

Practical HTML and CSS

Elevate your internet presence by creating modern and
high-performance websites for the web

Brett Jephson

Lewis Coulson

Ana Carolina Silveira

Practical HTML and CSS
Copyright © 2024 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

The author acknowledges the use of cutting-edge AI, such as ChatGPT, with the sole aim of enhancing
the language and clarity within the book, thereby ensuring a smooth reading experience for readers.
It’s important to note that the content itself has been crafted by the author and edited by a professional
publishing team.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Kaustubh Manglurkar
Publishing Product Manager: Urvi Sambhav Shah
Book Project Manager: Srinidhi Ram
Senior Content Development Editor: Feza Shaikh
Technical Editor: Simran Ali
Copy Editor: Safis Editing
Indexer: Rekha Nair
Production Designer: Aparna Bhagat
Marketing Coordinators: Nivedita Pandey

First published: November 2019

Second edition: November 2024

Production reference: 1260924

Published by Packt Publishing Ltd.
Grosvenor House
11 St Paul’s Square
Birmingham
B3 1RB, UK.

ISBN 978-1-83508-091-7

www.packtpub.com

http://www.packtpub.com

To my daughters, Adeline and Viola, for keeping me busy, having too much fun, and making it hard to
find time to write anything.

– Brett Jephson

To Rebecca, Louis, Dylan, and Mae, for all of your love and support.

– Lewis Coulson

To my sister, Angelica, who bravely raised me surrounded by books.

– Ana Carolina Silveira

Contributors

About the authors
Brett Jephson is a product engineer specializing in frontend engineering and design systems. He has
worked in media, games, and app companies for many years, putting all the latest and greatest web
technologies to use in many interesting ways while championing accessibility and good UI.

I would like to thank Kate for supporting me and doing more than her share of looking after the kids
(Adeline and Viola) while I worked on this book.

Lewis Coulson is a senior frontend developer with over 10 years of commercial experience. He has
worked at a range of organizations ranging from creative agencies to government departments.

I would like to thank my family who have supported me whilst writing this book: Rebecca, Louis,
Dylan, and Mae.

Ana Carolina Silveira is a seasoned frontend web developer, known for her expertise in CSS and
her deep understanding of user experience and behavior. As an open source enthusiast, she actively
participates in community projects, sharing her knowledge and passion for web development with others.

First and foremost, I would like to thank God for granting me the knowledge needed for this project;
SDG. I am also deeply grateful to my husband, Lucas, for his support and encouragement throughout
the process of writing this book. A heartfelt thanks as well to my family, friends.

About the reviewer

Akhilesh Tiwari is a software engineer with over 20 years of experience. He obtained his MTech from
BITS Pilani, India. Akhilesh has developed software solutions for the world’s leading organizations,
such as Merck, Novartis, BNY Mellon, Fujitsu, Cognizant, and Persistent Systems to name a few.
Akhilesh now resides in New Jersey, USA, where he enjoys a fulfilling family life with his wonderful
wife and two adorable children.

First of all, I would like to thank the Supreme Personality of Godhead, Krishna, for everything. I
would like to thank my loving parents for their unconditional love and support. I would not have been
able to do this book review without the support of my loving wife, Sanchita, and my two young ones,
Osh and Radha. Last but not least, I would like to thank Packt for this opportunity and their trust.

Preface� xv

Part 1: Introducing HTML and CSS

1
Introduction to HTML and CSS� 3

Technical requirements� 5
How a web page renders� 5
Understanding HTML� 7
Syntax� 7
HTML elements� 10
Content types� 11
The HTML document� 13
Structuring an HTML document� 15
Metadata� 16
Our first web page� 17
Exercise 1.01 – creating a web page� 17
Activity 1.01 – video store page template� 18

Understanding CSS� 20
Syntax� 20
Adding styles to a web page� 22

Exercise 1.02 – adding styles� 22
CSS selectors� 26
Element, ID, and class� 26
The universal selector (*)� 27
Attribute selectors� 27
Pseudo-classes� 28
Pseudo-elements� 31
Combining selectors� 31
Exercise 1.03 – selecting elements� 32
CSS specificity� 36

The special case of !important� 38
CSS custom properties� 39
Activity 1.02 – styling the video store
template page� 39

Summary� 42

2
Structure and Layout� 43

Technical requirements� 44 Examining structural elements� 44
header� 45

Table of Contents

Table of Contentsviii

footer� 46
section� 47
article� 48
nav� 49
aside� 50
div� 51
A news article web page� 51
Exercise 2.01 – marking up the page� 52

Introducing wireframes� 55
Activity 2.01 – video store home page� 57

Learning CSS page layouts� 59
Video store product page� 60
float-based layouts� 60
flex-based layouts� 63
flex items� 63

grid-based layouts� 64
Exercise 2.02 – a grid-based layout� 65

The box model� 67
The content box� 67
padding� 68
border� 69
margin� 71
Exercise 2.03 – experimenting with
the box model� 72
Putting it all together� 75
Exercise 2.04 – home page revisited� 75
Exercise 2.05 – video store product page
revisited� 78
Activity 2.02 – online clothes store home page� 80

Summary� 81

3
Text and Typography Styling� 83

Technical requirements� 84
Creating text-based elements� 84
Headings� 84
Paragraphs� 85
Inline text elements� 86
Lists� 88
Exercise 3.1 – combining text-based elements� 91

Working with new text-based
elements� 94
address� 94
Details� 94
Abbr� 95

Writing semantic markup� 96

Styling text-based elements� 96
CSS resets� 97
CSS text properties� 98
CSS font properties� 102
The display Property� 103
The video store product page (revisited)� 103
Exercise 3.2 – navigation� 104
Breadcrumbs� 108
Exercise 3.3 – breadcrumbs� 108
Exercise 3.4 – the page heading and
introduction� 111
Exercise 3.5 – product cards� 113
Exercise 3.6 – putting it all together� 117
Activity 3.1 – converting a newspaper article
to a web page� 122

Summary� 123

Table of Contents ix

Part 2: Understanding Website Fundamentals

4
Creating and Styling Forms� 127

Technical requirements� 128
Introducing form elements� 128
form� 128
input� 128
label� 132
textarea� 132
fieldset� 133
select� 135
button� 136
Exercise 4.1 – creating a simple form� 136

Styling form elements� 140
Labels, textboxes, and textareas� 140
Buttons� 143
Select boxes� 144
Validation styling� 145
Exercise 4.02 – creating a form with
validation styling� 146

Using tables for form layout� 151
table� 151
tr� 151
td� 151
A table-based form layout� 152

Making forms accessible� 152
Labeling form elements correctly� 153
Grouping related form elements� 153
Validating user input� 154
Video store forms� 154
Exercise 4.03 – a new account signup form� 155
Exercise 4.04 – a checkout form� 162
Activity 4.01 – building an online property
portal website form� 169

Summary� 170

5
Adding Animation to Web Pages� 171

Technical requirements� 171
The transition property� 172
Exercises with transitions� 174
The @starting-style rule� 186

Advanced CSS for animations� 189
CSS positioning� 190

z-index� 191
Opacity� 192
Blur� 192

The keyframes rule and CSS
animation properties� 193
Summary� 199

Table of Contentsx

6
Themes, Color, and Polishing Techniques� 201

Technical requirements� 202
Introduction to web design themes� 202
CSS color variables� 204
Exercise 1 – creating a light theme using CSS
color variables� 204

Learning color theory with HSL� 208
The HSL color wheel� 209
UX/UI polishing tips� 210
Exercise 2 – creating a dark theme using hsl()� 211

Understanding the invert() filter� 215
Exercise 3 – creating a dark theme with the
invert() filter� 216

Exploring user’s preferences with
color-scheme� 217
How to declare color-scheme in CSS� 218
How to style based on color schemes� 218

 Introducing the light-dark()
function� 219
Exercise 4 – simplifying our CSS theming
with media queries� 220

Understanding typography and
font choices� 222
Accessibility and inclusive
design considerations� 225
Summary� 226

Part 3: Building for All

7
Using CSS and HTML to Boost Performance� 229

Technical requirements� 229
Understanding the performance
of a web page� 230
Largest Contentful Paint (LCP)� 230
Cumulative Layout Shift (CLS)� 231
First Input Delay (FID)� 231
Interaction to Next Paint (INP)� 232
Measuring performance with Lighthouse� 232
Exercise – finding performance issues in a
web page� 237

Improving the performance
of a web page� 243
Controlling how assets load� 244
Prioritizing loading� 245
Improving image performance� 245
Exercise – optimizing the performance
of a web page� 246

Summary� 248

Table of Contents xi

8
Responsive Web Design and Media Queries� 249

Technical requirements� 250
What does it mean to design
mobile first?� 250
Understanding viewports� 251
Introducing media queries� 252
Exercise 8.01 – Creating a mobile-first menu� 255

Responsive values in CSS� 260
Responsive typography units� 260
Responsive sizing units� 261

Exploring responsive images� 262
Using width and max-width with percentages� 262
HTML picture element� 263

Using srcset and sizes� 263
Background images in CSS� 264
Lazy loading� 265
Exercise 8.02 – Creating a mobile catalog
for a flower shop� 266

CSS Flexbox� 269
Flexbox basic properties� 270
Exercise 8.03 – Updating the flower shop
catalog for desktop using Flexbox� 273

Exploring printable design� 276
Exercise 8.04 – Creating a printable style
for the flower shop catalog� 279

Summary� 282

9
Ensuring Accessibility in HTML and CSS� 283

Technical requirements� 284
What is accessibility?� 284
Making images accessible� 285
Exercise 9.01 - Accessible ratings� 288

Making forms accessible� 294
Exercise 9.02: accessible sign up form� 296

Understanding keyboard accessibility� 303
Making motion accessible� 304
Accessibility tools� 306
The Axe® tool� 307
Exercise 9.03: Using Axe� 309
Activity 9.01: Making a page accessible� 315

Summary� 316

Part 4: Advanced Concepts

10
SEO Essentials for Web Developers� 319

Technical requirements� 319
Understanding SEO and
its importance� 320

Key SEO concepts for web developers� 320
Benefits of developing with SEO practices
in mind� 320

Table of Contentsxii

The impact of HTML and CSS on SEO� 321
CSS and SEO� 327
Exercise 10.1 – adapting the HTML for SEO� 329

Exploring Core Web Vitals� 332
First Contentful Paint� 332
LCP� 334
FID� 335
CLS� 337
How to measure SEO metrics� 338
Exercise 10.2 – analyzing a real website
with Lighthouse� 339

Minimizing render-blocking
resources� 341
How to minimize render-blocking resources
with CSS� 342
How to minimize render-blocking resources
with JavaScript� 344

Optimizing images for SEO� 347
Using alt tags for images� 350
Examples of good and bad alt tags� 350
Best practices for writing effective alt tags� 353

Avoiding excessive DOM size� 353
Techniques to Avoid Excessive DOM Size� 354

Summary� 356

11
Preprocessors and Tooling for Efficient Development� 357

Technical requirements� 358
Understanding CSS preprocessors –
Sass and Less� 358
The benefits of features such as variables,
mixins, and nesting� 360
The differences between Sass and Less� 361

Setting up and using Less in a project� 365
Installing Node.js and LESS� 365
Exercise 11.01 – Creating and compiling our
first Less project� 367
Exercise 11.02 – automating compilation� 372

Introduction to build tools – Gulp
and Webpack� 375
How Gulp works� 376
How Webpack works� 382
Gulp or Webpack? Which one should you
choose?� 387
How to configure Gulp and Webpack for
different environments (development and
production)� 388

Techniques for improving
performance with build tools� 390
Summary� 391

12
Strategies for Maintaining CSS Code� 393

Technical requirements� 393
The importance of maintainable CSS� 394

What unmaintainable CSS looks like� 394
What maintainable CSS looks like� 395

Table of Contents xiii

Why you should write maintainable CSS� 397

Understanding semantic
modular CSS� 398
How to develop modular CSS� 399
How to apply modular CSS� 401
Exercise 12.1 – implementing semantic,
modular CSS with SMACSS� 401

What is the BEM standard?� 407
How to apply BEM� 408

The benefits of BEM� 409
Exercise 12.2 – converting regular CSS
into BEM� 409

Understanding reusable and scalable
CSS� 413
Strategies for reusable and scalable CSS� 413
The implementation of utility-first CSS
with Tailwind� 415

Summary� 423

13
The Future of HTML and CSS – Advancements and Trends� 425

Technical requirements� 425
Responsive and dynamic layouts� 426
Container queries� 426
Style queries� 428
Dynamic viewport units� 431

Customizing the structure� 432
Cascade layers� 433
Scoped styles� 435
Nesting� 436
Understanding the :has() selector� 438

Exploring the latest CSS
mathematical functions� 439
Trigonometric functions� 440
Individual transform properties� 441

Enhancing text presentation� 441
Understanding the initial-letter property� 442
The new CSS property text-wrap: balance� 442

Interactive and immersive elements� 444
Popover� 444
New select menu� 445
Anchor positioning� 446
Discrete property transitions� 448
Scroll-driven animations� 449

Exploring new colors and
visual effects� 450
Wide-gamut color spaces� 450
The CSS color-mix() function� 452
View transitions� 453

Summary� 455

Index� 457

Other Books You May Enjoy� 468

Preface

With knowledge of HTML and CSS, you can build visually appealing, interactive websites without
relying on pre-packaged website-building tools and their limitations. Practical HTML and CSS
takes you on a journey, showing you how to create beautiful websites using your own content while
understanding how they work and how to manage them in the long term.

The book begins by introducing HTML5 and CSS3, guiding you through the website development
process with easy-to-follow steps. You’ll explore how browsers render websites, progressing to adding
rich multimedia elements such as video and audio to create a more cinematic experience. You’ll also
use JavaScript to add interactivity to your site, build intuitive forms to capture user data, and add slick
transitions with animations. You’ll delve into mobile-first development using responsive design and
media queries, ensuring your sites perform seamlessly across all devices.

Throughout, you’ll engage in hands-on projects and learn how to craft beautiful, responsive applications.
Each chapter builds on the last, expanding your knowledge and equipping you with the skills needed
to craft stunning, professional websites. Along the way, you’ll also learn how to optimize your sites
for performance and SEO, preparing you to tackle the most in-demand technologies in the industry.

Whether you’re a beginner or looking to refine your expertise, this guide serves as a comprehensive
roadmap for your journey and a trusted companion throughout your career. As you progress, you’ll
find yourself returning to its pages for advice, inspiration, and best practices. With Practical HTML
and CSS, you’re not just learning a set of tools—you’re building a solid foundation that will support
your growth as a web developer for years to come.

Who this book is for
The two technologies covered in this book, HTML and CSS, are available to anyone with a web browser
and a text editor. This means this book is aimed at anyone who wants to put together a web page and is
looking for some practical exercises to help them learn. Here’s who will benefit most from this guide:

•	 Aspiring web developers: If you’re just starting your journey in web development, this book
provides a solid foundation in HTML and CSS. You’ll gain a comprehensive understanding of
these essential technologies, allowing you to build your first websites with confidence.

•	 Junior developers: For those with some experience in web development, this guide offers
deeper insights into best practices and advanced techniques. It will help you enhance your skill
set, improve your portfolio, and advance in your career.

Prefacexvi

•	 UI/UX designers: Understanding the structure and styling of web pages is crucial for designers.
This book will enable you to better collaborate with developers by understanding how your
designs are implemented using HTML and CSS.

•	 Freelancers and entrepreneurs: If you’re building or managing your own website, this guide
will equip you with the knowledge to create and maintain your web presence without relying
on external developers.

The book is accessible to someone learning web development for the first time but it delves into a
lot of subject areas and goes beyond the fundamentals of what you can do with HTML and CSS. We
hope, therefore, that there is something useful for anyone in their formative years as a web developer.

What this book covers
Chapter 1, Introduction to HTML and CSS, provides a grounding in the fundamentals of web development.
Through practical exercises, the chapter introduces you to the syntax of both HTML and CSS, looks
at the relationship between HTML and CSS, and explains the roles of these technologies in rendering
a web page in the browser.

Chapter 2, Structure and Layout, introduces you to the structural elements in HTML, including header,
footer, and section tags. You will also learn the three main CSS layout techniques: float, flex, and grid.

Chapter 3, Text and Typography Styling, introduces you to text-based elements, such as paragraphs,
headings, and lists. We will go over how to style text-based elements in web pages and let your
creativity run wild.

Chapter 4, Creating and Styling Forms, introduces you to the creation of web forms, starting with the
key HTML elements used in forms and then learning how to style them with CSS. Along the way,
you will also learn how to style your forms with validation styling.

Chapter 5, Adding Animation to Web Pages, explores how to effectively incorporate animations into
web applications using CSS. You’ll be introduced to the versatile transform property, the intricacies
of z-index, the smooth transitions enabled by CSS, and the powerful @keyframes rule for creating
complex animations. By the end of this chapter, you’ll have created a portfolio-worthy project that
demonstrates how these techniques can be applied in various real-world scenarios.

Chapter 6, Themes, Color, and Polishing Techniques, dives into managing styles based on user preferences
using CSS themes and other refining techniques. You’ll gain an understanding of color theory with
HSL, and how to implement light and dark themes, utilize CSS filters, and apply effective typography.
We’ll also explore how to combine these approaches to enhance and personalize the user experience,
ensuring your web designs are both visually appealing and user-centric.

Chapter 7, Using CSS and HTML to Boost Performance, provides an understanding of how we can
measure web performance using Core Web Vitals. Through practical exercises, it explains some
simple techniques using HTML and CSS that we can use to improve the performance of a web page.

Preface xvii

Chapter 8, Responsive Web Design and Media Queries, teaches you how to implement responsive
applications using breakpoints and media queries. We’ll delve into the “mobile first” approach, ensuring
that your applications are optimized for mobile devices without sacrificing performance or design
quality. You’ll also learn about viewports, responsive values, and the incredibly useful Flexbox layout,
equipping you to create adaptive, high-quality web applications.

Chapter 9, Ensuring Accessibility in HTML and CSS, explains some of the challenges that web pages can
present to users with disabilities and provides simple techniques using HTML and CSS that we can
employ to improve the experience for those users while also improving the experience for all users.

Chapter 10, SEO Essentials for Web Developers, provides an in-depth guide to understanding SEO
and how to measure its performance. You’ll learn about Core Web Vitals, strategies to improve SEO
metrics, and how to position your application for high visibility in search engines. This chapter focuses
on mastering the tools and techniques to outsmart search algorithms, giving your web projects a
competitive edge.

Chapter 11, Preprocessors and Tooling for Efficient Development, takes a step further into performance
and scalability. You’ll learn how to architect and build scalable, maintainable applications using
powerful build tools such as Gulp and Webpack to automate development processes. We’ll also explore
preprocessors such as Less and Sass, which enhance the capabilities of CSS, making your development
process more efficient and your code more manageable.

Chapter 12, Strategies for Maintaining CSS Code, focuses on CSS performance and maintainability,
introducing methodologies such as BEM (which stands for Block, Element, Modifier) and tools
such as Tailwind CSS. These approaches help you maintain clean, organized, and efficient CSS code,
ensuring your projects remain scalable and easy to manage as they grow.

Chapter 13, The Future of HTML and CSS – Advancements and Trends, provides a look at the latest
advancements and emerging trends in HTML and CSS. This chapter serves as a guide to the future
of web development, offering insights into the technologies and features that will shape tomorrow’s
web. As the final chapter of this book, this chapter opens the door to the cutting-edge resources and
innovations you can start exploring today to stay ahead in the rapidly evolving world of web development.

To get the most out of this book

Software/hardware covered in the book Operating system requirements

HTML5 Any OS with a web browser
CSS Any OS with a web browser
Chrome Dev Tools Any OS with Chrome web browser

If you are using the digital version of this book, we advise you to type the code yourself or access
the code from the book’s GitHub repository (a link is available in the next section). Doing so will
help you avoid any potential errors related to the copying and pasting of code.

Prefacexviii

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Practical-HTML-and-CSS-Second-Edition. If there’s an update
to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “To do this, create a
folder named styles inside the project’s folder.”

A block of code is set as follows:

/* Layout styles */
.container {
  max-width: 1200px;
  margin: 0 auto;
  padding: 0 20px;
}

.grid {
  display: flex;
  flex-wrap: wrap;
}

When we wish to draw your attention to a particular part of a code block, the relevant lines or items
are set in bold:
<html lang="en">
<head>
  <meta charset="UTF-8">
  <meta
    name="viewport"
    content="width=device-width, initial-scale=1.0"
  >
  <link rel="stylesheet" href="styles/base.css">
  <link rel="stylesheet" href="styles/layout.css">
  <link rel="stylesheet" href="styles/module.css">
  <link rel="stylesheet" href="styles/state.css">
  <link rel="stylesheet" href="styles/theme.css">
</head>

https://github.com/PacktPublishing/Practical-HTML-and-CSS-Second-Edition
https://github.com/PacktPublishing/Practical-HTML-and-CSS-Second-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface xix

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words
in menus or dialog boxes appear in bold. Here is an example: “As this is an example taken from the
Packt website, you will notice that it contains items such as the company logo, search bar, and the
Sign In button.”

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Share Your Thoughts
Once you’ve read Practical HTML and CSS, we’d love to hear your thoughts! Please click here
to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
https://packt.link/r/183508091X
https://packt.link/r/183508091X

Prefacexx

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/978-1-83508-091-7

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://download.packt.com/free-ebook/9781835080917

Part 1:
Introducing HTML and CSS

In this part, we’ll explore the fundamental principles of creating web pages. We’ll start by learning about
the fundamental concepts behind how web pages work. Next, we’ll explore techniques for structuring
our web pages and styling them with custom layouts. Finally, we’ll delve into text and typography,
paying close attention to styling concerns.

This section contains the following chapters:

•	 Chapter 1, Introduction to HTML and CSS

•	 Chapter 2, Structure and Layout

•	 Chapter 3, Text and Typography Styling

1
Introduction to HTML and CSS

Whether you want to build a web page to advertise your business, blog about a hobby, or maintain an
online community, HyperText Markup Language (HTML) and Cascading Style Sheets (CSS) are
the foundations upon which you will build.

HTML and CSS work together but each has a different role in making a web page. A web page is made
up of lots of different types of content (text, images, links, video, and audio). HTML structures that
content and CSS styles it. Together, they tell the browser how and what to render.

These two technologies are simple to get started with and provide enough power and expressivity that
they let you get your ideas out there to the vast audience on the web.

Navigate to a website and what you see is the rendered output of content marked up with HTML and
styled with CSS. As a browser user, you have access to the source code of a web page. In Chrome, for
example, you can view a page’s source code by pressing the keys Ctrl + U on a PC or command + option
+ U on a Mac. Alternatively, you can right-click with a mouse and choose View Page Source. Try it
yourself. As an example, the following two figures show what the Packt website’s Web Development
portal looks like when rendered in the browser and as source code respectively.

Introduction to HTML and CSS4

Figure 1.1: The Packt Publishing site’s Web Development portal

Figure 1.2: The HTML source code of the Packt site

Technical requirements 5

By learning to write the HTML and CSS that make up the source code, we can create our own
modern website.

In this chapter, we will develop an understanding of how a web page renders by following the process
from initial request to completed composition. We will learn how to build a simple web page using
HTML and then we will learn how to style that page with CSS.

The following topics will be covered in the chapter:

•	 How a web page renders

•	 Understanding HTML

•	 Understanding CSS

By the end of this chapter, you will have been introduced to two of the core technologies of the web
– HTML and CSS – and you will understand their roles in creating websites. You will have created a
page from scratch and you will have used selectors to target parts of that web page for styling.

Technical requirements
The code files for this chapter can be found at https://packt.link/808iP.

How a web page renders
When we navigate to a web page in our favorite browser, what happens? How do HTML and CSS
translate to the page we see in front of us? In other words, how does a web page render?

The following figure shows a flowchart of the process, which is then further explained:

Figure 1.3: Flow chart of the web page render process

https://packt.link/808iP

Introduction to HTML and CSS6

To summarize the process:

1.	 The user starts by navigating to a URL, possibly via a hyperlink or by typing the URL into the
address bar of their browser.

2.	 The browser will make a GET request to the disk or a network. It will read the raw bytes from
that location and convert them to characters (based on character encoding, such as UTF-8).

3.	 The browser then parses these characters according to the HTML standard to find the tokens
that are familiar as HTML elements, such as <html> and <body>.

4.	 Another parse is then made to take these tokens and construct objects with their properties
based on the rules appropriate to that token. At this point, the objects are defined.

5.	 Finally, the browser can define the relationships between these objects and construct the HTML
DOM (Document Object Model) for the web page.

6.	 At this point, we have a DOM but not a rendered web page. The next task is to construct the
CSSOM (CSS Object Model). Again, the browser will load any style sheet resources it needs
to, which were found while parsing the document. It will then construct the styles associated
with nodes in the tree structure, which gives us the CSSOM.

7.	 With the information gathered in the DOM and the CSSOM, the browser can create a render
tree. The render tree is constructed by combining information from the CSSOM and the
HTML DOM. Nodes in the HTML DOM that will not be rendered (for instance, those with
the display: none; style) are excluded from the render tree. Those that are rendered are
enriched with their computed style rules.

8.	 Now the browser has all the information it needs, it can begin to calculate the positions of
elements in the rendered viewport. This is called the layout stage. The browser lays elements
out based on their size and position within the browser viewport. This stage is often also called
reflow. It means the browser must recalculate the positions of elements in the viewport when
elements are added to or removed from the page or when the viewport size is changed.

9.	 Finally, the browser will rasterize or paint each element on the page, depending on their styles,
shadows, and filters to render the page the user will see.

In this section, we have given a brief and simplified summary of the rendering of a web page. Think
about how many resources might be loaded on a relatively complicated website and with JavaScript
running events and we can see that much of this process happens frequently and not in such a linear
manner. We can start to see the complexities of what a browser is doing when it renders your web page.

Understanding HTML 7

In the next section, we will start to look at how we create a web page by learning about the syntax of
HTML, which helps us structure and contextualize our content. We will learn about the syntax of
HTML and the elements we can use, and we will apply this knowledge to create a simple web page.

Understanding HTML
HTML is a markup language used to describe the structure of a web page.

Consider a snippet of text with no markup:

HTML HyperText Markup Language (HTML) is a markup language used to
describe the structure of a web page. We can use it to differentiate
such content as headings lists links images Want to https://www.
packtpub.com/web-development Learn more about web development.

The preceding snippet of text makes some sense. It may also raise some questions. Why does the snippet
begin with the word HTML? Why is there a URL in the middle of a sentence? Is this one paragraph?

Using HTML, we can differentiate several bits of content to give them greater meaning. We could
mark the word HTML as a heading, <h1>HTML</h1>, or we could mark a link to another web page
using Learn more
about web development.

There have been several versions of HTML since its first release in 1993 at the beginning of the web.
Throughout the rest of this chapter, and indeed the rest of this book, we will be looking at and working
with the current version of the HTML language, HTML5, which is the 5th major version of HTML.
When we use the term HTML, we will refer specifically to HTML5 and if we need to talk about a
different version we will do so explicitly (e.g., HTML 4.01).

In the next section, we will look at the syntax of HTML in more detail.

Syntax

The syntax of HTML is made up of tags (with angle brackets, <>) and attributes. HTML provides a
set of tags that can be used to mark the beginning and end of a bit of content. The opening tag, closing
tag, and all content within those bounds represent an HTML element. The following figures show the
HTML element representation without and with tag attributes respectively:

Introduction to HTML and CSS8

Figure 1.4: HTML element representation without tag attributes

Figure 1.5: HTML element representation with tag attributes

A tag has a name (for instance, p, img, or h1), and that name combined with attributes will describe
how the browser should handle the content. Many tags have a start and end tag with some content in
between, but some tags don’t expect any content, and these can be self-closing.

An opening tag can have any number of attributes associated with it. These are modifiers of the
element. An attribute is a name-value pair. For example, href="https://www.packtpub.
com/web-development" is an attribute with the name of href and the value of https://
www.packtpub.com/web-development. An href attribute represents a hypertext reference
or a URL, and when this attribute is added to an anchor element, <a>, it creates a hyperlink that the
user can click in the browser to navigate to that URL.

To provide information within an HTML document to be ignored by the parser and not shown to
the end user, you can add comments. These are useful for notes and documentation to aid anyone
who might read or amend the source of the HTML document. A comment begins with <!-- and
ends with -->. Comments, in HTML, can be single or multiline. The following are some examples:

<!-- Comment on a single line -->

<!--
  This comment is over multiple lines.

Understanding HTML 9

  Comments can be used to inform and for detailed
  documentation.
-->

You can use comments to provide helpful hints to other developers working on the web page but they
will be ignored by the browser when parsing the page.

Let’s see what the previous snippet of text content looks like when it is given some meaning with HTML:

<h1>HTML</h1>
<p>
  HyperText Markup Language (HTML) is a markup language
  used to describe the structure of a web page.
</p>
<p>
  We can use it to differentiate such content as:
</p>

  headings
  lists
  links
  images

<p>
  Want to <a href="https://www.packtpub.com/web-
  development">learn more about web development?
</p>

If we were to look at this HTML code rendered in a browser, it would look like the following figure:

Figure 1.6: HTML rendered in the Google Chrome web browser

The first line shows the HTML text content with a start tag, <h1>, and an end tag, </h1>. This tells
the browser to treat the text content as an h1 heading element.

Introduction to HTML and CSS10

The next line of our code snippet has a <p> start tag, which means the content until the corresponding
end tag, </p> (on the last line), will be treated as a paragraph element. We then have another
paragraph and then an unordered list element that starts with the start tag and ends with the
 end tag. The unordered list has four child elements, which are all list item elements (from the
 start tag to the end tag).

The last element in the example is another paragraph element, which combines text content and an
anchor element. The anchor element, starting from the <a> start tag and ending at the end
tag, has the learn more about web development? text content and an href attribute.
The href attribute turns the anchor element into a hyperlink, which a user can click to navigate to
the URL given as the value of the href attribute.

As with our example, the contents of a paragraph element might be text but can also be other HTML
elements, such as an anchor tag, <a>. The relationship between the anchor and paragraph elements
is a parent-child relationship.

HTML elements

HTML5 defines more than a hundred tags that we can use to mark up parts of an HTML document.
These include the following:

•	 The document root element: <html>

•	 Metadata elements: <base>, <head>, <link>, <meta>, <style>, and <title>

•	 Content sectioning elements: <address>, <article>, <aside>, <body>, <footer>,
<header>, <h1>, <h2>, <h3>, <h4>, <h5>, <h6>, <main>, <nav>, and <section>

•	 Block text elements: <blockquote>, <dd>, <details>, <dialog>, <div>, <dl>, <dt>,
<figcaption>, <figure>, <hr>, , <menu>, , <p>, <pre>, <summary>,
and

•	 Inline text elements: <a>, <abbr>, , <bdi>, <bdo>,
, <cite> , <code>,
<data>, <dfn>, , <i>, <kbd>, <mark>, <q>, <rp>, <rt>, <ruby>, <s>, <samp>,
<small>, , , <sub>, <sup>, , <ins>, <time>, <u>, <var>,
and <wbr>

•	 Media elements: <area>, <audio>, , <canvas>, <map>, <track>, <video>,
<embed>, <iframe>, <object>, <picture>, <portal>, <source>, <svg>,
and <math>

•	 Scripting elements: <noscript> and <script>

•	 Table elements: <caption>, <col>, <colgroup>, <table>, <tbody>, <td>, <tfoot>,
<th>, <thead>, and <tr>

Understanding HTML 11

•	 Form elements: <button>, <datalist>, <fieldset>, <form>, <input>, <label>,
<legend>, <meter>, <optgroup>, <option>, <output>, <progress>, <select>,
and <textarea>

•	 Web component elements: <slot> and <template>

We don’t have to know all of these tags to use HTML well; some fulfill more common use cases than
others. Each has a distinct purpose and provides a different semantic meaning and throughout this
book, we will go into some detail about how to use these elements.

Content types

When starting with HTML, it can be easy to find the number and variety of elements overwhelming.
It may be helpful to think about HTML in terms of content types.

The following table has a description and example of the different content types that can describe
an element:

Type Description Example
Metadata Content hosted in the head of an

HTML document. Doesn’t appear in
the web page directly but is used to
describe a web page and its relationship
to other external resources.

<meta name="viewport"
content="width=device-
width,initial-scale=1.0">

Flow Text and all elements that can
appear as content in the body of an
HTML document.

<body>

<h1>Heading</h1>

<p>Some content…</p>

</body>

Sectioning Used to structure the content of a web
page and to help with layout. Elements
in this category are described in
Chapter 2, Structure and Layout.

<aside></aside>

<article class="blog-post">

 <section></section>

</article>

Phrasing Elements such as those used for
marking up content within a paragraph
element. Chapter 3, Text and
Typography, will be largely concerned
with this content type.

<p>Emphasized text
and some normal text.</p>

Introduction to HTML and CSS12

Type Description Example
Heading Elements used to define the headings of

a section of an HTML document. The
h1-6 elements represent headings with
h1 having the highest ranking.

<h1>Main Heading</h1>

<h2>Subheading</h2>

Embedded Embedded content includes media,
such as video, audio, and images.

<img src="media/kitten.png"
alt="A cute kitten">

Interactive Elements that a user can interact
with, which include media elements
with controls, form inputs, buttons,
and links.

<input type="password"
name="password" required>

Table 1.1: Different content types

Let’s run through an example of how an element can fit into these category types using the element.

If we want to embed an image in our web page, the simplest way is to use the img element. If we want
to create an img element, an example of the code looks like this: <img src="media/kitten.
png" alt="A cute kitten">.

We set the src attribute on the img element to an image URL; this is the source of the image that
will be embedded in the web page.

Unless your image has no value other than as a decoration, it is a very good idea to include an alt
attribute. The alt attribute provides an alternative description of the image as text, which can then
be used by screen readers if an image does not load, or in a non-graphical browser.

Note
A screen reader is a software application that allows people who are visually impaired or blind
to access and interact with a computer. The screen reader allows a user to navigate a web page
with a keyboard and will output the content as speech. We will look further at accessibility in
Chapter 9.

An img element is a form of embedded content because it embeds an image in an HTML document.
It can appear in the body of an HTML document as the child element of the body element, so it
would be categorized as flow content.

Understanding HTML 13

An image can be included as content in a paragraph, so it is a type of phrasing content. For example,
we could have inline images appear in the flow of a paragraph:

<p>
  Kittens are everywhere on the internet. The best thing
  about kittens is that they are cute. Look here's a kitten
  now:
  .
  See, cute isn't it?
</p>

This code would render the following figure, with the image embedded in the paragraph and the rest
of the text flowing around it:

Figure 1.7: Image with text flowing around it

In certain circumstances, an img element is a type of interactive content. For this to be the case, the
image must have a usemap attribute. The usemap attribute allows you to specify an image map,
which defines areas of an image that are treated as hyperlinks. This makes the image interactive.

An img element does not act as metadata and it does not provide a sectioning structure to an HTML
document. Nor is it a heading.

Elements can appear in more than one category and there is some overlap between the relationships
of the categories. Some of these elements are very common and are used often, but some of these
elements have very specific purposes and you may never come across a use case for them.

The content types can be useful for understanding how elements work together and which elements
are valid in where. For further reference, we can see where each available element is categorized in
the W3C’s documentation on HTML5: https://html.spec.whatwg.org/multipage/
dom.html#kinds-of-content.

The HTML document

A web page is made up of an HTML document. The document represents a hierarchical tree structure
similar to a family tree. Starting from a root element, the relationship between an element and its
contents can be seen as that of a parent element and a child element. An element that is at the same
level of the hierarchy as another element is a sibling to that element. We can describe elements within
a branch of the tree as ancestors and descendants.

https://html.spec.whatwg.org/multipage/dom.html#kinds-of-cont﻿ent
https://html.spec.whatwg.org/multipage/dom.html#kinds-of-cont﻿ent

Introduction to HTML and CSS14

This structure can be represented as a tree diagram to get a better idea of the relationship between elements.

Take, for example, this simple HTML document:

<html>
  <head>
    <title>HTML Document structure</title>
  </head>
  <body>
    <div>
      <h1>Heading</h1>
      <p>First paragraph of text.</p>
      <p>Second paragraph of text.</p>
    </div>
  </body>
</html>

Here, the root is an html element. It has two children: a head element (containing a title) and
a body element containing some more content. It can be represented as a tree diagram as follows:

Figure 1.8: A representation of the HTML document as a tree diagram

Understanding HTML 15

In the browser, this code would render the following web page:

Figure 1.9: HTML rendered in the Google Chrome web browser

The <html> element is the parent of both the <head> and <body>, which (as children of the
same parent) are siblings. <body> has one child, a <div> tag, and that has three children: an <h1>
element and two <p> elements. The <h1> element is a descendant of <body> but not of <head>.

Understanding this structure will become more important when we look at CSS selectors and how
we target parts of the HTML document later in this chapter.

Structuring an HTML document

An HTML5 document normally starts with a doctype declaration and has a root html element with
two children – the head element and the body element.

The doctype declaration tells the browser it is dealing with an HTML5 document. The doctype is
<!DOCTYPE html> and appears as the first line of the document. It is recommended to always
add a doctype to make sure your HTML document renders as expected.

Note
The doctype declaration is not case sensitive, so variations such as <!doctype html> and
<!DOCTYPE HTML> are equally valid.

Introduction to HTML and CSS16

One of the nice things about HTML5 is that it simplifies doctype declaration. Before HTML5, there
were two commonly used variations of web markup – HTML4 and XHTML1 – and they both had
strict, transitional, and frameset versions of their doctype declarations. For example, the HTML 4 strict
declaration looked like this: <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//
EN" "http://www.w3.org/TR/html4/strict.dtd">.

After the doctype, we have the html element, which is the root of the HTML document.

It is strongly recommended that you add a lang attribute to your html element to allow the browser,
screen readers, and other technologies, such as translation tools, to better understand the text content
of your web page.

The two children of the html element are as follows:

•	 The head element, which includes the title and metadata providing information about
assets to load and how web crawlers and search engines should handle the page.

•	 The body element, which mostly represents the content rendered for a human browser user
to consume. This includes articles, images, and navigation.

In code, the structure we have described looks like this:
<!doctype html>
<html lang="en">
  <head><title>Page Title</title></head>
  <body></body>
</html>

This code would result in a blank web page with no content or metadata.

Metadata

The head is home to most machine-read information in an HTML document. The browser, screen
readers, and web crawlers can get a lot of information from metadata and handle the web page
differently depending on that information.

The following elements are considered metadata content:

•	 base: This lets you set a base URL

•	 link: This determines the relationship between a page and a resource (such as an external
style sheet)

•	 meta: This a catch-all for metadata

•	 title: This is the name of your web page as it appears in the browser tab and search results
and is announced by screen readers

Understanding HTML 17

•	 The meta element can represent many different types of metadata, including some used by
social networks to represent a web page.

Some common usages include the following:

•	 Setting character encoding for a page – <meta charset="utf-8">

•	 Setting the viewport for a browser on a mobile device – <meta name="viewport"
content="width=device-width, initial-scale=1">

These elements give web developers ways to tell a browser how to handle the HTML document and
how it relates to its environment. We can describe our web page for other interested parties (such as
search engines and web crawlers) using metadata.

Our first web page

In our first example, we will create a very simple web page. This will help us to understand the structure
of an HTML document and where we put different types of content.

Exercise 1.01 – creating a web page

In this exercise, we will create our first web page. This will be the minimal foundation upon which
future chapters can build.

Note
The complete code for this exercise can be found at https://packt.link/SduQx.

The steps are as follows:

1.	 To start, we want to create a new folder, chapter_1, and then open that folder in Visual
Studio Code (File | Open Folder…).

2.	 Next, we will create a new plain text file and save it as index.html.

3.	 In index.html, we start by adding the doctype declaration for HTML5:

<!DOCTYPE html>

4.	 Next, we add an HTML tag (the root element of the HTML document):

<html lang="en">
</html>

https://packt.link/SduQx

Introduction to HTML and CSS18

5.	 In between the opening and closing tags of the html element, we add a head tag. This is where
we can put metadata content. For now, the head tag will contain a title:

<head>
    <title>HTML and CSS</title>
</head>

6.	 Below the head tag and above the closing html tag, we can then add a body tag. This is where
we will put the majority of our content. For now, we will render a heading and a paragraph:

<body>
    <h1>HTML and CSS</h1>
    <p>
        How to create a modern, responsive website
        with HTML and CSS
    </p>
</body>

The result of this exercise should look like the following figure when opened in a browser:

Figure 1.10: The web page as displayed in the Chrome web browser

Activity 1.01 – video store page template

We’ve been tasked with creating a website for an online on-demand film store called Films On Demand.
We don’t have designs yet but want to set up a web page boilerplate that we can use for all the pages
on the site.

We will use comments as placeholders to know what needs to change for each page that is built on
top of the boilerplate template. For visible content in the body element, we will use lorem ipsum to
get an idea of how content will flow.

Understanding HTML 19

The steps are as follows:

1.	 Create a file named template.html.

2.	 We want the page to be a valid HTML5 document. So, we will need to add:

	� The correct doctype definition.

	� Elements to structure the document: The html element, the head element, and the
body element.

	� A title element that combines the Films on Demand brand with some specifics about
the current page.

	� Metadata to describe the site: We’ll set this to Buy films from our great
selection. Watch movies on demand.

	� Metadata for the page character set and a viewport tag to help make the site render better
on mobile browsers.

3.	 We want to add placeholders for a heading (an h1 element) for the page, which we will populate
with lorem ipsum, and a paragraph for the content flow, which we will also populate with the
following lorem ipsum text:

"Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam
quis scelerisque mauris. Curabitur aliquam ligula in erat placerat
finibus. Mauris leo neque, malesuada et augue at, consectetur
rhoncus libero. Suspendisse vitae dictum dolor. Vestibulum
hendrerit iaculis ipsum, ac ornare ligula. Vestibulum efficitur
mattis urna vitae ultrices. Nunc condimentum blandit tellus ut
mattis. Morbi eget gravida leo. Mauris ornare lorem a mattis
ultricies. Nullam convallis tincidunt nunc, eget rhoncus nulla
tincidunt sed. Nulla consequat tellus lectus, in porta nulla
facilisis eu. Donec bibendum nisi felis, sit amet cursus nisl
suscipit ut. Pellentesque bibendum id libero at cursus. Donec
ac viverra tellus. Proin sed dolor quis justo convallis auctor
sit amet nec orci. Orci varius natoque penatibus et magnis dis
parturient montes, nascetur ridiculus mus."

Note
The solution to this activity can be found at https://packt.link/WbEPx

https://packt.link/WbEPx

Introduction to HTML and CSS20

In this section, we’ve looked at HTML, the markup language that structures and gives context to the
content of a web page. We have looked at the syntax of HTML, created our first web page, and learned
about the structure of an HTML document. When we’ve looked at our web page in a browser, it has
been rendered with the default styling provided by the browser. In the next section, we will look at
how we can customize the styling of our web page using CSS. We will learn how to add styles, how to
specify what parts of a page they apply to, and some of the properties we can style.

Understanding CSS
CSS is a style sheet language used to describe the presentation of a web page.

The language is designed to separate concerns. It allows the design, layout, and presentation of a web
page to be defined separately from content semantics and structure. This separation keeps source
code readable and lets a designer update styles separately from a developer who might create the page
structure or a web editor who is changing content on a page.

A set of CSS rules in a style sheet determines how an HTML document is displayed to the user. It can
determine whether elements in the document are rendered, how they are laid out on the web page,
and their aesthetic appearance.

In the next section, we will look at the syntax of CSS.

Syntax

A CSS declaration is made of two parts: a property and a value. The property is the name for some
aspect of style you want to change; the value is what you want to set it to.

Here is an example of a CSS declaration:

color: red;

The property is color and the value is red. In CSS, color is the property name for the foreground
color value of an element. That essentially means the color of the text and any text decoration (such
as underline or strikethrough). It also sets a currentcolor value.

For this declaration to have any effect on an HTML document, it must be applied to one or more
elements in the document. We do this with a selector. For example, you can select all the <p> elements
in a web page with the p selector. So, if you wanted to make the color of all text in all paragraph
elements red, you would use the following CSS ruleset:

p {
  color: red;
}

Understanding CSS 21

The result of this CSS ruleset applied to an HTML document can be seen in the following figure:

Figure 1.11: Result of a CSS rule applied to <p> elements in HTML

The curly braces represent a declaration block and that means more than one CSS declaration can be
added to this block. If you wanted to make the text in all paragraph elements red, bold, and underlined,
you could do that with the following ruleset:

p {
  color: red;
  font-weight: bold;
  text-decoration: underline;
}

The result of this CSS ruleset applied to an HTML document can be seen in the following figure:

Figure 1.12: Several CSS declarations applied to <p> elements in HTML

Introduction to HTML and CSS22

Multiple selectors can share a CSS ruleset. We can target these with a comma-separated list. For example,
to apply the color red to p elements, h1 elements, and h2 elements, we could use the following ruleset:

p, h1, h2 {
  color: red;
}

Multiple CSS rulesets form a style sheet. The order of these CSS rules in a style sheet is very important
as this is partly how the cascade or specificity of a rule is determined. A more specific rule will be
ranked higher than a less specific rule and a higher-ranked rule will be the style shown to the end
user. We will look at cascade and specificity later in this chapter:

Figure 1.13: A CSS ruleset explained

Adding styles to a web page

There are several ways we can add CSS to a web page:

•	 Via an element’s style attribute (inline styles)

•	 With a style element in the head or body of the HTML document

•	 By linking an external style sheet to the HTML document with a link element

•	 Each of these methods has pros and cons. Inline styles apply only to that element and have high
specificity but we can’t access pseudo-classes and pseudo-elements this way. They can make
maintenance and updates time-consuming. Both the link and style elements provide greater
separation of concerns, keeping the CSS separated from the HTML, which can be beneficial
for organization and maintaining a clean code base.

We will try out each of these methods in the following exercises.

Exercise 1.02 – adding styles

In this exercise, we will add styles to a web page using the link element, the style element, and
the style attribute.

Understanding CSS 23

Note
The complete code for this exercise can be found at https://packt.link/yspKi.

Here are the steps:

1.	 Let’s start with a simple web page:

<!DOCTYPE html>
<html lang="en">
    <head>
        <meta charset="utf-8">
        <title>Adding styles</title>
    </head>
    <body>
        <h1>Adding styles</h1>
        <p>First paragraph</p>
        <p>Second paragraph</p>
    </body>
</html>

Before adding any styles, the web page will look like this:

Figure 1.14: The unstyled web page

https://packt.link/yspKi

Introduction to HTML and CSS24

2.	 We’ll make the text more readable by creating an external CSS file that we can link to our web
page. To do that we save a file named styles.css in the chapter_1 folder.

3.	 Add the following CSS to styles.css:

body {
    font-family: Arial, Helvetica, sans-serif;
    font-size: 18px;
    padding: 0;
    margin: 1rem;
}

h1 {
    margin: 0;
    margin-bottom: 1rem;
}

p {
    margin: 0;
    margin-bottom: .5rem;
}

4.	 Next, we need to link the file to the web page. We do this with a link element added to the
tag <head> of the web page beneath the tag <title>:

<link href="styles.css" rel="stylesheet">

5.	 Using a style element, added just before the end tag of body, we can set a different color
for all paragraph elements:

<style>
p {
    color: red;
}
</style>

Understanding CSS 25

The result will look similar to the following figure, with all paragraphs colored red:

Figure 1.15: The web page with styles applied

6.	 Finally, we will give the first paragraph a different style using an inline style attribute, setting
the color to blue and adding a line-through text decoration as follows:

<p style="color: blue; text-decoration: line-through">
    First paragraph
</p>

The result will be like the one shown in the following figure:

Figure 1.16: The web page with inline style applied

Introduction to HTML and CSS26

Note
Inline styles have precedence over CSS rules applied in a style element. We will look at specificity
and the rules of the cascade later in this chapter.

We’ve looked at how we can add styles to a web page. In the next section, we will look at the different
CSS selectors we can use to apply our styles to parts of the HTML document.

CSS selectors

To target elements in the HTML document with CSS, we use selectors. There are a lot of options
available to help you select a wide range of elements or very specific elements in certain states.

Selectors are a powerful tool and we will look at them in some detail as the different options available
can help with both web page performance and making your CSS more maintainable.

For example, you can use a selector to target the first letter of a heading, like you might expect to see
in a medieval book:

h1::first-letter {
  font-size: 5rem;
}

Or, you could use a selector to invert the colors of every odd paragraph in an article:

p {
  color: white;
  background-color: black;
}
p:nth-of-type(odd) {
  color: black;
  background-color: white;
}

We will explore a variety of the options available to us when creating selectors.

Element, ID, and class

Three commonly used selectors are as follows:

•	 Element type: For example, to select all p elements in an HTML document, we use the p
selector in a CSS ruleset. Other examples are h1, ul, and div.

Understanding CSS 27

•	 A class attribute: The class selector starts with a dot. For example, given the <h1
class="heading">Heading</h1> HTML snippet, you could target that element with
the .heading selector. Other examples are .post and .sub-heading.

•	 An ID attribute: The id selector starts with a hash symbol. For example, given the <div
id="login"> <!-- login content --> </div> HTML snippet, you could
target this element with the #login selector. Other examples include #page-footer
and #site-logo.

The universal selector (*)

To select all elements throughout an HTML document, you can use the universal selector, which is
the asterisk symbol (*). Here is an example snippet of CSS that is often added to web pages; a value
is set on the html element and then inherited by all descendant elements:

html {
    box-sizing: border-box;
}
*, *:before, *:after {
    box-sizing: inherit;
}

Using the inherit keyword and the universal selector, we can pass a value on to all the descendants
of the html element. This snippet will universally apply the border-box model to all elements and
their pseudo-elements (that’s the reason for :before and :after). You’ll learn more about the
box model and layout in the next chapter.

Attribute selectors

Attribute selectors let you select elements based on the presence of an attribute or based on the value
of an attribute. The syntax is square brackets, [], with the suitable attribute inside. There are several
variations that you can use to make matches:

•	 [attribute] will select all elements with an attribute present; for example, [href] will
select all elements with an href attribute.

•	 [attribute=value] will select all elements with an attribute with an exact value; for
example, [lang="en"] will select all elements with a lang attribute set to en.

•	 [attribute^=value] will select all elements with an attribute with a value that begins
with the matching value; for example, [href^="https://"] will select all elements with
an href attribute beginning with https://, which links to a secure URL.

Introduction to HTML and CSS28

•	 [attribute$=value] will select elements with an attribute with a value that ends with
the matching value; for example, [href$=".com"] will select all elements with an href
attribute that ends with .com.

•	 [attribute*=value] will select elements with an attribute with a value that has a match
somewhere in the string; for example, [href*="co.uk"] will select all elements with an
href attribute matching .co.uk. http://www.example.co.uk?test=true would
be a match, as would https://www.example.co.uk.

Pseudo-classes

To select an element when it is in a particular state, we have several pseudo-classes defined. The syntax
of a pseudo-class is a colon, :, followed by a keyword.

There are a great number of pseudo-classes, but most developers’ first experience of them is when
styling links. A link has several states associated with it:

•	 When an anchor element has an href attribute, it will have the :link pseudo-class applied to it

•	 When a user hovers over the link, the :hover pseudo-class is applied to it

•	 When the link has been visited, it has the :visited pseudo-class applied to it

•	 When the link is being clicked, it has the :active pseudo-class applied to it

Here is an example of applying styling to the various pseudo-class states of an anchor element:

a:link, a:visited {
  color: deepskyblue;
  text-decoration: none;
}

a:hover, a:active {
  color: hotpink;
  text-decoration: dashed underline;
}

In the following figure, we can see the first link with the :link or :visited styles applied and the
second link with the :hover or :active styles applied:

http://www.example.co.uk?test=true
https://www.example.co.uk

Understanding CSS 29

Figure 1.17: Link with and without the hover state

The cascade can cause some issues with styling links. The order in which you specify your CSS rules
for each state of the link is important. If, for example, we applied the a:hover rule before the
a:link rule in the previous example, we would not see the hover effect. A mnemonic exists for
remembering the order: love-hate. The l is for :link, the v is for :visited, the h is for :hover,
and the a is for :active.

Some other useful pseudo-classes for selecting elements in a particular interactive state include
:checked, :disabled, and :focus.

Several pseudo-classes help us select a pattern of children nested under an element. These include
:first-child, :last-child, :nth-child, :nth-last-child, :first-of-type,
:last-of-type, :nth-of-type, and :nth-last-of-type.

For example, we can use :nth-child with an unordered list to give a different style to list items
based on their position in the list:

<style>
  ul {
    font-family: Arial, Helvetica, sans-serif;
    margin: 0;
    padding: 0;
  }

  li {
    display: block;
    padding: 16px;
  }
  li:nth-child(3n-1) {
    background: skyblue;
    color: white;
    font-weight: bold;

Introduction to HTML and CSS30

  }

  li:nth-child(3n) {
    background: deepskyblue;
    color: white;
    font-weight: bolder;
  }
</style>

<!-- unordered list in HTML document -->

  Item 1
  Item 2
  Item 3
  Item 4
  Item 5
  Item 6
  Item 7

The following figure shows the result. The :nth-child pseudo-class gives you a lot of flexibility
because you can use keywords such as odd and even or functional notation such as 3n - 1:

Figure 1.18: Using the :nth-child pseudo-class

Understanding CSS 31

Pseudo-elements

Pseudo-element selectors are preceded by two colons (::) and they are used to select part of an
element. The available pseudo-elements include ::after, ::before, ::first-letter,
::first-line, ::selection, and ::backdrop.

These pseudo-elements give us a handle we can use to add stylistic elements without adding to the
HTML document. This can be a good thing if the pseudo-element has no semantic value and is purely
presentational, but it should be used with care.

Combining selectors

What makes CSS selectors particularly powerful is that we can combine them in several ways to refine
our selections. For example, we can select a subset of li elements in an HTML document that also
has a .primary class selector with li.primary.

We also have several options, sometimes called combinators, for making selections based on the
relationships of elements:

•	 To select all the li elements that are descendants of an ul element, we could use ul li.

•	 To select all the li elements that are direct children of an ul element with the primary class,
we might use ul.primary > li. This would select only the direct children of ul.primary
and not any li elements that are nested.

•	 To select a li element that is the next sibling of li elements with the selected class, we
could use li.selected + li.

•	 To select all of the li elements that are the next siblings of li elements with the selected
class, we could use li.selected ~ li.

The following figure shows the difference between using li.selected + li and li.selected
~ li. In other words, the difference between the following two CSS declarations is applied to a list
where the fourth list item has a .selected class applied to it:

  li.selected + li {
    background: deepskyblue;
    color: white;
    font-weight: bolder;
  }
  li.selected ~ li {
    background: deepskyblue;
    color: white;

Introduction to HTML and CSS32

    font-weight: bolder;
  }

Figure 1.19: Selecting the next adjacent sibling compared to selecting all of the next siblings

Let’s try out some of the selectors we’ve learned about in an exercise.

Exercise 1.03 – selecting elements

In this exercise, we will differentiate list items by styling the odd items. We will use a class selector
to style a selected item and a next-siblings combinator to style the elements after the selected item.

Note
The complete code for this exercise can be found at https://packt.link/KaThH.

The steps are as follows:

1.	 We will start with a simple web page with a ul list element and nine list items:

<!DOCTYPE html>
<html lang="en">
    <head>
        <meta charset="utf-8">
        <title>Selectors</title>
    </head>

https://packt.link/KaThH

Understanding CSS 33

    <body>
        
            Item 1
            Item 2
            Item 3
            Item 4
            Item 5
            Item 6
            Item 7
            Item 8
            Item 9
        
    </body>
</html>

2.	 So that we can style a selected item differently, we will add a selected class to the fifth list item:

            <li class="selected">Item 5

3.	 Next, we will add a style element to the head element with the following CSS:

    <head>
        <meta charset="utf-8">
        <title>Selectors</title>
        <style>
            ul {
                font-family: Arial,
                    Helvetica, sans-serif;
                margin: 0;
                padding: 0;
            }

            li {
                display: block;
                padding: 16px;
            }
        </style>
    </head>

This will remove some of the default styling of the unordered list in the browser. It will remove
margins and padding on the list and set the font style to Arial (with Helvetica and
sans-serif as a fallback).

Introduction to HTML and CSS34

4.	 Next, we will style the odd list items with the :nth-child pseudo-class. We can use the odd
keyword for this. With this style, any odd list item will have a blue background and white text:

li:nth-child(odd) {
    background-color: deepskyblue;
    color: white;
    font-weight: bold;
}

This gives us the stripy effect that we can see in the following figure:

Figure 1.20: Stripy list using :nth-child(odd)

5.	 We can style the selected class selector:

li.selected {
    background-color: hotpink;
}

Understanding CSS 35

This overrides the striped effect for those items with the selected class selector, as seen in
the following figure:

Figure 1.21: Stripy list with a selected item

6.	 Finally, we will style all of the odd-numbered list items after the selected item using the
all-next-siblings combinator. In this case, the list items numbered 7 and 9 will have an orange
background because they are the odd-numbered list items that are also siblings after the selected
item (the list item numbered 5):

li.selected ~ li:nth-child(odd) {
    background-color: orange;
}

Introduction to HTML and CSS36

The result is seen in the following figure:

Figure 1.22: Combining selectors to style a list

Style sheets can have a large number of style rules and combinations of selectors. It is good to understand
why one rule takes precedence over another one. This is where CSS specificity comes in.

CSS specificity

If we have two CSS declarations that affect the same style property of an element, how do we know
which of those declarations will take precedence?

Several factors decide the ranking of a CSS declaration and whether it is the style the browser will
apply. The term for these factors is specificity.

Understanding CSS 37

A style attribute that adds inline styles to an element has the highest specificity value. An ID selector
has a greater specificity value than a class selector and a class selector or attribute selector has a greater
specificity value than an element type. We can calculate the specificity value by giving points to each
of these specificity values.

The most common way of representing this is as a comma-separated list of integers, where the leftmost
integer represents the highest specificity. In other words, the leftmost value is the inline style attribute;
next is an ID selector; next is a class selector, pseudo-class, or attribute selector; and the rightmost
value is an element.

An inline style would have the 1, 0, 0, 0 value. An ID selector would have the 0, 1, 0, 0
value. A class selector would have the 0, 0, 1, 0 value, and an h1 selector would have the 0,
0, 0, 1 value.

Let’s look at a few examples with more complex selectors:

•	 li.selected a[href] has two element selectors (li and a), a class selector (.selected),
and an attribute selector ([href]), so its specificity value would be 0, 0, 2, 2:

Figure 1.23: Calculating the specificity of li.selected a[href]

•	 #newItem #mainHeading span.smallPrint has two ID selectors, a class selector
(.smallPrint), and a span element, so its specificity value would be 0, 2, 1, 1:

Figure 1.24: Calculating the specificity of #newItem #mainHeading span.smallPrint

Introduction to HTML and CSS38

Comparing the two selectors, we can see that the selector in the second example is more specific than
the selector in the first example.

The special case of !important
The !important keyword can be appended to the value of any CSS declaration. It sets the specificity
of that rule to have a special value of 1, 0, 0, 0, 0, which will give it precedence over any style
including inline styles.

As an example of where it can be useful, we might want to create a style rule that is reusable and lets
us hide content on a web page. If we apply this class to an element, we want that element to be hidden
and not be rendered on the web page. However, consider the following example:

<style>
div.media {
  display: block;
  width: 100%;
  float: left;
}
.hide {
  display: none;
}
</style>
<div class="media hide">
  ...Some content
</div>

We might expect our div element to be hidden because the .hide class appears second in the style
sheet. However, if we apply the specificity calculations we’ve learned about, we can see that div.
media scores 0, 0, 1, 1, and .hide only scores 0, 0, 1, 0. The div.media rule for the
display property with a block value will override the none value of the .hide class. We can’t
really use this instance of the .hide class as we don’t know whether it will have any effect.

Now, consider the same .hide class but using the !important keyword:

.hide {
  display: none !important;
}

Adding the !important keyword will make this .hide class much more reusable and useful as
we can pretty much guarantee that it will hide content as we desire.

The special case of !important 39

Note
Using !important should always be a last resort as it takes the rule out of the usual CSS
specificity and makes overriding styles more difficult.

CSS custom properties

A relatively new addition to CSS, CSS custom properties (often called CSS variables) allow you to
store a value with a name and reuse that value in multiple different CSS rules.

A CSS variable is defined as a name and a value inside a CSS ruleset. The name is prefixed with a
double hyphen, --. The value can be any valid CSS value. The selector part of the ruleset will specify
the scope of the variable. The :root selector is of﻿ten used to define variables for the whole document
but the scope could be targeted to a specific part of the document.

When applying a CSS variable we use the var() function. An optional fallback value can be given
for cases where the variable has not been set.

For example, we could set a --color-primary variable with the color hex value of #FC9C9C
on the :root of the document and then later access that variable to set the color of all paragraphs
in the document:

:root {
  --color-primary: #FC9C9C;
}

p {
  color: var(--color-primary, #FF0000);
}

The benefit of storing a value as a variable is that you can provide a semantic name for a variable and
have that used in many different places keeping, for example, the colors for a theme consistent, more
maintainable, and easier to update in the future.

We’ve learned a lot about the syntax and fundamentals of CSS in this chapter. Let’s apply some of this
knowledge to an activity.

Activity 1.02 – styling the video store template page

In the previous activity, we were tasked with creating boilerplate HTML for a web page for the Films
on Demand website. In this activity, we are going to add some style to that template page.

Introduction to HTML and CSS40

The steps are as follows:

1.	 We will start with the template from Activity 1.01, which we will save as template.html:

<!DOCTYPE html>
<html lang="en">
    <head>
        <meta charset="utf-8">
        <title>
            Films on Demand –
            <!-- Title for page goes here -->
        </title>
        <meta name="description"
            content="Buy films from our great
                     selection. Watch movies on
                     demand.">
        <meta name="viewport"
              content="width=device-width,
                       initial-scale=1">
    </head>
    <body>
        <h1>Lorem ipsum</h1>
        <p>
            Lorem ipsum dolor sit amet, consectetur
            adipiscing elit. Nullam quis scelerisque
            mauris. Curabitur aliquam ligula in erat
            placerat finibus. Mauris leo neque,
            malesuada et augue at, consectetur rhoncus
            libero. Suspendisse vitae dictum dolor.
            Vestibulum hendrerit iaculis ipsum, ac
            ornare ligula. Vestibulum efficitur mattis
            urna vitae ultrices. Nunc condimentum
            blandit tellus ut mattis. Morbi eget
            gravida leo. Mauris ornare lorem a mattis
            ultricies. Nullam convallis tincidunt
            nunc, eget rhoncus nulla tincidunt sed.
            Nulla consequat tellus lectus, in porta
            nulla facilisis eu. Donec bibendum nisi
            felis, sit amet cursus nisl suscipit ut.
            Pellentesque bibendum id libero at cursus.
            Donec ac viverra tellus. Proin sed dolor
            quis justo convallis auctor sit amet nec
            orci. Orci varius natoque penatibus et

The special case of !important 41

            magnis dis parturient montes, nascetur
            ridiculus mus.
        </p>
    </body>
</html>

2.	 We are going to link to an external CSS file. One of the difficulties with styling web pages is
handling differences between browsers. We are going to do this by adding a file to normalize
our default styles. We will use the open source normalize.css for this. Download the file
from https://packt.link/kBTXT. Add the file to a styles folder and link to it from the
template.html web page.

3.	 We are going to add a style element to the head element of template.html. In the
style element, we want to set some styles used across all pages. We want to do the following:

	� We want to set box-sizing to border-box for all elements using the universal selector (*).

	� We want to add a font family with the Arial, Helvetica, and sans-serif values
and a font size of 16 px to the whole page.

	� We want to add the #eeeae4 background color for the whole page. To do this, we will add
a div element wrapper with the pageWrapper ID, where we will set the background color
and padding to 16 px, and a full-page class, where we will set the minimum height to
100 vh (100% of the viewport height).

	� We want to add an h1 element selector that sets margin to 0 and adds padding of 16
px to the bottom of the h1 element.

Note
The solution to this activity is available on GitHub at https://packt.link/WbEPx.

In this section, we have used CSS to add color and style to a web page. We have looked at the syntax
of CSS and learned how we can use CSS selectors to apply style rules to specific parts of a web page.
We have also learned a way to calculate the specificity of CSS rules and we have learned about CSS
custom properties and how these can help make code more maintainable and understandable.

https://packt.link/kBTXT
https://packt.link/WbEPx

Introduction to HTML and CSS42

Summary
In this chapter, we have looked at how we write HTML and CSS and their roles in how a browser
understands and renders a web page.

To demonstrate our understanding, we have created a web page that we will use as a template for the
pages of a website, and we have added CSS to normalize the style and add some initial styles for the
site. Using the skills we have learned, we can now create a simple web page, add metadata to it, and
style parts of that web page as we choose.

In the next chapter, we will look at the options for structuring and laying out a web page, the elements
within it, and how we can style these for different web page layouts.

2
Structure and Layout

In the previous chapter, we learned about the basics of HTML and CSS. In this chapter, we will
consolidate this basic understanding and look at how web pages are structured with HTML and
CSS. When creating web pages using HTML, it is imperative that you use the correct elements. This
is because HTML is read by both humans and machines and so the content of a web page should be
associated with the most appropriate element. Additionally, any error in the code might be difficult
to track if the code base is too large.

The HTML language offers a vast array of different tags that we can place at our disposal. In this
chapter, we will focus on the structural elements that are used to divide the web page into its key
parts. You may be familiar with the concept of a page header or footer, and these would be examples
of structural elements. We will be looking at these amongst many other HTML structural elements.

In this chapter, we will focus our attention on the HTML5 version of the language, which is the most
current version of HTML. HTML5 offers us additional tags that enable us to make our markup more
meaningful. The developer experience is more enjoyable compared to writing XHTML as the HTML5
language is less strict with regard to syntax.

Note
XHTML is a term used to describe HTML written in conformance with XML syntax rules.
Also, in this chapter, we will use the terms “tags” and “elements” synonymously.

Web pages are typically styled using CSS. Once we have our web pages marked up correctly, we need
to know how to style these into a range of layouts. CSS offers us a range of options for laying out our
pages, but the three most common methods are float-, flex-, and grid-based layouts. In this
chapter, we will explore each of these techniques in turn.

Just knowing the various layout methods is not enough to style web pages. We will investigate the
box model, which is foundational to understanding how HTML elements are styled. We will break
this down into individual layers – the content box, padding, border, and margin. With this
knowledge in hand, you will be free to develop a host of different web page layouts.

Structure and Layout44

By the end of this chapter, you will be able to use the correct HTML5 elements to mark up a web page;
style a web page using float, flex, and grid layouts; describe how the box model works; and build a
home page and a product page layout.

