

Real-World Web Development
with .NET 9
First Edition

Build websites and services using mature and proven ASP.NET
Core MVC, Web API, and Umbraco CMS

Mark J. Price

Real-World Web Development with .NET 9
First Edition

Copyright © 2024 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the
accuracy of this information.

Senior Publishing Product Manager: Suman Sen
Acquisition Editor – Peer Reviews: Swaroop Singh
Project Editor: Janice Gonsalves
Content Development Editor: Matthew Davies
Copy Editor: Safis Editing
Technical Editor: Simanta Rajbangshi
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Presentation Designer: Rajesh Shirsath
Developer Relations Marketing Executive: Priyadarshini Sharma

First published: December 2024

Production reference: 1181224

Published by Packt Publishing Ltd.
Grosvenor House
11 St Paul’s Square
Birmingham
B3 1RB, UK.

ISBN 978-1-83588-038-8

www.packt.com

www.packt.com

Contributors

About the author
Mark J. Price is a Microsoft Specialist: Programming in C# and Architecting Microsoft Azure Solutions,
with over 20 years of experience. Since 1993, he has passed more than 80 Microsoft programming
exams and specializes in preparing others to pass them. Between 2001 and 2003, Mark was employed
to write official courseware for Microsoft in Redmond, USA. His team wrote the first training courses
for C# while it was still an early alpha version. While with Microsoft, he taught “train-the-trainer”
classes to get Microsoft Certified Trainers up to speed on C# and .NET. Mark has spent most of his
career training a wide variety of students, from 16-year-old apprentices to 70-year-old retirees, with
the majority being professional developers. Mark holds a BSc. degree in Hons Computer Science.

Thank you to all my readers. Your support means I get to write these books and celebrate your successes.

Special thanks to the readers who give me actionable feedback via my GitHub repository and email and
interact with me and the book communities on Discord. You help make my books even better with every edition.

Extra special thanks to Troy, a reader who became a colleague, and more importantly, a good friend.

About the reviewer
Vishnu VG is a .NET programmer and software architect with over 17 years of experience in the IT
industry. Based in Thiruvananthapuram, Kerala, India, his expertise lies in C# .NET, .NET Core, cloud
platforms like AWS and Azure (holding an AWS Associate Certificate), Linux, serverless architectures,
and container technologies. He is proficient in managing both on-premises and hybrid enterprise
systems.

Beyond his technical skillset, Vishnu is a professional who actively engages with the developer com-
munity. Since 2021, he has held the title of AWS Community Builder. He is also passionate about
knowledge sharing through his YouTube channel and podcast, both called Coding Talks with Vishnu VG.

Learn more on Discord
To join the Discord community for this book – where you can share feedback, ask questions to the
author, and learn about new releases – follow the QR code below:

https://packt.link/RWD9

https://packt.link/RWD9

Table of Contents

Preface xxv

Chapter 1: Introducing Web Development Using Controllers 1

Understanding ASP.NET Core .. 2
A Brief History of ASP.NET Core • 2
Classic ASP.NET versus modern ASP.NET Core • 4
Building websites using ASP.NET Core • 5
Comparison of file types used in ASP.NET Core • 8
Building websites using a content management system • 9
Building web applications using SPA frameworks • 10
Building web and other services • 11
Cloud providers and deployment tools • 11

Structuring projects and managing packages .. 11
Structuring projects in a solution • 12
Structuring folders in a project • 12

Folder structure based on technological concerns • 13
Folder structure based on features • 13
Folder structure summary • 14

Central Package Management • 15
Making good use of the GitHub repository for this book ... 19

Understanding the solution code on GitHub • 20
Downloading solution code from the GitHub repository • 20
Using Git with VS Code and the command prompt • 21
Cloning the book solution code repository • 21

Building an entity model for use in the rest of the book .. 21
Northwind database SQL scripts • 22
Installing Docker and the Azure SQL Edge container image • 22

Table of Contentsviii

Running the Azure SQL Edge container image • 24
Running a container using the user interface • 25
Connecting to Azure SQL Edge in a Docker container • 27

Connecting from Visual Studio • 27
Connecting from VS Code • 28

Creating the Northwind database using a SQL script • 30
Removing Docker resources • 31
Setting up the EF Core CLI tool • 32
Creating a class library for entity models • 32
Creating a class library for a database context • 34
Setting the user and password for SQL Server authentication • 38
Registering dependency services • 39
Improving the class-to-table mapping • 40
Testing the class libraries using xUnit • 41

Practicing and exploring .. 44
Exercise 1.1 – Online material • 44
Exercise 1.2 – Practice exercises • 45

Troubleshooting web development • 45
Exercise 1.3 – Test your knowledge • 45

Know your webbreviations • 45
Exercise 1.4 – Explore topics • 46

Summary ... 46

Chapter 2: Building Websites Using ASP.NET Core MVC 47

Setting up an ASP.NET Core MVC website .. 47
Creating an ASP.NET Core MVC website • 49
Creating the authentication database for SQL Server LocalDB • 51
Changing the port numbers and starting the website • 53
Understanding browser requests during development • 57
Exploring visitor registration • 57
Reviewing an MVC website project structure • 58
Reviewing the ASP.NET Core Identity database • 60
Configuring files included in an ASP.NET Core project • 61
Project file build actions • 63

Exploring an ASP.NET Core MVC website ... 64
ASP.NET Core MVC initialization • 64
What does UseMigrationsEndPoint do? • 67

Table of Contents ix

Controlling the hosting environment • 67
The default MVC route • 69
Controllers and actions • 69

The responsibilities of a controller • 70
Routing to controllers • 70
The ControllerBase class • 70
The Controller class • 71
Reviewing the project template controller • 72
The view search path convention • 73
Logging using the dependency service • 74

Using entity and view models • 75
View model example • 76

Implementing views • 79
How cache busting with Tag Helpers works • 83

Prototyping with Bootstrap ... 83
Breakpoints and containers • 84
Rows and columns • 85
Color themes • 86
Tables • 86
Buttons and links • 87
Badges • 88
Alerts • 89
Good practice for Bootstrap • 90

Customizing an ASP.NET Core MVC website ... 90
Defining a custom style • 90
Setting up the category images • 91
Razor syntax and expressions • 91
Defining a typed view • 92
Testing the home page with categories • 95
Cross-functional filters • 96

Using a filter to define a custom route • 96
Temporarily storing data • 97

Practicing and exploring .. 99
Exercise 2.1 – Online material • 99
Exercise 2.2 – Practice exercises • 99

Practice building UIs with Bootstrap • 99

Table of Contentsx

Exercise 2.3 – Test your knowledge • 99
Exercise 2.4 – Explore topics • 100

Summary ... 100

Chapter 3: Model Binding, Validation, and Data Using EF Core 101

Model binding and validation ... 102
How model binding works • 102
How validation rules are defined • 102
Passing parameters using a route value • 103
Disambiguating action methods • 105
Model binders in detail • 106
Passing a route parameter • 110
Passing a form parameter • 110
Avoiding over-posting aka mass assignment attacks • 111
Returning HTTP error status codes • 112

