

React and React Native
Fifth Edition

Build cross-platform JavaScript and TypeScript apps for the
web, desktop, and mobile

Mikhail Sakhniuk
Adam Boduch

React and React Native
Fifth Edition

Copyright © 2024 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee
the accuracy of this information.

Publishing Product Manager: Lucy Wan
Acquisition Editor – Peer Reviews: Gaurav Gavas
Senior Project Editor: Rianna Rodrigues
Senior Content Development Editor: Matthew Davies
Content Development Editor: Shazeen Iqbal
Copy Editor: Safis Editing
Technical Editor: Simanta Rajbangshi
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Presentation Designer: Rajesh Shirsath
Senior Developer Relations Marketing Executive: Priyadarshini Sharma

First published: February 2017
Second edition: September 2018
Third edition: April 2020
Fourth edition: May 2022
Fifth edition: April 2024

Production reference: 1230424

Published by Packt Publishing Ltd.
Grosvenor House
11 St Paul’s Square
Birmingham
B3 1RB, UK.

ISBN 978-1-80512-730-7

www.packt.com

http://www.packt.com

Contributors

About the authors
Mikhail Sakhniuk is a seasoned software engineer specializing in TypeScript, React, and React

Native. With extensive experience in developing web and mobile applications, he has worked for

start-ups, fintech companies, and product companies serving millions of users. Currently, Mikhail

holds a Principal Frontend Engineer position at KappaPay. In addition to his professional work,

he actively contributes to the developer community by maintaining several open-source projects

and sharing his knowledge through books and articles.

Adam Boduch has been involved in large-scale JavaScript development for nearly 15 years.

Before moving to the frontend, he worked on several large-scale cloud computing products using

Python and Linux. No stranger to complexity, Adam has practical experience with real-world

software systems and the scaling challenges they pose.

About the reviewers
Jonathan Reeves is a software engineer specializing in React and TypeScript programming. He

has implemented React with TypeScript at companies such as Home Depot, Toyota, and Walmart.

He is currently working on implementing internal tools within the gaming industry, making use

of React for the UI. Additionally, he was one of the reviewers for React 18: Design Patterns and Best

Practices.

I would like to thank my wife, Sondra, as well as my children, Ava and Grayson, for their continued support

in what I do and believing in me to always finish what I start. I love you all.

Slava Knyazev has been writing software since he was 12 and has been advancing his mastery

of the craft ever since. He has worked for well-known companies, including theScore, Amazon

Web Services, Airbnb, and the Government of Canada. His favorite part of work is the opportunity

to solve challenging problems and discover the “Aha!” moment in them. When he isn’t writing

code, he often shares his latest thoughts on his blog, “Building Better Software Slower.”

Join us on Discord!
Read this book alongside other users and the authors themselves. Ask questions, provide solu-

tions to other readers, chat with the authors, and more. Scan the QR code or visit the link to join

the community.

https://packt.link/ReactAndReactNative5e

https://packt.link/ReactAndReactNative5e

Table of Contents

Preface � xix

Part I: React � 1

Chapter 1: Why React? � 3

What is React? �� 4

React is just the view layer • 4

Simplicity is good • 5

Declarative UI structures • 6

Data changes over time • 8

Performance matters • 9

The right level of abstraction • 11

What’s new in React? ��� 12

Setting up a new React project �� 13

Using web bundlers ��� 14

Using frameworks • 15

Online code editors • 15

Summary ��� 16

Chapter 2: Rendering with JSX � 17

Technical requirements �� 17

Table of Contentsviii

Your first JSX content ��� 18

Hello JSX • 18

Rendering HTML ��� 20

Built-in HTML tags • 20

HTML tag conventions • 21

Describing UI structures • 22

Creating your own JSX elements �� 23

Encapsulating HTML • 23

Nested elements • 24

Using JavaScript expressions �� 26

Dynamic property values and text • 26

Handling events • 27

Mapping collections to elements • 29

Building fragments of JSX ��� 31

Using wrapper elements • 32

Using fragments • 33

Summary ��� 34

Chapter 3: Understanding React Components and Hooks � 35

Technical requirements ��� 36

Introduction to React components �� 36

What are component properties? ��� 36

Passing property values • 37

Default property values • 39

What is component state? �� 40

React Hooks ��� 41

Maintaining state using Hooks • 41

Initial state values • 41

Updating state values • 43

Performing initialization and cleanup actions ��� 45

Fetching component data • 45

Table of Contents ix

Canceling actions and resetting state • 48

Optimizing side-effect actions • 51

Sharing data using context Hooks �� 52

Memoization with Hooks �� 53

useMemo Hook • 53

useCallback hook • 54

useRef hook • 55

Summary ��� 56

Chapter 4: Event Handling in the React Way � 57

Technical requirements ��� 57

Declaring event handlers ��� 58

Declaring handler functions • 58

Multiple event handlers • 59

Declaring inline event handlers ��� 59

Binding handlers to elements �� 60

Using synthetic event objects ��� 61

Understanding event pooling ��� 62

Summary ��� 64

Chapter 5: Crafting Reusable Components � 67

Technical requirements ��� 68

Reusable HTML elements �� 68

The diffculty with monolithic components ��� 68

The JSX markup • 69

Initial state • 70

Event handler implementation • 71

Refactoring component structures �� 73

Starting with the JSX • 74

Implementing an article list component • 75

Implementing an article item component • 77

Implementing an AddArticle component • 79

Table of Contentsx

Render props ��� 80

Rendering component trees ��� 82

Feature components and utility components • 83

Summary ��� 83

Chapter 6: Type-Checking and Validation with TypeScript � 85

Technical requirements ��� 85

Knowing what to expect �� 86

The importance of props validation • 86

Potential issues without props validation • 86

Options for props validation • 87

Introduction to TypeScript �� 89

Why use TypeScript? • 90

Setting up TypeScript in a project • 91

Basic types in TypeScript • 93

Interfaces and type aliases • 96

Interfaces • 96

Type aliases • 97

Interfaces vs type aliases • 97

Using TypeScript in React �� 98

Type-checking props in React components • 98

Typing state • 100

Typing event handlers • 101

Typing context • 102

Typing refs • 103

Summary ��� 104

Chapter 7: Handling Navigation with Routes � 105

Technical requirements ��� 105

Declaring routes �� 106

Hello route • 106

Table of Contents xi

Decoupling route declarations • 108

Handling route parameters ��� 110

Resource IDs in routes • 111

Query parameters • 114

Using link components ��� 116

Basic linking • 117

URL and query parameters • 118

Summary ��� 120

Chapter 8: Code Splitting Using Lazy Components and Suspense � 121

Technical requirements �� 122

Using the lazy API ��� 122

Dynamic imports and bundles • 122

Making components lazy • 123

Using the Suspense component �� 124

Top-level Suspense components • 124

Working with spinner fallbacks • 126

Avoiding lazy components �� 127

Exploring lazy pages and routes �� 129

Summary �� 131

Chapter 9: User Interface Framework Components � 133

Technical requirements �� 133

Layout and organization ��� 134

Using containers • 134

Building responsive grid layouts • 136

Using navigation components �� 139

Navigating with drawers • 139

Navigating with tabs • 143

Collecting user input �� 145

Checkboxes and radio buttons • 145

Table of Contentsxii

Text inputs and select inputs • 147

Working with buttons • 149

Working with styles and themes �� 150

Making styles • 150

Customizing themes • 152

Summary �� 153

Chapter 10: High-Performance State Updates � 155

Technical requirements �� 155

Batching state updates �� 156

React 18 batching • 157

Prioritizing state updates ��� 160

Handling asynchronous state updates ��� 164

Summary ��� 168

Chapter 11: Fetching Data from a Server � 169

Technical requirements �� 169

Working with remote data ��� 170

Using the Fetch API ��� 173

Using Axios ��� 177

Using TanStack Query ��� 179

Using GraphQL �� 180

Summary ��� 183

Chapter 12: State Management in React � 185

What is global state? ��� 185

React Context API and useReducer ��� 190

Redux �� 193

MobX �� 195

Summary ��� 199

Table of Contents xiii

Chapter 13: Server-Side Rendering � 201

Technical requirements ��� 201

Working on the server �� 201

Server-side rendering • 202

Static site and incremental static generation • 205

Using Next.js �� 207

React Server Components ��� 215

Summary �� 219

Chapter 14: Unit Testing in React � 221

Technical requirements �� 221

Testing in general ��� 221

Test types and approaches • 222

Unit testing �� 224

Setting up the test environment • 226

Vitest features • 227

Mocking • 230

Testing ReactJS �� 235

Summary ��� 242

Part II: React Native � 243

Chapter 15: Why React Native? � 245

Technical requirements ��� 245

What is React Native? ��� 246

React and JSX are familiar �� 247

The mobile browser experiences �� 248

Android and iOS: different yet the same ��� 248

The case for mobile web apps �� 249

Summary ��� 250

Table of Contentsxiv

Chapter 16: React Native under the Hood � 251

Exploring the React Native architecture �� 251

The state of web and mobile apps in the past • 251

React Native current architecture �� 254

JS as part of React Native • 254

The “Native” part • 255

Communication between threads • 256

Styling • 257

React Native future architecture • 258

Explaining JS and Native modules �� 259

React Navigation • 260

UI component libraries • 260

Splash screen • 261

Icons • 261

Handling errors • 261

Push notifications • 262

Over-the-air updates • 262

JS libraries • 262

Exploring React Native components and APIs �� 263

Summary ��� 264

Chapter 17: Kick-Starting React Native Projects � 265

Technical requirements ��� 265

Exploring React Native CLI tools �� 265

Installing and using the Expo command-line tool ��� 266

Viewing your app on your phone ��� 267

Viewing your app on Expo Snack ��� 273

Summary �� 277

Chapter 18: Building Responsive Layouts with Flexbox � 279

Technical requirements ��� 279

Table of Contents xv

Introducing Flexbox ��� 280

Introducing React Native styles ��� 281

Using the Styled Components library ��� 284

Building Flexbox layouts �� 285

Simple three-column layout • 285

Improved three-column layout • 288

Flexible rows • 292

Flexible grids • 294

Flexible rows and columns • 297

Summary ��� 299

Chapter 19: Navigating Between Screens � 301

Technical requirements ��� 302

The basics of navigation �� 302

Route parameters ��� 307

The navigation header �� 312

Tab and drawer navigation �� 318

File-based navigation ��� 321

Summary ��� 323

Chapter 20: Rendering Item Lists � 325

Technical requirements ��� 325

Rendering data collections ��� 326

Sorting and filtering lists ��� 329

Fetching list data ��� 336

Lazy list loading ��� 338

Implementing pull to refresh �� 341

Summary ��� 342

Chapter 21: Geolocation and Maps � 345

Technical requirements ��� 345

Table of Contentsxvi

Using the Geolocation API �� 345

Rendering the map �� 349

Annotating points of interest �� 351

Plotting points • 351

Plotting overlays • 353

Summary ��� 355

Chapter 22: Collecting User Input � 357

Technical requirements �� 357

Collecting text input �� 358

Selecting from a list of options �� 361

Toggling between on and off �� 366

Collecting date/time input ��� 369

Summary ��� 373

Chapter 23: Responding to User Gestures � 375

Technical requirements ��� 375

Scrolling with your fingers ��� 375

Giving touch feedback ��� 378

Using Swipeable and Cancellable components �� 385

Summary ��� 389

Chapter 24: Showing Progress � 391

Technical requirements �� 391

Understanding progress and usability �� 391

Indicating progress �� 392

Exploring navigation indicators �� 395

Measuring progress ��� 396

Step progress �� 400

Table of Contents xvii

Chapter 25: Displaying Modal Screens � 403

Technical requirements ��� 403

Terminology definitions ��� 404

Getting user confirmation ��� 404

Displaying a success confirmation • 405

Error confirmation ��� 410

Passive notifications �� 414

Activity modals ��� 417

Summary ��� 419

Chapter 26: Using Animations � 421

Technical requirements �� 421

Using React Native Reanimated �� 421

The Animated API �� 422

React Native Reanimated • 422

Installing the React Native Reanimated library • 423

Animating layout components �� 424

Animating component styles ��� 429

Summary ��� 432

Chapter 27: Controlling Image Display � 433

Technical requirements ��� 433

Loading images �� 434

Resizing images ��� 436

Lazy image loading �� 440

Rendering icons ��� 445

Summary ��� 448

Table of Contentsxviii

Chapter 28: Going Offline � 449

Technical requirements ��� 449

Detecting the state of the network ��� 450

Storing application data �� 454

Synchronizing application data ��� 457

Summary ��� 463

Other Books You May Enjoy � 467

Index � 471

Preface

Over the years, React and React Native have proven themselves among JavaScript developers as

popular choices for a comprehensive and practical guide to the React ecosystem. This fifth edition

comes with the latest features, enhancements, and fixes of React, while also being compatible

with React Native. It includes new chapters covering critical features and concepts in modern

cross-platform app development with React and TypeScript.

From the basics of React to popular features such as Hooks, server rendering, and unit testing, this

definitive guide will help you become a professional React developer in a step-by-step manner.

You’ll begin by learning about the essential building blocks of React components. Next, you’ll learn

how to improve the stability of your components using TypeScript. As you advance through the

chapters, you’ll work with higher-level functionalities in application development and then put

your knowledge to work by developing user interface components for the web and native platforms.

By the end of this book, you’ll be able to build React applications for the web and React Native

applications for multiple platforms: web, mobile, and desktop: with confidence.

Who this book is for
This book is for any JavaScript developer who wants to start learning how to use React and React

Native for mobile and web application development. No prior knowledge of React is required;

however, working knowledge of JavaScript, HTML and CSS is necessary to be able to follow along

with the content covered.

What this book covers
Chapter 1, Why React?, describes what React is and why you want to use it to build your application.

Chapter 2, Rendering with JSX, teaches the basics of JSX, the markup language used by React com-

ponents.

Prefacexx

Chapter 3, Understanding React Components and Hooks, introduces the core mechanisms of com-

ponents and Hooks in React application.

Chapter 4, Event Handling, the React Way, gives an overview of how events are handled by React

components.

Chapter 5, Crafting Reusable Components, guides you through the process of refactoring compo-

nents by example.

Chapter 6, Type Checking and Validation with TypeScript, describes the various phases that React

components go through and why it’s important for React developers.

Chapter 7, Handling Navigations with Routes, provides plenty of examples of how to set up routing

for your React web app.

Chapter 8, Code Splitting Using Lazy Components and Suspense, introduces code-splitting techniques

that result in performant, more efficient applications.

Chapter 9, User Interface Framework Components, gives an overview of how to get started with MUI,

a React component library for building UIs.

Chapter 10, High-Performance State Updates, goes into depth on the new features in React that

allow for efficient state updates and a high-performing application.

Chapter 11, Fetching Data from a Server, discusses how we can retrieve the data from servers using

various ways.

Chapter 12, State Management in React, covers managing state in the app with popular solutions

like Redux and Mobx.

Chapter 13, Server-Side Rendering, teaches you how to use Next.js to build large-scale React appli-

cations that render content on a server and a client.

Chapter 14, Unit Testing in React, gives an overview of testing software with focus on unit testing

using Vittest.

Chapter 15, Why React Native?, describes what the React Native library is and the differences be-

tween native mobile development.

Chapter 16, React Native under the Hood, gives an overview of the architecture of React Native.

Chapter 17, Kick-Starting React Native Projects, teaches you how to start a new React Native project.

Preface xxi

Chapter 18, Building Responsive Layouts with Flexbox, describes how to create a layout and add styles.

Chapter 19, Navigating between Screens, shows the approaches to switching between screens in

an app.

Chapter 20, Rendering Item Lists, describes how to implement lists of data in an application.

Chapter 21, Geolocation and Maps, explains on how to track geolocation and add a map to an app.

Chapter 22, Collecting User Input, teaches you how to create forms.

Chapter 23, Responding to User Gestures, provides examples of how to handle user gestures.

Chapter 24, Showing Progress, shows you how to handle process indications and progress bars.

Chapter 25, Displaying Modal Screens, teaches you how to create dialog modals.

Chapter 26, Using Animations, describes how to implement animations in an app.

Chapter 27, Controlling Image Display, gives an overview of how to render images in a React

Native app.

Chapter 28, Going Offline, shows how to deal with an app when a mobile phone doesn’t have an

internet connection.

To get the most out of this book
This book assumes you have a basic understanding of the JavaScript programming language. It

also assumes that you’ll be following along with the examples, which require a command-line

terminal, a code editor, and a web browser. You’ll learn how to set up a React project in Chapter

1, Why React?.

The requirements for learning React Native are the same as for React development, but to run

an app on a real device, you will need an Android or iOS smartphone. In order to run iOS apps

in the simulator, you will need a Mac computer. To work with Android simulator, you can use

any kind of PC.

Download the example code files
The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/

React-and-React-Native-5E. We also have other code bundles from our rich catalog of books

and videos available at https://github.com/PacktPublishing/. Check them out!

https://github.com/PacktPublishing/React-and-React-Native-5E
https://github.com/PacktPublishing/React-and-React-Native-5E
https://github.com/PacktPublishing/

Prefacexxii

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this book.

You can download it here: https://packt.link/gbp/9781805127307.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file

extensions, pathnames, dummy URLs, user input, and Twitter handles. For example: “You have

the actual routes declared as <Route> elements.”

A block of code is set as follows:

export default function First() {

 return <p>Feature 1, page 1</p>;

}

When we wish to draw your attention to a particular part of a code block, the relevant lines or

items are set in bold:

export default function List({ data, fetchItems, refreshItems,

isRefreshing }) {

 return (

 <FlatList

data={data}

 renderItem={({ item }) => <Text style={styles.

item}>{item.value}</Text>}

onEndReached={fetchItems} onRefresh={refreshItems}
refreshing={isRefreshing}

/>);

}

Any command-line input or output is written as follows:

npm install @react-navigation/bottom-tabs @react-navigation/

drawer

https://packt.link/gbp/9781805127307

Preface xxiii

Bold: Indicates a new term, an important word, or words that you see on the screen. For instance,

words in menus or dialog boxes appear in the text like this. For example: “Select System info from

the Administration panel.”

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book’s title in the subject of

your message. If you have questions about any aspect of this book, please email us at questions@

packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do

happen. If you have found a mistake in this book, we would be grateful if you reported this to us.

Please visit http://www.packtpub.com/submit-errata, click Submit Errata, and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would

be grateful if you would provide us with the location address or website name. Please contact us

at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you

are interested in either writing or contributing to a book, please visit http://authors.packtpub.

com.

Warnings or important notes appear like this.

Tips and tricks appear like this.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com
http://authors.packtpub.com

Prefacexxiv

Share your thoughts
Once you’ve read React and React Native, Fifth Edition, we’d love to hear your thoughts! Please

click here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

https://packt.link/r/1805127306

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical

books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free

content in your inbox daily.

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below:

https://packt.link/free-ebook/9781805127307

2.	 Submit your proof of purchase.

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly.

https://packt.link/free-ebook/9781805127307

Part 1
React

In this part, we will cover the fundamentals of React tools and concepts, applying them to build

high-performance web apps.

In this part, we will cover the following chapters:

•	 Chapter 1, Why React?

•	 Chapter 2, Rendering with JSX

•	 Chapter 3, Understanding React Components and Hooks

•	 Chapter 4, Event Handling in the React Way

•	 Chapter 5, Crafting Reusable Components

•	 Chapter 6, Type-Checking and Validation with TypeScript

•	 Chapter 7, Handling Navigations with Routes

•	 Chapter 8, Code Splitting Using Lazy Components and Suspense

•	 Chapter 9, User Interface Framework Components

•	 Chapter 10, High-Performance State Updates

•	 Chapter 11, Fetching Data from a Server

•	 Chapter 12, State Management in React

•	 Chapter 13, Server-Side Rendering

•	 Chapter 14, Unit Testing in React

1
Why React?

If you’re reading this book, you probably are already familiar with React. But if you’re not, don’t

worry. I’ll do my best to keep philosophical definitions to a minimum. However, this is a long

book with a lot of content, so I feel that setting the tone is an appropriate first step. Our goal is

to learn React and React Native, but it’s also to build a scalable and adaptive architecture that

can handle everything we want to build with React today and in the future. In other words, we

want to create a foundation around React, with a set of additional tools and approaches that can

withstand the test of time. This book will guide you through the process of using tools like routing,

TypeScript typing, testing, and many more.

This chapter starts with a brief explanation of why React exists. Then, we’ll think about the sim-

plicity of React and how it is able to handle many of the typical performance issues faced by web

developers. Next, we’ll go over the declarative philosophy of React and the level of abstraction

that React programmers can expect to work with. Then, we’ll touch on some of the major features

of React. And finally, we will explore how we can set up a project to start to work with React.

Once you have a conceptual understanding of React and how it solves problems with UI devel-

opment, you’ll be better equipped to tackle the remainder of the book. This chapter will cover

the following topics:

•	 What is React?

•	 What’s new in React?

•	 Setting up a new React project

Why React?4

What is React?
I think the one-line description of React on its home page (https://react.dev/) is concise and

accurate:

This is perfect because, as it turns out, this is all we want most of the time. I think the best part

about this description is everything that it leaves out. It’s not a mega-framework. It’s not a full-

stack solution that’s going to handle everything, from the database to real-time updates over

WebSocket connections. We might not actually want most of these prepackaged solutions. If

React isn’t a framework, then what is it exactly?

React is just the view layer
React is generally thought of as the view layer in an application. Applications are typically divid-

ed into different layers, such as the view layer, the logic layer, and the data layer. React, in this

context, primarily handles the view layer, which involves rendering and updating the UI based

on changes in data and application state. React components change what the user sees. The

following diagram illustrates where React fits in our frontend code:

Figure 1.1: The layers of a React application

This is all there is to React – the core concept. Of course, there will be subtle variations to this

theme as we make our way through the book, but the flow is more or less the same:

”A JavaScript library for building user interfaces.”

https://react.dev/

Chapter 1 5

1.	 Application logic: Start with some application logic that generates data.

2.	 Rendering data to the UI: The next step is to render this data to the UI.

3.	 React component: To accomplish this, you pass the data to a React component.

4.	 Component’s role: The React component takes on the responsibility of getting the HTML

onto the page.

You may wonder what the big deal is; React appears to be yet another rendering technology.

We’ll touch on some of the key areas where React can simplify application development in the

remaining sections of the chapter.

Simplicity is good
React doesn’t have many moving parts to learn about and understand. While React boasts a rela-

tively simple API, it’s important to note that beneath the surface, React operates with a degree of

complexity. Throughout this book, we will delve into these internal workings, exploring various

aspects of React’s architecture and mechanisms to provide you with a comprehensive understand-

ing. The advantage of having a small API to work with is that you can spend more time familiar-

izing yourself with it, experimenting with it, and so on. The opposite is true of large frameworks,

where all of your time is devoted to figuring out how everything works. The following diagram

gives you a rough idea of the APIs that we have to think about when programming with React:

Figure 1.2: The simplicity of the React API

Why React?6

React is divided into two major APIs:

•	 The React Component API: These are the parts of the page that are rendered by the React

DOM.

•	 React DOM: This is the API that’s used to perform the rendering on a web page.

Within a React component, we have the following areas to think about:

•	 Data: This is data that comes from somewhere (the component doesn’t care where) and

is rendered by the component.

•	 Lifecycle: For example, one phase of the lifecycle is when the component is about to be

rendered. Within a React component, methods or hooks respond to the component’s

entering and exiting phases of the React rendering process as they happen over time.

•	 Events: These are the code that we write to respond to user interactions.

•	 JSX: This is the syntax commonly used for describing UI structures in React components.

Even though JSX is closely associated with React, it can also be used alongside other Ja-

vaScript frameworks and libraries.

Don’t fixate on what these different areas of the React API represent just yet. The takeaway here

is that React, by nature, is simple. Just look at how little there is to figure out! This means that

we don’t have to spend a ton of time going through API details here. Instead, once you pick up

on the basics, we can spend more time on nuanced React usage patterns that fit in nicely with

declarative UI structures.

Declarative UI structures
React newcomers have a hard time getting to grips with the idea that components mix in markup

with their JavaScript in order to declare UI structures. If you’ve looked at React examples and had

the same adverse reaction, don’t worry. Initially, we can be skeptical of this approach, and I think

the reason is that we’ve been conditioned for decades by the separation of concerns principle. This

principle states that different concerns, such as logic and presentation, should be separate from

one another. Now, whenever we see things combined, we automatically assume that this is bad

and shouldn’t happen.

The syntax used by React components is called JSX (short for JavaScript XML, also known as

JavaScript Syntax Extension). A component renders content by returning some JSX. The JSX it-

self is usually HTML markup, mixed with custom tags for React components. The specifics don’t

matter at this point; we’ll go into detail in the coming chapters.

Chapter 1 7

What’s groundbreaking about the declarative JSX approach is that we don’t have to manually

perform intricate operations to change the content of a component. Instead, we describe how

the UI should look in different states, and React efficiently updates the actual DOM to match. As

a result, React UIs become easier and more efficient to work with, resulting in better performance.

For example, think about using something such as jQuery to build your application. You have a

page with some content on it, and you want to add a class to a paragraph when a button is clicked:

$(document).ready(function() {

 $('#my-button').click(function() {

 $('#my-paragraph').addClass('highlight');

 });

});

Performing these steps is easy enough. This is called imperative programming, and it’s prob-

lematic for UI development. The problem with imperative programming in UI development is

that it can lead to code that is difficult to maintain and modify. This is because imperative code

is often tightly coupled, meaning that changes to one part of the code can have unintended con-

sequences elsewhere. Additionally, imperative code can be difficult to reason about, as it can be

hard to understand the flow of control and the state of an application at any given time. While

this example of changing the class of an element is simple, real applications tend to involve more

than three or four steps to make something happen.

React components don’t require you to execute steps in an imperative way. This is why JSX is

central to React components. The XML-style syntax makes it easy to describe what the UI should

look like – that is, what are the HTML elements that component is going to render?

export const App = () => {

 const [isHighlighted, setIsHighlighted] = useState(false);

 return (

 <div>

 <button onClick={() => setIsHighlighted(true)}>Add Class</button>

 <p className={isHighlighted && "highlight"}>This is paragraph</p>

 </div>

);

};

Why React?8

In this example, we’re not just writing the imperative procedure that the browser should execute.

This is more like an instruction, where we say how the UI should look and what user interaction

should happen on it. This is called declarative programming and is very well suited for UI devel-

opment. Once you’ve declared your UI structure, you need to specify how it changes over time.

Data changes over time
Another area that’s difficult for React newcomers to grasp is the idea that JSX is like a static string,

representing a chunk of rendered output. This is where data and the passage of time come into

play. React components rely on data being passed into them. This data represents the dynamic

parts of the UI – for example, a UI element that’s rendered based on a Boolean value could change

the next time the component is rendered. Here’s a diagram illustrating the idea:

Figure 1.3: React components changing over time

Each time the React component is rendered, it’s like taking a snapshot of the JSX at that exact

moment in time. As your application moves forward through time, you have an ordered collection

of rendered UI components. In addition to declaratively describing what a UI should be, re-ren-

dering the same JSX content makes things much easier for developers. The challenge is making

sure that React can handle the performance demands of this approach.

Chapter 1 9

Performance matters
Using React to build UIs means that we can declare the structure of the UI with JSX. This is less

error-prone than the imperative approach of assembling the UI piece by piece. However, the

declarative approach does present a challenge with performance.

For example, having a declarative UI structure is fine for the initial rendering because there’s

nothing on the page yet. So the React renderer can look at the structure declared in JSX and render

it in the DOM browser.

This concept is illustrated in the following diagram:

Figure 1.4: How JSX syntax translates to HTML in the browser DOM

On the initial render, React components and their JSX are no different from other template librar-

ies. For instance, there is a templating library called Handlebars used for server-side rendering,

which will render a template to HTML markup as a string that is then inserted into the browser

DOM. Where React is different from libraries such as Handlebars is that React can accommodate

when data changes and we need to re-render the component, whereas Handlebars will just re-

build the entire HTML string, the same way it did on the initial render. Since this is problematic

for performance, we often end up implementing imperative workarounds that manually update

tiny bits of the DOM. We end up with a tangled mess of declarative templates and imperative

code to handle the dynamic aspects of the UI.

The Document Object Model (DOM) represents HTML in the browser after it has

been rendered. The DOM API is how JavaScript is able to change content on a page.

Why React?10

We don’t do this in React. This is what sets React apart from other view libraries. Components

are declarative for the initial render, and they stay this way even as they’re re-rendered. It’s what

React does under the hood that makes re-rendering declarative UI structures possible.

In React, however, when we create a component, we describe what it should look like clearly and

straightforwardly. Even as we update our components, React handles the changes smoothly be-

hind the scenes. In other words, components are declarative for the initial render, and they stay

this way even as they’re re-rendered. This is possible because React employs the virtual DOM,

which is used to keep a representation of the real DOM elements in memory. It does this so that

each time we re-render a component, it can compare the new content to the content that’s already

displayed on the page. Based on the difference, the virtual DOM can execute the imperative steps

necessary to make the changes. So not only do we get to keep our declarative code when we need

to update the UI but React will also make sure that it’s done in a performant way. Here’s what

this process looks like:

Figure 1.5: React transpiles JSX syntax into imperative DOM API calls

As with any other JavaScript library, React is constrained by the run-to-completion nature of the

main thread. For example, if the React virtual DOM logic is busy diffing content and patching the

real DOM, the browser can’t respond to user input such as clicks or interactions.

When you read about React, you’ll often see words such as diffing and patching.

Diffing means comparing old content (the previous state of the UI) with new content

(the updated state) to identify the differences, much like comparing two versions of

a document to see what’s changed. Patching means executing the necessary DOM

operations to render the new content, ensuring that only the specific changes are

made, which is crucial for performance.

Chapter 1 11

As you’ll see in the next section of this chapter, changes were made to the internal rendering al-

gorithms in React to mitigate these performance pitfalls. With performance concerns addressed,

we need to make sure that we’re confident that React is flexible enough to adapt to the different

platforms that we might want to deploy our apps to in the future.

The right level of abstraction
Another topic I want to cover at a high level before we dive into React code is abstraction.

In the preceding section, you saw how JSX syntax translates to low-level operations that update

our UI. A better way to look at how React translates our declarative UI components is via the

fact that we don’t necessarily care what the render target is. The render target happens to be the

browser DOM with React, but, as we will see, it isn’t restricted to the browser DOM.

React has the potential to be used for any UI we want to create, on any conceivable device. We’re

only just starting to see this with React Native, but the possibilities are endless. I would not be

surprised if React Toast, which is totally not a thing, suddenly becomes relevant, where React

targets toasters that can singe the rendered output of JSX onto bread. React’s abstraction level

strikes a balance that allows for versatility and adaptability while maintaining a practical and

efficient approach to UI development.

The following diagram gives you an idea of how React can target more than just the browser:

Figure 1.6: React abstracts the target rendering environment from the components that we
implement

From left to right, we have React DOM, React Native, React PDF, and React Unity. All of these

React Renderer libraries accept the React component and return a platform-specific result. As

you can see, to target something new, the same pattern applies:

•	 Implement components specific to the target.

•	 Implement a React renderer that can perform the platform-specific operations under

the hood.

Why React?12

This is, obviously, an oversimplification of what’s actually implemented for any given React

environment. But the details aren’t so important to us. What’s important is that we can use our

React knowledge to focus on describing the structure of our UI on any platform.

Now that you understand the role of abstractions in React, let’s see what’s new in React.

What’s new in React?
React is a continuously evolving library in the ever-changing web development landscape. As you

embark on your journey to learn and master React, it’s important to understand the evolution of

the library and its updates over time.

One of the advantages of React is that its core API has remained relatively stable in recent years.

This provides a sense of continuity and allows developers to leverage their knowledge from pre-

vious versions. The conceptual foundation of React has remained intact, meaning that the skills

acquired three or five years ago can still be applied today. Let’s take a step back and trace the

history of React from its early versions to the recent ones. From React 0.x to React 18, numerous

pivotal changes and enhancements have been made as follows:

•	 React 0.14: In this version, the introduction of functional components allowed developers

to utilize functions as components, simplifying the creation of basic UI elements. At that

time, no one knew that now we would write only functional components and almost

completely abandon class-based components.

•	 React 15: With a new versioning scheme, the next update of React 15 brought a complete

overhaul of the internal architecture, resulting in improved performance and stability.

•	 React 16: This version, however, stands as one of the most notable releases in React’s

history. It introduced hooks, a revolutionary concept that enables developers to use state

and other React features without the need for class components. Hooks make code simpler

and more readable, transforming the way developers write components. We will explore

a lot of hooks in this book. Additionally, React 16 introduced Fiber, a new reconciliation

mechanism that significantly improved performance, especially when dealing with ani-

mations and complex UI structures.

•	 React 17: This version focused on updating and maintaining compatibility with previous

versions. It introduced a new JSX transform system.

Chapter 1 13

•	 React 18: This release continues the trajectory of improvement and emphasizes perfor-

mance enhancements and additional features, such as the automatic batching of renders,

state transitions, server components, and streaming server-side rendering. Most of the

important updates related to performance will be explored in Chapter 12, High-Performance

State Updates. More details about server rendering will be covered in Chapter 14, Server

Rendering and Static Site Generation with React Frameworks.

•	 React 19: Introduces several major features and improvements. The React Compiler is a

new compiler that enables automatic memoization and optimizes re-rendering, elimi-

nating the need for manual useMemo, useCallback, and memo optimizations. Enhanced

Hooks like use(promise) for data fetching, useFormStatus() and useFormState() for

form handling, and useOptimistic() for optimistic UI simplify common tasks. React 19

also brings simplified APIs, such as ref becoming a regular prop, React.lazy being replaced,

and Context.Provider becoming just Context. Asynchronous rendering allows fetching

data asynchronously during rendering without blocking the UI, while error handling

improvements provide better mechanisms to diagnose and fix issues in applications.

React’s stability and compatibility make it a reliable library for long-term use, while the continu-

ous updates ensure that it remains at the forefront of web and mobile development. Throughout

this book, all examples will utilize the latest React API, ensuring that they remain functional and

relevant in future versions.

Now that we have explored the evolution and updates in React, we can delve deeper into React

and examine how to get set up with the new React project.

Setting up a new React project
There are several ways to create a React project when you are getting started. In this section, we

will explore three common approaches:

•	 Using web bundlers

•	 Using frameworks

•	 Using online code editors

To start developing and previewing your React applications, you will first need to

have Node.js installed on your computer. Node.js is a runtime environment for ex-

ecuting JavaScript code.

Why React?14

Let’s dive into each approach in the following subsections.

Using web bundlers
Using a web bundler is an efficient way to create React projects, especially if you are building a

single-page application (SPA). For all of the examples in this book, we will use Vite as our web

bundler. Vite is known for its remarkable speed and ease of setup and use.

To set up your project using Vite, you will need to take the following steps:

1.	 Ensure that you have Node.js installed on your computer by visiting the official

Node.js website (https://nodejs.org/) and downloading the appropriate version for

your operating system.

2.	 Open your terminal or command prompt and navigate to the directory where you want

to create your project:

mkdir react-projects

cd react-projects

3.	 Run the following command to create a new React project with Vite:

npm create vite@latest my-react-app -- --template react

This command creates a new directory called my-react-app and sets up a React project

using the Vite template.

4.	 Once the project is created, your terminal should look like this:

Scaffolding project in react-projects/my-react-app...

Done. Now run:

 cd my-react-app

 npm install

 npm run dev

5.	 Navigate into the project directory and install dependencies. The result in the terminal

should look like:

added 279 packages, and audited 280 packages in 21s

103 packages are looking for funding

https://nodejs.org/

Chapter 1 15

 run 'npm fund' for details

found 0 vulnerabilities

Finally, start the development server by running the following command: npm run dev

This command launches the development server, and you can view your React application

by opening your browser and visiting http://localhost:3000.

By now, you will have successfully set up your React project using Vite as the web bundler. For

more information about Vite and its possible configurations, visit the official website at https://

vitejs.dev/.

Using frameworks
For real-world and commercial projects, it is recommended to use frameworks built on top of

React. These frameworks provide additional features out of the box, such as routing and asset

management (images, SVG files, fonts, etc.). They also guide you in organizing your project struc-

ture effectively, as frameworks often enforce specific file organization rules. Some popular React

frameworks include Next.js, Gatsby, and Remix.

In Chapter 13, Server-Side Rendering, we will explore setting up Next.js and some differences be-

tween that and using a plain web bundler.

Online code editors
Online code editors combine the advantages of web bundlers and frameworks but allow you

to set up your React development environment in the cloud or right inside of the browser. This

eliminates the need to install anything on your machine and lets you write and explore React

code directly in your browser.

While there are various online code editors available, some of the most popular options include

CodeSandbox, StackBlitz, and Replit. These platforms provide a user-friendly interface and allow

you to create, share, and collaborate on React projects without any local setup.

To get started with an online code editor, you don’t even need an account. Simply follow this link

on your browser: https://react.new. In a few seconds, you will see that CodeSandbox is ready to

work with a template project, and a live preview of the editor is available directly in the browser

tab. If you want to save your changes, then you need to create an account.

Using online code editors is a convenient way to learn and experiment with React, especially if

you prefer a browser-based development environment.

https://vitejs.dev/
https://vitejs.dev/
https://react.new

Why React?16

In this section, we explored different methods to set up your React project. Whether you choose

web bundlers, frameworks, or online code editors, each approach offers its unique advantages.

Select the method that you prefer and suits your project requirements. Now, we are ready to dive

into the world of React development!

Summary
In this chapter, you were introduced to React comprehensively so that you have an idea of what it

is and the necessary aspects of it, setting the tone for the rest of the book. React is a library with a

small API used to build UIs. Then, you were introduced to some of the key concepts of React. We

discussed the fact that React is simple because it doesn’t have a lot of moving parts.

Afterward, we explored the declarative nature of React components and JSX. Following that,

you learned that React enables effective performance by writing declarative code that can be

re-rendered repeatedly.

You also gained insight into the idea of render targets and how React can easily become the UI

tool of choice for various platforms. We then provided you with a brief overview of React’s history

and introduced the latest developments. Finally, we delved into how to set up a new React project

and initiate the learning process.

That’s sufficient introductory and conceptual content for now. As we progress through the book’s

journey, we’ll revisit these concepts. Next, let’s take a step back and nail down the basics, starting

with rendering with JSX in the next chapter.

Join us on Discord!
Read this book alongside other users and the authors themselves. Ask questions, provide solu-

tions to other readers, chat with the authors, and more. Scan the QR code or visit the link to join

the community.

https://packt.link/ReactAndReactNative5e

https://packt.link/ReactAndReactNative5e

2
Rendering with JSX

This chapter will introduce you to JSX, which is the XML/HTML markup syntax that’s embedded

in your JavaScript code and used to declare your React components. At the lowest level, you’ll use

HTML markup to describe the pieces of your UI. Building React applications involves organizing

these pieces of HTML markup into components. In React, creating a component allows you to

define custom elements that extend beyond basic HTML markup. These custom elements, or

components, are defined using JSX, which then translates them into standard HTML elements

for the browser. This ability to create and reuse custom components is a core feature of React,

enabling more dynamic and complex UIs. This is where React gets interesting – having your own

JSX tags that can use JavaScript expressions to bring your components to life. JSX is the language

used to describe UIs built using React.

In this chapter, we’ll cover the following:

•	 Your first JSX content

•	 Rendering HTML

•	 Creating your own JSX elements

•	 Using JavaScript expressions

•	 Building fragments of JSX

Technical requirements
The code for this chapter can be found in the following directory of the accompanying GitHub

repository: https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/

Chapter02.

https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter02
https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter02

Rendering with JSX18

Your first JSX content
In this section, we’ll implement the obligatory Hello World JSX application. This initial dive is

just the beginning – it’s a simple yet effective way to get acquainted with the syntax and its ca-

pabilities. As we progress, we’ll delve into more complex and nuanced examples, demonstrating

the power and flexibility of JSX in building React applications. We’ll also discuss what makes this

syntax work well for declarative UI structures.

Hello JSX
Without further ado, here’s your first JSX application:

import * as ReactDOM from "react-dom";

const root = ReactDOM.createRoot(document.getElementById("root"));

root.render(

 <p>

 Hello, JSX

 </p>

);

Let’s walk through what’s happening here.

The render() function takes JSX as an argument and renders it to the DOM node passed to

ReactDOM.createRoot().

The actual JSX content in this example renders a paragraph with some bold text inside. There’s

nothing fancy going on here, so we could have just inserted this markup into the DOM directly

as a plain string. However, the aim of this example is to show the basic steps involved in getting

JSX rendered onto the page.

Under the hood, JSX is not directly understood by web browsers and needs to be transformed

into standard JavaScript code that browsers can execute. This transformation is typically done

using a tool like Vite or Babel. When Vite processes JSX code, it compiles the JSX down to React.

createElement() calls. These calls create JavaScript objects that represent the virtual DOM ele-

ments. For example, the JSX expression in the example above is compiled into this:

import * as ReactDOM from "react-dom";

const root = ReactDOM.createRoot(document.getElementById("root"));

Chapter 2 19

root.render(

 React.createElement(

 "p",

 null,

 "Hello, ",

 React.createElement("strong", null, "JSX")

)

);

The first argument to React.createElement is the type of the element (such as a string like div or

p for DOM elements, or a React component for composite components). The second argument is

an object containing the props for this element, and any subsequent arguments are the children of

this element. This transformation is done by Vite under the hood, and you never write such code.

These objects created by React.createElement(), known as React elements, describe the struc-

ture and properties of a UI component in an object format that React can work with. React then

uses these objects to construct the actual DOM and keep it up to date. This process involves a

reconciliation algorithm that efficiently updates the DOM to match the React elements. When the

state of a component changes, React calculates the minimal set of changes required to update the

DOM, rather than re-rendering the entire component. This makes updates much more efficient

and is one of the key advantages of using React.

Before we move forward with more in-depth code examples, let’s take a moment to reflect on our

Hello World example. The JSX content was short and simple. It was also declarative because it

described what to render, not how to render it. Specifically, by looking at the JSX, you can see that

this component will render a paragraph and some bold text within it. If this were done impera-

tively, there would probably be some more steps involved, and they would probably need to be

performed in a specific order.

The example we just implemented should give you a feel for what declarative React is all about.

As we move forward in this chapter and throughout the book, the JSX markup will grow more

elaborate. However, it’s always going to describe what is in the UI.

The render() function tells React to take your JSX markup and update the UI in the most efficient

way possible. This is how React enables you to declare the structure of your UI without having

to think about carrying out ordered steps to update elements on the screen, an approach that

often leads to bugs. Out of the box, React supports the standard HTML tags that you would find

on any HTML page, such as div, p, h1, ul, li, and others.

Rendering with JSX20

Now that we have discovered what JSX is, how it works, and what declarative idea it follows, let’s

explore how we can render plain HTML markup and what conventions we should follow.

Rendering HTML
At the end of the day, the job of a React component is to render HTML in the DOM browser. This

is why JSX has support for HTML tags out of the box. In this section, we’ll look at some code that

renders a few of the available HTML tags. Then, we’ll cover some of the conventions that are

typically followed in React projects when HTML tags are used.

Built-in HTML tags
When we render JSX, element tags reference React components. Since it would be tedious to have

to create components for HTML elements, React comes with HTML components. We can render

any HTML tag in our JSX, and the output will be just as we’d expect.

Now, let’s try rendering some of these tags:

import * as ReactDOM from "react-dom";

const root = ReactDOM.createRoot(document.getElementById("root"));

root.render(

 <div>

 <button />

 <code />

 <input />

 <label />

 <p />

 <pre />

 <select />

 <table />

 	

 </div>

);

Don’t worry about the formatting of the rendered output for this example. We’re making sure

that we can render arbitrary HTML tags, and they render as expected, without any special defi-

nitions and imports.

Chapter 2 21

HTML elements rendered using JSX closely follow regular HTML element syntax, with a few subtle

differences regarding case-sensitivity and attributes.

HTML tag conventions
When you render HTML tags in JSX markup, the expectation is that you’ll use lowercase for the

tag name. In fact, capitalizing the name of an HTML tag will fail. Tag names are case-sensitive

and non-HTML elements are capitalized. This way, it’s easy to scan the markup and spot the

built-in HTML elements versus everything else.

You can also pass HTML elements any of their standard properties. When you pass them some-

thing unexpected, a warning about the unknown property is logged. Here’s an example that

illustrates these ideas:

import * as ReactDOM from "react-dom";

const root = ReactDOM.createRoot(document.getElementById("root"));

root.render(

 <button title="My Button" foo="bar">

 My Button

 </button>

);

root.render(<Button />);

When you run this example, it will fail to compile because React doesn’t know about the <Button>

element; it only knows about <button>.

You can use any valid HTML tags as JSX tags, as long as you remember that they’re case-sensitive

and that you need to pass the correct attribute names. In addition to simple HTML tags that only

have attribute values, you can use more semantic HTML tags to describe the structure of your

page content.

You may have noticed the surrounding <div> tag, grouping together all of the other

tags as its children. This is because React needs a root element to render. Later in

the chapter, you’ll learn how to render adjacent elements without wrapping them

in a parent element.

Rendering with JSX22

Describing UI structures
JSX is capable of describing screen elements in a way that ties them together to form a complete

UI structure. Let’s look at some JSX markup that declares a more elaborate structure than a single

paragraph:

import * as ReactDOM from "react-dom";

const root = ReactDOM.createRoot(document.getElementById("root"));

root.render(

 <section>

 <header>

 <h1>A Header</h1>

 </header>

 <nav>

 Nav Item

 </nav>

 <main>

 <p>The main content...</p>

 </main>

 <footer>

 <small>© 2024</small>

 </footer>

 </section>

);

This JSX markup describes a fairly sophisticated UI structure. Yet, it’s easier to read than impera-

tive code because it’s HTML, and HTML is good for concisely expressing a hierarchical structure.

This is how we want to think of our UI when it needs to change – not as an individual element

or property but the UI as a whole.

Chapter 2 23

Here is what the rendered content looks like:

Figure 2.1: Describing HTML tag structures using JSX syntax

There are a lot of semantic elements in this markup describing the structure of the UI. For example,

the <header> element describes the top part of the page where the title is, and the <main> element

describes where the main page content goes. This type of complex structure makes it clearer for

developers to reason about. But before we start implementing dynamic JSX markup, let’s create

some of our own JSX components.

Creating your own JSX elements
Components are the fundamental building blocks of React. In fact, they can be thought of as

the vocabulary of JSX markup, allowing you to create complex interfaces through reusable, en-

capsulated elements. In this section, we’ll delve into how to create your own components and

encapsulate HTML markup within them.

Encapsulating HTML
We create new JSX elements so that we can encapsulate larger structures. This means that instead

of having to type out complex markup, you can use your custom tag. The React component returns

the JSX that goes where the tag is used. Let’s look at the following example:

import * as ReactDOM from "react-dom";

function MyComponent() {

 return (

 <section>

 <h1>My Component</h1>

Rendering with JSX24

 <p>Content in my component...</p>

 </section>

);

}

const root = ReactDOM.createRoot(document.getElementById("root"));

root.render(<MyComponent />);

Here’s what the rendered output looks like:

Figure 2.2: A component rendering encapsulated HTML markup

This is the first React component that we’ve implemented, so let’s take a moment to dissect what’s

going on here. We created a function called MyComponent, in the return statement of which we

put our HTML tags. This is how we create a React component that is used as a new JSX element.

As you can see in the call to render(), you’re rendering a <MyComponent> element.

The HTML that this component encapsulates is returned from the function we created. In this

case, when the JSX is rendered by react-dom, it’s replaced by a <section> element and everything

within it.

HTML elements such as <div> often take nested child elements. Let’s see whether we can do the

same with JSX elements, which we create by implementing components.

Nested elements
Using JSX markup is useful for describing UI structures that have parent-child relationships. Child

elements are created by nesting them within another component: the parent.

When React renders JSX, any custom elements that you use must have their corre-

sponding React component within the same scope. In the preceding example, the

MyComponent function was declared in the same scope as the call to render(), so

everything worked as expected. Usually, you’ll import components, adding them

to the appropriate scope. You’ll see more of this as you progress through the book.

Chapter 2 25

For example, a tag is only valid as the child of a tag or a tag – you’re probably

going to make similar nested structures with your own React components. For this, you need to

use the children property. Let’s see how this works. Here’s the JSX markup:

import * as ReactDOM from "react-dom";

import MySection from "./MySection";

import MyButton from "./MyButton";

const root = ReactDOM.createRoot(document.getElementById("root"));

root.render(

 <MySection>

 <MyButton>My Button Text</MyButton>

 </MySection>

);

You’re importing two of your own React components: MySection and MyButton.

Now, if you look at the JSX markup, you’ll notice that <MyButton> is a child of <MySection>. You’ll

also notice that the MyButton component accepts text as its child, instead of more JSX elements.

Let’s see how these components work, starting with MySection:

export default function MySection(props) {

 return (

 <section>

 <h2>My Section</h2>

 {props.children}

 </section>

);

}

This component renders a standard <section> HTML element, a heading, and then {props.

children}. It’s this last piece that allows components to access nested elements or text and

render them.

The two braces used in the preceding example are used for JavaScript expressions.

I’ll touch on more details of the JavaScript expression syntax found in JSX markup

in the following section.

Rendering with JSX26

Now, let’s look at the MyButton component:

export default function MyButton(props) {

 return <button>{props.children}</button>;

}

This component uses the exact same pattern as MySection; it takes the {props.children} value

and surrounds it with markup. React handles the details for you. In this example, the button text

is a child of MyButton, which is, in turn, a child of MySection. However, the button text is transpar-

ently passed through MySection. In other words, we didn’t have to write any code in MySection to

make sure that MyButton got its text. Pretty cool, right? Here’s what the rendered output looks like:

Figure 2.3: A button element rendered using child JSX values

You now know how to build your own React components that introduce new JSX tags in your

markup. The components that we’ve looked at so far in this chapter have been static. That is, once

we rendered them, they were never updated. JavaScript expressions are the dynamic pieces of JSX

that give different output based on conditions.

Using JavaScript expressions
As you saw in the preceding section, JSX has a special syntax that allows you to embed JavaScript

expressions. Any time React renders JSX content, expressions in the markup are evaluated. This

feature is at the heart of JSX’s dynamism; it enables the content and attributes of your components

to change in response to different data or state conditions. Each time React renders or re-renders

JSX content, these embedded expressions are evaluated, allowing the displayed UI to reflect current

data and state. You’ll also learn how to map collections of data to JSX elements.

Dynamic property values and text
Some HTML property or text values are static, meaning that they don’t change as JSX markup is

re-rendered. Other values, the values of properties or text, are based on data that is found else-

where in the application. Remember, React is just the view layer. Let’s look at an example so that

you can get a feel for what the JavaScript expression syntax looks like in JSX markup:

import * as ReactDOM from "react-dom";

Chapter 2 27

const enabled = false;

const text = "A Button";

const placeholder = "input value...";

const size = 50;

const root = ReactDOM.createRoot(document.getElementById("root"));

root.render(

 <section>

 <button disabled={!enabled}>{text}</button>

 <input placeholder={placeholder} size={size} />

 </section>

);

Anything that is a valid JavaScript expression, including nested JSX, can go in between the curly

braces: {}. For properties and text, this is often a variable name or object property. Notice, in

this example, that the !enabled expression computes a Boolean value. Here’s what the rendered

output looks like:

Figure 2.4: Dynamically changing the property value of a button

Primitive JavaScript values are straightforward to use in JSX syntax. Obviously, we can use more

complex values such as objects and arrays in the JSX, as well as functions to handle events. Let’s

explore this.

Handling events
In React, you can easily pass functions to components’ properties to handle user interactions

such as button clicks, form submissions, and mouse movements. This allows you to create

interactive and responsive UIs. React provides a convenient way to attach event handlers di-

rectly to components using a syntax, similar to how you would use the addEventListener and

removeEventListener methods in traditional JavaScript.

If you’re following along with the downloadable companion code, which I strong-

ly recommend doing, try playing around with these values and seeing how the

rendered HTML changes: https://github.com/PacktPublishing/React-and-
React-Native-5E/tree/main/Chapter02

https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter02
https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter02

Rendering with JSX28

To illustrate this, let’s consider an example where we want to handle a button-click event in a

React component:

import * as ReactDOM from "react-dom";

const handleClick = () => {

 console.log("Button clicked!");

};

const root = ReactDOM.createRoot(document.getElementById("root"));

root.render(

 <section>

 <button onClick={handleClick}>Click me</button>

 </section>

);

In this example, we define a function called handleClick that will be called when the button is

clicked. We then attach this function as an event handler to the onClick property of the <button>

component. Whenever the button is clicked, React will invoke the handleClick function.

Compared to using addEventListener and removeEventListener in traditional JavaScript, React

abstracts away some of the complexities. With React’s event handling, you don’t have to worry

about manually attaching and detaching event listeners to/from DOM elements. React manag-

es the event delegation and provides a more declarative approach to handling events within

components.

React implements event delegation by default to optimize performance. Instead of

attaching event handlers to each individual element, React attaches a single event

handler to the root of the application (or a parent component). When an event is

triggered on a child element, it bubbles up the component tree until it reaches the

parent with the event handler. React’s synthetic event system then determines which

component should handle the event based on the target property of the event object.

This allows React to efficiently manage events without needing to attach handlers

to every single element.

Chapter 2 29

By using this approach, you can easily pass events to child components, handle them in parent

components, or even propagate events through multiple levels of nested components. This helps

in building a modular and reusable component architecture. We’ll get to see this in action in the

next chapter.

Note that React promotes a unidirectional data flow, which means that data flows from parent

components to child components. To pass data or information from child components back to

the parent component, you can define callbacks as props and invoke them with the necessary

data. In the upcoming chapters of this book, we will delve deeper into event handling in React

and how to create custom callbacks.

Mapping collections to elements
Sometimes, you need to write JavaScript expressions that change the structure of your markup.

In the preceding section, you learned how to use JavaScript expression syntax to dynamically

change the property values of JSX elements. What about when you need to add or remove ele-

ments based on JavaScript collections?

The best way to dynamically control JSX elements is to map them from a collection. Let’s look at

an example of how this is done:

import * as ReactDOM from "react-dom";

const array = ["First", "Second", "Third"];

const object = {

 first: 1,

 second: 2,

 third: 3,

};

In addition to the onClick event, React supports a wide range of other events, such

as onChange, onSubmit, onMouseOver, and all standard events. You can attach event

handlers to various elements like buttons, input fields, checkboxes, and so on.

Throughout the book, when I refer to a JavaScript collection, I’m referring to both

plain objects and arrays, or, more generally, anything that’s iterable.

Rendering with JSX30

const root = ReactDOM.createRoot(document.getElementById("root"));

root.render(

 <section>

 <h1>Array</h1>

 {array.map((i) => (

 <li key={i}>{i}

))}

 <h1>Object</h1>

 {Object.keys(object).map((i) => (

 <li key={i}>

 {i}:

 {object[i]}

))}

 </section>

);

The first collection is an array called array, populated with string values. Moving down to the JSX

markup, you can see the call to array.map(), which returns a new array. The mapping function

actually returns a JSX element (), meaning that each item in the array is now represented

in the markup.

The object collection uses the same technique, except that you have to call Object.keys() and

then map this array. What’s nice about mapping collections to JSX elements on the page is that

you can control the structure of React components based on the collected data.

The result of evaluating this expression is an array. Don’t worry – JSX knows how to

render arrays of elements. For enhanced performance, it is crucial to assign a unique

key prop to each component within the array, enabling React to efficiently manage

updates during subsequent re-renders.

Chapter 2 31

This means that you don’t have to rely on imperative logic to control the UI.

Here’s what the rendered output looks like:

Figure 2.5: The result of mapping JavaScript collections to HTML elements

JavaScript expressions bring JSX content to life. React evaluates expressions and updates the

HTML content based on what has already been rendered and what has changed. Understanding

how to utilize these expressions is important because it’s one of the most common day-to-day

activities of any React developer.

Now, it’s time to learn how to group together JSX markup without relying on HTML tags to do so.

Building fragments of JSX
Fragments are a way to group together chunks of markup without having to add unnecessary struc-

ture to your page. For example, a common approach is to have a React component return content

wrapped in a <div> element. This element serves no real purpose and adds clutter to the DOM.

Let’s look at an example. Here are two versions of a component. One uses a wrapper element, and

the other uses the new fragment feature:

import * as ReactDOM from "react-dom";

import WithoutFragments from "./WithoutFragments";

import WithFragments from "./WithFragments";

const root = ReactDOM.createRoot(document.getElementById("root"));

root.render(

Rendering with JSX32

 <div>

 <WithoutFragments />

 <WithFragments />

 </div>

);

The two elements rendered are <WithoutFragments> and <WithFragments>. Here’s what they

look like when rendered:

Figure 2.6: Fragments help render fewer HTML tags without any visual difference

Let’s compare the two approaches now.

Using wrapper elements
The first approach is to wrap sibling elements in <div>. Here’s what the source looks like:

export default function WithoutFragments() {

 return (

 <div>

 <h1>Without Fragments</h1>

 <p>

 Adds an extra <code>div</code> element.

 </p>

 </div>

);

}

The essence of this component is the <h1> and <p> tags. Yet, in order to return them from render(),

you have to wrap them with <div>. Indeed, inspecting the DOM using your browser dev tools

reveals that <div> does nothing but add another level of structure:

Chapter 2 33

Figure 2.7: Another level of structure in the DOM

Now, imagine an app with lots of these components—that’s a lot of pointless elements! Let’s see

how to use fragments to avoid unnecessary tags.

Using fragments
Let’s take a look at the WithFragments component, where we have avoided using unnecessary tags:

export default function WithFragments() {

 return (

 <>

 <h1>With Fragments</h1>

 <p>Doesn't have any unused DOM elements.</p>

 </>

);

}

Instead of wrapping the component content in <div>, the <> element is used. This is a special type

of element that indicates that only its children need to be rendered. The <> is a shorthand for React.

Fragment component. If you need to pass a key property to the fragment, you can’t use <> syntax.

You can see the difference compared to the WithoutFragments component if you inspect the DOM:

Figure 2.8: Less HTML in the fragment

With the advent of fragments in JSX markup, we have less HTML rendered on the page because

we don’t have to use tags such as <div> for the sole purpose of grouping elements together. In-

stead, when a component renders a fragment, React knows to render the fragment’s child element

wherever the component is used.

Rendering with JSX34

So fragments enable React components to render only the essential elements; no more will ele-

ments that serve no purpose appear on the rendered page.

Summary
In this chapter, you learned about the basics of JSX, including its declarative structure, which leads

to more maintainable code. Then, you wrote some code to render some basic HTML and learned

about describing complex structures using JSX; every React application has at least some structure.

Then, you spent some time learning about extending the vocabulary of JSX markup by implement-

ing your own React components, which is how you design your UI as a series of smaller pieces

and glue them together to form the whole. Then, you learned how to bring dynamic content into

JSX element properties and how to map JavaScript collections to JSX elements, eliminating the

need for imperative logic to control the UI display. Finally, you learned how to render fragments

of JSX content, which prevents unnecessary HTML elements from being used.

Now that you have a feel for what it’s like to render UIs by embedding declarative XML in your

JavaScript modules, it’s time to move on to the next chapter, where we’ll take a deeper look at

components, properties, and state.

3
Understanding React
Components and Hooks

In this chapter, we will delve into the React components and their fundamental aspects and

introduce you to the power of Hooks.

We will explore the essential concept of component data and how it shapes the structure of your

React applications. We will discuss two primary types of component data: properties and state.

Properties allow us to pass data to components, while state enables components to manage and

update their internal data dynamically. We will examine how these concepts apply to function

components and illustrate the mechanics of setting component state and passing properties.

In this chapter, we’ll cover the following topics:

•	 Introduction to React components

•	 What are component properties?

•	 What is component state?

•	 React Hooks

•	 Maintaining state using Hooks

•	 Performing initialization and cleanup actions

•	 Sharing data using context Hooks

•	 Memoization with Hooks

Understanding React Components and Hooks36

Technical requirements
The code for this chapter can be found here: https://github.com/PacktPublishing/React-

and-React-Native-5E/tree/main/Chapter03

Introduction to React components
React components are the building blocks of modern web and mobile applications. They encap-

sulate reusable sections of code that define the structure, behavior, and appearance of different

parts of a user interface. By breaking down the UI into smaller, self-contained components, React

enables developers to create scalable, maintainable, and interactive applications.

At its core, a React component is a JavaScript function or class that returns JSX syntax, which re-

sembles HTML markup. In this book, we will focus mostly on function components, as they have

become the preferred approach for building components in recent years. Function components are

simpler, more concise, and easier to understand compared to class components. They leverage the

power of JavaScript functions and utilize React Hooks to manage state and perform side effects.

One of the primary advantages of using components in React is their reusability. Components

can be reused across multiple parts of an application, reducing code duplication and increasing

development efficiency. Moreover, components promote a modular approach to development,

allowing developers to break down complex UIs into smaller, manageable pieces.

