Click here to view code image

ownKeys: target => {

 const result = Reflect.ownKeys(target)

 for (let i = 0; i < end - start; i++)

 result.push(String(i))

 return result

}

Unfortunately, even after adding the ownKeys trap to the handler, Object.keys(range)
yields an empty array.

To fix this, we need to provide property descriptors for the index properties:
Click here to view code image

getOwnPropertyDescriptor: (target, key) => {

 if (isIndex(key)) {

 return {

 value: start + Number(key),

 writable: false,

 enumerable: true,

 configurable: true // Not what we actually want
 }

 } else {

 return Reflect.getOwnPropertyDescriptor(target, key)

 }

}

Now Object.keys yields an array containing '10' to '99'. However, there is a fly in
the ointment. The index properties must be configurable. Otherwise, the invariant
rules kick in. You cannot report a nonconfigurable property that isn’t already present
in the target. (Our target is an empty object.) We don’t actually want index
properties to be configurable, but our hands are tied. If we want to prohibit deletion

or reconfiguration of index properties, we need to provide additional traps—see
Exercise 27.

As you can see, implementing dynamic properties in proxies is not for the faint of
heart. Whenever possible, situate properties in the proxy target. For example, the
range proxy should have a length property and a toString method. Just add those to
the target object and don’t handle them in the traps—see Exercise 28.

Exercises
1. Why is the Symbol.toPrimitive method for the Percent class in Section 11.2,

“Customization with Symbol Properties” (page 223), unsatisfactory? Try adding
and multiplying percent values. Why can’t you provide a fix that works both for
percent arithmetic and string concatenation?

2. A “glob pattern” is a pattern for matching file names. In its simplest form, *
matches any sequence of characters other than the / path separator, and ?
matches a single character. Implement a class Glob. Using well-known symbols,
enable the use of glob pattern for the string methods match, matchAll, replace,
search, and split.

3. As described in Table 11-1, you can change the behavior of x instanceof y by
ensuring that y has a well-known symbol property. Make it so that x instanceof
Natural checks whether x is an integer ≥ 0, and x instanceof Range(a, b)
checks if x is an integer in the given range. I am not saying this is a good idea,
but it is interesting that it can be done.

4. Define a class Person so that for it and any subclasses, the toString method
returns [object Classname].

5. Look at the output of the following calls and explain the results:
Click here to view code image

Object.getOwnPropertyDescriptors([1,2,3])

Object.getOwnPropertyDescriptors([1,2,3].constructor)

Object.getOwnPropertyDescriptors([1,2,3].prototype)

6. Suppose you seal an object by calling Object.seal(obj). Trying to set a
nonexistent property throws an exception in strict mode. But you can still read
nonexistent properties without an exception. Write a function reallySeal so that
reading or writing nonexistent properties on the returned object throws an
exception. Hint: Proxies.

7. Google for “JavaScript object clone” and review a few blog articles and
StackOverflow answers. How many of them work correctly with shared mutable
state and circular references?

8. Write a function freezeCompletely that freezes an object and recursively all of
its property values. Handle cyclic dependencies.

9. Using Object.getOwnPropertyDescriptors, find all properties of the array [1,
2, 3], the Array function, and of Array.prototype. Why do all three have a
length property?

10. Construct a new string object as new String('Fred') and set its prototype to
Array.prototype. Which methods can you successfully apply to the object?
Start by trying map and reverse.

11. The new.target expression, introduced in the note at the end of Section 11.10,
“Function Properties” (page 235), is set to the constructor function when an
object is constructed with the new operator. Make use of this feature by
designing an abstract class Person that cannot be instantiated with new.
However, allow instantiation of concrete subclasses such as Employee.

12. How can one enforce abstract classes with the constructor property of the
prototype instead of the technique of the preceding exercise? Which is more
robust?

13. The new.target expression is undefined if a function is called without new.
What is an easier way of determining this situation in strict mode?

14. Explore the name property of functions. What is it set to when the function is
defined with a name? Without a name but assigned to a local variable? What
about anonymous functions that are passed as arguments or returned as function
results? What about arrow expressions?

15. In Section 11.11, “Binding Arguments and Invoking Methods” (page 236), you
saw that call is necessary to invoke a method from a different class. Provide a
similar example for bind.

16. In this exercise, you will explore how JavaScript programmers had to
implement inheritance before the extends and super keywords. You are given a
constructor function
Click here to view code image

function Employee(name, salary) {

 this.name = name

 this.salary = salary

}

Methods are added to the prototype.
Click here to view code image

Employee.prototype.raiseSalary = function(percent) {

 this.salary *= 1 + percent / 100

}

Now implement a Manager subclass without using the extends and super
keywords. Use Object.setPrototypeOf to set the prototype of
Manager.prototype. In the Manager constructor, you need to invoke the Employee
constructor on the existing this object instead of creating a new one. Use the
bind method described in Section 11.11, “Binding Arguments and Invoking
Methods” (page 236).

17. Attempting to solve the preceding exercise, Fritzi sets
Manager.prototype = Employee.prototype

instead of using Object.setPrototypeOf. What are the unhappy results of this
decision?

18. As noted at the end of Section 11.8, “Accessing and Updating the Prototype”
(page 231), Array.prototype is actually an array. Verify this with
Array.isArray. Why is [] instanceof Array false? What happens to arrays if
you add elements to the Array.prototype array?

19. Use the logging proxy from Section 11.12, “Proxies” (page 237), to monitor
reading and writing of array elements. What happens when you read or write an
element? The length property? What happens if you inspect the proxy object in
the console by typing its name?

20. Isn’t it annoying when one misspells the name of a property or method? Using a
proxy, implement autocorrect. Pick the closest existing name. You need to use
some measure of closeness for strings, such as the number of common
characters or the Levenshtein edit distance.

21. It is possible to change the behavior of objects, arrays, or strings by overriding
methods of the Object, Array, or String class. Implement a proxy that disallows
such overrides.

22. An expression obj.prop1.prop2.prop3 will throw an exception if any of the
intermediate properties yield null or undefined. Let’s solve that nuisance with
proxies. First, define a safe object that returns itself when looking up any
property. Next, define a function so that safe(obj) is a proxy for obj that returns
the safe object when looking up any property whose value is null or undefined.
Extra credit if you can extend this technique to method calls so that

safe(obj).m1().m2().m3() doesn’t throw an exception if any of the intermediate
methods return null or undefined.

23. Create a proxy that supports an XPath-like syntax for finding elements in an
HTML or XML document.
Click here to view code image

const root = makeRootProxy(document)

const firstItemInSecondList = root.xhtml.body.ul[2].li[1]

24. Make a revocable proxy, as described in Section 11.12, “Proxies” (page 237),
that makes all properties read-only until access is revoked entirely.

25. In Section 11.14, “Proxy Invariants” (page 242), the getOwnPropertyDescriptor
trap returns a descriptor for index properties whose configurable attribute is
true. What happens if you set it to false?

26. Debug the ownKeys trap in Section 11.14, “Proxy Invariants” (page 242), by
logging the calls to the {} target, using the logEverything method of Section
11.13, “The Reflect Class” (page 240). Also place a logging call into the
getOwnPropertyDescriptor trap. Now read through Section 9.5.11 of the
ECMAScript 2020 standard. Does the implementation follow the algorithm of
the standard?

27. Add traps to the range proxy in Section 11.14, “Proxy Invariants” (page 242) to
prevent deleting or modifying the index properties. Also add a has trap.

28. Add a length property and a toString method to the range proxy in Section
11.14, “Proxy Invariants” (page 242). Add it to the proxy target and don’t
provide special handling in the traps. Provide appropriate attributes.

29. The range proxy in Section 11.14, “Proxy Invariants” (page 242), is instantiated
by calling the createRange function. Use a constructor function so that a user
can call new Range(10, 100) and get a proxy instance that looks as if it was an
instance of a Range class.

30. Continue the preceding exercise so that the Range class extends Array. Be sure to
set the Symbol.species property, as described in Section 11.2.3, “Species” (page
225).

Chapter 12. Iterators and
Generators

Topics in This Chapter

12.1 Iterable Values

12.2 Implementing an Iterable

12.3 Closeable Iterators

12.4 Generators

12.5 Nested Yield

12.6 Generators as Consumers

12.7 Generators and Asynchronous Processing

12.8 Async Generators and Iterators

Exercises

In this short chapter, you will learn how to implement iterators that can be
used in the for of loop and array spreads. You will be able to work with

iterators in your own code.

Implementing an iterator can be a bit tedious, but generators greatly
simplify this task. A generator is a function that can yield multiple values,
suspending after each value is produced and resuming when the next value
is requested. Generators are also the building blocks of callback-free
asynchronous programming.

All of the material in this chapter is at an advanced level.

12.1 Iterable Values
Perhaps the most common use of iterable values in JavaScript is the for of
loop. For example, arrays are iterable. The loop

for (const element of [1, 2, 7, 9])

iterates over the elements of the given array. Strings are also iterable, and
the loop

for (const ch of 'Hello')

iterates over the code points of the given string.

The following values are iterable:

Arrays and strings

Sets and maps

The objects returned by the keys, values, and entries methods of
arrays, typed arrays, sets, and maps (but not Object)

DOM data structures such as the one returned by the call document
.querySelectorAll('div')

In general, a value is iterable if it has a method with key Symbol.iterator
that yields an iterator object:

Click here to view code image

const helloIter = 'Hello'[Symbol.iterator]()

An iterator object has a next method that yields an object containing the
next value and an indicator whether the iteration is finished:

Click here to view code image

helloIter.next() // Yields { value: 'H', done: false }
helloIter.next() // Yields { value: 'e', done: false }
. . .

helloIter.next() // Yields { value: 'o', done: false }
helloIter.next() // Yields { value: undefined, done: true }

In a loop
for (const v of iterable)

an iterator object is obtained by calling iterable[Symbol.iterator](). The
next method of that object is invoked in each loop iteration. Each time, it
yields an object { value: . . ., done: . . . }. As long as done is false,
the variable v is set to the object’s value property. Once done is true, the
for of loop exits.

Here is a list of situations in which iterables are used in JavaScript:

As already discussed, in a loop for (const v of iterable)

In an array spread: [...iterable]

With array destructuring: [first, second, third] = iterable

With the function Array.from(iterable)

With set and map constructors: new Set(iterable)

With the yield* directive that you will see later in this chapter

In any place where a programmer makes use of the iterator constructed
by calling the function that is returned from iterable[Symbol.iterable]
()

12.2 Implementing an Iterable
In this section, you will see how to create iterable objects that can appear in
for of loops, array spreads, and so on.

It is best to work through a concrete example first. Let us implement an
iterable Range class whose iterator yields values between two given bounds.

Click here to view code image

class Range {

 constructor(start, end) {

 this.start = start

 this.end = end

 }

 . . .

}

If we have a Range instance, it should be usable in a for of loop:
Click here to view code image

for (const element of new Range(10, 20))

 console.log(element) // Prints 10 11 . . . 19

An iterable object must have a method with name Symbol.iterator. Since
the method name is not a string, it is enclosed in brackets:

Click here to view code image

class Range {

 . . .

 [Symbol.iterator]() { . . . }

}

That method returns an object with a next method. We define a second class
to produce those objects.

Click here to view code image

class RangeIterator {

 constructor(current, last) {

 this.current = current

 this.last = last

 }

 next() { . . . }

}

class Range {

 . . .

 [Symbol.iterator]() { return new RangeIterator(this.start,

this.end) }

}

The next method returns objects of the form { value: . . ., done: . . .
}, like this:

Click here to view code image

 next() {

 . . .

 if (. . .) {

 return { value: some value, done: false }
 } else {

 return { value: undefined, done: true }

 }

 }

If you like, you can omit done: false and value: undefined.

In our example:
Click here to view code image

class RangeIterator {

 . . .

 next() {

 if (this.current < this.last) {

 const result = { value: this.current }

 this.current++

 return result

 } else {

 return { done: true }

 }

 }

}

By explicitly defining two classes, it becomes obvious that the
Symbol.iterator method yields an instance of a different class with a next
method.

Alternatively, you can create the iterator objects on the fly:
Click here to view code image

class Range {

 constructor(start, end) {

 this.start = start

 this.end = end

 }

 [Symbol.iterator]() {

 let current = this.start

 let last = this.end

 return {

 next() {

 if (current < last) {

 const result = { value: current }

 current++

 return result

 } else {

 return { done: true }

 }

 }

 }

 }

}

The Symbol.iterator method yields an object with a next method, which
yields the { value: current } and { done: true } objects.

This is more compact but perhaps not quite as easy to read.

12.3 Closeable Iterators
If an iterator object has a method called return (!), it is closeable. The
return method is called when the iteration is terminated prematurely. For
example, suppose lines(filename) is an iterable over the lines of a file.
Now consider this function:

Click here to view code image

const find = (filename, target) => {

 for (line of lines(filename)) {

 if (line.contains(target)) {

 return line // iterator.return() called
 }

 } // iterator.return() not called
}

The return method of the iterator is called when the loop is abruptly exited
through a return, throw, break, or labeled continue statement. In this
example, the iterator’s return method is called if a line contains the target
string.

If no line contains the target string, the for of loop returns normally, and
the return method is not called.

If you use an iterator and manually call next on it, and if you abandon it
before having received done: true, then you should call
iterator.return().

Of course, you should never call next after return.

Implementing a closeable iterator is a bit unpleasant because you need to
put the closing logic in two places: the call to return and the branch of the
next method that detects the absence of further values.

Here is a skeleton implementation of a function that yields an iterable over
the lines of a file. Exercise 6 asks you to flesh out the details.

Click here to view code image

const lines = filename => {

 const file = . . . // Open the file
 return {

 [Symbol.iterator]: () => ({

 next: () => {

 if (done) {
 . . . // Close the file
 return { done: true }

 } else {

 const line = . . . // Read a line
 return { value: line }

 }

 },

 ['return']: () => {

 . . . // Close the file
 return { done: true } // Must return an object
 }

 })

 }

}

12.4 Generators
In the previous sections, you saw how to implement an iterator whose next
method produces one value at a time. The implementation can be tedious.
The iterator needs to remember some amount of state between successive

calls to next. Even the case of a simple range was not trivial. Unfortunately,
you can’t just use a loop:

Click here to view code image

for (let i = start; i < end; i++)

 . . .

That doesn’t work because the values are produced all together, not one at a
time.

However, in a generator function, you can do just that:
Click here to view code image

function* rangeGenerator(start, end) {

 for (let i = start; i < end; i++)

 yield i

}

The yield keyword produces a value, but it does not exit the function. The
function is suspended after each yielded value. When the next value is
required, the function continues after the yield statement and eventually
yields another value.

The * symbol tags this function as a generator function. Unlike a regular
function that can produce only one result when it returns, a generator
function produces a result each time the yield statement is executed.

When you invoke a generator function, the function body does not yet start
executing. Instead, you obtain an iterator object:

Click here to view code image

const rangeIter = rangeGenerator(10, 20)

Like any iterator, the rangeIter object has a next method. When you call
next for the first time, the generator function body runs until it reaches a
yield statement. Then the next method returns an object { value: yielded
value, done: false }.

Click here to view code image

let nextResult = rangeIter.next() // { value: 10, done: false }

From now on, each time the next method is invoked, execution of the
generator function resumes at the last yield statement and continues until

another yield statement is reached.
Click here to view code image

nextResult = rangeIter.next() // { value: 11, done: false }

. . .

nextResult = rangeIter.next() // { value: 19, done: false }

When the generator function returns, the next method returns { value:
returned value, done: true } to indicate that the iteration is complete.

Click here to view code image

nextResult = rangeIter.next() // { value: undefined, done: true }

If at any time the generator function code throws an exception, the call to
next terminates with that exception.

 Note

In JavaScript, yield is shallow—you can only yield inside the generator function, not in a
function that the generator function calls.

A generator function can be a named or anonymous function:
Click here to view code image

function* myGenerator(. . .) { . . . }

const myGenerator = function* (. . .) { . . . }

If an object property or a method is a generator function, prefix it with an
asterisk:

Click here to view code image

const myObject = { * myGenerator(. . .) { . . . }, . . . }

 // Syntactic sugar for myGenerator: function* (. . .) { . . . }

class MyClass {

 * myGenerator(. . .) { . . . }

 . . .

}

Arrow functions cannot be generators.

You can place an invocation of a generator function everywhere an iterable
is accepted—in for of statements, array spreads, and so on:

Click here to view code image

[...rangeGenerator(10, 15)] // The array [10, 11, 12, 13, 14]

12.5 Nested Yield
Suppose we want to iterate over all elements of an array. Of course, an array
is already iterable, but let’s provide a generator anyway. The
implementation is straightforward:

Click here to view code image

function* arrayGenerator(arr) {

 for (const element of arr)

 yield element

}

What if arr is [1, [2, 3, 4], 5], with an element that is itself an array? In
this case, we would like to flatten out the traversal and yield the elements 1,
2, 3, 4, and 5 in turn. A first attempt might be:

Click here to view code image

function* flatArrayGenerator(arr) {

 for (const element of arr)

 if (Array.isArray(element)) {

 arrayGenerator(element) // Error—does not yield any elements
 } else {

 yield element

 }

}

However, this approach does not work. The call
arrayGenerator(element)

does not execute the body of the arrayGenerator generator function. It
merely obtains and discards the iterator. The call

Click here to view code image

const result = [...flatArrayGenerator([1, [2, 3, 4], 5])]

sets result to the array [1, 5].