BadRequest • 112
NotFound • 113
Unauthorized • 113
Forbid • 113
Conflict • 114
UnprocessableEntity • 114
StatusCode • 114
Problem • 114
ValidationProblem • 115

Modifying data using EF Core and ASP.NET Core ... 115
Displaying Northwind suppliers • 115
Inserting, updating, and deleting suppliers • 118
Manually trying to insert, update, and delete • 124
Protecting against CSRF attacks • 126

How CSRF attacks work • 126
How anti-forgery tokens prevent CSRF • 126
How to use Html.AntiForgeryToken() • 127

Querying a database and using display templates • 128
Improving scalability using asynchronous tasks .. 131

Threads and tasks on a web server • 131
Making controller action methods asynchronous • 132

Table of Contents xi

Practicing and exploring .. 133
Exercise 3.1 – Online material • 133
Exercise 3.2 – Practice exercises • 133

Practice implementing MVC by implementing a category detail page • 133
Exercise 3.3 – Test your knowledge • 134
Exercise 3.4 – Explore topics • 135

Summary ... 135

Chapter 4: Building and Localizing Web User Interfaces 137

Defining web user interfaces with Razor Views .. 138
Using shared layouts with Razor Views • 138
Defining views with HTML Helper methods • 141

Defining web user interfaces with Tag Helpers .. 142
Comparing HTML Helpers and Tag Helpers • 143
Exploring the Anchor Tag Helper • 143
Exploring the Cache Tag Helpers • 150
Exploring the Environment Tag Helper • 152
Exploring Forms-related Tag Helpers • 154

Localizing web user interfaces with ASP.NET Core ... 157
Working with cultures • 157
Localizing your user interface • 158
Web user interface localization • 158
Creating resource files • 159

If you are using Visual Studio • 159
If you are using VS Code • 161
Other resource file tools • 163
Managing resource files • 163

Localizing Razor Views with an injected view localizer • 164
Understanding the Accept-Language header • 167

Practicing and exploring .. 167
Exercise 4.1 – Online material • 168
Exercise 4.2 – Practice exercises • 168

Practice creating a custom Tag Helper • 168
Practice unit testing MVC controllers • 168

Exercise 4.3 – Test your knowledge • 168
Exercise 4.4 – Explore topics • 169

Summary ... 169

Table of Contentsxii

Chapter 5: Authentication and Authorization 171

Introducing authentication and authorization ... 171
Key concepts of authentication and authorization • 172

Identity management • 172
Authentication schemes • 172
Role-based and claims-based authorization • 172
Security best practices • 172
Cookie-based authentication • 173
Password verifier best practices • 174

Implementing authentication and authorization • 174
Defining policies • 178
External authentication • 179
Securing APIs with JWT • 180

Securing controller action methods using filters .. 181
Enabling role management and creating a role programmatically • 181

Cross-functional filters • 185
Authorization filter (IAuthorizationFilter) • 186
Resource filter (IResourceFilter) • 187
Action filter (IActionFilter) • 187
Exception filter (IExceptionFilter) • 188
Result filter (IResultFilter): • 188
Common benefits of all filters • 189

Practicing and exploring .. 189
Exercise 5.1 – Online material • 189
Exercise 5.2 – Practice exercises • 189

Auth0 integration • 189
Exercise 5.3 – Test your knowledge • 190
Exercise 5.4 – Explore topics • 190

Summary ... 191

Chapter 6: Performance Optimization Using Caching 193

Introducing caching with ASP.NET Core .. 194
General caching guidelines • 194
Reviewing types of caching • 194
Caching HTTP responses for websites • 195

Common cache-control directives • 195

Table of Contents xiii

Controlling cache-control directives in ASP.NET Core • 197
Exploring cache-control directives • 197
Seeing the effect of cache-control directives • 199

Summary of caching types • 199
Output caching ... 200

Output caching endpoints • 200
Output caching MVC views • 202
Varying output cached data by query string • 204
Disabling output caching to avoid confusion • 205

Object caching ... 206
Caching objects using in-memory caching • 206
Expirations for in-memory caching • 206
Exploring in-memory object caching • 207
Caching objects using distributed caching • 210
Hybrid object caching • 213
Creating data repositories with caching for entities • 214
Configuring the customer repository • 219

More techniques to improve scalability ... 221
Horizontal scaling with load balancing • 222
Asynchronous programming • 222
Database optimizations • 222
Message queues and background services • 222
Auto-scaling in the cloud • 222
CDN • 222
Health checks and monitoring • 222

Practicing and exploring .. 223
Exercise 6.1 – Online material • 223
Exercise 6.2 – Practice exercises • 223

Practicing improving scalability by understanding and implementing async action methods • 223
Exercise 6.3 – Test your knowledge • 223
Exercise 6.4 – Explore topics • 223

Summary ... 224

Chapter 7: Web User Interface Testing Using Playwright 225

Introducing web user interface testing .. 225
Types of web UI testing • 225
What should you test in a web UI? • 226

Table of Contentsxiv

Challenges and good practices with web UI testing • 226
The roles of developers and testers • 228

Developers and web UI testing • 228
Testers and web UI testing • 229
Collaboration between developers and testers • 230

Real-life applications of web user interface testing • 230
E-commerce websites: preventing cart and checkout failures • 230
Financial applications: ensuring data integrity and accuracy • 230
Healthcare portals: guaranteeing user and data safety • 231
Banking applications: avoiding security and transaction errors • 231
Government and public sector: ensuring accessibility compliance • 231
SaaS platforms: preventing downtime and data loss • 231
Travel and booking platforms: ensuring smooth transactions • 232

Testing web user interfaces using Playwright .. 232
What can Playwright do? • 232
Benefits for .NET developers • 234
Alternatives to Playwright • 234
Common Playwright testing types • 235
Common Playwright testing methods • 236
Common Playwright locator methods • 237
Common Playwright locator automation methods • 238
Testing common scenarios • 239
Page navigation and title verification • 242

Interacting with a web user interface .. 246
Filling input boxes and clicking elements • 246
Form submission, authentication, and validation • 249
Responsive design testing • 249

Emulating screen sizes • 250
Emulating devices • 250
Emulating locale, time zone, and geolocation • 250
Emulating dark mode and color schemes • 251
Customizing the user agent, disabling JavaScript, and going offline • 251

Single-Page Applications (SPAs) and dynamic content • 252
Generating tests with the Playwright Inspector .. 252
Practicing and exploring .. 255

Exercise 7.1 – Online-only material • 256
Exercise 7.2 – Practice exercises • 256

Table of Contents xv

Exercise 7.3 – Test your knowledge • 256
Exercise 7.4 – Explore topics • 256

Summary ... 257

Chapter 8: Configuring and Containerizing ASP.NET Core Projects 259

Configuring dependency services ... 259
Introducing dependency injection • 259
Why use DI? • 260
Injection mechanisms of DI in .NET • 261
Examples in modern .NET • 262

Constructor injection example • 262
Property injection example • 264
Method injection example • 264

