

Reactive Patterns with RxJS
and Angular Signals

Elevate your Angular 18 applications with RxJS Observables,
subjects, operators, and Angular Signals

Lamis Chebbi

Reactive Patterns with RxJS and Angular Signals
Copyright © 2024 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Kaustubh Manglurkar
Publishing Product Manager: Vaideeshwari Muralikrishnan
Senior Editor: Hayden Edwards
Technical Editor: Simran Ali
Copy Editor: Safis Editing
Project Coordinator: Shagun Saini
Proofreader: Safis Editing
Indexer: Rekha Nair
Production Designer: Jyoti Kadam
Marketing Coordinator: Anamika Singh and Nivedita Pandey

First edition published: April 2022
Second edition published: July 2024

Production reference: 1290524

Published by Packt Publishing Ltd
Grosvenor House
11 St Paul’s Square
Birmingham
B3 1RB

ISBN 978-1-83508-770-1

www.packtpub.com

http://www.packtpub.com

To my father, who instilled in me diligence, perseverance, and a good work ethic. Thank you for always
being there to support me and lift me up.

To my mother, who taught me selflessness and doing things with love. Thank you for your enduring
encouragement during the writing of this book.

To my brother and my sisters, for their continuous support.

– Lamis Chebbi

Foreword

RxJS is a powerful JavaScript library that enables developers to build reactive and event-based web
applications. The Angular framework uses this library to manage asynchronous operations, such as
HTTP communication and user interaction with web forms and routing.

Angular Signals, a cutting-edge API, introduces fine-grained reactivity in Angular applications.
This synchronous reactive pattern boosts performance and intelligently tracks the application state,
optimizing component rendering and enhancing the overall user experience.

Reactive Patterns with RxJS and Angular Signals is a book that embraces both worlds, combining best
practices from each tool to help you build performant and reactive Angular applications.

Lamis uses a simple yet insightful approach to RxJS and Signals, one which not only allows you to
gain a deeper understanding of all the available reactive patterns in Angular, but also one that helps
you build a complete application that encompasses all the latest features of the Angular framework.

Aristeidis Bampakos

Angular Google Developer Expert (GDE)

.

Contributors

About the author
Lamis Chebbi is a Google Developer Expert for Angular and is the author of the first edition of this
book, titled Reactive Patterns with RxJS for Angular. She is an enthusiastic software engineer with
a strong passion for the modern web, the founder of Angular Tunisia, a member of the WWCode
community, a speaker, a content creator, and a trainer.

She has been interested in Angular and RxJS for the past few years and loves to share her knowledge
about Angular by participating in workshops and organizing training sessions. Empowering women
and students is one of her highest priorities.

Besides Angular and the web, Lamis loves music, traveling, chromotherapy, and volunteering.

Last but not least, she’s a forever student.

I want to thank all the people who believed in me, supported me, and inspired me throughout this
journey.

About the reviewers
Aleksandr Guzenko is a respected software engineer known for his extensive expertise in both
frontend and backend development. With over eight years of experience in the field, Aleksandr has
made significant contributions to the software engineering community. His deep knowledge and
practical skills are not only evident in his professional work but also in his active involvement as a
judge in numerous hackathons.

Furthermore, Aleksandr is a sought-after speaker at conferences, where he shares his insights and
experiences, particularly focusing on software architecture. He is also an author, of articles that delve
into various aspects of software engineering.

Ishu Mishra is an IT specialist, working on frontend tech stacks for over 6 years. He began working
at a start-up organization called Sparx IT Solutions, where he gained knowledge of Angular, and has
worked for several companies since then.

Ishu previously worked for the Japanese multinational NEC Corporation, and presently, Ishu is
employed in Bangalore by Morgan Stanley.

Matheus Rian is a frontend developer and speaker, who is passionate about technology and education.
He started programming in high school and hasn’t stopped learning since, developing his skills in
technologies such as Angular and React.

Furthermore, Matheus is a multiplier, seeking to disseminate knowledge and generate a positive
impact within communities. As well as working in the frontend market, he gives lectures at events
and contributes articles on Medium and dev.to.

Arthur Lannelucq is a passionate frontend developer specializing in Angular and RxJS. He is a
strong advocate for reactive architectures, believing in their power to build responsive and scalable
web applications.

He has gained solid experience working on various projects for large companies and start-ups. Eager
to share his knowledge, he also runs a YouTube channel where he provides tutorials and practical
advice on Angular and frontend development.

Preface xiii

Part 1: An Introduction to the Reactive World

1
Diving into the Reactive Paradigm 3

Technical requirements 4
Exploring the pillars of reactive
programming 4
Data streams 4
Observer patterns 5

Learning about the marble
diagram (our secret weapon) 6

Highlighting the use of RxJS in Angular 9
The HttpClient module 9
The Router module 10
Reactive forms 13
The Event emitter 13

Summary 14

2
Walking through Our Application 15

Technical requirements 15
Breaking down our app’s interfaces 16
View one – the landing page 16
View two – the New Recipe interface 17
View three – the My Recipes interface 18
View four – the My Favourites interface 19

View five – the Modify Recipe interface 19
View six – the Recipe Details interface 20

Reviewing our app’s architecture 20
Reviewing our app’s components 21
Summary 22

Table of Contents

Table of Contentsviii

Part 2: A Trip into Reactive Patterns

3
Fetching Data as Streams 25

Technical requirements 26
Defining the data fetch requirement 27
Exploring the classic pattern for
fetching data 28
Defining the structure of your data 28
Creating the fetching data service 28
Creating Angular standalone components 30
Injecting and subscribing to the service in
your component 33
Displaying the data in the template 34
Managing unsubscriptions 35

Exploring the reactive pattern
for fetching data 38
Retrieving data as streams 38

Defining the stream in your component 39
Using the async pipe in your template 40

Highlighting the advantages
of the reactive pattern 41
Using the declarative approach 41
Using the change detection strategy of OnPush 42

Diving into the built-in control
flow in Angular 17 44
Structural directives 45
Built-in control flows 46
Including built-in control flows
in our recipe app 50
Benefits of built-in control flow 51

Summary 52

4
Handling Errors Reactively 53

Technical requirements 53
Understanding the anatomy
of an Observable contract 54
Exploring error handling patterns
and strategies 55
The replace strategy 57

The rethrow strategy 59
The retrying strategy 60
Choosing the right error handling strategy 66

Handling errors in our recipe app 68
Summary 70

Table of Contents ix

5
Combining Streams 71

Technical requirements 71
Defining the filtering requirement 72
Exploring the imperative pattern
for filtering data 73
Exploring the declarative pattern
for filtering data 76
The combineLatest operator 78
Updating the filter value 81

Highlighting common pitfalls
and best practices 84
Unnecessary subscriptions 84
Missing or incomplete values 85
Performance overhead 85
Confusing error handling 85

Summary 85

6
Transforming Streams 87

Technical requirements 87
Defining the autosave requirement 88
Exploring the imperative pattern for
the autosave feature 89

Exploring the reactive pattern
for the autosave feature 92
Higher-order Observables 92
Higher-order mapping operators 93

Summary 109

7
Sharing Data between Angular Components 111

Technical requirements 111
Defining the sharing data
requirement 112
Exploring the reactive pattern
to share data 112
Step 1 – Creating a shared service 113

Step 2 – Updating the last selected recipe 114
Step 3 – Consuming the last selected recipe 117
Wrapping up the data-sharing reactive pattern 118

Leveraging Deferrable
Views in Angular 17 119
Summary 120

Table of Contentsx

Part 3: The Power of Angular Signals

8
Mastering Reactivity with Angular Signals 123

Technical requirements 123
Understanding the motivation
behind Signals 124
The traditional Zone.js approach 124
The new Signals approach 124

Unveiling the Signal API 125
Defining Signals 125
Creating Signals using the constructor
function 126
Reading Signals 127
Modifying a writable Signal 128
Computed Signals 129
Signal effects 130

Unlocking the power of RxJS
and Angular Signals 130

Understanding the behavior of toSignal() 132
Understanding the behavior of toObservable() 134

Integrating Signals into
our recipe app 136
Fetching data as streams using Signals 136
Combining streams using Signals 139
Sharing data using Signals 141
Transforming streams using Signals 142

Exploring reactive data binding
with Signals 144
Signal inputs 144
Model inputs 146
Signal queries 147

Summary 148

Part 4: Multicasting Adventures

9
Demystifying Multicasting 151

Technical requirements 151
Explaining multicasting versus
unicasting 151
Unicasting and cold Observables 152
Multicasting and hot Observables 153
Transforming cold Observables
into hot Observables 155

Exploring RxJS subjects 156
A plain subject 157
replaySubject 158
BehaviorSubject 159

Highlighting the advantages
of multicasting 162
Summary 163

Table of Contents xi

10
Boosting Performance with Reactive Caching 165

Technical requirements 165
Defining the caching requirement 166
Exploring the reactive pattern to
cache streams 167
The shareReplay operator 167
Using shareReplay in RecipesApp 168

Customizing the shareReplay operator 170
Replacing the shareReplay operator
with the share operator 172

Highlighting the use of caching
for side effects 174
Summary 175

11
Performing Bulk Operations 177

Technical requirements 177
Defining the bulk operation
requirements 178
Learning the reactive pattern
for bulk operations 179
The forkJoin operator 180

The bulk operation reactive pattern 181
Benefits of the forkJoin operator 184

Learning the reactive pattern
for tracking the bulk operation’s
progress 185
Summary 187

12
Processing Real-Time Updates 189

Technical requirements 189
Defining the requirements
of real time 190
Learning the reactive pattern for
consuming real-time messages 191

Creating and using WebSocketSubject 191
WebSocketSubject in action 195

Learning the reactive pattern for
handling reconnection 201
Summary 204

Table of Contentsxii

Part 5: Final Touches

13
Testing RxJS Observables 207

Technical requirements 207
Learning about the subscribe
and assert pattern 208
Testing single-value output methods 208
Testing multiple-value output methods 211
Testing timed-value output methods 212

Learning about the marble
testing pattern 213

Understanding the syntax 213
Introducing TestScheduler 214
Implementing marble tests 216
Testing timed-value output methods 218

Highlighting testing streams using
HttpClientTestingModule 220
Summary 222

Index 225

Other Books You May Enjoy 232

Preface

Embarking on the journey from imperative to reactive programming is a significant shift and one
that I have experienced firsthand. As I navigated this transition, I found myself drawn to the world
of reactive patterns and the transformative power they held. It was a journey filled with discovery,
comparison, and a strong determination to understand this new way of thinking.

Inspired by my own experiences, I’ve crafted this book to serve as a guide through the realms of reactive
patterns within Angular applications. I believe that the reactive mindset is gradually achieved by
comparing the reactive way to the imperative way, in order to distinguish the difference and benefits.
Within these pages, you’ll discover how embracing reactive patterns can greatly enhance the way you
manage data, write code, and react to user changes. From improving efficiency to creating cleaner,
more manageable code bases, the benefits are vast and practical.

So, without further ado, let’s embark on this journey together and unlock the potential of
reactive programming.

Who this book is for
If you’re a developer working with Angular and RxJS, this book is tailor-made for you. Designed for
individuals at a beginner level in both Angular and RxJS, this book will guide you toward becoming
an experienced developer while also benefitting those who wish to harness the potential of RxJS and
leverage the reactive paradigm within their Angular applications.

What this book covers
In Chapter 1, Diving into the Reactive Paradigm, you will learn the fundamentals of reactive programming.

In Chapter 2, Walking through Our Application, you will learn the architecture and requirements of
the recipe application that we will be building through the book.

In Chapter 3, Fetching Data as Streams, you will learn the reactive pattern for fetching data so that we
can reactively retrieve a list of recipes in our recipe app.

In Chapter 4, Handling Errors Reactively, you will learn the different error strategies and the reactive
patterns for handling errors.

In Chapter 5, Combining Streams, you will learn the reactive pattern for combining streams and use it
to implement a filter functionality in our recipe app, while also discovering the common pitfalls and
sharing best practices for optimal implementation.

Prefacexiv

In Chapter 6, Transforming Streams, you will learn the reactive pattern for transforming streams and
use it to implement autosave and autocomplete features in our recipe app.

In Chapter 7, Sharing Data between Angular Components, you will learn the reactive pattern to share
data between components and use it to share the selected recipe in our recipe app.

In Chapter 8, Mastering Reactivity with Angular Signals, you will deep-dive into Angular signals,
learning different reactive patterns based on Angular Signals, and how to unleash the power of RxJS
and Signals together. You will also discover the latest Angular Signals improvements.

In Chapter 9, Demystifying Multicasting, you will learn the essentials of multicasting and the different
multicasting concepts and operators offered by RxJS, such as Subjects, Behavior Subjects, and
Replay Subjects.

In Chapter 10, Boosting Performance with Reactive Caching, you will learn the reactive pattern to cache
streams and implement a caching mechanism in our recipe app, based on the latest RxJS features.

In Chapter 11, Performing Bulk Operations, you will learn the reactive pattern to perform bulk operations
and implement a multiple asynchronous file upload in our recipe app.

In Chapter 12, Processing Real-Time Updates, you will explore the reactive patterns to consume real-
time updates and display newly created recipes instantly in our recipe app.

In Chapter 13, Testing RxJS Observables, you will learn the different strategies to test reactive patterns
and practice testing the API responses in our recipe app.

To get the most out of this book
This book assumes some familiarity with Angular, basic RxJS, TypeScript, and a foundational knowledge
of functional programming. All code examples have been tested using Angular 17 and 18 on on the
Windows OS. However, they should work with future version releases too.

Software/hardware covered in the book Operating system requirements
Angular 17 and above Windows, macOS, or Linux
TypeScript 5.4.2 Windows, macOS, or Linux
RxJS 7.8.1 Windows, macOS, or Linux
PrimeNG 17.10.0 Windows, macOS, or Linux
Bootstrap 5.0.0 Windows, macOS, or Linux

Make sure you follow the prerequisites found here: https://angular.dev/tools/cli/
setup-local. The prerequisites include the environment setup and the technologies needed in
order to install and use Angular.

We also use the Bootstrap library to manage the application’s responsiveness, the PrimeNG library
for its rich components, and, of course, RxJS as the reactive library.

https://angular.dev/tools/cli/setup-local
https://angular.dev/tools/cli/setup-local

Preface xv

Plus, there is a ready-for-use backend server in the GitHub repository that we will only reference in
our application.

If you are using the digital version of this book, we advise you to type the code yourself or access
the code from the book’s GitHub repository (a link is available in the next section). Doing so will
help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Reactive-Patterns-with-RxJS-and-Angular-Signals-
Second-Edition. If there’s an update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “In the
following code snippet, we have an example of an Angular service that injects the HttpClient
service and fetches data from the server using the HttpClient.get() method.”

A block of code is set as follows:

import { Injectable } from '@angular/core';
import { HttpClient } from '@angular/common/http';
import { Observable} from 'rxjs';

Any command-line input or output is written as follows:

//console output
Full Name: John Doe

Bold: Indicates a new term, an important word, or words that you see on screen. For instance, words in
menus or dialog boxes appear in bold. Here is an example: “Users can create a new recipe by clicking
on the New Recipe menu item located at the top right of the page.”

https://github.com/PacktPublishing/Reactive-Patterns-with-RxJS-and-Angular-Signals-Second-Edition
https://github.com/PacktPublishing/Reactive-Patterns-with-RxJS-and-Angular-Signals-Second-Edition
https://github.com/PacktPublishing/Reactive-Patterns-with-RxJS-and-Angular-Signals-Second-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Prefacexvi

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Share Your Thoughts
Once you’ve read Reactive Patterns with RxJS and Angular Signals, we’d love to hear your thoughts!
Please click here to go straight to the Amazon review page for this book
and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packtpub.com
http://authors.packtpub.com
https://packt.link/r/1-835-08770-1

Preface xvii

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://download.packt.com/free-ebook/9781835087701

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://download.packt.com/free-ebook/9781835087701

Part 1:
An Introduction

to the Reactive World

Embark on a journey into the world of reactive programming with Angular!

In this part, you will understand the fundamentals of the reactive paradigm and its application in
Angular, gaining insight into why it’s essential to leverage this approach. Then, we will introduce the
recipe application that we are going to progressively build as we go through the book.

This part includes the following chapters:

• Chapter 1, Diving into the Reactive Paradigm

• Chapter 2, Walking through Our Application

1
Diving into the Reactive

Paradigm

Reactive patterns are reusable solutions to a commonly occurring problem using reactive programming.
Behind all these patterns is a new way of thinking, a new architecture, new coding styles, and new
tools. That’s what this entire book is based on – useful reactive patterns in Angular applications.

Now, I know you are impatient to write your first reactive pattern in Angular, but before doing so, and
in order to help you take full advantage of all the RxJS patterns and leverage the reactive paradigm,
we will start by explaining in detail all the fundamentals and preparing the groundwork for the
following chapters.

Let’s start with a basic understanding of the reactive paradigm, its advantages, and the problems it solves.
Best of all, let’s put a reactive mindset on and start thinking reactively. We will begin by highlighting
the pillars and the advantages of the reactive paradigm. Then, we will explain the marble diagram and
why it is useful. Finally, we will highlight the use of RxJS in Angular.

Giving an insight into the fundamentals of the reactive paradigm is incredibly important. This will
ensure you get the basics right, help you understand the usefulness of the reactive approach, and
consequently help you determine which situation is best to use it in.

In this chapter, we’re going to cover the following topics:

• Exploring the pillars of reactive programming

• Learning the marble diagram (our secret weapon)

• Highlighting the use of RxJS in Angular

Diving into the Reactive Paradigm4

Technical requirements
This chapter does not require any environment setup or installation steps.

All the code snippets in this chapter are just examples to illustrate the concept, so you will not need
the code repository to follow along. However, if you’re interested, the code for the book can be found
at https://github.com/PacktPublishing/Reactive-Patterns-with-RxJS-
and-Angular-Signals-Second-Edition.

This book assumes that you have a basic understanding of Angular and RxJS.

Note
This book uses the new Angular documentation site, angular.dev. The previous documentation
site, angular.io, will soon be deprecated. Stay connected with the latest updates and resources
by accessing the documentation through this link.

Exploring the pillars of reactive programming
Reactive programming is among the major programming paradigms used by developers worldwide.
Every programming paradigm solves some problems and has its own advantages. By definition, reactive
programming is programming with asynchronous data streams and is based on observer patterns.
So, let’s talk about these pillars of reactive programming!

Data streams

Data streams are the spine of reactive programming. Everything that may change or happen over time
(you don’t know when exactly) is represented as asynchronous streams such as events, notifications,
and messages. Reactive programming is about reacting to changes as soon as they are emitted!

An excellent example of data streams is UI events. Let’s suppose that we have an HTML button and we
want to execute an action whenever a user clicks on it. Here, we can think of the click event as a stream:

//HTML code
<button id='save'>Save</button>

//JS code
const saveElement = document.getElementById('save');
saveElement.addEventListener('click', processClick);

function processClick(event) {
 console.log('Hi');
}

https://github.com/PacktPublishing/Reactive-Patterns-with-RxJS-and-Angular-Signals-Second-Edition
https://github.com/PacktPublishing/Reactive-Patterns-with-RxJS-and-Angular-Signals-Second-Edition
http://angular.dev
http://angular.io

Exploring the pillars of reactive programming 5

As implemented in the preceding code snippet, in order to react to the click event, we register an
EventListener event. Then, every time a click occurs, the processClick method is called to
execute a side effect. In our case, we are just logging Hi in the console.

As you might have gathered, to be able to react when something happens and execute a side effect,
you should listen to the streams to become notified. To get closer to reactive terminology, instead
of listen, we can say observe. This leads us to the observer design pattern, which is at the heart of
reactive programming.

Observer patterns

The observer pattern is based on two main roles – a publisher and a subscriber:

• A publisher maintains a list of subscribers and notifies them or propagates a change every
time there is an update

• On the other hand, a subscriber performs an update or executes a side effect every time they
receive a notification from the publisher

The observer pattern is illustrated here:

Figure 1.1 – The observer pattern

To get notified about the updates, you need to subscribe to the publisher. A real-world analogy would
be a newsletter; you don’t get any emails from a specific newsletter if you don’t subscribe to it.

Diving into the Reactive Paradigm6

This leads us to the building blocks of RxJS, which include the following:

• Observables: These are a representation of the asynchronous data streams that notify the
observers of any change

• Observers: These are consumers of the data streams emitted by Observables

RxJS combines the observer pattern with the iterator pattern and functional programming to process
and handle asynchronous events. This was a reminder of reactive programming fundamentals, and it
is crucial to know when to put a reactive implementation in place and when to avoid it.

In general, whenever you have to handle asynchronous tasks in your Angular application, always think
of RxJS. The main advantages of RxJS over other asynchronous APIs are as follows:

• RxJS makes dealing with event-based programs, asynchronous data calls, and callbacks an
easy task.

• Observables guarantee consistency. They emit multiple values over time so that you can consume
continuous data streams.

• Observables are lazy; they are not executed until you subscribe to them. This helps with writing
declarative code that is clean, efficient, and easy to understand and maintain.

• Observables can be canceled, completed, and retrieved at any moment. This makes a lot of
sense in many real-world scenarios.

• RxJS provides many operators with a functional style to manipulate collections and optimize
side effects.

• Observables push errors to the subscribers and provide a clean way to handle errors.

• RxJS allows you to write clean and efficient code to handle asynchronous data in your application.

Now that we have given some insight into the reactive programming pillars and detailed the major
advantages of RxJS, let’s explore the marble diagram, which is very handy for understanding and
visualizing the Observable execution.

Learning about the marble diagram (our secret weapon)
RxJS ships with more than one hundred operators – these are among the building blocks of RxJS, useful
for manipulating streams. All the reactive patterns that will be detailed later in this book are based on
operators, and when it comes to explaining operators, it is better to refer to a visual representation –
that’s where marble diagrams come in!

Marble diagrams are visual representations of the operator’s execution, which will be used in all
chapters to understand the behavior of RxJS operators. At first, it might seem daunting, but it is
delightfully simple. You only have to understand the anatomy of the diagram and then you’ll be good
at reading and translating it.

Learning about the marble diagram (our secret weapon) 7

Marble diagrams represent the execution of an operator, so every diagram will include the following:

• Input Observable(s): Represents one or many Observables given as input to the operator

• Operator: Represents the operator to be executed with its parameters

• Output Observable: Represents the Observable produced after the operator’s execution

We can see the execution illustrated here:

Figure 1.2 – The operator execution

Now, let’s zoom in on the representation of the input/output Observables:

Figure 1.3 – The marble diagram elements

Diving into the Reactive Paradigm8

The elements of these diagrams include the following:

• The timeline: Observables are asynchronous streams that produce data over time. Therefore,
the representation of time is crucial in the marble diagram, and it is represented as an arrow
flowing from left to right.

• The marble values: These are the values emitted by the Observables over time. They are
represented by colored circles.

• The completion status: The vertical line (|) represents the successful completion of the Observables.

• The error status: The X represents an error emitted by the Observable. Neither the values nor
the vertical line representing completion will be emitted thereafter.

That’s all the elements you need to know about. Now, let’s put all the pieces together in a real
marble diagram:

Figure 1.4 – An example of a marble diagram for a custom operator

As you may have guessed, we have a custom operator called divideByTwo that will emit half of
every received number. When the input Observable emits the values 4 and 8, the output Observable
produces 2 and 4 respectively.

However, when the R value, which is non-numeric, is emitted, then an error is thrown, indicating
abnormal termination. This case is not handled in the operator code. The input Observable continues
the emission and then completes successfully. However, the value will never be processed because,
after the error, the stream is closed.

At this point, we’ve gone through all the elements composing the marble diagram. You will be able
to understand the operators used in the chapters to come. Now, let’s shed some light on the use of
RxJS in Angular.

Highlighting the use of RxJS in Angular 9

Highlighting the use of RxJS in Angular
RxJS is practically a first-class citizen in Angular. It is part of the Angular ecosystem and is used in
many features to handle asynchronous tasks. The following are some examples of these features:

• The HttpClient module

• The Router module

• Reactive forms

• The Event emitter

We will discuss each of the following concepts in the subsequent subsections.

Note
We recommend taking a quick look at https://angular.dev/overview, where you
can find further details about the aforementioned features.

The HttpClient module

You might be familiar with the HttpClient API provided by Angular that is used to communicate with
a server over the HTTP protocol. The HttpClient service is based on Observables that manage all
transactions, which means that the result of calling API methods such as GET, PATCH, POST, and
PUT will be an Observable.

In the following code snippet, we have an example of an Angular service that injects the HttpClient
service and fetches data from the server using the HttpClient.get() method:

import { Injectable } from '@angular/core';
import { HttpClient } from '@angular/common/http';
import { Observable} from 'rxjs';
import { Recipe } from '../model/recipe.model';
@Injectable()
export class RecipesService {
constructor(private http: HttpClient) { }
getRecipes(): Observable<Recipe[]> {
return this.http.get<Recipe[]>(`api/recipes/`);
}
}

The getRecipes() method – or, to be more accurate, the call to this.http.get<Recipe>(`api/
recipes/`) – returns an Observable that you should subscribe to in order to send the GET request
to the server. Please note that this is an example of an HTTP transaction, and it is the same for all the
other HTTP methods available in the API (POST, PUT, PATCH, etc.).

https://angular.dev/overview

Diving into the Reactive Paradigm10

Note
The code contains references to recipe.model and getRecipes() – in Chapter 2, Walking
through Our Application, you will be introduced to the Recipe app that we will be working on
throughout the rest of the book.

For those familiar with Promise-based HTTP APIs, you may be wondering about the advantages of
using Observables in this context. For those who are not acquainted with Promises, Promises are
JavaScript objects that represent the eventual completion (or failure) of an asynchronous operation
and its resulting value. They provide a cleaner and more structured way to work with asynchronous
code compared to traditional callback-based approaches. However, there are a lot of advantages of
using Observables over Promises, and the most important ones are listed as follows:

• Observables are cancellable, so you can cancel the HTTP request whenever you want by calling
the unsubscribe method

• You can also retry HTTP requests when an error occurs or an exception is thrown

The server’s response cannot be mutated by Observables, although this can be the case for chaining
then() on Promises.

The Router module

The Router module available in the @angular/router package uses Observables in router events
and activated routes. We will look at both here.

Router events

Router events allow you to intercept the navigation life cycle. They are defined in the Router as Observables.

Note
We recommend taking a quick look at https://angular.dev/api/router/Event,
where you can find further details about router events.

The majority of Angular applications have a routing mechanism. Router events change frequently
over time, and it makes sense to listen to changes to execute side effects. That’s why Observables are
a flexible way in which to handle those streams.

To intercept all the events the router goes through, first, you should inject the Router service, which
provides URL manipulation capabilities. Then, subscribe to the events Observable available in the
Router object and filter the events of type RouterEvent using the RxJS filter operator.

https://angular.dev/api/router/Event

Highlighting the use of RxJS in Angular 11

The following is an example of an Angular service that injects the Router in the constructor, subscribes
to the router events, and traces the event ID and path in the console:

import { Injectable } from '@angular/core';
import { Router, RouterEvent } from '@angular/router';
import { filter } from 'rxjs/operators';
@Injectable()
export class CustomRouteService {
 constructor(public router: Router) {
 this.router.events.pipe(
 filter(event => event instanceof RouterEvent)
).subscribe((event: RouterEvent) => {
 console.log(`The current event is : ${event.id} |
 event.url`);
 });
 }
}

This is a very basic example, and you could introduce pretty much any specific behavior to it.

The activated route

ActivatedRoute is a router service that you can inject into your components to retrieve information
about a route’s path and parameters. Many properties are based on Observables. Here, you will find
the implementation of the ActivatedRoute class:

class ActivatedRoute {
 snapshot: ActivatedRouteSnapshot
 url: Observable<UrlSegment[]>
 params: Observable<Params>
 queryParams: Observable<Params>
 fragment: Observable<string | null>
 data: Observable<Data>
 outlet: string
 component: Type<any> | string | null
 routeConfig: Route | null
 root: ActivatedRoute
 parent: ActivatedRoute | null
 firstChild: ActivatedRoute | null
 children: ActivatedRoute[]
 pathFromRoot: ActivatedRoute[]
 paramMap: Observable<ParamMap>

Diving into the Reactive Paradigm12

 queryParamMap: Observable<ParamMap>
 toString(): string
}

As you may have figured out, url, params, queryParams, fragment, data, paramMap, and
queryParamMap are represented as Observables. All these parameters might change over time, so
it makes sense to listen to these changes to register side effects or update the values.

Here’s an example of an Angular component that injects the ActivatedRoute class in the constructor
and then in ngOnInit() method, subscribes to the following properties:

• The url property of ActivatedRoute, in order to log the current URL in the console

• The queryParams property of ActivatedRoute, in order to retrieve the criteria
parameter and store it in a local property named criteria:

import { Component, OnInit } from '@angular/core';
import { ActivatedRoute } from '@angular/router';

@Component({
 selector: 'app-recipes',
 templateUrl: './recipes.component.html'
})
export class RecipesComponent implements OnInit {
 criteria: string;
 constructor(private activatedRoute: ActivatedRoute) { }

 ngOnInit() {
 this.activatedRoute.url
 .subscribe(url => console.log('The URL changed to: '
 + url));

 this.activatedRoute.queryParams.subscribe(params => {
 this.processCriteria(params.criteria);
 });
 }
 processCriteria(criteria: string) {
 this.criteria = criteria;
 }
}

This example showcases the usage of the url and queryParams properties. For a comprehensive
overview of all ActivatedRoute properties and their functionalities, I encourage you
to visit the Angular documentation page at https://angular.dev/api/router/
ActivatedRoute#properties.

https://angular.dev/api/router/ActivatedRoute#properties
https://angular.dev/api/router/ActivatedRoute#properties

Highlighting the use of RxJS in Angular 13

Reactive forms

Reactive forms available under the @angular/forms package are based on Observables to track
form control changes. Here’s the overview of the FormControl class in Angular:

class FormControl extends AbstractControl {
//other properties here
valueChanges: Observable<any>
statusChanges: Observable<any>
}

The properties valueChanges and statusChanges of FormControl are represented as
Observables that trigger change events. Subscribing to a FormControl value change is a way of
triggering application logic within the component class.

Here’s an example that subscribes to the valueChanges Observable of a FormControl property
called rating and simply traces the value through console.log(value):

import { Component, OnInit } from '@angular/core';
import { FormGroup } from '@angular/forms';
@Component({ ...})
export class MyComponent implements OnInit {
 form!: FormGroup;

 ngOnInit() {
 const ratingControl = this.form.get('rating');
 ratingControl?.valueChanges.subscribe(
 (value) => {
 console.log(value);
 }
);
 }
}

This way, you will get the changed value as an output.

The Event emitter

The event emitter, which is part of the @angular/core package, is used to emit data from a child
component to a parent component through the @Output() decorator. The EventEmitter class
extends the RxJS subject and registers handlers for events emitted by this instance:

class EventEmitter<T> extends Subject {
 constructor(isAsync?: boolean): EventEmitter<T>
 emit(value?: T): void

Diving into the Reactive Paradigm14

 subscribe(next?: (value: T) => void, error?: (error: any)
 => void, complete?: () => void): Subscription
}

This is what happens under the hood when you create an event emitter and emit a value.

The following code block is an example of emitting the updated value of a recipe rating:

import { Component, Output } from '@angular/core';
import { EventEmitter } from 'events';

@Component({ ...})
export class RecipesComponent {
 constructor() {}
 @Output() updateRating = new EventEmitter();

 updateRecipe(value: string) {
 this.updateRating.emit(value);
 }
}

So, the EventEmitter smooths communication between components by allowing one component to
emit custom events and another component to listen for and respond to those events. This mechanism
plays a crucial role in enabling parent-child communication, sibling communication, and even
communication between unrelated components in Angular applications.

Note
In the previous code snippets, the subscription to the Observables was done explicitly for
demonstration purposes. In a real-world example, we should include the unsubscription logic if
we want to subscribe explicitly. We will shed light on this in Chapter 3, Fetching Data as Streams.

Summary
In this chapter, we walked you through the fundamentals of reactive programming and in which use
cases it shines. Then, we explained the marble diagram that will be our reference for explaining RxJS
operators in all the following chapters. Finally, we highlighted the use of reactive programming in
Angular by illustrating concrete examples, implementations, and advantages.

Now that we have got the basics right, it is time to start preparing and explaining, in the next chapter,
the application that we are going to build throughout this book, where we are going to implement all
of the reactive patterns we will learn progressively.

2
Walking through

Our Application

Now, we are one step closer to diving into reactive patterns, but before we do, let’s present the app that
we are going to build throughout this book.

We will start by explaining the technical requirements, followed by a breakdown of the app’s interfaces so
that you know its user story. Furthermore, we will showcase an overview of the application architecture
and a visual representation of the component tree. By the end of this chapter, we will have all the
required pieces in place to start implementing our application.

In this chapter, we’re going to cover the following main topics:

• Breaking down our app’s interfaces

• Reviewing our app’s architecture

• Reviewing our app’s components

Technical requirements
Though we are not creating the project in this chapter, you should know the requirements for it before
going ahead.

We are going to use Angular 18 for our frontend, so please make sure you follow the prerequisites
at https://angular.dev/tools/cli/setup-local. The prerequisites include the
environment setup and the technologies needed in order to install and use Angular.

We are also going to be using Bootstrap version 5.0.0 (https://getbootstrap.com/), a toolkit
for developing responsive web apps, and version 7.8.1 of RxJS.

You will also be able to find all of the code to create this project in the book’s GitHub repository: https://
github.com/PacktPublishing/Reactive-Patterns-with-RxJS-and-Angular-
Signals-Second-Edition.

https://angular.dev/tools/cli/setup-local
https://getbootstrap.com/
https://github.com/PacktPublishing/Reactive-Patterns-with-RxJS-and-Angular-Signals-Second-Edition
https://github.com/PacktPublishing/Reactive-Patterns-with-RxJS-and-Angular-Signals-Second-Edition
https://github.com/PacktPublishing/Reactive-Patterns-with-RxJS-and-Angular-Signals-Second-Edition

Walking through Our Application16

Breaking down our app’s interfaces
As a food junkie, I want the application to be like a recipe book, allowing users and home cooks to
browse and share delicious food recipes. The main aim of the app is to provide inspiration for meals
as well as help users do the following:

• Share their recipes

• Pin favorite recipes to easily find them

• Distinguish top-rated recipes

• Filter out recipes according to some criteria

The app is composed of six interfaces. Let’s tackle these interfaces one by one.

View one – the landing page

The first page contains a list of available recipes, sorted according to popularity:

Figure 2.1 – The landing page view

Breaking down our app’s interfaces 17

In this view, users have the possibility to do the following:

• Quickly search for a recipe by setting filters according to some criteria (on the left-hand side)

• Clear the list of filters

• View the most popular recipes

• Rate recipes by clicking on the number of stars

• Add a recipe to their favorites by clicking on the heart icon

• See a recipe’s details by clicking on it

• View the total number of recipes

View two – the New Recipe interface

This page contains a form to create a new recipe:

Figure 2.2 – The New Recipe view

Walking through Our Application18

In this view, users can create a new recipe by clicking on the New Recipe menu item located at the
top right of the page. A form containing details of the recipe will be opened to fill out the information
and save it. These details include the following:

• Title: The title of the recipe

• Ingredients: The ingredients required to prepare the recipe

• Image Url: A good image of the meal prepared

• Cooking time: The time required to cook the meal

• Yield: The number of people that can be served by this meal

• Prep time: The time required to prepare the meal

• Tags: Key tags describing the recipe

• Steps: The steps required to prepare and cook the meal

View three – the My Recipes interface

This page contains a list of recipes created by the user. This screen is reachable by clicking on the My
Recipes menu item located at the top right. Users can edit and remove recipes by clicking on the edit
and delete icons, respectively:

Figure 2.3 – The My Recipes view

Breaking down our app’s interfaces 19

View four – the My Favourites interface

This page contains a list of the user’s favorite recipes, reachable by clicking on the My Favourites
menu item located at the top right:

Figure 2.4 – The My Favourites view

View five – the Modify Recipe interface

While the New Recipe interface allows the user to create a new recipe, the Modify Recipe interface
allows the user to edit an existing recipe. This page is reachable by clicking the Edit button next to
each button on the My Recipes interface, and looks just like Figure 2.2.

Walking through Our Application20

View six – the Recipe Details interface

This page contains all the details of the selected recipe. This screen is reachable from the landing page
after clicking on a displayed recipe:

Figure 2.5 – The Recipe Details view

Now that we have detailed our application’s interfaces, let’s have a look at the app’s architecture.

Reviewing our app’s architecture
The frontend layer of the recipe app will be implemented in Angular 18 and will communicate with
a RESTful backend based on Node.js.

Reviewing our app’s components 21

Note
Aspects related to the backend are not the subject of this book and will not be detailed.
You can find a ready-to-use fake backend, named recipes-book-api, in the GitHub
repository: https://github.com/PacktPublishing/Reactive-Patterns-
with-RxJS-for-Angular-17-2nd-Edition.

The frontend of the recipe app is pluggable to any RESTful backend. Therefore, you can use pretty
much any other technology for the backend. All communications will be performed through the
HttpClient module and will request REST controllers in the backend:

Figure 2.6 – The book of recipes architecture

Now that we have the big picture of our target application, let’s break down the different Angular
components of our app.

Reviewing our app’s components
An Angular application has a tree structure consisting of all the components we create. In the following
diagram, you will find the component tree of our recipe app, which is important for understanding
the anatomy of the application:

https://github.com/PacktPublishing/Reactive-Patterns-with-RxJS-for-Angular-17-2nd-Edition
https://github.com/PacktPublishing/Reactive-Patterns-with-RxJS-for-Angular-17-2nd-Edition

Walking through Our Application22

Figure 2.7 – Components overview

Let’s break down the components:

• AppComponent: The parent component of the app

HeaderComponent: The component representing the header of the app that contains the
user space, the menu, and the logo

• HomeComponent : The component representing the landing page that contains
RecipeFilterComponent and RecipesListComponent:

 � RecipeFilterComponent: The component representing the filter zone that contains
the criteria fields and the Clear All and Show Results buttons

 � RecipesListComponent: The component containing a list of recipes

• RecipesDetailsComponent: The component containing the details of one recipe

• RecipesCreationComponent: The component containing a form to create a recipe with
all the required fields

You now have a better understanding of the components that will make up our app.

Summary
In this chapter, we explained the features of the recipe application that we will be working on, as well
as the look and feel of the UIs. We also shed light on the app’s architecture and the components that
will make it up.

Now that all those aspects are clear, let’s explore our first reactive pattern together, which we will
cover in the next chapter.

Part 2:
A Trip into

Reactive Patterns

In this part, you will learn the most used reactive patterns in different real-world scenarios such as
fetching data from a backend API, handling server errors, filtering data, and providing autocompleted
search results in a dropdown list. Every reactive pattern will be endorsed by an example involving
our recipes app.

You will also learn the best practices and pitfalls to avoid and dive into the latest Angular features,
such as standalone components and the new built-in control flow syntax.

This part includes the following chapters:

• Chapter 3, Fetching Data as Streams

• Chapter 4, Handling Errors Reactively

• Chapter 5, Combining Streams

• Chapter 6, Transforming Streams

• Chapter 7, Sharing Data between Angular Components

3
Fetching Data as Streams

The way you manage your application’s data has a huge impact on your UI performance and the
user experience. As far as I’m concerned, great user experience and performant UIs are no longer
an option nowadays – they are key determinants of user satisfaction. Furthermore, managing data
efficiently optimizes the code and enhances its quality, which consequently minimizes maintenance
and improvement costs.

So, how can we manage our data efficiently? Well, this is what we will be answering in the following
chapters. There are a few reactive patterns that come in handy in many use cases, and we will start
by exploring the most basic reactive pattern for displaying values received from a REST endpoint to
allow users to read and interact with them.

To begin, we will explain the requirement that we’re going to implement in the recipe application. Then,
we will introduce the classic pattern to retrieve data, followed by the different approaches that you can
use to manage unsubscriptions and all the important technical concepts surrounding them. We will
also learn about a new feature of Angular 14+, which is standalone components. Following this, we
will explain the reactive pattern to fetch data, and highlight the advantages of the reactive pattern over
the classic one. Finally, we will learn about the new built-in control flow introduced in Angular 17.

So, in this chapter, we’re going to cover the following main topics:

• Defining the data fetch requirement

• Exploring the classic pattern for fetching data

• Exploring the reactive pattern for fetching data

• Highlighting the advantages of the reactive pattern

• Diving into the built-in control flow in Angular 17

Fetching Data as Streams26

Technical requirements
This chapter assumes that you have a basic understanding of HttpClient, Angular components, Angular
modules, and routing.

We’ll be using a mocked REST API backend built with JSON Server, which allows you to spin up a
REST API server with a fully working API. We’ll not be learning how to use JSON Server, but if you
are interested in learning more, you can find further information at https://github.com/
typicode/json-server.

You can access the project source code for this chapter in the GitHub repository at https://
github.com/PacktPublishing/Reactive-Patterns-with-RxJS-and-Angular-
Signals-Second-Edition/tree/main/Chap03.