The following topics will be covered in the chapter:

•	 Using correct HTML5 elements to markup a web page
•	 Styling a web page using float-, flex-, and grid-based layouts
•	 Describing how the box model works

We will now take a look at the structural elements provided by HTML and examine what the key
elements are one by one.

Technical requirements
The code files for this chapter can be found at https://packt.link/c49Po.

Examining structural elements
HTML5 provides us with a variety of tags that we can use when dividing our page into different parts.
When browsing the web, you would have noticed that web pages typically have a few common things
to them. For example, a web page will typically have a logo and page navigation area at the top of the
page. We would call this area of the page the header. You may also have noticed that the bottom of
the page may include a list of links and copyright information. We would call this area the footer. The
following diagram shows the representation of a few of the main elements of a web page:

Figure 2.1: HTML5 page elements

In this section, we will be looking at the following HTML5 page elements:

•	 header

•	 footer

https://packt.link/c49Po

Examining structural elements 45

•	 section

•	 article

•	 nav

•	 aside

•	 div

header

The header tag is used to describe the header or top area of a web page. Typically, inside this tag,
you would have the page heading, a logo, and, possibly, the page navigation. Prior to HTML5, you
would use a div tag with a class name so that the header could be styled, and its intention was clear
to developers. HTML5 improves on this by giving us a tag specifically for this very task. You will
learn more about this improvement under the Writing semantic markup section in Chapter 3. Now,
examine the following code that shows the difference between the old and new ways of writing the
markup for the header area:

<!-- old way -->
<div class="header">
  … heading, logo, nav goes here
</div>
<!-- new way -->
<header>
  … heading, logo, nav goes here
<header>

Now, let’s open the Packt website at https://www.packtpub.com/ to see how a header is
represented in an actual website. In the following diagram, you can see that the header element is
highlighted in red, illustrating where a header element is typically placed on a web page:

Figure 2.2: The header element

https://www.packtpub.com/

Structure and Layout46

In the following figure, you can see that the header element is highlighted in red. As this is an
example taken from the Packt website, you will notice that it contains items such as the company
logo, search bar, and the Sign In button:

Figure 2.3: The header element on the Packt site

footer

The footer tag is very similar to the header tag but is used at the bottom of a web page. You would
typically have the copyright information and website links inside the footer. Similarly, with the header
tag in the previous version of HTML, you would use a div tag with a class name. Since the use of
footers on web pages is so common, HTML5 provides a new tag solely for this purpose. The following
code shows the difference between the old and new way of writing the markup for the footer area:

<!-- old way -->
<div class="footer">
  … copyright, list of links go here
</div>
<!— new way -->
<footer>
  … copyright, list of links go here
<footer>

Examining structural elements 47

In the following figure, you can see that the footer element is highlighted in red, illustrating where
a footer element is typically placed on a web page:

Figure 2.4: The footer element

In the following figure, you can see that the footer element is highlighted in red. As this is an
example taken from the Packt website, you will notice it contains items such as Useful Links and
social media icons:

Figure 2.5: The footer element on the Packt site

section

The section tag is different from the header and footer tags as it can be used in many different
places on a web page. Some examples of when you would use a section tag could be for the main
content area of a page or to group a list of related images together. You use this tag anytime you want
to divide some of the markup into a logical section of the page. Again, prior to HTML5, you would
most likely use a div tag with a class name to divide a section of the page. The following code shows
the difference between the old and new way of writing the markup for the section area:

<!-- old way -->
<div class="main-content-section">
  … main content

Structure and Layout48

</div>

<!— new way -->
<section>
  … main content
</section>

In the following figure, you can see that the section element is highlighted in red, illustrating where
a section element is typically placed on a web page:

Figure 2.6: The section element

article

The article tag is used for the self-contained part of a web page. Some examples of an article could
be an individual news article or blog post. You can have multiple articles on a page, but each must
be self-contained and not dependent on any other context within the page. It is common to see the
article tag used in conjunction with section tags to divide up an article into discrete sections.
The following code shows this:

<article>
    <section>
      ...primary blog content
    </section>
    <section>
      ...secondary blog content
    </section>
</article>

Examining structural elements 49

In the following figure, you can see that the article element is highlighted in red, illustrating where
an article element is typically placed on a web page:

Figure 2.7: The article element

nav

Inside the navigation area, you will have a list of page links for the different pages of the website. Prior
to HTML5, you would again use a div tag with a class name. The following code shows the difference
between the old and new way of writing the markup for the navigation area:

<!-- old way -->
<div class="navigation">
  … list of links go here
</div>

<!-- new way -->
<nav>
  … list of links go here
</nav>

In the following figure, you can see that the nav element is highlighted in red, illustrating where a
nav element is typically placed on a web page:

Figure 2.8: The nav element

Structure and Layout50

In the following figure, you can see that the nav element is highlighted in red. As this is an example
taken from the Packt website, you will notice it contains a list of page links:

Figure 2.9: The nav element on the Packt site

aside

The aside tag is used to show content that is indirectly related to the main content of a document.
You will typically see this tag used for sidebars or for showing notes relating to some content. Again,
before the advent of HTML5, developers would use a div tag with a class name for this type of
content. The following code shows the difference between the old and new way of writing the markup
for the aside element:

<!-- old way -->
<div class="sidebar">
  … indirectly related content goes here
</div>

<!—new way -->
<aside>
  … indirectly related content goes here
</aside>

Examining structural elements 51

In the following figure, you can see that the aside element is highlighted in red, illustrating where
an aside element is typically placed on a web page:

Figure 2.10: The aside element

div

The div tag is probably the most widely used tag on the World Wide Web. In fact, if you view the
source code of your favorite website, most of the HTML elements you see will be div elements. This
tag actually stands for division and is used to divide or group content together. Although HTML5
provides specialist elements for the most common types of page groups, you will still find many uses
for using div tags. It might help to think of this element as a generic way to group the markup into
logical parts. The following are a few pieces of example code of how a div tag may be used:

<div class="sidebar">
  … indirectly related content goes here
</div>

<div class="navigation">
  <div class="navigation-inner">... navigation links go
    here
  </div>
</div>

That concludes our tour of the structural HTML elements that are important to us. We will now apply
some of this theory with the help of an exercise.

A news article web page

Now that we have an understanding of the structural elements provided by HTML5, let’s put our
newly acquired knowledge into practice by writing the structural HTML for a news article page. You
can get a sense of what this type of page will look like by visiting a popular online news website such
as https://theguardian.com or https://bbc.co.uk/news and clicking on an article.

https://theguardian.com
https://bbc.co.uk/news

Structure and Layout52

Exercise 2.01 – marking up the page

In this exercise, we will create the markup for our HTML5 page. Our aim will be to produce a page
with output, as shown in the following figure:

Figure 2.11: Expected output for the product page

Note
The complete code for this exercise can be found at https://packt.link/F3YGx.

Let’s complete the exercise with the following steps:

1.	 Create a file named news.html in VSCode.

2.	 We will use the following starter HTML document, which contains some basic styling for our
structural elements. Don’t worry if you don’t understand the CSS just yet; you will by the end
of this course:

<!DOCTYPE html>
<html>
    <head>
        <title>News article page</title>
        <style>
        :root {
            --bg-color: #659494;
            --text-color: #fff;
            --size-large: 30px;
            --size-medium: 20px;
          }

https://packt.link/F3YGx

Examining structural elements 53

          header,
          nav,
          article,
          aside,
          footer {
            background: var(--bg-color);
            border-radius: 5px;
            color: var(--text-color);
            font-family: arial, san-serif;
            font-size: var(--size-large);
            text-align: center;
            padding: var(--size-large);
            margin-bottom: var(--size-medium);
          }

          header:before,
          nav:before,
          article:before,
          aside:before,
          footer:before {
            content: '<';
          }

          header:after,
          nav:after,
          article:after,
          aside:after,
          footer:after {
            content: '>';
          }

          article {
            float: left;
            margin-right: var(--size-medium);
            width: 60%;
          }

Structure and Layout54

          aside {
            float: left;
            width: calc(40% - 140px);
          }

          footer {
            clear: both;
          }

        </style>
    </head>
    <body>
      <!-- your code will go here -->
    </body>
</html>

3.	 First, let’s add our first structural element, which is the header tag. We will place it in between
the opening and closing body tags. In this example, we will just add some text as content but,
when building a real web page, you would include things such as logos, search bars, and links:

<body>
    <header>header</header>
</body>

4.	 After our header tag comes the navigation area, which is used for including links to different
pages of the website. Once again, we will just add some text for the content but, when building
a real web page, you would include a list of links:

<body>
    <header>header</header>
    <nav>nav</nav>
</body>

5.	 For the main news article content, we will use an article tag. Once again, we will just add
some text for the content but, when building a real web page, you would include the content
of the articles:

<body>
    <header>header</header>
    <nav>nav</nav>
    <article>article</article>
</body>

Introducing wireframes 55

6.	 To the right of the article tag, we have an aside tag, which will typically contain content
such as advertising images or related content links:

<body>
    <header>header</header>
    <nav>nav</nav>
    <article>article</article>
    <aside>aside</aside>
</body>

7.	 Finally, we can finish off the markup for our web page by adding the footer tag at the bottom
of the page. For now, we will just add some text as content but, in real life, you would include
elements such as copyright information and links to other pages:

<body>
    <header>header</header>
    <nav>nav</nav>
    <article>article</article>
    <aside>aside</aside>
    <footer>footer</footer>
</body>

If you now right-click on the filename in VSCode on the left-hand side of the screen and select Open
in default browser, you will see the web page in your browser.

If you look at this page in your browser, you may not be impressed with what you see, but you actually
have the foundations in place for a web page.

In this section, we learned the most common HTML structural elements including header, nav, and
div elements. We got to practice using these elements by creating pages for our news article web page.

In the next section, we will briefly learn about wireframes, which are used heavily in commercial web
design project teams. We will again get some more practice with our newly learned HTML elements
and build a video store home page.

Introducing wireframes
When working on commercial projects, it is common for web page designs to be provided to web
developers in the form of a wireframe. A wireframe is a low-fidelity design that provides enough
information about a page for the developer to start coding. Usually, they will not include much visual
design information and are focused on the main structure of a page.

Structure and Layout56

The following figure is an example of a wireframe for a new home page:

Figure 2.12: Example of a wireframe

Introducing wireframes 57

Activity 2.01 – video store home page

Suppose you are a frontend developer working for a tech start-up. You have been asked to build a home
page for the online video store. You have been given the following wireframe from the UX designer:

Figure 2.13: Wireframe as per the UX designer’s expectation

Using your newly acquired HTML5 knowledge, you can start to convert the wireframe into working
HTML code. At this stage, you should just be concerned with writing the structural HTML tags and
shouldn’t worry about content right now. The aim will be to achieve a web page like the following
output screenshot:

Figure 2.14: Expected output of video store home page

Structure and Layout58

The steps are as follows:

1.	 Create a file named home.html in VSCode.

2.	 Use the following code as a page skeleton. Again, do not worry about not understanding the
styling part of the code:

<!DOCTYPE html>
<html>
    <head>
        <title>Video store home page</title>
        <style>
          :root {
            --bg-color: #659494;
            --text-color: #fff;
            --size-large: 30px;
            --size-medium: 20px;
          }

          header,
          nav,
          section,
          footer {
            background: var(--bg-color);
            border-radius: 5px;
            color: var(--text-color);
            font-family: arial, san-serif;
            font-size: var(--size-large);
            text-align: center;
            padding: var(--size-large);
            margin-bottom: var(--size-medium);
          }

          header:before,
          nav:before,
          section:before,
          footer:before {
            content: '<';
          }

          header:after,
          nav:after,
          section:after,

Learning CSS page layouts 59

          footer:after {
            content: '>';
          }

        </style>
    </head>
    <body>
<!-- your code will go here -->
    </body>
</html>

3.	 Start adding the HTML5 structural elements inside the body tag one by one, the same as we
did in Exercise 2.01, marking up the page.

4.	 As with Exercise 2.01, marking up the page, we will just add the tag name for content such as
header and footer.

If you now right-click on the filename in VSCode on the left-hand side of the screen and select Open
in default browser, you will see the web page in your browser.

Hopefully, you are now getting a feel for the process of putting basic web pages together. We will build
on this knowledge in the coming exercises.

Note
The solution to this activity can be on GitHub at https://packt.link/rMCWY.

We are now ready to start making our web pages more realistic by learning some CSS page
layout techniques.

Learning CSS page layouts
CSS provides us with a range of possibilities for laying out web pages. We will be looking into the
three most common techniques for laying out web pages. These are as follows:

•	 float

•	 flex

•	 grid

Armed with this knowledge, combined with your knowledge of HTML structural tags, you will be
able to code a range of web page layouts. The concepts learned in this part of the chapter will form
the core of your frontend development skillset and you will use these techniques over and over
throughout your career.

https://packt.link/rMCWY

Structure and Layout60

Video store product page

In order to gain a solid understanding of how these three different approaches to layout work, we
shall use a video store product listing page as a concrete example. We will work through solutions to
the following design using the three most common layout techniques, one by one. For the examples
that follow, we will only be concerned with the product section of the page:

Figure 2.15: Product page wireframe

float-based layouts

The float-based CSS layout technique is the oldest of the three. Whilst CSS provides us with improved
techniques for layout, the float-based layout is still used today. Having a firm grasp of how float-
based layouts work in practice will set you up for more advanced styling segments in this book.

float property

The CSS float property, when applied to an element, will place the element to either the left or right
of its containing element. Let’s examine a few examples of the most common values for this property.

To float elements to the right, you would use the right value, as shown in the following code:

float: right;

Learning CSS page layouts 61

Whereas to float elements to the left, you would use the left value, as shown in the following code:

float: left;

The none value isn’t used as frequently but, with the following code, it can be handy if you wish to
override either the left or right values:

float: none;

width property

When we apply the float property to elements, we typically will also want to give the element an
explicit width value as well. We can either give a value in pixels or percentages. The following code
shows the input for width in pixels, that is, by writing px after the value:

width: 100px;

The following code shows the input for width as a percentage, that is, by entering the % symbol
after the value:

width: 25%;

Clearing floated elements

As the name suggests, floated elements do, in fact, appear to float in relation to the other non-floated
elements on the page. A common issue with floated elements inside a container is illustrated in the
following figure:

Figure 2.16: Floating elements illustration

Note
This solution to clearing floated elements has been used for simplicity.

Structure and Layout62

There are many solutions to this issue, but by far the easiest solution is to apply the following CSS to
the containing element:

section {
  overflow: hidden;
}

With the preceding code added to the container, we will now have floated elements contained inside
the wrapping element, as illustrated in the following figure:

Figure 2.17: Cleared floats illustration

The following example code shows how you could achieve the preceding layout using float:

<!-- HTML -->
<section>
  <div>product 1</div>
  <div>product 2</div>
  <div>product 3</div>
  <div>product 4</div>
  <div>product 5</div>
  <div>product 6</div>
  <div>product 7</div>
  <div>product 8</div>
</section>

/* CSS */
section {
  overflow: hidden;
}

div {
  float: left;
  width: 25%;
}

Learning CSS page layouts 63

To take a deeper dive into more advanced uses of the float property, you can have a look at the
Mozilla Developer Network MDN page here: https://developer.mozilla.org/en-US/
docs/Web/CSS/float.

flex-based layouts

The flex-based CSS layout technique is a new and improved alternative to the float-based approach.
With flex, we have much more flexibility and can easily achieve complex layouts with very little
code. With flex, we no longer have to worry about clearing floating elements. We will now look into
some of the key properties and values in order to let us build the product page layout using flex.

flex container

When developing flex-based layouts, there are two key concepts you must first understand. The first
is the flex container, which is the element that contains the child elements. To activate a flex layout,
we must first apply the following code to the container or parent element that holds the individual items:

display: flex;

We also have to choose how we want the container to handle the layout of the child elements. By
default, all child elements will fit into one row. If we want the child elements to show on multiple rows,
then we need to add the following code:

flex-wrap: wrap;

flex items

Now that we know how to set the flex container up, we can turn to the child elements. The main
issue of concern here is the need to specify the width of the child elements. To specify this, we need
to add the following code:

flex-basis: 25%;

You can think of this as being equivalent to the width in our float-based example.

The following example code shows how you could achieve the product layout, as shown in Figure 2.15,
using flex:

<!-- HTML -->
<section>
  <div>product 1</div>
  <div>product 2</div>
  <div>product 3</div>
  <div>product 4</div>
  <div>product 5</div>

https://developer.mozilla.org/en-US/docs/Web/CSS/float
https://developer.mozilla.org/en-US/docs/Web/CSS/float

Structure and Layout64

  <div>product 6</div>
  <div>product 7</div>
  <div>product 8</div>
</section>

/* CSS */
section {
  display: flex;
  flex-wrap: wrap;
}

div {
  flex-basis: 25%;
}

To take a deeper dive into more advanced uses of the flex property, you can have a look at the MDN
page here: https://developer.mozilla.org/en-US/docs/Web/CSS/flex.

grid-based layouts

The grid-based CSS layout technique is the newest of the three different approaches we will be
exploring. This new approach was introduced in order to simplify the page layout and offer developers
even more flexibility vis-à-vis the previous two techniques. We will now look into some of the key
properties and values to enable us to build the product page layout using a grid-based approach.

grid container

When developing grid-based layouts, there are two key concepts you must first understand. The first
is the grid container, which is the element that contains the child elements. To activate a grid layout,
we must first apply the following code to the parent element:

display: grid;

Now that we have activated the container to use the grid-based layout, we need to specify the
number and sizes of our columns in the grid. The following code would be used to have four equally
spaced columns:

grid-template-columns: auto auto;

grid items

When we used float and flex layouts, we had to explicitly set the width of the child elements.
With grid-based layouts, we no longer need to do this, at least for simple layouts.

https://developer.mozilla.org/en-US/docs/Web/CSS/flex

Learning CSS page layouts 65

We will now put our new-found knowledge into practice and build the product cards shown in
Figure 2.15. We will use the grid layout technique since the product cards are actually within a grid
layout, comprising four equally spaced columns.

To take a deeper dive into more advanced uses of the grid property, you can have a look at the MDN
page here: https://developer.mozilla.org/en-US/docs/Web/CSS/grid.

Exercise 2.02 – a grid-based layout

In this exercise, we will create our CSS page layout with the aim of producing a web page where six
products are displayed. The following figure shows how the output should appear:

Figure 2.18: Expected output for the grid-based layout

Note
The complete code for this exercise can be found at https://packt.link/H3VBm.

The following are the steps to complete this exercise:

1.	 Let’s begin with the following HTML skeleton and create a file called grid.html in VSCode.
Don’t worry if you do not understand the CSS used here; you will soon enough:

<!DOCTYPE html>
<html>
<head>
  <title>Grid based layout</title>
  <style type="text/css">
    :root {

https://developer.mozilla.org/en-US/docs/Web/CSS/grid
https://packt.link/H3VBm

Structure and Layout66

            --bg-color: #659494;
            --text-color: #fff;
            --size-large: 100px;
            --size-small: 20px;
    }

    div {
      background: var(--bg-color);
      color: var(--text-color);
      text-align: center;
      margin: var(--size-small);
      padding: var(--size-large);
    }
  </style>
</head>
<body>
</body>
</html>

2.	 Next, we will add the product items using div tags, which are placed inside a section tag. We
will just add a product with a number inside each item, so we know what product each represents:

<body>
  <section>
    <div>product 1</div>
    <div>product 2</div>
    <div>product 3</div>
    <div>product 4</div>
    <div>product 5</div>
    <div>product 6</div>
    <div>product 7</div>
    <div>product 8</div>
  </section>
</body>

3.	 Now, let’s add the following CSS in order to activate the grid-based layout. If you compare
this to the other two techniques for laying out web pages, the code is very minimal:

section {
  display: grid;
  grid-template-columns: auto auto auto auto;
}

The box model 67

If you now right-click on the filename in VSCode on the left-hand side of the screen and select Open
in default browser, you will see the web page in your browser.

If you now look at this page in your web browser, you should see a layout resembling the one shown
in the screenshot.

We will now take a detour and look into some fundamental concepts of how CSS styles HTML elements.

The box model
So far, all the elements on our pages look almost identical because we have not learned how to adjust
the size of each element. We are now ready to progress to more realistic page designs by introducing
a foundational layout concept called the box model.

Try to picture each HTML element as a box made up of different layers. The different layers are the
element’s content box, padding, border, and margin. We will explore each of these layers
one by one. The following figure illustrates how all aspects of the box model relate to one another.
You can see that the margin is the outermost part, followed by the element’s border and padding
between the border and content area:

Figure 2.19: The box model

We will now look at each of the box model elements, in turn, starting with the innermost content box.

The content box

The content box is the part of the element where the actual content lives. This is typically text
but could contain other child elements or media elements such as images. The most important CSS
properties for this layer are width and height. As a developer, you would typically give these values

Structure and Layout68

expressed in pixels or percentages. The following code shows some example values, followed by the
corresponding output figure for these properties:

width: 200px;
height: 100px;

In the following figure, we will see what the content area looks like after CSS is applied to the
preceding code:

Figure 2.20: The content box

Next, we will work our way out to the next layer of the box model – padding.

padding

The padding area is the layer that provides spacing between the content box and the border. The
amount of spacing in this layer can be specified in all directions – top, right, bottom, and left. CSS
provides a padding property where you can specify values for the amount of spacing in all directions.
If you want to apply the same amount of padding in all directions, you can just give a single value. If
you want to apply the same values for vertical and horizontal directions, you can specify two values. It
also provides direction-specific properties – padding-top, padding-right, padding-bottom,
and padding-left. The following code shows a number of example values for these properties:

/* 50px of padding applied in all directions */
padding: 50px;

/* 50px of padding applied vertically and 0px applied horizontally */
padding: 50px 0;

/* 10px of padding applied to the top */
padding-top: 10px;

/* 10px of padding applied to the right */
padding-right: 10px;

The box model 69

/* 10px of padding applied to the bottom */
padding-bottom: 10px;

/* 10px of padding applied to the left */
padding-left: 10px;

The following figure illustrates what the content and padding areas would look like after CSS is
applied to the following code:

width: 200px;
height: 100px;
padding: 25px;

Figure 2.21: Padding

Now that we understand how the content and padding layers relate to one another, we will work
our way out to the next layer of the box model – the border.

border

The border area is the layer that sits between the end of the padding area and the beginning of
the margin. By default, the border isn’t visible; it can only be seen when you explicitly set a value that
will allow you to see the border. Similar to the padding property, CSS provides a shorthand property
called border, and also the direction-specific properties – border-top, border-right,
border-bottom, and border-left. All of these properties require three values to be provided:
the width of the border, the border style, and finally, the color of the border. The following code
shows some example values for these properties:

/* border styles applied in all directions */
border: 5px solid red;

/* border styles applied to the top */
border-top: 5px solid red;

Structure and Layout70

/* border styles applied to the right */
border-right: 15px dotted green;

/* border styles applied to the bottom */
border-bottom: 10px dashed blue;

/* border styles applied to the left */
border-left: 10px double pink;

The following figure illustrates how the four different border styles would appear if applied to an element:

Figure 2.22: Border styles

The following figure illustrates what the content, padding, and border layers would look like
after CSS is applied to the following code:

width: 200px;
height: 100px;
padding: 25px;
border: 10px solid black;

Figure 2.23: border

The box model 71

Now that we understand how the content, padding, and margin layers relate to one another,
we will work our way out to the final layer of the box model – margin.

margin

The margin area is the layer that provides spacing between the edge of the border and out toward
other elements on the page. The amount of spacing in this layer can be specified in all directions – top,
right, bottom, and left. The CSS provides a margin property where you can specify values for the
amount of spacing in all directions. It also provides direction-specific properties – margin-top,
margin-right, margin-bottom, and margin-left. The following code shows a number
of example values for these properties:

margin: 50px;
margin: 50px 0;

margin-top: 10px;
margin-right: 10px;
margin-bottom: 10px;
margin-left: 10px;

The following figure illustrates what the content, padding, border, and margin layers would
look like after CSS is applied to the following code:

width: 200px;
height: 100px;
padding: 25px;
border: 10px solid black;
margin: 25px;

Figure 2.24: margin

Structure and Layout72

To get some practice looking at how different HTML elements, make use of the box model; you can
use the web tools inspector in your favorite browser. In Chrome, you can inspect an element and
investigate how the box model is used for each element. If you inspect an element and then click the
Computed tab on the right-hand side, you will see a detailed view. The following figure shows an
example of an element from the Packt website revealing the values for properties from the box model:

Figure 2.25: Chrome web tools box model inspection view

In the following exercise, we will play around with the different box model properties to get some
practice with box model-related CSS properties.

Exercise 2.03 – experimenting with the box model

The aim of this exercise will be to create the three boxes as shown in the following output screenshot:

Figure 2.26: Expected boxes

Note
The complete code for this exercise can be found at https://packt.link/TwIuv.

https://packt.link/TwIuv

The box model 73

The steps to complete the exercise are as follows:

1.	 First, let’s add the following HTML skeleton to a file called boxes.html in VSCode:

<!DOCTYPE html>
<html>
<head>
  <title>Experimenting with the box model</title>
  <style type="text/css">
  </style>
</head>
<body>
  <div class="box-1">Box 1</div>
  <div class="box-2">Box 2</div>
  <div class="box-3">Box 3</div>
</body>
</html>

2.	 Now, let’s add some CSS to the first box, observing the width, height, padding, and
border properties we are adding. We will add the CSS in between the opening and closing
style tags, as shown in the following code, to render the following figure:

<style type="text/css">
  .box-1 {
    float: left;
    width: 200px;
    height: 200px;
    padding: 50px;
    border: 1px solid red;
  }
</style>

Figure 2.27: Output for box 1

Structure and Layout74

3.	 Now, let’s add the CSS to the second box in Figure 2.25, observing how the width, height,
padding, and border properties differ from the first box. We are using percentage-based
measurements for the width and height properties, as shown in the following code, to render
the following figure:

  .box-2 {
    float: left;
    width: 20%;
    height: 20%;
    padding-top: 50px;
    margin-left: 10px;
    border: 5px solid green;
  }

Figure 2.28: Output for boxes 1 and 2

4.	 Finally, let’s add the CSS to the third box in Figure 2.25, observing how the width, height,
padding, and border properties differ from the first and second boxes, as shown in the
following code, to render the following figure:

  .box-3 {
    float: left;
    width: 300px;
    padding: 30px;
    margin: 50px;
    border-top: 50px solid blue;
  }

The box model 75

Figure 2.29: Output for boxes 1, 2, and 3

If you now right-click on the filename in VSCode on the left-hand side of the screen and select Open
in default browser, you will see the web page in your browser.

This should give you a sense of what’s possible with the box model. Feel free to change the various
properties and experiment with different combinations.

Putting it all together

We now know how to correctly mark up a web page with the correct HTML5 structural tags. We also
know how to use the three most popular CSS layout techniques. Finally, we have an understanding
of how the box model works. We will now build the two complete web pages, combining all of the
things we have learned so far in this chapter.

Exercise 2.04 – home page revisited

In this exercise, we will be using the wireframe in Figure 2.13 for a home page design used in Activity
2.01 – video store home page. We will build a version of this page, incorporating the concepts from
the box model topic. Our aim will be to build a page with the following output figure:

Figure 2.30: Expected output of home page

Structure and Layout76

Note
The complete code for this exercise can be found at https://packt.link/t9oEe.

The steps to complete this exercise are as follows:

1.	 Create a new file called home.html in VSCode.

2.	 Use the following HTML code as a start file. Again, don’t worry if some of the CSS doesn’t make
sense to you. We will look into this part of the styling in more detail in Chapter 3:

<!DOCTYPE html>
<html>
    <head>
        <title>Video store home page</title>
        <style>
        :root {
            --bg-color: #659494;
            --text-color: #fff;
            }

          header,
          nav,
          section,
          footer {
            background: var(--bg-color);
            border-radius: 5px;
            color: var(--text-color);
            font-family: arial, san-serif;
            font-size: 30px;
            text-align: center;
          }

          header:before,
          nav:before,
          section:before,
          footer:before {
            content: '<';
          }

https://packt.link/t9oEe

The box model 77

          header:after,
          nav:after,
          section:after,
          footer:after {
            content: '>';
          }
        </style>
    </head>
    <body>
      <header>Header</header>
    <nav>Nav</nav>
    <section>Main Content</section>
    <footer>Footer</footer>

    </body>
</html>

3.	 Now, let’s add some styling for the structural elements. Notice how we have used what we
have learned from The box model topic to include border, padding, and margin with
our structural elements. We will use a border to visually define the outer edge of the element,
along with some padding to add spacing between the text and the outer edge of the element
and a bottom margin to provide vertical spacing between the elements. We will add this just
before the closing style tag:

/* CSS code above */
header,
nav,
section,
footer {
  border: 1px solid grey;
  padding: 50px;
  margin-bottom: 25px;
}
</style>

If you now right-click on the filename in VSCode on the left-hand side of the screen and select Open
in default browser, you will see the web page in your browser.

You should now see a web page resembling the one shown in the home page wireframe.

Structure and Layout78

Exercise 2.05 – video store product page revisited

In this exercise, we will be using the wireframe for a product page design as in Figure 2.15. We will
build a more realistic version incorporating the box model. Our aim will be to build a page along the
lines of the following output screenshot:

Figure 2.31: Expected output for the video store product page

Note
The complete code for this exercise can be found at https://packt.link/cLkov.

The steps to complete the exercise are as follows:

1.	 Create a new file called product.html in VSCode with the following code:

<!DOCTYPE html>
<html>
<head>
  <title>Video store product page</title>
  <style>
  </style>
</head>
<body>
</body>
</html>

https://packt.link/cLkov

The box model 79

2.	 In order to add styling, add the following code in between the style tags:

    :root {
            --bg-color: #659494;
            --text-color: #fff;
        }

header, nav, section, footer {
      background: var(--bg-color);
      border-radius: 5px;
      color: var(--text-color);
      font-family: arial, san-serif;
      font-size: 30px;
      text-align: center;
    }
    header:before, nav:before, footer:before {
      content: '<';
    }
    header:after, nav:after, footer:after {
      content: '>';
    }

3.	 We will now add the HTML for the page elements, which are header, nav, section, and
footer. The product items will be div elements inside the section element, as shown in
the following code:

<body>
  <header>header</header>
  <nav>nav</nav>
  <section>
    <div>product 1</div>
    <div>product 2</div>
    <div>product 3</div>
    <div>product 4</div>
    <div>product 5</div>
    <div>product 6</div>
    <div>product 7</div>
    <div>product 8</div>
  </section>
  <footer>footer</footer>
</body>

Structure and Layout80

4.	 Now, let’s add some styling for the structural elements. This is the same code as in the previous
exercise. We will use a border to visually define the outer edge of the element, along with some
padding to add spacing between the text and the outer edge of the element and a bottom
margin to provide vertical spacing between elements. Again, we will add the CSS just before
the closing style tag:

/* CSS code above */

header,
nav,
section,
footer {
  border: 1px solid grey;
  padding: 20px;
  margin-bottom: 25px;
}
</style>

5.	 We will now need to add some styling for the product cards. We will use the grid layout
technique, as this will allow our code to be as concise as possible:

/* CSS code above */

section {
  display: grid;
  grid-template-columns: auto auto auto auto;
}

section div {
  border: 2px solid white;
  padding: 30px;
  margin: 10px;
}
</style>

If you now right-click on the filename in VSCode on the left-hand side of the screen and select Open
in default browser, you will see the web page in your browser.

You should now see a web page resembling the one shown in the product page wireframe.

Activity 2.02 – online clothes store home page

Suppose you are a freelance web designer/developer and have just landed a new client. For your first
project, the client wants a web home page developed for their online clothes store.

Using the skills learned in this chapter, design and develop the home page layout for the new online store.

Summary 81

The steps are as follows:

1.	 Produce a wireframe, either by hand or by using a graphics tool, for the new home page layout.

2.	 Create a file named home.html in VSCode.

3.	 Start writing out the markup for the page.

4.	 Now, style the layout with CSS.

The following figure shows the expected output for this activity:

Figure 2.32: Expected output for the online clothes store home page

Note
 The complete code for this activity can be found at https://packt.link/kd3k5.

Summary
In this chapter, we have begun our journey into building web pages. Knowing the range of HTML
tags available to you is crucial in writing well-formed HTML documents. These include the header,
footer, and section tags.

You should now feel comfortable taking a visual design or wireframe and converting this into the
skeleton of an HTML document. We also looked at three common ways of styling a page layout with
CSS. These involved the use of float-, flex-, and grid-based layout techniques. We then looked
into what makes up the box model and used this knowledge to build the home and product pages of
the video store.

In the next chapter, we will learn about the non-structural HTML elements used for content on a web
page. We will then look into a number of common styling approaches to these elements using CSS.

https://packt.link/kd3k5

3
Text and Typography Styling

In the previous chapter, you may have been frustrated that our web pages only dealt with the page
structure and didn’t contain any actual content. In this chapter, we will look at the HTML elements
that are used for text-based page content. You are probably familiar with most of these elements from
using word processing applications when writing documents. These HTML elements include elements
such as headings, paragraphs, and lists.

As you are aware, when building web pages, the markup is only one aspect. We also need to style the
elements of a page. We will take a look at issues concerning the styling of these text-based elements.
We will also look into concerns such as cross-browser consistency. Finally, we will walk through
some exercises to develop common web page components, such as navigation bars and breadcrumbs.

Text and typography are very important, as a visually appealing web page will ensure that a web user
spends more time on it (which may be good for business conversion).

A highly functional, fast, and efficient website may not attract users if the text/typography is of poor
quality. Thus, these are crucial elements while designing a web page, and this chapter equips you with
the necessary tools in HTML/CSS to create visually appealing and aesthetic web pages.

 The following topics will be covered in the chapter:

•	 Learn common text-based HTML elements

•	 Learn common styling techniques for these text-based elements

•	 Learn how to write high-quality semantic markup

By the end of this chapter, you will be able to identify the most suitable heading element for a web
page, use the most common text-based HTML elements, develop common web page features such
as navigation and breadcrumbs, explain the importance of semantic markup, and convert a design
into semantic markup.

This chapter introduces the text-based elements used for web page content. We will first take a tour
through the text-based HTML elements. We will then look into the styling of these elements, and
finally, put this into practice with some exercises related to building common web page components.

Text and Typography Styling84

Technical requirements
The code files for this chapter can be found at https://packt.link/kgVfh.

Creating text-based elements
HTML provides us with a variety of elements that are used for text-based content. While browsing
the web, you might have noticed that web pages typically have similar text-based content. Most web
pages will contain a page heading. The content will typically comprise headings, paragraphs, and lists.
HTML equips you with tools to format such elements within a web page.

In this section, we will be looking at the following HTML text-based elements:

•	 Headings

•	 Paragraphs

•	 Inline text elements

•	 Lists

Headings

Heading elements in HTML offer six levels of hierarchy, ranging from h1 to h6. Now, h1 is typically
only used once on a page, as it is the topmost heading for the document as a whole. The following code
snippet shows how all of these headings are used and what they look like in the browser by default:

<h1>Heading level 1</h1>
<h2>Heading level 2</h2>
<h3>Heading level 3</h3>
<h4>Heading level 4</h4>
<h5>Heading level 5</h5>
<h6>Heading level 6</h6>

https://packt.link/kgVfh

Creating text-based elements 85

A web page from the preceding code would appear as follows:

Figure 3.1: Headings shown in a browser

Paragraphs

Paragraphs in HTML can be represented using the p tag. On a web page, you might have chunks of
the core content of a topic presented to the reader. Such content is included under a p tag in HTML.
The following code snippet shows how you would include paragraphs in a document and what they
look like by default in the browser:

<p>Horatio says 'tis but our fantasy,
And will not let belief take hold of him
Touching this dreaded sight, twice seen of us.
Therefore I have entreated him along,
With us to watch the minutes of this night,
That, if again this apparition come,
He may approve our eyes and speak to it.</p>

<p>Tush, tush, 'twill not appear.</p>

<p>Sit down awhile, And let us once again assail your ears,
That are so fortified against our story,
What we two nights have seen.</p>

Note
The text used for the preceding code is a work of Shakespeare from https://
www.opensourceshakespeare.org/views/plays/play_view.
php?WorkID=hamlet&Act=1&Scene=1&Scope=scene.

https://www.opensourceshakespeare.org/views/plays/play_view.php?WorkID=hamlet&Act=1&Scene=1&Scope=scene
https://www.opensourceshakespeare.org/views/plays/play_view.php?WorkID=hamlet&Act=1&Scene=1&Scope=scene
https://www.opensourceshakespeare.org/views/plays/play_view.php?WorkID=hamlet&Act=1&Scene=1&Scope=scene

Text and Typography Styling86

A web page for the preceding code will appear as follows:

Figure 3.2: Paragraphs shown in a browser

Inline text elements

As a designer of web pages, you may often find yourself in a situation where you need to highlight
special terms in a paragraph. Fortunately, HTML provides a solution to this.

It is possible to add what are called inline elements around text contained within paragraphs. Imagine
using a word processor – you are able to make words bold, underlined, italicized, and so on. HTML
provides developers with this ability, and we will now look at some of the most common examples.

•	 If you want to emphasize some text, you can use the em tag. An example of how you would
use this and what it would look like in a browser is shown here:

<p>I need to wake up now!</p>

A web page for the preceding code would appear as follows:

Figure 3.3: The em tag as it appears on a web page

•	 When you want to show some text that has serious importance, you can use the strong tag.
An example of how you would use this and what it would look like in a browser is shown here:

<p>
  Before leaving the house
  remember to lock the front door!
</p>

A web page for the preceding code would appear as follows:

Figure 3.4: The strong tag as it appears on a web page

Creating text-based elements 87

•	 Perhaps the most important of all the inline text-based elements is the anchor element, which
allows you to add hyperlinks. To inline a link, you use an a tag wrapped around some text. An
example of how you would use this and what it would look like in a browser is shown here:

<p>
  Please click
  here
  to go to google
</p>

A web page for the preceding code would appear as follows:

Figure 3.5: Anchor as it appears on a web page

•	 Another important inline element for you to learn to use is the span tag. This is similar to
the div tag but is used for inline elements. The span tag is used as a generic way to divide
up content and has no inherent meaning, unlike the other inline tags mentioned previously
in this chapter. A common use case is when styling a part of an element’s content differently
from the rest of the content. The following code shows an example of this:

/* styles */
.red {
  color: red;
}

.green {
  color: green;
}

.blue {
  color: blue;
}

<!-- markup -->
<p>
  My favorite colors are
  red,
  green and
  blue.
</p>

Text and Typography Styling88

A web page for the preceding code would appear as follows:

Figure 3.6: Paragraph with highlighted words as it appears on a web page

Lists

Another common type of text-based element that you will be very familiar with is the list. In HTML,
these come in three different types – an unordered list, an ordered list, and a definition list. We will
take a look at the differences between these types of lists and when you should use them.

1.	 Let’s begin by taking a look at by far the most common type of list, the unordered list, which is
expressed in HTML as ul, with li used for the list items. You will most likely be very familiar
with this type of list in your everyday life. A common example of this type of list could be a
shopping list or a list of things you need to pack before going on holiday. What makes this type
of list unordered is the fact that the order of the items in the list isn’t important. The following
code shows an example of this type of list as you would use it in HTML:

<!-- Shopping list -->

  Ice Cream
  Cookies
  Salad
  Soap

A web page for the preceding code would appear as follows:

Figure 3.7: An unordered list as it appears on a web page

2.	 Following the unordered list, we have the ordered list, which is expressed in HTML as ol,
with li used for the list items. You are probably also quite familiar with this type of list in
your everyday life. A common use case for the ordered list could be a recipe shown in a list of
sequential steps. With this type of list, the ordering is important, unlike in the unordered list
we just looked at. The following code shows an example of this type of list as you would use
it in HTML:

<!-- Cheese on toast recipe -->

  Place bread under grill until golden brown

Creating text-based elements 89

  Flip the bread and place cheese slices
  Cook until cheese is golden brown
  Serve immediately

A web page for the preceding code would appear as follows:

Figure 3.8: An ordered list as it appears on a web page

3.	 If you want to use an unordered or ordered list but don’t want to show bullet points or numbers,
respectively, you have a range of options. Using CSS, you can customize the style of the list
using the list-style property:

/* Alternative styles for unordered lists */
.square {
  list-style-type: square;
}

.circle {
  list-style-type: circle;
}

/* Alternative styles for ordered lists */
.upper-alpha {
  list-style-type: upper-alpha;
}

.upper-roman {
  list-style-type: upper-roman;
}

/* HTML */
<ul class="square">
  Square list style

<ul class="circle">
  Circle list style

Text and Typography Styling90

<ul class="upper-alpha">
  Upper alpha list style

<ul class="upper-roman">
  Upper roman list style

4.	 The following figure shows the output of the preceding code:

Figure 3.9: An unordered list shown with the different list styles

It is also possible to nest lists and use different list styles for each list. In the following HTML
code, you can see that we have different lists being nested:

  Numbered
  <ol class="alphabetic">
    Alphabetic
    <ol class="roman">
      Roman
      Roman
    
    Alphabetic
  
  Numbered

We just need to add two class names to style the two nested lists with alphabetic and Roman
list styles, as shown here:

.alphabetic {
  list-style: upper-alpha;
}

.roman {
  list-style: upper-roman;
}

Creating text-based elements 91

The following figure shows the output of the preceding code:

Figure 3.10: Nested lists shown with different list styles

5.	 The third type of list is the definition list, which is expressed in HTML as dl. Although this type
of list is used less frequently than the two other types of lists, you will probably still be familiar
with it. The definition list is used when you want to list out pairs of terms and descriptions. The
most common use of this type of list is probably dictionary entries. You have the word you are
interested in, which is the term, dt, followed by the definition, which is the description, dd.
The following is an example of this type of list as you would use it in HTML:

<!-- Dictionary -->
<dl>
  <dt>HTML</dt>
  <dd>Hypertext markup language</dd>

  <dt>CSS</dt>
  <dd>Cascading style sheets</dd>
</dl>

A web page for the preceding code would appear as follows:

Figure 3.11: A definition list as it appears on a web page

Exercise 3.1 – combining text-based elements

In this exercise, we will use the following screenshot from the Packt website and write the HTML
to match it as closely as possible. This will give us some practice in creating text-based content and
recreating the correct HTML for it.

Text and Typography Styling92

The following figure shows the sample piece of content that we will recreate from the Packt website:

Figure 3.12: A screenshot from the Packt website

Note
The complete code for this exercise can be found at https://packt.link/7W3nk.

Let’s complete the exercise with the following steps:

1.	 Start by creating a new file in VS Code called text.html, and use the following code as a
starting point:

<!DOCTYPE html>
<html>
  <head>
    <title>Combining text based elements</title>
  </head>
  <body>
    <!-- your code will go here -->
  </body>
</html>

2.	 Looking at the preceding screenshot, we can see that we will need a heading. Since the heading
is not the top-level heading for the page, we will use h2 in this instance. We will wrap the tag
around the text in between the opening and closing body tags, as follows:

<body>
  <h2>eBook Support</h2>
</body>

3.	 Below the heading, we have a list of bullet points. We can assume that these are unordered and,
hence, use an ul tag for them. Note that each list item contains a link as well, so we need to
include an anchor tag for each. We will place our code just below the h2 heading, as follows:

<body>
  <h2>eBook Support</h2>

https://packt.link/7W3nk

Creating text-based elements 93

  
    
      If you experience a problem with using or
      installing Adobe Reader, then contact Adobe
      directly at
      
        www.adobe.com/support
      
    
    
      To view the errata for the book, see
      
      www.packtpub.com/support
      
      and view the pages for the title you have.
    
    
      To view your account details or to download a
      new copy of the book, go to
      
        www.packtpub.com/account
      
    
  
</body>

If you now right-click on the filename in VS Code on the left-hand side of the screen and select Open
in default browser, you will see the web page in your browser:

Figure 3.13: The output of combining text-based elements

You are now getting a feel for the various text-based HTML elements and when you should use them.
Before we start looking into how we will go about styling the HTML elements we have just learned
about, we will take a look at semantic markup.

Text and Typography Styling94

Working with new text-based elements
Now, we will take a quick look at some new additions to the HTML language that allow us to further
refine our text markup. These elements, while not used as regularly as the previous elements, are
useful to know or be aware of.

In this section, we will look at the following HTML text-based elements:

•	 address

•	 details

•	 abbr

address

The address element is used to mark up content that contains contact information. This could be
an email address, phone number, physical address, or even a social media profile:

<address>
  You can visit us at:

  123 HTML Street
  London
  E1 101
</address>

A web page from the preceding code would appear as follows:

Figure 3.14

Details

The details element creates a widget that allows content to be toggled as visible and hidden to the
user. You have to provide a label for the widget using the summary element and provide the hidden
content inside of the details element, as shown here:

<details>
  <summary>More info</summary>
  More information goes here…
</details>

Working with new text-based elements 95

A web page from the preceding code would appear as follows:

Figure 3.15

And this is what it would look like after clicking the label:

Figure 3.16

Abbr

The abbr element is used to mark up content that represents an abbreviation or acronym. This is
used all over the place in the tech world, so it can be a handy element to know about when adding
content that includes acronyms or abbreviations, such as the following:

<p>
  You are learning to code in
  <abbr>HTML</abbr>
  (HyperText Markup Language) and
  <abbr>CSS</abbr>
  (Cascading Style Sheets)
</p>

A web page from the preceding code would appear as follows:

Figure 3.17

Now that we have become familiar with some of the newer HTML text-based elements, we will
take a look at the concept of “semantic markup,” which is essential knowledge you will need when
building websites.

Text and Typography Styling96

Writing semantic markup
You will hear the word “semantic” used often when you read or hear about HTML. The core concept
behind semantic markup is to ensure that you use the most meaningful HTML element available to
describe the content you mark up. For example, it would be possible for you to wrap the top-level page
heading in a div tag; however, the h1 tag conveys the meaning that the content represents – that is,
heading level 1. The HTML you write needs to be understandable to both humans and machines and
by using the most meaningful element for each piece of content, you improve the meaning of both.

Ensuring that the HTML you write is as semantic as possible also has additional important benefits.
The first is that it will make your web pages more easily searchable by search engines. You will also
be helping out users who view your websites using a screen reader.

The following code shows some examples of semantic and non-semantic markup:

<!-- Semantic markup -->

<h1>I am a top level page heading</h1>
<p>
  This is a paragraph which contains a word with
  strong significance
</p>

<!-- Non semantic markup -->
<div>
  I am a top level page heading
</div>
<div>
  This is a paragraph which contains a word with
  strong significance
</div>

Hopefully, you now understand the differences between semantic and non-semantic markup. Now
that we have some knowledge of the most commonly used HTML elements for content, we can turn
to the more fun part of styling.

Styling text-based elements
Until now, we have seen some of the basic text formatting that HTML allows you to implement on
a web page. However, depending on the function and the purpose that a web page serves, we might
need some styling applied to the text-based elements. Here, we will introduce the common issues
surrounding the styling of web page content. We will introduce the different units of measurement,
including pixels and relative units. We will then walk through some examples of how to style common
web components, such as breadcrumbs and navigation bars.

Styling text-based elements 97

CSS resets

As you begin styling web pages, you will soon realize that different browsers render your pages slightly
differently from each other. This can be very frustrating and makes the task of developing websites
that look the same across different browsers a nightmare.

Luckily, there is a well-known solution to alleviate at least some of this frustration. A CSS reset is a
style sheet whose sole purpose is to level the playing field across browsers. This file will be loaded
before any of your page-specific styles are added. The following is an example of the most basic form
of CSS reset code:

* {
  margin: 0;
  padding: 0;
}

What this will ensure is that all HTML elements will have zero margins and padding before you apply
your custom styles to your page. This gets around the issue of different browsers by default adding
varying amounts of padding and margin to certain elements.

Although using this reset would be better than having no reset at all, there are more sophisticated CSS
resets available. The following shows a popular CSS reset developed by Eric Meyer:

/* http://meyerweb.com/eric/tools/css/reset/
   v2.0 | 20110126
   License: none (public domain)
*/

html, body, div, span, applet, object, iframe, h1, h2, h3, h4, h5,
h6, p, blockquote, pre, a, abbr, acronym, address, big, cite, code,
del, dfn, em, img, ins, kbd, q, s, samp, small, strike, strong, sub,
sup, tt, var, b, u, i, center, dl, dt, dd, ol, ul, li, fieldset,
form, label, legend, table, caption, tbody, tfoot, thead, tr, th, td,
article, aside, canvas, details, embed, figure, figcaption, footer,
header, hgroup, menu, nav, output, ruby, section, summary, time, mark,
audio, video {
  margin: 0;
  padding: 0;
  border: 0;
  font-size: 100%;
  font: inherit;
  vertical-align: baseline;
}
/* HTML5 display-role reset for older browsers */
article, aside, details, figcaption, figure, footer,
header, hgroup, menu, nav, section {

Text and Typography Styling98

  display: block;
}
body {
  line-height: 1;
}
ol, ul {
  list-style: none;
}
blockquote, q {
  quotes: none;
}
blockquote:before, blockquote:after,
q:before, q:after {
  content: '';
  content: none;
}
table {
  border-collapse: collapse;
  border-spacing: 0;
}

As you can see, this is more detailed than our first example and would give us a better chance of
reducing cross-browser inconsistencies in our web pages.

CSS text properties

When styling text-based elements with CSS, there are two main groupings of properties you will see
used over and over again. These are groups of properties that are based on text and fonts. We will
begin by looking at the most commonly used text-based CSS properties that you will need to become
familiar with.

The first property we will look at is color, which, as the name suggests, is used to set the text color.
You will typically set the color value using either hexadecimal, RGB, or a name.

For hexadecimal values, you specify two hexadecimal integers for the colors red, green, and blue. The
values you provide range from 00 to FF, with FF being the most intense version of the specific color
and 00 being the least intense. For example, #FF0000 will be the highest intensity of the color red.

RGB-based colors are different from hexadecimal values because you provide a value between 0 and
255 for each color, with 0 being the lowest intensity and 255 being the maximum intensity.

The following code shows some examples of what this would look like in code form:

h1 {
  color: green;

Styling text-based elements 99

}

p {
  color: #00ff00;
}

span {
  color: rgb(0, 255, 0);
}

We will learn more about text colors and background colors in Chapter 7.

You may have noticed that all the text we have seen so far aligns to the left by default. With CSS, we
have the power to change this using the text-align property. You can style your text to be left-
aligned, centered, or right-aligned. The following shows some examples of what this would look like
in code form:

p {
  text-align: center;
}

A web page for the preceding code would appear as follows:

Figure 3.18: Centrally aligned text as it appears on a web page

Note
The text used to explain the CSS text properties is a work of Shakespeare from https://
www.opensourceshakespeare.org/views/plays/play_view.
php?WorkID=hamlet&Act=1&Scene=1&Scope=scene.

If you want to underline some text, you can use the text-decoration property, which gives you
the ability to strike through text as well:

.underline {
  text-decoration: underline;
}

https://www.opensourceshakespeare.org/views/plays/play_view.php?WorkID=hamlet&Act=1&Scene=1&Scope=scene
https://www.opensourceshakespeare.org/views/plays/play_view.php?WorkID=hamlet&Act=1&Scene=1&Scope=scene
https://www.opensourceshakespeare.org/views/plays/play_view.php?WorkID=hamlet&Act=1&Scene=1&Scope=scene

Text and Typography Styling100

A web page for the preceding code would appear as follows:

Figure 3.19: Underlined text as it appears on a web page

.line-through {
  text-decoration: line-through;
}

A web page for the preceding code would appear as follows:

Figure 3.20: Strikethrough text as it appears on a web page

Another common styling requirement for text is the ability to control how it is capitalized. For this, we
have the text-transform property, which gives you the ability to transform the text. By default,
the text is set to lowercase, but with this property, you can set the text to all caps or title case. The
following code shows how you would use this property:

.uppercase {
  text-transform: uppercase;
}

A web page for the preceding code would appear as follows:

Figure 3.21: Uppercase text as it appears on a web page

.lowercase {
  text-transform: lowercase;
}

Styling text-based elements 101

A web page for the preceding code would appear as follows:

Figure 3.22: Lowercase text as it appears on a web page

.capitalize {
  text-transform: capitalize;
}

A web page for the preceding code would appear as follows:

Figure 3.23: Title-case text as it appears on a web page

Finally, on our tour of the most used text-based CSS properties, we have the line-height property,
which is used to control the amount of vertical spacing between lines of text. This is a property you
will see used over and over again, as different types of copy will require different line heights. We will
see two extreme examples of how small and large line-height values affect the readability of the text:

.small-line-height {
  line-height: .5;
}

A web page for the preceding code would appear as follows:

Figure 3.24: A small line-height as it appears on a web page

.large-line-height {
  line-height: 1.5;
}

Text and Typography Styling102

A web page for the preceding code would appear as follows:

Figure 3.25: A large line-height as it appears on a web page

CSS font properties

The second group of CSS properties we are concerned with is font-based properties. These are responsible
for defining the font family, the size of the font, and the weight. We will now take a quick tour of the
most commonly used CSS font properties that you should become familiar with.

The first property we will look at is the font-family property, which, as you might have guessed,
sets the font family. When using this property, you will usually provide a list of different font families
in order of priority. If the web browser doesn’t support your first choice of font, it will default to the
second or find a font family it can load. The following code shows how this property can be used:

body {
  font-family: "Times New Roman", Times, serif;
}

The browser will attempt to load the "Times New Roman", font from the user’s computer first. If it
cannot load the font, then it will try “Times” and if this fails, it will load the generic “serif ” font family.

Now that we know how to set the correct font family for our text, we will need to control the size. For
this, we can use the font-size property. You can set the value of the size using pixels or relative
units, such as ems. The following shows examples of this property’s use:

/* pixels */
h1 {
  font-size: 50px;
}

p {
  font-size: 16px;
}

/* ems */
h1 {
  font-size: 3.125em;

Styling text-based elements 103

}

p {
  font-size: 16px;
}

The benefit of using ems for the unit of measurement is that it allows the user to control the font size.
By default, a browser’s font size is set to 16 px, but if a user wants to increase their default font size,
they can. With em units, the font sizes will scale according to the base font size. With pixels used as
units, you give the user less flexibility in controlling font sizes.

The last font-based CSS property we will look at is the font-weight property. This is used to
control the weight of a font, typically to make a font bold, as by default, the weight is set to normal.
The following shows you how this would look in code:

span {
  font-weight: bold;
}

We now have all the knowledge we require to build a realistic-looking web page. We will put this
theory into practice by building components for web pages one by one.

The display Property

Before we move on to the next exercise, we need to look into a new CSS property called display.
By default, elements are either set to block or inline. Now, block elements will take up all
horizontal space, while inline elements only take up as much horizontal space as their content.
An example of a block-level element is a div tag, and an example of an inline element is span.
Sometimes, you need to style a block element as an inline element, and vice versa. You can do
this by using the following CSS:

div {
  display: inline;
}

span {
  display: block;
}

The video store product page (revisited)

Remember the video store product page examples from Chapter 2, where we stepped through several
CSS layout techniques? We are going to be using a more detailed version of this page to work through
some exercises, demonstrating how to code some of the key components on a page. By doing this, we

Text and Typography Styling104

should be able to put most of the theory from this chapter into practice. The following figure is the
revised wireframe for the page:

Figure 3.26: The video store product page revisited

Exercise 3.2 – navigation

In this exercise, we will step through the process of writing the HTML and CSS for the navigation
component shown in the preceding wireframe. The following figure shows the navigation component
in more detail:

Figure 3.27: Navigation

Styling text-based elements 105

Note
The complete code for this exercise can be found at https://packt.link/RnVPJ.

The following are the steps to complete this exercise:

1.	 First, let’s create a file called nav.html in VS Code using the following HTML code as a
starter file:

<!DOCTYPE html>
<html>
  <head>
    <title>Exercise 3.02</title>
    <style>
      /* your CSS will go here */
    </style>
  </head>
  <body>
    <!-- your HTML will go here -->
  </body>
</html>

2.	 Next, we need to decide on how we should semantically mark up this component. We will
start with the nav tag, which we learned about in the previous chapter. We will place this in
between the opening and closing body tags, as follows:

<body>
  <nav></nav>
</body>

3.	 For the actual list of navigation links, using ul is most appropriate, as the order isn’t of any
significance. We will place the code for ul in between our nav tags, as follows:

<body>
  <nav>
    
      Videos to rent
      Videos to buy
      Used DVDs
      Offers
    
  </nav>
</body>

https://packt.link/RnVPJ

Text and Typography Styling106

4.	 Since users of the web page will want to be able to click on each of the navigation items, we
must add anchors for each item. We will place the anchors around the text contained in our
list items, as follows:

<body>
  <nav>
    
      Videos to rent
      Videos to buy
      Used DVDs
      Offers
    
  </nav>
</body>

5.	 We will now have a look in the browser at what this will look like by default without any
custom styling. To do this, right-click on the filename in VS Code on the left-hand side of
the screen and select open in default browser. You should see something that resembles the
following screenshot:

Figure 3.28: Default navigation

6.	 This is very different from what we want the navigation to look like. To correct this, we will
now add some CSS to more closely match the navigation component shown in the wireframe.
We will start by adding a basic CSS reset, which will be placed in between the opening and
closing style tags, as follows:

<style>
  {
    margin: 0;
    padding: 0;
  }
</style>

7.	 We will use the flex layout technique we learned about in Chapter 2. We will also remove
the default bullets shown to the left of the list items:

<style>
  {

Styling text-based elements 107

    margin: 0;
    padding: 0;
  }

  nav ul {
    display: flex;
    list-style: none;
  }
</style>

8.	 We will now add some styling to the links so that they are no longer blue and more closely
resemble the links shown in the wireframe. We will make the text bold, remove the default
underline that gets applied to the links, and give the link some padding:

  nav a {
    color: black;
    font-weight: bold;
    display: block;
    padding: 15px;
    text-decoration: none;
  }

The following figure shows the output of the web page so far:

Figure 3.29: The output without hover

9.	 Finally, to apply the hover selector on the anchor elements and set the link text to underline
when a user hovers over the text, we will add the following code:

  nav a:hover {
    text-decoration: underline;
  }

10.	 If you now right-click on the filename in VS Code on the left-hand side of the screen and select
open in default browser, you will see the navigation component in your browser.

You should now see something that looks like the following screenshot:

Figure 3.30: Styled navigation

Text and Typography Styling108

Breadcrumbs

On websites that have lots of pages, it is common for pages to contain what is called breadcrumbs.
This is a list of links that easily allow a user to see the context of the current page within the website
structure and easily navigate to the parent pages. The following screenshot shows a breadcrumb taken
from the Packt website at https://www.packtpub.com/

Figure 3.31: A breadcrumb from the Packt web page

As you can see in the preceding figure, web pages can contain many parent pages or categories. The
breadcrumbs of the current page are for a book in the Packt online store. Moving from right to left,
the breadcrumb links get more specific, moving from the home page to the closest parent page. The
user is free to click on any link, which will take them back to a page related to the current page.

Exercise 3.3 – breadcrumbs

In this exercise, we will step through the process of writing the HTML and CSS for the breadcrumb
component shown in Figure 3.22. The following figure shows it in more detail:

Figure 3.32: A breadcrumb

Note
The complete code for this exercise can be found at https://packt.link/fWsaJ.

The following steps show how to complete a breadcrumb component similar to the preceding example:

1.	 First, let’s create a file called breadcrumb.html in VS Code using the following HTML
code as a starter file:

<!DOCTYPE html>
<html>
  <head>
    <title>Exercise 3.03</title>
    <style>
      /* your CSS will go here */
    </style>
  </head>

https://packt.link/fWsaJ

Styling text-based elements 109

  <body>
    <!-- your HTML will go here -->
  </body>
</html>

2.	 Next, we need to decide what the best HTML tag will be for the breadcrumb. Since this is a
list of links and the ordering is important, we will use ol. We will place this in between the
body tags, as follows:

<body>
  <ol class="breadcrumb">
    Home
    Used DVDs
    Less than £10
  
</body>

3.	 We will then add anchors to all but the last item, as that represents the current page the user
is viewing so doesn’t need to be clickable:

<body>
  <ol class="breadcrumb">
    Home
    Used DVDs
    Less than £10
  
</body>

4.	 Let’s now take a look at what this will look like in the browser:

Figure 3.33: The default breadcrumb

5.	 We will now start adding our styling. Again, we will start with a basic CSS reset, and we will
add the styles in between the opening and closing style tags, as follows:

<style>
  {
    margin: 0;
    padding: 0;
  }
</style>

Text and Typography Styling110

6.	 We will use the flex layout technique again, which we learned about in the previous chapter,
and remove the default numbers from the ordered list:

<style>
  {
    margin: 0;
    padding: 0;
  }

  .breadcrumb {
    display: flex;
    list-style: none;
  }
</style>

7.	 Let’s style the list items in the ordered list. We will first add some padding to the list of items.
Then, we will add a forward slash at the end of all the list items except the last one. We will add
some margin to the left to ensure that our list items are nicely separated:

  .breadcrumb li {
    padding: 10px;
  }

  .breadcrumb li:after {
    content: '/';
    margin-left: 20px;
  }

  .breadcrumb li:last-child:after {
    content: '';
  }

8.	 Finally, we will style the anchors, making sure the color of the text is black and only showing
an underline when a user hovers over the link:

  .breadcrumb a {
    color: black;
    text-decoration: none;
  }

  .breadcrumb a:hover {
    text-decoration: underline;
  }

Styling text-based elements 111

9.	 If you now right-click on the filename in VS Code on the left-hand side of the screen and select
open in default browser, you will see the breadcrumb component in your browser.

You should now see something similar to the following figure in your browser:

Figure 3.34: A styled breadcrumb

Exercise 3.4 – the page heading and introduction

We will now write the HTML and CSS for the heading and introduction section of the wireframe.
The following figure shows it in more detail:

Figure 3.35: The introduction section

Note
The complete code for this exercise can be found at https://packt.link/JcamP.

The steps to complete the exercise are as follows:

1.	 First, let’s create a file called text.html in VS Code using the following HTML code as a
starter file:

<!DOCTYPE html>
<html>
  <head>
    <title>Exercise 3.04</title>
    <style>
      /* your CSS will go here */
    </style>
  </head>
  <body>

https://packt.link/JcamP

Text and Typography Styling112

    <!-- your HTML will go here -->
  </body>
</html>

2.	 Then, let’s decide on the correct markup to use. Since the heading represents the top-level
heading for the page, we will use h1 and then a plain p for the introduction. We will place the
HTML in between the opening and closing body tags:

<body>
  <section class="intro">
  <h1>Videos less than £10</h1>
  <p>
    Lorem ipsum dolor sit amet, consectetur adipiscing
    elit. In bibendum non purus quis vestibulum.
    Pellentesque ultricies quam lacus, ut tristique
    sapien tristique et.
  </p>
  </section>
</body>

3.	 Let’s now take a look at what this looks like in the browser:

Figure 3.36: The default introduction section

4.	 This is actually pretty close to how we want these elements to look. We will just adjust the
heading margin and the line height for the paragraph to make the text more readable. We will
place the CSS in between the opening and closing style tags, as follows:

<style>
  .intro {
    margin: 30px 0;
    padding-left: 10px;
    width: 50%;
  }

  .intro h1 {
    margin-bottom: 15px;
  }

Styling text-based elements 113

  .intro p {
    line-height: 1.5;
  }
</style>

5.	 If you now right-click on the filename in VS Code on the left-hand side of the screen and select
open in default browser, you will see the heading and paragraph.

You should now see something similar to the following figure in your browser:

Figure 3.37: A styled introduction section

Exercise 3.5 – product cards

In this exercise, we will step through the process of writing the HTML and CSS for the product card
component shown in the wireframe. The following figure shows the product card in more detail:

Figure 3.38: The product card

Note
The complete code for this exercise can be found at https://packt.link/KatBg.

https://packt.link/KatBg

Text and Typography Styling114

The steps to complete the exercise are as follows:

1.	 First, let’s create a file called product.html in VS Code using the following starter file:

<!DOCTYPE html>
<html>
  <head>
    <title>Exercise 3.05</title>
    <style>
      /* your CSS will go here */
    </style>
  </head>
  <body>
    <!-- your HTML will go here -->
  </body>
</html>

2.	 Next, let’s use a div tag with a class name for the outer wrapper of the component. We will
place this in between the opening and closing body tags, as follows:

<body>
  <div class="product-card">

  </div>
</body>

3.	 Now, let’s add an image tag; we will add the image URL and some alt text:

<body>
  <div class="product-card">
    <img
      src="https://dummyimage.com/300x300/7EC0EE/
        000&text=Product+Image+1"
      alt="Product image 1" />
  </div>
</body>

4.	 We will then use h2 for the heading. Note how we wrap the text in an anchor so that the user
will be able to click on the card:

<body>
  <div class="product-card">
    <img
      src="https://dummyimage.com/300x300/7EC0EE/
        000&text=Product+Image+1"

Styling text-based elements 115

      alt="Product image 1" />
    <h2>Video title 1</h2>
  </div>
</body>

5.	 Now, we will add the markup for the pricing information. Note that we will add a class name
to allow us to style the information individually:

<body>
  <div class="product-card">
    <img
      src="https://dummyimage.com/300x300/7EC0EE/
        000&text=Product+Image+1"
      alt="Product image 1" />
    <h2>Video title 1</h2>
    <p class="original-price">RRP: £18.99</p>
    <p class="current-price">
      Price you pay £9.99
      
    </p>
    <p class="saving">Your saving £9</p>
  </div>
</body>

6.	 Let’s now take a look at what this looks like in the browser without any styling added:

Figure 3.39: The default product card

Text and Typography Styling116

7.	 Now, let’s add some styling for the product card container in between the style tags, as follows.
Note how we give the product card a black border and some padding:

<style>
  .product-card {
    display: inline-block;
    border: 1px solid black;
    padding: 15px;
  }
</style>

8.	 Then, we will add some styling for the individual elements of the product card. Starting with
the image element, we will ensure the width of the image stretches to 100% by adding the
following code:

  .product-card img {
    width: 100%;
  }

We will add a margin to the level 2 header using the following code:
  .product-card h2 {
    margin: 30px 0 15px;
  }

The following code styles the links:
  .product-card a {
    color: black;
    text-decoration: none;
  }

With the help of the following code, we will style the paragraph element:
  .product-card p {
    line-height: 1.5;
  }

We will add the following code to style the original price, current price, and the savings, as per
the wireframe shown in Figure 3.34:

  .original-price {
    color: grey;
    text-transform: uppercase;
  }
  .current-price span {
    font-weight: bold;

Styling text-based elements 117

    text-decoration: underline;
  }
  .saving {
    color: green;
  }

If you now right-click on the filename in VS Code on the left-hand side of the screen and select open
in default browser, you will see the product component in your browser.