Dependency graphs and service resolution • 265
Registering dependency service lifetimes • 265
When are exceptions thrown? • 266
Registering services for features using extension methods • 267
When you cannot use constructor injection • 267

Using scoped services in middleware • 268
Resolving services at startup • 269
DI and MVC controller action methods • 269
DI and MVC views • 270
Disposing services • 270
Best practices for DI • 270

Configuring the HTTP pipeline ... 271
Understanding endpoint routing • 271
Benefits of endpoint routing • 271
Configuring endpoint routing • 272
Reviewing the default endpoint routing configuration • 272
Setting up the HTTP pipeline • 275
Summarizing key middleware extension methods • 275
Visualizing the HTTP pipeline • 276
Implementing an anonymous inline delegate as middleware • 277

Configuring options .. 279
Configuration sources • 279
Configuration classes and interfaces • 279
How to manually set up configuration • 280

Table of Contentsxvi

Understanding IConfiguration and IConfigurationRoot • 282
IConfiguration for combined settings from all providers • 282
IConfigurationRoot for more advanced scenarios • 283

Showing providers and settings • 284
Configuration overriding in production deployments • 289

Configuration overriding in Docker • 290
Configuration overriding in Kubernetes • 291

Loading configuration using the Options pattern • 291
Using IOptionsSnapshot and IOptionsMonitor • 294
Configuration validation • 295
Using custom configuration providers • 295

Containerizing ASP.NET Core projects ... 296
How containers work and their benefits • 296
Docker and .NET Aspire • 297
Installing Docker and using prebuilt images • 298
Aspire project types • 302
Aspire resource types • 303
Developer dashboard for monitoring • 303
Adding Aspire to an existing solution • 304
Deployment with Aspire • 309

Practicing and exploring .. 310
Exercise 8.1 – Online material • 310
Exercise 8.2 – Practice exercises • 310
Exercise 8.3 – Test your knowledge • 310
Exercise 8.4 – Explore topics • 311

Summary ... 311

Chapter 9: Building Web Services Using ASP.NET Core Web API 313

Introducing web services .. 314
Aspects of RESTful services • 314

Statelessness • 314
Resource-based • 314
Uniform interface • 314
Client-server architecture • 315
Cacheability • 315
Layering • 315
Representation of resources • 315

Table of Contents xvii

Idempotency • 316
Hypermedia as the Engine of Application State (HATEOAS) • 316

Why REST matters • 316
Understanding HTTP versions • 316

HTTP/0.9 (1991) • 317
HTTP/1.0 (1996) • 317
HTTP/1.1 (1997, updated in 1999) • 317
HTTP/2 (2015) • 317
HTTP/3 (2020) • 318

Understanding HTTP requests and responses for web APIs • 318
GET requests • 318
Common response status codes • 319
Caching requests example • 320
POST, PUT, and other requests • 321

Creating an ASP.NET Core Web API with controllers project • 323
Trying out the weather forecast web service’s functionality • 327

Creating a web service for the Northwind database .. 328
Controlling XML serialization • 330
Routing web service requests to action methods • 331
Route constraints • 332
Short-circuit routes • 333
Understanding action method return types • 333
Configuring the customer repository and Web API controller • 334
Specifying problem details • 340

Documenting and trying out web services ... 341
Making GET requests using a browser • 341
Making GET requests using HTTP/REST tools • 342
Making other requests using HTTP/REST tools • 344
Passing environment variables • 345
Understanding the OpenAPI Specification • 346
Generating clients using an OpenAPI specification • 348

Caching and logging ... 349
Caching HTTP responses for web services • 349
Enabling HTTP logging • 352
Support for logging additional request headers in W3CLogger • 355
Logging and security principles • 356

Avoid logging sensitive information • 356

Table of Contentsxviii

Mask or obfuscate sensitive data • 356
Avoid logging request and response bodies for sensitive endpoints • 356
Use structured logging for sensitive data management • 356
Log security events without sensitive data • 357
Beware of third-party library logging • 357
Log errors with caution • 357

Consuming web services using HTTP clients ... 357
Understanding HttpClient • 358
Configuring HTTP clients using HttpClientFactory • 358
Getting customers as JSON in the controller • 358
Starting multiple projects • 361

If you are using Visual Studio • 361
If you are using VS Code • 362

Starting the web service and MVC client projects • 363
Relaxing the same origin security policy using CORS ... 364

Configuring HTTP logging for the web service • 365
Creating a .NET client • 369
Understanding CORS • 373
Understanding other CORS policy options • 374

Understanding identity services .. 375
JWT bearer authorization • 375
Authenticating service clients using JWT bearer authentication • 375

Practicing and exploring .. 379
Exercise 9.1 – Online material • 379

Improved route tooling • 380
Implementing advanced features for web services • 380

Exercise 9.2 – Practice exercise • 380
Creating and deleting customers with HttpClient • 380

Exercise 9.3 – Test your knowledge • 380
Exercise 9.4 – Explore topics • 381

Summary ... 381

Chapter 10: Building Web Services Using ASP.NET Core OData 383

Understanding OData ... 384
Understanding the OData standard • 384
Benefits of OData • 384

Standardized querying • 384

Table of Contents xix

Cross-platform interoperability and integration with Microsoft ecosystem • 385
Self-describing and rich metadata • 386
Supports RESTful principles and CRUD operations • 386
Supports multiple data formats • 387
Built-in support for data relationships • 387
Extensibility • 387
Standard security features • 387

Disadvantages of OData • 387
Building a web service that supports OData ... 389

Defining OData models for the EF Core models • 390
Testing the OData models • 393
Creating and testing OData controllers • 394

Exploring OData services using HTTP/REST tools .. 397
Creating an HTTP file for making requests • 397
Understanding OData queries • 400

OData standard query options • 400
OData operators • 400
OData functions • 401

Exploring OData queries • 402
Using logs to review the efficiency of OData requests • 404

Implementing versions and data modifications ... 405
Versioning OData controllers • 406
Enabling entity inserts, updates, and deletes • 408

Building clients for OData services .. 410
Calling services in the Northwind MVC website • 411
Revisiting the introductory query • 415

Practicing and exploring .. 417
Exercise 10.1 – Online material • 417
Exercise 10.2 – Practice exercises • 417
Exercise 10.3 – Test your knowledge • 418
Exercise 10.4 – Explore topics • 418

Summary ... 418

Chapter 11: Building Web Services Using FastEndpoints 419

Introducing FastEndpoints ... 420
Pros and cons of FastEndpoints • 420
What makes it “fast”? • 420

Table of Contentsxx

How to define an endpoint • 422
Example FastEndpoints endpoint implementation • 424

Implementing FastEndpoints .. 425
Adding FastEndpoints to an empty ASP.NET Core project • 425
Enabling FastEndpoints and defining endpoints • 426

Configuring FastEndpoints ... 430
Configuration methods and properties • 431
Mapping requests and responses to entity models • 432

Practicing and exploring .. 434
Exercise 11.1 – Online material • 435
Exercise 11.2 – Practice exercises • 435
Exercise 11.3 – Test your knowledge • 435
Exercise 11.4 – Explore topics • 435