The project is composed of two folders:

• recipes-book-api: This contains the mocked RESTful server already set up.

• recipes-book-front: This contains the frontend application that was built with Angular
17 and RxJS 7. As a third-party dependency, we’ve added bootstrap and primeng libraries
to help us build beautiful UI components quickly. Please refer to the previous chapter’s Technical
requirements section for the environment and dependencies setup.

The project complies with the standard Angular style guide, which can be found at https://
angular.dev/style-guide#.

The first time you run the apps, you will need to install dependencies beforehand. You only have to
run the npm i command in the recipes-book-api and recipes-book-front folders.

Once dependencies are installed, you need to start the server by running the following command in
the recipes-book-api folder:

npm run server: start

The server will be running at http://localhost:8081.

Then, you start the frontend by running the following command in the recipes-book-front folder:

ng serve --proxy-config proxy.config.json

You can read more about the --proxy-config parameter at https://angular.dev/tools/
cli/serve#proxying-to-a-backend-server.

https://github.com/typicode/json-server
https://github.com/typicode/json-server
https://github.com/PacktPublishing/Reactive-Patterns-with-RxJS-and-Angular-Signals-Second-Edition/tree/main/Chap03
https://github.com/PacktPublishing/Reactive-Patterns-with-RxJS-and-Angular-Signals-Second-Edition/tree/main/Chap03
https://github.com/PacktPublishing/Reactive-Patterns-with-RxJS-and-Angular-Signals-Second-Edition/tree/main/Chap03
https://angular.dev/style-guide#
https://angular.dev/style-guide#
https://angular.dev/tools/cli/serve#proxying-to-a-backend-server
https://angular.dev/tools/cli/serve#proxying-to-a-backend-server

Defining the data fetch requirement 27

Defining the data fetch requirement
First, let’s define the requirement we are going to implement in a reactive way. We want to display the
list of recipes retrieved from the mocked backend on the home page, progressively building the user
story detailed in the View one – the landing page section of Chapter 2, Walking through Our Application:

Figure 3.1 – The landing page view

To do this, we need to fetch the list of recipes beforehand to display it to the user as cards, right? So,
the list of recipes represents the first data that we need to request, which is available in our recipes-
book-api server through the following endpoint:

GET /api/recipes

Please don’t forget to start the server as detailed in the Technical requirements section. Once the server is
started, you can check the result of the fetch API at http://localhost:8081/api/recipes.

In the following sections, we will see how we can implement the fetching data requirement in both
classic and reactive styles to understand the basic differences between them, and to see the benefits
the reactive programming gives us over the imperative one.

Fetching Data as Streams28

Exploring the classic pattern for fetching data
Let’s first have a look at the implementation of the classic pattern for fetching the list of recipes.

Defining the structure of your data

First and foremost, we need to define the structure of our data so that we can strongly type it. This
will allow us to take advantage of TypeScript’s type-checking features and catch type errors early.

We can use the Angular CLI to generate the Recipe model underneath the src/app/ core/
model folder:

$ ng g i Recipe

For convention purposes, we will change the name of the generated file from recipe.ts to recipe.
model.ts. Then, we will populate the interface with the specific properties of Recipe, as follows:

export interface Recipe {
id: number;
title: string;
ingredients: string;
tags?: string;
imageUrl: string;
cookingTime?: number;
prepTime?: number;
yield: number;
steps?: string;
rating:number;
}

One by one, we enter the properties of the recipe we are going to use, followed by the type of each
property. The description of each property is detailed in View two – the New Recipe interface section
of Chapter 2, Walking through Our Application.

For optional properties, we placed a question mark (?) just before the property’s type annotation
when declaring the interface to tell TypeScript that the property is optional.

Creating the fetching data service

The next step is to create an Angular service named RecipesService that will be responsible
for managing all the operations around the recipes. This service will encapsulate the create, read,
update, and delete (CRUD) operations and make them available to the various UI components. In
this chapter, we will only implement the read (fetch) operation.

Exploring the classic pattern for fetching data 29

Now, why do we create a service? Well, we do it to increase modularity and to ensure the reusability
of the service over the other components.

To generate the service underneath the core/services folder, we execute the ng g s command
under the core/services folder like so:

$ ng g s Recipes

Now that the service is generated successfully, let’s create and implement the method that will have
the responsibility of fetching the data. We will inject the HttpClient in the RecipesService
and define a method to retrieve the data. The service will look like this:

import { Injectable } from '@angular/core';
import { HttpClient } from '@angular/common/http';
import { Observable } from 'rxjs';
import { Recipe } from '../model/recipe.model';
import { environment } from 'src/environments/environment';
const BASE_PATH = environment.basePath

@Injectable({
providedIn: 'root'
})

export class RecipesService {

constructor(private http: HttpClient) { }

getRecipes(): Observable<Recipe[]> {
return this.http.get<Recipe[]>(`${BASE_PATH}/recipes`);
}
}

Let’s break down what is going on at the level of RecipesService. It’s nothing fancy – we have a
getRecipes() method that gets the list of recipes over HTTP and returns a strongly typed HTTP
response: Observable<Recipe[]>. This Observable represents the data stream that will be created
when you issue the HTTP GET request. When you subscribe to it, it will emit the list of recipes as a
JSON array and then completes. So, the stream represented by this HTTP request will be completed
after emitting the response data once.

As a best practice, we externalized BASE_PATH in the environment.ts file because, in many
cases, the server’s base path depends on the environment (such as testing or production). This way, it
is easier to update the paths in one place rather than updating all the services using it.

Fetching Data as Streams30

Note
Starting from Angular 15, the environment files are not shipped by default anymore. However,
you can choose to generate them on demand by executing $ ng g environments.

We’ve also injected the HttpClient dependency in the constructor as follows:

constructor(private http: HttpClient) { }

This technique is known as constructor injection. Angular’s built-in dependency injection system
will automatically provide the injected dependencies when an instance of the component or service
is created.

Plus, starting from version 14, Angular’s dependency injection system provided the inject()
utility function. This allows you to manually resolve and retrieve dependencies within a component
or a service like so:

private http= inject(HttpClient);

This approach is useful when you need to dynamically resolve dependencies or perform conditional
dependency injection based on runtime conditions.

We will use the constructor injection technique throughout the book. However, should you wish to
adopt the newer approach, you have the flexibility to do so.

Creating Angular standalone components

Now, we should create the component responsible for displaying the list of recipes named
RecipesListComponent under src/app/recipe-list. Before that, though, let’s just
stop here and explain a super interesting new type of component introduced in Angular 14: the
standalone component.

By definition, a standalone component is a self-contained component that doesn’t belong to any
NgModule and can be used by either other standalone components or module-based components.

Before Angular 14, we only had one way to create components:

 $ ng g c recipesList

This command will create a component named RecipesListComponent and add it to an
NgModule. Which module, though? If you specify --module in the command line, followed by the
path of your module, then the CLI will add the component in that specific module. If the --module
option is not set, then the CLI will check whether there’s a module in the same directory; if not, it
will check in the nearest parent directory. If neither of those options is the case, it will generate a new
module file in the same directory as the component and declare the component in that new module.

Exploring the classic pattern for fetching data 31

In short, the CLI will always end up associating the component to a module and adding it to the
module’s declaration array; otherwise, you will get a compilation error.

However, starting from Angular 14, you can decide to create a standalone component that doesn’t
belong to any NgModule by mentioning the --standalone flag in the command line:

 $ ng g c recipesList --standalone

Using this in our project, RecipesListComponent won’t be added to an NgModule, and
will contain the standalone: true flag inside the @Component decorator, as well as the
imports property:

@Component({
 selector: 'app-recipes-list',
 standalone: true,
 imports: [],
 templateUrl: './recipes-list.component.html',
 styleUrls: ['./recipes-list.component.scss'],
})

If the standalone component depends on other components, whether module-based or standalone, you
should mention those components in the imports array; otherwise, you will get a compilation error.

Standalone components can also be used by module-based components or other standalone components.
Plus, they can be used when loading routes, and in lazy loading. It’s also worth knowing that you can
create standalone directives and standalone pipes as well.

So far, so good! Now, why should you care? There are a few good reasons we should adopt standalone
components in our projects:

• Less code means less boilerplate to write, and hence, quicker build times, plus better code
organization, testing, and maintainability.

• It is easier to understand the component’s dependencies as they are mentioned directly in the
imports property of the standalone component. For a module-based component, you will
have to scan your component’s code and then check the module’s dependencies that are shared
by all the components belonging to that module.

• The power of standalone components lies in their isolation and self-contained nature. You
only import what is needed by your component, while module-based components sometimes
import useless dependencies used by other components in the same module.

Fetching Data as Streams32

Let’s suppose that we have a module “M” that imports “A,” “B,” and “C” components and “S1,”
“S2,” and “S3” services, and we have a “D” component that does not belong to that module
but depends on the component “B.” As “B” is a module-based component, then “D” should
import the entire module ‘M’; this leads to unnecessary dependencies as “D” does not need the
components “A” and “B” or the services “S1” and “S2.” So, integrating standalone components
gives us more flexibility to only import the components and services required, since standalone
components are self-contained and have their own sets of dependencies and logic. Consequently,
it eliminates redundant code, leading to a more optimized app.

• It makes the learning curve for beginner Angular developers less steep.

We will be using standalone components in our recipe app to adopt a modular and self-contained
approach. We will only keep the app component as a module-based component, even though we
can bootstrap the application using a standalone component. Here’s a schema representing our
component’s dependencies:

Figure 3.2 – The recipe app's components’ dependencies

The AppComponent parent component is a module-based component that imports the
HeaderComponent standalone component in the AppModule imports declaration.
HeaderComponent uses some PrimeNG external dependencies, so it needs to be imported in the
component’s imports declaration.

Exploring the classic pattern for fetching data 33

HomeComponent is a standalone component that will be routed to by AppComponent.
HomeComponent imports the RecipesListComponent standalone component in the component’s
imports declaration. The latter uses some PrimeNG external dependencies, so it needs to be imported
in the component’s imports declaration. All the code is available in the GitHub repository.

Note
For more information on standalone components, you can check https://angular.dev/
reference/migrations/standalone

Hopefully, the concept of standalone components is clear, so let’s move on to the following step.

Injecting and subscribing to the service in your component

In this section, we will inject the RecipesService service in the RecipesListComponent
component and call the getRecipes()method in ngOnInit() (when the component is initialized).
We will also make a read operation against the API server.

In order to get the data emitted, we need to subscribe to the returned Observable from the getRecipes()
method. Then, we bind the data to a local array property created in our component, called recipes.
The component’s code will look like this:

import { Component, OnInit } from '@angular/core';
import { Observable } from 'rxjs';
import { Recipe } from '../core/model/recipe';
import { RecipesService } from '../core/services/recipes.
Service';

@Component({
selector: 'app-recipes-list',
standalone: true,
imports: [CommonModule],
templateUrl: './recipes-list.component.html',
styleUrls: ['./recipes-list.component.scss']
})
export class RecipesListComponent implements OnInit {

recipes!: Recipe[];
constructor(private service: RecipesService) { }

ngOnInit(): void {
this.service.getRecipes().subscribe(result => {
this.recipes = result;

https://angular.dev/reference/migrations/standalone
https://angular.dev/reference/migrations/standalone

Fetching Data as Streams34

});
}
}

Now that we’ve retrieved the data and stored it in a local property, let’s see how we will display it in
the UI.

Displaying the data in the template

Now we can use the recipes property (which is available in the component) in our HTML template
to display the list of recipes in our UI. In our case, we are using the DataView PrimeNG component
to display the list of recipes as cards in a grid layout (further details about this component can be
found at https://primeng.org/dataview).

Of course, our goal is to focus not on the template code, but on the manipulation of the data inside
it. As you can see in the following example, we passed the recipes array to the value input of the
data view component (you can also use structural directives to render a data view component with
pure HTML if you don’t want to include a third-party dependency):

<div class="card">
<p-dataView #dv [value]="recipes" [paginator]="true"
[rows]="9" filterBy="name" layout="grid">
/** Extra code here **/
</p-dataView>
</div>

This is the basic pattern for collecting data, which you would have discovered back when you started
learning about Angular, so you have likely seen something like this before.

Now there’s just one thing left – you should handle the unsubscription of the Observable, as this code
manages subscriptions manually. Otherwise, the Observable subscription will stay alive after the
component has been destroyed, and the memory’s reference will not be released, causing memory
leaks. That’s why you should always be careful of this when manually subscribing to Observables
inside Angular components.

Note
Although HttpClient Observables unsubscribe automatically after the server request
responds or times out, we will still demonstrate how to handle their unsubscription to secure
our implementation and showcase best practices. This will also serve as a showcase for handling
unsubscription with other Observables.

https://primeng.org/dataview

Exploring the classic pattern for fetching data 35

Managing unsubscriptions

There are two commonly used ways to manage unsubscriptions: the imperative pattern and the
declarative reactive pattern. Let’s look at both patterns in detail.

Imperative unsubscription management

Imperative unsubscription means that we manually call the unsubscribe() method on the
subscription object that we manage ourselves. The following code snippet illustrates this:

export class RecipesListComponent implements OnInit,
OnDestroy {
 recipes!: Recipe[];
 subscription: Subscription;
 constructor(private service: RecipesService) { }

ngOnInit(): void {
 this.subscription=this.service.getRecipes()
 .subscribe(result => {
 this.recipes = result;
});
}

ngOnDestroy(): void {
 this.subscription?.unsubscribe();
}

Here, we simply store the subscription inside a variable called subscription and unsubscribe
from it in the ngOnDestroy() lifecycle hook.

This works fine, but it is not a recommended pattern. There is a better way, using the power of RxJS.

Declarative unsubscription management

The second unsubscription method is cleaner and far more declarative, using the RxJS takeUntil
operator. However, before we dive into this pattern, let’s gain an understanding of the role of takeUntil
using the following marble diagram:

Fetching Data as Streams36

Figure 3.3 – The takeUntil marble diagram

The takeUntil() operator emits values from the source Observable (the first timeline) until the
Observable notifier, which is given as input (the second timeline), emits a value. At that time,
takeUntil() will stop the emission and complete. In the marble diagram, the source Observable
emitted the values of a, b, c, and d – so takeUntil() will emit them, respectively. After that, the
Observable notifier emits z, then takeUntil() will stop emitting values and will be completed.

In our application, the takeUntil operator will help us keep the subscription alive for a period
that we define. We want it to be alive until the component has been destroyed, so we will create an
RxJS subject that will emit a value when the component has been destroyed. Then, we will pass this
subject to takeUntil as input:

export class RecipesListComponent implements OnInit,
OnDestroy {
 recipes!: Recipe[];
 destroy$ = new Subject<void>();
 constructor(private service: RecipesService) { }

ngOnInit(): void {
 this.service.getRecipes().pipe(
 takeUntil(this.destroy$)).
 subscribe(result => {
 this.recipes = result;
 });
}

ngOnDestroy(): void {
 this.destroy$.next();
 this.destroy$.complete();

}
}

Exploring the classic pattern for fetching data 37

Note
The $ sign is an informal convention that is used to indicate that the variable is an Observable.

The first thing you might notice here is that it’s less code than the first approach. Furthermore, when
we call unsubscribe() on a returned subscription object (the first way), there’s no way we can
be notified that the unsubscription happened. However, using takeUntil(), we will be notified
of the Observable completion through the completion handler.

It is worth noting that this implementation can be further enhanced by using the takeUntilDestroyed
operator introduced in Angular 16. This operator simplifies Observable subscription management in
your Angular components and directives. It automatically completes subscriptions when the associated
component or directive is destroyed, eliminating the need for manual cleanup in the ngOnDestroy
lifecycle hook.

You only have to import the takeUntilDestroyed operator from the @angular/core/
rxjs-interop package as follows:

import { takeUntilDestroyed } from '@angular/core/rxjs-interop';

Then, we use this operator within the pipe operator of our subscription. The previous code will look
like this after using takeUntilDestroyed:

export class RecipesListComponent {
 recipes!: Recipe[];
 constructor(private service: RecipesService) {
 this.service.getRecipes().pipe(takeUntilDestroyed())
 .subscribe(result=>this.recipes = result);
 }
}

As you can see, the manual cleanup code in the ngOnDestroy lifecycle hook has been removed along
with the destroy$ subject, resulting in a more concise and readable component implementation.

The takeUntilDestroyed() operator will automatically handle the subscription cleanup when
RecipesListComponent is destroyed.

Apart from the takeUntil and takeUntilDestroyed operators, there are other operators that
manage unsubscription for you in a more reactive way. The following are some examples:

• take(X): This emits x values and then completes (will no longer emit values). For example,
take(3) will emit three values from the given Observable and then complete. However,
bear in mind that if your network is slow and the xth emission didn’t happen, then you have
to unsubscribe manually.

Fetching Data as Streams38

• first(): This emits the first value and then completes.

• last(): This emits the last value and then completes.

This was the classic pattern that we have all learned as a beginner, and it is a relatively valid way for
fetching data. To sum up, the following diagram describes all the steps that we walked through:

Figure 3.4 – The classic pattern workflow

However, there is another pattern that we can use, which is much more declarative and reactive and
has many advantages. We’ll discover it next!

Exploring the reactive pattern for fetching data
The idea behind this reactive pattern is to keep and use the Observable as a stream throughout the
application. Don’t worry – this will become more apparent to you as you explore this section. Let’s
get started.

Retrieving data as streams

To start using the reactive pattern, instead of defining a method to retrieve our data, we will declare
a variable inside our service:

import { Injectable } from '@angular/core';
import { HttpClient } from '@angular/common/http';

import { Recipe } from '../model/recipe';
import { environment } from 'src/environments/environment';
const BASE_PATH = environment.basePath

Exploring the reactive pattern for fetching data 39

@Injectable({
providedIn: 'root'
})
export class RecipesService {

recipes$ = this.http.get<Recipe[]>(
`${BASE_PATH}/recipes`);
constructor(private http: HttpClient) { }
}

Here, we are declaring the recipes$ variable as the result of HTTP GET, which is either an Observable
or the data stream. Think of every piece of data that changes over time as a stream and declare it as
an Observable in a separate service. This will make it accessible throughout the app and give us more
flexibility to manipulate it in different parts of the application.

Defining the stream in your component

Now, in RecipesListComponent, we are going to do the same thing we did in the classic pattern
– that is, declare a variable holding the stream returned from our service. However, this time, the
variable is the Observable we created in RecipesService:

import { Component, OnDestroy, OnInit } from '@angular/core';
import { RecipesService } from '../core/services/recipes.
Service';

@Component({
selector: 'app-recipes-list',
standalone: true,
imports: [CommonModule],
templateUrl: './recipes-list.component.html',
styleUrls: ['./recipes-list.component.css']
})
export class RecipesListComponent implements OnInit {

recipes$= this.service.recipes$;

constructor(private service: RecipesService) { }
}

But wait! We need to subscribe in order to get the emitted data, right? That’s absolutely correct. Let’s
see how we will do it.

Fetching Data as Streams40

Using the async pipe in your template

For this pattern, we will not subscribe manually but instead, use a better way, the async pipe. The
async pipe makes rendering values emitted from the Observable easier.

First of all, it automatically subscribes to the input Observable. Then, it returns the latest value emitted.
Best of all, when the component has been destroyed, it automatically unsubscribes to avoid any
potential memory leaks. This means there is no need to manually clean up any subscriptions when
the component has been destroyed. That’s amazing!

So, in the template, we bind to an Observable using the async pipe. As recipes describes the array
variable that the values are emitted into, we can use it in the template as follows:

<div *ngIf="recipes$ |async as recipes" class="card">
<p-dataView #dv [value]="recipes" [paginator]="true"
[rows]="9" filterBy="name" layout="grid">
/** Extra code here **/
</p-dataView>
</div>

As you may have noticed, the <div> element contains a *ngIf structural directive. This directive
conditionally renders its child elements based on the truthiness of the recipes$ | async expression.

The recipes$ | async expression subscribes to the recipes$ Observable and asynchronously
renders the child elements of the <div> element (which is the DataView component in our case)
when the Observable emits a value. It also unsubscribes and cleans up the subscription when the
element is removed from the DOM (Document Object Model).

The *ngIf directive is followed by as recipes, which assigns the emitted value from the Observable
to the local recipes variable. This allows us to access the emitted value within the scope of the
<div> element and its children using the recipes variable.

By using the async pipes, we don’t need the ngOnInit lifecycle hook, as we will not subscribe to the
Observable notifier in ngOnInit() and unsubscribe from ngOnDestroy() as we did in the
classic pattern. Instead, we simply set a local property in our component and we are good to go – we
don’t need to handle the subscription and unsubscription on our own!

Note
The full code of the HTML template is available in the GitHub repository.

Highlighting the advantages of the reactive pattern 41

To sum up this pattern, the following diagram describes all the steps we walked through:

Figure 3.5 – The reactive pattern workflow

Now that we have explained the reactive pattern in action, in the next section, let’s review its advantages.

Highlighting the advantages of the reactive pattern
I think you might have guessed the first advantage of the reactive pattern – we don’t have to manually
manage subscriptions and unsubscriptions, and what a relief – but there are a lot of other advantages.
Let’s look at the other advantages in more detail.

Using the declarative approach

Let’s shed light on why we don’t explicitly use the subscribe() method. What’s wrong with
subscribe()? Well, subscribing to a stream inside our component means we are allowing imperative
code to leak into our functional and reactive code. Using the RxJS Observables does not make our
code reactive and declarative systematically.

But what does declarative mean, exactly? Well, first, we will nail down some key terms. Then, let’s
iterate from there:

• A pure function is a function that will always return identical outputs for identical inputs,
no matter how many times it is called. In other words, the function will always predictably
produce the same output.

Fetching Data as Streams42

• Declarative refers to the use of declared functions to perform actions. You rely upon pure
functions that can define an event flow. With RxJS, you can see this in the form of Observables
and operators.

So, why should you care? Well, you should care because the declarative approach using RxJS operators
and Observables has many advantages, namely, the following:

• It makes your code cleaner and more readable.

• It makes your code easier to test because it is predictable.

• It makes you able to cache the stream output given a certain input, and this will enhance
performance. We will explore this in more detail in Chapter 7, Sharing Data between Angular
Components, Chapter 9, Demystifying Multicasting, and Chapter 10, Boosting Performance with
Reactive Caching.

• It enables you to leverage RxJS operators and transform and combine streams coming from
different services or even within the same service. This is what we will see in Chapter 5, Combining
Streams, and Chapter 6, Transforming Streams.

• It helps you react easily to user interactions in order to execute an action.

So, more declarative means more reactive. However, be careful. This doesn’t mean you can’t ever call
the subscribe() method. It is unavoidable in some situations to trigger the Observable notifier.
But try to ask yourself: do I really need to subscribe here? Can I instead compose multiple streams
together, or use RxJS operators, to achieve what I need without subscribing? Aside from cases where
it is unavoidable, never use subscribe().

Now, let’s move to the change detection concept and see how it can improve performance.

Using the change detection strategy of OnPush

The other really cool thing is that we can use the changeDetection strategy, OnPush.

Change detection is one of the most powerful features of Angular. It is about detecting when the
component’s data changes and then automatically re-rendering the view or updating the DOM to
reflect that change. The default strategy of “check always” means that, whenever any data is mutated
or changed, Angular will run the change detector to update the DOM. So, it is automatic until
explicitly deactivated.

Highlighting the advantages of the reactive pattern 43

In the OnPush strategy, Angular will only run the change detector when one of the following occurs:

• Condition 1: A reference of a component’s @Input property changes (bear in mind that when
the input property object is mutated directly, then the reference of the object will not change and,
consequently, the change detector will not run. In this case, we should return a new reference
of the property object to trigger the change detection).

• Condition 2: A component event handler is emitted or gets triggered.

• Condition 3: A bound Observable via the async pipe emits a new value.

Therefore, using the ChangeDetection OnPush strategy minimizes any change detection cycles
and will only check for changes to re-render our components in the preceding cases. This strategy
applies to all child directives and cannot be overridden.

In our scenario, we only need the change detector to run if we get a new value; otherwise, we get
useless updates. So, our scenario matches Condition 3. The good news is that we can use the change
detection onPush strategy as follows:

import { ChangeDetectionStrategy, Component} from
'@angular/ core';

@Component({
 selector: 'app-recipes-list',
 standalone: true,
 imports: [CommonModule],
 templateUrl: './recipes-list.component.html',
 styleUrls: ['./recipes-list.component.scss'],
 changeDetection: ChangeDetectionStrategy.OnPush
})

If we remember to use the async pipe as much as possible, we will see a couple of advantages:

• We will make it easier to later switch from the default change detection strategy to OnPush
if we need to

• We will run into fewer change detection cycles using OnPush

In general, using the async pipe will help you to achieve a high-performing UI, and it will have a lot
of impact if your view is doing multiple tasks.

Fetching Data as Streams44

And here’s the output of our UI after all of that work in the chapter:

Figure 3.6 – An overview of the list of recipes

So, after all that, in a nutshell, using the reactive pattern for fetching data will improve the performance
of your application, the change detection strategy, and the code clarity and readability. As well as that,
it will make the code more declarative and reactive, it will make it easier to leverage RxJS operators,
and it will make it easier to react to user actions.

Now that we’ve established the reactive pattern, let’s conclude this chapter by exploring an intriguing
feature introduced in Angular 17, understanding its benefits, and applying it in practice within our
recipe app.

Diving into the built-in control flow in Angular 17
Before Angular 17, control flow within templates was predominantly managed using structural
directives. Let’s start by exploring the structural directives.

Diving into the built-in control flow in Angular 17 45

Structural directives

Structural directives are responsible for altering the structure of the DOM and orchestrating how
elements are added, removed, or repeated based on certain conditions. Here’s the list of available
directives in Angular to control the execution of the template:

• *ngIf: This structural directive is used to conditionally include or exclude elements from
the DOM based on the truthiness of an expression. For instance, consider the following code
snippet, which displays the message No items found if the items array is empty:

<div *ngIf="items.length === 0">No items found </div>

To display alternative content when the condition is false, we can use an else statement, like so:
<div *ngIf="items.length === 0; else itemsFound">
 <div>No items found</div>
</div>
<ng-template #itemsFound>
 <div>Items found</div>
</ng-template>

In this code, if the items array is not empty, the content inside the else block defined by
the ng-template element with the #itemsFound reference will be displayed, indicating
Items found.

• *ngFor: This structural directive is used for iteration. It repeats a section of HTML for each
item in an iterable collection. For example, this code renders a list of products one by one:

 <li *ngFor="let product of products">
 {{ product.name }}

In order to improve performance, you can optionally add a custom trackBy function that
provides a unique identifier for each item in the list. This is achieved by modifying the previous
code, shown as follows:

 <li *ngFor="let product of products; trackBy:
 trackProduct">{{ product.name }}

Fetching Data as Streams46

Then, define the trackProduct function in your component class to return the unique
identifier of each product item as follows:

trackProduct(index: number, product: Product) {
 return product ? product.id : undefined;
}

This way, Angular can more efficiently track changes within the list. It will only update the
DOM elements that actually changed, instead of re-rendering the entire list for minor changes.
This leads to a smoother user experience, especially when dealing with large or frequently
updated lists.

• ngSwitch: This structural directive is used to conditionally include or exclude elements from
the DOM based on the evaluated value of a provided expression. It is commonly used when
there are multiple conditions to be evaluated. Here’s an example that renders different views
based on user roles:

<div [ngSwitch]="userRole">
 <admin-dashboard *ngSwitchCase="admin" >
 </admin-dashboard>
 <user-dashboard *ngSwitchCase="'user'" >
 </user-dashboard>
 <guest-dashboard *ngSwitchDefault >
 </guest-dashboard>
</div>

Now that we’ve explored the structural directives in Angular, which provided a mechanism for
dynamically altering the structure of the DOM based on certain conditions, we can delve into the next
evolution of control flow management within Angular templates. With the release of Angular version
17, a new paradigm emerges: the built-in control flow. Let’s delve into the details of this exciting new
feature and explore how it enhances the Angular development experience.

Built-in control flows

Built-in control flows offer a more concise and declarative way to manage control flow logic directly
within your component templates, eliminating the need for structural directives. Here are the new
built-in control flow statements.

Built-in if statement

The @if statement conditionally renders content based on a Boolean expression.

Let’s consider the previous example of *ngIf:

<div *ngIf="items.length === 0; else itemsFound">
 <div>No items found</div>

Diving into the built-in control flow in Angular 17 47

</div>
<ng-template #itemsFound>
 <div>Items found</div>
</ng-template>

Using the new @if and @else statements, the example will now look like this:

@if (items.length === 0) {
 <div> No items found </div>
} @else {
<div> Items found </div>
}

As you may have noticed, there are differences in syntax between the two code blocks. The @if and @
else statements replace the *ngIf directive and the ng-template element by providing a more
intuitive and JavaScript-like syntax for handling conditional rendering within component templates.
You can optionally use an @else statement to provide alternative content when the condition
evaluates to false.

Furthermore, while *ngIf requires importing CommonModule to function properly, @if is a
standalone statement that can be directly used within the template without any additional imports.

Additionally, the @if block may have one or more associated @else blocks. After an @if block, you
can optionally chain any number of @else if blocks and one @else block as follows:

@if (age >= 18) {
 You are an adult.
} @else if (age >= 13) {
 You are a teenager.
} @else {
 You are a child.
}

Built-in for-loop statement

The @for statement iterates over a collection of data and renders content for each item.

Let’s take the previous *ngFor example again:

 <li *ngFor="let product of products; trackBy:
 trackProduct">{{ product.name }}

Fetching Data as Streams48

Using the new @for statement, the example will look like this:

@for (product of products; track product.id) {
 {{ product.name }}
}

Replacing the previously optional trackBy function used with *ngFor is the track function
within the @for statement. Both approaches serve the same core purpose, enabling Angular to
efficiently track changes within your iterated lists by focusing on the unique identifier of each item
rather than its position in the array.

Note
While trackBy was optional, its absence often led to performance issues. However, using
track is now mandatory within @for loops, ensuring optimal rendering speed by default.

A significant advantage of track is its ease of use compared to trackBy. You can directly include
an expression representing the unique identifier of each item within the template itself, eliminating
the need for a separate trackBy method in your component class (trackProduct in the previous
example). This streamlines your code and improves readability.

The transition to track is designed to be seamless for developers who have already implemented
trackBy functions and wish to migrate without removing those methods. They can seamlessly retain
the existing methods and simply update the template as follows:

@for (product of products; track trackProduct($index, product) {
 {{ product.name }}
}

This ensures backward compatibility and a smooth transition process.

In essence, track offers a mandatory and simplified approach to change tracking within @for loops,
promoting optimal performance and a more concise syntax in your Angular applications.

Note
It is worth mentioning that the @for statement uses a new diffing algorithm and offers a more
optimized implementation compared to *ngFor. This enhancement results in up to 90%
faster runtime according to community framework benchmarks. For more information, refer
to https://krausest.github.io/js-framework-benchmark/current.html.

https://krausest.github.io/js-framework-benchmark/current.html

Diving into the built-in control flow in Angular 17 49

Furthermore, the built-in @for loop has a shortcut to deal with empty collections, referred to as the
optional @empty block:

@for (product of products; track product.id) {
 {{ product.name }}
} @empty {
 Empty list of products
}

The @empty block offers a convenient and efficient way to display informative messages or alternative
content when no data is available. It promotes a better user experience and keeps your component
logic well-organized.

We went into a bit of detail there, so to summarize, here are the key benefits of the new @for statement:

• The @for syntax offers a cleaner and more readable way to iterate over lists, display alternative
content when no data is available, and define unique identifiers for the list items.

• By requiring track, @for guarantees efficient DOM updates, leading to a smoother
user experience.

• The @for loop leverages a new, optimized diffing algorithm compared to *ngFor. This has
led to significant performance improvements, as evidenced by community benchmarks.

In essence, the @for statement provides an all-around upgrade for iterating over collections in your
Angular applications. It empowers developers with a cleaner, more performant, and more user-friendly
way to manage data within templates.

Built-in switch statement

The @switch statement selects content based on a matching expression.

Let’s take the previous example of *ngSwitch:

<div [ngSwitch]="userRole">
 <admin-dashboard *ngSwitchCase="admin" >
 </admin-dashboard>
 <user-dashboard *ngSwitchCase="'user'" >
 </user-dashboard>
 <guest-dashboard *ngSwitchDefault >
 </guest-dashboard>
</div>

Using the new @switch statement, it will now look like this:

@switch (userRole) {
 @case ('admin') { <admin-dashboard/> }

Fetching Data as Streams50

 @case ('user') { <user-dashboard/> }
 @default { <guest-dashboard/> }
}

As you may have noticed, both @switch and *ngSwitch achieve conditional rendering in Angular
templates. However, @switch offers a more concise and modern approach that aligns better with
current JavaScript practices. This syntax is more intuitive and closer to standard JavaScript switch
statements, making code easier to understand and maintain.

The @default block is optional and can be excluded. In the absence of a matching @case and if
there’s no @default block provided, nothing will be displayed.

Including built-in control flows in our recipe app

Now that we’ve learned about the new built-in control flow, let’s take advantage of it and update our
template code with this new syntax.

The HTML code of our RecipesListComponent.html file uses the Angular structural directives
*ngIf (used to conditionally render the data view when the recipes$ Observable returns a
value) and *ngFor (used to iterate over the list of recipes and render a card for each recipe). Here
is the code snippet:

<div *ngIf="recipes$ | async as recipes" class="card">
 <p-dataView #dv [value]="recipes" [paginator]="true"
 [rows]="9" filterBy="name" layout="grid">
 <ng-template let-recipes pTemplate="gridItem">
 <div class="grid grid-nogutter">
 <div class="col-12" class="recipe-grid-item card"
 *ngFor="let recipe of recipes">
 /** Extra code here **/
 </div>
 </div>
 </ng-template>
 </p-dataView>
</div>

Now, let’s update this code using the new built-in control flow:

@if (recipes$ | async; as recipes) {
 <div class="card">
 <p-dataView #dv [value]="recipes" [paginator]="true"
 [rows]="9" filterBy="name" layout="grid">
 <ng-template let-recipes pTemplate="gridItem">
 <div class="grid grid-nogutter">
 @for (recipe of recipes; track recipe.id) {

Diving into the built-in control flow in Angular 17 51

 <div class="col-12"
 class="recipe-grid-item card">
/** Extra code here **/
 </div>
 }
 </div>
 </ng-template>
 </p-dataView>
 </div>
}

We replaced *ngIf with @if to conditionally render the data view when the recipes$ Observable
returns a value.

We also replaced *ngFor with @for to iterate over the list of recipes and render a card for each
recipe. We included within the @for statement the track function, track recipe.id. The recipe’s
ID is the unique identifier of the recipe.

We now have a refreshed template that not only is more performant but also aligns seamlessly with
the latest version of Angular.

Additionally, if you have existing projects, you can easily migrate them to leverage the new built-in
flow syntax by using the following migration schematic:

ng generate @angular/core:control-flow

Benefits of built-in control flow

There are several benefits to using Angular’s built-in control flow syntax, as follows:

• Improved readability: The syntax aligns more closely with JavaScript, making the code easier
to understand and maintain.

• Reduced boilerplate: You can remove the need for separate directive imports and properties.

• Built-in availability: No additional imports are required; the feature is readily available out of
the box in your templates.

• Enhanced type safety: The compiler provides more robust type narrowing, resulting in improved
type safety and error detection.

• Performance improvements: While performance improvements can vary depending on your
application’s structure and data size, the @for statement utilizes a more streamlined diffing
algorithm compared to *ngFor. This can potentially lead to smoother rendering and a better
user experience, especially when dealing with large or frequently updated lists.

Fetching Data as Streams52

In short, the built-in control flow syntax fosters a more intuitive, concise, and performant approach
to writing Angular templates. It promotes code readability, reduces boilerplate, and offers enhanced
type safety.

Summary
In this chapter, we explored the classic and reactive patterns for fetching data. We learned about the
imperative way in which to manage unsubscriptions and the reactive pattern. We explained some
useful RxJS operators, and also shed light on the advantages of using the reactive pattern and learned
about all the technical aspects around it. We also learned about standalone components, a new
edition to Angular, as well as how to create them, and what their benefits are. Lastly, we delved into
the new built-in control flow introduced in Angular 17, covering its various applications, syntax, and
associated benefits.

Now that we have retrieved our data as RxJS streams, in the next chapters, let’s start playing with
those streams to react to user actions using RxJS streams and, consequently, build our RecipesApp
application in a reactive way. In the next chapter, we will focus on the reactive patterns for error
handling and the different strategies that are available.

4
Handling Errors Reactively

Errors in programming happen all the time, and RxJS is no exception. Handling those errors is a crucial
part of every application. As I always say to my students in every training session, implementing a
process that only covers happy cases determines the failure of your application. However, in RxJS,
there are a lot of error handling strategies that you need to learn in order to handle errors efficiently.

We will start by explaining the contract of the Observable in RxJS, which is crucial to understanding
what comes after. Then, we will learn the different error handling patterns and the operators provided
by RxJS for that purpose. Next, we will shed light on the different error handling strategies and the use
case of every strategy. Finally, we will practice one of the error handling strategies in our recipe app.

In this chapter, we’re going to cover the following main topics:

• Understanding the anatomy of an Observable contract

• Exploring error handling patterns and strategies

• Handling errors in our recipe app

Technical requirements
This chapter assumes that you have a basic understanding of RxJS. The source code of this chapter
(except the samples) is available at https://github.com/PacktPublishing/Reactive-
Patterns-with-RxJS-and-Angular-Signals-Second-Edition/tree/main/
Chap04.

Please also refer to the Technical requirements section in Chapter 3, Fetching Data as Streams.

https://github.com/PacktPublishing/Reactive-Patterns-with-RxJS-and-Angular-Signals-Second-Edition/tree/main/Chap04
https://github.com/PacktPublishing/Reactive-Patterns-with-RxJS-and-Angular-Signals-Second-Edition/tree/main/Chap04
https://github.com/PacktPublishing/Reactive-Patterns-with-RxJS-and-Angular-Signals-Second-Edition/tree/main/Chap04

Handling Errors Reactively54

Understanding the anatomy of an Observable contract
Understanding the anatomy of an Observable contract is crucial in order to learn error handling
patterns. Let’s dig deep into the Observable execution timeline by exploring the marble diagram
explained in Chapter 1, Diving into the Reactive Paradigm:

Figure 4.1 – The marble diagram elements

Let’s examine the previous diagram. If we take a look at the stream’s lifecycle, we can figure out that
a stream has two final statuses:

• Completion status: Where the stream has ended without errors and will not emit any further
values. It is a shutdown, i.e., the Observable completes.

• Error status: Where the stream has ended with an error and will not emit any further values
after the error is thrown. It is also a shutdown.

Only one of those two states can occur, not both, and every stream can error out once. This is the
Observable contract.

At this point, you may be wondering, How we can recover from an error then? This is what we will
be learning in the following sections.

Exploring error handling patterns and strategies 55

Exploring error handling patterns and strategies
The first classic pattern we will learn for handling errors is based on the subscribe() method. The
subscribe() method takes as input the object Observer, which has three callbacks:

• A success callback: This is called every time the stream emits a value and receives as input
the value emitted

• An error callback: This is called when an error occurs and receives as input the error itself

• A completion callback: This is called when the stream completes

 This is a basic example of a subscribe implementation:

stream$.subscribe({
 next: (value) => console.log('Value Emitted', value),
 error: (error) => console.log('Error Occurred', error),
 complete: () => console.log('Stream Completed'),
});

In the code sample, stream$ represents our Observable, and we passed an object that has three
callbacks to the subscribe method:

• A success callback that logs the received value in the console

• An error callback that logs the received error in the console

• A complete callback that logs the stream completion

So, in order to handle errors, the first possibility is implementing the error callback and tracing the
error message, displaying an error popup to the user, or doing any other custom behavior. Pretty simple!

But wait! In Chapter 3, Fetching Data as Streams, we saw that we need to avoid the explicit subscribe()
to streams and learned the reasons and limitations behind this, namely, that it is impossible to recover
from the error or emit an alternative fallback.

That’s right; in most cases, we will not be using subscribe() explicitly. I just wanted to show you
the classic way to do this, which is not the best way. Instead, let’s see some advanced error handling
patterns and learn more operators that will help us in the error handling process.

I think you may be familiar with the try-catch statement available in many programming languages,
which consists of a try block followed by one or more catch clauses. In the try block, you place
your risky statements, and inside catch, you handle the possible exceptions:

 try {
 // risky statements
 }
 catch(error) {

Handling Errors Reactively56

 // handle exceptions
 }

RxJS ships with the catchError operator, which provides us with something similar to the try-catch
statement. The catchError operator is defined in the RxJS official documentation as an operator
that “catches errors on the Observable to be handled by returning a new Observable or throwing an error.”

The catchError operator subscribes to the source Observable that might error out and emits values
to the observer until an error occurs. When an error happens, the catchError operator executes a
callback function, passing in the error. This callback function is responsible for handling errors and
always returns an Observable.

If there are no errors, the output Observable returned by catchError works exactly the same way
as the source Observable.