What are component properties?
In React, component properties, commonly known as props, allow us to pass data from a parent

component to its child components. Props provide a way to customize and configure components,

making them flexible and reusable. Props are read-only, meaning that the child component should

not modify them directly. Instead, the parent component can update the props value and trigger

a re-render of the child component with the updated data.

When defining a function component, you can access the props passed to it as a parameter:

const MyComponent = (props) => {

 return (

 <div>

 <h1>{props.title}</h1>

 <p>{props.description}</p>

 </div>

);

};

https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter03
https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter03

Chapter 3 37

In the above example, the MyComponent function component receives the props object as a pa-

rameter. We can access the individual props by using dot notation, such as props.title and

props.description, to render the data within the component’s JSX markup. It is also possible

to access props using destructuring:

const MyComponent = ({ title, description }) => {

 return (

 <div>

 <h1>{title}</h1>

 <p>{description}</p>

 </div>

);

};

As you can see, this approach is even cleaner and also allows us to use another destructuring

feature, default values, which we will discuss in this chapter.

Passing property values
React component properties are set by passing JSX attributes to the component when it is ren-

dered. In Chapter 7, Type Checking and Validation with TypeScript, I’ll go into more detail about

how to validate the property values that are passed to components. Now let’s create a couple of

components in addition to MyComponent that expect different types of property values:

const MyButton = ({ disabled, text }) => {

 return <button disabled={disabled}>{text}</button>;

};

This simple button component expects a Boolean disabled property and a string text property.

While we create components to show how we can pass the following props, you will notice how

we already pass these properties to the button HTML element:

•	 disabled property: we put into the button attribute with the name disabled

•	 text property: we pass to the button as a child attribute

It’s also important to know that any JavaScript expression you want to pass to the component

should be wrapped with curly braces.

Let’s create one more component that expects an array property value:

const MyList = ({ items }) => (

Understanding React Components and Hooks38

 {items.map((i) => (

 <li key={i}>{i}

))}

);

You can pass just about anything you want as a property value via JSX, just as long as it’s a valid

JavaScript expression. The MyList component accepts an items property, an array that is mapped

to elements.

Now, let’s write some code to set these property values:

import * as ReactDOM from "react-dom";

import MyButton from "./MyButton";

import MyList from "./MyList";

import MyComponent from "./MyComponent";

const root = ReactDOM.createRoot(document.getElementById("root"));

const appState = {

 text: "My Button",

 disabled: true,

 items: ["First", "Second", "Third"],

};

function render(props) {

 root.render(

 <main>

 <MyComponent

 title="Welcome to My App"

 description="This is a sample component."

 />

 <MyButton text={props.text} disabled={props.disabled} />

 <MyButton text="Another Button" disabled />

 <MyList items={props.items} />

 </main>

);

}

Chapter 3 39

render(appState);

setTimeout(() => {

 appState.disabled = false;

 appState.items.push("Fourth");

 render(appState);

}, 1000);

The render function looks like it’s creating new React component instances every time it’s called.

React is smart enough to figure out that these components already exist, and that it only needs

to figure out what the difference in output will be with the new property values. In this example,

the call to setTimeout causes a delay of 1 second. Then, the appState.disabled value is changed

to false and the appState.items array has a new value added to the end of it. The call to render

will re-render the components with new property values.

Another takeaway from this example is that you have an appState object that holds onto the

state of the application. Pieces of this state are then passed into components as properties when

the components are rendered. The state has to live somewhere and, in this case, it’s outside of

the component. We’ll explore this approach in depth, and why it’s important, in Chapter 12, State

Management in React.

I hope you noticed we’ve rendered another button where we passed props in a different way:

<MyButton text="Another Button" disabled />

This is a valid JSX expression and in case we want to pass constant values to the components, we

can pass strings without curly braces and pass the Boolean value true, just leaving the attribute

name in the component.

Default property values
In addition to passing data, we can also specify default values for props using the defaultProps

property. This is helpful when a prop is not provided, ensuring that the component still behaves

correctly:

const MyButton = ({ disabled, text }) => (

 <button disabled={disabled}>{text}</button>

);

Understanding React Components and Hooks40

MyButton.defaultProps = {

 disabled: false,

 text: "My Button",

};

In this case, if the parent component does not provide the text or disabled props, the component

will fall back to the default values specified in defaultProps.

As I mentioned before, with destructuring, we have a more convenient way to set up default props.

Let’s take a look at the updated example of the MyButton component:

const MyButton = ({ disabled = false, text = "My Button" }) => (

 <button disabled={disabled}>{text}</button>

);

Using destructuring, we can define props and set the default value right inside the function. It’s

cleaner and easy to see in cases when we have a big component with a lot of props.

In the upcoming sections, we will further dive into component state with Hooks, and other key

concepts.

What is component state?
In React, component state refers to the internal data held by a component. It represents the mu-

table values that can be used within the component and can be updated over time. State allows

components to keep track of information that can change, such as user input, API responses, or

any other data that needs to be dynamic and responsive.

State is a feature provided by React that enables components to manage and update their own

data. It allows components to re-render when the state changes, ensuring that the user interface

reflects the latest data.

To define state in a React component, you should use the useState hook inside of the component.

You can then access and modify the state within the component’s methods or JSX code. When

the state is updated, React will automatically re-render the component and its child components

to reflect the changes.

Before jumping to examples of using state in components, let’s briefly explore what a React hook is.

Chapter 3 41

React Hooks
React Hooks are a feature introduced in React 16.8 that allows you to use state and other React

features in functional components. Before Hooks, state management and lifecycle methods were

primarily used in class components. Hooks provide a way to achieve similar functionality in func-

tional components, making them more powerful and easier to write and understand.

Hooks are functions that enable you to “hook into” React’s internal features, such as state man-

agement, context, effects, and more. They are prefixed with the use keyword (such as useState,

useEffect, useContext, and so on). React provides several built-in Hooks, and you can also create

custom Hooks to encapsulate reusable stateful logic.

The most commonly used built-in Hooks are:

•	 useState: This hook allows you to add state to a functional component. It returns an array

with two elements: the current state value and a function to update the state.

•	 useEffect: This hook lets you perform side effects in your components, such as fetching

data, subscribing to events, or manually manipulating the DOM. It runs after every render

by default and can be used to handle component lifecycle events like when the component

is mounted, updated, or unmounted.

•	 useContext: This hook allows you to consume values from a React context. It provides a

way to access context values without nesting multiple components.

•	 useCallback and useMemo: These Hooks are used for performance optimization.

useCallback memoizes a function, preventing it from being recreated on every render,

while useMemo memoizes a value, recomputing it only when its dependencies change.

We will examine all these Hooks in this chapter and will use them throughout the book. Let’s

continue with state and explore how we can manage it with the useState Hook.

Maintaining state using Hooks
The first React Hook API that we’ll look at is called useState, which enables your functional React

components to be stateful. In this section, you’ll learn how to initialize state values and change

the state of a component using Hooks.

Initial state values
When our components are first rendered, they probably expect some state values to be set. This is

called the initial state of the component, and we can use the useState hook to set the initial state.

Understanding React Components and Hooks42

Let’s take a look at an example:

export default function App() {

 const [name] = React.useState("Mike");

 const [age] = React.useState(32);

 return (

 <>

 <p>My name is {name}</p>

 <p>My age is {age}</p>

 </>

);

}

The App component is a functional React component that returns JSX markup. But it’s also now

a stateful component, thanks to the useState hook. This example initializes two pieces of state,

name and age. This is why there are two calls to useState, one for each state value.

You can have as many pieces of state in your component as you need. The best practice is to have

one call to useState per state value. You could always define an object as the state of your com-

ponent using only one call to useState, but this complicates things because you have to access

state values through an object instead of directly. Updating state values is also more complicated

using this approach. When in doubt, use one useState hook per state value.

When we call useState, we get an array returned to us. The first value of this array is the state

value itself. Since we’ve used array-destructuring syntax here, we can call the value whatever we

want; in this case, it is name and age. Both of these constants have values when the component

is first rendered because we passed the initial state values for each of them to useState. Here’s

what the page looks like when it’s rendered:

Figure 3.1: Rendered output using values from state Hooks

Now that you’ve seen how to set the initial state values of your components, let’s learn about

updating these values.

Chapter 3 43

Updating state values
React components use state for values that change over time. The state values used by components

start off in one state, as we saw in the previous section, and then change in response to some

event: for example, the server responds to an API request with new data, or the user has clicked

a button or changed a form field.

To update the state, the useState hook provides an individual function for every piece of state,

which we can access from the returned array from the useState hook. The first item is the state

value and the second is the function used to update the value. Let’s take a look at an example:

function App() {

 const [name, setName] = React.useState("Mike");

 const [age, setAge] = React.useState(32);

 return (

 <>

 <section>

 <input value={name} onChange={(e) => setName(e.target.value)} />

 <p>My name is {name}</p>

 </section>

 <section>

 <input

 type="number"

 value={age}

 onChange={(e) => setAge(e.target.value)}

 />

 <p>My age is {age}</p>

 </section>

 </>

);

}

Just like the example from the initial state values section, the App component in this example has

two pieces of state: name and age. Unlike the previous example, this component uses two functions

to update each piece of state. These are returned from the call to useState. Let’s take a closer look:

const [name, setName] = React.useState("Mike");

const [age, setAge] = React.useState(32);

Understanding React Components and Hooks44

Now, we have two functions: setName and setAge: that can be used to update the state of our

component. Let’s take a look at the text input field that updates the name state:

<section>

 <input value={name} onChange={(e) => setName(e.target.value)} />

 <p>My name is {name}</p>

</section>

Whenever the user changes the text in the <input> field, the onChange event is triggered. The

handler for this event calls setName, passing it e.target.value as an argument. The argument

passed to setName is the new state value of name. The succeeding paragraph shows that the text

input is also updated with the new name value every time the user changes the text input.

Next, let’s look at the age number input field and how this value is passed to setAge:

<section>

 <input

 type="number"

 value={age}

 onChange={(e) => setAge(e.target.value)}

 />

 <p>My age is {age}</p>

</section>

The age field follows the exact same pattern as the name field. The only difference is that we’ve

made the input a number type. Any time the number changes, setAge is called with the updated

value in response to the onChange event. The following paragraph shows that the number input

is also updated with every change that is made to the age state.

Here is what the two inputs and their two corresponding paragraphs look like when they’re

rendered on the screen:

Chapter 3 45

Figure 3.2: Using Hooks to change state values

In this section, you learned about the useState hook, which is used to add state to functional

React components. Each piece of state uses its own hook and has its own value variable and its

own setter function. This greatly simplifies accessing and updating state in your components.

Any given state value should have an initial value so that the component can render correctly

the first time. To re-render functional components that use state Hooks, you can use the setter

functions that useState returns to update your state values as needed.

The next hook that you’ll learn about is used to perform initialization and cleanup actions.

Performing initialization and cleanup actions
Often, our React components need to perform actions when the component is created. For exam-

ple, a common initialization action is to fetch the API data that the component needs. Another

common action is to make sure that any pending API requests are canceled when the component

is removed. In this section, you’ll learn about the useEffect hook and how it can help you with

these two scenarios. You’ll also learn how to make sure that the initialization code doesn’t run

too often.

Fetching component data
The useEffect hook is used to run “side effects” in your component. Another way to think about

side-effect code is that functional components have only one job: returning JSX content to render.

If the component needs to do something else, such as fetching API data, this should be done in

a useEffect hook. For example, if you were to just make the API call as part of your component

function, you would likely introduce race conditions and other difficult-to-fix buggy behavior.

Understanding React Components and Hooks46

Let’s take a look at an example that fetches API data using Hooks:

function App() {

 const [id, setId] = React.useState("loading...");

 const [name, setName] = React.useState("loading...");

 const fetchUser = React.useCallback(() => {

 return new Promise((resolve) => {

 setTimeout(() => {

 resolve({ id: 1, name: "Mike" });

 }, 1000);

 });

 }, []);

 React.useEffect(() => {

 fetchUser().then((user) => {

 setId(user.id);

 setName(user.name);

 });

 });

 return (

 <>

 <p>ID: {id}</p>

 <p>Name: {name}</p>

 </>

);

}

The useEffect hook expects a function as an argument. This function is called after the com-

ponent finishes rendering, in a safe way that doesn’t interfere with anything else that React is

doing with the component under the covers. Let’s look at the pieces of this example more closely,

starting with the mock API function:

const fetchUser = React.useCallback(() => {

 return new Promise((resolve) => {

 setTimeout(() => {

Chapter 3 47

 resolve({ id: 1, name: "Mike" });

 }, 1000);

 });

}, []);

The fetchUser function is defined using the useCallback hook. This hook is used to memoize

the function, meaning that it will only be created once and will not be recreated on subsequent

renders unless the dependencies change. The useCallback accepts two arguments: the first is

the function we want to memorize and the second is the list of dependencies that will be used to

identify when React should re-create this function instead of using the memorized version. The

fetchUser function is passed an empty array ([]) as the dependency list. This means that the

function will only be created once during the initial render and won’t be recreated on subsequent

renders.

The fetchUser function returns a promise. The promise resolves a simple object with two prop-

erties, id and name. The setTimeout function delays the promise resolution for 1 second, so this

function is asynchronous, just as a normal fetch call would be.

Next, let’s look at the Hooks used by the App component:

const [id, setId] = React.useState("loading...");

const [name, setName] = React.useState("loading...");

React.useEffect(() => {

 fetchUser().then((user) => {

 setId(user.id);

 setName(user.name);

 });

});

As you can see, in addition to useCallback, we’re using two Hooks in this component: useState

and useEffect. Combining hook functionality like this is powerful and encouraged. First, we set

up the id and name states of the component. Then, useEffect is used to set up a function that

calls fetchUser and sets the state of our component when the promise resolves.

Understanding React Components and Hooks48

Here is what the App component looks like when it’s first rendered, using the initial state of id

and name:

Figure 3.3: Displaying the loading text until the data arrives

After 1 second, the promise returned from fetchUser is resolved with data from the API, which is

then used to update the ID and name states. This results in App being rerendered:

Figure 3.4: The state changes, removing the loading text and displaying returned values

There is a good chance that your users will navigate around your application while an API request

is still pending. The useEffect hook can be used to deal with canceling these requests.

Canceling actions and resetting state
There’s a good chance that, at some point, your users will navigate your app and cause compo-

nents to unmount before responses to their API requests arrive. Sometimes your component can

listen for some events and you should delete all listeners before unmounting the component to

avoid memory leaks. In general, it’s important to stop performing any background actions when

a related component is deleted from the screen.

Thankfully, the useEffect hook has a mechanism to clean up effects such as pending setInterval

when the component is removed. Let’s take a look at an example of this in action:

import * as React from "react";

function Timer() {

 const [timer, setTimer] = React.useState(100);

 React.useEffect(() => {

 const interval = setInterval(() => {

 setTimer((prevTimer) => (prevTimer === 0 ? 0 : prevTimer - 1));

Chapter 3 49

 }, 1000);

 return () => {

 clearInterval(interval);

 };

 }, []);

 return <p>Timer: {timer}</p>;

}

export default Timer;

This is a simple Timer component. It has the state timer, it sets up interval callback to update

timer inside useEffect(), and it renders the output with the current timer value. Let’s take a

closer look at the useEffect() hook:

React.useEffect(() => {

 const interval = setInterval(() => {

 setTimer((prevTimer) => (prevTimer === 0 ? 0 : prevTimer - 1));

 }, 1000);

 return () => {

 clearInterval(interval);

 };

}, []);

This effect creates an interval timer by calling the setInterval function with a callback, which

updates our timer state. The interesting thing you will notice here is that to the setTimer function,

we are passing a callback instead of a number. It’s a valid React API: when we need the previous

state value to use to calculate a new one, we can pass a callback where the first argument is the

current or ‘previous’ state value and we should return the new state value from this callback to

update our state.

Inside useEffect, we are also returning a function, which React runs when the component is

removed. In this example, the interval that is created by calling setInterval is cleared by calling

the function that we returned from useEffect, where we call clearInterval. Functions that you

return from useEffect will be triggered when the component is going to unmount.

Understanding React Components and Hooks50

Now, let’s look at the App component, which renders and removes the Timer component:

const ShowHideTimer = ({ show }) => (show ? <Timer /> : null);

function App() {

 const [show, setShow] = React.useState(false);

 return (

 <>

 <button onClick={() => setShow(!show)}>

 {show ? "Hide Timer" : "Show Timer"}

 </button>

 <ShowHideTimer show={show} />

 </>

);

}

The App component renders a button that is used to toggle the show state. This state value de-

termines whether or not the Timer component is rendered, but by using the ShowHideTimer

convenience component. If show is true, <Timer /> is rendered; otherwise, Timer is removed,

triggering our useEffect cleanup behavior.

Here’s what the screen looks like when it first loads:

Figure 3.5: A button used to initiate the state change

The Timer component isn’t rendered because the show state of the App component is false. Try

clicking on the show timer button. This will change the show state and render the Timer com-

ponent:

Figure 3.6: Displays the timer

Chapter 3 51

You can click on the Hide Timer button once more to remove the Timer component. Without the

cleanup interval that we added to useEffect, this will create new listeners every time the timer

is rendered, which will affect the memory leak.

React allows us to control when we want to run our effects. For example, when we want to all

API requests after the first render, or we want to perform effects when a particular state changes.

We’ll take a look at how to do this next.

Optimizing side-effect actions
By default, React assumes that every effect that is run needs to be cleaned up and it should be

run on every render. This typically isn’t the case. For example, you might have specific property

or state values that require cleanup and run one more time when they change. You can pass an

array of values to watch as the second argument to useEffect: for example, if you have a resolved

state that requires cleanup when it changes, you would write your effect code like this:

const [resolved, setResolved] = useState(false);

useEffect(() => {

 // ...the effect code...

 return () => {

 // ...the cleanup code

 };

}, [resolved]);

In this code, the effect will be triggered and only ever run if the resolved state value changes. If

the effect runs and the resolved state hasn’t changed, then the cleanup code will not run and the

original effect code will not run a second time. Another common case is never running the clean-

up code, except for when the component is removed. In fact, this is what we want to happen in

the example from the section on fetching user data. Right now, the effect runs after every render.

This means that we’re repeatedly fetching the user API data when all we really want is to fetch it

once when the component is first mounted.

Let’s make some modifications to the App component from the fetching component data requests

example:

React.useEffect(() => {

 fetchUser().then((user) => {

 setId(user.id);

Understanding React Components and Hooks52

 setName(user.name);

 });

}, []);

We’ve added a second argument to useEffect, an empty array. This tells React that there are

no values to watch and that we only want to run the effect once it is rendered and cleanup code

when the component is removed. We’ve also added console.count('fetching user') to the

fetchUser function. This makes it easier to look at the browser dev tools console and make sure

that our component data is only fetched once. If you remove the [] argument that is passed to

useEffect, you’ll notice that fetchUser is called several times.

In this section, you learned about side effects in React components. Effects are an important

concept, as they are the bridge between your React components and the outside world. One of

the most common use cases for effects is to fetch data that the component needs, when it is first

created, and then clean up after the component when it is removed.

Now, we’re going to look at another way to share data with React components: context.

Sharing data using context Hooks
React applications often have a few pieces of data that are global in nature. This means that sev-

eral components, possibly every component in an app, share this data: for example, information

about the currently logged-in user might be used in several places. This is where the Context API

comes in handy. The Context API provides a way to create a shared data store that can be accessed

by any component in the tree, regardless of its depth.

To utilize the Context API, we need to create a context using the createContext function from

the React library:

import { createContext } from 'react';

const MyContext = createContext();

In the example above, we create a context called MyContext using createContext. This creates a

context object that contains a Provider and a Consumer.

The Provider component is responsible for providing the shared data to its child components.

We wrap the relevant portion of the component tree with the Provider and pass the data using

the value prop:

<MyContext.Provider value={/* shared data */}>

Chapter 3 53

 {/* Child components */}

</MyContext.Provider>

Any component within the MyContext.Provider can access the shared data using the Consumer

component or the useContext hook. Let’s take a look at how to read context using a hook:

import React, { useContext } from 'react';

const MyComponent = () => {

 const value = useContext(MyContext);

 // Render using the shared data

};

By utilizing the Context API, we can avoid the prop-drilling problem where data needs to be

passed through multiple levels of components. It simplifies the process of sharing data and allows

components to access the shared data directly, making the code more readable and maintainable.

It’s worth noting that the Context API is not intended for all scenarios and should be used ju-

diciously. It is most useful for sharing data that is truly global or relevant to a large portion of

the component tree. For smaller-scale data sharing, props are still the recommended approach.

Memoization with Hooks
In React, function components are called on every render, which means that expensive compu-

tations and function creations can negatively impact performance. To optimize performance

and prevent unnecessary recalculations, React provides three Hooks: useMemo, useCallback, and

useRef. These Hooks allow us to memoize values, functions, and references, respectively.

useMemo Hook
The useMemo hook is used to memoize the result of a computation, ensuring that it is only recom-

puted when the dependencies have changed. It takes a function and an array of dependencies

and returns the memoized value.

Here’s an example of using the useMemo hook:

import { useMemo } from 'react';

const Component = () => {

 const expensiveResult = useMemo(() => {

Understanding React Components and Hooks54

 // Expensive computation

 return computeExpensiveValue(dependency);

 }, [dependency]);

 return <div>{expensiveResult}</div>;

};

In this example, the expensiveResult value is memoized using useMemo. The computation inside

the function is only executed when the dependency value changes. If the dependency remains the

same, the previously memoized value is returned instead of recomputing the result.

useCallback hook
We already explored useCallback hook in this chapter, but I want to highlight one important

use case. When a function component renders, all of its functions are recreated, including any

inline callbacks defined within the component. This can lead to unnecessary re-renders of child

components that receive these callbacks as props, as they perceive the callback as a new reference

and trigger re-renders. Let’s take a look at the example:

const MyComponent = () => {

 return <MyButton onClick={() => console.log("click")} />;

};

In this example, the inline function we provide to the onClick prop will be created every time

MyComponent renders. It means the MyButton component will receive a new function reference

each time, and as we already know, it will result in a new render for the MyButton component.

Here’s an example that demonstrates the use of the useCallback hook:

const MyComponent = () => {

 const clickHandler = React.useCallback(() => {

 console.log("click");

 }, []);

 return <MyButton onClick={clickHandler} />;

};

In this example, the clickHandler function is memoized using useCallback. The empty de-

pendency array [] indicates that the function has no dependencies and should remain constant

throughout the component’s lifecycle.

Chapter 3 55

As a result, the same function instance is provided to MyButton on each render of MyComponent,

preventing unnecessary re-renders of the child.

useRef hook
The useRef hook allows us to create a mutable reference that persists across component renders.

It is commonly used to store values or references that need to be preserved between renders

without triggering re-renders. Additionally, useRef can be used to access the DOM node or a

React component instance:

const Component = () => {

 const inputRef = useRef();

 const handleButtonClick = () => {

 inputRef.current.focus();

 };

 return (

 <div>

 <input type="text" ref={inputRef} />

 <button onClick={handleButtonClick}>Focus Input</button>

 </div>

);

};

In this example, the inputRef is created using useRef, and it is assigned to the ref attribute of

the input element. This allows us to access the DOM node using the inputRef.current property.

In the handleButtonClick function, we call the focus method on the inputRef.current to focus

the input element when the button is clicked.

By using useRef to access the DOM node, we can interact with the underlying DOM elements

directly without triggering re-renders of the component.

By leveraging memoization with the useMemo, useCallback, and useRef Hooks, we can optimize

the performance of our React applications by avoiding unnecessary computations, preventing

unnecessary re-renders, and preserving values and references across renders. This results in a

smoother user experience and more efficient use of resources.

Understanding React Components and Hooks56

Summary
This chapter introduced you to React components and React Hooks. You learned about component

properties or props by implementing code that passed property values from JSX to the compo-

nent. Next, you found out what state is and how to manipulate it with the useState hook. Then,

you learned about useEffect, which enables lifecycle management in functional React compo-

nents, such as fetching API data when a component is mounted and cleaning up any pending

async operations when it is removed. Then, you learned how to use the useContext() hook in

order to access global application data. Lastly, you learned about memoization with the useMemo,

useCallback, and useMemo Hooks.

In the following chapter, you’ll learn about event handling with React components.

4
Event Handling in the
React Way

The focus of this chapter is event handling. React has a unique approach to handling events:

declaring event handlers in JSX. We’ll get things started by looking at how event handlers for

particular elements are declared in JSX. Then, we’ll explore inline and higher-order event han-

dler functions.

Afterward, you’ll learn how React maps event handlers to DOM elements under the hood. Finally,

you’ll learn about the synthetic events that React passes to event handler functions and how

they’re pooled for performance purposes. Once you’ve completed this chapter, you’ll be comfort-

able implementing event handlers in your React components. At that point, your applications

come to life for your users because they are then able to interact with them.

The following topics are covered in this chapter:

•	 Declaring event handlers

•	 Declaring inline event handlers

•	 Binding handlers to elements

•	 Using synthetic event objects

•	 Understanding event pooling

Technical requirements
The code presented in this chapter can be found at the following link: https://github.com/
PacktPublishing/React-and-React-Native-5E/tree/main/Chapter04

https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter04
https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter04

Event Handling in the React Way58

Declaring event handlers
The differentiating factor with event handling in React components is that it’s declarative. Com-

pare this with something such as jQuery, where you have to write imperative code that selects

the relevant DOM elements and attaches event handler functions to them.

The advantage of the declarative approach to event handlers in JSX markup is that they’re part of

the UI structure. Not having to track down code that assigns event handlers is mentally liberating.

In this section, you’ll write a basic event handler so that you can get a feel for the declarative

event handling syntax found in React applications. Then, you’ll learn how to use generic event

handler functions.

Declaring handler functions
Let’s take a look at a basic component that declares an event handler for the click event of an

element:

function MyButton(props) {

 const clickHandler = () => {

 console.log("clicked");

 };

 return <button onClick={clickHandler}>{props.children}</button>;

}

The event handler clickHandler function is passed to the onClick property of the <button> ele-

ment. By looking at this markup, you can see exactly which code will run when the button is clicked.

Next, let’s take a look at how to respond to more than one type of event using different event

handlers with the same element.

View the official React documentation for the full list of supported event property

names at https://react.dev/reference/react-dom/components/common.

https://react.dev/reference/react-dom/components/common

Chapter 4 59

Multiple event handlers
What I really like about the declarative event handler syntax is that it’s easy to read when there’s

more than one handler assigned to an element. Sometimes, for example, there are two or three

handlers for an element. Imperative code is difficult to work with for a single event handler, let

alone several of them. When an element needs more handlers, it’s just another JSX attribute. This

scales well from a code-maintainability perspective, as this example shows:

function MyInput() {

 const onChange = () => {

 console.log("changed");

 };

 const onBlur = () => {

 console.log("blured");

 };

 return <input onChange={onChange} onBlur={onBlur} />;

}

This <input> element could have several more event handlers and the code would be just as

readable.

As you keep adding more event handlers to your components, you’ll notice that a lot of them do

the same thing. Next, you’ll learn about inline event handler functions.

Declaring inline event handlers
The typical approach to assigning handler functions to JSX properties is to use a named function.

However, sometimes, you might want to use an inline function, where the function is defined

as part of the markup. This is done by assigning an arrow function directly to the event property

in the JSX markup:

function MyButton(props) {

 return (

 <button onClick={(e) => console.log("clicked", e)}>

 {props.children}

 </button>

);

}

Event Handling in the React Way60

The main use of inlining event handlers like this is when you have a static parameter value that

you want to pass to another function. In this example, you’re calling console.log with the clicked

string. You could have set up a special function for this purpose outside of the JSX markup by

creating a new function or by using a higher-order function. But then you would have to think

of yet another name for yet another function. Inlining is just easier sometimes.

Next, you’ll learn about how React binds handler functions to the underlying DOM elements in

the browser.

Binding handlers to elements
When you assign an event handler function to an element in JSX, React doesn’t actually attach

an event listener to the underlying DOM element. Instead, it adds the function to an internal

mapping of functions. There’s a single event listener on the document for the page. As events

bubble up through the DOM tree to the document, the React handler checks to see whether any

components have matching handlers. The process is illustrated here:

Figure 4.1: The event handler cycle

Why does React go through all of this trouble, you might ask? It’s the same principle that I’ve been

covering in the last few chapters: keep the declarative UI structures separated from the DOM as

much as possible. The DOM is merely a render target; React’s architecture allows it to remain

agnostic about the final rendering destination and event system.

Chapter 4 61

For example, when a new component is rendered, its event handler functions are simply added to

the internal mapping maintained by React. When an event is triggered and it hits the document

object, React maps the event to the handlers. If a match is found, it calls the handler. Finally,

when the React component is removed, the handler is simply removed from the list of handlers.

None of these DOM operations actually touch the DOM. It’s all abstracted by a single event

listener. This is good for performance and the overall architecture (in other words, keeping the

render target separate from the application code).

In the following section, you’ll learn about the synthetic event implementation used by React to

ensure good performance and safe asynchronous behavior.

Using synthetic event objects
When you attach an event handler function to a DOM element using the native addEventListener

function, the callback will get an event argument passed to it. Event handler functions in React are

also passed an event argument but it’s not the standard event instance. It’s called SyntheticEvent

and it’s a simple wrapper for native event instances.

Synthetic events serve two purposes in React:

•	 They provide a consistent event interface, normalizing browser inconsistencies.

•	 They contain information that’s necessary for propagation to work.

Here’s a diagram of the synthetic event in the context of a React component:

Figure 4.2: How synthetic events are created and processed

Event Handling in the React Way62

When a DOM element that is part of a React component dispatches an event, React will handle

the event because it sets up its own listeners for them. Then, it will either create a new synthetic

event or reuse one from the pool, depending on availability. If there are any event handlers de-

clared for the component that match the DOM event that was dispatched, they will run with the

synthetic event passed to them.

The event object in React has properties and methods similar to those in native JavaScript events.

You can access properties such as event.target to retrieve the DOM element that triggered the

event, or event.currentTarget to refer to the element to which the event handler is attached.

Additionally, the event object provides methods like event.preventDefault() to prevent the

default behavior associated with the event, such as form submissions or link clicks. You can also

use event.stopPropagation() to stop the event from propagating further up the component

tree, preventing event bubbling.

Event propagation works differently in React compared to traditional JavaScript event handling.

In the traditional approach, events typically bubble up through the DOM tree, triggering handlers

on ancestor elements.

In React, event propagation is based on the component hierarchy rather than the DOM hierarchy.

When an event occurs in a child component, React captures the event at the root of the component

tree and then traverses down to the specific component that triggered the event. This approach,

known as event delegation, simplifies event handling by centralizing the event logic at the root

of the component tree.

React’s event delegation provides several benefits. First, it reduces the number of event listeners

attached to individual DOM elements, resulting in improved performance. Second, it allows you

to handle events for dynamically created or removed elements without worrying about attaching

or detaching event listeners manually.

In the next section, you’ll see how these synthetic events are pooled for performance reasons and

the implications of this on asynchronous code.

Understanding event pooling
One challenge of wrapping native event instances is that it can cause performance issues. Every

synthetic event wrapper that’s created will also need to be garbage collected at some point, which

can be expensive in terms of CPU time.

Chapter 4 63

For example, if your application only handles a few events, this wouldn’t matter much. But even

by modest standards, applications respond to many events, even if the handlers don’t actually

do anything with them. This is problematic if React constantly has to allocate new synthetic

event instances.

React deals with this problem by allocating a synthetic instance pool. Whenever an event is

triggered, it takes an instance from the pool and populates its properties. When the event handler

has finished running, the synthetic event instance is released back into the pool, as shown here:

Figure 4.3: Synthetic events are reused to save memory resources

This prevents the garbage collector from running frequently when a lot of events are triggered.

The pool keeps a reference to the synthetic event instances, so they’re never eligible for garbage

collection. React never has to allocate new instances either.

However, there is one gotcha that you need to be aware of. It involves accessing the synthetic

event instances from asynchronous code in your event handlers. This is an issue because, as soon

as the handler has finished running, the instance goes back into the pool. When it goes back into

the pool, all of its properties are cleared.

Here’s an example that shows how this can go wrong:

function fetchData() {

 return new Promise((resolve) => {

 setTimeout(() => {

When the garbage collector is running, none of your JavaScript code is able to run.

This is why it’s important to be memory-efficient; frequent garbage collection means

less CPU time for code that responds to user interactions.

Event Handling in the React Way64

 resolve();

 }, 1000);

 });

}

function MyButton(props) {

 function onClick(e) {

 console.log("clicked", e.currentTarget.style);

 fetchData().then(() => {

 console.log("callback", e.currentTarget.style);

 });

 }

 return <button onClick={onClick}>{props.children}</button>;

}

The second call to console.log is attempting to access a synthetic event property from an asyn-

chronous callback that doesn’t run until the event handler completes, which causes the event to

empty its properties. This results in a warning and an undefined value.

In this section, you learned that events are pooled for performance reasons, which means that

you should never access event objects in an asynchronous way.

Summary
This chapter introduced you to event handling in React. The key differentiator between React

and other approaches to event handling is that handlers are declared in JSX markup. This makes

tracking down which elements handle which events much simpler.

You learned that having multiple event handlers on a single element is a matter of adding new

JSX properties. Then, you learned about inline event handler functions and their potential use, as

well as how React actually binds a single DOM event handler to the document object.

The aim of this example is to illustrate how things can break when you write asyn-

chronous code that interacts with events. Just don’t do it!

Chapter 4 65

Synthetic events are abstractions that wrap native events; you learned why they’re necessary and

how they’re pooled for efficient memory consumption.

In the next chapter, you’ll learn how to create components that are reusable for a variety of pur-

poses. Instead of writing new components for each use case that you encounter, you’ll learn the

skills necessary to refactor existing components so that they can be used in more than one context.

5
Crafting Reusable Components

The aim of this chapter is to show you how to implement React components that serve more

than just one purpose. After reading this chapter, you’ll feel confident about how to compose

application features.

The chapter starts with a brief look at HTML elements and how they work in terms of helping

to implement features versus having a high level of utility. Then, you’ll see the implementation

of a monolithic component and discover the issues that it will cause down the road. The next

section is devoted to re-implementing the monolithic component in such a way that the feature

is composed of smaller components.

Finally, the chapter ends with a discussion of rendering trees of React components and gives you

some tips on how to avoid introducing too much complexity as a result of decomposing com-

ponents. I’ll close the final section by reiterating the concept of high-level feature components

versus utility components.

The following topics will be covered in this chapter:

•	 Reusable HTML elements

•	 The difficulty with monolithic components

•	 Refactoring component structures

•	 Render props

•	 Rendering component trees

Crafting Reusable Components68

Technical requirements
You can find the code files for this chapter on GitHub at https://github.com/PacktPublishing/

React-and-React-Native-5E/tree/main/Chapter05.

Reusable HTML elements
Let’s think about HTML elements for a moment. Depending on the type of HTML element, it’s

either feature-centric or utility-centric. Utility-centric HTML elements are more reusable than

feature-centric HTML elements. For example, consider the <section> element. This is a generic

element that can be used just about anywhere but its primary purpose is to compose the struc-

tural aspects of a feature: the outer shell of the feature and the inner sections of the feature. This

is where the <section> element is most useful.

On the other side of the fence, you have elements such as <p>, , and <button>. These el-

ements provide a high level of utility because they’re generic by design. You’re supposed to use

<button> elements whenever you have something that’s clickable by the user, resulting in an

action. This is a level lower than the concept of a feature.

While it’s easy to talk about HTML elements that have a high level of utility versus those that are

geared toward specific features, the discussion is more detailed when data is involved. HTML is

static markup; React components combine static markup with data. The question is, how do you

make sure that you’re creating the right feature-centric and utility-centric components?

The aim of this chapter is to find out how to go from a monolithic React component that defines

a feature to a smaller feature-centric component combined with utility components.

The diffculty with monolithic components
If you could implement just one component for any given feature, it would simplify your job. At the

very least, there wouldn’t be many components to maintain, and there wouldn’t be many commu-

nication paths for data to flow through because everything would be internal to the component.

However, this idea doesn’t work for a number of reasons. Having monolithic feature components

makes it difficult to coordinate any kind of team development effort, such as version control,

merge conflicts, and parallel development. The bigger the monolithic components become, the

more difficult they are to refactor into something better later on.

https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter05
https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter05

Chapter 5 69

There’s also the problem of feature overlap and feature communication. Overlap happens because

of similarities between features; it’s unlikely that an application will have a set of features that

are completely unique to one another. That would make the application very difficult to learn and

use. Component communication essentially means that the state of something in one feature will

impact the state of something in another feature. State is difficult to deal with, and even more so

when there is a lot of state packaged up in a monolithic component.

The best way to learn how to avoid monolithic components is to experience one firsthand. You’ll

spend the remainder of this section implementing a monolithic component. In the following

section, you’ll see how this component can be refactored into something a little more sustainable.

The JSX markup
The monolithic component we’re going to implement is a feature that lists articles. It’s just for

illustrative purposes, so we don’t want to go overboard on the size of the component. It’ll be

simple yet monolithic. The user can add new items to the list, toggle the summary of items in

the list, and remove items from the list.

Here is the JSX markup of the component:

<section>

 <header>

 <h1>Articles</h1>

 <input placeholder="Title" value={title} onChange={onChangeTitle}
/>

 <input

 placeholder="Summary"

 value={summary}

 onChange={onChangeSummary}

 />

 <button onClick={onClickAdd}>Add</button>

 </header>

 <article>

 {articles.map((i) => (

 <li key={i.id}>

 <a

 href={'#${i.id}'}

 title="Toggle Summary"

Crafting Reusable Components70

 onClick={() => onClickToggle(i.id)}

 >

 {i.title}

 <button

 href={'#${i.id}'}

 title="Remove"

 onClick={() => onClickRemove(i.id)}

 >

 ✗

 </button>

 <p style={{ display: i.display }}>{i.summary}</p>

))}

 </article>

 </section>

This is definitely more JSX than is necessary in one place. We’ll improve on this in the following

section, but for now, let’s implement the initial state for this component.

Initial state
Now, let’s look at the initial state of this component:

 const [articles, setArticles] = React.useState([

 {

 id: id.next(),

 title: "Article 1",

 summary: "Article 1 Summary",

 display: "none",

 },

 {

 id: id.next(),

 title: "Article 2",

 summary: "Article 2 Summary",

 display: "none",

 },

Chapter 5 71

]);

 const [title, setTitle] = React.useState("");

 const [summary, setSummary] = React.useState("");

The state consists of an array of articles, a title string, and a summary string. Each article object

in the articles array has several string fields to help render the article and an id field, which is

a number. The number is generated by id.next().

Let’s take a look at how this works:

const id = (function* () {

 let i = 1;

 while (true) {

 yield i;

 i += 1;

 }

})();

The id constant is a generator. It is created by defining an inline generator function and calling

it right away. This generator will yield numbers infinitely. So, calling id.next() the first time

returns 1, the next is 2, and so on. This simple utility will come in handy when it’s time to add

new articles and we need a new unique ID.

Event handler implementation
At this point, you have the initial state and the JSX of the component. Now, it’s time to implement

the event handlers:

 const onChangeTitle = useCallback((e) => {

 setTitle(e.target.value);

 }, []);

 const onChangeSummary = useCallback((e) => {

 setSummary(e.target.value);

 }, []);

The onChangeTitle() and onChangeSummary() methods use the hook’s setState() to update

the title and summary state values, respectively. The new values come from the target.value

property of the event argument, which is the value that the user types into the text input:

 const onClickAdd = useCallback(() => {

Crafting Reusable Components72

 setArticles((state) => [

 ...state,

 {

 id: id.next(),

 title: title,

 summary: summary,

 display: "none",

 },

]);

 setTitle("");

 setSummary("");

 }, [summary, title]);

The onClickAdd() method adds a new article to the articles state. This state value is an array.

We use the spread operator to build a new array from the existing array ([...state]), and the

new object gets added to the end of the new array. The reason we’re building a new array and

passing it to setArticles() is so that there are no surprises. In other words, we’re treating state

values as immutable so that other code that updates the same state doesn’t accidentally cause

problems. Next, we’ll use a handler to remove the article:

 const onClickRemove = useCallback((id) => {

 setArticles((state) =>

 state.filter((article) => article.id !== id)

);

 }, []);

The onClickRemove() method removes the article with the given ID from the articles state.

It does this by calling filter() on the array, which returns a new array, so the operation is im-

mutable. The filter removes the object with the given ID:

 const onClickToggle = useCallback((id) => {

 setArticles((state) => {

 const articles = [...state];

 const index = articles.findIndex((article) => article.id === id);

 articles[index] = {

 ...articles[index],

 display: articles[index].display ? "" : "none",

 };

Chapter 5 73

 return articles;

 });

 }, []);

The onClickToggle() method toggles the visibility of the article with the given ID. We carry out

two immutable operations in this method. First, we build a new articles array. Then, based on

the index of the given ID, we replace the article object at the index with a new object. We use the

object spread operator to fill in the properties ({...articles[index]}), and then the display

property value is toggled based on the existing display value.

Here’s a screenshot of the output rendered:

Figure 5.1: Rendered articles

At this point, we have a component that does everything that we need our feature to do. However,

it’s monolithic and difficult to maintain. Imagine if we had other places in our app that use the

same pieces of MyFeature. They have to re-invent them because they cannot be shared. In the

following section, we’ll work on breaking down MyFeature into smaller reusable components.

Refactoring component structures
You have a monolithic feature component: now what? Let’s make it better.

In this section, you’ll learn how to take the feature component that you just implemented in the

preceding section and split it into more maintainable components. You’ll start with the JSX, as this

is probably the best refactor starting point. Then, you’ll implement new components for the feature.

Next, you’ll make these new components functional instead of class-based. Finally, you’ll learn

how to use render props to reduce the number of direct component dependencies in your ap-

plication, and how to remove classes entirely by using hooks to manage state within functional

components.

Crafting Reusable Components74

Starting with the JSX
The JSX of any monolithic component is the best starting point for figuring out how to refactor

it into smaller components. Let’s visualize the structure of the component that we’re currently

refactoring:

Figure 5.2: Visualization of the JSX that makes up a React component

The top part of the JSX is the form controls, so this could easily become its own component:

<header>

 <h1>Articles</h1>

 <input

 placeholder="Title"

 value={title}

 onChange={onChangeTitle} />

 <input

 placeholder="Summary"

 value={summary}

 onChange={onChangeSummary} />

 <button onClick={onClickAdd}>Add</button>

</header>;

Next, you have the list of articles:

 {articles.map((i) => (

 <li key={i.id}>

Chapter 5 75

 <a

 href={`#${i.id}`}

 title="Toggle Summary"

 onClick={() => onClickToggle(i.id)}

 >

 {i.title}

 <button

 href={'#${i.id}'}

 title="Remove"

 onClick={() => onClickRemove(i.id)}

 >

 ✗

 </button>

 <p style={{ display: i.display }}>{i.summary}</p>

))}

Within this list, there’s potential for an article component, which would be everything in the

 tag. Let’s try building this next.

Implementing an article list component
Here’s what the ArticleList component implementation looks like:

function ArticleList({ articles, onClickToggle, onClickRemove }) {

 return (

 {articles.map((i) => (

 <li key={i.id}>

 <a

 href={'#${i.id}'}

 title="Toggle Summary"

 onClick={() => onClickToggle(i.id)}

 >

 {i.title}

Crafting Reusable Components76

 <button

 href={'#${i.id}'}

 title="Remove"

 onClick={() => onClickRemove(i.id)}

 >

 ✗

 </button>

 <p style={{ display: i.display }}>{i.summary}</p>

))}

);

}

We’re taking the relevant JSX out of the monolithic component and putting it here. Now, let’s see

what the feature component of JSX looks like:

 <section>

 <header>

 <h1>Articles</h1>

 <input placeholder="Title" value={title} onChange={onChangeTitle}
/>

 <input

 placeholder="Summary"

 value={summary}

 onChange={onChangeSummary}

 />

 <button onClick={onClickAdd}>Add</button>

 </header>

 <ArticleList

 articles={articles}

 onClickRemove={onClickRemove}

 onClickToggle={onClickToggle}

 />

 </section>

Chapter 5 77

The list of articles is now rendered by the ArticleList component. The list of articles to render

is passed to this component as a property along with two of the event handlers.

Now that we have an ArticleList component, let’s see whether we can further break it down

into smaller reusable components.

Implementing an article item component
After implementing the article list component, you might decide that it’s a good idea to break

this component.

Another way to look at it is this: if it turns out that we don’t actually need the item as its own

component, this new component doesn’t introduce much indirection or complexity. Without

further ado, here’s the article item component:

function ArticleItem({ article, onClickRemove }) {

 const [isOpened, setIsOpened] = React.useState(article.display !==
"none");

 const onClickToggle = React.useCallback(() => {

 setIsOpened((state) => !state);

 }, []);

 return (

 <a href={'#${article.id}'} title="Toggle Summary"
onClick={onClickToggle}>

 {article.title}

 <button

 href={'#${article.id}'}

 title="Remove"

Why are we passing event handlers to a child component? The reason is so that the

ArticleList component doesn’t have to worry about the state or how the state

changes. All it cares about is rendering content and making sure the appropriate

event callbacks are hooked up to the appropriate DOM elements. This is a container

component concept that I’ll expand upon later in this chapter.

Crafting Reusable Components78

 onClick={() => onClickRemove(article.id)}

 >

 ✗

 </button>

 <p style={{ display: isOpened ? "block" : "none" }}>{article.
summary}</p>

);

}

Essentially, the component remains unchanged except for one enhancement: we have relocated

the logic for expanding and collapsing the article to the ArticleItem component, which offers

several advantages. Firstly, we reduced the original MyFeature component, since it doesn’t need

to know when we hide or expand an article at all. Secondly, we have improved the performance of

the application due to the fact that when expanding an article, we no longer recreate the array of

articles using the spread operator but only change the state locally. As a result, when expanding

the article, the list of articles remains the same and React does not re-render the page, but only

one component is re-rendered.

Here’s the new ArticleItem component being rendered by the ArticleList component:

function ArticleList({ articles, onClickRemove }) {

 return (

 {articles.map((article) => (

 <ArticleItem

 key={article.id.value}

 article={article}

 onClickRemove={onClickRemove}

 />

))}

);

}

Do you see how this list just maps the list of articles? What if you wanted to implement another

article list that does some filtering too? If so, it’s beneficial to have a reusable ArticleItem com-

ponent. Next, we’ll move the add article markup into its own component.

Chapter 5 79

Implementing an AddArticle component
Now that we’re done with the article list, it’s time to think about the form controls used to add

a new article. Let’s implement a component for this aspect of the feature:

function AddArticle({

 name,

 title,

 summary,

 onChangeTitle,

 onChangeSummary,

 onClickAdd,

}) {

 return (

 <section>

 <h1>{name}</h1>

 <input placeholder="Title" value={title} onChange={onChangeTitle} />

 <input placeholder="Summary" value={summary}
onChange={onChangeSummary} />

 <button onClick={onClickAdd}>Add</button>

 </section>

);

}

Now, our feature component only needs to render <AddArticle> and <ArticleList> components:

<section>

 <AddArticle

 name="Articles"

 title={title}

 summary={summary}

 onChangeTitle={onChangeTitle}

 onChangeSummary={onChangeSummary}

 onClickAdd={onClickAdd}

 />

 <ArticleList articles={articles} onClickRemove={onClickRemove} />

</section>

Crafting Reusable Components80

The focus of this component is on the feature data, while it defers to other components for ren-

dering UI elements. In the next section, we’ll look at how render props make it possible to pass

components around as properties instead of directly importing them as dependencies.

Render props
Imagine implementing a feature that is composed of several smaller components, like what

you’ve been working on in this chapter. The MyFeature component depends on ArticleList

and AddArticle. Now, imagine using MyFeature in different parts of your application where it

makes sense to use a different implementation of ArticleList or AddArticle. The fundamental

challenge is substituting one component for another.

Render props are a nice way to address this challenge. The idea is that you pass a property to your

component whose value is a function that returns a component to render. This way, instead of

having the feature component directly depend on its child components, you can configure them

as you like; they pass them in as render prop values. Let’s look at an example. Instead of having

MyFeature directly depend on AddArticle and ArticleList, you can pass them as render props.

Here’s what the MyFeature looks like when it’s using render props to fill in the holes where add

used to be:

 <section>

 {addArticle({

 title,

 summary,

 onChangeTitle,

 onChangeSummary,

 onClickAdd,

 })}

 {articleList({ articles, onClickRemove })}

 </section>

The addArticle() and articleList() functions are called with the same property values that

would have been passed to <AddArticle> and <ArticleList>, respectively. The difference now

is that this module no longer imports AddArticle or ArticleList as dependencies.

Now, let’s take a look at the main.js file where <MyFeature> is rendered:

const root = ReactDOM.createRoot(document.getElementById("root"));

root.render(

 <MyFeature

Chapter 5 81

 addArticle={({

 title,

 summary,

 onChangeTitle,

 onChangeSummary,

 onClickAdd,

 }) => (

 <AddArticle

 name="Articles"

 title={title}

 summary={summary}

 onChangeTitle={onChangeTitle}

 onChangeSummary={onChangeSummary}

 onClickAdd={onClickAdd}

 />

)}

 articleList={({ articles, onClickRemove }) => (

 <ArticleList articles={articles} onClickRemove={onClickRemove} />

)}

 />

);

There’s a lot more going on here now than there was when it was just <MyFeature> being ren-

dered. Let’s break down why that is. Here is where you pass the addArticle and articleList

render props. These prop values are functions that accept argument values from MyComponent.

For example, the onClickRemove() function comes from MyFeature and is used to change the

state of that component. You can use the render prop function to pass this to the component

that will be rendered, along with any other values. The return value of these functions is what

is ultimately rendered.

In this section, you learned that by passing render property values: functions that render JSX

markup: you can avoid hardcoding dependencies in places where you might want to share func-

tionality. Passing a different property value to a component is usually easier than changing the

dependencies used by a given module.

Crafting Reusable Components82

Rendering component trees
Let’s take a moment to reflect on what we’ve accomplished so far in this chapter. The feature

component that was once monolithic ended up focusing almost entirely on the state data. It han-

dled the initial state and handled transforming the state and it would handle network requests

that fetch state, if there were any. This is a typical container component in a React application,

and it’s the starting point for data.

The new components that you implemented to better compose the feature were the recipients

of this data. The difference between these components and their container is that they only care

about the properties that are passed into them at the time they’re rendered. In other words, they

only care about data snapshots at a particular point in time. From here, these components might

pass the property data into their own child components as properties. The generic pattern for

composing React components is as follows:

Figure 5.3: A pattern for composing larger React components from smaller components

The container component will typically contain one direct child. In this diagram, you can see

that the container has either an item detail component or a list component. Of course, there

will be variations in these two categories, as every application is different. This generic pattern

has three levels of component composition. Data flows in one direction from the container all

the way down to the utility components.

Chapter 5 83

Once you add more than three layers, the application architecture becomes difficult to compre-

hend. There will be the odd case where you’ll need to add four layers of React components but,

as a rule of thumb, you should avoid this.

Feature components and utility components
In the monolithic component example that we have worked on in this chapter, you started with

a single component that was entirely focused on a feature. This means that the component has

very little utility elsewhere in the application.

The reason for this is that top-level components deal with the application state. Stateful compo-

nents are difficult to use in any other context. As you refactored the monolithic feature component,

you created new components that moved further away from the data. The general rule is that

the further your components move from stateful data, the more utility they have because their

property values could be passed in from anywhere in the application.

Summary
This chapter was about avoiding a monolithic component design. However, monoliths are often

a necessary starting point in the design of any React component.

You began by learning about how the different HTML elements have varying degrees of utility.

Next, you learned about the issues with monolithic React components and walked through the

implementation of a monolithic component.

Then, you spent several sections learning how to refactor the monolithic component into a more

sustainable design. From this exercise, you learned that container components should only have

to think in terms of handling state, while smaller components have more utility because their

property values can be passed from anywhere. You also learned that you could use render props

for better control over component dependencies and substitution.

In the next chapter, you’ll learn about the component props validation and type checking.

6
Type-Checking and Validation
with TypeScript

In this chapter, we’ll explore the importance of property validation in React components for

creating robust, bug-free applications. We’ll introduce TypeScript, which is a powerful tool for

static type-checking in JavaScript.

We’ll guide you through setting up TypeScript in the project and cover its basic and advanced con-

cepts. We’ll also provide examples of how to use TypeScript for type-checking in React components.

By the end of this chapter, you’ll have a solid foundation in property validation and type-checking,

and be ready to create more predictable, reliable components using TypeScript.

The following topics will be covered in this chapter:

•	 Knowing what to expect

•	 An introduction to TypeScript

•	 Using TypeScript in React

Technical requirements
The code files for this chapter can be found on GitHub at https://github.com/PacktPublishing/

React-and-React-Native-5E/tree/main/Chapter05.

https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter05
https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter05

Type-Checking and Validation with TypeScript86

Knowing what to expect
In any application, predictability is key. A predictable application behaves in expected ways,

reducing bugs, improving user experience, and simplifying maintenance. When we talk about

predictability in the context of React, we often refer to how components behave based on the props

they receive. Props is short for properties and serves as the inputs to React components, determin-

ing their behavior and rendering. This is where the concept of props validation comes into play.

The importance of props validation
Props validation is a way to ensure that components receive the right type of data. It’s like a con-

tract between components. When a component specifies the types of props it expects to receive,

it makes a promise that it will behave in a certain way if it receives props of those types.

Props validation is crucial for a few reasons, as follows:

•	 It helps catch errors early in the development process: If a component receives a prop

of an unexpected type, it might not behave as expected, leading to bugs that can be hard

to track down. By validating props, we can catch these errors before they cause problems.

•	 Props validation improves code readability: By looking at a component’s prop types, you

can quickly understand what data the component expects to receive. This makes it easier

to use and reuse components throughout your application.

•	 Props validation makes components more predictable: When a component clearly spec-

ifies the types of props it expects to receive, it’s easier to understand how the component

will behave based on its props.

Potential issues without props validation
Without adequate props validation, components can become unpredictable and prone to bugs.

Let’s take a look at a component:

const MyList = ({ list }) => (

 {list.map((user) => (

 <li key={user.name}>

 {user.name} ({user.email})

))}

);

Chapter 6 87

In this example, a component expects to receive a list prop, which should be an array of objects

with name and email properties. If this component receives a list prop that is a string, a number,

or even an array, but without objects, it might try to access user.name or user.email, which

would result in an error.

These types of errors can be hard to debug, especially in larger applications with many compo-

nents. It also might be difficult to understand what exactly we should provide to the component

without reading every single line of code of this component. Errors can also lead to crashes or

unexpected behavior in your application. But what if we can add a props validation to our com-

ponents that can help us catch these errors early and ensure that your components behave as

expected? Let’s explore it.

Options for props validation
There are several tools you can use for props validation in React and React Native. One of these

is PropTypes, a library that allows you to specify the types of props a component should receive.

Another option is TypeScript, a statically typed superset of JavaScript that provides powerful

tools for type-checking.

Now, I would like to show you examples of the MyList component with PropTypes. Take a look

at this component:

import PropTypes from 'prop-types';

const MyList = ({ list }) => (

 {list.map((user) => (

 <li key={user.name}>

 {user.name} ({user.email})

))}

);

MyList.propTypes = {

 list: PropTypes.arrayOf(

 PropTypes.shape({

 name: PropTypes.string.isRequired,

 email: PropTypes.string.isRequired,

Type-Checking and Validation with TypeScript88

 })

).isRequired,

};

In this example, we’re using PropTypes to specify that the list prop should be an array of objects,

and each object should have a name and an email property, both of which should be strings.

Next, let’s take a look at the TypeScript example:

type User = {

 name: string;

 email: string;

};

type MyListProps = {

 list: User[];

};

const MyList = ({ list }: MyListProps) => (

 {list.map((user) => (

 <li key={user.name}>

 {user.name} ({user.email})

))}

);

In this TypeScript example, we’re defining a User type and a MyListProps type. The User type is

an object with a name and an email property, both of which are strings. The MyListProps type is

an object with a list property, which is an array of User objects.

While both PropTypes and TypeScript offer valuable tools for props validation, we’ll be focusing

on TypeScript for the remainder of this book. TypeScript provides a more comprehensive and

powerful approach to type-checking, and it’s becoming increasingly popular in the React and

React Native communities.

In the following chapters, all examples will use TypeScript. By the end of this book, you’ll have a

solid understanding of TypeScript and how to use it in your own React and React Native projects.

So, let’s dive in and start exploring the world of TypeScript!

Chapter 6 89

Introduction to TypeScript
As we embark on this journey to learn about type-checking and validation, let’s momentarily step

away from React and React Native and turn our attention to TypeScript. You might be wondering,

“What exactly is TypeScript?”

TypeScript is a statically typed superset of JavaScript, developed and maintained by Microsoft.

This means that it adds additional features to JavaScript, one of the most significant being static

typing. While JavaScript is dynamically typed, TypeScript introduces a type system that allows

you to explicitly define the type of data that variables, function parameters, and function return

values can have.

But don’t worry, TypeScript is completely compatible with JavaScript. In fact, any valid JavaScript

code is also valid TypeScript code. TypeScript uses a transpiler (a type of compiler) to convert

TypeScript code, which browsers can’t understand directly, into JavaScript code, which can run

in any environment where JavaScript runs.

Consider the following JavaScript function:

function greet(name) {

 return "Hello, " + name;

}

console.log(greet("Mike")); // "Hello, Mike"

console.log(greet(32)); // "Hello, 32"

This function works as expected when you pass a string as an argument. But if you pass a number,

it doesn’t throw an error, even though it doesn’t make much sense to greet a number.

Now, let’s see how we could write this function in TypeScript:

function greet(name: string) {

 return "Hello, " + name;

}

console.log(greet("Mike")); // "Hello, Mike"

console.log(greet(32)); // Error: Argument of type 'number' is not
assignable to parameter of type 'string'.

Type-Checking and Validation with TypeScript90

In the TypeScript version, we’ve added a type annotation to the name parameter. This tells Type-

Script that name should always be a string. If we try to call greet with a number, TypeScript will

give us an error. This helps us catch the mistake before we even run the code.

This is a simple example, but it illustrates one of the key benefits of TypeScript: it can help us catch

errors early before they lead to bugs in our code. It’s like having a helpful co-pilot who points out

potential issues before they become problematic.

Why use TypeScript?
Now that we’ve introduced what TypeScript is, let’s delve into why you might want to learn and

use it in your projects:

•	 Catch errors early: We’ve already discussed it, but it’s worth putting it in the first place

on the list. One of the biggest advantages of TypeScript is its ability to catch errors at

compile time, before even running the code. This can help prevent many common errors

that might not be caught until runtime in regular JavaScript.

•	 Improve code readability: TypeScript’s type annotations make it clear what kind of

values a function expects as arguments or what type of value a function returns. This can

make the code easier to read and understand, especially for other developers who might

be working on the same code base.

•	 Easier refactoring: TypeScript’s static typing also makes it easier to refactor code. If you

change the type of a variable or the signature of a function, TypeScript can help you find

all the places in your code where you need to make corresponding changes.

•	 Community and tooling support: TypeScript has gained significant popularity in the

JavaScript community and is used by many large companies like Microsoft, Google, and

Airbnb. This implies that there’s a large community of developers who can provide support

and a wealth of resources for learning TypeScript. Additionally, many code editors have

excellent support for TypeScript, providing features like autocompletion, type inference,

and error highlighting.

•	 Integration with modern frameworks and libraries: TypeScript integrates well with

modern JavaScript frameworks like React and React Native, which have built-in TypeScript

definitions, making it easier to build strongly typed applications. Moreover, a vast majority

of popular JavaScript libraries have TypeScript definitions available. These definitions, of-

ten contributed by the community, provide type information about the library’s functions

and objects, making it easier and safer to use these libraries in your TypeScript projects.

Chapter 6 91

This widespread adoption of TypeScript in the JavaScript ecosystem ensures that you can

leverage the benefits of TypeScript almost anywhere in your code base.

•	 Increasing job market demand: The popularity of TypeScript extends beyond just devel-

opment practices: it’s also increasingly sought after in the job market. Many companies,

from start-ups to large corporations, are adopting TypeScript for their projects, and as

a result, there’s a growing demand for developers who are proficient in TypeScript. This

is particularly true for roles involving React and React Native, where TypeScript is often

used for its benefits in scaling and maintaining large code bases. By learning TypeScript,

you’re not only gaining a valuable skill for your projects but also making yourself more

marketable as a developer.

In summary, TypeScript offers a range of benefits that can help you write more robust, maintain-

able code. It’s a valuable tool in any JavaScript developer’s toolkit, and its growing popularity in

the job market makes it a worthwhile investment for your career development.

But understanding the benefits of TypeScript is just the first step. To truly harness its power,

you need to know how to use it in your projects. In the next section, we’ll guide you through

the process of setting up TypeScript in a React project. We’ll cover everything from installing

TypeScript to configuring your project to use it. So, let’s dive in and start exploring the practical

side of TypeScript!