Summary ... 435

Chapter 12: Web Service Integration Testing 437

Basics of integration testing .. 438
Testing terminology • 439
Attributes of all good tests • 440
Test outcomes • 441

Why false positives and false negatives are bad • 442
Test doubles, mocks, and stubs • 443
Which external systems to test • 443
Sharing fixtures in integration tests • 444
Understanding web service functional and end-to-end testing • 444

End-to-end test scenario • 445
Functional test scenario • 445
Test automation • 445

Integration testing with data stores ... 446
Developer instances of the database and migrations • 446
Data lifecycle • 448

Testing web services using xUnit ... 450
Unit testing using xUnit • 451
Common xUnit attributes • 451
Web service hosting with WebApplicationFactory • 452
Enabling an ASP.NET Core project to be tested • 453
Creating the test project • 453

Table of Contents xxi

Mocking in tests ... 455
Libraries for mocking • 456
Using NSubstitute to create test doubles • 457
Mocking with NSubstitute example • 458

Testing services using dev tunnels .. 462
Installing the dev tunnel CLI • 463
Exploring a dev tunnel with the CLI and an echo service • 463
Exploring a dev tunnel with an ASP.NET Core project • 465

Practicing and exploring .. 469
Exercise 12.1 – Online-only material • 469
Exercise 12.2 – Practice exercises • 469

Create integration tests for three web service technologies • 469
Exercise 12.3 – Test your knowledge • 469
Exercise 12.4 – Explore topics • 470

Summary ... 470

Chapter 13: Web Content Management Using Umbraco 471

Understanding the benefits of a CMS ... 473
Understanding basic CMS features • 475
Understanding enterprise CMS features • 475
Understanding CMS platforms • 475

Introducing Umbraco CMS ... 476
Why is Umbraco popular? • 476
Umbraco versions and setup • 477
Installing Umbraco CMS • 478
Creating and initializing a new Umbraco project • 479
Unattended installs • 485

Defining document types .. 485
Example document types • 486
Creating a document type • 488
Setting up languages • 491
Defining a document template • 492
Reviewing the website • 494
Adding a home page as content • 495
Creating and publishing a French variant home page • 497

Working with media ... 499
Good media practices • 499

Table of Contentsxxii

Organizing media using folders • 499
Using tags to enhance searchability • 500
Optimizing image sizes before uploading • 500
Using meaningful file names and alt text • 500
Leveraging image cropping and variants • 500
Avoiding duplicate media uploads • 500
Removing unused media regularly • 501
Using Umbraco’s built-in permissions for media access • 501
Training editors on best practices and providing resources • 501

Uploading images to Umbraco CMS • 501
Practicing and exploring .. 503

Exercise 13.1 – Online material • 503
Exercise 13.2 – Practice exercises • 503
Exercise 13.3 – Test your knowledge • 503
Exercise 13.4 – Explore topics • 504

Summary ... 504

Chapter 14: Customizing and Extending Umbraco 505

Techniques for customizing and extending Umbraco ... 505
Building custom property editors for enhanced content creation • 505
Integrating third-party APIs to enhance functionality • 506
Custom workflow automation for content approval • 506
Multilingual capabilities with custom language switching • 506

Customizing Umbraco behavior using settings .. 507
Content settings • 507
Security settings • 510
Imaging settings • 511
Global settings • 513
Content version cleanup • 515

Working with views and Razor syntax .. 515
What is IPublishedContent? • 516

Core functionality of IPublishedContent • 516
Using IPublishedContent with ModelsBuilder • 517

Rendering fields in a strongly typed view • 517
Rendering complex field types • 518

Rendering Rich Text Editor (RTE) fields • 518
Rendering Multi-Node Tree Picker (MNTP) fields • 519

Table of Contents xxiii

Handling Media Picker fields • 519
Handling Nested Content and Block List editors • 519
Common considerations • 520

Accessing member data • 520
Using Models Builder • 520

The UmbracoHelper class ... 521
Retrieving content by ID • 521
Retrieving media by ID • 522
Rendering a content template • 522
Getting dictionary values • 523
Querying content using LINQ • 523
Checking member authorization • 524
UmbracoHelper summary • 524

Practicing and exploring .. 524
Exercise 14.1 – Online material • 525
Exercise 14.2 – Practice exercises • 525

The Starter Kit • 525
Extending Umbraco • 525

Exercise 14.3 – Test your knowledge • 525
Exercise 14.4 – Explore topics • 526

Summary ... 526

Chapter 15: Epilogue 527

Next steps on your web development learning journey ... 527
Companion books to continue your learning journey • 527
Other books to take your learning further • 528

The next edition for .NET 10 ... 529

Index 531

Preface

There are programming books that are thousands of pages long that aim to be comprehensive ref-
erences to the C# language, the .NET libraries, and app models like websites, services, and desktop
and mobile apps.

This book is different. It is concise and aims to be a brisk, fun read that is packed with practical hands-
on walk-throughs of each subject. The breadth of the overarching narrative comes at the cost of some
depth, but you will find many signposts to explore further if you wish.

This book is simultaneously a step-by-step guide to learning modern C# and proven practices using
cross-platform .NET, and a brief introduction to the fundamentals of modern web development, along
with the creation of websites and services that can be built with these technologies. This book is most
suitable for beginners to C# and .NET, as well as programmers who have worked with C# in the past
but may feel left behind by the changes in the past few years.

I will point out the cool corners and gotchas of C# and .NET so that you can impress colleagues and get
productive fast. Rather than slowing down and boring some readers by explaining every little thing,
I will assume that you are smart enough to Google an explanation for topics that are related but not
necessary to include in a beginner-to-intermediate guide that has limited space in a printed book.

Some chapters have links to additional related online-only content for those readers who would like
more details. For example, Chapter 1, Introducing Web Development with Controllers, has an online sec-
tion about web development on the client side using HTML, CSS, and JavaScript.

Where to find the code solutions
You can download solutions for the step-by-step guided tasks and exercises from the GitHub repository
at the following link: https://github.com/markjprice/web-dev-net9.

If you don’t know how to download or clone a GitHub repository, then I provide instructions at the
end of Chapter 1, Introducing Web Development with Controllers.

What this book covers
Chapter 1, Introducing Web Development with Controllers, is about introducing you to mature and prov-
en web development with .NET. This means a set of technologies that have been refined over a de-
cade or more with plenty of documentation, support forums, and third-party investment, including
ASP.NET Core Model-View-Controller (MVC), Web API services using controllers and OData, and
popular frameworks like Umbraco CMS.

https://github.com/markjprice/web-dev-net9

Prefacexxvi

Chapter 2, Building Websites Using ASP.NET Core MVC, introduces building websites with a modern HTTP
architecture on the server side using ASP.NET Core MVC, including the models, views, and controllers
that make up the main components of an ASP.NET Core MVC project, and how to use Bootstrap for
quick user interface prototyping.

Chapter 3, Model Binding, Validation, and Data Using EF Core, covers model binding, model validation,
and retrieving and modifying data using EF Core in an ASP.NET Core MVC website project. These
concepts work together to simplify the common tasks of taking user input, processing it, and storing
or retrieving data from a database.