You can use catchError multiple times in an Observable chain, like so:

import { catchError} from 'rxjs/operators';

//stream$ is the source Observable that might error out
stream$.pipe(
 catchError(error => {
 //handle the error received
 })
).subscribe()

After calling the catchError operator, we need to implement the callback function that will handle
the error. When it comes to handling errors, there are three strategies:

• The replace strategy

• The rethrow strategy

• The retry strategy

Let’s break down these three strategies one by one in the following sections and explore some examples
and use cases.

Exploring error handling patterns and strategies 57

The replace strategy

The replace strategy is named as such because the Observable returned by the error handling function
will replace the Observable that has just errored out. This replacement Observable is then subscribed
to, and its values are used instead of the errored-out input Observable. The following code is an
example of this:

import { from, of } from 'rxjs';
import { catchError, map } from 'rxjs/operators';

const stream$ = from(['5', '10', '6', 'Hello', '2']);
stream$
 .pipe(
 map((value) => {
 if (isNaN(value as any)) {
 throw new Error('This is not a number');
 }
 return parseInt(value);
 }),
 catchError((error) => {
 console.log('Caught Error', error);
 return of();
 })
)
 .subscribe({
 next: (res) => console.log('Value Emitted', res),
 error: (err) => console.log('Error Occurred', err),
 complete: () => console.log('Stream Completed'),
 });

//output
Value Emitted 5
Value Emitted 10
Value Emitted 6
Caught Error Error: This is not a number
Stream Completed

Let’s break down what is happening in this example.

First, we have an Observable, stream$, created from an array of string values, ['5', '10',
'6', 'Hello', '2'], using the from creation operator. This operator creates an Observable
that, when subscribing to it, will emit the array’s values one by one and then complete.

Handling Errors Reactively58

Note
For more details about the from operator, please refer to the official documentation: https://
rxjs.dev/api/index/function/from#description.

Next, we combined two operators in the pipe method of stream$:

• The map operator: This is used to transform the string values emitted to integers using the
parseInt() method. If the value emitted is not a number, then an error is thrown with a
"This is not a number" message.

• The catchError operator: We pass the error handling function to it, which will log the
caught error and return of(). of() creates an Observable that has no values to emit, so it
will immediately complete.

Then, we subscribe to the stream$ and log a custom message in every callback to see what exactly
happens at execution time.

At execution time, stream$ will emit the string values of the array one by one ('5', '10', and '6',
respectively). The map takes those values one by one as input and returns 5, 10, and 6, respectively.
catchError() takes the values emitted from the map operator and forwards them as output; the
error handling function will not get called, as there is no error. Hence, the subscribers will receive
5, 10, and 6.

The catchError() operator comes into play when the 'Hello' value is emitted. The map
operator will throw an error, and the error handling function in catchError() will, consequently,
get called. The error handling function, in our case, simply logs an error in the console and returns
an Observable (created by the of() operator) that will immediately complete. This Observable will
replace the current Observable that had an error; that’s why we call it the replacement Observable.

catchError() will subscribe under the hood to the returned Observable. The of() Observable
will complete immediately. Then, stream$ is completed, so the next value, '2', will not get emitted.

As you may have noticed, the error callback in the subscribe() method will not get called because
we handled it in catchError. I added it on purpose to understand the behavior of error handling
with catchError. Therefore, when an error occurs, the current stream that had an error out will
get replaced by the stream returned from the catchError(); the values of the replaced Observable
will then get emitted instead of the original stream values. This is what we call fallback values.

So, to summarize, the replace strategy is useful when we want to handle the error inside the stream
itself and don’t want the error to get propagated to the subscribers.

https://rxjs.dev/api/index/function/from#description
https://rxjs.dev/api/index/function/from#description

Exploring error handling patterns and strategies 59

The rethrow strategy

The rethrow strategy consists of rethrowing the error or, in other words, propagating the error to the
subscribers of the output Observable of catchError. Notifying the subscribers about the error will
help them perform side effects, such as displaying an error message in a popup.

To understand more about this strategy, let’s look at the following example; it is the same as the one
in the previous section, with the only difference being the error handling function:

import { from, throwError } from 'rxjs';
import { catchError, map } from 'rxjs/operators';

const stream$ = from(['5', '10', '6', 'Hello', '2']);
stream$
 .pipe(
 map((value) => {
 if (isNaN(value as any)) {
 throw new Error('This is not a number');
 }
 return parseInt(value);
 }),
 catchError((error) => {
 console.log('Caught Error', error);
 return throwError(() => error);
 })
)
 .subscribe({
 next: (res) => console.log('Value Emitted', res),
 error: (err) => console.log('Error Occurred', err),
 complete: () => console.log('Stream Completed'),
 });

//output
Value Emitted 5
Value Emitted 10
Value Emitted 6
Caught Error Error: This is not a number
Error Occurred Error: This is not a number

In the error handling function, we return an Observable that is created using the throwError
operator. The throwError operator creates an Observable that never emits any value; instead, it
errors out immediately using the same error caught by catchError. In this way, the error will get
pushed to the subscribers and can be further handled by the rest of the Observable chain if needed.

Handling Errors Reactively60

As you may have noticed, the same error was logged both in the catchError block and the subscriber
error handler function, as expected, so the rethrow strategy has worked.

Please note that in the previous examples, we simply log the error in the console for demonstration
purposes. However, in a real-world scenario, you can do much more, such as showing messages to
the users.

The retrying strategy

With the retry strategy, you can retry the Observable using the retry operator to give another
chance to the stream. The retry operator retries an Observable a specific number of times and is
useful for retrying HTTP requests or connections. We can see an example here:

import { catchError, map, retry } from 'rxjs/operators';
import { from, throwError } from 'rxjs';

const stream$ = from(['5', '10', '6', 'Hello', '2']);
stream$
 .pipe(
 map((value) => {
 if (isNaN(value as any)) {
 throw new Error('This is not a number');
 }
 return parseInt(value);
 }),
 retry(2),
 catchError((error) => {
 console.log('Caught Error', error);
 return throwError(() => error);
 })
)
 .subscribe({
 next: (res) => console.log('Value Emitted', res),
 error: (err) => console.log('Error Occurred', err),
 complete: () => console.log('Stream Completed'),
 });

//output
Value Emitted 5
10
6
5
10

Exploring error handling patterns and strategies 61

6
5
10
6

Caught Error Error: This is not a number
Error Occurred Error: This is not a number

As you may have noticed, the values of the source stream were emitted two times since we called the
retry operator with 2 as a parameter; we gave the Observable two chances before throwing the error.

Now, in this case, we are retrying immediately. However, what if we want to retry in only specific
cases or wait for a delay before retrying? This is where the retryWhen operator comes into play!

To understand the retryWhen operator, there’s nothing better than a marble diagram:

Figure 4.2 – The retryWhen operator

Let’s explain what’s going on here:

• The Observable in the first line is the notifier Observable that is going to determine when the
retry should occur

• The Observable in the second line is the source Observable that will error out after emitting
1 and 2

When we subscribe to the source Observable it will emit 1 and 2. The retryWhen forwards those
values as output. Then, the source Observable errors out and completes.

Nothing will happen until the notifier Observable emits the first value, r. At that moment, the source
Observable will get retried, and as you see, 1 and 2 get emitted again. In fact, retryWhen will subscribe
to the source Observable because it is already completed, so even if it is completed, it can be retried.

The notifier Observable is then going to emit another r value, and the same thing occurs.

Handling Errors Reactively62

Next, retryWhen starts to emit the first 1 value, but soon after, the notifier Observable completes;
that’s why the 2 value will not get emitted.

As you may have guessed, retryWhen retries the source Observable each time the notifier emits a
value! This means that you can use this notifier Observable to emit values at the moment you want your
source Observable to get retried and complete it at the moment you want your retry attempts to stop.

Now, let’s have a look at the signature of the retryWhen operator:

export declare function retryWhen<T>(notifier: (errors:
Observable<any>) => Observable<any>):
MonoTypeOperatorFunction<T>;

The notifier parameter represents the callback that returns the notifier Observable and gets the
error Observable as the argument. The error Observable will emit every time the source Observable
errors out. So, retryWhen will subscribe to the notifier Observable and behave as described previously.

Here is the same example given in the replace and rethrow strategies, but using retryWhen instead:

import { from} from 'rxjs';
import { map, retryWhen, tap } from 'rxjs/operators';

const stream$ = from(['5', '10', '6', 'Hello', '2']);
stream$
 .pipe(
 map((value) => {
 if (isNaN(value as any)) {
 throw new Error('This is not a number');
 }
 return parseInt(value);
 }),
 retryWhen((errors) => {
 return errors.pipe(
 tap(() => console.log('Retrying the source
 Observable...'))
);
 })
)
 .subscribe({
 next: (res) => console.log('Value Emitted', res),
 error: (err) => console.log('Error Occurred', err),
 complete: () => console.log('Stream Completed'),
 });

//Code runs infinitely

Exploring error handling patterns and strategies 63

In the previous code, the first error is thrown when receiving the value 'Hello', which is not a
number. The retryWhen operator will catch this error and get executed. Then, the notifier callback
(the argument of retryWhen) simply takes the error Observable as input and returns it.

We also used the pipe to call the tap operator in order to log a message in the console ('Retrying
the source Observable...'). The tap() operator is used to perform a side effect for each
emitted value.

Note
For more details about the tap operator, please refer to this link from the official
documentation: https://rxjs.dev/api/operators/tap.

If you execute that code, you will find out that it runs infinitely. Why? Because the source will always
error out, and retryWhen will, consequently, subscribe infinitely to the source Observable.

If the source always errors out, it is not correct to retry immediately. However, the error will not
always occur, for example, in the case of HTTP requests. Sometimes, the HTTP request fails because
the server is down, or there is another temporary reason that may disappear, and the request might
go through in the next attempts without any problem.

In that case, you can use the immediate retry or even a delayed retry, which retries after a certain delay,
where we can wait, for example, for 5 seconds after the error occurs before retrying. That’s what we
will be learning in the next section.

Now, let’s have a look at another operator that will help us implement the retry strategy: the delayWhen
operator. The delayWhen() operator is used to delay values emitted from the source Observable
by a given duration. It is similar to the delay() operator, but the delay duration is determined by
an input Observable.

https://rxjs.dev/api/operators/tap

Handling Errors Reactively64

For more detail, let’s take a look at a marble diagram:

Figure 4.3 – The delayWhen operator

The first Observable is the source Observable. Each of the values, a, b, and c, has its own duration selector
Observable, respectively, in the diagram: the a duration selector Observable, the b duration selector
Observable, and the c duration selector Observable, which will emit one value, x, and then complete.

Every value emitted by the source Observable will be delayed before being emitted to the output
Observable. In fact, when the source Observable emits the value a at ta in the timeline, the delayWhen
operator will not immediately emit the value to the source Observable; instead, it will wait for the a
duration selector Observable to emit a value at ta+delay, and at that exact time, the value a will get
emitted to the Output Observable.

This carries on for the other values; the b value will show up in the Output Observable at tb+delay
when the b duration selector emits a value, and the value c will get emitted at tc+delay when the c
duration selector Observable emits a value. Note that here, tb and tc represent the emission time of
the values a and b by the source Observable, respectively.

As you may have noticed, the value b was emitted before c by the source Observable (as tb precedes
tc); however, the value b was shown after the value c in the output Observable (as tb+delay succeeds
tc+delay); that’s because the selector of b (the b duration selector in Figure 4.3) is emitted after the
selector of c (the c duration selector also shown in Figure 4.3).

Exploring error handling patterns and strategies 65

So, as you can see, the delay is completely flexible through the durationSelector function.

Another function, the timer function, can be useful in the delayed retry strategy:

export declare function timer(dueTime?: number | Date,
periodOrScheduler?: number | SchedulerLike, scheduler?:
SchedulerLike): Observable<number>;

This timer function returns an Observable and takes two arguments:

• due: A time period or exact date before which no values will be emitted

• scheduler: A periodic interval, in case we want to emit new values periodically

An example is timer(5000,1000). The first value of the returned Observable will get emitted after
5 seconds, and a new value is emitted each second. The second argument is optional, which means
that timer(5000) will emit a value after 5 seconds and then complete.

Now, it is time to combine the delayWhen and retryWhen operators to see how we can retry a
failing HTTP request 5 seconds after each error:

import { Injectable } from '@angular/core';
import { HttpClient } from '@angular/common/http';
import { Recipe } from '../model/recipe.model';
import { catchError, delayWhen, of, retryWhen, tap, timer } from
'rxjs';
@Injectable({
 providedIn: 'root'
})

export class RecipesService {

recipes$ =
this.http.get<Recipe[]>('http://localhost:3001/recipes')
.pipe(
 retryWhen(errors => {
 return errors
 .pipe(
 delayWhen(() => timer(5000)),
 tap(() => console.log('Retrying the HTTP
 request...'))
);
 }),
);
constructor(private http: HttpClient) { }
}

Handling Errors Reactively66

Note
You will not find the preceding code in the GitHub repository, as it serves merely as an illustrative
example. However, you can copy and paste it into the RecipesService class in order to
test the delayed retry. Additionally, remember to stop the recipes-book-api mocked
server to simulate retry attempts.

Our source Observable, in this case, is the result of an HTTP get request. Each time the request fails,
the delayWhen operator creates a duration selector Observable through the timer function. This
duration selector Observable is going to emit the 0 value after 5 seconds and then complete. Therefore,
the notifier Observable of retryWhen will emit a value, and at that moment, the source Observable
will get retried, after 5 seconds to be exact.

When you open the console, you will see this output:

Figure 4.4 – The failing HTTP request

As you may have noticed, every time the GET HTTP request fails, it is retried again after 5 seconds.
That’s how we achieved a delayed retry! So, to wrap up, each of the error handling strategies has its
own techniques and serves a different purpose. In the following section, we will explore when to use
each strategy.

Choosing the right error handling strategy

Choosing the most appropriate error handling strategy in RxJS depends on various factors, such as
the nature of the application, the type of errors encountered, and the desired user experience. Here’s
some guidance on when to use each strategy.

Exploring error handling patterns and strategies 67

The replace strategy involves replacing the error with a fallback value or Observable. It’s suitable in
the following scenarios:

• You have a predefined fallback value or behavior to use when an error occurs, such as displaying
placeholder content or default settings. For example, in a weather application, if fetching current
weather data fails, you can replace the error with a default weather forecast for the user’s location.

• The error is recoverable and doesn’t require immediate intervention from the user.

• You want to provide a seamless user experience by gracefully handling errors without disrupting
the application flow.

The rethrow strategy involves rethrowing the error to propagate it to the subscriber for handling. It’s
suitable in the following scenarios:

• You want to delegate error-handling responsibility to the subscriber or consumer of the
Observable. For example, in an authentication service, if login fails due to invalid credentials,
you can rethrow the error to allow the UI component to display an error message to the user.

• The error requires specific handling logic or customization based on the context in which it occurs.

• You want to provide flexibility for different parts of the application to handle errors differently.

The retry strategy involves retrying the operation that resulted in the error a certain number of times.
It’s suitable in the following scenarios:

• The error is transient or intermittent, such as network errors or temporary service disruptions
where retrying the operation may succeed after subsequent attempts. For example, in a file
upload service, if uploading a file fails due to a network error, you can retry the upload operation
multiple times before giving up to ensure the file is successfully uploaded.

• Retrying the operation has a reasonable chance of success and can mitigate the impact of
transient failures.

• You want to improve the reliability and robustness of operations that are prone to occasional failures.

Additionally, consider the following factors when choosing an error handling strategy:

• User experience: Consider how each strategy affects the user experience, such as whether it
leads to delays, retries, or fallbacks.

• Application requirements: Align the chosen strategy with the specific requirements and
constraints of your application, such as reliability, responsiveness, and error tolerance.

• Performance implications: Retry strategies may introduce additional overhead, especially if
the operation involves expensive or time-consuming tasks.

Handling Errors Reactively68

Ultimately, the most appropriate error handling strategy depends on the specific context and requirements
of your application. It’s often beneficial to experiment with different strategies and observe their effects
in real-world scenarios to determine the optimal approach.

Now that we have learned the different strategies and operators to handle errors, let’s practice in our
Recipes Book app in the next section.

Handling errors in our recipe app
The first thing we are going to do is stop our mock service. Yes, you heard it right; stop it. This way,
the call to the getRecipes service will fail because the server is down.

Now, if you refresh the front app, you will see that nothing, including our list of recipes, is displayed.
Why do we get this behavior? Because we did not handle the errors. The error was thrown, the stream
was completed, and nothing happened afterward. We have a white screen where nothing is displayed.

Now open the console, and you will see the failed request:

Figure 4.5 – The console showing the failed request

A failing HTTP request would never have broken our app if it was handled correctly. That’s why you
should be very careful when raising HTTP requests in your front application.

So, how can we fix this? Which strategy that we’ve previously discussed will fit the best?

Handling errors in our recipe app 69

If we choose the rethrow or retry strategy, then we will block the display of the recipes list. The user
will get a blank page and will have to wait for the request to get executed successfully in order to see
the list of recipes rendered in the screen. This is a valid option when you handle processes in the
background that are not related to the UI display; however, if you raise requests in order to get results
and display them in your UI components, then you should provide a replacement for that data to
continue rendering the page. The user interface should keep on working regardless of whether or
not there is an error; if there is an error, then we will display an empty list; if not, we will display the
returned list from the server.

That’s why the replacement strategy fits the most in this particular case. In fact, we want to get the list
of recipes from the service, but if the service fails for whatever reason, I don’t want my application
to be frozen; I want to see a collection of zero elements (no elements), an empty table, or a list, and
that is all. So, what we are going to do is use catchError and return an empty Observable, which
is our fallback value.

Our service will look like this:

import { Injectable } from '@angular/core';
import { HttpClient } from '@angular/common/http';
import { Recipe } from '../model/recipe.model';
import { environment } from 'src/environments/environment';
import { catchError, of } from 'rxjs';
const BASE_PATH = environment.basePath

@Injectable({
 providedIn: 'root'
})

export class RecipesService {

 recipes$ = this.http.get<Recipe[]>(
 `${BASE_PATH}/recipes`).pipe(
 catchError(()=> of([])));

 constructor(private http: HttpClient) { }
}

This approach ensures that your application remains functional, displaying an empty list if you access
the app. Moreover, you have the flexibility to customize the user interface by incorporating a message
such as There are no recipes. To implement this, we’ll make adjustments to our recipes-list.
component.html as follows:

@if (recipes$ | async; as recipes) {
<div class="card">

Handling Errors Reactively70

 <div>{{recipes.length}} Results</div>
 <p-dataView #dv [value]="recipes" [paginator]="true"
 [rows]="9" filterBy="name" layout="grid">
 <ng-template let-recipes pTemplate="gridItem">
 <div class="grid grid-nogutter">
 @for (recipe of recipes; track recipe.id) {
 <div class="col-12" class="recipe-grid-
 item card">
 /** Extra code here **/

 </div>
 } @empty {
 <div>There are no recipes</div>
 }
 </div>
 </ng-template>
 </p-dataView>
</div>
} @else {
 <div>There are no recipes</div>
}

As you may have noticed, we used the new built-in control flow mechanism explained in Chapter 3,
Fetching Data as Streams. By employing the @else block to the first if condition, we’re able to
display the message when no value is emitted from the recipes$ Observable. Additionally, the
@empty statement added to the @for statement allows us to show the same message when the list
of recipes is empty.

Summary
In this chapter, we learned about the Observable contract and explored some of the most commonly
used RxJS error handling strategies available and the different operators, namely catchError(),
delayWhen(), retry(), and retryWhen(). We also shed light on the different strategies for
error handling and when to choose each strategy. Finally, we handled the error in our Recipes Book
app for the first implemented feature.

Now that we know how to handle errors in RxJS, let’s move on to the next reactive pattern:
combining streams.

5
Combining Streams

So far, we have learned about the reactive pattern to fetch data as streams and have covered error-
handling patterns. However, we have only explored the asynchronous data emitted from only one
stream. What if we want to work with the asynchronous data emitted from different streams? Do you
know how we can proceed?

Luckily, RxJS ships with one of the most powerful concepts: combining streams. Combining streams
is the process of bringing together the emissions of multiple Observables in one stream. This allows
you to explore multiple sources of asynchronous data as if they were a single stream. The main idea
behind combining streams is manipulating asynchronous data in a more structured way.

This chapter revolves around a common use case, which is filtering data; we will resolve this by
combining streams. We will start by explaining the filtering requirement, and then we will explore the
imperative, classic pattern that can be used to implement this requirement, followed by a declarative,
reactive implementation. Finally, we will highlight the common pitfalls to avoid when combining
streams and discuss best practices.

In this chapter, we’re going to cover the following main topics:

• Defining the filtering requirement

• Exploring the imperative pattern for filtering data

• Exploring the declarative pattern for filtering data

• Highlighting common pitfalls and best practices

Technical requirements
The source code of this chapter (except the samples) is available at https://github.com/
PacktPublishing/Reactive-Patterns-with-RxJS-and-Angular-Signals-
Second-Edition/tree/main/Chap05.

https://github.com/PacktPublishing/Reactive-Patterns-with-RxJS-and-Angular-Signals-Second-Edition/tree/main/Chap05
https://github.com/PacktPublishing/Reactive-Patterns-with-RxJS-and-Angular-Signals-Second-Edition/tree/main/Chap05
https://github.com/PacktPublishing/Reactive-Patterns-with-RxJS-and-Angular-Signals-Second-Edition/tree/main/Chap05

Combining Streams72

Defining the filtering requirement
In our recipe application, we want to filter the displayed recipes according to certain criteria to refine
the results. The following figure shows the implementation of the mockup described in the View 1 –
The landing page section of Chapter 2, Walking Through our Application:

Figure 5.1 – The filtering requirement

From a user’s perspective, the user will fill out some criteria in the Filters area and click on the See results
button to see the results that match the filled criteria. The user can filter by using the keywords in the
recipe title, recipe category, ingredients, tags, preparation, and cooking time. A filtering functionality
is a must in the majority of applications that display data collections.

When it comes to filtering, there are a lot of strategies you can adopt, and the choice depends highly
on the size of your data:

• If you have a small volume of data that you can fetch entirely on the client side, then it is
unnecessary to perform server-side filtering; instead, it is faster to perform client-side filtering,
which will not harm your application’s performance.

• If you have a large amount of data, then you should be lazy when loading your data through
pagination or virtual scroll in order to enhance the performance and the user experience as
well. Therefore, in this case, conducting server-side filtering is unavoidable since you don’t
have all the data on the client side.

Exploring the imperative pattern for filtering data 73

For demonstration purposes, we will filter only 11 recipes in total. So we’re going to use client-side
filtering (however, note that the reactive pattern we’re going to discuss does not need a specific type
of filtering – it can be used with both client and server-side filtering).

Exploring the imperative pattern for filtering data
In this section, we will explore the imperative way to approach filtering data from the UI to the logic
of filtering.

Let’s start by setting up the UI code by creating a new standalone component, RecipesFilterComponent,
under src/app. It is responsible for displaying the different filters to refine the initial results. The
HTML template code of the filter component looks like this:

<div class="rp-data-view">
 <form [formGroup]="recipeForm">
 <fieldset class="rp-filters-group">
 <legend>Filters</legend>
 <div class="rp-filter-button">
 <p-button (onClick)="clearFilter()"
 label="Clear all"></p-button>
 </div>
 <label for="title">Keyword:</label>
 <input type="text" id="title"
 formControlName="title">
 <label for="category">Category:</label>
 <input type="text" id="category"
 formControlName="category">
 <label for="ingredient">Ingredient:</label>
 <input type="text" id="ingredient"
 formControlName="ingredient">
 <label for="text">Tags:</label>
 <input type="text" id="tags"
 formControlName="tags">
 <label for="text">Preparation Time:</label>
 <input type="text" id="prepTime"
 formControlName="prepTime">
 <label for="text">Cooking Time:</label>
 <input type="text" id="cookingTime"
 formControlName="cookingTime">
 <div class="rp-filter-button">
 <p-button class="rp-filter-button"
 (onClick)="filterResults()" label="See
 results"></p-button>
 </div>

Combining Streams74

 </fieldset>
 </form>
</div>

In the previous code, we used Angular reactive forms to display the search criteria inside a form.
Then, we included two buttons: the Clear all button to clear the filters and the See results button to
refine the displayed items by calling filterResults() in the OnClick callback. This method
will replace the displayed recipes with those that match the filled criteria. Then, the UI will be updated
automatically, thanks to the Angular change detection mechanism.

Note
For more details about Reactive forms, please refer to https://angular.dev/guide/
forms/reactive-forms.

Now, let’s move to RecipesListComponent, where we should consider a small change in the
template. We should bind the [value] input of the p-dataView component to a new property,
the filteredRecipes property, that holds the filtered results. The filteredRecipes property
initially holds all the recipes requested from the server. This is what the template looks like:

<div class="card">
 <p-dataView #dv [value]="filteredRecipes"
 [paginator]="true" [rows]="9" filterBy="name"
 layout="grid">
 /** Extra code here **/
 </p-dataView>
</div>

The focus is not the HTML template, of course, but the process of filtering; however, it is important
to point out when providing a complete workflow.

Now let’s look at the logic of the classic pattern in RecipesListComponent:

export class RecipesListComponent implements OnInit,
OnDestroy {

 filteredRecipes: Recipe[] = [];
 recipes: Recipe[] = [];
 private destroy$: Subject<boolean> = new
 Subject<boolean>();

 constructor(private service: RecipesService, private fb:
 FormBuilder) {
 }

https://angular.dev/guide/forms/reactive-forms
https://angular.dev/guide/forms/reactive-forms

Exploring the imperative pattern for filtering data 75

 ngOnInit(): void {
 this.service.recipes$.pipe(takeUntil(this.destroy$))
 .subscribe((recipes) => {
 this.recipes = recipes;
 this.filteredRecipes = recipes;
 });
 }

 ngOnDestroy(): void {
 this.destroy$.next(true);
 this.destroy$.unsubscribe();
 }

 filterResults(recipe:Recipe) {
 this.filteredRecipes = this.recipes.filter(recipe =>
 recipe.title?.indexOf(recipe.title) !=
 -1)
 }

Let’s break down what is happening. Here, we declared three variables:

• filteredRecipes: The array that contains the filtered recipes. It is the property binded in
the HTML template to the [value] input of the p-dataview component.

• recipes: The initial array of recipes.

• destroy$: A subject to clean up the subscription.

Then, in the ngOninit() method, we called the recipes (recipes$) that represent our Observable
recipes. After that, we subscribe to it and initialize the recipes and filteredRecipes arrays with
the emitted array from recipes$.

As we don’t use the async pipe in this example, we should clean up the subscription manually using
the takeUntil() pattern or takeUntilDestroyed(), as explained in Chapter 3, Fetching
Data as Streams.

The filterResults(recipe:Recipe) method called when clicking on the See results button
filters the current recipes list and returns the recipes that match the filter. In this sample, we considered
only the title when filtering the criteria. The criteria are retrieved from the method input value through
recipe.title;, containing the value the user filled out in the title input.

Combining Streams76

Note
For demonstration purposes, in this imperative implementation example, we’ve chosen
to display RecipesFilterComponent within RecipesListComponent. This
approach involves sending an output event, which encapsulates the filter form’s value
available in RecipesFilterComponent, to RecipesListComponent. Subsequently,
RecipesListComponent executes the filterResult method based on this input

If you use server-side filtering, in other words, if you have a service that handles filtering data according
to a given criteria, then filterResults() should call a backend service and will look like this:

 filterResults() {
 this.filteredRecipes =
 this.http.get<Recipe[]>(`${BASE_PATH}/recipes`,
 {params:{criteria:this.recipeForm.value}});

 }

That’s it! It works fine, and I would say this is probably how most people would approach implementing
filtering in an Angular application. The imperative way is kind of the obvious way to do it.

However, you may have noticed that we are no longer able to take advantage of recipes$ as a stream
in the template, as explained in Chapter 3, Fetching Data as Streams. Plus, what if your recipes service
emits new recipes? This will overwrite the active filter until the user clicks on See results again to
update the list with the current filter. This can be handled imperatively, of course, but it is a shame to
use Observables and not take advantage of the power of reactivity.

So, without further ado, let’s explore a better way to implement the filtering requirement by using a
declarative and reactive way using the fundamentals of combining streams.

Remember, I always really want to highlight the classic way and the reactive way straight after to
enable a smooth transition from imperative to declarative.

Exploring the declarative pattern for filtering data
You should think of everything as a stream; this is the golden rule!

We have recipes$, which is already our data stream, but what if we consider the click on the See
results button as a stream as well? We will call it the action stream and consider it an asynchronous
data flow; we don’t know when it happens, but every time the user clicks on See results, the action
stream should emit the value of the filter.

Exploring the declarative pattern for filtering data 77

So, in total, we need two streams:

• The data stream: In our case, it is recipes$, which is defined in RecipesListComponent,
which we created in Chapter 3, Fetching Data as Streams:

 export class RecipesListComponent {
 /*Define The data stream */
 recipes$ = this.service.recipes$;
 constructor(private service: RecipesService) { }

}

• The action stream: In our case, it’s named filterRecipesSubject; it is responsible for
emitting the latest value of the filter every time the user clicks on the Filter results button. We
will create it in the RecipesService service (which we also created in Chapter 3, Fetching
Data as Streams as follows:

 /*Create The action stream */
 Private filterRecipeSubject = new
 BehaviorSubject<Recipe>({title:''});
 /* Extract The readonly stream */
 filterRecipesAction$ =
 this.filterRecipeSubject.asObservable();

Now, let’s explain the previous code block. Here, we created two attributes:

 � A private BehaviorSubject named filterRecipeSubject to prevent the external
parts of the code from emitting values in the stream, erroring out, or completing the stream.
We initialized filterRecipeSubject with a default value—an empty object—defined
in the constructor argument. We can use either Subject or BehaviorSubject to
create our action stream:

 � Subject is a special type of Observable in that it enables multicasting. We will explore
multicasting in detail in Chapter 9, Demystifying Multicasting. For now, keep in mind that
a subject is an observer and an Observable at the same time, so you can use it to share
values among observers.

 � BehaviourSubject is a special type of subject that requires an initial value and always
retains the last value to emit it to new subscribers. In other words, if you have any subscribers
coming late to the game, they will get the last value emitted by the stream. This will always
give you a value when you subscribe. We will discuss why we used BehaviourSubject
instead of Subject at the end of the chapter.

 � A public read-only stream named filterRecipeAction$ (created from
filterRecipeSubject through the method asObservable()) so that the other
parts of the app can subscribe to and get the data.

Combining Streams78

So, just to recap, the RecipesService service will now look like this after adding the previous
code block:

export class RecipesService {

 recipes$ =
 this.http.get<Recipe[]>(`${BASE_PATH}/recipes`);
 private filterRecipeSubject = new
 BehaviorSubject<Recipe>({title: '' });
 filterRecipesAction$ =
 this.filterRecipeSubject.asObservable();
 constructor(private http: HttpClient) { }

}

Now, it is time to combine the streams. Both of the streams rely on each other; when recipes$
emits a new value, the filter should stay active, and when the filter emits a new value, the recipes list
should be updated accordingly.

What we are really trying to do is get information from both streams. Whenever you want to join
information from multiple Observables, you should think of the RxJS combination strategy. Instead
of getting the data from both streams separately, we can combine it to form a single new stream. RxJS
has a set of combination operators to use in that matter. In the next section, we will explore one of the
most used combination operators, which is the combineLatest operator.

The combineLatest operator

The combineLatest operator will combine the latest values emitted by the input Observables. So,
every time one of the Observables emits, combineLatest will emit the last emitted value from each.
Does that make sense? If not, don’t worry; we will detail it further by using a marble diagram as usual:

Figure 5.2 – The combineLatest marble diagram

Exploring the declarative pattern for filtering data 79

Let’s break this down:

• The first line in the marble diagram represents the timeline of the first input Observable.

• The second line represents the timeline of the second input Observable. So, combineLatest
has two inputs.

• The last line represents the timeline of the output Observable returned from the
combineLatest operator.

Now, let’s dig deeper into the execution.

The first Observable emitted the value a first. At that time, the second Observable had not emitted
anything, and nothing was emitted from combineLatest. Why? Because combineLatest will
not emit until all the input Observables emit one value each. So, when the second Observable emits
1, combineLatest will emit a1.

Bear in mind that combineLatest will not emit an initial value until each Observable emits at
least one value.

Then, the first Observable emitted another value, b. At that time, the second Observable had not emitted
anything, but its last emitted value was 1, so combineLatest will emit the last value emitted by
each input stream, which is b1. Then, the second Observable emitted is 2. At that time, the latest value
emitted by the first Observable was b, so combineLatest will emit b2, and so on and so forth.

Let’s come back to our example and see how we can combine the data stream and the action stream
that we have just created in order to filter results reactively using the combineLatest operator.

In RecipesListComponent, we will create a new stream named filteredRecipes$, which
represents the result of combining the data and the action stream:

filterRecipesAction$ = this.service.filterRecipesAction$;
filteredRecipes$ = combineLatest([this.recipes$,
 this.filterRecipesAction$])

So, here, we used the combineLatest operator and passed to it (as a parameter) an array of two
values: the first one is the recipes$ data stream, and the second one is the filterRecipeAction$
action stream. combineLatest will then return an array of two values (as the number of input
Observables): the first element of the array is the last emitted value from the first stream, and the
second element of the array is the last emitted value from the second stream. It respects the order.

Now, we will use filteredRecipes$ from the RecipesListComponent template, where we
will bind it to the [value] input of p-dataview so that the following occurs:

• filteredRecipes$ should return all the recipes when loading the page

• filteredRecipes$ should return only the recipes that match the selected criteria
when filtering

Combining Streams80

Then, the HTML code of the RecipesListComponent template will look like this:

@if (filteredRecipes$ | async; as recipes) {
<div class="card">
 <p-dataView #dv [value]="recipes" [paginator]="true"
 [rows]="9" filterBy="name" layout="grid">
 /** Extra code here **/
 </p-dataView>
</div>
} @else {
<div>There are no recipes</div>
}

Note
In the template, we have included both the RecipesList and RecipesFilter components.
This separation of components enhances the maintainability and readability of the codebase,
promoting a modular and scalable architecture for the application.

Still, there is one change that we need to make in RecipesListComponent. In our UI, we want to
display all the recipes when loading the page and the filtered recipes when refining the results; because
of this, we need to edit filteredRecipes$ so it should not return the result of the combination
directly (and in most cases, that won’t happen anyway). Instead, we will process the result of the
combination (the returned array), take the information that we need from the combined streams,
and transform it into whatever we need.

In this case, we want to modify the result stream so that rather than just giving us the latest recipes
and criteria values, it will give us an array of recipes filtered by the received criteria as follows:

filteredRecipes$ = combineLatest([this.recipes$,
 this.filterRecipesAction$]).pipe(
 map((resultAsArray:[Recipe[], Recipe]) => {
 const filterTitle =
 resultAsArray[1]?.title?.toLowerCase() ?? '';
 return resultAsArray[0].filter(recipe =>
 recipe.title?.toLowerCase().includes(filterTitle));
 })
);

The result of the combination is the resultAsArray parameter. The first element, resultAsArray
[0], represents the last emitted recipes from recipes$, and the second element, resultAsArray
[1], represents the last emitted criteria from filterRecipesAction$.

Exploring the declarative pattern for filtering data 81

However, we can do even better! We can enhance the code using the array destructuring technique
like so:

filteredRecipes$ = combineLatest([this.recipes$,
 this.filterRecipesAction$]).pipe(
 map(([recipes, filter]: [Recipe[], Recipe]) => {
 const filterTitle =
 filter?.title?.toLowerCase() ?? '';
 return recipes.filter(recipe =>
 recipe.title?.toLowerCase().includes(filterTitle))
 })
);

Here, the recipes parameter represents the first element of the returned array, and the filter
parameter represents the second element of the returned array. After :, we have the parameter types,
and that’s it. So, instead of obtaining the elements by using the index directly, the array destructuring
technique provides you with a way to name the array elements and get the values directly from those
variables. Finally, we used the filter method to filter the list of recipes that match the criteria.

At this point, we put in place all the mechanisms to filter the values reactively. The last thing left to do is
update the filter value every time it changes, and this is what we’re going to explore in the next section.

Updating the filter value

As we said, every time the user clicks on the See results button, filterRecipesAction$ should
emit the criteria so that our combineLatest re-executes and returns the filtered recipes. To achieve
this, we created a new method called updateFilter in the RecipesService that takes the filter
value as input and simply emits it using the next method over the filterRecipesSubject subject:

 updateFilter(criteria:Recipe) {
 this.filterRecipeSubject.next(criteria);
 }

Then, we will call this method in RecipesFilterComponent when the user clicks on the See
results button to update the filter value:

filterResults() {
 this.service.updateFilter(<Recipe>this.recipeForm.value);
}

We passed the value of the “Filters” form created in the RecipesFilterComponent to the
updateFilter method. That’s it; now, on every emission of criteria, it will re-execute the
combineLatest operator and will consequently filter the values.

Combining Streams82

To summarize, this is what the complete code looks like in RecipesListComponent:

@Component({
 selector: 'app-recipes-list',
 standalone: true,
 imports: [CommonModule],
 templateUrl: './recipes-list.component.html',
 styleUrls: ['./recipes-list.component.scss'],
 changeDetection: ChangeDetectionStrategy.OnPush
})
export class RecipesListComponent {

 /*The data stream */
 recipes$ = this.service.recipes$;
 filteredRecipes$ = combineLatest([this.recipes$,
 this.filterRecipesAction$]).pipe(
 map(([recipes, filter]: [Recipe[], Recipe]) => {
 const filterTitle = filter?.title?.toLowerCase() ?? '';
 return recipes.filter(recipe =>
 recipe.title?.toLowerCase().includes(filterTitle)
 })
);

 constructor(private service: RecipesService) {
 }
}

The RecipesFilterComponent component looks like this:

@Component({
 selector: 'app-recipes-filter',
 standalone: true,
 imports: [ButtonModule, ReactiveFormsModule],
 templateUrl: './recipes-filter.component.html',
 styleUrl: './recipes-filter.component.css'
})
export class RecipesFilterComponent {
 recipeForm = this.fb.group<Recipe>({
 title: '',
 category: '',
 ingredients: '',
 tags: '',
 prepTime: undefined,

Exploring the declarative pattern for filtering data 83

 cookingTime: undefined,
 });

constructor(private service: RecipesService, private fb:
 FormBuilder) { }

filterResults() {
this.service.updateFilter(<Recipe>this.recipeForm.value);
}
clearFilters() {
this.recipeForm.reset();
}

Finally, RecipesService looks like this:

export class RecipesService {

 recipes$ = this.http.get<Recipe[]>(
 `${BASE_PATH}/recipes`);
 private filterRecipeSubject = new
 BehaviorSubject<Recipe>({ title: '' });
 filterRecipesAction$ =
 this.filterRecipeSubject.asObservable();

 constructor(private http: HttpClient) { }

 updateFilter(criteria:Recipe) {
 this.filterRecipeSubject.next(criteria);
 }

}

Note
The complete code is available in the GitHub repository.

Now, let’s answer the question, Why did we choose BehaviorSubject instead of Subject?

Between loading the page and clicking on See results, we need filteredRecipes$ to hold all the
recipes, as explained in the Combine streams section. If we use a plain Subject, the criteria will only
get emitted when we click on the button. That means that when loading the page, only recipes$ is
emitted, and combineLatest will wait for all the streams to emit one value before emitting more.
In our UI, we would then get an empty list.

Combining Streams84

However, when we use BehaviorSubject, it will emit the default value for all the subscribers
immediately, so combineLatest will emit a first value, and everything will work fine and that’s
it. Seems like magic, right?

Here’s an example of the filtered recipes when searching for Lemon in the keyword:

Figure 5.3 – Filtered recipes

To sum up, in order to resolve the use case we’ve looked at in this chapter, we started with defining
the data stream responsible for getting the data; then, we created the action stream. Afterwards, we
combined the streams, did some manipulation on the combined stream, binded it in our template,
and, finally, updated the filter value in the filter event.

Now, let’s highlight some of the common pitfalls when using combineLatest.

Highlighting common pitfalls and best practices
Here are some common pitfalls or scenarios to avoid when using combineLatest in RxJS:

Unnecessary subscriptions

combineLatest subscribes to all provided Observables automatically. Make sure you unsubscribe
from the returned subscription when you no longer need the combined values, especially for long-
running or infinite Observables. This prevents memory leaks and unnecessary processing.

Summary 85

Missing or incomplete values

combineLatest only emits a value when all its source Observables have emitted at least one value.
If any Observable completes or throws an error before all have emitted, combineLatest will also
complete or error out, respectively. Consider using the withLatestFrom operator if you only
need the latest value from one Observable combined with the entire emission history from another.

Performance overhead

Combining a large number of Observables with combineLatest can introduce performance
overhead. Evaluate the need for combining so many streams and consider using simpler operators,
such as forkJoin, if you only need all emissions as a single array once all the Observables complete.
We will delve into the forkJoin operator in Chapter 11, Performing Bulk Operations.