Setting up TypeScript in a project
In the first chapter, we walked through the process of creating a new React project using Vite.

Now, let’s see how we can create a TypeScript project.

Vite provides a template for creating a new React and TypeScript project. You can create a new

project with the following command:

npm create vite@latest my-react-app -- --template react-ts

This command creates a new Vite project with the react-ts template, which includes TypeScript.

The project based on this template will include the tsconfig.json file in the root of your project.

This file is used to configure TypeScript for your project.

Here’s what the tsconfig.json file might look like:

{

 "compilerOptions": {

 "target": "esnext",

Type-Checking and Validation with TypeScript92

 "module": "esnext",

 "jsx": "react-jsx",

 "strict": true,

 "moduleResolution": "node",

 "esModuleInterop": true

 }

}

These settings tell TypeScript to compile your code to the latest version of JavaScript ("target":

"esnext"), to use the latest module system ("module": "esnext"), and to use the new JSX trans-

form introduced in React 17 ("jsx": "react-jsx"). The "strict": true option enables a wide

range of type-checking behavior to catch more issues.

With TypeScript set up, let’s write some code. However, TypeScript uses different file extensions

than JavaScript: *.ts for files without JSX, and *.tsx for files with JSX. So, let’s create our first

React component using TypeScript:

type AppProps = {

 message: string;

};

function App({ message }: AppProps) {

 return <div>{message}</div>;

}

In this example, we’re defining an AppProps type for the props of the App component. This tells

TypeScript that the message prop should be a string.

Now, let’s take a look at the figure of how main.tsx looks like right now:

Figure 6.1: App component in the main.tsx file with the error from TypeScript

This is how TypeScript checks and validates props usage in components. Here, we should pass

the message prop:

Chapter 6 93

Figure 6.2: App component in the main.tsx file without errors

Finally, you can run your project with the following command:

npm run dev

This command starts the Vite development server. If there are any type errors in your code,

TypeScript will show them in the console as well.

Basic types in TypeScript
One of the key features of TypeScript is its rich type system. TypeScript introduces several basic

types that you can use to describe the shape of your data. To specify the type of a variable, you

use a colon after the variable name, followed by the type.

Let’s explore these basic types:

•	 Boolean: The most basic datatype is the simple true/false value, which JavaScript and

TypeScript call a Boolean:

let isDone: boolean = false;

•	 Number: As in JavaScript, all numbers in TypeScript are floating point values. These

floating point numbers get the type number:

let age: number = 32;

•	 String: Another fundamental part of creating programs in JavaScript for web pages and

servers alike is working with textual data. As in other languages, we use the type string

to refer to these textual datatypes:

let color: string = "blue";

•	 Array: TypeScript, like JavaScript, allows you to work with arrays of values. Array types

can be written in one of two ways. In the first, you use the type of the elements followed

by [] to denote an array of that element type:

let list: number[] = [1, 2, 3];

Type-Checking and Validation with TypeScript94

	 The second way uses a generic array type, Array<elemType>:

let list: Array<number> = [1, 2, 3];

•	 Tuple: Tuple types allow you to express an array where the type of a fixed number of ele-

ments is known but does not need to be the same. For example, you may want to represent

a value as a pair of a string and a number:

let x: [string, number];

x = ["hello", 10]; // OK

•	 Enum: A helpful addition to the standard set of datatypes from JavaScript is the enum. As in

languages like C#, an enum is a way of giving more friendly names to sets of numeric values:

enum Color {

 Red,

 Green,

 Blue,

}

let c: Color = Color.Green;

•	 Any: We may need to describe the type of variables that we do not know when we are

writing an application. These values may come from dynamic content, for example, from

the user or a third-party library. In these cases, we want to opt out of type-checking and let

the values pass through compile-time checks. To do so, we label these with the any type:

let notSure: any = 4;

notSure = "maybe a string instead";

notSure = false; // okay, definitely a Boolean

•	 Unknown: The unknown type is a type-safe counterpart of any. Anything is assignable

to unknown, but unknown isn’t assignable to anything but itself and any without a type

assertion or a control flow-based narrowing. Likewise, no operations are permitted on

an unknown without first asserting or narrowing to a more specific type:

let notSure: unknown = 4;

notSure = "maybe a string instead";

// OK, because of structural typing

notSure = false;

Chapter 6 95

let surelyNotAString: string = notSure; // Error, 'unknown' is not
assignable to 'string'

In this example, we can’t assign notSure to surelyNotAString without a type-check,

because notSure is of the unknown type. This helps prevent errors because we can’t in-

advertently perform operations on variables of the unknown type without first checking

their types.

A common use case for unknown is in a catch clause, where the type of the error object

is not known:

try {

 // some operation that might throw

} catch (error: unknown) {

 if (error instanceof Error) {

 console.log(error.message);

 }

}

In this example, we don’t know what the error type might be, so we give it the unknown

type. This forces us to check its type before we can interact with it.

•	 Void: void is a little like the opposite of any: the absence of having any type at all. You may

commonly see this as the return type of functions that do not return a value:

function warnUser(): void {

 console.log("This is my warning message");

}

•	 Null and undefined: In TypeScript, both undefined and null actually have their own

types named undefined and null respectively. Much like void, they’re not extremely

useful on their own:

let u: undefined = undefined;

let n: null = null;

However, undefined plays a crucial role in optional types. In TypeScript, you can make a

type optional by adding ? after the type name. This means the value can be of the specified

type or undefined. For example:

function greet(name?: string) {

Type-Checking and Validation with TypeScript96

 return 'Hello ${name}';

}

greet("Mike");

greet(undefined); // OK

greet(); // Also OK

•	 Never: The never type in TypeScript represents a type of value that never occurs. It’s used

in situations where a function never returns a value or reaches the end of its execution

path. For example, a function that throws an error or one that has an infinite loop can be

annotated with the never type:

function throwError(errorMsg: string): never {

 throw new Error(errorMsg);

}

function infiniteLoop(): never {

 while (true) {

 }

}

Understanding these basic types is a crucial first step in working with TypeScript. As you start to

use TypeScript in your projects, you’ll find that these types are powerful tools for writing robust,

maintainable code.

In the next section, we’ll delve deeper into TypeScript’s type system and explore interfaces and

type aliases, which provide a way to define complex types.

Interfaces and type aliases
While the basic types are useful for simple data types, when dealing with more complex data

structures, we need more powerful tools. This is where interfaces and type aliases come in. They

allow us to define complex types and give them a name.

Interfaces
An interface in TypeScript is a way of defining a contract for complex types. It describes the shape

an object should have. Here’s an example:

interface User {

 name: string;

Chapter 6 97

 email: string;

}

In this example, we’ve defined a User interface with two properties: name and email, both of

which are strings. We can use this interface to type-check objects:

const user: User = {

 name: "Alice",

 email: "alice@example.com",

};

If we try to assign an object that doesn’t match the User interface to the user variable, TypeScript

will give us an error.

Type aliases
Type aliases are very similar to interfaces, but can be used for other types as well, not just objects.

Here’s an example of a type alias:

type Point = {

 x: number;

 y: number;

};

type ID = number | string;

In this example, we’ve defined a Point type that represents a point in a two-dimensional space and

ID that can be a string or number. We can use these type aliases in the same way we use interfaces:

const point: Point = {

 x: 10,

 y: 20,

};

const id: ID = 100;

Interfaces vs type aliases
So, when should you use an interface, and when should you use a type alias? In many cases, the

two are interchangeable, and it’s mostly a matter of personal preference.

Type-Checking and Validation with TypeScript98

However, there are some differences. Interfaces are more extensible because they can be declared

multiple times, and they will be merged together. Type aliases can’t be re-opened to add new

properties. On the other hand, type aliases can represent other types like union types, intersection

types, tuples, and any other types that aren’t currently available in an interface.

In general, if you’re defining the shape of an object, either an interface or a type alias would work. If

you’re defining a type that could be something other than an object, you’ll need to use a type alias.

In this section, we’ve taken our first steps into the world of TypeScript. We’ve learned about

its setup in a Vite project, its basic types, and how to define complex types using interfaces and

type aliases.

Now let’s explore how we can use TypeScript with React components, state, event handlers.

Using TypeScript in React
Alright, we’ve made it this far! We’ve learned about the basics of TypeScript and talked about

its benefits. Now, it’s time to roll up our sleeves and get our hands dirty with some practical

TypeScript in React.

In this section, we’re going to explore how to use TypeScript to type-check all the different parts

of a React application. We’ll look at components, props, state, event handlers, context, and even

refs. Don’t worry: I’ll walk you through plenty of examples to help illustrate these concepts.

Type-checking props in React components
In a React application, one of the primary areas where we can leverage TypeScript is in our com-

ponents, specifically with props. Let’s see the example:

type GreetingProps = {

 name: string;

};

const Greeting = ({ name }: GreetingProps) => {

 return <h1>Hello, {name}!</h1>;

};

Chapter 6 99

In this example, we’re defining a GreetingProps type that specifies the shape of the props that

Greeting should receive. We’re then using this type to type-check the name prop in the Greeting

component.

This is a simple example with just one prop, but the same approach can be used for components

with more complex props. For example, if a component receives an object or an array as a prop,

we can define a type that describes the shape of that object or array. Here’s an example:

type UserProps = {

 user: {

 name: string;

 email: string;

 };

};

const UserCard = ({ user }: UserProps) => {

 return (

 <div>

 <h1>{user.name}</h1>

 <p>{user.email}</p>

 </div>

);

};

In this example, the UserCard component receives a user prop that is an object with name and

email properties. We define a UserProps type that describes the shape of this object and use it

to type-check the user prop.

Let’s consider another common scenario in React: optional props. Sometimes, a component has

props that aren’t always required. In these cases, we can provide a default value for the prop, and

mark it as optional in our type definition. Here’s an example:

type ButtonProps = {

 children: React.ReactNode;

 disabled?: boolean;

};

Type-Checking and Validation with TypeScript100

const Button = ({ children, disabled = false }: ButtonProps) => {

 return <button disabled={disabled}>{children}</button>;

};

In the ButtonProps type, we’re using React.ReactNode for the children prop. This is a special type

provided by React that can accept any kind of renderable content. This includes strings, numbers,

JSX elements, arrays of these types, or even functions that return these types. By using React.

ReactNode, we’re saying that the children prop can be any kind of content that React can render.

Also, we’re using the disabled prop, which is optional. We indicate that disabled is optional by

adding a ? after the prop name in the ButtonProps type. We also provide a default value of false

for disabled in the component function parameters.

This way, we can use the Button component with or without the disabled prop, and TypeScript

will still type-check it correctly:

<Button>Click me!</Button> // OK

<Button disabled>Don't click me!</Button> // OK

Typing state
Just as we type-checked our props, we can also use TypeScript to type-check the state in our

components. This ensures that we’re always using the correct types of state values, providing

another layer of safety to our code.

Let’s look at an example of how we can apply TypeScript to state in a functional component:

const Counter = () => {

 const [count, setCount] = React.useState<number>(0);

 return (

 <div>

 <p>Count: {count}</p>

 <button

 onClick={() => {

 setCount(count + 1);

 }}

 >

 Increment

 </button>

Chapter 6 101

 </div>

);

};

In this Counter component, we’re using React.useState<number>(0) to declare a state vari-

able count with an initial value of 0. By providing <number> as a type argument to useState,

we’re telling TypeScript that count should always be a number. By the way: we can omit passing

<number> because TypeScript is smart enough to infer that count should be a number based on

the initial value type.

This also means that the setCount function will only accept numbers. If we try to call setCount

with a non-number argument, TypeScript will give us an error.

Typing event handlers
Another area where TypeScript can be very useful in a React application is in event handlers. By

type-checking our event handlers, we can ensure that we’re using the correct event types and

accessing the right properties on the event objects.

Let’s look at an example of a functional component with an input field and a typed event handler:

const InputField = () => {

 const [value, setValue] = React.useState("");

 const handleChange = (event: React.ChangeEvent<HTMLInputElement>) => {

 setValue(event.target.value);

 };

 return <input value={value} onChange={handleChange} />;

};

In this InputField component, we’re defining a handleChange function that will be called when-

ever the input field’s value changes. We’re using the React.ChangeEvent<HTMLInputElement>

type for the event parameter to specify that this function should receive a change event from an

input field.

This type includes all the properties we would expect from a change event on an input field, such

as event.target.value. If we try to access a property that doesn’t exist on this type of event,

TypeScript will give us an error.

Type-Checking and Validation with TypeScript102

Typing context
When using TypeScript with React, we can also type-check our context to ensure that we’re always

using the correct types of values. Let’s look at an example:

type ThemeContextType = {

 theme: string;

 setTheme: (theme: string) => void;

};

const ThemeContext = React.createContext<ThemeContextType | null>(null);

const ThemeProvider = ({ children }: { children: React.ReactNode }) => {

 const [theme, setTheme] = React.useState('light');

 return (

 <ThemeContext.Provider value={{ theme, setTheme }}>

 {children}

 </ThemeContext.Provider>

);

};

const useTheme = () => {

 const context = React.useContext(ThemeContext);

 if (context === null) {

 throw new Error('useTheme must be used within a ThemeProvider');

 }

 return context;

};

In this example, we’re creating a ThemeContext with React.createContext. We’re providing a

ThemeContextType as a type argument to createContext to specify the shape of the context value.

This type includes a theme string and a setTheme function.

We’re then creating a ThemeProvider component that provides the theme and setTheme val-

ues to the context. Inside the useTheme hook, we’re using React.useContext to consume the

ThemeContext. If the context is null, we throw an error.

Chapter 6 103

This is a common pattern to ensure that the context is used within a provider.

With this example, I want to highlight an important TypeScript feature. In the useTheme

hook, we don’t specify the type. It returns the context value, which TypeScript knows is of the

ThemeContextType type and not null, thanks to the error check. This means that when we use

useTheme, TypeScript will automatically provide the correct, non-null context type.

Typing refs
Now, let’s turn our attention to another powerful feature in React: refs. As you already know from

Chapter 3, Understanding React Components and Hooks, refs give us a way to access DOM nodes or

React elements directly within our components. But how do we ensure we’re using refs correctly?

TypeScript coming to the rescue.

Consider this example where we apply TypeScript to refs:

const InputWithRef = () => {

 const inputRef = React.useRef<HTMLInputElement>(null);

 const focusInput = () => {

 if (inputRef.current) {

 inputRef.current.focus();

 }

 };

 return (

 <div>

 <input ref={inputRef} type="text" />

 <button onClick={focusInput}>Focus the input</button>

 </div>

);

};

In this InputField component, we’re creating a ref with React.useRef. We’re providing

HTMLInputElement as a type argument to useRef to specify the type of the ref. HTMLInputElement

is a type provided by TypeScript’s built-in DOM typings, and it represents an input element in the

DOM. This type corresponds to the type of the DOM element that the ref is attached to.

This means that inputRef.current will be of the HTMLInputElement | null type, and TypeScript

will know that it has a focus method.

Type-Checking and Validation with TypeScript104

Summary
In this chapter, we delved into the world of type-checking and validation in React. We started

with the importance of props validation, then introduced TypeScript and its benefits for robust

type-checking.

We then applied TypeScript to React, demonstrating its use in type-checking various aspects of

React components, from props and state to event handlers, context, and refs. All of it allows you

to create applications that are not only more dependable but also easier to maintain, allowing

for early detection of errors and significantly improving both the quality of your code and your

efficiency as a developer.

As we move to the next chapter, Handling Navigation with Routes, we’ll shift our focus to naviga-

tion in React applications. We’ll learn how to set up and use routes to navigate between different

parts of our application.

7
Handling Navigation with
Routes

Almost every web application requires routing, which is the process of responding to a URL based

on a set of route handler declarations. In other words, this is a mapping from the URL to ren-

dered content. However, this task is more involved than it seems at first, due to the complexities

of managing different URL patterns and mapping them to appropriate content rendering. This

includes handling nested routes and dynamic parameters and ensuring proper navigation flow.

The complexities of these tasks are why you’re going to leverage the react-router package in

this chapter, the de facto routing tool for React.

First, you’ll learn the basics of declaring routes using JSX syntax. Then, you’ll learn about the

dynamic aspects of routing, such as dynamic path segments and query parameters. Next, you’ll

implement links using components from react-router.

Here are the high-level topics that we’ll cover in this chapter:

•	 Declaring routes

•	 Handling route parameters

•	 Using link components

Technical requirements
You can find the code files for this chapter on GitHub at https://github.com/PacktPublishing/

React-and-React-Native-5E/tree/main/Chapter07.

https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter07
https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter07

Handling Navigation with Routes106

Declaring routes
With react-router, you can collocate routes with the content that they render. By defining routes

using JSX syntax alongside the components they are associated with, react-router empowers

developers to create a clear and logical structure for their React applications. This collocation

makes it easier to understand how different parts of the application are connected and navigated,

leading to improved readability and maintainability of the code base.

Throughout this chapter, we’ll explore the fundamentals of routing in React applications using

react-router. We’ll start by creating a basic example route to familiarize ourselves with the

syntax and structure of route declarations. Then, we’ll dive deeper into organizing routes by

feature, rather than relying on a monolithic routing module. Finally, we’ll implement a common

parent-child routing pattern to demonstrate how to handle more complex routing scenarios.

Hello route
Before we start writing code, let’s set up the react-router project. Run the following command

to add react-router-dom to the dependencies:

npm install react-router-dom

Let’s create a simple route that renders a simple component:

1.	 First, we have a small React component that we want to render when the route is activated:

function MyComponent() {

 return <p>Hello Route!</p>;

}

2.	 Next, let’s look at the route definition:

import React from "react";

import ReactDOM from "react-dom/client";

import { createBrowserRouter, RouterProvider } from "react-router-
dom";

import MyComponent from "./MyComponent";

const router = createBrowserRouter([

 {

 path: "/",

 element: <MyComponent />,

 },

Chapter 7 107

]);

ReactDOM.createRoot(document.getElementById("root")!).render(

 <React.StrictMode>

 <RouterProvider router={router} />

 </React.StrictMode>

);

The RouterProvider component is the top-level component of the application. Let’s break it

down to find out what’s happening within the router.

You have the actual routes declared in the createBrowserRouter function. There are two key

properties of any route: path and element. When the path property is matched against the active

URL, the component is rendered. But where is it rendered, exactly? The router doesn’t actually

render anything itself; it’s responsible for managing how other components are connected based

on the current URL. In other words, the router checks the current URL and returns the correspond-

ing component from the createBrowserRouter declaration. Sure enough, when you look at this

example in a browser, <MyComponent> is rendered as expected:

Figure 7.1: The rendered output of our component

When the path property matches the current URL, the route component is replaced by the element

property value. In this example, the route returns <MyComponent>. If a given route doesn’t match,

nothing is rendered.

This example shows the fundamentals of routing in React. It’s really simple and intuitive to declare

routes. To further solidify your understanding of react-router, I encourage you to experiment

with the concepts we’ve covered. Try creating more routes on your own, and observe how they

impact the behavior of your application. After that, you can try more advanced techniques like

lazy loading components using React.lazy and Suspense (you’ll learn more about these in the next

chapter), and implement route-based code splitting to optimize your application’s performance.

By diving deeper into these topics and applying them to your own projects, you’ll gain a greater

appreciation for the capabilities of react-router and its role in building modern, efficient, and

user-friendly React applications.

Handling Navigation with Routes108

Decoupling route declarations
The difficulty with routing happens when your application has dozens of routes declared within

a single module since it’s more difficult to mentally map routes to features.

To help with this, each top-level feature of the application can define its own routes. This way,

it’s clear which routes belong to which feature. So, let’s start with the App component:

const router = createBrowserRouter([

 {

 path: "/",

 element: <Layout />,

 children: [

 {

 index: true,

 element: <h1>Nesting Routes</h1>,

 },

 routeOne,

 routeTwo,

],

 },

]);

export const App = () => <RouterProvider router={router} />;

In this example, the application has two routes: one and two. These are imported as route ob-

jects and placed inside createBrowserRouter. The first element in this router is the <Layout />

component, which renders a page template with data that never changes and serves as a place

for our route data. Let’s take a look at the <Layout /> component:

function Layout() {

 return (

 <main>

 <nav>

 <Link to="/">Main</Link>

 |

 <Link to="/one">One</Link>

 |

 <Link to="/two">Two</Link>

Chapter 7 109

 </nav>

 <Outlet />

 </main>

);

}

This component contains a small navigation toolbar with links and the <Outlet /> component.

It’s a built-in react-router component that will be replaced with matched route elements.

The router only gets as big as the number of application features, instead of the number of routes,

which could be substantially larger. Let’s take a look at one of the feature routes:

 const routes: RouteObject = {

 path: "/one",

 element: <Outlet />,

 children: [

 {

 index: true,

 element: <Redirect path="/one/1" />,

 },

 {

 path: "1",

 element: <First />,

 },

 {

 path: "2",

 element: <Second />,

 },

],

};

This module, one/index.js, exports a configuration object with three routes:

•	 When the /one path is matched, redirect to /one/1.

•	 When the /one/1 path is matched, render the First component.

•	 When the /one/2 path is matched, render the Second component.

This means that when the app loads the URL, /one, the <Redirect> component, will send the

user to /one/1. Like the RouterProvider, the Redirect component lacks UI elements inside; it

solely manages logic.

Handling Navigation with Routes110

This aligns with React’s practice of embedding components in layouts to handle specific func-

tionalities. This approach allows for a clean separation of concerns, with components focused

solely on rendering UI elements and others, like Redirect, dedicated to handling routing logic.

The Redirect component in react-router is responsible for programmatically navigating the

user to a different route. It’s commonly used to redirect users from one URL to another based on

certain conditions, such as authentication status or route parameters. By abstracting away the

navigation logic into a separate component, it promotes code reusability and maintainability

within the application.

You’re using Redirect here because we don’t have content on the root route. Often, your applica-

tion doesn’t actually have content to render at the root of a feature, or at the root of the applica-

tion itself. This pattern allows you to send the user to the appropriate route and the appropriate

content. Here’s what you’ll see when you open the app and click on the One link:

Figure 7.2: The contents of page 1

The second feature follows the exact same pattern as the first. Here’s what the First component

looks like:

export default function First() {

 return <p>Feature 1, page 1</p>;

}

Each feature, in this example, uses the same minimal rendered content. These components are

ultimately what the user needs to see when they navigate to a given route. By organizing routes

this way, you’ve made your features self-contained with regard to routing.

In the following section, you’ll learn how to further organize your routes into parent-child rela-

tionships.

Handling route parameters
The URLs that you’ve seen so far in this chapter have all been static. Most applications will use

both static and dynamic routes. In this section, you’ll learn how to pass dynamic URL segments to

your components, how to make these segments optional, and how to get query string parameters.

Chapter 7 111

Resource IDs in routes
One common use case is to make the ID of a resource part of the URL. This makes it easy for your

code to get the ID and then make an API call that fetches the relevant resource data. Let’s imple-

ment a route that renders a user detail page. This will require a route that includes the user ID,

which then needs to somehow be passed to the component so that it can fetch the user.

Let’s start with the App component that declares the routes:

const router = createBrowserRouter([

 {

 path: "/",

 element: <UsersContainer />,

 errorElement: <p>Route not found</p>,

 },

 {

 path: "/users/:id",

 element: <UserContainer />,

 errorElement: <p>User not found</p>,

 loader: async ({ params }) => {

 const user = await fetchUser(Number(params.id));

 return { user };

 },

 },

]);

function App() {

 return <RouterProvider router={router} />;

}

The : syntax marks the beginning of a URL variable. The id variable will be passed to the

UserContainer component. Before displaying the component, the loader function is trig-

gered, asynchronously fetching data for the specified user ID. In the case of data loading errors,

the errorElement prop provides a fallback to handle such situations effectively. Here’s how

UserContainer is implemented:

function UserContainer() {

 const params = useParams();

 const { user } = useLoaderData() as { user: User };

Handling Navigation with Routes112

 return (

 <div>

 User ID: {params.id}

 <UserData user={user} />

 </div>

);

}

The useParams() hook is used to get any dynamic parts of the URL. In this case, you’re interested

in the id parameter. Then, we get user from the loader function using the useLoaderData hook. If

the URL is missing the segment completely, then this code won’t run at all; the router will revert

us to the errorElement component.

Now, let’s take a look at the API functions that were used in this example:

export type User = {

 first: string;

 last: string;

 age: number;

};

const users: User[] = [

 { first: "John", last: "Snow", age: 40 },

 { first: "Peter", last: "Parker", age: 30 },

];

export function fetchUsers(): Promise<User[]> {

 return new Promise((resolve) => {

 resolve(users);

 });

}

export function fetchUser(id: number): Promise<User> {

 return new Promise((resolve, reject) => {

Chapter 7 113

 const user = users[id];

 if (user === undefined) {

 reject('User ${id} not found');

 } else {

 resolve(user);

 }

 });

}

The fetchUsers() function is used by the UsersContainer component to populate the list of user

links. The fetchUser() function will find and resolve a value from the users array of the mock data.

Here is the User component, which is responsible for rendering the user details:

type UserDataProps = {

 user: User;

};

function UserData({ user }: UserDataProps) {

 return (

 <section>

 <p>{user.first}</p>

 <p>{user.last}</p>

 <p>{user.age}</p>

 </section>

);

}

When you run this app and navigate to /, you should see a list of users that looks like this:

Figure 7.3: The contents of the app home page

Handling Navigation with Routes114

Clicking on the first link should take you to /users/0, which looks like this:

Figure 7.4: The contents of the user page

If you navigate to a user that doesn’t exist, for example, /users/2, here’s what you’ll see:

Figure 7.5: When a user isn’t found

The reason that you get this error message instead of a 500 error is that the API endpoint knows

how to deal with missing resources:

if (user === undefined) {

 reject('User ${id} not found');

}

This rejection will be handled by react-router with the provided errorElement component.

In the next section, we’ll look at defining optional route parameters.

Query parameters
Sometimes, we need optional URL path values or query parameters. URLs work best for simple

options, and query parameters work best if there are many values that the component can use.

Let’s implement a user list component that renders a list of users. Optionally, you want to be able

to sort the list in descending order. Let’s make this with the route that can accept a query string:

const router = createBrowserRouter([

 {

 path: "/",

 element: <UsersContainer />,

 },

Chapter 7 115

]);

ReactDOM.createRoot(document.getElementById("root")!).render(

 <React.StrictMode>

 <RouterProvider router={router} />

 </React.StrictMode>

);

There is no special setup in the router for handling query parameters. It’s up to the component

to handle any query strings provided to it. So, while the route declaration doesn’t provide a

mechanism to define accepted query strings, the router will still pass the query parameters to

the component. Let’s take a look at the user list container component:

export type SortOrder = "asc" | "desc";

function UsersContainer() {

 const [users, setUsers] = useState<string[]>([]);

 const [search] = useSearchParams();

 useEffect(() => {

 const order = search.get("order") as SortOrder;

 fetchUsers(order).then((users) => {

 setUsers(users);

 });

 }, [search]);

 return <Users users={users} />;

}

This component looks for either of the order query strings. It uses this as an argument to the

fetchUsers() API to determine the sort order.

Here’s what the Users component looks like:

type UsersProps = {

 users: string[];

};

function Users({ users }: UsersProps) {

Handling Navigation with Routes116

 return (

 {users.map((user) => (

 <li key={user}>{user}

))}

);

}

Here is what’s rendered when you navigate to /:

Figure 7.6: Rendering the user list in default order

If you include the order query parameter by navigating to /?order=desc, here’s what you get:

Figure 7.7: Rendering the user list in descending order

In this section, you learned about parameters in routes. Perhaps the most common pattern is to

have the ID of a resource in your app as part of the URL, which means that components need to be

able to parse out this information in order to interact with the API. You also learned about query

parameters in routes, which are useful for dynamic content, filtering, or passing temporary data

between components. Next, you’ll learn about link components.

Using link components
In this section, you’ll learn how to create links. You might be tempted to use the standard <a>

elements to link to pages controlled by react-router. The problem with this approach is that

these links, in simple terms, will try to locate the page on the backend by sending a GET request.

This isn’t what you want because the route configuration is already in the app and we can handle

routes locally.

Chapter 7 117

First, you’ll see an example that illustrates how <Link> components behave somewhat like <a>

elements, except that they work locally. Then, you’ll see how to build links that use URL param-

eters and query parameters.

Basic linking
The idea of links in React apps is that they point to routes that point to components, which ren-

der new content. The Link component also takes care of the browser history API and looks up

route-component mappings. Here’s an application component that renders two links:

function Layout() {

 return (

 <>

 <nav>

 <p>

 <Link to="first">First</Link>

 </p>

 <p>

 <Link to="second">Second</Link>

 </p>

 </nav>

 <main>

 <Outlet />

 </main>

 </>

);

}

const router = createBrowserRouter([

 {

 path: "/",

 element: <Layout />,

 children: [

 {

 path: "/first",

 element: <First />,

 },

 {

Handling Navigation with Routes118

 path: "/second",

 element: <Second />,

 },

],

 },

]);

function App() {

 return <RouterProvider router={router} />;

}

The to property specifies the route to activate when clicked. In this case, the application has two

routes: /first and /second. Here is what the rendered links look like:

Figure 7.8: Links to the first and second pages of the app

When you click the First link, the page content changes to look like this:

Figure 7.9: The first page when the app is rendered

Now that you can use Link components to render links to basic paths, it’s time to learn about

building dynamic links with parameters.

URL and query parameters
Constructing the dynamic segments of a path that is passed to <Link> involves string manipula-

tion. Everything that’s part of the path goes to the to property. This means that you have to write

more code to construct the string, but it also means less behind-the-scenes magic happening in

the router.

Chapter 7 119

Let’s create a simple component that will echo back whatever is passed to the echo URL segment

or the echo query parameter:

function Echo() {

 const params = useParams();

 const [searchParams] = useSearchParams();

 return <h1>{params.msg || searchParams.get("msg")}</h1>;

}

In order to get search parameters that were passed to a route, you can use the useSearchParams()

hook, which gives you a URLSearchParams object. In this case, we can call searchParams.

get("msg") to get the parameter we need.

Now, let’s take a look at the App component that renders two links. The first will build a string

that uses a dynamic value as a URL parameter. The second will use URLSearchParams to build

the query string portion of the URL:

const param = "From Param";

const query = new URLSearchParams({ msg: "From Query" });

export default function App() {

 return (

 <section>

 <p>

 <Link to={'echo/${param}'}>Echo param</Link>

 </p>

 <p>

 <Link to={'echo?${query.toString()}'}>Echo query</Link>

 </p>

 </section>

);

}

Here’s what the two links look like when they’re rendered:

Figure 7.10: Different types of link parameters

Handling Navigation with Routes120

The Param link takes you to /echo/From%20Param, which looks like this:

Figure 7.11: The param version of the page

The Query link takes you to /echo?msg=From+Query, which looks like this:

Figure 7.12: The query version of the page

In learning about the Link component and dynamic link construction, you’ve unlocked a more

interactive and navigable web experience, empowering users to move through your application

with URL and query parameters that enrich their journey.

Summary
In this chapter, you learned about routing in React applications. The job of a router is to render

content that corresponds to a URL. The react-router package is the standard tool for this job.

You learned how routes are JSX elements, just like the components they render. Sometimes, you

need to split routes into feature-based modules. A common pattern for structuring page content

is to have a parent component that renders the dynamic parts as the URL changes. Then, you

learned how to handle the dynamic parts of URL segments and query strings. You also learned

how to build links throughout your application using the <Link> element.

Understanding routing in React applications lays the groundwork for building complex appli-

cations with efficient navigation, preparing you for the subsequent chapters that delve into per-

formance optimization, state management, and integrating external APIs, ensuring a seamless

user experience.

In the next chapter, you’ll learn how to split your code into smaller chunks using lazy components.

8
Code Splitting Using Lazy
Components and Suspense

Code splitting has been a significant part of React applications for many years, even before official

support was included in the React API. The evolution of React has brought about APIs that are

specifically designed to assist in code-splitting scenarios. Code splitting becomes crucial when

dealing with large applications containing a vast amount of JavaScript code that needs to be

delivered to a browser.

In the past, monolithic JavaScript bundles containing an entire application could cause usabil-

ity issues due to long initial page load times. Thanks to code splitting, we now have much more

granular control over how code is transferred from the server to the browser. This gives us ample

opportunities to optimize load-time User Experience (UX).

In this chapter, we will revisit how to implement this in your React applications by using the

lazy() API and the Suspense components. These features are very powerful tools in the React

toolbox. By gaining a thorough understanding of how these components function, you’ll be fully

equipped to seamlessly integrate code splitting into your applications.

We’ll cover the following topics in this chapter:

•	 Using the lazy() API

•	 Using the Suspense component

•	 Avoiding lazy components

•	 Exploring lazy pages and routes

Code Splitting Using Lazy Components and Suspense122

Technical requirements
You can find the code files of this chapter on GitHub at https://github.com/PacktPublishing/

React-and-React-Native-5E/tree/main/Chapter08.

Using the lazy API
There are two pieces involved with using the lazy() API in React. First, there’s bundling com-

ponents into their own separate files so that they can be downloaded by the browser separately

from other parts of the application. Second, once you have created the bundles, you can build

React components that are lazy: they don’t download anything until they are needed. Let’s look

at both of these.

Dynamic imports and bundles
The code examples in this book use the Vite tooling for creating bundles. The nice thing about

this approach is that you don’t have to maintain any bundle configuration. Instead, bundles are

created for you automatically, based on how you import your modules. If you’re using the plain

import statement (not to be confused with the import method) everywhere, your app will be

downloaded all at once in one bundle. When your app gets bigger, there will likely be features

that some users never use or don’t use as frequently as others. You can use the import() function

to import modules on demand. By using this function, you’re telling Vite to create a separate

bundle for the code that you’re importing dynamically.

Let’s look at a simple component that we might want to bundle separately from the rest of the

application:

export default function MyComponent() {

 return <p>My Component</p>;

}

Now, let’s take a look at how we would import this module dynamically using the import()

function, resulting in a separate bundle:

function App() {

 const [MyComponent, setMyComponent] = React.useState<() => React.
ReactNode>(

 () => () => null

);

https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter08
https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter08

Chapter 8 123

 React.useEffect(() => {

 import("./MyComponent").then((module) => {

 setMyComponent(() => module.default);

 });

 }, []);

 return <MyComponent />;

}

When you run this example, you’ll see the <p> text rendered right away. If you open the browser

dev tools and look at the network requests, you’ll notice that a separate call is made to fetch

the bundle containing the MyComponent code. This happens because of the call to import("./

MyComponent"). The import() function returns a promise that resolves with the module object.

Since we need the default export to access MyComponent, we reference module.default when we

call setMyComponent().

The reason why we’re setting a component as the MyComponent state is that when the App com-

ponent renders for the first time, we don’t have the MyComponent code loaded yet. Once it loads,

MyComponent will reference the proper value, which results in the correct text being rendered.

Now that you have an idea of how bundles get created and are fetched by the app, it’s time to see

how the lazy() API greatly simplifies this process for us.

Making components lazy
Instead of manually handling the promise returned by import() by returning the default export

and setting state, you can lean on the lazy() API. This function takes a function that returns an

import() promise. The return value is a lazy component that you can just render. Let’s modify

the App component to use this API:

import * as React from "react";

const MyComponent = React.lazy(() => import("./MyComponent"));

function App() {

 return <MyComponent />;

}

Code Splitting Using Lazy Components and Suspense124

The MyComponent value is created by calling lazy(), passing in the dynamic module import as

an argument. Now, you have a separate bundle for your component and a lazy component that

loads the bundle when it’s first rendered.

In this section, you learned how code splitting works. You learned that the import() function

handles bundle creation for you. You also learned that the lazy() API makes your components

lazy and handles all of the gritty work of importing components for you. But there’s one last thing

we need, the Suspense component, to help display placeholders while components are loading.

Using the Suspense component
In this section, we’ll explore some of the more common usage scenarios of the Suspense com-

ponent. We’ll look at where to place Suspense components in your component tree, how to

simulate latency when fetching bundles, and some of the options available to us to use as the

fallback content.

Top-level Suspense components
Lazy components need to be rendered inside of a Suspense component. However, they do not

have to be direct children of Suspense though, which is important because this means that you

can have one Suspense component handle every lazy component in your app. Let’s illustrate

this concept with an example. Here’s a component that we would like to bundle separately and

use lazily:

export default function MyFeature() {

 return <p>My Feature</p>;

}

Next, let’s make the MyFeature component lazy and render it inside of a MyPage component:

const MyFeature = React.lazy(() => import("./MyFeature"));

function MyPage() {

 return (

 <>

 <h1>My Page</h1>

 <MyFeature />

 </>

);

}

Chapter 8 125

Here, we’re using the lazy() API to make the MyFeature component lazy. This means that when

the MyPage component is rendered, the code bundle that contains MyFeature will be downloaded

because MyFeature was also rendered. What’s important to note with the MyPage component is

that it is rendering a lazy component (MyFeature) but isn’t rendering a Suspense component. This

is because our hypothetical app has many page components, each with its own lazy components.

Having each of these components render its own Suspense component would be redundant. In-

stead, we can render one Suspense component inside of our App component, like so:

function App() {

 return (

 <React.Suspense fallback={"loading..."}>

 <MyPage />

 </React.Suspense>

);

}

While the MyFeature code bundle is being downloaded, <MyPage> is replaced with the fallback

text passed to Suspense. So, even though MyPage isn’t lazy itself, it renders a lazy component that

Suspense knows about and will replace its children with the fallback content while this happens.

So far, we haven’t really been able to see the fallback content that displays while our lazy compo-

nents load their code bundles. This is because when developing locally, these bundles load almost

instantly. To be able to see fallback component and loading process, you can enable throttling in

Network tab of the dev tools:

Figure 8.1: Enabling throttling in the browser

This setting emulates a slow internet connection. Instead of loading instantly, the page will be

rendering for a few seconds and you will see a loading … fallback.

In the next section, we’ll look at an approach to use loading spinners as a fallback component.

Code Splitting Using Lazy Components and Suspense126

Working with spinner fallbacks
The simplest fallback that you can use with the Suspense component is some text that indicates

to the user that something is happening. The fallback property can be any valid React element,

which means that we can enhance the fallback to be something more visually appealing. For

example, the react-spinners package has a selection of spinner components, all of which can

be used as a fallback with Suspense.

Let’s modify the App component from the last section to include a spinner from the react-

spinners package as the Suspense fallback:

import * as React from "react";

import { FadeLoader } from "react-spinners";

import MyPage from "./MyPage";

function App() {

 return (

 <React.Suspense fallback={<FadeLoader color="lightblue" />}>

 <MyPage />

 </React.Suspense>

);

}

The FadeLoader component will render a spinner that we’ve configured with a color value of

lightblue. The rendered element of the FadeLoader component is passed to the fallback property.

With the Slow 3G throttling, you should be able to see the spinner when you first load the app:

Figure 8.2: The image rendered by the loader component

Now, instead of text, we’re showing an animated spinner. This likely provides a user experience

that your users are more accustomed to. The react-spinners package has several spinners for

you to choose from, each of which has several configuration options. There are other spinner

libraries that you can use or implement on your own.

Chapter 8 127

In this section, you learned that you can use a single Suspense component that will display its

fallback content for any lazy components that are lower in the tree. You learned how to simulate

latency during local development so that you can experience what your users will experience with

your Suspense fallback content. Finally, you learned how to use components from other libraries

as the fallback content to provide something that looks better than plain text.

In the next section, you’ll learn about why it doesn’t make sense to make every component in

your app a lazy component.

Avoiding lazy components
It might be tempting to make most of your React components lazy components that live in their

own bundle. After all, there isn’t much extra work that needs to happen to set up separate bundles

and make lazy components. However, there are some downsides to this. If you have too many lazy

components, your app will end up making several HTTP requests to fetch them: at the same time.

There’s no benefit to having separate bundles for components used on the same part of the app.

You’re better off trying to bundle components together in a way that one HTTP request is made

to load what is needed on the current page.

A helpful way to think of this is to associate pages with bundles. If you have lazy page components,

everything on that page will also be lazy yet bundled together with other components on the

page. Let’s build an example that demonstrates how to organize our lazy components. Let’s say

that your app has a couple of pages and a few features on each page. We don’t necessarily want

to make these features lazy if they’re all going to be needed when the page loads. Here’s the App

component that shows the user a selector to pick which page to load:

const First = React.lazy(() => import("./First"));

const Second = React.lazy(() => import("./Second"));

function ShowComponent({ name }: { name: string }) {

 switch (name) {

 case "first":

 return <First />;

 case "second":

 return <Second />;

 default:

Code Splitting Using Lazy Components and Suspense128

 return null;

 }

}

The First and Second components are the pages that make up our app, so we want them to be

lazy components that load their bundles on demand. The ShowComponent component renders

the appropriate page when the user changes the selector:

function App() {

 const [component, setComponent] = React.useState("");

 return (

 <>

 <label>

 Load Component:{" "}

 <select

 value={component}

 onChange={(e) => setComponent(e.target.value)}

 >

 <option value="">None</option>

 <option value="first">First</option>

 <option value="second">Second</option>

 </select>

 </label>

 <React.Suspense fallback={<p>loading...</p>}>

 <ShowComponent name={component} />

 </React.Suspense>

 </>

);

}

Next, let’s look at the first page and see how it’s composed, starting with the First component:

import One from "./One";

import Two from "./Two";

import Three from "./Three";

export default function First() {

 return (

Chapter 8 129

 <>

 <One />

 <Two />

 <Three />

 </>

);

}

The First component pulls in three components and renders them: One, Two, and Three. These

three components will be part of the same bundle. While we could make them lazy, there would

be no point, as all we would be doing is making three HTTP requests for bundles at the same

time instead of one.

Now that you have a better understanding of how to map the page structures of your application

to bundles, let’s look at another use case where we use a router component to navigate around

our app.

Exploring lazy pages and routes
In the Avoiding lazy components section, you saw where to avoid making components lazy when

there is no benefit in doing so. The same pattern can be applied when you’re using react-router

as the mechanism to navigate around your application. Let’s take a look at an example. Here are

the imports we’ll need:

const First = React.lazy(() => import("./First"));

const Second = React.lazy(() => import("./Second"));

function Layout() {

 return (

 <section>

 <nav>

 <Link to="first">First</Link>

 |

 <Link to="second">Second</Link>

 </nav>

Code Splitting Using Lazy Components and Suspense130

 <section>

 <React.Suspense fallback={<FadeLoader color="lightblue" />}>

 <Outlet />

 </React.Suspense>

 </section>

 </section>

);

}

export default function App() {

 return (

 <Router>

 <Routes>

 <Route path="/" element={<Layout />}>

 <Route path="/first" element={<First />} />

 <Route path="/second" element={<Second />} />

 </Route>

 </Routes>

 </Router>

);

}

In the preceding code, we have two lazy page components that will be bundled separately from

the rest of the app. The fallback content in this example uses the same FadeLoader spinner com-

ponent that was introduced in the Working with spinner fallbacks section.

Note that the Suspense component is placed beneath the navigation links. This means that the

fallback content will be rendered in the spot where the page content will eventually show when

it loads. The children of the Suspense component are the Route components that will render our

lazy page components: for example, when the /first route is activated, the First component is

rendered for the first time, triggering the bundle download.

That brings us to the end of this chapter.

Chapter 8 131

Summary
This chapter was all about code splitting and bundling, which are important concepts for large

React applications. We started by looking at how code is split into bundles in your React applica-

tions by using the import() function. Then, we looked at the lazy() React API and how it helps

to simplify loading bundles when components are rendered for the first time. Next, we looked

more deeply at the Suspense component, which is used to manage content while component

bundles are being fetched. The fallback property is how we specify the content to be shown

while bundles are being loaded. You typically don’t need more than one Suspense component in

your app, as long as you follow a consistent pattern for bundling pages of your app.

In the next chapter, you’ll learn how to use the Next.js framework to handle rendering React

components on the server. The Next.js framework allows you to create pages that act as React

components and can be rendered on the server and in the browser. This is an important capability

for applications that need good initial page load performance: that is, all applications.

9
User Interface Framework
Components

When you are developing a React application, it’s typical to rely on an existing UI library rather

than building one from scratch. There are lots of React UI component libraries available to choose

from, and there’s no wrong choice, as long as the components make your life simpler.

In this chapter, we delve into the Material UI React library, a popular choice for React development.

Material UI stands out due to its comprehensive suite of customizable components, adherence to

Google’s Material Design principles, and extensive documentation, making it an optimal choice

for developers seeking efficiency and aesthetic coherence in their UI design. Here are the specific

topics that we’ll cover:

•	 Layout and UI organization

•	 Using navigation components

•	 Collecting user input

•	 Working with styles and themes

Technical requirements
You can find the code files present in this chapter on GitHub at https://github.com/

PacktPublishing/React-and-React-Native-5E/tree/main/Chapter09.

You can also find more information about Material UI components and its API at https://mui.

com/material-ui/.

https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter09
https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter09
https://mui.com/material-ui/
https://mui.com/material-ui/

User Interface Framework Components134

Layout and organization
Material UI excels in simplifying the complex process of designing application layouts. By of-

fering a robust set of components, specifically containers and grids, it empowers developers to

efficiently structure and organize UI elements. Containers serve as the foundation, providing a

flexible way to encapsulate and align content within the overall layout. Grids, on the other hand,

allow more granular control, enabling precise placement and alignment of components across

different screen sizes, ensuring responsiveness and consistency.

This section aims to unpack the functionality of containers and grids within Material UI. We’ll

explore how these tools can be leveraged to create intuitive and aesthetically pleasing layouts,

which are crucial for enhancing user experience.

Using containers
Aligning components horizontally on a page often presents a significant challenge due to the

intricate balance required between spacing, alignment, and responsiveness. This complexity

arises from the need to maintain a visually appealing and functional layout across various screen

sizes, ensuring that elements are evenly distributed and maintain their intended appearance

without unintended overlaps or gaps. The Container component from Material UI is a simple

but powerful layout tool. It controls the horizontal width of its children. Let’s look at an example

to see what’s possible:

import Typography from "@mui/material/Typography";

import Container from "@mui/material/Container";

export default function MyApp() {

 const textStyle = {

 backgroundColor: "#cfe8fc",

 margin: 1,

 textAlign: "center",

 };

 return (

 <>

 <Container maxWidth="sm">

 <Typography sx={textStyle}>sm</Typography>

Chapter 9 135

 </Container>

 <Container maxWidth="md">

 <Typography sx={textStyle}>md</Typography>

 </Container>

 <Container maxWidth="lg">

 <Typography sx={textStyle}>lg</Typography>

 </Container>

 </>

);

}

This example has three Container components, each of which wraps a Typography component.

The Typography component is used to render text in Material UI applications. Each Container

component used in this example takes a maxWidth property. It accepts a breakpoint string value.

These breakpoints represent common screen sizes. This example uses small (sm), medium (md),

and large (lg). When the screen reaches these breakpoint sizes, the container width will stop

growing. Here’s what the page looks like when the width is smaller than the sm breakpoint:

Figure 9.1: The sm breakpoint

Now, if we were to resize the screen so that it was larger than the md breakpoint, but smaller than

the lg breakpoint, here is what it would look like:

Figure 9.2: The lg breakpoint

Notice how the first container stays at a fixed width now that we’ve exceeded its maxWidth break-

point. The md and lg containers just keep growing along with the screen until their breakpoints

have been passed.

User Interface Framework Components136

Let’s see what these Container components look like when the screen width surpasses all break-

points:

Figure 9.3: All breakpoints

The Container component gives you control over how your page elements grow horizontally.

They’re also responsive, so your layouts will be updated as the screen dimensions change.

In the next section, we’ll look at using Material UI components to build more complex and re-

sponsive layouts.

Building responsive grid layouts
Material UI has a Grid component that we can use to compose responsive complex layouts. At a

high level, a Grid component can be either a container or an item within a container. By combin-

ing these two roles, we can achieve any type of layout for our app. To get familiar with Material

UI grid layouts, let’s put together an example that uses a common layout pattern that we’ll find

in many web applications. Here is what the result looks like:

Figure 9.4: A sample responsive grid layout

Chapter 9 137

As you can see, this layout has familiar sections that are typical in many web applications. This

is just an example layout; you can use the Grid component to build any type of layout you can

imagine. Let’s look at the code that created this layout:

const headerFooterStyle = {

 textAlign: "center",

 height: 50,

};

const mainStyle = {

 textAlign: "center",

 padding: "8px 16px",

};

const Item = styled(Paper)(() => ({

 height: "100%",

 display: "flex",

 alignItems: "center",

 justifyContent: "center",

}));

export default function App() {

 return (

 <Grid container spacing={2} sx={{ backgroundColor: "#F3F6F9" }}>

 <Grid xs={12}>

 <Item sx={headerFooterStyle}>

 <Typography sx={mainStyle}>Header</Typography>

 </Item>

 </Grid>

 <Grid xs="auto">

 <Item>

 <Stack spacing={1}>

 <Typography sx={mainStyle}>Nav Item 1</Typography>

 <Typography sx={mainStyle}>Nav Item 2</Typography>

 <Typography sx={mainStyle}>Nav Item 3</Typography>

 <Typography sx={mainStyle}>Nav Item 4</Typography>

 </Stack>

 </Item>

 </Grid>

User Interface Framework Components138

 <Grid xs>

 <Item>

 <Typography sx={mainStyle}>Main content</Typography>

 </Item>

 </Grid>

 <Grid xs={12}>

 <Item sx={headerFooterStyle}>

 <Typography sx={mainStyle}>Footer</Typography>

 </Item>

 </Grid>

 </Grid>

);

}

Let’s break down how the sections in this layout are created. We’ll start with the header section:

<Grid xs={12}>

 <Item sx={headerFooterStyle}>

 <Typography sx={mainStyle}>Header</Typography>

 </Item>

</Grid>

The xs breakpoint property value of 12 means that the header will always span the entire width of

the screen since 12 is the highest value you can use here. Next, let’s look at the navigation items:

<Grid xs="auto">

 <Item>

 <Stack spacing={1}>

 <Typography sx={mainStyle}>Nav Item 1</Typography>

 <Typography sx={mainStyle}>Nav Item 2</Typography>

 <Typography sx={mainStyle}>Nav Item 3</Typography>

 <Typography sx={mainStyle}>Nav Item 4</Typography>

 </Stack>

 </Item>

</Grid>

In the navigation section, we have a grid with the xs="auto" prop. It matches the column’s size

with the width of its content. Also, you can see that we use a Stack component to place compo-

nents in a vertical direction with spacing.

Chapter 9 139

Next, we’ll look at the main content section:

<Grid xs>

 <Item>

 <Typography sx={mainStyle}>Main content</Typography>

 </Item>

</Grid>

The xs breakpoint is a true value used to fill all free space after the navigation section in the grid.

In this section, you were introduced to what Material UI has to offer in the way of layouts. You can

use the Container component to control the width of sections and how they change in response

to screen dimension changes. You then learned that the Grid component is used to put together

more complex grid layouts.

In the following section, we’ll look at some of the navigational components found in Material UI.

Using navigation components
Once we have an idea of how the layout of our application is going to look and work, we can start

to think about the navigation. This is an important piece of our UI because it’s how the user gets

around the application, and it will be used frequently. In this section, we’ll learn about two of

the navigational components offered by Material UI.

Navigating with drawers
The Drawer component, just like a physical drawer, slides open to reveal content that is easily

accessed. When we’re finished, the drawer closes again. This works well for navigation because it

stays out of the way, allowing more space on the screen for the active task that the user is engaged

with. Let’s look at an example, starting with the App component:

<BrowserRouter>

 <Button onClick={toggleDrawer}>Open Nav</Button>

 <section>

 <Routes>

 <Route path="/first" element={<First />} />

 <Route path="/second" element={<Second />} />

 <Route path="/third" element={<Third />} />

 </Routes>

 </section>

 <Drawer open={open} onClose={toggleDrawer}>

User Interface Framework Components140

 <div

 style={{ width: 250 }}

 role="presentation"

 onClick={toggleDrawer}

 onKeyDown={toggleDrawer}

 >

 <List component="nav">

 {links.map((link) => (

 <NavLink

 key={link.url}

 to={link.url}

 style={{ color: "black", textDecoration: "none" }}

 >

 {({ isActive }) => (

 <ListItemButton selected={isActive}>

 <ListItemText primary={link.name} />

 </ListItemButton>

)}

 </NavLink>

))}

 </List>

 </div>

 </Drawer>

</BrowserRouter>

Let’s look at what’s happening here. Everything that this component renders is within the

BrowserRouter component because the items in the drawer are links to routes:

<Button onClick={toggleDrawer}>Open Nav</Button>

<section>

 <Routes>

 <Route path="/first" element={<First />} />

 <Route path="/second" element={<Second />} />

 <Route path="/third" element={<Third />} />

 </Routes>

</section>

Chapter 9 141

The First, Second, and Third components are used to render the main application content when

the user clicks on a link in the drawer. The drawer itself is opened when the Open Nav button is

clicked. Let’s take a closer look at the state that’s used to control this:

const [open, setOpen] = useState(false);

const toggleDrawer = ({ type, key }: { type?: string; key?: string }) => {

 if (type === "keydown" && (key === "Tab" || key === "Shift")) {

 return;

 }

 setOpen(!open);

};

The open state controls the visibility of the drawer. The onClose property of the Drawer compo-

nent calls this function, too, meaning that the drawer closes when any of the links within it are

activated. Next, let’s look at how the links within the drawer are generated:

<List component="nav">

 {links.map((link) => (

 <NavLink

 key={link.url}

 to={link.url}

 style={{ color: "black", textDecoration: "none" }}

 >

 {({ isActive }) => (

 <ListItemButton selected={isActive}>

 <ListItemText primary={link.name} />

 </ListItemButton>

)}

 </NavLink>

))}

</List>

The items that are displayed in a Drawer component are actually list items, as you can see here.

The links property has all the link objects with the url and name properties. Each item in the

items array is mapped to the NavLink, which is used to handle navigation and highlight the active

route. Within NavLink, we have the ListItemButton component, which generates the list item

with text by rendering a ListItemText component.

User Interface Framework Components142

Finally, let’s look at the default value for the links property:

const links = [

 { url: "/first", name: "First Page" },

 { url: "/second", name: "Second Page" },

 { url: "/third", name: "Third Page" },

];

Here’s what the drawer looks like when it’s opened after the screen first loads:

Figure 9.5: A drawer showing links to our pages

Try clicking on the First Page link. The drawer closes and renders the content of the /first

route. Then, when you open the drawer again, you’ll notice that the First Page link is rendered

as the active link:

Figure 9.6: The First Page link is styled as the active link in the drawer

In this section, you learned how to use the Drawer component as the main navigation for your

application. In the following section, we’ll look at the Tabs component.

Chapter 9 143

Navigating with tabs
Tabs are another common navigation pattern found in modern web apps. The Material UI Tabs

component lets us use tabs as links and hook them up to a router. Let’s look at an example of how

to do this. Here is the App component:

export default function App() {

 return <RouterProvider router={router} />;

}

const router = createBrowserRouter([

 {

 path: "/",

 element: <RouteLayout />,

 children: [

 {

 path: "/page1",

 element: <Typography>Item One</Typography>,

 }, // same routes for /page2 and /page3

],

 },

]);

function RouteLayout() {

 const routeMatch = useRouteMatch(["/", "/page1", "/page2", "/page3"]);

 const currentTab = routeMatch?.pattern?.path;

 return (

 <Box>

 <Tabs value={currentTab}>

 <Tab label="Item One" component={Link} to="/page1" value="/page1"
/>

 <Tab label="Item Two" component={Link} to="/page2" value="/page2"
/>

 <Tab label="Item Three" component={Link} to="/page3" value="/
page3" />

 </Tabs>

 <Outlet />

 </Box>

);

}

User Interface Framework Components144

In the interest of space, I’ve left out the route configuration for /page2 and /page3; it follows the

same pattern as /page1. The Tabs and Tab components from Material UI don’t actually render any

content underneath the selected tab. It’s up to us to provide the content as the Tabs component

only looks after showing the tabs and marking one of them as selected. This example aims to have

the Tab components use Link components that link to content rendered by routes.

Let’s now take a closer look at the RouteLayout component. Each Tab component uses the Link

component so that, when it is clicked, the router is activated with the route specified in the to

property. The Outlet component is then used as a child of our route content. To match the active

tab, we use a simple approach to handle the current route using useRouteMatch:

function useRouteMatch(patterns: readonly string[]) {

 const { pathname } = useLocation();

 for (let i = 0; i < patterns.length; i += 1) {

 const pattern = patterns[i];

 const possibleMatch = matchPath(pattern, pathname);

 if (possibleMatch !== null) {

 return possibleMatch;

 }

 }

 return null;

}

The useRouteMatch hook uses useLocation to get the current pathname and then check whether

it matches our patterns.

Here’s what the page looks like when it first loads:

Figure 9.7: Tabs with the first item active

If you click on the ITEM TWO tab, the URL will update, the active tab will change, and the page

content below the tabs will change:

Chapter 9 145

Figure 9.8: Tabs with the second item active

By now, you have learned about two of the navigation approaches that you can use in your Material

UI application. The first is to use a Drawer that is only displayed when the user needs to access

navigational links. The second is to use Tabs that are always visible. In the following section,

you’ll learn about collecting input from users.

Collecting user input
Collecting input from users can be difficult. There are many nuanced things about every field

that we need to consider if we plan on getting the user experience right. Thankfully, the Form

components available in Material UI take care of a lot of usability concerns for us. In this section,

you’ll get a brief sampling of the input controls that you can use.

Checkboxes and radio buttons
Checkboxes are useful for collecting true/false answers from users, while radio buttons are

useful for getting the user to select an option from a short number of choices. Let’s take a look at

an example of these components in Material UI:

export default function Checkboxes() {

 const [checkbox, setCheckbox] = React.useState(false);

 const [radio, setRadio] = React.useState("First");

 return (

 <div>

 <FormControlLabel

 label={'Checkbox ${checkbox ? "(checked)" : ""}'}

 control={

 <Checkbox

 checked={checkbox}

 onChange={() => setCheckbox(!checkbox)}

 />

 }

 />

User Interface Framework Components146

 <FormControl component="fieldset">

 <FormLabel component="legend">{radio}</FormLabel>

 <RadioGroup value={radio} onChange={(e) => setRadio(e.target.
value)}>

 <FormControlLabel value="First" label="First" control={<Radio
/>} />

 <FormControlLabel value="Second" label="Second" control={<Radio
/>} />

 <FormControlLabel value="Third" label="Third" control={<Radio
/>} />

 </RadioGroup>

 </FormControl>

 </div>

);

}

This example has two pieces of state information. The checkbox state controls the value of the

Checkbox component, while the radio value controls the state of the RadioGroup component. The

checkbox state is passed to the checked property of the Checkbox component, while the radio state

is passed to the value property of the RadioGroup component. Both components have onChange

handlers that call their respective state setter functions: setCheckbox() and setRadio(). You’ll

notice that many other Material UI components are involved in the display of these controls. For

example, the label for the checkbox is displayed using the FormControlLabel component, while

the radio control uses a FormControl component and a FormLabel component.

Here is what the two input controls look like:

Figure 9.9: A checkbox and a radio group

The labels for both of these controls are updated to reflect the state of the components as they

change. The checkbox labels show whether the checkbox is checked, and the radio labels show

the currently selected value. In the next section, we’ll look at text inputs and select components.

Chapter 9 147

Text inputs and select inputs
Text fields allow our users to enter text, while Select allows them to choose from several options.

The difference between selects and radio buttons is that selects require less space on the screen

since the options are only displayed when the user opens the options menu.

Let’s look at a Select component now:

import { useState } from "react";

import InputLabel from "@mui/material/InputLabel";

import MenuItem from "@mui/material/MenuItem";

import FormControl from "@mui/material/FormControl";

import Select from "@mui/material/Select";

export default function MySelect() {

 const [value, setValue] = useState<string | undefined>();

 return (

 <FormControl>

 <InputLabel id="select-label">My Select</InputLabel>

 <Select

 labelId="select-label"

 id="select"

 label="My Select"

 value={value}

 onChange={(e) => setValue(e.target.value)}

 inputProps={{ id: "my-select" }}

 >

 <MenuItem value="first">First</MenuItem>

 <MenuItem value="second">Second</MenuItem>

 <MenuItem value="third">Third</MenuItem>

 </Select>

 </FormControl>

);

}

The value state used in this example controls the selected value in the Select component. When

the user changes their selection, the setValue() function changes the value.

User Interface Framework Components148

The MenuItem component is used to specify the available options in the select field; the value

property is set as the value state when a given item is selected. Here’s what the select field looks

like when the menu is displayed:

Figure 9.10: A menu with the first item active

Next, let’s look at a TextField component example:

export default function MyTextInput() {

 const [value, setValue] = useState("");

 return (

 <TextField

 label="Name"

 value={value}

 onChange={(e) => setValue(e.target.value)}

 margin="normal"

 />

);

}

The value state controls the value of the text input and changes as the user types. Here’s what

the text field looks like:

Figure 9.11: A text field with user-provided text

Chapter 9 149

Unlike other FormControl components, the TextField component doesn’t require several other

supporting components. Everything that we need can be specified via properties. In the next

section, we’ll look at the Button component.