If you want to obtain all values of a generator inside a generator function,
you need to use a yield* statement:

Click here to view code image

function* flatArrayGenerator(arr) {

 for (const element of arr)

 if (Array.isArray(element)) {

 yield* arrayGenerator(element) // Yields the generated
elements one at a time
 } else {

 yield element

 }

}

Now the call
Click here to view code image

const result = [...flatArrayGenerator([1, [2, 3, 4], 5])]

yields the flattened array [1, 2, 3, 4, 5].

However, if the array is deeply nested, the result is still not correct:
flatArrayGenerator([1, [2, [3, 4], 5], 6]) yields the values 1, 2, [3,
4], 5, and 6.

The remedy is simple—call flatArrayGenerator recursively:
Click here to view code image

function* flatArrayGenerator(arr) {

 for (const element of arr)

 if (Array.isArray(element)) {

 yield* flatArrayGenerator(element)

 } else {

 yield element

 }

}

The point of this example is that yield* overcomes a limitation of generator
functions in JavaScript. Every yield statement must be in the generator
function itself. It cannot be in a function that is called from a generator
function. The yield* statement takes care of the situation where one

generator function calls another, splicing in the yielded values of the
invoked generator.

The yield* statement also splices in the values of an iterable, yielding one
value in each call to next. That means we could have simply defined our
arrayGenerator as:

Click here to view code image

function* arrayGenerator(arr) {

 yield* arr

}

 Note

A generator function can return a value when it is finished, in addition to yielding values:

Click here to view code image

function* arrayGenerator(arr) {

 for (const element of arr)

 yield element

 return arr.length

}

The return value is included with the last iteration result, when the done property is true. When
iterating over the yielded values, the return value is ignored. But you can capture it as the value of
a yield* expression inside another generator function:

Click here to view code image

function* elementsFollowedByLength(arr) {

 const len = yield* arrayGenerator(arr);

 yield len;

}

12.6 Generators as Consumers
Up to this point, we used generators to produce a sequence of values.
Generators can also consume values. When calling next with an argument,
it becomes the value of the yield expression:

Click here to view code image

function* sumGenerator() {

 let sum = 0

 while (true) {

 let nextValue = yield sum

 sum += nextValue

 }

}

Here, the value of the yield sum expression is stored in the nextValue
variable and added to the sum. There is a two-way communication:

The generator receives values from the caller of the next method and
accumulates them.

The generator sends the current sum to the caller of the next method.

 Caution

You need an initial call to next in order to get to the first yield statement. Then you can start
calling next with values that are consumed by the generator.

When calling the method named return (!), the generator is shut down, and
further calls to next yield { value: undefined, done: true }.

Here is a complete sequence of calls to the iterator:
Click here to view code image

const accum = sumGenerator()

accum.next() // Advance to first yield
let result = accum.next(3) // Returns { value: 3, done: false }
result = accum.next(4) // Returns { value: 7, done: false }
result = accum.next(5) // Returns { value: 12, done: false }
accum.return() // Shuts down and returns { value: undefined, done: true }

Calling throw(error) on the iterator object causes the error to be thrown in
the pending yield expression. If the generator function catches the error and
progresses to a yield or return statement, the throw method returns a {
value: . . ., done: . . . } object. If the generator function terminates

because the error was not caught, or because another error was thrown, then
the throw method throws that error.

In other words, throw is exactly like next, except that it causes the yield
expression to throw an error instead of yielding a value.

To demonstrate throw, consider the following variation of the sum
generator:

Click here to view code image

function* sumGenerator() {

 let sum = 0

 while (true) {

 try {

 let nextValue = yield sum

 sum += nextValue

 } catch {

 sum = 0

 }

 }

}

Calling throw resets the accumulated value:
Click here to view code image

const accum = sumGenerator()

accum.next() // Advance to first yield
let result = accum.next(3)

result = accum.next(4)

result = accum.next(5)

accum.throw() // Returns { value: 0, done; false }

If you call throw before the first yield expression was reached, the
generator is shut down and the error is thrown by the call to the throw
method.

12.7 Generators and Asynchronous Processing
Having read the preceding section, you may wonder why you would ever
want a generator that accumulates values. There are much easier ways of
computing a sum. Such generators become far more interesting with
asynchronous programming.

When you read data from a web page, the data is not available instantly. As
you saw in Chapter 9, a JavaScript program has a single thread of
execution. If you wait for something to happen, your program can do
nothing else. Therefore, web requests are asynchronous. You receive a
callback when the requested data is available. As an example, here we
obtain a true random number, using the XMLHttpRequest class that is
available in web browsers (but not Node.js):

Click here to view code image

const url = 'https://www.random.org/integers/?

num=1&min=1&max=1000000000\

&col=1&base=10&format=plain&rnd=new'

const req = new XMLHttpRequest();

req.open('GET', url)

req.addEventListener('load', () => console.log(req.response)) //

Callback
req.send()

Let’s put this into a function. The function has a handler function as
parameter that is invoked when the random number has been received:

Click here to view code image

const trueRandom = handler => {

 const url = 'https://www.random.org/integers/?

num=1&min=1&max=1000000000\

&col=1&base=10&format=plain&rnd=new'

 const req = new XMLHttpRequest();

 req.open('GET', url)

 req.addEventListener('load', () =>

handler(parseInt(req.response)))

 req.send()

}

Now we can get a random integer easily:
Click here to view code image

trueRandom(receivedValue => console.log(receivedValue))

But suppose we want to add three such random numbers. Then we need to
make three calls and compute the sum when all answers are ready. This is
not for the faint of heart:

Click here to view code image

trueRandom(first =>

 trueRandom(second =>

 trueRandom(third => console.log(first + second + third))))

Of course, as you have seen in Chapter 9, you can use promises and the
async/await syntax to deal with this situation. Promises are actually built
upon generators. This section gives you a brief outline of how generators
can help with asynchronous processing.

Let us use a generator to provide the illusion of synchronous calls. We will
shortly define a function nextTrueRandom that delivers a random integer into
a generator. Here is the generator:

Click here to view code image

function* main() {

 const first = yield nextTrueRandom()

 const second = yield nextTrueRandom()

 const third = yield nextTrueRandom()

 console.log(first + second + third)

}

Launching the generator yields an iterator:
const iter = main()

That is the iterator into which we will feed values as they become available:
Click here to view code image

const nextTrueRandom = () => {

 trueRandom(receivedValue => iter.next(receivedValue))

}

Just one thing remains to be done. The iteration needs to start:

iter.next() // Kick it off

Now the main function starts executing. It calls nextTrueRandom and then
suspends in the yield expression until someone calls next on the iterator.

That call to next doesn’t happen until the asynchronous data is available.
And this is where generators get interesting. They allow us to suspend a
calculation and continue it later when a value is available. Eventually, the

value is obtained, and the nextTrueRandom function calls
iter.next(receivedValue). That value is stored in first.

Then execution suspends again in the second yield expression, and so on.
Eventually we have all three values and can compute their sum.

For a brief period, after generators were added in ES7, they were touted as a
solution for avoiding asynchronous callbacks. However, as you have seen,
the setup is not very intuitive. It is much easier to use promises and the
async/await syntax of Chapter 9. Value-consuming generators were an
important stepping stone towards promises, but they are not commonly used
by application programmers.

12.8 Async Generators and Iterators
A generator function yields values that you can retrieve with an iterator.
Each time you call iter.next(), the generator runs until the next yield
statement and then suspends itself.

An async generator is similar to a generator function, but you are allowed
to use the await operator inside the body. Conceptually, an async generator
produces a sequence of values in the future.

To declare an async generator, use both the async keyword and the * that
denotes a generator function:

Click here to view code image

async function* loadHanafudaImages(month) {

 for (let i = 1; i <= 4; i++) {

 const img = await loadImage(`hanafuda/${month}-${i}.png`)

 yield img

 }

}

When you call an async generator, you get an iterator. However, when you
call next on the iterator, the next value may not yet be available. It may not
even be known whether the iteration still continues. Therefore, next returns
a promise for a { value: . . ., done: . . . } object.

Of course, you can retrieve the promised values from the iterator, but that is
tedious—see Exercise 16. It is easier to use a special form of the for loop,
the for await of loop:

Click here to view code image

for await (const img of loadHanafudaImages(month)) {

 imgdiv.appendChild(img)

}

The for await of loop must be inside an async function because it invokes
the await operator on each generated promise.

If any of the promises is rejected, the for await of loop throws an
exception, and the iteration terminates.

The for await of loop works with any async iterable. An async iterable
has a property with key Symbol.asyncIterator whose value is a function
yielding an async iterator. An async iterator has a next method yielding
promises for { value: . . ., done: . . . } objects. Async generators are
the most convenient mechanism for producing async iterables, but you can
also implement them by hand—see Exercise 17.

 Caution

Async iterables are not iterables. They do not work with the for of loop, spreads, or
destructuring. For example, you cannot do this:

Click here to view code image

const results = [...loadHanafudaImages(month)]

 // Error, not an array of promises
for (const p of loadHanafudaImages(month))

p.then(imgdiv.appendChild(img))

 // Error, not a loop over the promises

 Note

On the other hand, the for await of loop works with regular iterables. It simply does the
same as the for of loop.

Here is an example of an async iterable that produces a range of numbers
with a delay between them:

Click here to view code image

class TimedRange {

 constructor(start, end, delay) {

 this.start = start

 this.end = end

 this.delay = delay

 }

 async *[Symbol.asyncIterator]() {

 for (let current = this.start; current < this.end; current++)

{

 yield await produceAfterDelay(current, this.delay)

 }

 }

}

The implementation of the iterator function is straightforward, thanks to the
await and yield syntax. Simply wait until the next value is available, and
then yield it.

You can consume the results in a for await of loop:
Click here to view code image

let r = new TimedRange(1, 10, 1000)

for await (const e of r) console.log(e)

Let us conclude with a more realistic example. Many APIs have a page
parameter that allows fetching of successive pages of data, for example:

Click here to view code image

https://chroniclingamerica.loc.gov/search/titles/results/

 ?terms=michigan&format=json&page=5

Here we page through the results of such a query:
Click here to view code image

async function* loadResults(url) {

 let page = 0

 try {

 while (true) {

 page++

 const response = await fetch(`${url}&page=${page}`)

 yield await response.json()

 }

 } catch {

 // End iteration
 }

}

If we call the generator from a for async of loop, we traverse all
responses. By itself, that is not so exciting. We could have done that
traversal in an async function, without using a generator.

However, one can use this generator as a building block for other useful
functions. Normally, an API uses paging because it is expected that the
client will stop after having found a satisfactory result. Here is how to
implement such a search, stopping as soon as the callback returns true:

Click here to view code image

const findResult = async (queryURL, callback) => {

 for await (const result of loadResults(queryURL)) {

 if (callback(result)) return result

 }

 return undefined

}

Note two things. First, the findResult function is not a generator but merely
an async function. By putting the hard part of a computation into an async
generator, it can be consumed by any async function. Moreover, crucially,
the fetching of the pages is lazy. As soon as a match is found, the
findResult function exits, abandoning the generator without fetching
further pages.

Exercises
1. Implement a function that receives an iterable value and prints every

other element.

2. Implement a function that receives an iterable value and returns another
iterable value that yields every other element.

3. Implement an iterable value that yields an infinite number of die tosses,
random integers between 1 and 6. Write it in a single line:
const dieTosses = { . . . }

4. Write a function dieTosses(n) that returns an iterable yielding n
random integers between 1 and 6.

5. What is wrong with this implementation of a Range iterator?
Click here to view code image

class Range {

 constructor(start, end) {

 this.start = start

 this.end = end

 }

 [Symbol.iterator]() {

 let current = this.start

 return {

 next() {

 current++

 return current <= this.end ? { value: current - 1 } :

{ done: true }

 }

 }

 }

}

6. Complete the implementation of the file iterator in Section 12.3,
“Closeable Iterators” (page 252). Use the openSync, readSync, and
closeSync methods of the Node.js fs module
(https://nodejs.org/api/fs.xhtml). Note that you need to close the
file in both the next and the return functions. You can avoid the code
duplication by calling return from next.

7. Change the arrayGenerator function of Section 12.5, “Nested Yield”
(page 255), so that for array elements that are strings, each character is
yielded separately.

8. Enhance the preceding exercise so that the values of any iterable array
element are yielded separately.

9. Using a generator, produce a tree iterator that visits the nodes of a tree
one at a time. If you are familiar with the DOM API, visit the nodes of
a DOM document. Otherwise, make your own tree class.

10. Using a generator and Heap’s algorithm
(https://en.wikipedia.org/wiki/Heap%27s_algorithm), produce an
iterator that yields all permutations of an array. For example, if the

https://nodejs.org/api/fs.xhtml
https://en.wikipedia.org/wiki/Heap%27s_algorithm

array has values [1, 2, 3], your iterator should produce [1, 2, 3], [1,
3, 2], [2, 3, 1], [2, 1, 3], [3, 1, 2], and [3, 2, 1] (not necessarily
in this order).

11. How can you make the return method of a generator object return a
value? Would you ever want to?

12. Section 12.6, “Generators as Consumers” (page 257), lists a number of
different scenarios for the behavior of the throw method. Make a table
that summarizes each scenario and the expected behavior. Provide brief
programs to demonstrate the behavior in each scenario.

13. Write a function trueRandomSum(n, handler) that computes the sum of
n random numbers and passes it to the given handler. Use a generator,
following Section 12.6, “Generators as Consumers” (page 257).

14. Repeat the preceding exercise without using a generator.

15. Consider this async function:
Click here to view code image

const putTwoImages = async (url1, url2, element) => {

 const img1 = await loadImage(url1)

 element.appendChild(img1)

 const img2 = await loadImage(url2)

 element.appendChild(img2)

 return element

}

And now consider this generator function yielding promises:
Click here to view code image

function* putTwoImagesGen(url1, url2, element) {

 const img1 = yield loadImage(url1)

 element.appendChild(img1)

 const img2 = yield loadImage(url2)

 element.appendChild(img2)

 return element

}

This is essentially the transformation that the JavaScript compiler does
for any async function. Now fill in the ___ to complete a function
genToPromise that takes an arbitrary generator yielding promises and
turns it into a Promise:

Click here to view code image

const genToPromise = gen => {

 const iter = gen()

 const nextPromise = arg => {

 const result = ___

 if (result.done) {

 return Promise.resolve(___)

 } else {

 return Promise.resolve(___).then(___)

 }

 }

 return nextPromise()

}

16. Use the iterator returned from the loadHanafudaImages generator
function in Section 12.8, “Async Generators and Iterators” (page 261),
to add all images to a DOM element. Do not use a for await of loop.

17. Implement the TimedRange class from Section 12.8, “Async Generators
and Iterators” (page 261), without using a generator function. Produce
the promise-yielding iterator by hand.

18. One plausible use of the for await of loop is with Promise.all.
Suppose you have an array of image URLs. Turn them into an array of
promises:
Click here to view code image

const imgPromises = urls.map(loadImage)

Run them in parallel, await the resulting promise, and iterate over the
responses. Which of the four loops below run without errors? Which
one should you use?
Click here to view code image

for (const img of Promise.all(imgPromises))

element.appendChild(img)

for await (const img of Promise.all(imgPromises))

element.appendChild(img)

for (const img of await Promise.all(imgPromises))

element.appendChild(img)

for await (const img of await Promise.all(imgPromises))

element.appendChild(img)

19. Which of these loops run without errors? For those that do, how does
their behavior differ from those of the preceding exercise?
Click here to view code image

for (const p of urls.map(loadImage))

 p.then(img => element.appendChild(img))

for (const p of urls.map(async url => await loadImage(url)))

 element.appendChild(await p)

for await (const img of urls.map(url => await loadImage(url)))

 element.appendChild(img)

for (const img of await urls.map(loadImage))

 element.appendChild(img)

for await (const img of await urls.map(loadImage))

 element.appendChild(img)

20. Some APIs (such as the GitHub API described at
https://developer.github.com/v3/guides/traversing-with-

pagination) yield paged results with a slightly different mechanism
than that of the example in Section 12.8, “Async Generators and
Iterators” (page 261). The Link header of each response contains a URL
to navigate to the next result. You can retrieve it as:
Click here to view code image

let nextURL

 = response.headers.get('Link').match(/<(?<next>.*?)>;

rel="next"/).groups.next;

Adapt the loadResults generator function to this mechanism.