Confusing error handling

combineLatest propagates errors from any of its source Observables. If error handling is complex,
consider using custom operators to handle errors for each Observable individually before combining
them. Implement proper error handling by using the catchError operator on individual Observables
or using a custom operator that combines the emissions and errors from each source.

As you can see, combineLatest is a powerful operator for combining multiple Observables, but
it’s important to understand its behavior and potential pitfalls in order to use it effectively in your
RxJS applications. Choose the right operator based on your specific use case and prioritize clear and
maintainable code.

Summary
In this chapter, we embarked on a journey through filtering data, beginning with an exploration of the
imperative pattern. We then transitioned to one of the most commonly used RxJS patterns for data
filtering, which can be used in many use cases where data updates are triggered by actions. By delving
deeper, we outlined the different steps needed to implement the reactive pattern, from creating the
streams to their combination, using the combineLatest operator. We learned how this operator
works and how we can use it in a practical implementation. We used the combined stream in our
template and handled data updates reactively. Finally, we explored some of the common pitfalls to
avoid when using combineLatest.

Combining streams is a fundamental concept in RxJS that enables you to build more complex and
powerful asynchronous data processing. It allows you to join data from various sources and apply
operators and transformations to create new streams that meet your specific application requirements.

Now that we know about this useful pattern, let’s move on to the next reactive pattern, transforming streams.

6
Transforming Streams

When dealing with streams, one of the most frequent use cases you will face is the need to transform
a stream of certain values into a stream of other values. That’s what this chapter is about.

This chapter revolves around adding an autosave feature to our project that we will be resolving by
transforming streams. We will start by explaining the autosave requirement that we will be implementing
in the recipe app. Then, we will explore the imperative way of implementing this feature. After that,
we will learn about the declarative pattern for doing it and study the most commonly used RxJS
transformation operators for this situation.

Finally, we will delve into the different transformation operators provided by RxJS and their respective
use cases, enriching our understanding through hands-on examples.

So, in this chapter, we’re going to cover the following main topics:

• Defining the autosave requirement

• Exploring the imperative pattern for the autosave feature

• Exploring the declarative pattern for the autosave feature

Technical requirements
This chapter assumes that you have a basic understanding of RxJS.

For more details about Reactive forms, please refer to https://angular.dev/guide/forms/
reactive-forms.

For demonstration purposes, we will be using a fake autosave service. Its implementation is available
in the recipes-book-api module in this book’s GitHub repository. Note that we won’t be going
through the details of this service as the focus is not the backend of the project.

The source code of this chapter is available at https://github.com/PacktPublishing/
Reactive-Patterns-with-RxJS-and-Angular-Signals-Second-Edition/tree/
main/Chap06.

https://angular.dev/guide/forms/reactive-forms
https://angular.dev/guide/forms/reactive-forms
https://github.com/PacktPublishing/Reactive-Patterns-with-RxJS-and-Angular-Signals-Second-Edition/tree/main/Chap06
https://github.com/PacktPublishing/Reactive-Patterns-with-RxJS-and-Angular-Signals-Second-Edition/tree/main/Chap06
https://github.com/PacktPublishing/Reactive-Patterns-with-RxJS-and-Angular-Signals-Second-Edition/tree/main/Chap06

Transforming Streams88

Defining the autosave requirement
As described in the View 2 – The New Recipe interface section of Chapter 2, Walking through Our
Application, the user can add a new recipe by clicking on the New Recipe menu item. This will display
the following form to be filled out:

Figure 6.1 – The New Recipe form

The standalone component that’s responsible for displaying the New Recipe form is called
RecipeCreationComponent and is available under recipes-book-front\src\app\
recipe-creation.

Here, we want to implement the autosave behavior, which consists of storing the user’s changes in the
form automatically. In this example, we will be storing the form changes in the backend so that the
user can retrieve the last changes any time after a disconnection, a timeout, or other problems – this
feature improves the user experience by preventing data loss.

Now that we understand the requirement, let’s look at the imperative way to implement the autosave feature.

Exploring the imperative pattern for the autosave feature 89

Exploring the imperative pattern for the autosave feature
We used Angular Reactive forms to build the New Recipe creation form. As described in the Using
RxJS in Angular and its advantages section of Chapter 1, Diving into the Reactive Paradigm, Reactive
forms leverage RxJS by providing the valueChanges Observable to track the FormControl
changes. This makes our implementation easier since we want to listen to the form’s value changes to
perform a save on every change.

You can find the HTML code of the New Recipe creation form in the recipe-creation.
component.html file template. Then, in recipe-creation.component.ts, we can define
the form as follows:

export class RecipeCreationComponent implements OnInit {

 constructor(private formBuilder: FormBuilder) { }

 recipeForm = this.formBuilder.group<Recipe>({
 id: Math.floor(1000 + Math.random() * 9000),
 title: '',
 ingredients: '',
 tags: '',
 imageUrl: '',
 cookingTime: undefined,
 yield: 0,
 prepTime: undefined,
 steps: '',
 });
 tags = recipeTags.TAGS;

Here, we used the Angular FormBuilder API to build the reactive form and pass to it a JSON object
where we define the different fields of the form. This JSON object represents our recipe’s data; we’re
going to save this later. Every time we open the New Recipe form, a new empty object will be created.

Note that the first property of this JSON object, id, is not going to be displayed in the form. We only
add it to initialize the new Recipe object with a random identifier to save the recipe’s data properly
in the backend. The tags property is retrieved from a constant declared in src/app/core/
model/tags.ts that represents the static list of available tags.

Transforming Streams90

Now that we’ve prepared our form, let’s see how we can implement the autosave feature. The first
thing that comes to mind is subscribing to the valueChanges Observable of recipeForm in the
ngOninit() instance of RecipeCreationComponent. Then, every time the valueChanges
Observable emits a new form value, we should raise a save request to save the most recent value of
the form. We can do this like so:

ngOnInit(): void {
 this.recipeForm.valueChanges.subscribe(
 formValue => {
 this.service.saveRecipe(<Recipe>formValue);
 }
);

The saveRecipe method is then defined and implemented in RecipeService, as follows:

saveRecipe(formValue: Recipe) : Observable<Recipe> {
 return this.http.post<Recipe>(`${BASE_PATH}/recipes`,
 formValue);
}

Here, we use the HTTPClient API and call the save service in the backend.

Note
Backend implementation is not the focus of this book. For that reason, we’ve provided a fake
implementation of the POST save service in the recipes-book-api project. Here, the goal
is to simulate the call to an HTTP request to save the data.

So, to recap, the code for RecipeCreationComponent will look like this:

export class RecipeCreationComponent implements OnInit {

 constructor(private formBuilder: FormBuilder, private
 service: RecipesService) { }

 recipeForm = this.formBuilder.group<Recipe>({
 id: Math.floor(1000 + Math.random() * 9000),
 title: '',
 ingredients: '',
 tags: '',
 imageUrl: '',
 cookingTime: undefined,
 yield: 0,
 prepTime: undefined,

Exploring the imperative pattern for the autosave feature 91

 steps: '',
 });

 tags = recipeTags.TAGS;

 ngOnInit(): void {
 this.recipeForm.valueChanges
 .subscribe(
 formValue => {
 this.service.saveRecipe(<Recipe>formValue);
 }
);

 }

}

However, this code won’t work. You should know by now that the result of this.service.
saveRecipe(<Recipe>formValue), which calls this.http.post<Recipe>(`${BASE_
PATH}/recipes`, formValue), is an Observable, and since Observables are lazy, we should
subscribe to this.service.saveRecipe(<Recipe>formValue) to initiate the HTTP
POST request. So, let’s add a subscribe value, like so:

ngOnInit(): void {
 this.recipeForm.valueChanges.subscribe(
 formValue => {
 this.service.saveRecipe(<Recipe>formValue)
 .subscribe(
 result => this.saveSuccess(result),
 errors => this.handleErrors(errors)
);
 }
);

As you may have noticed, we called a subscribe value inside another subscribe, something
we call a nested subscription. However, this is considered an anti-pattern in RxJS and is problematic
for several reasons:

• Every time we use subscribe(), we open the door to imperative code. As we have learned
throughout this book, we should avoid this as much as possible.

Transforming Streams92

• Nested subscriptions require careful cleanup; otherwise, we can run into various performance
problems. In the previous example, we didn’t clean up the subscriptions, which means the
possibility of serious timing issues arises. If multiple form values are emitted by valueChanges
successively, many save requests will be sent in parallel. If the requests take some time to
complete, there is no guarantee that the backend will process the save requests in order. For
instance, we cannot ensure that the last valid form value is the one that’s been saved in the
backend. Consequently, we will end up with data incoherence.

What we want to do is perform a save request after the previous one is completed. Luckily, RxJS includes
some interesting operators that fix this for us. So, without further ado, in the following section, we’ll
learn how to implement this in a reactive and declarative way.

Exploring the reactive pattern for the autosave feature
You remember the golden rule from Chapter 5, right? We should think of everything as a stream. So,
let’s start by identifying our streams.

Here, we can think of the save operation as a stream – it is the result of the this.
service.saveRecipe(<Recipe>formValue) method, which calls this.http.
post<Recipe>(`${BASE_PATH}/recipes`, formValue. We will call it saveRecipe$.

The saveRecipe$ Observable is responsible for saving the data in the backend and will initiate
the http request when subscribed to.

To avoid nesting subscriptions, what we can do in this situation is map or transform the form value
emitted by the valueChanges Observable to the saveRecipe$ Observable. The result is what
we call a higher-order Observable.

Not clear? Don’t worry – we will explain this in detail in the next section.

Higher-order Observables

So, what is a higher-order Observable? A higher-order Observable is just an Observable like any other,
but its values are Observables as well. So, instead of emitting simple values such as strings, numbers,
or arrays, it emits Observables that you can subscribe to separately.

Okay, but when is it useful? You can create a higher-order Observable whenever you use data emitted
from one Observable to emit another Observable. In our case, for every emitted form value from the
valueChanges Observable, we want to emit the saveRecipe$ Observable. In other words, we
want to transform (or map) the form value to the saveRecipe$ Observable. This would create a
higher-order Observable where each value represents a save request.

In this situation, the valueChanges Observable is called the outer Observable, and saveRecipe$ is
called the inner Observable. Under the hood, we want to subscribe to each saveRecipe$ Observable
that’s emitted and receive the response all in one go to avoid nested treatments.

Exploring the reactive pattern for the autosave feature 93

Now that we’ve learned what higher-order Observables are and when to use them, let’s look at higher-
order mapping operators.

Higher-order mapping operators

To transform the outer Observable, we should use higher-order mapping operators. The role of these
operators is to map each value from an outer Observable to a new inner Observable and automatically
subscribe and unsubscribe to/from that inner Observable.

But what is the difference between regular mapping and higher-order mapping?

Well, regular mapping involves mapping one value to another value. One of the most used basic
mapping operators is the map operator:

Figure 6.2 – The map operator – marble diagram

As described in this marble diagram, the map operator will transform the values of the input stream
by multiplying each emitted value by 10. Here, x=>10*x is the transformation function.

On the other hand, higher-order mapping is about mapping one value into an Observable.

RxJS provides several higher-order mapping operators. In the next section, we will learn about the
concatMap() operator – which we will use to implement the autosave behavior – before discovering
some other commonly used operators.

The concatMap operator

concatMap is a combination of the concatenation strategy and higher-order mapping:

concatMap = concat (concatenation) + map (higher-order mapping)

We looked at the concepts of regular and higher-order mapping in the previous section, so let’s look
at the following marble diagram to understand the concatenation strategy, taking the example of the
concat operator:

Transforming Streams94

Figure 6.3 – The concat operator – marble diagram

Let’s break down the marble diagram:

• The first line represents the timeline of the first Observable passed as input to the concat operator.

• The second line represents the timeline of the second Observable passed as input to the
concat operator.

• The concat operator in this example has two inputs. It will subscribe to the first Observable
but not to the second one. The first Observable will emit the values a and b, which get reflected
in the result Observable (the last line).

• Then, the first Observable completes, and at that moment, the concat operator subscribes
to the second Observable. This is how a sequential process is guaranteed.

• The second Observable will emit the values x and y, which get reflected in the result Observable.

• When the second Observable completes, the output Observable will also complete.

As you may have noticed, Observable concatenation is all about Observable completion. This is the
key point. It emits the values of the first Observable, waits for it to complete, and then emits the values
of the next Observable, and so on, until all the Observables complete.

Now that we understand the concatenation strategy, we can understand how the concatMap operator
is a mixture of higher-order mapping and Observable concatenation: it waits for each inner Observable
to complete before processing the next one. It’s like a line at a ticket counter, where each customer
(Observable) waits for their turn to be served before the next one is called.

Exploring the reactive pattern for the autosave feature 95

Using concatMap for autosaving

Based on the previous discussion, the concatMap operator fits very well with our autosave requirement
for the following reasons:

• We want to take the form value and turn it into a saveRecipe$ Observable and automatically
subscribe and unsubscribe from the saveRecipe$ inner Observable – this is what a higher-
order mapping operation does.

• We only want to perform a save request after the previous one is completed. When one
HTTP save request is in progress, the other requests that come in the meantime should wait
for its completion before being called to ensure sequentiality. So, we need to concatenate the
saveRecipe$ Observables together.

This is what our code will look like:

 valueChanges$ = this.recipeForm.valueChanges.pipe(
 concatMap(formValue =>
 this.service.saveRecipe(<Recipe>formValue)),
 catchError(errors => of(errors)),
 tap(result => this.saveSuccess(result))
);

Let’s break down what’s going on:

• Here, the outer Observable, this.recipeForm.valueChanges, emits form
values. For each emitted form value, concatMap transforms it into this.service.
saveRecipe(<Recipe>formValue), which is the saveRecipe$ Observable – our
inner Observable.

• concatMap automatically subscribes to the inner Observable and the HTTP POST request
will be issued.

• Another form value might come faster than the time it takes to save the previous form value in
the backend. In this case, the form value will not be mapped to the saveRecipe$ Observable.
Instead, concatMap will wait for the previous save request to return a response and complete
it before transforming the new form value to saveRecipe$, subscribing to it, and sending a
new save request. When all inner Observables complete, the result stream completes.

• Then, we use the catchError operator to handle the errors and register a side effect with the
tap operator to log the Saved successfully message in the backend. You can customize
this, of course, and display a message to the end user.

Transforming Streams96

To recap, the complete code for RecipeCreationComponent will now look like this:

export class RecipeCreationComponent {

 constructor(private formBuilder: FormBuilder, private
 service: RecipesService) { }

 recipeForm = this.formBuilder.group<Recipe>({
 id: Math.floor(1000 + Math.random() * 9000),
 title: '',
 ingredients: '',
 tags: '',
 imageUrl: '',
 cookingTime: undefined,
 yield: 0,
 prepTime: undefined,
 steps: '',
 });

 tags = recipeTags.TAGS;
 valueChanges$ = this.recipeForm.valueChanges.pipe(
 concatMap(formValue =>
 this.service.saveRecipe(<Recipe>formValue)),
 catchError(errors => of(errors)),
 tap(result => this.saveSuccess(result))
);

 saveSuccess(_result: Recipe) {
 console.log('Saved successfully');
 }

}

Now, there’s just one thing left to do: we should subscribe to the valueChanges$ Observable to make
all of this work. As usual, we will do this through the async pipe in our RecipeCreationComponent
HTML template, as follows:

<ng-container *ngIf="valueChanges$ | async">
 </ng-container>
/** All the form code here**/

With that, the reactive implementation is complete.

Exploring the reactive pattern for the autosave feature 97

As you may have noticed, the first benefit of using concatMap is that we no longer have nested
subscriptions. We also get rid of explicit subscriptions thanks to the async pipe. Besides this, all form
values are going to be sent to the backend sequentially.

When a delay is introduced in the backend save service (which I’ve set up by default in the provided
implementation of the save recipe service), you’ll notice that requests aren’t initiated while another
one is still processing. Instead, they wait until the current request finishes before being triggered. This
is exactly what concatMap aims to achieve.

Now, let’s take a look at the behavior concatMap manifests in the Chrome DevTools Network tab:

Figure 6.4 – The concatMap network requests

Here, upon typing a character, a POST save request is sent to the server. When trying to input other
characters before the initial request, a response is received. You’ll notice that requests are not immediately
triggered; they are queued and executed sequentially once the preceding request is completed.

Our example served as a straightforward illustration of how the concatMap operator works.
However, we could optimize our implementation more to avoid sending requests for every character
introduced by the user. To do so, we could use the debounceTime(waitingTime) operator to
wait for the user input to stabilize before sending the requests. We could also optimize it further by
ignoring duplicates and making the distinctUntilChanged() operator handle invalid values.

Note
For more details about the debounceTime and distinctUntilChanged operators, refer
to https://rxjs.dev/api/operators/debounceTime and https://rxjs.
dev/api/operators/distinctUntilChanged, respectively.

https://rxjs.dev/api/operators/debounceTime
https://rxjs.dev/api/operators/distinctUntilChanged
https://rxjs.dev/api/operators/distinctUntilChanged

Transforming Streams98

Using concatMap for pagination

Besides autosaving, we can also use concatMap for list pagination. In our recipe app, we
handle the Recipes list pagination on the client side – we retrieve all the recipes when loading
RecipesListComponent by making a GET request to the /api/recipes service, as explained
in Chapter 3, Fetching Data as Streams.

However, if we were handling a lazy loading mechanism, where we fetch just a few items (let’s say
10) when the component loads initially, and then load more items as needed when the user clicks
the Next or Previous buttons, as shown in the following screenshot, we’d need to adjust our logic:

Figure 6.5 – Recipes list pagination

This would involve sending a GET HTTP request to fetch the data for the next page, using a URL
structure such as GET /api/recipes?page=1&limit=10.

Exploring the reactive pattern for the autosave feature 99

In such a scenario, concatMap is a very good option to issue a request for each emitted “next page”
event, as follows:

recipes$ = this.pageNumberChange$.pipe(
 concatMap((pageNumber) =>
 this.http.get<Recipe[]>(`${BASE_PATH}/recipes`, {
 params: {
 page: pageNumber,
 limit: 10,
 },
 })
)
);

Here, pageNumberChange$ is a BehaviorSubject subject that emits the current page number
whenever the user clicks on the Next or Previous buttons. concatMap then triggers subsequent
HTTP GET requests, sequentially fetching the next page’s list based on the current page number and
size limit parameters. This sequential handling ensures data integrity and systematic pagination flow.

To summarize, concatMap is the ideal choice when you want to ensure that operations are processed
sequentially, and that each inner Observable is processed one at a time and in order. However, when
using concatMap, it’s important to ensure that the inner Observable completes since concatMap
waits for the completion of each inner Observable before subscribing to the next one in the sequence.
If an inner Observable never completes, concatMap will also never subscribe to the subsequent
Observables in the sequence. This can lead to blocking subsequent emissions and potential memory
leaks or performance issues if there is a buildup of pending Observables. So, never use concatMap
for endless streams.

It’s important to note that not all higher-order mapping operators follow the concat strategy. There
are other higher-order mapping operators, such as switch, merge, and exhaust, that offer different
strategies and are useful in many situations. We’ll break down those operators and their respective
strategies in the following sections.

The switchMap operator

switchMap is a combination of the switch and transformation (or mapping) strategies:

switchMap = switch(switch) + map (higher-order mapping)

Transforming Streams100

Let’s look at the marble diagram of the switch operator to understand the switch strategy:

Figure 6.6 – The switch operator – marble diagram

Let’s break down what’s happening here (you are not used to seeing those diagonal lines, I know!):

• The top line is the higher-order Observable. The higher-order Observable emits the first inner
Observable (which has the values a, b, c, and d). The switch operator subscribes to it under
the hood.

• The first inner Observable emits the values a and b, and they get reflected automatically to the
resulting Observable.

• Then, the higher-order Observable emits the second inner Observable (which has the values
e, f, and g).

• The switch will unsubscribe from the first inner Observable (a-b-c-d) and subscribe to the
second inner Observable (e-f-g); that’s why the values e, f, and g get reflected right after a and
b. As you may have noticed, in switching, if a new Observable starts emitting values, then the
switch will subscribe to the new Observable and unsubscribe from the previous one.

So, the switchMap operator is a higher-order mapping operator that unsubscribes from any prior
inner Observable and switches to any new inner Observable. It is useful when you want to cancel an
operation when a new one is triggered. In other words, switchMap only focuses on the most recent
data, ensuring that only the latest updates are processed while canceling any ongoing operations
triggered by previous data.

Think of switchMap as changing TV channels: each time you press a button, you switch to a different
channel, ignoring whatever was playing before. Similarly, switchMap lets you dynamically switch
to a new Observable stream whenever the source emits, discarding any ongoing processing from
previous emissions.

Exploring the reactive pattern for the autosave feature 101

Using switchMap for autosaving

Going back to our autosave reactive implementation in the Recipe app, if you’re interested in saving
the most recent form value and want to cancel any ongoing save operation if a new one is initiated
before the current one finishes, then switchMap is the operator to use (instead of concatMap):

valueChanges$ = this.recipeForm.valueChanges.pipe(
 switchMap(formValue =>
 this.service.saveRecipe(<Recipe>formValue)),
 catchError(errors => of(errors)),
 tap(result => this.saveSuccess(result))
);

As mentioned previously, I introduced a slight delay in the backend save service to illustrate how
ongoing requests are handled when subsequent requests are made concurrently. So, when inspecting
the network console, you’ll notice the following:

Figure 6.7 – The switchMap network requests

Here, we have two requests: one is marked as canceled, while the other is pending. The pending request
is the most recent one, indicating that it was initiated while the previous request was still in progress,
resulting in the cancellation of the prior request. And this is the behavior we aim for.

In this example, we’re making an HTTP POST request, but we’re only interested in the success or
failure status and don’t need any other data from the response. However, if you’re expecting a response
from the POST request to update the UI or perform tasks, keep in mind that only the response from
the latest request will be propagated. In such cases, it’s better to use concatMap instead.

Transforming Streams102

Using switchMap for autocompletion

Now, let’s explore another practical scenario of using switchMap: autocompleting suggestions. This
is a very common feature in web applications. In our recipe app, we’ll implement an autocomplete
dropdown for the tags field in RecipeCreationComponent. Currently, this field is displayed
as a radio button with static values retrieved from the constant tags defined in src/app/core/
model/tags.ts. However, we’ll transform it into a user-friendly autocomplete dropdown that
dynamically fetches tag suggestions based on the user’s input.

Whenever a user types a query, we’ll retrieve the corresponding tags from a backend service. We have
already implemented a service for that in our ready-to-use backend – that is, recipes-book-api.
This service has an endpoint called /api/tags, accepts some criteria (the user’s typed input) as a
query parameter, and returns a list of tags that match the provided criteria. The code is available in
this book’s GitHub repository.

Let’s delve into the implementation details. First and foremost, let’s prepare our streams. How many
streams do we have? We have two:

• A stream, named searchTerms , that emits the user’s input, represented by a
BehaviorSubject subject that’s initialized with an empty string:

private searchTerms = new BehaviorSubject<string>('');

We’ll update this stream whenever the user’s input changes by using an update method:
 updateSearchTerm(searchTerm: string) {
 this.searchTerms.next(searchTerm);
 }

The searchTerms stream and the updateSearchTerm method will be available
in RecipeCreationComponent.

• A stream, named getTags$, that emits the fetched tags matching the user’s input. We’ll define
this stream in RecipesService, as follows:

 getTags$: (term: string) => Observable<Tag[]> =
 (term: string) => {
 return this.http.get<Tag[]>(`${BASE_PATH}/tags`,
 { params: { criteria: term } });
 };

getTags$ represents a function that takes a string parameter, term, and returns an Observable
of the Tag[] type that issues an HTTP GET request to retrieve an array of Tag objects
matching the provided search term.

We defined the Tag type in \src\app\core\model\tags.ts.

Exploring the reactive pattern for the autosave feature 103

Now, it’s time to use switchMap, which will map each value emitted by the searchTerms stream
to the getTags$ Observable:

tagValues$ = this.searchTerms.pipe(
distinctUntilChanged(), // ignore if next search term is
 same as previous
switchMap((term: string) => this.service.getTags$(term))
// switch to new Observable each time
);

We will define tagValues$ in RecipeCreationComponent. So, overall, tagValues$ issues
a search request for every unique user’s input and ensures only the latest search results are displayed,
discarding previous ones.

Finally, we will update the RecipeCreationComponent HTML template to modify how tags
are displayed from a radio button to an autocomplete dropdown:

 <div class="col-3">
 <label for="Tags">Tags</label>
 @if (tagValues$ | async; as tags) {
 <p-autoComplete formControlName="tags"
 [suggestions]="tags"
 (completeMethod)=
 "updateSearchTerm($event.query)"
 field="name"></p-autoComplete>
 }
 </div>

Here, we subscribed to tagValues$ using the async pipe and stored the emitted value in a tags
array. Then, we used the PrimeNG autocomplete component to provide suggestions as the user types
in the "Tags" input field. The autocomplete component binds to a form control named "tags",
receives suggestions from the tags array, and triggers the updateSearchTerm method with the
user’s query when the user starts typing. concatMap will issue a GET request for every unique user’s
input and ensure only the latest search results are displayed, canceling previous requests.

Transforming Streams104

And that’s it! Here’s an illustration of the implemented behavior. Here, when we enter B in the search
field, we receive Breakfast a suggestion:

Figure 6.8 – The autocompletion suggestion

Now, let’s move on to another operator, mergeMap.

The mergeMap operator

mergeMap is a combination of the merge and transformation (or mapping) strategies:

mergeMap = merge(merge) + map (higher-order mapping)

Now that you understand the concepts of higher-order mapping, let’s understand the merging strategy
by looking at the following marble diagram, which considers the merge operator:

Figure 6.9 – The merge operator – marble diagram

Exploring the reactive pattern for the autosave feature 105

Unlike concat, merge will not wait for an Observable to complete before subscribing to the next
Observable. It subscribes to every inner Observable at the same time and then outputs the values to
the combined result. As described in this marble diagram, the values of the input Observables are
reflected in the output immediately. The result will only be completed once all the merged Observables
are completed.

mergeMap is a higher-order mapping operator that processes each inner Observable in parallel. It is
like multitasking in the kitchen, where you’re simultaneously handling different cooking tasks, such as
chopping, boiling, and mixing, all at once. However, you should only use mergeMap if the resulting
order doesn’t matter because these requests may be processed out of order.

Suppose we aim to retrieve a list of recipes that match specific tags. For every tag, we want to initiate
an HTTP request to fetch the recipes corresponding to that tag. The order of tag requests is not
important; all requests should be executed concurrently. Here’s the code:

 selectedTags$ = from(['Salty', 'Sweet', 'Healthy']);

 recipesByTag$ = this.selectedTags$.pipe(
 mergeMap(tag =>
 this.getRecipesByTag(tag)),mergeAll(),toArray());
 getRecipesByTag(name: string): Observable<Recipe[]> {
 return this.http.get<Recipe[]>(
 `${BASE_PATH}/recipesByTags`, { params: { tagName:
 name } });
 }

Here, we created an Observable named selectedTags$ from a static array of tags. selectedTags$
emits the tags (array elements) one by one. Whenever a tag is emitted by selectedTags$, an HTTP
request is issued by this.getRecipesByTag(tagName) to fetch the corresponding recipes.
The mergeMap operator is used to concurrently handle multiple tag requests. When another tag
is emitted while the previous request is still in progress, the new request is executed concurrently.

We used the mergeAll operator to flatten the results that were obtained from the different inner
Observables into a single Observable stream. This ensures that the recipes emitted by each inner
Observable are merged into a cohesive stream of recipes.

Finally, the toArray operator is used to convert all emitted recipes into a single array, making it
convenient for a list display in the UI.

Transforming Streams106

Again, I previously added a delay to the backend service that returns the recipes by tag. Upon opening
the console, we’ll find that all the requests were run concurrently, even if there are pending ones:

Figure 6.10 – mergeMap’s execution

We can also use mergeMap to fetch data from multiple sources in parallel and combine the results.
Imagine that we have multiple Review sources for our recipes, and we want to collect them (in this
case, the order here is not important). Here’s the code:

 getRecipesReviews(recipeId: number): Observable<Review[]>
 {
 return from([`${BASE_PATH}/source1/reviews`,
 `${BASE_PATH}/source2/reviews`])
 .pipe(
 mergeMap((endpoint) => this.http.get<Review[]>(
 endpoint, { params: { recipeId: recipeId } })));
 }

Here, getRecipesReviews(recipeId: number) is a method that fetches reviews for a recipe
identified by recipeId from two different sources (source1 and source2) by issuing parallel
HTTP GET requests to each source.

The from([${BASE_PATH}/source1/reviews, ${BASE_PATH}/source2/reviews])
line creates an Observable from an array containing two different endpoints to fetch reviews. The
from operator emits each item of the array as a separate value in the Observable sequence.

Then, mergeMap is used to raise a GET request to fetch reviews for the specified recipeId for
each endpoint emitted by the from operator, ensuring that both requests are made concurrently.

With that, let’s move on to the last operator that we will discuss, exhaustMap.

Exploring the reactive pattern for the autosave feature 107

The exhaustMap operator

exhaustMap is a combination of the exhaust and transformation (or mapping) strategies:

exhaustMap = exhaust(exhaust) + map ()higher-order mapping

Let’s look at this marble diagram to understand the exhaust strategy:

Figure 6.11 – The exhaust operator – marble diagram

The top line is a higher-order Observable that produces three inner Observables over time. When
the first inner Observable (a-b-c) is emitted, exhaust will subscribe to it so that the values a-b get
reflected in the output Observable. Then, the second inner Observable comes and gets ignored by the
exhaust operator; it will not be subscribed to (this is the key part of exhaust).

Only when the first inner Observable completes will exhaust subscribe to new Observables. So, c
will be reflected, and the first inner Observable will complete. exhaust is ready now to treat other
Observables. At that point, the third inner Observable comes. The switch will subscribe to and the
values of the third inner Observable, g-h-i, get reflected in the output.

So, exhaustMap waits for the completion of the current inner Observable before allowing the next
Observable to emit values. Once the inner Observable completes, exhaustMap subscribes to the next
Observable in the sequence. It ensures that only one inner Observable is active at a time, ignoring any
new Observables that are emitted while the current one is still ongoing. This is particularly useful in
scenarios where you want to ignore new events until a previous operation has finished, such as handling
user clicks on a button, where subsequent clicks are ignored until the current operation completes.

It’s similar to how you might handle tasks when you’re busy with something important. If someone
tries to get your attention with a new task, you might say, “I’m busy right now, please don’t disturb
me until I finish what I’m doing.” exhaustMap operates similarly, ensuring that ongoing tasks are
completed before considering new ones.

Transforming Streams108

Let’s consider a scenario in our recipe app where users can edit recipe details and save their changes
through a Save button. You want to prevent multiple save requests from being sent if a user rapidly
clicks the Save button multiple times. exhaustMap comes in handy here by ignoring subsequent
save requests until the current save operation completes. Here’s the implementation:

 private saveClick = new Subject<Boolean>();
 private saveRecipe$ =
 this.service.saveRecipe(<Recipe>this.recipeForm.value);
 saveClick$ = this.saveClick.pipe(exhaustMap(() =>
 this.service.saveRecipe(<Recipe>this.recipeForm.value))
);
 saveRecipe() {
 this.saveClick.next(true);
 }

In the component responsible for editing the recipe, we defined the following:

• A private saveClick subject to track the Save button being clicked. saveClick represents
our first stream.

• A private saveRecipe$ Observable that issues an HTTP save request to save the recipe.

• saveClick$, our second stream that listens to saveClick emissions and uses exhaustMap
operator to issue a new save request only after the previous one is completed.

• A saveRecipe method. This will be invoked when the Save button is clicked and will send
true to the saveClick subject.

Finally, we must subscribe to saveClick$ using the async pipe in the HTML template and add the
click handler to the Save button to invoke the saveRecipe method, as follows:

<ng-container *ngIf="saveClick$ | async"></ng-container>
<p-button class="recipe-button" (click)="saveRecipe()"
label="Save"></p-button>

This ensures that only one save request is processed at a time, preventing duplicate entries or data
corruption. You can test this code in RecipeCreationComponent.

You can also use exhaustMap in drag and drop features to ensure that actions are only processed when a
user’s dragging action has been completed, preventing multiple actions from being triggered simultaneously.

Summary 109

Wrapping up the operators

Let’s summarize all the operators that were mentioned in this chapter:

• If the order is important and you need to process operations in sequence while waiting for
completion, then concatMap is the right choice

• If the order is not important and you need to process operations in parallel to enhance
performance, mergeMap is the best operator

• If you need to put a cancellation logic to release resources and take always the most recent
information, then switchMap is the way to go

• To ignore new Observables while the current one is still ongoing, use exhaustMap

All you have to do is pick the right operator based on your specific use case.

Summary
In this chapter, we began by illustrating the traditional, imperative approach to implementing the
autosave feature in our recipe app. However, we soon encountered limitations with this method. We
highlighted these problems before exploring a more reactive pattern to address these challenges.

Then, we delved into higher-order Observables and higher-order mapping operators, learning how
the concatMap operator works and how it can help us implement the autosave requirement in the
Recipe app reactively.

Additionally, we expanded our exploration to include other strategies, namely the merge, switch,
and exhaust higher-order mapping operators. We explained their functionality by using practical
examples and use cases to gain a deeper understanding of these concepts.

In the next chapter, we will explore another useful reactive pattern that allows you to share data between
your components. As usual, we will demystify the concepts and then learn the reactive way to do it.

7
Sharing Data between

Angular Components

Sharing data between components is a very common use case in web applications. Angular provides
many approaches for communicating between parent and child components, such as the popular
@Input() and @Output() decorator patterns. The @Input() decorator allows parent components
to provide data to their child components, while the @Output() decorator allows the child component
to send data to a parent component. That’s great, but when data needs to be shared between components
that are either deeply nested or not immediately connected, those kinds of techniques become less
efficient and difficult to maintain.

So, what’s the best way to share data between sibling components? This is the heart of this chapter. We
will start by explaining the sharing data requirement, before walking through the different steps to
implement the reactive pattern for sharing data between sibling components in our app. Finally, we
will introduce Angular’s new Deferrable Views feature to maximize our app’s performance.

In this chapter, we’re going to cover the following main topics:

• Defining the sharing data requirement

• Exploring the reactive pattern to share data

• Leveraging Deferrable Views in Angular 17

Technical requirements
This chapter assumes that you have a basic understanding of RxJS.

The source code of this chapter is available at https://github.com/PacktPublishing/
Reactive-Patterns-with-RxJS-and-Angular-Signals-Second-Edition/tree/
main/Chap07.

https://github.com/PacktPublishing/Reactive-Patterns-with-RxJS-and-Angular-Signals-Second-Edition/tree/main/Chap07
https://github.com/PacktPublishing/Reactive-Patterns-with-RxJS-and-Angular-Signals-Second-Edition/tree/main/Chap07
https://github.com/PacktPublishing/Reactive-Patterns-with-RxJS-and-Angular-Signals-Second-Edition/tree/main/Chap07

Sharing Data between Angular Components112

Defining the sharing data requirement
Let’s assume that we have four components – C1, C2, C3, and C4 – that do not have any relationship
with each other, and there is information – DATA – shared between those components:

Figure 7.1 – Shared data between components

The components can update and consume DATA at the same time. But at any time during the process,
the components should be able to access the last value of DATA.

Now, let’s make that explanation clearer with a more concrete example.

In our recipe application, when the user clicks on one recipe, it gets selected, but we want all components
to have access to the last selected recipe by the user. In that case, the selected recipe represents our
shared data.

One of the components that will need access to the selected recipe is the RecipeDetailsComponent
component, as it will display the details of the selected recipe.

Without further ado, in the next section, let’s see how we can make this data available to everyone
in a reactive way.

Exploring the reactive pattern to share data
Angular services are powerful and efficient for creating common references to share both data and
business logic between components. We will combine Angular services with Observables – more
specifically, BehaviorSubject instances – to create stateful, reactive services that will allow us
to synchronize the state efficiently across an entire application. So, in the following subsections, let’s
explain the steps to implement a reactive pattern to share data between unrelated or sibling components.

Exploring the reactive pattern to share data 113

Step 1 – Creating a shared service

First, we will create an Angular service called SharedDataService using the Angular CLI, as
usual under the src/app/core/services folder:

ng g s SharedData

Note
Here, we named the service SharedDataService for demonstration purposes. While it’s
true that we already have a service named RecipesService that could have accommodated
the shared data, the purpose of this chapter is to underscore the broader concept of data sharing.
Therefore, we chose a more generic term. However, in your own application, it’s recommended to
use specific and descriptive names such as RecipesService or another name that accurately
reflects the role and domain of the service. A name that accurately reflects the purpose of your
service is crucial for clarity and maintainability, especially in a framework such as Angular
where conventions can guide developers.

Then, in the SharedDataService class, we need to create the following:

• A private BehaviorSubject instance called selectedRecipeSubject that emits the
value of the currently selected recipe, which represents the data to be shared:

private selectedRecipeSubject = new BehaviorSubject<Recipe |
undefined>(undefined);

Here, selectedRecipeSubject has Recipe as the type and undefined as the initial
value since initially, we don’t have any selected value.

Also, selectedRecipeSubject is declared as private to ensure that it’s only accessible
within SharedDataService, where it’s defined, protecting it from external manipulation.
Otherwise, any external process could have access to the property and consequently call the
next method and change the emissions, which is dangerous. This encapsulation is important
for maintaining control over the state and preventing unintended changes.

• A public Observable, named selectedRecipe$, extracted from selectedRecipeSubject
to handle data as an Observable:

selectedRecipe$ = this.selectedRecipeSubject.asObservable();

Here, we used the asObservable() method available in the Subject type to derive a
read-only Observable from selectedRecipeSubject. This ensures that the emissions
of selectedRecipeSubject are only consumed in read-only mode, preventing external
processes from altering the selectedRecipeSubject value.

Sharing Data between Angular Components114

• A method called updateSelectedRecipe that will update the shared data, which is the
selected recipe:

updateSelectedRecipe(recipe: Recipe) {
 this.selectedRecipeSubject.next(recipe);
}

This method only calls next on selectedRecipeSubject to notify all subscribers of
the last selected recipe passed as a parameter. The process that updates the selected recipe will
call this method, which we will discuss in the next step.

This is what the service looks like after putting all the pieces together:

import { Injectable } from '@angular/core';
import { BehaviorSubject } from 'rxjs';
import { Recipe } from '../model/recipe.model';

@Injectable({
 providedIn: 'root'
})
export class SharedDataService {

 private selectedRecipeSubject = new
 BehaviorSubject<Recipe | undefined>(undefined);
 selectedRecipe$ =
 this.selectedRecipeSubject.asObservable();

 updateSelectedRecipe(recipe: Recipe) {
 this.selectedRecipeSubject.next(recipe);
 }
}

Now that we have prepared the groundwork by creating our shared data service and defined the behavior
subject that will hold the shared data, let’s see how we can update the shared data in the next section.

Step 2 – Updating the last selected recipe

We should update the shared selectedRecipe instance when the user clicks on one of the recipe
cards in the RecipesListComponent component. As a reminder, here are the recipe cards in
our Recipe app:

Exploring the reactive pattern to share data 115

Figure 7.2 – List of recipes

In order to update the shared selectedRecipe instance when the user clicks on the card, we need
to incorporate the (click) event output in the RecipesListComponent HTML template, which
triggers the execution of the editRecipe(recipe) method. This is the HTML code required:

@if (filteredRecipes$ | async; as recipes) {
<div class="card">
 <p-dataView #dv [value]="recipes" [paginator]="true"
 [rows]="9" filterBy="name" layout="grid">
 <ng-template let-recipes pTemplate="gridItem">
 <div class="grid grid-nogutter">
 @for (recipe of recipes; track recipe) {
 <div class="col-12" style="cursor:
 pointer;" (click)="editRecipe(recipe)"
 class="recipe-grid-item card">
// extra code here
</div>
} @empty {
<div>There are no recipes</div>
}
 </div>
 </ng-template>
 </p-dataView>
</div>

Sharing Data between Angular Components116

} @else {
<div>There are no recipes</div>
}

Here, (click) event binding is applied to each card, ensuring that when clicked, the
editRecipe(recipe) method is invoked to update the selectedRecipe instance.

In RecipesListComponent, we implement the editRecipe method as follows :

editRecipe(recipe: Recipe) {
 this.sharedService.updateSelectedRecipe(recipe);
 this.router.navigate(['/recipes/details']);
}

The editRecipe method takes the selected recipe as the input and performs two actions:

• It notifies selectedRecipeSubject that the value of selectedRecipe has changed
by calling the updateSelectedRecipe(recipe:Recipe) method, available in
SharedDataService. So, we should inject the SharedDataService service in
RecipesListComponent as follows :

import { SharedDataService } from '../core/services/shared-data.
service';
export class RecipesListComponent implements OnInit {
 constructor(private sharedService:
 SharedDataService) {}
}

• It displays the details of the recipe by routing to RecipeDetailsComponent, the standalone
component responsible for rendering and displaying the details of a recipe. We’ve added a route
configuration in the app-routing-module.ts file as follows :

import { RecipeDetailsComponent } from
'./recipe-details/recipe-details.component';
const routes: Routes = [
 { path: 'recipes/details',
 component: RecipeDetailsComponent},
];

At this point, we have put in place the mechanism that updates the value of the shared data. Now, all
that is left is to listen to the shared data and consume it.