Working with buttons
Material UI buttons are very similar to HTML button elements. The difference is that they’re React

components that work well with other aspects of Material UI, such as theming and layout. Let’s

look at an example that renders different styles of buttons:

type ButtonColor = "primary" | "secondary";

export default function App() {

 const [color, setColor] = useState<ButtonColor>("secondary");

 const updateColor = () => {

 setColor(color === "secondary" ? "primary" : "secondary");

 };

 return (

 <Stack direction="row" spacing={2}>

 <Button variant="contained" color={color} onClick={updateColor}>

 Contained

 </Button>

 <Button color={color} onClick={updateColor}>

 Text

 </Button>

 <Button variant="outlined" color={color} onClick={updateColor}>

 Outlined

 </Button>

 <IconButton color={color} onClick={updateColor}>

 <AndroidIcon />

 </IconButton>

User Interface Framework Components150

 </Stack>

);

}

This example renders four different button styles. We’re using the Stack component to render

the row of buttons. When the buttons are clicked on, the state toggles to primary and vice versa.

Here’s what the buttons look like when they’re first rendered:

Figure 9.12: Four styles of Material UI buttons

Here’s what the buttons look like when they’ve each been clicked on:

Figure 9.13: What the buttons look like after they’ve been clicked on

In this section, you learned about some of the user input controls available in Material UI.

Checkboxes and radio buttons are useful when the user needs to turn something on or off or

choose an option. Text inputs are necessary when the user needs to type in some text, while

select fields are useful when you have a list of options to choose from but limited space to display

those options. Finally, you learned that Material UI has several styles of buttons that can be used

when the user needs to initiate an action. In the following section, we’ll look at how styles and

themes work in Material UI.

Working with styles and themes
Included with Material UI are systems for extending the styles of UI components and extending

theme styles that are applied to all components. In this section, you’ll learn about using both

of these systems.

Making styles
Material UI comes with a styled() function that can be used to create styled components based

on JavaScript objects. The return value of this function is a new component with the new styles

applied.

Chapter 9 151

Let’s take a closer look at this approach:

const StyledButton = styled(Button)(({ theme }) => ({

 "&.MuiButton-root": { margin: theme.spacing(1) },

 "&.MuiButton-contained": { borderRadius: 50 },

 "&.MuiButton-sizeSmall": { fontWeight: theme.typography.fontWeightLight
},

}));

export default function App() {

 return (

 <>

 <StyledButton>First</StyledButton>

 <StyledButton variant="contained">Second</StyledButton>

 <StyledButton size="small" variant="outlined">

 Third

 </StyledButton>

 </>

);

}

The names used in this style (MuiButton-root, MuiButton-contained, and MuiButton-sizeSmall)

aren’t something that we came up with. These are part of the Button CSS API. The root style

is applied to all buttons, so, in this example, all three buttons will have the margin value that

we’ve applied here. The contained style is applied to buttons that use the contained variant. The

sizeSmall style is applied to buttons that have a small value for the size property.

Here’s what the custom button styles look like:

Figure 9.14: Buttons using customized styles

Now that you know how to change the look and feel of individual components, it’s time to think

about customizing the look and feel of the application as a whole.

User Interface Framework Components152

Customizing themes
Material UI comes with a default theme. We can use this as the starting point to create our own

theme. There are two main steps to creating a new theme in Material UI:

1.	 Use the createTheme() function to customize the default theme settings and return a

new theme object.

2.	 Use the ThemeProvider component to wrap our application so that the appropriate theme

is applied.

Let’s look at how this process works in practice:

import Menu from "@mui/material/Menu";

import MenuItem from "@mui/material/MenuItem";

import { ThemeProvider, createTheme } from "@mui/material/styles";

const theme = createTheme({

 typography: {

 fontSize: 11,

 },

 components: {

 MuiMenuItem: {

 styleOverrides: {

 root: {

 marginLeft: 15,

 marginRight: 15,

 },

 },

 },

 },

});

export default function App() {

 return (

 <ThemeProvider theme={theme}>

 <Menu anchorEl={document.body} open={true}>

 <MenuItem>First Item</MenuItem>

 <MenuItem>Second Item</MenuItem>

Chapter 9 153

 <MenuItem>Third Item</MenuItem>

 </Menu>

 </ThemeProvider>

);

}

The custom theme that we’ve created here does two things:

•	 It changes the default font size for all components to 11.

•	 It updates the left and right margin values for the MenuItem components.

Many values can be set in a Material UI theme; refer to the customization documentation for more.

The components section is used for component-specific customizations. This is useful when you

need to style every instance of a component in your application.

Summary
This chapter was a very brief introduction to Material UI, the most popular React UI framework.

We started by looking at the components used to assist with the layout of our pages. We then

looked at components that can help the user navigate around your application. Next, you learned

how to collect user input using Material UI form components. Finally, you learned how to style

your Material UI using styles and modifying themes.

The insights gained from this chapter allow you to build complex interfaces without the overhead

of developing UI components from scratch, accelerating your development process. Furthermore,

React application development inherently relies on the synergistic use of various auxiliary libraries.

A deep understanding of the React ecosystem and its key libraries empowers developers to rapidly

prototype and iterate on their applications, making development effective.

In the next chapter, we’ll look at ways to improve the efficiency of your component state updates

using the latest functionality available in the latest version of React.

10
High-Performance State
Updates

State represents the dynamic aspect of your React application. When the state changes, your com-

ponents react to those changes. Without state, you would have nothing more than a fancy HTML

template language. Usually, the time required to perform a state update and have the changes

rendered on the screen is barely, if at all, noticeable. However, there are times that complex state

changes can lead to noticeable lag for your users. The goal of this chapter is to address these cases

and find out how we can avoid those lags.

In this chapter, you’ll learn how to do the following:

•	 Batch your state changes together for minimal re-rendering

•	 Prioritize state updates to render content that’s critical for your user experience first

•	 Develop strategies for performing asynchronous actions while batching and prioritizing

state updates

Technical requirements
For this chapter, you’ll need your code editor (Visual Studio Code). The code we’ll be following

can be found here: https://github.com/PacktPublishing/React-and-React-Native-5E/tree/

main/Chapter10.

You can open the terminal within Visual Studio Code and run npm install to make sure you’re

able to follow along with the examples as you read through the chapter.

https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter10
https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter10

High-Performance State Updates156

Batching state updates
In this section, you’ll learn about how React can batch state updates together to prevent unnec-

essary rendering when multiple state changes happen simultaneously. In particular, we’ll look at

the changes introduced in React 18 that make automatic batching of state updates commonplace.

When your React component issues a state change, this causes the React internals to re-render the

parts of your component that have changed visually as a result of this state update. For example,

imagine you have a component with a name state that’s rendered inside of a element, and

you change the name state from Adam to Ashley. That’s a straightforward change that results in

a re-render that’s too fast for the user to even notice. Unfortunately, state updates in web ap-

plications are rarely this straightforward. Instead, there might be dozens of state changes in 10

milliseconds. For example, the name state might follow changes like this:

1.	 Adam

2.	 Ashley

3.	 Andrew

4.	 Ashley

5.	 Aaron

6.	 Adam

Here, we have six changes that took place with the name state in a short amount of time. This

means that React would have re-rendered the DOM six times, once for each value that was set

as the name state. What’s interesting to note about this scenario is the final state update: we’re

back where we started with Adam. This means that we just re-rendered the DOM five times for

no reason. Now, imagine these wasted re-renders on a web application scale and how these

types of state updates might cause problems for performance. For example, when the app uses

complex animations, user interactions like drag and drops, timeouts, and intervals can all lead

to unnecessary re-renders, negatively impacting performance.

The answer to this problem is batching. This is how React takes several state updates that were

made in our component code and treats them as a single state update. Rather than process every

state update individually, while re-rendering the DOM between each update, the state changes

are all merged, which results in one DOM re-render. In the aggregate, this reduces the amount

of work that our web applications need to do by a lot.

Chapter 10 157

In React 17, automatic batching of state updates only happened inside of event handler functions.

For example, let’s say you have a button with an onClick() handler that performs five state up-

dates. React will batch all of these state updates together so that only one re-render is necessary.

The problem arises when your event handlers make asynchronous calls, usually to fetch some

data, and then make state updates when the asynchronous call finishes. These state changes are

no longer automatically batched because they’re not running directly inside of the event handler

function. Instead, they’re running in the callback code of the asynchronous operation and React

17 will not batch these updates. This is a challenge because it’s common for our React components

to fetch data asynchronously and perform state updates in response to events!

Now we know how we can handle the most common problem with unnecessary re-renders, which

is multiple changes to a state in a short time. Now, let’s understand it by example.

React 18 batching
Let’s turn our attention to some code now to see how React 18 addresses the batching problem

that we’ve just outlined. For this example, we’ll render a button that, when clicked, will perform

100 state updates. We’ll use setTimeout() so that the updates are performed asynchronously,

outside of the event handler function. The idea is to show the difference between how this code

is handled by two different React versions. To do this, we can open the React profiler in the

browser dev tools and hit record before we press the button to execute our state changes. Here’s

what the code looks like:

import * as React from "react";

export default function BatchingUpdates() {

 let [value, setValue] = React.useState("loading...");

 function onStart() {

 setTimeout(() => {

 for (let i = 0; i < 100; i++) {

 setValue('value ${i + 1}');

 }

 }, 1);

 }

 return (

 <div>

High-Performance State Updates158

 <p>

 Value: {value}

 </p>

 <button onClick={onStart}>Start</button>

 </div>

);

}

By clicking the button that this component renders, we call the onStart() event handler function

defined by our component. Then, our handler calls setValue() 100 times inside a loop. Ideally, we

do not want to perform 100 re-renders because this will hurt the performance of our application,

and it doesn’t need to. Only the final call to setValue() matters here.

Let’s first take a look at the profile captured for this component using React 17:

Figure 10.1: Using React dev tools to view re-renders every time state updates are made

Chapter 10 159

By pressing the button with our event handler attached to it, we’re making 100 state update

calls. Since this is done outside of the event handler function in setTimeout(), automatic batch-

ing doesn’t happen. We can see this in the profile output of the BactchingUpdates component,

where there’s a long list of renders. Most of these aren’t necessary and contribute to the amount

of work React needs to do in response to user interactions, hurting the overall performance of

our application.

Let’s capture a profile of the same component being rendered using React 18:

Figure 10.2: React dev tools showing only one render with automatic batching enabled

Automatic batching is applied everywhere that state updates are made, even in common asyn-

chronous scenarios such as this one. As the profile shows, there’s only one re-render when we

click the button instead of 100. We didn’t have to make any adjustments to our component code

to make this happen either. However, there is one change that’s required in order to make state

updates batch automatically. Let’s say you used ReactDOM.render() to render your root com-

ponent, like so:

ReactDOM.render(

 <React.StrictMode>

 <App />

 </React.StrictMode>,

 document.getElementById("root")

);

Instead, you can use ReactDOM.createRoot() and render that:

ReactDOM.createRoot(document.getElementById("root")!).render(

 <React.StrictMode>

 <App />

 </React.StrictMode>

);

High-Performance State Updates160

By creating and rendering your root node this way, you can ensure that with React 18, you’ll get

batched state updates throughout your application. You no longer need to worry about manu-

ally optimizing state updates so that they take place immediately: React does this for you now.

However, sometimes, you’ll have state updates that are of higher priority than others. In cases

like these, we need a way to tell React to prioritize certain state updates over others, instead of

batching everything together.

Prioritizing state updates
When something happens in our React application, we usually make several state updates so

that the UI can reflect these changes. Typically, you can make these state changes without much

thought about how the rendering performance is impacted. For example, let’s say you have a

long list of items that need to be rendered. This will probably have some impact on the UI: while

the list is being rendered, the user probably won’t be able to interact with certain page elements

because the JavaScript engine is 100% utilized for a brief moment.

However, this can become an issue when expensive rendering disrupts the normal browser be-

havior that users expect. For example, if the user types in a text box, they expect the character

they just typed to show up immediately. But if your component is busy rendering a large item

list, the text box state cannot be updated right away. This is where the new React state update

prioritization API comes in handy.

The startTransition() API is used to mark certain state updates as transitional, meaning that

the updates are treated as a lower priority. If you think about a list of items either being rendered

for the first time or being changed to another list of items, this is a transition that doesn’t have to

be immediate. On the other hand, state updates such as changing the value in a text box should

be as close to immediate as possible. By using startTransition(), you tell React that any state

updates within can wait if there are more important updates.

A good rule of thumb for startTransition() is to use it for the following:

•	 Anything that has the potential to perform a lot of rendering work

•	 Anything that doesn’t require immediate feedback from the user in response to their

interactions

Let’s walk through an example that renders a large list of items in response to a user typing in a

text box to filter a list.

Chapter 10 161

This component will render a text box that the user can type in to filter a list of 25,000 items. I’ve

chosen this number based on the performance of the laptop I’m using to write this code: you might

want to tweak it up if there’s no delay or down if it takes too long to render anything. When the

page first loads, you should see a filter text box that looks like this:

Figure 10.3: The filter box before the user types anything

When you start typing in the filter text box, the filtered items will render underneath it. It might

take a second or two, since there are so many items to render:

Figure 10.4: Filtered items underneath the filter input when the user starts typing

Now, let’s walk through the code, starting with a large array of items:

let unfilteredItems = new Array(25000)

 .fill(null)

 .map((_, i) => ({ id: i, name: 'Item ${i}' }));

The size of the array is specified in the array constructor, and then it’s filled with numbered string

values that we can filter by.

Next, let’s look at the state used by this component:

let [filter, setFilter] = React.useState("");

let [items, setItems] = React.useState([]);

The filter state represents the value of the filter text box and defaults to an empty string. The

items state represents the filtered items from our unfilteredItems array. This array is populated

when the user types in the filter text box.

High-Performance State Updates162

Next, let’s look at the markup rendered by this component:

<div>

 <div>

 <input

 type="text"

 placeholder="Filter"

 value={filter}

 onChange={onChange}

 />

 </div>

 <div>

 {items.map((item) => (

 <li key={item.id}>{item.name}

))}

 </div>

</div>

The filter text box is rendered by an <input> element, while the filtered results are rendered as a

list by iterating over the items array.

Finally, let’s look at the event handler function that’s fired when the user types in the filter text box:

const onChange = (e) => {

 setFilter(e.target.value);

 setItems(

 e.target.value === ""

 ? []

 : unfilteredItems.filter((item) => item.name.includes(e.target.
value))

);

};

The onChange() function is called when the user types in the filter text box and sets two state

values. First, it uses setFilter() to set the value of the filter text box. Then, it calls setItems()

to set the filtered items to render unless the filter text is empty, in which case, we render nothing.

Chapter 10 163

When interacting with this example, you might notice a problem with the responsiveness of the

text box when typing in it. This is because, in this function, we’re setting not only the text box

value but also the filtered items. This means that before the text value can be rendered, we have

to wait for thousands of items to be rendered.

Even though these are two separate state updates (setFilter() and setItems()), they’re batched

and treated as a single state update. Likewise, when the rendering starts, React makes all the

changes at once, which means that the CPU won’t let the user interact with the text box because

it’s fully utilized, rendering the long list of filter results. Ideally, we want to prioritize the text

box state update while letting the items render afterward. To put it another way, we want to

deprioritize the item rendering, since it’s expensive and the user doesn’t interact with it directly.

This is where the startTransition() API comes in. Any state updates that take place within the

function that’s passed to startTransition() will be treated with lower priority than any state

updates that happen outside of it. In our filtering example, we can fix the text box responsiveness

issue by moving the setItems() state change inside of startTransition().

Here’s what our new onChange() event handler looks like:

const onChange = (e) => {

 setFilter(e.target.value);

 React.startTransition(() => {

 setItems(

 e.target.value === ""

 ? []

 : unfilteredItems.filter((item) => item.name.includes(e.target.
value))

);

 });

};

Note that we didn’t have to make any changes to how the item’s state is updated: the same code

is moved to a function that’s passed to startTransition(). This tells React to only execute this

state change after any other state changes are complete. In our case, this allows the text box to

update and render before the setItems() state change runs. If you run the example now, you’ll

see that the responsiveness of the text box is no longer affected by how long it takes to render a

long list of items.

High-Performance State Updates164

Before this new API was introduced, you could achieve state update prioritizations via work-

arounds with setTimeout(). The main disadvantage of this approach is that the internal React

scheduler knows nothing about your state updates and their priorities. For example, by using

startTransitiion(), React can cancel the update entirely if the state changes again before com-

pletion or if the component is unmounted.

In real applications, it isn’t simply a matter of prioritizing which state updates should run first.

Rather, it’s a combination of fetching data asynchronously while making sure that priorities are

taken into account. In the final section of this chapter, we’ll tie all of this together.

Handling asynchronous state updates
In this final section of the chapter, we’ll look at the common scenario of fetching data asynchro-

nously and setting render priorities. The key scenario that we want to address is making sure

that users aren’t interrupted when typing or doing any other interaction that requires immediate

feedback. This requires both proper prioritization and handling asynchronous responses from

the server. Let’s start by looking at the React APIs that can potentially help with this scenario.

The startTransition() API can be used as a Hook. When we do this, we also get a Boolean

value that we can check to see whether the transition is still pending. This is useful for showing

the user that things are loading. Let’s modify the example from the previous section to use an

asynchronous data-fetching function for our items. We’ll also use the useTransition() Hook

and add loading behavior to the output of our component:

let unfilteredItems = new Array(25000)

 .fill(null)

 .map((_, i) => ({ id: i, name: 'Item ${i}' }));

function filterItems(filter: string) {

 return new Promise((resolve) => {

 setTimeout(() => {

 resolve(unfilteredItems.filter((item) => item.name.
includes(filter)));

 }, 1000);

 });

}

export default function AsyncUpdates() {

 const [isPending, startTransition] = React.useTransition();

Chapter 10 165

 const [isLoading, setIsLoading] = React.useState(false);

 const [filter, setFilter] = React.useState("");

 const [items, setItems] = React.useState<{ id: number; name: string }
[]>([]);

 const onChange: React.ChangeEventHandler<HTMLInputElement> = async (e)
=> {

 setFilter(e.target.value);

 startTransition(() => {

 if (e.target.value === "") {

 setItems([]);

 } else {

 filterItems(e.target.value).then((result) => {

 setItems(result);

 });

 }

 });

 };

 return (...);

}

What this example shows is that once you start typing in the filter text box, it will trigger the

onChange() handler, which will call the filterItems() function. We also have an isLoading

value that we can use to show the user that something is happening in the background:

<div>

 <div>

 <input

 type="text"

 placeholder="Filter"

 value={filter}

 onChange={onChange}

 />

 </div>

 <div>

 {isPending && loading...}

High-Performance State Updates166

 {items.map((item) => (

 <li key={item.id}>{item.name}

))}

 </div>

</div>

Here’s what the user will see when isLoading is true:

Figure 10.5: A loading indicator while a state transition is pending

However, there’s a slight problem with our approach. You might have noticed the loading mes-

sage flash briefly when typing into the text box. But then, you probably had a longer period when

the items still weren’t visible, and the loading message disappeared. What’s happening here?

Well, the isPending value that comes from the useTransition() Hook can be misleading. We’ve

designed our component in such a way that isPending will be true in the following situations:

•	 If the filterItems() function is still fetching our data

•	 If the setItems() state update is still performing an expensive render with lots of items

Unfortunately, this isn’t how isPending works. The only time this value is true is before the

function we pass to startTransition() is run. This is why you’ll see the loading indicator flash

briefly instead of being displayed throughout the data-fetching operation and the rendering op-

eration. Remember, React schedules state updates internally, and by using startTransition(),

we’ve scheduled setItems() to run after other state updates.

Another way to think about isPending is that it’s true while high-priority updates are still running.

We can call it highPriorityUpdatesPending to avoid confusion. That said, the uses of this value

are narrow, but they do happen from time to time. For our more common case of fetching data

and performing an expensive render, we need to think of another solution. Let’s walk through our

code and refactor it in such a way that the loading indicator is displayed while the fetch and the

higher-priority updates happen. First, let’s introduce a new isLoading state that defaults to false:

const [isLoading, setIsLoading] = React.useState(false);

const [filter, setFilter] = React.useState("");

Chapter 10 167

const [items, setItems] = React.useState([]);

Now, inside of our onChange() handler, we can set the state to true. Inside of the transition that

runs after the data fetch completes, we set it back to false:

const onChange: React.ChangeEventHandler<HTMLInputElement> = async (e) =>
{

 setFilter(e.target.value);

 setIsLoading(true);

 React.startTransition(() => {

 if (e.target.value === "") {

 setItems([]);

 setIsLoading(false);

 } else {

 filterItems(e.target.value).then((result) => {

 setItems(result);

 setIsLoading(false);

 });

 }

 });

};

Now that we’re keeping track of the isLoading state, we know exactly when all the heavy lifting

is done and can hide the loading indicator. The final change is to base the indicator display on

isLoading instead of isPending:

<div>

 {isLoading && loading...}

 {items.map((item) => (

 <li key={item.id}>{item.name}

))}

</div>

When you run the example with these changes, the results should be a lot more predictable. The

setLoading() and setFilter() state updates are high-priority and execute immediately. The call

to fetch data using filterItems() isn’t made until the high-priority state updates are completed.

High-Performance State Updates168

Only after we have the data do we hide the loading indicator.

Summary
This chapter introduced you to the new APIs available in React 18 that help you achieve high-per-

formance state updates. We started with a look at the changes to automatic state update batching

in React 18 and how to best take advantage of them. We then explored the new startTransition()

API and how it can be used to mark certain state updates as having a lower priority than those

that require immediate feedback for user interactions. Finally, we looked at how state update

prioritization can be combined with asynchronous data fetching.

In the next chapter, we’ll go over fetching data from the server.

11
Fetching Data from a Server

The evolution of web technologies has made the interaction of browsers with servers and the

processing of server data an integral part of web development. Today, it’s challenging to draw a

clear line between traditional web pages and full-fledged web applications. At the heart of this

evolution is the ability of JavaScript in the browser to make requests to the server, efficiently

process the received data, and dynamically display it on the page. This process has become the

foundation for creating the interactive and responsive web applications we see today. In this

chapter, we will explore various approaches and methods used to fetch data from the server, dis-

cuss their impact on the architecture of web applications, and acquaint ourselves with modern

practices in this area.

So, in this chapter, we will cover the following topics:

•	 Working with remote data

•	 Using the Fetch API

•	 Using Axios

•	 Using TanStack Query

•	 Using GraphQL

Technical requirements
You can find the code files for this chapter on GitHub at https://github.com/PacktPublishing/

React-and-React-Native-5E/tree/main/Chapter11.

https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter11
https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter11

Fetching Data from a Server170

Working with remote data
In the realm of web development, the journey of fetching data from servers has seen remarkable

transformations. In the early 90s, the web’s infancy with HTTP 1.0 marked the beginning of server

communication. Web pages were static, and HTTP requests were basic, fetching whole pages or

static assets. Every request meant establishing a new connection, and interactivity was minimal,

mostly limited to HTML forms. Security was also basic, reflecting the nascent state of the web.

The turn of the millennium witnessed a significant shift with the rise of Asynchronous JavaScript

and XML (AJAX). This brought an era of enhanced interactivity, allowing web applications to

communicate with the server in the background without reloading the whole page. It was powered

by the XMLHttpRequest object. Here’s a simple example of using XMLHttpRequest to fetch data:

var xhr = new XMLHttpRequest();

xhr.onreadystatechange = function() {

 if (xhr.readyState == XMLHttpRequest.DONE) {

 if (xhr.status === 200) {

 console.log(xhr.responseText);

 } else {

 console.error('Error fetching data');

 }

 }

};

xhr.open('GET', 'http://example.com', true);

xhr.send();

This example illustrates a typical XHR request. Success and error responses are managed with

callback functions. This reflects the time when asynchronous code relied heavily on callbacks.

As we progressed, HTTP evolved to version 1.1, enhancing efficiency with persistent connections

and standardizing RESTful APIs. These APIs used standard HTTP methods and were designed

around identifiable resources, greatly improving scalability and developer productivity.

The advent of the Fetch API provided a modern, promise-based mechanism to make network

requests. Fetch is more powerful and flexible compared to XMLHttpRequest. Here’s an example

of using Fetch:

fetch('http://example.com/data')

 .then(response => response.json())

Chapter 11 171

 .then(data => console.log(data))

 .catch(error => console.error('Error:', error));

Moreover, there are a lot of tools based on top of the Fetch API and XHR, developed by the commu-

nity. For example, Axios, GraphQL, and React Query have further simplified server communication

and data fetching, enhancing developer experiences.

Axios, a modern HTTP client library, further simplified fetching data with its promise-based API

and a host of useful features, such as intercepting requests and responses. Here’s how you can

use Axios to make a GET request:

axios.get('http://example.com/data')

 .then(response => console.log(response.data))

 .catch(error => console.error('Error:', error));

The example might look identical to the Fetch API, but in real projects where you set up inter-

ceptors, it becomes a game-changer that saves a lot of time with less code. Interceptors allow

you to intercept and modify requests before they are sent and responses before they are handled.

A common use case is to refresh access tokens when they expire. Interceptors can add the new

token to all subsequent requests. By using a library like Axios, a lot of the low-level networking

code is abstracted away, allowing you to focus on making requests and handling responses. In-

terceptors, error handling, and other features help address cross-cutting concerns in a reusable

way, leading to cleaner code.

Next is GraphQL, which revolutionized data fetching by allowing clients to request exactly the

data they need, eliminating over-fetching and under-fetching issues. It offers a flexible and effi-

cient way to retrieve data from servers. Instead of predefined endpoints, clients specify their data

requirements, and servers respond with precisely the requested data. This reduces network load

and enhances application performance.

import { GraphQLClient, gql } from 'graphql-request';

const endpoint = 'http://example.com/graphql';

const client = new GraphQLClient(endpoint);

const query = gql'

 query {

 user(id: 123) {

 name

Fetching Data from a Server172

 email

 }

 }

';

client.request(query)

 .then(data => console.log(data))

 .catch(error => console.error('Error:', error));

Here, we request the user by ID, specifying only two fields: name and email. Regardless of the user

object’s size, the GraphQL server efficiently handles it, sending only the requested data to the client.

One more tool I would like to explore is React Query. The library is designed to simplify data fetch-

ing and state management in React applications. It abstracts away the complexities of fetching

and caching data, handles background updates, and provides Hooks for easy integration with

components. React Query enhances the development process by making it straightforward to

work with server data in a highly efficient and maintainable manner.

import { useQuery } from 'react-query';

function UserProfile({ userId }) {

 const { data, error, isLoading } = useQuery(userId, fetchUser);

 if (isLoading) return <div>Loading...</div>;

 if (error) return <div>Error: {error.message}</div>;

 return (

 <div>

 <h1>{data.name}</h1>

 <p>Email: {data.email}</p>

 </div>

);

}

As you can see, we don’t even need to handle errors or set up and update the loading state man-

ually. Everything is provided by one Hook.

Chapter 11 173

Another remarkable development in server communication is WebSockets, enabling real-time,

bidirectional communication. This is a game-changer for applications requiring live data updates,

like chat apps or trading platforms. Below is a basic example of using WebSockets:

const socket = new WebSocket('ws://example.com');

socket.onopen = function(event) {

 console.log('Connection established');

};

socket.onmessage = function(event) {

 console.log('Message from server ', event.data);

};

socket.onerror = function(error) {

 console.error('WebSocket Error ', error);

};

Here, we are still using the callback approach due to the mental model of bidirectional commu-

nication.

In conclusion, the evolution of server communication in web development has been pivotal in en-

hancing user experiences and developer productivity. From the rudimentary stages of HTTP 1.0 to

the sophisticated tools of today, we have witnessed a significant transformation. The introduction

of technologies like Ajax, the Fetch API, Axios, GraphQL, and React Query not only streamlined

server interactions but also standardized asynchronous behavior in applications. These advance-

ments have been critical in efficiently managing states like loading, errors, and offline scenarios.

The integration of these tools in modern web applications signifies a leap forward in building

more responsive, robust, and user-friendly interfaces. It’s a testament to the ever-evolving nature

of technology and its profound impact on both the creation and consumption of web content.

In the next section, we will explore real examples of how to fetch data from a server using the

Fetch API.

Using the Fetch API
Let’s explore how we can retrieve data from a server in practice. We’ll start with the Fetch API,

the most common and fundamental approach provided by web browsers.

Fetching Data from a Server174

Before we begin, let’s create a small application that fetches user data from GitHub and displays

their avatar and basic information on the screen. To do this, we’ll need an empty Vite project with

React. You can create it with the following command:

npm create vite@latest

Since we’re using TypeScript in our examples, let’s start by defining the GitHubUser interface

and all the necessary parameters.

To find out what data the server returns, we often need to refer to the documentation, usually

provided by backend developers. In our case, since we’re using the GitHub REST API, we can find

user information in the official GitHub documentation at this link: https://docs.github.com/

en/rest/users/users?apiVersion=2022-11-28.

Let’s create the GitHubUser interface as follows:

export interface GitHubUser {

 login: string;

 id: number;

 avatar_url: string;

 html_url: string;

 gists_url: string;

 repos_url: string;

 name: string;

 company: string | null;

 location: string | null;

 bio: string | null;

 public_repos: number;

 public_gists: number;

 followers: number;

 following: number;

}

These are the essential fields we will use in our application. In reality, there are more fields in the

user object, but I’ve included the ones we’ll use.

Now that we know the fields the user will have, let’s create a component that will display the

user data on the screen:

const UserInfo = ({ user }: GitHubUserProps) => {

 return (

https://docs.github.com/en/rest/users/users?apiVersion=2022-11-28
https://docs.github.com/en/rest/users/users?apiVersion=2022-11-28

Chapter 11 175

 <div>

 <img src={user.avatar_url} alt={user.login} width="100" height="100"
/>

 <h2>{user.name || user.login}</h2>

 <p>{user.bio}</p>

 <p>Location: {user.location || "Not specified"}</p>

 <p>Company: {user.company || "Not specified"}</p>

 <p>Followers: {user.followers}</p>

 <p>Following: {user.following}</p>

 <p>Public Repos: {user.public_repos}</p>

 <p>Public Gists: {user.public_gists}</p>

 <p>

 GitHub Profile:{" "}

 {user.login}

 </p>

 </div>

);

};

Here, we render their avatar and some useful information about the user together with a link to

open their GitHub profile page.

Let’s now take a look at the App component, where we handle the server data retrieval logic:

function App() {

 const [user, setUser] = useState<GitHubUser>();

 const [loading, setLoading] = useState(true);

 useEffect(() => {

 setLoading(true);

 fetch("https://api.github.com/users/sakhnyuk")

 .then((response) => response.json())

 .then((data) => setUser(data))

 .catch((error) => console.log(error))

 .finally(() => setLoading(false));

 }, []);

Fetching Data from a Server176

We use the useState hook to store user data and loading state. In the useEffect, we make a

Fetch API request to fetch data from the GitHub API. As you can see, the fetch function takes a

URL as an argument. We process the response, save it in the state, handle errors with the catch

block, and finally, turn off the loading process with the finally block.

To complete the application, we display the retrieved user data:

 return (

 <div>

 {loading && <p>Loading...</p>}

 {!loading && !user && <p>No user found.</p>}

 {user && <UserInfo user={user} />}

 </div>

);

}

You can run your application using the following command:

npm run dev

Open the link that will appear in the terminal and you’ll see:

Figure 11.1: GitHub user requested by the Fetch API

Chapter 11 177

Now you know how to fetch data using the Fetch API. Let’s explore the implementation of a similar

application where we request data using other tools.

Using Axios
In this section, we will explore one of the most popular libraries for working with the server, called

Axios. This library is similar to the Fetch API but also provides additional features that make it a

powerful tool for handling requests.

Let’s take our previous project and make some changes to it. First, let’s install Axios as a depen-

dency:

npm install axios

One of Axios’s features is the ability to create instances with specific configurations, such as head-

ers, base URLs, interceptors, and more. This allows us to have a preconfigured instance tailored

to our needs, reducing code repetition and making it more scalable.

Let’s create an API class that encapsulates all the necessary logic for working with the server:

class API {

 private apiInstance: AxiosInstance;

 constructor() {

 this.apiInstance = axios.create({

 baseURL: "https://api.github.com",

 });

 this.apiInstance.interceptors.request.use((config) => {

 console.log("Request:", '${config.method?.toUpperCase()} ${config.
url}');

 return config;

 });

 this.apiInstance.interceptors.response.use(

 (response) => {

 console.log("Response:", response.data);

 return response;

 },

 (error) => {

Fetching Data from a Server178

 console.log("Error:", error);

 return Promise.reject(error);

 }

);

 }

 getProfile(username: string) {

 return this.apiInstance.get<GitHubUser>('/users/${username}');

 }

}

export default new API();

In the constructor of this class, we create and store an Axios instance and set the base URL, elimi-

nating the need to repeat this domain in future requests. Next, we configure interceptors for each

request and response. This is done for demonstration purposes, so when we run the application,

we can see all the requests and responses in the console logs:

Figure 11.2: Axios interceptor logs

Now, let’s see how the App component, which uses our new API class, will look:

function App() {

 const [user, setUser] = useState<GitHubUser>();

 const [loading, setLoading] = useState(true);

 useEffect(() => {

 setLoading(true);

 api

 .getProfile("sakhnyuk")

 .then((res) => setUser(res.data))

 .finally(() => setLoading(false));

 }, []);

Chapter 11 179

 return (

 <div>

 {loading && <p>Loading...</p>}

 {!loading && !user && <p>No user found.</p>}

 {user && <UserInfo user={user} />}

 </div>

);

}

As mentioned earlier, Axios is not significantly different from the Fetch API, but it offers more pow-

erful functionality, making it easy to create more complex solutions for working with server data.

In the next section, we will explore the same application implemented using TanStack Query.

Using TanStack Query
TanStack Query, more commonly known as React Query, is a library that has taken server inter-

action to a new level. This library allows us to request data and cache it. As a result, we can call

the same useQuery hook a lot of times during one rendering, but only one request will be sent to

the server. The library also includes built-in loading and error states, simplifying the handling

of request states.

To get started, let’s install the library as a dependency for our project:

npm install @tanstack/react-query

Next, we need to configure the library by adding the QueryClientProvider:

const queryClient = new QueryClient();

ReactDOM.createRoot(document.getElementById("root")!).render(

 <QueryClientProvider client={queryClient}>

 <App />

 </QueryClientProvider>

);

After this setup, we can start working on the app. One of the unique features of this library is that

it is agnostic to the tool you use for data fetching. You just need to provide a promise function

that returns the data. Let’s create such a function using the Fetch API:

const userFetcher = (username: string) =>

Fetching Data from a Server180

 fetch("https://api.github.com/users/sakhnyuk")

 .then((response) => response.json());

Now, let’s take a look at how simple our App component has become:

function App() {

 const {

 data: user,

 isPending,

 isError,

 } = useQuery({

 queryKey: ["githubUser"],

 queryFn: () => userFetcher("sakhnyuk"),

 });

 return (

 <div>

 {isPending && <p>Loading...</p>}

 {isError && <p>Error fetching data</p>}

 {user && <UserInfo user={user} />}

 </div>

);

}

Now, all the logic for making the request and handling loading and error states is contained

within a single useQuery hook.

In the next section, we will explore an even more powerful tool for data fetching using GraphQL.

Using GraphQL
Earlier in this chapter, we discussed what GraphQL is and how it allows us to specify the exact data

we want from the server, reducing the amount of transferred data and speeding up data fetching.

In this example, we will explore GraphQL in conjunction with the @apollo/client library, which

provides similar functionality to React Query but works with GraphQL queries.

To begin, let’s install the necessary dependencies using the following command:

npm install @apollo/client graphql

Chapter 11 181

Next, we need to add a provider to our application:

const client = new ApolloClient({

 uri: "https://api.github.com/graphql",

 cache: new InMemoryCache(),

 headers: {

 Authorization: 'Bearer YOUR_PAT', // Put your GitHub personal access
token here

 },

});

ReactDOM.createRoot(document.getElementById("root")!).render(

 <ApolloProvider client={client}>

 <App />

 </ApolloProvider>

);

At this stage, during the client setup, we specify the server URL we want to work with, caching

settings, and authentication. In earlier examples, we used the public GitHub API, but GitHub also

supports GraphQL. For this, we need to provide a GitHub personal access token, which you can

obtain in your GitHub profile settings.

For our example, to demonstrate how we can select only the necessary fields we need, let’s trim

down the user data. Here’s how our GraphQL query in the component will look:

const GET_GITHUB_USER = gql'

 query GetGithubUser($username: String!) {

 user(login: $username) {

 login

 id

 avatarUrl

 bio

 name

 company

 location

 }

 }

';

Fetching Data from a Server182

Now that everything is set up, let’s see what the App component will look like:

function App() {

 const { data, loading, error } = useQuery(GET_GITHUB_USER, {

 variables: { username: "sakhnyuk" },

 });

 if (loading) return <p>Loading...</p>;

 if (error) return <p>Error fetching data</p>;

 const user = data.user;

 return (

 <div>

 <UserInfo user={user} />

 </div>

);

}

Similar to React Query, we have access to the loading state, errors, and the actual data. When we

open the application, we will see the result:

Figure 11.3: GiHub user requested by GraphQL

Chapter 11 183

To ensure that the server returns exactly the data we requested, we can open Chrome Dev Tools,

go to the Network tab, and inspect our request:

Figure 11.4: GraphQL request

As shown in Figure 11.4, the server sent us precisely the data we specified in the query. You can

experiment with query parameters to see the difference.

Summary
In this chapter, we explored how to fetch data from the server. We began by briefly reviewing

the history of client-server communication and highlighting the primary methods of interacting

with servers. Next, we built an application to retrieve GitHub user data using the Fetch API, Axios,

TanStack Query, and Apollo GraphQL.

The techniques you learned in this chapter will enable you to significantly expand the capabilities

of your own web applications. By efficiently fetching data from the server, you can create dynamic,

data-driven experiences for your users. Whether you are building a social media app that displays

real-time feeds, an e-commerce site with up-to-date product information, or a dashboard that

visualizes live data, the skills you gained will prove invaluable.

In the next chapter, we will delve into managing the application state using state management

libraries.

12
State Management in React

In the previous chapters, we explored the concept of state in React and mastered the basics of

working with it using the useState hook. Now it’s time to delve deeper into the global state

management of applications. In this chapter, we will focus on the global state: we’ll define what

it is, its key advantages, and the strategies for its effective management.

This chapter will cover the following topics:

•	 What is global state?

•	 React Context API and useReducer

•	 Redux

•	 Mobx

What is global state?
In developing React applications, one of the key aspects that requires special attention is state

management. We are already familiar with the useState hook, which allows us to create and

manage state within a component. This type of state is often referred to as local, and it is very

effective within a single component and very simple and easy to use.

State Management in React186

For a clearer illustration, consider an example with a small form component, where we have two

input elements and have created two states for each input:

Figure 12.1: Form component with local state

In this example, everything is simple: the user enters something into the input, which triggers

an onChange event, where we usually change our state, causing a full re-render of the form, and

then we see the result of the input on the screen.

However, as the complexity and size of your application increase, there will inevitably be a need

for a more scalable and flexible approach to state management. Let’s further consider our exam-

ple and imagine that after entering information into the form, we need to make a request to the

server for user authorization and obtain a session key. Then, with this key, we need to request

user data: name, surname, and avatar.

Here, we immediately encounter difficulties: where do we store the session key and user data?

Perhaps we can retrieve the data right inside the form and then pass it up to the parent component,

as it is more global and responsible. Alright, let’s illustrate this and take a look:

Chapter 12 187

Figure 12.2: Login page with form component

So, now we have a login page, where we have local states for session and user objects. Using props,

we can pass functions like onSessionChange and onUserChange to the form component, which

ultimately allows us to transfer data from the form to the login page. Also, in the form, we now

have the functions getSessionKey and getUser. These methods interact with the server, and upon

successful response, they don’t store data locally but call the aforementioned onSessionChange

and onUserChange.

One might think that the data storage problem is solved, but likely after user authorization and

obtaining their data, we need to redirect the user to some homepage of our application. We could

repeat our trick of lifting the data higher once again, but before doing that, let’s think ahead and

imagine that obtaining user data is probably not just the job of the authorization form, and such

a function might be needed on other pages.

State Management in React188

Ultimately, we come to understand that in addition to the data itself, we also need to keep the

logic for working with the data higher up in the component tree:

Figure 12.3: App root component

This image clearly demonstrates how the application becomes more complicated when we need

to pass down all the necessary data and methods from the topmost component of the application

to all its pages and components.

In addition to the complexity of implementing and maintaining such an approach to organizing

the application’s state, there is also a significant performance problem. For example, having a state

in the root component created through useState, every time we update it, the entire application

will be re-rendered because the app root component will be redrawn.

So, we have identified the main problems with organizing local state in the components of a

large application:

•	 Overcomplicated component tree, where all important data must be passed down from

top to bottom using props. This tightly couples the components, complicating the code

and its maintenance.

Chapter 12 189

•	 Performance issue, where the application may re-render unnecessarily when it’s not

required.

Looking at the last image, one can think of whether it is possible to break the connection of our

components and extract all the data and logic somewhere outside of the components. This is

where the concept of global state comes into play.

Global state is a data management approach that allows state to be accessible and modifiable

across different levels and components of your application. This solution overcomes the limitations

of local state, facilitating data exchange between components and improving state manageability

in large-scale projects.

To clearly understand how global state would look in our example, take a look at the image below:

Figure 12.4: App root component and global state

In this example, we have a global state that is located outside of the components and the entire

tree. Only the components that actually need any data from the state can directly access it and

subscribe to its changes.

State Management in React190

By implementing global state, we can solve both problems at once:

•	 Simplifies the component tree and dependencies, thereby scaling and supporting the

application.

•	 Increases application performance because now, only those components that were sub-

scribed to data from the global state are re-rendered when the state changes.

However, it’s important to understand that the local state remains a very powerful tool and should

not be abandoned in favor of the global state. We only gain advantages when the state needs to

be used across different levels of application components. Otherwise, if we start transferring all

variables and states to the global state, we will only complicate the application without gaining

any benefits.

Now that we know that the global state is merely a way of organizing data, how do we manage

the global state? A state manager is a tool that helps organize and manage state in an application,

especially when it comes to complex interactions and extensive data. It provides a centralized

repository for all your application’s state and manages its updates in an orderly and predictable

manner. In practice, state managers are often represented as npm packages installed as project

dependencies. However, it is also possible to manage the global state independently without any

libraries using React’s API. We will explore one such approach later on.

React Context API and useReducer
To organize the global state on your own, you can use tools that already exist in the React ecosys-

tem, namely the Context API and useReducer. They represent a powerful duo for managing state,

especially in situations where using third-party state managers seems excessive. These tools are

ideal for creating and managing global states in more compact applications.

The React Context API is designed to pass data through the component tree without the need to

pass props at every level. This simplifies access to data in deeply nested components and reduces

prop drilling (passing props through many levels), as illustrated in Figure 12.4. The React Context

API is particularly useful for data such as theme settings, language preferences, or user information.

Here’s an example of how to store theme settings using context:

const ThemeContext = createContext();

const ThemeProvider = ({ children }) => {

 const theme = 'dark';

 return (

Chapter 12 191

 <ThemeContext.Provider value={theme}>

 {children}

 </ThemeContext.Provider>

);

};

const useTheme = () => useContext(ThemeContext);

export { ThemeProvider, useTheme };

In this example, we created ThemeContext using the createContext function. Then, we made

a ThemeProvider component, which should wrap the root component of the application. This

will later allow access at any level of nested components using the useTheme hook, which was

created with the useContext hook:

const MyComponent = () => {

 const theme = useTheme();

 return (

 <div>

 <p>Current theme: {theme}</p>

 </div>

);

};

On any level of the component tree, we can access the current theme using the useTheme hook.

Next let’s take a look at the next one of the duo, the special hook that will help us to build the

global state. useReducer is a hook that allows you to manage complex states with reducers:

functions that take the current state and an action, and then return a new state. useReducer is

ideal for managing states that require complex logic or multiple sub-states. Let’s consider a small

example of a counter using useReducer:

import React, { useReducer } from 'react';

const initialState = { count: 0 };

function reducer(state, action) {

 switch (action.type) {

State Management in React192

 case 'increment':

 return { count: state.count + 1 };

 case 'decrement':

 return { count: state.count - 1 };

 default:

 throw new Error();

 }

}

function Counter() {

 const [state, dispatch] = useReducer(reducer, initialState);

 return (

 <>

 Count: {state.count}

 <button onClick={() => dispatch({ type: 'increment' })}>+</button>

 <button onClick={() => dispatch({ type: 'decrement' })}>-</button>

 </>

);

}

In this example, a reducer is implemented that has two actions: increasing and decreasing

the counter.

The combination of the Context API and useReducer provides a powerful mechanism for creating

and managing the global state of an application. This approach is convenient for small applica-

tions, where ready-made and larger state management solutions might be redundant. However,

it’s also worth noting that this solution doesn’t completely solve the performance issue, as any

change in the theme in the useTheme example or the counter in the counter example will cause

the provider, and thus the entire component tree, to re-render. This can be avoided, but it requires

additional logic and coding.

Therefore, more complex applications require a more powerful tool. For this, there are several

ready-made and popular solutions for working with state, each with its unique features and

suitable for different use cases.

Chapter 12 193

Redux
The first of such tools is, of course, Redux. It is one of the most popular tools for managing state

in complex JavaScript applications, especially when used with React. Redux provides predictable

state management by maintaining the application’s state in a single global object, simplifying

the tracking of changes and data management.

Redux is based on three core principles: a single source of truth (one global state), the state is

read-only (immutable), and changes are made using pure functions (reducers). These principles

ensure an orderly and controlled data flow.

function counterReducer(state = { count: 0 }, action) {

 switch (action.type) {

 case 'INCREMENT':

 return { count: state.count + 1 };

 case 'DECREMENT':

 return { count: state.count - 1 };

 default:

 return state;

 }

}

const store = createStore(counterReducer);

store.subscribe(() => console.log(store.getState()));

store.dispatch({ type: 'INCREMENT' });

store.dispatch({ type: 'DECREMENT' });

In this example, the state of the application has been implemented from the counter example. We

have a counterReducer, which is a regular function that takes the current state and the action to

be performed on it. The reducer always returns a new state.

Implementing asynchronous operations in the Redux world is a complex issue, as out of the box

it offers nothing but middleware, which is used by third-party solutions. One such solution is

redux-thunk.

State Management in React194

redux-thunk is a middleware that allows you to call action creator functions that return a function

instead of an action object. This provides the ability to delay the dispatch of an action or dispatch

multiple actions by making asynchronous requests.

function fetchUserData() {

 return (dispatch) => {

 dispatch({ type: 'LOADING_USER_DATA' });

 fetch('/api/user')

 .then((response) => response.json())

 .then((data) => dispatch({ type: 'FETCH_USER_DATA_SUCCESS', payload:
data }))

 .catch((error) => dispatch({ type: 'FETCH_USER_DATA_ERROR', error
}));

 };

}

const store = createStore(reducer, applyMiddleware(thunk));

store.dispatch(fetchUserData());

As you can see in the example, we create a function, fetchUserData, that doesn’t immediately

change the state. Instead, it returns another function with a dispatch argument. This dispatch

can be used as many times as needed to change the state.

There are also other more powerful but more complex solutions for asynchronous operations.

We will not discuss these here.

Redux is well suited for managing complex global state in applications. It offers powerful debug-

ging tools, such as time travel. Redux also facilitates the testing of state and logic due to the clear

separation between data and its processing.

To integrate Redux with React, the React-Redux library is used. It provides Provider components,

and the useSelector and useDispatch hooks, which allow easy connection of the Redux store

to your React application.

function Counter() {

 const count = useSelector((state) => state.count);

 const dispatch = useDispatch();

 return (

 <div>

Chapter 12 195

 <div>Count: {count}</div>

 <button onClick={() => dispatch({ type: 'INCREMENT' })}>+</button>

 <button onClick={() => dispatch({ type: 'DECREMENT' })}>-</button>

 </div>

);

}

In the example above, the Counter component works with the Redux state by subscribing to

changes through useSelector. This subscription is more granular, and changing the counter

does not lead to the re-rendering of the entire application, but only of the specific component

that invokes this hook.

However, it’s important to note the drawbacks of Redux. Although it is the most popular solution,

it has significant issues that affect my personal choice against this solution:

•	 Redux is verbose. Implementing a large global state requires writing a lot of boilerplate

code in the form of reducers, actions, selectors, etc.

•	 With the growth of the project, the complexity of maintaining and scaling the Redux state

increases disproportionately.

As the project and global state grow, application performance significantly decreases. This hap-

pens due to the need for a large number of computations, even if you simply change the state of

one value from false to true.

Implementation of asynchronous operations is not supported out of the box by Redux and requires

additional solutions, further complicating the understanding and maintenance of the project.

Dividing state and business logic into chunks for lazy loading requires a lot of effort. As a result,

the application’s size and therefore its initial loading speed are affected.

Despite these drawbacks, many companies and developers still use this solution, as it suits most

business tasks, so I believe it is important to know this tool and be able to work with it.

MobX
The next popular solution for managing the global state is the MobX library. This library differs

significantly from Redux, with a concept that is in some ways even the opposite.

MobX is a state management library that provides reactive and flexible interaction with data. Its

main idea is to make the application state as simple and transparent as possible, working through

small objects and classes that can be created as many times as desired and nested within each other.

State Management in React196

Technically, the library allows for creating not just one global state but many small objects di-

rectly linked to some functionality of the application, which gives a significant advantage when

working with large applications. To get the difference between one global state and MobX states,

you can look at the following diagram:

Figure 12.5: MobX state

In MobX, the state of the application is managed using observable method, which automatically

track changes and inform related computed values and reactions. This allows the application

to automatically update in response to state changes, simplifying the data flow and increasing

flexibility.

class Store {

 @observable accessor count = 0;

 @computed get doubleCount() {

 return this.count * 2;

 }

 @action increment() {

 this.count += 1;

 }

Chapter 12 197

 @action decrement() {

 this.count -= 1;

 }

}

const myStore = new Store();

In the example, the same counter is implemented using MobX. In one class, both the actual data

and computed data are present, along with actions to change the state.

Speaking about asynchronous operations, MobX doesn’t have any issues with that, as you can

work in a regular class and add a new method that returns a promise.

class Store {

 @observable count = 0;

 @computed get doubleCount() {

 return this.count * 2;

 }

 @action increment() {

 this.count += 1;

 }

 @action decrement() {

 this.count -= 1;

 }

 @action async fetchCountFromServer() {

 const response = await fetch('/count');

 const data = await response.json();

 this.count = data.count;

 }

}

const myStore = new Store();

State Management in React198

MobX is well suited for applications that require high performance and simplicity in managing

complex data dependencies. It offers an elegant and intuitive way to handle complex state, al-

lowing developers to focus on business logic rather than state management.

One drawback of this library is the considerable freedom it provides in organizing state, which

can lead to difficulties and scalability issues in inexperienced hands. For example, MobX allows

direct manipulation of object data, which can trigger component updates, but this can also lead

to unexpected state changes in large projects and debugging challenges. Similarly, this freedom

often results in small, clean MobX classes becoming tightly coupled, making testing and project

development more challenging.

To integrate MobX with React, the mobx-react library is used, which provides the observer func-

tion. This allows React components to automatically react to changes in observed data.

import React from 'react';

import { observer } from 'mobx-react';

import myStore from './myStore';

const Counter = observer(() => {

 return (

 <div>

 <div>Count: {myStore.count}</div>

 <div>Double: {myStore.doubleCount}</div>

 <button onClick={() => myStore.increment()}>-</button>

 <button onClick={() => myStore.decrement()}>+</button>

 </div>

);

});

In the example, the same counter is implemented using MobX. As you can see, we don’t use

hooks to access the state or providers to store it in the application context. We simply import the

variable from the file and use it. The myStore created from the Store class is the state itself. It’s

easy to use the observed value of an object in a component because the component immediately

subscribes to all changes of that value and will re-render every time it changes.

Just from the examples, you can already see how simple and convenient MobX is for managing

state. Since it’s just an object, there are no complexities in lazily loading it when needed and

clearing the cache and memory of the application when the data is no longer needed. I consider

it a powerful tool for state management and highly recommend trying it in a real project.

Chapter 12 199

Summary
In this chapter, we’ve learned about global state and how to manage it. Using the example of

limited local state, we’ve discussed why it’s important to have global state in cases where shared

data is needed across different components at different levels of the application.

We’ve explored an example using the React Context API and identified when to use it and when

to prefer more powerful state management solutions. Next, we looked at two such solutions in

the form of Redux and MobX.

In the next chapter, we will discuss server-side rendering and the benefits it can bring to our

applications.

13
Server-Side Rendering

As we discussed in Chapter 1, Why React?, the React library is remarkably flexible in terms of

how our components can be transformed into various target formats. One such target format,

as you might have guessed, is standard HTML markup, presented as a string and generated on

the server. In this chapter, we will delve into how server-side rendering (SSR) works in React

and the advantages it offers both users and developers. You will learn why this approach can be

valuable for your application and how it enhances the overall user experience and performance.

The following topics are covered in this chapter:

•	 Working on the server

•	 Using Next.js

•	 React Server Components

Technical requirements
You can find the code files of this chapter on GitHub at https://github.com/PacktPublishing/

React-and-React-Native-5E/tree/main/Chapter13.

Working on the server
Web technologies have come a long way or, more precisely, have come full circle. It all started with

static web pages prepared by a server. Servers were the foundation of all website and application

logic, as they were entirely responsible for their functioning. Then, we tried to move away from

SSR in favor of rendering pages in the browser, which led to a significant leap in the development

of web pages as fully fledged applications, now comparable to desktop ones. As a result, browsers

became the core of application logic, while servers merely provided data for applications.

https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter13
https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter13

Server-Side Rendering202

Currently, the development cycle has brought us back to SSR and server components, but now

we have a unified logic and code for both the server and the client. Why this happened and what

conclusions and experiences we have gained with the evolution of technologies are what we will

try to understand in this section, and we will simultaneously learn about the types of work our

applications do on the server.

Server-side rendering
In a traditional single-page application (SPA) approach, we rely solely on local browser rendering.

We write all the code, styles, and markup specifically for a browser, and during the application

build, we get static HTML, CSS, and JavaScript files, which are then loaded into the browser.

In most cases, the initial HTML file remains empty, without any content. The only important

thing to have in this file is the connected JavaScript file, which will render everything we need.

Below is a schematic illustration of how an SPA application is loaded and rendered:

Figure 13.1: SPA application

This approach brought interactivity, making applications feel and function like real desktop ap-

plications. There’s no longer a need to reload a page every time to update the content and receive

notifications, new emails, or messages, as the entire application logic is directly in the browser.

Over time, browser applications have almost entirely replaced desktop ones. Now, we can write

emails, work with documents, watch movies, and do much more, all within a single browser.

Many companies, instead of developing desktop applications, started creating their projects as

web applications. The browser’s ability to operate across any architecture and operating system

significantly reduced development costs.

Chapter 13 203

At the same time, servers also underwent changes, moving away from page templating, caching,

etc. Backend developers no longer need to focus on page layout and can devote more time to more

complex logic and architecture.

However, SPA applications do have drawbacks, including the long initial load time due to the need

to download and process the script. During this process, the user sees a white screen or a loading

spinner. Additionally, the empty initial HTML file is not suitable for search engine optimization,

as search engines perceive it as a blank page.

In the context of creating, for example, an online store, a regular React SPA might not be suitable

because it’s important for users and search engines to immediately see the page content. Before

the advent of SPAs, such tasks were solved by tools that worked only on the server side, which

always prepared the content. In React, solving this problem is more complex because, as we know,

React works on the browser side.

The first step in the solution will obviously be the idea of rendering the page content on the server

by React. And this won’t be a problem. Since its release, React has had the renderToString function

for this purpose, which can be called in a Node.js server environment. This function returns an

HTML string that, when sent to the browser, allows the content to be rendered on the user’s screen.

Let’s see how SSR with the renderToString function would work:

Figure 13.2: Server rendering using renderToString

In this example, when a page is requested in the browser, the server, by calling the function

renderToString and passing it to the React component tree, outputs HTML. By sending this

HTML string in response to the browser’s request, the browser renders the result.

Server-Side Rendering204

However, in such an example, the HTML generated on the server and rendered in the browser

lacks interactivity and the capabilities of a client application. For functionalities like buttons,

navigation, and everything we are accustomed to in SPAs, JavaScript is required. Therefore, the

next step in implementing an interactive site or application rendered on the server is to transmit

not only HTML but also JavaScript, which will provide all the interactivity we need.

To solve this problem, the approach of isomorphic JavaScript was introduced. Code written in

this style can be executed first on the server and then on the client. This allows you to prepare

the initial render on the server and send the ready HTML along with the JavaScript bundle to

the client, allowing the browser to then provide interactivity. This approach speeds up the initial

load of the application, while maintaining its functionality and allowing search engines to index

the page in search results.

When a user opens a page, they immediately see the rendering result performed on the server

even before the JavaScript is loaded. This quick initial response significantly improves the user

experience. After the page and JS bundle are loaded, it’s crucial for the browser to hydrate the

page, as we know from the renderToString example that all our elements lack interactivity. For

this, the script needs to attach all necessary event listeners to the elements. This process is called

hydration and is a lighter and faster process compared to a full-page render from scratch.

Another important feature of interactivity is the ability to navigate through an application in-

stantly or smoothly without reloading a browser page. With isomorphic JavaScript, this became

possible, as it is enough to load the JavaScript code of the next page, and the application can then

render the next page locally.

Figure 13.3: SSR

Chapter 13 205

The figure above schematically represents the SSR approach, where the application is fully inter-

active. Initially, when a page is requested, the server renders the content and returns HTML with

an attached JavaScript bundle. Then, the browser loads the JS file and hydrates all the content

previously displayed on the page. This approach is what has come to be known as SSR. It has

become widely used among React developers and has found its place in the arsenal of modern

web technologies. SSR combines the fast loading of page content and the high performance of

server rendering with the flexibility and interactivity of a client application.

Static site and incremental static generation
Although SSR represents a significant improvement, it is not a universal solution and has its

drawbacks, including the need to generate a page from scratch for each request. For example,

pages that do not have dynamic content must be generated on a server each time, which can cause

display delays for the user. Additionally, even for the simplest applications or sites, SSR requires a

Node.js server for rendering, unlike SPAs where it was sufficient to use a content delivery network

(CDN) to position application files closer to the user, thereby speeding up loading.

The solution to these problems was found in the static site generation (SSG) approach. The

logic of SSG is to render all static pages on a server during the project build process. As a result,

we get many HTML pages ready for immediate delivery upon request. As with SSR, in SSG, the

JavaScript bundle hydrates the page after it has loaded, making it interactive. In the end, we get

the same experience as with SPAs but not with an empty HTML file: rather, one full of content

for quick rendering. SSG projects can be hosted on fast web servers or CDNs, which also allows

for additional caching and speeding up the loading time of such applications.

SSG became an ideal solution for websites, blogs, and simple online stores, ensuring fast page load

times without blocking requests, SEO support, and the same interactivity as SPAs. Moreover, it

became possible to combine SSR for dynamic data and SSG for static pages. This hybrid approach

opens up new possibilities to implement more complex projects, combining the advantages of both

methods. It allows developers to optimize performance and user experience by choosing the best

rendering method, depending on the specific requirements of each page of the site or application.

Another issue faced by developers and companies is updating statically generated pages. For

example, traditionally, adding a new blog post or updating an online store’s inventory required

a complete rebuild of a project, which can be time-consuming and inconvenient, especially in

large projects. Imagine a blog with 1,000 posts having to be completely rebuilt and re-rendered

just because a new post being added.

Server-Side Rendering206

This problem is solved by an approach known as incremental static generation (ISR). ISR com-

bines the principles of SSG and SSR with caching functionality. To understand this approach,

imagine all our generated HTML and JS files at the build stage simply as a cache, representing

the current result of the project build. As with any cache, we now need to introduce a logic for its

revalidation. As long as our cache is valid, all page requests work as before using the SSG approach.

But when the revalidation time expires, the next request to the page initiates its re-rendering on

the server in SSR mode. The resulting output is sent to the client and simultaneously replaces the

old HTML file with a new one, i.e., updates the cache. The application then continues to operate

in SSG mode.

Thanks to ISR, it became possible to implement large-scale projects with millions of pages, which

do not need to be constantly rebuilt for minor updates. It also became possible to altogether skip

the generation of pages at the build stage, as the required pages would be rendered and saved

upon request. For huge projects, this provided a significant increase in project build speeds.

Currently, SSG with ISR, combined with traditional SSR, is one of the most popular approaches

for implementing both simple websites and blogs, as well as complex applications. However,

traditional SPAs remain a very popular solution. But if we know how to create and assemble SPAs,

what about everything else we just discussed? In response to this question, it’s important to note

that you don’t need to develop all these approaches manually. There are several frameworks based

on React that provide all the functionalities described above:

•	 Next.js: This framework is known for its flexibility and powerful features. Next.js started

with SSR but now supports both SSR and SSG, including ISR support. Recently, Next.js has

been working extensively on a new concept for implementing applications using server

components, which we will discuss at the end of the chapter.