Extra credit if you can demystify the regular expression.

https://developer.github.com/v3/guides/traversing-with-pagination

Chapter 13. An Introduction to
TypeScript

Topics in This Chapter

13.1 Type Annotations

13.2 Running TypeScript

13.3 Type Terminology

13.4 Primitive Types

13.5 Composite Types

13.6 Type Inference

13.7 Subtypes

13.8 Classes

13.9 Structural Typing

13.10 Interfaces

 13.11 Indexed Properties

 13.12 Complex Function Parameters

 13.13 Generic Programming

Exercises

TypeScript is a superset of JavaScript that adds compile-time typing. You
annotate variables and functions with their expected types, and TypeScript
reports an error whenever your code violates the type rules. Generally, that
is a good thing. It is far less costly to fix compile-time errors than to debug
a misbehaving program. Moreover, when you provide type information,
your development tools can give you better support with autocompletion
and refactoring.

This chapter contains a concise introduction into the main features of
TypeScript. As with the rest of the book, I focus on modern features and
mention legacy constructs only in passing. The aim of this chapter is to give
you sufficient information so you can decide whether to use TypeScript on
top of JavaScript.

Why wouldn’t everyone want to use TypeScript? Unlike ECMAScript,
which is governed by a standards committee composed of many companies,
TypeScript is produced by a single vendor, Microsoft. Unlike ECMAScript,
where standards documents describe the correct behavior in mind-numbing
detail, the TypeScript documentation is sketchy and inconclusive.
TypeScript is—just like JavaScript—sometimes messy and inconsistent,
giving you another potential source of grief and confusion. TypeScript
evolves on a different schedule than ECMAScript, so there is yet another
moving part. And, finally, you have yet another part in your tool chain that
can act up.

You will have to weigh the advantages and drawbacks. This chapter will
give you a flavor of TypeScript so you can make an informed decision.

 Tip

If, after reading this chapter, you come to the conclusion that you want static type checking but
you aren’t sure about TypeScript, check out Flow (https://flow.org) and see if you prefer its type
system, syntax, and tooling.

13.1 Type Annotations
Consider the following JavaScript function computing the average of two
numbers:

Click here to view code image

const average = (x, y) => (x + y) / 2

What happens when you call
const result = average('3', '4')

Here, '3' and '4' are concatenated to '34', which is then converted to the
number 34 and divided by 2, yielding 17. That is surely not what you
intended.

In situations like that, JavaScript provides no error messages. The program
silently computes the wrong result and keeps running. In all likelihood,
something will eventually go wrong elsewhere.

In TypeScript, you annotate parameters, like this:
Click here to view code image

const average = (x: number, y: number) => (x + y) / 2

Now it is clear that the average function is intended to compute the average
of two numbers. If you call

Click here to view code image

const result = average('3', '4') // TypeScript: Compile-time error

the TypeScript compiler reports an error.

https://flow.org/

That is the promise of TypeScript: You provide type annotations, and
TypeScript detects type errors before your program runs. Therefore, you
spend far less time with the debugger.

In this example, the annotation process is very straightforward. Let us
consider a more complex example. Suppose you want to allow an argument
that is either a number or an array of numbers. In TypeScript, you express
this with a union type number | number[]. Here, we want to replace a target
value, or multiple target values, with another value:

Click here to view code image

const replace = (arr: number[], target: number | number[],

replacement: number) => {

 for (let i = 0; i < arr.length; i++) {

 if (Array.isArray(target) && target.includes(arr[i])

 || !Array.isArray(target) && target === arr[i]) {

 arr[i] = replacement

 }

 }

}

TypeScript can now check whether your calls are correct:
Click here to view code image

const a = [11, 12, 13, 14, 15, 16]

replace(a, 13, 0) // OK
replace(a, [13, 14], 0) // OK
replace(a, 13, 14, 0) // Error

 Caution

TypeScript knows about the types of the JavaScript library methods, but as I write this, the online
playground is misconfigured and doesn’t recognize the includes method of the Array class.
Hopefully this will be fixed by the time you read this book. If not, replace
target.includes(arr[i]) with target.indexOf(arr[i]) >= 0.

 Note

In these examples, I used arrow functions. The annotations work in exactly the same way with the
function keyword:

Click here to view code image

function average(x: number, y: number) { return (x + y) / 2 }

To use TypeScript effectively, you need to learn how to express types such
as “array of type T” and “type T or type U” in the TypeScript syntax. This is
simple in many common situations. However, type descriptions can get
fairly complex, and there are situations where you need to intervene in the
typechecking process. All real-world type systems are like that. You need to
expend a certain amount of upfront effort before you can reap the reward—
error detection at compile time.

13.2 Running TypeScript
The easiest way to experiment with TypeScript is the “playground” at
https://www.typescriptlang.org/play. Simply type in your code and run it. If
you mouse over a value, its type is displayed. Errors are shown as wiggly
underlines—see Figure 13-1.

https://www.typescriptlang.org/play

Figure 13-1 The TypeScript playground

Visual Studio Code (https://code.visualstudio.com/) has excellent
support for TypeScript, as do other editors and integrated development
environments.

To work with TypeScript on the command line, install it with the npm
package manager. Here is the command for a global installation:

npm install -g typescript

In this chapter, I will always assume that TypeScript operates in the strict
mode and targets the latest version of ECMAScript. Similar to plain
JavaScript, TypeScript’s strict mode outlaws “sloppy” legacy behavior. To
activate these settings, include a file tsconfig.json in your project
directory with the following contents:

Click here to view code image

{

 "compilerOptions": {

 "target": "ES2020",

 "strict": true,

 "sourceMap": true

https://code.visualstudio.com/

 },

 "filesGlob": [

 "*.ts"

]

}

To compile TypeScript files to JavaScript, run
tsc

in the directory that contains TypeScript files and tsconfig.json. Each
TypeScript file is translated to JavaScript. You can run the resulting files
with node.

To start up a REPL, run
ts-node

in a directory with a tsconfig.json file, or
Click here to view code image

ts-node -O '{ "target": "es2020", "strict": true }'

in any directory.

13.3 Type Terminology
Let us step back and think about types. A type describes a set of values that
have something in common. In TypeScript, the number type consists of all
values that are JavaScript numbers: regular numbers such as 0,
3.141592653589793, and so on, as well as Infinity, -Infinity, and NaN. We
say that all these values are instances of the number type. However, the
value 'one' is not.

As you saw already, the type number[] denotes arrays of numbers. The
value [0, 3.141592653589793, NaN] is an instance of the number[] type, but
the value [0, 'one'] is not.

A type such as number[] is called a composite type. You can form arrays of
any type: number[], string[], and so on. Union types are another example
of composite types. The union type

number | number[]

is composed of two simpler types: number and number[].

In contrast, types that are not composed of simpler types are primitive.
TypeScript has primitive types number, string, boolean, as well as a few
others that you will encounter in the following section.

Composite types can get complex. You can use a type alias to make them
easier to read and reuse. Suppose you like to write functions that accept
either a single number or an array. Simply define a type alias:

type Numbers = number | number[]

Use the alias as a shortcut for the type:
Click here to view code image

const replace = (arr: number[], target: Numbers, replacement:

number) => . . .

 Note

The typeof operator yields the value of a variable or property. You can use that type to declare
another variable of the same type:

Click here to view code image

let values = [1, 7, 2, 9]

let moreValues: typeof values = []

 // typeof values is the same as number[]
let anotherElement: typeof values[0] = 42

 // typeof values[0] is the same as number

13.4 Primitive Types
Every JavaScript primitive type is also a primitive type in TypeScript. That
is, TypeScript has primitive types number, boolean, string, symbol, null,
and undefined.

The undefined type has one instance—the value undefined. Similarly, the
value null is the sole instance of the null type. You won’t want to use these

types by themselves, but they are very useful in union types. An instance of
the type

string | undefined

is either a string or the undefined value.

The void type can only be used as the return type of a function. It denotes
the fact that the function returns no value (see Exercise 2).

The never type denotes the fact that a function won’t ever return because it
always throws an exception. Since you don’t normally write such functions,
it is very unlikely that you will use the never type for a type annotation.
Section 13.13.6, “Conditional Types” (page 303), has another application of
the never type.

The unknown type denotes any JavaScript value at all. You can convert any
value to unknown, but a value of type unknown is not compatible with any
other type. This makes sense for parameter types of very generic functions
(such as console.log), or when you need to interface with external
JavaScript code. There is an even looser type any. Any conversion to or
from the any type is allowed. You should minimize the use of the any type
because it effectively turns off type checking.

A literal value denotes another type with a single instance—that same
value. For example, the string literal 'Mon' is a TypeScript type. That type
has just one value—the string 'Mon'. By itself, such a type isn’t very useful,
but you can form a union type, such as

Click here to view code image

'Mon' | 'Tue' | 'Wed' | 'Thu' | 'Fri' | 'Sat' | 'Sun'

This is a type with seven instances—the names of the weekdays.

With a type like this, you will usually want to use a type alias:
Click here to view code image

type Weekday = 'Mon' | 'Tue' | 'Wed' | 'Thu' | 'Fri' | 'Sat' |

'Sun'

Now you can annotate a variable as Weekday:

Click here to view code image

let w: Weekday = 'Mon' // OK
w = 'Mo' // Error

A type such as Weekday describes a finite set of values. The values can be
literals of any type:

Click here to view code image

type Falsish = false | 0 | 0n | null | undefined | '' | []

 Note

If you want constants with nicer names, TypeScript lets you define an enumerated type. Here is a
simple example:

Click here to view code image

enum Weekday { MON, TUE, WED, THU, FRI, SAT, SUN }

You can refer to these constants as Weekday.MON, Weekday.TUE, and so on. These are
synonyms for the numbers 0, 1, 2, 3, 4, 5, and 6. You can also assign values:

Click here to view code image

enum Color { RED = 4, GREEN = 2, BLUE = 1 }

String values are OK too:

Click here to view code image

enum Quarter { Q1 = 'Winter', Q2 = 'Spring', Q3 = 'Summer', Q4

= 'Fall' }

13.5 Composite Types
TypeScript provides several ways of building more complex types out of
simpler ones. This section describes all of them.

Given any type, there is an array type:

Click here to view code image

number[] // Array of number
string[] // Array of string
number[][] // Array of number[]

These types describe arrays whose elements all have the same type. For
example, a number[] array can only hold numbers, not a mixture of numbers
and strings.

Of course, JavaScript programmers often use arrays whose elements have
mixed types, such as [404, 'not found']. In TypeScript, you describe such
an array as an instance of a tuple type [number, string]. A tuple type is a
list of types enclosed in brackets. It denotes fixed-length arrays whose
elements have the specified types. In our example, the value [404, 'not
found'] is an instance of the tuple type [number, string], but ['not
found', 404] or [404, 'error', 'not found'] are not.

 Note

The type for an array that starts out with a number and a string and then has other elements is

[string, number, ...unknown[]]

Just as a tuple type describes the element types of arrays, an object type
defines the property names and types of objects. Here is an example of such
a type:

{ x: number, y: number }

You can use a type alias to make this declaration easier to reuse:
type Point = { x: number, y: number }

Now you can define functions whose parameters are Point instances:
Click here to view code image

const distanceFromOrigin = (p: Point) => Math.sqrt(Math.pow(p.x,

2) + Math.pow(p.y, 2))

A function type describes the parameter and return types of a function. For
example,

Click here to view code image

(arg1: number, arg2: number) => number

is the type of all functions with two number parameters and a number return
value.

The Math.pow function is an instance of this type, but Math.sqrt is not, since
it only has one parameter.

 Note

In JavaScript, you must provide names with the parameter types of a function type, such as arg1
and arg2 in the preceding example. These names are ignored, with one exception. A method is
indicated by naming the first parameter this—see Section 13.8.2, “The Instance Type of a
Class” (page 285). In all other cases, I will use arg1, arg2, and so on in a function type so you
can see right away that it is a type, not an actual function. For a rest parameter, I will use rest.

You have already seen union types. The values of the union type T | U are
the instances of T or U. For example, an instance of

number | string

is either a number or a string, and
(number | string)[]

describes arrays whose elements are numbers or strings.

An intersection type T & U has instances that combine the requirements of
T and U. Here is an example:

Point & { color: string }

To be an instance of this type, an object must have numeric x and y
properties (which makes it a Point) as well as a string-valued color
property.

13.6 Type Inference
Consider a call to our average function:

Click here to view code image

const average = (x: number, y: number) => (x + y) / 2

. . .

const a = 3

const b = 4

let result = average(a, b)

Only the function parameters require a type annotation. The type of the
other variables is inferred. From the initialization, TypeScript can tell that a
and b must have type number. By analyzing the code of the average
function, TypeScript infers that the return type is also number, and so is the
type of result.

Generally, type inference works well, but sometimes you have to help
TypeScript along.

The initial value of a variable may not suffice to determine the type that you
intend. For example, suppose you declare a type for error codes.

type ErrorCode = [number, string]

Now you want to declare a variable of that type. This declaration does not
suffice:

let code = [404, 'not found']

TypeScript infers the type (number | string)[] from the right-hand side:
arrays of arbitrary length where each element can be a number or string.
That is a much more general type than ErrorCode.

 Tip

To see the inferred type, use a development environment that displays type information. Figure
13-2 shows how Visual Studio Code displays inferred types.

Figure 13-2 Type information in Visual Studio Code

The remedy is to use a type annotation with the variable:
let code: ErrorCode = [404, 'not found']

You face the same problem when a function returns a value whose type is
ambiguous, such as the following:

Click here to view code image

const root = (x: number) => {

 if (x >= 0) return Math.sqrt(x)

 else return [404, 'not found']

}

The inferred return type is number | (number | string)[]. If you want
number | ErrorCode, put a return type annotation behind the parameter list:

Click here to view code image

const root = (x: number): number | ErrorCode => {

 if (x >= 0) return Math.sqrt(x)

 else return [404, 'not found']

}

Here is the same function with the function syntax:
Click here to view code image

function root(x: number): number | ErrorCode {

 if (x >= 0) return Math.sqrt(x)

 else return [404, 'not found']

}

A type annotation is also needed when you initialize a variable with
undefined:

let result = undefined

Without an annotation, TypeScript infers the type any. (It would be pointless
to infer the type undefined—then the variable could never change.)
Therefore, you should specify the intended type:

Click here to view code image

let result: number | undefined = undefined

Later, you can store a number in result, but not a string:

result = 3 // OK
result = '3' // Error

Sometimes you know more about the type of an expression than TypeScript
can infer. For example, you might have just received a JSON object and you
know its type. Then use a type assertion:

Click here to view code image

let target = JSON.parse(response) as Point

A type assertion is similar to a cast in Java or C#, but no exception occurs if
the value doesn’t actually conform to the target type.

When you process union types, TypeScript follows the decision flow to
ensure that a value is of the correct type in each branch. Consider this
example:

Click here to view code image

const less = (x: number | number[] | string | Date | null) => {

 if (typeof x === 'number')

 return x - 1;

 else if (Array.isArray(x))

 return x.splice(0, 1)

 else if (x instanceof Date)

 return new Date(x.getTime() - 1000)

 else if (x === null)

 return x

 else

 return x.substring(1)

}

TypeScript understands the typeof, instanceof, and in operators, the
Array.isArray function, and tests for null and undefined. Therefore, the
type of x is inferred as number, number[], Date, and null in the first four
branches. In the fifth branch, only the string alternative remains, and
TypeScript allows the call to substring.

However, sometimes this inference doesn’t work. Here is an example:
Click here to view code image

const more = (values: number[] | string[]) => {

 if (array.length > 0 && typeof x[0] === 'number') // Error—not
a valid type guard
 return values.map(x => x + 1)

 else

 return values.map(x => x + x)

}

TypeScript can’t analyze the condition. It is simply too complex.

In such a situation, you can provide a custom type guard function. Its
special role is indicated by the return type:

Click here to view code image

const isNumberArray = (array: unknown[]): array is number[] =>

 array.length > 0 && typeof array[0] === 'number'

The return type array is number[] indicates that this function returns a
boolean and can be used to test whether the array argument has type
number[]. Here is how to use the function:

Click here to view code image

const more = (values: number[] | string[]) => {

 if (isNumberArray(values))

 return values.map(x => x + 1)

 else

 return values.map(x => x + x)

}

Here is the same type guard with the function syntax:
Click here to view code image

function isNumberArray(array: unknown[]): array is number[] {

 return array.length > 0 && typeof array[0] === 'number'

}

13.7 Subtypes
Some types, for example number and string, have no relationship with each
other. A number variable cannot hold a string variable, nor can a string
variable hold a number value. But other types are related. For example, a
variable with type number | string can hold a number value.

We say that number is a subtype of number | string, and number | string is
a supertype of number and string. A subtype has more constraints than its
supertypes. A variable of the supertype can hold values of the subtype, but
not the other way around.

In the following sections, we will examine the subtype relationship in more
detail.

13.7.1 The Substitution Rule

Consider again the object type
Click here to view code image

type Point = { x: number, y: number }

The object { x: 3, y: 4 } is clearly an instance of Point. What about
Click here to view code image

const bluePoint = { x: 3, y: 4, color: 'blue' }

Is it also an instance of Point? After all, it has x and y properties whose
values are numbers.

In TypeScript, the answer is “no.” The bluePoint object is an instance of the
type

Click here to view code image

{ x: number, y: number, color: string }

For convenience, let us give a name to that type:
Click here to view code image

type ColoredPoint = { x: number, y: number, color: string }

The ColoredPoint type is a subtype of Point, and Point is a supertype of
ColoredPoint. A subtype imposes all the requirements of the supertype, and
then some.