You should now see something similar to the following figure in your browser:

Figure 3.40: A styled product card

Exercise 3.6 – putting it all together

Now that we have built the individual parts of the product page, we have the fun task of putting them
all together to assemble a web page. We will be able to reuse the code we have written already and
just need to make minor tweaks to the CSS to get the page looking good. Our aim is to produce a web
page that resembles the wireframe shown in the following figure:

Text and Typography Styling118

Figure 3.41: The wireframe of the expected output

Note
The complete code for this exercise can be found at https://packt.link/bHkEr.

The steps to create the preceding product page are as follows:

1.	 First, let’s create a file called product-page.html in VS Code. We will use the following
HTML page template; note that we will use an inline style sheet to make things easier:

<!DOCTYPE html>
<html>
<head>
  <title>Video product page</title>
  <style type="text/css">
    {

https://packt.link/bHkEr

Styling text-based elements 119

      margin: 0;
      padding: 0;
    }
  body {
    font-family: sans-serif;
    margin: 0 auto;
    width: 1200px;
  }
  header {
    align-items: center;
    display: flex;
    margin-bottom: 25px;
  }
  nav {
    margin-left: 30px;
  }
  .product-cards {
    display: grid;
    grid-template-columns: auto auto auto;
    margin-bottom: 30px;
  }
  /* your styles will go here */
  </style>
</head>
<body>
  <header>
    <img
      src="https://dummyimage.com/200x100/000/
        fff&text=Logo"
      alt=""
    />
    <!-- navigation will go here -->
  </header>
  <section>
    <!-- breadcrumb will go here -->
  </section>
  <!-- introduction section will go here -->
  <section class="product-cards">
    <!-- product cards will go here -->
  </section>
</body>
</html>

Text and Typography Styling120

2.	 Now, let’s add the navigation CSS, which is the same as the code used in Exercise 3.2 – navigation,
to the following HTML from the same exercise:

    <nav>
      
        Videos to rent
        Videos to buy
        Used DVDs
        Offers
      
    </nav>

3.	 Then, we will add the styles for the breadcrumb component, which are the same ones used in
Exercise 3.3 – breadcrumbs, to the following HTML from the same exercise:

  <section>
    <ol class="breadcrumb">
      Home
      Used DVDs
      Less than £10
    
  </section>

4.	 We will then add the introduction section’s CSS, which is the same as that of Exercise 3.4 – the
page heading and introduction, to the following HTML from the same exercise:

  <section class="intro">
    <h1>Videos less than £10</h1>
    <p>
      Lorem ipsum dolor sit amet, consectetur
      adipiscing elit. In bibendum non purus quis
      vestibulum. Pellentesque ultricies quam lacus,
      ut tristique sapien tristique et.
    </p>
  </section>

5.	 Finally, we will add the product card’s CSS, which is the same as that of Exercise 3.5 – product
cards, to the following HTML from the same exercise:

  <section class="product-cards">
    <div class="product-card">
      <img
        src="https://dummyimage.com/300x300/000/
          fff&text=Product+Image+1"
        alt=""
      />

Styling text-based elements 121

      <h2>Video title 1</h2>
      <p class="original-price">RRP: £18.99</p>
      <p class="current-price">
        Price you pay £9.99
      </p>
      <p class="saving">Your saving £9</p>
    </div>
<!-- Similar to the above product card 1 that is video title 1,
the product cards for video titles 2, 3, and 4 can be copied
from Exercise 3.05, Product Cards -->
  </section>

6.	 If you now right-click on the filename in VS Code on the left-hand side of the screen and select
open in default browser, you will see the web page.

You should now see something similar to the following figure in your browser:

Figure 3.42: A styled product page

Text and Typography Styling122

Activity 3.1 – converting a newspaper article to a web page

Get a copy of a recent newspaper, choose a particular article, and note down what HTML elements
would be used if the paper were a web page. Then, create a web page version of the newspaper article,
using semantic markup and CSS to recreate the layout as closely as possible:

1.	 Get a copy of a newspaper article and annotate it with a pen to label the individual HTML elements.

2.	 Create a file named home.html in VS Code. You can use the starter HTML from a previous
exercise as a starting point.

3.	 Start writing out the HTML for the news article.

4.	 Finally, style the text and layout using CSS.

An example of how you could annotate a newspaper article to distinguish the different page elements
can be seen in the following figure:

Figure 3.43: An annotated article sample

Note
The solution to this activity is available on GitHub at https://packt.link/6D8aL.

https://packt.link/6D8aL

Summary 123

Summary
In this chapter, we continued our journey into building web pages. We first looked at the most common
text-based HTML elements, such as headings, paragraphs, and lists. We then looked into the most
common styling methods available for text-based content. To put this new knowledge into practice,
we then walked through building a complete web page.

We took some time to understand the concept and importance of writing semantic HTML. We were
also introduced to some common web page components, such as navigation and breadcrumbs.

In the next chapter, we will learn how to take our web pages to the next level. We will learn how to
make our web pages far more interesting by adding videos, animation, and forms.

Part 2:
Understanding Website

Fundamentals

In this part, we’ll explore the fundamental principles of creating interactive web applications. We’ll
start by learning how to create and style forms, laying a strong foundation for user interaction. Next,
we’ll explore techniques for animating web pages to enhance the user experience with smooth, intuitive
flows. Finally, we’ll delve into themes, color schemes, and polishing techniques to elevate the visual
appeal of your website, all while optimizing performance.

This section contains the following chapters:

•	 Chapter 4, Creating and Styling Forms

•	 Chapter 5, Adding Animation to Web Pages

•	 Chapter 6, Themes, Color, and Polishing Techniques

4
Creating and Styling Forms

In the previous chapters, we studied how to build web pages that contain static text-based content. From
this chapter onward, we will learn how to make web pages much more interesting, starting with forms.

Forms allow users to actually interact with a website. They enable users to sign up for services, order
products online, and so on. Forms are arguably one of the most crucial aspects of business websites,
as without forms, no transactions can take place online. Businesses require online forms to capture
user details when new user accounts are created, allowing users to select flight details when booking a
holiday online, for instance. Without forms, many online businesses would not be able to function. With
this in mind, developing complex forms is an essential skill to add to your toolbelt as a web developer.

In this chapter, we will take a look at the most common elements that are used to build forms with
HTML. These HTML elements include text inputs, radio buttons, checkboxes, text areas, and submit
buttons. Once we’ve gained an understanding of the most commonly used form elements, we will look
at styling concerns. This will include techniques to make our form elements look visually appealing
to a wide range of users. We will put all of this into practice by building different online forms.

The following topics will be covered in the chapter:

•	 Learning common form-based HTML elements

•	 Learning common styling techniques for these form-based elements

•	 Learning how to make forms accessible

By the end of this chapter, you will be able to use the correct HTML form elements to build an online
form, customize form elements to improve the look and feel of your web forms, build online forms,
apply form validation styles, and identify when to use checkboxes over radio buttons.

This chapter introduces HTML forms and associated elements used within forms. We will first look at
the most common HTML form elements used when building forms. We will then take a look at some
common techniques for styling forms. We will then put all of this into practice by building signup
and checkout forms for a video store.

Creating and Styling Forms128

Technical requirements
The code files for this chapter can be found at https://packt.link/Aq9iN.

Introducing form elements
HTML provides us with a variety of elements that are used to build forms. While browsing the web,
you may have noticed that online forms typically have similar elements. Most forms will contain input
fields such as text inputs, checkboxes, and select boxes.

In this section, we will look at the following HTML form elements:

•	 form

•	 input

•	 label

•	 textarea

•	 fieldset

•	 select

•	 button

form

The first element we need to know about when creating forms is the form element. This is the
outermost element, which contains all other form elements, such as inputs and buttons. The form
element requires you to pass two attributes, which are the action and method attributes. The
action attribute allows a developer to specify the URL that the form data will go to after it has been
submitted. The method attribute allows the developer to specify whether the form data should be
sent via get or post. You will typically use the get method when you deal with unsecured data,
since it will be present in a query string. Conversely, the post method is typically used when you
deal with secure data or a large amount of soft data. The following code snippet shows an example of
what an empty form would look like in HTML:

<form action="url_to_send_form_data" method="post">
  <!-- form elements go here -->
</form>

input

Now that we have our form element, we can start building a form using different elements. The first
one we will look at is the input element. This is the element you would use when creating text input
fields, radio buttons, and checkboxes. The input element is the most important of all the form elements

https://packt.link/Aq9iN

Introducing form elements 129

we will look at, and you will find yourself using it over and over again. The input element requires
two attributes, which are type and name. The type attribute is used to specify what type of input
you want, such as radio buttons, checkboxes, or text. The name attribute gives the element a unique
name that is required when submitting the form. This is so that the form’s data can be organized into
key-value pairs with a unique name, corresponding to a value. It should be noted that the order
in which you add the attributes has no significance. The following code snippet shows how to create
a text field using the input element:

<!-- text input -->
<form action="url_to_send_form_data" method="post">
  <div>
    First name:

    <input type="text" name="firstname" />
  </div>
  <div>
    Last name:

    <input type="text" name="lastname" />
  </div>
</form>

The following figure shows the output for the preceding code:

Figure 4.1: Text inputs, as shown in the browser

Sometimes, when creating text inputs, you will want to limit the number of characters a user can
add. A common example of this is when you want to restrict the number of characters for a new
username in account signup forms. You can use the maxlength attribute and set the maximum
number of characters allowed for the input field. The following code snippet shows how you would
use this attribute:

<input type="text" name="username" maxlength="20" />

There is also a specialist type of text input that is solely for email addresses. To create an email input,
you simply set the type to "email". This input type has built-in validation that checks whether
the input text is a valid email address. The following code snippet shows how to create an email input:

<!-- email input -->
<form action="url_to_send_form_data" method="post">

Creating and Styling Forms130

  <div>
    Email:

    <input type="email" name="email"/>
  </div>
</form>

The following figure shows the output for the preceding code:

Figure 4.2: The email input, as shown in the browser

There is a type of text input that is used solely for passwords. To create a password input, you simply
set the type to "password". This input type will mask the text entered by the user to hide the
password text. The following code snippet shows how to create a password input:

<!-- password input -->
<form action="url_to_send_form_data" method="post">
  <div>
    Password:

    <input type="password" name="password"/>
  </div>
</form>

The following figure shows the output for the preceding code:

Figure 4.3: Password input, as shown in the browser

When using checkboxes, you will give all of them a unique value for the name attribute, and you will
need to give each checkbox a unique value attribute, as shown in the following code:

<!-- checkboxes -->
<form action="url_to_send_form_data" method="post">
  <div>
    <input type="checkbox" name="color1" value="red" /> Red
  </div>
  <div>
    <input type="checkbox" name="color2" value="green" />
      Green
  </div>

Introducing form elements 131

  <div>
    <input type="checkbox" name="color3" value="blue" />
      Blue
  </div>
</form>

The following figure shows the output for the preceding code:

Figure 4.4: Checkboxes, as shown in the browser

With checkboxes, you can select multiple values at a time. A common use case for checkboxes is when
selecting multiple filters to search results.

When using radio buttons, you will give all of them the same value for the name attribute, since only
one value can be selected. However, you will need to give each radio button a unique value attribute,
as shown in the following code snippet:

<!-- radio buttons -->
<form action="url_to_send_form_data" method="post">
  <div>
    <input type="radio" name="color" value="red" /> Red
  </div>
  <div>
    <input type="radio" name="color" value="green" /> Green
  </div>
  <div>
    <input type="radio" name="color" value="blue" /> Blue
  </div>
</form>

The following figure shows the output for the preceding code:

Figure 4.5: Radio buttons, as shown in the browser

In contrast to checkboxes, with radio buttons, the user can select only one value. A common use case
for radio buttons is selecting a delivery option when ordering online.

Creating and Styling Forms132

To learn more about the input control, head over to the MDN documentation to see a more comprehensive
overview: https://developer.mozilla.org/en-US/docs/Web/HTML/Element/
input.

label

Now that we know how to create text inputs, checkboxes, and radio buttons, we need to look at the
label element. In the previous examples, you might have noticed that we had text associated with
the input fields either before or after an input element. The label element allows us to associate
a piece of text with a form element and select the form element by clicking on the text. If we were
to just include some text, as we did in Figure 4.1, we would lose this benefit and make our form less
accessible for screen reader users, since there would not be an associated label to call out when
presenting a form element. The label element has an attribute called for, which we need to give the
id of the element we wish to associate the label with. The following code snippet shows this in action:

<!-- text inputs with labels -->
<form action="url_to_send_form_data" method="post">
  <div>
    <label for="first_name">First name:</label>

    <input type="text" name="firstname" id="first_name" />
  </div>
  <div>
    <label for="last_name">Last name:</label>

    <input type="text" name="lastname" id="last_name" />
  </div>
</form>

The following figure shows the output for the preceding code:

Figure 4.6: Text inputs with the labels, as shown in the browser

textarea

Imagine you are creating a “comments” section for a community web page. You might want a user
to comment on a video or a blog post. However, using text input is not ideal for long text messages.
In such scenarios, when you want to allow the user to add more than one line of text, you can use
the textarea element to capture larger amounts of text. You can specify the size of textarea

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input

Introducing form elements 133

with the rows and cols attributes. The following code snippet shows how to include textarea
within a form:

<!-- textarea -->
<form action="url_to_send_form_data" method="post">
  <div>
    <label for="first_name">First name:</label>

    <input type="text" name="firstname" id="first_name" />
  </div>
  <div>
    <label for="last_name">Last name:</label>

    <input type="text" name="lastname" id="last_name" />
  </div>
  <div>
    <label for="message">Message:</label>

    <textarea id="message" rows="5" cols="20"></textarea>
  </div>
</form>

The following figure shows the output for the preceding code:

Figure 4.7: textarea, as shown in the browser

fieldset

HTML provides us with a semantic tag to group related form elements, which is called the fieldset
element. This element is mostly used with larger forms when you want to group related form elements
together. You will probably have used online forms that make use of the fieldset element without
realizing it. A common use case is when you have a large form with a section for personal details and
a section for delivery details. Both of these sections of the form would be wrapped in a fieldset
element. The following shows how we could include more than one form using fieldset:

<!-- fieldset -->
<form action="url_to_send_form_data" method="post">
  <fieldset>
    <div>

Creating and Styling Forms134

      <label for="first_name">First name:</label>

      <input
        type="text"
        name="firstname"
        id="first_name"
      />
    </div>
    <div>
      <label for="last_name">Last name:</label>

      <input type="text" name="lastname" id="last_name" />
    </div>
    <div>
      <label for="message">Message:</label>

      <textarea id="message" rows="5" cols="20"></textarea>
    </div>
  </fieldset>
  <p>Do you like HTML?</p>
  <fieldset>
    <div>
      <input type="radio" id="yes" name="yes">
      <label for="yes">Yes</label>
    </div>
    <div>
      <input type="radio" id="no" name="no">
      <label for="no">No</label>
    </div>
  </fieldset>
</form>

The following figure shows the output for the preceding code:

Figure 4.8: A form with fieldset, as shown in the browser

Introducing form elements 135

select

HTML provides us with the select element to create select boxes. These are typically used when
you have a long list of options and you want a user to select only one. Some common examples include
lists of countries, addresses, and years of birth. Inside the select element, you provide a list of
options inside of an option element. The following shows an example of how this looks in HTML:

<!-- select -->
<form action="url_to_send_form_data" method="post">
  <fieldset>
    <label for="countries">Country:</label>

    <select id="countries">
      <option value="england">England</option>
      <option value="scotland">Scotland</option>
      <option value="ireland">Ireland</option>
      <option value="wales">Wales</option>
    </select>
  </fieldset>
</form>

The following figure shows the output for the preceding code:

Figure 4.9: The select box closed, as shown in the browser

By clicking on the blue arrows on the right-hand side of the select box, we can display the options in
the following figure:

Figure 4.10: The select box open, as shown in the browser

Creating and Styling Forms136

button

Now that we finally have a range of form elements we can use to build web forms, we just need to know
how to submit a form. The button element requires a type attribute that can have three different
values – firstly, the button value, which has no default behavior; the "reset" value, which, once
clicked, will reset all form values; and finally, the "submit" value, which will submit the form once
clicked. For this, we will use the button element and give a value of "submit" in the type attribute:

<button type="submit">Submit</button>
Or
<input type="button" value="Submit" />

Exercise 4.1 – creating a simple form

In this exercise, we will write HTML to create a simple web form. Our aim is to produce the following
web form:

Figure 4.11: A simple web form, as shown in the browser

Note
The complete code for this exercise can be found at https://packt.link/PGpEh.

https://packt.link/PGpEh

Introducing form elements 137

Let’s complete the exercise by following the following steps:

1.	 Start by creating a new file in VS Code called simple-form.html, using the following
code as your starting point:

<!DOCTYPE html>
<html>
<head>
  <title>Simple form</title>
</head>
<body>
  <h1>Create new account</h1>
  <form action="url_to_send_form_data" method="post">
    <fieldset>
      <!-- your code will go here -->
    </fieldset>
  </form>
</body>
</html>

2.	 Then, we will add the HTML for the title and first name fields between the opening
and closing fieldset elements:

<fieldset>
  <div>
    <label for="title">Title:</label>

    <select id="title">
      <option value="Mr">Mr</option>
      <option value="Mrs">Mrs</option>
      <option value="Ms">Ms</option>
      <option value="Miss">Miss</option>
    </select>
  </div>
  <div>
    <label for="first_name">First name:</label>

    <input
      type="text"
      name="firstname"
      id="first_name"
    />
  </div>
</fieldset>

Creating and Styling Forms138

3.	 Next, we will add the HTML for the last name field. We will add this after the closing div
element, which wraps the HTML for the first name field:

  <div>
    <label for="first_name">First name:</label>

    <input
      type="text"
      name="firstname"
      id="first_name"
    />
  </div>
  <div>
    <label for="first_name">First name:</label>

    <input
      type="text"
      name="firstname"
      id="first_name"
    />
  </div>
  <div>
    <label for="last_name">Last name:</label>

    <input
      type="text"
      name="lastname"
      id="last_name"
    />
  </div>

4.	 Now, we will add HTML for the message field. Note how this will be a textarea element
instead of an input element to allow the user to enter more than one line of text:

  <div>
    <label for="first_name">First name:</label>

    <input
      type="text"
      name="firstname"
      id="first_name" />
  </div>
  <div>
    <label for="last_name">Last name:</label>

    <input
      type="text"
      name="lastname"
      id="last_name"

Introducing form elements 139

    />
  </div>
  <div>
    <label for="message">Message:</label>

    <textarea
      id="message"
      rows="5"
      cols="20">
    </textarea>
  </div>

5.	 Finally, we need to add the submit button, as follows:

  <div>
    <label for="first_name">First name:</label>

    <input
      type="text"
      name="firstname"
      id="first_name"
    />
  </div>
  <div>
    <label for="last_name">Last name:</label>

    <input
      type="text"
      name="lastname"
      id="last_name"
    />
  </div>
  <div>
    <label for="message">Message:</label>

    <textarea
      id="last_name"
      rows="5"
      cols="20">
    </textarea>
  </div>
  <button type="submit">Submit</button>

If you now right-click on the filename in VS Code, on the left-hand side of the screen, and select Open
in default browser, you will see the form in your browser.

Creating and Styling Forms140

You should now have a form that looks like the following figure:

Figure 4.12: The Submit button, as shown in the browser

Now that we have become acquainted with the most commonly used HTML form elements, we will
now look at how to style them.

Styling form elements
In the examples in the previous section, the forms do not look very visually appealing by default, but
luckily, we can improve the look and feel of our forms using CSS.

In this section, we will look at styling the following:

•	 Textboxes

•	 Textareas

•	 Labels

•	 Buttons

•	 Select boxes

•	 Validation styling

Labels, textboxes, and textareas

The first form elements we will look at styling are the label, textboxes, and textarea elements.
These are probably the most common form elements, and it is very straightforward to improve the
look and feel of these elements with minimal code.

To style labels, you will typically just adjust the font you use and the size of the text. It is common to
have the label element sit either on top of its associated form element or to the left.

Styling form elements 141

For textboxes and textareas, typically, you will be interested in changing the size of these elements. It
is common to remove the default border around these elements. Another common stylistic addition
to textboxes and textareas is to add a placeholder attribute that provides the user with some text,
helping them decide what needs to be typed into the textbox or textarea.

To illustrate an example of how to style these elements, we will start with the following markup, noting
the addition of placeholder attributes:

<!-- HTML -->
<form action="url_to_send_form_data" method="post">
  <div>
    <label for="first_name">First name:</label>

    <input
      type="text"
      name="firstname"
      id="first_name"
      placeholder="Your first name"
    />
  </div>
  <div>
    <label for="last_name">Last name:</label>

    <input
      type="text"
      name="lastname"
      id="last_name"
      placeholder="Your last name"
    />
  </div>
  <div>
    <label for="message">Message:</label>

    <textarea
      id="last_name"
      rows="5"
      cols="20"
      placeholder="Your message">
    </textarea>
  </div>
</form>

/* CSS */
:root {
  --border-color: #666;
}

Creating and Styling Forms142

* {
  font-family: arial,sans-serif;
}

label {
  font-size: 20px;
}

div {
  margin-bottom: 30px;
}

input,
textarea {
  border: 0;
  border-bottom: 1px solid var(--border-color);
  padding: 10px 0;
  width: 200px;
}

In the preceding CSS, note that we have applied a font family to all text elements. We have set the
label text size to 20 px and added a bottom margin to the div elements so that the form elements
are nicely spaced, vertically. Finally, we have removed the default border applied to the input and
textarea elements, replacing it with just a border on the bottom.

With just minimal CSS, we have improved the look and feel of our form drastically, as can be seen in
the following screenshot:

Figure 4.13: Styled labels, textboxes, and textarea elements

Styling form elements 143

Buttons

We will now look into styling the buttons that are used to submit a web form. Typically, you will see
buttons with various background colors and different sizes applied when viewing websites with forms.
Out of the box, the button element looks pretty ugly, so you will rarely see buttons without some
CSS applied to them. The following is an example of how you could style a submit button:

<!-- HTML -->
<button type="submit">Submit</button>

/* CSS */
:root {
  --bg-color: #999;
  --bg-active-color: #888;
  --text-color: #fff;
}

button {
  background: var(--bg-color);
  border: 0;
  color: var(--text-color);
  cursor: pointer;
  font-size: 12px;
  height: 50px;
  width: 200px;
  text-transform: uppercase;
}

button:hover {
  background: var(--bg-active-color);
}

button:active {
  background: var(--bg-color);
}

The preceding CSS sets a background color, removes the border that is added to buttons by default,
applies some styling to the button text, and finally, sets a width and height:

Figure 4.14: A styled submit button

Creating and Styling Forms144

Select boxes

The last form element we will look at for styling is the select box. Typically, this is styled to make
the select box look similar to a textbox within a form. It is common for developers to add a
custom-styled downward-pointing arrow to the right-hand side of the select box. The following
is an example of how you could style a select box:

<!-- HTML -->
<div class="select-wrapper">
  <select id="countries">
    <option value="england">England</option>
    <option value="scotland">Scotland</option>
    <option value="ireland">Ireland</option>
    <option value="wales">Wales</option>
  </select>
</div>

/* CSS */
:root {
  --border-color: #666;
}

select {
  background: transparent;
  border: 0;
  border-radius: 0;
  border-bottom: 1px solid var(--border-color);
  box-shadow: none;
  color: var(--border-color);
  padding: 10px 0;
  width: 200px;
  -webkit-appearance: none;
}

.select-wrapper {
  position: relative;
  width: 200px;
}

.select-wrapper:after {
  content: '< >';

Styling form elements 145

  color: var(--border-color);
  font-size: 14px;
  top: 8px;
  right: 0;
  transform: rotate(90deg);
  position: absolute;
  Z-index: -1;
}

The preceding CSS contains styling that essentially overrides what a select box looks like in the
browser by default. Firstly, we need to remove the default background color, cancel the border, and
apply just the bottom border. We also remove the custom box-shadow property, which is also
applied to select boxes by default. Finally, to add a custom select box icon, we use the after
pseudo selector to add the '< >' characters:

Figure 4.15: A styled select box

Validation styling

In real-world scenarios, simply formatting and styling a form appropriately is not enough. As a web
user, you may encounter cases where form validation is performed before submitting a form. For
example, while registering on a website, a user may accidentally submit a form before it is filled in
completely or submit an incorrectly filled-in form. Validation styling comes into play when you want
to highlight the fact that a form is incomplete or incorrectly filled in.

You will probably have experienced form validation on web forms you have used in the past. HTML
provides us with a required attribute, which we can apply to any form elements that we require
input for. The required attribute plays an important role in contact forms – for example, on the
Packt website’s contact form (https://www.packtpub.com/en-us/help/contact), note
that the name and email fields are required, and the user cannot submit the form until a value for
each is added.

This is in contrast with some form elements where the input is optional. With CSS, we can use the
:valid and :invalid pseudo selectors to style elements based on valid or invalid form values.
We will now do an exercise that will walk us through an example of validation styles in action.

https://www.packtpub.com/en-us/help/contact

Creating and Styling Forms146

Exercise 4.02 – creating a form with validation styling

In this exercise, we will develop a simple web form that contains some validation styling. Our aim is
to produce a web form like the one shown in the following figure:

Figure 4.16: The expected output

Note
The complete code for this exercise can be found at https://packt.link/q1PLm.

Let’s complete the exercise with the following steps:

1.	 Start by creating a new file in VS Code called validation-form.html, and use the
following code as your starting point:

<!DOCTYPE html>
<html>
<head>
  <title>Validation form</title>
  <style>

https://packt.link/q1PLm

Styling form elements 147

    body {
      font-family: arial, sans-serif;
    }
  </style>
</head>
<body>
  <form action="url_to_send_form_data" method="post">
    <fieldset>
      <!-- your code will go here -->
    </fieldset>
  </form>
</body>
</html>

2.	 We will now add the HTML for the first name and last name form fields between the
opening and closing fieldset tags. Note how we have added required attributes to both
of the input elements:

<fieldset>
  <div>
    <label for="first_name">First name:</label>

    <input
      type="text"
      name="firstname"
      id="first_name"
      placeholder="Your first name" required
    />
  </div>
  <div>
    <label for="last_name">Last name:</label>

    <input
      type="text"
      name="lastname"
      id="last_name"
      placeholder="Your last name" required
    />
  </div>
  <div>
    <label for="last_name">Country:</label>

    <div class="select-wrapper">
  <select id="countries">
    <option value="england">England</option>
    <option value="scotland">Scotland</option>

Creating and Styling Forms148

    <option value="ireland">Ireland</option>
    <option value="wales">Wales</option>
  </select>
</div>
</div>
<div>
    <label for="message">Message:</label>

    <textarea
      id="last_name"
      rows="5"
      cols="20"
      placeholder="Your message">
    </textarea>
  </div>
<div>
<button type="submit">Submit</button>
</div>
</fieldset>

3.	 Now, we will turn to the CSS. We will first add some styling, which will deal with spacing the
div and fieldset elements:

div {
  margin-bottom: 30px;
}

fieldset {
  border: 0;
  padding: 30px;
}

4.	 Next, we will style the individual form elements one by one. The label’s font size is set to 20 px,
and the styling for the input and textarea elements is the same, as shown in the following
code snippet:

label {
  font-size: 20px;
}

input,
textarea {
  border: 0;
  border-bottom: 1px solid grey;
  padding: 10px 0;
  width: 200px;
}

Styling form elements 149

With respect to the expected output as shown in Figure 4.16, we style select, as shown in
the following code snippet:

select {
  background: transparent;
  border: 0;
  border-radius: 0;
  border-bottom: 1px solid grey;
  box-shadow: none;
  color: #666;
  -webkit-appearance: none;
  padding: 10px 0;
  width: 200px;
}

We will use the following snippet of code to complete styling select:
.select-wrapper {
  position: relative;
  width: 200px;
}

.select-wrapper:after {
  content: '<>';
  color: #666;
  font-size: 14px;
  top: 8px;
  right: 0;
  transform: rotate(90deg);
  position: absolute;
  z-index: -1;
}

To style the button, we will use the styling, as shown in the following code snippet:
button {
  background: #999;
  border: 0;
  color: white;
  font-size: 12px;
  height: 50px;
  width: 200px;
  text-transform: uppercase;
}

Creating and Styling Forms150

5.	 Finally, we will add styles to validate the form elements that have a required attribute:

:root {
  --valid-color: green;
  --invalid-color: red;
}

input:valid,
textarea:valid {
  border-bottom-color: var(--valid-color);
}

input:invalid,
textarea:invalid {
  border-bottom-color: var(--invalid-color);
}

If you now right-click on the filename in VS Code, on the left-hand side of the screen, and select open
in default browser, you will see the form in your browser. When you try to submit an incomplete form
that has validation in it, it will not submit, and you will see something like the following screenshot:

Figure 4.17: A screenshot of the resultant form

Using tables for form layout 151

We have just looked into ways of styling HTML forms, including validation styling. Next, we will take
a look at how we can incorporate HTML tables for the layout of our forms.

Using tables for form layout
Now, we will take a quick look at using HTML tables for the layout of forms. We will look at the
following HTML table elements:

•	 table

•	 tr

•	 td

table

The table element is used to create a table structure in HTML composed of columns and rows. To
create a table, you first need to do this:

<table>
  … rows and columns will go here
</table>

tr

Then, we need the tr element to create a row for the table:

<table>
  <tr>
  … column will go here
  </tr>
</table>

td

Then, we need the td element to create a column for the table:

<table>
  <tr>
    <td>content here</td>
  </tr>
</table>

Creating and Styling Forms152

A table-based form layout

Now, let’s combine using a table for layout with a basic form, as we saw in a previous example in
this chapter:

<p>Do you like HTML?</p>
<table>
  <form>
    <tr>
      <td>
        <input type="radio" id="yes">
      </td>
      <td>
        <label for="yes">Yes</label>
      </td>
    </tr>
    <tr>
      <td>
        <input type="radio" id="no">
      </td>
      <td>
        <label for="no">No</label>
      </td>
    </tr>
  </form>
</table>

The following figure shows the output for the preceding code:

Figure 4.18: A table-based form, as shown in the browser

We have just looked at ways of using HTML tables to lay out our forms. Next, we will take a look at
how we can make our forms accessible so that they can be used by the widest possible range of users.

Making forms accessible
Accessibility is a growing concern for websites. It is vital we make our websites as accessible as possible
for all users. When working with forms in HTML, there are a few key areas in which we can improve
accessibility, which we will now look at:

•	 Labeling form elements

Making forms accessible 153

•	 Grouping related form elements

•	 Validating user input

Labeling form elements correctly

We have already used labels for form elements, which is one of the most crucial ways of ensuring
form accessibility. Whenever you use a label element, you need to ensure you use the for attribute,
as follows:

<label for="first_name">First name:</label>
<input id="first_name" type="text" name="first_name" />

This ensures that you explicitly associate a descriptive label with a form control.

Grouping related form elements

We previously grouped our form elements with the fieldset element, but there is an additional
element called legend that is useful for this purpose. Grouping form elements improves accessibility
by breaking down a form into smaller focused parts. It is easier for a user to understand each part of
the form at a time. Using a legend element allows you to provide a description of what the purpose
of the form is, grouped by a fieldset element. An example of this is shown here:

<fieldset>
  <legend>Favorite web language?</legend>
  <div>
    <input type="radio" id="html" name="html" />
    <label for="html">HTML</label>
  </div>
  <div>
    <input type="radio" id="css" name="css" />
    <label for="css">CSS</label>
  </div>
</fieldset>

The following figure shows the output for the preceding code:

Figure 4.19: A legend and fieldset form, as shown in the browser

Creating and Styling Forms154

Validating user input

Validating form fields is another great and easy way to improve our form’s accessibility. We improve
form accessibility by helping our users avoid mistakes when inputting data into our form fields. Luckily,
this is easy to achieve, using the required attribute for fields that we require user input from. This is
for situations where we want to ensure that the data entered is in a certain format – for example, email
addresses, website URLs, or dates. We can make use of the type attribute when using text inputs:

<label for="first_name">First name(required)</label>
<input
  type="text"
  id="first_name"
  name="first_name"
  required
/>

The following figure shows the output for the preceding code if a user tried to submit a form without
entering any text into the text field:

Figure 4.20: The required attribute, as shown in the browser

The following shows some examples of making use of the type attribute when using text inputs in
which you want user input to be for a certain format (e.g., an email address):

<label for="email">Email</label>
<input type="email" id="email" name="email" />

For a full list of the available type attributes. visit https://developer.mozilla.org/
en-US/docs/Learn/Forms/HTML5_input_types.

To learn more about web accessibility, visit https://developer.mozilla.org/en-US/
docs/Web/Accessibility.

Video store forms

To put our newfound knowledge into practice, we will now build two complex forms for the video
store project page examples from the previous chapter, where we built a whole web page, component
by component.

https://developer.mozilla.org/en-US/docs/Learn/Forms/HTML5_input_types
https://developer.mozilla.org/en-US/docs/Learn/Forms/HTML5_input_types
https://developer.mozilla.org/en-US/docs/Web/Accessibility
https://developer.mozilla.org/en-US/docs/Web/Accessibility

Making forms accessible 155

Exercise 4.03 – a new account signup form

In this exercise, we will write some HTML and CSS to create an account signup form. Our aim is to
produce a web form like the following wireframe:

Figure 4.21: A wireframe of a new account form

Note
The complete code for this exercise can be found at https://packt.link/sGtB9.

Let’s complete the exercise by following the following steps:

1.	 Start by creating a new file in VS Code called signup-form.html, and use the following
code as your starting point:

<!DOCTYPE html>
<html>
<head>
  <title>Signup form</title>

https://packt.link/sGtB9

Creating and Styling Forms156

  <style>
    body {
      font-family: arial, sans-serif;
    }
  </style>
</head>
<body>
  <h1>Create new account</h1>
  <form action="url_to_send_form_data" method="post">
    <fieldset>
    </fieldset>
  </form>
</body>
</html>

2.	 Now, we will add the HTML for the form up until just before the Sign up for newsletter
checkbox. Note how we have added the required attribute to the elements that we require
the user to provide a value for:

<fieldset>
  <div>
    <label for="first_name">
      First name: *
    </label>
    <input
      id="first_name"
      type="text"
      name="firstname"
      required
    />
  </div>
  <div>
    <label for="last_name">
      Last name: *
    </label>
    <input
      id="last_name"
      type="text"
      name="lastname"
      required
    />
  </div>
</fieldset>

Making forms accessible 157

3.	 Next, we will add the checkbox to sign up to the newsletter. In order to have the checkbox first
and the description later, label comes after input:

<fieldset>
  <div>
    <label for="first_name">
      First name: *
    </label>
    <input
      id="first_name"
      type="text"
      name="firstname"
      required
    />
  </div>
  <div>
    <label for="last_name">
      Last name: *
    </label>
    <input
      id="last_name"
      type="text"
      name="lastname"
      required
    />
  </div>
  <div class="checkbox">
    <input
      id="newsletter"
      type="checkbox"
      name="newsletter"
      value="yes"
    />
    <label for="newsletter">
      Sign up for newsletter
    </label>
  </div>
</fieldset>

4.	 Now, we will add the remaining fields and the submit button below the checkbox shown
in the wireframe. Again, make sure to add the required attribute to elements that need a
value to be provided:

  <div class="checkbox">
    <input
      id="newsletter"

Creating and Styling Forms158

      type="checkbox"
      name="newsletter"
      value="yes"
    />
    <label for="newsletter">
      Sign up for newsletter
    </label>
  </div>
  <div>
    <label for="email">Email: *</label>
    <input
      id="email"
      type="email"
      name="email"
      required
    />
  </div>
  <div>
    <label for="password">
      Password: *
    </label>
    <input
      id="password"
      type="password"
      name="password"
      required
    />
  </div>
  <button type="submit">Create new account</button>

5.	 If you look at the HTML file in your web browser, you should now have a web page that looks
like the following screenshot:

Figure 4.22: An unstyled signup form in the browser

Making forms accessible 159

6.	 We can now add the CSS to style the form so that it more closely resembles the one shown in
the preceding wireframe. We will start by applying some styles that deal with the spacing of
elements and then style the red asterisks shown in the wireframe. The following code snippet
will be inside the style tag, following the font style applied to the body element:

    fieldset {
      border: 0;
    }
    fieldset>div {
      margin-bottom: 30px;
    }
    label {
      display: block;
      margin-bottom: 10px;
    }
    label span {
      color: red;
    }
    input {
      padding: 10px;
      width: 200px;
    }

7.	 Next, we will apply some styles to the valid and invalid states for the text inputs. Feel
free to change the colors of these styles to suit your own taste:

  input:valid {
    border: 2px solid green;
  }

  input:invalid {
    border: 2px solid red;
  }

8.	 Next, we will add some styling for the checkbox and the submit button, as shown in the
following code. Again, feel free to adjust the colors to suit your needs:

  .checkbox input ,
  .radio input {
    float: left;
    margin-right: 10px;
    width: auto;
  }
  button {
    background: green;

Creating and Styling Forms160

    border: 0;
    color: white;
    width: 224px;
    padding: 10px;
    text-transform: uppercase;
  }

If you now right-click on the filename in VS Code, on the left-hand side of the screen, and
select open in default browser, you will see the form in your browser.

You should now have a form that looks like the following figure:

Figure 4.23: A styled signup form in the browser

9.	 We will now check that the email validation works correctly for the form by adding some text
to the email field that isn’t a valid email address:

Making forms accessible 161

Figure 4.24: A form showing an invalid email address

10.	 Next, we will check all of the required field validations by trying to submit the form without
adding input to any of the required fields:

Figure 4.25: A form highlighting fields that need to be filled in to submit the form

We have now completed the signup form for our video store. We will also need to create a checkout
page to allow a user to complete their online purchases. The next exercise will show how you can
create a checkout form.

Creating and Styling Forms162

Exercise 4.04 – a checkout form

In this exercise, we will write some HTML and CSS to create a checkout form. We will make use of all
the concepts and form elements we have learned so far in the chapter. Our aim is to produce a form
similar to the following figure:

Figure 4.26: A checkout form wireframe

Note
The complete code for this exercise can be found at https://packt.link/xvl1y.

Let’s complete the exercise by following the following steps:

1.	 Start by creating a new file in VS Code called checkout-form.html, and use the following
code as a starting point. This gives us the skeletal HTML and CSS we will need to get started
writing the checkout form:

<!DOCTYPE html>
<html>
<head>

https://packt.link/xvl1y

Making forms accessible 163

  <title>Checkout form</title>
  <style>
    body {
      font-family: arial, sans-serif;
    }
  </style>
</head>
<body>
  <h1>Checkout</h1>
  <form action="url_to_send_form_data" method="post">
    <fieldset>
    </fieldset>
  </form>
</body>
</html>

2.	 Now, we will add the HTML for the form inside fieldset up until the address field.
Note how we have added the required attribute to the elements that we require the user to
provide a value for:

  <h2>Shipping address</h2>
  <div class="double-input">
    <div>
      <label for="first_name">
        First name: *
      </label>
      <input
        id="first_name"
        type="text"
        name="firstname"
        required
      />
    </div>
    <div>
    <label for="last_name">
      Last name: *
    </label>
    <input
      id="last_name"
      type="text"
      name="lastname"
      required
    />
    </div>

Creating and Styling Forms164

  </div>
  <div class="single-input">
    <label for="address">
      Address: *
    </label>
    <input
      id="address"
      type="text"
      name="address"
      required
    />
  </div>

3.	 Now, below the address field, we write the HTML and CSS for the postcode using input
id and the country using select, as shown in the wireframe:

  <div class="double-input">
    <div>
      <label for="postcode">
        Postcode: *
      </label>
      <input
        id="postcode"
        type="text"
        name="postcode"
        required
      />
    </div>
    <div>
      <label for="country">Country:</label>
      <div class="select-wrapper">
        <select id="country">
          <option value="england">England</option>
          <option value="scotland">Scotland</option>
          <option value="ireland">Ireland</option>
          <option value="wales">Wales</option>
        </select>
      </div>
    </div>
  </div>

4.	 As shown in the preceding wireframe, we will now add a level 2 header followed by the radio-
type checkboxes, as shown in the following code:

  <h2>Shipping method</h2>
  <div class="radio>

Making forms accessible 165

    <input
      id="standard"
      type="radio"
      name="shipping-method"
      value="standard"
    />
    <label for="standard">Standard</label>
  </div>
  <div class="radio">
    <input
      id="nextday"
      type="radio"
      name="shipping-method"
      value="nextday"
    />
    <label for="nextday">Next day</label>
  </div>
  <button type="submit">Submit</button>

5.	 If you look at the HTML file in your web browser, you should now have a web page that looks
like the following screenshot:

Figure 4.27: An unstyled checkout form in the browser

Creating and Styling Forms166

6.	 We can now add some CSS to style the form so that it more closely resembles the form shown
in the preceding wireframe. We will start by applying some styles that deal with the spacing of
elements and style the red asterisks shown in the wireframe:

  fieldset {
    border: 0;
    padding: 0;
  }
  fieldset > div {
    margin-bottom: 30px;
  }
  label {
    display: block;
    margin-bottom: 10px;
  }
  label span {
    color: red;
  }

Note that input and select have the same style, as shown in the following code:
  input,
  select {
    border: 1px solid grey;
    padding: 10px;
    width: 200px;
  }

7.	 Now, let’s add the CSS for the select boxes. We style select as shown in the following
code snippet:

  select {
    background: transparent;
    border-radius: 0;
    box-shadow: none;
    color: #666;
    -webkit-appearance: none;
    width: 100%;
  }

Complete styling select using the following code:
  .select-wrapper {
    position: relative;
    width: 222px;
  }

Making forms accessible 167

  .select-wrapper:after {
    content: '< >';
    color: #666;
    font-size: 14px;
    top: 8px;
    right: 0;
    transform: rotate(90deg);
    position: absolute;
    z-index: -1;
  }

8.	 Finally, we will finish off the styling by adding some CSS for the inputs and the button styles,
as shown in the following code:

  .single-input input {
    width: 439px;
  }

  .double-input {
    display: flex;
  }

  .double-input > div {
    margin-right: 15px;
  }

  .checkbox input {
    float: left;
    width: auto;
    margin-right: 10px;
  }

The following code is added to style the button:
  button {
    background: green;
    border: 0;
    color: white;
    width: 224px;
    padding: 10px;
    text-transform: uppercase;
  }

Creating and Styling Forms168

To style the inputs, we add the following code:
  input:valid {
    border: 2px solid green;
  }

  input:invalid {
    border: 2px solid red;
  }

If you now right-click on the filename in VS Code, on the left-hand side of the screen, and
select open in default browser, you will see the form in your browser.

You should now have a form that looks like the following figure:

Figure 4.28: A styled checkout form in the browser

Making forms accessible 169

9.	 Now, we will check whether the validation works for our required fields by submitting the form
with empty fields. We will see something like the following screenshot:

Figure 4.29: A form highlighting the required fields before submitting it

Activity 4.01 – building an online property portal website form

An international online property website has approached you to design a search form for their listings
page. This form should have the following fields – search radius, price range, bedrooms,
property type, and added to the site – as well as an option to include sold properties in
the user’s search. Create your own solution using the skills you have learned in this chapter:

1.	 Start by creating a new file named form.html in VS Code.

2.	 Then, start writing the HTML for the form using the description of the fields required for
this form.

Creating and Styling Forms170

3.	 Once you are happy with the HTML you have written, you can let your creativity run wild and
style the form using CSS. Make sure that you include styling for validation:

Figure 4.30: The expected output of the activity

Note
The solution to this activity is available on GitHub at https://packt.link/7OoUW

Summary
In this chapter, we continued our journey into building web pages by exploring web forms. We first
studied the most common form-based HTML elements, including inputs, select boxes, textareas,
and buttons. We then looked at the most common styling methods to style forms. To put this new
knowledge into practice, we then built different forms.

We took some time to understand when you should use checkboxes and when to use radio buttons.
We also spent some time looking at how you can add validation styles for web forms. We explored
incorporating HTML tables for the layout of our forms and also looked at ways to make our forms
more accessible.

In the next chapter of this book, we will learn how to take our web pages to the next level. We will
learn how to make our web pages even more interesting by adding video and music to them.

https://packt.link/7OoUW

5
Adding Animation

to Web Pages

As we delve deeper into user experience research and UI design, we understand that a great application
not only enables users to accomplish tasks but also guides them through the process seamlessly. A
beautiful interface should feel intuitive to users, enhancing adherence and reducing the time spent
on learning how to navigate it. Animations play a crucial role in achieving this goal. As developers,
we can design user-friendly, natural, and fluid interfaces that facilitate interaction.

In this chapter, we’ll explore the world of CSS animations to learn how to use them to enhance user
experience in our applications, provide status feedback, and manage multiple complex animations.
We’re going to cover the following main topics:

•	 CSS animations using transitions

•	 CSS animation properties

•	 The @starting-style rule

•	 CSS positioning and z-index

•	 Complex animations with keyframes

Technical requirements
Coding in HTML/CSS can be done using any preferred IDE or text editor. For this chapter, Visual
Studio Code (VS Code) will be used. You can use any browser you prefer, but I encourage you to use
an up-to-date version of Google Chrome.

To view the coding results for this chapter and the CSS animation examples, please visit our GitHub
repository to see the animations in action: https://packt.link/gxGLm

You can also clone or fork the data to experiment with the animations yourself—feel free to code along!

https://packt.link/gxGLm

Adding Animation to Web Pages172

The transition property
The first step in CSS animation is understanding the transition property and its values. A transition is a
property that enables CSS elements to change from one state to another in a smooth, animated manner.

Consider the following example:

.target {
  font-size: 14px;
  transition: font-size 4s 1s;
}

.target:hover {
  font-size: 36px;
}

In this example, the transition property is applied to the target class to change the font-size
attribute from 14 px to 36 px on hover. Within this example, we can observe the following:

•	 The transition property is described within the element’s original value, not in the changed one

•	 It’s possible to specify the element that will change within the transition property

•	 We can set the transition duration immediately after describing which property will be the
transition target or as the first attribute (4s)

Consider another example:

.target {
  font-size: 14px;
  color: red;
  transition: 4s ease-in-out 1s;
}

.target:hover {
  font-size: 36px;
  color: blue;
}

In the preceding example, we’ve added the color property to the target class. If we apply this
CSS, we’ll notice that both properties (color and font-size) are influenced by the transition:

•	 When the transition property is not specified, it applies to all other properties of the element.

•	 We can define transition-timing-function to specify the transition speed curve. In
the preceding example, ease-in-out specifies a transition effect with a slow start and end.

The transition property 173

•	 We can introduce a delay to the transition using transition-delay or its shorthand after
the transition duration (1s).

Transition properties

The following table outlines the key transition properties, providing a brief description and the type
of value each property accepts. These properties allow developers to control various aspects of the
transition effect, such as the duration, timing, and specific CSS properties that should transition:

Property Type of value Description

transition (shorthand) Set of values A shorthand for combining
the transition properties into a
single property.

transition-property CSS property Determines the CSS property name for
which the transition effect is applied.

transition-duration Seconds or milliseconds Specifies the duration, in seconds or
milliseconds, for the transition effect
to complete.

transition-timing-function cubic-bezier(n,n,n,n)
or ease | ease-in | ease-
out | ease-in-out | linear
| step-start | step-end

Defines the speed curve of the
transition effect.

transition-delay Seconds or milliseconds Sets a delay, in seconds, before the
transition effect begins.

[NEW!] transition-behavior normal | allow-discrete Specifies whether transitions will be
started for properties whose animation
behavior is discrete.

Table 5.1 – The transition properties and its accepted values

Important note
transition-behavior is a new property that doesn’t work in older browsers by default. When
using {transition-behavior: allow-discrete} to set discrete animations, make
sure this is at the end of the CSS block to avoid specificity conflicts with the transition shorthand.

The transition shorthand follows a specific order of properties: first, the property name; second, the
duration; third, the timing function; fourth, the transition delay; and finally, the transition behavior.

Adding Animation to Web Pages174

For instance, in the following shorthand, opacity is the property name, 2s is the duration, ease-in
is the timing function, 0.5s is the delay, and normal is the transition behavior. If any of these
properties are not specified, their default values will be used:

transition: opacity 2s ease-in 0.5s normal

Exercises with transitions

After understanding the theory behind CSS transitions, it’s time to put that knowledge into practice.
Let’s create CSS animations that will provide a solid foundation for further improvement and can be
applied to various projects. By working through these exercises, you’ll gain hands-on experience that
will enhance your ability to craft dynamic and engaging web animations.

Exercise #1 – simple menu animation

Our first exercise will be a simple, elegant animated menu. Begin by creating a project folder titled
CSS-animations-exercise-transitions. Open this folder in VS Code and create two
essential files: index.html and style.css.

Note
While it’s possible to embed CSS styles directly within the HTML file using the <style> tag
within <head>, it’s advisable to separate responsibilities for a cleaner HTML file and to avoid
unnecessary clutter.

Here’s the initial HTML file:

<!DOCTYPE html>
<html lang="en">
<head>
  <meta charset="UTF-8">
  <meta name="viewport" content="width=device-width,
        initial-scale=1.0">
  <title>CSS Animated Menu</title>
  <link rel="stylesheet" href="style.css">
</head>
<body>
  <aside>
    
      
        
          <img src="./svg/new.svg"
               alt="New Document"
               class="menu-icon">

The transition property 175

          New Document
        
      
      
        
          <img src="./svg/recent.svg"
               alt="Open recent"
               class="menu-icon">
          Recent
        
      
      
        
          <img src="./svg/search.svg"
               alt="Search documents"
               class="menu-icon">
          Search
        
      
    
  </aside>
</body>

</html>

In this file, we’ve crafted a straightforward menu list enclosed within the <aside> tag.

A single menu list is constructed using an unordered list (ul) comprising three list items (li). Each
item incorporates an image element (img) and a text element (span), enveloped within an anchor
(a) tag to denote links to other pages.

Image download instructions

To streamline the process, we've organized the images into a folder, ready for you to download.
Please procure them from the provided link (https://packt.link/shFG2) and save them
within a newly created folder named svg. Ensure this folder is nested within the project directory
to maintain proper file paths.

Linking HTML and CSS files with <link>

Inspect the preceding HTML snippet. Within the <head> tag, we’ll find the following element:

<link rel="stylesheet" href="style.css">

https://packt.link/shFG2

Adding Animation to Web Pages176

This tag establishes a connection between our HTML file and our CSS file. It’s customary to name the
primary CSS file style.css or styles.css and position it within the same folder as our HTML.
With this link established, let’s proceed to create the CSS file and commence styling!

Initial styling

Access the base CSS file and input the following code snippet. We’ll dissect it line by line in sequential order:

/* CSS RESET */
* {
  margin: 0;
  padding: 0;
  box-sizing: border-box;
}

/* INITIAL STYLES */

aside {
  width: 280px;
  background-color: #093c9b;
  padding: 10px;
  height: 100vh;
}

ul li {
  list-style: none;
  padding: 10px 15px;
  background-color: #053081;
  border-radius: 10px;
  margin: 10px;
}

ul li a {
  display: flex;
  gap: 20px;
  align-items: center;
  color: #fff;
  text-decoration: none;
  font-family: 'Verdana', sans-serif;
  font-size: 16px;
  line-height: 1.6;
}

The transition property 177

ul li a img {
  width: 20px;
  height: 20px;
}

Understanding the file

The code starts with a CSS reset. This technique is frequently employed to eliminate any default CSS
applied by the browser to HTML files. It standardizes the margin and padding of all elements to 0 and
ensures that the box-sizing property is set to border-box for all elements, thereby computing
the width inclusive of padding and border sizes. This approach establishes a uniform foundation for
styling across various browsers:

* {
  margin: 0;
  padding: 0;
  box-sizing: border-box;
}

Styling the aside element

The <aside> element serves as the container for our menu list. The provided code configures its
width, background color, padding, and height:

aside {
  width: 280px;
  background-color: #093c9b;
  padding: 10px;
  height: 100vh;
}

Note that the background color is specified using hexadecimal encoding, allowing for easy experimentation
with different color values.

Styling the list items (ul li)

These styles target the elements nested within . They eliminate the default list style and
specify the padding, background color, border radius, and margin for each list item, enhancing their
visual presentation:

ul li {
  list-style: none;
  padding: 10px 15px;
  background-color: #053081;

Adding Animation to Web Pages178

  border-radius: 10px;
  margin: 10px;
}

Styling anchor elements within list items (ul li a)

These styles are targeted at the anchor <a> elements nested within elements. They employ
display: flex for layout, introduce spacing between elements, vertically align items, define the
text color, remove text decoration, and specify the font family, size, and line height, enhancing the
appearance and readability of the links:

ul li a {
  display: flex
  gap: 20px;
  align-items: center;
  color: #fff;
  text-decoration: none;
  font-family: 'Verdana', sans-serif;
  font-size: 16px;
  line-height: 1.6;
}

Styling images within anchor elements of list items (ul li a img)

These styles target elements, which are descendants of <a> elements within elements.
They establish the width and height of the images to be 20 px each, ensuring uniformity and appropriate
sizing within the list items:

ul li a img {
  width: 20px;
  height: 20px;
}

Enhancing CSS cohesion

To uphold the cascading nature of CSS, we adopt a structured approach to writing our styles, aligning
them with the HTML structure. We begin by styling the container, then progress to the list items,
and finally, address the inline elements, such as and <a>. This is the cascading rule of CSS:

•	 Specificity: CSS selectors are prioritized based on specificity. More specific selectors override
less specific ones. For instance, #id selectors hold more weight than .class selectors, which,
in turn, supersede element selectors.

The transition property 179

•	 Source order: In cases of conflicting styles with identical specificity, the style declaration
that appears last in the CSS file, or is closest to the targeted element in an external stylesheet,
takes precedence.

This hierarchical structure ensures the systematic application of styles and empowers developers to
manage the visual presentation of HTML elements efficiently.

The initial result of our exercise will be as follows:

Figure 5.1 – Initial styling for the menu

Introducing our initial animation

Let’s animate the menu list items by adjusting their background color when the mouse hovers over
them. Initially, we define the style we want to apply when the element is in the :hover state:

ul li:hover {
  background-color: #0a4fbd;
}

This CSS declaration targets elements within elements and alters their background color
when they’re hovered over by the cursor.

Adding Animation to Web Pages180

Upon hovering over the element, we’ll notice an immediate color change. However, this change
lacks smoothness and natural transition, as it’s not yet animated.

Figure 5.2 – Applying the :hover styling to the menu

Now, we’re integrating the transition element into the primary ul li selector to dictate the animation
characteristics. Add the following line within the ul li CSS properties:

transition: background-color 0.5s ease-in-out;

This line utilizes the shorthand transition property to encompass all the necessary transition properties
for our animation. It’s a concise alternative to individually specifying the transition properties, as
demonstrated here:

  transition-property: background-color;
  transition-duration: 0.5s;
  transition-timing-function: ease-in-out;

Here’s a breakdown of the components:

•	 transition-property: background-color determines the CSS property that
will smoothly transition. In this scenario, it indicates the transition of the background color
of an element.

The transition property 181

•	 transition-duration: 0.5s denotes the length of the transition effect. It’s set to 0.5
seconds, indicating that any changes to the background-color property will transition
over half a second:

	� Note: In JavaScript, it’s advisable to use milliseconds (ms) for time measurements to
maintain consistency

•	 transition-timing-function: ease-in-out specifies the timing function
employed for the transition. This function governs the rate of change of the transition effect
over time. ease-in-out initiates slowly, accelerates midway, and then decelerates toward
the end, resulting in a smooth and natural transition effect.

Overall, this property declaration ensures that when the background color of an element changes, it
does so smoothly over a duration of 0.5 seconds with a gradual acceleration and deceleration effect.

Congratulations! Our first animation is now complete. Take a moment to review the HTML file and
observe the animation in action. Feel free to experiment with the transition further by adjusting
parameters such as duration, delay, and other values to customize the effect.

Here’s the final CSS file for this exercise:

/* CSS RESET */
* {
  margin: 0;
  padding: 0;
  box-sizing: border-box;
}

/* INITIAL STYLES */

aside {
  width: 280px;
  background-color: #093c9b;
  padding: 10px;
  height: 100vh;
}

ul li {
  list-style: none;
  padding: 10px 15px;
  background-color: #053081;
  border-radius: 10px;
  margin: 10px;
  transition: background-color 0.5s ease-in-out;
}

Adding Animation to Web Pages182

ul li:hover {
  background-color: #0a4fbd;
}

ul li a {
  display: flex;
  gap: 20px;
  align-items: center;
  color: #fff;
  text-decoration: none;
  font-family: 'Verdana', sans-serif;
  font-size: 16px;
  line-height: 1.6;
}

ul li a img {
  width: 20px;
  height: 20px;
}

This code will produce this result:

Figure 5.3 – Visual representation of the exercise coding

The transition property 183

The following are common issues that might be encountered in this exercise:

•	 Is the CSS not being applied?

	� Ensure that the CSS file resides in the same directory as the HTML file

	� Double-check the placement and spelling of the (<link rel="stylesheet"
href="style.css">) link tag within the HTML head tag

•	 Is the CSS functioning but some elements remain unstyled?

	� Verify the accuracy of class names and properties. Remember, CSS is case-sensitive.

	� Remember to save changes (Ctrl + S) and refresh the HTML file in browser.qwq.

If the code has been reviewed and appears identical to the instructions, consider downloading the
provided source code to facilitate learning.

For detailed resolution, refer to the resolution code available at this link: https://packt.link/
g24bq

Exercise #2 – adding more animations to the menu

The menu already boasts a polished style, but let’s elevate it further. We’ll enhance it by making the
font weight bolder when hovering over the element.

For this second exercise, duplicate the HTML file in the same folder and rename it to sidebar-
menu-with-animations.html.

Inspect the elements:

        
          <img src="./svg/search.svg"
               alt="Search documents"
               class="menu-icon">
          Search
        
      

https://packt.link/g24bq
https://packt.link/g24bq

Adding Animation to Web Pages184

Each contains an element with the menu-icon class assigned and a tag
containing the link label. We’ll animate the tag to enlargen when hovered over and make the
text bolder simultaneously:

ul li:hover a {
  font-weight: bold;
}

ul li:hover a img {
  width: 24px;
  height: 24px;
}

Interpreting this CSS code, the browser is instructed that when hovering over the element, the
child <a> element will have a bolder font weight, and the child element will increase in size.
Even when altering the behavior of a child element, the trigger (hover) can be set on the parent
element to execute the specified behavior.

Upon reviewing the application, it becomes apparent that while the transition of the background
persists, the newly defined properties aren’t transitioning. This occurs because although we can set
the :hover trigger to a parent in CSS, we must still specify the transition values into the element
itself. Let’s rectify this:

ul li a {
  display: flex;
  gap: 20px;
  align-items: center;
  color: #fff;
  text-decoration: none;
  font-family: 'Verdana', sans-serif;
  font-size: 16px;
  line-height: 1.6;

  transition: font-weight 0.5s;
}

ul li a img {
  width: 20px;
  height: 20px;
  transition: all 0.5s;
}

The transition property 185

Enhancing animation performance – key points

In the menu’s <a> tag, there are several CSS properties defined, whereas only two properties are
specified for the image in the tag.

To enhance animation efficiency, we specify which property will be animated within the <a> element.
This optimization is crucial because the transition property defaults to animating all properties, which
can potentially slow down the application.

However, in the tag, where only the desired properties are targeted for animation, we can
either use the all value or omit it altogether, as it defaults to transitioning all properties. This selective
approach streamlines the animation process and improves overall performance.

Congratulations! Our animated sidebar menu is now complete!

Figure 5.4 – Animation effect applied in the menu

The CSS file should be looking like this:

/* previous CSS */

ul li a {
  display: flex;
  gap: 20px;
  align-items: center;
  color: #fff;
  text-decoration: none;
  font-family: 'Verdana', sans-serif;
  font-size: 16px;
  line-height: 1.6;
  transition: font-weight 0.5s;

Adding Animation to Web Pages186

}

ul li:hover a {
  font-weight: bold;
}

ul li a img {
  width: 20px;
  height: 20px;
  transition: 0.5s;
}

ul li:hover a img {
  width: 24px;
  height: 24px;
}

The @starting-style rule

To prevent unexpected outcomes, CSS transitions do not activate by default when an element undergoes
its initial style update or when its display type changes from none to another value.

For these transitions to occur on the first style update, it’s possible to use the new @starting-
style rules. These rules define the starting styles for elements that lack a prior state, specifying the
property values from which the transition should begin.

You can utilize @starting-style in two ways: either as a standalone rule or nested within a ruleset.

The standalone rule looks as follows:

@starting-style {
  selector {
    properties
  }
}

The nested rule looks as follows:

selector {
  properties

  @starting-style {
    properties
  }
}

The transition property 187

@starting-style proves particularly beneficial for creating entry and exit transitions for elements
that appear in the forefront (such as popovers and modal dialogs), elements transitioning to and from
display: none, and elements newly added to or removed from the DOM. Let’s see how it works
in the next exercise.

Exercise #3 – multiple transitions with the @starting-style rule

In this project, we aim to implement an entry animation for each item in the menu of Exercise
#2. The items will smoothly slide in from the left upon appearance. To achieve the desired behavior,
we will utilize a combination of named transitions and the @starting-style rule.

Let’s create a multiple-transition effect in the Exercise #2 menu:

1.	 Open the folder for Exercise #2. No changes are required in the HTML file; our focus will be
on the CSS.

2.	 Begin by defining the initial style for the elements. They should be invisible and positioned
outside the viewbox to allow for a sliding effect. Add the following code to the end of the CSS file:

@starting-style {

  ul li {
    opacity: 0;
    transform: translateX(-280px);
  }

}

3.	 Define the final (default) state for the elements, incorporating the properties specified
in the starting style to enable transitions:

ul li {
  list-style: none;
  padding: 10px 15px;
  background-color: #053081;
  border-radius: 10px;
  margin: 10px;
  transition:
    background-color 0.5s ease-in-out;
  opacity: 1;
  transform: translateX(0px);
}

Adding Animation to Web Pages188

Note
Setting translateX to 0 restores the element to its default position.

4.	 Introduce the animation by adding the opacity and transform properties to the transition:

  ul li {
  list-style: none;
  padding: 10px 15px;
  background-color: #053081;
  border-radius: 10px;
  margin: 10px;
  transition:
  background-color 0.5s ease-in-out,
  opacity 0.5s ease-in-out,
  transform .7s ease-in-out;
  opacity: 1;
  transform: translateX(0px);
}

Note
Specifying the properties we want to animate enhances performance by targeting only those
properties that change.

The result of our code is as follows:

Figure 5.5 – Animated transition effect

While the animation result is satisfactory, all elements animate simultaneously, and we desire
a cascading effect. To achieve this, introduce a transition delay for each element:

ul li:nth-child(1) {
  transition-delay: 0.1s;
}
ul li:nth-child(2) {

Advanced CSS for animations 189

  transition-delay: 0.2s;
}
ul li:nth-child(3) {
  transition-delay: 0.3s;
}

Congratulations! Our entry animation is now complete. Enjoy the stunning result!

Figure 5.6 – Representation of the developed animation flow

The code containing the result of this exercise is accessible from the link provided here: https://
packt.link/j12MO

Note
@starting-style is only relevant to CSS transitions and doesn’t affect animations with
keyframes. The @starting-style rule is a new feature for CSS. At the time of writing this book,
it’s only available to the browsers in this list: https://caniuse.com/mdn-css_at-
rules_starting-style.

After mastering the basics of CSS transitions, it’s time to explore more complex techniques essential
for creating dynamic effects. In the following section, we’ll learn about advanced concepts such as
positioning, z-index, blur, and opacity. These skills will enhance your ability to craft sophisticated
and engaging animations for your web projects.

Advanced CSS for animations
The transition property facilitates common animation effects; however, it is crucial to explore additional
resources to enhance user experience and the perceived value of our application.

To craft more intricate animations, it’s beneficial to acquaint ourselves with complementary properties
that, when integrated, can produce compelling and impressive CSS animations.

https://packt.link/j12MO
https://packt.link/j12MO
https://caniuse.com/mdn-css_at-rules_starting-style
https://caniuse.com/mdn-css_at-rules_starting-style

Adding Animation to Web Pages190

CSS positioning

The position property specifies how an element should be positioned within its containing
element. There are five possible values for the position property: static, relative, fixed,
absolute, and sticky. Each value determines how the element interacts with its surroundings
and how it is positioned on the page:

•	 position: static: This is the default value. Elements with position: static are
positioned according to the normal flow of the document. They are not affected by the top,
bottom, left, and right properties.

Figure 5.7 – position: static representation

•	 position: relative: Elements with position: relative are positioned relative to
their normal position in the document flow. This property allows us to use the top, bottom,
left, and right properties to move them from their original position.

Figure 5.8 – position: relative representation

•	 position: fixed: Elements with position: fixed are positioned relative to the
viewport, meaning they remain in the same place even when the page is scrolled. We can use
the top, bottom, left, and right properties to specify their position.

Figure 5.9 – position: fixed representation

Advanced CSS for animations 191

•	 position: absolute: Elements with position: absolute are positioned relative
to the nearest positioned ancestor. If no positioned ancestor is found, they are positioned
relative to the initial containing block, usually the <html> element. They are removed from
the normal document flow and can overlap with other elements, as if they are in a layer on top
of the original document.

Figure 5.10 – position: absolute representation

The position property in CSS enables us to modify the positioning of elements within our application.

We can adjust their placement based on the layout of their parent elements or in response to scrolling
events. This capability provides us with a valuable tool for crafting intricate animations and achieving
more dynamic and engaging user experiences.

z-index

When we assign the position property to an element, it enables us to utilize the z-index property.
The z-index property governs the stacking order of an element, deciding whether it should be
positioned in front of or behind other elements.

Its value is a numerical integer, which can be positive (higher layers) or negative (lower layers), with
0 often serving as the reference point within the application code.

Figure 5.11 – z-index representation

Understanding z-index is important for animating with CSS because it allows us to control the
stacking order of elements. This is crucial for managing overlapping effects, creating depth perception,
and ensuring interactive elements remain visible during animations, which all contribute to a more
polished and engaging user experience.

Adding Animation to Web Pages192

Opacity

CSS opacity allows us to control the transparency levels of elements. This property operates on a
scale ranging from 0.0 (completely invisible) to 1 (fully visible), enabling precise adjustments to
the element’s transparency.

 Figure 5.12 – The opacity property representation – photo by Fahmi Fakhrudin in Unsplash

The following CSS is applied to Figure 5.12:

.image-container {
  margin-right: 20px;
}
.image-container:nth-child(1) img {
  opacity: 0.1;
}
.image-container:nth-child(2) img {
  opacity: 0.5;
}
.image-container:nth-child(3) img {
  opacity: 1;
}

Opacity is an important property for creating various types of animations within CSS. It allows us to
control the transparency of an element, which can be used to create effects such as fading in or out,
transitions between different states, and overlay effects.