•	 Gatsby: Gatsby’s main distinction is its strong focus on generating static sites using data

from various sources (such as CMS or Markdown). While there are not as many differences

from Next.js as there used to be, it remains a fairly popular solution.

•	 Remix: This is a relatively new framework that focuses on closer integration with web

standards and improving the user experience. Remix offers unique approaches to data

handling and routing, where we can work not page by page but by sections of a page,

implementing nested navigation by changing and caching only the part of the page that

requires dynamics.

Chapter 13 207

All these frameworks collectively provide a similar experience and implementation of the ap-

proaches we’ve discussed. Next, we’ll explore how to implement SSR and static generation using

Next.js.

Using Next.js
After familiarizing ourselves with the theory of SSR, let’s see how we can implement all this in

practice using the Next.js framework.

Next.js is a popular React-based framework specifically designed to simplify the process of SSR

and static site generation. It offers powerful and flexible capabilities for creating high-perfor-

mance web applications.

The features of Next.js:

•	 An easy-to-use API that automates SSR and static generation: You just need to write

code using the provided methods and functions, and the framework will automatically

determine which pages should be rendered server-side and which can be rendered during

the project build process.

•	 File-based routing: Next.js uses a simple and intuitive routing system based on the folder

and file structure in the project. This greatly simplifies the creation and management of

routes in the application.

•	 The ability to create comprehensive full-stack applications, thanks to API routes that allow

you to implement server-side REST API endpoints.

•	 The optimization of images, fonts, and scripts, enhancing the performance of projects.

Another important feature of the framework is its close collaboration with the React Core team on

implementing new React features. As a result, Next.js currently supports two types of application

implementations, known as the Pages Router and the App Router. The former implements the

main functionality we discussed earlier, while the latter is a newer approach designed for working

with React Server Components. We will examine the new approach later in this chapter, but for

now, let’s start with the Pages Router.

To start working with Next.js, you only need to execute a single command that will set everything

up for you:

npx create-next-app@latest

Server-Side Rendering208

This CLI command will ask you a few questions:

✔ What is your project named? … using-nextjs
✔ Would you like to use TypeScript? … No / Yes
✔ Would you like to use ESLint? … No / Yes
✔ Would you like to use Tailwind CSS? … No / Yes
✔ Would you like to use `src/` directory? … No / Yes
✔ Would you like to use App Router? (recommended) … No / Yes
✔ Would you like to customize the default import alias (@/*)? … No / Yes
✔ What import alias would you like configured? … @/* No / Yes

For our current example, you should answer Yes to all questions except for the one about using

the App Router. Also, you can access the ready-made example that we’ll discuss further at the

provided link: https://github.com/PacktPublishing/React-and-React-Native-5E/tree/

main/Chapter13/using-nextjs.

In the example, we will create a small website with multiple pages, each using different server

rendering approaches. In Next.js, each page of the website should be placed in separate files with

names that correspond to the URL path. In our project example:

•	 The main page of the website, accessible at the root path domain.com/, will be located in

the index.tsx file in the pages folder. For the understanding of the following examples,

the path to this file, in the case of the main page, will be pages/index.tsx.

•	 The /about page will be located in the pages/about.tsx file.

•	 Next, we will create a /posts page at the path pages/posts/index.tsx.

•	 Each individual post page will be located in a file using the path pages/posts/[post].

tsx. Files with names in square brackets indicate to Next.js that this will be a dynamic

page, with the post variable as a parameter. This means that pages like /posts/1 and /

posts/2 will use this file as the page component.

•	 This is how the file routing works. The main directory of the project is the pages folder,

where we can nest files that will be used to generate website pages based on the structure

and names of files and folders.

In the pages folder, there are also two service files that are not actual pages but are used by the

framework to prepare pages:

•	 The _document.tsx file is necessary for preparing the HTML markup. In this file, we have

access to the <html> and <body> tags. This file is always rendered on the server.

https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter13/using-nextjs
https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter13/using-nextjs

Chapter 13 209

•	 The _app.tsx file is used to initialize the page. You can use this component to connect

scripts or for the root layout of pages that will be reused between routes.

Let’s add a header to our website in the App component. Here’s how the _app.tsx file looks:

const inter = Inter({ subsets: ["latin"] });

export default function App({ Component, pageProps }: AppProps) {

 return (

 <div className={inter.className}>

 <header className="p-4 flex items-center gap-4">

 <Link href="/">Home</Link>

 <Link href="/posts">Posts</Link>

 <Link href="/about">About</Link>

 </header>

 <div className="p-4">

 <Component {...pageProps} />

 </div>

 </div>

);

}

The App component returns markup that will be used on every page of our project, which means

we will see this header on any of our pages. Additionally, we can use the component control where

the rest of the dynamic part of the project will be located.

Now, let’s take a look at how the main page of our project will look:

Figure 13.4: Home Page

Server-Side Rendering210

On this page, we can see the website header with links and the title, which was taken from the

pages/index.tsx file:

export default function Home() {

 return (

 <main>

 <h1>Home Page</h1>

 </main>

);

}

The pages/index.tsx file exports only one component with a title inside. It’s important to note

that this page doesn’t have any additional functions or parameters and will be automatically

rendered during the project build process. This means that when we visit this page, we get ready-

made HTML that the browser can render immediately.

We can confirm that by visiting localhost:3000/, we receive the prepared markup. To do this,

we just need to open the browser’s developer tools and inspect what is returned for this request.

Figure 13.5: Home page response in Chrome DevTools

We can see how Next.js has taken content from the App and Home components and assembled

HTML from it. All of this was done on the server side, not in the browser.

Next, let’s take a look at the /about page. On this page, we will implement SSR, which means that

instead of generating HTML during the build, the page will be rendered on every request. For this

purpose, Next.js provides the getServerSideProps function, which runs at the time of the page

request and returns props used by the component for rendering.

Chapter 13 211

For our example, I’ve taken some logic from Chapter 11, Fetching Data from a Server, where we

fetched user data from GitHub. Let’s see what the about.tsx file will look like:

export const getServerSideProps = (async () => {

 const res = await fetch("https://api.github.com/users/sakhnyuk");

 const user: GitHubUser = await res.json();

 return { props: { user } };

}) satisfies GetServerSideProps<{ user: GitHubUser }>;

In the getServerSideProps function, we request user data using the Fetch API. The data we

receive is stored in the user variable, which is then returned in the props object.

It’s important to understand that this function is part of the Node.js environment, where we can

use server-side APIs. This means we can read files, access databases, and more. This provides

significant capabilities for implementing complex full-stack projects.

Next, in the same about.tsx file, we have the About component:

export default function About({

 user,

}: InferGetServerSidePropsType<typeof getServerSideProps>) {

 return (

 <main>

 <Image src={user.avatar_url} alt={user.login} width="100"
height="100" />

 <h2>{user.name || user.login}</h2>

 <p>{user.bio}</p>

 <p>Location: {user.location || "Not specified"}</p>

 <p>Company: {user.company || "Not specified"}</p>

 <p>Followers: {user.followers}</p>

 <p>Following: {user.following}</p>

 <p>Public Repos: {user.public_repos}</p>

 </main>

);

}

In the About component, we use the user variable that we returned from the getServerSideProps

function to create the page’s markup. With just this one function, we’ve implemented SSR.

Server-Side Rendering212

Next, let’s create the /posts and /posts/[post] pages where we will implement SSG and ISR.

For this, Next.js provides two functions: getStaticProps and getStaticPaths:

•	 getStaticProps: This function serves a similar purpose as getServerSideProps but is

called during the project build process.

•	 getStaticPaths: This is used on dynamic pages where the path contains parameters

(such as [post].tsx). This function determines which paths should be pre-generated

during the build.

Let’s take a look at how the Posts page component is implemented:

export async function getStaticProps() {

 const posts = ["1", "2", "3"];

 return {

 props: {

 posts,

 },

 };

}

export default function Posts({ posts }: { posts: string[] }) {

 return (

 <main>

 <h1>Posts</h1>

 {posts.map((post) => (

 <li key={post}>

 <Link href={`/posts/${post}`}>Post {post}</Link>

))}

 </main>

);

}

Chapter 13 213

The getStaticProps function in this example doesn’t request any data but simply returns three

pages. However, just like in getServerSideProps, you can use getStaticProps to fetch data or

work with the filesystem. The Posts component then receives posts as props and uses them to

display a list of links to posts.

Here’s what the Posts page will look like:

Figure 13.6: Posts page

When opening any post, the component from the [post].tsx file will be loaded. Here’s how it

looks:

export const getStaticPaths = (async () => {

 return {

 paths: [

 {

 params: {

 post: "1",

 },

 },

 {

 params: {

 post: "2",

 },

 },

 {

 params: {

 post: "3",

 },

Server-Side Rendering214

 },

],

 fallback: true,

 };

}) satisfies GetStaticPaths;

This function informs the builder that only three pages need to be rendered during the build

process. In this function, we can also make network requests. The "fallback" parameter we

returned indicates that, theoretically, there may be more post pages than the ones we returned.

For example, if we access the /posts/4 page, it will be rendered in SSR mode and saved as the

build result:

Export const getStaticProps = (async (context) => {

 const content = `This is a dynamic route example. The value of the post
parameter is ${context.params?.post}.`;

 return { props: { content }, revalidate: 3600 };

}) satisfies GetStaticProps<{

 content: string;

}>;

In the getStaticProps function, we can now read the page parameter from the context argument.

The value of revalidate that we returned from the function enables ISR and tells the server to

rebuild this page on the next request, after 3600 from the previous build. Here’s how the Post

page will look:

export default function Post({

 content,

}: InferGetStaticPropsType<typeof getStaticProps>) {

 const router = useRouter();

 return (

 <main>

 <h1>Post – {router.query.post}</h1>

 <p>{content}</p>

 </main>

);

}

Chapter 13 215

When we open any post using the link, we will see the following:

Figure 13.7: Post page

In this example, we’ve created a website where pages use different server rendering approaches,

which is useful and convenient for building large and complex projects. However, Next.js has

more capabilities beyond this. Next, we will explore a new approach to building websites using

the App Router.

React Server Components
React Server Components represent a new paradigm for working with components in Next.js

that eliminates isomorphic JavaScript. The code of such components runs only on a server and

can be cached as a result. In this concept, you can directly read the server’s filesystem or access

the database from the components.

In Next.js, React Server Components allow you to categorize components into two types: serv-

er-side and client-side. Server-side components are processed on a server and sent to the client

as static HTML, reducing the load on the browser. Client-side components still have all the capa-

bilities of browser JavaScript but with one requirement: you need to use the use client directive

at the beginning of the file.

To use server-side components in Next.js, you will need to create a new project. For routing, you

still use files, but now, the main folder for the project is the app folder, and route names are based

solely on folder names. Inside each route (folder), there should be files with names specified by

the framework. Here are some of the key files:

•	 page.tsx: This file and its component will be used to display the page.

•	 loading.tsx: The component of this file will be sent to the client as a loading state while

the component from the page.tsx file is executed and loaded.

Server-Side Rendering216

•	 layout.tsx: This is equivalent to the _app.tsx file, but in this case, we can have multiple

layouts that can be nested within each other in nested routes.

•	 route.tsx: This file is used to implement an API endpoint.

Now, let’s refactor our website with posts using the new architecture based on the App Router.

Let’s start with the home page. Since our website didn’t have any interactive elements, I suggest

adding one. Let’s create the simplest button with a counter and place it on the home page. Here’s

the code for such a button:

"use client";

import React from "react";

export const Counter = () => {

 const [count, setCount] = React.useState(0);

 return <button onClick={() => setCount(count + 1)}>{count}</button>;

};

This component renders a button with a counter inside. By clicking the button, we update the

counter. To make this component work with App Router, we need to add the “use client" di-

rective, which tells Next.js to include this component’s code in the bundle and send it to the

browser upon request.

Now, let’s add this button to the home page, and here’s what its code will look like:

export default function Home() {

 return (

 <main>

 <h1>Home Page</h1>

 <Counter />

 </main>

);

}

Since the page is simple, it doesn’t differ from what we saw in the Pages Router, except for the

new button. Although, by default, the App Router considers all components as server ones, in this

case, the page will be rendered during the build process and saved as a static page.

Chapter 13 217

Now, let’s move on to the About page. To create this page, we need to create a folder named about

and create a file inside it named page.tsx, where we’ll place the component. Here’s the code for it:

export const dynamic = "force-dynamic";

export default async function About() {

 const res = await fetch("https://api.github.com/users/sakhnyuk");

 const user: GitHubUser = await res.json();

 return (

 <main>

 <Image src={user.avatar_url} alt={user.login} width="100"
height="100" />

 <h2>{user.name || user.login}</h2>

 <p>{user.bio}</p>

 <p>Location: {user.location || "Not specified"}</p>

 <p>Company: {user.company || "Not specified"}</p>

 <p>Followers: {user.followers}</p>

 <p>Following: {user.following}</p>

 <p>Public Repos: {user.public_repos}</p>

 </main>

);

}

As you can see, the code for this page has become simpler compared to using the Pages Router.

The About component has become asynchronous, allowing us to make a network request and wait

for the result. Since, in our example, we wanted to use SSR and render the page on the server for

each request, we needed to export the “dynamic” variable from the file with the force-dynamic

value. This parameter explicitly tells Next.js that we want to generate a new page for each request.

Otherwise, Next.js would have generated the page during the project build and saved the result

as a static page (by using SSG).

However, it would be strange if the App Router simply repeated the previous functionality without

offering anything new. If we create a loading.tsx file inside the about folder, when opening the

About page, instead of waiting for the server to request information from GitHub and prepare the

page, it will instantly serve the page with content from the loading file as a fallback. And as soon

as the component from the page.tsx file is ready, the server will send it to the client to replace

the loading component. This provides a significant performance advantage and improves the

user experience.

Server-Side Rendering218

Now, let’s move on to the Posts page. Create a posts folder and a page.tsx file inside it. Here’s

how the updated code for the /posts page will look:

export default async function Posts() {

 const posts = ["1", "2", "3"];

 return (

 <main>

 <h1>Posts</h1>

 {posts.map((post) => (

 <li key={post}>

 <Link href={`/posts/${post}`}>Post {post}</Link>

))}

 </main>

);

}

Once again, the code has become very clean. Everything we needed to fetch before rendering

the page can be obtained and created directly inside the component. In our example, we have

hardcoded three pages that will be rendered as links.

To implement a Post page, inside the posts folder, you need to create a folder with the name

[post] and create the page.tsx file inside it. Here’s the code, which is now much cleaner and

more readable:

export async function generateStaticParams() {

 return [{ post: "1" }, { post: "2" }, { post: "3" }];

}

Instead of using getStaticPaths, we provide Next.js with information about the list of static

pages to generate during the project build using the generateStaticParams function. Then, we

use props inside the component to display the page’s content:

export const revalidate = 3600

export default async function Post({ params }: { params: { post: string }
}) {

Chapter 13 219

 return (

 <main>

 <h1>Post - {params.post}</h1>

 <p>

 This is a dynamic route example. The value of the post parameter
is

 {params.post}.

 </p>

 </main>

);

}

The content remains mostly unchanged. To activate ISR, all we need to do is export the revalidate

variable from the file with the revalidation value in seconds.

In this example, we covered the fundamental approaches to building an application using React

Server Components and the App Router in Next.js. The Page Router and App Router examples

provided in this chapter do not cover all the possibilities of Next.js. For a deeper understanding of

this framework, I recommend checking out the excellent documentation on its website: https://

nextjs.org/docs.

Summary
In this chapter, we explored SSR in the context of React applications. We discussed approaches

such as SSR, SSG, and ISR, learning the advantages and disadvantages of each approach.

Then, we learned how to apply these approaches in an application using Next.js and the Pages

Router. Finally, we introduced a new technology called React Server Components and the updated

Next.js architecture called the App Router.

In the next chapter, we will learn how to test our components and applications.

https://nextjs.org/docs
https://nextjs.org/docs

14
Unit Testing in React

Although testing is an integral part of the software development process, developers and com-

panies often pay surprisingly little attention to it in reality, especially to automated testing. In

this chapter, we will try to understand why it is important to pay attention to testing and what

advantages it gives. We will also explore the basics of unit testing in ReactJS, including general

testing theory, tools, and methods, as well as specific aspects of testing ReactJS components.

In this chapter, we will cover the following topics:

•	 Testing in general

•	 Unit testing

•	 Testing ReactJS

Technical requirements
You can find the code files of this chapter on GitHub at https://github.com/PacktPublishing/

React-and-React-Native-5E/tree/main/Chapter14.

Testing in general
Software testing is a process aimed at identifying errors and verifying the functionality of a

product to ensure its quality. Testing also allows developers and testers to assess the system’s

behavior under various conditions and to ensure that new changes have not led to regression,

meaning they have not disrupted existing functionality.

https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter14
https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter14

Unit Testing in React222

The testing process includes a series of actions conducted to detect and identify any aspects

that do not meet requirements or expectations. One example of such an action could be manual

testing, where a developer or tester manually checks the application. However, this approach is

time-consuming and provides little guarantee that the application is secure and free of critical

errors in operation.

To ensure a higher level of application reliability while saving time on testing, there are automated

tests. They allow the functionality of the application to be verified without human intervention.

An automated test typically consists of a set of predefined tests and a software product, often

referred to as a runner, which launches these tests and analyzes the results to determine the suc-

cess or failure of each test. In addition to this, automated tests can be used to check performance,

stability, security, availability, and compatibility, allowing you to write truly stable, large, and

successful projects. That’s why it’s never a good idea to avoid tests; on the contrary, it’s worth

getting to know them better and trying to use them in all possible projects.

As developers, we are obviously more interested in automated testing than manual testing, so

this chapter will focus on that. But before that, let’s briefly look at the approaches to testing and

the types of tests that exist.

Test types and approaches
Software testing can be classified by various criteria, including the level of testing and the ob-

jectives it pursues.

Typically, the following types of tests are distinguished:

•	 Unit testing: Testing individual modules or components of the program for correct

operation. Unit tests are usually written and executed by developers to check specif-

ic functions or methods. Such tests are generally quick to write and can be executed

quickly, but they do not test the final application for critical bugs, as the tested and

stable components themselves may have problems when interacting with each other.

An example of a unit test would be checking the functionality of a single function, React

component, or Hook.

•	 Integration testing: Testing in which we check the interaction between various modules

or system components. The goal is to detect defects in the interfaces and interactions

between integrated components. This type of testing is usually conducted on the server

side to ensure that all systems work smoothly together and that the business logic meets

the specified requirements.

Chapter 14 223

For example, an integration test would be one that checks that user registration works

by making real calls to REST API endpoints and checking the returned data. Such a test

depends less on the application’s implementation and code and more on checking be-

havior and business logic.

•	 End-to-end (E2E) testing: Testing a complete and integrated software system to ensure

that it meets specified requirements. E2E testing evaluates the program as a whole. This

type of testing is the most reliable, as it completely abstracts from the application’s im-

plementation and checks the final behavior by interacting directly with the application

itself. In the process of such testing, for example, in a web application, a real browser is

launched in a special environment, in which a script performs real actions with the ap-

plication like clicking buttons, filling out forms, and navigating through pages.

Although test types such as integration and E2E testing provide greater confidence in verifying

the quality of an application, they come with drawbacks such as complexity and speed of test

development, execution speed, and consequently, their costliness. Therefore, it is considered good

practice to maintain a balance where preference is given to unit tests, as they are easier to main-

tain and faster to run. Then, all main business processes and logic are verified using integration

tests, and E2E tests cover only the most critical business cases. This approach can be depicted

in the form of a pyramid:

Figure 14.1: Test pyramid

Unit Testing in React224

The pyramid perfectly describes the approach we have discussed above. At its base lies unit

testing, which should cover the application’s source code as extensively as possible. It has the

lowest cost of development and maintenance, as well as the highest test execution performance.

In the middle are the integration tests, which are quite fast but more expensive to develop. At

the very top, we have the E2E tests, which take the longest to execute and are the most expensive

to develop, but they provide the maximum confidence in the quality of the product being tested.

Since integration and E2E tests abstract away from the implementation, and thus from the pro-

gramming language or libraries used in the application, we are not going to cover those types of

testing. Therefore, let’s focus in more detail on unit testing.

Unit testing
We already know that unit testing is the process of verifying the correctness of individual “units”

of code: namely, functions and methods. The goal of unit testing is to ensure that each separate

unit performs its task correctly, which, in turn, increases confidence in the reliability of the entire

application.

export function sum(a: number, b: number): number {

 return a + b;

}

test('adds 1 + 2 to equal 3', () => {

 expect(sum(1, 2)).toBe(3);

});

The above represents the most basic and simplest test of a function that adds two values. The test

code itself is a function that calls a special method, expect, which takes a value and then has a

series of methods allowing for the checking and comparing of results.

Looking at this code, the first question that might come to mind is, is it really necessary to write

another three lines of tests for such a simple three-line function? And why test such a function

at all? I would answer with a definitive yes. It often happens that a function can be covered by a

test that is larger in volume than the function itself, and there is nothing wrong with that. Let’s

understand why.

Chapter 14 225

Unit testing is most useful and effective when you are testing pure functions, which have no side

effects and do not depend on external state. Conversely, unit testing is useless when the function

being tested can change its behavior due to external factors or simply because that’s how the

function was designed. For example, functions for requesting data from the server, getting data

from localStorage, or relying on global variables might return different results for the same in-

put. From this, we can conclude that in an application development approach that requires code

coverage with tests, you will automatically strive to write testable code, meaning more modular,

independent, clean, and scalable code. This becomes especially noticeable on large projects. If

tests were written from the start, such projects could continue to grow without the need for ma-

jor refactoring or rewriting functionality from scratch. Also, in projects with tests, it is easier for

newcomers to understand, as tests can serve as additional documentation for modules, reading

which one can understand what the module is responsible for and what behavior it possesses.

For writing unit tests, there are entire concepts and methodologies. The main and most popular

one is the traditional coverage of tests after code development. The advantage of this approach

is the speed of development of the main functionality, as tests are usually dealt with later. Hence,

the problem with this approach lies in delaying testing, which poses a risk of accumulating code

that is not covered by tests. Later, when writing tests, it often becomes necessary to correct the

main code, making it more modular and cleaner, which takes additional time.

There is also a methodology directly aimed at writing tests, called test-driven development

(TDD). This is a software development methodology in which tests are written before the code

itself. The benefit of this approach is that your code will be immediately covered by tests, meaning

it will be cleaner and more reliable. However, this approach may not be suitable for prototyping

or for projects where requirements often change.

The choice between TDD and testing after development depends on many factors, including the

team’s culture, project requirements, and developers’ preferences. It is important to understand

that neither approach is a universal solution, and different choices may be justified in different

situations. Most importantly, understand the importance of testing and that one should avoid

an approach in work where tests are not written at all as, in most cases, such code is doomed to

be rewritten from scratch.

Now that we understand what unit tests are and their importance, let’s take a closer look at them.

Before writing tests, we should set up the environment in which we will run our tests.

Unit Testing in React226

Setting up the test environment
The most popular framework for writing and running unit tests is Jest. However, we will look

at its more performant alternative, which is fully compatible with Vite, called Vitest. To install

Vitest in your project, you need to execute this command:

npm install -D vitest

For basic operation, Vitest does not require any configuration, as it is fully compatible with the

Vite configuration file.

Next, to get started, we need to create a file with the extension *.test.ts. The location of the file

is not critical; the main thing is that the file is inside your project. Usually, test files are associated

with the files of the functions being tested and are placed in the same directory; for example, for

the sum function located in the sum.ts file, a file with a test named sum.test.ts is created and

located in the same folder.

To run the tests, we need to add a launch script to the package.json file:

{

 "scripts": {

 "test": "vitest"

 }

}

Then, to call it, just execute the command in the terminal:

npm run test

This command will start the Vitest process, which will scan the project for files with the .test.

extension and then execute all the tests in each such file. Once all tests are completed, you will

see the result in the terminal window, and then the process will wait for changes in the test files

to rerun them. This is specifically designed as a mode for developing tests, where you do not need

to constantly run the test command. For a one-time test run, you can add another command that

will close the process upon completion of testing:

"test:run": "vitest run"

The run parameter is precisely for telling Vitest that you want to run the tests only once.

Chapter 14 227

Vitest features
Let’s now look at the main features of Vitest and the types of tests we can write. Let’s start with

a simple function, squared:

export const squared = (n: number) => n * n

This function returns the square of a number. Here is what the test for this function would look like:

import { expect, test } from 'vitest'

test('Squared', () => {

 expect(squared(2)).toBe(4)

 expect(squared(4)).toBe(16)

 expect(squared(25)).toBe(625)

})

The test and expect functions are part of the Vitest package. The test function takes the name

of the test as its first argument and the test function itself as its second argument. The expect

method serves as the basis for checking the expected result from the function being tested. Call-

ing the expect method creates an object that contains a large number of methods, allowing for

different ways to check the execution result. In our example, we explicitly compare the result of

executing the squared function with the expected value.

By running this test, in the terminal window, we will see the following message:

✓ test/basic.test.ts (1)
 ✓ Squared

 Test Files 1 passed (1)

 Tests 1 passed (1)

 Start at 17:39:33

 Duration 1.14s

To check that the tests are working correctly, let’s change the expected value from 4 and see what

result we get:

FAIL test/basic.test.ts > Squared

AssertionError: expected 4 to be 5 // Object.is equality

- Expected

Unit Testing in React228

+ Received

 ❯ eval test/basic.test.ts:13:22
 11|

 12| test('Squared', () => {

 13| expect(squared(2)).toBe(5);

 | ^

 14| expect(squared(4)).toBe(16);

 15| expect(squared(25)).toBe(625);

⎯⎯
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯[1/1]⎯

 Test Files 1 failed (1)

 Tests 1 failed (1)

 Start at 17:41:45

 Duration 1.15s

When a test fails, we can see directly in the results where the error occurred, what result we

received, and what we expected.

The toBe method is very useful for direct comparison of results, but what about objects and ar-

rays? Let’s consider this test example:

test('objects', () => {

 const obj1 = { a: 1 };

 const obj2 = { a: 1 };

 expect(obj1).not.toBe(obj2);

 expect(obj1).toEqual(obj2);

});

In this test, we created two identical objects, which will not be equal as variables. To expect the

opposite assertion, we use the additional .not. key, which ultimately gives us the statement

that the two variables are not equal to each other. If we still want to check that the objects have

the same structure, there is a method called toEqual, which recursively compares objects. This

method also works similarly with arrays.

For arrays, there are also additional methods that allow checking for the presence of an element,

which is often very useful:

Chapter 14 229

test('Array', () => {

 expect(['1', '2', '3']).toContain('3');

});

The toContain method can also work with strings and even DOM elements, checking for the

presence of a class in classList.

The next big part of unit testing is working with functions. Vitest allows you to create spyable

fake functions, which lets you check how and with what parameters this function was called.

Let’s look at an example function:

const selector = (onSelect: (value: string) => void) => {

 onSelect('1');

 onSelect('2');

 onSelect('3');

};

This function is created just for demonstration, but we can easily imagine some module or selector

component that takes the onSelect callback, which will be called under some condition: in our

case, three times in a row. Now let’s see how we can test using observable functions:

test('selector', () => {

 const onSelect = vi.fn();

 selector(onSelect);

 expect(onSelect).toBeCalledTimes(3);

 expect(onSelect).toHaveBeenLastCalledWith('3');

});

In the test, we created the onSelect function using the vi module from the Vitest package. This

function now allows us to check how many times it was called and with what arguments. For

this, we used the methods toBeCalledTimes and toHaveBeenLastCalledWith. There is also a

method called toHaveBeenCalledWith, which can step-by-step check which arguments were

used on each call of the observed function. In our case, the valid checks would be these three lines:

 expect(onSelect).toHaveBeenCalledWith('1');

 expect(onSelect).toHaveBeenCalledWith('2');

 expect(onSelect).toHaveBeenCalledWith('3');

Unit Testing in React230

Vitest also allows you to spy a real function, for which you need to use the vi.spyOn method.

However, for this, the function must be accessible from an object. Let’s look at an example of

spying on a real function:

test('spyOn', () => {

 const cart = {

 getProducts: () => 10,

 };

 const spy = vi.spyOn(cart, 'getProducts');

 expect(cart.getProducts()).toBe(10);

 expect(spy).toHaveBeenCalled();

 expect(spy).toHaveReturnedWith(10);

});

To create an observation for a function, we call vi.spyOn and pass it the object as the first argu-

ment and the name of the method as the second. Then, we can work with the original function

and, later, make the necessary checks working with the spy variable. In the example above, you

can also notice the new method toHaveReturnedWith, which allows you to check what the ob-

served function returned.

Mocking
Moving on, I’d like to mention one of the most challenging parts of unit testing: namely, working

with functions that have side effects or depend on external data or libraries. Earlier, I mentioned

that testing is useless in functions with side effects, like calling something under the hood. Actually,

that’s not entirely true. In some cases, it’s simply impossible to write a pure function, but that

doesn’t mean it can’t be tested. To write tests for such functions, we can use mocking: namely,

emulating external behavior or simply replacing the implementation of some modules or libraries.

An example could be a function that depends on the system time of the computer, or a function

that returns data from a server. In such cases, we can apply a fake instruction that can change

the current date of the computer specifically for this test, to have a clean result that is easier to

test. Similarly, it is possible to create a fake implementation of a network request, which will

ultimately be executed locally with the return of predetermined values. Let’s discuss some of

these scenarios in this section.

Chapter 14 231

Consider the example of testing and using timers. In the testing environment, we can avoid wait-

ing for timers and manually control them to more thoroughly test the behavior of the function.

Let’s look at an example:

function executeInMinute(func: () => void) {

 setTimeout(func, 1000 * 60)

}

function executeEveryMinute(func: () => void) {

 setInterval(func, 1000 * 60)

}

const mock = vi.fn(() => console.log('done'))

We created the executeInMinute and executeEveryMinute functions for delaying the call of a

function by one minute and for cyclic execution every minute, respectively. We also created a

mock function that we will subsequently spy on. Here’s what the test will look like:

describe('delayed execution', () => {

 beforeEach(() => {

 vi.useFakeTimers()

 })

 afterEach(() => {

 vi.restoreAllMocks()

 })

 it('should execute the function', () => {

 executeInMinute(mock)

 vi.runAllTimers()

 expect(mock).toHaveBeenCalledTimes(1)

 })

 it('should not execute the function', () => {

 executeInMinute(mock)

 vi.advanceTimersByTime(2)

 expect(mock).not.toHaveBeenCalled()

 })

Unit Testing in React232

 it('should execute every minute', () => {

 executeEveryMinute(mock)

 vi.advanceTimersToNextTimer()

 expect(mock).toHaveBeenCalledTimes(1)

 vi.advanceTimersToNextTimer()

 expect(mock).toHaveBeenCalledTimes(2)

 })

})

In this example, there’s a lot to discuss but let’s start with the fact that we didn’t use the test

function; instead, we used describe and it. The describe function allows us to create a test suite

that can have its own context and lifecycle. In the test suite, we can set initial parameters or mock

some behavior so that our test cases can reuse this context and these parameters later on. In our

example, we use the beforeEach and afterEach methods, which set up fake timers before each

test and then restore everything back to its original state after each test.

The it method is an alias for the test method and does not differ functionally from it. It’s only

there to make the test case more readable in the results. For example, describe with ‘delayed

execution' and it with ‘should execute the function' in the results would look like this:

delayed execution > should execute the function

However, using test, we would see the result as:

delayed execution > if should execute the function

Now, let’s look at the tests themselves. The first test uses the executeInMinute function, which,

in reality, would call our observed method only after a minute, but in the test, we can control

time. By using vi.runAllTimers(), we force the environment to start and skip all timers and

immediately check the result. In the next test, we move time forward by 2 milliseconds using

vi.advanceTimersByTime(2), which already allows us to ensure that the original function will

not be called.

Next, let’s discuss the executeEveryMinute method, which should start a timer with a call to

an argument every minute. In this case, we can step through each iteration of this timer using

advanceTimersToNextTimer, giving us precise control over time without having to wait in real time.

When writing unit tests, we will often encounter that the function being tested will depend on

some library or even a package.

Chapter 14 233

Most often, you will encounter this in React Native, if a library or some method uses the device’s

native functions. In such a case, to write a test, we need to create a mock version of this logic that

will be called during the test.

Let’s consider a simple example where we imagine that we have a package that can interact with

the device and get the current number of steps. To obtain the steps, we’ll use the getSteps function:

export function getSteps() {

 // SOME NATIVE LOGIC

 return 100;

}

As an example, the function itself will be very simple and will just return the value of 100. However,

in reality, such a function would interact with a smartphone API, which would be impossible to

invoke within the scope of testing. Next, let’s look at what we can do when writing a test:

import { beforeAll, describe, expect, it, vi } from 'vitest';

import { getSteps } from './ios-health-kit';

describe('IOS Health Kit', () => {

 beforeAll(() => {

 vi.mock('./ios-health-kit', () => ({

 getSteps: vi.fn().mockImplementation(() => 2000),

 }));

 });

 it('should return steps', () => {

 expect(getSteps()).toBe(2000);

 expect(getSteps).toHaveBeenCalled();

 });

});

The test and the entire example are quite primitive but they will give you an understanding of

how mocking works. At the beginning of the file, we import our original package, ios-health-kit,

then using the beforeAll method, we call vi.mock, passing it the path to the package as the first

argument and a function that will return the implementation of the original file: namely, creating

an object with the getSteps method as a fake function with an implementation that will return

the value of 2000. Then, in the test, we check that it indeed returns this value.

Unit Testing in React234

In this test, the vi.mock function creates a mock of the imported package and replaces the original

import with it, which allows us to successfully test this functionality.

In fact, this example, in essence, does not test anything but merely demonstrates the possibility

of mocking. In a real project, you will likely need to test functions that somewhere inside may

use libraries that are important to mock. For this, it may be inconvenient to constantly manually

write mocks before the actual test; to solve this, you can mock libraries and APIs at a global level.

For this, you will need to create a configuration file or use vi.stubGlobal. I do not recommend

diving so deeply right away without understanding and learning the basics, so let’s move on.

The last but not least important example I’d like to discuss is mocking network requests. Almost

any application you’ll be developing will work with data that needs to be fetched from a server.

For a unit test, this can be a problem, as it’s important to test the unit abstracted from the exter-

nal environment. Therefore, in unit tests, you should always mock server requests and provide

the data necessary for the current test case. There’s a library called Mock Service Worker for

mocking server requests. It allows you to mock REST and GraphQL requests very flexibly. Let’s

look at an example:

import { http, HttpResponse } from 'msw';

import { setupServer } from 'msw/node';

import { describe, it, expect, beforeAll, afterEach, afterAll } from
'vitest';

const server = setupServer(

 http.get('https://api.github.com/users', () => {

 return HttpResponse.json({

 firstName: 'Mikhail',

 lastName: 'Sakhniuk',

 });

 })

);

describe('Mocked fetch', () => {

 beforeAll(() => server.listen());

More information about dependency mocking via configuration can be found at

https://vitest.dev/guide/mocking.

https://vitest.dev/guide/mocking

Chapter 14 235

 afterEach(() => server.resetHandlers());

 afterAll(() => server.close());

 it('should returns test data', async () => {

 const response = await fetch('https://api.github.com/users');

 expect(response.status).toBe(200);

 expect(response.statusText).toBe('OK');

 expect(await response.json()).toEqual({

 firstName: 'Mikhail',

 lastName: 'Sakhniuk',

 });

 });

});

In this test, we created a mock network request for the path https://api.github.com/users,

which returns the data we need. For this, we used the setupServer function from the Mock Service

Worker package. Next, in the lifecycle methods, we set up the mock server to listen to server re-

quests and then implemented a standard test where data is requested using the regular Fetch API.

As you can see in the results, we can check the status code and the returned data.

With such a mocking approach, we truly have vast possibilities for testing different logic depend-

ing on the data returned from the server, status codes, errors, and so on.

In this section, we’ve introduced the basics of unit tests: namely, what they are and why we need

to write them. We’ve learned how to set up the testing environment and write basic tests for our

future projects. Next, let’s move on to the main topic of our chapter, testing ReactJS compaonents.

Testing ReactJS
We already know that unit testing involves checking small units, and most often, just functions,

which perform some logic and return a result. To understand how testing in ReactJS works, the

concept and idea remain the same. We know that at their core, React components are actually

createElement functions that return a node, which, as a result of the render function, is dis-

played on the browser screen as HTML elements. In unit testing, we don’t have a browser, but

this is not a problem for us since we know that the render target in React can be almost anything.

As you may have already guessed, in the unit tests of ReactJS components, we will be rendering

components into a specially created JSDOM format, which is fully identical to the DOM, and the

React Testing Library will help us with this.

Unit Testing in React236

This library contains a set of tools that allow rendering components, simulating events, and then

checking the results in various ways.

Before we start, let’s set up the environment for testing React components. To do this, in a fresh

Vite project, execute this command:

npm install --save-dev \

 @testing-library/react \

 @testing-library/jest-dom \

 vitest \

 jsdom

This command will install all the dependencies we need. Next, we need to create a tests/setup.

ts file to integrate Vitest and the React Testing Library:

import { expect, afterEach } from 'vitest';

import { cleanup } from '@testing-library/react';

import * as matchers from "@testing-library/jest-dom/matchers";

expect.extend(matchers);

afterEach(() => {

 cleanup();

});

Next, we need to update the vite.config.ts configuration file and add the following code there:

 test: {

 globals: true,

 environment: "jsdom",

 setupFiles: "./tests/setup.ts",

 },

These parameters tell Vitest to use an additional environment and execute our setup script before

starting the tests.

The last step is to configure TypeScript typing, where we will specify that the expect function

will now have additional methods to work with React components. To do this, we need to add

the following code to the src/vite-env.d.ts file:

Chapter 14 237

import type { TestingLibraryMatchers } from "@testing-library/jest-dom/
matchers";

declare global {

 namespace jest {

 interface Matchers<R = void>

 extends TestingLibraryMatchers<typeof expect.stringContaining, R> {}

 }

}

This construction adds types for all the new methods provided by the React Testing Library. With

this, the environment setup is complete, and we can proceed to writing tests.

First, let’s consider the most basic check that a component has successfully rendered and is

present in the document. For this, we’ll create an App component that returns a title with the

Hello world text:

export function App() {

 return <h1>Hello world</h1>;

}

The test for such a component would look like this:

import { render, screen } from "@testing-library/react";

import { describe, it, expect } from "vitest";

import { App } from "./App";

describe("App", () => {

 it("should be in document ", () => {

 render(<App />);

 expect(screen.getByText("Hello world")).toBeInTheDocument();

 });

});

The structure of the test itself is the same as before and is already familiar to us. The main thing

to note is that at the beginning of the test, we render the component using the render function

from testing-library, and after that, we can perform checks. To work with the rendering re-

sult, we use the screen module. It allows us to interact with our virtual DOM tree, and search for

necessary elements in various ways.

Unit Testing in React238

We will cover the main ones later, but in this example, we used the getByText method, which

queries for an element containing the text “Hello World". To check whether this element is

present in the document, we use the toBeInTheDocument method. This is how the output looks

when you run the test:

✓ src/App.test.tsx (1)
 ✓ App (1)
 ✓ should be in document

 Test Files 1 passed (1)

 Tests 1 passed (1)

 Start at 14:19:01

 Duration 198ms

Now let’s consider a more complex example, where we need to check that clicking a button adds

a new className property to the component:

export function ClassCheck() {

 const [clicked, setClicked] = useState(false);

 return (

 <button

 className={clicked ? "active" : ""}

 onClick={() => setClicked(true)}

 >

 Click me

 </button>

);

}

By clicking the button, we update the state, which updates the component and adds an active

class to it. Now, let’s write a test for this component:

describe("ClassCheck", () => {

 it("should have class active when button was clicked", () => {

 render(<ClassCheck />);

 const button = screen.getByRole("button");

 expect(button).not.toHaveClass("active");

 fireEvent.click(button);

Chapter 14 239

 expect(button).toHaveClass("active");

 });

});

In this test, you first render the ClassCheck component, then we need to find the button element,

and for this, we use the screen module with the getByRole method. This is the next method that

allows query elements in the document, but it’s important to understand that if there is more

than one button in the document, this test will produce an error. Therefore, it’s necessary to

apply suitable query methods in different situations. Now that the button is accessible, we first

ensure that the component does not contain the active class using the toHaveClass method

with the not prefix.

To click on this button, the React Testing Library provides the fireEvent module, which allows

generating click events. After clicking the button, we check that the required class is present in

the element.

With fireEvent, it’s possible to generate all possible events such as click, drag, play, focus, blur,

and many others. A very common event that is also important to test is the change event in an

input element. Let’s discuss this using the Input component as an example:

export function Input() {

 return <input type="text" data-testid="userName" />;

}

This component simply returns an input element, but in this example, I’ve also added a special

attribute, data-testid. This is used for more convenient searching of elements in the document,

as this attribute abstracts you from working with the content of the component or the role of the

element. During the development of the project, you will often update your components, and

the data-testid attribute will help you less frequently fix broken tests due to content updates

or changes, say from h1 to h2 or div to a more semantic element.

Now let’s write a test for this component:

describe("Input", () => {

 it("should handle change event", () => {

 render(<Input />);

 const input = screen.getByTestId<HTMLInputElement>("userName");

 fireEvent.change(input, { target: { value: "Mikhail" } });

 expect(input.value).toBe("Mikhail");

Unit Testing in React240

 });

});

In this test, as usual, we render the component, and then we find our element using the more con-

venient method, getByTestId. Next, we simulate the change event on input using the fireEvent.

change method, which takes the event object, and at the end of the test, we assert the entered

value in the expected one. In this way, we can now test large forms with various logic for format-

ting, validation, and so on.

Just like testing components, the React Testing Library can also test Hooks. This allows testing

only the custom logic and abstracting away from the components. Let’s write a small useCounter

Hook, which will return the current counter value and the increment and decrement functions:

export function useCounter(initialValue: number = 0) {

 const [count, setCount] = useState(initialValue);

 const increment = () => setCount((c) => c + 1);

 const decrement = () => setCount((c) => c - 1);

 return { count, increment, decrement };

}

In order to test this Hook, instead of using the render function, the React Testing Library has a

renderHook method. This is what a test of this Hook would look like:

test("useCounter", () => {

 const { result } = renderHook(() => useCounter());

 expect(result.current.count).toBe(0);

 act(() => {

 result.current.increment();

 });

 expect(result.current.count).toBe(1);

 act(() => {

 result.current.decrement();

 });

Chapter 14 241

 expect(result.current.count).toBe(0);

});

Initially, we render the Hook itself and check that the initial value is zero. The renderHook meth-

od returns the result object, through which we can read the data returned from the Hook. Next,

we need to test the increment and decrement methods. To do this, it is not enough to simply

call them, as Hooks are not pure functions by nature and contain a lot of logic under the hood.

Therefore, we need to call those methods wrapped in the act method, which will synchronously

wait for the method to execute and the Hook to re-render. After that, we can assert the expec-

tations in the usual way. The output will look the same as we saw in the previous example, but

let’s now try to update the test to make failed results. Updating the first assertion from .toBe(0)

to .toBe(10) will look like:

AssertionError: expected +0 to be 10 // Object.is equality

- Expected

+ Received

- 10

+ 0

 ❯ src/useCounter.test.ts:8:32
 6| const { result } = renderHook(() => useCounter());

 7|

 8| expect(result.current.count).toBe(10);

 | ^

 9|

 10| act(() => {

⎯⎯
⎯⎯
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯[1/1]⎯

 Test Files 1 failed (1)

 Tests 1 failed (1)

 Start at 14:24:06

 Duration 200ms

Unit Testing in React242

You will notice how Vitest highlights the part of the code where we got a failed assertion.

In this section, we have learned how we can test components and Hooks using the React Testing

Library.

Summary
In this chapter, we explored the broad and extensive topic of testing. We became acquainted with

the concept itself, testing types, and various approaches. Then, we delved into unit testing and

learned what it is, and what possibilities this type of testing offers. After that, we learned how to

set up the environment and write tests for regular functions and logic. At the end of the chapter,

we examined the basic capabilities of testing React components and Hooks.

With this chapter, we conclude our acquaintance with the amazing ReactJS library and will next

dive deeper into the React ecosystem with the incredible opportunity to create mobile applica-

tions based on React Native.

Join us on Discord!
Read this book alongside other users and the authors themselves. Ask questions, provide solu-

tions to other readers, chat with the authors, and more. Scan the QR code or visit the link to join

the community.

https://packt.link/ReactAndReactNative5e

Part 2
React Native

In this part, we look at building mobile apps with the React Native library. We’ll explore the

basic API and some common approaches to help you develop solid and performant applications.

This part contains the following chapters:

•	 Chapter 15, Why React Native?

•	 Chapter 16, React Native Under the Hood

•	 Chapter 17, Kick-Starting React Native Projects

•	 Chapter 18, Building Responsive Layouts with Flexbox

•	 Chapter 19, Navigating between Screens

•	 Chapter 20, Rendering Item Lists

•	 Chapter 21, Geolocation and Maps

•	 Chapter 22, Collecting User Input

•	 Chapter 23, Responding to User Gestures

•	 Chapter 24, Showing Progress

•	 Chapter 25, Displaying Modal Screens

•	 Chapter 26, Using Animations

•	 Chapter 27, Controlling Image Display

•	 Chapter 28, Going Offline

15
Why React Native?

Meta (formerly Facebook) created React Native to build its mobile applications. It was started

as a hackathon project in the summer of 2013 inside Facebook and open sourced for everyone in

2015. The motivation to do so originated from the fact that React for the web was so successful.

So, if React is such a good tool for UI development, and you need a native application, then why

fight it? Just make React work with native mobile OS UI elements! Therefore, in the same year,

Facebook divided React into two independent libraries, React and ReactDOM, and since then, Re-

act had to work only with interfaces and not care about where these elements will be rendered.

In this chapter, you’ll learn about the motivations for using React Native to build native mobile

web applications. Here are the topics that we’ll cover in this chapter:

•	 What is React Native?

•	 React and JSX are familiar

•	 The mobile browser experiences

•	 Android and iOS: different yet the same

•	 The case for mobile web apps

Technical requirements
There aren’t any technical requirements for this chapter since it is a brief conceptual introduction

to React Native.

Why React Native?246

What is React Native?
Earlier in this book, I introduced the notion of a render target, the thing that React components

render to. The render target is abstract as far as the React programmer is concerned. For example,

in React, the render target can be a string, or it could be the Document Object Model (DOM).

Therefore, your components never directly interface with the render target because you can never

make assumptions about where the rendering is taking place.

A mobile platform has UI widget libraries that developers can leverage to build apps for that

platform. On Android, developers implement apps using Java or Kotlin, while, on iOS, developers

implement Objective-C or Swift apps. If you want a functional mobile app, you’re going to have

to pick one. However, you’ll need to learn both languages, as supporting only one of two major

platforms isn’t realistic for success.

For React developers, this isn’t a problem. The same React components that you build work all

over the place, even on mobile browsers! Having to learn two more programming languages to

build and ship a mobile application is cost- and time-intensive. The solution to this is to introduce

a new React platform that supports a new render target: native mobile UI widgets.

React Native uses a technique that makes asynchronous calls to the underlying mobile OS, which

calls the native widget APIs. There’s a JavaScript engine, and the React API is mostly the same as

React for the web. The difference is with the target; instead of a DOM, there are asynchronous

API calls. The concept is visualized here:

Figure 15.1: React Native workflow

Chapter 15 247

This oversimplifies everything that’s happening under the hood but the basic ideas are as follows:

•	 The same React library that’s used on the web is used by React Native and runs in JavaS-

criptCore.

•	 Messages that are sent to native platform APIs are asynchronous and batched for perfor-

mance purposes.

•	 React Native ships with components implemented for mobile platforms, instead of com-

ponents that are HTML elements.

•	 React Native is just a way to render components via iOS and Android APIs. It can be re-

placed using the same concept with tvOS, Android TV, Windows, macOS, and even Web

again. This is reachable by forks and add-ons for React Native. In this part of the book,

we will learn how to write mobile apps for iOS and Android. More information about

other possible platforms can be found here: https://reactnative.dev/docs/out-of-

tree-platforms.

Much more on the history and mechanics of React Native can be found at https://engineering.

fb.com/2015/03/26/android/react-native-bringing-modern-web-techniques-to-mobile/

React and JSX are familiar
Implementing a new render target for React is not straightforward. It’s essentially the same

thing as inventing a new DOM that runs on iOS and Android. So, why go through all the trouble?

First, there’s a huge demand for mobile apps. The reason is that the mobile web browser user

experience isn’t as good as the native app experience. Second, JSX is a fantastic tool for building

UIs. Rather than having to learn new technology, it’s much easier to use what you know.

It’s the latter point that’s the most relevant to you. If you’re reading this book, you’re probably

interested in using React for both web applications and native mobile applications. I can’t put

into words how valuable React is from a development-resource perspective. Instead of having a

team that does web UIs, a team that does iOS, a team that does Android, and so on, there’s just

the UI team that understands React.

In the following section, you’ll learn about the challenges of delivering good user experiences

on mobile web browsers.

https://reactnative.dev/docs/out-of-tree-platforms
https://reactnative.dev/docs/out-of-tree-platforms
https://engineering.fb.com/2015/03/26/android/react-native-bringing-modern-web-techniques-to-mobile/
https://engineering.fb.com/2015/03/26/android/react-native-bringing-modern-web-techniques-to-mobile/

Why React Native?248

The mobile browser experiences
Mobile browsers lack many capabilities of mobile applications. This is because browsers cannot

replicate the same native platform widgets as HTML elements. You can try to do this, but it’s

often better to just use the native widget rather than try to replicate it. This is partly because this

requires less maintenance effort on your part, and partly because using widgets that are native

to the platform means that they’re consistent with the rest of the platform. For example, if a

date picker in your application looks different from all the date pickers the user interacts with on

their phone, this isn’t a good thing. Familiarity is key and using native platform widgets makes

familiarity possible.

User interactions on mobile devices are fundamentally different from the interactions that you

typically design for the web. Web applications assume the presence of a mouse, for example, and

that the click event on a button is just one phase. However, things become more complicated

when the user uses their fingers to interact with the screen. Mobile platforms have what’s called

a gesture system to deal with this. React Native is a much better candidate for handling gestures

than React for the web because it handles these types of things that you don’t have to think about

much in a web app.

As the mobile platform is updated, you want the components of your app to stay updated, too.

This isn’t a problem with React Native because the app uses actual components from the platform.

Once again, consistency and familiarity are important for a good user experience. So, when the

buttons in your app look and behave in the same way as the buttons in every other app on the

device, your app feels like part of the device.

Now that you understand what makes developing UIs for mobile browsers difficult, it’s time to

look at how React Native can bridge the gap between the different native platforms.

Android and iOS: different yet the same
When I first heard about React Native, I automatically thought that it would be some cross-plat-

form solution that lets you write a single React application that will run natively on any device.

However, the reality is more nuanced. While React Native allows for a significant amount of code

sharing between platforms, it’s essential to understand that iOS and Android are different on

many fundamental levels, and their user experience philosophies are different as well.

React Native’s goal is to “learn once, write anywhere” rather than “write once, run anywhere.” This

means that, in some cases, you’ll want your app to take advantage of platform-specific widgets

to provide a better user experience.

Chapter 15 249

That being said, there have been advancements in the React Native ecosystem that enable more

seamless cross-platform development.

For instance, Expo now supports web development, allowing you to run your app on the web

using React Native for Web. This means that you can develop apps that work on Android, iOS,

and the web using a single code base. Additionally, the Tamagui UI kit offers 100% support for

both web and mobile platforms, making it easier to create apps that run on multiple platforms

without sacrificing user experience.

In light of these developments, it’s important to recognize that while React Native may not provide

a perfect “write once, run anywhere” solution, it has come a long way in enabling more efficient

cross-platform development. With tools like Expo and Tamagui, developers can create apps that

work across different platforms while still taking advantage of platform-specific features when

necessary.

In the next section, we’ll look at the case where mobile web apps that run in the browser might

be a better fit for your users.

The case for mobile web apps
Not every one of your users is going to be willing to install an app, especially if you don’t yet have

a high download count and rating. The barrier to entry is much lower with web applications: the

user only needs a browser.

Despite not being able to replicate everything that native platform UIs have to offer, you can still

implement awesome things in a mobile web UI. Maybe having a good web UI is the first step

toward getting those download counts and ratings up for your mobile app.

Ideally, what you should aim for is the following:

•	 Standard web (laptop/desktop browsers)

•	 Mobile web (phone/tablet browsers)

•	 Mobile apps (phone-/tablet-native platform)

Putting an equal amount of effort into all three of these spaces probably doesn’t make much sense,

as your users probably favor one area over another. Once you know, for example, that there’s a

high demand for your mobile app compared to the web versions, that’s when you allocate more

effort there.

Why React Native?250

Summary
In this chapter, you learned that React Native is an effort by Facebook to reuse React to create native

mobile applications. React and JSX are good at declaring UI components, and since there’s now a

huge demand for mobile applications, it makes sense to use what you already know for the web.

The reason there’s such a demand for mobile applications over mobile browsers is that they just

feel better. Web applications lack the ability to handle mobile gestures the same way apps can,

and they generally don’t feel like part of the mobile experience from a look-and-feel perspective.

React Native has evolved significantly over the years, enabling developers to create more efficient

cross-platform applications. While it’s true that iOS and Android have fundamental differences,

React Native has made strides in providing a more seamless development experience across

platforms. However, it’s important to remember that React Native’s goal is to “learn once, write

anywhere” rather than “write once, run anywhere.” This means that developers can still take

advantage of platform-specific features to provide a better user experience.

Now that you know what React Native is and what its strengths are, you’ll learn how to get started

with new React Native projects in the following chapter.

16
React Native under the Hood

The previous chapter briefly touched on what React Native is and the differences that users ex-

perience between the React Native UI and mobile browsers.

In this chapter, we will dig deeper into React Native, becoming well-versed on how it performs on

mobile devices and what we should attain before commencing any efforts with this framework.

We will also look at what options we can execute for the native functionality of JavaScript and

what restrictions we will be up against.

We will cover the following topics:

•	 Exploring the React Native architecture

•	 Explaining JavaScript and Native modules

•	 Exploring React Native components and APIs

Exploring the React Native architecture
Before understanding how React Native works, let’s revisit some historical points about the React

architecture and the differences between web and native mobile apps.

The state of web and mobile apps in the past
Meta released React in 2013 as a monolith tool for creating apps, using a component approach and

a virtual DOM. It gave us the opportunity to develop web applications without thinking about

browser processes, such as parsing JS code, creating the DOM, and handling layers and rendering.

We just had to create interfaces using state and props for data and CSS for styling, fetch data from

the backend, save it in local storage, and so on.

React Native Under the Hood252

React, together with browsers, allowed us to create a performance application in less time. At

that time, the architecture of React looked like this:

Figure 16.1: React architecture in 2013

The new declarative approach to developing interfaces became more favorable because of the

fast development and the low threshold for novices. Additionally, if your backend is built with

Node.js, you can benefit from the ease of support and development of the entire project using

just one programming language.

At the same time, mobile apps require more complex techniques to create apps. For Android

and iOS apps, companies should manage three different teams with unparalleled experience to

support three major ecosystems:

•	 Web developers should know HTML, CSS, JS, and React.

•	 Java or Kotlin SDK experience is required for Android developers.

•	 The iOS developer should be familiar with Objective-C or Swift and CocoaPods.

Every step of developing an application, from prototyping to release, requires unique skills. Web

and mobile app development before cross-platform solutions looked like this:

Figure 16.2: The state of web and mobile apps

Chapter 16 253

Even if a corporation carries out a basic application, it can be faced with some major issues:

•	 Each of these teams implements the same business logic.

•	 There is no alternative to sharing code between teams.

•	 It is not conceivable to share resources between teams (Android developers can’t write

code for iOS applications, and vice versa).

As a result of these significant issues, we likewise have complications with having more testing

resources, since there are more places to create bugs. The speed of development is also diverse

because mobile apps take more time to deliver the same features. This all accumulates into a large,

costly problem for the companies involved. Many of them came up with ideas on how to write

a single code base or reuse a current one that can be used in multiple ecosystems. The simplest

method would be to wrap a web app for mobile using a browser, but this has limitations in han-

dling touch and gestures, as we explored in Chapter 15, Why React Native?.

In response to these issues, Meta started investing resources in developing a cross-platform

framework and released the React Native library in 2015. Also, it divided React into two separate

libraries. To render our app in the browser, we should now use the ReactDOM library.

In Figure 16.3, we can see how React works together with ReactDOM and React Native to render

our apps:

Figure 16.3: ReactDOM and React Native flow

Now, React only works to manage the components tree. This approach encapsulates any ren-

dering APIs and hides a lot of platform-specific methods from us. We can concentrate solely on

developing interfaces and cease speculating about how they would be rendered.

React Native Under the Hood254

That’s why React is frequently claimed as a renderer-agnostic library. Also, for web apps, we use

ReactDOM, which forms elements and applies them right to the browser DOM. For mobile apps,

React Native renders our interface directly on the mobile screen.

But how does React Native replace the whole browser API and allow us to write familiar code

and run it on mobiles?

React Native current architecture
The React Native library allows you to create native applications with React and JS by utilizing

native building blocks. For instance, the <Image/> component represents two other native com-

ponents, ImageView on Android and UIImageView on iOS. This is viable because of the architec-

ture of React Native, which includes two dedicated layers, represented by JS and Native threads:

Figure 16.4: React Native threads

In the next sections, we will explore each thread and see how they can communicate, ensuring

that JS is integrated into the native code.

JS as part of React Native
As the browser executes JS through JS engines such as V8, SpiderMonkey, and others, React Na-

tive also contains a JS virtual machine. There, our JS code is executed, API calls are made, touch

events are processed, and many other processes occur.

Initially, React Native only supported Apple’s JavaScriptCore virtual machine. With iOS devices,

this virtual machine is built-in and available out of the box. In the case of Android, JavaScriptCore

is bundled with React Native. This increases the size of the app.

Chapter 16 255

Therefore, the Hello World application of React Native would consume approximately 3 to 4 MB

on Android. From the 0.60 version, React Native started using the new Hermes virtual machine,

and from 0.64, provided support for iOS as well.

The Hermes virtual machine introduced a lot of improvements for both platforms:

•	 Improvement of the app’s startup time

•	 A size reduction of the downloaded app

•	 Decreased memory usage

•	 Built-in proxy support, enabling the use of react-native-firebase and mobx

Understanding the comparative benefits between the old and new architectures is a relatively com-

mon topic in interviews. More information about Hermes can be found here: https://reactnative.

dev/docs/hermes.

JS in React Native, as in browsers, is implemented in a single thread. That thread is responsible for

executing JS. The business logic we write is carried out in this thread. This means all our common

code, such as components, state, Hooks, and REST API calls, will be handled in the JS part of the app.

Our entire application structure is packaged into a single file using the Metro bundler. It is also

responsible for transpiling JSX code into JS. If we want to use TypeScript, Babel can support it. It

works right out of the box, so there’s no need to configure anything. In future chapters, we will

learn how to start a ready-to-work project.

The “Native” part
Here is where native code is executed. React Native implements this part in native code for each

platform: Java for Android and Objective-C for iOS. The Native layer is mainly composed of Na-

tive modules that communicate with the Android or iOS SDK and are supposed to provide native

functionality for our apps, using a unified API. If we want to display an alert dialog, for instance,

the Native layer presents a unified API for both platforms, which we will call from the JS thread

using the single API.

This thread interacts with the JS thread when you need to update the interface or call the native

functions. There are two parts to this thread:

•	 The first, the React Native UI, is responsible for using native interface shaping tools.

•	 The second is Native Modules, which allow applications to access the specific capabilities

of the platform on which they run.

https://reactnative.dev/docs/hermes
https://reactnative.dev/docs/hermes

React Native Under the Hood256

Communication between threads
As previously mentioned, each React Native layer implements a unique API for every native and

UI feature in an application. The communication between layers is accomplished through the

bridge. The module is written in C ++ and is based on an asynchronous queue. When the bridge

receives data from one of the parties, it serializes it, converts it to a JSON string, and passes it

through the queue. After arriving at its destination, the data is deserialized.

As shown in the alert example, the native part accepts the call from JS and displays the dialog. In

reality, the JS method, upon being invoked, sends a message to the bridge, and upon receiving

this message, the Native part executes the instruction. Native messages may also be forwarded

to the JS layer. On clicking the button, for example, the Native layer sends a message to the JS

one with an onClick event. It can be imagined as follows:

Figure 16.5: The bridge

JS and the Native part of this architecture, together with the bridge, resemble the server and

client sides of web applications, where they communicate through the REST APIs. It does not

matter to us in which language or how the Native part is implemented, since the code in JS is

isolated. We simply send messages and receive responses from the bridge. This is both a signif-

icant advantage and a great disadvantage: first, it allows us to implement cross-platform apps

with one code base, but it can be a bottleneck in our app when we have a lot of business logic in

it. All events and actions in the application rely on asynchronous JSON-bridged messages. Each

party sends these messages, expecting that sometime in the future, a response will be received

from these messages (which is not guaranteed). With such a data exchange scheme, there is a

risk of overloading the communication channel.