Whenever a value of a given type is expected, you can supply a subtype
instance. This is sometimes called the substitution rule.

For example, here we pass a ColoredPoint object to a function with a Point
parameter:

Click here to view code image

const distanceFromOrigin = (p: Point) => Math.sqrt(Math.pow(p.x,

2) + Math.pow(p.y, 2))

const result = distanceFromOrigin(bluePoint) // OK

The distanceFromOrigin function expects a Point, and it is happy to accept
a ColoredPoint. And why shouldn’t it be? The function needs to access
numeric x and y properties, and those are certainly present.

 Note

As you just saw, the type of a variable need not be exactly the same as the type of the value to
which it refers. In this example, the parameter p has type Point, but the value to which it refers
has type ColoredPoint. When you have a variable of a given type, you can be assured that the
referenced value belongs to that type or a subtype.

The substitution rule has one exception in TypeScript. You cannot substitute
an object literal of a subtype. The call

Click here to view code image

const result = distanceFromOrigin({ x: 3, y: 4, color: 'blue' })

// Error

fails at compile time. This is called an excess property check.

The same check is carried out when you assign an object literal to a typed
variable:

Click here to view code image

let p: Point = { x: 3, y: 4 }

p = { x: 0, y: 0, color: 'red' } // Error—excess property blue

You will see the rationale for this check in the following section.

It is easy enough to bypass an excess property check. Just introduce another
variable:

Click here to view code image

const redOrigin = { x: 0, y: 0, color: 'red' }

p = redOrigin // OK—p can hold a subtype value

13.7.2 Optional and Excess Properties

When you have an object of type Point, you can’t read any properties other
than x and y. After all, there is no guarantee that such properties exist.

Click here to view code image

let p: Point = . . .

console.log(p.color) // Error—no such property

That makes sense. It is exactly the kind of check that a type system should
provide.

What about writing to such a property?

p.color = 'blue' // Error—no such property

From a type-theoretical point of view, this would be safe. The variable p
would still refer to a value that belongs to a subtype of Point. But
TypeScript prohibits setting “excess properties.”

If you want properties that are present with some but not all objects of a
type, use optional properties. A property marked with ? is permitted but not
required. Here is an example:

Click here to view code image

type MaybeColoredPoint = {

 x: number,

 y: number,

 color?: string

}

Now the following statements are OK:
Click here to view code image

let p: MaybeColoredPoint = { x: 0, y: 0 } // OK—color optional
p.color = 'red' // OK—can set optional property
p = { x: 3, y: 4, color: 'blue' } // OK—can use literal with
optional property

Excess property checks are meant to catch typos with optional properties.
Consider a function for plotting a point:

Click here to view code image

const plot = (p: MaybeColoredPoint) => . . .

The following call fails:
Click here to view code image

const result = plot({ x: 3, y: 4, colour: 'blue' })

 // Error—excess property colour

Note the British spelling of colour. The MaybeColoredPoint class has no
colour property, and TypeScript catches the error. If the compiler had
followed the substitution rule without the excess property check, the
function would have plotted a point with no color.

13.7.3 Array and Object Type Variance

Is an array of colored points more specialized than an array of points? It
certainly seems to. Indeed, in TypeScript, the ColoredPoint[] type is a
subtype of Point[]. In general, if S is a subtype of T, then the array type S[]
is a subtype of T[]. We say that arrays are covariant in TypeScript since the
array types vary in the same direction as the element types.

However, this relationship is actually unsound. It is possible to write
TypeScript programs that compile without errors but create errors at
runtime. Consider this example:

Click here to view code image

const coloredPoints: ColoredPoint[] = [{ x: 3, y: 4, color:

'blue' },

 { x: 0, y: 0, color: 'red'

}]

const points: Point[] = coloredPoints // OK for points to hold a
subtype value

We can add a plain Point via the points variable:
Click here to view code image

points.push({ x: 4, y: 3 }) // OK to add a Point to a Point[]

But coloredPoints and points refer to the same array. Reading the added
point with the coloredPoints variable causes a runtime error:

Click here to view code image

console.log(coloredPoints[2].color.length)

 // Error—cannot read property 'length' of undefined

The value coloredPoints[2].color is undefined, which should not be
possible for a ColoredPoint. The type system has a blind spot.

This was a conscious choice by the language designers. Theoretically, only
immutable arrays should be covariant, and mutable arrays should be
invariant. That is, there should be no subtype relationship between mutable
arrays of different types. However, invariant arrays would be inconvenient.
In this case, TypeScript, as well as Java and C#, made the decision to give
up on complete type safety for the sake of convenience.

Covariance is also used for object types. To determine whether one object
type is a subtype of another, we look at the subtype relationships of the
matching properties. Let us look at two types that share a single property:

Click here to view code image

type Colored = { color: string }

type MaybeColored = { color: string | undefined }

In this case, string is a subtype of string | undefined, and therefore
Colored is a subtype of MaybeColored.

In general, if S is a subtype of T, then the object type { p: S } is a subtype of
{ p: T }. If there are multiple properties, all of them must vary in the same
direction.

As with arrays, covariance for objects is unsound—see Exercise 11.

In this section, you have seen how array and object types vary with their
component types. For variance of function types, see Section 13.12.3,
“Function Type Variance” (page 293), and for generic variance, Section
13.13.5, “Generic Type Variance” (page 302).

13.8 Classes
The following sections cover how classes work in TypeScript. First, we go
over the syntactical differences between classes in JavaScript and
TypeScript. Then you will see how classes are related to types.

13.8.1 Declaring Classes

The TypeScript syntax for classes is similar to that of JavaScript. Of course,
you provide type annotations for constructor and method parameters. You

also need to specify the types of the instance fields. One way is to list the
fields with type annotations, like this:

Click here to view code image

class Point {

 x: number

 y: number

 constructor(x: number, y: number) {

 this.x = x

 this.y = y

 }

 distance(other: Point) {

 return Math.sqrt(Math.pow(this.x - other.x, 2) +

Math.pow(this.y - other.y, 2))

 }

 toString() { return `(${this.x}, ${this.y})` }

 static origin = new Point(0, 0)

}

Alternatively, you can provide initial values from which TypeScript can
infer the type:

class Point {

 x = 0

 y = 0

 . . .

}

 Note

This syntax corresponds to the field syntax that is a stage 3 proposal in JavaScript.

You can make the instance fields private. TypeScript supports the syntax for
private features that is currently at stage 3 in JavaScript.

Click here to view code image

class Point {

 #x: number

 #y: number

 constructor(x: number, y: number) {

 this.#x = x

 this.#y = y

 }

 distance(other: Point) {

 return Math.sqrt(Math.pow(this.#x - other.#x, 2) +

Math.pow(this.#y - other.#y, 2))

 }

 toString() { return `(${this.#x}, ${this.#y})` }

 static origin = new Point(0, 0)

}

 Note

TypeScript also supports private and protected modifiers for instance fields and methods.
These modifiers work just like in Java or C++. They come from a time where JavaScript did not
have a syntax for private variables and methods. I do not discuss those modifiers in this chapter.

 Note

You can declare instance fields as readonly:

class Point {

 readonly x: number

 readonly y: number

 . . .

}

A readonly property cannot be changed after its initial assignment.

Click here to view code image

const p = new Point(3, 4)

p.x = 0 // Error—cannot change readonly property
Note that readonly is applied to properties, whereas const applies to variables.

13.8.2 The Instance Type of a Class

The instances of a class have a TypeScript type that contains every public

property and method. For example, consider the Point class with public
fields from the preceding sections. Its instances have the type

Click here to view code image

{

 x: number,

 y: number,

 distance: (this: Point, arg1: Point) => number

 toString: (this: Point) => string

}

Note that the constructor and static members are not a part of the instance
type.

You can indicate a method by naming the first parameter this, as in the
preceding example. Alternatively, you can use the following compact
notation:

Click here to view code image

{

 x: number,

 y: number,

 distance(arg1: Point): number

 toString(): string

}

Getter and setter methods in classes give rise to properties in TypeScript
types. For example, if you define

Click here to view code image

get x() { return this.#x }

set x(x: number) { this.#x = x }

get y() { return this.#y }

set y(y: number) { this.#y = y }

for the Point class with private instance fields in the preceding section, then
the TypeScript type has properties x and y of type number.

If you only provide a getter, the property is readonly.

 Caution

If you only provide a setter and no getter, reading from the property is permitted and returns
undefined.

13.8.3 The Static Type of a Class

As noted in the preceding section, the constructor and static members are
not part of the instance type of a class. Instead, they belong to the static
type.

The static type of our sample Point class is
{

 new (x: number, y: number): Point

 origin: Point

}

The syntax for specifying a constructor is similar to that for a method, but
you use new in place of the method name.

You don’t usually have to worry about the static type (but see Section
13.13.4, “Erasure,” page 300). Nevertheless, it is a common cause of
confusion. Consider this code snippet:

Click here to view code image

const a = new Point(3, 4)

const b: typeof a = new Point(0, 0) // OK
const ctor: typeof Point = new Point(0, 0) // Error

Since a is an instance of Point, typeof a is the instance type of the Point
class. But what is typeof Point? Here, Point is the constructor function.
After all, that’s all a class is in JavaScript—a constructor function. Its type
is the static type of the class. You can initialize ctor as

const ctor: typeof Point = Point

Then you can call new ctor(3, 4) or access ctor.origin.

13.9 Structural Typing
The TypeScript type system uses structural typing. Two types are the same
if they have the same structure. For example,

type ErrorCode = [number, string]

and
type LineItem = [number, string]

are the same type. The names of the types are irrelevant. You can freely
copy values between the two types:

Click here to view code image

let code: ErrorCode = [404, 'Not found']

let items: LineItem[] = [[2, 'Blackwell Toaster']]

items[1] = code

This sounds potentially dangerous, but it is certainly no worse than what
programmers do every day with plain JavaScript. And in practice, with
object types, it is quite unlikely that two types have exactly the same
structure. If we use object types in our example, we might arrive at these
types:

Click here to view code image

type ErrorCode = { code: number, description: string }

type LineItem = { quantity: number, description: string }

They are different since the property names don’t match.

Structural typing is very different from the “nominal” type systems in Java,
C#, or C++, where the names of the type matter. But in JavaScript, what
matters are the capabilities of an object, not the name of its type.

To illustrate the difference, consider this JavaScript function:
Click here to view code image

const act = x => { x.walk(); x.quack(); }

Obviously, in JavaScript, the function works with any x that has methods
walk and quack.

In TypeScript, you can accurately reflect this behavior with a type:

Click here to view code image

const act = (x: { walk(): void, quack(): void }) => { x.walk();

x.quack(); }

You may have a class Duck that provides these methods:
Click here to view code image

class Duck {

 constructor(. . .) { . . . }

 walk(): void { . . . }

 quack(): void { . . . }

}

That’s swell. You can pass a Duck instance to the act function:
Click here to view code image

const donald = new Duck(. . .)

act(donald)

But now suppose you have another object—not an instance of this class, but
still with walk and quack methods:

Click here to view code image

const daffy = { walk: function () { . . . }, quack: function () {

. . . } };

You can equally well pass this object to the act function. This phenomenon
is called “duck typing,” after the proverbial saying: “If it walks like a duck
and quacks like a duck, it must be a duck.”

The structural typing in TypeScript formalizes this approach. Using the
structure of the type, TypeScript can check at compile time that each value
has the needed capabilities. The type names don’t matter at all.

13.10 Interfaces
Consider an object type to describe objects that have an ID method:

type Identifiable = {

 id(): string

}

Using this type, you can define a function that finds an element by ID:

Click here to view code image

const findById = (elements: Identifiable[], id: string) => {

 for (const e of elements) if (e.id() === id) return e;

 return undefined;

}

To make sure that a class is a subtype of this type, you can define the class
with an implements clause:

Click here to view code image

class Person implements Identifiable {

 #name: string

 #id: string

 constructor(name: string, id: string) { this.#name = name;

this.#id = id; }

 id() { return this.#id }

}

Now TypeScript checks that your class really provides an id method with
the correct types.

 Note

That is all that the implements clause does. If you omit the clause, Person is still a subtype
of Identifiable, because of structural typing.

There is an alternate syntax for object types that looks more familiar to Java
and C# programmers:

Click here to view code image

interface Identifiable {

 id(): string

}

In older versions of TypeScript, object types were more limited than
interfaces. Nowadays, you can use either.

There are a couple of minor differences. One interface can extend another:
Click here to view code image

interface Employable extends Identifiable {

 salary(): number

}

With type declarations, you use an intersection type instead:
Click here to view code image

type Employable = Identifiable & {

 salary(): number

}

Interfaces, unlike object types, can be defined in fragments. You can have
Click here to view code image

interface Employable {

 id(): string

}

followed elsewhere by
Click here to view code image

interface Employable {

 salary(): number

}

The fragments are merged together. This merging is not done for type
declarations. It is debatable whether this is a useful feature.

 Note

In TypeScript, an interface can extend a class. It then picks up all properties of the instance type
of the class. For example,

Click here to view code image

interface Point3D extends Point { z: number }

has the fields and methods of Point, as well as the z property.

Instead of such an interface, you can use an intersection type

Click here to view code image

type Point3D = Point & { z: number }

13.11 Indexed Properties

Sometimes, you want to use objects with arbitrary properties. In TypeScript,
you need to use an index signature to let the type checker know that
arbitrary properties are OK. Here is the syntax:

Click here to view code image

type Dictionary = {

 creator: string,

 [arg: string]: string | string[]

}

The variable name of the index argument (here, arg) is immaterial, but you
must supply a name.

Each Dictionary instance has a creator property and any number of other
properties whose values are strings or string arrays.

Click here to view code image

const dict: Dictionary = { creator: 'Pierre' }

dict.hello = ['bonjour', 'salut', 'allô']

let str = 'world'

dict[str] = 'monde'

 Caution

The types of explicitly provided properties must be subtypes of the index type. The following
would be an error:

Click here to view code image

type Dictionary = {

 created: Date, // Error—not a string or string[]
 [arg: string]: string | string[]

}

There would be no way to check that an assignment to dict[str] is correct with an arbitrary
value for str.

You can also describe array-like types with integer index values:

Click here to view code image

type ShoppingList = {

 created: Date,

 [arg: number] : string

}

const list: ShoppingList = {

 created: new Date()

}

list[0] = 'eggs'

list[1] = 'ham'

13.12 Complex Function Parameters

In the following sections, you will see how to provide annotations for more
optional, default, rest, and destructured parameters. Then we turn to
“overloading”—specifying multiple parameter and return types for a single
function.

13.12.1 Optional, Default, and Rest Parameters

Consider the JavaScript function
Click here to view code image

const average = (x, y) => (x + y) / 2 // JavaScript

In JavaScript, you have to worry about the fact that someone might call
average(3), which would evaluate to (3 + undefined) / 2, or NaN. In
TypeScript, that’s not an issue. You cannot call a function without supplying
all of the required arguments.

However, JavaScript programmers often provide optional parameters. In
our average function, the second parameter can be optional:

Click here to view code image

const average = (x, y) => y === undefined ? x : (x + y) / 2 //

JavaScript

In TypeScript, you tag optional parameters with a ?, like this:
Click here to view code image

const average = (x: number, y?: number) => y === undefined ? x :

(x + y) / 2

 // TypeScript

Optional parameters must come after the required parameters.

As in JavaScript, you can provide default parameters in TypeScript:
Click here to view code image

const average = (x = 0, y = x) => (x + y) / 2 // TypeScript

Here, the parameter types are inferred from the types of the defaults.

Rest parameters work exactly like in JavaScript. You annotate a rest
parameter as an array:

Click here to view code image

const average = (first = 0, ...following: number[]) => {

 let sum = first

 for (const value of following) { sum += value }

 return sum / (1 + following.length)

}

The type of this function is
Click here to view code image

(arg1: number, ...arg2: number[]) => number

13.12.2 Destructuring Parameters

In Chapter 3, we looked at functions that are called with a “configuration
object,” like this:

Click here to view code image

const result = mkString(elements,

 { separator: ', ', leftDelimiter: '(', rightDelimiter: ')' })

When implementing the function, you can, of course, have a parameter for
the configuration object:

Click here to view code image

const mkString = (values, config) =>

 config.leftDelimiter + values.join(config.separator) +

config.rightDelimiter

Or you can use destructuring to declare three parameter variables:
Click here to view code image

const mkString = (values, { separator, leftDelimiter,

rightDelimiter }) =>

 leftDelimiter + values.join(separator) + rightDelimiter

In TypeScript, you need to add types. However, the obvious way does not
work:

Click here to view code image

const mkString = (values: unknown[], { // TypeScript
 separator: string,

 leftDelimiter: string, // Error—duplicate identifier
 rightDelimiter: string // Error—duplicate identifier
 }) => leftDelimiter + values.join(separator) + rightDelimiter

The syntax for TypeScript type annotations is in conflict with the
destructuring syntax. In JavaScript (and therefore, in TypeScript), you can
add variable names after the property names:

Click here to view code image

const mkString = (values, { // JavaScript
 separator: sep,

 leftDelimiter: left,

 rightDelimiter: right

 }) => left + values.join(sep) + right

To correctly specify the types, add a type annotation to the entire
configuration object:

Click here to view code image

const mkString = (values: unknown[], // TypeScript
 { separator, leftDelimiter, rightDelimiter }

 : { separator: string, leftDelimiter: string,

rightDelimiter: string })

 => leftDelimiter + values.join(separator) + rightDelimiter

In Chapter 3, we also provided default arguments for each option. Here is
the function with the defaults:

Click here to view code image

const mkString = (values: unknown[], // TypeScript
 { separator = ',', leftDelimiter = '[', rightDelimiter = ']'

}

 : { separator?: string, leftDelimiter?: string,

rightDelimiter?: string })

 => leftDelimiter + values.join(separator) + rightDelimiter

Note that with the defaults, the type changes slightly—each property is now
optional.