Blur

The blur property in CSS enables us to apply a blur effect to elements, enriching visual design
possibilities and facilitating creative effects in web development. It functions as a CSS filter, allowing
us to have precise control over the degree of blurriness applied to targeted elements.

The keyframes rule and CSS animation properties 193

Figure 5.13 – The blur property representation – photo by Fahmi Fakhrudin in Unsplash

The following CSS is applied to Figure 5.13:

.image-container:nth-child(1) img {
  filter: blur(0px);
}
.image-container:nth-child(2) img {
  filter: blur(3px);
}
.image-container:nth-child(3) img {
  filter: blur(8px);
}

While there are a lot of CSS properties that can be combined to craft compelling animations, the
ones mentioned previously are among the most commonly used. They can be integrated within the
transition property for state animations or within the @keyframes CSS animation for more
intricate, looping animations. This is what we’ll delve into next.

The keyframes rule and CSS animation properties
Occasionally, enhancing user experience throughout their journey with our app necessitates incorporating
more intricate animations. Therefore, let’s delve deeper into understanding animation properties and
the @keyframes rule.

To create a CSS animation sequence, we style the element we want to animate with the animation
property or its sub-properties. This allows us to configure the timing, duration, and other details of
how the animation sequence should progress.

However, it’s important to note that this setup doesn’t directly influence the visual appearance of the
animation, as that aspect is controlled by the @keyframes rule.

Adding Animation to Web Pages194

The following are CSS animation properties and their shorthands:

Property Values accepted Description

animation (shorthand) Set of values A shorthand for combining the transition
properties into a single property.

animation-delay Seconds or milliseconds

animation-direction normal, reverse,
alternate or
alternate-
reverse

Determines whether an animation
should proceed in a forward direction,
a backward direction, or alternate
between playing the sequence forward
and backward.

animation-duration Seconds or milliseconds Sets the length of time for an animation.

animation-fill-mode none, forwards,
backwards, both

Defines how a CSS animation applies
styles to its target before and/or after
its execution.

animation-iteration-count infinite or number

(default: 1)

The number of times an animation
should play before stopping.

animation-name keyframe name Specifies the names of one or more
@keyframes animations to be applied
to an element

animation-play-state running or paused Sets whether an animation is running
or paused.

animation-timeline none, auto,
scroll(), view()
or named

Specifies the timeline that is used to
control the progress of a CSS animation.
This timeline can be the default
document timeline, a scroll-triggered
timeline, a view-triggered timeline, or
even a custom-named timeline.

animation-timing-function cubic-
bezier(n,n,n,n),
ease, ease-in,
ease-out, ease-
in-out, linear,
step-start
or step-end

Determines the progression of
an animation throughout each
cycle’s duration.

Table 5.2 – The animation properties and its accepted values

The keyframes rule and CSS animation properties 195

The shorthand for CSS @keyframes animation includes properties in a specific order:

1.	 Duration: Time taken for one animation cycle

2.	 Easing function: Rate of change over time

3.	 Delay: Time before animation starts

4.	 Iteration count: Number of animation cycles

5.	 Direction: Play direction (forward, backward, and alternate)

6.	 Fill mode: Styling before/after animation

7.	 Play state: Whether animation is running/paused

8.	 Name: Identifier for the animation

Default values apply if any property is omitted, except for duration and name, which are required for
the animation to function. Here’s an example of a @keyframes shorthand:

animation: 3s ease-in 1s 2 reverse both paused slidein;

The @keyframes rule dictates the visual behavior of an animated element at specific intervals
throughout the animation sequence. In CSS, animations are timed through style configurations,
with keyframes using percentages to denote their position within the sequence. At 0%, the animation
begins, and at 100%, it reaches its conclusion.

These key moments can be referred to as from and to, respectively, and are optional. If these points
are not explicitly defined, the browser defaults to using the computed attribute values for animation
initiation and completion. An example of keyframes to animate the filter: blur property is
as follows:

@keyframes blurAnimation {
  from {
    filter: blur(0px); /* No blur at the beginning */
  }
  to {
    filter: blur(10px); /* Blurred effect at the end */
  }
}

Using the preceding example, we’re applying the animation named blurAnimation to a div,
using the CSS animation shorthand:

div {
  width: 200px;
  height: 200px;
  background-color: lightblue;

Adding Animation to Web Pages196

  animation: blurAnimation 2s ease-in-out
             infinite alternate;
}

Figure 5.14 – Keyframe blurAnimation applied to a div

Exercise #4 – loading spinner with keyframes

Let’s create a div featuring a loading spinner to indicate to our users that their request is currently being
processed. This is a straightforward and frequently employed application of CSS animations, which,
depending on the architecture of the application, minimizes performance degradation compared to
.gif files or JavaScript animations.

Before we begin the exercise, please download the image asset from the following link: https://
packt.link/ypVhx. Once downloaded, ensure to place the spinner.svg file in the same
folder as the HTML file.

The HTML code will include a div to contain the spinner and an image element for the spinner itself:

<!DOCTYPE html>
<html lang="en">
<head>
  <meta charset="UTF-8">
  <meta name="viewport" content="width=device-width,
        initial-scale=1.0">
  <title>Load Spinner</title>
  <link rel="stylesheet" href="style.css">
</head>
<body>
  <div class="container">
    
  </div>
</body>
</html>

https://packt.link/ypVhx
https://packt.link/ypVhx

The keyframes rule and CSS animation properties 197

Now, let’s create a file named style.css in the same folder as the HTML file. The initial styles for
the elements are as follows:

* {
  margin: 0;
  padding: 0;
  box-sizing: border-box;
}

.container {
  display: flex;
  justify-content: center;
  align-items: center;
  height: 100vh;
}

img {
  width: 50px;
  height: 50px;
}

When you open the HTML file in your browser, you’ll see a static image displayed:

Figure 5.15 – Static load spinner image

Now, let’s create the animation using keyframes. The transform property is utilized to alter the
appearance or position of a block element. In the upcoming keyframe, we’ll employ transform:
rotate(360deg) to make the image spin in a full circle and ensure its animation concludes at
the same point where it started:

@keyframes loadSpinner {
  0% {
    transform: rotate(0deg);
  }
  100% {
    transform: rotate(360deg);
  }
}

Adding Animation to Web Pages198

Finally, we apply the loadSpinner animation to the img tag in CSS:

img {
  width: 50px;
  height: 50px;
  animation: loadSpinner 1s linear infinite;
}

Figure 5.16 – Visual representation of the spinner animation

The code containing the resolution for this exercise is accessible in the link provided here: https://
packt.link/tbpEJ

Exercise #5 – menu icon shaking effect with keyframes

Let’s enhance the user experience by adding a dynamic shaking effect to the menu icons from Exercise #2.
Navigate to the directory of the Exercise #2 project and follow these steps to implement the animation:

1.	 Create keyframes: Define a keyframe animation named shake to bring life to the menu icons.
This animation will add a subtle yet engaging shaking motion to the icons when hovered over:

@keyframes shake {
  0% { transform: translateX(0); }
  25% { transform: translateX(-5px) rotate(5deg); }
  50% { transform: translateX(5px) rotate(-5deg); }
  75% { transform: translateX(-5px) rotate(5deg); }
  100% { transform: translateX(0); }
}

2.	 Apply animation: Assign the shake animation to the menu icons’ hover state. This ensures
that the animation activates whenever a user interacts with the icons:

ul li:hover a img {
  width: 24px;
  height: 24px;
  animation: shake 0.4s ease;
}

https://packt.link/tbpEJ
https://packt.link/tbpEJ

Summary 199

By following these steps, you’ll add an interactive touch to the menu icons, making the user experience
more engaging and visually appealing:

Figure 5.17 – Visual representation of the menu animation flow

The code containing the resolution for this exercise is accessible in the link provided here: https://
packt.link/36avH

Summary
Great job! In this chapter, we delved deep into the realm of CSS animations. By now, you’ve undoubtedly
honed your skills in crafting stunning, polished animations that elevate your application while
minimizing performance overhead.

As you reflect on what you’ve learned about transitions, positioning, effects, and keyframes, remember
that mastery comes with practice and exploration. Continuously immerse yourself in the vast landscape
of CSS, as familiarity breeds proficiency.

I encourage you to select three or four HTML files from your projects and imbue them with precise,
elegant animations to enhance the user experience and elevate the perceived value. Keep pushing
the boundaries of your creativity, and watch as your skills flourish with each animation you create.

In the upcoming chapter, we’ll explore CSS theming and color theory to craft applications with
significant visual impact while prioritizing user preferences and ease of maintenance. Additionally,
we’ll dive into optimizing the user experience by implementing adaptable color themes that seamlessly
adjust to the user’s operating system or preferences.

https://packt.link/36avH
https://packt.link/36avH

6
Themes, Color, and Polishing

Techniques

As web developers, we often face the challenge of accommodating every user’s browser configuration
to ensure the optimal experience with our application. Users may have preferences for larger font
sizes, different text spacing, or even processing information in a specific color scheme. Whether due
to accessibility needs, personal preferences, or adjusting for varying reading conditions, there are
numerous variables that can impact how our code is interpreted.

To address these concerns, it’s crucial to anticipate these variables by providing at least two different
themes: one for users who prefer a dark mode and another for those who prefer a light mode in their
browser settings. This practice not only enhances the user experience (UX) but also adds perceived
value to our application. Moreover, it enables us to craft more tailored styles for different scenarios,
ensuring consistency and usability across various environments.

In this chapter, we’ll learn about the following topics:

•	 How CSS themes work

•	 CSS color variables

•	 Learning color theory with HSL

•	 Understanding the invert() filter

•	 Exploring user’s preferences with color-scheme

•	 Introducing the light-dark() function

•	 Understanding typography and font choices

Let’s delve into how themes function in CSS and explore the process of creating a new dark theme
for our application!

Themes, Color, and Polishing Techniques202

Technical requirements
The code files for this chapter can be found at https://packt.link/qTKYl.

Introduction to web design themes
Color themes in web design work by defining a set of colors that are consistently applied throughout
a website or application. These themes help to create a cohesive and visually appealing experience
for users.

The first step in creating a color theme is to select a palette of colors that harmonize well together. This
palette usually consists of a primary color, secondary colors, and accent colors. Designers often use
tools such as Adobe Color, Coolors, or Color Hunt to create or find suitable color palettes. Figure 6.1
represents a color palette:

Figure 6.1 – Color palette from the color-hex website (https://www.color-hex.com/color-palette/389)

Once the color palette is established, designers apply these colors consistently throughout the website
or application. This includes text, backgrounds, borders, buttons, links, and other user interface (UI)
elements. Consistency in color usage helps create a unified and coherent visual identity.

Many websites and applications offer both light and dark themes to accommodate user preferences
and varying lighting conditions. Light themes typically feature lighter background colors with darker
text, while dark themes invert this color scheme, using darker backgrounds with lighter text. Switching
between light and dark themes can enhance readability and reduce eye strain, particularly in low-light
environments. Figure 6.2 shows a bookstore website rendered in light mode, as an example:

https://packt.link/qTKYl

Introduction to web design themes 203

Figure 6.2 – Website styles with the cappuccino palette in light mode

Now, the same website is rendered in dark mode, as we can see in Figure 6.3:

Figure 6.3 – The same website, now in dark mode

Switching between light and dark themes using JavaScript has been a common practice. However, with
the introduction of the color-scheme CSS property, we now have the capability to define styles
based on the user’s preferred theme directly in CSS, eliminating the need for JavaScript altogether. We’ll
explore this concept further in the upcoming exercises. Before we delve into that, let’s first familiarize
ourselves with the fundamental concept of variables in CSS.

Themes, Color, and Polishing Techniques204

CSS color variables
Variables in CSS, also known as CSS custom properties, allow you to define reusable values that can
be used throughout your stylesheets. They provide a way to store values such as colors, sizes, fonts, or
any other property value, making it easier to maintain and update styles across your entire project.
Let’s look at the following code:

:root {
  --primary-color:   #854442;
  --secondary-color: #4b3832;
  --text-color: #3c2f2f;
  --background-color: #fff4e6;
  --highlight-color: #be9b7b;
}

In this example, :root is a pseudo-class selector that targets the root element of the document,
typically the <html> element. --primary-color is the name of the variable, preceded by two
dashes (--). #854442 is the value assigned to the variable. Let’s look at another piece of code:

header {
    background-color: var(--primary-color);
    color: var(--secondary-color);
    padding: 20px;
    text-align: center;
}

var(--primary-color) is how you use the variable. The var() function retrieves the value
stored in the variable.

You can then update the value of the variable in one place, and it will automatically apply to all elements
that use that variable. This makes it easy to make global style changes across your project.

CSS variables offer a powerful way to manage and customize styles, improve consistency, and streamline
the development process. They are supported in modern browsers and can be used alongside other
CSS features to create dynamic and flexible designs.

Exercise 1 – creating a light theme using CSS color variables

In this exercise, we’ll be enhancing the appearance of the bookstore website introduced earlier. We’ll
begin with the raw HTML structure and a basic CSS file that lacks any coloring or styling. To proceed,
please download the initial assets using the following link: https://packt.link/uLZRc

https://packt.link/uLZRc

CSS color variables 205

1.	 Open the folder containing the project files using VS Code. Create a new file named light.
css within the same directory as your existing style.css and bookstore.html files.
This light.css file will host all the color variables for our application in light mode. Populate
the file with the following variable declarations:

  :root {
    --primary-color:   #0c457d;
    --secondary-color: #e8702a;
    --text-color: #061b1a;
    --background-color: #fcf6ed;
    --highlight-color: #6bd2db;
  }

2.	 Next, we’ll link these colors to our bookstore.html file and style.css. Insert a new
<link> element within the <head> section of our HTML file to reference the light.css file:

<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta
        name="viewport"
        content="width=device-width,
                initial-scale=1.0"
    >
    <title>Rarities - Bookstore</title>
    <link rel="stylesheet" href="style.css">
    <link rel="stylesheet" href="light.css">
</head>
<body>

Be sure not to replace any existing elements; simply add the second <link> element alongside
the first one. This ensures that both CSS files are linked to the HTML document, allowing us
to seamlessly integrate the defined color variables into our styles.

3.	 Now that we’ve defined our color variables in the HTML file, let’s integrate them into our main
style.css file. Open style.css in VS Code and add the following declarations within
the body selector to apply the color variables:

body {
    font-family: Arial, sans-serif;
    margin: 0;
    padding: 0;
    color: var(--text-color);
    background-color: var(--background-color);
}

Themes, Color, and Polishing Techniques206

4.	 Let’s enhance the header by adding color to its background. Notice that the name of the variable
doesn’t limit its usage; it’s possible to assign the color variable to any element of your choosing:

header {
    padding: 20px;
    text-align: center;
    background-color: var(--primary-color);
}

5.	 Apply color to the anchor elements (<a>) inside the header:

header nav ul li a {
    text-decoration: none;
    color: var(--highlight-color);
}

6.	 Add color to the text elements within the headers (<h1>, <h2>, <h3>):

h1, h2, h3 {
    margin-bottom: 10px;
    color: var(--secondary-color);
}

7.	 Let’s give each element a colored border:

li {
    margin-bottom: 20px;
    border: 1px solid var(--highlight-color);
    padding: 10px;
  }

8.	 Lastly, style the anchor elements (<a>) inside the book cards:

a {
    font-weight: bold;
    text-decoration: none;
    color: var(--primary-color);
}

CSS color variables 207

Congratulations! We’ve successfully styled our first themed application. The result should resemble
Figure 6.4:

Figure 6.4 – Result of the application with color variables

Note
Using variables to define colors instead of directly applying them to individual elements offers
several benefits.

Consistency: By defining colors as variables, you ensure consistency throughout your application.
If you need to change a color later on, you only need to update the variable value once, and the
change will be applied across all elements that use that variable.

Ease of maintenance: Managing colors centrally in variables makes your code base easier
to maintain. You can easily locate and update colors without having to search through each
occurrence of a specific color used in your stylesheets.

Reusability: Variables allow you to reuse colors across different elements and components
without duplicating code. This promotes a more modular and scalable approach to styling
your application.

Clarity and readability: Using variables makes your CSS code more readable and understandable.
Instead of hardcoded color values, variables provide meaningful names that describe the purpose
or role of each color, improving code clarity and developer comprehension.

Flexibility: Variables provide flexibility in styling. For instance, you can define different sets of
colors for different themes (e.g., light mode, dark mode) and switch between them dynamically
by updating the variable values, offering a more dynamic and customizable UX.

Themes, Color, and Polishing Techniques208

Learning color theory with HSL
CSS accepts color values in several formats, providing flexibility in specifying colors according to
different needs and preferences. The most common usage is in hexadecimal notation, which represents
the red, green, blue (RGB) color model. Hexadecimal notation starts with a # followed by six characters,
where each pair represents the intensity of red, green, and blue respectively.

Figure 6.5 represents the colors in hexadecimal code from the Exercise 1:

Figure 6.5 – Hexadecimal code of the used colors

Another way to write good CSS color values, especially when in need of creating different themes
with opposite values, is to use the hsl() function.

In CSS, hsl() is a color function that stands for hue, saturation, and lightness. It allows you to define
a color by specifying its hue, saturation, and lightness values.

Hue represents the type of color, expressed as an angle between 0 and 360 degrees on the color wheel.
Red is at 0 degrees, green at 120 degrees, and blue at 240 degrees.

Saturation represents the intensity or purity of the color, expressed as a percentage. 0% saturation
yields grayscale, while 100% saturation is the most vivid form of the color.

Lightness represents the brightness of the color, also expressed as a percentage. 0% lightness yields
black, 100% lightness yields white, and 50% lightness is normal.

hsl() provides a flexible and intuitive way to manipulate colors in CSS, making it an excellent
choice for creating dark themes or any other color variations where precise control over brightness
is needed. The syntax is as follows:

Selector {
  color: hsl(0, 100%, 50%);
}

Lets understand more about colors in sequence.

Learning color theory with HSL 209

The HSL color wheel

The crucial concept to understand about hue is its specification using an angle or degree value. It’s
common to see hues represented in a color wheel, like Figure 6.6 shows:

Figure 6.6 – Color wheel

Visualizing the color wheel offers a straightforward method of identifying complementary (or opposite)
colors, such as red and cyan or green and purple.

When aiming for a color between two primary hues, selecting a number becomes intuitive. For instance,
if I seek a shade of pink, I’d likely choose a number between 300 and 360 degrees.

Themes, Color, and Polishing Techniques210

After understanding hue, the concepts of saturation and lightness become clearer. Let’s explore the
following colors and their coding representation in Figure 6.7:

Figure 6.7 – HSL coloring representation

When choosing colors for your application, you must consider the emotional impact they convey,
their compatibility with your brand identity, and their accessibility for all users. Remember to follow
UI/UX polishing techniques to enhance the overall UX. In sequence, we’ll see more polishing tips
for your projects.

UX/UI polishing tips

Polishing techniques for the UI/UX involve refining and enhancing the visual and interactive aspects
of a UI to create a more seamless and engaging UX. Here are some tips to effectively polish your design:

•	 Ensure visual consistency by maintaining a cohesive color scheme, typography, and iconography
throughout the interface.

•	 Incorporate visual feedback, such as animations or transitions, to provide users with a more
responsive and intuitive experience.

•	 Prioritize content hierarchy by organizing information in a logical and intuitive manner.

Learning color theory with HSL 211

•	 Utilize visual cues, such as color, size, or typography, to emphasize important content and
direct user attention.

•	 Ensure accessibility by following guidelines such as Web Content Accessibility Guidelines
(WCAG) to make the interface usable for users with disabilities.

These details distinguish an ordinary website from a well-designed, engaging application crafted
to maintain user interest for extended periods. Now, let’s put this into practice in the next exercise.

Exercise 2 – creating a dark theme using hsl()

Now that we’ve gained insight into using hsl() colors and discovering their complementary values,
let’s apply this concept to create a dark theme for our bookstore from Exercise 1.

Please navigate to the project folder in VS Code and review the color variables we’ve defined in light.
css. Since they’re currently written in hexadecimal values, our initial step is to convert them to the
hsl() format.

Fortunately, we can rely on online tools such as https://htmlcolors.com/hex-to-hsl to assist us in this
task. Even more fortunately, the author has already completed this conversion. Here are the color
codes represented in hsl() values:

--primary-color: #0c457d;
HSL: hsl(211, 84%, 26%)
--secondary-color: #e8702a;
HSL: hsl(20, 81%, 51%)
--text-color: #061b1a;
HSL: hsl(178, 100%, 6%)
--background-color: #fcf6ed;
HSL: hsl(45, 83%, 94%)
--highlight-color: #6bd2db;
HSL: hsl(183, 66%, 67%)

Let’s start this exercise by following these steps:

1.	 Open the light.css file and change the colors in hexadecimal values to the preceding
representation in hsl():

:root {
  --primary-color: hsl(211, 84%, 26%);
  --secondary-color: hsl(20, 81%, 51%);
  --text-color: hsl(178, 100%, 6%);
  --background-color: hsl(45, 83%, 94%);
  --highlight-color: hsl(183, 66%, 67%);
}

Themes, Color, and Polishing Techniques212

2.	 Now, let’s create another CSS file to set the colors for a dark theme. Create a new file in the
root directory of the project (the same location as light.css) and name it dark.css. The
structure should be like Figure 6.8:

Figure 6.8 – Folder structure opened in VS Code

3.	 Well done! Now, we need to find the opposite colors to create the dark theme. To find the
opposite colors (complementary colors) for the given colors in HSL format, we can add 180
degrees to the hue value. Here are the opposite colors for the provided colors:

  --primary-color: hsl(31, 84%, 26%);
  --secondary-color: hsl(200, 81%, 51%);
  --text-color: hsl(358, 100%, 6%);
  --background-color: hsl(225, 83%, 94%);
  --highlight-color: hsl(3, 66%, 67%);

Note
These opposite colors are obtained by adding 180 degrees to the hue value of each original color.

When finding the opposite color (complementary color) by adding 180 degrees to the original
hue, the resulting value may exceed 360 degrees.

However, in the HSL color model, values greater than 360 degrees “wrap around” the color
wheel. This means that if the resulting hue value exceeds 360 degrees, it loops back to the
beginning of the color wheel.

4.	 Create the variables as follows in the dark.css file:

:root {
  --primary-color: hsl(31, 84%, 26%);
  --secondary-color: hsl(200, 81%, 51%);
  --text-color: hsl(358, 100%, 6%);
  --background-color: hsl(225, 83%, 94%);

Learning color theory with HSL 213

  --highlight-color: hsl(3, 66%, 67%);
}

5.	 In the HTML <head> section, establish a connection with your new CSS file by adding a
new <link> tag to reference the dark.css stylesheet. Ensure that this <link> element is
positioned after the one referencing light.css:

<head>
    <meta charset="UTF-8">
    <meta
        name="viewport"
        content="width=device-width,
                initial-scale=1.0"
    >
    <title>Rarities - Bookstore</title>
    <link rel="stylesheet" href="style.css">
    <link rel="stylesheet" href="light.css">
    <link rel=»stylesheet» href=»dark.css»>
</head>

Thanks to the cascade rule of CSS and the predefined color variables, the application has
seamlessly adopted the newly created theme, as shown in Figure 6.9.

Figure 6.9 – Application with the new theme

Themes, Color, and Polishing Techniques214

As it turns out, our dark theme isn’t as dark as we intended. This is because we haven’t adjusted
the lightness values in the hsl() function. Let’s increase the lightness of the text and decrease
it for the background to achieve a truly dark theme.

6.	 Now, recalling that 0% lightness corresponds to black and 100% lightness to white in the
hsl() logic, let’s assign these values to the background and text variables in our dark.css
file, respectively:

:root {
  --primary-color: hsl(31, 84%, 26%);
  --secondary-color: hsl(200, 81%, 51%);
  --text-color: hsl(358, 100%, 100%);
  --background-color: hsl(225, 83%, 0%);
  --highlight-color: hsl(3, 66%, 67%);
}

The result is Figure 6.10:

Figure 6.10 – Application with the dark theme

Now that our dark theme is prepared, we have the flexibility to experiment with values on the HSL
scale to craft additional shades. By incorporating a bit of JavaScript, we can dynamically introduce
these themes into our application based on user preferences, weather conditions, time of year, or any
other stylistic considerations you can imagine!

Understanding the invert() filter 215

Understanding the invert() filter
In the realm of dark theme design, CSS offers a powerful ally: the invert() filter. The invert()
filter in CSS is used to invert the colors of an element, effectively producing a negative effect. It adjusts
the hue of each pixel to its opposite on the color wheel, resulting in a color inversion.

The invert() filter function accepts a parameter, which represents the amount of inversion to apply.
This parameter is a percentage, where 0% represents no inversion (i.e., the original colors), and 100%
represents full inversion (i.e., completely inverted colors).

Here’s an example of how you would use the invert() filter in CSS:

.element { filter: invert(100%); }

This applies 100% inversion (completely inverted colors).

You can also apply partial inversion by specifying a value between 0% and 100%, depending on the
desired effect:

element { filter: invert(75%); }

This applies 75% inversion (partially inverted colors).

Important note
When it comes to the invert() filter, 50% means total neutrality, canceling any color, shadow,
or brightness the element may have, as shown in Figure 6.11.

Figure 6.11 – The invert() filter effect

The invert() filter can be a useful tool for creating visual effects, such as night mode themes or
artistic alterations to images and elements on a web page.

Themes, Color, and Polishing Techniques216

Exercise 3 – creating a dark theme with the invert() filter

The invert() filter provides a simpler method for creating inverse themes, and we’ll explore its
application by refactoring our dark.css file to utilize this feature:

1.	 Please navigate to your project folder in VS Code and open the dark.css file, which may
resemble the following:

:root {
  --primary-color: hsl(31, 84%, 26%);
  --secondary-color: hsl(200, 81%, 51%);
  --text-color: hsl(358, 100%, 100%);
  --background-color: hsl(225, 83%, 0%);
  --highlight-color: hsl(3, 66%, 67%);
}

2.	 We’ll begin by refactoring this code by removing all properties inside the :root selector:

:root {
}

3.	 Next, we’ll apply the invert() filter to the :root element to invert the colors of every
element on the page:

:root {
  filter: invert(100%);
}

4.	 The visual result should be looking like Figure 6.12:

Figure 6.12 – Using the invert() filter to create a dark theme

Exploring user’s preferences with color-scheme 217

There are two important considerations for this exercise
First, since the invert() filter affects not only hue but also saturation and lightness, there’s
no need to adjust these values to achieve a complete inverse theme.

Second, if your application includes any images, their colors will also be affected. Therefore,
it’s essential to be specific about which elements you want to apply the invert() filter to in
order to avoid unexpected results.

As we’ve discussed, the invert() filter can simplify theme styling. However, it’s important to specify
which elements should be affected by this function. Now, let’s explore how the color-scheme
property can enhance UX.

Exploring user’s preferences with color-scheme
Since 2022, CSS has introduced a novel approach to dynamically setting color themes without the
necessity of JavaScript, reflecting the web’s growing trend toward customizable application themes.

The color-scheme CSS property enables an element to specify the color schemes in which it can
be optimally displayed. The prevalent choices for operating system color schemes include “light” and
“dark,” also referred to as “day mode” and “night mode.” Upon a user’s selection of a preferred color
scheme, the operating system implements modifications across the UI components, such as form
controls and scrollbars, as well as adjusts the CSS system colors in use.

The color-scheme CSS property significantly enhances accessibility by ensuring that web content
adapts seamlessly to the user’s preferred color settings, reducing eye strain and making content more
readable. For individuals with visual impairments or light sensitivity, the ability to automatically switch
between light and dark modes can provide a more comfortable viewing experience. This adaptability
supports a broader range of user needs without requiring manual adjustments, promoting an inclusive
web environment. By aligning web applications with the user’s system settings, developers can ensure
that their content is not only aesthetically pleasing but also accessible to a diverse audience, contributing
to a more equitable digital experience.

Here is the syntax:

element {
  color-scheme: [value]
}

The color-scheme property accepts the following values:

•	 normal: This signifies that the element does not recognize any color schemes and should
display in the browser’s standard colors.

•	 light: This denotes that the element is compatible with the operating system’s light mode
for visual presentation.

Themes, Color, and Polishing Techniques218

•	 dark: This implies that the element supports rendering in the operating system’s dark mode
color scheme.

•	 only: This prohibits the user agent from altering the element’s color scheme. This can be
utilized to deactivate color modifications triggered by Chrome’s Auto Dark Theme, by setting
color-scheme: only light, for a particular element or the :root selector.

How to declare color-scheme in CSS

To set the entire page with the user’s color scheme preferences, specify the color-scheme property
on the :root element:

:root {
  color-scheme: light dark;
}

The preceding code facilitates dynamic CSS rendering depending on the browser’s color scheme.

To align specific elements with the user’s color scheme preferences, specify the color-scheme
property on those elements:

header {
  color-scheme: only light;
}
main {
  color-scheme: light dark;
}
footer {
  color-scheme: only dark;
}

How to style based on color schemes

To customize elements according to color scheme preferences, we utilize the prefers-color-
scheme media query.

The following example demonstrates opting the entire page into both light and dark operating system
color schemes using the color-scheme property.

Additionally, it employs prefers-color-scheme to define the preferred foreground and
background colors for individual elements within those schemes:

:root {
  color-scheme: light dark;
}

 Introducing the light-dark() function 219

@media (prefers-color-scheme: light) {
  body {
    color: black;
    background-color: white;
  }
}

@media (prefers-color-scheme: dark) {
  body {
    color: white;
    background-color: black;
  }
}

CSS color schemes have introduced a new way for developers to leverage user preferences, ensuring a
seamless and attractive experience. Let’s explore another option for styling based on user preferences:
the light-dark() function.

 Introducing the light-dark() function
A groundbreaking addition to CSS, the light-dark() function simplifies the process of establishing
dynamic themes. This function enables the setting of foreground and background colors for various
color schemes in just one line of code, eliminating the need for the prefers-color-scheme
media queries.

Here is the syntax for this:

element {
  property: light-dark(
    [color for light or default],
    [color for dark]
  );
}

The light-dark() CSS color function returns the first value if the user’s preference is set to light
or if no preference is set, and the second value if the user’s preference is set to dark:

:root {
  color-scheme: light dark;
}

.element {
  color: light-dark(black, white);
  background-color: light-dark(white, black);
}

Themes, Color, and Polishing Techniques220

Important: light-dark() is an experimental feature
Please note that this feature is experimental and may have limited availability. It’s recommended
to test it in your browser environment.

Exercise 4 – simplifying our CSS theming with media queries

To celebrate our journey into the world of CSS theming, let’s practice once more with our bookstore
application. We’re going to refactor the CSS theming to set it dynamically based on the user’s preferences.
For testing purposes, we’ll use the Microsoft Windows operating system as an example:

1.	 Start by opening the project folder in VS Code and creating a new file named color-
variation.css in the same location as the other CSS files. We’ll use a single CSS file for
both light and dark themes to reduce code repetition.

2.	 After creating the file, let’s define that our :root element (representing the whole HTML)
will accept variations of light and dark modes. We’ll set this writing the following notation
in color-variation.css:

:root {
  color-scheme: light dark;
}

3.	 After setting this up, let’s create a media query to configure the colors for light mode. We’re
creating the prefers-color-scheme media query in color-"variation.css"
and pasting the entire content from light.css inside it:

@media (prefers-color-scheme: light) {
  :root {
    --primary-color: #0c457d;
    --secondary-color: #e8702a;
    --text-color: #061b1a;
    --background-color: #fcf6ed;
    --highlight-color: #6bd2db;
  }
}

4.	 Great! We’re halfway there. Now, let’s do the same with the dark.css file. Create a prefers-
color-scheme media query and paste all the content from dark.css inside it. Note that
we’re not using the invert() filter because, in this context, when one theme is selected, the
browser does not render the other one, so invert() does not have anything to invert from:

@media (prefers-color-scheme: dark) {
  :root {
    --primary-color: hsl(31, 84%, 26%);
    --secondary-color: hsl(200, 81%, 51%);

 Introducing the light-dark() function 221

    --text-color: hsl(358, 100%, 100%);
    --background-color: hsl(225, 83%, 0%);
    --highlight-color: hsl(3, 66%, 67%);
  }
}

The resulting CSS file should look like this:
:root {
  color-scheme: light dark;
}

@media (prefers-color-scheme: light) {
  :root {
    --primary-color:   #0c457d;
    --secondary-color: #e8702a;
    --text-color: #061b1a;
    --background-color: #fcf6ed;
    --highlight-color: #6bd2db;
  }
}

@media (prefers-color-scheme: dark) {
  :root {
    --primary-color: hsl(31, 84%, 26%);
    --secondary-color: hsl(200, 81%, 51%);
    --text-color: hsl(358, 100%, 100%);
    --background-color: hsl(225, 83%, 0%);
    --highlight-color: hsl(3, 66%, 67%);
  }
}

5.	 Now, it’s time to connect our new CSS file to our HTML. Delete the <link> elements that
refer to light.css and dark.css and replace them with the new file that contains all the
coloring and logic for our dynamic theme, color-variation.css:

<head>
    <meta charset="UTF-8">
    <meta
        name="viewport"
        content="width=device-width,
                initial-scale=1.0"
    >
    <title>Rarities - Bookstore</title>
    <link rel="stylesheet" href="style.css">

Themes, Color, and Polishing Techniques222

    <link rel=»stylesheet» href=»color-variation.css»>
</head>

6.	 After that, let’s configure our operating system to prefer the dark theme, so we can test it properly.

On Windows 11, right-click with your mouse on the desktop and select Personalization |
Colors. Open Colors setting and, under Choose your color, select Custom. Under Choose
your default app mode, select Dark.

All set! Open the application with your browser to see the result.

Figure 6.13 – How the application should look in the browser

That’s it! We’ve created an application that changes themes dynamically with no need for JavaScript,
just with CSS. Theming extends beyond mere color choices; typography is equally vital in shaping a
well-designed experience. Neglecting typography can detract from an otherwise thoughtfully curated
theme, highlighting the significance of this aspect, which we’ll explore in the next section.

Understanding typography and font choices
Typography plays a crucial role in web design as it directly affects readability, UX, and the overall
aesthetics of a website. When choosing the best font for your theme, consider the mood and message
you want to convey, the styling and brand definitions, as well as the preferences and expectations of
your target audience. Here’s a guide to choosing good fonts for the application:

Understanding typography and font choices 223

•	 Legibility and readability: Legibility refers to how easily one can distinguish individual
characters, while readability refers to how easy it is to read blocks of text. Choose fonts that
are clear and easy to read, especially for longer passages of text.

Avoid overly decorative or ornate fonts for body text, as they can be difficult to read in smaller
sizes. Ensure sufficient contrast between text and background colors to improve readability,
especially for users with visual impairments. In the following figure, observe how varying font
families, sizes, and contrast levels impact legibility.

Figure 6.14 – Depiction of various legibility scenarios in high, medium,

and low contrast between font and background color

•	 Font families: Fonts are generally categorized into serif, sans-serif, monospaced, and display fonts.

Serif fonts have small decorative lines at the end of strokes, while sans-serif fonts do not.
Monospaced fonts have equal spacing between characters, while display fonts are more
decorative and suitable for headings or titles.

Sans-serif fonts are often preferred for body text on the web due to their clean and modern
appearance, but serif fonts can work well for certain themes or when aiming for a more
traditional look. In the following figure, we’ll explore an example of each font family element:

Figure 6.15 – Representation of different font families

Themes, Color, and Polishing Techniques224

•	 Consistency: Maintain consistency in typography throughout your website to create a cohesive
look and feel. Choose a primary font for headings and another for body text, and stick to these
choices across the site. Use font weights and styles (such as bold, italic, or regular) consistently
to provide visual hierarchy and emphasis.

In Figure 6.16, take note of how font consistency plays a pivotal role in crafting harmony
throughout the website. Pay close attention to the chosen font families, font colors, and font
weights, as they collectively narrate a story and elevate the overall UX.

Figure 6.16 – The Packt home page

•	 Hierarchy: Create a visual hierarchy by using different font sizes, weights, and styles for
headings, subheadings, and body text. Larger and bolder fonts typically indicate more important
information. Figure 6.17 is an example illustrating how font hierarchy operates:

Accessibility and inclusive design considerations 225

Figure 6.17 – Font hierarchy representation

•	 Brand personality: choose fonts that reflect the personality and tone of your brand or theme.
A sleek and modern font might be suitable for a tech-related website, while a vintage-inspired
font could work well for a retro-themed site. Fonts have the ability to evoke emotions and this
must be considered during development, as can be seen in Figure 6.18:

Figure 6.18 – Illustration of how different font choices impact the message’s meaning

It’s incredible how CSS has evolved! Modern CSS enables us to craft stunning themes that deliver
the precise experience we’ve envisioned for our users. It also provides us with more tools to create
accessible applications, as we will explore next.

Accessibility and inclusive design considerations
When considering accessibility and inclusive design in CSS theming and font selection, there are
several key considerations to keep in mind:

•	 Contrast ratio: Ensure sufficient contrast between text and background colors to make content
readable for users with visual impairments. Use tools such as the WCAG contrast checker to
verify that your chosen color combinations meet accessibility standards.

•	 Font size and scalability: Choose fonts and set font sizes that are legible and resizable without
loss of clarity. Use relative units such as percentages or rem to allow users to adjust text size
according to their preferences.

Themes, Color, and Polishing Techniques226

•	 Font weight and style: Avoid using overly thin or light fonts, as they may be difficult to read
for some users.

•	 Font family: Select font families that are versatile and support a wide range of characters,
including those from different languages and writing systems.

•	 Screen reader compatibility: Use semantic HTML elements and ARIA attributes to enhance
the accessibility of your content for screen reader users. Provide descriptive alt text for images
and use proper heading structures to facilitate navigation.

Consider the diverse needs and preferences of users when selecting fonts and designing CSS themes.
Test your designs with a variety of users, including those with disabilities, to identify and address
potential barriers to accessibility.

Modern CSS enables us to create more interactive and fluid applications with lower performance costs
than JavaScript, which is a great strategy. As you continue exploring CSS, remember the importance
of the font selection strategies and polishing techniques we’ve covered.

I encourage you to delve deeper into modern CSS concepts of themes, variables, and dynamics. Learn
by doing and build an amazing portfolio!

Summary
In this chapter, we delved into the creation of dynamic themes using CSS color variables, the invert()
filter, and the innovative color-scheme property. Understanding the mechanics of HSL colors was
essential, along with adopting best practices for building CSS code that remains maintainable and
non-redundant. We explored the exciting possibilities of modern CSS through prefers-color-
scheme media queries and the light-dark() CSS function.

We also explored font selection, considering factors such as legibility, UX, hierarchy, and brand styling,
while also learning various polishing techniques to refine our designs and enhance the overall UX.

As we fortified our knowledge in web development, we honed our skills to craft more powerful,
performant, and user-friendly applications. With this solid foundation in CSS theming and color
variables, I anticipate that you’ll embark on creating even greater and more interactive projects.

Furthermore, our exploration of CSS theming not only enhances the aesthetics and UX but also
sets the stage for our next chapter, Using CSS and HTML to Boost Performance. Building upon our
understanding of CSS variables, media queries, and best practices, we’ll now shift our focus to maximizing
the performance of our web applications through strategic CSS and HTML optimization techniques.

Part 3:
Building for All

Creating quality code goes beyond crafting visually appealing websites; it involves ensuring that
everyone can access and enjoy a consistent experience with your application. In this section, we’ll
learn how to build websites that are accessible and responsive, reaching a wider audience regardless
of their circumstances. We’ll start by enhancing HTML and CSS to boost performance, followed by
techniques to achieve responsiveness. We’ll also cover accessibility in depth. These three pillars form
the foundation of a robust web application that delivers a superior user experience, regardless of the
user’s device or condition.

This part contains the following chapters:

•	 Chapter 7, Using CSS and HTML to Boost Performance

•	 Chapter 8, Responsive Web Design and Media Queries

•	 Chapter 9, Ensuring Accessibility in HTML and CSS

7
Using CSS and HTML

to Boost Performance

Often, we digital creators work on the latest laptops and test on the latest high-end devices, but the
audience of a website can be broad and very diverse. Downloading thousands of high-quality images
for a web photo gallery might be quick over super-fast fiber optic broadband, but on a mobile network,
it might use a great chunk of the user’s data contract and be a painful experience.

Considering the performance of a website can be the difference between success and failure. As
websites have become more sophisticated, with richer interactions and more complexity, they have
also become heavier, with more and more data and assets to load.

In this chapter, we’re going to cover the following main topics:

•	 Understanding the performance of a web page

•	 Measuring performance with Lighthouse

•	 Improving the performance of a web page

First, we will look at what we mean by performance in a web context and how we can go about
measuring performance, so we know what changes make effective improvements to the quality of
the experience for all our users.

Technical requirements
The code files for this chapter can be found at https://packt.link/X9zRL.

https://packt.link/X9zRL

Using CSS and HTML to Boost Performance230

Understanding the performance of a web page
Web Vitals is an initiative promoted by Google to standardize the measurement of the user experience
and performance of a website. One aim of the initiative is to determine the most important of these
performance measures, which they call the Core Web Vitals.

The metrics defined and used to measure web performance evolve over time but, since 2020, the three
main metrics used are as follows:

•	 Largest Contentful Paint (LCP)

•	 First Input Delay (FID)

•	 Cumulative Layout Shift (CLS)

Each metric measures a different aspect of user experience as it is impacted by performance.

By following best practices and getting these aspects of a web page right, you will not only improve
the performance a user will experience but also the chance of your web page being rated highly by
Google, and therefore improving SEO.

Let’s look at the metrics in detail.

Largest Contentful Paint (LCP)

LCP measures the loading performance of a web page by evaluating the time taken for the largest
element on the page to load. The element in question could be an image, a heading, or a block of
text, and the measurement is complete when that element becomes visible within the user’s viewport.

The goal of LCP is to keep the time it takes for the largest element to be visible to a minimum. The
recommendation for a good experience is anything under 2.5 seconds; anything over 4 seconds is
considered poor; and anything between those two values needs improvement.

An example might be a hero image on a news site that takes up a large portion of the viewport above
the fold. By measuring how long that image takes to load, we can get an insight into how quickly
users can see the main content of the page. If that image takes 1.5 seconds to load, then the LCP of
the page would be considered good.

LCP is an important part of user experience because it corresponds to the perceived speed of a web
page. The faster the LCP, the faster users can quickly access and engage with the primary content of
a page. This leads to a satisfying user experience. A slow LCP can result in users feeling the page is
slow to load and frustrating to use.

To improve the LCP of a web page, we can optimize assets and make sure the critical resources on
our web page are prioritized to load the quickest.

Understanding the performance of a web page 231

Cumulative Layout Shift (CLS)

CLS measures the visible stability of a web page as it loads. It evaluates the amount of unexpected
layout shifts that occur during page rendering.

CLS is given as a score calculated by multiplying the impact fraction (the amount of the viewport that
is affected by the shift) by the distance fraction (the distance the elements shift relative to the viewport).

The goal of CLS is to keep shifts in layout to a minimum. The recommendation for a good experience
is a score below 0.1; anything above 0.25 is considered poor; and anything in between those two values
needs improvement.

Layout shifts are often disruptive to user experience. An example might be on a news website when
an advert pushes an article down the page, causing the user to lose their position or a form where you
might unintentionally interact with the wrong element when a button shifts position.

It is important to note that a page can still change dynamically and score well for CLS. Layout shift is
calculated based on unintentional shifts, that is, shifts not caused by user interactions.

We can improve the CLS of a web page by making sure images and embedded content (such as ads
or an iframe) have dimensions set so their position and size on the page can be calculated during
loading. We can also use placeholders or loading skeletons for late-loading elements. In some cases,
gradual transitions and animations can help.

First Input Delay (FID)

FID is a measurement of the interactivity and responsiveness of a web page. It does this by measuring
the time it takes for a web page to respond to the first user interaction, such as clicking a button or
selecting a menu item.

The goal is to reduce the delay between user input and the browser’s response to provide a seamless
and enjoyable user experience.

The goal of FID is to keep interaction responsive times fast. The recommendation for a good experience
is a response speed of under 100 ms; anything above 300 ms is considered poor; and anything in
between those values needs improvement.

A poor FID score can create a very frustrating experience for a user, with a sense that the page is
sluggish to respond. It can cause frustration and high drop-off rates among users.

Heavy use of JavaScript in a web page is often the cause of slow FID. We can improve the FID of a page
by minimizing long tasks on the main thread, optimizing and prioritizing critical JavaScript, and using
web workers to offload complex tasks to separate threads, ensuring a more responsive user interface.

Using CSS and HTML to Boost Performance232

Note
FID was one of the Core Web Vitals up until March 2024 when a new metric called Interaction
to Next Paint (INP) replaced it. INP is considered a better measurement of the responsiveness
and interactivity of a web page.

Interaction to Next Paint (INP)

INP is a new measurement that replaced FID as part of the Core Web Vitals in March 2024.

Like FID, it is a measurement of how quickly a page responds to user interactions. However, the
measurement is different – it observes the latency of click, tap, and keyboard interactions over the
lifespan of a page. The concern is less with the first impression of a first interaction and more with
the whole experience of interacting with the page.

Now that we have looked at the core web metrics for understanding web performance, in the next
section, we will use the Lighthouse auditing tool to generate a report. Many of the results in the
Lighthouse performance report are based on the metrics we have described.

Measuring performance with Lighthouse

Lighthouse is an auditing tool that can generate reports for several categories of optimizations that
we might want to make to web page behavior. These categories are Performance, Best Practices,
Accessibility, SEO, and Progressive Web Apps.

While Lighthouse is not exclusively a web performance tool, it is useful for giving us a headline score
for how our web page loads and performs, and a simple report of issues that users may be facing with
our web page.

Lighthouse is a widely used tool that will audit a web page and return a report with a score for
performance and a list of issues and pointers for improving that score.

The great thing about Lighthouse is that it is easy to use. It is available through lots of tools; for
example, you can use it from the command line, or you can use it to generate reports in a Node.js
application or as part of a continuous integration pipeline. By far the easiest way for us to access it as
web developers is through the web browser.

Lighthouse is available via Chrome’s web developer tools, so we don’t have to download any additional
software, and that means we can access it at any time while working on a web page.

The following steps will help you to do a performance audit with Lighthouse in the Chrome browser:

1.	 Open the web page you want to run an audit on.

2.	 Open the Chrome web developer tools.

3.	 Select the Lighthouse tab.

Understanding the performance of a web page 233

4.	 From the options on the Lighthouse panel, deselect all the categories except Performance.

5.	 Click the Analyze page load button, as shown in Figure 7.1.

Figure 7.1: Lighthouse tab in Chrome developer tools

Lighthouse will take a bit of time to run an audit on the current web page. This can take about 30-60
seconds, depending on the size of the page and the options selected. Once the audit is complete, you
will see a report for the page.

Tip
For the best results, it is recommended to run Lighthouse in an incognito browser window.
This makes the results more predictable because no extensions will be running, which could
affect the reported score.

Anatomy of the Lighthouse report

A Lighthouse performance audit report has three main sections: Score, Metrics, and Diagnostics.

Score

This is a percentage score calculated to give an overall sense of how your web page performs for a
given category (e.g. Performance, SEO, and Accessibility). In the case of Performance, the score is
a weighted average based on several web performance metrics, including some of the ones we have
already described in this chapter.

Using CSS and HTML to Boost Performance234

As shown in Figure 7.2, the scores are color-coded using a traffic light system, with a red band for a
poor score (indicating that the performance will deeply affect a user’s experience), orange representing
a need for improvement, and green being a good score that will leave our users with a good experience.

Figure 7.2: Examples of a bad score (43%) and a good score (99%) in Lighthouse

Understanding the performance of a web page 235

Metrics

The next section of the report is a breakdown of the score into its component metrics.

For performance, the five metrics used are the Core Web Vitals related to page load. We described
CLS and LCP earlier in the chapter. The other three are First Contentful Paint (FCP), Total Blocking
Time (TBT), and Speed Index.

FCP is a measure of perceived load speed. By measuring the time taken before the first element (text
or image) is painted on the screen, we get an idea of whether the user will feel the page is loading or
has perhaps stalled.

TBT measures the time from FCP until the page can be interacted with. If a page has rendered some
content (such as a loader) but interactivity is still blocked for a very long time, it can be harmful to
the user’s experience.

Speed Index measures how long it takes for the content of a web page to load and compares it to data
on other real websites.

Each metric will have a value categorized as green (good), orange (needs improvement), or red (poor):

•	 A good CLS score is under 0.1, with a value between 0.1 and 0.25 needing improvement, and
anything above 0.25 being considered poor. See the earlier section on CLS for more information
on how this score is calculated.

•	 A good LCP score is under 2.5 seconds, with needs improvement being a value between 2.5
seconds and 4.0 seconds, and anything greater than 4.0 seconds being considered poor.

•	 FCP is another indicator of how a user perceives load speed. It measures the time before the
first text or image is painted. The value is given in seconds, with a score over 3.0 seconds being
poor, a score between 3.0 seconds and 1.8 seconds needing improvement, and a score under
1.8 seconds being good.

•	 TBT is another page load metric. It is based on a measure of the amount of time after FCP
where input responsiveness is blocked. A time of 0-200 ms is considered good. 200-600 ms
will need improvement, and anything above that is considered poor.

•	 Speed Index measures how quickly the contents of a page are visually displayed as the page
loads. It is a time measurement with anything less than 3.4 seconds considered good. 3.4
seconds to 5.8 seconds needs improvement, and anything over 5.8 seconds is considered poor.

Using CSS and HTML to Boost Performance236

In the following screenshot, we can see the metrics for a page with a mixture of poor (FCP and LCP),
needs improvement (TBT and Speed Index), and good performance (CLS) scores.

Figure 7.3: An example of the METRICS section of a Lighthouse report

Diagnostics

The DIAGNOSTICS section of the report drills further into the details of any problems and flags
opportunities where we could improve performance. This includes, for example, listing elements that
are causing layout shifts or images that are unoptimized and take a long time to load.

In the following screenshot, we can see the diagnostics results with suggestions for areas to improve
and potential problem points that affect the performance of the web page. In this example, elements
that cause layout shift are flagged, as well as unoptimized images and an element with a very poor LCP.

Understanding the performance of a web page 237

Figure 7.4: An example of the DIAGNOSTICS section of a Lighthouse report

In the following exercise, we will set up a web page that has some performance issues, and we will run
a Lighthouse performance audit on it so we can examine the results and get an understanding of how
decisions we make while developing a web page can impact its performance score.

Exercise – finding performance issues in a web page

In this exercise, we will demonstrate how to use a Lighthouse audit to better understand optimizations
we can make to our web page’s performance.

We will create a web page with a simple image gallery using HTML and CSS. This gallery will not be
optimized for performance and will, in fact, have some fundamental performance issues that we will
fix as we progress through the rest of the chapter.

Here are the steps to create a web page with an image:

1.	 Create a new web page to run a performance audit on in Visual Studio Code (File > New
File…). Let’s name the file exercise_01.html and save it in a folder called chapter_7.

Using CSS and HTML to Boost Performance238

2.	 To have something to audit with Lighthouse, we will create a very simple photo gallery, which
will be the basis for this exercise and the rest of the exercises in this chapter. The gallery will
use CSS and HTML, with no JavaScript involved. To create the gallery, we will start with a
simple HTML document:

<!DOCTYPE html>
<html lang="en">
  <head>
    <meta
      name="viewport"
      content="width=device-width, initial-scale=1">
    <title>A gallery</title>
  </head>
  <body>
    <div class="gallery">
      <!-- insert gallery html here -->
    </div>
  </body>
</html>

3.	 The gallery will have two main parts – a large hero image and a list of thumbnails that can be
selected to replace the hero image. As we aren’t using any JavaScript, we will need to represent
all the images in the gallery declaratively in the HTML document. For the hero images, we add
the following code to the div element with the .gallery class:

<div class="full">
  <img
    id="hero-1"
    src="assets/img-01.jpg"
    alt=""
    class="hero image"
  />
  <img
    id="hero-2"
    src="assets/img-02.jpg"
    alt=""
    class="hero image"
  />
  <img
    id="hero-3"
    src="assets/img-03.jpg"
    alt=""
    class="hero image"
  />

Understanding the performance of a web page 239

  <img
    id="hero-4"
    src="assets/img-04.jpg"
    alt=""
    class="hero image"
  />
  <img
    id="hero-5"
    src="assets/img-05.jpg"
    alt=""
    class="hero image"
  />
  <img
    id="hero-6"
    src="assets/img-06.jpg"
    alt=""
    class="hero image"
  />
  <img
    id="hero-7"
    src="assets/img-07.jpg"
    alt=""
    class="hero image"
  />
  <img
    id="hero-8"
    src="assets/img-08.jpg"
    alt=""
    class="hero image"
  />
  <img
    id="hero-9"
    src="assets/img-09.jpg"
    alt=""
    class="hero image"
  />
  <img
    id="hero-10"
    src="assets/img-10.jpg"
    alt=""
    class="hero image"
  />
</div>

Using CSS and HTML to Boost Performance240

4.	 The thumbnails will similarly be represented by a list of each of the images in the gallery. Below
the hero images, we add an unordered list to create the thumbnail list. For each thumbnail, we
will add a list item with an anchor and an image. The entire code can be found in the GitHub
repo (https://packt.link/X9zRL):

<ul class="thumbnails">
  
    
      <img
        src="assets/thumb-01.jpg"
        alt=""
        class="thumbnail image"
      />
    
  
  

5.	 The hero image will take up most of the viewport. We’ll use CSS to create the gallery layout
and to style the thumbnail and hero images. We will add the style to the head of the HTML
document. The entire code can be found in the GitHub repo.

6.	 To switch between each thumbnail image without navigating between individual web pages
or using JavaScript, we’ll use a little-known CSS pseudo-class called :target. It is used to
select an element based on an ID matching the URL’s hash. We will use the powerful new :has
selector with :not to determine whether there is no element selected by :target and, in
that case, we will show the first hero image. We won’t go into details about using these selectors
here, but for more information, see the MDN entries: https://developer.mozilla.
org/en-US/docs/Web/CSS/:target, https://developer.mozilla.org/
en-US/docs/Web/CSS/:has, and https://developer.mozilla.org/en-US/
docs/Web/CSS/:not.

            .full:not(:has(.image:target))
              .image:first-of-type,
            .full .image:target {
              z-index: 1;
              display: block;
            }

7.	 Finally, we’ll add a loader to the gallery that is shown while the hero image is loading. We add
a div element to the hero images, <div class="loading"></div>, and the following
additional styles:

            .loading {
                width: 3rem;

https://packt.link/X9zRL
https://developer.mozilla.org/en-US/docs/Web/CSS/:target
https://developer.mozilla.org/en-US/docs/Web/CSS/:target
https://developer.mozilla.org/en-US/docs/Web/CSS/:has
https://developer.mozilla.org/en-US/docs/Web/CSS/:has
https://developer.mozilla.org/en-US/docs/Web/CSS/:not
https://developer.mozilla.org/en-US/docs/Web/CSS/:not

Understanding the performance of a web page 241

                height: 3rem;
                border: .375rem solid lightskyblue;
                border-color:
                    transparent lightblue lightblue
                    lightblue;
                border-radius: 50%;
                position: absolute;
                animation:
                    rotating 1s
                    cubic-bezier(0.33, 0, 0.33, 0.9)
                    infinite;
            }

            @keyframes rotating {
                from {
                    rotate: 0;
                }
                to {
                    rotate: 360deg;
                }
            }

In the following screenshot, we can see what the gallery we have created should look like, with
a large hero image taking up most of the viewport and a row of thumbnails below:

Figure 7.5: The gallery we have created in this exercise

Using CSS and HTML to Boost Performance242

8.	 Now that we have created our gallery, we will run a Lighthouse audit to get an idea of how
the web page performs and to see if there are any areas we can improve. In Chrome, open the
developer tools, select the Lighthouse tab, deselect all categories except Performance, and
click the Analyze page load button.

The following screenshot shows the options selected prior to clicking the Analyze page load button
to run the performance audit on the gallery.

Figure 7.6: The Lighthouse report settings page with the Performance category selected

The resulting report from Lighthouse should look similar to the following screenshot. We can see
that the page gets a score of 46 for Performance, which is considered poor. Looking at the individual
metrics, we can see that LCP, TBT, and CLS are particularly poor. Furthermore, the diagnostics
suggestions point to issues with unoptimized images, layout shifts caused by the thumbnails and the
loading indicator, and a detrimental LCP due to the hero image.

Improving the performance of a web page 243

Figure 7.7: The Lighthouse report with a Performance score of 46

We’ll come back to the gallery created in this exercise in the rest of this chapter as we solve some of
the performance problems presented in this report. We’ll look at a few solutions and apply them to
the gallery to make a gradual improvement to the user experience of our gallery.

We’ve seen how we can measure the performance of a web page using Lighthouse. In the next section,
we will make improvements to the gallery we’ve created to look at how they can impact performance
and enhance the user experience.

Improving the performance of a web page
In this section, we will look at some of the mechanisms available in HTML that allow us to optimize and
tweak how resources load on a web page. Controlling the load according to your specific requirements,
making sure the right assets load upfront when needed, and loading less urgent resources with lower
priority can help us get a rendered web page faster, improving our FCP and LCP scores.

Using CSS and HTML to Boost Performance244

Controlling how assets load

Images can bring a web page to life but, equally, they can bring a web page to a grinding halt while
thousands of unoptimized images, amounting to many MB of data, are downloaded over a slow or
intermittent connection.

Info
According to the Web Almanac state of the web report for 2022, the median page weight for a
mobile website was 2,019 KB, with images contributing 881 of those KB (https://almanac.
httparchive.org/en/2022/page-weight#page-weight-by-the-numbers).

When a browser parses an HTML document, it will do so starting from the top of the document
and working down to the bottom of the document. When it comes across an img tag with a src
attribute, the default behavior for the browser is to immediately create a connection to wherever that
image asset is stored and to begin loading that image. When the image is loaded, it will be displayed.

Eager loading

This loading behavior is known as eager loading. In many cases, this is the behavior you want. If the
image is the first thing the user will see, you want it to load as quickly as possible. However, there are
times when eagerly loading all the images on a web page is not optimal.

Let’s consider the example in the previous exercise, where we created a gallery of images. When the
page loads, we see one main image and a row of thumbnails, and there are further thumbnail images
that do not appear on screen until we have scrolled further down the page. Each of the thumbnail
images can be clicked on to replace the main hero image with a larger version of the thumbnail image.

For a user arriving at the gallery, the most important thing will be to see the hero image, and we should
load this as a priority. We don’t want all the images to load with the same priority because some will
be below the fold or will not be seen until they have been selected.

Lazy loading

One of the great benefits of modern web technologies is that they provide very simple declarative
ways of controlling your web page’s performance. A good example of that is the lazy loading attribute
for images. By simply adding the loading="lazy" attribute, we have a mechanism to delay the
loading of images while they are out of view.

If we want to stop an image loading until it is onscreen, we simply add the loading="lazy" attribute:

<img
  src="assets/important-image.jpg"
  loading="eager"
  alt=""

https://almanac.httparchive.org/en/2022/page-weight#page-weight-by-the-numbers
https://almanac.httparchive.org/en/2022/page-weight#page-weight-by-the-numbers

Improving the performance of a web page 245

/>
<!-- somewhere lower down the page -->
<img
  src="assets/secondary-image.jpg"
  loading="lazy"
  alt=""
/>

Prioritizing loading

To optimize a web page’s performance and the time taken to get to FCP, it is useful to optimize the
critical path by loading critical assets as quickly as we can.

We’ve learned how to postpone the loading of an asset until it is needed by the user, but we also have
some tools available to help us prioritize how assets are loaded. We can push them to the front of the
queue with resource hints and fetch priority hints.

With resource hints, we set a link element with one of three rel attribute values – preload,
prefetch, or preconnect. These values have the following effect on resource loading:

•	 <link rel="preload" is used to preload an external resource that is required for the
initial render of the page

•	 <link rel="prefetch" is used to load content that will rendered on the next page

•	 <link rel="preconnect" establishes a connection to a server to prepare the connection
for loading resources

We can specify the content type being preloaded with the as attribute. We can specify many content
types. Some of the more commonly used are image, font, style, script, and fetch. So, for example, if
we want to preload a particular image asset, we set the as attribute to "image".

Priority hints give us further control over prioritizing resources by letting us set a hint for the browser
to either increase or decrease the priority of a resource.

Priority hints are set using the fetchpriority attribute with one of three possible values: auto,
high, or low. We can apply this attribute to resources via img tags or link tags that reference
external resources, and we will prompt the browser to prioritize the resource differently.

Improving image performance

When it comes to images, fonts, and other heavy media assets, a lot of our performance issues can
come down to the sheer size of the file. It is important for user experience to make sure we have
optimized any images on our web page.

Using CSS and HTML to Boost Performance246

Things to consider when working with images on the web are whether we are using the best encoding
and format for the image. All photos used to be jpeg and png, and these formats were used for lots
of assets, but in recent years we have had a lot of improvements to web image formats – webp, avif,
and jpeg xl all provide formats that can greatly reduce the size of an image.

Note
A great tool for trying out different compression techniques and settings for images is
Squoosh (https://squoosh.app/).

Layout shift and images

Images can contribute to page load time. They can also contribute to another aspect of web performance
– layout shift.

Images can cause layout shifts if the size of the element into which they are loaded is not the same as
the size or aspect ratio of the image, and when the image loads it causes a shift in the layout of the page.

The important thing to consider when solving layout shifts with images is to set the dimensions for
an image using width and height. This can be combined with the aspect ratio attribute.

Exercise – optimizing the performance of a web page

In this exercise, we will carry on from the previous exercise, where we created and tested the performance
of an image gallery.

Here, we will do some work to optimize the performance of the image gallery we created using the
techniques we have discussed for lazy loading images and preloading high-priority assets.

Here are the steps for optimizing the performance:

1.	 First, we will make a copy of the gallery. In the chapter_7 folder that we created in the
previous exercise, copy exercise_01.html and save it as exercise_02.html.

2.	 Our first task will be to lazily load all the images except for the first hero image. This will really
help with the FCP metric. We will add the loading="lazy" attribute to each of the hero
images (except for the first one) and to each of the thumbnail images. This way, the only image
that will load if not onscreen is the first hero image.

3.	 Next, we’ll hint to the browser which are our highest priority images, and which can be loaded
later. Again, we will consider all the thumbnails and all hero images aside from the first hero
image as a lower priority. We will set the fetchpriority="low" attribute for each of these
images. We will then set the fetchpriority="high" attribute for the first hero image.

https://squoosh.app/

Improving the performance of a web page 247

4.	 Finally, to make sure the first hero image loads prior to the first page render, we will add a
preload link to the header of the page. Above the style tag in the head of the document, we
add the following line of code:

<link
  rel="preload" as="image"
  href="assets/andrew-ridley-Kt5hRENuotI-unsplash.jpg"
/>

With these easy-to-implement optimizations, we will see some striking improvements to our web page
loading experience. Testing in Lighthouse led to some real improvements in the overall performance
score and the FCP and LCP scores.

While these scores can vary, you can see the results in the following screenshot with an overall score
of 85% and FCP and LCP both showing 0.6 s.

Figure 7.8: The Lighthouse report with a Performance score of 85

Using CSS and HTML to Boost Performance248

In this exercise, we’ve seen some simple ways to improve performance scores that, combined, can
really improve the user experience of your web page.

Summary
In this chapter, we have learned how to use the popular Lighthouse tool to measure the performance
of our web pages. We’ve learned about the Core Web Vitals – a set of important metrics for a user’s
experience of a web page. We’ve introduced techniques to lazily load some of the larger assets on a
web page, and we’ve learned about prioritizing the order in which assets load.

The techniques we’ve looked at in this chapter are some simple browser features that we can use to
improve the way our web pages load. This will benefit all users and improve engagement with your
web pages.

In the next chapter, we’ll look at how we can improve the user experience of our web pages for different
devices and viewport sizes using responsive web design and media queries: techniques that can create
an even better experience and further boost performance on mobile.

8
Responsive Web Design

and Media Queries

When was the last time you accessed the internet? Was it via your mobile phone or a computer screen?
In today’s digital age, it’s highly likely that you used a mobile device. As mobile internet usage continues
to surpass desktop browsing, the importance of web responsivity becomes more critical than ever.

Historically, web design has evolved significantly with the proliferation of mobile devices. However,
creating responsive web applications encompasses much more than just reducing and rearranging
elements on a screen. It involves crafting an adaptable and seamless user experience across a diverse
range of devices and screen sizes.

Understanding and implementing responsive design is not without its challenges. Developers must
consider various screen sizes, resolutions, and orientations, all while maintaining performance and
aesthetics. Despite these challenges, the benefits are clear: improved user satisfaction, higher engagement
rates, and broader accessibility.

In this chapter, we’re going to cover the following main topics:

•	 What does it mean to design mobile first?

•	 Viewports

•	 Media queries

•	 Responsive values in CSS

•	 Responsive images

•	 CSS Flexbox

•	 Printable design

Responsive Web Design and Media Queries250

We will examine the tools and techniques provided by HTML and CSS to develop elegant, mobile-first
applications. By the end of this chapter, you will have a comprehensive understanding of how to create
web applications that not only look great but also function flawlessly on any device, ensuring a consistent
and user-friendly experience for all. We will also explore real-world examples where responsive design
has made a significant impact, highlighting best practices and common pitfalls to avoid.

Technical requirements
The code files for this chapter can be found at https://packt.link/YGV5J.

What does it mean to design mobile first?
Designing mobile first is a good practice in developing digital products that prioritize the design and
development of a website or application before scaling up to larger screens such as tablets and desktops.

This approach emerged as a response to the significant shift in how people access the internet. Historically,
web design was centered on desktop computers, reflecting the dominant usage patterns of the early
Internet era. However, with the advent of smartphones and their rapid adoption, particularly in the
late 2000s and early 2010s, the landscape began to change dramatically. By 2016, mobile internet usage
had overtaken desktops for the first time globally.

This shift necessitated a new approach: designing mobile first ensures that the most constrained
environment is addressed first, ensuring a smooth, optimized experience for users on the go. Once
the mobile experience is perfected, designers can enhance the interface for larger screens.

This method not only caters to the growing number of mobile users but also promotes cleaner, more
efficient design practices, emphasizing essential content and functionality from the outset.

The mobile-first principle uses two key concepts:

•	 Responsive web design (RWD): This involves a website adjusting its layout as the web browser
is resized, ensuring it fits seamlessly on any device the user is utilizing.