Exploring the reactive pattern to share data 117

Step 3 – Consuming the last selected recipe

In the RecipeDetails component, we need to consume the last selected recipe in order to display
its details. So, again, we need to inject SharedDataService and define the selectedRecipe$
Observable – which will emit the last selected recipe – as follows:

import { SharedDataService } from '../core/services/shared-data.
service';
export class RecipeDetailsComponent {
 constructor(private sharedService: SharedDataService) { }
 selectedRecipe$ = this.sharedService.selectedRecipe$;
}

Then, we will subscribe to the selectedRecipe$ Observable using the async pipe in the
RecipeDetailsComponent HTML template in order to display the selected recipe’s details, as
follows :

@if (selectedRecipe$|async;as recipe) {
<div>
 {{recipe.title}}
 {{recipe.steps}}
 {{recipe.ingredients}}
</div>
}

And that’s it – this is how you can share data between unrelated components throughout the application!

Now, we can use the latest value of the recipe everywhere – we only have to inject SharedDataService
into the component that needs the shared data and subscribe to the public Observable that emits the
read-only value. For example, we can add this code in HeaderComponent to display the title of
the last selected recipe in the application’s header:

@if(selectedRecipe$|async; as recipe) {
 <div>
 {{recipe.title}}
 </div>
}

If we change the shared value in this component, all other components that listen to the shared data
will get notified to update their processes.

Note
We used this pattern in Chapter 5, Combining Streams, to share the value of the filter in
RecipesFilterComponent with RecipesListComponent instances, and then we
combined the streams to display the filtered results.

Sharing Data between Angular Components118

Wrapping up the data-sharing reactive pattern

To summarize everything, here’s a wrap-up of the steps:

• Begin by creating an Angular service that will be shared across components. Within this
service, define a private BehaviorSubject instance that will emit the shared value to its
subscribers, remembering to specify the type of data emitted by BehaviorSubject and
initialize it with the initial value of the shared data.

It’s important to note that we use BehaviorSubject for two primary reasons:

 � It allows us to broadcast shared data to multiple observers.

 � It stores the latest value emitted to its observers, and any new subscriber immediately receives
the last emitted value upon subscription.

• Next, define a public Observable within the shared service to hold the read-only shared value.

• Implement an update method within the shared service to update the shared value by calling
the next method of the Subject type to emit the updated value to subscribers.

• Inject the shared service in the component responsible for updating the value of the shared
data and call the update method implemented in the service.

• Inject the shared service in the component that consumes the value of the shared data and
subscribe to the exposed Observable in the service.

This reactive sharing data pattern has many benefits:

• It improves the sharing of data between unrelated components.

• It manages mutability risk. In fact, as we only expose the read-only extracted Observable to
other consumers and keep BehaviorSubject private, we prevent shared data from being
modified by subscribers, which can lead to data corruption and unexpected behavior.

• It makes communication between components easier as you will only have to inject the shared
service where you need it and just take care of updating the data.

As far as I’m concerned, this is the simplest way to share data between unrelated components in Angular
and manage the application state. This works perfectly in many situations, but for big applications
where there are a lot of user interactions and multiple data sources, managing states in services can
become complicated.

In those cases, we can use a state management library to manage the state of our application. There
are many great state management libraries out there to manage states in Angular, all with one thing in
common – they are built on top of RxJS Observables, and the state is stored in BehaviorSubject. The
most popular state management library is NgRx, which you can find out more about here: https://
ngrx.io/guide/store.

https://ngrx.io/guide/store
https://ngrx.io/guide/store

Leveraging Deferrable Views in Angular 17 119

Data-sharing mechanisms facilitate communication between different components and improve the
user experience, as well as the responsiveness of your application. Before ending this chapter, I want
to shed light on a new feature introduced in Angular 17, Deferrable Views, which can complement
data sharing and contribute to creating more responsive and efficient applications. Let’s see this in
action in the next section.

Leveraging Deferrable Views in Angular 17
Deferrable Views allow you to declaratively mark parts of your templates as non-essential for immediate
rendering. It is kind like delaying the rendering of certain parts of a page to improve the perceived
performance of your application, as well as optimize the initial bundle size and loading times.

There are a number of real-world scenarios where defer rendering can help to achieve faster load times
such as e-commerce product pages – in this example, you can initially display the essential product
details and then lazy load additional content such as reviews when the user clicks on a Read more
button or scrolls down the page.

Let’s quickly see how this works. To lazy load a component, you need to use a Standalone component,
otherwise deferring won’t work. Then you want to wrap up the Standalone component in a @defer
block, like so:

@defer {
 <delayed-component />
}

You can also define conditions for when exactly the deferred component should load. You can do this
by using triggers, which specify events or situations that initiate loading:

@defer(on viewport) {
 <delayed-component />
}

Here, the on viewport trigger is used to display the delayed-component when it enters the
viewport area of the user’s browser window.

Besides on viewport, there are other triggers that can be used such as on hover, which only
initiates the content to load when the user’s mouse hovers over the delayed content. You can find a
full list of available triggers here: https://angular.dev/guide/defer#triggers.

Furthermore, the @defer block has some important sub-blocks. For example, you can display
alternative content before the deferred content loads using the @placeholder sub-block, like so:

@defer(on viewport) {
 <delayed-component />
}
@placeholder {
 <div>Placeholder text here</div>
}

https://angular.dev/guide/defer#triggers

Sharing Data between Angular Components120

In addition to @placeholder, @defer also offers two other sub-blocks – @loading and @error :

• The @loading block is similar to the @placeholder block, but it specifically shows content
like a loading message while the actual content is being prepared.

• The @error block is displayed if there is an error while fetching or processing the deferred
content. This allows you to provide a user-friendly error message, or alternative content, in
case something goes wrong.

Now let’s look at how we can utilize defer rending in our Recipe app. Given that the images for each
recipe have a high resolution, let’s delay the rendering of the images in RecipesListComponent
HTML template so that they are only shown when the user hovers over the image:

@defer (on hover) {
 <img class="recipe-image" [src]="'assets/recipes/'+
 recipe.imageUrl" [alt]="recipe.title" />
}
@placeholder {
 <div>Hover to load the image</div>
}

As you can see, we surrounded the code block displaying the image with a @defer block, and used
the on hover trigger. Then we used the @placeholder block to specify some text that should
be displayed while the deferred content is not yet loaded. In this case, inside the <div> element, we
added the text, Hover to load the image.

For more details about the Deferrable Views feature, refer to https://angular.dev/guide/
image-optimization.

Summary
In this chapter, we explained the motivation behind sharing data between components and learned how
to implement it in a reactive way. First, we learned how we can use BehaviorSubject combined
with Angular services to share data between unrelated components and manage our application
state. Then, we highlighted the advantages of the sharing data reactive pattern. Finally, we explored
Angular’s new Deferrable Views feature.

The features covered in this chapter will help you implement a good architecture for your web
application, making it more reactive and performant, improving load times, and reducing the cost
of maintainability.

Now, get ready for an exciting journey, because in the next chapter, we delve into a brand-new feature
called Angular Signals! We’ll cover some reactive patterns using Signals and even integrate them into
what we’ve learned so far.

https://angular.dev/guide/image-optimization
https://angular.dev/guide/image-optimization

Part 3:
The Power of

Angular Signals

Dive into the exciting world of Angular Signals!

In this section, you will discover the core functionalities and advantages of Angular Signals, as well
as unlock the potential of reactivity by leveraging Angular Signals and RxJS together. We will also go
through the latest Angular Signals improvements.

This part includes the following chapter:

• Chapter 8, Mastering Reactivity with Angular Signals

8
Mastering Reactivity
with Angular Signals

Modern web applications thrive on reactivity, where data changes automatically, thereby triggering
updates in the UI. Angular Signals, introduced in version 17, streamlines this process by offering a
powerful and concise way to manage reactive data within your Angular applications.

This chapter delves into the core concepts, API functionalities, advantages, and relationship of
Signals with RxJS. We will also see how we can improve the reactivity of our Recipe app further using
Angular Signals.

So, in this chapter, we’re going to cover the following main topics:

• Understanding the motivation behind Signals

• Unveiling the Signal API

• Unlocking the Power of RxJS and Angular Signals

• Integrating Signals into our recipe app

• Reactive data binding with Signals

Technical requirements
The source code for this chapter is available at https://github.com/PacktPublishing/
Reactive-Patterns-with-RxJS-and-Angular-Signals-Second-Edition/tree/
main/Chap08 (this only includes the code related to the recipe app).

https://github.com/PacktPublishing/Reactive-Patterns-with-RxJS-and-Angular-Signals-Second-Edition/tree/main/Chap08
https://github.com/PacktPublishing/Reactive-Patterns-with-RxJS-and-Angular-Signals-Second-Edition/tree/main/Chap08
https://github.com/PacktPublishing/Reactive-Patterns-with-RxJS-and-Angular-Signals-Second-Edition/tree/main/Chap08

Mastering Reactivity with Angular Signals124

Understanding the motivation behind Signals
The main goal behind the Angular team’s introduction of Signals is to add more fine-grained reactivity
to the framework. This new Signal-based reactive system marks a significant leap forward in the
framework’s ability to handle dynamic data and user interactions. It offers a fresh approach to detecting
and triggering changes within the framework, replacing the traditional approach that relies on Zone.js.

The traditional Zone.js approach

Angular’s traditional change detection mechanism assumes that any event handler can potentially
change any bound data to the template. That’s why, whenever an event happens in your Angular
application, the framework scans all components and their data bindings for any potential changes.
This can be a bit heavy-handed, especially for complex applications. For this reason, a more optimized
mode OnPush change detection was introduced. This mode leverages the concepts of immutability
and Observables, allowing Angular to significantly reduce the number of components it needs to
check for updates. This was explored in Chapter 3, Fetching Data as Streams.

Whether you use the default change detection or the more optimized OnPush mode, Angular still
needs to stay informed when event handlers have finished running. This presents a challenge because
the browser – not Angular itself – triggers these event handlers. This is where Zone.js steps in, essentially
acting as a bridge. Zone.js can detect when an event handler has run, telling Angular, “Hey, there’s a
new event; you can take care of any necessary updates now.”

While this approach has worked well in the past, it still comes with a few downsides: when changes
are made, the whole component tree and all the expressions on every component are always checked.
There is no way for Angular to directly identify changed components or to just update the changed
parts of a component. That is why Angular cannot make any assumptions about what happened and
needs to check everything!

The new Signals approach

With Signals, Angular can easily detect when any part of the application data changes and update any
dependencies automatically. Signals enable efficient change detection, smarter re-rendering when data
changes, and facilitate fine-grained updates to the DOM, reducing the runtime required for Angular to
check all components, even if their consumed data remains unchanged. Ultimately, this can eliminate
the need for Zone.js in one of the future versions:

Unveiling the Signal API 125

Figure 8.1: Comparing the various change detection approaches

Apart from improving change detection, there are other advantages of using Signals:

• It provides a more intuitive and declarative way to manage reactive data

• The syntax aligns more closely with JavaScript, making code easier to read, understand,
and maintain.

• The compiler performs better type narrowing for improved type safety within your reactive code.

As we progress through this chapter, you’ll gain a clearer understanding of Signals. Eager to discover
more? Let’s continue.

Unveiling the Signal API
In this section, we’ll delve into the world of Signals, covering exactly what they are, how they work, and
the revolutionary changes they bring to Angular. So, without further ado, let’s discover what a Signal is.

Defining Signals

A Signal is a reactive entity within Angular that encapsulates a value (serving as a container for a
value) and automatically notifies consumers whenever that value changes. You can think of Angular’s
Signals as a combination of a data value and a change notification mechanism, offering a streamlined
approach to tracking changes and seamlessly updating the user interface in response to those changes.

Mastering Reactivity with Angular Signals126

While the concept of Signals is not novel and has existed in various forms across different frameworks
for many years, their integration into Angular provides developers with a familiar yet powerful tool for
managing reactive behavior within their applications. They act as wrappers around values, allowing
you to efficiently track changes and react accordingly.

Creating Signals using the constructor function

We can create a Signal using the signal constructor function available in the @angular/
core package.

An initial value is always required as a Signal must always have a value. Signals can hold a wide range
of values, including simple primitives, such as strings and numbers, as well as more complex data
structures, such as arrays and objects.

Plus, the signal function provides type flexibility. You can either explicitly define the type of the
Signal’s value or leverage type inference based on the initial value. For example, the following code
creates and initializes a Signal with a value of John Doe:

import { signal } from '@angular/core';
const name=signal('John Doe');

In this example, we didn’t define a type for our Signal’s value. If you don’t explicitly specify a type, the
signal function can infer the type based on the initial value you provide. So, here, the type can be
inferred from the initial value of John Doe as string.

But what if you want to be extra clear about the type? That’s perfectly possible! Here’s how you would
explicitly define the type:

name = signal<string>('John Doe');

As you can see, we added <string> after signal to explicitly state that the Signal will hold string
values. While type inference works well in many cases, explicitly defining types can improve code
readability and maintainability, especially for larger projects.

Now, let’s look at an example of a Signal holding an array. Imagine that you want to define a Signal
that represents an array of currencies:

currencies=signal(['EURO', 'DOLLAR', 'Japanese yen', 'Sterling'])

Here, the initial value is an array of strings, so the type of the Signal will be inferred as an array of
strings, string[].

Unveiling the Signal API 127

Now, thinking of our Recipe app, the favouriteRecipe Signal holds a Recipe object and is of
the Recipe type:

favouriteRecipe=signal<Recipe>({
 id: 1,
 title: "Lemon cake",
 prepTime: 10,
 cookingTime: 35,
 yield: 10,
 imageUrl: "lemon-cake.jpg"
})

Here, we explicitly defined the specific type of Recipe. If you’re working with a specific type throughout
your code, explicit type definition provides clarity and prevents potential type mismatches. However,
when the type is different from the initial value or may vary, you can avoid explicitly writing it, making
your code cleaner and more concise.

Once we have a Signal, we often want to read it and retrieve its value. But how can we do that? We’ll
find out in the next section.

Reading Signals

One way to read a Signal’s value is by using the Signal’s getter. Here’s an example that reads the value
of the previously created Signals and logs it in the console:

console.log(this.name());
console.log(this.favouriteRecipe());
//console output
John Doe
{"id": 1,"title": "Lemon cake","prepTime": 10, "cookingTime":
35,"yield": 10,"imageUrl": "lemon- cake.jpg" }
}

You can use this getter to read Signals in your Angular components, services, and directives.

You can also read Signals in your component template to display a value:

@for (currency of currencies(); track currency) {
<option>{{currency}}</option>
} @empty {
<div>There are no currencies</div>
}
<div>{{favouriteRecipe().title}}</div>

Mastering Reactivity with Angular Signals128

Reading a Signal in a template returns the current Signal’s value and registers the Signal as a dependency
of the template. If the Signal changes, the portion of the template is re-rendered.

Signals that are created using the signal creator function are writable. This means you can modify
their values after their creation. We’ll learn how to modify the value of a Signal in the next section.

Modifying a writable Signal

Signals that are created using the creation function are of the WritableSignal type and offer
an API specifically for updating their values. There are two primary methods for modifying the stored
value of a writable Signal:

• Using the set method

• Using the update method

Let’s look at them both.

Using the set method

The set method lets you directly set a new value for the Signal. Here’s an example:

name = signal('John Doe');
console.log(this.name());
this.name.set('Mary Jane');
console.log(this.name());
//console output
John Doe
Mary Jane

Here, we used the set method to update the Signal’s value from John Doe to Mary Jane. This is
a simple and effective way to assign a new value when you know how the value needs to be changed.

Using the update method

The update method allows us to compute a new value from the previous one, like so:

name = signal('John Doe');
console.log(this.name());
this.name.update(value=>'Full Name: '+ value);
console.log(this.name());
//console output
Full Name: John Doe

Unveiling the Signal API 129

In the update method, we appended Full Name: to the old Signal’s value, John Doe. The Signal
maintains a record of value changes over time. When the value changes, the Signal notifies subscribed
components or logic, prompting necessary UI or data flow modifications. Every part of the Angular
component that depends on the Signal will be automatically updated once the value changes.

So far, so good! Now that you’re comfortable with the basics of Signals, what if you could create Signals
that automatically react to changes in other Signals? In other words, what if you need Signals that
depend on other Signals? Well, that’s where computed Signals come into play!

Computed Signals

Computed Signals deduce their value from other Signals, offering a declarative way to define
relationships between Signals and ensure your data remains consistent. Let’s focus on a simple example
to understand the behavior:

import { signal, computed } from '@angular/core';

const firstName = signal('John');
const lastName = signal('Doe');
const fullName = computed(() => `${firstName()} ${lastName()}`);

In this code block, the fullName computed Signal derives its value from both the firstName
and lastName Signals. The computed function simply appends the firstName and lastName
values. So, fullName depends on the firstName and lastName Signals, which means that
whenever either firstName or lastName changes, the fullName Signal automatically updates,
reflecting the complete name.

Note that the computed Signal is lazy evaluated and cached. This means that the computed function
doesn’t execute to calculate its value until the first time you read the calculated Signal (fullName,
in our case). The calculated value is then cached, and if you read fullName again, it will return the
cached value without re-executing the calculation function. Then, if the value of firstName or
lastName changes, Angular knows that the fullName cached value is no longer valid, and the
next time you read fullName, its new value will be re-calculated. So, the calculation function will
re-execute again.

Note
Unlike WritableSignals, computed Signals are read-only, so you can’t change their values.
Even trying to set a value will result in a compilation error.

Now that we’ve looked at computed Signals, which automatically react to changes in other Signals, what
if you need to perform actions beyond simply updating data, such as making API calls or interacting
with other components? This is where Signal effects step in!

Mastering Reactivity with Angular Signals130

Signal effects

Signal effects are functions that execute in response to Signal changes. They provide us with a way to
perform side effects, such as logging data, or manipulating the DOM to perform custom rendering
or adding a custom behavior.

Let’s look at an example. Here’s some code in the HTML template:

<button (click)="update()">Update</button>

And here’s some TypeScript code :

counter = signal(0);
constructor() {
 effect(() => {
 console.log('The updated value is', this.counter());
 });
}
update() {
 this.counter.update((current) => current + 1);
}

This code creates a counter that starts at 0. Then, clicking the created Update button increments the
counter value by 1, and effect logs the updated value to the console.

Note that effects require an injection context to function properly, such as during the construction
of a component or service. That’s why we called it inside the constructor in the previous example.
This means it needs to be called within a specific environment where Angular’s dependency injection
system is available.

But why? Well, because Signal effects might internally rely on other Angular services or functionalities
that are managed by the dependency injection system. So, we should ensure that all necessary
dependencies are properly injected and accessible for effects to work as intended. Running it outside
this context could lead to errors because these dependencies wouldn’t be available.

Having explored the core functionalities and concepts of Signals, you might be wondering how they
compare to RxJS. Both offer mechanisms for managing data streams, so how do they differ? And can
they work together? These are crucial questions we’ll address in the next section.

Unlocking the power of RxJS and Angular Signals
While Angular Signals serves as a lightweight wrapper for reactive data with a simplified API, RxJS
offers a comprehensive library for handling asynchronous streams, thus remaining crucial for handling
more complex reactive programming requirements.

Unlocking the power of RxJS and Angular Signals 131

Here’s a concise comparison of Signals and RxJS Observables:

Feature Signals Observables
Value representation Hold a single value at a time. Emit values over time.
Subscription Subscription is implicit. Require explicit subscriptions.

Updates capability Updated by using the set/
update method or using a
computed Signal.

Updated by emitting new values.

Change detection Improve change detection
performance. Angular can
efficiently track changes and
re-render when needed.

Using Observables might trigger
inefficient change detection.

Providing notification Notify consumers when the
hold data changes, facilitating
value recalculation or
template re-rendering.

Notify consumers when an
event occurs or data is emitted,
facilitating value recalculation or
template re-rendering.

Reacting to notification React to notifications using effects. React to notifications
using callbacks.

Figure 8.2: Signals versus Observables

But when should you use each one? Well, RxJS shines in scenarios demanding complex reactive data
flows. These include the following:

• Managing multiple streams, often arising from asynchronous operations such as HTTP requests

• Handling complex data manipulation such as combination, merging, transforming, and filtering

• Reacting to each emission

On the other hand, Signals are good for the following aspects:

• Simple reactive data management within components, side effects, and calculations

• Data binding scenarios where you want to track changes and trigger targeted UI updates

• Situations where a simpler syntax and potentially improved change detection performance
are desired

Mastering Reactivity with Angular Signals132

Signals and RxJS are not mutually exclusive; they can be complementary tools in your Angular
development. Angular has several RxJS interop features that make Signals and Observables play nicely
in the same app, meaning you can get the benefits of both for a more powerful way to manage your data.
These RxJS interop features can be found under the @angular/core/rxjs-interop package
and include the toSignal() and toObservable() functions. We’ll look at both of these now.

Understanding the behavior of toSignal()

The toSignal() function lets you create a Signal from an Observable. It provides synchronous access
to the values that are emitted from the Observable, always containing the most recent emitted values
by the Observable. But the coolest part is that toSignal() automatically subscribes to the defined
Observable and unsubscribes when the component or service that calls toSignal() is destroyed.

So, we don’t have to manage subscriptions. Doesn’t this concept remind you of the async pipe? Indeed;
both Signals and the async pipe offer ways to display reactive data in Angular templates. However,
Signals provide greater flexibility. Unlike the async pipe, which is primarily used with Observables in
templates, Signals can be used anywhere in your application for efficient data management.

But wait – earlier, we learned that a Signal should always have a value while Observables may not emit
a value right away. And that’s true. That’s why toSignal has the option to provide an initial value,
which will represent the Signal’s value until the Observable emits. Here’s a simple example:

import { toSignal } from '@angular/core/rxjs-interop';
value$ = of([{ name: 'EURO', id: 1 }]);
valueAsSignal = toSignal(this.value$, { initialValue: [] });
constructor() {
effect = effect(() => console.log(this.valueAsSignal()));
}
//console output
{ name: 'EURO', id: 1 }

In this example, we created a value$ Observable using the of() creation function, which emits
the [{ name: 'EURO', id: 1 }] array. Then, we created a Signal named valueAsSignal
using the toSignal function. We pass two arguments to the toSignal function:

• this.value$: The Observable you want to convert into a Signal.

• { initialValue: [] }: An optional object that allows you to customize the Signal’s
behavior. Here, we’re setting the initialValue property to an empty array ([]). This ensures
that the Signal has a defined value even before the Observable emits its first item.

Finally, we registered an effect to log the Signal’s value in the console.

Unlocking the power of RxJS and Angular Signals 133

Note that if you don’t mention an initial value in the toSignal function, the Signal will have
undefined as the initial value. Be aware that using undefined as an initial value can always lead
to many errors or inconsistencies, so it would be better to manage this when it’s created and provide
an initial value.

With that clear, why is this different from using an Observable? Let’s focus on another example:

import { toSignal } from '@angular/core/rxjs-interop';
values$ = of(10, 20, 30);
this.values$.subscribe(value=> console.log(value));
//console output
10, 20, 30

Here, we’re creating an Observable that uses the of creation function – we subscribe to it and log
the values in the console. This Observable emits 10, 20, and 30, respectively, and those values will
get logged in the console.

Now, let’s convert this Observable into a Signal:

import { toSignal } from '@angular/core/rxjs-interop';
values$ = of(10, 20, 30);
valuesAsSignal = toSignal(this.values$, { initialValue: 0 });
Constructor() {
 effect = effect(() =>
 console.log(this.valuesAsSignal()));
}
//console output
30

Here, we used the same values$ Observable and converted it into a Signal using toSignal while
setting an initial value of 0. Then, we defined an effect to log the value of the Signal. The console
output is 30. Yes, only 30. Why?

The of() creation function emits its values immediately upon subscription. So, when toSignal
subscribes, all the values are immediately emitted. By the time the effect is scheduled to run, 30 is
already in the Signal as the last value emitted and that’s what it is logged as to the Signal.

Now, let’s delay the values$ emission by 5 seconds using the delay operator:

import { toSignal } from '@angular/core/rxjs-interop';
 values$ = of(10, 20, 30).pipe(delay(5));
valuesAsSignal = toSignal(this.values$, { initialValue: 0 });
 effect = effect(() =>
 console.log(this.valuesAsSignal()));
//console output
10, 20, 30

Mastering Reactivity with Angular Signals134

When you re-execute the code, you will see 10, 20, and 30 in the console. The effect now has the
opportunity to run after each emission because we set up a delay of 5 seconds.

The point here is that when we create Signals, the Signal will not necessarily get notified of all emitted
items; it depends on how the Observable is created and on its set of operators.

Note
Signals created through the toSignal() function are read-only – this makes sense as the
Signal here is just a consumer of the values emitted by the Observable. Also, keep in mind
that toSignal() creates a subscription – you should avoid calling it repeatedly for the same
Observable, and instead reuse the Signal it returns.

That is all you need to know about toSignal(). Now, let’s explore the toObservable() function.

Understanding the behavior of toObservable()

If you want to react to a Signal change and perform an async operation such as issuing an HTTP
request, the toObservable() function is your friend!

The toObservable() function allows you to convert a Signal into an Observable. Whenever the
Signal’s value changes, the Observable automatically emits a notification with the new value. This
allows you to easily trigger your async operation based on the updated Signal data. Under the hood,
toObservable() uses effects to track the Signal’s value and emit the latest value to the Observable,
as discussed earlier in this chapter.

The toObservable() function might remind you of the asObservable function that’s available
for subjects, something we explored in Chapter 7, Sharing Data Between Angular Components, but
these functions don’t have the same behavior.

Let’s look at an example of the asObservable function first:

 value = new BehaviorSubject(10);
 constructor() {
 this.value.asObservable().pipe(tap(x=>console.log(
 `The value is : ${x}`))).subscribe();
 this.value.next(20);
 this.value.next(30);
}
//console output
The value is : 10
The value is : 20
The value is : 30

Unlocking the power of RxJS and Angular Signals 135

When using Subject or BehaviorSubject, notifications are asynchronous. Here, we defined
a BehaviourSubject subject called value with an initial value of 10. Then, we extracted the
readonly Observable part of the subject using the asObservable() function. Each emitted
value is piped through a tap operator to log it in the console. Then, we subscribe to start receiving
notifications. Finally, in constructor, we emit new values (20 and 30) using the next method.

However, toObservable operates differently. It uses an effect where Signal change notifications
are scheduled rather than immediately processed, as Observable notifications are. Let’s modify the
same example by using Signals and toObservable instead:

value = signal(10);
 constructor() {
 toObservable(this.value).pipe(tap(x=>console.log(
 `The value is : ${x}`))).subscribe();
 this.value.set(20);
 this.value.set(30);
}
//console output
The value is : 30

Here, we defined a Signal instead of the BehaviorSubject subject named value with an initial
value of 10. Then, we called toObservable(this.value) to emit a notification when the
Signal’s value changes. In the pipeline, we once again logged the emitted values and subscribed to
the Observable to start receiving notifications. Finally, the value of the Signal was updated using the
set method.

However, look at the console output – that is, The value is : 30 . This may not be what you
expected, right? This is because the effect behind toObservable runs only after the Signal has
settled values. The current value of the Signal at that time is the last emitted value, which is 30.

Keep this behavior in mind when you decide to use a subject or a Signal – a subject will emit all the
values from its source, while toObservable only emits the current value from the Signal.

Note
Please note that the toObservable and toSignal functions require an injection context
to function properly.

As we delved into the powerful capabilities of both toSignal and toObservable, you might
have noticed the potential for synergy between RxJS and Signals. In the next section, we will learn
how we can use both RxJS and Signals in our recipe app and get the best of both worlds.

Mastering Reactivity with Angular Signals136

Integrating Signals into our recipe app
In this section, we will level up the recipe app’s reactive patterns by integrating Signals. We’ll kick things
off by revisiting the data fetching use case we implemented in Chapter 3, and then see how we can
adjust the implementation by using Signals in the RecipesListComponent to maximize efficiency.

Fetching data as streams using Signals

Let’s briefly review the code snippets we covered for implementing data fetching in RecipesService
and RecipesListComponent.

In recipes.service.ts, we have the following code:

export class RecipesService {
 recipes$ =
 this.http.get<Recipe[]>(`${BASE_PATH}/recipes`);
 constructor(private http: HttpClient) { }
}

In recipes-list.component.ts, we have this code:

export class RecipesListComponent {
 recipes$ = this.service.recipes$;
 constructor(private service: RecipesService) {
}

Finally, in recipes-list.component.html, we have this code:

@if (recipes$ | async; as recipes) {
// extra code here
}

Here, recipes$ is created in RecipesService and represents the Observable that holds the
list of recipes. Then, recipes$ is defined in RecipesListComponent and subscribed to in the
template using the async pipe. This code snippet was explained in detail in Chapter 3.

Now, instead of exposing recipes$ as an Observable in RecipesListComponent, we can
consider using a Signal to bind it in the template. To achieve this, we will convert the recipes$
Observable into a Signal named recipes using the toSignal() function.

First, to centralize data management in a single place, we will create the recipes Signal
inside RecipesService:

import { toSignal } from '@angular/core/rxjs-interop';
export class RecipesService {
 recipes$ =

Integrating Signals into our recipe app 137

 this.http.get<Recipe[]>(`${BASE_PATH}/recipes`);
 recipes=toSignal(this.recipes$, {initialValue: [] as
 Recipe[]});
 constructor(private http: HttpClient) { }
}

Here, the recipes Signal is created using the toSignal function, which takes two arguments:

• This.recipes$: The Observable to be converted into a Signal.

• {initialValue: [] as Recipe[]}: This is an optional configuration object that
specifies an initial value of an empty array, []. This ensures the Signal always has a value, even
before the Observable emits any data. We used the TypeScript as assertion to define the type
of Recipe[].

Note
We can optimize the RecipesService code by deleting the recipes$ property and
including its result in the recipes property, as follows:

recipes = toSignal(this.http.get<Recipe[]>(`${BASE_PATH}/
recipes`), { initialValue: [] as Recipe[] });

Next, in RecipesListComponent, we will define the Signal we created in RecipesService:

export class RecipesListComponent {
recipes = this.service.recipes;
constructor(private service: RecipesService) {}}

Finally, as toSignal automatically subscribes to the recipes$ Observable, we will change
recipes$ |async to recipes() in the RecipesListComponent template so that it
reads the Signal’s value:

@if (recipes(); as recipes) {
// extra code here
}

No other changes are required. If you go to the app, the list is displayed, and our app still works. By
doing this, we kept the Observable-based logic in RecipesService for managing async operations
using the HTTP client and then created a Signal from that Observable for use in the template. By
doing this, we can improve change detection in the template.

Now, how do we handle errors in our Signals? If they are just simple containers of values, how can
they generate an error?

Mastering Reactivity with Angular Signals138

In RecipesService, we handled the error using the catchError operator (discussed in
Chapter 4, Handling Errors Reactively) and provided a replacement Observable:

recipes$.pipe(catchError(() => of([])));

This code works fine when using toSignal. It is an option to handle errors at the Observable level
so that when the Observable that’s used in toSignal throws an error, this is later caught using the
catchError operator, and a replacement Observable is provided.

However, if an Observable called in toSignal rethrows an error and doesn’t handle it (the catch
and rethrow strategy detailed in Chapter 4), then this error will be thrown each time the Signal is read.
Consequently, if the Signal is read multiple times, the error will be thrown repeatedly.

Therefore, if you intend to rethrow the error and perform actions such as displaying a popup message
in the UI, then it is highly recommended to catch the error at the Observable level and return an error
object as a value. Here’s an example:

observable$.pipe(
 catchError((error: HttpErrorResponse) =>of({ status: 'error',
description: error })));

Here, we have an Observable that catches errors of the HttpErrorResponse type and returns an
object containing the status (indicating whether it’s an error or success) and the error description. At
this point, you can register an effect to handle this error at the component level.

Another option is to reject errors completely using the rejectErrors parameter of toSignal:

 recipes = toSignal(this.http.get<Recipe[]>(`${BASE_PATH}/recipes`),
{ initialValue: [] as Recipe[], rejectErrors:true });

When enabled, errors are thrown back into the Observable and will become uncaught exceptions. You
can imagine toSignal saying, “I don’t want your errors; take them back.” You can then register a
global error handler to handle uncaught exceptions and perform your actions:

export class GlobalErrorHandler implements ErrorHandler {
 handleError(error: any): void {
 alert(error.message);
 }
}

Note
If an Observable that’s used in toSignal completes, the Signal continues to return the most
recently emitted value before completion.

Integrating Signals into our recipe app 139

Now that we’ve used toSignal to improve our implementation and understood its behavior in
handling errors, along with the various recommended options available, let’s circle back to the concept
of filtering streams, a topic we explored in Chapter 5, Combining Streams. We will use computed Signals
to meet the filtering requirement using RxJS and Signals.

Combining streams using Signals

In the recipe app, we implemented filtering using BehaviorSubjects, which effectively notifies
components when the filter changes to refine the results. However, Signals also offer a mechanism to
react to value changes. They can trigger actions within effects or computed Signals.

This functionality overlaps somewhat with BehaviorSubjects, which begs the question, can we
replace BehaviorSubjects with Signals to filter streams? Let’s refresh our memory on the code
provided in Chapter 5.

In recipes.service.ts, we have the following code:

export class RecipesService {
 recipes$ =
 this.http.get<Recipe[]>(`${BASE_PATH}/recipes`);
 private filterRecipeSubject = new
 BehaviorSubject<Recipe>({ title: '' });
 filterRecipesAction$ =
 this.filterRecipeSubject.asObservable();
 constructor(private http: HttpClient) { }
 updateFilter(criteria: Recipe) {
 this.filterRecipeSubject.next(criteria);
 }
}

In recipes-list.component.ts, we have this code:

export class RecipesListComponent {
 recipes$ = this.service.recipes$;
 filterRecipesAction$ = this.service.filterRecipesAction$;
 filteredRecipes$ = combineLatest([this.recipes$,
 this.filterRecipesAction$]).pipe(
 map(([recipes, filter]: [Recipe[], Recipe]) => {
 const filterTitle = filter?.title?.toLowerCase() ?? '';
 return recipes.filter(recipe =>
 recipe.title?.toLowerCase() .includes(filterTitle))
 })
);
 constructor(private service: RecipesService) {
}}

Mastering Reactivity with Angular Signals140

Here, filterRecipesAction$ is the Observable that holds the latest filter’s value. It’s defined
in RecipesService and used in RecipesListComponent to refine the search. The filter’s
value is updated through the updateFilter method by RecipesFilterComponent.
filteredRecipes$ represents the result of filtering; we subscribed to it in the
RecipesListComponent template using the async pipe. This code snippet is explained in detail
in Chapter 5.

Now, using Signals, we can replace BehaviorSubject and the Observable we created in
RecipesService with a single Signal named filterRecipe and initialize it with an empty value:

export class RecipesService {
 recipes =
 toSignal(this.http.get<Recipe[]>(
 `${BASE_PATH}/recipes`), { initialValue: [] as Recipe[]
 });
 filterRecipe = signal({ title: '' } as Recipe);
 constructor(private http: HttpClient) { }
 updateFilter(criteria: Recipe) {
 this.filterRecipe.set(criteria);
 }}

Here, we created the filterRecipe Signal and initialized it with an empty criteria. In the
updateFilter method, which is used to notify the behavior subject of the change, we will simply
update the value of the Signal using the set method.

Then, in RecipesListComponent, instead of combining streams using combineLatest, we will
create a computed Signal that will return an array of recipes based on the Signal’s filter and the Signal’s
recipes list. Then, we will refine the recipes list given the filter value using the same filtering function:

export class RecipesListComponent {
 recipes = this.service.recipes;
 recipesFilter = this.service.filterRecipe;

 filteredRecipes = computed(() => {
 const filterTitle =
 this.recipesFilter()?.title?.toLowerCase() ?? '';
 return this.recipes().filter(recipe =>
 recipe.title?.toLowerCase()
 .includes(filterTitle));
 })
 constructor(private service: RecipesService) {
 }
}

Integrating Signals into our recipe app 141

Finally, in the RecipesListComponent template, we will be removing the async pipe and replacing
it with the call to the filteredRecipes Signal, as follows:

@if (filteredRecipes(); as recipes) {
 // Extra code here// Extra code here
}

This way, we have much cleaner code and an enhanced change detection mechanism.

We used BehaviorSubjects in Chapter 7, to share the last selected recipe from RecipesList
Component throughout the entire recipe app. Then, we consumed the last shared selected recipe
and displayed its details in RecipeDetailsComponent. Let’s use Signals for the same purpose
in this implementation.

Sharing data using Signals

Before diving into using Signals, let’s review the steps that were covered in Chapter 7.

In the shared-data.service.ts file, we have the following code:

export class SharedDataService {
private selectedRecipeSubject = new
BehaviorSubject<Recipe>({});selectedRecipeAction$ = this.
selectedRecipeSubject.asObservable();updateSelectedRecipe(recipe:
Recipe) { this.selectedRecipeSubject.next(recipe);
 }
}

In the recipe-details.component.ts file, we have this code:

export class RecipeDetailsComponent {
constructor(private sharedService: SharedDataService) { }
selectedRecipe$ = this.sharedService.selectedRecipeAction$;
}

And in the recipe-details.component.html file, we have this code:

@if (selectedRecipe$ | async; as recipe) {
}

selectedRecipeAction$ is the Observable that holds the latest selected recipe. It’s
defined in SharedDataService and used in RecipeDetailsComponent to display the
details. The last selected recipe is updated through the updateSelectedRecipe method by
RecipeListComponent. Then, we subscribed to selectedRecipe$ in the template using
the async pipe. This code snippet was explained in detail in Chapter 7.

Mastering Reactivity with Angular Signals142

Now, we’ll switch from BehaviorSubject to Signals in SharedDataService. We’ll initialize the
created Signal, selectedRecipe, with an empty object and change the updateSelectedRecipe
method so that it updates the value stored in the selectedRecipe Signal using the set method:

export class SharedDataService {
 selectedRecipe = signal({} as Recipe);
 updateSelectedRecipe(recipe: Recipe) {
 this.selectedRecipe.set(recipe);
 }
}

So far, so good – we have a Signal that will always hold the last selected recipe.

Next, let’s consume this Signal’s value in RecipeDetailsComponent. We will start by defining
the Signal created in SharedDataService, as follows:

export class RecipeDetailsComponent {
 constructor(private sharedService: SharedDataService) { }
 selectedRecipe = this.sharedService.selectedRecipe;
}

Then, in the template, replace selectedRecipe$ | async with selectedRecipe() to
read the value of the Signal.

And we’re done. When running this code, you’ll notice that the functionality remains intact. Each
time a recipe is selected from the list, RecipeDetailsComponent will display its details. Now.
let’s use Signals and toObservable to fetch a specific recipe from the server.

Transforming streams using Signals

Considering the previous example, the recipes array that’s displayed in RecipesListComponent
already contains all the recipe objects, along with their details, so we simply used the client-side recipe
object when clicking on a recipe from the list.

Now, imagine that we need to dynamically fetch a recipe’s details based on its ID, from a backend service
with the /api/recipes/:recipeID endpoint (this service is implemented in our recipes-
book-api backend server; the code is available in this book’s GitHub repository). Here’s how we
can adapt our previous implementation to handle this use case.

We can keep using Signals to track the currently selected recipe’s ID. So, in SharedDataService,
we’ll adjust our implementation as follows:

export class SharedDataService {
 selectedRecipeId = signal<number | undefined>(undefined);
 updateSelectedRecipe(recipeId: number | undefined) {
 this.selectedRecipeId.set(recipeId);

Integrating Signals into our recipe app 143

 }
}

Here, we defined a Signal named selectedRecipeId that’s been initialized to undefined as
we don’t have an initial selection.

The updateSelectedRecipe method now takes recipeId (either a number or undefined) as
input and updates the selectedRecipeId Signal using the set method.

Now, in RecipeListComponent, we will update the editRecipe method so that it only sends
the recipe’s identifier instead of the whole recipe object:

editRecipe(recipe: Recipe) {
 this.sharedService.updateSelectedRecipe(recipe.id);
 this.router.navigate(['/recipes/details']);
}

Now, we need to issue an asynchronous HTTP request to fetch the recipe’s details whenever a recipe is
selected from the list. Observables are ideal for this process! As we learned in Chapter 6, Transforming
Streams, we need a higher-order mapping operator that does the following:

• Transforms each emitted recipe’s identifier into a new Observable that issues an HTTP request

• Cancels the previous HTTP request when a new recipe’s identifier arrives and switches to the
newly created HTTP request for the latest ID

You may have guessed already, but switchMap is the ideal operator to use here.

But wait! We need two key streams involved in this situation:

• A HTTP request stream: This stream, which is created using this.http.
get<Recipe>(`${BASE_PATH}/recipes/${id}`), represents the actual HTTP
request to retrieve the recipe data based on the provided ID.