13.12.3 Function Type Variance

In Section 13.7.3, “Array and Object Type Variance” (page 282), you saw
that arrays are covariant. Replacing the element type with a subtype yields
an array subtype. For example, if Employee is a subtype of Person, then
Employee[] is a subtype of Person[].

Similarly, object types are covariant in the property types. The type {
partner: Employee } is a subtype of { partner: Person }.

In this section, we examine subtype relationships between function types.

Function types are contravariant in their parameter types. If you replace a
parameter type with a supertype, you get a subtype. For example, the type

Click here to view code image

type PersonConsumer = (arg1: Person) => void

is a subtype of
Click here to view code image

type EmployeeConsumer = (arg1: Employee) => void

That means, an EmployeeConsumer variable can hold a PersonConsumer
value:

Click here to view code image

const pc: PersonConsumer = (p: Person) => { console.log(`a person

named ${p.name}`) }

const ec: EmployeeConsumer = pc

 // OK for ec to hold subtype value

This assignment is sound because pf can surely accept Employee instances.
After all, it is prepared to handle more general Person instances.

With the return type, we have covariance. For example,
Click here to view code image

type EmployeeProducer = (arg1: string) => Employee

is a subtype of
Click here to view code image

type PersonProducer = (arg1: string) => Person

The following assignment is sound:
Click here to view code image

const ep: EmployeeProducer = (name: string) => ({ name, salary: 0

})

const pp: PersonProducer = ep

 // OK for pp to hold subtype value

Calling pp('Fred') surely produces a Person instance.

If you drop the last parameter type from a function type, you obtain a
subtype. For example,

(arg1: number) => number

is a subtype of
(arg1: number, arg2: number) => number

To see why, consider the assignment
Click here to view code image

const g = (x: number) => 2 * x

 // Type (arg1: number) => number
const f: (arg1: number, arg2: number) => number = g

 // OK for f to hold subtype value

It is safe to call f with two arguments. The second argument is simply
ignored.

Similarly, if you make a parameter optional, you obtain a subtype:
Click here to view code image

const g = (x: number, y?: number) => y === undefined ? x : (x +

y) / 2

 // Type (arg1: number, arg2?: number) => number
const f: (arg1: number, arg2: number) => number = g

 // OK for f to hold subtype value

Again, it is safe to call f with two arguments.

Finally, if you add a rest parameter, you get a subtype.
Click here to view code image

let g = (x: number, y: number, ...following: number[]) =>

Math.max(x, y, ...following)

 // Type: (arg1: number, arg2: number, ...rest: number[]) => number
let f: (arg1: number, arg2: number) => number = g

 // OK for f to hold subtype value

Once again, calling f with two parameters is fine.

Table 13-1 gives a summary of all subtype rules that were covered so far.

Table 13-1 Forming Subtypes

Action Supertype
A variable of this
type...

Subtype
...can hold a value
of this type

Replace array
element type with
subtype

Person[] Employee[]

Replace object
property type with

{ partner: Person

}

{ partner:

Employee }

Action Supertype
A variable of this
type...

Subtype
...can hold a value
of this type

subtype

Add object property { x: number, y:

number }

{ x: number, y:

number, color:

string }

Replace function
parameter type with
supertype

(arg1: Employee)

=> void

(arg1: Person) =>

void

Replace function
return type with
subtype

(arg1: string) =>

Person

(arg1: string) =>

Employee

Drop the last
parameter

(arg1: number,

arg2: number) =>

number

(arg1: number) =>

number

Make the last
parameter optional

(arg1: number,

arg2: number) =>

number

(arg1: number,

arg2?: number) =>

number

Add a rest
parameter

(arg1: number) =>

number

(arg1: number,

...rest: number[])

=> number

13.12.4 Overloads

In JavaScript, it is common to write functions that can be called flexibly.
For example, this JavaScript function counts how many times a letter
occurs in a string:

Click here to view code image

function count(str, c) { return str.length - str.replace(c,

'').length }

What if we have an array of strings? In JavaScript, it is easy to extend the
behavior:

Click here to view code image

function count(str, c) {

 if (Array.isArray(str)) {

 let sum = 0

 for (const s of str) {

 sum += s.length - s.replace(c, '').length

 }

 return sum

 } else {

 return str.length - str.replace(c, '').length

 }

}

In TypeScript, we need to provide a type for this function. That is not too
hard: str is either a string or an array of strings:

Click here to view code image

function count(str: string | string[], c: string) { . . . }

This works because in either case, the return type is number. That is, the
function has type

Click here to view code image

(str: string | string[], c: string) => number

But what if the return type differs depending on the argument types? Let’s
say we remove the characters instead of counting them:

Click here to view code image

function remove(str, c) { // JavaScript
 if (Array.isArray(str))

 return str.map(s => s.replace(c, ''))

 else

 return str.replace(c, '')

}

Now the return type is either string or string[].

But it is not optimal to use the union type string | string[] as the return
type. In an expression

Click here to view code image

const result = remove(['Fred', 'Barney'], 'e')

we would like result to be typed as string[], not the union type.

You can achieve this by overloading the function. JavaScript doesn’t
actually allow you to overload functions in the traditional sense—that is,
implement separate functions with the same name but different parameter
types. Instead, you list the declarations that you wish you could implement
separately, followed by the one implementation:

Click here to view code image

function remove(str: string, c: string): string

function remove(str: string[], c: string): string[]

function remove(str: string | string[], c: string) {

 if (Array.isArray(str))

 return str.map(s => s.replace(c, ''))

 else

 return str.replace(c, '')

}

With arrow functions, the syntax is a little different. Annotate the type of
the variable that will hold the function, like this:

Click here to view code image

const remove: {

 (arg1: string, arg2: string): string

 (arg1: string[], arg2: string): string[]

} = (str: any, c: string) => {

 if (Array.isArray(str))

 return str.map(s => s.replace(c, ''))

 else

 return str.replace(c, '')

}

 Caution

Perhaps for historical reasons, the syntax of this overload annotation does not use the arrow
syntax for function types. Instead, the syntax is reminiscent of an interface declaration.

Also, the type checking is not as good with arrow functions. The parameter str must be declared
with type any, not string | string[]. With function declarations, TypeScript works
harder and checks the execution paths of the function, guaranteeing that string arguments yield
string results, but string[] arguments return string[] values.

Overloaded methods use a syntax that is similar to functions:
Click here to view code image

class Remover {

 c: string

 constructor(c: string) { this.c = c }

 removeFrom(str: string): string

 removeFrom(str: string[]): string[]

 removeFrom(str: string | string[]) {

 if (Array.isArray(str))

 return str.map(s => s.replace(this.c, ''))

 else

 return str.replace(this.c, '')

 }

}

13.13 Generic Programming

A declaration of a class, type, or function is generic when it uses type
parameters for types that are not yet specified and can be filled in later. For
example, in TypeScript, the standard Set<T> type has a type parameter T,
allowing you to form sets of any type, such as Set<string> or Set<Point>.
The following sections show you how to work with generics in TypeScript.

13.13.1 Generic Classes and Types

Here is a simple example of a generic class. Its instances hold key/value
pairs:

Click here to view code image

class Entry<K, V> {

 key: K

 value: V

 constructor(key: K, second: V) {

 this.key = key

 this.value = value

 }

}

As you can see, the type parameters K and V are specified inside angle
brackets after the name of the class. In the definitions of fields and the
constructor, the type parameters are used as types.

You instantiate the generic class by substituting types for the type variables.
For example, Entry<string, number> is an ordinary class with fields of type
string and number.

A generic type is a type with one or more type parameters, such as
Click here to view code image

type Pair<T> = { first: T, second: T }

 Note

You can specify a default for a type parameter, such as

Click here to view code image

type Pair<T = any> = { first: T, second: T }

Then the type Pair is the same as Pair<any>.

TypeScript provides generic forms of the Set, Map, and WeakMap classes that
you saw in Chapter 7. You simply provide the types of the elements:

Click here to view code image

const salaries = new Map<Person, number>()

Types can also be inferred from the constructor arguments. For example,
this map is typed as a Map<string, number>:

Click here to view code image

const weekdays = new Map(

 [['Mon', 0], ['Tue', 1], ['Wed', 2], ['Thu', 3], ['Fri', 4],

['Sat', 5], ['Sun', 6]])

 Note

The generic Array<T> class is exactly the same as the type T[].

13.13.2 Generic Functions

Just like a generic class is a class with type parameters, a generic function is
a function with type parameters. Here is an example of a function with one
type parameter. The function counts how many times a target value is
present in an array.

Click here to view code image

function count<T>(arr: T[], target: T) {

 let count = 0

 for (let e of arr) if (e === target) count++

 return count

}

Using a type parameter ensures that the array type is the same as the target
type.

Click here to view code image

let digits = [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5]

let result = count(digits, 5) // OK
result = count(digits, 'Fred') // Type error

The type parameters of a generic function are always placed before the
opening parenthesis that starts the list of function parameters. A generic

arrow function looks like this:
Click here to view code image

const count = <T>(arr: T[], target: T) => {

 let count = 0

 for (let e of arr) if (e === target) count++

 return count

}

The type of this function is
Click here to view code image

<T> (arg1: T[], arg2: T) => number

When calling a generic function, you do not need to specify the type
parameters. They are inferred from the argument types. For example, in the
call count(digits, 5), the type of digits is number[], and TypeScript can
infer that T should be number.

You can, if you like, supply the type explicitly, before the arguments, like
this:

count<number>(digits, 4)

You occasionally need to do this if TypeScript doesn’t infer the types that
you intended. You will see an example in the following section.

13.13.3 Type Bounds

Sometimes, the type parameters of a generic class or function need to fulfill
certain requirements. You express these requirements with a type bound.

Consider this function that yields the tail—all but the first element—of its
argument:

Click here to view code image

const tail = <T>(values: T) => values.slice(1) // Error

This approach cannot work since TypeScript doesn’t know whether values
has a slice method. Let’s use a type bound:

Click here to view code image

const tail = <T extends { slice(from: number, to?: number): T }>

(values: T) =>

 values.slice(1) // OK

The type bound ensures that the call values.slice(1) is valid. Note that the
extends keyword in a type bound actually means “subtype”—the
TypeScript designers just used the existing extends keyword instead of
coming up with another keyword or symbol.

Now we can call
Click here to view code image

let result = tail([1, 7, 2, 9]) // Sets result to [7, 2, 9]

or
Click here to view code image

let greeting = 'Hello'

console.log(tail(greeting)) // Displays ello

Of course, we can give a name to the type that is used as a bound:
Click here to view code image

type Sliceable<T> = { slice(from: number, to?: number): T }

const tail = <T extends Sliceable<T>>(values: T) =>

values.slice(1)

For example, the type number[] is a subtype of Sliceable<number[]> since
the slice method returns a number[] instance. Similarly, string is a subtype
of Sliceable<string>.

 Caution

If you try out the call

Click here to view code image

console.log(tail('Hello')) // Error
compilation fails with an error—the type 'Hello' is not a subtype of
Sliceable<'Hello'>. The problem is that 'Hello' is both an instance of the literal type
'Hello' and the type string. TypeScript chooses the literal type as the most specific one, and
typechecking fails. To overcome this problem, explicitly instantiate the template function:

Click here to view code image

console.log(tail<string>('Hello')) // OK
or use a type assertion:

Click here to view code image

console.log(tail('Hello' as string))

13.13.4 Erasure

When TypeScript code is translated to plain JavaScript, all types are erased.
As a consequence, the call

let newlyCreated = new T()

is illegal. At runtime, there is no T.

To construct objects of arbitrary types, you need to use the constructor
function. Here is an example:

Click here to view code image

const fill = <T>(ctor: { new() : T }, n: number) => {

 let result: T[] = []

 for (let i = 0; i < n; i++)

 result.push(new ctor())

 return result

}

Note the type of ctor—a function that can be called with new and yields a
value of type T. That is a constructor. This particular constructor has no

arguments.

When calling the fill function, you provide the name of a class:
Click here to view code image

const dates = fill(Date, 10)

The expression Date is the constructor function. In JavaScript, a class is just
“syntactic sugar” for a constructor function with a prototype.

Similarly, you cannot make a generic instanceof check. The following will
not work:

Click here to view code image

const filter = <T>(values: unknown[]) => {

 let result: T[] = []

 for (const v of values)

 if (v instanceof T) // Error
 result.push(v)

 return result

}

The remedy is, again, to pass the constructor:
Click here to view code image

const filter = <T>(values: unknown[], ctor: new (...args: any[])

=> T) => {

 let result: T[] = []

 for (const v of values)

 if (v instanceof ctor) // OK—right-hand side of instanceof is a
constructor
 result.push(v)

 return result

}

Here is a sample call:
Click here to view code image

const pointsOnly = filter([3, 4, new Point(3, 4), Point.origin],

Point)

Note that in this case, the constructor accepts arbitrary arguments.

 Caution

The instanceof test only works with a class. There is no way of testing at runtime whether a
value is an instance of a type or interface.

13.13.5 Generic Type Variance

Consider a generic type such as
Click here to view code image

type Pair<T> = { first: T, second: T }

Now suppose you have a type Person and a subtype Employee. What is the
appropriate relationship between Pair<Person> and Pair<Employee>?

Type theory provides three possibilities for a type variable. It can be
covariant (that is, the generic type varies in the same direction),
contravariant (with subtype relationships flipped), and invariant (with no
subtype relationships between the generic types).

In Java, type variables are always invariant, but you can express
relationships with wildcards such as Pair<? extends Person>. In C#, you
can choose the variance of type parameters: Entry<out K, in V>.
TypeScript does not have any comparable mechanism.

Instead, when deciding whether a generic type instance is a subtype of
another, TypeScript simply substitutes the actual types and then compares
the resulting nongeneric types.

For example, when comparing Pair<Person> and Pair<Employee>,
substituting the types Person and Employee yields

{ first: Person, second: Person }

and the subtype
{ first: Employee, second: Employee }

As a result, the Pair<T> type is covariant in T. This is unsound (see Exercise
15). However, as discussed in Section 13.7.3, “Array and Object Type
Variance” (page 282), this unsoundness is a conscious design decision.

Let us look at another example that illustrates contravariance:
Click here to view code image

type Formatter<T> = (arg1: T) => string

To compare Formatter<Person> and Formatter<Employee>, plug in the types,
then compare

(arg1: Person) => string

and
(arg1: Employee) => string

Since function parameter types are contravariant, so is the type variable T of
Formatter<T>. This behavior is sound.

13.13.6 Conditional Types

A conditional type has the form T extends U ? V : W, where T, U, V, and W
are types or type variables. Here is an example:

Click here to view code image

type ExtractArray<T> = T extends any[] ? T : never

If T is an array, then ExtractArray<T> is T itself. Otherwise, it is never, the
type that has no instances.

By itself, this type isn’t very useful. But it can be used to filter out types
from unions:

Click here to view code image

type Data = string | string[] | number | number[]

type ArrayData = ExtractArray<Data> // The type string[] | number[]

For the string and number alternatives, ExtractArray yields never, which is
simply dropped.

Now suppose you want to have just the element type. The following doesn’t
quite work:

Click here to view code image

type ArrayOf<T> = T extends U[] ? U : never // Error—U not
defined

Instead, use the infer keyword:
Click here to view code image

type ArrayOf<T> = T extends (infer U)[] ? U : never

Here, we check whether T extends X[] for some X, and if so, bind U to X.
When applied to a union type, the non-arrays are dropped and the arrays
replaced by their element type. For example, ArrayOf<Data> is number |
string.

13.13.7 Mapped Types

Another way to specify indexes is with mapped types. Given a union type
of string, integer, or symbol literals, you can define indexes like this:

Click here to view code image

type Point = {

 [propname in 'x'|'y']: number

}

This Point type has two properties x and y, both of type number.

 Caution

This notation is similar to the syntax for indexed properties (see Section 13.11, “Indexed
Properties,” page 290). However, a mapped type has only one mapping, and it cannot have
additional properties.

This example is not very useful. Mapped types are intended for
transforming existing types. Given an Employee type, you can make all
properties readonly:

Click here to view code image

type ReadonlyEmployee = {

 readonly [propname in keyof Employee]: Employee[propname]

}

There are two pieces of new syntax here:

The type keyof T is the union type of all property names in T. That is
'name' | 'salary' | . . . in this example.