Chapter 16 257

Here is an example commonly used to illustrate how such a communication scheme can cause

performance problems for an application. Suppose a user of an application scrolls through a

huge list. When the onScroll event occurs in the native environment, information is passed

asynchronously to the JS environment. But native mechanisms do not wait until the JS part of

the application does its job and reports to them about it. Because of this, there is a delay in the

appearance of empty space in the list before displaying its contents. We can avoid a lot of usual

problems using special approaches, such as using paginated FlatList on limitless lists. We will

look at the main tricks in future chapters, but it is important to remember the limitations of the

current architecture.

Styling
As we already understand the cross-platform concept, we can assume that each platform has

its own technologies for creating and styling interfaces. In order to unify this, React Native has

a CSS-in-JS syntax to style an app. Using Flexbox, components are able to specify the layout of

their children. This ensures a consistent layout across different screen sizes. It is usually similar to

how CSS works on the web, except the names are written in camel case, such as backgroundColor

rather than background-color.

In JS, it is a plain object with style properties, and in native code, it is a separate thread called

Shadow. It recalculates the layout of the application using the Yoga engine, which was developed

by Meta. In this thread, the calculations related to the formation of the application interface

are performed. The results of these calculations are sent to the Native UI thread responsible for

displaying the interface.

With all the parts coming together, the final architecture of React Native is illustrated in this figure:

Figure 16.6: The current React Native architecture

React Native Under the Hood258

The current architecture of React Native addresses major business problems: it is feasible to de-

velop web and mobile applications within the same team, it is possible to reuse a large amount

of business logic code, and even developers with no previous experience in mobile development

can easily use React Native.

However, the current architecture is not ideal. Over the past few years, the React Native team

has been working on a bridge bottleneck solution. The new architecture is designed to address

this issue.

React Native future architecture
A series of significant improvements have been introduced to React Native that will streamline

the development process and make it more convenient for everyone.

React Native’s re-architecture will gradually deprecate the bridge and replace it with a new com-

ponent called the JS Interface (JSI). In addition, this element will enable new Fabric components

and TurboModules.

The use of the JSI opens up many possibilities for improvement. In Figure 16.7, you can see the

major updates to the React Native architecture:

Figure 16.7: The new React Native architecture

The first change is that the JS bundle is no longer dependent on a JavaScriptCore virtual machine.

It is actually part of the current architecture because, now, we can enable the new Hermes JS

engine on both platforms. In other words, the JavaScriptCore engine can now easily be replaced

with something else, quite possibly with better performance.

Chapter 16 259

The second improvement is what lies at the heart of the new React Native architecture. The JSI

allows JS to call native methods and functions directly. This was made possible by the HostObject

C++ object, which stores references to native methods and properties. HostObject in JS binds

native methods and props to a global object, so direct calls to JS functions will invoke Java or

Objective-C APIs.

Another benefit of the new React Native is the ability to fully control native modules called

TurboModules. Rather than starting them all at once, the application will only use them when

they are needed.

Fabric is the new UI manager, called Renderer in Figure 16.7, which is expected to transform the

rendering layer by eliminating the need for bridges. It is now possible to create a Shadow Tree

directly in C++, which increases speed and reduces the number of steps to render a particular

element.

In order to ensure smooth communication between React Native and Native parts, Meta is cur-

rently working on a tool called CodeGen. It is expected to automate the compatibility of strongly

typed native code and dynamically typed JS to make them synchronize. With this upgrade, there

will be no need to duplicate the code for both threads, thereby enabling smooth synchronization.

The new architecture could open the way for the development of new designs that are capable

of things that were not available in old React Native applications. The fact is that we now have

at our disposal the power of C++. This means that with React Native, it will now be possible to

create many more varieties of applications than before.

Here, we discussed the fundamentals that explain how React Native works. It is important to un-

derstand the architecture of the tools we use. Having this knowledge allows you to avoid mistakes

during planning and prototyping, as well as maximize the potential of your future applications.

In the following section, we will briefly explore how to extend React Native with modules.

Explaining JS and Native modules
React Native does not cover all the native capabilities out of the box. It only provides the most

common features that you will need in a basic application. Also, the Meta team itself has recently

moved some functions into its own modules in an effort to reduce the size of the overall application.

For example, AsyncStorage, for storing data on a device, was moved into a separate package and

must be installed if you plan to use it.

React Native Under the Hood260

However, React Native is an extendable framework. We can add our own native modules and

expose the JS API using the same bridge or JSI. Our focus in this book will not be on developing

native modules, since we need prior experience with Objective-C or Java. Also, it is not necessary,

since the React community has created an enormous number of ready-to-use modules for all

cases. We will learn how to install native packages in subsequent chapters.

The following are a few of the most popular native modules, without which most projects couldn’t

prosper.

React Navigation
React Navigation is one of the best React Native navigation libraries for creating navigation

menus and screens for your app. It’s a good tool for beginners because it’s stable, fast, and less

buggy. The documentation is really good, and it provides examples for all use cases.

We’ll learn more about React Navigation in Chapter 19, Navigating between Screens.

UI component libraries
The UI component libraries enable you to quickly assemble an application layout without wasting

time designing and coding atomic elements. In addition, such libraries are often more stable and

consistent, which leads to better results both in terms of UI and UX.

These are some of the most popular libraries (we will explore a few of them in greater detail in

future chapters):

•	 NativeBase: This is a component library that enables developers to build universal design

systems. It is built on top of React Native, allowing you to develop apps for Android, iOS,

and the web.

•	 React Native Element: This provides an all-in-one UI kit for creating apps in React Native.

•	 UI Kitten: This is a React Native implementation of the Eva Design System. The framework

contains a set of general-purpose UI components styled in a similar way.

•	 React-native-paper: This is a collection of customizable and production-ready compo-

nents for React Native, following Google’s Material Design guidelines.

•	 Tamagui: This UI kit provides components that can run on mobiles and the web.

Chapter 16 261

Splash screen
Adding a splash screen to your mobile app can be a tedious task, since this screen should appear

before the JS thread begins. The react-native-bootsplash package allows you to create a fancy

splash screen from the command line. The package will do all the work for you if you provide it

with an image and a background color.

Icons
Icons are an integral part of the visualization of interfaces. Different approaches are used to dis-

play icons and other vector graphics on each platform. React Native unifies this for us but only

with additional libraries such as react-native-vector-icons. Using react-native-svg, you can also

render scalable vector graphics (SVGs) in a React Native app.

Handling errors
Usually, when we develop a web application, we are able to handle errors without any difficulty,

since they do not reach beyond the scope of JS. As a result, we have more control and stability

in the event of critical bugs because if the application does not start at all, we can easily see the

reason and open the logs in DevTools.

There are even more complications with React Native applications, since we have a Native com-

ponent in addition to the JS of the environment, which can also cause errors in application exe-

cution. Therefore, when an error occurs, our application will close immediately. It will be hard

for us to figure out why.

react-native-exception-handler provides a simple technique for handling native and JS errors

and providing feedback. To make it work, you need to install and link the module. Then, register

your global handler for JS and native exceptions, as follows:

import { setJSExceptionHandler, setNativeExceptionHandler }

 from "react-native-exception-handler";

setJSExceptionHandler((error, isFatal) => {

 // …

});

const exceptionhandler = (exceptionString) => {

 // your exception handler code here

};

React Native Under the Hood262

setNativeExceptionHandler(

 exceptionhandler,

 forceAppQuit,

 executeDefaultHandler

);

The setJSExceptionHandler and setNativeExceptionHandler methods are custom global error

handlers. If a crash occurs, you can show an error message, use Google Analytics to track it, or

use a custom API to inform the development team.

Push notifications
We live in a world where notifications are integral. We open dozens of apps every day just because

we receive notifications from them.

Push notifications are often connected to a gateway provider that sends messages to users’ devices.

The following libraries can be used to add push notifications to your application:

•	 react-native-onesignal: A OneSignal provider for push notifications, email, and SMS

•	 react-native-firebase: Google Firebase

•	 @aws-amplify/pushnotification: AWS Amplify

Over-the-air updates
As part of a normal application update, when you build a new version and upload it to the app store,

you can replace the JS package over the air (OTA). As the bundle contains only one file, updating

it is not complicated. You can update your application as often as you like without waiting for

Apple or Google to verify your application. That is the real power of React Native.

We can use it due to the CodePush service made by Microsoft. You can find more information about

CodePush here: https://docs.microsoft.com/en-gb/appcenter/distribution/codepush/.

Expo also supports OTA updates with the expo-updates package.

JS libraries
As for JS (non-native) modules, we have almost no restrictions, except for libraries that use un-

supported APIs, such as the DOM and Node.js. We can use any packages written in JS: Moment,

Lodash, Axios, Redux, MobX, and a thousand others.

https://docs.microsoft.com/en-gb/appcenter/distribution/codepush/

Chapter 16 263

We have barely scratched the surface of the possibilities to extend an application with various

modules in this section. Because React Native has thousands of libraries, it makes little sense to

go through them all. In order to find the required package you need, there is a project called React

Native Directory that has collected and rated a huge list of packages. The project can be found

here: https://reactnative.directory/.

We now know how React Native is organized internally and how we can expand its functionality.

Our next step is to examine what API and components this framework offers.

Exploring React Native components and APIs
The main modules and components will be discussed in detail in each new chapter, but for now,

let’s familiarize ourselves with them. A number of core components are available in the React

Native framework for use in an app.

Almost all apps use at least one of these components. These are the fundamental building blocks

of React Native apps:

•	 View: The main brick of any app. This is the equivalent of <div>, and on mobiles, it is

represented as UIView or android.view. Any <View/> component can nest inside another

<View/> component and can have zero or many children of any type.

•	 Text: This is a React component for displaying text. As with View, <Text/> supports nest-

ing, styling, and touch handling.

•	 Image: This displays images from a variety of sources, such as network images, static

resources, temporary local images, and images from the camera roll.

•	 TextInput: This allows users to input text using a keyboard. Props enable a variety of fea-

tures that can be configured, including auto-correction, auto-capitalization, placeholder

text, and different keyboard types, such as a numeric keypad.

•	 ScrollView: This component is a generic container for scrolling multiple views and com-

ponents. There can be both vertical and horizontal scrolling (by adjusting the horizontal

property) for the scrollable items. If you need to render a huge or limitless list of items,

you should use FlatList. This supports a set of special props such as Pull to Refresh and

Scroll loading (lazy-loading). If your list needs to be divided into sections, then there is

also a special component for this: SectionList.

•	 Button: React Native has advanced components that can be used to create custom buttons

and other touchable components, such as TouchableHighlight, TouchableOpacity, and

TouchableWithoutFeedback.

https://reactnative.directory/

React Native Under the Hood264

•	 Pressable: This gives more precise touch control with React Native version 0.63. Basically,

it is a wrapper for detecting touch. It is a well-defined component that can be used instead

of touchable components such as TouchableOpacity and Button.

•	 Switch: This component resembles a checkbox; however, it is presented in the form of a

switch, which we are familiar with on mobile devices.

In the following chapters, we will delve deeper into common components and their properties,

as well as explore new components that are rarely used. We’ll also look at code examples that

show how to combine components to create application interfaces.

Detailed information about all the available components can be found at https://reactnative.

dev/docs/components-and-apis.

Summary
In this chapter, we looked at the history of the cross-platform framework React Native and what

problems it solved for companies. With it, companies can use a single universal developer team

to build one business logic and apply it to all platforms simultaneously, thus saving a lot of time

and money. Considering, in detail, how React Native works under the hood allows us to identify

potential issues at the planning stage and resolve them.

Additionally, we started to examine React Native’s basic components, and with each new chapter,

we will learn more about them.

In the next chapter, you’ll learn how to get started with new React Native projects.

https://reactnative.dev/docs/components-and-apis
https://reactnative.dev/docs/components-and-apis

17
Kick-Starting React Native
Projects
In this chapter, you’ll get up and running with React Native. Thankfully, much of the boilerplate

code involved in the creation of a new project is handled for you by the command-line tools. We

will look at the different CLI tools for React Native apps and create our first simple app, which

you will be able to upload and start right on your device.

In this chapter, we’ll cover the following topics:

•	 Exploring React Native CLI tools

•	 Installing and using the Expo command-line tool

•	 Viewing your app on your phone

•	 Viewing your app on Expo Snack

Technical requirements
You can find the code files of this chapter on GitHub at https://github.com/PacktPublishing/

React-and-React-Native-5E/tree/main/Chapter17.

Exploring React Native CLI tools
To simplify and speed up the development process, we use special command-line tools that install

blank projects with application templates, dependencies, and other tools for starting, building,

and testing. There are two major CLI approaches we can apply:

•	 The React Native CLI

•	 The Expo CLI

https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter17
https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter17

Kick-Starting React Native Projects266

The React Native CLI is a tool created by Meta. The project is based on the original CLI tool and

has three parts: native iOS and Android projects and a React Native JavaScript app. To get started,

you will need either Xcode or Android Studio. One of the main advantages of the React Native

CLI is its flexibility. You can connect any library with a Native module or directly write code to the

native parts. However, all of this requires at least a basic understanding of mobile development.

The Expo CLI is just one part of the big ecosystem for developing React Native apps. Expo is a

framework and a platform for universal React applications. Built around React Native and native

platforms, it allows you to build, deploy, test, and rapidly iterate on iOS, Android, and web apps

from a single JavaScript/TypeScript code base.

The Expo framework provides the following:

•	 The Expo CLI: A command-line tool that can create blank projects, then run, build, and

update them.

•	 Expo Go: An Android and iOS app for running your projects directly on your device (with-

out having to compile and sign native apps) and sharing them with your entire team.

•	 Expo Snack: The online playground that allows you to develop React Native apps in the

browser.

•	 Expo Application Services (EAS): A set of deeply integrated cloud services for Expo and

React Native applications. Apps can be compiled, signed, and uploaded to stores using

EAS in the cloud.

Expo comes with a huge number of ready-to-use features. Previously, it imposed limitations on

projects, as it did not support custom native modules. However, this limitation no longer exists.

Expo now supports adding custom native code and customizing that native code (Android/Xcode

projects) through Expo development builds. To use any custom native code, you can create a

development build and config plugins.

Since Expo is useful for new developers without mobile development skills, we will use it to set

up our first React Native project.

Installing and using the Expo command-line tool
The Expo command-line tool handles the creation of all of the scaffolding that your project needs

to run a basic React Native application. Additionally, Expo has a couple of other tools that make

running our app during development nice and straightforward. But first, we need to set up the

environment and project:

Chapter 17 267

1.	 Before we can use Expo, we need to install Node.js, Git, and Watchman. Watchman is

a tool for watching files in our project to trigger actions like rebuilds when they change.

All of the required tools and details can be found here: https://docs.expo.dev/get-

started/installation/#requirements.

2.	 Once this installation is complete, we can start a new project by running the command:

npx create-expo-app --template

3.	 Next, the CLI will ask you questions about your future project. You should see something

like this in your terminal:

? Choose a template: ' - Use arrow-keys. Return to submit.

 Blank

❯ Blank (TypeScript) - blank app with TypeScript enabled
 Navigation (TypeScript)

 Blank (Bare)

We’ll choose the Blank (TypeScript) option.

4.	 Next, the process will ask you about a project name:

? What is your app named? ' my-project

	 Let’s call it my-project.

5.	 After installing all the dependencies, Expo will finish creating your project for you:

✅ Your project is ready!

Now that we have created a blank React Native project, you’ll learn how to launch the Expo de-

velopment server on your computer and view the app on one of your devices.

Viewing your app on your phone
In order to view your React Native project on your device during development, we need to start

the Expo development server:

1.	 In the command-line terminal, make sure that you’re in the project directory:

cd path/to/my-project

2.	 Once you’re in my-project, you can run the following command to start the development

server:

npm start

https://docs.expo.dev/get-started/installation/#requirements
https://docs.expo.dev/get-started/installation/#requirements

Kick-Starting React Native Projects268

3.	 This will show you some information about the developer server in the terminal:

▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄

█ ▄▄▄▄▄ █▄▀▀▄▄▀▀█ █ ▄▄▄▄▄ █

█ █ █ ███▄█ ▀▄▄█ █ █ █

█ █▄▄▄█ █▄▀▄▀ ██▀█ █▄▄▄█ █

█▄▄▄▄▄▄▄█ █ ▀▄▀ ▀ █▄▄▄▄▄▄▄█

█ ▄▀▄▄▀▄▀█ ▄▄▀▀█▀ █▄█▀█▀▀▄█

█ █▄█▀▀▄▀▄▀ ▀█▄▄ ▀███▄▀▀ █

█ █▄ ▀█▄▄▀▄█▄▄▀▄ █ ▄▀▀█▀ ██

█ ▄ ▀▄▀▄▄ █▄ ▄▄▀ ▄ ██▄▀ █

█▄██▄▄█▄▄ █ ▀▀ █ ▄▄▄ ▄▀▄█

█ ▄▄▄▄▄ ██ █▄▀ █ █▄█ ██▀▄█

█ █ █ █ ███▄██▄ ▄ ▄ █ █

█ █▄▄▄█ █▀█▄█▄█ ▄█▀▀▄█ █

█▄▄▄▄▄▄▄█▄▄██▄▄▄▄▄▄█▄▄███▄█

' Metro waiting on exp://192.168.1.15:8081

' Scan the QR code above with Expo Go (Android) or the Camera app
(iOS)

' Using Expo Go

' Press s │ switch to development build

' Press a │ open Android

' Press i │ open iOS simulator

' Press w │ open web

	 ' Press j │ open debugger

' Press r │ reload app

' Press m │ toggle menu

' Press o │ open project code in your editor

' Press ? │ show all commands

4.	 In order to view the app on our devices, we need to install the Expo Go app. You can find

it in the Play Store on Android devices or in the App Store on iOS devices. Once you have

Expo installed, you scan the QR code using the native camera on your device:

Chapter 17 269

Figure 17.1: Expo Go app

If you log in to Expo Go and the Expo CLI, you will be able to run the app without the QR

code. In Figure 17.1, you can see the opened development session for my-project; if you

click on it, the app will run.

5.	 Once the QR code is scanned or your opened session on Expo Go is clicked, you’ll notice

new logs and a new connected device in the terminal:

iOS Bundling complete 205ms

Kick-Starting React Native Projects270

6.	 Now you should see your app running:

Figure 17.2: Opened app in Expo Go

At this point, you’re ready to start developing your app. In fact, you can repeat this same process

if you have several physical devices that you want to work with at the same time. The best part

of this Expo setup is that we get live reloading for free on our physical devices as we make code

updates on our computers. Let’s try this now to make sure that everything works as expected:

Chapter 17 271

1.	 Let’s open up the App.ts file inside the my-project folder. There, you’ll see the App com-

ponent:

export default function App() {

 return (

 <View style={styles.container}>

 <Text>Open up App.tsx to start working on your app!</Text>

 <StatusBar style="auto" />

 </View>

);

}

2.	 Now let’s make a small style change to make the font bold:

export default function App() {

 return (

 <View style={styles.container}>

 <Text style={styles.text}>

 Open up App.tsx to start working on your app!

 </Text>

 <StatusBar style="auto" />

 </View>

);

}

const styles = StyleSheet.create({

 container: {

 flex: 1,

 backgroundColor: "#fff",

 alignItems: "center",

 justifyContent: "center",

 },

 text: { fontWeight: "bold" },

});

Kick-Starting React Native Projects272

3.	 We’ve added a new style called text and applied it to the Text component. If you save the

file and return to your device, you’ll immediately see the change applied:

Figure 17.3: App with updates to style of text

Now that you’re able to run your apps locally on your physical devices, it’s time to look at running

your React Native apps on a variety of virtual device emulators using the Expo Snack service.

Chapter 17 273

Viewing your app on Expo Snack
The Snack service provided by Expo is a playground for your React Native code. It lets you organize

your React Native project files just like you would locally on your computer. If you end up putting

something together that is worth building on, you can export your Snack. You can also create an

Expo account and save your Snacks to keep working on them or to share them with others. You

can find Expo Snack with this link: https://snack.expo.dev/.

We can create a React Native app in Expo Snack from scratch, and it will be stored in an Expo

account, or we can import existing projects from a Git repository. The nice thing about import-

ing a repository is that when you push changes to Git, your Snack will also be updated. The Git

URL for the example that we’ve worked on in this chapter looks like this: https://github.com/

PacktPublishing/React-and-React-Native-5E/tree/main/Chapter17/my-project.

We can click on the Import git repository button in the Snack project menu and paste in this URL:

Figure 17.4: Importing a Git repository to Expo Snack

Once the repository is imported and the Snack is saved, you’ll get an updated Snack URL that

reflects the Git repository location. For example, the Snack URL from this chapter looks like this:

https://snack.expo.dev/@sakhnyuk/2a2429.

https://snack.expo.dev/
https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter17/my-project
https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter17/my-project

Kick-Starting React Native Projects274

If you open this URL, the Snack interface will load and you can make changes to the code to test

things out before running them. The main advantage of Snack is the ability to easily run it on

virtualized devices. The controls to run your app on a virtual device can be found on the right

side of the UI and look like this:

Figure 17.5: Expo Snack emulator

The top control above the image of the phone controls which device type to emulate: Android, iOS,

or Web. The Tap to play button will launch the selected virtual device. The Run on your device

button allows you to run the app in Expo Go using the QR code approach.

Chapter 17 275

Here’s what our app looks like on a virtual iOS device:

Figure 17.6: Expo Snack iOS emulator

Kick-Starting React Native Projects276

And here’s what our app looks like on a virtual Android device:

Figure 17.7: Expo Snack Android emulator

This app only displays text and applies some styles to it, so it looks pretty much identical on

different platforms. As we make our way through the React Native chapters in this book, you’ll

see how useful a tool such as Snack is for making comparisons between the two platforms to

understand the differences between them.

Chapter 17 277

Summary
In this chapter, you learned how to kick-start a React Native project using the Expo command-line

tool. First, you learned how to install the Expo tool. Then, you learned how to initialize a new

React Native project. Next, you started the Expo development server and learned about the various

parts of the development server UI.

In particular, you learned how to connect the development server with the Expo app on any de-

vice that you want to test your app on. Expo also has the Snack service, which lets us experiment

with snippets of code or entire Git repositories. You learned how to import a repository and run

it on virtual iOS and Android devices.

In the next chapter, we’ll look at how to build responsive layouts in our React Native apps.

18
Building Responsive Layouts
with Flexbox

In this chapter, you’ll get a feel for what it’s like to lay components out on the screen of mobile

devices. Thankfully, React Native polyfills many CSS properties that you might have used in the

past to implement page layouts in web applications.

Before you dive into implementing layouts, you’ll get a brief introduction to Flexbox and using

CSS style properties in React Native apps: it’s not quite what you’re used to with regular CSS style

sheets. Then, you’ll implement several React Native layouts using Flexbox.

We will cover the following topics in this chapter:

•	 Introducing Flexbox

•	 Introducing React Native styles

•	 Using the Styled Components library

•	 Building Flexbox layouts

Technical requirements
You can find the code files present in this chapter on GitHub at https://github.com/

PacktPublishing/React-and-React-Native-5E/tree/main/Chapter18.

https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter18
https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter18

Building Responsive Layouts with Flexbox280

Introducing Flexbox
Before the flexible box layout model was introduced to CSS, the various approaches used to build

layouts were convoluted and prone to errors. For example, we used floats, which were originally

intended for text wrapping around images, for table-based layouts. Flexbox solves this by ab-

stracting many of the properties that you would normally have to provide in order to make the

layout work.

In essence, the Flexbox model is what it probably sounds like to you: a box model that’s flexible.

That’s the beauty of Flexbox: its simplicity. You have a box that acts as a container, and you have

child elements within that box. Both the container and the child elements are flexible in how

they’re rendered on the screen, as illustrated here:

Figure 18.1: Flexbox elements

Chapter 18 281

Flexbox containers have a direction, either column (up/down) or row (left/right). This actually

confused me when I was first learning about Flexbox; my brain refused to believe that rows were

organized beside each other from left to right. Rows are stacked on top of one another! The key

thing to remember is that it’s the direction in which the box flexes, not the direction in which

boxes are placed on the screen.

Now that we’ve covered the basics of Flexbox layouts at a high level, it’s time to learn how styles

in React Native applications work.

Introducing React Native styles
It’s time to implement your first React Native app, beyond the boilerplate that’s generated by

Expo. I want to make sure that you feel comfortable using React Native style sheets before you

start implementing Flexbox layouts in the next section.

Here’s what a React Native style sheet looks like:

import { Platform, StyleSheet, StatusBar } from "react-native";

export default StyleSheet.create({

 container: {

 flex: 1,

 justifyContent: "center",

 alignItems: "center",

 backgroundColor: "ghostwhite",

 ...Platform.select({

 ios: { paddingTop: 20 },

 android: { paddingTop: StatusBar.currentHeight },

 }),

 },

 box: {

 width: 100,

 height: 100,

 justifyContent: "center",

 alignItems: "center",

 backgroundColor: "lightgray",

For a more in-depth treatment of Flexbox concepts, refer to https://css-tricks.

com/snippets/css/a-guide-to-Flexbox.

https://css-tricks.com/snippets/css/a-guide-to-Flexbox
https://css-tricks.com/snippets/css/a-guide-to-Flexbox

Building Responsive Layouts with Flexbox282

 },

 boxText: {

 color: "darkslategray",

 fontWeight: "bold",

 },

});

This is a JavaScript module, not a CSS module. If you want to declare React Native styles, you

need to use plain objects. Then, you call StyleSheet.create() and export this from the style

module. Note that style names are pretty similar to the web CSS, except that they are written in

camel case; for example, justifyContent rather than justify-content.

As you can see, this style sheet has three styles: container, box, and boxText. Within the container

style, there’s a call to Platform.select():

...Platform.select({

ios: { paddingTop: 20 },

android: { paddingTop: StatusBar.currentHeight }

})

This function will return different styles based on the platform of the mobile device. Here, you’re

handling the top padding of the top-level container view. You’ll probably use this code in most

of your apps to make sure that your React components don’t render underneath the status bar

of the device. Depending on the platform, the padding will require different values. If it’s iOS,

paddingTop is 20. If it’s Android, paddingTop will be the value of StatusBar.currentHeight.

Let’s see how these styles are imported and applied to React Native components:

import React from "react";

import { Text, View } from "react-native";

import styles from "./styles";

export default function App() {

 return (

 <View style={styles.container}>

The preceding Platform.select() code is an example of a case where you need to

implement a workaround for differences in the platform. For example, if StatusBar.

currentHeight was available on iOS and Android, you wouldn’t need to call

Platform.select().

Chapter 18 283

 <View style={styles.box}>

 <Text style={styles.boxText}>I'm in a box</Text>

 </View>

 </View>

);

}

The styles are assigned to each component via the style property. You’re trying to render a box

with some text in the middle of the screen. Let’s make sure that this looks as we expect it to.

Figure 18.2: Box in the middle of a screen

Building Responsive Layouts with Flexbox284

We have found out how to apply styles to components using a built-in module, but there is more

than one way to define styles. We also have the option to write CSS in React Native. Let’s quickly

go through it.

Using the Styled Components library
Styled Components is a CSS-in-JS library that styles React Native components using plain CSS.

With this approach, you don’t need to define style classes via objects and provide style props. The

CSS itself is determined via tagged template literals provided by styled-components.

To install styled-components, run this command in your project:

npm install --save styled-components

Let’s try to rewrite components from the Introducing React Native styles section. This is what our

Box component looks like:

import styled from "styled-components/native";

const Box = styled.View'

 width: 100px;

 height: 100px;

 justify-content: center;

 align-items: center;

 background-color: lightgray;

';

const BoxText = styled.Text'

 color: darkslategray;

 font-weight: bold;

';

In this example, we’ve got two components, Box and BoxText. Now we can use them as usual,

but without any other additional styling props:

const App = () => {

 return (

 <Box>

 <BoxText>I'm in a box</BoxText>

 </Box>

);

};

Chapter 18 285

In further sections, I will use StyleSheet objects, but I will avoid styled-components for per-

formance reasons. If you want to learn more about styled-components, you can read more here:

https://styled-components.com/.

Perfect! Now that you have an idea of how to set styles on React Native elements, let’s use Flexbox

to start creating some screen layouts.

Building Flexbox layouts
In this section, you’ll learn about several potential layouts that you can use in your React Native

applications. I want to stay away from the idea that one layout is better than another. Instead,

I’ll show you how powerful the Flexbox layout model is for mobile screens so that you can design

the kind of layout that best suits your application.

Simple three-column layout
To start things off, let’s implement a simple layout with three sections that flex in the column

direction (top to bottom). We’ll look at the result we are aiming for first.

Figure 18.3: Simple three-column layout

https://styled-components.com/

Building Responsive Layouts with Flexbox286

The idea, in this example, is that you style and label the three screen sections so that they stand

out. In other words, these components wouldn’t necessarily have any styling in a real application

since they’re used to arrange other components on the screen.

Now, let’s take a look at the components used to create this screen layout:

import React from "react";

import { Text, View } from "react-native";

import styles from "./styles";

export default function App() {

 return (

 <View style={styles.container}>

 <View style={styles.box}>

 <Text style={styles.boxText}>#1</Text>

 </View>

 <View style={styles.box}>

 <Text style={styles.boxText}>#2</Text>

 </View>

 <View style={styles.box}>

 <Text style={styles.boxText}>#3</Text>

 </View>

 </View>

);

}

The container view (the outermost <View> component) is the column and the child views are

the rows. The <Text> component is used to label each row. In terms of HTML elements, <View>

is similar to a <div> element, while <Text> is similar to a <p> element.

Maybe this example could have been called a three-row layout since it has three

rows. But, at the same time, the three layout sections are flexing in the direction of

the column that they’re in. Use the naming convention that makes the most con-

ceptual sense to you.

Chapter 18 287

Now, let’s take a look at the styles used to create this layout:

import { Platform, StyleSheet, StatusBar } from "react-native";

export default StyleSheet.create({

 container: {

 flex: 1,

 flexDirection: "column",

 alignItems: "center",

 justifyContent: "space-around",

 backgroundColor: "ghostwhite",

 ...Platform.select({

 ios: { paddingTop: 20 },

 android: { paddingTop: StatusBar.currentHeight }

 })

 },

 box: {

 width: 300,

 height: 100,

 justifyContent: "center",

 alignItems: "center",

 backgroundColor: "lightgray",

 borderWidth: 1,

 borderStyle: "dashed",

 borderColor: "darkslategray"

 },

 boxText: {

 color: "darkslategray",

 fontWeight: "bold"

 }

});

The flex and flexDirection properties of container enable the layout of the rows to flow from

top to bottom. The alignItems and justifyContent properties align the child elements to the

center of the container and add space around them, respectively.

Building Responsive Layouts with Flexbox288

Let’s see how this layout looks when you rotate the device from a portrait orientation to a land-

scape orientation:

Figure 18.4: Landscape orientation

Flexbox automatically figured out how to preserve the layout for you. However, you can improve

on this a little bit. For example, the landscape orientation now has a lot of wasted space to the

left and right. You could create your own abstraction for the boxes that you’re rendering. In the

following section, we’ll improve on this layout.

Improved three-column layout
There are a few things that I think you can improve on from the last example. Let’s fix the styles

so that the children of the Flexbox could stretch to take advantage of the available space. Do

you remember, in the last example, when you rotated the device from a portrait orientation to a

landscape orientation? There was a lot of wasted space. It would be nice to have the components

automatically adjust themselves. Here’s what the new style module looks like:

Chapter 18 289

import { Platform, StyleSheet, StatusBar } from "react-native";

export default StyleSheet.create({

 container: {

 flex: 1,

 flexDirection: "column",

 backgroundColor: "ghostwhite",

 justifyContent: "space-around",

 ...Platform.select({

 ios: { paddingTop: 20 },

 android: { paddingTop: StatusBar.currentHeight },

 }),

 },

 box: {

 height: 100,

 justifyContent: "center",

 alignSelf: "stretch",

 alignItems: "center",

 backgroundColor: "lightgray",

 borderWidth: 1,

 borderStyle: "dashed",

 borderColor: "darkslategray",

 },

 boxText: {

 color: "darkslategray",

 fontWeight: "bold",

 },

});

The key change here is the alignSelf property. This tells elements with the box style to change

their width or height (depending on the flexDirection of their container) to fill space. Also,

the box style no longer defines a width property because this will be computed on the fly now.

Building Responsive Layouts with Flexbox290

Here’s what the sections look like in portrait mode:

Figure 18.5: Improved three-column layout in portrait orientation

Now, each section takes the full width of the screen, which is exactly what you want to happen.

The issue of wasted space was actually more prevalent in landscape orientation, so let’s rotate

the device and see what happens to these sections now.

Chapter 18 291

Figure 18.6: Improved three-column layout in landscape orientation

Now your layout is utilizing the entire width of the screen, regardless of orientation. Lastly, let’s

implement a proper Box component that can be used by App.js instead of having repetitive style

properties in place. Here’s what the Box component looks like:

import React from "react";

import { PropTypes } from "prop-types";

import { View, Text } from "react-native";

import styles from "./styles";

export default function Box({ children }) {

 return (

 <View style={styles.box}>

 <Text style={styles.boxText}>{children}</Text>

 </View>

);

}

Box.propTypes = {

 children: PropTypes.node.isRequired,

};

You now have the beginnings of a nice layout. Next, you’ll learn about flexing in the other direc-

tion: left to right.

Building Responsive Layouts with Flexbox292

Flexible rows
In this section, you’ll learn how to make screen layout sections stretch from top to bottom. To do

this, you need a flexible row. Here is what the styles for this screen look like:

import { Platform, StyleSheet, StatusBar } from "react-native";

export default StyleSheet.create({

 container: {

 flex: 1,

 flexDirection: "row",

 backgroundColor: "ghostwhite",

 alignItems: "center",

 justifyContent: "space-around",

 ...Platform.select({

 ios: { paddingTop: 20 },

 android: { paddingTop: StatusBar.currentHeight },

 }),

 },

 box: {

 width: 100,

 justifyContent: "center",

 alignSelf: "stretch",

 alignItems: "center",

 backgroundColor: "lightgray",

 borderWidth: 1,

 borderStyle: "dashed",

 borderColor: "darkslategray",

 },

 boxText: {

 color: "darkslategray",

 fontWeight: "bold",

 },

});

Here’s the App component, using the same Box component that you implemented in the previous

section:

Chapter 18 293

import React from "react";

import { Text, View, StatusBar } from "react-native";

import styles from "./styles";

import Box from "./Box";

export default function App() {

 return (

 <View style={styles.container}>

 <Box>#1</Box>

 <Box>#2</Box>

 </View>

);

}

Here’s what the resulting screen looks like in portrait mode:

Figure 18.7: Flexible rows in portrait orientation

Building Responsive Layouts with Flexbox294

The two columns stretch all the way from the top of the screen to the bottom because of the

alignSelf property, which doesn’t actually specify which direction to stretch in. The two Box

components stretch from top to bottom because they’re displayed in a flex row. Note how the

spacing between these two sections goes from left to right? This is because of the container’s

flexDirection property, which has a value of row.

Now, let’s see how this flex direction impacts the layout when the screen is rotated to a landscape

orientation.

Figure 18.8: Flexible rows in landscape orientation

Since Flexbox has a justifyContent style property value of space-around, space is added pro-

portionally to the left, the right, and in between the sections. In the following section, you’ll learn

about flexible grids.

Flexible grids
Sometimes, you need a screen layout that flows like a grid. For example, what if you have several

sections that are the same width and height, but you’re not sure how many of these sections

will be rendered? Flexbox makes it easy to build a row that flows from left to right until the end

of the screen is reached. Then, it automatically continues rendering elements from left to right

on the next row.

Chapter 18 295

Here’s an example layout in portrait mode:

Figure 18.9: Flexible grids in portrait orientation

The beauty of this approach is that you don’t need to know in advance how many columns are in

a given row. The dimensions of each child determine what will fit in a given row.

To see the styles used to create this layout, you can follow this link: https://github.com/
PacktPublishing/React-and-React-Native-5E/tree/main/Chapter18/flexible-grids/

styles.ts.

https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter18/flexible-grids/styles.ts
https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter18/flexible-grids/styles.ts
https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter18/flexible-grids/styles.ts

Building Responsive Layouts with Flexbox296

Here’s the App component that renders each section:

import React from "react";

import { View, StatusBar } from "react-native";

import styles from "./styles";

import Box from "./Box";

const boxes = new Array(10).fill(null).map((v, i) => i + 1);

export default function App() {

 return (

 <View style={styles.container}>

 <StatusBar hidden={false} />

 {boxes.map((i) => (

 <Box key={i}>#{i}</Box>

))}

 </View>

);

}

Lastly, let’s make sure that the landscape orientation works with this layout:

Figure 17.10: Flexible grids in landscape orientation

Now that you have an understanding of how flexible grids work, we’ll look at flexible rows and

columns next.

You may have noticed that there’s some superfluous space on the right side. Remem-

ber, these sections are only visible in this book because we want them to be visible.

In a real app, they’re just grouping other React Native components. However, if the

space to the right of the screen becomes an issue, play around with the margin and

the width of the child components.

Chapter 18 297

Flexible rows and columns
Let’s learn how to combine rows and columns to create a sophisticated layout for your app. For

example, sometimes, you need the ability to nest columns within rows or rows within columns.

To see the App component of an application that nests columns within rows, you can follow

this link: https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/

Chapter18/flexible-rows-and-columns/App.tsx.

You’ve created abstractions for the layout pieces (<Row> and <Column>) and the content piece

(<Box>). Let’s see what this screen looks like:

Figure 18.11: Flexible rows and columns

This layout probably looks familiar because you’ve done it in the Flexible grids section. The key

difference as compared to Figure 18.9 is in how these content sections are ordered.

https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter18/flexible-rows-and-columns/App.tsx
https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter18/flexible-rows-and-columns/App.tsx

Building Responsive Layouts with Flexbox298

For example, #2 doesn’t go to the right of #1, it goes below it. This is because we’ve placed #1 and

#2 in <Column>. The same happens with #3 and #4. These two columns are placed in a row. Then,

the next row begins, and so on.

This is just one of many possible layouts that you can achieve by nesting row Flexboxes and col-

umn Flexboxes. Let’s take a look at the Row component now:

import React from "react";

import PropTypes from "prop-types";

import { View, Text } from "react-native";

import styles from "./styles";

export default function Box({ children }) {

 return (

 <View style={styles.box}>

 <Text style={styles.boxText}>{children}</Text>

 </View>

);

}

Box.propTypes = {

 children: PropTypes.node.isRequired,

};

This component applies the row style to the <View> component. The end result is cleaner JSX

markup in the App component when creating a complex layout. Finally, let’s look at the Column

component:

import React from "react";

import PropTypes from "prop-types";

import { View } from "react-native";

import styles from "./styles";

export default function Column({ children }) {

 return <View style={styles.column}>{children}</View>;

}

Column.propTypes = {

 children: PropTypes.node.isRequired,

};

This looks just like the Row component, just with a different style applied to it. It also serves the

same purpose as Row: to enable simpler JSX markup for layouts in other components.

Chapter 18 299

Summary
This chapter introduced you to styles in React Native. Though you can use many of the same

CSS style properties that you’re used to, the CSS style sheets used in web applications look very

different. Namely, they’re composed of plain JavaScript objects.

Then, you learned how to work with the main React Native layout mechanism: Flexbox. This is

the preferred way of laying out most web applications these days, so it makes sense to be able to

reuse this approach in a Native app. You created several different layouts, and you saw how they

looked in portrait and landscape orientation.

In the next chapter, you’ll start implementing navigation for your app.

19
Navigating Between Screens

The focus of this chapter is on navigating between the screens that make up your React Native

application. Navigation in native apps is slightly different than navigation on web apps: mainly

because there isn’t any notion of a URL that the user is aware of. In prior versions of React Native,

there were primitive navigator components that you could use to control the navigation between

screens. There were a number of challenges with these components that resulted in more code to

accomplish basic navigation tasks. For example, initial navigation components, like Navigator

and NavigatorIOS, were complex to implement and lacked features, leading to performance

issues and inconsistency across platforms.

More recent versions of React Native encourage you to use the react-navigation package, which

will be the focus of this chapter, even though there are several other options. You’ll learn about

navigation basics, passing parameters to screens, changing header content, using tab and drawer

navigation, and handling state with navigation. Also, we’ll take a look at a modern navigation

approach called file-based navigation.

We’ll cover the following topics in this chapter:

•	 The basics of navigation

•	 Route parameters

•	 The navigation header

•	 Tab and drawer navigation

•	 File-based navigation

Navigating Between Screens302

Technical requirements
You can find the code files for this chapter on GitHub at https://github.com/PacktPublishing/

React-and-React-Native-5E/tree/main/Chapter19.

The basics of navigation
Navigation in React Native is crucial because it manages the transition between different screens

in an app. It improves user experience by organizing the app’s flow logically, allowing users to

intuitively understand how to access features and information. Effective navigation makes an app

feel quick and responsive, reducing frustration and increasing user engagement. It also supports

the app’s architecture, making it easier to scale and maintain by clearly defining how components

are linked and interact. Without proper navigation, an app can become confusing and difficult to

use, significantly impacting its success and user retention. This section will guide you through

setting up navigation in your app by creating a small app where you can navigate between screens.

Let’s start off with the basics of moving from one page to another using the react-navigation

package.

Before starting, you should install the react-navigation package to a fresh project and some

additional dependencies related to the example:

npm install @react-navigation/native

Then, install native dependencies using expo:

npx expo install react-native-screens react-native-safe-area-context

The preceding installation steps will be required for each example in this chapter, but we need

to add one more package related to the stack navigator:

npm install @react-navigation/native-stack

Now, we are ready to develop navigation. Here’s what the App component looks like:

import Home from "./Home";

import Settings from "./Settings";

const Stack = createNativeStackNavigator<RootStackParamList>();

export default function App() {

 return (

https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter19
https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter19

Chapter 19 303

 <NavigationContainer>

 <Stack.Navigator>

 <Stack.Screen name="Home" component={Home} />

 <Stack.Screen name="Settings" component={Settings} />

 </Stack.Navigator>

 </NavigationContainer>

);

}

createNativeStackNavigator() is a function that sets up your navigation. It returns an object

with two properties, the Screen and Navigator components, that are used for configuring the

stack navigator.

The first argument to this function maps to the screen components that can be navigated.

The second argument is for more general navigation options: in this case, you’re telling the

navigator that the homepage should be the default screen component that’s rendered. The

<NavigationContainer> component is necessary so that the screen components get all of the

navigation properties that they need.

Here’s what the Home component looks like:

type Props = NativeStackScreenProps<RootStackParamList>;

export default function Home({ navigation }: Props) {

 return (

 <View style={styles.container}>

 <StatusBar barStyle="dark-content" />

 <Text>Home Screen</Text>

 <Button

 title="Settings"

 onPress={() => navigation.navigate("Settings")}

 />

 </View>

);

}

This is your typical functional React component. You can use a class-based component here, but

there’s no need since there is no state or life cycle methods. It renders a View component where

the container style is applied.

Navigating Between Screens304

This is followed by a Text component that labels the screen followed by a Button component.

A screen can be anything you want: it’s just a regular React Native component. The navigator

component handles the routing and the transitions between screens for you.

The onPress handler for this button navigates to the Settings screen when clicked. This is done

by calling navigation.navigate('Settings'). The navigation property is passed to your screen

component by react-navigation and contains all of the routing functionality you need. In con-

trast to working with URLs in React web apps, here you call navigator API functions and pass

them the names of screens.

To get type safe environment in navigation, we need to define a type called RootStackParamList that

contains all the information about our routes. We use it together with NativeStackScreenProps

to define route Props. This is what RootStackParamList looks like:

export type RootStackParamList = {

 Home: undefined;

 Settings: undefined;

};

We pass undefined to each route because we don’t have any parameters on routes. As a result, we

can call navigation.navigate() only with Settings or Home.

Let’s take a look at the Settings component:

type Props = NativeStackScreenProps<RootStackParamList>;

export default function Settings({ navigation }: Props) {

 return (

 <View style={styles.container}>

 <StatusBar barStyle="dark-content" />

 <Text>Settings Screen</Text>

 <Button title="Home" onPress={() => navigation.navigate("Home")} />

 </View>

);

}

Chapter 19 305

This component is just like the Home component, except with different text, and when the button

is clicked, you’re taken back to the Home screen.

This is what the Home screen looks like:

Figure 19.1: The Home screen

Navigating Between Screens306

If you click the Settings button, you’ll be taken to the Settings screen, which looks like this:

Figure 19.2: The Settings screen

Chapter 19 307

This screen looks almost identical to the Home screen. It has different text and a different button

that will take you back to the Home screen when clicked. However, there’s another way to get

back to the Home screen. Take a look at the top of the screen, where you’ll notice a white nav-

igation bar. On the left side of the navigation bar, there’s a back arrow. This works just like the

back button in a web browser and will take you back to the previous screen. What’s nice about

react-navigation is that it takes care of rendering this navigation bar for you.

In the next section, you’ll learn how to pass parameters to your routes.

Route parameters
When you develop React web applications, some of your routes have dynamic data in them. For

example, you can link to a details page, and within that URL, you’ll have some sort of identifier.

The component then has what it needs to render specific detailed information. The same concept

exists within react-navigation. Instead of just specifying the name of the screen that you want

to navigate to, you can pass along additional data.

Let’s take a look at route parameters in action.

We’ll start with the App component:

const Stack = createNativeStackNavigator<RootStackParamList>();

export default function App() {

 return (

 <NavigationContainer>

 <Stack.Navigator>

 <Stack.Screen name="Home" component={Home} />

 <Stack.Screen name="Details" component={Details} />

 </Stack.Navigator>

With this navigation bar in place, you don’t have to worry about how your layout

styles impact the status bar. You only need to worry about the layout of each of

your screens.

If you run this app on Android, you’ll see the same back button in the navigation

bar. But you can also use the standard back button found outside of the app on most

Android devices.

Navigating Between Screens308

 </NavigationContainer>

);

}

This looks just like the example in the The basics of navigation section, except instead of a Settings

page, there’s a Details page. This is the page that you want to pass data to dynamically so that

it can render the appropriate information.

To enable TypeScript for our routes, need to define RootStackParamList:

export type RootStackParamList = {

 Home: undefined;

 Details: { title: string };

};

Next, let’s take a look at the Home screen component:

type Props = NativeStackScreenProps<RootStackParamList, "Home">;

export default function Home({ navigation }: Props) {

 return (

 <View style={styles.container}>

 <StatusBar barStyle="dark-content" />

 <Text>Home Screen</Text>

 <Button

 title="First Item"

 onPress={() => navigation.navigate("Details", { title: "First
Item" })}

 />

 <Button

 title="Second Item"

 onPress={() => navigation.navigate("Details", { title: "Second
Item" })}

Chapter 19 309

 />

 <Button

 title="Third Item"

 onPress={() => navigation.navigate("Details", { title: "Third
Item" })}

 />

 </View>

);

}

The Home screen has three Button components, and each navigates to the Details screen. Note that

in the navigation.navigate() calls, in addition to the screen name, each has a second argument.

These arguments are objects that contain specific data, which is passed to the Details screen.

Next, let’s take a look at the Details screen and see how it consumes these route parameters:

type Props = NativeStackScreenProps<RootStackParamList, "Details">;

export default function ({ route }: Props) {

 const { title } = route.params;

 return (

 <View style={styles.container}>

 <StatusBar barStyle="dark-content" />

 <Text>{title}</Text>

 </View>

);

}

Although this example is only passing one title parameter, you can pass as many parameters

to the screen as you need to. You can access these parameters using the params value of the route

prop to look up the value.

Navigating Between Screens310

Here’s what the Home screen looks like when rendered:

Figure 19.3: The Home screen

If you click on the First Item button, you’ll be taken to the Details screen that is rendered using

the route parameter data:

Chapter 19 311

Figure 19.4: The Details screen

You can click the back button in the navigation bar to get back to the Home screen. If you click

on any of the other buttons on the Home screen, you’ll be taken back to the Details screen with

updated data. Route parameters are necessary to avoid having to write duplicate components. You

can think of passing parameters to navigator.navigate() as passing props to a React component.

In the following section, you’ll learn how to populate navigation section headers with content.

Navigating Between Screens312

The navigation header
The navigation bars that you’ve created so far in this chapter have been sort of plain. That’s be-

cause you haven’t configured them to do anything, so react-navigation will just render a plain

bar with a back button. Each screen component that you create can configure specific navigation

header content.

Let’s build on the example discussed in the Route parameters section, which used buttons to

navigate to a details page.

The App component has major updates, so let’s take a look at it:

const Stack = createNativeStackNavigator<RoutesParams>();

export default function App() {

 return (

 <NavigationContainer>

 <Stack.Navigator>

 <Stack.Screen name="Home" component={Home} />

 <Stack.Screen

 name="Details"

 component={Details}

 options={({ route }) => ({

 headerRight: () => {

 return (

 <Button

 title="Buy"

 onPress={() => {}}

 disabled={route.params.stock === 0}

 />

);

 },

 })}

 />

 </Stack.Navigator>

 </NavigationContainer>

);

}

Chapter 19 313

The Screen component accepts the options prop as an object or function to provide additional

screen properties.

The headerRight option is used to add a Button component to the right side of the navigation bar.

This is where the stock parameter comes into play. If this value is 0 because there isn’t anything

in stock, you want to disable the Buy button.

In our case, we pass options as a function and read the stock screen params to disable the button.

This is one of several ways to pass options to the Screen component. We’ll apply another way to

the Details component.

To understand how the stock props have been passed, take a look at the Home component here:

type Props = NativeStackScreenProps<RoutesParams, "Home">;

export default function Home({ navigation }: Props) {

 return (

 <View style={styles.container}>

 <StatusBar barStyle="dark-content" />

 <Button

 title="First Item"

 onPress={() =>

 navigation.navigate("Details", {

 title: "First Item",

 content: "First Item Content",

 stock: 1,

 })

 }

 />

 ...

 </View>

);

}

The first thing to note is that each button is passing more route parameters to the Details com-

ponent: content and stock. You’ll see why in a moment.

Next, let’s take a look at the Details component:

type Props = NativeStackScreenProps<RoutesParams, "Details">;

Navigating Between Screens314

export default function Details({ route, navigation }: Props) {

 const { content, title } = route.params;

 React.useEffect(() => {

 navigation.setOptions({ title });

 }, []);

 return (

 <View style={styles.container}>

 <StatusBar barStyle="dark-content" />

 <Text>{content}</Text>

 </View>

);

}

This time, the Details component renders the content route parameter. As with the App com-

ponent, we add additional options to the screen. In this case, we update screen options using

the navigation.setOptions() method. To customize the header, we can also add a title to that

screen via the App component.

Chapter 19 315

Let’s see how all of this works now, starting with the Home screen:

Figure 19.5: The Home screen

Now there is header text in the navigation bar, which is set by the name property in the Screen

component.

Navigating Between Screens316

Next, try pressing the First Item button:

Figure 19.6: The First Item screen

The title in the navigation bar is set based on the title parameter that’s passed to the Details

component using the navigation.setOptions() method. The Buy button that’s rendered on

the right side of the navigation bar is rendered by the options property in the Screen component

placed in the App component. It’s enabled because the stock parameter value is 1.

Chapter 19 317

Now, try returning to the Home screen and pressing the Second Item button:

Figure 19.7: The Second Item screen

The title and the page content both reflect the new parameter values passed to Details, but so

does the Buy button. It is in a disabled state because the stock parameter value was 0, meaning

that it can’t be bought.

Now that you’ve learned how to use navigation headers, in the next section, you’ll learn about

tab and drawer navigation.

Navigating Between Screens318

Tab and drawer navigation
So far in this chapter, each example has used Button components to link to other screens in the

app. You can use functions from react-navigation that will create tab or drawer navigation for

you automatically based on the screen components that you give it.

Let’s create an example that uses bottom tab navigation on iOS and drawer navigation on Android.

For this example, we need to install a few other packages for tab and drawer navigators:

npm install @react-navigation/bottom-tabs @react-navigation/drawer

Also, the drawer navigator requires some native modules. Let’s install them:

npx expo install react-native-gesture-handler react-native-reanimated

Then, add a plugin to the babel.config.js file. As a result, the file should look like the following:

module.exports = function (api) {

 api.cache(true);

 return {

 presets: ["babel-preset-expo"],

 plugins: ["react-native-reanimated/plugin"],

 };

};

Now, we are ready to continue coding. Here’s what the App component looks like:

const Tab = createBottomTabNavigator<Routes>();

const Drawer = createDrawerNavigator<Routes>();

export default function App() {

 return (

 <NavigationContainer>

 {Platform.OS === "ios" && (

 <Tab.Navigator>

You aren’t limited to using tab navigation on iOS or drawer navigation on Android.

I’m just picking these two to demonstrate how to use different modes of navigation

based on the platform. You can use the exact same navigation mode on both plat-

forms if you prefer.

Chapter 19 319

 <Tab.Screen name="Home" component={Home} />

 <Tab.Screen name="News" component={News} />

 <Tab.Screen name="Settings" component={Settings} />

 </Tab.Navigator>

)}

 {Platform.OS == "android" && (

 <Drawer.Navigator>

 <Drawer.Screen name="Home" component={Home} />

 <Drawer.Screen name="News" component={News} />

 <Drawer.Screen name="Settings" component={Settings} />

 </Drawer.Navigator>

)}

 </NavigationContainer>

);

}

Instead of using the createNativeStackNavigator() function to create your navigator, you’re

importing the createBottomTabNavigator() and createDrawerNavigator() functions:

import { createDrawerNavigator } from "@react-navigation/drawer";

import { createBottomTabNavigator } from "@react-navigation/bottom-tabs";

Then, you’re using the Platform utility from react-native to decide which navigator to use. The

result, depending on the platform, is assigned to App. Each navigator contains the Navigator and

Screen components, and you can pass them to your App. The resulting tab or drawer navigation

will be created and rendered for you.

Next, let’s take a look at the Home screen component:

export default function Home() {

 return (

 <View style={styles.container}>

 <Text>Home Content</Text>

 </View>

);

}

Navigating Between Screens320

The News and Settings components are essentially the same as Home. Here’s what the bottom

tab navigation looks like on iOS:

Figure 19.8: The tab navigator

The three screens that make up your app are listed at the bottom. The current screen is marked

as active, and you can click on the other tabs to move around.

Chapter 19 321

Now, let’s see what the drawer layout looks like on Android:

Figure 19.9: The drawer navigator

To open the drawer, you need to swipe from the left side of the screen. Once it’s open, you’ll see

buttons that will take you to the various screens of your app.

Now, you’ve learned how to use tab and drawer navigation. Next, we’ll explore the approach of

how to define navigation based just on files.

File-based navigation
In this section, we will talk about Expo Router, a file-based router works in a similar way to

routing in Next.js. To add a new screen, you just need to add a new file to the app folder. It’s built

on top of React Navigation, so the routes have the same options and parameters.

Swiping the drawer open from the left side of the screen is the default mode. You

can configure the drawer to swipe open from any direction.

For more information and details about Expo Router, take a look at this link:

https://docs.expo.dev/routing/introduction/

https://docs.expo.dev/routing/introduction/

Navigating Between Screens322

To try it out, we will install a fresh project using:

npx create-expo-app –template

To install the project with Expo Router ready, we just need to choose the Navigation (TypeScript)

template:

 Blank

 Blank (TypeScript)

❯ Navigation (TypeScript) - File-based routing with TypeScript enabled
 Blank (Bare)

When the installation is finished, you will find the app folder for the project. This folder will be

used for all your screens. Let’s try to replicate the example from the The basics of navigation section.

First of all, we need to create _layout.tsx inside the app folder. That file is working as a root

layer of our app. This is how it looks:

import { Stack } from "expo-router";

export default function RootLayout() {

 return <Stack />;

}

Then let’s create the index.tsx files that will contain the Home screen. It has few differences

compared to _layout.tsx, so let’s take a look:

import { Link } from "expo-router";

export default function Home() {

 return (

 <View style={styles.container}>

 <StatusBar barStyle="dark-content" />

 <Text>Home Screen</Text>

 <Link href="/settings" asChild>

 <Button title="Settings" />

 </Link>

 </View>

);

}

Chapter 19 323

As you can see here, we don’t use a navigation prop. We are instead using a Link component that

accepts href props, just like a web page. Clicking on that button takes us to the Settings screen.

Let’s create the settings.tsx file:

import { Link } from "expo-router";

export default function Settings() {

 return (

 <View style={styles.container}>

 <StatusBar barStyle="dark-content" />

 <Text>Settings Screen</Text>

 <Link href="/" asChild>

 <Button title="Home" />

 </Link>

 </View>

);

}

Here, we use the same approach as the index.tsx files, but in Link, we set href to “/".

This is how easily we can define screens in a declarative way, and the URL approach to navigating

between screens works out of the box. Also, one benefit we get here is that deep linking also works

out of the box; with this method, we can open specific screens using app links.

Now you know how to use file-based routing, which can improve your experience of developing

mobile apps, especially with a web-based mindset of URLs and linking.

Summary
In this chapter, you learned that mobile applications require navigation, just like web applications

do. Although they are different, web application and mobile application navigation have enough

conceptual similarities that mobile app routing and navigation don’t have to be a nuisance.

Older versions of React Native attempted to provide components to help manage navigation

within mobile apps, but they never really took hold. Instead, the React Native community has

dominated this area. One example of this is the react-navigation library: the focus of this chapter.

Navigating Between Screens324

You learned how basic navigation works with react-navigation. You then learned how to control

header components within the navigation bar. Next, you learned about the tab and drawer navi-

gation components. These two navigation components can automatically render the navigation

buttons for your app based on the screen components. You also learned how to work with the

file-based Expo Router.

In the next chapter, you’ll learn how to render lists of data.

20
Rendering Item Lists

In this chapter, you’ll learn how to work with item lists. Lists are a common web application

component. While it’s relatively straightforward to build lists using the and elements,

doing something similar on native mobile platforms is much more involved.

Thankfully, React Native provides an item list interface that hides all of the complexity. First,

you’ll get a feel for how item lists work by walking through an example. Then, you’ll learn how

to build controls that change the data displayed in lists. Lastly, you’ll see a couple of examples

that fetch items from the network.

We’ll cover the following topics in this chapter:

•	 Rendering data collections

•	 Sorting and filtering lists

•	 Fetching list data

•	 Lazy list loading

•	 Implementing pull to refresh

Technical requirements
You can find the code files for this chapter on GitHub at https://github.com/PacktPublishing/

React-and-React-Native-5E/tree/main/Chapter20.

https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter20
https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter20

Rendering Item Lists326

Rendering data collections
Lists are the most common way to display a lot of information: for example, you can display your

friend list, messages, and news. Many apps contain lists with data collections, and React Native

provides the tools to create these components.

Let’s start with an example. The React Native component you’ll use to render lists is FlatList,

which works the same way on iOS and Android. List views accept a data property, which is an

array of objects. These objects can have any properties you like, but they do require a key property.

If you don’t have a key property, you can pass the keyExtractor prop to the Flatlist component

and instruct what to use instead of key. The key property is similar to the requirement for ren-

dering the elements inside of a element. This helps the list to efficiently render when

changes are made to list data.

Let’s implement a basic list now. Here’s the code to render a basic 100-item list:

const data = new Array(100)

 .fill(null)

 .map((v, i) => ({ key: i.toString(), value: `Item ${i}` }));

export default function App() {

 return (

 <View style={styles.container}>

 <FlatList

 data={data}

 renderItem={({ item }) => <Text style={styles.item}>{item.value}</
Text>}

 />

 </View>

);

}

Let’s walk through what’s going on here, starting with the data constant. This has an array of 100

items in it. It is created by filling in a new array with 100 null values and then mapping this to a

new array with the objects that you want to pass to <FlatList>. Each object has a key property

because this is a requirement; anything else is optional. In this case, you’ve decided to add a value

property that will be used later when the list is rendered.

Chapter 20 327

Next, you render the <FlatList> component. It’s within a <View> container because list views

need height in order to make scrolling work correctly. The data and renderItem properties are

passed to <FlatList>, which ultimately determines the rendered content.

At first glance, it seems like the FlatList component doesn’t do too much. Do you have to figure

out how the items look? Well, yes, the FlatList component is supposed to be generic. It’s sup-

posed to excel at handling updates and embeds scrolling capabilities into lists for us. Here are

the styles that were used to render the list:

import { StyleSheet } from "react-native";

export default StyleSheet.create({

 container: {

 flex: 1,

 flexDirection: "column",

 paddingTop: 40,

 },

 item: {

 margin: 5,

 padding: 5,

 color: "slategrey",

 backgroundColor: "ghostwhite",

 textAlign: "center",

 },

});

Here, you’re styling each item on your list. Otherwise, each item would be text-only, and it would

be difficult to differentiate between other list items. The container style gives the list height by

setting flex to 1.