Chapter 4, Building and Localizing Web User Interfaces, is about building web user interfaces with
ASP.NET Core in more depth. You will learn more details about ASP.NET Core MVC views, Razor
syntax, HTML and Tag Helpers, and how to internationalize your website so that its user interface is
understandable all over the world.

Chapter 5, Authentication and Authorization, discusses authentication and authorization and how to
implement them for an ASP.NET Core MVC website project. This means how to provide a web user
interface for a visitor to register an account with a password, and how they can log in to access secure
areas of the website.

Chapter 6, Performance Optimization Using Caching, explains optimizing the performance and scalability
of your websites and web services by using caching of various types.

Chapter 7, Web User Interface Testing Using Playwright, introduces you to web user interface testing and
how to use Microsoft Playwright to write automated tests for web user interfaces.

Chapter 8, Configuring and Containerizing ASP.NET Core Projects, discusses configuring and container-
izing ASP.NET Core projects.

Chapter 9, Building Web Services Using ASP.NET Core Web API, covers learning how to build web services,
AKA HTTP (Hypertext Transfer Protocol) or Representational State Transfer (REST) services using
ASP.NET Core Web API with controllers. You will then learn how to consume web services using HTTP
clients, which could be any other type of .NET app, including a website, mobile, or desktop app.

Chapter 10, Building Web Services Using ASP.NET Core OData, explains OData, a standard that makes
it easy to expose data via the web to make it accessible to any client that can make an HTTP request.

Chapter 11, Building Web Services Using FastEndpoints, teaches you about building web services using
FastEndpoints, a popular third-party package that shuns controllers in favor of a more efficient way
of defining the web service endpoints.

Chapter 12, Web Service Integration Testing, introduces you to testing your web services. Unit tests are
good at detecting errors in business logic in a class or method, but you also need to verify that larger
parts of your codebase work together with each other and external systems. This is where integration
testing becomes important for web services.

Preface xxvii

Chapter 13, Web Content Management Using Umbraco, is about building ASP.NET Core website projects
that integrate with Umbraco CMS, a popular third-party web content management system.

Chapter 14, Customizing and Extending Umbraco, introduces customizing and extending Umbraco CMS.

Epilogue describes your options for further study about .NET web development.

Appendix, Answers to the Test Your Knowledge Questions, has the answers to the test questions at the end
of each chapter. You can access this appendix as part of the supplementary content package available
at: https://packt.link/supplementary-content-9781835880388 (instructions available at the end
of the Preface and the book).

What you need for this book
You can develop and deploy C# and .NET apps using the cross-platform Visual Studio Code and the
command-line tools on most operating systems, including Windows, macOS, and many varieties of
Linux. An operating system that supports VS Code and an internet connection is all you need to follow
along with this book.

If you prefer alternatives, then the choice is yours whether to use Visual Studio or a third-party tool
like JetBrains Rider.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots and diagrams used in this
book. The color images will help you better understand the changes in the output.

You can access this graphics bundle as part of the supplementary content package available at: https://
packt.link/supplementary-content-9781835880388 (instructions available at the end of the Preface
and the book).

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of informa-
tion. Here are some examples of these styles and an explanation of their meaning.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file exten-
sions, pathnames, dummy URLs, user input, and Twitter handles. For example: “The Controllers,
Models, and Views folders contain ASP.NET Core classes and the .cshtml files for execution on the
server.”

A block of code is set as follows:

// storing items at index positions
names[0] = "Kate";
names[1] = "Jack";
names[2] = "Rebecca";
names[3] = "Tom";

https://packt.link/supplementary-content-9781835880388
https://packt.link/supplementary-content-9781835880388
https://packt.link/supplementary-content-9781835880388

Prefacexxviii

When we wish to draw your attention to a particular part of a code block, the relevant lines or items
are highlighted:

// storing items at index positions
names[0] = "Kate";
names[1] = "Jack";
names[2] = "Rebecca";
names[3] = "Tom";

Any command-line input or output is written as follows:

dotnet new console

Bold: Indicates a new term, an important word, or words that you see on the screen, for example,
in menus or dialog boxes. For example: “Clicking on the Next button moves you to the next screen.”

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book title in the
subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata, select your book, click on the Errata Submission Form link,
and enter the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would be
grateful if you would provide us with the location address or website name.

Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you are
interested in either writing or contributing to a book, please visit authors.packtpub.com.

Important notes and links to external sources for further reading appear in a box like this.

Good Practice: Recommendations for how to program like an expert appear like this.

http://www.packtpub.com/support/errata
http://authors.packtpub.com

Preface xxix

Leave a Review!
Thank you for purchasing this book from Packt Publishing—we hope you enjoy it! Your feedback is
invaluable and helps us improve and grow. Once you’ve completed reading it, please take a moment
to leave an Amazon review; it will only take a minute, but it makes a big difference for readers like you.

Scan the QR code below to receive a free ebook of your choice.

https://packt.link/NzOWQ

https://packt.link/r/1835880398

Download the free PDF and supplementary content
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

Additionally, with this book you get access to supplementary/bonus content for you to learn more. You
can use this to add on to your learning journey on top of what you have in the book.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free
content in your inbox daily.

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below:

https://packt.link/supplementary-content-9781835880388

2. Submit your proof of purchase.
3. Submit your book code. You can find the code on page no. 257 of the book.
4. That’s it! We’ll send your free PDF, supplementary content, and other benefits to your email

directly.

1
Introducing Web Development
Using Controllers

This book is about mature and proven web development with .NET. This means a set of technologies
that have been refined over a decade or more with plenty of documentation, support forums, and
third-party investment.

These technologies are:

• ASP.NET Core: A set of shared components for building websites and services.
• ASP.NET Core MVC: An implementation of the model-view-controller design pattern for com-

plex yet well-structured website development.
• ASP.NET Core Web APIs: For building controller-based web services that conform to the HTTP/

REST service conventions.
• ASP.NET Core OData: For building data access web services using an open standard.
• Umbraco CMS: A third-party, open source, Content Management System (CMS) platform built

on ASP.NET Core.

With these technologies, you will learn how to build cross-platform websites and web services using
.NET 8 or .NET 9, the two actively supported versions of .NET.

You can choose either because some of the newer features that we will learn about, like the HybridCache
class, have backward compatibility with .NET 8. Others, like the new MapStaticAssets method that
optimizes files like stylesheets and JavaScript, only work with .NET 9. I will warn you in these cases.

The benefit of choosing .NET 8 is that it is a Long-Term Support (LTS) release, meaning it is supported
for three years. .NET 8 will reach its end of life in November 2026.

The benefit of choosing the latest .NET 9 is significant performance improvements and better support
for containerization for cloud hosting compared to earlier versions. .NET 9 will reach its end of life
in May 2026.

Introducing Web Development Using Controllers2

Throughout this book, I use the term modern .NET to refer to .NET 9 and its predecessors, like .NET 6,
that derive from .NET Core. I use the term legacy .NET to refer to .NET Framework, Mono, Xamarin,
and .NET Standard. Modern .NET is a unification of those legacy platforms and standards.