The type T[p] is the type of the property with name p. For example,
Employee['name'] is the type string.

Mapped types really shine with generics. The TypeScript library defines the
following utility type:

Click here to view code image

type Readonly<T> = {

 readonly [propname in keyof T]: T[propname]

}

This type marks all properties of T as readonly.

 Tip

By using Readonly with a parameter type, you can assure callers that the parameter is not
mutated.

Click here to view code image

const distanceFromOrigin = (p: Readonly<Point>) =>

 Math.sqrt(Math.pow(p.x, 2) + Math.pow(p.y, 2))

Another example is the Pick utility type that lets you pick a subset of
properties, like this:

Click here to view code image

let str: Pick<string, 'length' | 'substring'> = 'Fred'

 // Can only apply length and substring to str

The type is defined as follows:
Click here to view code image

type Pick<T, K extends keyof T> = {

 [propname in K]: T[propname]

};

Note that extends means “subtype.” The type keyof string is the union of
all string property names. A subtype is a subset of those names.

You can also remove a modifier:
Click here to view code image

type Writable<T> = {

 -readonly [propname in keyof T]: T[propname]

}

To add or remove the ? modifier, use ? or -?:
Click here to view code image

type AllRequired<T> = {

 [propname in keyof T]-?: T[propname]

}

Exercises
1. What do the following types describe?

Click here to view code image

(number | string)[]

number[] | string[]

[[number, string]]

[number, string, ...:number[]]

[number, string, ...:(number | string)[]]

[number, ...: string[]] | [string, ...: number[]]

2. Investigate the difference between functions with return type void and
return type undefined. Can a function returning void have any return
statements? How about returning undefined or null? Must a function
with return type undefined have a return statement, or can it implicitly
return undefined?

3. List all types of the functions of the Math class.

4. What is the difference between the types object, Object, and {}?

5. Describe the difference between the types

Click here to view code image

type MaybeColoredPoint = {

 x: number,

 y: number,

 color?: string

}

and
Click here to view code image

type PerhapsColoredPoint = {

 x: number,

 y: number,

 color: string | undefined

}

6. Given the type
Click here to view code image

type Weekday = 'Mon' | 'Tue' | 'Wed' | 'Thu' | 'Fri' | 'Sat' |

'Sun'

is Weekday a subtype of string or the other way around?

7. What is the subtype relationship between number[] and unknown[]?
Between { x: number, y: number } and { x: number | undefined, y:
number | undefined }? Between { x: number, y: number } and { x:
number, y: number, z: number }?

8. What is the subtype relationship between (arg: number) => void and
(arg: number | undefined) => void? Between () => unknown and ()
=> number? Between () => number and (number) => void?

9. What is the subtype relationship between (arg1: number) => number
and (arg1: number, arg2?: number) => number?

10. Implement the function
Click here to view code image

const act = (x: { bark(): void } | { meow(): void }) => . . .

that invokes either bark or meow on x. Use the in operator to distinguish
between the alternatives.

11. Show that object covariance is unsound. Use the types

Click here to view code image

type Colored = { color: string }

type MaybeColored = { color: string | undefined }

As with arrays in Section 13.7.3, “Array and Object Type Variance”
(page 282), define two variables, one of each type, both referring to the
same value. Create a situation that shows a hole in the type checker by
modifying the color property of one of the variables and reading the
property with the other variable.

12. In Section 13.11, “Indexed Properties” (page 290), you saw that it is
impossible to declare
Click here to view code image

type Dictionary = {

 created: Date, // Error—not a string or string[]
 [arg: string]: string | string[]

}

Can you overcome this problem with an intersection type?

13. Consider this type from Section 13.11, “Indexed Properties” (page
290):
Click here to view code image

type ShoppingList = {

 created: Date,

 [arg: number] : string

}

Why does the following code fail?
Click here to view code image

const list: ShoppingList = {

 created: new Date()

}

list[0] = 'eggs'

const more = ['ham', 'hash browns']

for (let i in arr)

 list[i + 1] = arr[i]

Why does this code not fail?
for (let i in arr)

 list[i] = arr[i]

14. Give an example of supertype/subtype pairs for each of the rows of
Table 13-1 that is different from those given in the table. For each pair,
demonstrate that a supertype variable can hold a subtype instance.

15. The generic Pair<T> class from Section 13.13.5, “Generic Type
Variance” (page 302), is covariant in T. Show that this is unsound. As
with arrays in Section 13.7.3, “Array and Object Type Variance” (page
282), define two variables, one of type Pair<Person> and of type
Pair<Employee>, both referring to the same value. Mutate the value
through one of the variables so that you can produce a runtime error by
reading from the other variable.

16. Complete the generic function
Click here to view code image

const last = <. . .> (values: T) => values[values.length - 1]

so that you can call:
Click here to view code image

const str = 'Hello'

console.log(last(str))

console.log(last([1, 2, 3]))

console.log(last(new Int32Array(1024)))

Hint: Require that T has a length property and an indexed property.
What is the return type of the indexed property?

Index

Symbols and Numbers
- (minus sign)

in regular expressions, 124
operator, 9

-- operator, 10, 31
with arrays, 144

_ (underscore)
in identifiers, 7
in number literals, 100–101

, (comma)
in let statements, 42
in URLs, 120
operator, in loops, 41
trailing, 17, 19

; (semicolon)
after statements, 28–31
in URLs, 120
terminating lines with, 6

: (colon), in URLs, 120
! operator, 34, 37–38
!= operator, 35–37
!== operator, 35

? (quotation mark)
in regular expressions, 123–127
in TypeScript, 291, 304
in URLs, 120

? : operator, 33–34
in TypeScript, 303

?: operator
in regular expressions, 126, 132
in TypeScript, 294

?! operator, 137
??, ?. operators, 38
?<=, ?= operators, 137
/ (slash)

in regular expressions, 127
in URLs, 120, 211
operator, 9, 105

. (period), in regular expressions, 123–125

./, ../, in relative URLs, 211

... (ellipsis)
in function parameters, 64
in rest declarations, 23–24
spread operator, 115
with arrays, 65–66

`. . .` (backticks), 15
^ (caret)

operator, 39
in regular expressions, 123–125, 127–128

~ (tilde), operator, 39
'. . .', ". . ." (single and double quotes)

for string literals, 13
matching for, 132–133

'' (empty string)

as a Boolean, 34
converting to numbers/strings, 11

(. . .) (parentheses)
in arrow functions, 55
in conditional statements, 31
in object destructuring, 23
in regular expressions, 123–126, 131–133
starting statements with, 30

[. . .] (square brackets)
for arrays, 18, 141
for code units, 15
for symbol keys, 222
in regular expressions, 123–125, 131–133
starting statements with, 30

{. . .} (curly braces)
and object literals, 18
around single statements, 33
for configuration objects, 67, 292–293
in arrow functions, 55
in export statements, 214–215
in import statements, 212
in regular expressions, 123–126, 131–133

@ (at), in URLs, 120
$ (dollar sign)

in identifiers, 7
in regular expressions, 123–128
in String.replace method, 135
in URLs, 120

${. . .} expression, 15, 121, 225
* (asterisk)

in export statements, 216
in import statements, 212

in regular expressions, 123–127, 136
operator, 9
with generator functions, 254–257, 261

*? operator, 137
** operator, 10
\ (backslash)

in , 122
in regular expressions, 123–127
in string literals, 13
in template literals, 16
in URLs, 122

& (ampersand)
operator, 39
escaping, in HTML, 56
in URLs, 120

&& operator, 34, 37–38
(number sign)

in method names, 86
in URLs, 120

% (percent sign)
in URLs, 120
operator, 10, 25

+ (plus sign)
in regular expressions, 123–127, 136
in URLs, 120
operator, 9–11, 224

+? operator, 137
++ operator, 10, 31
+= operator, 10
< (left angle bracket)

escaping, in HTML, 56
operator, 34–36, 176

<< operator, 39
<= operator, 34–36, 176
<. . .> (angle brackets), for generic parameters, 297
= (equal sign)

for default parameters, 64
in URLs, 120

== operator, 35–37, 225
=== operator, 35

for array elements, 149
for maps, 158

=> operator, 54, 176–177
>, >= operators, 34–36, 176
>>, >>> operators, 39
| (vertical bar)

operator, 39
for union type (TypeScript), 270, 273, 276, 279, 296
in regular expressions, 123–126

|| operator, 34, 37–38
0 (zero)

converting to Boolean, 12, 34
dividing by, 9
leading, in octal numbers, 62, 99
, 14–15, 42, 44, 66, 115–116, 129
, 116–118

Å, 178
π, mathematical constant, 104
ß (in German), 118, 177

A
abs function (Math), 104

acos, acosh functions (Math), 104
add method (Set), 158
AggregateError, 197
all method (Promise), 196, 201–202
AMD (Asynchronous Module Definition), 210
any method (Promise), 197
any type (TypeScript), 274–275
apply method

of Function, 237
of Reflect, 242

arithmetic operators, 9–12
Array class
concat method, 148, 223, 225
copyWithin method, 145–146
entries method, 150
every method, 147, 149, 151
fill method, 145–146
filter method, 56–57, 147, 150–152, 225
find, findIndex methods, 147, 149, 151
firstIndex, lastIndex methods, 147
flat method, 147–149, 152, 225
flatMap method, 147, 151–152, 225
forEach method, 56, 147, 150–152
from function, 142, 146, 151–152, 250
includes method, 147, 149, 271
index, input properties, 143
indexOf method, 149
isArray function, 279
join method, 56, 119, 147, 151–152
lastIndexOf method, 149
length property, 143
map method, 56, 147, 151, 153, 225

of function, 142, 164
pop, push methods, 144, 146
prototype property, 44, 232
reduce method, 153–156
reduceRight method, 153, 155
reverse method, 145–146
shift, unshift methods, 144, 146
slice method, 147–148, 225
some method, 147, 149–151
sort method, 145–147, 152, 176
splice method, 144–146, 225
subarray method, 225

array buffers, 163
ArrayBuffer class, 163
arrays, 18–20

building HTML lists from, 56
comparing to other types, 36
constructing, 65, 141–142
converting to:

numbers, 11
strings, 11, 19

destructuring, 21–22, 250
elements of:

adding, 144
computing values from, 153–156
deleting, 144
filtering, 150
iterating over, 42–43, 56–57, 150–151, 249–250, 255–257
missing, 143, 152
searching, 149

empty, 141, 154
flattening, 148–149, 256

functional processing, 56–57
initializing, 66
length of, 141, 143
multidimensional, 20, 148
sorting, 145–147, 152
sparse, 152
type tests for, 63
type variance of, 282–283
typed, 160–162
with spread operator, 65

arrow functions, 54–55
and this, 78, 93–95
vs. generators, 255
with async, 199

as keyword, 8
as default statement, 215
ASCII format, 129
asin, asinh, atan, atanh functions (Math), 104
asIntN, asUintN functions (BigInt), 105
assign function (Object), 226, 231
async/await statements, 8, 197, 197–202

concurrent, 201
throwing/catching exceptions in, 202
with generators, 261–263
with module imports, 213

AsyncFunction class, 199
asynchronous programming, 185–202

using generators with, 259–260
asyncIterator field (Symbol), 223
average function, 62–65, 270

B
b, B, in binary literals, 99–100
\b, \B, in regular expressions, 127
bank account objects, 59–60
BCP 47 memo, 170
big integers, 105
big-endian ordering, 163
BigInt class, 105
binary data, 163
binary numbers, 99
bind method (Function), 236
bitwise operators, 39
block statements, 32
Boolean operators, 37–39
boolean type (TypeScript), 274–275
Boolean values, 12

converting to numbers/strings, 11
in conditions, 32, 34
returned by predicate functions, 57

Boolishness, 34
branches, 31–33
break statement, 7, 40, 44–46

labeled, 45
semicolon insertion in, 30

browsers
CORS restrictions in, 217
modules in, 211, 217
running JavaScript in, 1–2
safety checks in, 192
user preferences in, 180

C
\c, in regular expressions, 125
C# language

casts in, 279
classes in, 82
scope of variables in, 67
type variance in, 302

C++ language
abstract methods in, 89
catching exceptions in, 71
classes in, 82
concurrent programs in, 185
error objects in, 71
functions in, 9
hash/tree maps in, 158
hexadecimal floating-point literals in, 100
methods in, 9, 78
no-argument constructors in, 91
scope of variables in, 67
tree nodes in, 96

call method (Function), 236
callback functions, 186
callback hell, 188
captured variables, 58–60
case label, 7, 39
catch method (Promise), 195, 197
catch statement, 7, 46, 70–73

with promises, 190, 200
cbrt, ceil functions (Math), 104
character classes, 124–126
characters

combined, 178
encoding, 14
in regular expressions, 123–125

Chinese language, 168
circular references, 234
class statement, 7, 83–84, 91

using new operator with, 92
classes, 83–84

anonymous, 91
executed in strict mode, 84
generic, 297–298
private fields in, 86
static fields/methods in, 86–87
subclasses in, 87–89
vs. functions, 82–84
vs. modules, 210

clear method (Map), 157
clones, 232–234
closeable iterators, 252–253
closure pattern, 60
closures, 57–58

and var, 68, 74
simulating modules through, 210

code points, 14, 115
code units, 14, 116
collation, 176–177
comments, 5–6
Common.js module system, 210
comparisons, 34–37
compile-time typing, 269
concat method

of Array, 148, 223, 225

of String, 119
concurrent tasks, 185–188
conditional operator, 33
conditional statements, 31

arbitrary values in, 32, 34
configuration objects, 67, 292–293
console.log method, 28, 101
const statement, 6–7, 17

and scope of variables, 68
constants, mathematical, 104
constructor keyword, 83–84, 235
constructors, 81–83

setting object properties in, 85
subclass/superclass, 90–91

continue statement, 7, 46
labeled, 46
semicolon insertion in, 30

control flow statements, 30–33
copyWithin method (Array), 145–146
CORS (Cross-Origin Resource Sharing), 192, 217
cos, cosh functions (Math), 104
country codes, 168–170
create function (Object), 226, 231–232
Crockford, Douglas, 60
cross-origin errors, 192
currency, displaying, 172

D
\d, \D, in regular expressions, 124–125
data transfer, 186, 259

DataView class, 163
Date class, 106–108, 173
getXXX methods, 107, 109
mutability of, 110
now, parse functions, 109
setXXX methods, 109
toXXX methods, 107, 110
UTC function, 107, 109

dates
constructing, 106–109
current, 109
distance between, 108
formatting, 110, 173–174
localizing, 168, 173–174
parsing, 109
ranges of, 174

daylight savings time, 106
debugger statement, 7
decimal numbers, 99
default keyword, 7, 39
default values, 38
defineProperties function (Object), 226, 228
defineProperty function

of Object, 226–227, 239, 242
of Reflect, 242

delete method
of Map, 157
of Set, 158
of WeakMap/WeakSet, 160

delete statement, 7, 17
applied to unqualified identifiers, 61

deleteProperty method (Reflect), 239, 242

destructuring, 21–24, 66–67
development tools console

enabling strict mode in, 61
running JavaScript in, 2–3

do statement, 7, 40–41
Document.querySelectorAll method, 250
documentation comments, 6
DOM nodes, attaching properties to, 159
dotAll property (RegExp), 125, 128, 133
duck typing, 288

E
e, mathematical constant, 104
e, E, in number literals, 99–100
Eclipse development environment, 4
ECMAScript Internationalization API (ECMA-402), 180
ECMAScript language

module system in, 209–211
specification of, 79

else statement, 7, 32
else if statement, 32
emojis

encoding, 116
in regular expressions, 130

empty string
as a Boolean, 34
converting to numbers/strings, 11

encodeURI function (String), 120
endianness, 163
endsWith method (String), 116, 119

English language
dates in, 168
plurals in, 178–179
string ordering in, 176

entries method
objects returned by, 250
of Array, 150
of Map, 158
of Object, 226, 229
of Set, 159

enum, 7
epoch, 106
equality testing, 35
Error function, 70–71
error objects, 71
escape sequences, 13
every method (Array), 147, 149, 151
exceptions

catching, 46–47, 70–73
throwing, 46, 69–72

exec method (RegExp), 130–131, 133–134
exp, expm1 functions (Math), 104
export statement, 7, 213–216
export default statement, 214–215
expression statements, 28
expressions, 27–29
extends, 7, 87–91

in TypeScript, 300, 303–304

F
\f, in regular expressions, 125
factory class pattern, 60
factory functions, 78

invoking, 81
local variables in, 59–60
parameters in, 60

failures, 69
false value, 7, 12, 34
fetch function (Promise), 192–193
Fetch API, 188, 193, 199
fields

private, 86
private static, 87
static, 86–87

File API, 163
file:// URLs, 211
fill method (Array), 145–146
filter method (Array), 56–57, 147, 150–152, 225
finally statement, 7, 72–73
find, findIndex methods (Array), 147, 149, 151
firstIndex method (Array), 147
flags property (RegExp), 128, 133
flat method (Array)

of Array, 147–149, 152, 225
of typed arrays, 162

flatMap method
of Array, 147, 151–152, 225
of typed arrays, 162

floating-point numbers, 8, 99–100
FloatXXXArray classes, 160–161

floor function (Math), 39, 104
Flow type checker, 270
for await of statement, 201, 261–263
for each loop (Java), 43
for in statement, 43–44

and legacy libraries, 44
for arrays, 150
iterating over a string, 44

for method (Symbol), 222
for of statement, 42, 249–251, 253, 255, 262

for arrays, 150
for sets, 159

for statement, 7, 41–42
forEach method

of Array, 56, 147, 150–152
of Map, 157
of Set, 159

format method
of Intl.DateTimeFormat, 173
of Intl.ListFormat, 179
of Intl.NumberFormat, 171–172
of Intl.RelativeTimeFormat, 175

formatRange method (Intl.DateTimeFormat), 174
formatToParts method

of Intl.DateTimeFormat, 175
of Intl.NumberFormat, 171
of Intl.RelativeTimeFormat, 175

free variables, 57–58
freeze function (Object), 60, 226, 230
from function (Array), 142, 146, 151–152, 250
from keyword, 8
fromCodePoint function (String), 115, 119

fromEntries function (Object), 226, 231
fround, ftrunc, ffloor, fceil functions (Math), 104
function statement, 7, 51, 54

and this, 78
comparing to arrow functions, 55
default parameters in, 66
for nested functions, 93
rest declarations in, 66
type annotations with, 271