• A selected recipe ID stream: Currently, the selected recipe ID is stored in the selectedRecipeId
Signal. Here, we can use the toObservable function to convert the selectedRecipeId
Signal into an Observable stream that will emit a notification whenever the selected recipe ID
changes in the Signal. It will look like this: toObservable(this.selectedRecipeId).

Now, using the switchMap operator, we will define the recipe$ stream in SharedDataService,
as follows:

 recipe$ =
 toObservable(this.selectedRecipeId).pipe(filter(
 Boolean), switchMap(id =>
 this.http.get<Recipe>(`${BASE_PATH}/recipes/${id}`)
));

Mastering Reactivity with Angular Signals144

The resulting Observable, recipe$, represents a specific recipe object stream. It emits a new recipe
whenever the selected recipe ID changes and a successful HTTP request is made.

Finally, within RecipeDetailsComponent, we can convert the recipe$ Observable back
into a signal using the toSignal function:

selectedRecipe = toSignal(this.sharedService.recipe$);

This allows us to bind the recipe’s data in the component’s template using Signals.

Awesome, right? This transformation pattern of using Signals is applicable for every similar use case
where you need to combine or transform multiple data streams in your Angular applications!

By leveraging both Angular Signals and RxJS, you can achieve a well-balanced approach to reactive
data management in your Angular applications. This harmonious blend allows you to build highly
dynamic and responsive user interfaces. Now, let’s delve into some interesting new features regarding
reactive data binding with Signals.

Exploring reactive data binding with Signals
Angular’s data binding capabilities have been steadily improving to support reactivity. Starting from
version 17.1, Angular introduced some powerful features to leverage reactivity using Signals in
component interaction and data binding, such as input Signals, model inputs (starting from 17.2),
and support for content and view queries. To align with input Signals, version 17.3 provides a new
output API.

We will explore these new features in this section.

Signal inputs

The Angular @Input decorator is used to define an input property in a component, allowing data to
be passed into the component from its parent component or template. It essentially creates a one-way
data flow from the parent to the child component.

Angular 17.1 introduces Signal inputs that allow input data to be passed as Signals. This adds a powerful
twist to data binding between parent and child components in Angular, transforming traditional
Angular inputs into a reactive data source. Here’s an example:

TypeScript
@Component({
 selector: 'app-shipping',
})
export class ShippingComponent {
 addressLine2 = input<string>();
 identifier = input(0);

Exploring reactive data binding with Signals 145

 addressLine1 = input.required<string>();
}

In this example, we defined three Signal inputs:

• addressLine2: An optional input that can hold a string value or be undefined.

• identifier: An optional input that holds a number and has a default value of 0.

• AddressLine1: A required input that holds a string value. It is declared using the input.
required function, and by default, the inputs are optional (that’s why Signal inputs are type-
safe). If not provided, a compilation error will be thrown, like so: NG8008: Required input ‘
addressLine1’ from component ShippingComponent must be specified.

Note
Required inputs cannot have a default value. Therefore, you can’t read their values before they’ve
been bound, and Angular throws an exception. Consequently, you can’t access their values in
the constructor. However, you can safely access the values within ngOnInit, ngOnChanges,
computed, or effects as they are only triggered when the component has been initialized.

Note
When referenced in templates, Signal inputs will automatically mark OnPush components
as dirty.

Now that we’ve got a handle on creating Signal inputs and understanding their syntax, you might be
curious about how to use them. Signal inputs are read-only. You can access the value by calling the
getter function in the template, as follows:

{{addressLine1()}}
{{addressLine2()}}

You can also bind to an input Signal like so:

< app-shipping addressLine1 ="2300 Vision Lane">
< app-shipping [addressLine1]="addressProperty">
< app-shipping [label]="addressAsSignalProperty()">

In this example, we bound the Signal input property, addressLine1, to different values: a string
named 2300 Vision Lane, a component property named addressProperty, and a Signal’s
value named addressAsSignalProperty().

Mastering Reactivity with Angular Signals146

Binding to Signals opens the door to a whole new level of dynamic data flow; any changes made to
the input value in the parent component will be automatically reflected in the child component. This
is where the real magic happens. In the following example, we’re using the Signal input property’s
name to bind the values, but you can provide an alias to the input name using the following syntax:

 identifier = input(0,{alias: 'id'});

This allows you to reference the input by using <app-shipping [id]=50> as the alias in the
template while still using this.identifier as the property name inside your component.

In addition to using signal inputs for value binding in templates, they can also be used within effects
and computed functions. Are you wondering how to do that? Let’s look at some examples.

Here, we’re appending the values of addressLine1 and addressLine2 in the computed function
to build fullAddress:

 fullAddress = computed(() => `${this.addressLine1()}
 ${this.addressLine2()}`);

It’s possible to track the Signal input changes using the effect function, like so:

constructor() {
 effect(() => {
 console.log(this.identifier());
 });
}

In this example, the console.log function is invoked every time the identifier input changes. This
is a new way to track value changes.

So, life cycle hooks such as ngOnInit and ngOnChanges can now be replaced with computed
and effect, making value monitoring easier. Instead of implementing extra code inside ngOnInit
or ngOnChanges, we can simply register effect to monitor values and use computed to perform
automatic calculations.

With that, we’ve covered the essentials of Signal inputs, which enable one-way data binding. Next,
we’ll explore how bidirectional data binding can be achieved using Signals.

Model inputs

Model inputs are similar to the previously explained Signal inputs, allowing you to bind a value into
a property. However, model inputs allow the component to write values into the property, unlike
other inputs, which are read-only. This enables two-way reactive data binding, allowing the child
component to not only receive data changes from the parent but also notify the parent of any changes
it makes to the data.

Exploring reactive data binding with Signals 147

Let’s look at an example. Here’s some TypeScript code:

 identifier = model(0,{alias: 'id'});;
 constructor() {
 setInterval(() => {
 this. identifier.set("000524");
 }, 4000)
 }

And here’s some code in the HTML template:

<app-shipping [(id)]=counter></ app-shipping>
{{counter()}}

In the TypeScript code, we converted the Signal input named identifier into a model input that
initially contains a value of 0. Then, in the constructor, we set up a timer that will update the value of
the identifier input after 4 seconds.

Then, in the HTML template, we simply used the two-way data binding syntax to bind to a property
called counter that we defined in the parent component and then display the counter value.

When running this code, you will see that the model’s input value will get updated after 4 seconds to
000524 and the counter property will have 000524 as its value as well. The parent component is
automatically notified.

Another thing to note when defining a model input is that, under the hood, Angular generates an
output for that model. The output’s name is just the model input’s name suffixed with Change:

<app-shipping [(id)]=counter (idChange)="updateMessage()" ></ app-
shipping>

Here, we called the idChange output and triggered the updateMessagethat method, which
will display an alert when the model value changes. The idChange event will be emitted whenever
you write a new value into the model input.

Signal queries

Signal queries present a reactive alternative to traditional queries declared with the @ContentChild,
@ContentChildren, @ViewChild, or @ViewChildren decorators. Signal queries expose
query results as Signals, which means that query results can be composed with other Signals (using
computed or effect) and drive change detection.

For more details, you can check out the official documentation: https://angular.dev/guide/
signals/queries.

https://angular.dev/guide/signals/queries
https://angular.dev/guide/signals/queries

Mastering Reactivity with Angular Signals148

Summary
This chapter took a deep dive into Angular Signals. We started by figuring out why Signals exist and
how they help manage data reactively.

Then, we explored the Signals API, from creating and reading the current value to using computed
Signals and effects when the value changes.

Next, we compared Signals to RxJS Observables. We saw what each is good at and when you’d use one
over the other. Angular even provides special interop functions that let Signals and Observables work
together nicely, including toObservable() and toSignals(), both of which we discussed.

Finally, to put everything into practice, we used Signals in our recipe app to see how they work with
RxJS in real-world scenarios. This hands-on experience helped us solidify what we learned about using
Signals and RxJS together. We also walked through the newest improvements regarding reactive data
binding and component interaction using Angular Signals.

By incorporating Angular Signals into your Angular applications, you can streamline data management,
enhance code readability, and leverage the power of reactive programming. Remember, signals and
RxJS work together to empower you to build dynamic and responsive user interfaces.

In the next chapter, we’ll move on to the essentials of multicasting, which will be helpful in the
following chapters.

Part 4:
Multicasting Adventures

In this part, we will understand the essentials of multicasting in RxJS, as well as the recommended
reactive patterns in many real-world use cases, such as caching data, multiple asynchronous operations,
and real-time features.

You will also delve into the best practices when using multicast operators, Subjects, and Behavior
Subjects and learn the pitfalls to avoid specifically in the context of multicasting.

This part includes the following chapters:

• Chapter 9, Demystifying Multicasting

• Chapter 10, Boosting Performance with Reactive Caching

• Chapter 11, Performing Bulk Operations

• Chapter 12, Processing Real-Time Updates

9
Demystifying Multicasting

Multicasting refers to sharing the same Observable execution among multiple subscribers. This
concept can be challenging to grasp initially, especially for those unfamiliar with reactive programming
paradigms. However, it’s very useful and solves many problems in web applications.

In this chapter, I will demystify this concept, explaining when and where to use it, how RxJS subjects
are involved, and its advantages.

So, in this chapter, we’re going to cover the following main topics:

• Explaining multicasting versus unicasting

• Exploring RxJS subjects

• Highlighting the advantages of multicasting

Technical requirements
This chapter assumes that you have a basic understanding of RxJS.

All the source code in this chapter is used for demonstration purposes, so you don’t need access to
this book’s GitHub repository.

Explaining multicasting versus unicasting
Before we get into explaining multicasting versus unicasting, let’s start by explaining another key
concept, known as a producer, which we will be using a lot in this chapter.

A producer is the source that produces the Observable values – for example, DOM events, WebSockets,
and HTTP requests are considered producers. It is any data source that’s used to get values.

Observables fall into two types:

• Cold, or unicast, Observables

• Hot, or multicast, Observables

Demystifying Multicasting152

Let’s understand the difference between them.

Unicasting and cold Observables

A cold Observable in RxJS is like a personal storytelling session. Imagine you’re sharing a story with a
friend. You narrate the story right there with them, and it’s unique to your interaction. Each time you
share the story with a different friend, it’s like starting a new session with a fresh narrative.

In RxJS terms, this means that the Observable itself generates the data it emits. Each time someone
subscribes to the Observable, they get a private storytelling session. The story (or data) isn’t shared
between different listeners – it’s a one-on-one experience. This is why we call cold Observables “unicast”
– each emitted value is observed by only one subscriber:

Figure 9.1 – Unicast cold Observable

So, by default, Observables in RxJS are cold – they create and deliver data to each subscriber individually,
just like your personalized storytelling sessions.

Here’s an example of a cold Observable:

import { Observable} from 'rxjs';

const coldObservable$ = new Observable(observer => {
 observer.next(Math.random());
 observer.next(Math.random());
 observer.complete();
});

/** First subscriber */
coldObservable$.subscribe(data => {
 console.log(`The first Observer : ${data}`);
});

/** Second subscriber */
coldObservable$.subscribe(data => {

Explaining multicasting versus unicasting 153

 console.log(`The second Observer : ${data}`);
});

//console output
The first Observer: 0.043246216289945405
The first Observer: 0.7836505017199451
The second Observer: 0.18013755537578624
The second Observer: 0.23196314531696882

Let’s break down what’s happening in this code.

Here, Math.random() is our producer – it is called inside the Observable. So, data is produced
by the Observable itself.

The first ubscriber will get two random values after the subscription, and the second subscriber will
get two different values after the subscription. Every subscriber starts a new execution, leading to a
new invocation of Math.random(), which results in distinct values.

Each subscriber gets its own unique set of items. It begins to emit items only after the observer
subscribes to it. Since there are two different executions, every Observable will receive a different
value. This means that data is unicast and not shared among the subscribers.

Briefly looking at a real-world example, when a user logs into an application, their personal profile
or dashboard information is fetched and displayed. This data is unique to each user and should not
be shared across multiple users. Using a cold Observable ensures that each user receives personalized
data upon logging in, maintaining privacy and security. So, to summarize, for cold Observables, the
following applies:

• The Observable itself generates the data it emits

• It starts to emit data only after the observer subscribes to it

• Each observer (or subscriber) gets its own unique set of items

Now, let’s look at hot Observables.

Multicasting and hot Observables

Multicasting in RxJS is like hosting a live radio show. Imagine you’re broadcasting a show from a
studio, and listeners can tune in at any time to hear the same content. Once you start broadcasting,
anyone who tunes in can hear the same music, interviews, or discussions.

In RxJS terms, a hot or multicast Observable is an Observable whose emitted values are shared among
subscribers. There’s a single source of data, just like the radio station broadcasting content. When you
subscribe to a multicasting Observable, you’re joining the “broadcast,” and you’ll receive the same
data as anyone else who’s tuned in:

Demystifying Multicasting154

Figure 9.2 – Multicast hot Observable

Unlike cold Observables, where each subscriber gets a private session, multicasting allows multiple
subscribers to listen to the same stream of data simultaneously.

Here’s an example of a hot Observable:

import { Observable, fromEvent } from 'rxjs';
// Hot Observable
const hotObservable$ = fromEvent(document, 'click');

hotObservable$.subscribe(({ x, y }: MouseEvent) => {
 console.log(`The first subscriber: [${x}, ${y}]`);
});

hotObservable$.subscribe(({ x, y }: MouseEvent)=> {
 console.log(`The second subscriber: [${x}, ${y}]`);
});

//console output
The first subscriber: [108, 104]
The second subscriber: [108, 104]

Let’s break down what’s happening in this code.

We created an Observable using the fromEvent function of RxJS. This Observable will emit clicks
happening on the DOM document when subscribing to.

Explaining multicasting versus unicasting 155

Note
For more details about fromEvent, please refer to https://rxjs.dev/api/index/
function/fromEvent.

In this case, the data is emitted outside the Observable and, as you may have guessed, both subscribers
will get the same data. This means that the subscribers share the same instance of the DOM click event.
So, the hot Observable shares data between multiple subscribers. We call this behavior multicasting.
In other words, the Observable multicasts to all subscribers.

Looking at another real-world scenario, consider a chat application where you might have a global chat
service that exposes a hot Observable representing the stream of incoming messages from all users in
the chat room. Multiple components, such as message feeds and notifications, can subscribe to this
hot Observable to display new messages in real-time without needing to create separate Observables
for each component.

So, to summarize, for hot Observables, the following applies:

• Data is produced outside the Observable

• It may begin emitting items as soon as it is created

• The emitted items are shared between the subscribers (multicasting)

Transforming cold Observables into hot Observables

If we want to transform the cold Observable into a hot one, we have to move the producer outside
the Observable – this way, our subscribers will receive the same data.

Let’s revisit our example with the cold Observable. Instead of generating values within the Observable,
we’ll pre-calculate the value by using Math.random() outside the Observable, like this:

const value = Math.random();
const coldObservable$ = new Observable(observer => {
 observer.next(value);
 observer.next(value);
 observer.complete();
});

/** first subscriber */
coldObservable$.subscribe(data => {
 console.log(`The first subscriber: ${data}`);
});

/** second subscriber */
coldObservable$.subscribe(data => {

https://rxjs.dev/api/index/function/fromEvent
https://rxjs.dev/api/index/function/fromEvent

Demystifying Multicasting156

 console.log(`The second subscriber: ${data}`);
});

//console output
The first subscriber: 0.6642828154026537
The first subscriber: 0.6642828154026537
The second subscriber: 0.6642828154026537
The second subscriber: 0.6642828154026537

As you may have noticed, after executing this code, all subscribers receive the same pre-calculated value.

Now, before we wrap up this section, let’s just quickly summarize unicasting and multicasting:

• You should use unicasting when you want each subscriber to own independent executions and
separate data streams for each subscriber.

• On the other hand, you should use multicasting when you want to make sure multiple subscribers
share the same execution and results, particularly in scenarios involving hot Observables,
broadcasting, or caching results.

Multicasting also helps optimize and improve performance when executing data is expensive.
As a quick final example, suppose that the Observable’s execution is issuing a network request.
If we choose a cold Observable (or unicasting), then a network request will be raised for every
subscriber. Instead, multicasting is a better fit for this particular scenario as it will share the
execution of the network requests among subscribers and consequently avoid redundant
request calls.

Now that we understand multicasting and hot Observables, let’s explore the most popular ways to
multicast values to observers in RxJS, namely RxJS subjects.

Exploring RxJS subjects
Subjects are special types of Observables. While plain Observables are unicast, subjects are multicast,
allowing values to be broadcast to all subscribers.

You can consider subjects as observers and Observables at the same time:

• You can subscribe to subjects to get values emitted by the producer (that’s why they act
as Observables):

Exploring RxJS subjects 157

Figure 9.3 – An RxJS subject

• You can send values, errors, and completes by using the next, error, and complete methods
that are available in the Observer interface (that’s why they act as observers):

const observer = {
 next: x => console.log('Observer got a next value: '
 + x),
 error: err => console.error('Observer got an error:
 '+err),
 complete: () => console.log('Observer got a
 completion'),
};

In short, a subject maintains a list of subscribers and notifies them when a new value is emitted. But
to go a bit deeper, there are multiple types of subjects in RxJS. Let’s explore the most used ones.

A plain subject

plainSubject is the parent type of all subjects. Let’s see a quick example:

const plainSubject$ = new Subject();
plainSubject$.next(10);
plainSubject$.next(20);

plainSubject$.subscribe({
 next: (message) => console.log(message),
 error: (error) => console.log(error),
 complete: () => console.log('Stream Completed'),
 });

plainSubject$.subscribe({
 next: (message) => console.log(message),
 error: (error) => console.log(error),

Demystifying Multicasting158

 complete: () => console.log('Stream Completed'),
 });

plainSubject$.next(30);

//console output
30
30

In the preceding code, we created plainSubject$, which emitted 10 and 20 as values. Afterward,
we created two subscribers that logged the incoming values, the errors, and the completion of the
stream. Finally, plainSubject$ emitted a value of 30.

After executing this code, notice that only 30 is traced twice in the console. This means that the
subscribers only received 30. Why have they not received 10 and 20? Because those values were
emitted before the subscription to plainSubject$ and every emission that occurs before the
subscription will get lost. This is how a regular subject multicasts values.

And that’s how plain subjects behave and emit values.

You can use subjects as a communication hub in your web application to share data between different
Angular components, as we explored in Chapter 7, Sharing Data between Angular Components.

Moreover, subjects can be used to manage the authentication state in a web application. For instance,
you can use a subject to emit a value whenever the user logs in or logs out. This emitted value can
then be used to conditionally display certain components or trigger specific behaviors based on the
user’s authentication status.

If you want to keep a buffer of previous values emitted to subscribers coming late to the game, then
ReplaySubject can help!

replaySubject

replaySubject is a subject variant, similar to plainSubject, but with an in-memory feature:
they remember and replay previous messages to new subscribers. Replay subjects have a memory.

Let’s explain how it works by exploring the following example:

const replaySubject$ = new ReplaySubject();
replaySubject$.next(10);
replaySubject$.next(20);
replaySubject$.next(50);
replaySubject$.subscribe({
 next: (message) => console.log(message),
 error: (error) => console.log(error),

Exploring RxJS subjects 159

 complete: () => console.log('Stream Completed'),
});

replaySubject$.subscribe({
 next: (message) => console.log(message),
 error: (error) => console.log(error),
 complete: () => console.log('Stream Completed'),
});
replaySubject$.next(30);

//console output
10
20
50
10
20
50
30
30

As you can see, all the values were replayed to the new subscribers. Now, to control the buffer size
(the number of values you want the Replay subject to store), you can pass it as a parameter when
creating ReplaySubject, like so:

const replaySubject$ = new ReplaySubject(2);

This will only replay the last two values. The console output will be as follows:

20
50
20
50
30
30

As a real-world use case, let’s consider a chat application where a user joins the chat room late. With
ReplaySubject, they can still see previous messages that were sent before they joined. This is
useful for providing a complete chat history to new users.

With that, let’s move on to the other variant of Subject – BehaviorSubject.

BehaviorSubject

BehaviorSubject is just ReplaySubject with a buffer size equal to one, so it can only replay
only previous item. We used BehaviorSubject in Chapter 5, Combining Streams.

Demystifying Multicasting160

BehaviorSubject requires an initial value and always retains the last value so that it can emit it
to new subscribers. In other words, if you have any subscribers coming late to the game, they will get
the previous value that was emitted by the stream. This will always give you value when you subscribe.

Here’s an example:

const behaviourSubject$ = new BehaviorSubject(1);
behaviourSubject$.next(10);
behaviourSubject$.next(20);
behaviourSubject$.next(50);

behaviourSubject$.subscribe({
 next: (message) => console.log(message),
 error: (error) => console.log(error),
 complete: () => console.log('Stream Completed'),
});

behaviourSubject$.subscribe({
 next: (message) => console.log(message),
 error: (error) => console.log(error),
 complete: () => console.log('Stream Completed'),
});
behaviourSubject$.next(30);

//console output
50
50
30
30

Here, behaviourSubject$ is created and has an initial value of 1. Then, behaviourSubject
emitted 10, 20, and 50, respectively. Right after we subscribed two times to behaviourSubject$,
both subscribers will immediately receive the last value emitted by behaviourSubject$, which
is 50 – that’s why 50 is traced two times in the console. Finally, behaviourSubject$ emitted
30; consequently, the subscribers will receive 30 and trace it.

If no values were emitted before the subscription, then behaviourSubject$ will emit the initial
value, which is 1:

const behaviourSubject$ = new BehaviorSubject(1);

behaviourSubject$.subscribe({
 next: (message) => console.log(message),
 error: (error) => console.log(error),
 complete: () => console.log('Stream Completed'),

Exploring RxJS subjects 161

});

behaviourSubject$.subscribe({
 next: (message) => console.log(message),
 error: (error) => console.log(error),
 complete: () => console.log('Stream Completed'),
});
behaviourSubject$.next(30);
//console output
1
1
30
30

As another example, imagine that you’re building a weather app that displays the current temperature.
You can use BehaviorSubject to represent the temperature data. Whenever the temperature
changes, you update BehaviorSubject with the new value. Subscribers to BehaviorSubject
will always receive the latest temperature, even if they start using the app after the temperature has
changed multiple times.

To summarize, PlainSubject, BehaviorSubject, and ReplaySubject are the most used
subjects in RxJS, which is why we discussed them here. However, there are other types of subjects,
such as WebSocketSubject, which are used much less (though we will explore that one more
in Chapter 12, Processing Real-Time Updates). For details about the other types, refer to https://
rxjs.dev/guide/subject.

Note
There are also many useful RxJS operators for multicasting (or sharing values/executions)
in RxJS 6, namely multicast, publish, share, shareReplay, publishReplay,
publishLast, and refcount. For more details about these operators, you can check the
official docs: https://rxjs.dev/api/operators.

In version 7, multicasting operators were consolidated to share, connectable, and
connect. The other multicasting APIs are now deprecated and will be deleted in RxJS 8. The
only operator that wasn’t deprecated is shareReplay because it is very popular. It is now a
wrapper around the highly configurable share operator.

Since we are using RxJS 7 in this book, I think it is useless to go through all the deprecated
operators. Instead, we focus on the share operator as it satisfies most cases. We will learn
the behavior of the share operator by considering a real-world use case in the next chapter,
Chapter 10, Boosting Performance with Reactive Caching.

For details about RxJS 7 multicasting operators, refer to https://rxjs.dev/deprecations/
multicasting.

https://rxjs.dev/guide/subject
https://rxjs.dev/guide/subject
https://rxjs.dev/api/operators
https://rxjs.dev/deprecations/multicasting
https://rxjs.dev/deprecations/multicasting

Demystifying Multicasting162

Now that you have a good understanding of multicasting and the different ways of implementation
provided by RxJS, let’s explore the main advantages of multicasting.

Highlighting the advantages of multicasting
Multicasting in RxJS or having the ability to share the same Observable execution among multiple
subscribers has many advantages. Here are some key ones:

• Optimizing resources: Multicasting helps optimize resources by avoiding redundant treatments.
When dealing with expensive operations such as raising HTTP networks or performing
complex computations, multicasting helps you do the work once and share the results among
all subscribers.

• Consistent data and results: Multicasting ensures that all subscribers receive the same set of
values emitted by the Observable. This can be crucial in scenarios where consistency in data is
essential, and you want all subscribers to observe the same data sequence.

• Broadcasting: Multicasting gives you the possibility to send, once and for all, the same set
of values to multiple subscribers at the same time. This is what we call broadcast, and it is
beneficial when you have a complex application with multiple components that need to react
to the same set of values.

• Late subscribers: Multicasting allows late subscribers to receive the same values as subscribers
who joined earlier. This is achieved by using BehaviorSubject and ReplaySubject,
plus some multicast RxJS operators such as the shareReplay operator, something we will
explain in Chapter 10, Boosting Performance with Reactive Caching.

When designing applications with RxJS, multicasting is a powerful mechanism that should be put
on the table because it enhances performance, efficiency, consistency, and interaction between the
different parts of your app. However, it’s essential to use multicasting carefully and be aware of potential
pitfalls, depending on your specific use case. Here are some examples:

• Data alteration: Multicasting inherently shares the same data stream across all subscribers. If a
subscriber modifies the data within its subscription logic (for example, using operators such as
map or filter), this modification can unintentionally affect what other subscribers receive.
This can lead to unexpected behavior and debugging challenges.

For example, imagine a multicast Observable emitting a list of products. A component subscribes
and filters the list to only show products with discounts. However, this filtering modifies the
original data stream. If another component later subscribes, expecting the complete product
list, it will only receive the discounted products due to the unintended modification in the first
subscription. That’s why keeping the subject private and exposing only the read-only part of the
data through the asObservable() method is a common and effective practice. This ensures
that external components or consumers cannot directly modify the internal state of the subject.
Instead, they can only observe the emitted values without interfering with the data stream.

Summary 163

• Memory leaks: Unlike unicast Observables, which complete after a single subscriber unsubscribes,
multicasting continues emitting data so long as at least one subscriber remains. This can lead
to memory leaks if you’re not careful about managing subscriptions, especially when dealing
with infinite or long-lived Observables.

For example, imagine a multicast Observable that emits real-time stock prices. If components
subscribe to this Observable but don’t unsubscribe when they are no longer needed, the
Observable will continue emitting, potentially causing memory leaks as references to the
Observable and its internal state accumulate.

We will explore other multicasting pitfalls and best practices in the next chapters.

Summary
In this chapter, I walked you through the most important concepts and vocabulary to understand
multicasting. We started by explaining the role of a producer, after which we learned the difference
between cold and hot Observables, leading us to the definition of multicasting and unicasting. Then,
we explored RxJS subjects, the different types of subjects, and the use cases of each before introducing
multicasting operators in RxJS.

In the next chapter, we’ll practice all of this in a real-world use case. We will learn how to put an
efficient mechanism of caching in place in our Recipe app by using multicasting in RxJS and, more
specifically, by combining multicasting operators and subjects.

10
Boosting Performance
with Reactive Caching

Caching data and assets is one of the most efficient ways to improve the user experience of our web
applications. It’s a good way to speed up the load times of our web applications and keep the number
of network requests to a minimum.

We will start this chapter by defining the caching requirement for our application’s client side and
looking at its motivation. Then, we will learn how to implement this requirement reactively using
RxJS operators. After that, we will describe a better way to do this using the latest features of RxJS 7.
Finally, we will highlight another use case of caching streams, which is for side effects.

In this chapter, we’re going to cover the following main topics:

• Defining the caching requirement

• Exploring the reactive pattern to cache streams

• Highlighting the use of caching for side effects

Technical requirements
This chapter assumes that you have a basic understanding of RxJS.

The source code of this chapter is available at https://github.com/PacktPublishing/
Reactive-Patterns-with-RxJS-and-Angular-Signals-Second-Edition/tree/
main/Chap10.

https://github.com/PacktPublishing/Reactive-Patterns-with-RxJS-and-Angular-Signals-Second-Edition/tree/main/Chap10
https://github.com/PacktPublishing/Reactive-Patterns-with-RxJS-and-Angular-Signals-Second-Edition/tree/main/Chap10
https://github.com/PacktPublishing/Reactive-Patterns-with-RxJS-and-Angular-Signals-Second-Edition/tree/main/Chap10

Boosting Performance with Reactive Caching166

Defining the caching requirement
As you have learned throughout the previous chapters, the HTTPClient module is Observable-based,
which means that methods such as get, post, put, and delete return an Observable. Subscribing
multiple times to this Observable will cause the source Observable to be created repeatedly, hence
performing a request on each subscription – as we learned in Chapter 9, Demystifying Multicasting, this
means it is a cold Observable. This behavior will result in an overhead of HTTP requests, which may
decrease the performance of your web applications, especially if the server takes some time to respond.

Reducing HTTP requests by caching the result on the client side is one of the most commonly used
techniques to optimize web applications. Client-side caching involves storing previously requested
data so that you don’t raise repetitive requests to the server and harm your application’s performance.

Let’s picture this with a streaming service scenario. Imagine that you’re watching your favorite TV
show on a streaming service. When you start watching, the streaming service fetches the episodes
from the internet and streams them to your device. Now, let’s say you want to rewind a bit and watch
a scene again. Instead of fetching the episodes from the internet again, the streaming service has
already stored the episodes you’ve watched in a special memory bank. This memory bank allows you
to rewind and rewatch scenes without having to re-fetch them from the internet.

But when should we cache data? When data is shared (used by more than one component in your
app) and doesn’t change frequently, it makes a lot of sense to cache it and share it among multiple
components. For example, the user’s profile data is subject to caching. We generally retrieve the user’s
profile information after they log in, and it won’t change during the user’s session.

Additionally, reference data, such as lists of countries, currencies, or categories, are subjects for caching.
Since this doesn’t change frequently, you can cache it and share it among multiple components.

In the case of RecipesApp, the /api/recipes GET request is called every time the RecipesList
component is rendered to load the list of recipes. In other words, whenever the user clicks on the
recipe app's logo or navigates between HomeComponent and RecipeCreationComponent, a
GET request will be issued, even if the list of recipes hasn’t changed.

The following screenshot shows the raised requests in the Network tab:

Figure 10.1 – The GET HTTP requests and their overhead

Exploring the reactive pattern to cache streams 167

As you may have noticed, all those outgoing requests result from the navigation between HomeComponent
and the other components.

In this chapter, we will assume that the list of recipes does not change frequently. In this case, it is
useless to request the server on every component’s load; it would be better to cache the result and read
the data from the cache to enhance the performance and the user experience.

But what if there are new recipes? What about updates? Well, there are two techniques we can utilize
to handle updates:

• We could update the cache data after each interval of time to retrieve the most recent version
of the data – this technique is called polling

• We could place a server push notification to get real-time updates instantly

In this chapter, to understand the caching behavior in RxJS through basic examples, we will keep it
simple and implement a client-side cache with and without a refresh capability.

Note
Though we will cover the polling technique in this chapter, we will cover the second technique
in Chapter 11, Processing Real-Time Updates.

So, without further ado, let’s look at how we can implement this.

Exploring the reactive pattern to cache streams
You’ll be glad to know that RxJS ships with a very useful operator to implement a stream caching
mechanism – this is the shareReplay multicast operator. Let’s take a look.

The shareReplay operator

In RxJS, shareReplay works similarly to the streaming service memory bank, sharing an Observable’s
execution with multiple subscribers. When you subscribe to an Observable that uses shareReplay,
it fetches the data, just like streaming a show. However, shareReplay caches or remembers the
emitted values from the Observable. If you subscribe again later, instead of fetching the data again, it
replays the cached values from its memory bank.

This can be useful when you have multiple subscribers to an Observable, but you don’t want each
subscriber to trigger a new data fetch. Instead, you want them to share the same set of data, like multiple
viewers sharing the same TV show episodes. This can improve performance and reduce unnecessary
data fetching in your application.

Boosting Performance with Reactive Caching168

So, in a nutshell, the shareReplay operator does the following:

• Shares an Observable’s execution with multiple subscribers

• Offers the possibility to replay a specified number of emissions to the subscribers

Now, let’s see how we can use the shareReplay operator for our requirement.

Using shareReplay in RecipesApp

Our goal is to cache the list of recipes in our app. This is represented by the recipes$ stream defined
in RecipesService, as shown here:

export class RecipesService {

recipes$ = this.http.get<Recipe[]>(`${BASE_PATH}/recipes`);

}

The recipes$ stream is initially a cold Observable, meaning the stream’s data is re-emitted for every
subscriber, resulting in an overhead of HTTP requests. This is not what we want. We want to share
the last stream’s emission with all subscribers – in other words, we want to transform the cold stream
into a hot stream using the shareReplay operator, like so:

export class RecipesService {

recipes$ =
this.http.get<Recipe[]>(`${BASE_PATH}/recipes`).pipe(
shareReplay(1));
}

By passing 1 as an argument, shareReplay cached the last emission from recipes$.

Now, let’s explain the complete data-sharing workflow:

• First, HomeComponent is initialized.

• Then, HomeComponent triggers the rendering of the child component – that
is, RecipesListComponent.

• RecipesListComponent loads the recipes$ Observable that’s available in
RecipeService. It will perform the GET HTTP request to retrieve the list of recipes since
this is the first time we have asked for the data.

• Then, the cache will be initialized by the data coming back from the server.

Exploring the reactive pattern to cache streams 169

• The next time the data is requested, it will be retrieved from the cache thanks to the shareReplay
operator. Under the hood, the shareReplay operator creates a ReplaySubject instance
that will replay the emissions of the source Observable with all future subscribers. After the first
subscription, it will connect the subject to the source Observable and broadcast all its values.

This is the multicasting concept we explained in Chapter 9, Demystifying Multicasting. The next time
we request the recipes list, our cache will replay the most recent value and send it to the subscriber.
No additional HTTP call is involved. So, when the user leaves the page, it unsubscribes and replays
the values from the cache.

The following diagram also illustrates the complete workflow:

Figure 10.2 – ShareReplay execution

This works perfectly fine when the data doesn’t need to be refreshed at all. But as described in the
requirement, we need to refresh RecipesList every interval. If the polling technique is used, we
can update the cache like so:

import { switchMap, shareReplay, timer } from 'rxjs/operators';
const REFRESH_INTERVAL = 50000;
const timer$ = timer(0, REFRESH_INTERVAL);

export class RecipesService {

recipes$ = timer$.pipe(

Boosting Performance with Reactive Caching170

 switchMap(_ =>

 this.http.get<Recipe[]>(`${BASE_PATH}/recipes`)),

 shareReplay(1)

);

}

Here, we created a timer$ Observable that will emit every 50 seconds. This interval is configured
in the REFRESH_INTERVAL constant, using the timer function available in RxJS to create the
timer$ Observable. For more details about the timer function, please refer to https://rxjs.
dev/api/index/function/timer#examples.

Then, for every emission, we use the switchMap operator to transform the value into the Observable
that’s returned by the HTTP client. This will issue an HTTP GET every 50 seconds and, consequently,
update the cache.

This is a known RXJS pattern for executing a treatment every x seconds.

Now, let’s see how we can customize the shareReplay operator.

Customizing the shareReplay operator

With RxJS 6.4.0, a new shareReplay signature was provided to customize the operator’s behavior.
The new signature takes a single config parameter of the ShareReplayConfig type, as follows:

function shareReplay<T>(config: ShareReplayConfig):
MonoTypeOperatorFunction<T>;

The ShareReplayConfig interface contains the following properties:

interface ShareReplayConfig {
 refCount: boolean;
 bufferSize?: number;
 windowTime?: number;
 scheduler?: SchedulerLike;
}

https://rxjs.dev/api/index/function/timer#examples
https://rxjs.dev/api/index/function/timer#examples

Exploring the reactive pattern to cache streams 171

Let’s discover the purpose of each property:

• refCount: If refCount is enabled (set to true), the shareReplay stream will unsubscribe
from the source Observable when there are no subscribers. Therefore, the source will no longer
emit. This means that if a new subscriber comes along later, then a new stream will be created
that subscribes to the source Observable. If refCount is disabled (set to false), the source
will not be unsubscribed, meaning that the inner ReplaySubject will still be subscribed
to the source and potentially run forever. To avoid memory issues, it is highly recommended
to set the refCount property to true.

• bufferSize: This refers to how many values you want to replay. For example, if you just want
the one previous value to be replayed for each new subscriber to the shared stream, then you
should mention 1 as a bufferSize value like so: shareReplay({bufferSize: 1}).

• windowTime: This refers to the time limit in milliseconds for data stored in the buffer to be
emitted to future subscribers.

• scheduler: This is used to control the execution and provide a way to manage concurrency
(for more details, please refer to the official documentation: https://rxjs.dev/api/
index/interface/SchedulerLike).

In our case, we need to configure bufferSize to 1 to store only the latest value and set refCount
to true to prevent memory leaks.

So, using the shareReplayConfig object, the final code of RecipesService will look like this:

import { switchMap, shareReplay, timer } from 'rxjs/operators';
const REFRESH_INTERVAL = 50000;
const timer$ = timer(0, REFRESH_INTERVAL);
export class RecipesService {

recipes$ = timer$.pipe(
 switchMap(_ =>
 this.http.get<Recipe[]>(`${BASE_PATH}/recipes`)),
 shareReplay({bufferSize: 1, refCount: true })
);
}

When using shareReplay on Observables that don’t complete on their own, always consider the
refCount flag.

Now that we know the behavior of shareReplay, I want to shed light on an improvement that’s
become available starting from RxJS 7 that allows you to replace the shareReplay operator with
the share operator.

https://rxjs.dev/api/index/interface/SchedulerLike
https://rxjs.dev/api/index/interface/SchedulerLike

Boosting Performance with Reactive Caching172

Replacing the shareReplay operator with the share operator

The share operator is similar to shareReplay but, by default, it doesn’t have a buffer and it doesn’t
replay that buffer on subscription.

With the share operator, once the subscriber count reaches 0, the source Observable automatically
unsubscribes. On the other hand, when the refCount option of shareReplay is set to true, it
behaves similarly to the share operator in terms of reference counting, but it also offers the ability
to replay emitted values.

Here’s a table that compares the two:

Feature share shareReplay

Behavior Creates a multicast Observable. Creates a multicast Observable.
Replaying Does not replay the previous

emission.

It uses Subjects under the
hood.

Replays the latest or a specified number
of previous emissions to new subscribers.

It uses ReplaySubject under the hood.

Unsubscription logic Unsubscribes when the last
subscriber unsubscribes.

Offers a refCount option to unsubscribe
when the last subscriber unsubscribes.
By default, refCount is set to false.
However, if you keep it set to false, the
source Observable will remain active even
when the subscriber count reaches zero. This
situation can be risky because if the source
Observable never completes, it might lead
to memory leaks.

Figure 10.3 – share and shareReplay comparison table

In RxJS 7, the share operator was enhanced with an optional configuration object as an argument,
share(config), which makes it more flexible and ready to do the job of other operators, such as
shareReplay(). In this configuration object, there are four properties:

• Connector: With this option, you can control whether or not share will replay emissions.
You can choose the subject type you’re connecting through (such as ReplaySubject).

• resetOnRefCountZero: With this option, you can control when your Observable should
be reset. If this option is enabled and all the subscriptions of our Observable are unsubscribed,
the Observable is reset. However, if this option is disabled, the subject will remain connected
to the source.

Exploring the reactive pattern to cache streams 173

• resetOnComplete: If enabled, the resulting Observable will reset on completion.

• resetOnError: If enabled, the resulting Observable will reset after an error.

So, shareReplay is nothing but a share operator that uses ReplaySubject as a connector
and a specific reset strategy.

The following code shows how we can achieve the behavior of the optimized shareReplay operator
by using the share operator instead:

 recipes$ = timer$.pipe(
 switchMap(_ =>
 this.http.get<Recipe[]>(`${BASE_PATH}/recipes`)),
 share({
 connector: () => new ReplaySubject(),
 resetOnRefCountZero: true,
 resetOnComplete: true,
 resetOnError: true
 })

);

The preceding code shows the share operator with the same behavior as the shareReplay
operator. This is because we referenced ReplaySubject as a connector, so we’re telling share
to use replay logic.

Then, for the reset strategy, we enabled all the reset options – resetOnRefCountZero,
resetOnComplete, and resetOnError – to get optimized behavior and enhanced performance.

That’s it – by using the share operator, we can achieve the same behavior as the shareReplay operator!

Note
Apart from the shareReplay operator, a lot of work was done in RxJS 7 to consolidate
multicasting operators. The multicast, publish, publishReplay, publishLast, and
refCount operators were deprecated and will be removed in RxJS 8, and the only operators
that will remain are shareReplay, share, and connectable.

As we have seen in this section, the share operator rules them all, meaning that in most
cases, it is highly recommended to use the share operator instead of connectable and
shareReplay. The shareReplay operator is too popular to deprecate but may be deprecated
in future versions as there is an alternative to it, especially because shareReplay, when not
used carefully, can cause memory leaks, particularly with infinite streams.

So, if you’re using RxJS 7, it is highly recommended to call the share operator instead
of shareReplay.