Rendering Item Lists328

Let’s see what the list looks like now:

Figure 20.1: Rendering the data collection

If you’re running this example in a simulator, you can click and hold down the mouse button

anywhere on the screen, like a finger, and then scroll up and down through the items.

Chapter 20 329

In the following section, you’ll learn how to add controls for sorting and filtering lists.

Sorting and filtering lists
Now that you have learned the basics of the FlatList components, including how to pass data,

let’s add some controls to the list that you just implemented in the Rendering data collections

section. The FlatList component can be rendered together with other components: for example,

list controls. It helps you to manipulate the data source, which ultimately drives what’s rendered

on the screen.

Before implementing list control components, it might be helpful to review the high-level structure

of these components so that the code has more context. Here’s an illustration of the component

structure that you’re going to implement:

Figure 20.2: The component structure

Here’s what each of these components is responsible for:

•	 ListContainer: The overall container for the list; it follows the familiar React container

pattern

•	 List: A stateless component that passes the relevant pieces of state into ListControls

and the React Native ListView component

•	 ListControls: A component that holds the various controls that change the state of the list

•	 ListFilter: A control for filtering the item list

Rendering Item Lists330

•	 ListSort: A control for changing the sort order of the list

•	 FlatList: The actual React Native component that renders items

In some cases, splitting apart the implementation of a list like this is overhead. However, I think

that if your list needs controls in the first place, you’re probably implementing something that

will stand to benefit from having a well-thought-out component architecture.

Now, let’s drill down into the implementation of this list, starting with the ListContainer com-

ponent:

function mapItems(items: string[]) {

 return items.map((value, i) => ({ key: i.toString(), value }));

}

const array = new Array(100).fill(null).map((v, i) => `Item ${i}`);

function filterAndSort(text: string, asc: boolean): string[] {

 return array

 .filter((i) => text.length === 0 || i.includes(text))

 .sort(

 asc

 ? (a, b) => (a > b ? 1 : a < b ? -1 : 0)

 : (a, b) => (b > a ? 1 : b < a ? -1 : 0)

);

}

Here, we define a few utility functions and the initial array that we will use.

Then, we will define asc and filter for managing sorting and filtering the list, respectively, with

the data variable implemented using the useMemo hook:

export default function ListContainer() {

 const [asc, setAsc] = useState(true);

 const [filter, setFilter] = useState("");

 const data = useMemo(() => {

 return filterAndSort(filter, asc);

 }, [filter, asc]);

Chapter 20 331

It gives us an opportunity to avoid updating it manually because it will be recalculated automat-

ically when the filter and asc dependencies are updated. It also helps us to avoid unnecessary

recalculation when filter and asc are not changed.

This is how we apply this logic to the List component:

return (

 <List

 data={mapItems(data)}

 asc={asc}

 onFilter={(text) => {

 setFilter(text);

 }}

 onSort={() => {

 setAsc(!asc);

 }}

 />

);

If this seems like a bit much, it’s because it is. This container component has a lot of state to

handle. It also has some non-trivial behavior that it needs to make available to its children. If you

look at it from the perspective of an encapsulating state, it will be more approachable. Its job is

to populate the list with state data and provide functions that operate in this state.

In an ideal world, the child components of this container should be nice and simple, since they

don’t have to directly interface with the state. Let’s take a look at the List component next:

export default function List({ data, ...props }: Props) {

 return (

 <FlatList

 data={data}

 ListHeaderComponent={<ListControls {...props}/>}

 renderItem={({ item }) => <Text style={styles.item}>{item.value}</
Text>}

 />

);

}

Rendering Item Lists332

This component takes the state from the ListContainer component as a property and ren-

ders a FlatList component. The main difference here from the previous example is the

ListHeaderComponent property. This renders the controls for your List component. What’s es-

pecially useful about this property is that it renders the controls outside the scrollable list content,

ensuring that the controls are always visible. Let’s take a look at the ListControls component next:

type Props = {

 onFilter: (text: string) => void;

 onSort: () => void;

 asc: boolean;

};

export default function ListControls({ onFilter, onSort, asc }: Props) {

 return (

 <View style={styles.controls}>

 <ListFilter onFilter={onFilter} />

 <ListSort onSort={onSort} asc={asc} />

 </View>

);

}

This component brings together the ListFilter and ListSort controls. So, if you were to add

another list control, you would add it here.

Let’s take a look at the ListFilter implementation now:

type Props = {

 onFilter: (text: string) => void;

};

Chapter 20 333

export default function ListFilter({ onFilter }: Props) {

 return (

 <View>

 <TextInput

 autoFocus

 placeholder="Search"

 style={styles.filter}

 onChangeText={onFilter}

 />

 </View>

);

}

The filter control is a simple text input that filters the list of items by user type. The onFilter

function that handles this comes from the ListContainer component.

Let’s look at the ListSort component next:

const arrows = new Map([

 [true, "▼"],

 [false, "▲"],

]);

type Props = {

 onSort: () => void;

 asc: boolean;

};

export default function ListSort({ onSort, asc }: Props) {

 return <Text onPress={onSort}>{arrows.get(asc)}</Text>;

}

Rendering Item Lists334

Here’s a look at the resulting list:

Figure 20.3: The sorting and filtering list

By default, the entire list is rendered in ascending order. You can see the placeholder Search text

when the user hasn’t provided anything yet. Let’s see how this looks when you enter a filter and

change the sort order:

Chapter 20 335

Figure 20.4: The list with a changed sort order and search value

This search includes items containing 1 and sorts the results in descending order. Note that you

can either change the order first or enter the filter first. Both the filter and the sort order are part

of the ListContainer state.

Rendering Item Lists336

In the next section, you’ll learn how to fetch list data from an API endpoint.

Fetching list data
Commonly, you’ll fetch your list data from some API endpoint. In this section, you’ll learn about

making API requests from React Native components. The good news is that the fetch() API is

polyfilled by React Native, so the networking code in your mobile applications should look and

feel a lot like it does in your web applications.

To start things off, let’s build a mock API for our list items using functions that return promises

just like fetch() does:

const items = new Array(100).fill(null).map((v, i) => `Item ${i}`);

function filterAndSort(data: string[], text: string, asc: boolean) {

 return data

 .filter((i) => text.length === 0 || i.includes(text))

 .sort(

 asc

 ? (a, b) => (b > a ? -1 : a === b ? 0 : 1)

 : (a, b) => (a > b ? -1 : a === b ? 0 : 1)

);

}

export function fetchItems(

 filter: string,

 asc: boolean

): Promise<{ json: () => Promise<{ items: string[] }> }> {

 return new Promise((resolve) => {

 resolve({

 json: () =>

 Promise.resolve({

 items: filterAndSort(items, filter, asc),

 }),

 });

 });

}

Chapter 20 337

With the mock API function in place, let’s make some changes to the ListContainer component.

Instead of using local data sources, you can now use the fetchItems() function to load data from

the mock API. Let’s take a look and define the ListContainer component:

export default function ListContainer() {

 const [asc, setAsc] = useState(true);

 const [filter, setFilter] = useState("");

 const [data, setData] = useState<MappedList>([]);

 useEffect(() => {

 fetchItems(filter, asc)

 .then((resp) => resp.json())

 .then(({ items }) => {

 setData(mapItems(items));

 });

 }, []);

We’ve defined state variables using the useState and useEffect hooks to fetch initial list data.

Now, let’s take a look at the usage of our new handlers in the List component:

 return (

 <List

 data={data}

 asc={asc}

 onFilter={(text) => {

 fetchItems(text, asc)

 .then((resp) => resp.json())

 .then(({ items }) => {

 setFilter(text);

 setData(mapItems(items));

 });

 }}

 onSort={() => {

 fetchItems(filter, !asc)

 .then((resp) => resp.json())

 .then(({ items }) => {

 setAsc(!asc);

Rendering Item Lists338

 setData(mapItems(items));

 });

 }}

 />

);

}

Any action that modifies the state of the list needs to call fetchItems() and set the appropriate

state once the promise resolves.

In the following section, you’ll learn how list data can be loaded lazily.

Lazy list loading
In this section, you’ll implement a different kind of list: one that scrolls infinitely. Sometimes,

users don’t actually know what they’re looking for, so filtering or sorting isn’t going to help. Think

about the Facebook news feed you see when you log in to your account; it’s the main feature of

the application, and rarely are you looking for something specific. You need to see what’s going

on by scrolling through the list.

To do this using a FlatList component, you need to be able to fetch more API data when the user

scrolls to the end of the list. To get an idea of how this works, you need a lot of API data to work

with, and generators are great at this. So, let’s modify the mock that you created in the Fetching

list data section’s example so that it just keeps responding with new data:

function* genItems() {

 let cnt = 0;

 while (true) {

 yield `Item ${cnt++}`;

 }

}

let items = genItems();

export function fetchItems({ refresh }: { refresh?: boolean }) {

 if (refresh) {

 items = genItems();

 }

Chapter 20 339

 return Promise.resolve({

 json: () =>

 Promise.resolve({

 items: new Array(30).fill(null).map(() => items.next().value as
string),

 }),

 });

}

With fetchItems, you can now make an API request for new data every time the end of the list is

reached. Eventually, this will fail when you run out of memory, but I’m just trying to show you

in general terms the approach you can take to implement infinite scrolling in React Native. Now,

let’s take a look at what the ListContainer component looks like with fetchItems:

import React, { useState, useEffect } from "react";

import * as api from "./api";

import List from "./List";

export default function ListContainer() {

 const [data, setData] = useState([]);

 function fetchItems() {

 return api

 .fetchItems({})

 .then((resp) => resp.json())

 .then(({ items }) => {

 setData([

 ...data,

 ...items.map((value) => ({

 key: value,

 value,

 })),

]);

 });

 }

 useEffect(() => {

 fetchItems();

 }, []);

Rendering Item Lists340

 return <List data={data} fetchItems={fetchItems} />;

}

Each time fetchItems() is called, the response is concatenated with the data array. This becomes

the new list data source, instead of replacing it as you did in earlier examples.

Now, let’s take a look at the List component to see how to respond to the end of the list being

reached:

type Props = {

 data: { key: string; value: string }[];

 fetchItems: () => Promise<void>;

 refreshItems: () => Promise<void>;

 isRefreshing: boolean;

};

export default function List({

 data,

 fetchItems

}: Props) {

 return (

 <FlatList

 data={data}

 renderItem={({ item }) => <Text style={styles.item}>{item.value}</
Text>}

 onEndReached={fetchItems}

 />

);

}

FlatList accepts the onEndReached handler prop, which will be invoked every time you reach

the end of the list during scrolling.

If you run this example, you’ll see that, as you approach the bottom of the screen while scrolling,

the list just keeps growing.

Chapter 20 341

Implementing pull to refresh
The pull-to-refresh gesture is a common action on mobile devices. It allows users to refresh the

content of a view without having to lift a finger from the screen or manually reopen the app, just

by pulling it down to trigger a page refresh. Loren Brichter, the creator of Tweetie (later Twitter

for iPhone) and Letterpress, introduced this gesture in 2009. This gesture has become so popular

that Apple integrated it into its SDKs as UIRefreshControl.

To use pull to refresh in the FlatList app, we just need to pass a few props and handlers. Let’s

take a look at our List component:

type Props = {

 data: { key: string; value: string }[];

 fetchItems: () => Promise<void>;

 refreshItems: () => Promise<void>;

 isRefreshing: boolean;

};

export default function List({

 data,

 fetchItems,

 refreshItems,

 isRefreshing,

}: Props) {

 return (

 <FlatList

 data={data}

 renderItem={({ item }) => <Text style={styles.item}>{item.value}</
Text>}

 onEndReached={fetchItems}

 onRefresh={refreshItems}

 refreshing={isRefreshing}

 />

);

}

Rendering Item Lists342

As we have provided the onRefresh and refreshing props, our FlatList component automat-

ically enables the pull-to-refresh gesture. The onRefresh handler will be called when you pull

the list, and the refreshing property will enable the loading spinner to reflect the loading state.

To apply defined props in the List component, let’s implement the refreshItems function with

the isRefreshing state in the ListContainer component:

 const [isRefreshing, setIsRefreshing] = useState(false);

 function fetchItems() {

 return api

 .fetchItems({})

 .then((resp) => resp.json())

 .then(({ items }) => {

 setData([

 ...data,

 ...items.map((value) => ({

 key: value,

 value,

 })),

]);

 });

 }

In refreshItems, as well as in the fetchItems method, we get list items but save them as a new

list. Also, note that before calling the API, we update the isRefreshing state to set it as a true

value, and in the final block, we set it to false to provide information to FlatList that loading

has ended.

Summary
In this chapter, you learned about the FlatList component in React Native. This component is

general-purpose, as it doesn’t impose any specific look on the items that get rendered. Instead,

the appearance of the list is up to you, leaving the FlatList component to help with efficiently

rendering a data source. The FlatList component also provides a scrollable region for the items

it renders.

Chapter 20 343

You implemented an example that took advantage of section headers in list views. This is a good

place to render static content such as list controls. You then learned about making network calls

in React Native; it’s just like using fetch() in any other web application.

Finally, you implemented lazy lists that scroll infinitely by only loading new items after you’ve

scrolled to the bottom of what’s already been rendered. Also, we added a feature to refresh that

list by means of a pull gesture.

In the next chapter, you’ll learn how to show the progress of network calls, among other things.

21
Geolocation and Maps

In this chapter, you’ll learn about the geolocation and mapping capabilities of React Native. You’ll

start the learning process with how to use the Geolocation API, and then you’ll move on to using

the MapView component to plot points of interest and regions. To do this, we’ll use the react-

native-maps package to implement maps.

The goal of this chapter is to go over what’s available in React Native for geolocation and in

react-native-maps for maps.

Here’s a list of the topics that we’ll cover in this chapter:

•	 Using the Geolocation API

•	 Rendering the map

•	 Annotating points of interest

Technical requirements
You can find the code file for this chapter on GitHub at https://github.com/PacktPublishing/

React-and-React-Native-5E/tree/main/Chapter21.

Using the Geolocation API
The Geolocation API that web applications use to figure out where the user is located can also be

used by React Native applications because the same API has been polyfilled. Other than maps,

this API is useful for getting precise coordinates from the GPS on mobile devices. You can then

use this information to display meaningful location data to the user.

https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter22
https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter22

Geolocation and Maps346

Unfortunately, the data returned by the Geolocation API is of little use on its own. Your code must

do the legwork to transform it into something useful. For example, latitude and longitude don’t

mean anything to the user, but you can use this data to look up something that is of use to the

user. This might be as simple as displaying where the user is currently located.

Let’s implement an example that uses the Geolocation API of React Native to look up coordi-

nates and then use those coordinates to look up human-readable location information from the

Google Maps API.

Before we start coding, let’s create a project using npx create-expo-app and then add the loca-

tion module:

npx expo install expo-location

Next, we need to configure location permissions in the app. Accessing a user’s location in a mobile

app requires explicit permission from the user. Later in this example, we will do that by calling

the Location.requestForegroundPermissionsAsync() method. This will display a permission

dialog to the user asking them to allow or deny location access. It’s important to check the status

returned to see if permission was granted before proceeding to use location methods. If permission

is denied, you should gracefully handle it in your code and potentially prompt the user to grant

permission in app settings if needed.

In real apps, before we can request permissions, we should first set those permissions up in the

app configuration. We can do this by adding a plugin to the app.json file:

{

 "expo": {

 "plugins": [

 [

 "expo-location",

 {

 "locationAlwaysAndWhenInUsePermission": "Allow $(PRODUCT_NAME)
to use your location."

 }

]

]

 }

}

Chapter 21 347

You should request location permission as early as possible, such as when your app first starts

up or when the user first navigates to a screen that requires location. By requesting permission

up-front and properly handling the user’s choice, you can ensure your app works as expected

while respecting the user’s privacy preferences.

When you have a prepared project, let’s have a look at the App component, which you can find here:
https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter22/

where-am-i/App.tsx. The goal of this component is to render the properties returned by the

Geolocation API on the screen, as well as looking up the user’s specific location and displaying it.

To fetch a location from the app, we need to grant permissions. In App.tsx, we have called

Location.requestForegroundPermissionsAsync() for that.

The setPosition() function is used as a callback in a couple of places, with its job being to set the

state of your component. Firstly, setPosition() sets the latitude-longitude coordinates. Normally,

you wouldn’t display this data directly, but this is an example that shows the data that’s available

as part of the Geolocation API. And, secondly, it uses the latitude and longitude values to look

up the name of where the user currently is, using the Google Maps API.

In the example, the API_KEY value is empty, and you can get it here: https://developers.google.

com/maps/documentation/geocoding/start.

The setPosition() callback is used with getCurrentPosition(), which is only called once when

the component is mounted. You’re also using setPosition() with watchPosition(), which calls

the callback any time the user’s position changes.

The iOS emulator and Android Studio let you change locations via menu options.

You don’t have to install your app on a physical device every time you want to test

changing locations.

https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter22/where-am-i/App.tsx
https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter22/where-am-i/App.tsx
https://developers.google.com/maps/documentation/geocoding/start
https://developers.google.com/maps/documentation/geocoding/start

Geolocation and Maps348

Let’s see what this screen looks like once the location data has loaded:

Figure 21.1: Location data

The address information that was fetched is probably more useful in an application than latitude

and longitude data. It works well for apps that need to find buildings around you or companies.

Even better than physical address text is visualizing the user’s physical location on a map; you’ll

learn how to do this in the next section.

Chapter 21 349

Rendering the map
The MapView component from react-native-maps is the main tool you’ll use to render maps

in your React Native applications. It offers a wide range of tools for rendering maps, markers,

polygons, heatmaps, and the like.

Let’s now implement a basic MapView component to see what you get out of the box:

import { View, StatusBar } from "react-native";

import MapView from "react-native-maps";

import styles from "./styles";

StatusBar.setBarStyle("dark-content");

export default () => (

 <View style={styles.container}>

 <MapView style={styles.mapView} showsUserLocation followsUserLocation
/>

 </View>

);

The two Boolean properties that you’ve passed to MapView do a lot of work for you. The

showsUserLocation property will activate the marker on the map, which denotes the physical

location of the device running this application. The followsUserLocation property tells the map

to update the location marker as the device moves around.

You can find more information about react-native-maps on the website: https://

github.com/react-native-maps/react-native-maps.

https://github.com/react-native-maps/react-native-maps
https://github.com/react-native-maps/react-native-maps

Geolocation and Maps350

Here is the resulting map:

Figure 21.2: Current location

The current location of the device is clearly marked on the map. By default, points of interest are

also rendered on the map. These are things close to the user so that they can see what’s around

them.

It’s generally a good idea to use the followsUserLocation property whenever using

showsUserLocation. This makes the map zoom to the region where the user is located.

Chapter 21 351

In the following section, you’ll learn how to annotate points of interest on your maps.

Annotating points of interest
Annotations are exactly what they sound like: additional information rendered on top of the

basic map geography. You get annotations by default when you render MapView components.

The MapView component can render the user’s current location and points of interest around the

user. The challenge here is that you probably want to show the points of interest relevant to your

application instead of those rendered by default.

In this section, you’ll learn how to render markers for specific locations on the map, as well as

rendering regions on the map.

Plotting points
Let’s plot some local breweries! Here’s how you pass annotations to the MapView component:

<MapView

 style={styles.mapView}

 showsPointsOfInterest={false}

 showsUserLocation

 followsUserLocation

>

 <Marker

 title="Duff Brewery"

 description="Duff beer for me, Duff beer for you"

 coordinate={{

 latitude: 43.8418728,

 longitude: -79.086082,

 }}

 />

 {...}

</MapView>

Geolocation and Maps352

In this example, we’ve opted out of this capability by setting the showsPointsOfInterest property

to false. Let’s see where these breweries are located:

Figure 21.3: Plotting points

The callout is displayed when you press the marker that shows the location of the brewery on the

map. The title and description property values that you give to <Marker> are used to render

this text.

Chapter 21 353

Plotting overlays
In this last section of this chapter, you’ll learn how to render region overlays. Think of a region as a

connect-the-dots drawing of several points, and a point is a single latitude/longitude coordinate.

Regions can serve many purposes. In our example, we’ll create a region that shows where we’re

more likely to find IPA drinkers versus stout drinkers. You can follow this link to see what the full

code looks like: https://github.com/PacktPublishing/React-and-React-Native-5E/tree/

main/Chapter22/plotting-overlays/App.tsx. Here is what the JSX part of the code looks like:

 <View style={styles.container}>

 <View>

 <Text style={ipaStyles} onPress={onClickIpa}>

 IPA Fans

 </Text>

 <Text style={stoutStyles} onPress={onClickStout}>

 Stout Fans

 </Text>

 </View>

 <MapView

 style={styles.mapView}

 showsPointsOfInterest={false}

 initialRegion={{

 latitude: 43.8486744,

 longitude: -79.0695283,

 latitudeDelta: 0.002,

 longitudeDelta: 0.04,

 }}

 >

 {overlays.map((v, i) => (

 <Polygon

 key={i}

 coordinates={v.coordinates}

 strokeColor={v.strokeColor}

 strokeWidth={v.strokeWidth}

 />

))}

 </MapView>

 </View>

https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter22/plotting-overlays/App.tsx
https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter22/plotting-overlays/App.tsx

Geolocation and Maps354

The region data consists of several latitude/longitude coordinates that define the shape and

location of the region. Regions are placed in the overlays state variable, which we map into

Polygon components. The rest of this code is mostly about the handling state when the two text

links are pressed.

By default, the IPA region is rendered as follows:

Figure 21.4: IPA Fans

When the Stout Fans button is pressed, the IPA overlay is removed from the map and the stout

region is added:

Chapter 21 355

Figure 21.5: Stout Fans

Overlays are useful when you need to highlight an area instead of a latitude/longitude point

or an address. As an example, it might be an app for finding apartments for rent in the area or

neighborhood you select.

Summary
In this chapter, you learned about geolocation and mapping in React Native. The Geolocation

API works the same as its web counterpart. The only reliable way to use maps in React Native

applications is to install the third-party react-native-maps package.

Geolocation and Maps356

You saw the basic configuration MapView components and how they can track the user’s location

and show relevant points of interest. Then, you saw how to plot your own points of interest and

regions of interest.

In the next chapter, you’ll learn how to collect user input using React Native components that

resemble HTML form controls.

22
Collecting User Input

In web applications, you can collect user input from standard HTML form elements that look and

behave similarly on all browsers. With native UI platforms, collecting user input is more nuanced.

In this chapter, you’ll learn how to work with the various React Native components that are used

to collect user input. These include text input, selecting from a list of options, checkboxes, and

date/time selectors. All of these are used in every app in cases of register or login flow, as well as

the purchase form. The experience of creating such forms is very valuable and this chapter will

help you to know how to create any form in your future apps. You’ll learn the differences between

iOS and Android and how to implement the appropriate abstractions for your app.

The following topics will be covered in this chapter:

•	 Collecting text input

•	 Selecting from a list of options

•	 Toggling between on and off

•	 Collecting date/time input

Technical requirements
You can find the code files for this chapter on GitHub at https://github.com/PacktPublishing/

React-and-React-Native-5E/tree/main/Chapter22.

https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter23
https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter23

Collecting User Input358

Collecting text input
It turns out that there’s a lot to think about when it comes to implementing text inputs. For ex-

ample, should it have placeholder text? Is this sensitive data that shouldn’t be displayed on the

screen? Should you process text as it’s entered or when the user moves to another field?

In web apps, there is a special <input> HTML element that allows you to collect user inputs. In

React Native, for that purpose, we use the TextInput component. Let’s build an example that

renders several instances of the <TextInput> component:

function Input(props: InputProps) {

 return (

 <View style={styles.textInputContainer}>

 <Text style={styles.textInputLabel}>{props.label}</Text>

 <TextInput style={styles.textInput} {...props} />

 </View>

);

}

We have implemented the Input component that we will reuse several times. Let’s take a look

at a few use cases of text inputs:

export default function CollectingTextInput() {

 const [changedText, setChangedText] = useState("");

 const [submittedText, setSubmittedText] = useState("");

 return (

 <View style={styles.container}>

 <Input label="Basic Text Input:" />

 <Input label="Password Input:" secureTextEntry />

 <Input label="Return Key:" returnKeyType="search" />

 <Input label="Placeholder Text:" placeholder="Search" />

 <Input

 label="Input Events:"

 onChangeText={(e) => {

 setChangedText(e);

 }}

 onSubmitEditing={(e) => {

 setSubmittedText(e.nativeEvent.text);

 }}

Chapter 22 359

 onFocus={() => {

 setChangedText("");

 setSubmittedText("");

 }}

 />

 <Text>Changed: {changedText}</Text>

 <Text>Submitted: {submittedText}</Text>

 </View>

);

}

I won’t go into depth about what each of these <TextInput> components is doing; there are labels

in the Input components that explain this. Let’s see what these components look like on the screen:

Figure 22.1: Text input variations

Collecting User Input360

The plain text input shows the text that’s been entered. The Password Input field doesn’t reveal

any characters. Placeholder Text is displayed when the input is empty. The Changed text state

is also displayed. You can’t see the Submitted text state because I didn’t press the Submitted

button on the virtual keyboard before I took the screenshot.

Let’s take a look at the virtual keyboard for the input element where you changed the Return Key

text via the returnKeyType prop:

Figure 22.2: Keyboard with changed Return key text

When the keyboard Return key reflects what’s going to happen when the user presses it, the user

feels more in tune with the application.

One more common use case is changing the keyboard type. By providing the keyboardType prop

to the TextInput component, you will see different variations of keyboards. This is convenient

when you need to enter a PIN code or email address. Here is an example of a numeric keyboard:

Figure 22.3: Numeric keyboard type

Now that you’re familiar with collecting text input, it’s time to learn how to select a value from

a list of options.

Chapter 22 361

Selecting from a list of options
In web applications, you typically use the <select> element to let the user choose from a list of

options. React Native comes with a Picker component, which works on both iOS and Android,

but in terms of reducing the React Native app size, the Meta team decided to delete it in future

releases and extract Picker to its own package. To use that package, firstly, we install it in a clean

project by running this command:

npx expo install @react-native-picker/picker

There is some trickery involved with styling this component based on which platform the user is

on, so let’s hide all of this inside a generic Select component. Here’s the Select.ios.js module:

export default function Select(props: SelectProps) {

 return (

 <View style={styles.pickerHeight}>

 <View style={styles.pickerContainer}>

 <Text style={styles.pickerLabel}>{props.label}</Text>

 <Picker style={styles.picker} {...props}>

 {props.items.map((i) => (

 <Picker.Item key={i.label} {...i} />

))}

 </Picker>

 </View>

 </View>

);

}

That’s a lot of overhead for a simple Select component. It turns out that it’s quite hard to style

the React Native Picker component, because it looks completely different on iOS and Android.

Despite that, we want to make it more cross-platform.

Here’s the Select.android.js module:

export default function Select(props: SelectProps) {

 return (

 <View>

 <Text style={styles.pickerLabel}>{props.label}</Text>

 <Picker {...props}>

 {props.items.map((i) => (

Collecting User Input362

 <Picker.Item key={i.label} {...i} />

))}

 </Picker>

 </View>

);

}

This is what the styles look like:

container: {

 flex: 1,

 flexDirection: "column",

 backgroundColor: "ghostwhite",

 justifyContent: "center",

 },

 pickersBlock: {

 flex: 2,

 flexDirection: "row",

 justifyContent: "space-around",

 alignItems: "center",

 },

 pickerHeight: {

 height: 250,

 },

As usual with the container and pickersBlock styles, we define the base layout of the screen.

Next, let’s take a look at the styles of the Select component:

 pickerContainer: {

 flex: 1,

 flexDirection: "column",

 alignItems: "center",

 backgroundColor: "white",

 padding: 6,

 height: 240,

 },

Chapter 22 363

 pickerLabel: {

 fontSize: 14,

 fontWeight: "bold",

 },

 picker: {

 width: 150,

 backgroundColor: "white",

 },

 selection: {

 flex: 1,

 textAlign: "center",

 },

Now, you can render your Select component. Here is what the App.js file looks like:

const sizes = [

 { label: "", value: null },

 { label: "S", value: "S" },

 { label: "M", value: "M" },

 { label: "L", value: "L" },

 { label: "XL", value: "XL" },

];

const garments = [

 { label: "", value: null, sizes: ["S", "M", "L", "XL"] },

 { label: "Socks", value: 1, sizes: ["S", "L"] },

 { label: "Shirt", value: 2, sizes: ["M", "XL"] },

 { label: "Pants", value: 3, sizes: ["S", "L"] },

 { label: "Hat", value: 4, sizes: ["M", "XL"] },

];

Here, we defined the default values for our Select component. Let’s take a look at the final

SelectingOptions component:

export default function SelectingOptions() {

Collecting User Input364

 const [availableGarments, setAvailableGarments] = useState<typeof
garments>(

 []

);

 const [selectedSize, setSelectedSize] = useState<string | null>(null);

 const [selectedGarment, setSelectedGarment] = useState<number |
null>(null);

With these hooks, we’ve implemented states of selectors. Next, we will use and pass them into

components:

 <View style={styles.container}>

 <View style={styles.pickersBlock}>

 <Select

 label="Size"

 items={sizes}

 selectedValue={selectedSize}

 onValueChange={(size: string) => {

 setSelectedSize(size);

 setSelectedGarment(null);

 setAvailableGarments(

 garments.filter((i) => i.sizes.includes(size))

);

 }}

 />

 <Select

 label="Garment"

 items={availableGarments}

 selectedValue={selectedGarment}

 onValueChange={(garment: number) => {

 setSelectedGarment(garment);

 }}

 />

 </View>

Chapter 22 365

 <Text style={styles.selection}>{selectedSize && selectedGarment &&
`${selectedSize} ${garments.find((i) => i.value === selectedGarment)?.
label}`}</Text>

 </View>

The basic idea of this example is that the selected option in the first selector changes the available

options in the second selector. When the second selector changes, the label shows selectedSize

and selectedGarment as a string. Here’s how the screen looks:

Figure 22.4: Selecting from the list of options

The Size selector is shown on the left-hand side of the screen. When the Size value changes, the

available values in the Garment selector on the right-hand side of the screen change to reflect

size availability. The current selection is displayed as a string after the two selectors.

Collecting User Input366

This is how our app looks on an Android device:

Figure 22.5: Selecting from the list of options on Android

When the iOS version of the Picker component renders a scrollable list of options, the Android

one gives only buttons that open a dialog modal for selecting options.

In the following section, you’ll learn about the buttons that toggle between on and off states.

Toggling between on and off
Another common element you’ll see in web forms is checkboxes. For example, think of toggling

Wi-Fi or Bluetooth on your device. React Native has a Switch component that works on both iOS

and Android. Thankfully, this component is a little easier to style than the Picker component.

Let’s look at a simple abstraction you can implement to provide labels for your switches:

Chapter 22 367

type CustomSwitchProps = SwitchProps & {

 label: string;

};

export default function CustomSwitch(props: CustomSwitchProps) {

 return (

 <View style={styles.customSwitch}>

 <Text>{props.label}</Text>

 <Switch {...props} />

 </View>

);

}

Now, let’s learn how we can use a couple of switches to control application state:

export default function TogglingOnAndOff() {

 const [first, setFirst] = useState(false);

 const [second, setSecond] = useState(false);

 return (

 <View style={styles.container}>

 <Switch

 label="Disable Next Switch"

 value={first}

 disabled={second}

 onValueChange={setFirst}

 />

 <Switch

 label="Disable Previous Switch"

 value={second}

 disabled={first}

 onValueChange={setSecond}

 />

 </View>

);

}

Collecting User Input368

These two switches toggle the disabled property of one another. When the first switch is toggled,

the setFirst() function is called, which will update the value of the first state. Depending on the

current value of first, it will either be set to true or false. The second switch works the same

way, except it uses setSecond() and the second state value.

Turning on one switch will disable the other because we’ve set the disabled property value for

each switch to the state of the other switch. For example, the second switch has disabled={first},

which means that it is disabled whenever the first switch is turned on. Here’s what the screen

looks like on iOS:

Figure 22.6: Switch toggles on iOS

Chapter 22 369

Here’s what the same screen looks like on Android:

Figure 22.7: Switch toggles on Android

As you can see, our CustomSwitch component enables the same functionality on Android and

iOS while using one component for both platforms. In the following section, you’ll learn how to

collect date/time input.

Collecting date/time input
In this final section of this chapter, you’ll learn how to implement date/time pickers. React Native

docs suggest using @react-native-community/datetimepicker independent date/time picker

components for iOS and Android, which means that it is up to you to handle the cross-platform

differences between the components.

Collecting User Input370

To install datetimepicker, run the following command in the project:

npx expo install @react-native-community/datetimepicker

So, let’s start with a DatePicker component for iOS:

export default function DatePicker(props: DatePickerProps) {

 return (

 <View style={styles.datePickerContainer}>

 <Text style={styles.datePickerLabel}>{props.label}</Text>

 <DateTimePicker

 mode="date"

 display="spinner"

 value={props.value}

 onChange={(event, date) => {

 if (date) {

 props.onChange(date);

 }

 }}

 />

 </View>

);

}

There’s not a lot to this component; it simply adds a label to the DateTimePicker component.

The Android version works a bit differently; the better approach would be to use an imperative

API. Let’s take a look at the implementation:

export default function DatePicker({label, value, onChange }:
DatePickerProps) {

 return (

 <View style={styles.datePickerContainer}>

 <Text style={styles.datePickerLabel}>{label}</Text>

 <Text

 onPress={() => {

 DateTimePickerAndroid.open({

 value: value,

 mode: "date",

 onChange: (event, date) => {

 if (event.type === "set" && date) {

Chapter 22 371

 onChange(date);

 }

 },

 });

 }}

 >

 {value.toLocaleDateString()}

 </Text>

 </View>

);

}

The key difference between the two date pickers is that the Android version doesn’t use a Re-

act Native component like DateTimePicker in iOS. Instead, we have to use the imperative

DateTimePickerAndroid.open() API. This is triggered when the user presses the date text that

our component renders and opens a date picker dialog. The good news is that this component of

ours hides this API behind a declarative component.

Now, let’s learn how to use our date and time picker components:

export default function CollectingDateTimeInput() {

 const [date, setDate] = useState(new Date());

 const [time, setTime] = useState(new Date());

 return (

 <View style={styles.container}>

 <DatePicker

 label="Pick a date, any date:"

 value={date}

 onChange={setDate}

 />

 <TimePicker

I’ve also implemented a time picker component that follows this exact pattern. So,

rather than listing that code here, I suggest that you download the code for this

book from https://github.com/PacktPublishing/React-and-React-Native-

5E/tree/main/Chapter22 so that you can see the subtle differences and run the

example.

https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter22
https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter22

Collecting User Input372

 label="Pick a time, any time:"

 value={time}

 onChange={setTime}

 />

 </View>

);

}

Awesome! Now, we have DatePicker and TimePicker components that can help us select dates and

times in our app. Also, they both work on iOS and Android. Let’s see how the pickers look on iOS:

Figure 22.8: iOS date and time pickers

As you can see, the iOS date and time pickers use the Picker component that you learned about

earlier in this chapter. The Android picker looks a lot different; let’s look at it now:

Chapter 22 373

Figure 22.9: Android date picker

The Android version follows a completely different approach from the iOS date/time picker, yet

we can use the same DatePicker component that we’ve created on both platforms. This brings

us to the end of the chapter.

Summary
In this chapter, we learned about the various React Native components that resemble the form

elements from the web that we’re used to. We started off by learning about text input and how

each text input has its own virtual keyboard to take into consideration. Next, we learned about

Picker components, which allow the user to select an item from a list of options. Then, we learned

about the Switch component, which is kind of like a checkbox. With these components, you will

be able to build a form of any complexity.

Collecting User Input374

In the final section, we learned how to implement generic date/time pickers that work on both

iOS and Android. In the next chapter, we’ll learn about modal dialogs in React Native.

23
Responding to User Gestures

All of the examples that you’ve implemented so far in this book have relied on user gestures. In tra-

ditional web applications, you mostly deal with mouse events. However, touchscreens rely on the

user manipulating elements with their fingers, which is fundamentally different from the mouse.

In this chapter, first, you’ll learn about scrolling. This is probably the most common gesture,

besides touch. Then, you’ll learn about giving the user the appropriate level of feedback when

they interact with your components. Finally, you’ll implement components that can be swiped.

The goal of this chapter is to show you how the gesture response system inside React Native

works and some of the ways in which this system is exposed via components.

In this chapter, we’ll cover the following topics:

•	 Scrolling with your fingers

•	 Giving touch feedback

•	 Using Swipeable and cancellable components

Technical requirements
You can find the code files for this chapter on GitHub at https://github.com/PacktPublishing/

React-and-React-Native-5E/tree/main/Chapter23.

Scrolling with your fingers
Scrolling in web applications is done by using the mouse pointer to drag the scrollbar back and

forth or up and down, or by spinning the mouse wheel. This doesn’t work on mobile devices

because there’s no mouse. Everything is controlled by gestures on the screen.

https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter25
https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter25

Responding to User Gestures376

For example, if you want to scroll down, you use your thumb or index finger to pull the content

up by physically moving your finger over the screen.

Scrolling like this is difficult to implement, but it gets more complicated. When you scroll on a

mobile screen, the velocity of the dragging motion is taken into consideration. You drag the screen

fast, then let go, and the screen continues to scroll based on how fast you moved your finger. You

can also touch the screen while this is happening to stop it from scrolling.

Thankfully, you don’t have to handle most of this stuff. The ScrollView component handles

much of the scrolling complexity for you. In fact, you’ve already used the ScrollView component

back in Chapter 20, Rendering Item Lists. The ListView component has ScrollView baked into it.

You can use ScrollView outside of ListView. For example, if you’re just rendering arbitrary content

such as text and other widgets: not a list, in other words: you can just wrap it in <ScrollView>.

Here’s an example:

export default function App() {

 return (

 <View style={styles.container}>

 <ScrollView style={styles.scroll}>

 {new Array(20).fill(null).map((v, i) => (

 <View key={i}>

 <Text style={[styles.scrollItem, styles.text]}>Some text</
Text>

 <ActivityIndicator style={styles.scrollItem} size="large" />

 <Switch style={styles.scrollItem} />

 </View>

))}

 </ScrollView>

 </View>

);

}

The ScrollView component isn’t of much use on its own: it’s there to wrap other components. It

needs height in order to function correctly. Here’s what the scroll style looks like:

You can adjust the low-level parts of user interactions by implementing gesture life

cycle methods. You’ll probably never need to do this, but if you’re interested, you can

read about it at https://reactnative.dev/docs/gesture-responder-system.

https://reactnative.dev/docs/gesture-responder-system

Chapter 23 377

scroll: {

 height: 1,

 alignSelf: "stretch",

 },

The height property is set to 1, but the stretch value of alignSelf allows the items to display

properly. Here’s what the end result looks like:

Figure 23.1: ScrollView

There’s a vertical scrollbar on the right-hand side of the screen as you drag the content down. If

you run this example, you can play around with making various gestures, such as making content

scroll on its own and then making it stop.

Responding to User Gestures378

When the user scrolls through content on the screen, they receive visual feedback. Users should

also receive visual feedback when they touch certain elements on the screen.

Giving touch feedback
The React Native examples you’ve worked with so far in this book have used plain text to act as

buttons or links. In web applications, to make text look like something that can be clicked, you

just wrap it with the appropriate link. There’s no link component in React Native, so you can style

your text to look like a button.

Let’s style some text as a button. This is a great first step as it makes the text look touchable. But

you also want to give visual feedback to the user when they start interacting with the button.

React Native provides several components to help with this:

•	 TouchableOpacity

•	 TouchableHighlight

•	 Pressable API

The problem with trying to style text as links on mobile devices is that they’re too

hard to press. Buttons provide a bigger target for fingers, and they’re easier to apply

touch feedback on.

Chapter 23 379

But before diving into the code, let’s take a look at what these components look like visually when

users interact with them, starting with TouchableOpacity:

Figure 23.2: TouchableOpacity

There are three buttons being rendered here. The top one, labeled Opacity, is currently being

pressed by the user. The opacity of the button is dimmed when pressed, which provides important

visual feedback for the user.

Responding to User Gestures380

Let’s see what the Highlight button looks like when pressed:

Figure 23.3: TouchableHighlight

Instead of changing the opacity when pressed, the TouchableHighlight component adds a high-

light layer over the button. In this case, it’s highlighted using a more transparent version of the

slate gray that’s being used in the font and border colors.

Chapter 23 381

The last example of a button is provided by the Pressable component. The Pressable API has been

introduced as a core component wrapper and allows different stages of press interaction on any

of its defined children. With such components, we can handle onPressIn, onPressOut (which we

explore in the next chapter), and onLongPress callbacks and implement any touchable feedback

that we want. Let’s take a look at how PressableButton looks when we click on it:

Figure 23.4: Pressable button

Responding to User Gestures382

If we continue to keep our finger on this button, we get an onLongPress event and the button

will update:

Figure 23.5: Long Pressed button

It doesn’t really matter which approach you use. The important thing is that you provide the

appropriate touch feedback for your users as they interact with your buttons. In fact, you might

want to use all the approaches in the same app, but for different things.

Let’s create an OpacityButton and HighlightButton component, which makes it easy to use the

first two approaches:

type ButtonProps = {

 label: string;

 onPress: () => void;

Chapter 23 383

};

export const OpacityButton = ({ label, onPress }: ButtonProps) => {

 return (

 <TouchableOpacity

 style={styles.button}

 onPress={onPress}

 activeOpacity={0.5}

 >

 <Text style={styles.buttonText}>{label}</Text>

 </TouchableOpacity>

);

};

export const HighlightButton = ({ label, onPress }: ButtonProps) => {

 return (

 <TouchableHighlight

 style={styles.button}

 underlayColor="rgba(112,128,144,0.3)"

 onPress={onPress}

 >

 <Text style={styles.buttonText}>{label}</Text>

 </TouchableHighlight>

);

};

Here are the styles that were used to create this button:

button: {

 padding: 10,

 margin: 5,

 backgroundColor: "azure",

 borderWidth: 1,

 borderRadius: 4,

 borderColor: "slategrey",

 },

 buttonText: {

 color: "slategrey",

 },

Responding to User Gestures384

Now let’s take a look at the button based on the Pressable API:

const PressableButton = () => {

 const [text, setText] = useState("Not Pressed");

 return (

 <Pressable

 onPressIn={() => setText("Pressed")}

 onPressOut={() => setText("Press")}

 onLongPress={() => {

 setText("Long Pressed");

 }}

 delayLongPress={500}

 style={({ pressed }) => [

 {

 opacity: pressed ? 0.5 : 1,

 },

 styles.button,

]}

 >

 <Text>{text}</Text>

 </Pressable>

);

};

Here’s how you can put those buttons into the main app module:

export default function App() {

 return (

 <View style={styles.container}>

 <OpacityButton onPress={() => {}} label="Opacity" />

 <HighlightButton onPress={() => {}} label="Highlight" />

 <PressableButton />

 </View>

);

}

Note that the onPress callbacks don’t actually do anything: we’re passing them because they’re

a required property.

Chapter 23 385

In the following section, you’ll learn about providing feedback when the user swipes elements

across the screen.

Using Swipeable and Cancellable components
Part of what makes native mobile applications easier to use than mobile web applications is that

they feel more intuitive. Using gestures, you can quickly get a handle on how things work. For

example, swiping an element across the screen with your finger is a common gesture, but the

gesture has to be discoverable.

Let’s say that you’re using an app, and you’re not exactly sure what something on the screen does.

So, you press down with your finger and try dragging the element. It starts to move. Unsure of

what will happen, you lift your finger up, and the element moves back into place. You’ve just

discovered how part of this application works.

You’ll use the Scrollable component to implement swipeable and cancellable behaviors like

this. You can create a somewhat generic component that allows the user to swipe text off the

screen and, when that happens, call a callback function. Let’s look at the code that will render

the swipeables before we look at the generic component itself:

export default function SwipableAndCancellable() {

 const [items, setItems] = useState(

 new Array(10).fill(null).map((v, id) => ({ id, name: "Swipe Me" }))

);

 function onSwipe(id: number) {

 return () => {

 setItems(items.filter((item) => item.id !== id));

 };

 }

 return (

 <View style={styles.container}>

 {items.map((item) => (

 <Swipeable

 key={item.id}

 onSwipe={onSwipe(item.id)}

 name={item.name}

 width={200}

Responding to User Gestures386

 />

))}

 </View>

);

}

This will render 10 <Swipeable> components on the screen. Let’s see what this looks like:

Figure 23.6: Screen with Swipeable components

Chapter 23 387

Now, if you start to swipe one of these items to the left, it will move. Here’s what this looks like:

Figure 23.7: Swiped component

If you don’t swipe far enough, the gesture will be canceled and the item will move back into place,

as expected. If you swipe it all the way, the item will be removed from the list completely and the

items on the screen will fill the empty space.

Now, let’s take a look at the Swipeable component itself:

type SwipeableProps = {

Responding to User Gestures388

 name: string;

 width: number;

 onSwipe: () => void;

};

export default function Swipeable({ name, width, onSwipe }:
SwipeableProps) {

 function onScroll(e: NativeSyntheticEvent<NativeScrollEvent>) {

 console.log(e.nativeEvent.contentOffset.x);

 e.nativeEvent.contentOffset.x >= width && onSwipe();

 }

 return (

 <View style={styles.swipeContainer}>

 <ScrollView

 horizontal

 snapToInterval={width}

 showsHorizontalScrollIndicator={false}

 scrollEventThrottle={10}

 onScroll={onScroll}

 >

 <View style={[styles.swipeItem, { width }]}>

 <Text style={styles.swipeItemText}>{name}</Text>

 </View>

 <View style={[styles.swipeBlank, { width }]} />

 </ScrollView>

 </View>

);

}

The component accepts the width property to specify the width itself, snapToInterval to create

paging-like behavior with swipe canceling, and handling the distance where we can call the

onSwipe callback to remove items from the list.

To enable swipe to the left, we need to add a blank component beside the component with text

in it. Here are the styles that are used for this component:

 swipeContainer: {

Chapter 23 389

 flex: 1,

 flexDirection: "row",

 width: 200,

 height: 30,

 marginTop: 50,

 },

 swipeItem: {

 height: 30,

 backgroundColor: "azure",

 justifyContent: "center",

 borderWidth: 1,

 borderRadius: 4,

 borderColor: "slategrey",

 },

 swipeItemText: {

 textAlign: "center",

 color: "slategrey",

 },

 swipeItemBlank: {

 height: 30,

 },

The swipeItemBlank style has the same height as swipeItem, but nothing else. It’s invisible.

We have now covered all the topics in this chapter.

Summary
In this chapter, we were introduced to the idea that gestures on native platforms make a significant

difference compared to mobile web platforms. We started off by looking at the ScrollView com-

ponent, and how it makes life much simpler by providing native scrolling behavior for wrapped

components.

Next, we spent some time implementing buttons with touch feedback. This is another area

that’s tricky to get right on the mobile web. We learned how to use the TouchableOpacity,

TouchableHighlight, and Pressable API components to do this.

Responding to User Gestures390

Finally, we implemented a generic Swipeable component. Swiping is a common mobile pattern,

and it allows the user to discover how things work without feeling intimidated.

In the next chapter, we’ll learn how to control animation using React Native.

24
Showing Progress

This chapter is all about communicating progress to the user. React Native has different com-

ponents that are used to handle the different types of progress that you want to communicate.

First, you’ll learn why you need to communicate progress in the app. Then, you’ll learn how to

implement progress indicators and progress bars. And finally, you’ll see specific examples that

show you how to use progress indicators with navigation while data loads and progress bars to

communicate the current position in a series of steps.

The following sections are covered in this chapter:

•	 Understanding progress and usability

•	 Indicating progress

•	 Measuring progress

•	 Exploring navigation indicators

•	 Step progress

Technical requirements
You can find the code files for this chapter on GitHub at https://github.com/PacktPublishing/

React-and-React-Native-5E/tree/main/Chapter24.

Understanding progress and usability
Imagine that you have a microwave oven that has no window and makes no sound. The only

way to interact with it is by pressing a button labeled “cook.” As absurd as this device sounds, it’s

what many software users face: no indication of progress. Is the microwave cooking anything? If

so, how do we know when it will be done?

https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter21
https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter21

Showing Progress392

One way to improve the microwave situation is to add a beep sound. This way, the user gets

feedback after pressing the cook button. You’ve overcome one hurdle, but the user is still left

asking, “When will my food be ready?” Before you go out of business, you had better add some

sort of progress measurement display, such as a timer.

It’s not that UI programmers don’t understand the basic principles of this usability concern; it’s

just that they have stuff to do, and this sort of thing simply slips through the cracks in terms of

priority. In React Native, there are components to give the user indeterminate progress feedback

and precise progress measurements. It’s always a good idea to make these things a top priority

if you want a good user experience.

Now that you understand the role of progress in usability, it’s time to learn how to indicate prog-

ress in your React Native UIs.

Indicating progress
In this section, you’ll learn how to use the ActivityIndicator component. As its name suggests,

you render this component when you need to indicate to the user that something is happening.

The actual progress may be indeterminate, but at least you have a standardized way to show that

something is happening, despite there being no results to display yet.

Let’s create an example so that you can see what this component looks like. Here’s the App com-

ponent:

import React from "react";

import { View, ActivityIndicator } from "react-native";

import styles from "./styles";

export default function App() {

 return (

 <View style={styles.container}>

 <ActivityIndicator size="large" />

 </View>

);

}

Chapter 24 393

The <ActivityIndicator /> component is platform-agnostic. Here’s how it looks on iOS:

Figure 24.1: An activity indicator on iOS

It renders an animated spinner in the middle of the screen. This is the large spinner, as specified

in the size property. The ActivityIndicator spinner can also be small, which makes more sense

if you’re rendering it inside another smaller element.

Showing Progress394

Now, let’s take a look at how this looks on an Android device:

Figure 24.2: An activity indicator on Android

The spinner looks different, as it should, but your app conveys the same thing on both platforms:

you’re waiting for something.

This example spins forever. But don’t worry: there’s a more realistic progress indicator example

coming up that shows you how to work with navigation and loading API data.

Chapter 24 395

Exploring navigation indicators
Earlier in this chapter, you were introduced to the ActivityIndicator component. In this section,

you’ll learn how it can be used when navigating an application that loads data. For example, the

user navigates from page or screen one to page two. However, page two needs to fetch data from

the API that it can display to the user. So, while this network call is happening, it makes more

sense to display a progress indicator instead of a screen devoid of useful information.

Doing this is actually kind of tricky because you have to make sure that the data that’s required

by the screen is fetched from the API each time the user navigates to the screen. Your goals should

be as follows:

•	 Have the Navigator component automatically fetch API data for the scene that’s about

to be rendered.

•	 Use the promise that’s returned by the API call as a means to display the spinner and hide

it once the promise has been resolved.

Since your components probably don’t care about whether a spinner is displayed or not, let’s

implement this as a generic Wrapper component:

export function LoadingWrapper({ children }: Props) {

 const [loading, setLoading] = useState(true);

 useEffect(() => {

 setTimeout(() => {

 setLoading(false);

 }, 1000);

 }, []);

 if (loading) {

 return (

 <View style={styles.container}>

 <ActivityIndicator size="large" />

 </View>

);

 } else {

 return children;

 }

}

Showing Progress396

This LoadingWrapper component takes a children component and returns it (read renders) under

a loading condition. It has a useEffect() hook with a timeout, and when it resolves, it changes

the loading state to false. As you can see, the loading state determines whether the spinner or

the children component is rendered.

With the LoadingWrapper component in place, let’s take a look at the first screen component that

you’ll use with react-navigation:

const First = ({ navigation }: Props) => (

 <LoadingWrapper>

 <View style={styles.container}>

 <Button title="Second" onPress={() => navigation.navigate("Second")}
/>

 <Button title="Third" onPress={() => navigation.navigate("Third")}
/>

 </View>

 </LoadingWrapper>

);

This component renders a layout that’s wrapped with the LoadingWrapper component we created

earlier. It wraps the whole screen so that a spinner is displayed while the setTimeout method

is pending. This is a useful approach to hiding extra logic in one place and reusing it on every

page. Instead of the setTimeout method, in a real app, you can pass additional props to the

LoadingWrapper and have full control of loading state from that screen itself.

Measuring progress
The downside of just indicating that progress is being made is that there’s no end in sight for the

user. This leads to a feeling of unease, like when you’re waiting for food to cook in a microwave

with no timer. When you know how much progress has been made and how much is left to go, you

feel better. That is why it’s always better to use a deterministic progress bar whenever possible.

Unlike the ActivityIndicator component, there’s no platform-agnostic component in React Na-

tive for progress bars. So, we’ll use the react-native-progress library for rendering progress bars.

In the past, React-Native had special components for showing progress bars for iOS

and Android, but due to React-Native size optimization, the Meta team is work-

ing on moving such components to separate packages. So, ProgressViewIOS and

ProgressBarAndroid have been moved outside of the React-Native library.

Chapter 24 397

Now, let’s build the ProgressBar component that the application will use:

import * as Progress from "react-native-progress";

type ProgressBarProps = {

 progress: number;

};

export default function ProgressBar({ progress }: ProgressBarProps) {

 return (

 <View style={styles.progress}>

 <Text style={styles.progressText}>{Math.round(progress * 100)}%</
Text>

 <Progress.Bar width={200} useNativeDriver progress={progress} />

 </View>

);

}

The ProgressBar component accepts the progress property and renders the label and progress

bar. The <Progress.Bar /> component accepts a set of props, but we need only width, progress,

and useNativeDriver (for better animation). Now, let’s put this component to use in the App

component:

export default function MeasuringProgress() {

 const [progress, setProgress] = useState(0);

 useEffect(() => {

 let timeoutRef: NodeJS.Timeout | null = null;

 function updateProgress() {

 setProgress((currentProgress) => {

 if (currentProgress < 1) {

 return currentProgress + 0.01;

 } else {

 return 0;

 }

 });

 timeoutRef = setTimeout(updateProgress, 100);

Showing Progress398

 }

 updateProgress();

 return () => {

 timeoutRef && clearTimeout(timeoutRef);

 };

 }, []);

 return (

 <View style={styles.container}>

 <ProgressBar progress={progress} />

 </View>

);

}

Initially, the <ProgressBar> component is rendered at 0%. In the useEffect() hook, the

updateProgress() function uses a timer to simulate a real process that you want to show the

progress of.

In the real world, you’ll probably never use a simulation of timers. However, there are

specific scenarios where this approach might be valuable, such as when displaying

statistical data or monitoring the progress of file uploads to servers. In these situa-

tions, even though you’re not relying on a direct timer, you will still have access to

a current progress value that you can use.

Chapter 24 399

Here’s what the screen looks like:

Figure 24.3: The progress bar

Showing a quantitative measure of progress is important so that users can gauge how long some-

thing will take. In the next section, you’ll learn how to use step progress bars to show the user

where they are in terms of navigating screens.

Showing Progress400

Step progress
In this final example, you’ll build an app that displays the user’s progress through a predefined

number of steps. For example, it might make sense to split a form into several logical sections

and organize them in such a way that, as the user completes one section, they move to the next

step. A progress bar would be helpful feedback for the user.

You’ll insert a progress bar into the navigation bar, just below the title, so that the user knows

how far they’ve gone and how far is left to go. You’ll also reuse the ProgressBar component that

you used earlier in this chapter.

Let’s take a look at the result first. There are four screens in this app that the user can navigate.

Here’s what the First page (scene) looks like:

Figure 24.4: The first screen

Chapter 24 401

The progress bar under the title reflects the fact that the user is 25% through the navigation. Let’s

see what the Third screen looks like:

Figure 24.5: The third screen

The progress is updated to reflect where the user is in the route stack. Let’s take a look at the App

component here: https://github.com/PacktPublishing/React-and-React-Native-5E/blob/

main/Chapter21/step-progress-new/App.tsx.

This app has four screens. The components that render each of these screens are stored in the routes

constant, which is then used to configure the stack navigator using createNativeStackNavigator().

The reason for creating the routes array is so that it can be used by the progress parameter that

is passed by initialParams to every route. To calculate the progress, we take the current route

index as a value of the route’s length.

https://github.com/PacktPublishing/React-and-React-Native-5E/blob/main/Chapter21/step-progress-new/App.tsx
https://github.com/PacktPublishing/React-and-React-Native-5E/blob/main/Chapter21/step-progress-new/App.tsx

Showing Progress402

For example, Second is in the number 2 position (an index of 1 + 1) and the length of the array is

4. This will set the progress bar to 50%.

Also, the Next and Previous buttons’ calls to navigation.navigate() have to pass routeName,

so we added the nextRouteName and prevRouteName variables to the screenOptions handler.

Summary
In this chapter, you learned how to show your users that something is happening behind the

scenes. First, we discussed why showing progress is important for the usability of an application.

Then, we implemented a basic screen that indicated progress was being made. After that, we

implemented a ProgressBar component, which is used to measure specific progress amounts.

Indicators are good for indeterminate progress. We implemented navigation that showed progress

indicators while network calls were pending. In the final section, we implemented a progress bar

that showed the user where they were in a predefined number of steps.

In the next chapter, we’ll look at React Native maps and geolocation data in action.

25
Displaying Modal Screens

The goal of this chapter is to show you how to present information to the user in ways that don’t

disrupt the current page. Pages use a View component and render it directly on the screen. There

are times, however, when there’s important information that the user needs to see but you don’t

necessarily want to kick them off the current page.

You’ll start by learning how to display important information. By knowing what information is

important and when to use it, you’ll learn how to get user acknowledgment: both for error and

success scenarios. Then, you’ll implement passive notifications that show the user that something

has happened. Finally, you’ll implement modal views that show that something is happening

in the background.

The following topics will be covered in this chapter:

•	 Terminology definitions

•	 Getting user confirmation

•	 Passive notifications

•	 Activity modals

Technical requirements
You can find the code files for this chapter on GitHub at https://github.com/PacktPublishing/

React-and-React-Native-5E/tree/main/Chapter25.

https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter24
https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter24

Displaying Modal Screens404

Terminology definitions
Before you dive into implementing alerts, notifications, and confirmations, let’s take a few minutes

and think about what each of these items means. I think this is important because if you end up

passively notifying the user about an error, it can easily get missed. Here are my definitions of

the types of information that you’ll want to display:

•	 Alert: Something important just happened, and you need to ensure that the user sees

what’s going on. Possibly, the user needs to acknowledge the alert.

•	 Confirmation: This is part of an alert. For example, if the user has just performed an action

and then wants to make sure that it was successful before carrying on, they would have to

confirm that they’ve seen the information in order to close the modal. A confirmation can

also exist within an alert, warning the user about an action that they’re about to perform.

•	 Notification: Something happened but it’s not important enough to completely block

what the user is doing. These typically go away on their own.

The trick is to try to use notifications where the information is good to know but not critical. Use

confirmations only when the workflow of the feature cannot continue without the user acknowl-

edging what’s going on. In the following sections, you’ll see examples of alerts and notifications

that are used for different purposes.

Getting user confirmation
In this section, you’ll learn how to show modal views in order to get confirmation from the user.

First, you’ll learn how to implement a successful scenario, where an action generates a successful

outcome that you want the user to be aware of. Then, you’ll learn how to implement an error

scenario where something went wrong and you don’t want the user to move forward without

acknowledging the issue.

Chapter 25 405

Displaying a success confirmation
Let’s start by implementing a modal view that’s displayed as a result of the user successfully

performing an action. Here’s the Modal component, which is used to show the user a confirma-

tion modal:

type Props = ModalProps & {

 onPressConfirm: () => void;

 onPressCancel: () => void;

};

export default function ConfirmationModal({

 onPressConfirm,

 onPressCancel,

 ...modalProps

}: Props) {

 return (

 <Modal transparent onRequestClose={() => {}} {...modalProps}>

 <View style={styles.modalContainer}>

 <View style={styles.modalInner}>

 <Text style={styles.modalText}>Dude, srsly?</Text>

 <Text style={styles.modalButton} onPress={onPressConfirm}>

 Yep

 </Text>

 <Text style={styles.modalButton} onPress={onPressCancel}>

 Nope

 </Text>

 </View>

 </View>

 </Modal>

);

}

Displaying Modal Screens406

The properties that are passed to ConfirmationModal are forwarded to the React Native Modal

component. You’ll see why in a moment. First, let’s see what this confirmation modal looks like:

Figure 25.1: The confirmation modal

The modal that’s displayed once the user completes an action uses our own styling and confir-

mation message. It also has two actions, but it may only need one, depending on whether this

confirmation is pre-action or post-action. Here are the styles that are being used for this modal:

 modalContainer: {

 flex: 1,

 justifyContent: "center",

Chapter 25 407

 alignItems: "center",

 },

 modalInner: {

 backgroundColor: "azure",

 padding: 20,

 borderWidth: 1,

 borderColor: "lightsteelblue",

 borderRadius: 2,

 alignItems: "center",

 },

 modalText: {

 fontSize: 16,

 margin: 5,

 color: "slategrey",

 },

 modalButton: {

 fontWeight: "bold",

 margin: 5,

 color: "slategrey",

 },

With the React Native Modal component, it’s pretty much up to you how you want your confir-

mation modal view to look. Think of them as regular views, with the only difference being that

they’re rendered on top of other views.