Function class, 235
apply method, 237
bind method, 236
call method, 236

function literals, 54
functional array processing, 56–57
functional programming languages, 51
functions, 9

anonymous, 54–55, 69, 199
applying strict mode to, 61
arrow, 54–55, 78, 93–95, 199, 255
async, 199, 263
callback, 186
calling, 52

before declaring, 69
flexibly, 295

configuration objects for, 67, 292–293
declaring, 51–52, 61, 69
executing later, 57
factory, 59–60, 78, 81
generic, 297–299
higher-order, 53
immediately invoked, 69

mathematical, 104
named, 54, 199
nested, 55, 68–69, 93
parameterless, 55
parameters of:

always converted to numbers, 63
annotating, 270
default, 64, 66
destructuring, 292–293
duplicating, 62
named, 66
number of, 63–65
optional, 291
types of, 52, 62–63

predicate, 57
properties of, 235–236
return value of, 52–53
storing in variables, 53
terminating, 52
trap, 238–242
type tests for, 63
type variance of, 293–295
vs. classes in Java/C++, 82
with free variables, 57–58

G
g flag, in regular expressions, 128, 131
garbage collection, 160
generators, 254–255

as consumers, 257–259

asynchronous, 259–263
generic programming, 297–304
get keyword, 8, 85, 227–228

of proxies, 242
get method

of Map, 157
of WeakMap, 160

getCanonicalLocales method (Intl), 180
getIntXXX, getUIntXXX, getFloatXXX methods (DataView), 163
getOwnPropertyXXX functions

of Object, 226, 228–230, 232, 239
of proxies, 242

getPrototypeOf function
of Object, 80, 226, 231–232, 239
of proxies, 242

getters, 85, 228
overriding, 90
static, 87

getUTCXXX, getXXX methods (Date), 107, 109
getYear method (Date), obsolete, 109
global property (RegExp), 128, 131, 133
Greek letters, 122
groups property (RegExp), 133
Gulliver’s Travels, 163

H
Hanafuda playing cards, 187
hard objects, 59–60
has method

of Map, 157

of proxies, 242
of WeakMap/WeakSet, 160

hasInstance field (Symbol), 223
hasOwnProperty method (Object), 226, 230
hexadecimal numbers, 99
higher-order functions, 53
hoisting, 67–69
HTML (HyperText Markup Language)

building lists from arrays in, 56
canvas images in, 161
escaping characters in, 56
hyperlinks in, 123

HTMLCollection collection, 141
hyperbolic functions, 104
hypot function (Math), 104

I
i flag, in regular expressions, 127–128
identifiers, 7–8

unqualified, 61
IEEE 754 standard, 99
if statement, 7, 31

vs. switch, 40
ignoreCase property (RegExp), 127–128, 133
images

in HTML canvas, 161
loading, 186–187, 201–202

immediately invoked functions, 69
implements keyword, 8, 288
import statement, 7, 211–213

import.meta object, 217
in statement, 7, 143, 229

in TypeScript, 279
includes method

of Array, 147, 149, 271
of String, 116, 119

index property (Array), 143
index signatures, 290–291
indexOf method

of Array, 149
of String, 116, 119, 136

infer keyword, 303
Infinity variable, 100, 102
inheritance, 87–89
input property (Array), 143
instance fields, 85–86
instanceof operator, 7, 89, 232

in TypeScript, 279, 301
integers, 99

big, 105
no explicit type for, 8
rounding numbers to, 9

interface keyword, 8
interfaces, 288–290
internal slots, 79
internationalization, 167–181
Internet Engineering Task Force, 170
Intl.Collator class, 177
resolvedOptions method, 181
supportedLocalesOf method, 180

Intl.DateTimeFormat class
format method, 173

formatRange method, 174
formatToParts method, 175
supportedLocalesOf method, 180

Intl.DisplayNames class, 180
Intl.getCanonicalLocales method, 180
Intl.ListFormat class, 179
select method, 179
supportedLocalesOf method, 180

Intl.NumberFormat class
format method, 171–172
formatToParts method, 171
supportedLocalesOf method, 180

Intl.PluralRules class, 178–179
select method, 178
supportedLocalesOf method, 180

Intl.RelativeTimeFormat class, 175
format, formatToParts methods, 175
supportedLocalesOf method, 180

IntXXXArray classes, 160–161
is function (Object), 35
isArray function (Array), 279
isConcatSpreadable field (Symbol), 149, 223
isExtensible function (Object), 226, 230, 239
isFinite function

global, 102
of Number, 102–103

isFrozen function (Object), 226, 230
isInteger function (Number), 102
isNaN function

global, 102
of Number, 35, 102–103

ISO 8601 format, 106

isPrototypeOf method (Object), 226, 232
isSafeInteger function (Number), 102–103
isSealed function (Object), 226, 230
iterables, 42, 141, 249–250

async, 261
implementing, 250–252

iterator field (Symbol), 222–223, 250–253
iterators, 252–253

J
Japanese imperial calendar, 169
Java language

abstract methods in, 89
captured variables in, 58
casts in, 279
catching exceptions in, 71
classes in, 82
concurrent programs in, 185
Date class in, 106
error objects in, 71
extends keyword in, 89
for each loop in, 43
hash/tree maps in, 158
hexadecimal floating-point literals in, 100
methods in, 9, 78
modules in, 210–211
no-argument constructors in, 91
packages in, 210
scope of variables in, 67
tree nodes in, 96

type variance in, 302
JavaScript language

functional, 51
running, 1–4
stage 3 proposal, 38, 86–87, 100, 134, 171, 173, 180–181, 197, 217, 284
stage 4 proposal, 213

join method (Array), 56, 119, 147, 151–152
.js extension, 217
JSDoc tool, 6
JSON (JavaScript Object Notation), 20–21

asynchronous processing of, 199
parse method, 20, 47
stringify method, 20–21

jump tables, 40

K
key/value pairs, 156
keys method

objects returned by, 250
of Map, 158
of Object, 226, 229, 239, 243–244
of Set, 159

keywords, 7–8
Komodo development environment, 4

L
labeled breaks, 45
language codes, 168–170
lastIndex method (Array), 147

lastIndex property (RegExp), 131
lastIndexOf method

of Array, 149
of String, 116, 119

 language, 122
lazy evaluations, 37
leap seconds, 105
length property (Array), 143
let statement, 6–8

and scope of variables, 67–68
letters

in regular expressions, 130
lowercase/uppercase, 118, 120

light-server http server, 187
LinkedHashMap (Java), 157
little-endian ordering, 163
loadImage function (Promise), 192
local time zone, 107–108
localeCompare method (String), 147, 176–178
locales, 167–168

dates in, 107, 110, 168, 172
displaying, 180
numbers in, 167–168, 171–172
plurals in, 178–179
specifying, 168–170
strings in, 177–178

sorting, 147, 176–177
tags for, 180
time in, 172

log, log2, log10, log1p functions (Math), 104
logging, 21, 215
lookahead/lookbehind operators, 137

loops, 40–44
condition values for, 34
exiting, 44–46

loose equality, 35–37
lowercase letters

converting to, 118, 120
in regular expressions, 130

lvalues, 22

M
m flag, in regular expressions, 128
map method (Array), 56, 147, 151, 153, 225
Map class, 156

generic, 298
methods of, 157–158
size property of, 157

mapped types, 303–304
maps, 156–158

adding/removing entries of, 157
constructing, 157, 250
empty, 157
iterating over, 250
keys of, 157
traversing, 157
weak, 160

match, matchAll fields (Symbol), 223
match, matchAll methods (String), 120, 131, 134
Math class, 103–104

constants of, 104
functions of, 104

floor, 39, 104
max, 33, 42, 65, 103–104
min, 103–104
pow, 104, 276
random, 104
round, 104
sqrt, 104, 276
trunc, 9, 104

Maven artifacts, 211
methods, 9, 77–78

default values for, 38
intersepting invocations of, 237
invoked:

with invalid arguments, 46
without an object, 92

overriding, 89–90
private, 86
private static, 87
setting object properties in, 85
static, 86–87
with async, 199

Microsoft, 269
.mjs extension, 217
modules, 209–217

circular dependencies between, 215–216
default feature of, 211
exported vs. private features of, 209
exporting, 213–216
importing, 211–213
loading asynchronously, 210
named features in, 212
packaging, 217

processing, 217
URLs for, 211
vs. classes/closures, 210

multiline property (RegExp), 128, 133

N
n, in big integers, 105
\n, in regular expressions, 125
name conflicts, 210
named arguments, 66
NaN (Not A Number), 9, 12–13

arithmetic operations with, 10–11
assigning new values to, 61
checking for, 102
comparing to, 35–36
converting to Boolean, 12, 34
global variable for, 100, 102

navigator.languages property, 180
never type (TypeScript), 274–275
new operator, 7, 81–82, 84, 231

missing in a constructor function, 92
with Array, 142
with maps, 157

next method (iterators), 250, 261
Node.js

enabling strict mode in, 61
modules in, 210, 217
rejected promises in, 202
running JavaScript in, 3–4

NodeList collection, 141

non-strict mode, 62, 69, 74
normalize method (String), 178
Norwegian language, 169
now function (Date), 109
npm package manager, 272
null type (TypeScript), 274–275
null value, 5, 7

arithmetic operations with, 11
checking values for, 38
comparing to, 35, 37
converting to numbers/strings, 11

Number class, 92, 103
constants of, 102–103
isFinite function, 102–103
isInteger function, 102
isNaN function, 35, 102–103
isSafeInteger function, 102–103
parseFloat, parseInt functions, 8–9, 46, 101–102
toExponential, toFixed, toPrecision methods, 100, 103
toLocaleString method, 171–172
toString function, 9, 82, 100, 103

number type (TypeScript), 273–275
number[] type (TypeScript), 273
numbers, 8–9, 99–100

comparing, 34
to other types, 36–37

converting:
from strings, 8, 36, 92, 101
to strings, 9, 11, 100

dividing by zero, 9
finding largest/smallest of, 103
formatting, 100, 167–168, 171–172

in regular expressions, 130
parsing, 101–102
random, 104, 259–260
removing fractional part of, 39
rounding, 8–9, 104
type tests for, 63

Nynorsk standard, 169

O
o, O, in octal literals, 99–100
obj.__proto__ notation, 80
Object class, 77
assign function, 226, 231
create function, 226, 231–232
defineProperties function, 226, 228
defineProperty function, 226–227, 239, 242
entries method, 226, 229
freeze function, 60, 226, 230
fromEntries function, 226, 231
getOwnPropertyXXX functions, 226, 228–230, 232, 239
getPrototypeOf function, 80, 226, 231–232, 239
hasOwnProperty method, 226, 230
is function, 35
isExtensible function, 226, 230, 239
isFrozen function, 226, 230
isPrototypeOf method, 226, 232
isSealed function, 226, 230
keys method, 226, 229, 239, 243–244
preventExtensions function, 226, 230, 239
propertyIsEnumerable method, 226, 230

prototype property, 44, 82
seal function, 226, 230
setPrototypeOf function, 80, 226, 231, 239
toLocaleString method, 170
toString method, 223–224
values method, 226, 229

object literals, 17
object-oriented programming languages, 77

inheritance in, 87
objects, 16–17, 77

array-like, 142
as map keys, 158
attaching properties to, 222
cloning, 232–234
comparing, 35
converting to numbers/strings, 11
creating, 231
destructuring, 22–24
hard, 59–60
immutable, 230
internal slots of. See prototypes
iterable, 42, 141
keys of, 221
nested, 23
properties of. See properties
protecting, 230
type variance of, 282–283
wrapper, 5

octal numbers, 62, 99
regular expressions for, 132

of function
of Array, 142, 164

of typed arrays, 161
of keyword, 8
offending tokens, 29
One True Brace Style (1TBS), 32
operators

arithmetic, 9–12
bitwise, 39
Boolean, 37–39
greedy, 136
shift, 39

ORM (object-relational mapper), 237

P
\p, \P, in regular expressions, 125
package statement, 8
package.json file, 217
padStart, padEnd methods (String), 118–119
parse function (Date), 109
parse method (JSON), 20, 47
parseFloat, parseInt functions (Number), 8, 101–102

invalid parameters for, 9, 46
pipelines, 193, 197
plurals, 178–179
polymorphism, 90
pop method (Array), 144, 146
pow function (Math), 104, 276
predefined character classes, 124–126
predicate functions, 57
preventExtensions function (Object), 226, 230, 239
primitive types, 5

controlling conversion on, 224–225
printf function (C), 101
private keyword, 8
private properties, 59
programming

asynchronous, 185–202, 259–260
functional, 51
generic, 297–304
object-oriented, 77

Promise class, 188–190
all method, 196, 201–202
any method, 197
catch method, 195, 197
fetch function, 192–193
loadImage function, 192
race method, 197
reject method, 189–191
resolve method, 189–191, 193–195
then method, 192–197

promises, 185, 188–202
making, 188–191
multiple:

chaining, 192–194
executing, 196
racing, 197

obtaining results of, 191–192
rejected, 190–191, 194–197, 202
settled, 190

immediately, 191
properties (of objects)

attributes of, 225–228
common to multiple objects, 79

descriptors of, 227
dynamic, 227, 244
enumerating, 228–229
iterating over, 43
testing, 229–230
writing to, 81

propertyIsEnumerable method (Object), 226, 230
protected keyword, 8
prototype property, 82, 235
prototype chain, 81, 88, 229, 231
[[Prototype]] internal slot, 82
prototypes, 78–81

accessing, 231
lookup mechanism of, 80–81
setting, 80
updating, 231

proxies, 237–239
checking return values of, 242
invariants for, 242–244

Proxy.revocable function, 239
public keyword, 8
punctuation, in regular expressions, 130
push method (Array), 144, 146

Q
QED text editor, 124
querySelectorAll method (Document), 250

R
\r, in regular expressions, 125
race method (Promise), 197
random function (Math), 104
random numbers, 104, 259–260
RangeError, 162
raw property (String), 122
readonly property (TypeScript), 285, 303
reduce method (Array), 153–156
reduceRight method (Array), 153, 155
reduction, 153–156
ReferenceError, 62, 68
Reflect class, 240–242

functions of, 239, 242
RegExp class, 127, 130–131
exec method, 130–131, 133–134
flags property, 133
groups property, 133
lastIndex property, 131
test method, 130, 133

regular expression literals, 127
regular expressions, 123–127

and Unicode, 129–130
character classes in, 124–126
flags in, 127–128
for numbers, 101
groups in, 131–133
lookahead/lookbehind operators in, 137
reserved characters in, 123–125

reject method (Promise), 189–191
repeat method (String), 118–119

REPL (“read-eval-print” loop), 28
replace method

of String, 120, 134–136
of Symbol, 223

resolve method (Promise), 189–191, 193–195
resolvedOptions method (Intl.Collator), 181
rest declarations, 23–24, 64–66
return method (iterators), 252–253, 258
return statement, 7

in arrow functions, 55
in function declarations, 52–53
semicolon insertion in, 30, 53

reverse method (Array), 145–146
revocable method (Proxy), 239
round function (Math), 104
roundoff errors, 8
run-time errors, 6
Russian language, 178–179