•	 Feature enhancements and graceful degradation: This approach maximizes the capabilities
of the device being used to access the website. For instance, on mobile websites, developers
can leverage features such as GPS (Global Position System) to help users locate the nearest
store, touch gestures for navigation (for example, swiping to see more content or pinching to
zoom), and a gyroscope for interactive elements. On desktop websites, additional features can
be incorporated to take advantage of the larger screen space while substituting touch gestures
with mouse-click actions to maintain similar interactions. Figure 8.1 shows the difference
between a design that works on mobile from a real responsive design:

https://packt.link/YGV5J

Understanding viewports 251

Figure 8.1: Wireframe for a desktop, a non-responsive design, and a responsive design, respectively

In Figure 8.1, you’ll notice a stark contrast between a website displayed in its desktop layout, a
non-responsive rendition, and a responsive version of the same content. The key to developing a
robust responsive design lies in understanding the concept of the viewport in HTML, which we will
discuss next.

Understanding viewports
In HTML, the viewport is essentially the visible area of a web page within a browser window. It
determines how much content is visible and how it is scaled or sized to fit the screen. The viewport
meta tag in HTML allows web developers to control the layout and scaling behavior of a web page
on different devices and screen sizes.

Without specifying a viewport meta tag, mobile browsers typically render pages at a default desktop
viewport width, which can lead to issues such as content appearing too small or requiring horizontal
scrolling. The viewport meta tag is placed inside the <head> tag in HTML files:

<!DOCTYPE html>
<html lang="en">
<head>
  <meta charset="UTF-8">
  <meta name="viewport" content="width=device-width,
    initial-scale=1.0">
  <title>Document</title>
</head>
<body>

Responsive Web Design and Media Queries252

</body>
</html>

By setting the viewport meta tag, developers can instruct the browser on how to adjust the page layout
and scale it to fit the screen properly. Common attributes used in the viewport meta tag include width,
initial-scale, minimum-scale, and maximum-scale, which allow developers to define
the initial width, scale, and constraints for the viewport.

For example, specifying <meta name="viewport" content="width=device-width,
initial-scale=1.0"> instructs the browser to set the width of the viewport to the device’s
width and initially scale the content to 100% of its normal size.

Overall, understanding and properly configuring the viewport is crucial for ensuring a consistent
and user-friendly experience across different devices and screen sizes in web development. The next
concept we’ll discuss, which is equally crucial for creating a good responsive design, is media queries.

Introducing media queries
Media queries were introduced as part of the CSS3 specification and gained significant popularity
around the early 2010s as mobile devices with varying screen sizes became more prevalent, and there
was a growing need for websites to adapt to different viewport sizes. They are a powerful tool used
in RWD to apply different styles to a web page based on the characteristics of the device or browser
viewing the page. These characteristics can include screen width, height, device orientation, resolution,
and more. By utilizing media queries, developers can ensure their designs adapt seamlessly to different
screen sizes and device capabilities, as illustrated in the following examples:

•	 Starting the code with the default styles for all sizes is a good practice that leverages the CSS
cascade rule by ensuring default styles apply universally, with media queries overriding these
defaults for specific conditions, thus creating a responsive and adaptable design:

body {
  font-size: 16px;
  color: #333;
}

.sidebar {
  background-color: #a2cce4;
  padding: 20px;
  min-width: 150px;
}
.main-content {
  padding: 20px;
}

Introducing media queries 253

•	 Next, we look at a media query for screens smaller than 600px width:

@media screen and (max-width: 600px) {
  body {
      font-size: 14px;
  }
  .sidebar {
      display: none;
  }
}

This section of code will be displayed on viewports smaller than 600px, such as the smartphone
shown in Figure 8.2:

Figure 8.2: Project on mobile screens

•	 The following is the media query for screens between 600px and 900px wide, with an
adjustment for container width:

@media screen and (min-width: 600px) and (max-width: 900px) {
  .container {
    width: 90%;
  }
}

Responsive Web Design and Media Queries254

This media query defines the styles intended for viewports ranging from 600px to 900px in
width, typical of tablets, as depicted in Figure 8.3:

Figure 8.3: Project on tablets

•	 Next is the media query for screens larger than 1200px wide, with a limit for width on
larger screens:

@media screen and (min-width: 1200px) {
  .container {
    width: 1200px;
    display: flex;
  }
}

•	 Finally, this code specifies the styles that will exclusively apply to desktops, as illustrated in
Figure 8.4:

Introducing media queries 255

Figure 8.4: Project on desktops

In this example, the default styles are applied to all screen sizes. Also, the first media query targets
screens smaller than 600px wide, adjusts the font size of the body, and hides the sidebar. The
second media query applies styles to screens between 600px and 900px wide, adjusting the
width of the container, while the third media query targets screens larger than 1200px wide
and sets a maximum width for the container.

These media queries allow the web page layout and styling to adapt based on the viewport size, ensuring
optimal display and user experience across various devices and screen resolutions.

Exercise 8.01 – Creating a mobile-first menu

In this exercise, we’ll create a <nav> element representing a website’s main menu. On desktop, it
will be centralized in the header, but on mobile devices, it will be a vertical menu that can be further
hidden using some JavaScript.

Important note
In this exercise, we’ll be using CSS Flexbox, a concept that will be explained further in this
chapter. Please feel free to jump to the CSS Flexbox section and then come back to complete
this practice.

Responsive Web Design and Media Queries256

If you need help with this exercise, you can always check the solution code at this link: https://
packt.link/7IOiC

Let’s start our mobile-first menu:

1.	 First, create a folder named chapter8-exercise1 and open it in VS Code.

2.	 Next, create basic HTML and CSS files in this folder. Name the HTML file responsive-
menu.html and the CSS file styles.css.

3.	 Your folder structure should look like this in VS Code:

Figure 8.5: Project file structure example

4.	 Next, open the responsive-menu.html file and create the base HTML structure that we
will style using the code provided here:

<!DOCTYPE html>
<html lang="en">

<head>
  <meta charset="UTF-8">
  <meta name="viewport" content="width=device-width,
    initial-scale=1.0">
  <link rel="stylesheet" href="styles.css">
  <title>Responsive Menu</title>
</head>

<body>
  <header>
    <h1>Website Title</h1>
    <nav>
      
        Home
        About Us
        Projects
        Partners
        Contact
      

https://packt.link/7IOiC
https://packt.link/7IOiC

Introducing media queries 257

    </nav>
  </header>
</body>

</html>

5.	 With the basic structure of our HTML ready, let’s start by styling for mobile devices first. Open
the styles.css file and write the code here, starting with the general styles:

/* General Styles */
body {
  font-family: Arial, sans-serif;
  margin: 0;
  padding: 0;
  background-color: white;
  color: black;
}

header {
  background-color: purple;
  color: white;
  padding: 10px;
}

h1 {
  text-align: center;
  margin: 0;
  padding: 10px 0;
}

6.	 In the same styles.css file, let’s add mobile-first styles in sequence:

/* Mobile First Styles */
nav ul {
  list-style-type: none;
  padding: 0;
  margin: 0;
  display: flex;
  flex-direction: column;
  align-items: center;
}

nav ul li {
  padding: 10px;
  text-align: center;
  border: 2px solid grey;
  border-radius: 10px;
  margin: 5px 0;

Responsive Web Design and Media Queries258

  width: 80%;
  background-color: white;
  color: purple;
  transition: background-color 0.3s, color 0.3s;
}

nav ul li:hover {
  background-color: grey;
  color: white;
}

7.	 This CSS ensures that the website is styled effectively for mobile devices by default (vertical
menu, centered items) and will later adjust for desktop views using media queries. It also
includes visual enhancements such as rounded borders, color transitions, and hover effects
for an improved user experience.

8.	 The application should look like this on both mobile and desktop devices:

Figure 8.6: Application functionality across mobile and desktop screens

9.	 Now, let’s implement the desktop variation using media queries. For this, we’ll use 820px as
the minimum width for large-screen styling, as this works well for both tablets and desktops.
In the styles.css file, below the previous code, add a media query for larger screens:

@media (min-width: 820px) {
  header {

Introducing media queries 259

    display: flex;
    flex-direction: column;
    align-items: center;
  }

  nav ul {
    flex-direction: row;
    justify-content: center;
  }

  nav ul li {
    margin: 0 10px;
    width: auto;
  }
}

These styles enhance the layout for larger screens, making the navigation menu horizontal and centering
it, which is more suitable for desktop or tablet views. The result is as follows:

Figure 8.7: Application running on mobile, tablet, and desktop screens

Responsive Web Design and Media Queries260

Congratulations! You’ve successfully built your first mobile-first application. As you’ve experienced
throughout this exercise, starting with a mobile-first approach simplifies the styling process, allowing
for smoother transitions from simpler to more complex designs. Now, let’s explore advanced concepts
of responsive design to craft even more impressive applications!

Responsive values in CSS
Responsive values are fundamental for ensuring responsiveness on the web. By employing these values,
developers can dynamically adjust layouts, typography, and other design elements to optimize user
experiences across smartphones, tablets, desktops, and beyond. In this section, we’ll delve into the
principles and practical applications of responsive values in CSS, emphasizing their role in crafting
flexible and user-friendly web interfaces.

Responsive typography units

Responsive typography units such as root em (rem) and em are important tools in web design for
creating text that adjusts dynamically based on the user’s preferred font size or the size of the parent
element. They allow for scalability and consistency across different devices and screen sizes. Let’s look
at both of them in detail here:

•	 rem: The rem unit represents the font size of the root element (<html>), making it particularly
useful for defining a consistent base font size for the entire document. One rem is equal to the
computed font size of the root element. This means that if the root font size is 16px, 1rem
would be equivalent to 16px.

•	 em: The em unit represents the font size of the current element relative to its parent element.
For example, if the parent element has a font size of 16px and a child element is specified with
1em, it would have the same font size as the parent, 16px. If the parent’s font size changes, the
child element’s font size will adjust proportionally.

Here’s an example to illustrate the usage of rem and em:

html {
  font-size: 16px;
}
body {
  font-size: 1rem;
}
.container {
  font-size: 1.2rem;
}
.title {
  font-size: 2em;
}
.subtitle {

Responsive values in CSS 261

  font-size: 1.5em;
}

In this example, we have the following:

•	 The html element sets the base font size for the document to 16px

•	 The body element sets its font size to 1rem, which is 16px (the size of the root element)

•	 The .container class sets its font size to 1.2rem, which is 20.8px (16px * 1.2)

•	 The .title class sets its font size to 2em, which is 32px (16px * 2)

•	 The .subtitle class sets its font size to 1.5em, which is 24px (16px * 1.5)

Using rem and em units allows for flexible and scalable typography that adapts to changes in the
document structure and makes it easier to maintain consistent typography across different parts of
a website.

In sequence, we’ll learn about responsive sizing units, such as viewport height (vh) and viewport
width (vw).

Responsive sizing units

Responsive sizing units vh and vw are used in CSS to specify dimensions relative to the viewport’s
height (vh) and width (vw). These units are particularly useful for creating layouts that adapt to
different screen sizes and orientations, providing a responsive design experience:

•	 vh: This unit represents 1% of the viewport’s height. For example, 100vh would be equal to the
full height of the viewport, while 50vh would be half of the viewport’s height. It’s commonly
used for elements that need to fill the entire height of the viewport, such as full-screen sections
or backgrounds.

•	 vw: Similar to vh, vw represents 1% of the viewport’s width. For instance, 100vw would be
the full width of the viewport, while 50vw would be half of the viewport’s width. It’s often
used for creating responsive layouts or sizing elements relative to the width of the viewport.

Here’s an example to illustrate the usage of vh and vw:

.container {
  width: 80vw;
  height: 70vh
  background-color: #f0f0f0;
}
.fullscreen-section {
  height: 100vh
  background-image: url('background.jpg');
  background-size: cover;
}

Responsive Web Design and Media Queries262

In this example, we have the following:

•	 The .container class sets the width to 80% of the viewport width (80vw) and the height
to 70% of the viewport height (70vh)

•	 The .fullscreen-section class ensures that the section fills the entire height of the
viewport (100vh), creating a full-screen background image

Using vh and vw units allows developers to create more flexible and adaptive layouts that adjust
smoothly to different screen sizes, making them essential tools for RWD. In the following section, we
will explore another crucial aspect of responsive design: how to create responsive images.

Exploring responsive images
Images play a crucial role in developing different viewport sizes. Beyond using CSS, HTML also
provides resources that enhance the user experience in responsive applications. Let’s explore these tools.

Using width and max-width with percentages

While width and max-width are not exclusively dedicated to responsive design, their effective use
with percentages significantly contributes to achieving responsive images. Here’s how they function:

•	 Setting the image width value to 100% ensures that the image scales with its parent container:

<style>
  .responsive-img {
    width: 100%;
    height: auto;
  }
</style>
<img src="example.jpg" alt="Example Image"
  class="responsive-img">

•	 Setting max-width to 100% ensures that the image will not exceed the size of its container
while maintaining its aspect ratio:

<style>
  .responsive-img {
    max-width: 100%;
    height: auto;
  }
</style>
<img src="example.jpg" alt="Example Image"
  class="responsive-img">

Exploring responsive images 263

While the width property determines the exact width of an element, the max-width property
sets the maximum width that an element can have. This allows elements to be flexible and adapt to
various screen sizes or content lengths without surpassing the specified maximum width.

The next resource for responsive images is the HTML picture element.

HTML picture element

The picture element allows you to define multiple sources for an image, so different images can be
served based on the viewport width. Here’s how you might use this element:

<picture>
  <source srcset="image-large.jpg"
          media="(min-width: 800px)">
  <source srcset="image-medium.jpg"
          media="(min-width: 500px)">
  <img src="image-small.jpg"
       alt="Responsive Image">
</picture>

To summarize, the picture attribute helps ensure image quality and prevents distortion.

Using srcset and sizes

The srcset attribute allows you to specify different image resolutions, and the sizes attribute lets
the browser know what image size to select based on the viewport width:

<img src="example-small.jpg"
    srcset="example-small.jpg 300w,
            example-medium.jpg 600w,
            example-large.jpg 1200w"
    sizes="(max-width: 600px) 300px,
           (max-width: 900px) 600px,
           1200px"
    alt="Example Image">

The srcset attribute allows browsers to choose the most appropriate image source based on factors
such as device resolution and viewport size, thus optimizing performance and displaying the most
suitable image for each user.

Sometimes, we use images as backgrounds, and CSS provides specific properties to handle their
responsiveness, as we’ll discuss next.

Responsive Web Design and Media Queries264

Background images in CSS

For images used as backgrounds, the background-size property can make them responsive:

<style>
  .responsive-bg {
    background-image: url('example.jpg');
    background-size: cover;
    background-position: center;
    width: 100%;
    height: 400px;
  }
</style>
<div class="responsive-bg"></div>

The background-size property is commonly used in conjunction with the background-
image property to control the appearance of background images in elements. It is useful for creating
responsive designs and adjusting the presentation of background images based on the dimensions
of the container or the viewport. The background-size property accepts the following values:

•	 cover: This value scales the background image as large as possible without stretching it while
ensuring that both dimensions are fully covered by the background positioning area. This
means that the background image might be cropped in order to fit the container’s dimensions.

•	 contain: This value scales the background image to make sure it is fully contained within
the background positioning area without cropping or stretching it. This means that the entire
background image will be visible, even if it leaves some empty space within the container:

Figure 8.8: Image with background-size cover and contain values, respectively

Exploring responsive images 265

Media queries can also change the background image based on the viewport size:

<style>
  .responsive-bg {
    background-image: url('example-small.jpg');
    background-size: cover;
    background-position: center;
  }

  @media (min-width: 600px) {
    .responsive-bg {
      background-image: url('example-medium.jpg');
    }
  }

  @media (min-width: 1200px) {
    .responsive-bg {
      background-image: url('example-large.jpg');
    }
  }
</style>
<div class="responsive-bg"></div>

In this code, we assign a different background image for each viewport size. This strategy ensures
optimal image quality and positioning while reducing rendering costs, as larger images are only
displayed on larger viewports.

When dealing with images, one of the first questions that developers often ask is: How long will it
take to render? As we explored earlier, modern CSS and HTML include special properties designed to
enhance both image quality and performance. Next, we’ll examine another strategy aimed at reducing
image loading times: lazy loading.

Lazy loading

Lazy loading is a strategy to load content on demand in an application. It improves performance by
only loading what is visible on the screen, with additional content loading as the user scrolls near it.

In HTML, we can use the loading attribute in images to defer offscreen images until the user scrolls
near them, further enhancing performance:

Responsive images are crucial for ensuring that web content looks good on various devices and screen
sizes. The techniques discussed in this section collectively ensure that images adapt seamlessly to
different viewports, significantly enhancing the overall user experience.

For the final part of this section, let us look at an exercise.

Responsive Web Design and Media Queries266

Exercise 8.02 – Creating a mobile catalog for a flower shop

Let’s enhance our skills by applying what we’ve learned so far. We’re embarking on a journey to design
a captivating home page for a flower shop. To kickstart this process, we’ll build upon the foundation
laid in Exercise 8.01, enriching our home page with additional content and enhancements:

1.	 Begin by creating a new directory named chapter8-exercise2 and duplicating the files
from Exercise 8.01 into this new directory. These files will serve as the groundwork for our
refinement and expansion.

2.	 Open the directory using VS Code and rename the HTML file from responsive-menu.
html to responsive-shop.html.

3.	 Next, access the provided assets located in the chapter8-exercise2 folder for this
exercise. Within this folder, you’ll also discover the resolution code for reference: https://
packt.link/axx5J.

4.	 Ensure your folder structure resembles the following:

Figure 8.9: Project folder structure

5.	 To enrich our flower shop’s home page, we’ll introduce a new section showcasing our products.
Begin by opening the responsive-shop.html file and inserting the following code snippet
immediately after the closing </header> tag:

<div class="container">
    <div class="card">
      
      <h2>Responsive Content</h2>
    </div>
    <div class="card">
      
      <h2>Responsive Content</h2>

https://packt.link/axx5J
https://packt.link/axx5J

Exploring responsive images 267

    </div>
    <div class="card">
      
      <h2>Responsive Content</h2>
    </div>
  </div>

6.	 This code snippet represents the new product section for our flower shop. After integrating
this content, your responsive-shop.html file should resemble the same as the example
found at this link: https://packt.link/pt5gS.

7.	 You’ve set up the HTML file, but upon inspection, you may notice that the images appear too
large and lack the appearance of product cards. Let’s enhance the visual presentation by styling
the new elements to create an appealing mobile catalog tailored for smaller screens. Additionally,
we’ll transition our measurement values to responsive units.

8.	 Firstly, it’s good practice to apply a CSS reset to neutralize any default browser styling. Open
the styles.css file and insert the following snippet just before any existing code:

* {
  box-sizing: border-box;
  margin: 0;
  padding: 0;
}

9.	 Next, as we’re employing relative sizes for fonts and elements, let’s employ a technique to simplify
the transition from pixels (px) to rems (rem). Typically, 1rem equals 16px. By reducing the
default base font size of the browser by 62.5%, we can establish 1rem as 10px, making
calculations more straightforward. Add the following line of CSS immediately after the reset:

:root {
  font-size: 62.5%
}

10.	 We also need to style the new .container, .card, and image (img) elements. Note that
the .container element is currently set to a width of 100vw, meaning it will span the
entire viewport width:

.container {
  margin: 0 auto;
  padding: 2rem;
  max-width: 100vw;
}
.card {

https://packt.link/pt5gS

Responsive Web Design and Media Queries268

  margin-bottom: 2rem;
  padding: 2rem;
  background-color: rgb(224, 203, 224);
}
img {
  width: 100%;
}

11.	 You’ll notice that these new elements are already using relative units (rem) for sizing. Now,
refactor the remaining properties in your CSS file to also use rem units. You can find the
resulting CSS file at this link: https://packt.link/JUuqH.

The result is as follows:

Figure 8.10: Visual output of the code

https://packt.link/JUuqH

CSS Flexbox 269

Great job! The flower shop’s catalog is now elegantly designed for mobile devices. Take the opportunity
to delve into CSS resources for animations and additional styling options according to your preferences.
Next, let’s delve into the powerful Flexbox module to enhance our application effortlessly for desktops
and larger screens.

CSS Flexbox
CSS Flexbox is a powerful layout module designed to help developers create flexible and responsive
web layouts with ease. It allows items within a container to be automatically arranged and adjusted
based on the available space, making it particularly useful for responsive design. Here are the key
concepts of Flexbox:

•	 Flex container and flex items: The parent element becomes a flex container when display:
flex or display: inline-flex is applied. The children of this container become flex
items and are arranged according to Flexbox rules.

•	 Main axis and cross axis: The main axis is the primary direction in which flex items are laid
out (default is horizontal). The cross-axis is perpendicular to the main axis.

Figure 8.11 shows how flex items relate to a flex container:

Figure 8.11: Flexbox schema

To make the most of CSS Flexbox, let’s delve deeper into its properties and explore how to use
them effectively.

Responsive Web Design and Media Queries270

Flexbox basic properties

As the display: flex property is set in the parent element, it gives us a set of properties to better
configure the element positioning and its children. Let’s take a look at each one of them:

•	 display: flex is used to declare a flex container; usually, it is the first we set

•	 flex-direction is the property that determines the direction of flex items

•	 justify-content is used to align items along the main axis inside the flex container

•	 align-items also is used to align items, but using the cross axis as a reference

•	 flex-wrap is used to control whether flex items wrap

•	 align-content is a property used to align each flex container line if there’s any extra space
in the cross-axis

Each flex container property accepts different values, as shown in Table 8.1:

Property Accepted Values

display flex, inline-flex

flex-direction row, row-reverse, column, column-reverse

flex-wrap nowrap, wrap, wrap-reverse

justify-
content

flex-start, flex-end, center, space-between, space-
around, space-evenly

align-items flex-start, flex-end, center, baseline, stretch

align-content flex-start, flex-end, center, space-between, space-
around, stretch

Table 8.1: Flex container properties and values accepted

The main axis is horizontal by default because the default value for flex-direction is row. If
flex-direction is changed to column, the main axis is automatically set to vertical. The flex
item properties are the following:

•	 order: Determines the sequence of flex items

•	 flex-grow: Defines how much a flex item can expand in relation to the other items

•	 flex-shrink: Determines how much a flex item can reduce its size compared to others

CSS Flexbox 271

•	 flex-basis: Sets the initial size of an element before space is allocated

•	 align-self: Lets individual flex items override the default alignment

Each flex item property accepts different values, as shown in Table 8.2:

Property Accepted Values

flex-grow Any positive number, 0

flex-shrink Any positive number, 0

flex-basis Any length value, percentage, auto

flex Shorthand for flex-grow, flex-shrink, and flex-basis

order Any integer

align-self auto, flex-start, flex-end, center, baseline, stretch

Table 8.2: Flex item properties and values accepted

Please refer to the following link to see the full code demonstrating how Flexbox properties can
simplify responsive styling: https://packt.link/rmaSc

In this code, the .container class is set to display: flex with flex-wrap: wrap to allow
wrapping of flex items, styled as follows:

  .container {
    display: flex;
    flex-wrap: wrap;
    justify-content: space-between;
  }

The items are styled as follows:

  .item {
    flex-grow: 1;
    flex-shrink: 1;
    flex-basis: 200px;
    margin: 10px;
    padding: 20px;
    background-color: #f0f0f0;
    text-align: center;
  }

https://packt.link/rmaSc

Responsive Web Design and Media Queries272

  .item:nth-child(even) {
    background-color: #e0e0e0;
  }

In this code, the .item class is styled as follows:

•	 flex-grow: 1: Each item can grow to fill the available space

•	 flex-shrink: 1: Each item can shrink if necessary

•	 flex-basis: 200px: Each item has a base size of 200px

To ensure responsiveness, the media query guarantees that on screens smaller than 600px, each flex
item takes up the full width (100%), as shown in the following code:

@media (max-width: 600px) {
  .item {
    flex-basis: 100%;
  }

In the example, we see that while Flexbox is powerful, it’s also important to use other tools provided
by HTML and CSS, such as media queries, to achieve optimal responsiveness. The result of the code
is shown in Figure 8.12:

Figure 8.12: Flexbox in desktop

CSS Flexbox 273

When resized, the code automatically reorganizes itself, as shown in Figure 8.13:

Figure 8.13: Flexbox in tablet and mobile

This example demonstrates how to use Flexbox to create a responsive layout that adapts to different
screen sizes, providing a flexible and robust solution for web development.

Next, let’s look at an exercise that uses Flexbox.

Exercise 8.03 – Updating the flower shop catalog for desktop
using Flexbox

Let’s create the desktop version of the flower shop catalog we developed in Exercise 8.02 using Flexbox.
Begin by establishing a new directory named chapter8-exercise3.

If you have any queries or require guidance, refer to the resolution code provided for this exercise in
the project folder: https://packt.link/jTw80

https://packt.link/jTw80

Responsive Web Design and Media Queries274

This time, we’ll focus exclusively on leveraging CSS Flexbox for layout optimization without altering
the HTML file. However, feel free to enhance the project with additional resources you’ve learned
throughout this book:

1.	 After duplicating the files from Exercise 8.02 into the new folder, ensure that your file structure
appears as follows in VS Code:

Figure 8.14: Exercise 8.3 folder structure

2.	 Next, navigate to the styles.css file and locate the media query designated for screens
larger than 820px. Within this query, we’ll convert the .container class into a Flexbox
container, adjusting its positioning and its child elements accordingly:

/* Bigger Screens Styles */
@media (min-width: 820px) {
  header {
    display: flex;
    flex-direction: column;
    align-items: center;
  }

  nav ul {
    flex-direction: row;
    justify-content: center;
  }

  nav ul li {
    margin: 0 1rem;
    width: auto;
  }
  .container {

CSS Flexbox 275

    display: flex;
    justify-content: space-around;
    gap: 2rem;
    max-width: 120rem;
  }
  img {
    width: auto;
    max-height: 27.3rem;
}
}

3.	 The gap property is permitted in Flexbox containers and specifies the spacing between flex items.

4.	 We’ve additionally applied a max-height value to the images to ensure they fit more
appropriately within the cards.

5.	 Furthermore, you may observe that we replaced width: 100% with width: auto to
negate the previously set width value. This adjustment is necessary due to the cascade rule of
CSS, which stipulates that if a property is not explicitly altered within the most specific criteria
(in this instance, the media query), it will inherit the global value set beforehand.

The output for our flower shop is as follows:

Figure 8.15: Visual output of the exercise

Responsive Web Design and Media Queries276

With just a few lines of code, we’ve transformed the content into a more appealing design for larger
screens! Incredible! However, there are occasions when users may need to print content for various
reasons, prompting developers to utilize responsive tools to enhance the print experience. This will
be our focus in the next section.

Exploring printable design
Responsive design traditionally refers to making web content adaptable to various screen sizes and
devices, ensuring a seamless user experience across different viewports. However, the core principle of
responsive design is to adapt content to different contexts and environments, which includes printing.

The following list shows how printable design is a form of responsive design:

•	 Adaptability: Just as responsive design adjusts layouts for different screen sizes, printable design
adjusts the web page layout for optimal printing. This includes changes in font sizes, colors,
margins, and visibility of elements.

•	 Media queries: Both responsive design for screens and printable design use CSS media queries
to apply different styles based on the medium (for example, screen or print).

•	 User experience: The goal in both cases is to improve user experience. For RWD, this means
making the content easy to read and navigate on various devices. For printable design, this
means making the content clean, well structured, and easy to read on paper.

There are two ways to specify print-only styles in a browser:

•	 Using a separate style sheet: You can import a separate style sheet dedicated to print styles
with a new HTML <link> tag:

<link rel="stylesheet"
      media="print"
      href="print.css" />

This code allows the print.css style sheet to be used only when the browser is in print mode.

•	 Using @media queries in an existing style sheet: You can include print-specific styles within
an existing style sheet by using the @media print query syntax:

@media print {
  /* Print-specific style changes go here */
}

Both methods are effective for applying styles, specifically when a document is printed. Using a separate
style sheet helps keep your print styles organized and distinct from your screen styles, while using @
media print within an existing style sheet allows you to maintain all styles in a single file, which
can be more convenient for smaller projects or simpler style adjustments.

Exploring printable design 277

At the following link, https://packt.link/bu7NR, is an example demonstrating how to create
a web page with a separate print style sheet and how to use @media print within an existing style
sheet to achieve printable responsiveness. In this code, the HTML includes two style sheets: styles.
css for general styles and print.css for print-specific styles.

Let’s look at the styles now. The main CSS file (styles.css) defines basic styles for the web
page, ensuring it looks good on screens, and uses media queries to adjust styles for smaller screens,
demonstrating responsive design principles. The main style sheet is available at this link for you to
study: https://packt.link/acNvH. Figure 8.16 represents the visual output for this code:

Figure 8.16: Screen view before printing

The print CSS file (print.css) applies styles specifically for when the page is printed, adjusts
body margins, font size, and background colors for a clean print layout, and hides elements such as
navigation elements, footers, and ads that are not needed in the printed version.

This CSS file also ensures headings avoid page breaks and sections are printed on separate pages for
better readability. The result is as follows:

@media print {
  body {

https://packt.link/bu7NR
https://packt.link/acNvH

Responsive Web Design and Media Queries278

    margin: 1in;
    font-size: 12pt;
    color: black;
    background-color: white;
  }

  .navigation, .footer, .ad {
    display: none;
  }

  .content {
    padding: 0;
  }

  h1, h2, h3 {
    page-break-before: avoid;
  }

  .section {
    page-break-after: always;
  }
}

Figure 8.17 shows how the page looks in the printing preview:

Figure 8.17: Printing preview

Exploring printable design 279

In conclusion, mastering print styles is an essential aspect of web development that enhances the
versatility and professionalism of your web content. This involves hiding unnecessary elements,
adjusting layouts, and managing page breaks to create clean and readable printed documents.

Combining these techniques with a solid understanding of Flexbox and responsive design principles
ensures that your web content is adaptable and user-friendly across all devices and formats, ultimately
improving the overall user experience.

The final part of this chapter is an exercise for creating printable designs.

Exercise 8.04 – Creating a printable style for the flower shop
catalog

Let’s enhance our skills by optimizing our web page for printing. We’ll be working with the HTML
and CSS files provided to create a print-friendly version of our flower shop catalog:

1.	 Start by creating a new directory named chapter8-exercise4. Duplicate the files from the
previous exercise (Exercise 8.03) into this new directory. These files will serve as the foundation
for our print optimization practice. Remember to look at our GitHub repository to check the
assets and resulting code: https://packt.link/f7grZ.

2.	 Open the directory in VS Code. In this exercise, we’ll focus on creating CSS styles specifically
tailored for printing purposes, ensuring that the printed version of our catalog looks clean
and well structured. Create a new file and name it print.css. The structure of your project
should be like this:

Figure 8.18: Project file structure

3.	 Open the print.css file and include the code as shown here:

https://packt.link/f7grZ

Responsive Web Design and Media Queries280

/* Printing Styles */

@media print {
body {
  font-family: Arial, sans-serif;
}
header {
  display: none;
}
.container {
  display: block;
  margin: 0 auto;
}
.card {
  page-break-inside: avoid;
  margin-bottom: 2rem;
  padding: 2rem;
  background-color: rgb(224, 203, 224);
}
img {
  display: block;
  width: 100%;
  max-height: 100%;
}
nav {
  display: none;
}
}

4.	 Let’s break down the CSS code for printing styles:

	� body: We keep the font family as Arial or sans-serif for better readability in print.

	� header: We set the header to be hidden (display: none;) in print mode, as headers
are typically not needed in printed documents.

	� .container: We ensure that the container appears as a block-level element (display:
block;) and is centered horizontally (margin: 0 auto;) on the printed page.

	� .card: We use page-break-inside: avoid to prevent splitting the cards across
pages, ensuring that each card stays together on one page for better readability.

	� img: We set the images to be displayed as block-level elements (display: block;),
ensuring that they take up the full width of their container. Additionally, we limit the
maximum height of images to prevent them from exceeding the height of the printed page
(max-height: 100%;).

Exploring printable design 281

	� nav: We hide the navigation menu in print mode by setting display: none, as navigation
menus are typically not needed in printed documents.

5.	 These CSS rules help optimize the page layout and content for printing, ensuring that the
printed document looks clean and well-structured.

6.	 Next, let’s integrate the newly created printing styles into the HTML file by adding a new
<link> tag below the main style sheet:

<head>
  <meta charset="UTF-8">
  <meta name="viewport" content="width=device-width,
    initial-scale=1.0">
  <link rel="stylesheet" href="styles.css">
  <link rel="stylesheet" href="print.css">
  <title>Responsive Menu</title>
</head>

The result is as follows:

Figure 8.19: How the application appears when printing

Responsive Web Design and Media Queries282

By optimizing our web page for printing, we’ve acquired a valuable skill set that enhances user
experience beyond the digital realm. This exercise underscores the importance of catering to diverse
user needs and reinforces our commitment to delivering exceptional usability across all platforms.

Summary
Through this chapter, we’ve explored various techniques for creating responsive designs. We began
with the concept of mobile-first development and its importance. We then covered viewports, media
queries, and responsive measurement units such as rem, em, vh, and vw. Additionally, we delved into
the Flexbox layout and how to leverage it to simplify responsive design. Finally, we learned how to
implement techniques to make printed content more user-friendly, enhancing the overall experience
of using our applications. With this knowledge, we hope you’ll create incredible applications that run
seamlessly on any screen size, providing an excellent user experience.

In the next chapter, we’ll delve deeper into user experience features, focusing on HTML and CSS
accessibility tools. This will enable you to develop fully accessible applications that offer an outstanding
user experience for everyone, regardless of their conditions.

9
Ensuring Accessibility

in HTML and CSS

Web accessibility is a broad set of guidelines, considerations, and best practices that we can apply to
make sure we don’t put up barriers that stop those with disabilities from using web pages.

The web is an open platform, and we should strive to make its content accessible to as many people as
we can. The web should work for everyone. As a web developer, this means we have a great responsibility
to use the tools available to us to make accessible websites.

HTML has a lot of features that are designed to make web pages accessible and, in this chapter, we will
look at several of these – image alt attributes, form labels, and fieldsets, to name a few.

We will start by identifying some common issues that can cause web pages to become inaccessible.
We will look at how a combination of thinking with an accessibility mindset from the outset of our
project and using semantic HTML as intended will solve a lot of these issues.

We will also look at some of the tools that are available to help us improve the accessibility of our web
pages. We will be looking at a tool called Axe that can automatically flag accessibility issues.

Finally, as an activity, we will look at a page with some accessibility issues and use what we have learned
in this chapter to identify and fix those issues.

In this chapter, we’re going to cover the following main topics:

•	 Making images accessible

•	 Making forms accessible

•	 Working with accessibility tools

By the end of this chapter, you will understand how to make an accessible web page and how to
discover accessibility issues using readily available tools. You will also have created an accessible web
page with images and forms that can be used by disabled users.

Ensuring Accessibility in HTML and CSS284

Technical requirements
The code files for this chapter can be found at https://packt.link/4oGcq.

What is accessibility?
Accessibility is a very important subject for the web and web developers, but it is one that isn’t always
that well understood. By learning about some of the fundamentals of web accessibility, we can make
small improvements that will make a big difference for a lot of users.

Note
Accessibility is a long word often shortened to the numeronym (a word abbreviated with
numbers) a11y. The term a11y is a useful one to recognize as it is widely used when talking
about accessibility and, if you are researching the subject, a web search for a11y will return
useful results.

We can remove barriers for the following users:

•	 Users with visual impairments who cannot get information from images that do not have a
text alternative

•	 Users with hearing impairments who cannot get information from media (audio or video)

•	 Users with physical impairments that prevent them from using a mouse

By making our web pages accessible to those who are disabled, we also make the pages more usable for
those who may face technical limitations. Accessibility issues are not only limited to the aforementioned
scenarios but also include users on mobile devices, users who are on a website in a location with a
lot of background noise, during a presentation, or on a monitor that is not well calibrated, and where
color contrast may be an issue. Simply put, accessibility improves usability.

As web developers, one of the biggest opportunities we have for creating accessible web pages is the
use of semantically correct HTML. What this means is that we should make use of the correct HTML
tags to define the meaning of the content of our page.

For example, instead of using div elements to create the sections of a page, we should use the elements
provided by HTML5 – section, header, footer, main, aside, and nav. Also, we should use
h1-h6 and use the right level of heading, depending on our document structure and nesting.

The web is a great platform for distributing content, and the main purpose of that content is to reach
as many people as possible. Whether our reasons are due to ethics, profit margins, fear of litigation,
or empathy, there are no good reasons to ignore the accessibility needs of our users.

https://packt.link/4oGcq

Making images accessible 285

You’ll be happy to hear that we’ve already learned about a lot of the techniques we need to make our
web pages accessible. Before we progress, let’s review some of the accessibility concepts we have covered
in the preceding chapters and how we will be building upon them in this chapter.

In Chapter 1, we talked briefly about the alt attribute on the img tag. In the next section of this
chapter, we will look at how we can make images accessible to visually impaired users (and those with
image loading disabled) using the alt attribute in the right way.

The alt attribute is often misused, but by making some simple, informed decisions we can more
easily pick the right approach for alt text depending on the context in which an image is used and
the information it is being used to convey.

In Chapter 4, we looked at creating HTML forms. We will reinforce some of that learning by focusing
on the fundamentals for making these forms accessible, including connecting labels to inputs correctly
and keyboard accessibility.

An area that we have not covered previously and one that is specific to enhancing the accessibility
of web pages is the Web Accessibility Initiative’s suite of standards known as ARIA (Accessible Rich
Internet Applications).

The WAI-ARIA standards are extensive and are often used to enhance web pages with a lot of
dynamism. Put simply, where a web application uses JavaScript to update a page often, WAI-ARIA
can help maintain the meaning of the page, keep a user’s focus in the right place, and keep behavior
accessible. The ARIA attributes and roles are beyond the scope of this chapter as they are largely
related to JavaScript and interpreting custom behaviors as something a screen reader can understand.

First, we will look at how we can make our HTML images accessible.

Making images accessible
As the saying goes, a picture is worth a thousand words, and images can add a lot to a web page. Some
pictures are decorative, whereas others are an important piece of content that gets your web page’s
message across with great impact.

Every time we add an image to a web page, there are accessibility considerations we should take
into consideration in order to make the image accessible. Not all users may be able to see an image.
For example, if a user requires a screen reader or another form of non-visual browser to be able to
navigate through a web page, they will require a textual description of an image to be able to garner any
meaning from it. It can also be the case that a user does not download images because of limitations
on network bandwidth or for security reasons. All of these users will benefit from an alternative text
description of an image.

The way we can provide this information is through the alt attribute, which we learned about in
Chapter 1. An alt attribute should provide a meaningful text alternative to an image.

Ensuring Accessibility in HTML and CSS286

For example, if we were to add an image to our web page that showed an infographic with some
important business data, such as the budget for this and last year, the information – any text, labels, or
the numbers the bars represent – would not be accessible to a non-visual browser if they were included
in the image. We would need to add an alt tag that expressed that information.

The following img tag could be used to provide an image and appropriate alt text:

<img
  src="bar-chart.png"
  alt="Bar graph of profits for 2019 (£40,000), which are
       up £20,000 on profits for 2018 (£20,000)"
/>

The following is our infographic:

Figure 9.1: Bar graph infographic

The following screenshot shows the alt tag (with the image not loaded). The alt tag can also be
read by a screen reader:

Figure 9.2: alt text for the bar graph image

There are a few decisions we should consider when we add an alt attribute, and these depend on
the nature of the image (or images) on our web page.

Making images accessible 287

Note
The W3C provides a decision tree that can be very useful for making a decision about what
content you need to provide in the alt attribute of an image on your web page. You can find
it at https://www.w3.org/WAI/tutorials/images/decision-tree/.

As we have shown in the previous example, informative images need a text alternative. Where an
image provides the user with information in the form of a diagram, graph, photo, or illustration that
represents data or a concept, there should also be an alt text attribute. We should, at least, provide a
short text description of the essential information the image conveys. Often, and this especially applies
where the information in the image is complex, we need to back this up with more text content or
with a table of data.

If an image is purely decorative, we should still provide an alt attribute, but we don’t need to add
any text. We just add an alt attribute with an empty string (alt=""). Decorative images include
those that are used for visual styling and effects.

Images that are described by surrounding text on the page can also be considered decorative. If the
information that’s conveyed by an image is also described as text on a web page, you can again add
an empty alt tag.

If an image has a functional role – for example, it is an icon that’s used as a button or a link, we need
to provide alternative text that describes the function rather than the image. For example, where an
image of a floppy disk is used as a button for saving a file, we would provide the alt text Save or Save
file rather than something such as Floppy disk icon, which would describe the image but would not
be useful for a user who wanted to use that functionality.

Where multiple images are used to convey a single piece of information, we can add alt text to the
first image to provide a description. The rest of the images can then have an empty alt attribute.
For example, in the forthcoming exercise, we will create an element for showing a rating using five
separate star images. By adding an alt text description to the first image and empty alt attributes
to the other images, we inform the user of the rating, even when the images are not visible.

Here is the relevant code:

<div class="rating">
  <img
    src="images/full-star.png"
    alt="Rated 3 and a half out of 5 stars"
  />
  
  
  
  
</div>

https://www.w3.org/WAI/tutorials/images/decision-tree/

Ensuring Accessibility in HTML and CSS288

Having seen the basics of the alt attribute, we will implement this in the following exercise, where
we will make the rating section of a typical product page accessible. We will make the group of images
accessible with the appropriate use of alt text.

Exercise 9.01 - Accessible ratings

In this exercise, we are going to create a product page. We are going to include an element for showing
a product rating. This is a common UI pattern seen on e-commerce sites or anywhere users can rate
cultural artifacts such as books and films. The rating will be represented by five stars, and a rating can
be any value from zero to five stars, rising in increments of a half.

To create the rating element, we will use five separate images. We will make the group of images
accessible by providing alt attributes to express the information on our set of images. In other words,
we will describe the rating given.

The following screenshot is what the product page will look like when it’s finished. For this exercise,
we will give the product a rating of three and a half stars:

Figure 9.3: Product page with rating UI

Making images accessible 289

The steps are as follows:

1.	 First, we will create an empty web page in which to build up our accessible product page. We
will create and save a file named Exercise 9.01.html and add the following code to
provide a page title and to add some styles to remove white space from the body element:

<!DOCTYPE html>
<html lang="en">
    <head>
        <meta charset="utf-8">
        <title>Exercise 9.01:Accessible rating</title>
        <style>
        html {
            box-sizing: border-box;
        }

        *, *:before, *:after {
            box-sizing: inherit;
        }

        body {
            padding: 0;
            margin: 0;
            font-family: Arial, Helvetica, sans-serif;
            font-size: 16px;
            line-height: 1.7778;
        }
        </style>
    </head>
    <body>

    </body>
</html>

2.	 In the body element, add a <div> with a class attribute with the container value. This
is where our product markup will be hosted:

        <div class="container"></div>

3.	 We want the product to be centered on the page, so we will use flexbox to center the contents
of the container in CSS. By setting the flexbox flow to a column with no wrapping, the elements
within that container will flow vertically, one after another. We add the following declaration
block to the style element:

        .container {
            display: flex;
            align-items: center;

Ensuring Accessibility in HTML and CSS290

            justify-content: center;
            flex-flow: column nowrap;
        }

4.	 We are going to create a product item page that shows an item with a title, a description, and a
rating. We can add the initial markup for the product – a section element with the product
class attribute and child elements for a product image, as well as a heading and a paragraph
for the description. We add this to the body element:

        <section class="product">
             <h2 class="product-heading">
                 Product Description
             </h2>
             <img
                 class="product-image"
                 src="images/product.png"
                 alt="Product"
             />
             <p class="product-description">
                 Lorem ipsum dolor sit amet,
                 consectetur adipiscing elit.
                 Phasellus scelerisque, sapien at
                 tincidunt finibus, mauris purus
                 tincidunt orci, non cursus lorem
                 lectus ac urna. Ut non porttitor
                 nisl. Morbi id nisi eros.
             </p>
             <hr class="divider" />
        </section>

5.	 To style the product item, we will add the following CSS declarations. This defines a box for
the product with a shadow around it and the content centered:

        .product {
            width: 50vw;
            min-width: 640px;
            margin: 2rem;
            padding: 1rem 2rem;
            display: flex;
            justify-content: center;
            flex-flow: column nowrap;
            border-radius: 3px;
            box-shadow:
                rgba(0, 23, 74, 0.05) 0px 6px 12px
                    12px,
                rgba(0, 23, 24, 0.1) 0 6px 6px 6px,

Making images accessible 291

                rgba(0, 23, 24, 0.3) 0 1px 0px 0px;
        }

        .product-heading {
            margin: 0;
        }

        .product-image {
            padding: 0;
            margin: 2rem auto;
            width: 60%;
            height: 100%;
        }

        .product-description {
            width: 100%;
        }

        .divider {
            width: 100%;
        }

6.	 To create the UI element for showing the ratings, we will add a div element with a rating
class attribute and five image elements as children. Each of these images will either show a
star, a half-filled star, or an empty star. We will add this below the description at the end of the
product section:

             <div class="rating">
                 
                 
                 
                  
                 
              </div>

7.	 We need to add some more CSS declarations to the style element to center the ratings and to
keep the size of the rating responsive when the container is resized due to window width. We
have added flex-shrink to each rating image as this will allow the image to shrink in order
to fit the available space:

        .rating {
            margin: 1rem auto;
            width: 60%;
            display: flex;
            flex-wrap: row nowrap;
        }

Ensuring Accessibility in HTML and CSS292

        .rating img {
            width: 20%;
            flex-shrink: 1;
        }

8.	 Next, we will add alt attributes to each image element with an empty string. This means that
the images will be treated as decorative:

             <div class="rating">
                 <img
                     src="images/full-star.png"
                     alt=""
                 />
                 <img
                     src="images/full-star.png"
                     alt=""
                 />
                 <img
                     src="images/full-star.png"
                     alt=""
                 />
                  <img
                      src="images/half-star.png"
                      alt=""
                  />
                 <img
                     src="images/empty-star.png"
                     alt=""
                 />
             </div>

The five image elements are required to describe some information that our users may find
useful. At the moment, our rating element does not describe that information in a text-based
format. A screen reader user would not get information about the product rating and that
could hamper their choice.

9.	 By adding the rating information as the value of an alt tag for the first image, we provide the
necessary information for non-visual users:

             <div class="rating">
                 <img
                     src="images/full-star.png"
                     alt="Rated 3 and a half out of 5
                         stars"
                 />
                 <img

Making images accessible 293

                     src="images/full-star.png"
                     alt=""
                 />
                 <img
                     src="images/full-star.png"
                     alt=""
                 />
                 <img
                     src="images/half-star.png"
                     alt=""
                 />
                 <img
                      src="images/empty-star.png"
                      alt=""
                 />
              </div>

We’ve added alt attributes to each of the images, but only the first one describes the information
portrayed by the set of images. This provides information for a user who cannot see the visual
representation of the images and means that the ratings are accessible and useful.

In a browser, the final result will look like the screenshot that was provided at the beginning
of this exercise.

The following screenshot shows the product page without images. The alt text shows that we can still
get the information provided by the images when the images are not available. The rating is shown
as Rated 3 and a half out of 5 stars so that a user who has a screen reader can make a decision about
this product with the same information as a user who can see the images:

Figure 9.4: Product page with alt text replacing images

In the next section, we are going to look at what we can do to make HTML forms accessible to users.

Ensuring Accessibility in HTML and CSS294

Making forms accessible
We learned about HTML forms in Chapter 4. Making forms accessible is very important because
forms are one of the key areas where users will interact with your site. This is where users will sign
up, send feedback, or pay for goods.

Making forms accessible takes some thinking, and there are fundamental practices we should follow
when we are creating forms for a web page. By following these practices, we will have gone a long way
toward making accessible forms and web pages.

The techniques we will look at here are as follows:

•	 Labels and input fields

•	 Fieldsets

A common mistake that’s found in forms across the web can be seen here:

<p>First name:</p>

<input type="text" id="first-name" />

The following screenshot shows the result of this markup:

Figure 9.5: Form markup

Visually, this markup may look fine. This may be how we’ve designed the input and label. However,
the problem for a user of a screen reader is that the First name: text is not associated with the input.
A screen reader would not read out the text when navigating to the form field.

We need to provide labels for our form inputs, and we need to make sure that the labels are correctly
associated with those input fields.

To make the preceding example accessible, we can do one of two things:

•	 We can associate a text label with a form input field using a label element with a for
attribute. The value of the for attribute must match an id attribute value on the appropriate
form field. For example, the following code provides the First name label and it is associated
with the input with the first-name ID:

<label for="first-name">First name</label>
<input type="text" id="first-name" />

Making forms accessible 295

•	 We can wrap the input with the label, again creating an association between the two. This
would look like this:

<label>First name: <input type="text" /></label>

In both cases, we now have a form field associated with a label. When a screen reader user navigates to
the input element with the first-name ID, the screen reader will read out the label First name. This
explains what information the input field is expecting without the user relying on a visual association.

When forms get more complex with a large number of input fields, they can be difficult to navigate
through and understand. We often use white space and visual groupings to break up a form, but that
doesn’t work if a user is browsing with a screen reader. To meaningfully break information up into
understandable groupings, we can use the fieldset and legend elements.

A fieldset element wraps a set of form input fields. You can add a legend element nested in
the fieldset element to provide a textual caption for the fieldset element. For a screen reader
user, this grouping and text caption helps them understand what they are being asked to input and
provides context.

As an example, the following code creates a form with two fieldsets. The first set of fields asks for the
user’s address and the second set asks the user to choose their favorite color. The use of fieldset
helps all users understand that the two fieldsets are grouped separately:

<form>
    <fieldset>
         <legend>Provide your address:</legend>
         <label for="house">House</label>
         <input type="text" id="house" />
         

         <label for="street">Street</label>
         <input type="text" id="street" />
         

         <label for="zipcode">ZIP code</label>
         <input type="text" id="zipcode">
    </fieldset>
    <fieldset>
         <legend>Choose a favorite color:</legend>
         <input
             type="radio"
             value="red"
             id="red"
             name="color"
         >
         <label for="red">Red</label>
         <input

Ensuring Accessibility in HTML and CSS296

             type="radio"
             value="green"
             id="green"
             name="color"
         >
         <label for="green">Green</label>
         <input
             type="radio"
             value="blue"
             id="blue"
             name="color"
         >
         <label for="blue">Blue</label>
    </fieldset>
</form>

The result of the preceding code (with default user agent styling) is shown in the following screenshot:

Figure 9.6: Form with fieldsets and legend

Visually, the two different fieldsets are obvious and thematically related to the input fields. For a screen
reader, the second fieldset might be read as follows:

Choose a favorite color radio button Red, radio button Green, radio button Blue.

Having looked at some of the fundamental techniques we can use to make forms accessible, we will
put these techniques into practice in the next exercise by creating an accessible sign up form.

Exercise 9.02: accessible sign up form

We are going to create an accessible HTML form in this exercise. The form will be a simple example
of a sign up form and we will focus on making it accessible by providing the appropriate fields with
labels and grouping them as fieldsets. By doing this, we will learn how to make an accessible form.

Making forms accessible 297

We can see the wireframe of the form in the following diagram. This is a sign up form; it is simple
and functional, and we will particularly focus on making sure it is accessible by making use of the
label and fieldset elements:

Figure 9.7: Wireframe of the sign up form

As we can see from the wireframe, the form will have a heading (Sign up Form), two fieldsets, each with
a legend (Add user’s details and Set a password), a submit button with the Sign up label, and the five input
fields with corresponding labels for First name, Last name, email, Password, and Confirm Password:

The steps are as follows:

1.	 First, we will create an empty web page in which to develop our accessible web form. We will
create and save a file named Exercise 9.02.html and add the following code to set up
a basic HTML page with a title and styles to remove white space around the body element:

<!DOCTYPE html>
<html lang="en">
    <head>
        <meta charset="utf-8">
        <title>
            Exercise 9.02: Accessible sign up form
        </title>
        <style>
        html {

Ensuring Accessibility in HTML and CSS298

            box-sizing: border-box;
        }

        *, *:before, *:after {
            box-sizing: inherit;
        }

        body {
            padding: 0;
            margin: 0;
            font-family: Arial, Helvetica, sans-serif;
            font-size: 16px;
            line-height: 1.7778;
        }
        </style>
    </head>
    <body>

    </body>
</html>

2.	 We want to create a form, so we’ll add a class attribute with the sign up value, which we
will use for styling. We will add a h2 heading element to the form with the Sign up Form text
content so that we know what the form is for:

        <form class="signup">
            <h2>Sign up form</h2>

        </form>

3.	 Next, we’ll add our input fields to the form. The information we want to capture is the user’s
first and last name, an email address, and a password. We also need a button to submit the
form. We will use the label element to provide the appropriate labeling for each field. To
make sure each label/input pair is on a separate line, we are going to use the br element.
We have connected each label to an input using the for attribute and a corresponding
id on the input element:

        <form class="signup">
            <h2>Sign up form</h2>
            <label for="first-name">
                First name:
            </label>
            <input type="text" id="first-name" />
            

Making forms accessible 299

            <label for="last-name">Last name:</label>
            <input type="text" id="last-name" />
            

            <label for="email">E-mail:</label>
            <input type="email" id="email" />
          

          <label for="password">Password:</label>
            <input type="password" id="password" />
            

            <label for="confirm-password">
                Confirm password:
            </label>
            <input
                type="password"
                id="confirm-password"
            />
            

            <button
                type="submit"
                class="sign up-button"
            >
                Sign-up
            </button>
        </form>

The following screenshot shows our form at this stage:

Figure 9.8: Unstyled form with inputs and labels

Ensuring Accessibility in HTML and CSS300

4.	 We can improve the layout of the form to help make the experience better for visual users. Add
the following CSS to the style element in order to add some white space around the form, style
the Sign up button so that it’s more visually interesting and so that it stands out more, and
increase the size of the input fields so that they take up a whole line:

            .signup {
                margin: 1rem;
            }

            .signup-button {
                -webkit-appearance: none;
                appearance: none;
                padding: .5rem 1rem;
                background: #7e00f4;
                color: white;
                font-size: 1rem;
                border-radius: 3px;
                margin: 1rem 0;
                outline: none;
                float: right;
                cursor: pointer;
            }

            .signup-button:hover,
            .signup-button:focus {
                background: #500b91;
            }

            .signup label {
                display: inline-block;
                width: 150px;
            }

            .signup input {
                width: 100%;
                height: 2rem;
                margin-bottom: 1rem;
            }

Making forms accessible 301

The following screenshot shows the effect of styling the form with the preceding CSS code. It
makes the form more visually appealing and easier to work with:

Figure 9.9: Styled sign up form

5.	 All our users will benefit from partitioning the form thematically. It will make it easier to
understand for visual and non-visual browsers alike. We will do this by separating the password
and user data portions with the fieldset element. We will give each part a legend element
to describe the information being requested.

The first fieldset tag is for user details:
         <fieldset>
              <legend>Add user's details:</legend>
              <label for="first-name">
                  First name:
              </label>
              <input type="text" id="first-name" />
              

              <label for="last-name">
                  Last name:
              </label>
              <input type="text" id="last-name" />
              

              <label for="email">E-mail:</label>
              <input type="email" id="email" />
         </fieldset>

Ensuring Accessibility in HTML and CSS302

The second fieldset tag is for setting a password:
         <fieldset>
              <legend>Set a password:</legend>
              <label for="password">Password:</label>
              <input type="password" id="password" />
              

              <label for="confirm-password">
                  Confirm password:
              </label>
              <input
                  type="password"
                  id="confirm-password"
              />
         </fieldset>

6.	 To finish, we add some styling to the fieldset element by adding the following declaration
to the style element:

         .sign up fieldset {
             margin: 1rem 0;
             background: #f5ffff;
             border: 2px solid #52a752;
         }

The end result will be similar to what is shown in the following figure. The screenshot shows the final
output – an accessible sign up form:

Figure 9.10: The accessible sign up form we have created

Understanding keyboard accessibility 303

This form has been labeled and the labels are paired appropriately, to form fields. The form fields are
grouped to help a user make sense of them. All users will benefit from these structural grouping and
labeling techniques and they will allow screen reader users to sign up successfully.

In this exercise, we have created an accessible form and learned about grouping parts of a form and
associating labels with inputs to make sure users can access the form using a screen reader.

In the next section, we will look at keyboard accessibility. The keyboard provides input for many users
who cannot use a mouse. As developers, we cannot take mouse usage for granted. Many users find the
mouse difficult or impossible to use and many use the keyboard out of necessity or as a preference.

Understanding keyboard accessibility
For some of our web page’s users, a mouse may not be of much use. It requires the ability to follow a
visual pointer onscreen, a certain amount of sensitivity of touch, and fine motor skills.

Whenever we test our web pages, we should check that we can use the keyboard to get to all the content
and that we can interact successfully without using a mouse.

We can navigate through a web page using the following keys on the keyboard:

•	 Tab

•	 Shift + Tab

•	 Enter

To navigate a web page, we use the Tab key to cycle through elements on the web page. We can see
this if we open the Exercise 9.02.html file and use the Tab key. Shift + Tab will cycle in the
reverse order. We can use the two in combination to move back and forth through the elements of
the web page.

In the following screenshot, you can see the default focus ring on the First name input field:

Figure 9.11: Form with a focus on the First name field

Ensuring Accessibility in HTML and CSS304

In the following screenshot, we see that the focus ring has moved to the Last name input. This is
because we pressed the Tab key:

Figure 9.12: Form with a focus on the Last name field

To submit a form or interact with a link or button, we can use the Enter key. In the case of buttons,
we can also use the spacebar to use a button.

To toggle radio and checkbox input fields, we can use the spacebar.

Checking that styling or JavaScript has not made the tab order confusing is very important for
keyboard accessibility.

We should also make sure that our interactive elements, such as buttons and input fields, have some
differentiation for when they have focus. We can do this with the :focus pseudo-class in CSS.

Making sure you can consistently interact with the elements on your web page using a keyboard helps
you know with confidence that a user will not find barriers when using your web page.

In this section, we have learned about the importance of making a web page accessible with the keyboard
and how to use keyboard controls to check that we can access interactive elements on our web page.

Next, we will look at how we can use a media query provided through CSS to handle animation
responsibly. Motion can be a great addition to a web page but can also cause distraction and, in some
cases, distress. By following user preferences, we can make sure motion does not prevent a user from
enjoying our web page.

Making motion accessible
CSS animations and transitions have become a massive part of creating rich and visually interesting
web pages. We learned about animating our web pages in Chapter 5. Motion can add a lot to a web
page and can help us highlight content or make content changes more obvious.

Making motion accessible 305

With power comes responsibility, and in the case of motion, we should consider whether repeated
transitions and animations may cause a user distraction and, in some cases, irritation or make for a
difficult user experience.

In particular, repetitive motion, parallax effects, and flicker effects can be really bad for people with
vestibular disorders, where such motion can cause severe discomfort and even nausea.

As browsers get better integration with operating systems, they can make use of more fine-grained
accessibility configurations. In the case of motion, a media query has been added to most modern
browsers, which we can use to check whether the user prefers to have reduced levels of motion.
We can combine this, responsively, with our CSS transitions and animations to give a user the
appropriate experience.

The media query is prefers-reduced-motion and it has two possible values: reduce
or no-preference.

For example, the following CSS would apply an animation only if the user has no preference regarding
the prefers-reduced-motion media query:

<div class="animation">animated box</div>
<style>
    .animation {
        position: absolute;
        top: 150px;
        left: 150px;
    }

    @media (prefers-reduced-motion: no-preference) {
        .animation {
            animation: moveAround 1s 0.3s linear infinite
                       both;
        }
    }

    @keyframes moveAround {
        from {
            transform: translate(-50px, -50px);
        }
        to {
             transform: translate(50px, 100px);
        }
    }
</style>

Ensuring Accessibility in HTML and CSS306

We can test this media query by configuring the accessibility setting in our operating system. To do
so, do the following:

•	 On Mac, go to System Preferences > Accessibility > Display and toggle the Reduce
motion checkbox

•	 On Windows, this preference can be controlled via Settings > Ease of Access > Display >
Show Animations.

The following screenshot shows the Accessibility display preferences on Mac with the setting for
Reduce motion selected:

Figure 9.13: Mac display preferences with the Reduce motion checkbox

In the next section, we will look at how we can use tools to help understand and audit a web page for
accessibility problems.

Accessibility tools
There are a lot of built-in, third-party tools available that can help with different aspects of accessibility.

A great number of tools have been created that can help us with the accessibility of our web pages.
Some are good for diagnosing issues and auditing pages for structural issues, some help us check tab
order and keyboard accessibility, and some help us with design decisions around color contrast and
text legibility.

In this section, we are going to look at the Axe accessibility checker, which can be used to audit a web
page or site to highlight issues in our semantics and HTML structure that may cause accessibility issues.

Accessibility tools 307

The Axe® tool

Axe® is an accessibility tool developed by Deque. It is a popular accessibility testing resource that can
be used to flag issues on our web pages. There are several versions of this tool, but we are going to
look at the free Chrome extension, “axe DevTools - Web Accessibility Testing”.

To install the extension, we can go to the Chrome web store at https://packt.link/t8KFq.

If you are running the tool on a local file (file://), you may have problems with Axe throwing an
error. The solution is to do the following:

1.	 In your browser, navigate to chrome://extensions.

2.	 Find the Axe extension (with the axe - Web Accessibility Testing heading).

3.	 Click the Details button.

4.	 Locate the Allow access to file URLs switch and enable it.

This will allow you to run the Axe extension on local web pages.

The tool is added as an axe tab in the Chrome web developer tools. Open the web developer tools and
select the axe tab. You will see the panel shown in the following screenshot:

Figure 9.14: Axe accessibility checker Chrome extension

https://packt.link/t8KFq
chrome://extensions

Ensuring Accessibility in HTML and CSS308

To run the accessibility checker, click the Full Page Scan button in the left-hand panel. This will check
the site we are currently on and report any issues it has detected from analyzing the markup.

The following screenshot shows the reported results from running Axe on a web page.

Please note that since the creation of this content, the Axe user interface has undergone significant
changes. As a result, the information may now appear in a different layout or location. In the left-hand
panel, we can see a summary of all the issues that were found. These can be anything from semantic
HTML issues, through incorrect levels of nested headings, to color contrast issues. The right-hand
panel provides a more detailed description of an issue, including the location of the issue and what
can be done to fix the issue:

Figure 9.15: Axe accessibility checker report

Taking the preceding screenshot as an example, we can see that four different issues have been reported
for the analyzed page. The issues are as follows:

•	 Document must not have more than one banner landmark

•	 Ensures landmarks are unique

•	 All page content must be contained by landmarks

•	 Elements must have sufficient color contrast

Several of these refer to landmarks, which we learned about in Chapter 1. The results are flagged for
the following reasons:

•	 An HTML page should only have one banner landmark (meaning the HTML header element
or the WAI-ARIA role="banner" attribute). This is because it makes the web page easier
for non-visual users to navigate and find their way around.

Accessibility tools 309

•	 A landmark should be unique, which means it should have a unique combination of role and
label. This helps to distinguish between landmarks. Again, this improves navigation around
the web page.

•	 All the content of a page should be contained within a landmark (such as header, footer,
nav, or role="banner"), and again, this is important for web page navigation.

•	 Strong color contrast helps users to distinguish text from its background and helps all visual
users, especially those with visual impairments. Axe can detect low contrast levels between a
foreground (text color) and background color and will flag such issues.

These are just a few of the many topics that the Axe tool can and will flag for you.

In this section, we’ve looked at the Axe tool and some of the results it flags. Next, we will try it out
on a web page of our own.

Exercise 9.03: Using Axe

In this exercise, we will run the Axe tool on a web page and analyze the findings in the report it creates.

The steps are as follows:

1.	 First, create and save a file named Exercise 9.03.html. In Exercise 9.03.html,
copy and paste the following code to set up an HTML page. The page is the bare bones of quite
a simple layout and contains some landmarks (such as nav, header, and footer). The page
has the following markup:

<!DOCTYPE html>
<html lang="en">
    <head>
        <meta charset="utf-8">
        <title>Exercise 9.03: Using Axe</title>
        <style>
        html {
            box-sizing: border-box;
        }

        *, *:before, *:after {
            box-sizing: inherit;
        }

        body {
            padding: 0;
            margin: 0;
            font-family: Arial, Helvetica, sans-serif;
            font-size: 16px;

Ensuring Accessibility in HTML and CSS310

            line-height: 1.7778;
        }

        .container {
            height: 100vh;
            display: flex;
            align-items: center;
            justify-content: flex-start;
            flex-flow: column nowrap;
        }

        .header, .footer, [role="banner"] {
            background: black;
            color: white;
            width: 100vw;
            padding: 0 1rem;
        }

        h1, h2, h3, h4, h5, h6 {
            padding: 0;
            margin: 0;
        }

        [role="banner"] {
            background: yellow;
        }

        .content {
            flex: auto 1;
        }

        .nav ul {
            margin: 0;
            padding: 1rem 0;
        }

        .nav li {
            display: inline-block;
            padding: 0 1rem;
            list-style: none;
        }

Accessibility tools 311

        .nav a,
        .nav a:link,
        .nav a:visited,
        .nav a:hover,
        .nav a:active,
        .nav a:focus {
            color: white;
            text-decoration: none;
        }

        .nav a:focus,
        .nav a:hover {
            text-decoration: underline;
        }
        </style>
    </head>
    <body>
        <div class="container">
            <header class="header">
                <h1>Site Heading</h1>
            </header>
            <div role="banner">
                <nav class="nav">
                    
                        Nav 1
                        Nav 2
                        Nav 3
                    
                </nav>
            </div>
            <div class="content">
                <h2>Content Heading</h2>
                Lorem ipsum...
            </div>
            <footer class="footer">
                <h3>Site Links:</h3>
                <nav class="nav">
                    
                        Nav 1
                        Nav 2
                        Nav 3
                    
                </nav>

Ensuring Accessibility in HTML and CSS312

            </footer>
        </div>
    </body>
</html>

2.	 We will open this page in the browser where we have the Axe extension. The following screenshot
shows this page:

Figure 9.16: Site structure

3.	 Next, open the developer tools and select the axe DevTools tab. Then, run the Axe analysis tool
by clicking the button labeled Scan ALL of my page.

4.	 After the scan, you will see an overview with three serious issues flagged. These issues will all
be of the type Elements must have sufficient color contrast, with a description of the issue
and a pointer to the element location.

5.	 If we set the Best Practices toggle to ON, we will see a further five moderate issues, resulting
in eight issues in total, with the following types of issues all represented:

I.	 Elements must have sufficient color contrast

II.	 Document must not have more than one banner landmark

III.	 Document must have one main landmark

IV.	 Ensures landmarks are unique

V.	 All page content must be contained by landmarks

We will look at each issue one by one. The details of the first result are selected by default.