I recommend that you work through this and subsequent chapters sequentially because later chapters
will reference projects in earlier chapters, and you will build up sufficient knowledge and skills to
tackle the more challenging problems in later chapters. For example, the last section in this chapter
will walk you through creating a pair of class libraries that define a database entity model that will be
used in all subsequent chapters.

In this chapter, we will cover the following topics:

• Understanding ASP.NET Core
• Structuring projects and managing packages
• Making good use of the GitHub repository for this book
• Building an entity model for use in the rest of the book

Understanding ASP.NET Core
To understand ASP.NET Core, it is useful to first see where it came from.

A brief history of ASP.NET Core
ASP.NET Core is part of a 30-year history of Microsoft technologies used to build websites and services
that work with data that have evolved over the decades:

• ActiveX Data Objects (ADO) was released in 1996 and was Microsoft’s attempt to provide a single
set of Component Object Model (COM) components for working with data. With the release
of .NET Framework in 2002, an equivalent was created named ADO.NET, which is still today
the faster method to work with data in .NET with its core classes, DbConnection, DbCommand,
and DbDataReader. ORMs like EF Core use ADO.NET internally.

Who are you? While writing this book, I have assumed that you are a .NET developer
who is employed by a consultancy or a large organization. As such, you primarily work
with mature and proven technologies like MVC rather that the newest shiny technologies
pushed by Microsoft like Blazor. I also assume that you have little professional interest in
being a web designer or content editor.

Warning! Prerequisites for this book are knowledge of C# and .NET fundamentals, and I
assume you have already set up your development environment to use Visual Studio 2022,
Visual Studio Code, or JetBrains Rider. Throughout this book, I will use the names Visual
Studio, VS Code, and Rider to refer to these three code editors respectively. If you have
not set up your development environment, then you can learn how at the following link:

https://github.com/markjprice/web-dev-net9/blob/main/docs/ch01-setup-
dev-env.md

https://github.com/markjprice/web-dev-net9/blob/main/docs/ch01-setup-dev-env.md
https://github.com/markjprice/web-dev-net9/blob/main/docs/ch01-setup-dev-env.md

Chapter 1 3

• Active Server Pages (ASP) was released in 1996 and was Microsoft’s first attempt at a platform
for dynamic server-side execution of website code. ASP files contain a mix of HTML and code
that executes on the server written in the VBScript language.

• ASP.NET Web Forms was released in 2002 with .NET Framework and was designed to enable
non-web developers, such as those familiar with Visual Basic, to quickly create websites by
dragging and dropping visual components and writing event-driven code in Visual Basic or C#,
as shown in Figure 1.1. Web Forms is not available on modern .NET and it should be avoided
for new web projects even with .NET Framework due to limitations on cross-platform com-
patibility and modern development practices.

• Windows Communication Foundation (WCF) was released in 2006 and enables developers to
build SOAP and REST services. SOAP is powerful but complex, so it should be avoided in new
projects unless you need advanced features, such as distributed transactions and complex
messaging topologies. SOAP is still widely used in existing enterprise solutions, so you may
come across it. I would be interested in hearing from you about this, since I am considering
adding a chapter in a future edition of this book if there is enough interest.

• ASP.NET MVC was released in 2009 to cleanly separate the concerns of web developers between
the models, which temporarily store the data; the views, which present the data using various
formats in the UI; and the controllers, which fetch the model and pass it to a view. This sepa-
ration enables improved reuse and unit testing, and fits more naturally with web development
without hiding the reality with an additional complex layer of event-driven user interface.

• ASP.NET Web API was released in 2012 and enables developers to create HTTP services (a.k.a.
REST services) that are simpler and more scalable than SOAP services.

• ASP.NET SignalR was released in 2013 and enables real-time communication for websites by
abstracting underlying technologies and techniques, such as WebSockets and long polling.
This enables website features such as live chat or updates to time-sensitive data such as stock
prices across a wide variety of web browsers, even when they do not support an underlying
technology such as WebSockets.

• ASP.NET Core was released in 2016 and combines modern implementations of .NET Framework
technologies such as MVC, Web API, and SignalR with alternative technologies such as Razor
Pages, gRPC, and Blazor, all running on modern .NET. Therefore, ASP.NET Core can execute
cross-platform. ASP.NET Core has many project templates to get you started with its supported
technologies. Over the past decade, the ASP.NET Core team has greatly improved performance
and reduced memory footprint to make it the best platform for cloud computing. In some
ways, Blazor is a return to Web Forms-style user interface development, as shown in Figure 1.1:

Figure 1.1: Evolution of web user interface technologies in .NET

Introducing Web Development Using Controllers4

Classic ASP.NET versus modern ASP.NET Core
Until modern .NET, ASP.NET was built on top of a large assembly in .NET Framework named System.
Web.dll and it was tightly coupled to Microsoft’s Windows-only web server named Internet Informa-
tion Services (IIS). Over the years, this assembly has accumulated a lot of features, many of which are
not suitable for modern cross-platform development.

ASP.NET Core is a major redesign of ASP.NET. It removes the dependency on the System.Web.dll
assembly and IIS and is composed of modular lightweight packages, just like the rest of modern .NET.
Using IIS as the web server is still supported by ASP.NET Core, but there is a modern option.

You can develop and run ASP.NET Core applications cross-platform on Windows, macOS, and Linux.
Microsoft has even created a cross-platform, super-performant web server named Kestrel.

Kestrel is mostly open source. However, it depends on some underlying components and infrastructure
that are not fully open source. Kestrel’s open source components include:

• The core Kestrel server is open source, and its source code is available on GitHub under the
ASP.NET repository. You can explore, modify, and even contribute to it: https://github.com/
dotnet/aspnetcore/tree/main/src/Servers/Kestrel

• Kestrel is part of the ASP.NET Core ecosystem, which is entirely open source under the .NET
Foundation: https://github.com/dotnet/aspnetcore

• Kestrel uses the .NET Sockets API for its transport layer, whose implementation is open source.

Kestrel’s non-open source components include:

• Some lower-level networking optimizations and APIs in Windows, which Kestrel can take
advantage of, are not open source. For example, some of the advanced socket APIs are part of
Windows’ closed-source infrastructure.

• While the .NET runtime is largely open source, there are some proprietary components or
dependencies—especially when running on Windows—that are not open source. This would
include some optimizations and integrations specific to Microsoft’s cloud infrastructure or
networking stack that are baked into Kestrel’s performance characteristics when running on
Windows.

• If you’re using Kestrel hosted in Azure, some integration points, telemetry, and diagnostic ser-
vices are proprietary. For example, Azure-specific logging, application insights, and security
features (though not strictly part of Kestrel itself) are not fully open source.

Also, note that a non-open source alternative to Kestrel is HTTP.sys. This is a Windows-specific HTTP
server and it is closed source. Applications can use HTTP.sys for edge cases requiring Windows au-
thentication or other Windows-specific networking features, but this is outside of Kestrel itself.