S
s flag, in regular expressions, 128
\s, \S, in regular expressions, 124, 126
script element (HTML), 217
seal function (Object), 226, 230
search method

of String, 120, 134, 136
of Symbol, 223

select method (Intl.PluralRules), 178
semicolon insertion, 28–31, 53
Set class, 158–159

add method, 158
delete method, 158
entries method, 159
forEach method, 159
generic, 298
keys method, 159
size property, 158
values method, 159

set keyword, 8, 85, 227–228
set method

of Map, 157
of typed arrays, 162
of WeakMap/WeakSet, 160

setIntXXX, setUIntXXX, setFloatXXX methods (DataView), 163
setPrototypeOf function (Object), 80, 226, 231, 239
sets, 158–159

constructing, 158, 250
iterating over, 250
order of entries in, 159
weak, 160

setters, 85, 228
overriding, 90
static, 87

setTimeout function, 57
shift method (Array), 144, 146
shift operators, 39
sign function (Math), 104
sin, sinh functions (Math), 104
size property

of Map, 157
of Set, 158

slice method

of Array, 147–148, 225
of String, 117, 119

sloppy mode, 62, 69, 74
some method (Array), 147, 149–151
sort method (Array), 145–147, 152, 176
species field (Symbol), 222–223, 225
splice method (Array), 144–146, 225
split method

of String, 117, 120, 135
of Symbol, 223

spread operator, 65–66, 115, 231, 250
for cloning, 232

sqrt function (Math), 104, 276
stack trace, 71
startsWith method (String), 116, 119
statements, 27–29

block, 32
conditional, 31
control flow, 30–33
expression, 28
terminated with semicolons, 29–31

static keyword, 8, 86–87
sticky property (RegExp), 128, 131, 133
strict equality, 35
strict mode, 61–62, 67–69

creating variables in, 7
enabling, 61
for classes, 84
for modules, 217
forbidden keywords in, 8
missing new operator in, 92
octal numbers in, 99, 132

property attributes in, 227
String class
concat method, 119
endsWith method, 116, 119
fromCodePoint function, 115, 119
includes method, 116, 119
indexOf method, 116, 119, 136
lastIndexOf method, 116, 119
localeCompare method, 147, 176–178
match, matchAll methods, 120, 131, 134
normalize method, 178
padStart, padEnd methods, 118–119
raw property, 122
repeat method, 118–119
replace method, 120, 134–136
search method, 120, 134, 136
slice method, 117, 119
split method, 117, 120, 135
startsWith method, 116, 119
substring method, 116
toLocaleXXXCase methods, 177
toLowerCase, toUpperCase methods, 118, 120
trim, trimStart, trimEnd methods, 118–119

string literals, 13–15
string type (TypeScript), 274–275
stringify method (JSON), 20
strings

comparing, 35, 176
concatenating, 10–11, 119, 270
converting:

from arrays, 11, 19, 151
from numbers, 9, 100

from/to code points, 115
to numbers, 8, 11, 36, 92, 101

extracting substrings from, 9
iterating over, 42, 44, 250
length of, 118–119
numeric, 177
patterns for. See regular expressions
replacing, 120
sorting, 176–177
type tests for, 63
with embedded expressions. See template literals
working with locales, 177–178

strong element (HTML), 121
subarray method

of Array, 225
of typed arrays, 162

subclasses, 87–89
overriding methods in, 89–90

substring method (String), 116–117
substrings, 116–117
super keyword, 7, 90–91
superclasses, 87

constructors of, 237
overriding methods of, 89–90

supportedLocalesOf method (Intl.XXX), 180
switch statement, 7, 39–40
Symbol class, 221
asyncIterator field, 223
for method, 222
hasInstance field, 223
isConcatSpreadable field, 223
iterator field, 222–223, 250–253

match, matchAll fields, 223
replace field, 223
search field, 223
species field, 222–223, 225
split field, 223
toPrimitive field, 223–225
toStringTag field, 223

symbol type (TypeScript), 274–275
symbols, 221–222

creating, 221
global, 222
in regular expressions, 130
properties of, 223
uniqueness of, 222

T
T, in dates, 106
\t, in regular expressions, 125
tag functions, 121
tan, tanh functions (Math), 104
target keyword, 8
template literals, 12, 15–16

raw, 122–123
tagged, 16, 121–122

test method (RegExp), 130, 133
Thai numerals, 168–169
then method (Promise), 192–197
this reference, 7, 78, 92–95

and calls to super, 90
binding, 236

for object properties, 85
in constructor functions, 81–83
in TypeScript, 286
vs. captured variables, 60
with arrays, 151

threads, 185
throw method (iterators), 258–259
throw statement, 7, 70

semicolon insertion in, 30
time

current, 107–109
daylight savings, 106
formatting, 175
local, 107–109
localizing, 172, 175
measuring, 105
representing in computer, 106

time-consuming operations, 186
timeout, 57
™ (trademark symbol), 178
toExponential, toFixed, toPrecision methods (Number), 100, 103
toLocaleString method

of Number, 171–172
of Object, 170

toLocaleXXXCase methods (String), 177
toLowerCase, toUpperCase methods (String), 118, 120
toPrimitive field (Symbol), 223–225
toString method

of Date, 110
of Number, 9, 82, 100, 103
of Object, 223–224

toStringTag field (Symbol), 223

toXXXString methods (Date), 107, 110
trailing comma

in arrays, 19
in object literals, 17

trap functions, 238–242
trigonometric functions, 104
trim, trimStart, trimEnd methods (String), 118–119
true value, 7, 12, 34
trunc function (Math), 9, 104
try statement, 7, 46–47, 70–73

with promises, 190, 200
tsconfig.json file, 272–273
type annotations, 270–271
type parameters, 297
type variance, 282–283

generic, 302
of functions, 293–295

typeof operator, 5, 7, 105
in TypeScript, 274, 279
with arrays, 19
with regular expressions, 127
with symbols, 222

types, 5
comparing, 36–37
controlling conversion on, 224–225
generic, 297–298
inference of, 277–280
of function parameters, 52, 62–63
testing, 63

TypeScript, 269–304
classes in, 284–287

declaring, 284–285

instances of, 285–286
static types of, 286–287

composite types in, 273, 275–277
number[], 273, 275
string[], 275
union, 270, 273, 276, 279, 296

conditional types in, 303
covariance in, 283
enumerated types in, 275
functions in, 276

destructuring parameters of, 292–293
overloading, 296–297
type guard, 279
type variance of, 293–295

in statement in, 279
index signatures in, 290–291
instanceof operator in, 279, 301
interfaces in, 288–290
intersection types in, 276
mapped types in, 303–304
object types in, 276
optional parameters in, 291–292
optional/excess properties in, 281–282
primitive types in, 273–275
private/protected modifiers in, 285
running, 271–273
substitution rule in, 280–281
tuple types in, 275
type aliases in, 273
type assertion in, 279
type bounds in, 299–300
type erasures in, 300–301

type inference in, 277
type parameters in, 297–304
type variance in, 302
typeof operator in, 274, 279

U
u flag, in regular expressions, 128–129
\u{. . .} notation, of code points, 14

in regular expressions, 125, 129
UintXXXArray classes, 160–161
undefined type (TypeScript), 274–275
undefined value, 6, 9, 12–13

arithmetic operations with, 11
as function return value, 52
assigning new values to, 61
checking values for, 38
comparing to, 35
converting to:

Boolean, 12, 34
numbers/strings, 11

for function parameters, 64
undefined variable, 13
unicode property (RegExp), 128–129, 133
Unicode, 14

combined characters in, 178
in regular expressions, 128–130
normalization forms in, 178

union type (TypeScript), 270, 273, 276, 279, 296
unknown type (TypeScript), 274–275
unqualified identifiers, 61

unshift method (Array), 144, 146
uppercase letters

converting to, 118, 120
in regular expressions, 130

URLs
\ (backslashes) in, 122
for modules, 211
safe characters for, 120

UTC (Coordinated Universal Time), 106, 109
UTC function (Date), 107, 109
UTF-16 encoding, 116

in regular expressions, 129–130

V
\v, in regular expressions, 125
values

default, 38
finding type of, 5
iterable, 141, 249–250

values method
objects returned by, 250
of Map, 158
of Object, 226, 229
of Set, 159

var statement (obsolete), 7
and scope of variables, 67–69
with closures, 68, 74

variable declarations, 6–7, 27
variables

captured, 58–60

default values of, 24
free, in functions, 57–58
initializing, 6, 12
local, 59, 67–69
naming, 7–8
never chaining, 6
scope of, 67–69
storing functions in, 53
undeclared, 61–62
untyped, 6

Visual Studio Code development environment, 4, 272
void keyword, 7
void type (TypeScript), 274–275

W
\w, \W, in regular expressions, 124, 126
weak equality, 35–37
WeakMap class, 160

generic, 298
WeakSet class, 160
web servers, local, 187
WebSocket API, 163
WebStorm development environment, 4
while statement, 7, 40–41
whitespace

in regular expressions, 130
leading/trailing, 118–119

with statement, 7, 62
wrapper objects, 5

X
x, X, in hexadecimal literals, 99–100
\x, in regular expressions, 125
XMLHttpRequest class, 186, 259

yielding array buffers, 163

Y
y flag, in regular expressions, 128, 131
yield statement, 8, 250, 254

nested, 255–257
semicolon insertion in, 30
shallowness of, 255
with consumers, 257–259

Z
Zawinski, Jamie, 137
zero. See 0

Credits

Cover: Hatter engaging in rhetoric. Mad Hatter is telling a story to Alice
and his friends. Alice in Wonderland original vintage engraving. Alice’s
Adventures in Wonderland. Illustration from John Tenniel. Morphart
Creation/Shutterstock.

Cover: White Rabbit looking at its watch. 1865 edition of Lewis Carroll’s
Alice’s Adventures in Wonderland. Charles Dodgson (alias Lewis
Carroll), published by MacMillan and Co. Book. Drawn by John
Tenniel. Morphart Creation/Shutterstock.

Icon: Alice with Crown—Original book engraving. “‘And what is this on
my head?’ she exclaimed in a tone of dismay, as she put her hands up to
something very heavy, that fitted tight round her head.” Morphart
Creation/Shutterstock.

Icon: Executioner argues with King about cutting off Cheshire Cat head—
Alice’s Adventures in Wonderland, original vintage engraving. Morphart
Creation/Shutterstock.

Icon: Hatter engaging in rhetoric. Mad Hatter is telling a story to Alice and
his friends. Alice in Wonderland original vintage engraving. Alice’s
Adventures in Wonderland. Illustration from John Tenniel. Morphart
Creation/Shutterstock.

Icon: White Rabbit looking at its watch. 1865 edition of Lewis Carroll’s
Alice’s Adventures in Wonderland. Charles Dodgson (alias Lewis
Carroll), published by MacMillan and Co. Book. Drawn by John
Tenniel. Morphart Creation/Shutterstock.

Figure 1–1: Screenshot of Firefox web browser © Mozilla Foundation.

Figure 1–2: Screenshot of Firefox web browser © Mozilla Foundation.

Figure 1–3: Screenshot of Node.js terminal © OpenJS Foundation.

Figure 1–4: Screenshot of WebStorm © JetBrains.

Page 272: Screenshot of The TypeScript playground © Microsoft 2020.

Page 278: Screenshot of Type information in Visual Studio Code ©
Microsoft 2020.

Code Snippets

Many titles include programming code or configuration examples. To
optimize the presentation of these elements, view the eBook in single-
column, landscape mode and adjust the font size to the smallest setting. In
addition to presenting code and configurations in the reflowable text format,
we have included images of the code that mimic the presentation found in
the print book; therefore, where the reflowable format may compromise the
presentation of the code listing, you will see a “Click here to view code
image” link. Click the link to view the print-fidelity code image. To return
to the previous page viewed, click the Back button on your device or app.

	Cover Page
	About This eBook
	Half Title Page
	Title Page
	Copyright Page
	Dedication Page
	Contents
	Preface
	About the Author
	Chapter 1. Values and Variables
	1.1 Running JavaScript
	1.2 Types and the typeof Operator
	1.3 Comments
	1.4 Variable Declarations
	1.5 Identifiers
	1.6 Numbers
	1.7 Arithmetic Operators
	1.8 Boolean Values
	1.9 null and undefined
	1.10 String Literals
	1.11 Template Literals
	1.12 Objects
	1.13 Object Literal Syntax
	1.14 Arrays
	1.15 JSON
	1.16 Destructuring
	1.17 Advanced Destructuring
	Exercises

	Chapter 2. Control Structures
	2.1 Expressions and Statements
	2.2 Semicolon Insertion
	2.3 Branches
	2.4 Boolishness
	2.5 Comparison and Equality Testing
	2.6 Mixed Comparisons
	2.7 Boolean Operators
	2.8 The switch Statement
	2.9 while and do Loops
	2.10 for Loops
	2.11 Breaking and Continuing
	2.12 Catching Exceptions
	Exercises

	Chapter 3. Functions and Functional Programming
	3.1 Declaring Functions
	3.2 Higher-Order Functions
	3.3 Function Literals
	3.4 Arrow Functions
	3.5 Functional Array Processing
	3.6 Closures
	3.7 Hard Objects
	3.8 Strict Mode
	3.9 Testing Argument Types
	3.10 Supplying More or Fewer Arguments
	3.11 Default Arguments
	3.12 Rest Parameters and the Spread Operator
	3.13 Simulating Named Arguments with Destructuring
	3.14 Hoisting
	3.15 Throwing Exceptions
	3.16 Catching Exceptions
	3.17 The finally Clause
	Exercises

	Chapter 4. Object-Oriented Programming
	4.1 Methods
	4.2 Prototypes
	4.3 Constructors
	4.4 The Class Syntax
	4.5 Getters and Setters
	4.6 Instance Fields and Private Methods
	4.7 Static Methods and Fields
	4.8 Subclasses
	4.9 Overriding Methods
	4.10 Subclass Construction
	4.11 Class Expressions
	4.12 The this Reference
	Exercises

	Chapter 5. Numbers and Dates
	5.1 Number Literals
	5.2 Number Formatting
	5.3 Number Parsing
	5.4 Number Functions and Constants
	5.5 Mathematical Functions and Constants
	5.6 Big Integers
	5.7 Constructing Dates
	5.8 Date Functions and Methods
	5.9 Date Formatting
	Exercises

	Chapter 6. Strings and Regular Expressions
	6.1 Converting between Strings and Code Point Sequences
	6.2 Substrings
	6.3 Other String Methods
	6.4 Tagged Template Literals
	6.5 Raw Template Literals
	6.6 Regular Expressions
	6.7 Regular Expression Literals
	6.8 Flags
	6.9 Regular Expressions and Unicode
	6.10 The Methods of the RegExp Class
	6.11 Groups
	6.12 String Methods with Regular Expressions
	6.13 More about Regex Replace
	6.14 Exotic Features
	Exercises

	Chapter 7. Arrays and Collections
	7.1 Constructing Arrays
	7.2 The length Property and Index Properties
	7.3 Deleting and Adding Elements
	7.4 Other Array Mutators
	7.5 Producing Elements
	7.6 Finding Elements
	7.7 Visiting All Elements
	7.8 Sparse Arrays
	7.9 Reduction
	7.10 Maps
	7.11 Sets
	7.12 Weak Maps and Sets
	7.13 Typed Arrays
	7.14 Array Buffers
	Exercises

	Chapter 8. Internationalization
	8.1 The Locale Concept
	8.2 Specifying a Locale
	8.3 Formatting Numbers
	8.4 Localizing Dates and Times
	8.5 Collation
	8.6 Other Locale-Sensitive String Methods
	8.7 Plural Rules and Lists
	8.8 Miscellaneous Locale Features
	Exercises

	Chapter 9. Asynchronous Programming
	9.1 Concurrent Tasks in JavaScript
	9.2 Making Promises
	9.3 Immediately Settled Promises
	9.4 Obtaining Promise Results
	9.5 Promise Chaining
	9.6 Rejection Handling
	9.7 Executing Multiple Promises
	9.8 Racing Multiple Promises
	9.9 Async Functions
	9.10 Async Return Values
	9.11 Concurrent Await
	9.12 Exceptions in Async Functions
	Exercises

	Chapter 10. Modules
	10.1 The Module Concept
	10.2 ECMAScript Modules
	10.3 Default Imports
	10.4 Named Imports
	10.5 Dynamic Imports
	10.6 Exports
	10.7 Packaging Modules
	Exercises

	Chapter 11. Metaprogramming
	11.1 Symbols
	11.2 Customization with Symbol Properties
	11.3 Property Attributes
	11.4 Enumerating Properties
	11.5 Testing a Single Property
	11.6 Protecting Objects
	11.7 Creating or Updating Objects
	11.8 Accessing and Updating the Prototype
	11.9 Cloning Objects
	11.10 Function Properties
	11.11 Binding Arguments and Invoking Methods
	11.12 Proxies
	11.13 The Reflect Class
	11.14 Proxy Invariants
	Exercises

	Chapter 12. Iterators and Generators
	12.1 Iterable Values
	12.2 Implementing an Iterable
	12.3 Closeable Iterators
	12.4 Generators
	12.5 Nested Yield
	12.6 Generators as Consumers
	12.7 Generators and Asynchronous Processing
	12.8 Async Generators and Iterators
	Exercises

	Chapter 13. An Introduction to Typescript
	13.1 Type Annotations
	13.2 Running TypeScript
	13.3 Type Terminology
	13.4 Primitive Types
	13.5 Composite Types
	13.6 Type Inference
	13.7 Subtypes
	13.8 Classes
	13.9 Structural Typing
	13.10 Interfaces
	13.11 Indexed Properties
	13.12 Complex Function Parameters
	13.13 Generic Programming
	Exercises

	Index
	Code Snippets