Accessibility tools 313

As shown in the following screenshot, we have several elements with insufficient color
contrast. From the issue description, we can see that this is because the top nav tag has a
yellow background and white text. The text is barely visible:

Figure 9.17: Details of the Elements must have sufficient color contrast issue

6.	 Select the next result (Document must not have more than one banner landmark). This
issue is caused by having both a header element and a div element with role="banner".
Both of these landmarks have the same purpose and role in an HTML page. We can see the
suggested solutions in the following screenshot:

Figure 9.18: Details of the Document must not have more than one banner landmark issue

Ensuring Accessibility in HTML and CSS314

7.	 Next, we select the third result (Document must have one main landmark). This issue is caused
by having no main element or element with role="main" included on the page. We have
a div tag with class="content", but we could benefit our users by making this a main
element. Again, we see the suggested solution in the following screenshot:

Figure 9.19: Details of the Document must have one main landmark issue

8.	 Next, we select the fourth result (Ensure landmarks are unique). This issue is similar to the
second one and is caused by the same problem (that we have a header and an element with
role="banner"). This means that the two landmarks are not unique. We can see the solution
in the following screenshot:

Figure 9.20: Details of the Ensure landmarks are unique issue

Accessibility tools 315

9.	 Next, we select the final result (All page content must be contained by landmarks). The
cause of this issue is the content being in a div element that is not a landmark (the div with
class content). Again, we can fix this by changing this div to a main element. We can see the
solution in the following screenshot:

Figure 9.21: Details of the All page content must be contained by landmarks issue

By running the Axe tool, we have found some issues early in the development of a web page, when they
can be easily solved. The Axe tool has helped us discover these issues quickly and has suggested solutions.

In this exercise, we have seen how the Axe web accessibility checker can help us identify structural,
semantic, and visual accessibility issues in our web pages.

To put into practice all the skills we have learned in this chapter, we will finish with an activity in
which we will use the Axe tool to diagnose some issues with a web page. We will then fix the issues
that have been flagged for us.

Activity 9.01: Making a page accessible

You have been asked by a client to look at the accessibility of their product feedback page. The client
has received several complaints from users trying to send feedback. The client has provided the source
code for the page and wants you to make changes to improve the accessibility of the page.

The steps are as follows:

1.	 First, make a copy of the activity_1_inaccessible.html file and rename it Activity
9.01.html. The code for activity_1_inaccessible.html is at https://packt.
link/1RJ7Z.

2.	 Run the Axe accessibility checker tool on this page.

https://packt.link/1RJ7Z
https://packt.link/1RJ7Z

Ensuring Accessibility in HTML and CSS316

3.	 In the Axe tool’s summary, you should see five types of issues flagged by the Axe tool.

4.	 Fix each of the issues with the techniques you have learned about in this chapter and the hints
that are given by the Axe tool.

5.	 Then, run the Axe tool again to check that the issues have been fixed.

Summary
In this chapter, we learned about accessibility. We looked at some of the simple techniques we can
employ to make our web pages accessible. We also learned about the right ways to use alt text and text
descriptions to make the images we embed in a web page accessible to users who can’t see the images.
We then learned about making forms accessible and about controlling a web page via the keyboard.

Most importantly, we raised awareness about a topic that affects a lot of people and an area that all
web developers should champion.

In the next chapter, we will look at how build tools can help us with developing complex modern websites
and how we can use preprocessors to expand the capabilities of what we can do in web development.

Part 4:
Advanced Concepts

In this part, we’ll go the extra mile in web development by exploring advanced techniques to elevate your
skills. We’ll begin by examining how to enhance your application with SEO strategies, preprocessors,
and efficient tooling. These concepts will equip you with powerful resources to take your projects to
the next level. Next, we’ll focus on strategies for maintaining CSS – a critical skill as projects grow in
complexity. Finally, we’ll investigate the latest advancements in web development and discover how
cutting-edge technologies can further enhance our applications.

This section contains the following chapters:

•	 Chapter 10, SEO Essentials for Web Developers

•	 Chapter 11, Preprocessors and Tooling for Efficient Development

•	 Chapter 12, Strategies for Maintaining CSS Code

•	 Chapter 13, The Future of HTML and CSS – Advancements and Trends

10
SEO Essentials

for Web Developers

Understanding Search Engine Optimization (SEO) is crucial in today’s digital landscape, especially
for web developers who aim to create impactful and high-performing websites. This chapter will
delve into the essentials of SEO from a web developer’s perspective. We will explore how Hypertext
Markup Language (HTML) and Cascading Style Sheets (CSS)can be optimized for better search
engine visibility and user experience.

By understanding how search engines crawl, index, and rank web pages, developers can make informed
decisions that optimize site structure, content, and performance. Let’s explore the relationship between
web development and SEO, emphasizing how a well-optimized site can drive organic traffic, improve
user experience, and ultimately contribute to the success of any online presence.

In this chapter, we’ll cover the following topics:

•	 Understanding SEO and its importance

•	 Exploring Core Web Vitals

•	 Minimizing render-blocking resources

•	 Optimizing images for SEO

•	 Methods to reduce Document Object Model (DOM) size for improved performance

By mastering these topics, you’ll be equipped to significantly improve your website’s SEO, boosting
its visibility, performance, and user experience.

Technical requirements
The code files for this chapter can be found at https://packt.link/TEToe.

https://packt.link/TEToe

SEO Essentials for Web Developers320

Understanding SEO and its importance
SEO is the practice of enhancing a website to increase its visibility in Search Engine Results Pages
(SERPs). When users search for keywords related to specific content, a well-optimized site will
appear higher in the results, driving more organic (non-paid) traffic to the site. SEO involves a range
of techniques and best practices, including keyword research, on-page optimization, technical SEO,
and link building.

As a web developer, understanding SEO and implementing its best practices is essential for enhancing
your application’s visibility on search engines. Effective SEO ensures that your site ranks well, making
it easier for users to find. As the saying goes, “The best place to hide a secret is on the second page
of Google search results.” This highlights the importance of securing a top spot in search rankings.

Key SEO concepts for web developers

To fully leverage SEO strategies, it’s essential to understand the various terms and key concepts
involved, such as the following:

•	 Keyword research: Identifying the terms and phrases that potential visitors use to find relevant
content is crucial.

•	 On-page optimization: Optimizing individual pages to rank higher and earn more relevant traffic
is very important. This includes title tags, meta descriptions, header tags, and keyword placement.

•	 Technical SEO: Improving the technical aspects of a website, such as site speed, mobile-
friendliness, indexing, crawlability, and security, is necessary.

•	 Link building: It’s important to acquire hyperlinks from other websites to your own. High-
quality backlinks can significantly improve a site’s authority and ranking.

•	 Content creation: Producing high-quality, valuable content that answers users’ queries and
encourages engagement and sharing is a major part of SEO optimization.

By mastering SEO, web developers can build websites that not only function well but also attract and
retain a broad audience, ultimately leading to the success and growth of their projects.

Benefits of developing with SEO practices in mind

By integrating SEO practices into web development, you not only improve search engine rankings
but also create a more user-friendly, efficient, and successful website. This holistic approach ensures
that your site meets both search engine criteria and user expectations, driving sustained growth and
success. Here are some benefits of SEO for developers:

•	 Visibility: Higher rankings in search results lead to greater visibility. Websites that appear
on the first page of search results get more clicks and views than those on subsequent pages.

Understanding SEO and its importance 321

•	 Traffic: More visibility means more traffic. Websites that are optimized for search engines attract
more organic traffic, which can lead to increased conversions and revenue.

•	 Site structure: SEO encourages a well-structured website, making it easier for users to navigate.
This includes clear sitemaps, logical URL structures, and organized content.

•	 Load speed: Part of SEO involves optimizing site speed. Faster-loading pages enhance user
experience and reduce bounce rates.

•	 Mobile performance: With a significant portion of web traffic originating from mobile devices,
search engines often use mobile-first indexing, which leads developers to embrace SEO
strategies to enhance both user experience and performance. You can learn more about how
Google indexes using mobile-first at https://developers.google.com/search/
docs/crawling-indexing/mobile/mobile-sites-mobile-first-indexing.

•	 Cost-effective marketing: SEO is one of the most cost-effective marketing strategies. Unlike
paid advertising, organic traffic is free, and a well-optimized site can continue to attract visitors
over time without incurring ongoing costs.

•	 Higher conversion rates: SEO-targeted traffic is often more qualified, meaning visitors are
more likely to convert into customers or leads.

•	 Industry standards: SEO is a standard practice in web development and digital marketing.
Staying competitive requires understanding and implementing SEO strategies to match or
surpass competitors.

•	 Algorithm updates: Search engines frequently update their algorithms. Web developers need
to stay informed about these changes to maintain or improve their site’s rankings.

Given all these benefits, it’s essential to understand the roles played by the elements of web applications.
Let’s begin by exploring how HTML and CSS impact SEO.

The impact of HTML and CSS on SEO

HTML is the backbone of web content and plays a crucial role in SEO. Here’s how:

•	 Semantic HTML tags: Semantic HTML tags (such as <header>, <footer>, <article>,
and <section>) help search engines understand the structure and content of your web pages.
Proper use of these tags makes it easier for search engines to index and rank your content
appropriately. Here’s an example of a semantic HTML structure:

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta
        name="viewport"

https://developers.google.com/search/docs/crawling-indexing/mobile/mobile-sites-mobile-first-indexing
https://developers.google.com/search/docs/crawling-indexing/mobile/mobile-sites-mobile-first-indexing

SEO Essentials for Web Developers322

        content="width=device-width,
                initial-scale=1.0"
    >
    <title>My Web Page</title>
</head>
<body>
    <header>
        <h1>Welcome to My Website</h1>
        <nav>
            
                Home
                About
                
                    Contact
                
            
        </nav>
    </header>
    <main>
        <article>
            <section>
                <h2>About Us</h2>
                <p>
                    This section provides information
                    about our company.
                </p>
            </section>
            <section>
                <h2>Our Services</h2>
                <p>
                    Details about the services we
                    offer.
                </p>
            </section>
        </article>
    </main>
    <footer>
        <p>
            © 2024 My Company. All rights
            reserved.
        </p>
    </footer>
</body>
</html>

Understanding SEO and its importance 323

•	 Title tags: A well-crafted <title> tag with relevant keywords can significantly improve
your page’s ranking and Click-Through Rate (CTR) in search results. Here is an example of
<title> tags:

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta
    name="viewport"
        content="width=device-width,
                initial-scale=1.0"
    >
    <title>Top SEO Tips for Web Developers</title>
</head>
<body>
    <!-- Page content -->
</body>
</html>

•	 Meta descriptions: Meta descriptions (using the <meta> tag) provide a summary of the page
content. While this is not a direct ranking factor, a compelling meta description can improve
CTR, indirectly influencing rankings. Here’s an example of this meta tag:

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta
        name="viewport"
        content="width=device-width,
                initial-scale=1.0"
    >
    <title>Top SEO Tips for Web Developers</title>
    <meta
        name="description"
        content="Discover the best SEO practices for
                web developers to enhance site
                visibility and performance in search
                engines."
    >
</head>
<body>

SEO Essentials for Web Developers324

    <!-- Page content -->
</body>
</html>

•	 Header tags: Header tags (<h1>, <h2>, <h3>, etc.) structure your content and indicate its
hierarchy. Proper use of header tags improves readability and helps search engines understand
the main topics of your content. An example of header tags is as follows:

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta
        name="viewport"
        content="width=device-width,
                initial-scale=1.0"
    >
    <title>Top SEO Tips for Web Developers</title>
</head>
<body>
    <header>
        <h1>Top SEO Tips for Web Developers</h1>
    </header>
    <main>
        <section>
            <h2>Understanding SEO Basics</h2>
            <p>
                Learn about the fundamental principles
                of SEO.
            </p>
        </section>
        <section>
            <h3>On-Page SEO Techniques</h3>
            <p>
                Explore various on-page optimization
                strategies.
            </p>
        </section>
    </main>
</body>
</html>

Understanding SEO and its importance 325

•	 Internal linking: Links between pages on your site help establish site architecture and hierarchy.
Effective internal linking distributes link equity (ranking power) throughout your site, aiding
in the indexing and ranking of pages. Here’s an example of internal linking:

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta
        name="viewport"
        content="width=device-width,
                initial-scale=1.0"
    >
    <title>Top SEO Tips for Web Developers</title>
</head>
<body>
    <header>
        <h1>Top SEO Tips for Web Developers</h1>
    </header>
    <main>
        <section>
            <h2>Understanding SEO Basics</h2>
            <p>
                Learn about the fundamental principles
                of SEO.
            </p>
            
                Read more about SEO Basics
            
        </section>
        <section>
            <h2>Advanced SEO Techniques</h2>
            <p>
                Delve into advanced strategies for
                optimizing your site.
            </p>
            
                Explore Advanced SEO Techniques
            
        </section>
    </main>
</body>
</html>

SEO Essentials for Web Developers326

•	 URL structure: Clean, descriptive URLs make it easier for users and search engines to understand
page content. Including keywords in URLs can improve CTRs and rankings. Here’s an example:

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta
        name="viewport"
        content="width=device-width,
                initial-scale=1.0">
    <title>Top SEO Tips for Web Developers</title>
</head>
<body>
    <header>
        <h1>Top SEO Tips for Web Developers</h1>
    </header>
    <main>
        <section>
            <h2>Understanding SEO Basics</h2>
            <p>
                Learn about the fundamental principles
                of SEO.
            </p>
            <a
                href="https://www.example.com/
                seo-basics"
            >
                Read more about SEO Basics
            
        </section>
    </main>
</body>
</html>

•	 Canonical tags: Canonical tags (<link rel="canonical" href="URL">) indicate
the preferred version of a page. They help prevent duplicate content issues, ensuring search
engines index the correct version. Here’s an example of canonical tags:

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta

Understanding SEO and its importance 327

        name="viewport"
        content="width=device-width,
                initial-scale=1.0"
    >
    <title>Top SEO Tips for Web Developers</title>
    <link
        rel="canonical"
        href=https://www.example.com/top-seo-tips
    >
</head>
<body>
    <header>
        <h1>Top SEO Tips for Web Developers</h1>
    </header>
    <main>
        <section>
            <h2>Understanding SEO Basics</h2>
            <p>
                Learn about the fundamental principles
                of SEO.
            </p>
        </section>
    </main>
</body>
</html>

As we’ve discussed, HTML code serves as a fixed representation of the application’s dynamics for
search engines and is one of the most impactful elements in SEO. Next, we’ll explore how CSS can
also influence SEO and how to optimize it for better results.

CSS and SEO

CSS primarily focuses on the presentation of web content. While it does not directly affect SEO, it
has several indirect impacts:

•	 Page load speed: The way in which CSS is implemented can influence page load times. Faster-
loading pages are favored by search engines and provide a better user experience, reducing
bounce rates.

•	 Mobile friendliness: CSS allows for responsive design, ensuring websites are usable on various
devices. Mobile-friendly websites rank better in mobile search results, as search engines
prioritize mobile usability.

SEO Essentials for Web Developers328

•	 Content visibility: CSS can be used to hide or display content. Hiding content with CSS (such
as display:none) can be viewed suspiciously by search engines if it appears manipulative,
potentially impacting rankings.

•	 Font and readability: CSS controls typography and layout. Better readability and a clean layout
enhance user engagement, indirectly benefiting SEO through improved user behavior metrics.

•	 Use of external CSS files: External CSS files help keep HTML clean and reduce page size.
Clean HTML is easier for search engines to crawl, and smaller page sizes improve load times.

•	 Minification and compression: Minifying and compressing CSS files reduces their size. This
optimization improves page speed, which is a known ranking factor. Figure 10.1 displays a CSS
file in its default formatting alongside its minified version.

Figure 10.1 – Representation of a normal CSS file on the left, and minified CSS on the right

By effectively leveraging HTML and CSS, web developers can create websites that are not only visually
appealing but also optimized for search engines, leading to better rankings, more traffic, and improved
user engagement.

Let’s summarize what we have learned in this section. Basically, to optimize your website for SEO, it’s
essential to focus on three key areas: HTML structure, CSS performance, and accessibility:

•	 First, ensure that your HTML structure is optimized by using semantic tags and maintaining
a logical hierarchy. Additionally, create unique and descriptive title tags, as well as meta
descriptions, for each page.

•	 Second, improve CSS performance by minifying CSS files and using external stylesheets, while
also implementing responsive design principles to ensure that your site is mobile-friendly.

Understanding SEO and its importance 329

•	 Lastly, enhance accessibility by using alt attributes for images, ensuring all content is accessible
to users with disabilities, and avoiding the use of CSS to hide content unless it is necessary for
the user experience.

By adhering to these best practices, you can create a well-optimized, user-friendly website that performs
well in search engine rankings.

Exercise 10.1 – adapting the HTML for SEO

In this exercise, we’ll apply the concepts learned. Improve the given HTML and CSS code to follow
SEO best practices, enhancing the website’s visibility and performance:

1.	 To start the exercise, create a folder named chapter10-SEO within your documents directory.
Open this folder using your preferred code editor, such as VS Code. Inside chapter10-SEO,
create a new file called index.html. Paste the initial HTML code provided here into index.
html:

<!DOCTYPE html>
<html>
<head>
    <title>My Website</title>
    <style>
    body {font-family: Arial, sans-serif;}
        .header { font-size: 2em; }
        .content { margin: 20px; }
        .footer { font-size: 0.8em; }
    </style>
</head>
<body>
    <div class="header">Welcome to My Website</div>
    <div class="content">
        <div>
            <h2>About Us</h2>
            <p>We are a company that values...</p>
        </div>
        <div>
            <h2>Services</h2>
            <p>
                We offer a variety of services
                including...
            </p>
        </div>
    </div>
    <div class="footer">

SEO Essentials for Web Developers330

        Contact us at info@mywebsite.com
    </div>
</body>
</html>

This initial code serves as the starting point for implementing SEO best practices. Now, let’s
improve it step by step and check the resulting code at the end of the exercise.

If you require assistance with writing the code, you can access the source code by downloading
it from our GitHub repository. You can find the link to the repository at https://packt.
link/qnp5G.

Now, use semantic HTML elements in your file. Replace generic <div> tags with semantic elements
such as <header> for class="header", <main> for class="content", <section>
for elements used to separate content by theme, and <footer> for class="footer".

2.	 After that, let us improve the <title> tag by making it more descriptive and including
relevant keywords.

3.	 Remember to add <meta> tags for description and viewport.

4.	 Optimize headings by ensuring that they are structured correctly with <h1> for the main title
and <h2> for subsections.

5.	 Finally, remove any inline styles that are not critical and place them in an external CSS file to
reduce the DOM size and organize the code.

The result should match the following code:

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta
        name="viewport"
        content="width=device-width,
                initial-scale=1.0"
    >
    <meta
        name="description"
        content="My Website offers a variety of services
                including web development, SEO
                optimization, and digital marketing."
    >
    <title>My Website - Quality Services for You</title>
    <link rel="stylesheet" href="styles.css">
</head>

https://packt.link/qnp5G
https://packt.link/qnp5G

Understanding SEO and its importance 331

<body>
    <header class="header">Welcome to My Website</header>
    <main class="content">
        <section>
            <h1>About Us</h1>
            <p>
                We are a company that values quality and
                customer satisfaction. Our mission is to
                provide the best services to our clients...
            </p>
        </section>
        <section>
            <h2>Services</h2>
            <p>
                We offer a variety of services including
                web development, SEO optimization, and
                digital marketing...
            </p>
        </section>
    </main>
    <footer class="footer">
        Contact us at info@mywebsite.com
    </footer>
</body>
</html>

The external styles.css file should look like this:

body {
    font-family: Arial, sans-serif;
}

.header {
    font-size: 2em;
}

.content {
    margin: 20px;
}

.footer {
    font-size: 0.8em;
}

SEO Essentials for Web Developers332

By following these steps, you have successfully optimized the HTML and CSS for enhanced SEO
performance, thereby improving the visibility and user-friendliness of your website. Congratulations!

Exploring Core Web Vitals
Core Web Vitals comprises a set of metrics that assess real-world user experience in terms of loading
performance, interactivity, and visual stability of a webpage.

Focusing on Core Web Vitals is important for both improving user experience and achieving better
search rankings. Prioritizing these metrics helps ensure that webpages load quickly, respond promptly
to user interactions, and maintain visual stability, all of which contribute to a positive user experience
and align with SEO best practices. Let’s delve deeper into these metrics.

First Contentful Paint

First Contentful Paint (FCP) is a crucial web performance metric that measures the time it takes for
the browser to render the first piece of content (text, image, or other DOM elements) on the screen
from the initial navigation request. It marks the point in the loading process when users can start
seeing content on the webpage. Figure 10.2 illustrates the FCP metric. Values of 1.8 seconds or less
are considered good, while values exceeding 1.8 seconds can negatively impact the overall application
score. The metric is as follows:

Figure 10.2 – Optimal FCP values are 1.8 seconds or below, while values

exceeding 3.0 seconds indicate poor performance

FCP directly impacts the perceived speed of your website. A faster FCP indicates that users are seeing
content sooner, leading to a better user experience and potentially lower bounce rates. It’s one of the
Core Web Vitals metrics that Google considers for assessing page experience and can affect your site’s
search engine rankings. Several factors influence FCP:

•	 Server response time: The time it takes for the server to respond to the initial request and
start sending back resources

•	 HTML structure: Efficiently structured HTML can lead to quicker parsing and rendering by
the browser

Exploring Core Web Vitals 333

•	 CSS and JavaScript: Render-blocking CSS and JavaScript can delay FCP; optimizing and
deferring non-critical CSS and JavaScript can improve FCP

•	 Render path complexity: The number of resources (images, scripts, and stylesheets) and their
size impact how quickly the browser can render the first contentful paint

•	 Network conditions: The user’s network speed affects how quickly resources can be fetched
and rendered

Since the FCP metric is crucial for SEO, several techniques can be employed to improve it. Let’s explore
some of these methods in detail.

Techniques to improve FCP

Strategies to improve FCP often overlap with those used to enhance other Core Web Vitals such as
Largest Contentful Paint (LCP), Cumulative Layout Shift (CLS), and First Input Delay (FID).
However, each metric has specific factors and optimization techniques that target its unique aspects.
Improving FCP typically involves optimizing the delivery and rendering of above-the-fold content.
Here are some strategies:

•	 Optimize critical rendering path: Minimize critical resources by reducing the number and
size of CSS and JavaScript files:

	� Prioritize above-the-fold content by inlining essential CSS for immediate rendering and
deferring non-essential CSS to load asynchronously, enhancing page performance

	� Reduce server response times by using a Content Delivery Network (CDN) and optimize
server configurations

•	 Optimize HTML and CSS: Remove unused CSS by eliminating any CSS not used for the initial
view and minify CSS and HTML.

•	 Optimize JavaScript: You do this if you use minification and asynchronous loading:

	� Minimize the size of JS files and defer non-critical JS to load after the main content

	� Use asynchronous loading; load JavaScript files asynchronously to prevent them from
blocking the rendering of the page

•	 Reduce render-blocking resources: Load critical resources first and ensure essential resources
are loaded quickly using defer or async to non-critical CSS and JS, this ensures the initial
content loads faster.

While improving FCP, LCP, CLS, and FID involves some overlapping strategies—such as optimizing
JavaScript and CSS, reducing server response times, and prioritizing critical resources—each metric
has specific optimizations that address its unique characteristics. By focusing on the specific needs of
each metric, you can effectively enhance the overall user experience and performance of your website.

SEO Essentials for Web Developers334

By implementing these techniques, you can significantly improve FCP, enhancing the perceived speed
and usability of your website for users and potentially improving your site’s search engine ranking.

LCP

LCP is a web performance metric that measures the time it takes for the largest content element on a
webpage to become visible within the user’s viewport.

It is a key component of Core Web Vitals and focuses on loading performance, aiming to reflect the
user’s perception of how quickly the main content of a page is rendered. The LCP metric considers
elements such as the following:

•	 Images and image elements inside an tag

•	 Background images loaded via CSS

•	 Block-level text elements such as <p> or <h1>

A good LCP score is 2.5 seconds or less, as illustrated in Figure 10.3. Scores exceeding 2.5 seconds
indicate that improvements are needed.

Figure 10.3 – LCP metrics

Improving LCP can involve optimizing server response times, leveraging caching, improving resource
load times, and other techniques to ensure that the main content loads quickly for users.

Techniques to improve LCP

A fast LCP is crucial for providing a positive user experience, as it significantly impacts how quickly
users perceive a page as fully loaded. To enhance LCP, various techniques can be employed to optimize
load times and improve overall performance.

In this section, we’ll explore some of these effective strategies to boost LCP, ensuring a smoother and
more efficient user experience on your website. Let’s examine each strategy in detail:

•	 Optimize server response times: Reduce server response times by using a fast web host,
optimizing your database, and using a CDN. Implement server-side caching to deliver pages
more quickly.

Exploring Core Web Vitals 335

•	 Use efficient coding practices: Minify CSS, JavaScript, and HTML to reduce file sizes. Remove
unnecessary CSS and JavaScript.

•	 Optimize images and video: Compress images without sacrificing quality using tools such as
ImageOptim or TinyPNG. Serve images in next-gen formats such as WebP. Use responsive
images to ensure that they are appropriately sized for different devices. Lazy-load offscreen
images to defer loading until they are needed.

•	 Improve client-side rendering: Minimize JavaScript execution time by reducing the size of
your JavaScript bundles. Defer non-critical JavaScript and use async or defer attributes to
prevent it from blocking the rendering of the page.

•	 Preload key resources: Use the <link rel="preload"> tag to preload important resources
such as fonts, CSS, and images to speed up their loading.

•	 Optimize fonts: Use font-display: swap in your CSS to avoid invisible text during font
loading. Limit the use of custom fonts and consider using system fonts.

•	 Implement critical CSS: Extract and inline critical CSS (the CSS required to render the above-
the-fold content) directly into the HTML to speed up rendering.

•	 Reduce third-party scripts: Limit the use of third-party scripts as they can block the main
thread and delay LCP. Use asynchronous loading for third-party scripts when possible.

•	 Reduce blocking resources: Identify and reduce render-blocking resources such as large CSS
and JavaScript files. Use the async or defer attributes for JavaScript files that are not critical
for initial rendering.

By applying these techniques, you can improve your website’s LCP, resulting in a better user experience
and potentially higher search engine rankings.

FID

FID is a web performance metric that measures the time it takes for a webpage to respond to the first
user interaction. This interaction can be a click, tap, or key press. It does not measure the time taken
to process the event itself, but rather the time the browser is busy doing other work and is unable to
respond to the user. FID is part of the Core Web Vitals, emphasizing the importance of interactivity
and user engagement.

SEO Essentials for Web Developers336

A low FID means the page is quickly interactive, providing a smoother and more engaging user
experience. A high FID indicates that the page feels sluggish, which can frustrate users and lead to
higher bounce rates. Here’s how we can gauge the FID scores:

Figure 10.4 – FID metrics

In summary, FID measures the time it takes for a website to respond to the first user interaction,
such as clicking a button or typing in a form field. A low FID is crucial for ensuring that users can
interact with your website quickly and efficiently, contributing to a more responsive and engaging
experience. Let’s explore practical strategies to enhance FID, helping to create a more responsive and
user-friendly web experience.

Techniques to improve FID

There are numerous techniques that can enhance FID, and it’s important to highlight that many of
these methods also contribute to improving other Core Web Vitals. Some of these strategies have
already been discussed in relation to optimizing LCP:

•	 Minimize main thread work: Break up long tasks into smaller, asynchronous tasks to prevent
the main thread from being blocked.

•	 Optimize JavaScript execution: Minify and compress JavaScript files to reduce their size.
Remove unused JavaScript to avoid unnecessary code execution. Split large JavaScript bundles
into smaller, more manageable chunks using code-splitting techniques.

•	 Defer non-critical JavaScript: Use the async or defer attributes on <script> tags to load
JavaScript files without blocking the main thread. Defer the loading of non-essential scripts
until after the page has been initially rendered.

•	 Reduce the impact of third-party code: Limit the use of third-party scripts, as they can
introduce significant delays. Ensure that any third-party scripts are loaded asynchronously.

•	 Optimize event listeners: Avoid using passive event listeners where possible, as they can
delay the browser’s ability to respond to user interactions. Use event delegation to reduce the
number of event listeners.

•	 Use efficient coding practices: Optimize CSS to ensure it doesn’t block rendering. Inline critical
CSS to speed up initial page rendering.

Exploring Core Web Vitals 337

These techniques can enhance FID and contribute significantly to the overall SEO of the application.
Next, we’ll explore how to accurately measure FID.

CLS

CLS is a web performance metric that measures the visual stability of a webpage. Specifically, it
quantifies how much visible content shifts in the viewport as the page loads and is interacted with.
Visual stability is crucial for user experience. Unexpected shifts can lead to user frustration, accidental
clicks, and a perception that the website is unreliable or poorly designed.

CLS is a part of the Core Web Vitals, emphasizing the importance of a visually stable user experience.
A high CLS score indicates that users might be experiencing unexpected layout shifts, which can
degrade their experience.

A layout shift occurs anytime a visible element changes its position from one frame to the next. The
score is calculated based on the impact fraction and distance fraction of the shifting elements. Let’s
look at these fractions a little more here:

•	 Impact fraction: The percentage of the viewport that is affected by the shift

•	 Distance fraction: The distance that the elements have moved in the viewport

The CLS scores can be gauged as shown in the following figure:

Figure 10.5 – The CLS metric

A score of less than 0.1 is considered good, indicating minimal unexpected layout shifts. Scores
between 0.1 and 0.25 suggest room for improvement, where some elements may shift but the page
is generally stable. A score exceeding 0.25 is deemed poor, indicating significant and disruptive
layout shifts that can affect user experience negatively.

Achieving and maintaining a low CLS score is crucial for providing a seamless and user-friendly
browsing experience.

SEO Essentials for Web Developers338

Techniques to improve CLS

There are various techniques designed to improve CLS. It’s noteworthy that many of these approaches
also positively impact other Core Web Vitals:

•	 Always include size attributes on images and videos: Specify width and height attributes in
the and <video> tags to allocate space in the layout before the resources load.

•	 Reserve space for ads and embeds: Allocate fixed-size containers for advertisements and
embedded content. Ensure that the allocated space is not smaller than the actual content.

•	 Avoid inserting content above existing content: Avoid inserting new content above existing
content unless it is in response to a user action. For example, don’t add new ads above the main
content of the page after the page has loaded.

•	 Use CSS to ensure stable layouts: Use CSS to control animations and transitions. For example,
prefer transform and opacity animations as they do not trigger layout changes. Ensure that any
dynamic content changes do not push existing content out of place.

•	 Preload important resources: Use <link rel="preload"> to preload critical resources,
ensuring they are loaded quickly and reducing the likelihood of layout shifts.

•	 Avoid layout jitter: Ensure that interactive elements such as buttons and forms are rendered
in their final state, minimizing changes after user interactions.

After implementing these techniques, it’s crucial to accurately measure their impact on the CLS metric.
In the next section, we will explore tools for measuring and analyzing CLS to assess and optimize its
performance effectively.

How to measure SEO metrics

Understanding and optimizing key SEO metrics such as FCP, LCP, FID, and CLS is crucial for enhancing
your website’s performance and user experience. Various tools and resources can help you measure
and analyze these essential metrics. Here are some of the most effective ones:

•	 Lighthouse: Lighthouse is integrated into Chrome DevTools and provides detailed insights
into a range of performance metrics. It helps identify elements that slow down initial rendering,
offering insights into FCP. It also provides comprehensive metrics to assess the time it takes
for the LCP to become visible. Lighthouse measures FID, offering insights into how quickly a
website responds to user interactions, such as clicks or keystrokes. For CLS, Lighthouse helps
identify elements that cause unexpected layout shifts, ensuring better visual stability. This tool
is a complete solution for performance analysis!

Exploring Core Web Vitals 339

•	 WebPageTest: WebPageTest offers an in-depth analysis of loading performance, including
detailed breakdowns and visualizations to help you understand loading sequences and
bottlenecks, especially for FCP.

•	 Web Vitals Extension: The Web Vitals Extension is a Chrome extension that measures Core
Web Vitals in real-time. It provides feedback on how quickly the largest visible content loads
(LCP), insights into interaction responsiveness (FID), and real-time tracking of visual stability
to help minimize layout shifts (CLS).

•	 Google PageSpeed Insights: Google PageSpeed Insights provides performance data and
suggestions for improvement. It focuses on analyzing FCP and offers actionable insights to
enhance initial load performance.

•	 Chrome User Experience Report: The Chrome User Experience Report aggregates real user
data from Chrome users worldwide. It provides real-world data on how quickly large content
elements become visible (LCP) and real user performance data to help you understand and
optimize interaction latency (FID). For CLS, it offers insights into the visual stability of your site.

•	 JavaScript APIs: Using the `PerformanceObserver` interface, you can track FID
programmatically, allowing for custom data collection and analysis. It also tracks CLS, enabling
precise tracking of layout shifts.

By regularly monitoring and optimizing these Core Web Vitals using the tools and techniques
mentioned, you can ensure your website delivers a smooth and responsive user experience. To see
these measurements in action, let’s analyze the SEO of a real application in the following exercise.

Exercise 10.2 – analyzing a real website with Lighthouse

Let’s assess how the Packt Publishing website performs with Core Web Vitals using Google’s Lighthouse:

1.	 First, for real-time analysis, visit https://www.packtpub.com/en-br using Google
Chrome, open the Developer Tools (press F12), select Lighthouse from the top menu of the
developer tools, and click on Analyze Page Load.

Based on the Lighthouse analysis, Packt’s website demonstrates strong performance in SEO
metrics. Figure 10.6 displays the first page of the Lighthouse report, summarizing the application’s
performance across various metrics.

https://www.packtpub.com/en-br

SEO Essentials for Web Developers340

Figure 10.6 – Packt Publishing Lighthouse report on June 20, 2024

2.	 Now, let’s go to the details. Lower on the same page is a section with more details. Here, you
can delve into metrics and receive suggestions to enhance your website’s performance. Click
on FCP to see more about this metric, as shown in Figure 10.7:

Minimizing render-blocking resources 341

Figure 10.7 – FCP diagnostics to improve performance generated by Google Lighthouse

3.	 Keep exploring Lighthouse! Use the filters to identify opportunities for improving your scores,
and delve into the menus and resources the tool offers to gain deeper insights.

4.	 For further exploration, we recommend analyzing three additional websites of your choice
using Lighthouse. Observe how their Core Web Vitals metrics compare and consider applying
similar optimizations to achieve better results across different online platforms.

Utilizing Lighthouse offers crucial insights into optimizing website performance. By analyzing metrics
and implementing recommended improvements, web developers can enhance user experience, improve
site speed, and boost overall accessibility and SEO. Another effective SEO strategy is to minimize
render-blocking resources, which we will explore in detail next.

Minimizing render-blocking resources
Render-blocking resources are CSS and JavaScript files that prevent the browser from rendering the
page until they are fully loaded and executed. This delay is particularly noticeable for users on slower
connections or less powerful devices.

Cumulative delays caused by multiple render-blocking resources can significantly extend the time
it takes for users to interact with and perceive content on the page. This delay directly impacts SEO
metrics such as FCP and can lead to a lower search engine ranking.

SEO Essentials for Web Developers342

Understanding and minimizing render-blocking resources is crucial for optimizing web page
performance, particularly in terms of improving loading times and user experience.

Before we go any further, let’s look at the types of render-blocking resources:

•	 CSS: External stylesheets (linked via the <link> tag) and inline <style> tags can block
rendering because the browser needs CSS to properly style the page

•	 JavaScript: Scripts (linked via the <script> tag) that are not marked as asynchronous
(async) or deferred (defer) can block rendering because the browser must execute them
before continuing to build the DOM

Since these resources can negatively impact SEO, developers use various techniques to minimize their
effects and prevent or reduce render-blocking. Let’s explore these methods in detail.

How to minimize render-blocking resources with CSS

To minimize render-blocking resources, one effective technique is to optimize CSS delivery. This
involves two key strategies: identifying and inlining critical CSS and deferring non-critical CSS.

Critical CSS refers to the minimal CSS required to render the above-the-fold content, which is the
portion of the webpage visible without scrolling. By inlining this essential CSS, you ensure that the
necessary styling is applied quickly, enhancing the initial loading performance.

We can inline the minimal CSS required for the above-the-fold content directly into the HTML. This
can be done within the <head> section of your HTML document:

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta
        name="viewport"
        content="width=device-width,
                initial-scale=1.0"
    >
    <title>Optimized Page</title>
    <style>
        /* Critical CSS */
        body {
            font-family: Arial, sans-serif;
            background-color: #f4f4f4;
        }
        header {
            background-color: #333;

Minimizing render-blocking resources 343

            color: #fff;
            padding: 1em;
            text-align: center;
        }
        /* Add more critical styles as needed */
    </style>
</head>
<body>
    <header>
        <h1>Welcome to My Website</h1>
    </header>
    <main>
        <!-- Main content -->
    </main>
</body>
</html>

For non-critical CSS, it is recommended to load these styles asynchronously after the initial page
content has been rendered. This can be achieved by using JavaScript to dynamically load stylesheets
or by employing the <link rel="preload"> tag with the as="style" attribute.

These methods help ensure that the primary content loads faster, improving the overall user experience.
Include the following in the <head> section of your HTML document to preload the non-critical
CSS file and apply it once the page has loaded:

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta
        name="viewport"
        content="width=device-width,
                initial-scale=1.0"
    >
    <title>Optimized Page</title>
    <style>
        /* Critical CSS */
        body {
            font-family: Arial, sans-serif;
            background-color: #f4f4f4;
        }
        header {
            background-color: #333;
            color: #fff;

SEO Essentials for Web Developers344

            padding: 1em;
            text-align: center;
        }
    </style>
    <link
        rel="preload"
        href="styles/non-critical.css"
        as="style"
        onload="this.rel='stylesheet'"
    >
    <noscript>
        <link
            rel="stylesheet"
            href="styles/non-critical.css"
        >
    </noscript>
</head>
<body>
    <header>
        <h1>Welcome to My Website</h1>
    </header>
    <main>
        <!-- Main content -->
    </main>
</body>
</html>

The <noscript> element is used to provide fallback content for users who have JavaScript disabled
in their browsers. In the context of deferring non-critical CSS, the <noscript> block ensures that
the non-critical CSS is still applied even if JavaScript is not available.

How to minimize render-blocking resources with JavaScript

To optimize JavaScript execution and improve webpage performance, several techniques can be employed:

•	 First, the async attribute should be used for external JavaScript files that are not essential for
the initial rendering of the page. This allows the script to download asynchronously and execute
as soon as it’s ready, without blocking other resources. Use the async attribute for scripts
that can run independently of other scripts and don’t depend on the DOM being fully loaded:

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">

Minimizing render-blocking resources 345

    <meta
        name="viewport"
        content="width=device-width,
                initial-scale=1.0"
    >
    <title>Optimized Page</title>
</head>
<body>
    <!-- Page content -->

    <script
        src="path/to/non-essential-script.js"
        async
    ></script>
</body>
</html>

•	 Second, the defer attribute should be used for scripts that need to be executed in order but
don’t need to block the DOM construction; scripts with defer are executed after the HTML
has been fully parsed. We can use the defer attribute for scripts that need to be executed in
order and after the HTML has been parsed:

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta
        name="viewport"
        content="width=device-width,
                initial-scale=1.0"
    >
    <title>Optimized Page</title>
    <script src="path/to/script1.js" defer></script>
    <script src="path/to/script2.js" defer></script>
</head>
<body>
    <!-- Page content -->
</body>
</html>

SEO Essentials for Web Developers346

•	 Additionally, loading JavaScript conditionally can further enhance performance. This includes
lazy loading, which delays the loading of non-critical JavaScript until it is needed, such as after
a user action or when it becomes visible. We can lazy load non-critical JavaScript to improve
initial load performance:

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta
        name="viewport"
        content="width=device-width,
                initial-scale=1.0"
    >
    <title>Optimized Page</title>
</head>
<body>
    <!-- Page content -->

    <script>
        document.addEventListener(
            'DOMContentLoaded',
            function() {
                var lazyScript =
                    document.createElement('script');
                lazyScript.src =
                    'path/to/non-critical-script.js';
                document.body.appendChild(lazyScript);
            }
        );
    </script>
</body>
</html>

•	 On-demand loading involves using dynamic script loading techniques, such as document.
createElement('script'), to load scripts only when they are necessary. We should
load scripts only when they are necessary using dynamic script creation:

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta
        name="viewport"

Optimizing images for SEO 347

        content="width=device-width,
                initial-scale=1.0"
    >
    <title>Optimized Page</title>
</head>
<body>
    <!-- Page content -->
    <button id="loadScriptButton">Load Script</button>

    <script>
        document.getElementById(
            'loadScriptButton'
        ).addEventListener(
            'click',
            function() {
                var script =
                    document.createElement('script');
                script.src =
                    'path/to/conditional-script.js';
                document.body.appendChild(script);
            }
        );
    </script>
</body>
</html>

By using these techniques, you can significantly minimize render-blocking resources of your webpage
by ensuring that JavaScript is loaded and executed in the most efficient manner.

By understanding how render-blocking resources affect page load times and employing techniques
to minimize their impact, you can significantly improve the perceived speed and user experience of
your website.

Prioritize loading critical resources first, defer or asynchronously load non-critical resources, and
regularly monitor and optimize your site’s performance to ensure fast and efficient rendering. These
practices not only enhance user satisfaction but also contribute positively to SEO and conversion rates.

Optimizing images for SEO
By optimizing images for SEO, you not only enhance the aesthetic appeal and accessibility of your
website but also contribute to its overall performance, visibility, and user satisfaction.

SEO Essentials for Web Developers348

Optimizing images for SEO involves several practices that help ensure images contribute positively to
a website’s search engine ranking and overall user experience. Here are some key strategies:

•	 Choose the right file format:

	� JPEG: Best for photographs and images with many colors, JPEG offers a good balance
between quality and file size

	� PNG: Best for images that require transparency and for simpler images with fewer colors

	� WebP: A modern format that provides superior compression for both lossless and lossy
images, supported by most browsers

	� SVG: Best for logos, icons, and simple graphics; it’s a vector format, so it’s scalable without
loss of quality

•	 Compress images: Use tools such as TinyPNG, ImageOptim, or ShortPixel to reduce image
file sizes without compromising quality. Ensure that images are appropriately compressed to
decrease load times, improving page speed, which is a ranking factor.

•	 Use descriptive file names: Rename image files to include relevant keywords before uploading
them. Instead of IMG_1234.jpg, use blue-widget-for-sale.jpg. Use hyphens to
separate words (not underscores).

•	 Implement responsive images: Use the srcset attribute to serve different image sizes based
on the user’s device, ensuring images are not larger than necessary. Implement the <picture>
element to offer different image formats.

•	 Use lazy loading: Implement lazy loading to defer the loading of offscreen images until the user
scrolls near them. This improves initial page load time. Use the loading="lazy" attribute
on tags or JavaScript libraries for lazy loading.

•	 Ensure images are crawlable: Make sure images are not blocked by robots.txt. Use image
sitemaps to help search engines discover and index images on your site.

•	 Add structured data: Use structured data (schema.org) to mark up images with additional
information such as product details, recipes, and more. This can enhance search results with
rich snippets and improve visibility.

•	 Optimize image dimensions: Serve images at the correct dimensions to avoid browser scaling.
This ensures that images look sharp and load faster. Properly sizing images for the web involves
optimizing images so they are displayed at the correct dimensions and file size, which helps
improve the overall user experience.

Use CSS to control image display and avoid inline styles that can override responsive behavior:

	� HTML/CSS layout: Determine the maximum display size of the image on your webpage
using HTML/CSS

Optimizing images for SEO 349

	� Responsive design: Consider responsive design principles to ensure images scale appropriately
on different devices and screen sizes

Here’s an example of a properly sized image with responsive design:
<img
    src="image.jpg"
    alt="Description of the image"
    width="800"
    height="600"
>
<!--Example of using srcset for responsive images -->
<img src="image.jpg"
    srcset="image-400.jpg 400w,
            image-800.jpg 800w,
            image-1200.jpg 1200w"
    sizes="(max-width: 600px) 400px,
           (max-width: 1000px) 800px,
           1200px"
    alt="Description of the image">

•	 Leverage CDNs: Use CDNs to distribute image content globally, reducing latency and improving
load times for users around the world.

•	 Use caption and context: Provide captions and context for images. Search engines use
surrounding text to understand the image content. Well-described images in context can rank
better in image search.

•	 Regularly audit and update: Regularly audit your site’s images for performance and SEO
improvements. Update alt text, compress images, and check for broken links or outdated content.

Properly optimizing images in HTML is essential for enhancing both accessibility and SEO. Here is
an example of HTML code demonstrating how to effectively use an optimized image:

<picture>
  <source srcset="image.webp" type="image/webp">
  <source srcset="image.jpg" type="image/jpeg">
  <img
    src="image.jpg"
    alt="Description of the image"
    loading="lazy" width="600"
    height="400"
  >
</picture>

SEO Essentials for Web Developers350

We have established that optimizing images is crucial for improving website performance, user experience,
and SEO. Here are some tools and resources that can help streamline the image optimization process:

•	 Image compression: TinyPNG, JPEG-Optimizer, and ImageOptim

•	 Responsive images: Cloudinary and Imgix

•	 Lazy loading: LazySizes and the native HTML loading="lazy" attribute

These tools and resources cater to different aspects of image optimization, from compression and
resizing to accessibility and SEO enhancement. By leveraging these tools effectively, web developers
and content creators can ensure that their images contribute positively to overall website performance
and user satisfaction.

By following these practices, you can ensure that your images contribute to a better user experience
and improved SEO performance, helping your website rank higher in search results and perform
better overall. Next, let’s examine the best practices for using the alt tag for images in accordance
with SEO techniques.

Using alt tags for images
We need to write descriptive alt text that accurately describes the image content and includes relevant
keywords. Alt text helps search engines understand the context of an image and improves accessibility
for screen readers. Next, we’ll examine both effective and ineffective examples of alt tags.

Examples of good and bad alt tags

Good alt tags are descriptive and concise. They provide context that is relevant to the image and the
content surrounding it. They also include keywords where appropriate but avoid keyword stuffing.

Bad alt tags are either too vague, too detailed, irrelevant, or stuffed with keywords. They fail to provide
meaningful context or accessibility.

Using alt tags for images 351

Let’s take a look at the following figure:

Figure 10.8 – Slice of cheesecake covered with cherry jelly.

Next let’s look at two examples of alt tags here:

•	 Good alt tag:

<img
  src="cheesecake-cherry-jelly.jpg"
  alt="Slice of cheesecake covered with cherry jelly
      on a white plate with a fork on a table with a
      white towel"
>

This description is specific and detailed, including relevant keywords such as “cheesecake,”
“cherry jelly,” “white plate,” “fork,” and “table with a white towel.” This helps search engines
understand the content of the image, improving SEO, and also provides a clear description for
users who rely on screen readers.

SEO Essentials for Web Developers352

•	 Bad alt tag:

This description is vague and generic. It lacks specific details and relevant keywords, making
it less useful for SEO and less informative for users with visual impairments.

Let’s take another example within this figure:

Figure 10.9 – Jack Russell Terrier puppy looking at the camera.

Once again, let’s look at two examples of alt tags here:

•	 Good alt tag:

<img
  src="jack-russell-puppy.jpg"
  alt="Curious Jack Russell Terrier puppy looking at
      the camera in a green field"
>

This description is specific and detailed, including relevant keywords such as “Jack Russell
Terrier,” “puppy,” “looking at the camera,” and “green field.” This helps search engines understand
the content of the image, improving SEO, and provides a clear and concise description for users
relying on screen readers.

•	 Bad alt tag:

<img
  src="jack-russell-puppy.jpg"
  alt="Puppy dog Jack Russell Terrier cute puppy green
      field curious puppy looking camera puppy dog
      terrier field green"
>

Avoiding excessive DOM size 353

This description is overly stuffed with keywords, making it look spammy and reducing its
effectiveness for SEO. It lacks clarity and readability, which can be detrimental to both search
engines and users who rely on screen readers.

In summary, writing effective alt tags is crucial for image search optimization. Crafting good alt tags
requires practice and an understanding of how search engines handle images. Let’s delve into this
topic further.

Best practices for writing effective alt tags

Effective alt tags are crucial for accessibility and SEO. Here are some guidelines for writing better alt tags:

•	 They should be descriptive and specific, accurately describing the image content and function
without unnecessary detail.

•	 Use relevant keywords naturally, ensuring the alt text is concise and contextually relevant
to the surrounding content

•	 Avoid redundancy and phrases such as image of or picture of

•	 For functional images, describe the function they serve, while decorative images should have
an empty (alt="") alt attribute

•	 Regularly review and update alt text to maintain accuracy and usefulness.

Following these practices ensures alt tags contribute positively to both accessibility for users with
disabilities and SEO efforts on your website.

Another important element impacting SEO is the DOM. The DOM acts as a map or tree that represents
the structure of a web page, including all nodes and their relationships. Keeping the DOM size as
small as possible is crucial for optimizing performance, and we’ll explore how to achieve this in the
following section.

Avoiding excessive DOM size
The DOM represents the structure of HTML elements on a webpage and directly impacts how quickly
the browser can render and interact with the page. DOM size refers to the total number of elements
(HTML tags), including nodes and their relationships (parent-child or sibling), styles, and attributes,
that make up the structure of a webpage.

Each element in the DOM requires memory and processing time for rendering and scripting operations.
A large DOM size can lead to slower performance, increased memory usage, and potential rendering
issues. This is why avoiding excessive DOM size is crucial for optimizing web page performance and
ensuring a smooth user experience.

SEO Essentials for Web Developers354

Techniques to Avoid Excessive DOM Size

To avoid excessive DOM size, several techniques can be employed:

•	 Optimize your HTML structure by simplifying markup. Use semantic HTML and avoid
unnecessary nesting of elements, keeping the structure as flat as possible. Remove redundant
elements, attributes, and inline styles.

•	 Limit dynamic content by implementing lazy loading, which loads content dynamically only
when needed. Also, use techniques such as pagination or infinite scroll to progressively load
content as the user scrolls, rather than all at once.

•	 Efficient use of CSS and JavaScript is also crucial. Minimize CSS complexity by reducing
the number of CSS rules and selectors, and avoid excessive styles that apply to many elements.
Optimize JavaScript by refactoring code to minimize DOM manipulation operations and
improve performance.

•	 Additionally, optimize rendering performance by prioritizing the loading and rendering of
critical resources (CSS and JavaScript) necessary for above-the-fold content. Use asynchronous
loading (the async attribute) or defer execution (the defer attribute) for non-critical scripts
to improve initial rendering speed.

•	 Regularly monitor and audit DOM size using browser developer tools such as Chrome DevTools
to inspect and analyze DOM size and structure, identifying and addressing elements or scripts
that contribute excessively to DOM size and performance bottlenecks.

•	 Finally, consider the impact of JavaScript frameworks and libraries (such as React, Angular,
or Vue.js) on DOM size and performance, optimizing their usage and evaluating alternatives
if necessary.

Here’s an example of a complex DOM structure:

<div class="container">
    <div class="header">
        <h1>Welcome to My Website</h1>
        <p class="intro">
            This is the best place to find great content.
        </p>
    </div>
    <div class="main-content">
        <div class="section">
            <h2>Section 1</h2>
            <div class="section-content">
                <p>This is some text for section 1.</p>
                <div class="extra-info">
                    <p>Additional info 1</p>

Avoiding excessive DOM size 355

                </div>
            </div>
        </div>
        <div class="section">
            <h2>Section 2</h2>
            <div class="section-content">
                <p>This is some text for section 2.</p>
                <div class="extra-info">
                    <p>Additional info 2</p>
                </div>
            </div>
        </div>
    </div>
    <div class="footer">
        <p>Footer content here.</p>
    </div>
</div>

The following is the same DOM in a simplified version:

<div class="container">
    <header>
        <h1>Welcome to My Website</h1>
        <p>
            This is the best place to find great content.
        </p>
    </header>
    <main>
        <section>
            <h2>Section 1</h2>
            <p>This is some text for section 1.</p>
            <p>Additional info 1</p>
        </section>
        <section>
            <h2>Section 2</h2>
            <p>This is some text for section 2.</p>
            <p>Additional info 2</p>
        </section>
    </main>
    <footer>
        <p>Footer content here.</p>
    </footer>
</div>

SEO Essentials for Web Developers356

In this code, we replaced the generic <div> elements with semantic elements. Also, we removed
unnecessary <div> wrappers around text and sections. By simplifying the DOM structure in this
way, the HTML becomes more readable, maintainable, and efficient.

For more insights into how DOM size affects user experience and strategies to manage it, check
out Jeremy Wagner’s article on web.dev (https://web.dev/articles/dom-size-and-
interactivity). Additionally, the Lighthouse documentation offers a comprehensive guide on
reducing DOM size:

https://developer.chrome.com/docs/lighthouse/performance/dom-size

By prioritizing simplicity, efficient resource loading, and responsiveness, you can ensure a faster and
smoother user experience across various devices and network conditions.

Summary
In this chapter, we delved into several critical aspects that shape the performance and visibility of
websites. We explored the importance of Core Web Vitals such as LCP, FID, and CLS, emphasizing
their impact on user experience and search engine rankings. Additionally, we discussed strategies for
optimizing images, improving FCP, and minimizing render-blocking resources and excessive DOM
size. By focusing on these fundamental elements, webmasters and developers can enhance website
speed, accessibility, and overall SEO performance, ultimately delivering a superior user experience
and achieving higher search engine rankings.

In the next chapter, we will explore preprocessors and tooling that play a crucial role in efficient
web development practices. Preprocessors such as Sass and Less enable developers to write more
maintainable and organized CSS, utilizing features such as variables, mixins, and nesting. By leveraging
these preprocessors and tools effectively, developers can boost productivity, code quality, and ultimately,
the performance and SEO of their websites.

https://web.dev/articles/dom-size-and-interactivity
https://web.dev/articles/dom-size-and-interactivity
https://developer.chrome.com/docs/lighthouse/performance/dom-size
https://developer.chrome.com/docs/lighthouse/performance/dom-size

11
Preprocessors and Tooling for

Efficient Development

CSS preprocessors such as Sass and Less have evolved significantly since their inception, transforming
how developers approach styling on the web.

Sass, one of the earliest preprocessors, was created in 2006 by Hampton Catlin and developed further
by Natalie Weizenbaum. It introduced a new way of writing CSS with features such as variables and
mixins, which were revolutionary at the time. Less followed soon after, offering similar capabilities
with a syntax closer to traditional CSS.

By enabling the use of programming concepts in CSS, preprocessors have made it easier to maintain
large code bases, adapt to design changes, and promote code reuse. As a result, they’ve become essential
tools for modern web development, helping teams deliver high-quality projects more efficiently.

Speaking of efficiency, Gulp and Webpack are essential tools in modern web development that
streamline project workflows and optimize builds. Gulp, a task runner introduced in 2013, automates
repetitive tasks such as minification and live reloading, making development more efficient. Webpack,
a module bundler released in 2012, allows developers to bundle JavaScript modules and other assets,
optimizing them for production.

This chapter explores these tools, equipping you with the skills needed to streamline your workflow
and create more efficient and maintainable web applications.

In this chapter, we will cover the following topics:

•	 Understanding CSS preprocessors – Sass and Less

•	 Enhancing CSS with preprocessors

•	 Mastering build tools such as Gulp and Webpack to automate tasks such as compilation
and optimization

•	 Optimizing web performance to ensure faster loading times and better user experience

Preprocessors and Tooling for Efficient Development358

This chapter aims to provide a practical foundation for using preprocessors and tooling effectively,
empowering you to elevate your web development skills and deliver exceptional results in your projects.

Technical requirements
Before diving into the world of preprocessors and tooling, you must set up your development
environment with the necessary technical requirements.

First, you should install Visual Studio Code (VS Code) or any other integrated development
environment (IDE) of your choice. Additionally, ensure you have Node.js installed on your machine
as it serves as the backbone for running various tools and packages you’ll encounter.

Node.js is crucial for managing dependencies and executing JavaScript-based build tools. Other
software, such as specific packages and tools such as Less and Gulp, will be installed during the practice
sessions outlined in this chapter.

This setup will prepare you to explore and utilize the powerful capabilities of preprocessors and
modern web development tooling.

The code files for this chapter can be found at https://packt.link/hrpje.

Understanding CSS preprocessors – Sass and Less
Imagine you’re starting a web project, and you want to use CSS to style your website. Typically, CSS is
great, but it can become repetitive and hard to manage as your project becomes larger. This is where
CSS preprocessors such as Sass or Less come into play.

CSS preprocessors are tools that extend the capabilities of standard CSS, allowing you to write code
in a more efficient, maintainable, and scalable way. The most commonly used CSS preprocessors are
Sass and Less.

Using CSS preprocessors can significantly improve your workflow by making your code more concise,
easier to read, and simpler to maintain. They add a layer of abstraction over the standard CSS, which
can lead to more powerful and flexible stylesheets.

Let’s take a look at this example:

/* styles.css */

body {
    font-family: Arial, sans-serif;
    color: #333;
}

https://packt.link/hrpje

Understanding CSS preprocessors – Sass and Less 359

h1 {
    font-size: 24px;
    color: #FF5733;
}

.container {
    width: 100%;
    margin: 0 auto;
}

The preceding snippet shows a common CSS file structure. Now, with Sass, you can make this more
efficient and maintainable:

/* styles.scss */
$primary-color: #333;
$accent-color: #FF5733;

body {
    font-family: Arial, sans-serif;
    color: $primary-color;
}

h1 {
    font-size: 24px;
    color: $accent-color;
}

.container {
    width: 100%;
    margin: 0 auto;
}

Notice the use of variables ($primary-color, $accent-color) and nesting (body, h1,
.container). Preprocessors such as Sass allow you to write cleaner code with reusable components
and then compile it into regular CSS that browsers understand.

While Sass and Less both offer these advantages, they use slightly different syntaxes. Here’s how the
same code looks when written in Less:

/* styles.less */

@font-family: Arial, sans-serif;
@text-color: #333;
@header-color: #FF5733;
@container-width: 100%;

Preprocessors and Tooling for Efficient Development360

body {
    font-family: @font-family;
    color: @text-color;
}

h1 {
    font-size: 24px;
    color: @header-color;
}

.container {
    width: @container-width;
    margin: 0 auto;
}

Now that you’ve got an idea of how these preprocessors work, we can dive into their features, such as
variables, mixins, and nesting, and explore each in detail as we move forward.

The benefits of features such as variables, mixins, and nesting

By introducing variables, nesting, mixins, and functions, preprocessors streamline the CSS workflow,
making it more efficient and maintainable. Here’s a breakdown of these features:

•	 Variables: With preprocessors, you can define variables to store values such as colors, fonts,
or any CSS value that you need to reuse throughout your stylesheet. In this way, you can easily
maintain consistency and quickly update your styles by changing the variable value.

•	 Nesting: Preprocessors allow you to nest your CSS selectors so that they follow the same visual
hierarchy of your HTML. This makes your CSS more readable and organized.

•	 Mixins: These are reusable chunks of code that you can define once and include in multiple
places. They are particularly useful for applying sets of styles that are used repeatedly.

•	 Partials and imports: Preprocessors let you split your CSS into smaller, manageable files and
then combine them into a single CSS file. This modular approach helps in organizing your code
better and makes it easier to maintain.

•	 Functions and operations: Preprocessors offer built-in functions and allow you to perform
operations, such as darkening a color or performing calculations, directly in your CSS.

•	 Extends: These let you share a set of CSS properties from one selector to another, reducing
redundancy and ensuring consistency.

Understanding CSS preprocessors – Sass and Less 361

CSS preprocessors work by taking the enhanced syntax and features you write in the preprocessor’s
language and compiling it into standard CSS that browsers can understand. Here’s a step-by-step
explanation of how they work:

1.	 Write preprocessor code: You start by writing your styles using the syntax and features of
a CSS preprocessor such as Sass or Less. This might include variables, nested rules, mixins,
functions, and other advanced features.

2.	 Compile to CSS: The preprocessor tool takes this code and compiles it into standard CSS. This
compilation process translates the preprocessor-specific syntax into regular CSS rules. This
process can be done using an IDE, a command-line tool, or directly in the browser, depending
on the preprocessor you’re using.

3.	 Use the compiled CSS: The resulting CSS file is what you include in your HTML files. Browsers
can only interpret standard CSS, so they don’t directly interact with the preprocessor code.

Each preprocessor has its particularities and differences in usage. Let’s delve deeper into these differences
to understand which one is better suited for our project.

The differences between Sass and Less

Choosing between Sass and Less often comes down to the specific needs of your project and your
personal or team’s preference. Both preprocessors significantly improve the CSS development process
by adding useful features and improving maintainability.

While Sass is more feature-rich and powerful, making it suitable for larger projects and teams that
need advanced functionality, Less is simpler and easier to get started with, making it a good choice
for smaller projects or developers who prefer minimal setup:

•	 Less stands for Leaner Style Sheets and provides a dynamic syntax for coding CSS with logical
patterns. It enhances cross-browser compatibility by optimizing the generated CSS. With Less,
users can create reusable properties, and it is based on JavaScript.

•	 SASS stands for Syntactically Awesome Style Sheets. This preprocessor, implemented in Ruby,
actively reports syntax errors, making it easier to catch mistakes. Like Less, Sass supports user
customization, including variables, nesting, and mixins.

Here’s a table highlighting the differences between Less and Sass in terms of variables, nesting,
particularities, and best uses:

Feature LESS Sass

Variables Variables are defined using the @
symbol (for example, @color:
#4D926F;).

Variables are defined using the $ symbol (for
example, $color: #4D926F;).

Preprocessors and Tooling for Efficient Development362

Feature LESS Sass

Nesting Supports nesting similar to Sass
but uses slightly different syntax.

Supports nesting with clean and intuitive
syntax, allowing deep nesting.

Particularities Less uses JavaScript for
compilation, allowing it to be
run in the browser.

Sass has two syntaxes: SCSS (more CSS-like)
and Sass (indentation-based). It requires Ruby
or other implementations for compilation.

Best used for Projects where simplicity and
ease of integration with JavaScript
are important.

Projects needing advanced features, larger
teams, or where a Ruby-based workflow
is preferred.

Table 11.1 – Differences between Less and Sass

Now, let’s consider the key differences between Sass and Less.

Syntax

Sass offers two syntaxes: the older indented syntax (Sass) and the newer SCSS syntax. The SCSS syntax
is more similar to standard CSS, making it easier for those who are already familiar with CSS. Here’s
an example of Sass code:

$primary-color: #333;
.navbar {
  color: $primary-color;
  .nav-item {
    padding: 10px;
  }
}

The Less syntax is very similar to CSS, with a few additions for variables and nested rules. Here’s
an example:

@primary-color: #333;
.navbar {
  color: @primary-color;
  .nav-item {
    padding: 10px;
  }
}

Understanding CSS preprocessors – Sass and Less 363

Variables

Sass variables are defined using the $ symbol:

$font-stack: Helvetica, sans-serif;
$primary-color: #333;

Less variables are defined using the @ symbol:

@font-stack: Helvetica, sans-serif;
@primary-color: #333;

Functions and mixins

Sass provides powerful built-in functions and mixins. You can create complex functions and control
structures such as loops and conditionals, as shown here:

@mixin border-radius($radius) {
  -webkit-border-radius: $radius;
     -moz-border-radius: $radius;
      -ms-border-radius: $radius;
          border-radius: $radius;
}
.box { @include border-radius(10px); }

Less also supports mixins and functions, but the syntax is a bit different:

.border-radius(@radius) {
  -webkit-border-radius: @radius;
     -moz-border-radius: @radius;
      -ms-border-radius: @radius;
          border-radius: @radius;
}
.box { .border-radius(10px); }

Nesting

Both Sass and Less allow you to nest your CSS selectors in a way that mirrors the HTML structure,
making your stylesheets more readable and organized, with few syntax differences. Here’s an example
of nesting in Sass:

.navbar {
  .nav-item {
    color: $primary-color;
  }
}

Preprocessors and Tooling for Efficient Development364

Here’s the same code in Less:

.navbar {
  .nav-item {
    color: @primary-color;
  }
}

Partials and imports

Sass uses @import to include partial files. These partials are usually named with a leading underscore:

@import 'variables';
@import 'mixins';

Less also uses @import, but it doesn’t have a naming convention for partials:

@import 'variables.less';
@import 'mixins.less';

Compiling

Sass is typically compiled using command-line tools, build systems such as Gulp or Webpack, or
IDE plugins.

Less can be compiled in the browser using JavaScript, as well as through command-line tools and
build systems.

Community and ecosystem

Sass has a larger community and a more extensive ecosystem with many frameworks and libraries
built around it (for example, Compass, Bourbon, and others).

Less also has a robust community, but it’s somewhat less extensive compared to Sass.

Both preprocessors are valuable tools, and learning either will improve your CSS workflow. When it
comes to deciding which CSS preprocessor is easier to learn, Less tends to be more beginner-friendly.
Once you’re completely comfortable with the basic concepts of preprocessors, you might consider
exploring Sass to take advantage of its more advanced features and capabilities.

Less syntax is more straightforward and closely resembles standard CSS, making it easier for beginners
to pick up. Also, Less can be compiled in the browser, which simplifies the setup process and allows
beginners to see changes immediately without needing to configure additional tools. In the next
section, we’ll learn how to set up and do some exercises with Less.

Setting up and using Less in a project 365

Setting up and using Less in a project
The following section will take you through a step-by-step guide to get you started with Less. Once
we’ve installed Less and its associated packages, we’ll create and compile our first Less project.

Installing Node.js and LESS

To compile Less files into CSS, we need to install Node.js, Node Package Manager (npm), and the
npm LESS package to run the compilation script.

First, we’ll install Node.js. By navigating to https://nodejs.org/en in your web browser,
you can find the download links for the Node.js installation package for your operating system, as
illustrated in the following screenshot:

Figure 11.1 – NodeJS home page with a download link

https://nodejs.org/en

Preprocessors and Tooling for Efficient Development366

After installing Node.js and npm, open your Terminal window (or Command Prompt on Windows).
At the prompt, run the node -v and npm -v command. Both commands should return a version
number, as illustrated in the following figure:

Figure 11.2 – Node and npm versions shown in the Terminal

This means that Node.js and npm are installed on your machine and ready to use. Now, let’s install
Less. Once again, open your Terminal and type the following:
npm install -g less

This command will install Less globally on your computer, allowing you to use it across all your projects
without needing to install it each time. Once installed globally, you can use the lessc command in
any project to compile Less files to CSS:
lessc styles.less styles.css

If installed correctly, your Terminal should look as follows:

Figure 11.3 – Successful installation of Less globally

Setting up and using Less in a project 367

Global installation is convenient for quickly using Less across multiple projects without
repeated installations.