Boosting Performance with Reactive Caching174

Now that we’ve learned how we can optimize HTTP requests by caching our data using shareReplay
and share operators and have put those operators in place in RecipesApp to cache the list of
recipes, let’s discover another situation where caching streams is very useful.

Highlighting the use of caching for side effects
The use case we covered in this chapter involved optimizing HTTP requests to enhance our web
applications’ performance. All you have to do is put the result in a cache, which acts as a shared place
for all consumers.

There are other use cases where caching streams makes a lot of sense, namely when accounting for
expensive side effects on the streams. In general, we call the actions that we perform after a value is
emitted side effects. This could be logging, displaying messages, doing a mapping, and so on.

Here’s an example of a side effect using the tap operator:

import {map, from } from 'rxjs';
import { tap } from 'rxjs/operators';

const stream$ = from([1, 2, 'Hello', 5]);
stream$

 .pipe(
 tap((value) => console.log(value)),
 map((element) => {
 if (isNaN(element as number)) {
 throw new Error(element + ' is not a number');
 }
 return (element as number) * 2;
 })
)
 .subscribe({
 next: (message) => console.log(message),
 error: (error) => console.log(error),
 complete: () => console.log('Stream Completed'),
 });

//console output
1
2
2
4
Hello
Error

Summary 175

In the preceding code, we are performing a transformation for every number that’s emitted, multiplying
it by 2, and returning the multiplied value. If the value is not a number, an error is thrown. However,
we need to log the initial value before the transformation. That’s why we called the tap operator before
the map operator – so that we can log the original value. This is a basic example of a side effect, but
others could also occur, such as handling errors or displaying messages.

Note
For further details about the tap operator, please refer to the official documentation: https://
rxjs.dev/api/operators/tap.

In some situations, side effects can perform other actions that are more complex than logging, such
as displaying messaging and handling errors. This can include some computations that represent
an expensive treatment in terms of performance. Unfortunately, every subscriber will execute those
treatments, even though it is enough to run them only once. Otherwise, it will harm the performance
of your application.

If you have this use case in your application, it is highly recommended that you use the share operator
to cache the result and execute heavy treatments only once.

Summary
In this chapter, we explained various caching concepts in web applications, including their benefits
and use cases. We focused on a concrete example in our recipe app, detailed the requirement, and
implemented it reactively. Through this, we learned about the behavior of the shareReplay operator,
as well as the alternative implementation – that is, using the share operator in RxJS 7. Finally, we
highlighted how caching can help us when we have heavy side effects in our app.

In the next chapter, we will explore the reactive pattern for bulk operations.

https://rxjs.dev/api/operators/tap
https://rxjs.dev/api/operators/tap

11
Performing Bulk Operations

Bulk operations are tasks performed on a large scale, such as uploading many files at once, deleting or
inserting many items in one shot, or applying a transformation or computation to multiple elements
of a list simultaneously.

These operations are designed to handle multiple updates in a single operation, often resulting in
improved efficiency and performance compared to when each item is processed separately. Tracking
the progress of bulk operations is crucial to provide feedback to users, monitor the health of the
operation, and identify potential issues.

In this chapter, we will start by explaining the bulk operation requirement and the type of bulk
operation that we will consider. After that, we will walk you through the different steps to implement
the reactive pattern for implementing bulk operations. Finally, we will learn the reactive pattern for
tracking the bulk operation’s progress.

In this chapter, we’re going to cover the following main topics:

• Defining the bulk operation requirements

• Learning the reactive pattern for bulk operations

• Learning the reactive pattern for tracking the bulk operation’s progress

Technical requirements
This chapter assumes that you have a basic understanding of RxJS.

The source code of this chapter is available at https://github.com/PacktPublishing/
Reactive-Patterns-with-RxJS-and-Angular-Signals-Second-Edition/tree/
main/Chap11.

https://github.com/PacktPublishing/Reactive-Patterns-with-RxJS-and-Angular-Signals-Second-Edition/tree/main/Chap11
https://github.com/PacktPublishing/Reactive-Patterns-with-RxJS-and-Angular-Signals-Second-Edition/tree/main/Chap11
https://github.com/PacktPublishing/Reactive-Patterns-with-RxJS-and-Angular-Signals-Second-Edition/tree/main/Chap11

Performing Bulk Operations178

Defining the bulk operation requirements
In web applications, a bulk operation is represented by one action or event; however, in the background,
there are two possible behaviors:

• Running one network request for all the tasks

• Running parallel network requests for every task

In this chapter, we will be using the second behavior. We want to allow the user to upload the recipe
images at once, track the progress of the upload operation, and display a progress bar to the user. We
can see what this will look like here:

Figure 11.1 – Uploading the recipe’s images

Learning the reactive pattern for bulk operations 179

In the RecipeCreation interface, we will be changing the layout of the ImageUrl field to the File
Upload layout available in our library of components, PrimeNG, as shown in the screenshot. The
File Upload layout allows the user to choose multiple files, clear the selection, and upload the files.

The upload will be done on the server, and we have a specific service for the upload that takes both
the file to be uploaded and the identifier of the associated recipe as input. Since the backend upload
API supports only one file at a time, we will be running N network requests in parallel to upload N
files (i.e., if we upload two files, two requests will be sent). This is the bulk change use case that we
will consider in this chapter.

In the UI, we will have one event that will trigger multiple requests at the same time. The following
diagram provides a graphical representation of the bulk operation:

Figure 11.2 – A bulk operation visualization

So, to sum up, we want to do the following:

• Allow the user to upload many files after clicking only once on the Upload button

• Display the progress of this bulk operation

Now that we have defined the requirement, let’s see how we can implement it in a reactive way.

Learning the reactive pattern for bulk operations
As usual, we have to consider our tasks as streams. As the task that we are going to perform is uploading
the recipe image in the backend, let’s imagine a stream called uploadRecipeImage$ that will
take the file and the recipe identifier as input and perform an HTTP request. If we have N files to be
uploaded, then we will create N streams.

Performing Bulk Operations180

We want to subscribe to all those streams together, but we are not interested in the values emitted
from each stream through the process. Instead, we only care about the final result (the last emission)
– whether the file is uploaded successfully, or something wrong happens and the upload fails.

Is there an RxJS operator that gathers a list of Observables together to get a cumulative result? Thankfully,
yes: we have the forkJoin operator.

The forkJoin operator

The forkJoin operator falls under the category of combination operators. If we look at the official
documentation, we find this definition:

“Accepts an Array of ObservableInput or a dictionary Object of ObservableInput and returns an Observable
that emits either an array of values in the exact same order as the passed array, or a dictionary of values
in the same shape as the passed dictionary.”

In other words, forkJoin takes a list of Observables as input, waits for the Observables to complete,
and then combines the last values they emitted in one array and returns it. The order of the values in
the resulting array is the same as the order of the input Observables.

Let’s consider the following marble diagram to better understand this:

Figure 11.3 – A forkJoin marble diagram

Here, forkJoin has three input Observables (represented by the three timelines before the operator box).

The first Observable emitted the a value, but forkJoin does not emit anything (look at the last
timeline after the operator box, which represented the returned result by forkJoin).

Then, the third Observable emitted 1, and, again, nothing was emitted by forkJoin. Why? Because,
as we said in the definition, forkJoin will emit only once when all the Observables are complete.

Learning the reactive pattern for bulk operations 181

So, as illustrated in the marble diagram, forkJoin emitted only once when the last Observable (the
second one) completed. Let’s break this down:

• The third Observable (represented by the third timeline) completed first, and the last value
emitted was 4.

• Then, the first Observable (represented by the first timeline) completed, and the last value
emitted was e. At that time, forkJoin did not emit any value because there was still an
Observable running.

• Finally, the last Observable (represented by the second timeline) completed, and the last value
emitted was j. Therefore, forkJoin returns an array containing the results of each stream in
the order of the input Observables (e, j, and 4).

The order of completion is not considered; otherwise, we would have had [4,e,j]. Even though
the third Observable was completed before the first and second one, forkJoin respected the order
of the input Observables and returned the e value before the 4 and j values.

So, keep in mind that forkJoin emits once when all the input Observables are complete and
preserves the order of the input Observables.

This fits our requirements well! forkJoin is best used when you have a list of Observables and only
care about the final emitted value of each. That’s what we want to do. In our case, we will issue multiple
upload requests, and we only want to take action when a response is received from all the input streams.

Let’s now see the bulk operation reactive pattern in action.

The bulk operation reactive pattern

To utilize the pattern in our recipe app, first, we need to create a new service called
UploadRecipesPreviewService under src/app/core/services, which is responsible
for uploading the files. Here is the service’s code:

import { HttpClient } from '@angular/common/http';
import { Injectable } from '@angular/core';
import { Observable } from 'rxjs';
import { UploadStatus } from '../model/upload.status.model';
import { environment } from 'src/environments/environment';
const BASE_PATH = environment.basePath

@Injectable({
 providedIn: 'root'
})
export class UploadRecipesPreviewService {

 constructor(private http: HttpClient) { }

Performing Bulk Operations182

 upload(recipeId: number|undefined|null, fileToUpload:
 File): Observable<UploadStatus> {
 const formData = new FormData()
 formData.append('fileToUpload', fileToUpload as File)
 return this.http.post< UploadStatus >(
 `${BASE_PATH}/recipes/upload/${recipeId}`,
 formData
)
 }
}

The upload method issues the HTTP upload request and returns the upload status (whether having
succeeded or failed). This method takes two parameters as input:

• recipeId: The identifier of the recipe

• fileToUpload: The file to be uploaded

Then we used FormData to send the file to the server. FormData is an object in JavaScript that
allows you to easily build a set of key-value pairs representing form fields and their values respectively.

Now we need to implement the behavior of the Upload button. For this purpose, in the
RecipeCreationComponent template, we need to specify the method that will be called when
clicking on the Upload button – the onUpload method in our case – and put it as a value to the
callback – uploadHandler – provided by the component library we are using to get triggered
when the user uploads the files. Here’s the HTML template snippet:

 <div class="form-row">
 <div class="col-12">
 <label for="ImageUrl">ImageUrl</label>
 <p-fileUpload name="imageUrl" [multiple]=true
 [customUpload]="true" (uploadHandler)=
 "onUpload($event.files)">
 </p-fileUpload>
 </div>
 </div>

Note
Some of the code in the template has been removed here for brevity. You can find the full
template code in the book’s GitHub repository, the link for which can be found in the Technical
requirements section.

Learning the reactive pattern for bulk operations 183

Next, we need to implement the onUpload method and define our reactive streams in
RecipeCreationComponent. So, we will define the following:

• A BehaviorSubject that will always emit the last value of the uploaded files, called
uploadedFilesSubject$, and initialize it with an empty array:

uploadedFilesSubject$ = new BehaviorSubject<File[]>([]);

• The onUpload (files: File[]) method, which is called when clicking on the Upload
button. Here, we will update the emissions of uploadedFilesSubject$ with the last
array of uploaded files as follows:

 onUpload(files: File[]) {
 this.uploadedFilesSubject$.next(files);
 }

• A stream called uploadRecipeImages$ that is responsible for doing the bulk upload
as follows:

 uploadRecipeImages$ =
 this.uploadedFilesSubject$.pipe(
 switchMap(uploadedFiles=>forkJoin(
 uploadedFiles.map((file: File) =>
 this.uploadService.upload(
 this.recipeForm.value.id, file))))
)

Let’s break down what’s going on in the code here, piece by piece.

Every time we click on the Upload button, uploadedFilesSubject$ will emit the files
to be uploaded. We need to listen to uploadedFilesSubject$ emissions, and then use
switchMap (which we learned about in Chapter 6, Transforming Streams) to transform
every value emitted by uploadedFilesSubject$ to the Observable that will be built
using forkJoin.

To forkJoin, we pass an array of the Observables responsible for uploading each file. We built
the array of Observables by mapping every file in the uploadedFiles array to the stream,
resulting from calling the upload method available in UploadRecipesPreviewService
that takes the id property of the recipe (which we retrieved from recipeForm) and the file
as input.

Now that we’ve established our upload logic and defined the upload stream, it’s time to subscribe to
the uploadRecipeImages$ stream. We need to inject UploadRecipesPreviewService
into the constructor and subscribe to uploadRecipeImages$ in the template, as follows:

<ng-container *ngIf="uploadRecipeImages$ | async"></ng-
 container>

Performing Bulk Operations184

Now, let’s suppose one of the inner streams errors out. The forkJoin operator will no longer emit
any values for us. This is another important thing to be aware of when using this operator. You will
lose the value of any other stream that would have already been completed if you do not catch the
error correctly on the inner Observable. Therefore, catching the error in this case is crucial!

This is how we handle it:

 uploadRecipeImages$ = this.uploadedFilesSubject$.pipe(
 switchMap(uploadedFiles=>forkJoin(uploadedFiles.map((
 file: File) =>
 this.uploadService.upload(this.recipeForm.value.id,
 file).pipe(
 catchError(errors => of(errors)),
))))

Here, we called catchError on the inner stream returned by the upload method. Then, we
wrapped the error inside another Observable and returned it. This way, the forkJoin stream will
stay alive and emit values.

It makes a lot of sense to catch the errors in order to display something significant to the user – for
example, in our case, if one of the uploads fails because the maximum image file size was reached or
the extension of the image is not allowed, then the system should display such an exception to the
user to help them fix the file.

Benefits of the forkJoin operator

To sum up, forkJoin has the following benefits:

• It is very useful when you are interested in combining results and getting a value only once

• It only emits once, when all the Observables complete

• It preserves the order of the input Observables in the emission

• It will complete when one of the streams errors out, so make sure you handle the error

Now, at this point, our code works nicely. But what if we need to know some information during the
process, such as how many files were already uploaded? What is the progress of the operation? How
much time do we still need to wait?

With the current forkJoin implementation, it is not possible, but let’s see how we can do it in the
next section.

Learning the reactive pattern for tracking the bulk operation’s progress 185

Learning the reactive pattern for tracking the bulk
operation’s progress
Tracking the progress of bulk operations is very important, as it provides feedback to the user and
can identify potential issues. When it comes to approaches for tracking progress, there are different
strategies and techniques depending on the nature of the bulk operation and the technology stack
you’re using. For example, you can use an increment counter to show when each operation is processed,
use a percentage to track the progress of the operations, or even log the progress to a file or database.

In the case of our recipe app, in order to track the progress of the bulk upload, we will use the percentage
of completion strategy. To implement this strategy, we will use a very useful operator called finalize.

The finalize operator allows you to call a function when the Observable completes or errors out.
The idea is to call this operator and execute a function that will calculate the progress. This way, every
time an Observable completes, the progress will get updated.

This is what the code will look like:

 counter: number = 0;
 uploadProgress: number=0;

uploadRecipeImages$ = this.uploadedFilesSubject$.pipe(
 switchMap(uploadedFiles =>
 forkJoin(uploadedFiles.map((file: File) =>
 this.uploadService.upload(this.recipeForm.value.id,
 file).pipe(
 catchError(errors => of(errors)),
 finalize(() => this.calculateProgressPercentage(
 ++this.counter, uploadedFiles.length))
))))
)

 private calculateProgressPercentage(completedRequests:
 number, totalRequests: number) {
 this.uploadProgress =
 Math.round((completedRequests / totalRequests) *
 100);
 }
onUpload(files: File[]) {
 this.uploadProgress=0;
 this.counter=0;
 this.uploadedFilesSubject$.next(files);
}

Performing Bulk Operations186

The finalize operator calls the calculateProgressPercentage private function that
takes the following parameters:

• The number of completed requests: We just declare a counter property that we will increment
every time the Observable completes

• The total number of requests: This number is retrieved from the array of uploadedFiles

Inside the calculateProgressPercentage function, we perform a simple computation to
identify the completion percentage and store the result in an uploadProgress property. When the
user clicks on Upload, both the uploadProgress and counter properties should be reset to 0.

Then, you can map the value of this property to any ProgressBar component in the UI. In our
case, we used the PrimeNG p-progressBar component as follows:

 <div class="row">
 <div class="col-12">
 <label for="ImageUrl">ImageUrl</label>
 <!-- <input type="text" name="imageUrl"
 formControlName="imageUrl"> -->
 <p-fileUpload name="imageUrl" [multiple]=true
 [customUpload]="true"
 (uploadHandler)="onUpload($event.files)"
 accept="image/*"></p-fileUpload>
 @if(uploadProgress>0) {
 <p-progressBar [value]=uploadProgress>
 </p-progressBar>
 }
 </div>
 </div>

Here, we only display p-progressBar when the upload is in progress (uploadProgress>0)
and we pass the uploadProgress value as input to the progress component. This way, you will
be able to display the progress to the user.

Summary 187

Here is the result in our app:

Figure 11.4 – The file upload progress bar

Summary
In this chapter, we explained the concept of bulk operation and learned how to implement a real-world
example of a bulk task in a reactive way. We learned the behavior and a use case of the forkJoin
operator and went through the different steps to implement a bulk upload. Finally, we went through
a reactive technique to implement the tracking progress functionality using the finalize operator.

In the next chapter, we will explore the pattern of real-time updates and the different techniques
available in RxJS to implement them at the lowest cost.

12
Processing Real-Time Updates

Real time refers to the capability of an application to handle and respond to data or events immediately
as they happen, without any noticeable delay or latency. This is a very hot topic nowadays, with the
demand for real-time features growing in web applications, particularly in areas such as live financial
trading, live tracking systems, and live monitoring, analytics, and healthcare. Ultimately, the quicker
you get the data, the sooner you can react and make decisions, increasing the chances of higher profits.

So, how can you process real-time messages in the frontend and update the displayed data automatically
in the UI? This is what we will cover in this chapter. We will start by explaining the real-time requirement,
and then we will walk you through the different steps to implement the reactive pattern for consuming
real-time updates. Finally, we will learn the reactive pattern for handling reconnection.

In this chapter, we’re going to cover the following main topics:

• Defining the requirements of real time

• Learning the reactive pattern for consuming real-time messages

• Learning the reactive pattern for handling reconnection

Technical requirements
This chapter assumes that you have a basic understanding of RxJS.

We used the ws library, which is a WebSocket Node.js library, in order to support WS in our backend.
For more details, check out this link: https://github.com/websockets/ws.

The source code of this chapter is available at https://github.com/PacktPublishing/
Reactive-Patterns-with-RxJS-for-Angular-16-2nd-Edition/tree/main/
Chap12.

https://github.com/websockets/ws
https://github.com/PacktPublishing/Reactive-Patterns-with-RxJS-for-Angular-16-2nd-Edition/tree/main/Chap12
https://github.com/PacktPublishing/Reactive-Patterns-with-RxJS-for-Angular-16-2nd-Edition/tree/main/Chap12
https://github.com/PacktPublishing/Reactive-Patterns-with-RxJS-for-Angular-16-2nd-Edition/tree/main/Chap12

Processing Real-Time Updates190

Defining the requirements of real time
There are two techniques available for publishing real-time data on the web:

• Pull technique: This is where the client raises a request to get the latest version of data. HTTP
polling and HTTP long polling are two examples of implementations of this pull technique.

• Push technique: This is where the server pushes updates to the client. WebSockets and server-
sent events are two implementations of this push technique.

We are not going to discuss or compare these techniques in detail, as it is not the goal of this chapter;
however, in general, push techniques have a lower latency compared to pull ones. For this reason, we
will use the push technique and WebSocket as the implementation for our requirements.

In short, the WebSocket protocol is a stateful communication protocol that establishes a low-latency
bi-directional communication channel between a client and a server. In this way, messages can be
sent back and forth between the server and the client.

The following diagram illustrates the WebSocket communication flow:

Figure 12.1 – WebSocket communication

As illustrated, there are three steps in WebSocket communication:

1. Opening the connection: In this step, the client issues an HTTP request to tell the server that
a protocol upgrade will occur (from HTTP to WebSocket). If the server supports WebSockets,
then the protocol switch will be accepted.

2. Establishing the communication channel: Once the protocol upgrade is done, then a
bi-directional communication channel will be created, and messages start to be sent back and
forth between the server and the client.

3. Closing the connection: When the communication is over, a request will be issued to close
the connection.

Learning the reactive pattern for consuming real-time messages 191

At this level, that is all that you need to know about WebSockets. Now, let’s quickly review what we’ll
be doing in our app.

In our recipe app, RecipesListComponent is responsible for displaying the list of recipes. We will
simulate the addition of a new recipe (a recipe for chilli chicken) after a delay of 5 seconds following
the rendering of RecipesListComponent. The UI should then be updated instantly to include
this new recipe by rendering it in the RecipesList page.

You will find a ready-to-use WebSocket backend under the recipes-book-api folder; this is what
pushes the new recipe to the frontend 5 seconds after establishing the connection. We will also use
a timer in the backend to simulate the arrival of a new recipe. RecipesListComponent should
then consume the message coming from the WebSocket server and push the newly received recipe
in the already displayed list of recipes. The UI should be updated automatically without having to
trigger any Refresh button to get the updates.

So, without further ado, in the next section, let’s see how we can implement all of this using
RxJS’s WebSocketSubject.

Learning the reactive pattern for consuming real-time
messages
RxJS has a special type of subject called WebSocketSubject; this is nothing but a wrapper around
the W3C WebSocket object, which is available in the browser. It allows you to communicate with a
WebSocket server, both sending and consuming data through a WebSocket connection.

Let’s explore the capabilities of WebSocketSubject and learn how to use it to consume real-time
messages in our project.

Creating and using WebSocketSubject

In order to use WebSocketSubject, you have to call the webSocket factory function that
produces this special type of subject and takes the endpoint of your WebSocket server as input. The
following is the function signature:

webSocket<T>(urlConfigOrSource: string | WebSocketSubjectConfig<T>):
WebSocketSubject<T>;

It accepts two types of arguments, either of the following:

• A string representing the URL of your WebSocket server endpoint

• A special object of the WebSocketSubjectConfig type that contains the URL of your
endpoint, along with other properties (we will explore WebSocketSubjectConfig in
detail in the Learning the reactive pattern for handling reconnection section)

Processing Real-Time Updates192

The following code is an example of calling the webSocket factory function with the first type
of argument:

import { webSocket } from "rxjs/webSocket";
const subject = webSocket("ws://localhost:8081");

The next piece of code is an example of calling the webSocket factory function using the second
type of argument:

import { webSocket } from 'rxjs/webSocket';
const subject$ = webSocket({url:'ws://localhost:8081'});

In our case, the URL of our endpoint is ws://localhost:8081. You can use wss for a secure
WebSocket connection (which is the same as HTTPS for a secure HTTP connection).

We will be using both types of arguments in this chapter.

Let’s now see how we can establish the connection to the WebSocket in the following section.

Opening the connection

Now that you have a reference for WebSocketSubject, you should subscribe to it:

import { webSocket } from 'rxjs/webSocket';
const subject$ = webSocket({url:'ws://localhost:8081'});
subject$.subscribe();

This will establish the connection with your ws endpoint and allow you to start receiving and sending
data. Of course, if you don’t subscribe, the connection will not be created.

Listening to incoming messages from the server

WebSocketSubject is nothing but a regular RxJS subject, whereby you can register callbacks to
listen and process the incoming messages from the WebSocket server.

In order to listen to messages, you should subscribe to the produced WebSocketSubject from
the webSocket factory function and register a callback, as follows:

const subject$ = webSocket('ws://localhost:8080');

// Listen to messages from the server
const subscription = subject$.subscribe(msg => {
 console.log('Message received from the socket'+ msg);
});

Here, we’re simply subscribing to the WebSocket subject to initiate a connection with the WebSocket
server and then logging any received messages to the console.

Learning the reactive pattern for consuming real-time messages 193

Pushing messages to the server

To send messages to the server, we just use the next method available in the subject type:

// Push messages to the server
subject$.next('Message to the server');

Handling errors

You can also catch errors coming from the server using catchError as usual and push errors to
the server by calling the error method. Here’s an example:

// Push errors to the server
subject$.error('Something wrong happens')

// Handle incoming errors from the server
subject$.pipe(catchError(error=>of('Something wrong happens')))

However, bear in mind that when you send an error, the server will get notified about this error, and
then the connection will be closed. So, nothing will get emitted thereafter.

Closing the connection

You can use unsubscribe or complete to close the connection:

// Close the connection
subject$.complete();
//or
subject$.unsubscribe();

So, to wrap up what we’ve been discussing, only the creation of WebSocketSubject is specific
to this special kind of subject. However, all the other APIs used (subscribe, unsubscribe,
complete, catchError, next, and so on) are the same as those used for regular subjects. The
following figure illustrates this whole process:

Processing Real-Time Updates194

Figure 12.2 – WebSocketSubject possible events

Now that we’ve covered various WebSocket manipulations, from creating and establishing connections
to sending messages, handling errors, and consuming incoming messages, let’s explore a common
pitfall you should keep in mind.

Connection management

At this point, there is a particular behavior you should be aware of. If the same instance of
WebSocketSubject has many subscribers, then they will share the same connection to save
resources. However, if we have two different instances of WebSocketSubject, it will establish
two distinct connections, even if they are referencing the same endpoint.

The following code explains the connection management for both use cases:

const firstSubject$ = webSocket('ws://localhost:8080');
const secondSubject$ = webSocket('ws://localhost:8080');

// the first subscriber, opens the WebSocket connection
const subscription1 = firstSubject$.subscribe(msg => {
});
// the second subscriber, uses the already opened WebSocket
 connection
const subscription2 = firstSubject$.subscribe(msg => {
});
//this subscriber opens a new connection
const subscription3 = secondSubject$.subscribe(msg => {
});

Learning the reactive pattern for consuming real-time messages 195

Let’s explain what’s happening in this code. First, we create two instances of WebSocketSubject
called firstSubject$ and secondSubject$, respectively, which both reference the same
ws endpoint.

Then, we create a subscription to firstSubject$; this first subscription will open the WebSocket
connection. Then, we create a second subscription to the same Observable, firstSubject$; this
second subscription will use the already opened WebSocket connection.

However, the subscription to secondSubject$ will open a new WebSocket connection. Why?
Because it is a new reference to the WebSocket subject, even though it references the same ws endpoint
as firstSubject$.

Now, if we have many subscribers sharing the same connection and one of those subscribers decides
to complete, then the connection will be released unless there are no more subscribers listening, as
described in the following code block:

const subject$ = webSocket('ws://localhost:8080');
// the first subscriber, opens the WebSocket connection
const subscription1 = subject$.subscribe(msg => {});

// the second subscriber, uses the already opened WebSocket connection

const subscription2 = subject$.subscribe(msg => {});

// the connection stays open
subscription1.unsubscribe();

// closes the connection
subscription2.unsubscribe();

This is all that you need to know to make a basic scenario work. Simple, right?

Now, let’s see the recommended pattern for putting our recipe app in place.

WebSocketSubject in action

Now that we know how to create a connection to our ws endpoint, it is time to explore the different
steps to consume real-time messages in our RecipesApp. In particular, we will establish a connection
to the WebSocket server, and once the new recipe is sent to the frontend, we will update it in the UI.
Let’s delve into the various steps necessary to fulfill this requirement.

Processing Real-Time Updates196

Step one – create a real-time service

The first step is to isolate all the interactions with WebSocketSubject in a separate Angular
service. To do this, we will create an Angular service called RealTimeService under the src/
app/core/services path. RealTimeService will look like this:

import { Injectable } from '@angular/core';
import { webSocket, WebSocketSubject } from 'rxjs/webSocket';
import { environment } from '../../../environments/environment';
import { Recipe } from '../model/recipe.model';
export const WS_ENDPOINT = environment.wsEndpoint;
@Injectable({
 providedIn: 'root'
})
export class RealTimeService {
 private socket$: WebSocketSubject<Recipe[]> | undefined;
 private messagesSubject$ = new
 BehaviorSubject<Observable<Recipe[]>>(EMPTY);
 private getNewWebSocket(): WebSocketSubject<Recipe[]> {
 return webSocket(WS_ENDPOINT);
 }
 sendMessage(msg: Recipe[]) {
 this.socket$?.next(msg);
 }
 close() {
 this.socket$?.complete();
 } }

Let’s break down what’s happening at the level of this code in the service that we defined:

• We have a private property, socket$, of type WebSocketSubject<Recipe[]>|undefined,
as we will receive an array containing one or more recipes from the backend. socket$ contains the
reference to the WebSocket subject that we will create using the getNewWebSocket() method.

• We have a private BehaviorSubject named messagesSubject$, which is responsible
for transmitting the latest incoming messages from the WebSocket server to new subscribers.
We’ve provided the type Observable<Recipe[]> for messagesSubject$, as it will
emit an Observable containing an array of recipe objects. Initially, we’ve set it to EMPTY, which
is an Observable that immediately completes without emitting any values.

Learning the reactive pattern for consuming real-time messages 197

• We have a private method, getNewWebSocket(), that calls the webSocket factory function,
passing a constant named WS_ENDPOINT as input, and this returns WebSocketSubject.

WS_ENDPOINT represents the endpoint of the WebSocket server defined in the src/
environments/environment.ts file as wsEndpoint. Note that URLs are environment-
specific configurations, which means they can change from one environment to another (e.g.,
development, staging, and production). Defining endpoint URLs in the environment.ts
file is a common practice in Angular applications because it provides a centralized location
to handle environment-specific configuration settings, so you can easily switch between
environments without modifying your application code.

• We have a public method, sendMessage(), that sends a message that is given as input to
the socket, which will forward the message to the server.

• Finally, we have a public method, close(), that closes the connection by completing the subject.

Then, we will add the connect() method, which will listen to the incoming messages in a reactive
way and emit messages to the subscribers as follows:

 public connect(): void {
 if (!this.socket$ || this.socket$.closed) {
 this.socket$ = this.getNewWebSocket();
 const messages = this.socket$.pipe(
 tap({
 error: error => console.log(error),
 }), catchError(_ => EMPTY));
 this.messagesSubject$.next(messages);
 }
 }

Let’s break down what is going on in this method. If socket$ is undefined (not yet created) or
closed, then socket$ will be populated by the newly produced WebSocketSubject from the
getNewWebSocket method.

Then, we will combine the tap and catchError operators; the tap operator is used to log a message
when an error occurs or when the connection closes, and the catchError operator handles errors
and returns an empty Observable.

The returned Observable from the pipe operation will be stored in a constant called messages.
The messagesSubject$ Observable will emit the messages’ Observable (so, it is an Observable
of Observables):

Processing Real-Time Updates198

After that, we will provide a read-only copy from the messagesSubject$ Observable through
the messages$ public Observable defined in RealTimeService as follows: :

 public messages$ = this.messagesSubject$.pipe(
 switchAll(), catchError(e => { throw e }));

We used the SwitchAll operator to flatten the Observable of an Observable, and we will be
subscribing to messages$ in every component that needs to consume real-time updates. Why do
we do this? The idea is to protect Subject$ and the incoming messages from any external update
and expose the messages to the consumers as read only. In this way, any component interested in
consuming the real-time messages has to subscribe to messages$, and all the logic related to the
socket will be handled privately in this service.

Step two – trigger the connection

After putting the service in place, we should call the connect method. As we want the connect
method to be triggered just once, we will call it from the root component, src/app/app.
component.ts, after injecting RealTimeService. Here’s the code to be added:

constructor(private service: RealTimeService) {
this.service.connect();
}

Step three – define the Observable emitting live updates

Next, we should call the messages$ Observable in the adequate Angular component. As
we want to update the list of recipes with the newest ones, we should define the Observable
in RecipesListComponent.

But wait! We already have an Observable in RecipesListComponent named recipes$ that
fetches the list of recipes from RecipesService:

recipes$=this.service.recipes$;

Could we use this existing Observable instead of creating a new one? Absolutely!

Our goal is to initially display the list of recipes emitted by recipes$ and then seamlessly incorporate
any newly added recipes emitted by messages$. We can achieve this using the combineLatest
operator from RxJS.

The combineLatest operator merges the latest values from multiple Observables into an array and
emits a new array whenever any of the source Observables emits a value. By leveraging this operator,
we can combine recipes$ and messages$ as follows:

recipes$=combineLatest([this.service.recipes$,
this.realTimeservice.messages$]).pipe(map(([recipes,

Learning the reactive pattern for consuming real-time messages 199

updatedRecipes]) => {
 // Merge or concatenate the two arrays into a single
 array
 return [...recipes, ...updatedRecipes];
 }));

In the code, we combined recipes$ and messages$ and then used the map operator to extract the
latest values emitted by each. We then merge these values into a single array, which is then returned.
This ensures that recipes$ consistently emits a unified array containing all recipes.

Preventing data loss with the scan operator

Now, let’s quickly consider a scenario where a recipe with an ID of 12 is initially pushed and added to
the recipes list. If another recipe with, for example, an ID of 14 is pushed afterward from the server,
then the newest pushed recipe (ID 14) will override the previous one (ID 12). Therefore, the ID 12
recipe will be lost. To prevent this data loss, we can use the scan operator.

The scan operator in RxJS is similar to the reduce function in JavaScript. It applies an accumulator
function over an Observable sequence and returns each intermediate result, emitting the accumulated
value each time a new value is emitted by the source Observable. In simpler terms, it continuously
applies a function to each value emitted by the source Observable, accumulating these values over time
and emitting the intermediate results. This operator is useful for maintaining the state, accumulating
values, or performing any kind of stateful transformation on Observable streams.

So, in our case, we can use the scan operator as follows:

 recipes$ = combineLatest([
 this.service.recipes$,
 this.realTimeService.messages$
]).pipe(
 scan((acc: Recipe[], [recipes, updatedRecipes]:
 [Recipe[], Recipe[]]) => {
 // Merge or concatenate the two arrays into a single
 array
 return acc.length === 0 &&
 updatedRecipes.length === 0 ? recipes : [...acc,
 ...updatedRecipes,];
 }, [])
);

Processing Real-Time Updates200

In this context, scan ensures that all emitted recipes, including both the initial recipes fetched
from the this.service.recipes$ stream and any subsequent updates received from this.
realTimeService.messages$, are accumulated into a single array. This prevents the loss of
data that could occur if a simple mapping operation were used. As a result, the recipes$ Observable
stream contains a comprehensive and up-to-date list of recipes, reflecting all changes from both
sources throughout its lifetime.

Step four – subscribe to the Observable emitting live updates

Finally, we just have to subscribe to the recipes$ Observable in our component’s template using
the async pipe, which is already carried out in recipes-list.component.html:

@if (recipes$ | async; as recipes) {
....
}

However, we have one more tweak to consider! Since we’ve established that messages$ emits after
a 5-second delay following the emission of recipes$, there’s a slight problem: combineLatest
only emits once both Observables have emitted values.

To circumvent this brief latency while waiting for messages$ to emit, in RealTimeService,
we can use the startWith() operator on the messages$ subject to supply an initial value of an
empty array as follows:

 public messages$ =
 this.messagesSubject$.pipe(switchAll(), startWith([]),
 catchError(e => { throw e }));

After executing this code, you will notice that 5 seconds after displaying 11 recipes, the recipe with
an ID of 12 (chili chicken) will be added to the list on the second page of our cards list. If another
recipe is pushed afterward, it will be accumulated to the current list of recipes.

Note that in the case of frequent updates in the UI, it is highly recommended to set the change detection
strategy to onPush in order to optimize the performance, like so:

@Component({
 selector: 'app-recipes-list',
 standalone: true,
 changeDetection: ChangeDetectionStrategy.OnPush
})

And that’s it! You will be able to consume live updates in a reactive way using this pattern.

At this point, you may be wondering how to handle reconnection. When the server is restarted or the
connection crashes for whatever reason, does this subject restore the lost connection under the hood?

Learning the reactive pattern for handling reconnection 201

The answer is no. The reconnection capability is not provided by WebSocketSubject.

However, you can implement this easily in your web application using RxJS. Let’s learn how you can
do this in the next section.

Learning the reactive pattern for handling reconnection
When the connection to the WebSocket server is lost, the channel will be closed, and WebSocketSubjet
will no longer emit values. This is not the expected behavior in the world of real time. The reconnection
capability is a must in most cases.

Therefore, let’s imagine, for example, that after a disconnection, a system tries to reconnect after
every 3 seconds. The solution, in this case, is intercepting the closure of the socket and retrying the
connection. How can we intercept the closure of the connection?

This is possible thanks to WebSocketSubjectConfig, which is responsible for customizing
some behavior in the socket life cycle. The WebSocketSubjectConfig interface in RxJS provides
several properties that you can use to configure a WebSocketSubject. These properties allow you to
customize various aspects of WebSocket communication:

export interface WebSocketSubjectConfig<T> {
 url: string;
 protocol?: string | Array<string>;
 /** @deprecated Will be removed in v8. Use {@link
 deserializer} instead. */
 resultSelector?: (e: MessageEvent) => T;
 openObserver?: NextObserver<Event>;
 serializer?: (value: T) => WebSocketMessage;
 deserializer?: (e: MessageEvent) => T;
 closeObserver?: NextObserver<CloseEvent>;
 closingObserver?: NextObserver<void>;
 WebSocketCtor?: { new(url: string,
 protocols?:string|string[]): WebSocket };
 binaryType?: 'blob' | 'arraybuffer';
}

Let’s explain the different properties available in WebSocketSubjectConfig:

• url: This property specifies the URL of the WebSocket endpoint to connect to (we’ve already
explained and and used this in this chapter).

• protocol: This property specifies the subprotocol to use during the WebSocket handshake
(refer to Figure 12.1). It can be a single string or an array of strings representing the subprotocols.

Processing Real-Time Updates202

• resultSelector: This property specifies a function that takes the WebSocket event as
input and returns the value to be emitted by WebSocketSubject. It’s commonly used to
extract specific data from WebSocket events; however, it is deprecated and will be removed in
version 8 of RxJS.

• closeObserver: This property specifies an observer object that listens for the WebSocket
connection closing. It can be used to handle cleanup tasks or perform actions when the
connection is closed.

• openObserver : This property specifies an observer object that listens for the
WebSocket connection opening. It can be used to perform actions when the connection is
successfully established.

• binaryType: This property specifies the binary type of WebSocket messages. It can be either
of the JavaScript types blob or arraybuffer. By default, it’s set to blob.

• serializer: This property specifies a function used to serialize outgoing messages before
sending them over the WebSocket connection. It’s commonly used to convert objects or complex
data structures into strings.

• deserializer: This property specifies a function used to deserialize incoming messages
received over the WebSocket connection. It’s commonly used to parse received strings back
into objects or other data types.

These properties provide flexibility and control over WebSocket communication in RxJS. You can
customize them according to your specific requirements to optimize WebSocket interactions in
your application.

Note
The full description of each property is available in the official documentation link: http://
bit.ly/RxJS-WebSocket.

In order to benefit from WebSocketSubjectConfig, you should call the webSocket factory
function, which takes the second type of parameter. The following code creates WebSocketSubject
using WebSocketSubjectConfig and simply intercepts the closure event to display a custom message:

private getNewWebSocket() {
 return webSocket({
 url: WS_ENDPOINT,
 closeObserver: {
 next: () => {
 console.log('[RealTimeService]: connection
 closed');
 }
 },

http://bit.ly/RxJS-WebSocket
http://bit.ly/RxJS-WebSocket

Learning the reactive pattern for handling reconnection 203

 });
}

Now that we know how to intercept the closure of the connection, let’s learn how to retry the reconnection.
We can combine the retryWhen operator that conditionally resubscribes to an Observable after it
completes using the delayWhen operator that sets the delay between two consecutive connections.

So, let’s create a function that will retry to connect to a given Observable for every configurable
RECONNECT_INTERVAL; we will log into the browser’s console on every attempt at reconnection:

 private reconnect(observable: Observable< Recipe[] >):
 Observable< Recipe[] > {
 return observable.pipe(retryWhen(errors =>
 errors.pipe(
 tap(val => console.log('[Data Service]
 Try to reconnect', val)),
 delayWhen(_ => timer(RECONNECT_INTERVAL)))));
 }

This reconnect function will be used as an RxJS custom operator to handle the reconnection after
the socket’s closure in the connect() method of our RealTimeService, as follows:

public connect(cfg: { reconnect: boolean } = { reconnect: false }):
void {

 if (!this.socket$ || this.socket$.closed) {
 this.socket$ = this.getNewWebSocket();
 const messages = this.socket$.pipe(cfg.reconnect ?
 this.reconnect : o => o,
 tap({
 error: error => console.log(error),
 }), catchError(_ => EMPTY))
 this.messagesSubject$.next(messages);
 }
}

As you can see, a new Boolean reconnect parameter is added to the connect function to
differentiate between the reconnection and the first connection. This optimizes the code and avoids
adding an additional function.

Then, all you have to do is call the connect function with reconnect: true when intercepting
the connection closure:

 private getNewWebSocket() {
 return webSocket({
 url: WS_ENDPOINT,

Processing Real-Time Updates204

 closeObserver: {
 next: () => {
 console.log('[DataService]: connection
 closed');
 this.socket$ = undefined;
 this.connect({ reconnect: true });
 }
 },
 });

In this way, after the connection closure, you will see many outgoing requests from the client trying
to reach the server every 3 seconds.

The reconnection capability is a must in the world of real time. This is how we handled it using
RxJS in a few lines of code. Many developers don’t know that RxJS offers this feature, which enables
you to consume real-time messages coming from WebSocket and add many third-party libraries to
handle this requirement, and it is also available out of the box. So, choosing RxJS, in this case, is one
less dependency!