Good Practice: Choose ASP.NET Core to develop websites and web services because it
includes web-related technologies that are mature, proven, and cross-platform.

https://github.com/dotnet/aspnetcore/tree/main/src/Servers/Kestrel
https://github.com/dotnet/aspnetcore/tree/main/src/Servers/Kestrel
https://github.com/dotnet/aspnetcore

Chapter 1 5

Building websites using ASP.NET Core
Websites are made up of multiple web pages loaded statically from the filesystem or generated dy-
namically by a server-side technology such as ASP.NET Core. A web browser makes GET requests
using Unique Resource Locators (URLs) that identify each page and can manipulate data stored on
the server using POST, PUT, and DELETE requests.

With many websites, the web browser is treated as a presentation layer, with almost all the processing
performed on the server side. Some JavaScript might be used on the client side to implement form
validation warnings and some presentation features, such as carousels.

ASP.NET Core provides multiple technologies for building the user interface for websites:

• ASP.NET Core Razor Pages is a simple way to dynamically generate HTML for simple websites.
• ASP.NET Core MVC is an implementation of the Model-View-Controller (MVC) design pattern

that is popular for developing complex websites. Microsoft’s first implementation of MVC on
.NET was in 2009, so it is more than 15 years old now. Its APIs are stable, it has plentiful doc-
umentation and support, and many third parties have built powerful products and platforms
on top of it and controller-based Web APIs. MVC is designed to work with the HTTP request/
response model instead of hiding it so that you are encouraged to embrace the nature of web
development rather than pretending it doesn’t exist, which can store up worse problems in
the future.

• Blazor lets you build user interface components using C# and .NET instead of a JavaScript-based
UI framework like Angular, React, and Vue. Early versions of Blazor required a developer to
choose a hosting model. The Blazor WebAssembly hosting model runs your code in the browser
like a JavaScript-based framework would. The Blazor Server hosting model runs your code on
the server and updates the web page dynamically using SignalR. Introduced with .NET 8 is a
unified, full-stack hosting model that allows individual components to execute either on the
server or client side, or even to adapt dynamically at runtime.

So which should you choose?

You can see the original comment post at the following link:

https://github.com/dotnet/aspnetcore/issues/51834#issuecomment-1913282747

”Blazor is now our recommended approach for building web UI with ASP.NET Core, but
neither MVC nor Razor Pages are now obsolete. Both MVC & Razor Pages are mature,
fully supported, and widely used frameworks that we plan to support for the foreseeable
future. There is also no requirement or guidance to migrate existing MVC or Razor
Pages apps to Blazor. For existing, well-established MVC-based projects, continuing to
develop with MVC is a perfectly valid and reasonable approach.” – Dan Roth

https://github.com/dotnet/aspnetcore/issues/51834#issuecomment-1913282747

Introducing Web Development Using Controllers6

I agree with the quote by Dan Roth. For me, there are two main choices:

• For real-world websites and web services using mature and proven web development, choose
controller-based ASP.NET Core MVC and Web API. For even more productivity, you can layer
on top third-party platforms, for example, a .NET CMS like Umbraco. All these technologies
are covered in this book.

• For websites and web services using modern web development, choose Blazor for the web
user interface and Minimal APIs for the web service. Choosing these is more of a risk because
their APIs are still changing because they are relatively new. These technologies are covered
in my other books, C# 13 and .NET 9 – Modern Cross-Platform Development Fundamentals and
Apps and Services with .NET 8.

Much of ASP.NET Core is shared across these two choices anyway, so you will only need to learn about
those shared components once, as shown in Figure 1.2:

Figure 1.2: Modern or mature controller-based (and shared) ASP.NET Core components

Dan Roth is the Principal Product Manager on the ASP.NET team, so he knows the future
of ASP.NET Core better than anyone else:

https://devblogs.microsoft.com/dotnet/author/danroth27/

https://devblogs.microsoft.com/dotnet/author/danroth27/

Chapter 1 7

JetBrains did a survey of 26,348 developers from all around the world and asked about web develop-
ment technologies and ASP.NET Core usage by .NET developers. The results showed that most .NET
developers still use mature and proven controller-based technologies like MVC and Web API. The
newer technologies like Blazor were far behind. A chart from the report is shown in Figure 1.3:

Figure 1.3: The State of Developer Ecosystem 2023 – ASP.NET Core

It is also interesting to see which JavaScript libraries and cloud host providers are used by .NET de-
velopers. For example, 18% use React, 15% use Angular, and 9% use Vue, and all have dropped by a
few percent since the previous year. I speculate that this is due to a shift to Blazor instead. For cloud
hosting, 24% use Azure, and 12% use AWS. This makes sense for .NET developers since Microsoft puts
more effort into supporting .NET developers on its cloud platform.

More Information: You can read more about the JetBrains report, The State of Develop-
er Ecosystem 2023, and see the results of the ASP.NET Core question at https://www.
jetbrains.com/lp/devecosystem-2023/csharp/#csharp_asp_core.

https://www.jetbrains.com/lp/devecosystem-2023/csharp/#csharp_asp_core
https://www.jetbrains.com/lp/devecosystem-2023/csharp/#csharp_asp_core

Introducing Web Development Using Controllers8

In summary, C# and .NET can be used on both the server side and the client side to build websites,
as shown in Figure 1.4:

Figure 1.4: The use of C# and .NET to build websites on both the server- and client-side

To summarize what’s new in ASP.NET Core 9 for its mature and proven controller-based technologies,
let’s end this section with another quote from Dan Roth:

Comparison of file types used in ASP.NET Core
It is useful to summarize the file types used by these technologies because they are similar but different.
If the reader does not understand some subtle but important differences, it can cause much confusion
when trying to implement their own projects. Please note the differences in Table 1.1:

Technology Special filename File extension Directive

Razor View (MVC) .cshtml

Razor Layout .cshtml

Razor View Start _ViewStart .cshtml

Razor View Imports _ViewImports .cshtml

Razor Component (Blazor) .razor

Razor Component (Blazor with page
routing)

.razor @page
"<path>"

Razor Component Imports (Blazor) _Imports .razor

Razor Page .cshtml @page

Table 1.1: Comparison of file types used in ASP.NET Core

”We’re optimizing how static web assets are handled for all ASP.NET Core apps so that
your files are pre-compressed as part of publishing your app. For API developers we’re
providing built-in support for OpenAPI document generation.” - Dan Roth

Chapter 1 9

Directives like @page are added to the top of a file’s contents.

If a file does not have a special filename, then it can be named anything. For example, you might create
a Razor View named Customer.cshtml, or you might create a Razor Layout named _MobileLayout.
cshtml.

A Razor Layout file like _MyCustomLayout.cshtml is identical to a Razor View. What makes the file a
layout is being set as the Layout property of another Razor file, as shown in the following code:

@{
 Layout = "_MyCustomLayout"; // File extension is not needed.
}

Building websites using a content management system
Most websites have a lot of content, and if developers had to be involved every time some content
needed to be changed, that would not scale well. Almost no real-world website built with .NET only
uses ASP.NET Core. A professional .NET web developer therefore needs to learn about other platforms
built on top of ASP.NET Core.