Exercise 11.01 – Creating and compiling our first Less project

Now that we’ve installed Node.js, npm, and Less, let’s create a new project using Less and HTML.
Follow these steps:

1.	 Create a folder on your computer and name it less-project.

2.	 Open this folder in VS Code or your preferred IDE.

3.	 Inside the folder, create two files: index.html and styles.less.

4.	 In index.html, add the following code:

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta
        name="viewport"
        content="width=device-width,
        initial-scale=1.0">
    <title>LESS Project</title>
    <link rel="stylesheet" href="./styles.less">
</head>
<body>
    <h1>Welcome to LESS</h1>
    <button class="btn-primary">Click Me</button>
</body>
</html>

5.	 In styles.less, add the following code:

@primary-color: #3498db;
@font-size: 16px;

body {
    font-family: Arial, sans-serif;
    font-size: @font-size;
    color: @primary-color;
}

h1 {
    color: lighten(@primary-color, 20%);

Preprocessors and Tooling for Efficient Development368

}

.btn-primary {
    background-color: @primary-color;
    border: none;
    padding: 10px;
    color: white;
    &:hover {
        background-color: darken(@primary-color, 10%);
    }
}

6.	 Now, let’s convert Less into CSS. Ensure you’re in the project’s folder, then execute the following
command in your Terminal to compile styles.less to styles.css:

lessc styles.less styles/styles.css

Note that it has created a folder named 'styles' containing a styles.css file. If you
navigate to this folder, you’ll find the compiled CSS generated by our Less code, as shown here:

Figure 11.4 – Compiled CSS file generated with Less

Setting up and using Less in a project 369

7.	 After compiling, it’s important to replace the CSS <link> tag so that it points to the new
CSS-generated file. Go to the HTML file and replace <link rel="stylesheet"
href="./styles.less"> with <link rel="stylesheet" href="./styles/
styles.css">:

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta
        name="viewport"
        content="width=device-width,
        initial-scale=1.0">
    <title>LESS Project</title>
    <link rel="stylesheet" href="./styles/styles.css">
</head>
<body>
    <h1>Welcome to LESS</h1>
    <button class="btn-primary">Click Me</button>
</body>
</html>

Congratulations! You’ve completed your first Less project. While it may seem like overkill for a simple
project, Less offers powerful features that save time and ensure consistency and performance in your
projects. If everything went smoothly, your output should look as follows:

Figure 11.5 – Styled output made with Less

In this exercise, we created some Less code that necessitates a better understanding of its syntax. Let’s
delve into what each part of the code accomplishes.

Variables

Less allows you to define variables (@primary-color, @font-size) to store reusable values,
making it easier to maintain and update styles across your project:

@primary-color: #3498db;
@font-size: 16px;

Preprocessors and Tooling for Efficient Development370

Let’s take a closer look:

•	 @primary-color: Defines a variable for the primary color to be used throughout the
stylesheet, set to the hex color #3498db

•	 @font-size: Defines a variable for the base font size, set to 16px

Nested selectors and functions

Less supports nesting of selectors (& refers to the parent selector), which helps in organizing CSS
rules and improves readability:

body {
    font-family: Arial, sans-serif;
    font-size: @font-size;
    color: @primary-color;
}

Let’s take a closer look:

•	 body: Styles the body element

•	 font-family: Sets the font family to Arial or sans-serif as a fallback

•	 font-size: Uses the value of the @font-size variable

•	 color: Sets the text color to the @primary-color variable

Less also provides built-in functions such as lighten() and darken() to manipulate colors
dynamically, enhancing flexibility in styling:

h1 {
    color: lighten(@primary-color, 20%);
}

Let’s take a closer look:

•	 h1: Styles all h1 headings

•	 color: lighten(): This is a Less function that lightens @primary-color by 20%,
producing a lighter shade of the primary color when it’s applied to h1 elements

In the following example, we use the nested &:hover selector to define the styles that will be applied
to the .btn-primary class when the element is in a hover state:

.btn-primary {
    background-color: @primary-color;
    border: none;
    padding: 10px;

Setting up and using Less in a project 371

    color: white;
    &:hover {
        background-color: darken(@primary-color, 10%);
    }
}

Let’s take a closer look at this code:

•	 .btn-primary: Styles all elements with the.btn-primary class. Typically, buttons are
styled as primary action buttons.

•	 background-color: Sets the background color to @primary-color.

•	 border: Removes the border.

•	 padding: Adds 10 pixels of padding.

•	 color: Sets the text color to white.

•	 &:hover: Uses a nested selector to style the button when hovered over.

•	 background-color: The darken() function darkens @primary-color by 10% when
the button is hovered over.

By utilizing variables, nested selectors, and functions effectively, this Less code demonstrates how to
create styles that are modular and maintainable. This approach provides greater control over styling
elements and enhances efficiency in CSS development. It enables developers to write cleaner, more
organized code that is easier to maintain and update as project requirements evolve.

Five ways to learn to code with Less
Understand basic CSS: Ensure you have a solid understanding of CSS fundamentals – Less
builds upon CSS concepts.

Explore the Less documentation: Visit the official website (www.lesscss.org) and explore
the documentation, which includes comprehensive guides, examples, and references.

Practice: Start by converting existing CSS files into Less and experiment with variables, nesting,
and functions. Practice using Less in small projects to familiarize yourself with its features.

Tool integration: Integrate Less into your development workflow by using task runners such
as Gulp or Webpack, which can automate the compilation process and enhance productivity.

Stay updated: Keep up with new features and updates in Less to leverage its full potential and
stay current with best practices in CSS preprocessing.

By following these steps and continuously practicing and experimenting with Less, you’ll
gradually become proficient in using it to streamline your CSS development process and create
more efficient and maintainable stylesheets.

http://www.lesscss.org

Preprocessors and Tooling for Efficient Development372

Now that we’ve set up our first Less project, we can delve deeper into the world of preprocessors
by exploring a powerful feature: automation. In the next section, we’ll learn how to automate the
compilation process so that we can streamline our workflow.

Exercise 11.02 – automating compilation

When working with Less or any other preprocessor, you’ll soon find yourself tired of manually
recompiling your code every time you make even a minor change to the Less file just to see the
updated result in your browser.

Imagine if there were a way to automate this process, allowing you to focus your energy on creating
amazing user experiences rather than worrying about Less compilation.

To achieve this automation, in this exercise, we’ll integrate less-watch-compiler into our project
to ensure that our stylesheets are automatically compiled whenever changes are made:

1.	 Install less-watch-compiler.

First, install less-watch-compiler globally on your machine. Open your Terminal or
Command Prompt, navigate to the root folder (for example, C: for Windows users), and type
the following command:

npm install -g less-watch-compiler

Your prompt should look like this:

Figure 11.6 – Terminal installing less-watch-compiler

2.	 Open your project.

Once the installation is complete, navigate to your project folder, less-project, and open
it with VS Code or your preferred IDE.

Setting up and using Less in a project 373

3.	 Organize your project structure.

To keep your project organized, we’ll modify the folder structure. Create a new folder named
less and move the styles.less file into this folder. Your project structure should now
look like this:

Figure 11.7 – Final project structure

4.	 Configure the watcher.

To configure less-watch-compiler, open your Terminal in VS Code by pressing Ctrl +
J. Alternatively, you can use an external Terminal; just make sure you navigate to the project’s
folder. In the Terminal, type the following command:

less-watch-compiler less styles styles.less

This command specifies the source (less) and destination (styles) folders for the Less and
CSS files, respectively. It also designates styles.less as the file to watch. If the last parameter
is omitted, less-watch-compiler will watch any .less file inside the less folder.

The general syntax for this command is as follows:
less-watch-compiler < source-folder > <output-folder> main-file-
name

If everything has been set up correctly, your Terminal should display the following output:

Figure 11.8 – less-watch-compiler working in a project

5.	 Test the setup.

To ensure everything is working properly, make a small change to the styles.less file. For
example, change @primary-color to #c9041e:

@primary-color: #c9041e;

Preprocessors and Tooling for Efficient Development374

Save the file and check the styles folder. You should see the updated styles.css file
reflecting your changes:

body {
  font-family: Arial, sans-serif;
  font-size: 16px;
  color: #c9041e;
}
h1 {
  color: #fb3852;
}
.btn-primary {
  background-color: #c9041e;
  border: none;
  padding: 10px;
  color: white;
}
.btn-primary:hover {
  background-color: #970317;
}

Open your HTML file in a web browser to verify that the new styles have been applied. Yours
should look as follows:

Figure 11.9 – New HTML output with automatically edited CSS

Well done! By following these steps, you just automated the process of compiling your Less files, allowing
you to focus more on creating exceptional web experiences and less on manual compilation tasks.

Explore the less-watch-compiler documentation
For more detailed information and advanced usage, take a look at the less-watch-
compiler documentation at https://github.com/jonycheung/deadsimple-
less-watch-compiler. This documentation provides comprehensive guides, examples,
and troubleshooting tips to help you maximize the utility of the tool and efficiently automate
your Less compilation process.

https://github.com/jonycheung/deadsimple-less-watch-compiler
https://github.com/jonycheung/deadsimple-less-watch-compiler

Introduction to build tools – Gulp and Webpack 375

Now that you’ve automated your Less compilation with less-watch-compiler, it’s time to
take your workflow to the next level. Introducing build tools such as Gulp and Webpack can further
streamline your development process, offering powerful capabilities for task automation, module
bundling, and asset optimization.

Let’s explore how these tools can enhance your web development projects and improve efficiency.

Introduction to build tools – Gulp and Webpack
Build tools are software applications that automate and streamline various tasks involved in the web
development process. These tools manage the compilation, optimization, and deployment of code,
among other tasks.

Build tools are integral to modern web development, offering significant advantages in terms of
efficiency, code optimization, and workflow enhancement. These tools manage the compilation,
optimization, and deployment of code, among other tasks. They help transform source code into a
production-ready application by performing tasks such as the following:

•	 Compiling: Converting code from one language into another (for example, Less/Sass into CSS
or TypeScript into JavaScript)

•	 Minifying: Reducing the size of code files by removing unnecessary characters (for example,
whitespace and comments) without affecting functionality

•	 Bundling: Combining multiple files into a single file to reduce the number of HTTP requests

•	 Transpiling: Converting modern JavaScript (ES6+) into a version that is compatible with
older browsers

•	 Linting: Analyzing code for potential errors and enforcing coding standards

•	 Live reloading: Automatically refreshing the browser whenever changes are made to the
source code

As mentioned earlier, build tools play a crucial role in modern web development. They are highly
recommended for empowering web projects and benefiting developers in several ways:

•	 Efficiency and productivity: By automating repetitive tasks, build tools save developers significant
time and effort. Tasks such as minifying CSS, optimizing images, or transpiling JavaScript can be
automatically handled by build tools, allowing developers to focus on writing code. Automated
processes ensure that every build is consistent, reducing the likelihood of human error.

•	 Code optimization: Build tools optimize code to improve performance. Minification and
bundling reduce the size of files and the number of HTTP requests, which can lead to faster
page load times.

Transpiling ensures that modern JavaScript features are compatible with older browsers,
broadening the reach of web applications.

Preprocessors and Tooling for Efficient Development376

•	 Development workflow: Build tools promote modular development, making it easier to
manage and maintain code. Tools such as Webpack allow developers to break down code into
smaller, more manageable modules. Immediate feedback through live reloading enhances the
development experience, making it quicker to test and debug code changes.

•	 Deployment: Build tools prepare code for production by optimizing and packaging it, ensuring
that it is efficient and ready for deployment. Many build tools can be integrated into continuous
integration/continuous deployment (CI/CD) pipelines, automating the deployment process
and ensuring that code changes are deployed quickly and reliably.

•	 Scalability: Build tools help maintain large code bases by enforcing coding standards and
ensuring consistent code quality. By standardizing the build process, build tools facilitate
collaboration among team members, ensuring that everyone works with the same code structure
and quality standards.

Two of the most popular build tools are Gulp and Webpack. While Gulp is a task runner that automates
common development tasks, Webpack is a module bundler that takes modules with dependencies
and generates static assets representing those modules.

Let’s explore each of these tools and learn how to enhance our development with them.

How Gulp works

Imagine that you have a web project where you need to minify your CSS, concatenate your JavaScript
files, and optimize your images. Doing this manually each time you make a change would be tedious.
Here’s where Gulp comes in.

Gulp uses Node.js streams to process files, enabling efficient handling of large files.

With Gulp, you can set up tasks to automate these processes. For instance, you could create a
gulpfile.js file like this:

const gulp = require('gulp');
const concat = require('gulp-concat');
const uglify = require('gulp-uglify');
const imagemin = require('gulp-imagemin');

// Concatenate and minify JS files
gulp.task('scripts', function () {
    return gulp.src('src/js/*.js')
        .pipe(concat('main.min.js'))
        .pipe(uglify())
        .pipe(gulp.dest('dist/js'));
});

Introduction to build tools – Gulp and Webpack 377

// Optimize images
gulp.task('images', function () {
    return gulp.src('src/img/*')
        .pipe(imagemin())
        .pipe(gulp.dest('dist/img'));
});

// Watch for changes
gulp.task('watch', function () {
    gulp.watch('src/scss/*.scss', gulp.series('sass'));
    gulp.watch('src/js/*.js', gulp.series('scripts'));
    gulp.watch('src/img/*', gulp.series('images'));
});

// Default task
gulp.task(
    'default',
    gulp.series(
        'sass',
        'scripts',
        'images',
        'watch'
    )
);

Here’s how this works:

•	 gulp.task: This defines tasks such as concatenating and minifying JavaScript (scripts) and
optimizing images (images)

•	 gulp.src and .pipe: These methods define source files and apply transformations such as
Sass compilation, JavaScript concatenation, and image optimization

•	 gulp.watch: This monitors files for changes and triggers corresponding tasks

Dive deeper – explore Gulp’s documentation
To explore further and deepen your understanding of Gulp, we encourage you to read Gulp’s
documentation at https://gulpjs.com/. It provides comprehensive insights, examples,
and best practices that will help you leverage Gulp effectively in your web development projects.

Now that we’ve learned how Gulp works – an automation tool that streamlines tasks such as minification,
compilation, and live reloading – let’s put it into practice by creating an automation task for CSS
minification. Let’s get coding!

https://gulpjs.com/

Preprocessors and Tooling for Efficient Development378

Exercise 11.03 – automating the minification of CSS files with Gulp

In this exercise, you will set up a simple Gulp project to automate the minification of CSS files. Follow
these steps to complete the exercise:

1.	 Create a project folder.

Create a new folder for your project named gulp-project. Navigate to the folder in your
Terminal or open the folder with VS Code and press Ctrl + J to open the local Terminal.

2.	 Initialize npm.

Run the following command to create a package.json file:
npm init -y

You’ll notice that it also creates the node_modules folder, which contains all libraries and
plugins npm saves for running your project.

3.	 Install Gulp and its plugins.

Now, install Gulp globally (if it’s not already installed) by running the following command
line in your terminal:

npm install -g gulp-cli

In sequence, install Gulp locally in your project with the following command:
npm install --save-dev gulp

Finally, install the necessary plugins for CSS minification and live reloading:
npm install --save-dev gulp-clean-css browser-sync

4.	 Create the base file structure.

Let’s create the project structure. In the root folder (gulp-project), create a folder named
src. Inside src, create an index.html file. Within src, create another folder named css,
and inside css, create a file named styles.css.

Next, create a folder named dist in the gulp-project folder. Also, create a file named
gulpfile.js directly inside the gulp-project folder. Your file structure should now
look like this:

Introduction to build tools – Gulp and Webpack 379

Figure 11.10 – The Gulp project’s initial structure

5.	 Add sample CSS and HTML.

Add some basic styles to styles.css inside the src/css/ folder:
body {
    font-family: Arial, sans-serif;
    background-color: #3498db;
    color: white;
    text-align: center;
    padding: 50px;
}

Create a simple HTML file called index.html in the src/ folder:
<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta
        name="viewport"
        content="width=device-width,
        initial-scale=1.0">
    <title>Gulp Project</title>
    <link rel="stylesheet" href="./css/styles.css">
</head>
<body>
    <h1>Hello, Gulp!</h1>
</body>
</html>

Preprocessors and Tooling for Efficient Development380

6.	 Create the Gulp configuration.

Open gulpfile.js and set up some tasks.

First, import the libraries Gulp we’ll be using:
const gulp = require('gulp');
const cleanCSS = require('gulp-clean-css');
const browserSync = require('browser-sync').create();

Then, create a task to minify CSS:
gulp.task('minify-css', function() {
    return gulp.src('src/css/*.css')
        .pipe(cleanCSS())
        .pipe(gulp.dest('dist/css'))
        .pipe(browserSync.stream());
});

Now, create another task to copy HTML files to the dist folder:
gulp.task('copy-html', function() {
    return gulp.src('src/*.html')
        .pipe(gulp.dest('dist'))
        .pipe(browserSync.stream());
});

Then, create one to initialize BrowserSync:
gulp.task('browser-sync', function() {
    browserSync.init({
        server: {
            baseDir: './dist'
        }
    });

Create another to watch CSS and HTML files for changes:
    gulp.watch(
        'src/css/*.css',
        gulp.series('minify-css')
    );
    gulp.watch(
        'src/*.html',
        gulp.series('copy-html')
    );
});

Introduction to build tools – Gulp and Webpack 381

Finally, create a task with CSS minification and live reloading:
gulp.task(
    'default',
    gulp.series(
        'minify-css',
        'copy-html',
        'browser-sync'
    )
);

The complete gulpfile.js file should look like this:
const gulp = require('gulp');
const cleanCSS = require('gulp-clean-css');
const browserSync = require('browser-sync').create();

gulp.task('minify-css', function() {
    return gulp.src('src/css/*.css')
        .pipe(cleanCSS())
        .pipe(gulp.dest('dist/css'))
        .pipe(browserSync.stream());
});

gulp.task('copy-html', function() {
    return gulp.src('src/*.html')
        .pipe(gulp.dest('dist'))
        .pipe(browserSync.stream());
});

gulp.task('browser-sync', function() {
    browserSync.init({
        server: {
            baseDir: './dist'
        }
    });

    gulp.watch(
        'src/css/*.css',
        gulp.series('minify-css')
    );
    gulp.watch(
        'src/*.html',
        gulp.series('copy-html')
    );

Preprocessors and Tooling for Efficient Development382

});

gulp.task(
    'default',
    gulp.series(
        'minify-css',
        'copy-html',
        'browser-sync'
    )
);

7.	 Run Gulp.

After setting everything up, in your Terminal, run the default Gulp task to start the minification
process and enable live reloading:

Gulp

Open your web browser and navigate to http://localhost:3000. You should see your
index.html page with the applied CSS styles.

Modify styles.css or index.html and observe the changes be automatically reflected
in the browser without manual refresh.

With Gulp set up and running smoothly, it’s time to explore another powerful tool: Webpack. Webpack
is a module bundler that manages and optimizes your project’s assets, including JavaScript, CSS, images,
and more. In the next section, we’ll dive into how Webpack works, configure it for your project, and
leverage its capabilities to enhance your build process.

How Webpack works

Webpack is another powerful build tool that uses a modular approach to handle assets and dependencies
in your web projects. Similar to Gulp, Webpack automates tasks and optimizes your development
workflow through its configuration file (webpack.config.js). Here’s a basic overview of how
Webpack works:

•	 Module bundling: Webpack treats all files in your project as modules, allowing you to use
import and export statements to manage dependencies. It bundles these modules into a few
optimized bundles that your browser can understand, reducing the number of HTTP requests.

•	 Asset handling: In addition to JavaScript, Webpack can manage other assets, such as CSS,
images, fonts, and more. It uses loaders to process different file types, transforming them as
needed (for example, transpiling TypeScript to JavaScript and converting Sass into CSS).

•	 Configuration: You define how Webpack processes your files in webpack.config.js.
This file specifies entry points, output paths, loaders, plugins, and other settings crucial for
your project’s build process.

Introduction to build tools – Gulp and Webpack 383

Here’s an example of a basic webpack.config.js file:

const path = require('path');

module.exports = {
  entry: './src/index.js',
  output: {
    path: path.resolve(__dirname, 'dist'),
    filename: 'bundle.js',
  },
  module: {
    rules: [
      {
        test: /\.js$/,
        exclude: /node_modules/,
        use: {
          loader: 'babel-loader',
          options: {
            presets: ['@babel/preset-env'],
          },
        },
      },
      {
        test: /\.css$/,
        use: ['style-loader', 'css-loader'],
      },
      {
        test: /\.(png|svg|jpg|gif)$/,
        use: ['file-loader'],
      },
    ],
  },
};

In summary, Webpack enhances your web development workflow by automating tasks, optimizing
performance, and improving code organization. Whether you’re building a small website or a complex
web application, Webpack’s capabilities make it an invaluable tool for modern web development.

Dive deeper – explore Webpack’s documentation
Visit webpack.js.org to uncover comprehensive guides, tutorials, and best practices that
will help you harness the full potential of this powerful module bundler.

Let’s get familiar with Webpack by setting up our first Webpack project.

http://webpack.js.org

Preprocessors and Tooling for Efficient Development384

Exercise 11.04 – setting up your first Webpack project

Let’s set up a basic project that bundles JavaScript files and manages static assets so that you can
familiarize yourself with Webpack:

1.	 Create the project’s structure.

Let’s start by creating a new folder named webpack-project. Inside webpack-project,
create two folders named src and dist, respectively. Inside the src folder, create another
two folders: js and css. Inside the js folder, create a file named index.js.

Inside the css folder, create another file named styles.css.

The final structure should look like this:

Figure 11.11 – The webpack-project folder’s structure shown in VS Code

2.	 Install Webpack.

Open the webpack-project folder with your IDE and run the Command Prompt or
Terminal. Make sure you’re in the root folder and initialize a new npm project with the
following command:

npm init -y

Next, install Webpack and the Webpack CLI as development dependencies by running the
following command:

npm install --save-dev webpack webpack-cli

Also, install the plugins we’re going to use in this project:
npm install --save-dev style-loader css-loader file-loader html-
webpack-plugin

Introduction to build tools – Gulp and Webpack 385

Here, style-loader puts CSS right into the web page, css-loader lets you include
CSS in your JavaScript, and file-loader helps bundle up images and fonts. Remember to
always verify the plugin’s security before using it in your project.

3.	 Create base code.

After installing the dependencies, let’s create some base code to run this project. Paste the
following inside the src/js/index.js file:

import '../css/styles.css';

const message = 'Hello, World!';
const h1 = document.createElement('h1');
h1.textContent = message;
document.body.appendChild(h1);

Then, paste the following inside the src/css/styles.css file:
body {
background-color: #F26624;
color: white;
font-family: Arial, sans-serif;
text-align: center;
margin-top: 50px;
}

4.	 Create an HTML template.

Create a file named index.html inside the src folder and place the following code so that
it can be used as a template:

<!DOCTYPE html>
<html lang="en">
<head>
  <meta charset="UTF-8">
  <meta
    name="viewport"
    content="width=device-width,
    initial-scale=1.0">
  <title>Webpack Exercise</title>
</head>
<body>
</body>
</html>

Preprocessors and Tooling for Efficient Development386

5.	 Configure Webpack.

In the root of your project, create a file named webpack.config.js and add the
following configuration:

const path = require('path');
const HtmlWebpackPlugin =
  require('html-webpack-plugin');

module.exports = {
  entry: './src/js/index.js',
  output: {
    filename: 'main.js',
    path: path.resolve(__dirname, 'dist'),
  },
  module: {
    rules: [
      {
        test: /\.css$/,
        use: ['style-loader', 'css-loader'],
      },
    ],
  },
  plugins: [
    new HtmlWebpackPlugin({
      template: './src/index.html'
    }),
  ],
};};

6.	 Configure the build script.

We’re going to run Webpack as a CLI command, so let’s configure how we’re going to call it
using the scripts values inside package.json:

"scripts": {
  "build": "webpack"
}

Notice that you may already have a scripts section in your package.json file. If so,
simply add the following content on a new line within that section:

"scripts": {
[previous content],
  "build": "webpack"
}

Now, we can call Webpack using the npm run build command. This will build our project.

Introduction to build tools – Gulp and Webpack 387

7.	 Verify the output.

To verify the resulting output, run the build command in your Terminal with npm run
build. Webpack will create the output files inside the dist folder. Open the index.html
file within the dist folder to see the rendered output in your browser. Additionally, examine
how Webpack minifies the code and handles JavaScript by inspecting the generated files:

Figure 11.12 – Output of the project with Webpack

Well done! You’ve just set up your first Webpack project and gained hands-on experience with
configuring Webpack, managing JavaScript and CSS assets, and automating the build process.

As an extra challenge, you can modify the index.js file to add an HTML element to the body using
JavaScript or add additional styles to the style.css file and verify that the changes are reflected
when you rebuild the project.

Gulp or Webpack? Which one should you choose?

Webpack and Gulp are both build tools that serve overlapping purposes in web development, but
they approach tasks in different ways and are suited for different types of workflows. Here are some
similarities they have:

•	 Both Webpack and Gulp automate tasks that would otherwise be tedious to do manually, such
as minifying CSS/JS, optimizing images, and more

•	 Both tools use plugins (Gulp) or loaders (Webpack) to extend functionality and process different
types of files, such as Sass, TypeScript, or images

•	 They improve the development workflow by enabling tasks such as live reloading, transpiling
modern JavaScript, and optimizing assets for production

Preprocessors and Tooling for Efficient Development388

When it comes to differences, Gulp is more task-oriented and flexible in terms of the tasks you can
perform and how you chain them together. It’s often used for simpler tasks or when you need more
control over the build process. Gulp is suitable for a wide range of tasks beyond JavaScript bundling,
such as copying files, compiling Sass, running tests, or any task that can be automated using streams.

Webpack focuses heavily on module bundling and dependency management. It treats your entire project
as a dependency graph and bundles assets accordingly. It’s highly suited for complex applications with
many dependencies. Webpack is ideal for modern JavaScript applications using frameworks that rely
heavily on module-based architecture and code splitting, such as React, Vue.js, or Angular.

While both Webpack and Gulp are build tools that automate similar tasks in web development, they
differ in their philosophy, approach, and typical use cases. Depending on your project’s requirements
and your team’s preferences, you may choose one or both tools to optimize your development
workflow effectively.

How to configure Gulp and Webpack for different environments
(development and production)

Setting up different environments ensures that your application is tested thoroughly, optimized for
performance, deployed securely, and developed efficiently from the initial stages to production release.
It’s a fundamental practice in modern web development that helps maintain high-quality standards
and user satisfaction.

Configuring build tools to accommodate various environments such as development and production
is essential for optimizing your web development workflow. Let’s explore how to set up Webpack
effectively to meet the demands of different environments.

Setting up different environments with Webpack

Webpack provides a simple yet effective way to specify the environment mode directly in the webpack.
config.js file. By setting the mode configuration option, Webpack automatically applies various
built-in optimizations tailored to the specified environment.

Here’s how you can set the mode option:

module.exports = {
  // other configurations...
  mode: 'development',
};

Webpack accepts three values for the mode option:

•	 mode: 'development': Sets process.env.NODE_ENV to development and enables
useful names for modules and chunks, making debugging easier

Introduction to build tools – Gulp and Webpack 389

•	 mode: 'production': Sets process.env.NODE_ENV to production, applies several
optimizations, such as deterministic mangled names for modules and chunks, and includes
plugins such as FlagDependencyUsagePlugin, FlagIncludedChunksPlugin,
ModuleConcatenationPlugin, NoEmitOnErrorsPlugin, and TerserPlugin

•	 none: Opts out of any default optimization options, providing a clean slate for custom configurations

Sometimes, you might want to adjust the Webpack configuration dynamically based on the environment.
To achieve this, you can export a function instead of an object from webpack.config.js. Here’s
an example:

var config = {
  entry: './app.js',
  // other common configurations...
};

module.exports = (env, argv) => {
  if (argv.mode === 'development') {
    config.devtool = 'source-map';  // Enables source maps
                                    // for easier debugging
                                    // in development
  }

  if (argv.mode === 'production') {
    // Production-specific settings
    // For instance, you could add minification plugins
    // here
  }

  return config;
};

By leveraging the mode configuration option in Webpack, you can easily tailor your build process
for different environments. Whether you’re working in a development setting with comprehensive
debugging tools or in a production environment where performance optimizations are critical, Webpack
provides you with the flexibility and power to manage your configurations efficiently.

Setting up different environments with Gulp
Gulp offers a wide array of plugins that cater to different environments, each with unique
features, advantages, and limitations. To find the best plugins for your specific needs, we
recommend exploring the plugin section on Gulp’s official website. This will help you identify
the most suitable options for your projects.

Preprocessors and Tooling for Efficient Development390

As we’ve explored, both Gulp and Webpack are powerful tools for enhancing our applications. It’s
equally important to understand techniques for optimizing their use to get the most out of these tools.
In the upcoming section, we’ll provide a brief overview of various techniques for optimizing your build
process and enhancing your application’s speed and efficiency. These strategies will help you leverage
Gulp and Webpack more effectively, ensuring that your projects run smoothly and perform at their best.

Techniques for improving performance with build tools
Improving website performance is the focal point of this chapter. We explored how CSS preprocessors
such as Sass or Less facilitate modular and organized CSS development. Additionally, we discussed
how build tools such as Webpack or Gulp automate tasks such as concatenation and minification,
optimizing the size and load times of web files.

To summarize, we’ll look at the primary techniques for leveraging these tools to enhance
website performance.

Modular CSS development

Preprocessors such as Less and Sass allow developers to write CSS in a more modular and organized
manner using features such as variables, mixins, and nested rules. This modular approach reduces
redundancy and promotes code reusability, leading to more efficient CSS stylesheets.

By using variables for colors, fonts, and other style properties, preprocessors help eliminate repetitive
code. This not only improves maintainability but also reduces the overall size of CSS files, contributing
to faster loading times.

Minifying CSS and JavaScript

Minification significantly enhances website speed by reducing file sizes through the removal of
unnecessary characters, whitespace, and comments from CSS and JavaScript files.

Both Gulp and Webpack have plugins and modules (for example, gulp-uglify and gulp-clean-
css for Gulp, and terser-webpack-plugin and css-minimizer-webpack-plugin for
Webpack) that automate minification and concatenation tasks during the build process.

Bundle and code splitting

Bundling groups related files into a single file (bundle) reduces the number of server requests and
improves load times. Code splitting further enhances this by breaking down bundles into smaller
chunks that load only when needed, reducing initial load times.

Webpack excels in bundle and code splitting configurations (SplitChunksPlugin and dynamic
imports), allowing developers to optimize how assets are bundled and loaded based on application needs.

Summary 391

Optimizing images and assets

Compressing and optimizing images reduces file sizes while maintaining visual quality. Using modern
image formats such as WebP can further reduce image sizes. Additionally, optimizing other assets
(fonts, icons, and so on) through compression and bundling helps streamline page loading.

Gulp and Webpack provide plugins (gulp-imagemin and image-webpack-loader) that automate
image and asset optimization tasks, ensuring efficient handling of resources during build processes.

By implementing these techniques with CSS preprocessors and build tools, you can streamline
development workflows, optimize website performance, and deliver faster, more responsive web
experiences to users.

Summary
Congratulations! By incorporating the skills you’ve acquired in this chapter, you’ve gained a comprehensive
understanding of how preprocessors such as Sass and efficient tooling such as Gulp enhance web
development. These tools automate tasks such as compilation, minification, and optimization, significantly
improving your efficiency by saving valuable time and effort. Additionally, they optimize code output,
ensuring faster loading times and better overall performance for a smoother user experience.

Beyond individual productivity gains, these tools facilitate collaboration by promoting consistent
coding standards and enabling seamless teamwork across development teams. Furthermore, mastering
these technologies enables you to optimize web performance, particularly in loading HTML and CSS
files, contributing to enhanced project quality, efficiency, and competitiveness in the digital landscape.

In the next chapter, we’ll delve deeper into enhancing code quality and mastering Strategies for
Maintaining CSS Code. This knowledge is essential for developers aiming to create lasting web solutions
that are easy to update and evolve. Get ready to elevate your coding skills!

12
Strategies for Maintaining

CSS Code

In today’s rapidly evolving web development landscape, maintaining a clean and efficient CSS code
base has become more critical than ever. Effective CSS management is not just about writing code that
works; it’s also about writing code that can be easily understood, maintained, and extended by others.

This ensures that future developers can step into a project with ease, continuing the work without
the need for a complete overhaul. By adopting well-supported standards and methodologies, we can
create a sustainable and maintainable code base that stands the test of time.

In this chapter, we’re going to cover the following main topics:

•	 The importance of maintainable CSS

•	 Understanding semantic modular CSS

•	 What is the Block Element Modifier (BEM) standard?

•	 Understanding reusable and scalable CSS

By the end of this chapter, you will be equipped with the knowledge and tools to transform your CSS
into a well-organized and maintainable asset for any large-scale project.

Technical requirements
The code files for this chapter can be found at https://packt.link/7quZK.

https://packt.link/7quZK

Strategies for Maintaining CSS Code394

The importance of maintainable CSS
As projects grow in complexity, with thousands of lines of code spanning across multiple files, the
need for robust strategies to manage CSS effectively becomes paramount.

Without proper organization, CSS can quickly become unwieldy, leading to issues such as code
duplication, specificity conflicts, and difficulties in maintaining and scaling a project. To prevent such
chaos, it is crucial to write maintainable CSS by following best practices, such as modular CSS and
the BEM approach, which we’ll explore in this chapter. First, let’s examine what poorly maintained
CSS looks like.

What unmaintainable CSS looks like

Unmaintainable CSS isn’t inherently bad coding. In smaller projects, you might not feel the need for
a strong, modular approach or the use of BEM to create a sophisticated architecture for your styles.
However, knowing when to apply these techniques can save time in the future and ensure long-term
software quality.

Let’s examine a CSS file that, while not poorly written, is unmaintainable:

.btn {
  padding: 10px 20px;
  background-color: blue;
  border: none;
  border-radius: 5px;
  cursor: pointer;
}

.icon {
  margin-right: 5px;
}

.primary {
  background-color: blue;
  color: white;
}

.secondary {
  background-color: gray;
  color: black;
}

The importance of maintainable CSS 395

“Well, but I write CSS this way! What’s wrong with that?” you might wonder. Indeed, this code works
and is perfectly fine for small projects. However, as your project grows, using global CSS such as this
can lead to significant maintenance challenges. This example of CSS contains several issues that make
it unmaintainable. Let’s break down the problems:

•	 Vague naming: Class names such as .btn, .icon, .primary, or .secondary are too
generic and do not provide enough context about their purpose or where they should be used.
This lack of specificity can lead to confusion and unintended styling conflicts when similar
names are used in different parts of a project.

•	 Global styles: The preceding classes are applied globally, meaning that any element in the project
with these class names – ranging from menu items to gallery images – will receive styles such
as background-color: blue or color: black. This can lead to unintended side
effects, as different components or pages may use the same class names for different purposes.

•	 Redundancy and duplication: Styles such as .primary or .secondary: for the preceding
classes are redundant. They could potentially be merged or extended from a base class to avoid
duplication. This also makes future updates more cumbersome because changes need to be
applied in multiple places.

In summary, unmaintainable CSS often suffers from issues such as overly specific selectors and
global styles that lead to naming conflicts and reduced reusability. By adopting best practices, we
can create a more maintainable, scalable, and readable code base. Let’s rewrite the same example to
create maintainable CSS.

What maintainable CSS looks like

The preceding unmaintainable example suffers from vague naming, global styles, lack of modularity,
and redundancy. By adopting a systematic approach such as BEM, we can improve maintainability
through descriptive naming, scoped styles, reusability, and reduced redundancy. This makes the CSS
easier to understand, manage, and scale as a project grows.

What is BEM?
BEM is a methodology for writing maintainable and scalable CSS, by organizing code into
reusable components with clear and descriptive class names. We’ll delve deeper into BEM and
its benefits in the upcoming sections.

Let’s look at the result:

/* Improved CSS with BEM */

/* Button Component */
.button {

Strategies for Maintaining CSS Code396

  padding: 10px 20px;
  border: none;
  border-radius: 5px;
  cursor: pointer;
}

.button--primary {
  background-color: blue;
  color: white;
}

.button--secondary {
  background-color: gray;
  color: black;
}

/* Icon Component */
.icon {
  margin-right: 5px;
}

In the preceding refactor, we have incorporated the following improvements:

•	 Descriptive naming: The new class names such as .button, .button--primary, and
.button--secondary follow the BEM convention, making it clear that the styles are
related to button components. This descriptive naming helps other developers understand the
purpose and context of each style, reducing the risk of conflicts.

•	 Scoped styles: The styles are scoped to specific components (.button and .icon), reducing
the risk of global style conflicts. This makes the CSS more modular and easier to manage.

•	 Reusability: By defining a base class for buttons (.button) and extending it with modifier
classes (.button--primary and .button--secondary), the styles are more reusable
and maintainable. If you need to change the padding or border radius for all buttons, you only
need to update the .button class.

•	 Reduced redundancy: The improved version eliminates redundancy by using a base class
for shared styles and modifier classes for variations. This makes code more efficient and easier
to maintain.

In summary, maintainable CSS is structured, clear, and scalable, making it easier to work with over
time. Conversely, unmaintainable CSS is often disorganized, inconsistent, and difficult to manage,
leading to challenges in maintaining and extending the code base.

The importance of maintainable CSS 397

Why you should write maintainable CSS

Writing maintainable CSS is crucial for several reasons, especially when working on large-scale
projects or in a collaborative environment. Here are some compelling reasons why you should strive
to write maintainable CSS:

•	 Ease of collaboration:

	� Consistency: Maintainable CSS follows consistent naming conventions and patterns, making
it easier for multiple developers to understand and work with code

	� Readability: Well-structured and documented CSS helps team members quickly comprehend
styles and their purpose, reducing onboarding time for new developers

•	 Scalability:

	� Growth: As projects grow, maintainable CSS ensures that adding new features or components
doesn’t result in a tangled mess of styles

	� Modularity: By using methodologies such as BEM, styles can become modular and reusable,
making it easy to scale the code base

•	 Debugging and maintenance:

	� Efficiency: Well-organized CSS reduces the time needed to find and fix bugs. Clear structure
and comments help in quickly identifying and resolving issues.

	� Future-proofing: Maintainable CSS is easier to update and adapt to new requirements or
design changes, ensuring the longevity of a project.

•	 Performance:

	� Optimization: Maintainable CSS often leads to cleaner and more efficient code, which can
improve page load times and overall performance

	� Minimization of redundancy: By avoiding duplicate styles and using variables, mixins, and
functions, maintainable CSS keeps file sizes smaller and more performant

•	 Consistency across projects:

	� Uniformity: Adhering to a style guide or coding standards ensures uniformity across
different projects, making it easier for developers to switch between projects without a steep
learning curve

•	 Code reusability:

	� Efficiency: Reusable components save time and effort, allowing developers to leverage existing
styles instead of writing new ones from scratch.

Strategies for Maintaining CSS Code398

	� DRY principle: Maintainable CSS adheres to the don’t repeat yourself principle, reducing
duplication and making the code base more efficient.

•	 Improved workflow:

	� Development speed: A well-maintained code base speeds up development by reducing the
need for rewriting or cleaning up messy CSS

	� Tool integration: Maintainable CSS is more easily integrated with modern development tools
and workflows, such as version control systems, build tools, and preprocessors like Sass and
Less. These CSS preprocessors, which we explored in Chapter 11, enhance the flexibility and
scalability of CSS by introducing features such as variables, nesting, and mixins.

•	 Accessibility and search engine optimization:

	� Standards compliance: Writing maintainable CSS often involves adhering to web standards
and best practices, which can enhance accessibility and SEO (Search Engine Optimization)

	� Semantic markup: Clear and meaningful class names contribute to semantic HTML, improving
the accessibility and SEO of a website.

•	 Professionalism

	� Quality assurance: Writing maintainable CSS reflects a professional approach to development,
showcasing attention to detail and a commitment to quality

	� Reputation: Consistently delivering maintainable code enhances a developer’s reputation
and can lead to better career opportunities and client satisfaction

Investing time and effort in writing maintainable CSS pays off in the long run. It leads to more efficient
workflows, easier collaboration, better performance, and a code base that can adapt to changing
requirements with minimal friction. In essence, maintainable CSS not only makes a present project
manageable but also ensures that future developers will thank you for your foresight and diligence.
With maintainable CSS in mind, the next step is to explore how understanding semantic modular
CSS can further enhance your code’s structure and readability.

Understanding semantic modular CSS
Semantic modular CSS is about writing CSS in a way that is both meaningful and modular. This
means creating styles that not only describe what elements are but also how they function within a
component-based structure. The goal is to improve the maintainability, readability, and scalability of
your CSS:

•	 Semantic naming involves using class names that clearly describe the purpose and function of
an element. For example, instead of using .blue-button, use .btn-primary to describe
a primary button. This makes your CSS more readable and easier to understand.

Understanding semantic modular CSS 399

•	 Modular CSS involves breaking down styles into reusable, independent modules or components.
For example, instead of styling buttons differently in various parts of your style sheet, create
a single .btn class that can be extended with modifier classes such as .btn-primary or
.btn-secondary. This approach reduces duplication and makes your styles easier to maintain.

Semantic modular CSS is a methodology that focuses on writing clean, meaningful, and reusable
CSS. By dividing styles into distinct modules with clear, descriptive class names, developers can
create a more organized and maintainable code base. This approach enhances readability, simplifies
collaboration, and makes it easier to manage and scale styles as projects grow. Let’s look at how we
can develop modular CSS.

How to develop modular CSS

Modular CSS is the practice of breaking down styles into reusable components, allowing developers
to avoid writing styles that are used only in a single location. Instead of creating specific styles for
individual elements, modular CSS encourages the use of smaller, independent style modules that can
be reused in different contexts.

To implement modular CSS, you can adopt methodologies such as SMACSS (Scalable and Modular
Architecture for CSS). SMACSS provides a structured approach to organizing CSS, making it easier
to apply modular principles effectively. It is a methodology for organizing CSS code based on its
functionality. With SMACSS, you divide your CSS into five categories – base, layout, module, state,
and theme. Each category contains styles specific to its purpose. Let’s see how this works in practice:

•	 Base styles: These are the default styles applied to HTML elements (e.g., h1, p, and button).
Base styles should be minimal and reusable across an application:

/* Base styles */
body {
  font-family: Arial, sans-serif;
  line-height: 1.5;
  margin: 0;
  padding: 0;
}

h1 {
  font-size: 2em;
  margin: 0.5em 0;
}

•	 Layout styles: Layout styles define the structure of your pages, organizing content into sections,
grids, or columns:

/* Layout styles */
.container {

Strategies for Maintaining CSS Code400

  max-width: 1200px;
  margin: 0 auto;
  padding: 0 20px;
}

.grid {
  display: flex;
  flex-wrap: wrap;
}

•	 Module styles: Module styles represent reusable components, such as buttons, cards, or
navigation bars. Each module should have its own class, making it easy to reuse throughout
your application:

/* Module styles */
.button {
  padding: 10px 20px;
  border: none;
  border-radius: 5px;
  cursor: pointer;
}

.button--primary {
  background-color: blue;
  color: white;
}

.button--secondary {
  background-color: gray;
  color: black;
}

•	 State styles: State styles manage variations in appearance based on user interaction, such as
hover effects, active states, or disabled buttons:

/* State styles */
.button:hover {
  opacity: 0.8;
}

.button:disabled {
  background-color: lightgray;
  cursor: not-allowed;
}

Understanding semantic modular CSS 401

•	 Theme styles: Theme styles can be used to define different visual themes or variations for your
application, enabling easy customization without altering the base modules:

/* Theme styles */
.theme-dark .button {
  background-color: black;
  color: white;
}

.theme-light .button {
  background-color: white;
  color: black;
}

By organizing your CSS in this manner, you can create a more maintainable and scalable code base,
where each file or directory contains styles specific to its category, making it easier to manage and update.

How to apply modular CSS

Now that we understand how to develop modular CSS, let’s learn how to implement it. Here are the
key steps:

1.	 Start by analyzing your existing styles and breaking them down into smaller, manageable
modules. Look for common patterns or styles that can be abstracted into reusable components.

2.	 Structure your CSS files logically, grouping related styles together. Consider using a folder
structure that mirrors the modular approach, creating separate files for base, layout, module,
state, and theme styles.

3.	 If you are using a JavaScript framework (such as React, Vue, or Angular), take advantage of
its component-based architecture. Style each component independently, and use modular CSS
principles to define styles within those components.

The golden rule for modules
Modules should focus on a single responsibility. For instance, a button module is solely
responsible for styling buttons. We can have modules dedicated to components, styles, or layouts.

Exercise 12.1 – implementing semantic, modular CSS with SMACSS

Let’s create a simple web page using semantic HTML and modular CSS, organized according to the
SMACSS methodology. This exercise will help you understand how to break down styles into base,
layout, module, state, and theme categories:

1.	 Start by creating a folder named semantic-modular-css to hold our project files. Open
this folder in VS Code or your preferred IDE.

Strategies for Maintaining CSS Code402

2.	 Next, create a file named index.html to contain our HTML structure. Use semantic HTML
tags to create a basic web page structure, including a header, a main content area with a profile
card, and a footer:

<!DOCTYPE html>
<html lang="en">
<head>
  <meta charset="UTF-8">
  <meta
    name="viewport"
    content="width=device-width, initial-scale=1.0"
  >
  <title>Profile Card</title>
</head>
<body class="theme-light">
  <header>
    <h1>Welcome to My Page</h1>
  </header>
  <main>
    <div class="container">
      <div class="profile-card">
        <img
          src="profile-photo.jpg"
          alt="Profile Photo"
          class="profile-card__photo"
        >
        <h2 class="profile-card__name">John Doe</h2>
        <p class="profile-card__bio">
          Web developer with a passion for creating
          beautiful and functional websites.
        </p>
        <button class="button button--primary">
          Contact
        </button>
      </div>
    </div>
  </main>
  <footer>
    <p>© 2024 My Website</p>
  </footer>
</body>
</html>

Understanding semantic modular CSS 403

Next, create the styling files. According to SMACSS, it’s important to organize your CSS into five
categories – base, layout, module, state, and theme. To do this, create a folder named styles
inside the project’s folder. Within the styles folder, create separate CSS files for each category.

3.	 In the base.css file, define default styles for HTML elements (e.g., body, headings,
and paragraphs):

/* Base styles */
body {
  font-family: Arial, sans-serif;
  line-height: 1.5;
  margin: 0;
  padding: 0;
}

h1 {
  font-size: 2em;
  margin: 0.5em 0;
}

p {
  font-size: 1em;
  margin: 0.5em 0;
}

4.	 In the layout.css file, create a flexible grid layout for the page:

/* Layout styles */
.container {
  max-width: 1200px;
  margin: 0 auto;
  padding: 20px;
}

header, footer {
  text-align: center;
  padding: 20px 0;
  background-color: #f0f0f0;
}

5.	 Style the profile card component and button in module.css:

/* Module styles */
.profile-card {
  border: 1px solid #ccc;
  border-radius: 8px;

Strategies for Maintaining CSS Code404

  padding: 16px;
  max-width: 300px;
  margin: 20px auto;
  text-align: center;
  background-color: #fff;
}

.profile-card__photo {
  width: 100px;
  height: 100px;
  border-radius: 50%;
  object-fit: cover;
  margin-bottom: 16px;
}

.profile-card__name {
  font-size: 1.5em;
  margin: 8px 0;
}

.profile-card__bio {
  font-size: 1em;
  color: #666;
}

.button {
  padding: 10px 20px;
  border: none;
  border-radius: 5px;
  cursor: pointer;
}

.button--primary {
  background-color: blue;
  color: white;
}

6.	 Add interactive state styles to state.css:

/* State styles */
.button:hover {
  opacity: 0.8;
}

.button:disabled {
  background-color: lightgray;

Understanding semantic modular CSS 405

  cursor: not-allowed;
}

7.	 Implement light and dark theme styles in theme.css:

/* Theme styles */
.theme-light {
  background-color: #f9f9f9;
  color: #333;
}

.theme-dark {
  background-color: #333;
  color: #f9f9f9;
}

.theme-dark .profile-card {
  background-color: #444;
  border-color: #555;
}

.theme-dark .button--primary {
  background-color: darkblue;
}

.theme-dark header, .theme-dark footer {
  background-color: #222;
}

8.	 To use the styles we created in the exercise, you’ll need to link the CSS files in the HTML
document. Make sure you have the CSS files in the styles folder, and add <link> tags in
the <head> section of your index.html file to include each of the CSS files:

<html lang="en">
<head>
  <meta charset="UTF-8">
  <meta
    name="viewport"
    content="width=device-width, initial-scale=1.0"
  >
  <link rel="stylesheet" href="styles/base.css">
  <link rel="stylesheet" href="styles/layout.css">
  <link rel="stylesheet" href="styles/module.css">
  <link rel="stylesheet" href="styles/state.css">
  <link rel="stylesheet" href="styles/theme.css">
</head>
[…]

Strategies for Maintaining CSS Code406

9.	 The resulting project should look like this:

Figure 12.1 – Styled HTML with modular SMACSS CSS

10.	 Toggle the class on the <body> element between theme-light and theme-dark to
switch themes, and observe the changes:

Figure 12.2 – A dark theme applied to the project

What is the BEM standard? 407

Congratulations on completing the exercise! By organizing your CSS according to the SMACSS
methodology, you’ve made your styles more modular, maintainable, and scalable. This approach not
only improves the organization of your code but also enhances its reusability across different parts
of your project.

If you encounter any difficulties or want to review the exercise, you can always refer to the exercise
repository to check the final result.

Modular CSS is a fundamental approach to structuring and writing CSS in a way that emphasizes
reusability, clarity, and organization. As web applications grow increasingly complex, adopting a
modular methodology helps developers maintain and scale their styles efficiently.

Building on the principles of modular CSS, the BEM standard offers a specific methodology to further
improve reusability, clarity, and organization in your CSS code. Let’s delve into BEM to understand
how it can help you to structure your styles better.

What is the BEM standard?
In smaller projects, the organization of your styles isn’t a major concern. You can quickly write some
CSS or SASS, compile it into a single style sheet using SASS’s production settings, and aggregate all
the style sheets from different modules into a tidy package.

However, as projects become larger and more complex, how you organize your code is crucial for
efficiency. It affects the time it takes to write code, the amount of code required, and the browser’s loading
time. This becomes especially important when working with teams and aiming for high performance.

One popular methodology that addresses these challenges is BEM. BEM is a naming convention
for classes in HTML and CSS that aims to enhance code readability and maintainability by clearly
defining the relationships between components. It breaks down UI components into three main parts:

•	 Block: The standalone entity that is meaningful on its own. It represents a high-level component.
For example, a navigation menu (nav), a button (btn), or a form (form) can be a block:

<div class="menu">...</div>

•	 Element: The part of a block that performs a specific function. It is semantically tied to its
block. It is denoted with a double underscore (__):

<div class="menu">
  <div class="menu__item">...</div>
</div>

Strategies for Maintaining CSS Code408

•	 Modifier: The flag on a block or element that changes its appearance or behavior. It is denoted
with a double hyphen (--):

<div class="menu menu--large">...</div>
<div class="menu">
  <div class="menu__item menu__item--active">...</div>
</div>

Now that we understand what the BEM methodology is, let’s apply it.

How to apply BEM

Here’s a practical example that illustrates how BEM is applied:

<div class="card">
  <h2 class="card__title">Card Title</h2>
  <p class="card__text">
    This is some text inside the card.
  </p>
  <button class="card__button card__button--primary">
    Click Me
  </button>
</div>

In the style sheet, we apply the BEM strategy to clearly define blocks, elements, and modifiers:

.card {
  border: 1px solid #ccc;
  padding: 16px;
  border-radius: 8px;
}
.card__title {
  font-size: 1.5em;
  margin-bottom: 8px;
}
.card__text {
  font-size: 1em;
  margin-bottom: 16px;
}
.card__button {
  padding: 8px 16px;
  border: none;
  border-radius: 4px;
  cursor: pointer;
}

What is the BEM standard? 409

.card__button--primary {
  background-color: #007bff;
  color: #fff;
}

In the preceding example, the BEM methodology clearly organizes the CSS classes by defining the
relationships between the components.

The card block encapsulates the entire card component, while the card__title, card__text,
and card__button elements represent its parts.

The card__button--primary modifier alters the appearance of the card__button element,
demonstrating how modifiers can be used to create variations in styling. This approach ensures that
the code is easy to read, maintain, and scale. There are some additional benefits of using the BEM
methodology. Let’s take a look.

The benefits of BEM

BEM is particularly useful in large projects with many developers, as it provides a common language
to discuss the structure and styling of components:

•	 Clarity and readability: The naming convention clearly indicates the relationship between the
components, making the code easier to understand

•	 Reusability: Blocks are designed to be standalone, which encourages reusability across different
parts of a project

•	 Maintainability: The modular nature of BEM helps in maintaining and updating the code
base, as changes in one part of the code are less likely to affect other parts

•	 Scalability: BEM’s structured approach makes it easier to scale a project, as new components
can be added without disrupting the existing code base

Visit the documentation
To learn more about BEM and how to apply this methodology in your projects, check out the
official documentation at www.getbem.com. It’s a great resource to help you get started!

Exercise 12.2 – converting regular CSS into BEM

Let’s convert regular CSS into BEM. This exercise will help you understand which elements should
be declared as blocks, elements, or modifiers:

1.	 Start by creating a folder named bem-css to hold our project files. Open this folder in VS
Code or your preferred IDE.

http://www.getbem.com

Strategies for Maintaining CSS Code410

2.	 Next, create a file named index.html to contain our HTML structure. Use semantic HTML
tags to create a basic structure and place the following code:

<!DOCTYPE html>
<html lang="en">
<head>
  <meta charset="UTF-8">
  <meta
    name="viewport"
    content="width=device-width, initial-scale=1.0"
  >
<link rel="stylesheet" href="style.css">

  <title>BEM Exercise</title>
</head>
<body>
<div class="header">
  <h1 class="title">Welcome</h1>
  <nav class="nav">
    Home
    About
    Contact
  </nav>
</div>
</body>
</html>

3.	 To begin, create a style.css file and place the following code inside it:

.header {
  background-color: #f8f9fa;
  padding: 20px;
}

.title {
  font-size: 2em;
  margin: 0;
}

.nav {
  margin-top: 10px;
}

What is the BEM standard? 411

.link {
  margin-right: 15px;
  text-decoration: none;
  color: #007bff;
}

.link.active {
  font-weight: bold;
}

4.	 This CSS will serve as the starting point for our exercise in converting to BEM methodology.
When you open your HTML file, it should look like this:

Figure 12.3 – An application with regular CSS applied

5.	 To begin refactoring, identify the blocks, elements, and modifiers in your HTML and rename
them accordingly. In this case, they should be as follows:

	� Blocks: header and nav

	� Elements: title (inside header) and link (inside nav)

	� Modifiers: the active class modifies link

6.	 Update your HTML structure as follows:

<div class="header">
  <h1 class="header__title">Welcome</h1>
  <nav class="nav">
    Home
    
      About
    
    Contact
  </nav>
</div>

Strategies for Maintaining CSS Code412

7.	 This structure reflects the application of the BEM naming convention for better organization
and clarity in your CSS.

8.	 Let’s now refactor the style.css file:

.header {
  background-color: #f8f9fa;
  padding: 20px;
}

.header__title {
  font-size: 2em;
  margin: 0;
}

.nav {
  margin-top: 10px;
}

.nav__link {
  margin-right: 15px;
  text-decoration: none;
  color: #007bff;
}

.nav__link--active {
  font-weight: bold;
}

After refactoring this CSS to the BEM methodology, you’ll notice that while the CSS structure improves,
the user interface remains as intended.

Well done on successfully applying the BEM methodology to organize your CSS! By practicing with
more complex examples, you’ll further enhance your CSS development skills.

Combining strategies for optimal CSS
Combining BEM with SMACSS allows you to create modular, semantic CSS that is scalable,
maintainable, and easy to understand. This approach ensures that your style sheets are structured
for efficient development and collaboration.

Understanding reusable and scalable CSS 413

Understanding reusable and scalable CSS
CSS has evolved significantly since its inception in the late 1990s. Originally designed to add styling
to web documents, CSS has grown into a powerful language for designing complex web layouts and
applications. As websites and applications became more complex, CSS had to evolve to meet new
demands. Tools such as LESS and Sass extended native CSS capabilities, introducing features such as
variables and calc functions, which greatly improved the developer experience.

Various patterns for scaling CSS emerged, aiming to balance maintenance, performance, and readability.
These patterns are often referred to as CSS architectures, with notable examples including BEM
and SMACSS.

With the rise of SPA (Single-Page Applications) and component-driven development, new approaches
to CSS were required. Managing CSS became more challenging because components now load
asynchronously, with no guarantees on source order. How do we develop reusable and scalable CSS?
Let’s see.

Strategies for reusable and scalable CSS

Reusable and scalable CSS refers to writing styles that can be efficiently reused across different parts
of a website or application while also being adaptable to varying screen sizes and devices. Here are
the key strategies to achieve this:

•	 Inline styles: In the context of components, inline styles don’t face the original problem of
massive duplication because they are encapsulated within the component. This encapsulation
allows for the safe addition and modification of CSS in components. However, inline styles lack
access to more powerful CSS features such as pseudo-selectors and media queries. Additionally,
leveraging shared design tokens, caching, static analysis, and preprocessing is challenging with
inline styles. Here’s an example of inline styles in a JavaScript module:

const buttonStyle = {
  backgroundColor: 'blue',
  color: 'white',
  padding: '10px 20px',
  borderRadius: '5px'
};

const Button = () => (
  <button style={buttonStyle}>Click Me</button>
);

Strategies for Maintaining CSS Code414

•	 CSS-in-JS: In the early days of React, Facebook introduced a JavaScript-driven approach to CSS
that looked similar to inline styles but with access to style sheet power. This approach led to the
proliferation of open source libraries such as styled-components and Emotion. These libraries
solved many problems associated with vanilla CSS in large projects by using components, making
it easy to work with dynamic values from JavaScript. However, they introduced performance
issues, such as server-side rendering inefficiencies, caching problems, and client runtime costs,
leading to slow app startup times.

A more recent wave of CSS-in-JS libraries aims to combine the best of the developer experience
without the runtime cost. Tools such as Vanilla Extract, Linaria, and Compiled extract style
sheets from components during a compile step, shifting much of the runtime workload from
a user’s browser to compile time. Here’s an example of a styled-components file:

import styled from 'styled-components';

const Button = styled.button`
  background-color: blue;
  color: white;
  padding: 10px 20px;
  border-radius: 5px;
`;

const App = () => (
  <Button>Click Me</Button>
);

•	 CSS modules: CSS modules strike a balance between writing regular CSS (or Sass) and achieving
scalability. They allow developers to use the full power of CSS without worrying about styles
bleeding across components, keeping styles localized within a component directory. CSS
modules do not tie CSS to a particular view library, making them a great alternative to CSS-in-JS
libraries. Although they depend on a bundler such as Webpack to ensure that selectors are
scoped, CSS modules are a middle ground between traditional CSS and fully component-centric
approaches. They are compatible with naming conventions such as BEM. Here’s an example
of CSS modules applied:

/* Button.module.css */
.button {
  background-color: blue;
  color: white;
  padding: 10px 20px;
  border-radius: 5px;
}

Understanding reusable and scalable CSS 415

Here’s the JSX file:
import styles from './Button.module.css';

const Button = () => (
  <button className={styles.button}>Click Me</button>
);

•	 Utility-first CSS: Popularized by frameworks such as Tailwind CSS, utility-first CSS focuses
on creating small, single-purpose utility classes that can be combined to create complex designs.
This approach promotes scalability by reducing the need to write custom CSS. According to
the State of CSS, Tailwind CSS is one of the most popular implementations of this architecture
today. Here’s an example of Tailwind applied:

<button
  class="bg-blue-500 text-white py-2 px-4 rounded">
  Click Me
</button>

The preceding Tailwind declaration represents the following style:

button {
  background-color: #3b82f6;
  color: #ffffff;
  padding-top: 0.5rem;
  padding-bottom: 0.5rem;
  padding-left: 1rem;
  padding-right: 1rem;
  border-radius: 0.25rem;
}

Once we’ve learned the importance of utility-first CSS, let’s dive deeper into the way it works with
Tailwind next.

The implementation of utility-first CSS with Tailwind

Utility-first CSS involves creating small, reusable classes that apply a single CSS property. Instead of
writing custom CSS for each component, you use these utility classes to compose your design directly
in your HTML.

Strategies for Maintaining CSS Code416

The benefits of utility-first CSS

Utility-first CSS offers several key benefits:

•	 Utility classes ensure a uniform design system across your entire application, promoting visual
coherence and reducing design discrepancies

•	 By allowing you to apply styles directly in your HTML, this approach eliminates the need to
switch contexts between HTML and CSS, streamlining the development process

•	 With utility-first CSS, there’s a significant reduction in the need for custom CSS, leading to a
cleaner, more maintainable code base that’s easier to manage and update

•	 Additionally, utility classes can be combined in various ways to create complex designs, providing
a flexible and modular approach to styling that adapts easily to different requirements and changes

Tailwind CSS is one of the most popular implementations of this methodology, offering a comprehensive
set of utilities that cover a wide range of styling needs. Let’s understand how it works.

Check out Tailwind CSS documentation for more information
For more information and to explore the full capabilities of utility-first CSS, check out https://
tailwindcss.com/docs. It provides comprehensive guides, examples, and best practices
to help you get the most out of Tailwind CSS in your projects.

How utility-first CSS works with Tailwind

To understand better how utility-first CSS works, let’s see some examples of styling made with Tailwind
and its regular CSS version:

Example 1 – button styling using traditional CSS

This is the version using traditional CSS:

<button class="custom-button">Click Me</button>

<style>
.custom-button {
  background-color: #3b82f6;
  color: #ffffff;
  padding: 0.5rem 1rem;
  border-radius: 0.25rem;
}
</style>

https://tailwindcss.com/docs
https://tailwindcss.com/docs

Understanding reusable and scalable CSS 417

And here’s its version with Tailwind CSS:

<button class="bg-blue-500 text-white py-2 px-4 rounded">Click Me</
button>

Example 2 – a card component with traditional CSS

This is the version using traditional CSS:

<div class="card">
  <h2 class="card-title">Card Title</h2>
  <p class="card-text">This is some text inside a card.</p>
</div>

<style>
.card {
  border: 1px solid #e5e7eb;
  padding: 1rem;
  border-radius: 0.5rem;
}

.card-title {
  font-size: 1.25rem;
  font-weight: 700;
}

.card-text {
  color: #4b5563;
}
</style>

And here’s the same component styled with Tailwind:

<div class="border border-gray-300 p-4 rounded-lg">
  <h2 class="text-xl font-bold">Card Title</h2>
  <p class="text-gray-700">
    This is some text inside a card.
  </p>
</div>

Strategies for Maintaining CSS Code418

Example 3 – responsive design with traditional CSS

This is the version using traditional CSS:

<div class="responsive-div">Responsive Content</div>

<style>
.responsive-div {
  padding: 1rem;
  background-color: #f3f4f6;
}

@media (min-width: 768px) {
  .responsive-div {
    padding: 2rem;
  }
}
</style>

And here’s the same responsive design made with Tailwind:

<div class="p-4 bg-gray-100 md:p-8">
  Responsive Content
</div>

Utility-first CSS with Tailwind offers a robust, scalable, and maintainable approach to styling web
applications. Writing CSS with Tailwind is significantly faster than creating traditional CSS, as it
eliminates the need to manage and resolve issues related to naming and conflicting styles. In the next
exercise, we’ll put Tailwind into practice.

Exercise 12.3 – converting regular CSS into Tailwind

In this exercise, we will convert an HTML file styled with regular CSS into one styled with Tailwind
CSS. For reference or to check the resulting files, visit the Git repository for this exercise at https://
packt.link/7quZK:

1.	 First, create an index.html file with the initial code to use as a reference. You can find the
source code at this link: https://packt.link/3s06S.

https://packt.link/7quZK
https://packt.link/7quZK
https://packt.link/3s06S

Understanding reusable and scalable CSS 419

2.	 The output of this file is shown in Figure 12.4:

Figure 12.4 – An HTML file styled with CSS

3.	 Next, create a new HTML file named index-tailwind.html and include the bare HTML
structure without any styles:

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta
        name="viewport"
        content="width=device-width,
                 initial-scale=1.0"
    >
    <title>Plant Theme</title>
</head>
<body>
    <div class="container">
        <h1>Embrace Nature</h1>
        <p>

Strategies for Maintaining CSS Code420

            Experience the beauty and serenity of the
            natural world.
        </p>
        <button>Read More</button>
    </div>
</body>
</html>

4.	 To use Tailwind directly in our HTML without installation, we’ll add the CDN (Content
Delivery Network) link. This method is quick and suitable for study projects. Add the CDN
link just before the closing </head> tag:

<head>
    <meta charset="UTF-8">
    <meta
        name="viewport"
        content="width=device-width,
                 initial-scale=1.0"
    >
    <title>Plant Theme</title>
    <script src="https://cdn.tailwindcss.com">
    </script>
</head>

5.	 Now, let’s start styling. First, apply the background and centering styles to body:

<body
    class="bg-green-50
           flex items-center justify-center h-screen"
>
    …
</body>

In this step, we’ve added a light green background color to the body. Additionally, we’ve centered
the content both vertically and horizontally on the full screen using Tailwind’s utility classes.

6.	 Next, style the card container itself:

    <div
        class="bg-white
               text-center p-10 rounded-2xl shadow-lg
               border border-slate-200
               max-w-md w-full"
    >
        ...
    </div>

Understanding reusable and scalable CSS 421

These classes style the container with a white background, rounded corners, a shadow effect,
and a light green border.

7.	 Now, let’s style the content elements (h1, p, and button):

<h1
    class="text-4xl font-bold text-green-800 mb-4">
    Embrace Nature
</h1>
        <p class="text-lg text-black mb-6">
            Experience the beauty and serenity of the
            natural world.
        </p>
        <button
            class="bg-green-600 text-white py-2 px-6
                   rounded-full hover:bg-green-700
                   transition duration-300"
        >
            Read More
        </button>

With these classes, we’re styling the title with a bold, larger font size and a dark green color.
The paragraph is styled with a medium font size and a slightly lighter green color. The button
is styled with a green background, rounded edges, and a hover effect that darkens the color.