Summary
In this chapter, we delved into a practical demonstration of consuming real-time messages from a
WebSocket server in a reactive manner. We first outlined the requirements and provided context for
the implementation. Subsequently, we explored the capabilities of WebSocketSubject and described
the step-by-step process, from establishing a connection to handling incoming messages from the
socket.Next. We applied these concepts to a real-world scenario within the recipe app, gaining insights
into best practices for implementing real-time functionality and ensuring robust connection control.

Finally, we expanded our understanding by incorporating a reconnection mechanism in a reactive way,
leveraging the WebSocketSubjectConfig and RxJS operators to achieve seamless connection management.

Now, as we approach the final chapter of this book, let’s switch gears and focus on testing Observables.

Part 5:
Final Touches

In this part, you’ll discover the different strategies to test reactive streams. We’ll explore their benefits
and when to use each one, reinforcing your learning with practical examples.

This part includes the following chapter:

• Chapter 13, Testing RxJS Observables

13
Testing RxJS Observables

Observables play a central role in managing asynchronous data streams and event-driven interactions.
By thoroughly testing Observables, developers can verify the correctness of their asynchronous code,
anticipate and handle various edge cases, and ensure consistent behavior across different environments
and use cases.

The comprehensive testing of Observables not only enhances the robustness of applications but also
improves code quality, reduces the likelihood of bugs and regressions, and ultimately enhances the
overall user experience. With rigorous testing practices in place, developers can confidently deploy
reactive applications that meet high standards of reliability, performance, and usability.

Many developers consider testing Observables a challenging task. This is true. However, if you learn
the right techniques, you can implement maintainable and readable tests in a very effective manner.

In this chapter, we will walk you through three commonly used patterns for testing streams. We will start
by explaining the subscribe and assert pattern, after which we will discuss the marble testing pattern.
Finally, we will highlight a suitable pattern for testing streams that are returned from HTTPClient
by focusing on a concrete example in our recipe app.

In this chapter, we’re going to cover the following main topics:

• Learning about the subscribe and assert pattern

• Learning about the marble testing pattern

• Highlighting testing streams using HTTPClientTestingModule

Technical requirements
This chapter assumes that you have a basic understanding of RxJS and unit testing in Angular using
Jasmine. Follow this link for more information: https://angular.dev/guide/testing#set-
up-testing.

https://angular.dev/guide/testing#set-up-testing
https://angular.dev/guide/testing#set-up-testing

Testing RxJS Observables208

Note
angular.dev will be the new documentation site for Angular developers; it offers updated
features and documentation. angular.io will be deprecated in future releases.

We will be testing Observables in an Angular context. The source code for this chapter is available
at https://github.com/PacktPublishing/Reactive-Patterns-with-RxJS-
for-Angular-16-2nd-Edition/tree/main/Chap13.

We will be completing a unit test for the saveRecipe method, which is available under the
RecipesService class. You can find the complete code in the recipes.service.spec file.

Learning about the subscribe and assert pattern
As you will already know, Observables are lazy, and we don’t obtain any value until we subscribe to
them. In tests, it is the same thing; Observables will not emit any value until we subscribe to them.
To solve this, programmers always tend to subscribe to the Observables manually inside the tests and
then perform assertions on the emitted values. This is what we call the subscribe and assert pattern.

Let’s delve into testing using the subscribe and assert pattern across three distinct scenarios. We will
demonstrate testing for methods returning a single value, methods returning multiple values, and
methods returning timed values (values returned after a specified time duration).

Testing single-value output methods

Let’s suppose we have to test a method that returns a single value. The method is called
getValue(value: boolean) and is available in an Angular service called SampleService.

The method itself is very simple, returning an Observable that will emit the Boolean input value
as follows:

import { Observable, of } from 'rxjs';
export class SampleService {

 getValue(value: boolean): Observable<boolean> {
 return of(value);
 }

}

The test of this method will look like this:

describe('SampleService', () => {
 let service: SampleService;
 beforeEach(() => {

http://angular.dev
http://angular.io
https://github.com/PacktPublishing/Reactive-Patterns-with-RxJS-for-Angular-16-2nd-Edition/tree/main/Chap13
https://github.com/PacktPublishing/Reactive-Patterns-with-RxJS-for-Angular-16-2nd-Edition/tree/main/Chap13

Learning about the subscribe and assert pattern 209

 service = TestBed.inject(SampleService);
 });

 it('should return true as a value', () => {
 service.getValue(true).subscribe(
 result=>expect(result).toEqual(true))
 });
});

Here, we start by defining our test suite using the Jasmine describe() function. The function
is used to define a test suite, which is a logical grouping of test cases to execute a single task with
different test scenarios. It serves as a way to organize and structure your tests, making them more
readable and maintainable.

The describe() function takes two parameters:

• A string description of the test suite (in the previous code snippet, SampleService, which is
the name of the service that we are going to test and refers to the description of our test suite).

• A function that contains the test cases for that suite (in testing frameworks, “test case” and
“spec” typically refer to a single unit of testing within a test suite). Inside this function, we
inject SampleService into the beforeEach statement to provide a shared instance
of the service that we will be using in all the test cases. Finally, we define the test case of our
getValue(value: boolean) method by using the Jasmine function it(). The it()
function takes two parameters:

 � A string description of the test case (in the previous code snippet, should return true
as a value refers to the description of our test case).

 � A function that contains the test logic. In this function, we subscribe to the getValue(true)
method and expect the result to be equal to true since we passed the true value as input.
Expectations are built using the expect() Jasmine function and are used to assert or verify
that certain conditions are met during the execution of a test.

Now, let’s run ng test; the test passes, and everything is fine:

Figure 13.1 – ng test output

Testing RxJS Observables210

Quite simple, right? This is the expected behavior when running a positive scenario. A positive
scenario typically involves providing input or conditions that align with the expected behavior of the
code being tested, resulting in successful execution without errors or failures.

Now, let’s handle a negative scenario by providing input or conditions that are intended to trigger
failures in the code being tested. To do so, we will replace true with false in the following assertion:

 it('should return true as a value', () => {
 service.getValue(true).subscribe(
 result=>expect(result).toEqual(false))
 });

When you run ng test again, our test will fail.

However, in some cases, the test will still pass. How is this possible?

The thing with expectations in testing is that if you have an unmet assertion, it throws an error. Plus,
if you have an unhandled error inside an RxJS subscription, it will be thrown on a separate call stack,
meaning that it is asynchronously thrown. Therefore, tests that use the subscribe and assert pattern
can sometimes be green even though, in reality, they are failing.

To overcome this, we should pass a done callback to the test function and call it manually after our
expectations for when the test has been completed, as follows:

 it('should return true as a value', (done) => {
 service.getValue(true).subscribe(
 result => {
 expect(result).toEqual(false);
 done();
 }
);
 });

The done callback is a mechanism used in asynchronous testing to signal the completion of a test case
to the testing framework. It is supported by many testing frameworks, such as Jasmine, Jest, and Mocha.
Calling the done callback ensures that the test doesn’t finish prematurely before all asynchronous tasks
have been executed and assertions have been verified. Therefore, we prevent false positives and ensure
that our tests accurately reflect the behavior of the code being tested, particularly in asynchronous
scenarios. So, don’t forget to call the done callback in asynchronous scenarios!

Now, let’s consider a more complicated method that will return multiple values instead of one value.

Learning about the subscribe and assert pattern 211

Testing multiple-value output methods

Let’s consider a method called getValues, which will return multiple values like so:

export class SampleService {

 getValues(): Observable<String> {
 return of('Hello', 'Packt', 'Readers');
 }
}

The values will be emitted one by one in the aforementioned order.

When using the assert and subscribe pattern, the test will look like this:

it('should return values in the right order', (done) => {
 const expectedValues = ['Hello', 'Packt', 'Readers'];
 let index = 0;
 service.getValues().subscribe(result => {
 expect(result).toBe(expectedValues[index]);
 index++;
 if (index === expectedValues.length) {
 done();
 }
 });
});

In the preceding code, we created an array that represents the expected values in order; then, we
subscribed to the getValues method and compared the emitted values with the expected value
using a counter (expectedValues[index]). After finishing, we called the done() callback.

However, instead of the counter, we can use the toArray operator of RxJS, which will put the
values that have been emitted in an array and then compare the resulting array with the expected
array we defined:

it('should return values in the right order', (done) => {
 const expectedValues = ['Hello', 'Packt', 'Readers'];
 service.getValues().pipe(toArray()).subscribe(result => {
 expect(result).toEqual(expectedValues);
 done();
 });
});

Testing RxJS Observables212

Well, this is working fine, and ng test will pass. However, in both cases, even though we are dealing
with a simple stream, we were forced to add some logic; in the first example, we added a counter, while
in the second example, we used the toArray operator. This boils down the tests and adds some
unnecessary testing logic; these are the most significant drawbacks of the subscribe and assert pattern.

Now, let’s move on to a different example and explore testing methods that output timed values.

Testing timed-value output methods

Let’s update the method getValues() and add a timer to return the values after a specific duration
as follows:

 getValues(): Observable<String> {
 return timer(0, 5000).pipe(
 take(3),
 switchMap((result) => of('Hello', 'Packt',
 'Readers'))
)

Here, we used the RxJS timer in this method to emit a value every 5 seconds. Since timer produces
an endless stream, we call the take operator to return the first three emissions and complete them.
Then, for every emission, we use the switchMap operator to return an Observable that emits three
values consecutively.

This is tricky, right? If we use the subscribe and assert pattern here, the tests would be very complicated
and may take a lot of time, depending on the value that’s passed to timer. However, the unit tests
should be fast and reliable.

In this case, having a virtual timer can be beneficial. A virtual timer refers to a simulated passage of
time controlled by the testing framework. Instead of waiting for actual time to pass, which could lead
to slow and unreliable tests, the virtual timer allows testers to control time programmatically. This
means they can advance time forward or backward as needed to trigger certain events or test scenarios,
making it easier to write reliable and deterministic tests for code that depends on time-based behavior.
This approach ensures that tests are fast, predictable, and independent of real-time conditions.

So, in a nutshell, the subscribe and assert pattern is a valid and easy technique that most developers
adopt. However, it has some drawbacks that I pointed out throughout this section:

• We need to remember to call the done callback in asynchronous tests; otherwise, the tests
will return invalid results.

• In some scenarios, we end up with boiled tests and unwanted testing logic.

• Timed Observables are very complicated to test.

Now, let’s explore another approach for testing Observables: marble testing with RxJS testing utilities.

Learning about the marble testing pattern 213

Learning about the marble testing pattern
Marble diagrams are very useful for visualizing Observable execution. You will already know this, as
we introduced marble diagrams back in Chapter 1, Diving into the Reactive Paradigm, and we’ve used
them in almost all the reactive patterns we’ve implemented in this book. They are simple to understand
and delightful to read. So, why not also use them in code? What you will be surprised to know is that
RxJS introduced marble testing as an intuitive and clean way to test Observables.

Let’s discover what marble testing is about. We will start by explaining the syntax in the next section
and then learn how we can write marble tests in our code.

Understanding the syntax

To understand the syntax, we should know about the following semantics:

Character Meaning

' ' This represents a special character that will not be interpreted. It can be
used to align your marble string.

'-' This represents a frame of virtual time passing.
'|' This represents the completion of an Observable.
[a-z] This represents a value that is emitted by an Observable. It is an

alphanumeric character.
'#' This represents an error.
'()' This represents a group of events that occur in the same frame. It can be

used to group any values emitted, errors, and completion.
'^' This represents the subscription point and will only be used when you’re

dealing with hot Observables.
[0-9]+[ms|s|m] This represents time progression and allows you to progress virtual time

by a specific amount. It’s a number, followed by a time unit in milliseconds
(ms), seconds (s), or minutes (m) without any space between them.

Figure 13.2 – Marble testing syntax

This is the basic syntax. Let’s look at some examples to practice the syntax:

• ---: This represents an Observable that never emits.

• -x--y--z|: This represents an Observable that emits x on the first frame, y on the fourth,
and z on the seventh. After emitting z, the Observable completes.

Testing RxJS Observables214

• --xy--#: This represents an Observable that emits x on frame two, y on frame three, and
an error on frame six.

• -x^(yz)--|: This is a hot Observable that emits x before the subscription.

You’ve got the idea, right? Now, let’s learn how to implement marble tests in our code.

Introducing TestScheduler

There are different packages out there that can help you write marble tests, including jasmine-
marbles, jest-marbles, and rxjs-marbles. However, RxJS provides testing utilities out of
the box, and all the libraries are just wrappers around the RxJS testing utilities. I recommend working
with the RxJS utilities for the following reasons:

• You don’t have to include a third-party dependency

• You stay up to date with the core implementation

• You stay up to date with the latest features

The RxJS API that’s provided for testing is based on TestScheduler. This API allows you to test
time-dependent RxJS code in a controlled and deterministic manner, which is crucial for writing
reliable and predictable tests for Observables with time-based operators.

To define our test logic, the TestScheduler API provides a run method that has the following signature:

run<T>(callback: (helpers: RunHelpers) => T): T;

The run method takes a callback function as an argument. This callback function is where you
define your test logic, including setting up Observables, defining expectations, and making assertions.
The callback function takes one argument named helpers of type RunHelpers, which
provides various utility functions and properties to assist you in writing marble tests for Observables.

The RunHelpers interface contains the following properties:

 export interface RunHelpers {
 cold: typeof TestScheduler.prototype.
 createColdObservable;
 hot: typeof TestScheduler.prototype.
 createHotObservable;
 flush: typeof TestScheduler.prototype.flush;
 expectObservable: typeof TestScheduler.
 prototype.expectObservable;
 expectSubscriptions: typeof TestScheduler.
 prototype.expectSubscriptions;
}

Learning about the marble testing pattern 215

Let’s look at these properties one by one:

• cold: This produces a cold Observable based on a given marble diagram. Here is the signature
of the method:

/**
 * @param marbles A diagram in the marble DSL.
 Letters map to keys in `values` if provided.
 * @param values Values to use for the letters in
 `marbles`. If ommitted, the letters themselves
 are used.
 * @param error The error to use for the `#`
 marble (if present).
 */
createColdObservable<T = string>(marbles: string,
values?: {
 [marble: string]: T;
 }, error?: any): ColdObservable<T>;

• hot: This produces a hot Observable based on a given marble diagram. Here is the signature
of the method:

/**
 * @param marbles A diagram in the marble DSL.
 Letters map to keys in `values` if provided.
 * @param values Values to use for the letters in
 `marbles`. If ommitted, the letters themselves
 are used.
 * @param error The error to use for the `#`
 marble (if present).
 */
createHotObservable<T = string>(marbles: string,
values?: {
 [marble: string]: T;
 }, error?: any): HotObservable<T>;

When you’re creating a hot Observable, you can use ^ to point out the first frame:

• flush: This starts virtual time. It’s only needed if you use helpers outside the run callback
or if you want to use flush more than once.

• expectObservable: This asserts that an Observable matches a marble diagram.

• expectSubscriptions: This asserts that an Observable matches the expected subscriptions.

Now, let’s learn how we can implement marble testing using TestScheduler in the following section.

Testing RxJS Observables216

Implementing marble tests

In this section, we will consider implementing marble tests for the getValues method previously
mentioned in the subscribe and assert pattern:

export class SampleService {

 getValues(): Observable<String> {
 return of('Hello', 'Packt', 'Readers');
 }
}

The steps for writing the marble testing implementation pattern are simple:

1. Import TestScheduler from rxjs/testing:

import { TestScheduler } from 'rxjs/testing';

2. In the beforeEach statement, inject SampleService. Then, instantiate TestScheduler
and pass an input function that compares the actual output with the expected output of
the Observable:

import { TestScheduler } from 'rxjs/testing';
describe('Service: SampleService', () => {
 let scheduler : TestScheduler;
 let service: SampleService;

 beforeEach(() => {

 service = TestBed.inject(SampleService);

 scheduler = new TestScheduler((actual, expected) => {

 expect(actual).toEqual(expected);

 });
 });
});

If the expected output and actual output are not equal, it throws an error, failing the test.

Learning about the marble testing pattern 217

3. Use TestScheduler to test your stream by calling the run method and passing a callback
to it (remember that the callback needs to accept RunHelpers as the first parameter):

it('should return values in the right order', () => {
 scheduler.run((helpers) => {
 });
});

It is also useful to destruct the helpers into variables and use them directly to implement the
marble tests. We will be destructuring the expectObservable variable, as we will use it
to assert that the Observable matches the marble diagram, as follows:

it('should return values in the right order', () => {
 scheduler.run(({expectObservable}) => {
 });
});

4. Finally, declare the expected marble and values and perform the expectation:

it('should return values in the right order', () => {
 scheduler.run(({expectObservable}) => {
 const expectedMarble = '(abc|)' ;
 const expectedValues = {a:'Hello', b:'Packt',
 c:'Readers'};
 expectObservable(service.getValues()).toBe(
 expectedMarble, expectedValues)
 });
});

The expectedMarble constant represents the marble diagram. Since the getValues
method returns three values consecutively, we used parentheses to group the a, b, and c
emissions. The stream then completes, so we use the | character.

The expectedValues constant represents the values of the a, b, and c characters that we put
in expectedMarble. It represents 'Hello', 'Packt', and 'Readers', consecutively,
which are nothing but the values that are emitted by the Observable that we want to test.

The last instruction is the expectation; we should provide the expected result that our methods
should return. Here, we must use expectObservable, which takes the Observable we want
to test as a parameter and matches it with expectedMarble and expectedValues.

That’s it. Let’s have a look at the complete test setup:

describe('SampleService marble tests', () => {
let scheduler : TestScheduler ;
let service: SampleService;

beforeEach(() => {

Testing RxJS Observables218

 service = TestBed.inject(SampleService);
 scheduler = new TestScheduler((actual, expected) => {
 expect(actual).toEqual(expected);
});
});

it('should return values in the right order', () => {
 scheduler.run(({expectObservable}) => {
 const expectedMarble = '(abc|)' ;
 const expectedValues = {a:'Hello', b:'Packt',
 c:'Readers'};
 expectObservable(service.getValues()).toBe(
 expectedMarble, expectedValues)
 });
});
});

When you run ng test, this test will pass. If you enter wrong values in expectedValues, the
test will fail:

Figure 13.3 – ng test failing

Well, this is cleaner than the subscribe and assert pattern implementation.

Now, let’s look at a more difficult example and see how we can implement it using marble testing.

Testing timed-value output methods

We will consider the testing of a timed Observable that was complicated to implement using the
subscribe and assert pattern. Let’s revisit the timer example that we explained earlier in the subscribe
and assert pattern section:

 getValues(): Observable<String> {
 return timer(0, 5000).pipe(
 take(3),
 switchMap((result) => of('Hello', 'Packt',
 'Readers'))

Learning about the marble testing pattern 219

)
 }

The cool TestScheduler feature that can help us here is virtual time; this allows us to test
asynchronous streams synchronously by virtualizing time and ensuring that the correct items are emitted
at the correct time. Thanks to the time progression syntax, we can advance virtual time by milliseconds
(ms), seconds (s), or even minutes (m). This is extremely useful in the case of timed Observables.

Let’s consider the following marble diagram:

e 999ms (fg) 996ms h 999ms (i|)';

Here, the diagram indicates that e is emitted immediately. Then, after 1 second, f and g are emitted.
Then, 1 second later, h is emitted, after which I is emitted, and the stream finally completes.

Why use 999 and 996? Well, we’re using 999 because e takes 1 ms to emit and 996 because the
characters in the (fg) group take 1 ms each.

With all this in mind, the marble tests of getValues will look like this:

 const expectedMarble ='(abc) 4995ms (abc) 4995ms
 (abc|)' ;

The group of values (abc) is emitted every 5 seconds or 5000 ms, and since the characters are counted
inside the group, we put 4995ms. So, the whole test case will look like this:

it('should return values in the right time', () => {
 scheduler.run(({expectObservable}) => {
 const expectedMarble ='(abc) 4995ms (abc) 4995ms (abc|)';
 const expectedValues = {a:'Hello', b:'Packt',
 c:'Readers'};
 expectObservable(service.getValues()).toBe(
 expectedMarble, expectedValues)
 });
});

That’s how we resolved the test of a timed Observable using marble tests.

Marble testing is extremely powerful and helpful. It allows you to test a very high level of detail and
complicated things such as concurrency and timed Observables. It also makes your tests cleaner.
However, it requires you to learn a new syntax, and it is not recommended for testing business logic.
Marble testing was designed for testing operators with arbitrary time.

Note
For more details about marble testing, you can check out the official docs at https://rxjs.
dev/guide/testing/marble-testing.

https://rxjs.dev/guide/testing/marble-testing
https://rxjs.dev/guide/testing/marble-testing

Testing RxJS Observables220

Now, let’s highlight a very common pattern for testing business logic.

Highlighting testing streams using
HttpClientTestingModule
Observables that are returned from the HTTP client are frequently used in our Angular code, but
how can we test those streams? Let’s look at the pattern we can use to test those Observables. We will
be shifting our focus away from general testing practices and narrowing our attention specifically to
testing our recipe app.

Consider the following method inside RecipeService:

 saveRecipe(formValue: Recipe): Observable<Recipe> {
 return this.http.post<Recipe>(
 `${BASE_PATH}/recipes`, formValue);
 }

The saveRecipe method issues an HTTP request and returns an Observable of recipe. In order to test
the output Observable, there is a very useful API that can be used: HttpClientTestingModule.
This API allows us to test HTTP methods that use the HTTP client. It also allows us to easily mock
HTTP requests by providing the HttpTestingController service. In short, it enables us to
mock requests instead of making real API requests to our API backend when testing.

Let’s see the steps required to test the saveRecipe method using the HttpClientTestingModule:

1. Before you can use HttpClientTestingModule, import and inject it in your TestBed
in the beforeEach statement, as follows:

import { TestBed } from '@angular/core/testing';
import { HttpClientTestingModule} from '@angular/common/http/
testing';
describe('RecipesService', () => {
 beforeEach(() => {
 TestBed.configureTestingModule({
 imports: [HttpClientTestingModule],
 });
 });
});

2. Then, import and inject HttpTestingController and RecipesService and provide
a shared instance of each to use in our tests:

import { TestBed } from '@angular/core/testing';
import { HttpClientTestingModule, HttpTestingController } from
'@angular/common/http/testing';

Highlighting testing streams using HttpClientTestingModule 221

import { RecipesService } from './recipes.service';

describe('RecipesService', () => {

 let service: RecipesService;
 let httpTestingController: HttpTestingController;

 beforeEach(() => {
 TestBed.configureTestingModule({
 imports: [HttpClientTestingModule],
 providers: [RecipesService]
 });
 httpTestingController =
 TestBed.inject(HttpTestingController)
 service = TestBed.inject(RecipesService)
 });
});

3. Next, implement the test case of saving the recipe. We’ll mock saveRecipe as follows:

 it('should save recipe from API', () => {
 const recipeToSave : Recipe= {
 "id": 9,
 "title": "Lemon cake",
 "prepTime": 10,
 "cookingTime": 35,
 "rating": 3,
 "imageUrl": "lemon-cake.jpg"

 }
 const subscription =
 service.saveRecipe(recipeToSave)
 .subscribe(_recipe => {
 expect(recipeToSave).toEqual(_recipe, 'should
 check mock data')
 });
 const req = httpTestingController.expectOne(
 `/api/recipes`);
 req.flush(recipeToSave);
 subscription.unsubscribe();
 });

Testing RxJS Observables222

Here, we created a constant called recipeToSave, which represents a mocked recipe that
we will post to the server to be saved. Then, we subscribed to the saveRecipe method
and passed recipeToSave to it as a parameter. Inside the subscription, we defined our
expectations. Then, we called the expectOne method, which expects a single request that’s
been made to match a given URL (in our case, /api/recipes) and returns mock data
using the flush method, which resolves the request by returning a mocked body. Finally, we
released the subscription.

4. The last step is to add an afterEach() block, in which we run the verify method of
our controller:

 afterEach(() => {
 httpTestingController.verify();
 });

The verify() method ensures that there are no outstanding HTTP requests that
have not been handled or flushed. When you make HTTP requests in your tests using
HttpClientTestingModule, they are intercepted by httpTestingController
instead of being sent over the network. The verify() method ensures that all requests have been
properly handled and allows your tests to pass only if there are no pending requests remaining.

In summary, the afterEach() block with httpTestingController.verify() is
used in Angular tests to clean up and verify that there are no unhandled HTTP requests left
over after each test case. This helps ensure that your tests are isolated and reliable, without
unexpected network interactions.

And that’s it; the pattern for testing methods that issue HTTP requests is complete. Just run the ng
test command and ensure everything works fine.

Note
HttpClientTestingModule is very useful in this use case. For more details, please refer to
https://angular.dev/guide/testing/services#httpclienttestingmodule.

Summary
In this chapter, I’ve elucidated three common approaches for testing Observables in RxJS and Angular.
Each solution has its strengths and weaknesses, and there is no one-size-fits-all answer.

First, we learned about the subscribe and assert pattern, as well as its advantages and drawbacks. This
pattern is straightforward to understand but may not cover all edge cases, especially when dealing
with complex asynchronous behavior.

https://angular.dev/guide/testing/services#httpclienttestingmodule

Summary 223

Then, we learned about the marble testing pattern and its syntax, features, advantages, and drawbacks.
We studied a basic example and an example that uses virtual time to test timed Observables. Marble
testing provides a visual representation of Observable behavior; it is suitable for testing complex
asynchronous scenarios. However, it requires special syntax, meaning it may have a steep learning
curve for beginners.

Finally, we learned about a pattern that we can use to test streams that are returned from the HTTP
client. This pattern provides control over responses and doesn’t rely on external APIs. However, it
can be tedious to set up and maintain and may not accurately simulate real-world network behavior
in some cases.

In conclusion, each testing approach offers its advantages and trade-offs. Depending on your project
requirements, you can choose the solution that aligns best with your testing needs and project constraints.

At this point, our journey into reactive patterns is coming to an end. In this book, I tried to highlight
the most used reactive patterns that solve a lot of recurrent use cases in web applications. You can
use them immediately in your current projects, adapt them to your needs, or get inspired to create
your own reactive pattern.

This book is not just about patterns, though; it is also about the reactive approach and how to switch
your mindset from imperative to reactive thinking; in most chapters, this is why I’ve highlighted
the classic pattern before the reactive one to provide you with a smooth transition between the two.

And with that, we reach the end of our journey together. Thank you for reading and embarking on
this reactive adventure with me!

Index

A
Angular 17

built-in control flow 44
Deferrable Views, leveraging 119, 120

Angular Signals 130
versus RxJS Observables 131

async pipe 40
autosave feature

used, for exploring imperative pattern 89-91
used, for exploring reactive pattern 92

autosave requirement
defining 88

B
BehaviorSubject 159-162
built-in control flow, Angular 17 46

benefits 51, 52
built-in for-loop statement 47-49
built-in if statement 46, 47
built-in switch statement 49, 50
including, in recipe application 50, 51
structural directives 45, 46

bulk operations 177
reactive pattern 179, 180
requirements 178, 179
visualization 179

C
cache streams

exploring 167
shareReplay operator 167
shareReplay operator, customizing 170, 171
shareReplay operator, replacing

with share operator 172-174
shareReplay, using in recipe

application 168-170
cache types 167
caching

 requirement, defining 166, 167
caching streams

reactive pattern, using 169
use cases, for side effects 174, 175

catchError operator 56
change detection 42
classic pattern, for fetching data

Angular standalone components,
creating 30-32

fetching data service, creating 28-30

Index226

service in component, injecting 33, 34
structure, defining 28
template data, displaying 34
unsubscriptions, managing 35

client-side caching 166
cold Observables

transforming, into hot Observables 155, 156
versus unicasting Observables 152, 153

combineLatest, in RxJS
pitfalls and best practices 84, 85

combineLatest operator 78-81
completion callback 55
Computed Signals 129
concatMap operator 93, 94

using for autosave requirement 95-97
using, for pagination 98, 99

connection management,
reactive pattern 195

constructor function
used, for creating Signals 126, 127

constructor injection 30
create, read, update, and delete (CRUD) 28

D
DATA

requirement defining 112
data fetch requirement

defining 27
data sharing

reactive pattern, exploring 112
data streams 4, 5, 76
debounceTime operator

reference link 97
declarative function 42
declarative pattern, for filtering data

combineLatest operator 78-81
exploring 76-78
filter value, updating 81-84

declarative pattern pillars 79
streams, combining 79

Deferrable Views
leveraging, in Angular 17 119, 120

delayWhen operator 63-68
distinctUntilChanged operator

reference link 97
Document Object Model (DOM) 40

E
error callback 55
error handling, patterns and strategies

catchError operator 56
exploring 55
replace strategy 57, 58
rethrow strategy 59, 60
retrying strategy 60-66
selecting 66, 67, 68
selecting, factors 67

event emitter 13, 14
exhaustMap operator 107, 108

F
fallback values 58
filtering

requirement, defining 72, 73
forkJoin operator 180, 181

benefits 184

H
higher-order mapping operators 93

concatMap operator 93, 94
exhaustMap operator 107, 108
mergeMap operator 104-106
overview 109
switchMap operator 99, 100

Index 227

higher-order Observable 92
hot Observable 156

cold Observables, transforming
into 155, 156

versus multicasting Observables 153-155
HttpClient module 9, 10
HttpClientTestingModule

reference link 222
saveRecipe method, testing with 220
used, for highlighting testing

streams 220-222
HTTP long polling 190
HTTP polling 190

I
imperative pattern

exploring, for autosave feature 89-91
imperative pattern, for filtering data 73-76

filter component 73
recipes list component 74

inner Observable 92

M
marble diagram 6, 8

elements 8
operator 7

marble diagram elements
completion status 54
error status 54

marble testing pattern 213
marble tests, implementing 216-219
reference link 219
syntax 213
TestScheduler, using 214, 215
timed-value output methods,

testing 218, 219

mergeMap operator 104-106
multicasting Observables

versus hot Observables 153-155
multicasting

versus unicasting 151

N
new Signals approach 124
NgRx 118
notifier observable 61

O
Observable contract

anatomy 54
Observables 207
observer pattern 5, 6

roles 5
operators 6
outer Observable 92

P
plainSubject 157, 158
polling 167
producer 151
pull technique 190
pure function 41
push technique 190

R
reactive data binding, with Signals 144

model inputs 146, 147
signal inputs 144-146
signal queries 147

reactive forms 13

Index228

reactive pattern
advantages 41
change detection strategy of

OnPush, using 42-44
declarative approach, using 41, 42
exploring, for autosave feature 92
exploring, to share data 112, 118
higher-order mapping operators 93
higher-order Observable 92
last selected recipe, consuming 117
last selected recipe, updating 114, 116
learning, for tracking progress 185
reconnection, handling 201, 202
reconnection, retrying 203, 204
shared service, creating 113, 114

reactive pattern, bulk operations 179, 180
for tracking progress 185, 186
working 181-184

reactive pattern, for consuming
real-time messages 191

connection management 194, 195
connection, triggering 198
detection strategy, changing 200
implementing 195
Observable emitting live updates,

defining 198, 200
real-time service, creating 196-198
WebSocketSubject 191

reactive pattern, for fetching data 38
async pipe, using in template 40, 41
data, retrieving as streams 38, 39
streams, defining 39

reactive programming, pillars 4
data streams 4, 5
observer pattern 5, 6

real-time data
requirement defining 190, 191

recipe application
architecture, reviewing 20, 21
components, reviewing 21, 22
errors handling in 68-70
interface 16
shareReplay, using in 168-170
Signals, integrating into 136-144

recipe application, interface
landing page 16, 17
Modify Recipe interface 19
My Favourites interface 19
My Recipes interface 18
New Recipe interface 17, 18
Recipe Details interface 20

replace strategy 57, 58
replaySubject 158, 159
rethrow strategy 59, 60
retrying strategy 60-66
retryWhen operator 61-63
Router module 10

activated route 11, 12
router events 10, 11

RxJS 7 Multicasting operators
reference link 161

RxJS in Angular, features
event emitter 13, 14
HttpClient module 9, 10
reactive forms 13
Router module 10

RxJS Observables
versus Angular Signals 131

RxJS subjects
BehaviorSubject 159-162
exploring 156, 157
plain subject 157, 158
replaySubject 158, 159

Index 229

S
Server Sent Events 190
share operator

shareReplay operator, replacing
with 172-174

shareReplay operator 167
customizing 170, 171
replacing, with share operator 172-174
using, in recipe application 168-170

side effects 174
Signal API

unveiling 125
Signals

creating, with constructor function 126, 127
defining 125
effects 130
integrating, into recipe application 136-144
motivation 124
new Signals approach 124
reactive data binding, exploring with 144
reading 127, 128
traditional Zone.js approach 124
used, for combining streams 139-141
used, for fetching data as streams 136-139
used, for sharing data 141, 142
used, for transforming streams 142-144

source observable 61
standalone component 30

reference link 33
streams, combining

filtering requirement, defining 72, 73
subjects 156

exploring 157
subscribe and assert pattern 208

drawbacks 212
multiple-value output methods, testing 211

single-value output methods,
testing 208-210

timed-value output methods, testing 212
success callback 55
switchMap operator 99, 100

using, for autocompletion 102-104
using, for autosaving 101

T
tap operator

reference link 175
testing streams

highlighting, with
HttpClientTestingModule 220-222

TestScheduler 214
timer function

reference link 170
toObservable() function

behavior 134, 135
toSignal() function

behavior 132-134
traditional Zone.js approach 124

U
unicasting

versus multicasting 151
unicasting Observables

versus cold Observables 152, 153
unsubscriptions, managing

declarative management 35-38
imperative management 35

V
virtual time 219

Index230

W
WebSocket 190

communication flow 190
WebSocketSubject 191

behavior 191
connection, closing 193
connection, establishing 192
creation 191
errors, handling 193
incoming messages from server,

listenining 192
messages, publishing to server 193

writable Signal
modifying, with set method 128
modifying, with update method 128

www.packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packtpub.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://www.packtpub.com
http://packtpub.com
mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Spring Boot and Angular

Devlin Basilan Duldulao, Seiji Ralph Villafranca

ISBN: 978-1-80324-321-4

• Explore how to architect Angular for enterprise-level app development

• Create a Spring Boot project using Spring Initializr

• Build RESTful APIs for enterprise-level app development

• Understand how using Redis for caching can improve your application s performance

• Discover CORS and how to add CORS policy in the Spring Boot application for better security

• Write tests to maintain a healthy Java Spring Boot application

• Implement testing and modern deployments of frontend and backend applications

https://www.packtpub.com/product/spring-boot-and-angular/9781803243214

233Other Books You May Enjoy

Angular Cookbook

Muhammad Ahsan Ayaz

ISBN: 978-1-83898-943-9

• Gain a better understanding of how components, services, and directives work in Angular

• Understand how to create Progressive Web Apps using Angular from scratch

• Build rich animations and add them to your Angular apps

• Manage your app’s data reactivity using RxJS

• Implement state management for your Angular apps with NgRx

• Optimize the performance of your new and existing web apps

• Write fail-safe unit tests and end-to-end tests for your web apps using Jest and Cypress

• Get familiar with Angular CDK components for designing effective Angular components

https://www.packtpub.com/product/angular-cookbook/9781838989439

234

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you’ve finished Reactive Patterns with RxJS and Angular Signals, we’d love to hear your thoughts!
If you purchased the book from Amazon, please click here to go straight to the
Amazon review page for this book and share your feedback or leave a review on the site that
you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1-835-08770-1
https://packt.link/r/1-835-08770-1

235

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://download.packt.com/free-ebook/9781835087701

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://download.packt.com/free-ebook/9781835087701

	Cover
	Title Page
	Copyright and Credits
	Dedication
	Foreword
	Contributors
	Table of Contents
	Preface
	Part 1:
An Introduction
to the Reactive World
	Chapter 1: Diving into the Reactive Paradigm
	Technical requirements
	Exploring the pillars of reactive programming
	Data streams
	Observer patterns

	Learning about the marble diagram (our secret weapon)
	Highlighting the use of RxJS in Angular
	The HttpClient module
	The Router module
	Reactive forms
	The Event emitter

	Summary

	Chapter 2: Walking through
Our Application
	Technical requirements
	Breaking down our app’s interfaces
	View one – the landing page
	View two – the New Recipe interface
	View three – the My Recipes interface
	View four – the My Favourites interface
	View five – the Modify Recipe interface
	View six – the Recipe Details interface

	Reviewing our app’s architecture
	Reviewing our app’s components
	Summary

	Part 2:
A Trip into
Reactive Patterns
	Chapter 3: Fetching Data as Streams
	Technical requirements
	Defining the data fetch requirement
	Exploring the classic pattern for fetching data
	Defining the structure of your data
	Creating the fetching data service
	Creating Angular standalone components
	Injecting and subscribing to the service in your component
	Displaying the data in the template
	Managing unsubscriptions

	Exploring the reactive pattern for fetching data
	Retrieving data as streams
	Defining the stream in your component
	Using the async pipe in your template

	Highlighting the advantages of the reactive pattern
	Using the declarative approach
	Using the change detection strategy of OnPush

	Diving into the built-in control flow in Angular 17
	Structural directives
	Built-in control flows
	Including built-in control flows in our recipe app
	Benefits of built-in control flow

	Summary

	Chapter 4: Handling Errors Reactively
	Technical requirements
	Understanding the anatomy of an Observable contract
	Exploring error handling patterns and strategies
	The replace strategy
	The rethrow strategy
	The retrying strategy
	Choosing the right error handling strategy

	Handling errors in our recipe app
	Summary

	Chapter 5: Combining Streams
	Technical requirements
	Defining the filtering requirement
	Exploring the imperative pattern for filtering data
	Exploring the declarative pattern for filtering data
	The combineLatest operator
	Updating the filter value

	Highlighting common pitfalls and best practices
	Unnecessary subscriptions
	Missing or incomplete values
	Performance overhead
	Confusing error handling

	Summary

	chapter 6: Transforming Streams
	Technical requirements
	Defining the autosave requirement
	Exploring the imperative pattern for the autosave feature
	Exploring the reactive pattern for the autosave feature
	Higher-order Observables
	Higher-order mapping operators

	Summary

	Chapter 7: Sharing Data between
Angular Components
	Technical requirements
	Defining the sharing data requirement
	Exploring the reactive pattern to share data
	Step 1 – Creating a shared service
	Step 2 – Updating the last selected recipe
	Step 3 – Consuming the last selected recipe
	Wrapping up the data-sharing reactive pattern

	Leveraging Deferrable Views in Angular 17
	Summary

	Part 3:
The Power of
Angular Signals
	Chapter 8: Mastering Reactivity
with Angular Signals
	Technical requirements
	Understanding the motivation behind Signals
	The traditional Zone.js approach
	The new Signals approach

	Unveiling the Signal API
	Defining Signals
	Creating Signals using the constructor function
	Reading Signals
	Modifying a writable Signal
	Computed Signals
	Signal effects

	Unlocking the power of RxJS and Angular Signals
	Understanding the behavior of toSignal()
	Understanding the behavior of toObservable()

	Integrating Signals into our recipe app
	Fetching data as streams using Signals
	Combining streams using Signals
	Sharing data using Signals
	Transforming streams using Signals

	Exploring reactive data binding with Signals
	Signal inputs
	Model inputs
	Signal queries

	Summary

	Part 4:
Multicasting Adventures
	Chapter 9: Demystifying Multicasting
	Technical requirements
	Explaining multicasting versus unicasting
	Unicasting and cold Observables
	Multicasting and hot Observables
	Transforming cold Observables into hot Observables

	Exploring RxJS subjects
	A plain subject
	replaySubject
	BehaviorSubject

	Highlighting the advantages of multicasting
	Summary

	Chapter 10: Boosting Performance
with Reactive Caching
	Technical requirements
	Defining the caching requirement
	Exploring the reactive pattern to cache streams
	The shareReplay operator
	Using shareReplay in RecipesApp
	Customizing the shareReplay operator
	Replacing the shareReplay operator with the share operator

	Highlighting the use of caching for side effects
	Summary

	Chapter 11: Performing Bulk Operations
	Technical requirements
	Defining the bulk operation requirements
	Learning the reactive pattern for bulk operations
	The forkJoin operator
	The bulk operation reactive pattern
	Benefits of the forkJoin operator

	Learning the reactive pattern for tracking the bulk operation’s progress
	Summary

	Chapter 12: Processing Real-Time Updates
	Technical requirements
	Defining the requirements of real time
	Learning the reactive pattern for consuming real-time messages
	Creating and using WebSocketSubject
	WebSocketSubject in action

	Learning the reactive pattern for handling reconnection
	Summary

	Part 5:
Final Touches
	Chapter 13: Testing RxJS Observables
	Technical requirements
	Learning about the subscribe and assert pattern
	Testing single-value output methods
	Testing multiple-value output methods
	Testing timed-value output methods

	Learning about the marble testing pattern
	Understanding the syntax
	Introducing TestScheduler
	Implementing marble tests
	Testing timed-value output methods

	Highlighting testing streams using HttpClientTestingModule
	Summary

	Index
	Other Books You May Enjoy