A lot of the time, you might not care to style your own modal views. For example, in web browsers,

you can simply call the alert() function, which shows text in a window that’s styled by the brows-

er. React Native has something similar: Alert.alert(). This is how we can open a native alert:

function toggleAlert() {

 Alert.alert("", "Failed to do the thing...", [

 {

 text: "Dismiss",

 },

]);

 }

Displaying Modal Screens408

Here’s what the alert looks like on iOS:

Figure 25.2: A confirmation alert on iOS

In terms of functionality, there’s nothing really different here. There is a title and text beneath it,

but that’s something that can easily be added to a modal view if you wanted. The real difference

is that this modal looks like an iOS modal instead of something that’s styled by the app. Let’s see

how this alert appears on Android:

Chapter 25 409

Figure 25.3: A confirmation alert on Android

This modal looks like an Android modal, and you didn’t have to style it. I think using alerts over

modals is a better choice most of the time. It makes sense to have something styled to look like

it’s part of iOS or Android. However, there are times when you need more control over how the

modal looks, such as when displaying error confirmations.

The approach to rendering modals is different from the approach to rendering alerts. However,

they’re both still declarative components that change based on the changing property values.

Displaying Modal Screens410

Error confirmation
All of the principles you learned about in the Displaying a success confirmation section are applicable

when you need the user to acknowledge an error. If you need more control of the display, use a

modal. For example, you might want the modal to be red and scary-looking, like this:

Figure 25.4: The error confirmation modal

Here are the styles that were used to create this look. Maybe you want something a bit more subtle,

but the point is that you can make this look however you want:

 modalInner: {

Chapter 25 411

 backgroundColor: "azure",

 padding: 20,

 borderWidth: 1,

 borderColor: "lightsteelblue",

 borderRadius: 2,

 alignItems: "center",

 },

In the modalInner style property, we’ve defined screen styles. Next, we’ll define modal styles:

 modalInnerError: {

 backgroundColor: "lightcoral",

 borderColor: "darkred",

 },

 modalText: {

 fontSize: 16,

 margin: 5,

 color: "slategrey",

 },

 modalTextError: {

 fontSize: 18,

 color: "darkred",

 },

 modalButton: {

 fontWeight: "bold",

 margin: 5,

 color: "slategrey",

 },

 modalButtonError: {

 color: "black",

 },

The same modal styles that you used for the success confirmations are still here. That’s because

the error confirmation modal needs many of the same style properties.

Displaying Modal Screens412

Here’s how you apply both to the Modal component:

const innerViewStyle = [styles.modalInner, styles.modalInnerError];

const textStyle = [styles.modalText, styles.modalTextError];

const buttonStyle = [styles.modalButton, styles.modalButtonError];

type Props = ModalProps & {

 onPressConfirm: () => void;

 onPressCancel: () => void;

};

export default function ErrorModal({

 onPressConfirm,

 onPressCancel,

 ...modalProps

}: Props) {

 return (

 <Modal transparent onRequestClose={() => {}} {...modalProps}>

 <View style={styles.modalContainer}>

 <View style={innerViewStyle}>

 <Text style={textStyle}>Epic fail!</Text>

 <Text style={buttonStyle} onPress={onPressConfirm}>

 Fix it

 </Text>

 <Text style={buttonStyle} onPress={onPressCancel}>

 Ignore it

 </Text>

 </View>

 </View>

 </Modal>

);

}

The styles are combined as arrays before they’re passed to the style component property. The

styles error always comes last, since conflicting style properties, such as backgroundColor, will

be overridden by whatever comes later in the array.

Chapter 25 413

In addition to styles in error confirmations, you can include whatever advanced controls you

want. It really depends on how your application lets users cope with errors: for example, maybe

there are several courses of action that can be taken.

However, the more common case is that something went wrong, and there’s nothing you can

do about it besides making sure that the user is aware of the situation. In these cases, you can

probably get away with just displaying an alert:

Figure 25.5: An error alert

Now that you’re able to display error notifications that require user engagement, it’s time to learn

about less aggressive notifications that don’t disrupt what the user is currently doing.

Displaying Modal Screens414

Passive notifications
The notifications you’ve examined so far in this chapter all have required input from the user. This

is by design because it’s important information that you’re forcing the user to look at. However,

you don’t want to overdo this. For notifications that are important but not life-altering if ignored,

you can use passive notifications. These are displayed in a less obtrusive way than modals and

don’t require any user action to dismiss them.

In this section, you’ll create an app that uses the Toast API provided by the react-native-root-

toast library. It’s called the Toast API because the information that’s displayed looks like a piece

of toast popping up. Toasts is a common component in Android to show some basic information

that does not require user response. Since there is no Toast API for iOS, we will use a library that

implements a similar API that works well on both platforms.

Here’s what the App component looks like:

export default function PassiveNotifications() {

 return (

 <RootSiblingParent>

 <View style={styles.container}>

 <Text

 onPress={() => {

 Toast.show("Something happened!", {

 duration: Toast.durations.LONG,

 });

 }}

 >

 Show Notification

 </Text>

 </View>

 </RootSiblingParent>

);

}

First we should wrap our app in the RootSiblingParent component and then we are ready to

work with Toast API. To open a toast, we call the Toast.show method.

Chapter 25 415

Here’s what the Toast notification looks like:

Figure 25.6: An Android toast

A notification stating Something happened! is displayed at the bottom of the screen and is re-

moved after a short delay. The key is that the notification is unobtrusive.

Displaying Modal Screens416

Let’s take a look at how the same toasts look on an iOS device:

Figure 25.7: An iOS notification

Chapter 25 417

In the next section, you’ll learn about activity modals, which show the user that something is

happening.

Activity modals
In this final section of this chapter, you’ll implement a modal that shows a progress indicator.

The idea is to display the modal and then hide it when the promise resolves. Here’s the code for

the generic Activity component, which shows a modal with ActivityIndicator:

type ActivityProps = {

 visible: boolean;

 size?: "small" | "large";

};

export default function Activity({ visible, size = "large" }:
ActivityProps) {

 return (

 <Modal visible={visible} transparent>

 <View style={styles.modalContainer}>

 <ActivityIndicator size={size} />

 </View>

 </Modal>

);

}

You might be tempted to pass the promise to the component so that it automatically hides when

the promise resolves. I don’t think this is a good idea because then you would have to introduce

the state into this component. Furthermore, it would depend on a promise in order to function.

With the way you’ve implemented this component, you can show or hide the modal based on

the visible property alone.

Displaying Modal Screens418

Here’s what the activity modal looks like on iOS:

Figure 25.8: An activity modal

There’s a semi-transparent background on the modal that’s placed over the main view with the

Fetch Stuff... link. By clicking on this link, we will be shown the activity loader. Here’s how this

effect is created in styles.js:

modalContainer: {

 flex: 1,

 justifyContent: "center",

 alignItems: "center",

Chapter 25 419

 backgroundColor: "rgba(0, 0, 0, 0.2)",

 },

Instead of setting the actual Modal component to transparent, you can set the transparency in

backgroundColor, which gives the look of an overlay. Now, let’s take a look at the code that

controls this component:

export default function App() {

 const [fetching, setFetching] = useState(false);

 const [promise, setPromise] = useState(Promise.resolve());

 function onPress() {

 setPromise(

 new Promise((resolve) => setTimeout(resolve, 3000)).then(() => {

 setFetching(false);

 })

);

 setFetching(true);

 }

 return (

 <View style={styles.container}>

 <Activity visible={fetching} />

 <Text onPress={onPress}>Fetch Stuff...</Text>

 </View>

);

}

When the fetch link is pressed, a new promise is created that simulates asynchronous network

activity. Then, when the promise resolves, you can change the fetching state back to false so

that the activity dialog is hidden.

Summary
In this chapter, we learned about the need to show important information to mobile users. This

sometimes involves explicit feedback from the user, even if that just means acknowledging the

message. In other cases, passive notifications work better, since they’re less obtrusive than con-

firmation modals.

Displaying Modal Screens420

There are two tools that we can use to display messages to users: modals and alerts. Modals are

more flexible because they’re just like regular views. Alerts are good for displaying plain text, and

they take care of styling concerns for us. On Android, we have the ToastAndroid interface as well.

We saw that it’s also possible to do this on iOS, but it just requires more work.

In the next chapter, we’ll dig deeper into the gesture response system inside React Native, which

makes for a better mobile experience than browsers can provide.

26
Using Animations

Animations can be used to improve the user experience in mobile applications. They usually help

users to quickly recognize that something has changed, or help them focus on what is important.

They improve the user experience and user satisfaction. Also, animations are simply fun to look

at. For example, the heartbeat reaction in the Instagram app when you like a post or the Snapchat

ghost animation when refreshing a page.

There are a couple of different approaches to processing and controlling animations in React

Native. Firstly, we will take a look at animation tools that we can use, discover their pros and

cons, and compare them. Then, we will implement several examples to get to know APIs better.

We’ll cover the following topics in this chapter:

•	 Using React Native Reanimated

•	 Animating layout components

•	 Animating component styles

Technical requirements
You can find the code files for this chapter on GitHub at https://github.com/PacktPublishing/

React-and-React-Native-5E/tree/main/Chapter26.

Using React Native Reanimated
In the React Native world, we have a lot of libraries and approaches to animate our components,

including the built-in Animated API. But in this chapter, I would like to opt for a library called

React Native Reanimated and compare it with the Animated API to learn why it is the best choice.

https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter26
https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter26

Using Animations422

The Animated API
The Animated API is the most common tool used to animate components in React Native. It has

a set of methods that help you to create an animation object, control its state, and process it. The

main benefit is that it can be used with any component, and not just animated components such

as View or Text.

But, at the same time, this API has been implemented in the old architecture of React Native. Asyn-

chronous communications between JavaScript and UI Native threads are used with the Animated

API, delaying updates by at least one frame and lasting approximately 16 ms. Sometimes, the delay

may last even longer if the JavaScript thread is running React’s diff algorithm and comparing or

processing network requests simultaneously. The problem of dropped or delayed frames can be

solved with the React Native Reanimated library, which is based on the new architecture and

processes all business logic from the JavaScript thread in the UI thread.

React Native Reanimated
React Native Reanimated can be utilized to provide a more exhaustive abstraction of the Animated

API to use with React Native. It provides an imperative API with multistage animations and cus-

tom transitions, while at the same time providing a declarative API that can be used to describe

simple animations and transitions in a similar way to how CSS transitions work. It’s built on top

of React Native Animated and reimplements it on the Native thread. This allows you to use the

familiar JavaScript language while taking advantage of the most high performance and simple API.

Furthermore, React Native Reanimated defines worklets, which are JavaScript functions that can

be synchronously executed within the UI thread. This allows instant animations without having

to wait for a new frame. Let’s take a look at what a simple worklet looks like:

function simpleWorklet() {

 "worklet";

 console.log("Hello from UI thread");

}

The only thing that is needed for the simpleWorklet function to get called inside the UI thread

is to add the worklet directive at the top of the function block.

Chapter 26 423

React Native Reanimated provides a variety of hooks and methods that help us handle animations:

•	 useSharedValue: This hook returns a SharedValue instance, which is the main stateful

data object that lives in the UI thread context and has a similar concept to Animated.

Value in the core Animated API. A Reanimated animation is triggered when SharedValue

is changed. The key benefit is that updates to shared values can be synchronized across

the React Native and UI threads without triggering a re-render. This enables complex

animations to run smoothly at 60 FPS without blocking the JS thread.

•	 useDerivedValue: This hook creates a new shared value that automatically updates when-

ever the shared values used in its calculation change. It allows you to create shared values

that depend on other shared values, while keeping them all reactive. useDerivedValue

is used to create a derived state in a worklet that runs on the UI thread based on updates

to the source shared values. This derived state can then drive animations or other side

effects without triggering a re-render on the JS thread.

•	 useAnimatedStyle: The hook allows you to create a style object with the ability to animate

its properties based on shared values. It maps shared value updates to the corresponding

view properties. useAnimatedStyle is the main way to connect shared values to views

and enable smooth animations running on the UI thread.

•	 withTiming, withSpring, withDecay: These are animation utility methods that update

a shared value in a smooth, animated way using various curves and physics. They allow

you to define animations declaratively by specifying the target value and animation con-

figuration.

We have learned what React Native Reanimated is and how it is different from the Animated API.

Next, let’s try to install it and apply it to our app.

Installing the React Native Reanimated library
To install the React Native Reanimated library, run this command inside your Expo project:

expo install react-native-reanimated

After the installation is complete, we need to add the Babel plugin to babel.config.js:

module.exports = function(api) {

 api.cache(true);

 return {

 presets: ['babel-preset-expo'],

Using Animations424

 plugins: ['react-native-reanimated/plugin'],

 };

};

The main purpose of that plugin is to convert our JavaScript worklet functions into functions

that will work in the UI thread.

After you add the Babel plugin, restart your development server and clear the bundler cache:

expo start --clear

This section has introduced us to the React Native Reanimated library. We have found out why

it is better than the built-in Animated API. In the next sections, we will use it in real examples.

Animating layout components
A common use case is animating the entering and exiting layouts of your components. This means

that when your component renders for the first time and when you unmount your component,

it appears animated. React Native Reanimated is an API that lets you animate layouts and add

animations such as FadeIn, BounceIn, and ZoomIn.

React Native Reanimated also provides a special Animated component that is the same as the

Animated component in the Animated API, but with additional props:

•	 entering: Accepts a predefined animation when the component mounts and renders

•	 exiting: Accepts the same animation object, but it will be called when the component

unmounts

Let’s create a simple to-do list with a button for creating tasks and a feature that allows us to

delete tasks when we click on them.

It’s impossible to see animations in screenshots, so I suggest you open the code and

try to implement the animations to see the results.

Chapter 26 425

Firstly, let’s take a look at the main screen of our to-do list app and how the items are rendering

at the moment:

Figure 26.1: To-do list

Using Animations426

This is a simple example with a list of task items and one button for adding new tasks. When we

quickly press the Add button several times, the list items come from the left side of the screen

with an animation:

Figure 26.2: To-do list with animated rendering

Chapter 26 427

The magic is implemented in the TodoItem component. Let’s take a look at it:

export const TodoItem = ({ id, title, onPress }) => {

 return (

 <Animated.View entering={SlideInLeft}

 exiting={SlideOutRight}>

 <TouchableOpacity onPress={() => onPress(id)}

 style={styles.todoItem}>

 <Text>{title}</Text>

 </TouchableOpacity>

 </Animated.View>

);

};

As you can see, there is no complicated logic, and there isn’t too much code. We just take the

Animated component as the root of animation and pass predefined animations from the React

Native Reanimated library to the entering and exiting props.

Using Animations428

To see how the items disappear from the screen, we need to press the to-do items so the exiting an-

imation will run. I’ve pressed a few items and tried to catch the result in the following screenshot:

Figure 26.3: Deleting to-do items from the screen

Let’s examine the App component to see the entire picture:

export default function App() {

 const [todoList, setTodoList] = useState([]);

Chapter 26 429

 const addTask = () => {

 setTodoList([

 ...todoList,

 { id: String(new Date().getTime()), title: "New task"

 },

]);

 };

 const deleteTask = (id) => {

 setTodoList(todoList.filter((todo) => todo.id !== id));

 };

We have created a todoList state using the useState hook and handler functions for adding and

deleting tasks. Next, let’s take a look at how the animation will be applied to the layout:

 return (

 <View style={styles.container}>

 <View style={{ flex: 1 }}>

 {todoList.map(({ id, title }) => (

 <TodoItem key={id} id={id} title={title}

 onPress={deleteTask} />

))}

 </View>

 <Button onPress={addTask} title="Add" />

 </View>

);

}

In this example, we learned a simple way to apply animations to make our app look better. How-

ever, the React Native Reanimated library is a lot more powerful than we imagined. The next ex-

ample illustrates how we can animate and create our own animations by applying them directly

to the styles of our components.

Animating component styles
In a more complex example, I suggest creating a button with beautiful tappable feedback. This

button will be built using the Pressable component that we learned about in Chapter 23, Respond-

ing to User Gestures. This component accepts the onPressIn, onLongPress, and onPressOut events.

As a result of these events, we will be able to see how our touches will be reflected on the button.

Using Animations430

Let’s start by defining SharedValue and AnimatedStyle:

 const radius = useSharedValue(30);

 const opacity = useSharedValue(1);

 const scale = useSharedValue(1);

 const color = useSharedValue(0);

 const backgroundColor = useDerivedValue(() => {

 return interpolateColor(color.value, [0, 1], ["orange", "red"]);

 });

 const animatedStyles = useAnimatedStyle(() => {

 return {

 opacity: opacity.value,

 borderRadius: radius.value,

 transform: [{ scale: scale.value }],

 backgroundColor: backgroundColor.value,

 };

 }, []);

In order to animate style properties, we have created a SharedValue object using the

useSharedValue hook. It takes default values as an argument. Next, we created the style object

with the useAnimatedStyle hook. The hook accepts the callback that should return a style object.

The useAnimatedStyle hook is similar to the useMemo hook, but all calculations are performed

in the UI thread and all SharedValue changes will invoke the hook to recalculate the style object.

The background color of the button was created using useDerivedValue by interpolating between

orange and red to provide a smooth transition.

Next, let’s create handler functions that will update the style properties in relation to the pressing

state of the button:

 const onPressIn = () => {

 radius.value = withSpring(20);

 opacity.value = withSpring(0.7);

 scale.value = withSpring(0.9);

 };

 const onLongPress = () => {

 scale.value = withSpring(0.8);

Chapter 26 431

 color.value = withSpring(1);

 };

 const onPressOut = () => {

 radius.value = withSpring(30);

 opacity.value = withSpring(1);

 scale.value = withSpring(1, { damping: 50 });

 color.value = withSpring(0);

 };

The first handler, onPressIn, updates borderRadius, opacity, and scale from their default values.

We also update these values using withSpring, which makes updating styles smoother. Like the

first handler, other ones will also update the style of the button but in different ways. onLongPress

turns the button red and makes it smaller. onPressOut resets all values to their default values.

We’ve implemented all necessary logic and can now apply it to the layout:

 <View style={styles.container}>

 <Animated.View style={[styles.buttonContainer,

 animatedStyles]}>

 <Pressable

 onPressIn={onPressIn}

 onPressOut={onPressOut}

 onLongPress={onLongPress}

 style={styles.button}

 >

 <Text style={styles.buttonText}>Press me</Text>

 </Pressable>

 </Animated.View>

 </View>

Finally, let’s take a look at the result:

Figure 26.4: Button with default, pressed, and long-pressed styles

In Figure 26.4, you can see the three states of the button: default, pressed, and long-pressed.

Using Animations432

Summary
In this chapter, we’ve learned how to use the React Native Reanimated library to add animations

to the layout and components. We’ve gone through the basic principles of the library and found

out how it works under the hood and how it executes code inside the UI thread without using

Bridge to connect JavaScript and Native layers of the app.

We also went through two examples using the React Native Reanimated library. In the first ex-

ample, we learned how to apply a layout animation using predefined declarative animations to

get our component to appear and disappear beautifully. In the second example, we animated the

button’s styles with the useSharedValue and useAnimatedStyle hooks.

Skills to animate components and layout will help you make your app more beautiful and respon-

sive. In the next chapter, we’ll learn about controlling images in our apps.

27
Controlling Image Display

So far, the examples in this book haven’t rendered any images on mobile screens. This doesn’t

reflect the reality of mobile applications. Web applications display lots of images. If anything,

native mobile applications rely on images even more than web applications because images are

a powerful tool when you have a limited amount of space.

In this chapter, you’ll learn how to use the React Native Image component, starting with loading

images from different sources. Then, you’ll learn how you can use the Image component to resize

images, and how you can set placeholders for lazily loaded images. Finally, you’ll learn how to

implement icons using the @expo/vector-icons package. These sections cover the most common

use cases for using images and icons in apps.

We’ll cover the following topics in this chapter:

•	 Loading images

•	 Resizing images

•	 Lazy image loading

•	 Rendering icons

Technical requirements
You can find the code and image files for this chapter on GitHub at https://github.com/

PacktPublishing/React-and-React-Native-5E/tree/main/Chapter27.

https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter27
https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter27

Controlling Image Display434

Loading images
Let’s get started by figuring out how to load images. You can render the <Image> component and

pass its properties just like any other React component. But this particular component needs

image blob data to be of any use. A BLOB (short for Binary Large Object) is a data type used to

store large, unstructured binary data. BLOBs are commonly used to store multimedia files like

images, audio, and video.

Let’s look at some code:

const reactLogo = "https://reactnative.dev/docs/assets/favicon.png";

const relayLogo = require("./assets/relay.png");

export default function App() {

 return (

 <View style={styles.container}>

 <Image style={styles.image} source={{ uri: reactLogo }} />

 <Image style={styles.image} source={relayLogo} />

 </View>

);

}

There are two ways to load the blob data into an <Image> component. The first approach loads

the image data from the network. This is done by passing an object with a URI property to the

source code. The second <Image> component in this example is using a local image file. It does

this by calling require() and passing the result to the source code.

Chapter 27 435

Now, let’s see what the rendered result looks like:

Figure 27.1: Image loading

Controlling Image Display436

Here’s the style that was used with these images:

 image: {

 width: 100,

 height: 100,

 margin: 20,

 },

Note that without the width and height style properties, images will not render. In the next

section, you’ll learn how image resizing works when the width and height values are set.

Resizing images
The width and height style properties of Image components determine the size of what’s ren-

dered on the screen. For example, you’ll probably have to work with images at some point that

have a larger resolution than you want to be displayed in your React Native application. Simply

setting the width and height style properties on the Image is enough to properly scale the image.

Let’s look at some code that lets you dynamically adjust the dimensions of an image using controls:

export default function App() {

 const source = require("./assets/flux.png");

 const [width, setWidth] = useState(100);

 const [height, setHeight] = useState(100);

 return (

 <View style={styles.container}>

 <Image source={source} style={{ width, height }} />

 <Text>Width: {width}</Text>

 <Text>Height: {height}</Text>

 <Slider

 style={styles.slider}

 minimumValue={50}

 maximumValue={150}

 value={width}

 onValueChange={(value) => {

 setWidth(value);

 setHeight(value);

 }}

 />

Chapter 27 437

 </View>

);

}

Here’s what the image looks like if you’re using the default 100 x 100 dimensions:

Figure 27.2: 100 x 100 image

Controlling Image Display438

Here’s a scaled-down version of the image:

Figure 27.3: 50 x 50 image

Lastly, here’s a scaled-up version of the image:

Chapter 27 439

Figure 27.4: 150 x 150 image

There’s a resizeMode property that you can pass to Image components. This de-

termines how the scaled image fits within the dimensions of the actual component.

You’ll see this property in action in the Rendering icons section of this chapter.

Controlling Image Display440

As you can see, the dimensions of the images are controlled by the width and height style prop-

erties. Images can even be resized while the app is running by changing these values. In the next

section, you’ll learn how to lazily load images.

Lazy image loading
Sometimes, you don’t necessarily want an image to load at the exact moment that it’s rendered;

for example, you might be rendering something that’s not visible on the screen yet. Most of the

time, it’s perfectly fine to fetch the image source from the network before it’s actually visible. But

if you’re fine-tuning your application and discover that loading lots of images over the network

causes performance issues, you can use the lazy loading strategy.

I think the more common use case in a mobile context is handling a scenario where you’ve ren-

dered one or more images where they’re visible, but the network is slow to respond. In this case,

you will probably want to render a placeholder image so that the user sees something right away,

rather than an empty space. So, let’s get started.

Firstly, you can implement an abstraction that wraps the actual image that you want to show

once it’s loaded. Here’s the code for this:

const placeholder = require("./assets/placeholder.png");

type PlaceholderProps = {

 loaded: boolean;

 style: StyleProp<ImageStyle>;

};

function Placeholder({ loaded, style }: PlaceholderProps) {

 if (loaded) {

 return null;

 } else {

 return <Image style={style} source={placeholder} />;

 }

}

Now, here, you can see the placeholder image will be rendered only while the original image

isn’t loaded:

type Props = {

 style: StyleProp<ImageStyle>;

 resizeMode: ImageProps["resizeMode"];

Chapter 27 441

 source: ImageSourcePropType | null;

};

export default function LazyImage({ style, resizeMode, source }: Props) {

 const [loaded, setLoaded] = useState(false);

 return (

 <View style={style}>

 {!!source ? (

 <Image

 source={source}

 resizeMode={resizeMode}

 style={style}

 onLoad={() => {

 setLoaded(true);

 }}

 />

) : (

 <Placeholder loaded={loaded} style={style} />

)}

 </View>

);

}

This component renders a View component with two Image components inside it. It also has a

loaded state, which is initially false. When loaded is false, the placeholder image is rendered.

The loaded state is set to true when the onLoad() handler is called. This means that the place-

holder image is removed and the main image is displayed.

Now, let’s use the LazyImage component that we’ve just implemented. You’ll render the image

without a source, and the placeholder image should be displayed. Let’s add a button that gives

the lazy image a source. When it loads, the placeholder image should be replaced. Here’s what

the main app module looks like:

const remote = "https://reactnative.dev/docs/assets/favicon.png";

export default function LazyLoading() {

 const [source, setSource] = useState<ImageSourcePropType | null>(null);

Controlling Image Display442

 return (

 <View style={styles.container}>

 <LazyImage

 style={{ width: 200, height: 150 }}

 resizeMode="contain"

 source={source}

 />

 <Button

 label="Load Remote"

 onPress={() => {

 setSource({ uri: remote });

 }}

 />

 </View>

);

}

Chapter 27 443

This is what the screen looks like initially:

Figure 27.5: Initial state of the image

Controlling Image Display444

Then, click the Load Remote button to eventually see the image that we actually want:

Figure 27.6: Loaded image

Chapter 27 445

You might notice that, depending on your network speed, the placeholder image remains visible,

even after you click the Load Remote button. This is by design because you don’t want to remove

the placeholder image until you know for sure that the actual image is ready to be displayed. Now,

let’s render some icons in our React Native application.

Rendering icons
In the final section of this chapter, you’ll learn how to render icons in React Native components.

Using icons to indicate meaning makes web applications more usable. So, why should native

mobile applications be any different?

We’ll use the @expo/vector-icons package to pull various vector font packages into your React

Native app. This package is already part of the Expo project that we’re using as the base of the

app, and now, you can import Icon components and render them. Let’s implement an example

that renders several FontAwesome icons based on a selected icon category:

export default function RenderingIcons() {

 const [selected, setSelected] = useState<IconsType>("web_app_icons");

 const [listSource, setListSource] = useState<IconName[]>([]);

 const categories = Object.keys(iconNames);

 function updateListSource(selected: IconsType) {

 const listSource = iconNames[selected] as any;

 setListSource(listSource);

 setSelected(selected);

 }

 useEffect(() => {

 updateListSource(selected);

 }, []);

Here, we have defined all necessary logic to store and update the icon data. Next, we will apply

it to the layout:

 return (

 <View style={styles.container}>

 <View style={styles.picker}>

Controlling Image Display446

 <Picker selectedValue={selected} onValueChange={updateListSource}>

 {categories.map((category) => (

 <Picker.Item key={category} label={category} value={category}
/>

))}

 </Picker>

 </View>

 <FlatList

 style={styles.icons}

 data={listSource.map((value, key) => ({ key: key.toString(), value
}))}

 renderItem={({ item }) => (

 <View style={styles.item}>

 <Icon name={item.value} style={styles.itemIcon} />

 <Text style={styles.itemText}>{item.value}</Text>

 </View>

)}

 />

 </View>

);

}

Chapter 27 447

When you run this example, you should see something that looks like the following:

Figure 27.7: Rendering icons

Controlling Image Display448

Summary
In this chapter, we learned about handling images in our React Native applications. Images in a

native application are just as important in a native mobile context as they are in a web context:

they improve the user experience.

We learned about the different approaches to loading images, as well as how to resize them. We

also learned how to implement a lazy image, which displays a placeholder image while the actual

image is loading. Finally, we learned how to use icons in a React Native app. These skills will help

you manage images and make your app more informative.

In the next chapter, we’ll learn about local storage in React Native, which is handy when our app

goes offline.

28
Going Offline

Users expect applications to operate seamlessly with unreliable network connections. If your

mobile application can’t cope with transient network issues, your users will use a different app.

When there’s no network, you have to persist data locally on the device. Alternatively, perhaps

your app doesn’t even require network access, in which case you’ll still need to store data locally.

In this chapter, you’ll learn how to do those three things with React Native. First, you’ll learn

how to detect the state of the network connection. Second, you’ll learn how to store data locally.

Lastly, you’ll learn how to synchronize local data that’s been stored due to network problems

once it comes back online.

In this chapter, we’ll cover the following topics:

•	 Detecting the state of the network

•	 Storing application data

•	 Synchronizing application data

Technical requirements
You can find the code files for this chapter on GitHub at https://github.com/PacktPublishing/

React-and-React-Native-5E/tree/main/Chapter28.

https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter28
https://github.com/PacktPublishing/React-and-React-Native-5E/tree/main/Chapter28

Going Offline450

Detecting the state of the network
If your code tries to make a request over the network while disconnected using fetch(), for

example an error will occur. You probably have error-handling code in place for these scenarios

already, since the server could return some other type of error.

However, in the case of connectivity trouble, you might want to detect this issue before the user

attempts to make network requests.

There are two potential reasons for proactively detecting the network state. The first one is to

prevent the user from performing any network requests until you’ve detected that the app is back

online. To do that, you can display a friendly message to the user stating that, since the network

is disconnected, they can’t do anything. The other possible benefit of early network state detec-

tion is that you can prepare to perform actions offline and sync the app state when the network

is connected again.

Let’s look at some code that uses the NetInfo utility from the @react-native-community/netinfo

package to handle changes in network state:

const connectedMap = {

 none: "Disconnected",

 unknown: "Disconnected",

 cellular: "Connected",

 wifi: "Connected",

 bluetooth: "Connected",

 ethernet: "Connected",

 wimax: "Connected",

 vpn: "Connected",

 other: "Connected",

} as const;

Chapter 28 451

connectedMap covers all connection states and will help us to render them on the screen. Let’s

now see the App component:

export default function App() {

 const [connected, setConnected] = useState("");

 useEffect(() => {

 function onNetworkChange(connection: NetInfoState) {

 const type = connection.type;

 setConnected(connectedMap[type]);

 }

 const unsubscribe = NetInfo.addEventListener(onNetworkChange);

 return () => {

 unsubscribe();

 };

 }, []);

 return (

 <View style={styles.container}>

 <Text>{connected}</Text>

 </View>

);

}

This component will render the state of the network based on the string values in connectedMap.

The onNetworkChange event of the NetInfo object will cause the connected state to change.

Going Offline452

For example, when you run this app for the first time, the screen might look like this:

Figure 28.1: Connected state

Then, if you turn off networking on your host machine, the network state will change on the

emulated device as well, causing the state of our application to change, as follows:

Chapter 28 453

Figure 28.2: Disconnected state

This is how you can use network state detection in the app. As discussed, together with showing

the message, you can use network state to prevent users from making API requests. Another

valuable approach would be to save user inputs locally until the network gets back online. Let’s

explore it in the next section.

Going Offline454

Storing application data
To store data on the device, there is a special cross-platform solution called AsyncStorage API. It

works the same on both the iOS and Android platforms. You would use this API for applications

that don’t require any network connectivity in the first place or to store data that will eventually

be synchronized using an API endpoint once a network becomes available.

To install the async-storage package, run the following command:

npx expo install @react-native-async-storage/async-storage

Let’s look at some code that allows the user to enter a key and a value and then stores them:

export default function App() {

 const [key, setKey] = useState("");

 const [value, setValue] = useState("");

 const [source, setSource] = useState<KeyValuePair[]>([]);

The key, value, and source values will handle our state. To save it in AsyncStorage, we need to

define functions:

 function setItem() {

 return AsyncStorage.setItem(key, value)

 .then(() => {

 setKey("");

 setValue("");

 })

 .then(loadItems);

 }

 function clearItems() {

 return AsyncStorage.clear();

 }

 async function loadItems() {

 const keys = await AsyncStorage.getAllKeys();

 const values = await AsyncStorage.multiGet(keys);

 setSource([...values]);

 }

Chapter 28 455

 useEffect(() => {

 loadItems();

 }, []);

We’ve defined handlers to save values from the inputs, clear AsyncStorage, and load saved items

when we start the app. Here’s the markup that’s rendered by the App component:

 return (

 <View style={styles.container}>

 <Text>Key:</Text>

 <TextInput

 style={styles.input}

 value={key}

 onChangeText={(v) => {

 setKey(v);

 }}

 />

 <Text>Value:</Text>

 <TextInput

 style={styles.input}

 value={value}

 onChangeText={(v) => {

 setValue(v);

 }}

 />

 <View style={styles.controls}>

 <Button label="Add" onPress={setItem} />

 <Button label="Clear" onPress={clearItems} />

 </View>

The markup in the preceding code block is represented as inputs and buttons to create, save, and

delete items. Next, we will render the list of items with the FlatList component:

 <View style={styles.list}>

 <FlatList

 data={source.map(([key, value]) => ({

 key: key.toString(),

 value,

Going Offline456

 }))}

 renderItem={({ item: { value, key } }) => (

 <Text>

 {value} ({key})

 </Text>

)}

 />

 </View>

 </View>

);

Before we walk through what this code is doing, let’s take a look at the following screen, since

it’ll explain most of what we’re going to cover when storing application data:

Figure 28.3: Storing application data

Chapter 28 457

As you can see in Figure 28.3, there are two input fields and two buttons. The fields allow the user

to enter a new key and value. The Add button allows the user to store this key-value pair locally

on their device, while the Clear button clears any existing items that have been stored previously.

The AsyncStorage API works the same for both iOS and Android. Under the hood, AsyncStorage

works very differently, depending on which platform it’s running on. The reason React Native is

able to expose the same storage API on both platforms is due to its simplicity: it’s just key-value

pairs. Anything more complex than that is left up to the application developer.

The abstractions that you’ve created around AsyncStorage in this example are minimal. The idea

is to set and get items. However, even straightforward actions like this deserve an abstraction

layer. For example, the setItem() method you’ve implemented here will make the asynchronous

call to AsyncStorage and update the item’s state once that has been completed. Loading items

is even more complicated because you need to get the keys and values as two separate asynchro-

nous operations.

The reason we do this is to keep the UI responsive. If there are pending screen repaints that need

to happen while data is being written to disk, preventing those from happening by blocking them

would lead to a suboptimal user experience.

In the next section, you’ll learn how to synchronize data that’s been stored locally while the device

is offline with remote services once the device comes back online.

Synchronizing application data
So far in this chapter, you’ve learned how to detect the state of a network connection and how

to store data locally in a React Native application. Now, it’s time to combine these two concepts

and implement an app that can detect network outages and continue to function.

The basic idea is to only make network requests when you know for sure that the device is online.

If you know that it isn’t, you can store any changes in the state locally. Then, when you’re back

online, you can synchronize those stored changes with the remote API.

Let’s implement a simplified React Native app that does this. The first step is to implement an

abstraction that sits between the React components and the network calls that store data. We’ll

call this module store.ts:

export function set(key: Key, value: boolean) {

 return new Promise((resolve, reject) => {

 if (connected) {

 fakeNetworkData[key] = value;

Going Offline458

 resolve(true);

 } else {

 AsyncStorage.setItem(key, value.toString()).then(

 () => {

 unsynced.push(key);

 resolve(false);

 },

 (err) => reject(err)

);

 }

 });

}

The set method depends on the connected variable, and depending on whether there is an

internet connection or not, it handles the different logic. Actually, the get method also follows

the same approach:

export function get(key?: Key): Promise<boolean | typeof fakeNetworkData>
{

 return new Promise((resolve, reject) => {

 if (connected) {

 resolve(key ? fakeNetworkData[key] : fakeNetworkData);

 } else if (key) {

 AsyncStorage.getItem(key)

 .then((item) => resolve(item === "true"))

 .catch((err) => reject(err));

 } else {

 AsyncStorage.getAllKeys()

 .then((keys) =>

 AsyncStorage.multiGet(keys).then((items) =>

 resolve(Object.fromEntries(items) as any)

)

)

 .catch((err) => reject(err));

Chapter 28 459

 }

 });

}

This module exports two functions, set() and get(). Their jobs are to set and get data, respectively.

Since this is just a demonstration of how to sync between local storage and network endpoints,

this module just mocks the actual network with the fakeNetworkData object.

Let’s start by looking at the set() function. It’s an asynchronous function that will always return

a promise that resolves to a Boolean value. If it’s true, it means that you’re online and that the

call over the network was successful. If it’s false, it means that you’re offline, and AsyncStorage

was used to save the data.

The same approach is used with the get() function. It returns a promise that resolves a Boolean

value that indicates the state of the network. If a key argument is provided, then the value for

that key is looked up. Otherwise, all the values are returned, either from the network or from

AsyncStorage.

In addition to these two functions, this module does two other things:

NetInfo.fetch().then(

 (connection) => {

 connected = ["wifi", "unknown"].includes(connection.type);

 },

 () => {

 connected = false;

 }

);

NetInfo.addEventListener((connection) => {

 connected = ["wifi", "unknown"].includes(connection.type);

 if (connected && unsynced.length) {

 AsyncStorage.multiGet(unsynced).then((items) => {

 items.forEach(([key, val]) => set(key as Key, val === "true"));

 unsynced.length = 0;

 });

 }

});

Going Offline460

It uses NetInfo.fetch() to set the connected state. Then, it adds a listener to listen for changes

in the network state. This is how items that were saved locally when you were offline become

synced with the network when it’s connected again.

Now, let’s check out the main application that uses these functions:

export default function App() {

 const [message, setMessage] = useState<string | null>(null);

 const [first, setFirst] = useState(false);

 const [second, setSecond] = useState(false);

 const [third, setThird] = useState(false);

 const setters = new Map([

 ["first", setFirst],

 ["second", setSecond],

 ["third", setThird],

]);

Here, we have defined the state variables that we will use in the Switch components:

 function save(key: Key) {

 return (value: boolean) => {

 set(key, value).then(

 (connected) => {

 setters.get(key)?.(value);

 setMessage(connected ? null : "Saved Offline");

 },

 (err) => {

 setMessage(err);

 }

);

 };

 }

The save() function helps us to reuse logic in a different Switch component. Next, we have the

useEffect hook to get saved data when the page renders for the first time:

 useEffect(() => {

 NetInfo.fetch().then(() =>

 get().then(

 (items) => {

Chapter 28 461

 for (let [key, value] of Object.entries(items)) {

 setters.get(key)?.(value);

 }

 },

 (err) => {

 setMessage(err);

 }

)

);

 }, []);

Next, let’s take a look at the final markup of the page:

 return (

 <View style={styles.container}>

 <Text>{message}</Text>

 <View>

 <Text>First</Text>

 <Switch value={first} onValueChange={save("first")} />

 </View>

 <View>

 <Text>Second</Text>

 <Switch value={second} onValueChange={save("second")} />

 </View>

 <View>

 <Text>Third</Text>

 <Switch value={third} onValueChange={save("third")} />

 </View>

 </View>

);

The job of the App component is to save the state of three Switch components, which is difficult

when you’re providing the user with a seamless transition between online and offline modes.

Thankfully, your set() and get() abstractions, which are implemented in another module, hide

most of the details from the application’s functionality.

Note, however, that you need to check the state of the network in this module before you attempt

to load any items. If you don’t do this, then the get() function will assume that you’re offline,

even if the connection is fine.

Going Offline462

Here’s what the app looks like:

Figure 28.4: Synchronizing application data

Note that you won’t actually see the Saved Offline message until you change something in the UI.

Chapter 28 463

Summary
This chapter introduced us to storing data offline in React Native applications. The main reason

we would want to store data locally is when the device goes offline and our app can’t commu-

nicate with a remote API. However, not all applications require API calls, and AsyncStorage can

be used as a general-purpose storage mechanism. We just need to implement the appropriate

abstractions around it.

We also learned how to detect changes in the network state of React Native apps. It’s important to

know when the device has gone offline so that our storage layer doesn’t make pointless attempts

at network calls. Instead, we can let the user know that the device is offline and then synchronize

the application state when a connection is available.

In the next chapter, we’ll learn how to import and use UI components from the NativeBase library.

Join us on Discord!
Read this book alongside other users and the authors themselves. Ask questions, provide solu-

tions to other readers, chat with the authors, and more. Scan the QR code or visit the link to join

the community.

https://packt.link/ReactAndReactNative5e

https://packt.link/ReactAndReactNative5e

packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as

industry leading tools to help you plan your personal development and advance your career. For

more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from

over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of

free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://packt.com
http://www.packt.com

Other Books
You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

React 18 Design Patterns and Best Practices - Fourth Edition

Carlos Santana Roldán

ISBN: 9781803233109

•	 Get familiar with the new React 18 and Node 19 features

•	 Explore TypeScript’s basic and advanced capabilities

•	 Make components communicate with each other by applying various patterns and tech-

niques

•	 Dive into MonoRepo architecture

https://www.packtpub.com/product/react-18-design-patterns-and-best-practices-fourth-edition/9781803233109

Other Books You May Enjoy468

•	 Use server-side rendering to make applications load faster

•	 Write a comprehensive set of tests to create robust and maintainable code

•	 Build high-performing applications by styling and optimizing React components

Other Books You May Enjoy 469

React Key Concepts

Maximilian Schwarzmüller

ISBN: 9781803234502

•	 Build modern, user-friendly, and reactive web apps

•	 Create components and utilize props to pass data between them

•	 Handle events, perform state updates, and manage conditional content

•	 Apply styles dynamically and conditionally to create a modern UI

•	 Use advanced state management techniques such as React’s context API

•	 Utilize React router to render different pages for different URLs

•	 Understand key best practices and optimization opportunities

https://www.packtpub.com/product/react-key-concepts/9781803234502

Other Books You May Enjoy470

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and

apply today. We have worked with thousands of developers and tech professionals, just like you,

to help them share their insight with the global tech community. You can make a general appli-

cation, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share your thoughts
Now you’ve finished React and React Native, Fifth Edition, we’d love to hear your thoughts! If you

purchased the book from Amazon, please click here to go straight to the Amazon review

page for this book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1805127306
https://packt.link/r/1805127306

Index

A
abstraction 11
activity loader 402
activity modals 401, 403
AddArticle component

implementing 79
alert 388
Android 248, 249
Android Studio 266
Animated API 421, 422
annotations 363
application data

storing 454-457
synchronizing 457-462

App Router 207, 216
article item component

implementing 77, 78
article list component

implementing 75-77
Asynchronous JavaScript

and XML (AJAX) 170
asynchronous state updates

handling 164-167

AsyncStorage API 454
automated tests 222
automatic batching 159
Axios 171, 177

using 177, 179

B
Babel 18, 255
basic types, TypeScript

any 94
array 93
Boolean 93
enum 94
never 96
null and undefined 95
number 93
string 93
tuple 94
unknown 94, 95
void 95

batching 156
Binary Large Object (BLOB) 434
bundles 122-127
buttons

toggling, between on and off 366-369

Index472

C
cache 206
cancellable components

using 415-419
centralized repository 190
CMS 206
CodeGen 259
CodePush

reference link 262
CodeSandbox 15
code splitting 121
component properties 36
component state 40
component structures

refactoring 73
component styles

animating 429-431
component trees

rendering 82, 83
confirmation modal 389
containers 134

using 134-136
content delivery network (CDN) 205
Context API 52
context hooks

used, for sharing data 52, 53
createNativeStackNavigator() 303
CSS-in-JS syntax 257
custom JSX elements

creating 23
HTML, encapsulating 23, 24
nested elements 24, 25

D
data

sharing, with context hooks 52, 53
data collections

rendering 326-328
date/time input

collecting 369-373
declarative UI structures 6, 8
dependency mocking

reference link 234
DevTools 261
diffing 10
Document Object Model (DOM) 9, 246
DOM nodes 103
Drawer component

using, for navigation 139-142
drawer navigation 318-321
dynamic imports 122, 123

E
end-to-end (E2E) testing 223
error confirmation 394-397
error handling 261
Eva Design System 260
event delegation 28
event handler function

binding 60
event handlers 101

declaring 58
functions, declaring 58
multiple event handlers 59

event handling 57
event pooling 62-64

Index 473

event propagation 62
Expo 249, 266, 281
Expo Application Services (EAS) 266
Expo CLI 266
Expo command-line tool

installing 266, 267
using 266, 267

Expo Go 266
Expo Router 321

reference link 321
Expo Snack 266

reference link 273

F
fallback parameter 214
Fetch API 170, 211

using 173-177
Fiber 12
file-based navigation 321-323
FlatList component 329
Flexbox 257, 280, 281

reference link 281
Flexbox layouts

building 285
flexible grid 294-296
flexible row 292-294
flexible row and column 297, 298
three-column layout,

implementing 285-288
three-column layout, improving 288-291

flexible column 297, 298
flexible grid 294-296
flexible row 292-298
floats 280

fragments, JSX
building 31, 32
using 33
wrapper elements, using 32, 33

frameworks
using 15

G
Gatsby 15, 206
Geolocation API 357

reference link 359
using 357-360

gesture response system 405
gesture system 248
GET request 171
getSessionKey function 187
getUser function 187
GitHub personal access token 181
global state management 185-190
GraphQL 171, 180

using 180-183
grids 134

H
Handlebars 9
Hello route 106, 107
Hermes

reference link 255
Hermes virtual machine 255
higher-order event handler function 57
hooks 35
HTML rendering 20

built-in HTML tags 20
HTML tag conventions 21
UI structures 22, 23

Index474

HTTP 1.0 170
HTTP 1.1 170
hydration 204

I
icons 261

rendering 445, 447
images

lazy loading 440-445
loading 434, 436
resizing 436-440

imperative API 370
Incremental Static Generation (ISR) 206
inline event handlers

declaring 59, 60
inline-order event handler function 57
integration testing 222, 223
interceptors 171
interfaces, TypeScript 96, 97
iOS 248, 249
isomorphic JavaScript 204
item list interface 325

J
Java 246
JavaScriptCore 247, 254
JavaScript expressions

collections, mapping to elements 29-31
dynamic property values and text 26, 27
event, handling 27-29
using 26

JavaScript frameworks 6
JavaScript (JS) 89, 259

JavaScript XML (JSX) 6, 17, 74, 247
application 18, 19
content 18
fragments, building 31, 32

Jest 226
jQuery 58
JS Interface (JSI) 258
JS libraries 262, 263
JS virtual machine 254

K
Kotlin 246

L
layout component

animating 424-429
lazy API

bundles 122, 123
components, making lazy 123, 124
dynamic imports 122, 123
using 122

lazy component 124
avoiding 127, 129
making 123, 124

lazy page 127
exploring 129, 130

link component
basic linking 117, 118
used, for building links with query

parameters 118, 120
using 116, 117

list data
fetching 336, 337
loading 338-340

list filtering 329-335

Index 475

list prop 87
list sorting 329-335
local state 185

M
manual testing 222
map

rendering 361, 362
Markdown 206
Material UI 134
Metro bundler 255
mobile web apps

case for 249
mobile web browsers

user experiences, delivering challenges 248
MobX 195-197

integrating, with React 198
mocking 230-235
modal views 387
monolithic components, difficulty 68, 69

event handler implementation 71, 73
initial state 70, 71
JSX markup 69, 70

monolithic JavaScript bundles 121
multiple event handlers 59

N
NativeBase 260
Native layer 255
Native Modules 255, 260

error handling 261
icons 261
over the air (OTA) 262
push notifications 262

React Navigation 260
splash screen 261
UI component libraries 260

navigation
basics 302-307

navigation components
Drawer component, using 139-142
Tabs component, using 143-145
using 139

navigation header 312-317
navigation indicators

exploring 349, 350
network state

detecting 450-453
Next.js 15, 206, 207

features 207
using 207-215

Node.js 13, 252
Node.js server environment 203
Node.js website

reference link 14
notification 388

O
Objective-C 246
online code editors 15, 16
optional props 99
Out-of-Tree Platforms

reference link 247
over the air (OTA) 262

P
Pages Router 207
passive notifications 398, 399

Index476

patching 10
points of interest, annotating on maps 363

overlays, plotting 365-367
points, plotting 363, 364

potential issues
without props validation 86, 87

progress 345
indicating 346-348
measuring 350-353
number of steps 354-356

prop drilling 190
props 36
props validation 86

importance 86
options 87, 88

pull-to-refresh 341
implementing 341, 342

push notifications 262

Q
query parameters

handling 114-116
link components, used

for building links 118, 120

R
React 3, 4, 247, 251

APIs 6
component properties 36, 37
components 6, 36
component state 40
data changes over time 8
declarative UI structures 6, 8
level of abstraction 11, 12
performance matters 9-11
project, setting up 13, 14

simplify application development 5, 6
version update 12, 13
view layer 4, 5

React 17 157
React 18

batching 157-160
React API 121
React, component properties

default property values 39, 40
property values, passing 37-39

React components, initialization and
cleanup actions

canceling 48-51
component data, fetching 45-48
performing 45
side-effect actions, optimizing 51, 52
state, resetting 48-51

React Context API 190-192
ReactDOM library 11, 253
React elements 19, 103
React Hooks 41

initial state values 41, 42
state values, updating 43-45
used, for maintaining state 41

ReactJS
testing 235-242

React library 52
React Native 3, 11, 246, 247, 301

APIs 263, 264
apps 263, 264
components 263, 264
viewing, on Expo Snack 273-276
viewing, on phone 267-272
reference link 247
style 281-284

Index 477

React Native architecture 254
exploring 251
future 258, 259
JS Engines 254
mobile apps state 251-253
web state 251-253

react-native-bootsplash package 261
React Native CLI

tools, exploring 265, 266
React Native Directory 263
React Native Element 260
react-native-firebase 255
React Native for Web 249
React Native library 253
react-native-paper 260
React Native Reanimated 422, 423

library, installing 423
using 421

react-native-svg 261
React Native UI 255
react-native-vector-icons 261
React Navigation 260
React PDF 11
React profiler 157
React Query 172, 179
react-router package 105
react-router project

Hello route 106, 107
React Server Components 215-218

client-side 215
server-side 215

React Testing Library 235
React Unity 11
React useReducer 190-192

Redux 193-195
integrating, with React 194, 195

Remix 15, 206
remote data

working with 170-173
Renderer 259
render props 80, 81
Replit 15
responsive grid layouts

building 136-138
RESTful APIs 170
Return Key 360
reusable HTML elements 68
route parameters 307-311

handling 110
query parameters, handling 114-116
resource IDs, in routes 111-114

routes
declarations, decoupling 108-110
declaring 106
exploring 129, 130

runner 222

S
scalable vector graphics (SVGs) 261
scrolling 405-408
servers 201
server-side rendering (SSR) 201, 202

working 203, 204
session key 186
Shadow 257
single page application (SPA) 14, 202, 203
Snack 273
software testing 221

Index478

SpiderMonkey 254
splash screen 261
spyable fake functions 229
StackBlitz 15
state 155
stateful components 83
state manager 190
state updates

batching 156
prioritizing 160-163

Static Site Generation (SSG) 205, 206
styled-components library 284

reference link 285
using 284, 285

styles
making 150, 151

styling 257, 258
Suspense component

spinner fallbacks, working with 126, 127
top-level Suspense components 124, 125
using 124

Swift app 246
swipeable components

using 415-419
synthetic event objects

purpose 61
using 61, 62

synthetic instance pool 63

T
tab navigation 318-321
Tabs component

using, for navigation 143-145
Tamagui 260

Tamagui UI kit 249
TanStack Query 179

using 179, 180
testable code 225
test approach 222-224
test-driven development (TDD) 225
test environment

setting up 226
test types 222-224

end-to-end (E2E) testing 223
integration testing 222, 223
unit testing 222

text fields 147
text input

collecting 358-360
themes

customizing 152, 153
theme styles 150
threads communication 256, 257
Toast API 398
touch feedback

applying 408-414
type aliases 97
TypeScript 89, 90, 174

basic types 93-96
benefits 90
interfaces 96
interfaces, versus type aliases 97, 98
setting up 91, 92
type aliases 97
type annotations 90

TypeScript, in React 98
context, type-checking 102
event handlers, type-checking 101

Index 479

props, type-checking in React
components 98-100

refs, type-checking 103
state, type-checking 100

U
UI component libraries 260

NativeBase 260
React Native Element 260
react-native-paper 260
Tamagui 260
UI Kitten 260

UI Kitten 260
UI widget libraries 246
unit testing 222-225

mocking 230-235
test enviornment, setting up 226
Vitest features 227-229

usability 346
useCallback hook 41

using, for memoization 54
useContext hook 41
useEffect hook 41
useMemo hook 41

using, for memoization 53
user confirmation

obtaining 388
success confirmation, displaying 389-393

useRef hook
using, for memoization 55

User Experience (UX) 121
user input, collecting

buttons, working with 149, 150
checkboxes and radio buttons 145, 146
text inputs and select inputs 147, 148

useState hook 41

V
values

selecting, from list of options 361-366
virtual DOM 251
Vite project 174
Vitest 226

features 227-229

W
web bundlers

frameworks, using 15
online code editors 15, 16
using 14, 15

WebSockets 4, 173

X
Xcode 266
XHR request 170

Y
Yoga engine 257

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical

books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free

content in your inbox daily.

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below:

https://packt.link/free-ebook/9781805127307

2.	 Submit your proof of purchase.

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly.

https://packt.link/free-ebook/9781805127307

	Cover
	Copyright
	Contributors
	Table of Contents
	Preface
	Part 1 - React
	Chapter 1: Why React?
	What is React?
	React is just the view layer
	Simplicity is good
	Declarative UI structures
	Data changes over time
	Performance matters
	The right level of abstraction

	What’s new in React?
	Setting up a new React project
	Using web bundlers
	Using frameworks
	Online code editors

	Summary

	Chapter 2: Rendering with JSX
	Technical requirements
	Your first JSX content
	Hello JSX

	Rendering HTML
	Built-in HTML tags
	HTML tag conventions
	Describing UI structures

	Creating your own JSX elements
	Encapsulating HTML
	Nested elements

	Using JavaScript expressions
	Dynamic property values and text
	Handling events
	Mapping collections to elements

	Building fragments of JSX
	Using wrapper elements
	Using fragments

	Summary

	Chapter 3: Understanding React Components and Hooks
	Technical requirements
	Introduction to React components
	What are component properties?
	Passing property values
	Default property values

	What is component state?
	React Hooks
	Maintaining state using Hooks
	Initial state values
	Updating state values

	Performing initialization and cleanup actions
	Fetching component data
	Canceling actions and resetting state
	Optimizing side-effect actions

	Sharing data using context Hooks
	Memoization with Hooks
	useMemo Hook
	useCallback hook
	useRef hook

	Summary

	Chapter 4: Event Handling in the React Way
	Technical requirements
	Declaring event handlers
	Declaring handler functions
	Multiple event handlers

	Declaring inline event handlers
	Binding handlers to elements
	Using synthetic event objects
	Understanding event pooling
	Summary

	Chapter 5: Crafting Reusable Components
	Technical requirements
	Reusable HTML elements
	The diffculty with monolithic components
	The JSX markup
	Initial state
	Event handler implementation

	Refactoring component structures
	Starting with the JSX
	Implementing an article list component
	Implementing an article item component
	Implementing an AddArticle component

	Render props
	Rendering component trees
	Feature components and utility components

	Summary

	Chapter 6: Type-Checking and Validation with TypeScript
	Technical requirements
	Knowing what to expect
	The importance of props validation
	Potential issues without props validation
	Options for props validation

	Introduction to TypeScript
	Why use TypeScript?
	Setting up TypeScript in a project
	Basic types in TypeScript
	Interfaces and type aliases
	Interfaces
	Type aliases
	Interfaces vs type aliases

	Using TypeScript in React
	Type-checking props in React components
	Typing state
	Typing event handlers
	Typing context
	Typing refs

	Summary

	Chapter 7: Handling Navigation with Routes
	Technical requirements
	Declaring routes
	Hello route
	Decoupling route declarations

	Handling route parameters
	Resource IDs in routes
	Query parameters

	Using link components
	Basic linking
	URL and query parameters

	Summary

	Chapter 8: Code Splitting Using Lazy Components and Suspense
	Technical requirements
	Using the lazy API
	Dynamic imports and bundles
	Making components lazy

	Using the Suspense component
	Top-level Suspense components
	Working with spinner fallbacks

	Avoiding lazy components
	Exploring lazy pages and routes
	Summary

	Chapter 9: User Interface Framework Components
	Technical requirements
	Layout and organization
	Using containers
	Building responsive grid layouts

	Using navigation components
	Navigating with drawers
	Navigating with tabs

	Collecting user input
	Checkboxes and radio buttons
	Text inputs and select inputs
	Working with buttons

	Working with styles and themes
	Making styles
	Customizing themes

	Summary

	Chapter 10: High-Performance State Updates
	Technical requirements
	Batching state updates
	React 18 batching

	Prioritizing state updates
	Handling asynchronous state updates
	Summary

	Chapter 11: Fetching Data from a Server
	Technical requirements
	Working with remote data
	Using the Fetch API
	Using Axios
	Using TanStack Query
	Using GraphQL
	Summary

	Chapter 12: State Management in React
	What is global state?
	React Context API and useReducer
	Redux
	MobX
	Summary

	Chapter 13: Server-Side Rendering
	Technical requirements
	Working on the server
	Server-side rendering
	Static site and incremental static generation

	Using Next.js
	React Server Components
	Summary

	Chapter 14: Unit Testing in React
	Technical requirements
	Testing in general
	Test types and approaches

	Unit testing
	Setting up the test environment
	Vitest features
	Mocking

	Testing ReactJS
	Summary

	Part 2: React Native
	Chapter 15: Why React Native?
	Technical requirements
	What is React Native?
	React and JSX are familiar
	The mobile browser experiences
	Android and iOS: different yet the same
	The case for mobile web apps
	Summary

	Chapter 16: React Native under the Hood
	Exploring the React Native architecture
	The state of web and mobile apps in the past

	React Native current architecture
	JS as part of React Native
	The “Native” part
	Communication between threads
	Styling

	React Native future architecture

	Explaining JS and Native modules
	React Navigation
	UI component libraries
	Splash screen
	Icons
	Handling errors
	Push notifications
	Over-the-air updates
	JS libraries

	Exploring React Native components and APIs
	Summary

	Chapter 17: Kick-Starting React Native Projects
	Technical requirements
	Exploring React Native CLI tools
	Installing and using the Expo command-line tool
	Viewing your app on your phone
	Viewing your app on Expo Snack
	Summary

	Chapter 18: Building Responsive Layouts with Flexbox
	Technical requirements
	Introducing Flexbox
	Introducing React Native styles
	Using the Styled Components library
	Building Flexbox layouts
	Simple three-column layout
	Improved three-column layout
	Flexible rows
	Flexible grids
	Flexible rows and columns

	Summary

	Chapter 19: Navigating Between Screens
	Technical requirements
	The basics of navigation
	Route parameters
	The navigation header
	Tab and drawer navigation
	File-based navigation
	Summary

	Chapter 20: Rendering Item Lists
	Technical requirements
	Rendering data collections
	Sorting and filtering lists
	Fetching list data
	Lazy list loading
	Implementing pull to refresh
	Summary

	Chapter 21: Geolocation and Maps
	Technical requirements
	Using the Geolocation API
	Rendering the map
	Annotating points of interest
	Plotting points
	Plotting overlays

	Summary

	Chapter 22: Collecting User Input
	Technical requirements
	Collecting text input
	Selecting from a list of options
	Toggling between on and off
	Collecting date/time input
	Summary

	Chapter 23: Responding to User Gestures
	Technical requirements
	Scrolling with your fingers
	Giving touch feedback
	Using Swipeable and Cancellable components
	Summary

	Chapter 24: Showing Progress
	Technical requirements
	Understanding progress and usability
	Indicating progress
	Exploring navigation indicators
	Measuring progress
	Step progress

	Chapter 25: Displaying Modal Screens
	Technical requirements
	Terminology definitions
	Getting user confirmation
	Displaying a success confirmation

	Error confirmation
	Passive notifications
	Activity modals
	Summary

	Chapter 26: Using Animations
	Technical requirements
	Using React Native Reanimated
	The Animated API
	React Native Reanimated
	Installing the React Native Reanimated library

	Animating layout components
	Animating component styles
	Summary

	Chapter 27: Controlling Image Display
	Technical requirements
	Loading images
	Resizing images
	Lazy image loading
	Rendering icons
	Summary

	Chapter 28: Going Offline
	Technical requirements
	Detecting the state of the network
	Storing application data
	Synchronizing application data
	Summary

	Packt Page
	Other Books You May Enjoy
	Index