8.	 The resulting code should look like this:

<body
    class="bg-green-50 flex items-center
           justify-center h-screen"
>
    <div
        class="bg-white text-center p-10 rounded-2xl
               shadow-lg border border-slate-200
               max-w-md w-full"
    >
        <h1
            class="text-4xl font-bold text-green-800
                   mb-4">
            Embrace Nature
        </h1>
        <p class="text-lg text-black mb-6">
            Experience the beauty and serenity of the
            natural world.
        </p>
        <button

Strategies for Maintaining CSS Code422

            class="bg-green-600 text-white py-2 px-6
                   rounded-full hover:bg-green-700
                   transition duration-300"
        >
            Read More
        </button>
    </div>
</body>

The visual output, as shown in Figure 12.5, is very similar to the original CSS version:

Figure 12.5 – HTML styled using Tailwind

In conclusion, converting regular CSS into Tailwind is a straightforward process that leverages utility
classes to apply styles quickly and efficiently. This exercise demonstrates how Tailwind can replicate
complex styles with simple, readable classes, making it a powerful tool for both rapid prototyping
and production development.

Summary 423

Success in scaling CSS is less about rigid adherence to specific principles or best practices and more
about defining needs, based on real-world constraints. It involves doing what works sustainably and
performantly to get the job done.

By adopting strategies for writing reusable and scalable styles, you can create maintainable and efficient
CSS code bases that contribute to a better overall user experience on the web.

Summary
In this chapter, we’ve explored essential strategies to maintain CSS code that are crucial for every web
developer’s toolkit. We began by emphasizing the importance of writing maintainable CSS, with an
understanding of how thoughtful structuring and clarity in code contribute to long-term project success.

The modular CSS approach has emerged as a cornerstone, demonstrating how breaking down styles
into reusable modules not only enhances code organization but also simplifies maintenance and
promotes scalability. We delved into the significance of semantics, highlighting how meaningful
class names and HTML structure foster code clarity and facilitate easier updates and collaboration.

The BEM methodology provides a structured framework for CSS architecture, illustrating its practical
uses in managing styles across large projects. Lastly, we explored the advantages of reusable and scalable
CSS, uncovering how frameworks and methodologies such as Tailwind CSS enable rapid development
through utility-first approaches.

The next chapter will delve into the advancements and emerging trends in HTML and CSS. From new
features and capabilities to evolving best practices, we’ll explore how these technologies are shaping the
future of web development. Join us as we uncover the innovations that will define the next generation
of front-end design and development.

13
The Future of HTML and

CSS – Advancements
and Trends

As the web evolves constantly, CSS and HTML have been creating amazing new features to handle
user’s dynamic needs. Recently, we’ve seen a revolution in CSS features that empower developers to
build user interfaces more efficiently and effectively. These enhancements make CSS more robust and
accessible, enabling us to effortlessly create more responsive, customized, and refined websites. In this
chapter, we’ll cover the following main topics:

•	 Responsive and dynamic layouts

•	 Text presentation enhancements

•	 Color and structure customizations

•	 Mathematical and transformative enhancements

•	 Interactive and immersive elements

This chapter aims to offer an overview of these new capabilities, providing a glimpse into how they
can be applied in web development projects. We’ll touch on key concepts and features, giving you
the foundation to experiment and explore further. For a deeper dive into these emerging tools and
techniques, we encourage you to continue learning as you advance in your career.

Technical requirements
For additional coding examples and resources, check out the chapter’s repository on GitHub: https://
packt.link/wpjSx.

https://packt.link/wpjSx
https://packt.link/wpjSx

The Future of HTML and CSS – Advancements and Trends426

Responsive and dynamic layouts
In the ever-evolving landscape of web design, creating responsive and dynamic layouts has become
more intuitive and powerful than ever before. The latest advancements in CSS, such as container
queries, style queries, and dynamic viewport units, have revolutionized how designers and developers
approach layout design. These innovations enable more granular control over elements, allowing
designs that adapt not only to the viewport size but also to the context and style of their containers.

This section delves into these cutting-edge technologies, exploring how they enhance the flexibility
and responsiveness of web layouts, ultimately leading to more seamless and engaging user experiences.
Let’s start with container queries, an innovative way to create responsive layouts.

Container queries

Container queries (@container) in CSS have recently become stable across all major browsers,
providing a powerful new tool for responsive design. Unlike media queries, which apply styles based
on the viewport size or device characteristics, container queries enable you to apply styles based on
the size of an element’s container.

For instance, if a container has less available space in its surrounding context, you can adjust styles
accordingly—perhaps by hiding certain elements or using smaller fonts. This capability allows more
granular and context-specific styling, leading to more adaptable and refined layouts. Figure 13.1
illustrates how container queries work:

Figure 13.1 – The difference between @media queries and @container queries

Responsive and dynamic layouts 427

To use this feature, you need to establish a containment context on an element so the browser can
assess its size during rendering. This is done by setting the container-type property with one
of the following values:

•	 size: The query will be based on both the inline and block dimensions of the container

•	 inline-size: The query will be based on the inline dimensions of the container

•	 normal: The element’s styling will not be based on its size

Here’s an example of a card component for a blog post that includes a title and some text:

<body>
    <div class="card">
        <div class="title">Blog Post Title</div>
        <div class="text">
            This is some text for the blog post.
        </div>
    </div>
</body>

You can establish a containment context by using the container-type property:

.card {
  border: 1px solid #ccc;
  padding: 16px;
  margin: 16px;
  container-type: inline-size;
}

Next, use the @container at-rule to define a container query. In the following example, the query
will apply styles based on the size of the nearest ancestor with a containment context. Specifically, this
query increases the font size of the card title if the container’s width exceeds 600px:

.title {
  font-size: 24px;
  margin-bottom: 8px;
}
@container (min-width: 600px) {
  .title {
  font-size: 32px;
  margin-right: 16px;
  }
}

The Future of HTML and CSS – Advancements and Trends428

You can assign a name to a containment context using the container-name property. You can
use this name in a @container query to target that specific container.

The example below creates a containment context named blogposts:

.card {
  container-type: inline-size;
  container-name: blogposts;
}

You can then reference this containment context using the @container at-rule:

@container blogposts (min-width: 700px) {
  .title {
    font-size: 32px;
  }
}

Container queries represent a significant advancement in CSS, enabling us to componentize our layouts
and move beyond relying solely on media queries for responsive design. They provide developers with
the flexibility to design each component’s behavior independently, which, as discussed in the previous
chapter, is crucial for scaling and maintaining CSS. Additionally, the upcoming feature, style queries,
is set to further impact layout styling significantly.

Style queries

Style queries, part of the container query specification, allow you to query the style values of a parent
container based on custom properties (CSS variables). This feature provides even greater logical control
over styles in CSS and enhances the separation between an application’s logic and data layers from its
styling. As shown in Figure 13.2, is possible to dynamically style blocks based on passed CSS variables:

Responsive and dynamic layouts 429

Figure 13.2 – Style queries applied to a container to alter the theme color

The style() notation distinguishes style queries from size queries. While support for querying
regular CSS declarations such as max-width: 100vw is not yet available, future developments
may include this capability. For now, style queries are limited to using custom properties such as the
style() parameter, either with or without a value.

In the following example, the .card element’s styling is based on the value of the --season custom
property defined on the .card-container:

<ul class="card-list">
    <li class="card-container" style="--season: autumn">
        <div class="card">
        ...
        </div>
    

@container style(--season: autumn) {
    .card {
        background-color: wheat;
        border-color: brown;
    }
}

The Future of HTML and CSS – Advancements and Trends430

With style queries, you can create different styling scenarios and apply them dynamically based on
user actions or data passed from the server:

@container style(--season: autumn) {
    .card {
        background: linear-gradient(
            -30deg,
            #ffff75,
            #fa8415
        );
    }
}

@container style(--season: summer) {
    .card {
        background: linear-gradient(
            140deg,
            #95d8ff,
            #6bffee
        );
    }
}

When these styles are applied to containers, you can define different styling blocks based on the
variables assigned to those containers. Figure 13.3 illustrates how these styles appear visually:

Figure 13.3 – Various styles applied through CSS variables with container queries

Responsive and dynamic layouts 431

Style queries represent a significant shift in how we style components. They allow us to define styles
based on custom properties directly within CSS and apply these styles dynamically based on data
from the user or the server. Next, we’ll explore dynamic viewport units, a significant addition to CSS’s
responsive design capabilities.

Dynamic viewport units

When using viewport units (vh for viewport height or vw for viewport width), a common issue arises
on smartphones where the browser does not account for the navigation bar or on-screen buttons.
As a result, elements sized at 100vh may extend beyond the visible viewport due to the discrepancy
between the viewport size and the browser’s UI elements. To address this, CSS has introduced several
new viewport unit types to handle different viewport states:

•	 Large viewport assumes that any user agent (UA) interfaces, such as toolbars or navigation
bars, are retracted. Units representing this state use the lv prefix: lvw, lvh, lvi, lvb,
lvmin, and lvmax.

•	 Small viewport assumes that UA interfaces are expanded and occupy part of the screen. Units
for this state use the sv prefix: svw, svh, svi, svb, svmin, and svmax.

These viewport-percentage units remain stable unless the viewport is resized. They are shown in
Figure 13.4:

Figure 13.4 – Large and small viewport representation

The Future of HTML and CSS – Advancements and Trends432

Additionally, there is a dynamic viewport, which adjusts itself based on the visibility of dynamic UI
elements. When dynamic toolbars are expanded, the dynamic viewport corresponds to the size of
the small viewport. If they are retracted, it corresponds to the size of the large viewport, as shown in
Figure 13.5:

Figure 13.5 – Dynamic viewport representation

Units for the dynamic viewport use the dv prefix: dvw, dvh, dvi, dvb, dvmin, and dvmax. These
units are clamped between their lv and sv counterparts, providing a flexible and responsive approach
to viewport sizing.

In the next section, we’ll explore the latest advancements in CSS structure customizations and the
innovative approaches they bring to coding with CSS.

Customizing the structure
The way we write CSS is also evolving. Recent advancements, such as cascade layers, scoped styles,
nesting, and the powerful :has() selector, have significantly transformed how CSS is managed. These
features empower developers to create more modular, maintainable, and intuitive styles, enabling

Customizing the structure 433

greater control over specificity, context, and element relationships. In this section, we explore these
innovative CSS capabilities, demonstrating how they streamline the styling process and open up new
possibilities for crafting sophisticated and efficient web designs. Let’s explore them together!

Cascade layers

CSS layers introduce a solution to the specificity problem. CSS specificity determines which styles
are applied to elements by evaluating the specificity of selectors. Basic elements have lower specificity
compared to classes or attributes, and IDs have the highest specificity. As you may already know,
maintaining organized styles is challenging, especially with third-party code and design systems.

Using @layer, you can explicitly define the specificity of each layer, ensuring that styles do not
unintentionally override one another. This approach prioritizes styles based on layer precedence
rather than traditional specificity.

Consider a scenario with multiple styles for links. There are links without additional class names, one
with a .nav-link class, and another with an .accent class. The CSS defines three layers: base,
theme, and special:

@layer base {
  a {
    font-weight: bold;
    color: black; /* ignored */
  }
  .nav-link {
    color: blue; /* ignored */
  }
}

@layer theme {
  a {
    color: purple; /* styles all links */
  }
}

@layer special {
  .accent {
    color: orange;  /* styles all .accent elements */
  }
}

The Future of HTML and CSS – Advancements and Trends434

In this example, all links are either purple or orange, as Figure 13.6 shows:

Figure 13.6 – Styles applied using the @layers order

Even though .nav-link has higher selector-level specificity than a, the a { color: purple }
rule overrides .nav-link { color: blue } because the purple rule is in a higher-precedence
layer. Layer precedence takes priority over element specificity.

You can organize layers directly on the page or at the top of a file. The order of layers is determined by
the first occurrence of each layer name in your code. For instance, you can reverse the order like this:

@layer special, theme, base;

The links would appear black, and those with the .nav-link class would appear blue, as the base
layer now takes precedence over the theme layer. Figure 13.7 shows the output:

Figure 13.7 – CSS styles applied using layers in different order

By adjusting the layer order, you can effectively manage which styles take precedence, enhancing the
maintainability of your CSS.

CSS layers represent a significant advancement in CSS development, offering enhanced control over
style management. To deepen your understanding and learn how to leverage CSS layers for writing
more efficient and organized code, we recommend visiting the MDN web docs on CSS cascade layers:
https://developer.mozilla.org/en-US/docs/Web/CSS/@layer. The next feature
we’ll see is scoped styles, a way to encapsulate CSS to gain more control and avoid overriding.

https://developer.mozilla.org/en-US/docs/Web/CSS/@layer

Customizing the structure 435

Scoped styles

Scoped styles allow developers to define CSS rules that apply only within a specific context or subtree.
This context acts as a boundary, preventing style collisions and making it easier to manage your styles.
Before scoped styles, we often relied on naming conventions or third-party libraries to achieve similar
effects, but now we have a native solution. The magic behind scoped styles lies in the @scope rule.
Let’s break it down:

@scope (.card) {
  .title {
    font-weight: bold;
  }
}

In this example, we’re scoping the .title element to live exclusively within a .card. This means
that any .title inside a .card won’t clash with other .title elements elsewhere on the page.
The syntax of the @scope rule is as follows:

@scope [(<scope-start>)]? [to (<scope-end>)]? {
  /* Your stylesheet rules go here */
}

In this syntax, <scope-start> acts as the upper bound of the scope. In our example, .card
serves as the scoping root. Everything inside it is fair game for scoped styles. <scope-ends> is
optional and acts as the lower bound. If you want to narrow down the scope even further, you can
specify additional elements. For instance, you might want styles to apply only to .title elements
within a specific section of your .card.

Let’s say we have a .media-object component with nested content, and we want to style its images
and content differently:

@scope (.media-object) to (.content > *) {
  img {
    border-radius: 50%;
  }
  .content {
    padding: 1em;
  }
}

The img selector will only match image tags within a .media-object.

The .content selector will apply styles to the content within the .media-object, excluding any
intervening children of the .content class.

The Future of HTML and CSS – Advancements and Trends436

Scoped styles provide a powerful way to encapsulate and limit the reach of your CSS rules within
specific boundaries. Feel free to experiment with different scoping scenarios and create cleaner, more
maintainable styles using scoped styles in your projects. Next, we’ll explore CSS nesting, a highly
anticipated feature that developers love and is now natively supported in CSS.

Nesting

CSS nesting, a feature beloved by developers from the days of Sass, has been one of the most requested
additions to CSS for years. Now, it’s finally available on the web platform, providing a more organized
and succinct way to write styles. Nesting allows developers to group styles, reducing redundancy and
making code easier to read and maintain.

Traditionally, you might write CSS like this:

.menu {}

.menu li {}

.menu li a {}

With nesting, you can achieve the same effect more cleanly:

.menu {
  li {
    a {
      /* styles for anchor elements inside list items */
    }
  }
}

This syntax provides a clear visual hierarchy and groups related styles together. Beyond simple structural
styles, nesting also supports more advanced scenarios, such as media and container queries. Consider
the following example, where a sidebar layout adapts based on its viewport’s width:

.sidebar {
  width: 100%;
  padding: 1rem;

  @media (min-width: 600px) {
    width: 250px;
  }
}

In this example, when the viewport’s width is 600px or more, the sidebar’s width changes to 250px.
The browser dynamically applies this style change when the conditions are met, making responsive
design easier to manage.

Customizing the structure 437

Nesting extends beyond just structural elements and media queries. You can nest selectors within
each other to clearly define styles for elements within a specific context:

.article {
  font-family: Arial, sans-serif;

  .title {
    font-size: 2rem;
    font-weight: bold;
  }
}

Or you can use a slightly different syntax:

.article {
  font-family: Arial, sans-serif;

  & .title {
    font-size: 2rem;
    font-weight: bold;
  }
}

In both cases, the .title class’s styles will only apply to elements that are part of an .article
element. This approach not only reduces the need to repeat selectors but also helps ensure that styles
are more closely aligned with the HTML structure they target.

Here’s another example showcasing nested styles with pseudo-classes:

.button {
  background-color: blue;
  color: white;

  &:hover {
    background-color: darkblue;
  }
}

In this case, the :hover pseudo-class is styled within the context of the .button class, changing
the background color when any button using this class is hovered over.

CSS nesting streamlines the process of maintaining styles. If a component like the .article example
is removed from the project, you can delete the entire group of styles without searching for related
selectors throughout your code base.

Next, we’ll learn about another groundbreaking feature that enhances CSS: the :has() selector.

The Future of HTML and CSS – Advancements and Trends438

Understanding the :has() selector

The :has() selector is one of the most powerful new features in modern CSS, offering advanced
capabilities for selecting elements. This pseudo-class allows you to target a parent or a previous sibling
element based on the presence of a specific reference element, using a relative selector list as its argument.

The functional :has() CSS pseudo-class selects an element if any of the provided relative selectors
match at least one element within it. For instance, in the following code, :has() is used to select an
<h2> element that is immediately followed by a element and apply styles to the <h2> element:

h2:has(+ img) {
  color: red;
}

In the following example, you’ll see how :has() can style a parent element based on the properties
of its child elements:

.card:has(.highlight) {
  border: 2px solid #ff9800;
  background-color: #fff8e1;
}

The HTML structure for this example is as follows:

<body>
    <div class="card">
        <h2>Card Title 1</h2>
        <p>
            This is a regular paragraph without
            highlighting.
        </p>
    </div>
    <div class="card">
        <h2>Card Title 2</h2>
        <p class="highlight">
            This paragraph is highlighted with special
            styling.
        </p>
    </div>
</body>

Exploring the latest CSS mathematical functions 439

Figure 13.8 illustrates the visual outcome of this styling:

Figure 13.8 – Card styled using the :has() pseudo-class

It’s important to note that the :has() pseudo-class cannot be nested within another :has(). This
restriction helps prevent cyclic querying, which could arise from pseudo-elements that depend on the
styles of their ancestors. Additionally, pseudo-elements cannot be used as selectors within :has(),
nor can they serve as anchors for :has().

Logical operations with :has()

The :has() relational selector can be utilized to check whether one or multiple conditions are met
within an element’s descendants. This selector accepts two conditions:

•	 OR condition: By using comma-separated values inside the :has() selector, you can check
if any of the specified parameters exist. For instance, x:has(a, b) will style x if it contains
either descendant a or b.

•	 AND condition: By chaining multiple :has() selectors together, you can check if all the
specified parameters exist. For example, x:has(a):has(b) will style x only if it contains
both descendants, a and b.

These logical operations make the :has() selector a versatile tool for creating more precise and
dynamic CSS rules. In summary, the :has() selector introduces a powerful new way to conditionally
style elements based on their descendants, greatly enhancing CSS’s capability to create dynamic and
responsive designs.

Next, we’ll look at the latest advancements in CSS’s mathematical and logical capabilities, including
trigonometric functions and individual transform properties.

Exploring the latest CSS mathematical functions
CSS is introducing powerful mathematical and transformative capabilities that elevate web design
possibilities. Among these advancements are trigonometric functions and individual transform
properties, which provide developers with unprecedented control and precision in styling elements.
This section delves into these cutting-edge features, exploring how they enhance the creative potential
of CSS and enable more sophisticated and visually compelling designs with math and logic. Grab a
calculator and let’s explore!

The Future of HTML and CSS – Advancements and Trends440

Trigonometric functions

CSS trigonometric functions have become stable across all modern browsers, opening up exciting
possibilities for creating more dynamic and organic layouts on the web. These functions allow developers
to design and animate elements in ways that were previously only possible with JavaScript. The core
trigonometric functions in CSS are as follows:

•	 cos(angle): Returns the cosine of an angle, a value between -1 and 1

•	 sin(angle): Returns the sine of an angle, a value between -1 and 1

•	 tan(angle): Returns the tangent of an angle (ranging from negative infinity to positive infinity)

These functions can accept angles in degrees or radians, providing flexibility in how you express
rotations and transformations. CSS also includes inverse trigonometric functions:

•	 asin(value): Returns the angle corresponding to a given sine value

•	 acos(value): Returns the angle corresponding to a given cosine value

•	 atan(value): Returns the angle corresponding to a given tangent value

•	 atan2(A, B): Calculates the angle between the positive x axis and the point (B, A), accepting
two arguments

These functions allow more complex mathematical calculations and can help determine angles based
on specific values. For example, imagine we want to draw a triangle using these functions, the CSS
code will be something like this:

  .triangle {
  --angle: 65deg; /* Angle in degrees */
  --radius: 50px; /* Radius of the circle */
  width: 0;
  height: 0;
  border-left: var(--radius) solid transparent;
  border-right: var(--radius) solid transparent;
  border-bottom: calc(var(--radius) * tan(var(--angle)))
    solid red;
}

The sin() and cos() functions are particularly useful for creating smooth animations. They oscillate
between -1 and 1, which makes them perfect for cyclic movements. Trigonometric functions can add
delightful motion and elegance to your designs. Whether it’s a subtle animation or a complex layout,
these functions are powerful tools for creative layouts.

Regarding animations, a significant upcoming change in CSS is the introduction of individual
properties, which we’ll explore next.

Enhancing text presentation 441

Individual transform properties

CSS now supports individual transform properties such as translate, rotate, and scale,
significantly enhancing animation capabilities. Previously, animations were written using the combined
transform property, like this:

@keyframes rotate {
0% {
  transform: rotate(0deg);
}

100% {
  transform: rotate(45deg);
}

With the introduction of individual properties, the same animation can now be achieved more simply:

@keyframes rotate {
0% {
  rotate: 0deg;
}

100% {
  rotate: 45deg;
}

These new properties make CSS animations easier to write and maintain, providing developers with
greater control and flexibility.

As content plays a crucial role in user experience, the upcoming sections will focus on the latest
features designed to enhance content handling, beginning with typography styling.

Enhancing text presentation
In the realm of web typography, recent CSS advancements have introduced exciting enhancements
that improve text presentation and readability. Among these innovations are the initial-letter
property and the text-wrap: balance feature, which provide designers with powerful tools
to refine the visual impact and flow of textual content. This section explores these new features,
demonstrating how they enhance the aesthetic and functional aspects of text on the web, enabling more
engaging and polished designs. Let’s start with the initial-letter property, which enhances
control over the :first-letter pseudo-class.

The Future of HTML and CSS – Advancements and Trends442

Understanding the initial-letter property

The initial-letter CSS property is an experimental feature that allows precise styling of dropped,
raised, and sunken initial letters defined by the :first-letter pseudo-class. It uses two values:
the first specifies the number of lines the initial letter will span vertically, and the second represents
the letter’s block offset, or sink, determining its vertical position. Here’s an example:

p:first-letter {
    initial-letter: 3 2;
}

This syntax adjusts the initial letter’s size and position, as illustrated in Figure 13.9:

Figure 13.9 – Initial letter spanning three lines in height with a two-line vertical offset

This experimental property gives developers enhanced control over the styling of the first letter in
text, offering more flexibility for designing articles. Another significant advancement for frontend
developers is the text-wrap: balance property, which simplifies the application of balanced
text alignment.

The new CSS property text-wrap: balance

A common challenge web developers face is how to optimally break lines for titles. Designers strive for
the perfect balance between lines, but achieving this across different screen sizes can be difficult. The
new CSS property text-wrap: balance addresses this issue by automatically calculating and
breaking title lines in an elegant and visually pleasing manner for the user. Let’s understand its syntax:

    .title-container {
        max-width: 800px;
        text-align: center;

Enhancing text presentation 443

    }
    .title {
        font-size: 1em;
    }
    .balanced-title {
        text-wrap: balance;
    }

As the preceding code demonstrates, simply applying the text-wrap: balance style may not
yield the expected results unless the text has a defined maximum line length. This can be achieved by
setting max-width on a parent container, as we’ve done here. The HTML structure for this example
is as follows:

<body>
    <div class="title-container">
        <div class="title">
            <h1>
                This is a long title that needs to break
                lines without text-wrap balance
            </h1>
        </div>
        <div class="title balanced-title">
            <h1>
                This is a long title that needs to break
                lines with text-wrap balance
            </h1>
        </div>
    </div>
</body>

Figure 13.10 demonstrates the result: two titles, one styled without text-wrap: balance and
the other with this property applied:

Figure 13.10 – Balanced title using text-wrap: balance

The Future of HTML and CSS – Advancements and Trends444

While this property is effective for title elements, it is not ideal for paragraphs or large blocks of text,
as it may lead to performance issues. In fact, the text-wrap: balance property is designed
to work best with text that wraps to six lines or fewer. Despite its appealing features, applying this
property to all text elements is not a good idea, due to potential performance loss.

Next, we’ll cover interactive and immersive elements. Let the fun begin!

Another area that has seen significant updates is user interaction. New HTML elements and CSS
properties have been introduced to enhance user experience, usability, and accessibility, while also
improving performance with additional native features. In the next section, we’ll explore these
advancements in detail.

Interactive and immersive elements
The latest advancements in CSS have introduced a suite of interactive and immersive elements that
enhance user engagement and elevate web experiences. Features such as popovers, anchor positioning,
select menus, discrete property transitions, and scroll-driven animations provide designers with
powerful tools to create intuitive and captivating interfaces. This section explores these innovative
features, demonstrating how they transform web design by enabling more responsive, engaging, and
visually rich interactions. Let’s start with the popover attribute.

Popover

Since April 2024, modern devices and updated browser versions have embraced the popover global
attribute, revolutionizing the way we handle popovers in HTML. This attribute brings convenience,
performance gains, and cleaner code—all with minimal reliance on JavaScript.

The popover global attribute is a game-changer for web developers. It automates popover behavior,
reducing the need for custom JavaScript implementations. Here’s how it works:

•	 Automatic handling: Popover elements remain hidden (display: none) until triggered by
an invoking/control element. This could be a <button> or an <input type="button">
with a popovertarget attribute. Alternatively, you can programmatically invoke a popover
using HTMLElement.showPopover().

•	 Layer management: When a popover opens, it appears above all other elements in the top layer.
No more wrestling with z-index values! Plus, parent elements position and overflow styling
won’t interfere with your popover’s display.

To create a popover, use the following syntax:

<div id="popup" popover>
  … popover content
</div>

Interactive and immersive elements 445

<button popovertarget="popup">
  Hello, I'm a popover!
</button>

One of the standout features of the popover global attribute is its light-dismiss behavior. Once a popover
is opened, if the user clicks outside it, it will gracefully dismiss itself. No extra JavaScript is needed.

Since popovers are now natively handled, your application gains performance benefits. Next time you’re
building a web app, consider embracing the popover global attribute. If you want to learn more about
this feature, check out the official MDN documentation at https://developer.mozilla.
org/en-US/docs/Web/HTML/Global_attributes/popover.

The next feature is a major overhaul: the <select> element has been redesigned to allow greater
customization. Let’s dive into the details!

New select menu

The <select> element, as it currently exists, offers limited customization options for web developers.
This often drives developers to create custom implementations, which can negatively impact performance,
reliability, and accessibility compared to using native form controls.

Open UI, a community-driven initiative focused on standardizing and improving user interface
components across the web, is actively working on developing a more customizable select menu.
Their efforts aim to enhance the flexibility and styling capabilities of form elements while maintaining
native performance and accessibility.

The future <select> element will maintain its current behavior unless styled with the appearance:
base-select CSS property. In the past, suggestions for enabling additional customization included
using a new tag name, adding an HTML attribute, or incorporating a child <button> or <datalist>.

Here’s an example of a basic <select> element:

<select>
  <option>one</option>
  <option>two</option>
</select>

And here is the same <select> element with the new styling behavior proposed in this explainer:

<select style="appearance:base-select">
  <option>one</option>
  <option>two</option>
</select>

https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes/popover
https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes/popover

The Future of HTML and CSS – Advancements and Trends446

The new customizable select menu offers significant benefits for developers by enhancing the appearance
and functionality of dropdowns. The ability to replace the default button with a custom one provides
greater control over interactions and visual styling, allowing seamless integration of custom-designed
buttons with the overall UI. Moreover, developers can use CSS to style the listbox and button
independently, allowing for more complex UI patterns and richer user experiences.

The menu also supports the inclusion of arbitrary content within the listbox using <datalist>,
facilitating intricate layouts and advanced grouping within dropdowns. Furthermore, the new select
menu includes support for animations when opening and closing listboxes, providing smoother
transitions and enhancing the user experience.

Overall, these enhancements empower developers to create dynamic, accessible, and visually appealing
web applications using native components that align with modern design principles. To stay up to
date on discussions about improving form elements, take a look at the Open UI explainer on the new
select menu: https://open-ui.org/components/selectlist/.

This feature is available in Chromium-based browsers by enabling the Experimental Web Platform
features in about:flags. Give it a try!

In the CSS realm, a new anchor() function has been introduced to manage element positioning.
Let’s explore this feature further.

Anchor positioning
The CSS Anchor Positioning CSS API allows for dynamic and flexible layout designs by tethering
elements together. This feature is particularly useful in creating responsive designs where certain
elements need to be aligned or positioned relative to others, regardless of changes in the viewport
size or content updates.

The anchor() function allows precise control over the position of elements relative to their anchors.
It is used within the inset property of the anchored element and helps define relationships based on
edge positions. The basic syntax is as follows:

anchor(<anchor-element> <anchor-side>, <length-percentage>)

<anchor-element> is an optional name for the anchor element. If not provided, it defaults to the
element’s position-anchor property or its associated anchor.

<anchor-side> is the side of the anchor element that the positioned element aligns with.
Finally, <length-percentage> is an optional fallback value for the function. Here’s an example
demonstrating how to position a tooltip anchored to a button using the anchor() function:

HTML

<body>
  <button
    id="anchorButton"

https://open-ui.org/components/selectlist/

Interactive and immersive elements 447

    class="anchor"
    aria-label="Button with tooltip"
  >
    Hover me!
  </button>
  <div id="tooltip" class="tooltip">
    This is a tooltip.
  </div>
</body>

CSS

.anchor {
  position: relative;
  width: 100px;
  height: 50px;
  background-color: #007bff;
  color: white;
  border: none;
  cursor: pointer;
}

.tooltip {
  position: absolute;
  inset: anchor(anchorButton end, 10px) 0 auto 0;
  background-color: #333;
  color: #fff;
  padding: 5px;
  border-radius: 3px;
  visibility: hidden;
}

.anchor:hover + .tooltip {
  visibility: visible;
}

In this example, button is used as the anchor, defined with an ID of anchorButton. The tooltip
is positioned using the anchor() function, tethered to the end side of the anchorButton, with
a 10-pixel offset. Also, the tooltip becomes visible when hovering over the button, demonstrating a
basic interaction without JavaScript. Figure 13.11 shows the visual outcome:

The Future of HTML and CSS – Advancements and Trends448

Figure 13.11 – Tooltip created with CSS anchor() function

This approach provides a clean and efficient way to manage element positioning in complex layouts,
leveraging the power of CSS for responsive design. Next, we’ll see about the new CSS discrete
properties transitions.

Discrete property transitions

In the realm of web design, creating smooth transitions and animations has always been a key aspect
of enhancing user experience. Traditionally, CSS animations were limited to properties that could
transition smoothly over time, such as opacity or transform. However, recent advancements have
introduced the ability to animate discrete CSS properties, opening new possibilities for developers.

As we discussed in Chapter 5, browsers are now supporting the animation of discrete properties
as part of efforts to improve transitions for elements such as popovers, select menus, dialogs, and
custom components.

Discrete properties are those that typically toggle between distinct values, such as moving elements
to and from the top layer or transitioning display states, such as display: none.

Generally, these properties flip between two values at the midpoint, or 50% of the animation. This is
unlike continuous properties, which transition smoothly over the duration of the animation.

To utilize these new capabilities, developers can use the transition-behavior property. This
property allows discrete animations to be specified alongside traditional continuous transitions,
providing a unified approach to animation design. Here’s an example:

.element {
  transition: display 0.5s ease-in-out;
  transition-behavior: allow-discrete;
}

In this example, the transition-behavior: allow-discrete rule enables the discrete
animation of the display property. This allows developers to incorporate complex animations seamlessly
into their web projects, enhancing the interactivity and visual appeal of their interfaces.

Continuing with the theme of animations, CSS has recently introduced scroll-driven animations. Let’s
delve into how this feature functions.

Interactive and immersive elements 449

Scroll-driven animations

Scroll-driven animations are increasingly popular in modern web design, providing engaging and
interactive user experiences. These animations are directly linked to the scroll position of a container,
meaning that as users scroll up or down, the animation progresses in sync with their scroll actions.
Common examples include parallax effects, where background images move at different speeds than
the foreground, and scroll-based reading indicators that advance as you move through content.

Traditionally, implementing scroll-driven animations involved responding to scroll events on the main
thread, which often led to performance issues. This approach could cause lag and stutter, affecting the
overall smoothness of the animation.

With the release of Chrome version 115, a new set of APIs—Scroll Timelines and View Timelines—has
been introduced to revolutionize scroll-driven animations. These concepts integrate seamlessly with
the existing Web Animations API (WAAPI) and CSS Animations API, enabling animations to run
smoothly off the main thread. This advancement means you can achieve silky smooth, scroll-driven
animations with minimal code and without compromising performance. Here’s a simple example of
a progress bar demonstrating how to use CSS scroll-driven animations:

<style>
  @keyframes grow-progress {
    from {
      transform: scaleX(0);
    }
    to {
      transform: scaleX(1);
    }
  }

  #progress {
    position: fixed;
    left: 0;
    top: 0;
    width: 100%;
    height: 1em;
    background: red;
    transform-origin: 0 50%;
    animation: grow-progress auto linear;
    animation-timeline: scroll();
  }

  .content {
    height: 200vh;
    width: 100px;

The Future of HTML and CSS – Advancements and Trends450

    background-color: linear-gradient(
      180deg,
      #e75656,
      #fff
    );
  }
</style>
<body>
  <div id="progress"></div>
  <div class="content"></div>
</body>

In this example, the animation scales an element horizontally from scaleX(0) (invisible) to
scaleX(1) (fully visible) over time, using the scroll() timeline function, which synchronizes
the animation with the scroll position of the container.

For more demos and tools to explore scroll-driven animations, visit https://scroll-driven-
animations.style/. Scroll-driven animations are powerful tools for creating engaging and
interactive web experiences. As these technologies continue to evolve, they offer a compelling way
to enrich user interfaces and create memorable, immersive web experiences. Next, we’ll explore the
latest developments in colors and visual effects.

Exploring new colors and visual effects
As web design continues to push the boundaries of creativity, recent advancements in CSS have
expanded the possibilities for colors and visual effects. Innovations such as wide-gamut color spaces,
the color-mix() function, and view transitions empower designers to craft more vibrant, dynamic,
and seamless experiences. Let’s explore how these groundbreaking features revolutionize the use of
color and effects in web design, paving the way for more immersive and captivating digital content.

Wide-gamut color spaces

A significant advancement in web design is the introduction of wide-gamut color spaces, which enhance
how colors are represented on the web. A color gamut refers to the range of colors that a display or
device can reproduce. Historically, the “millions of colors” promised by displays were constrained by
the limited gamut of traditional color spaces, primarily sRGB (standard red-green-blue).

For over 25 years, sRGB has been the standard color space for CSS, defining colors through formats such
as rgb(), hsl(), and hex codes. While sRGB has been a reliable foundation due to its widespread
compatibility, it only covers about 30% of the colors perceivable by the human eye. This limitation
means that even with high-definition displays, web designers couldn’t fully match the vividness of
colors captured in photographs or graphics.

https://scroll-driven-animations.style/
https://scroll-driven-animations.style/

Exploring new colors and visual effects 451

With CSS Color Level 4, the web platform now supports a variety of new color spaces, significantly
expanding the range of colors available to developers. These include REC2020, P3, XYZ, LAB, OKLAB,
LCH, and OKLCH. Here are the differences between them:

•	 REC2020: A wide-gamut space that embraces the most vivid colors your display can handle

•	 P3: Popular in Apple devices, P3 extends beyond sRGB

•	 XYZ: A mathematically precise color space

•	 LAB: A perceptually uniform space that accounts for how humans perceive differences in color

•	 OKLAB: A perceptually uniform space optimized for digital displays

•	 LCH: A cylindrical representation of color (like polar coordinates)

•	 OKLCH: Like LCH, but tuned for digital displays

These color spaces offer a broader spectrum, enabling the use of more vivid and accurate colors that
align with modern HD displays, as Figure 13.12 shows:

Figure 13.12 – Difference between sRGB and Display P3 (source:

https://developer.apple.com/videos/play/wwdc2017/821)

In addition to expanding the color range, these new spaces provide enhanced tools for color management.
For instance, while Hue, Saturation, Lightness (HSL) offers control over lightness, CSS now includes
Lightness, Chroma, Hue (LCH), which provides a more perceptual approach to lightness and color
manipulation. Figure 13.13 illustrates the broader color spectrum achievable with LCH gradients
compared to HSL gradients.

The Future of HTML and CSS – Advancements and Trends452

Figure 13.13 – The image highlights how LCH can represent a wider range of colors

As non-sRGB color spaces begin to gain traction, designers and developers will increasingly utilize
these advanced tools to create richer and more vibrant color schemes.

Understanding and experimenting with these new color spaces can be a powerful addition to a
designer’s toolkit. Each color space has unique characteristics and use cases, allowing more precise
and visually appealing designs. As these technologies evolve, embracing them will enable the creation
of more immersive and dynamic web experiences. With the introduction of wide color gamuts, CSS
now includes a function for more precise color mixing, which we’ll examine in the following section.

The CSS color-mix() function

The color-mix() function is a powerful addition to CSS, allowing developers to blend two colors
within a specified color space, providing new creative possibilities for web design. This functionality
enhances color manipulation by giving precise control over how colors combine, offering a level of
customization previously unattainable with traditional CSS color techniques. The color-mix()
function follows a straightforward syntax:

color-mix(method, color1[p1], color2[p2])

Here, method is the <color-interpolation-method>, which includes the color space
preceded by in, and optionally a <hue-interpolation-method>. The method defines how
colors are mixed and can include various color spaces such as lch, srgb, or hsl.

The color1, color2 properties are the <color> values to be mixed. You can use color names,
hex values, or any valid CSS color notation.

Exploring new colors and visual effects 453

The properties p1, p2 (optional) are <percentage> values between 0% and 100% that determine
the amount of each color in the mix. The function normalizes these values to ensure they total 100%:

•	 If both p1 and p2 are omitted, the default is 50% for each color

•	 If p1 is omitted, it defaults to 100% - p2

•	 If p2 is omitted, it defaults to 100% - p1

•	 If p1 and p2 both equal 0%, the function is invalid

•	 If the sum of p1 and p2 does not equal 100%, the values are adjusted proportionally

Take a look at this example:

color-mix(in hsl longer hue, hsl(120 100% 50%) 20%, white);

The green hue (hsl(120 100% 50%)) is mixed with white, with the green contributing 20% to
the final color blend. Figure 13.14 shows a visual representation of color-mix() with red and blue
in different color spaces:

Figure 13.14 – The color-mix() function with the same colors using different methods

The color-mix() function also supports custom color spaces when browsers implement the @
color-profile feature, broadening the scope of creative design. For now, it offers extensive
flexibility with existing color spaces, enabling designers to craft nuanced palettes and transitions.

By using color-mix(), developers can refine their color strategies, produce gradients with precise
color stops, and ensure that UI components are visually cohesive across different contexts. As CSS
evolves, such features continue to empower developers to push the boundaries of web aesthetics.
Next, let’s learn about view transitions, a new method for smoothly transitioning between views in
single-page applications (SPAs).

View transitions

The View Transition API empowers web developers to create seamless visual transitions between
different views within a website. These transitions enhance the overall user experience, whether the
site is structured as a multi-page application (MPA) or an SPA.

The Future of HTML and CSS – Advancements and Trends454

View transitions find their place in various scenarios, adding finesse to user interactions: consider
a product listing page where users encounter thumbnail images. When they click on a thumbnail, it
smoothly transitions into a full-size product image on the product detail page. This transition provides
continuity, making the journey from overview to detail feel cohesive.

When a view transition occurs within a single document (common in SPAs), we call it a same-
document view transition. Chrome has supported these since version 111. Here’s how they work:

1.	 To initiate a same-document view transition, use document.startViewTransition().

2.	 Upon calling startViewTransition(), the API captures the current state of the page.

3.	 Your callback function (provided to startViewTransition()) handles DOM changes.

4.	 After the DOM update, the API captures the new state.

Behind the scenes, the API constructs a pseudo-element tree:

::view-transition
└─ ::view-transition-group(root)
  └─ ::view-transition-image-pair(root)
      ├─ ::view-transition-old(root)
      └─ ::view-transition-new(root)

The ::view-transition overlay sits above everything else, allowing customization with CSS. CSS
animations drive the magic. Customize them using existing CSS animation properties. For instance,
let’s make a smooth transition with a cross-fade effect:

::view-transition-old(root),
::view-transition-new(root) {
  animation-duration: 0.5s;
  animation-timing-function: ease;
}

::view-transition-old(root) {
  opacity: 1;
  animation-name: fade-out;
}

::view-transition-new(root) {
  opacity: 0;
  animation-name: fade-in;
}

@keyframes fade-out {
  from { opacity: 1; }

Summary 455

  to { opacity: 0; }
}

@keyframes fade-in {
  from { opacity: 0; }
  to { opacity: 1; }
}

The View Transitions API offers a range of features that are ready for exploration. In this section, we
have begun our introduction to its capabilities, laying the groundwork for more advanced applications.
As you experiment with and refine your transitions, keep in mind that each adjustment plays a crucial
role in improving the overall functionality and aesthetics of your application.

Summary
It’s been a long journey to get here. As we conclude this chapter on the latest advancements in HTML
and CSS, it is clear that the landscape of web development is continuously evolving, bringing forth
innovative tools and techniques that empower developers to create more responsive, engaging, and
visually stunning web experiences.

Throughout this chapter, you’ve explored layout adaptability with container and style queries, enhanced
efficiency using the :has() selector, and created layouts that fluidly respond to various conditions.
You’ve gained skills in crafting visually balanced and dynamic text presentations, using properties
such as text-wrap: balance, initial-letter, and dynamic viewport units to make your
text adapt seamlessly to different environments.

You’ve explored the creation of interactive elements such as popovers, anchor positioning, and the
new select element, along with designing sophisticated transitions and animations using scroll-
driven animations, view transitions, and discrete property transitions.

With wide-gamut color spaces and the color-mix() function, you’ve discovered how to enrich your
designs with vibrant color schemes. You’ve also learned to streamline your CSS using nesting, cascade
layers, and scoped styles, allowing you to create more maintainable and powerful code structures. By
leveraging trigonometric functions and individual transform properties, you’ve been equipped to design
intricate animations and transformations that bring a new level of dynamism to your web projects.

Remember, this is another step in your journey of knowledge. Developers are always hungry for
learning and curious about new techniques and resources that can help them create incredible things.

As you continue your journey through the web development universe, these tools will enable you to
meet the growing demands of users and keep your projects at the forefront of technology.

Keep on learning, and happy coding!

Index

Symbols
*has() selector 438, 439

using, with AND conditions 439
using, with logical operations 439
using, with OR conditions 439

!important keyword 38
@keyframes rule 193-195

menu icon shaking effect with 198
spinner, loading, with keyframes 196-198

@starting-style rules 186, 187
multiple transitions with 187-189

A
abbr element 95
accessibility 284
accessibility tools 306

Axe tool 307-309
Accessible Rich Internet

Applications (ARIA) 285
accessible sign up form

creating 296-303
account sign up form

creating 155-161
address element, text-based elements 94

advanced CSS, for animations 189
blur property 192, 193
CSS positioning 190, 191
opacity 192
z-index property 191

after pseudo selector 145
alt tags

bad alt tags 350-353
good alt tags 350-353
using, for images 350
writing, best practices 353

article tag 48, 49
aside tag 50, 51
assets load

controlling 244
eager loading 244
lazy loading 244

Axe extension
installation link 307

Axe tool 307, 308
using 309-315

B
bad alt tag 350-353

examples 353

Index458

BEM standard 407
applying 408, 409
benefits 409
block 407
element 407
modifier 408
regular CSS, converting into 409-412

box model 67
border area 69-71
content box 67, 68
experimenting with 72-75
margin area 71, 72
padding area 68, 69

build tools 375
features 375, 376
Gulp 376
tasks 375
used, for improving performance 390
Webpack 382

button element 136, 143

C
canonical tags 326
cascade layers 433, 434
Cascading Style Sheets (CSS) 3, 20

attribute selectors 27, 28
class 26
element 26
elements, selecting 32-36
ID 26
pseudo-classes 28-30
pseudo-element selectors 31
selectors 26
selectors, combining 31, 32
specificity 36-38
styles, adding 22-26
styles, adding to web page 22

syntax 20-22
universal selector (*) 27
used, for minimizing

render-blocking resources 342-344
checkout form

creating 162-169
Click-Through Rate (CTR) 323
color-scheme

declaring, in CSS 218
style based on 218
user preferences, exploring with 217, 218

color themes 202
color theory, with HSL 208

color wheel 209, 210
UX/UI polishing tips 210, 211

combinators 31
Compiled 414
container queries 426-428
Content Delivery Network (CDN) 333, 420
continuous integration/continuous

deployment (CI/CD) 376
Core Web Vitals

CLS 337
exploring 332
FID 335
First Contentful Paint (FCP) 332
LCP 334
real website, analyzing with

Lighthouse 339-341
SEO metrics, measuring 338, 339

CSS 342
color-scheme, declaring 218

CSS animation properties 193, 195
CSS architectures 413
CSS cascading rule 178
CSS color-mix() function 452, 453

Index 459

CSS color variables 204
elements, benefits 207
used, for creating light theme 204-207

CSS custom properties 39, 204
CSS declaration 20
CSS Flexbox 269

cross axis 269
flex container 269
flex items 269
flower shop catalog for desktop,

updating 273-275
main axis 269
properties 270-273

CSS font properties, text-based elements
styling 102, 103

CSS-in-JS libraries 414
CSS mathematical functions 439

individual transform properties 441
trigonometric functions 440

CSS Object Model (CSSOM) 6
CSS page layouts 59

flex-based layouts 63
flex items 63
float-based layouts 60
grid-based layouts 64
video store product page 60

CSS preprocessors 358-360
Less 358-360
mixins 360, 361
nesting 360, 361
Sass 358-360
variables 360, 361

CSS resets, text-based elements
styling 97, 98

CSS responsive values 260
responsive sizing units 261, 262
responsive typography units 260, 261

CSS structure customization 433
*has() selector 438, 439
cascade layers 433, 434
nesting 436, 437
scoped styles 435, 436

CSS text properties, text-based elements
styling 98-101

CSS theming
simplifying, with media queries 220-222

CSS theming and font selection
accessibility and inclusive design,

considerations 225, 226
CSS variables 39
Cumulative Layout Shift (CLS) 231, 333, 337

distance fraction 337
impact fraction 337
improving, techniques 338

D
dark theme

creating, with hsl() 211-214
creating, with invert() filter 216, 217

details element, text-based elements 94, 95
display fonts 223
display property, text-based elements

styling 103
div tag 51
Document Object Model (DOM) 353

excessive size, avoiding techniques 353-356
dynamic viewport units 431

large viewports 431
small viewport 431

E
eager loading 244
embedded content 12

Index460

Emotion 414
em unit 260

F
fieldset element 133, 134
First Contentful Paint (FCP) 235, 332

improving 333, 334
influential FCP 332

First Input Delay (FID) 231, 333, 335
improving, techniques 336
metrics 336

flex-based layouts 63
flex container 63

flex item properties
align-self 271
flex-basis 271
flex-grow 270
flex-shrink 270
order 270

flex items 63, 64
float-based layouts 60

floated elements, clearing 61-63
float property 60, 61
width property 61

flow content 12
footer tag 46, 47
form

creating, with validation styling 146-151
form accessibility, improving 152

form elements, labeling correctly 153
related form elements, grouping 153
user input, validating 154
video store forms 154

form elements 128
button 136
buttons, styling 143

fieldset 133, 134
form 128
input 128-131
label 132
labels, styling 140, 142
select 135
select boxes, styling 144, 145
styling 140
textarea 132, 133
textareas, styling 140, 142
textboxes, styling 140, 142
validation styling 145

forms
accessible sign up form, creating 296-303
making accessible 294-296

G
good alt tag 350-352

examples 352
grid-based layout

creating 65, 66
grid container 64
grid items 65

Gulp
configuring, for development and

production environment 388
reference link 377
used, for automating minification

of CSS files 378-382
used, for setting up different

environments 389
versus Webpack 387
working 376, 377

Index 461

H
header tags 45, 324
home page

designing, with wireframe 75-77
HTML5 page

marking up 52, 54, 55
HTML5 page elements

article tag 48
aside tag 50, 51
div tag 51
footer tag 46, 47
header tag 45
nav element 49, 50
section tag 47, 48

Hue, Saturation, Lightness (HSL) 208, 451
color theory with 208
color wheel 209, 210
used, for creating dark theme 211-214

HyperText Markup Language (HTML) 3, 7
adapting, for SEO 329-332
content types 11-13
document 13-15
document structure 15, 16
element 10, 11
metadata 16
syntax 7-10
video store page template 18-20
web page 17
web page, creating 17, 18

I
ImageOptim 335
images

accessible ratings, creating 288-293
making accessible 285-288
optimizing, for SEO 347-350

innovations, in visual effects
CSS color-mix() function 452, 453
View Transition API 453-455
wide-gamut color spaces 450, 451

input element 128-131
Interaction to Next Paint (INP) 232
interactive and immersive elements 444

anchor positioning 446, 447
discrete property transitions 448
new select menu 445, 446
popover 444
scroll-driven animations 449, 450

invert() filter 215
used, for creating dark theme 216

J
JavaScript 342

used, for minimizing
render-blocking resources 344-347

K
keyboard

accessibility 303, 304
key-value pairs 129

L
label element 132
labels

styling 140, 142
Largest Contentful Paint

(LCP) 230, 333, 334
improving, techniques 334, 335
metrics 334

layout stage 6
lazy loading 244

Index462

Lazy-load offscreen 335
Leaner Style Sheets (Less) 358-361, 413

installing 365, 366
setting up 365
versus Sass 361, 362

Less project
compilation, automating 372-374
creating 367-369
nested selectors and functions 370-372
variables 369

less-watch-compiler documentation 374
light-dark() function 219

experimental feature 220
Lighthouse 338

real website, analyzing with 339-341
web performance, measuring with 232, 233

Lightness, Chroma, Hue (LCH) 451
light theme

creating, with CSS color variables 204-206
Linaria 414

M
maintainable CSS 395, 396

importance 394
writing 397, 398

media queries 252-254
mobile-first menu, creating 255-260

menu icon shaking effect
with keyframes 198

meta descriptions 323
mobile-first indexing 321

reference link 321
mobile-first principle

designing 250
feature enhancements 250
graceful degradation 250
responsive web design (RWD) 250

modular CSS
applying 401
developing 399
implementing 399-401, 403-407
implementing, with SMACSS 401, 403

monospaced fonts 223
motion

making accessible 304-306
Mozilla Developer Network 63
multi-page application (MPA) 453

N
nav element 49
news article web page 51
Node.js

installing 365
Node Package Manager (npm) 365
npm LESS package 365

O
online clothes store home page

developing 80
online property portal website

building 169, 170
Open UI explainer

reference link 446

P
page

making accessible 315
paragraph element 10
password text 130
phrasing content 13

Index 463

printable design
adaptability 276
exploring 276-279
media queries 276
user experience 276

print-only styles
@media queries style sheet, using 276
creating, for flower shop catalog 279-282
separate style sheet, using 276

product page
creating 118-121

R
radio buttons 131
reflow 6
rem unit 260
render-blocking resources

CSS 342
JavaScript 342
minimizing 341
minimizing, with CSS 342-344
minimizing, with JavaScript 344-347

responsive and dynamic layouts
container queries 426-431
creating 426
dynamic viewport units 431, 432

responsive images
background image 264, 265
exploring 262
HTML picture element 263
lazy loading 265
max-width, using with percentages,

using 262, 263
mobile catalog, creating for

flower shop 266-268
sizes attribute, using 263

srcset attribute, using 263
width, using with percentages 262, 263

responsive sizing units 261, 262
responsive typography units 260, 261
reusable and scalable CSS strategies 413

CSS-in-JS 414
CSS modules 414
inline styles 413
utility-first CSS 415

root em (rem) 260

S
same-document view transition 454
sans-serif fonts 223
Saas, versus Less

community and ecosystem 364
compiling 364
functions and mixins 363
nesting 363
partials and imports 364
syntax 362
variables 363

scoped styles 435, 436
screen reader 12
Search Engine Optimization (SEO)

benefits, for developers 320, 321
HTML, adapting 329-332
HTML and CSS, impact 321-327
images, optimizing for 347-350
impact, of CSS 327, 328
importance 320
key concepts, for web developers 320

Search Engine Results Pages (SERPs) 320
section tag 47, 48
select box 144, 145
select element 135

Index464

selectors 26
semantic HTML tags 321
semantic markup

writing 96
semantic modular CSS 398

implementing, with SMACSS 401, 403-407
SEO metrics

Chrome User Experience Report 339
Google PageSpeed Insights 339
JavaScript APIs 339
Lighthouse 338
WebPageTest 339
Web Vitals Extension 339

simple form
creating 136-140

Single-Page Applications (SPA) 413, 453
spacing 148
structural elements 44
styled-components 414
style queries 428-431
Syntactically Awesome Style Sheets

(Sass) 358-361, 413
versus Less 361

T
table-based form layout 152
table element 151
tables, for form layout 151

table element 151
td element 151
tr element 151

Tailwind CSS 415, 416
reference link 416

td element 151

techniques, for improving
performance with build tools

bundle and code splitting 390
CSS and JavaScript, minifying 390
images and assets, optimizing 391
modular CSS development 390

textarea element 132, 133
styling 141, 142

text-based elements
abbr element 95
address element 94
breadcrumbs 108
breadcrumbs exercise 108-110
combining 91-93
creating 84
CSS font properties 102, 103
CSS resets 97, 98
CSS text properties 98-101
details element 94, 95
display property 103
headings 84
implementing 118, 120, 121
inline text elements 86-88
lists 88, 90, 91
navigation component exercise 104-107
newspaper article, converting

to web page 122
page heading and introduction

exercise 111-113
paragraphs 85, 86
product cards exercise 113-117
styling 96
video store product page 103
working with 94

textboxes
styling 141, 142

Index 465

text presentation
enhancing 441
initial-letter property 442
text-wrap* balance property 442-444

text-wrap:balance property 442-444
TinyPNG 335
title tags 323
Total Blocking Time (TBT) 235
transition property 172-174
transitions

anchor elements, styling within
list items (ul li a) 178

animation performance, enhancing 185
animations, adding to menu 183, 184
aside element, styling 177
CSS cohesion, enhancing 178
CSS reset 177
HTML and CSS files, linking

with <link> 175, 176
image download instructions 175
images, styling within anchor

elements of list items 178
initial animation 179-183
initial styling 176
list items (ul li), styling 177
simple menu animation 174, 175

tr element 151
trigonometric functions 440

U
unmaintainable CSS 394, 395
user experience (UX) 201
user interface (UI) 202
utility-first CSS, with Tailwind 415, 416

benefits 416
button styling, with traditional CSS 416
card component, with traditional CSS 417

regular CSS, converting into
Tailwind 418-422

responsive design, with traditional CSS 418
UX/UI polishing

techniques 210

V
validation styling 145

form, creating with 146-148
Vanilla Extract 414
video store home page

designing, with wireframe 57-59
video store product page

designing, with wireframe 78-80
styling 103, 104

video store template page
styling 39, 41

viewport 251
viewport height (vh) 261
viewport width (vw) 261
VS Code 92

W
Web Animations API (WAAPI) 449
Web Content Accessibility

Guidelines (WCAG) 211
web design

themes 202, 203
typography and font choices 222-225

WebP 335
Webpack 414

configuring, for development and
production environment 388

different environments, setting up 390
URL 383

Index466

used, for setting up different
environments 388, 389

versus Gulp 387
working 382, 383

Webpack project
setting up 384-387

web page 3-6
web page performance

improving 243
issues, finding 237, 238, 240-243
measuring, with Lighthouse 232, 233
optimizing 246-248

web page performance, improving 243, 245
assets load, controlling 244
assets loading, prioritizing 245
layout shifts, with images 246

web page performance measurement,
with Lighthouse 232, 233

diagnostics 236, 237
metrics 235
report, anatomy 233
score 234

web page performance, metrics
Cumulative Layout Shift (CLS) 231
First Input Delay (FID) 231
Interaction to Next Paint (INP) 232
Largest Contentful Paint (LCP) 230
measuring 230

wide-gamut color spaces 450, 451
wireframes 55, 157

www.packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packtpub.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://www.packtpub.com
http://packtpub.com
mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Modern Full-Stack React Projects

Daniel Bugl

ISBN: 978-1-83763-795-9

•	 Implement a backend using Express and MongoDB, and unit-test it with Jest

•	 Deploy full-stack web apps using Docker, set up CI/CD and end-to-end tests using Playwright

•	 Add authentication using JSON Web Tokens (JWT)

•	 Create a GraphQL backend and integrate it with a frontend using Apollo Client

•	 Build a chat app based on event-driven architecture using Socket.IO

•	 Facilitate Search Engine Optimization (SEO) and implement server-side rendering

•	 Use Next.js, an enterprise-ready full-stack framework, with React Server Components and
Server Actions

https://www.packtpub.com/en-in/product/modern-full-stack-react-projects-9781837637959

469Other Books You May Enjoy

Mastering JavaScript Functional Programming - Third Edition

Federico Kereki

ISBN: 978-1-80461-013-8

•	 Understand when to use functional programming versus classic object-oriented programming

•	 Use declarative coding instead of imperative coding for clearer, more understandable code

•	 Know how to avoid side effects and create more reliable code with closures and immutable data

•	 Use recursion to help design and implement more understandable solutions to complex problems

•	 Define functional programing data types with or without TypeScript, add type checking, and
implement immutability

•	 Apply advanced containers to get better structures to tackle errors and implement
async programming

https://www.packtpub.com/en-us/product/mastering-javascript-functional-programming-9781804610138

470

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you’ve finished Practical HTML and CSS, we’d love to hear your thoughts! If you purchased the
book from Amazon, please click here to go straight to the Amazon review
page for this book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://authors.packtpub.com
https://packt.link/r/183508091X
https://packt.link/r/183508091X

471

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/978-1-83508-091-7

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/978-1-83508-091-7

	Cover
	Title page
	Copyright and credits
	Contributors
	Table of Contents
	Preface
	Part 1:
Introducing HTML and CSS
	Chapter 1: Introduction to HTML and CSS
	Technical requirements
	How a web page renders
	Understanding HTML
	Syntax
	HTML elements
	Content types
	The HTML document
	Structuring an HTML document
	Metadata
	Our first web page
	Exercise 1.01 – creating a web page
	Activity 1.01 – video store page template

	Understanding CSS
	Syntax
	Adding styles to a web page
	Exercise 1.02 – adding styles
	CSS selectors
	Element, ID, and class
	The universal selector (*)
	Attribute selectors
	Pseudo-classes
	Pseudo-elements
	Combining selectors
	Exercise 1.03 – selecting elements
	CSS specificity

	The special case of !important
	CSS custom properties
	Activity 1.02 – styling the video store template page

	Summary

	Chapter 2: Structure and Layout
	Technical requirements
	Examining structural elements
	header
	footer
	section
	article
	nav
	aside
	div
	A news article web page
	Exercise 2.01 – marking up the page

	Introducing wireframes
	Activity 2.01 – video store home page

	Learning CSS page layouts
	Video store product page
	float-based layouts
	flex-based layouts
	flex items
	grid-based layouts
	Exercise 2.02 – a grid-based layout

	The box model
	The content box
	padding
	border
	margin
	Exercise 2.03 – experimenting with the box model
	Putting it all together
	Exercise 2.04 – home page revisited
	Exercise 2.05 – video store product page revisited
	Activity 2.02 – online clothes store home page

	Summary

	Chapter 3: Text and Typography Styling
	Technical requirements
	Creating text-based elements
	Headings
	Paragraphs
	Inline text elements
	Lists
	Exercise 3.1 – combining text-based elements

	Working with new text-based elements
	address
	Details
	Abbr

	Writing semantic markup
	Styling text-based elements
	CSS resets
	CSS text properties
	CSS font properties
	The display Property
	The video store product page (revisited)
	Exercise 3.2 – navigation
	Breadcrumbs
	Exercise 3.3 – breadcrumbs
	Exercise 3.4 – the page heading and introduction
	Exercise 3.5 – product cards
	Exercise 3.6 – putting it all together
	Activity 3.1 – converting a newspaper article to a web page

	Summary

	Part 2:
Understanding Website Fundamentals
	Chapter 4: Creating and Styling Forms
	Technical requirements
	Introducing form elements
	form
	input
	label
	textarea
	fieldset
	select
	button
	Exercise 4.1 – creating a simple form

	Styling form elements
	Labels, textboxes, and textareas
	Buttons
	Select boxes
	Validation styling
	Exercise 4.02 – creating a form with validation styling

	Using tables for form layout
	table
	tr
	td
	A table-based form layout

	Making forms accessible
	Labeling form elements correctly
	Grouping related form elements
	Validating user input
	Video store forms
	Exercise 4.03 – a new account signup form
	Exercise 4.04 – a checkout form
	Activity 4.01 – building an online property portal website form

	Summary

	Chapter 5: Adding Animation
to Web Pages
	Technical requirements
	The transition property
	Exercises with transitions
	The @starting-style rule

	Advanced CSS for animations
	CSS positioning
	z-index
	Opacity
	Blur

	The keyframes rule and CSS animation properties
	Summary

	Chapter 6: Themes, Color, and Polishing Techniques
	Technical requirements
	Introduction to web design themes
	CSS color variables
	Exercise 1 – creating a light theme using CSS color variables

	Learning color theory with HSL
	The HSL color wheel
	UX/UI polishing tips
	Exercise 2 – creating a dark theme using hsl()

	Understanding the invert() filter
	Exercise 3 – creating a dark theme with the invert() filter

	Exploring user’s preferences with color-scheme
	How to declare color-scheme in CSS
	How to style based on color schemes

	 Introducing the light-dark() function
	Exercise 4 – simplifying our CSS theming with media queries

	Understanding typography and font choices
	Accessibility and inclusive design considerations
	Summary

	Part 3:
Building for All
	Chapter 7: Using CSS and HTML
to Boost Performance
	Technical requirements
	Understanding the performance of a web page
	Largest Contentful Paint (LCP)
	Cumulative Layout Shift (CLS)
	First Input Delay (FID)
	Interaction to Next Paint (INP)
	Measuring performance with Lighthouse
	Exercise – finding performance issues in a web page

	Improving the performance of a web page
	Controlling how assets load
	Prioritizing loading
	Improving image performance
	Exercise – optimizing the performance of a web page

	Summary

	Chapter 8: Responsive Web Design
and Media Queries
	Technical requirements
	What does it mean to design mobile first?
	Understanding viewports
	Introducing media queries
	Exercise 8.01 – Creating a mobile-first menu

	Responsive values in CSS
	Responsive typography units
	Responsive sizing units

	Exploring responsive images
	Using width and max-width with percentages
	HTML picture element
	Using srcset and sizes
	Background images in CSS
	Lazy loading
	Exercise 8.02 – Creating a mobile catalog for a flower shop

	CSS Flexbox
	Flexbox basic properties
	Exercise 8.03 – Updating the flower shop catalog for desktop using Flexbox

	Exploring printable design
	Exercise 8.04 – Creating a printable style for the flower shop catalog

	Summary

	Chapter 9: Ensuring Accessibility
in HTML and CSS
	Technical requirements
	What is accessibility?
	Making images accessible
	Exercise 9.01 - Accessible ratings

	Making forms accessible
	Exercise 9.02: accessible sign up form

	Understanding keyboard accessibility
	Making motion accessible
	Accessibility tools
	The Axe® tool
	Exercise 9.03: Using Axe
	Activity 9.01: Making a page accessible

	Summary

	Part 4:
Advanced Concepts
	Chapter 10: SEO Essentials
for Web Developers
	Technical requirements
	Understanding SEO and its importance
	Key SEO concepts for web developers
	Benefits of developing with SEO practices in mind
	The impact of HTML and CSS on SEO
	CSS and SEO
	Exercise 10.1 – adapting the HTML for SEO

	Exploring Core Web Vitals
	First Contentful Paint
	LCP
	FID
	CLS
	How to measure SEO metrics
	Exercise 10.2 – analyzing a real website with Lighthouse

	Minimizing render-blocking resources
	How to minimize render-blocking resources with CSS
	How to minimize render-blocking resources with JavaScript

	Optimizing images for SEO
	Using alt tags for images
	Examples of good and bad alt tags
	Best practices for writing effective alt tags

	Avoiding excessive DOM size
	Techniques to Avoid Excessive DOM Size

	Summary

	Chapter 11: Preprocessors and Tooling for Efficient Development
	Technical requirements
	Understanding CSS preprocessors – Sass and Less
	The benefits of features such as variables, mixins, and nesting
	The differences between Sass and Less

	Setting up and using Less in a project
	Installing Node.js and LESS
	Exercise 11.01 – Creating and compiling our first Less project
	Exercise 11.02 – automating compilation

	Introduction to build tools – Gulp and Webpack
	How Gulp works
	How Webpack works
	Gulp or Webpack? Which one should you choose?
	How to configure Gulp and Webpack for different environments (development and production)

	Techniques for improving performance with build tools
	Summary

	Chapter 12: Strategies for Maintaining
CSS Code
	Technical requirements
	The importance of maintainable CSS
	What unmaintainable CSS looks like
	What maintainable CSS looks like
	Why you should write maintainable CSS

	Understanding semantic modular CSS
	How to develop modular CSS
	How to apply modular CSS
	Exercise 12.1 – implementing semantic, modular CSS with SMACSS

	What is the BEM standard?
	How to apply BEM
	The benefits of BEM
	Exercise 12.2 – converting regular CSS into BEM

	Understanding reusable and scalable CSS
	Strategies for reusable and scalable CSS
	The implementation of utility-first CSS with Tailwind

	Summary

	Chapter 13: The Future of HTML and
CSS – Advancements
and Trends
	Technical requirements
	Responsive and dynamic layouts
	Container queries
	Style queries
	Dynamic viewport units

	Customizing the structure
	Cascade layers
	Scoped styles
	Nesting
	Understanding the :has() selector

	Exploring the latest CSS mathematical functions
	Trigonometric functions
	Individual transform properties

	Enhancing text presentation
	Understanding the initial-letter property
	The new CSS property text-wrap: balance

	Interactive and immersive elements
	Popover
	New select menu
	Anchor positioning
	Discrete property transitions
	Scroll-driven animations

	Exploring new colors and visual effects
	Wide-gamut color spaces
	The CSS color-mix() function
	View transitions

	Summary

	Index
	Other Books You May Enjoy