A Content Management System (CMS) enables or CMS Administrators to define content structure and
templates to provide consistency and good design while making it easy for a non-technical content
owner to manage the actual content. They can create new pages or blocks of content, and update
existing content, knowing it will look great for visitors with minimal effort.

There are a multitude of CMSs available for all web platforms, like WordPress for PHP or Django for
Python. CMSs that support modern .NET include Optimizely Content Cloud, Umbraco, Piranha, and
Orchard Core.

The key benefit of using a CMS is that it provides a friendly content management user interface. Con-
tent owners log in to the website and manage the content themselves. The content is then rendered
and returned to visitors using ASP.NET Core MVC controllers and views, or via web service endpoints,
known as a headless CMS, to provide that content to “heads” implemented as mobile or desktop apps,
in-store touchpoints, or clients built with JavaScript frameworks or Blazor.

The naming convention for shared Razor files like layouts and partial views is to prefix
with an underscore _. For example, _ViewStart.cshtml, _Layout.cshtml, or _Product.
cshtml (this might be a partial view for rendering a product).

Warning! Be careful to use the correct file extension and directive at the top of the file or
you will get unexpected behavior.

Introducing Web Development Using Controllers10

This book covers the world’s most popular .NET CMS, Umbraco in Chapter 13, Web Content Management
Using Umbraco, and Chapter 14, Customizing and Extending Umbraco. The quantifiable evidence—usage
statistics from BuiltWith, GitHub activity, download numbers, community engagement, and search
trends—all point to Umbraco as the most popular .NET-based CMS worldwide. You can see a list of
almost 100,000 websites built using Umbraco at the following link:

https://trends.builtwith.com/websitelist/Umbraco/Historical

Umbraco is open source and hosted on GitHub. It has over 2.7k forks and 4.4k stars on its main re-
pository, found at the following link:

https://github.com/umbraco/Umbraco-CMS

The active developer community and constant updates indicate its popularity among developers.
Umbraco has reported more than six million downloads of its CMS, which is a significant metric
compared to competitors in the .NET CMS space.

Building web applications using SPA frameworks
Web applications are often built using technologies known as Single-Page Application (SPA) frame-
works, such as Blazor, Angular, React, Vue, or a proprietary JavaScript library. They can make requests
to a backend web service to get more data when needed and post updated data using common seri-
alization formats such as XML and JSON. The canonical examples are Google web apps like Gmail,
Maps, and Docs.

With a web application, the client side uses JavaScript frameworks or Blazor to implement sophisticated
user interactions, but most of the important processing and data access still happens on the server
side because the web browser has limited access to local system resources.

JavaScript is loosely typed and is not designed for complex projects, so most JavaScript libraries these
days use TypeScript, which adds strong typing to JavaScript and is designed with many modern lan-
guage features for handling complex implementations.

The .NET SDK has project templates for JavaScript and TypeScript-based SPAs, but we will not spend
any time learning how to build JavaScript and TypeScript-based SPAs in this book.

If you are interested in building SPAs with an ASP.NET Core backend, Packt has other books that you
might be interested in, as shown in the following list:

• ASP.NET Core 8 and Angular - Sixth Edition: Full-stack web development with ASP.NET Core 8
and Angular: https://www.amazon.com/ASP-NET-Core-Angular-Full-stack-development/
dp/1805129937/

More Information: You can learn more about alternative .NET CMSs in the GitHub reposito-
ry at https://github.com/markjprice/web-dev-net9/blob/main/docs/book-links.
md#net-content-management-systems.

https://trends.builtwith.com/websitelist/Umbraco/Historical
https://github.com/umbraco/Umbraco-CMS
https://www.amazon.com/ASP-NET-Core-Angular-Full-stack-development/dp/1805129937/

https://www.amazon.com/ASP-NET-Core-Angular-Full-stack-development/dp/1805129937/

https://github.com/markjprice/web-dev-net9/blob/main/docs/book-links.md#net-content-management-systems
https://github.com/markjprice/web-dev-net9/blob/main/docs/book-links.md#net-content-management-systems

Chapter 1 11

• ASP.NET Core 5 and React: Full-stack web development using .NET 5, React 17, and TypeScript
4, 2nd Edition: https://www.amazon.com/ASP-NET-Core-React-Full-stack-development-
ebook/dp/B08KYKNGCC/

• ASP.NET Core and Vue.js: Build real-world, scalable, full-stack applications using Vue.js 3, Type-
Script, .NET 5, and Azure: https://www.amazon.com/ASP-NET-Core-Vue-js-real-world-
applications-ebook/dp/B08QTVV8RK/

Building web and other services
In this book, you will learn how to build a controller-based web service using ASP.NET Core Web API,
and then how to call that web service from an ASP.NET Core MVC website.

There are no formal definitions, but services are sometimes described based on their complexity:

• Service: All functionality needed by a client app in one monolithic service.
• Microservice: Multiple services that each focus on a smaller set of functionalities. They are

often deployed using containerization, which we will cover in Chapter 8, Configuring and Con-
tainerizing ASP.NET Core Projects.

• Nanoservice: A single function provided as a service. Unlike services and microservices that are
hosted 24/7/365, nanoservices are often inactive until called upon to reduce resources and costs.

Cloud providers and deployment tools
These days, websites and web services are often deployed to cloud providers like Microsoft Azure or
Amazon Web Services. Hundreds of different tools are used to perform the deployments, like Azure
Pipelines or Octopus Deploy.

Cloud providers and deployment tools are out-of-scope for this book because there are too many
choices and I don’t want to force anyone to learn about or pay for cloud hosting that they will never
use for their own projects.

Instead, this book covers containerization using Docker in Chapter 8, Configuring and Containerizing
ASP.NET Core Projects. Once you have containerized an ASP.NET Core project, it is easy to deploy it to
any cloud provider using any deployment or production management tool.

Structuring projects and managing packages
How should you structure your projects? In this book, we will build multiple projects using different
technologies that work together to provide a single solution.

With large, complex solutions, it can be difficult to navigate through all the code. So, the primary
reason to structure your projects is to make it easier to find components. It is good to have an overall
name for your solution that reflects the application or solution.

We will build multiple projects for a fictional company named Northwind. We will name the solution
MatureWeb and use the name Northwind as a prefix for all the project names.

https://www.amazon.com/ASP-NET-Core-React-Full-stack-development-ebook/dp/B08KYKNGCC/
https://www.amazon.com/ASP-NET-Core-React-Full-stack-development-ebook/dp/B08KYKNGCC/
https://www.amazon.com/ASP-NET-Core-Vue-js-real-world-applications-ebook/dp/B08QTVV8RK/
https://www.amazon.com/ASP-NET-Core-Vue-js-real-world-applications-ebook/dp/B08QTVV8RK/

Introducing Web Development Using Controllers12

There are many ways to structure and name projects and solutions, for example, using a folder hierar-
chy as well as a naming convention. If you work in a team, make sure you know how your team does it.

Structuring projects in a solution
It is good to have a naming convention for your projects in a solution so that any developer can tell
what each one does instantly. A common choice is to use the type of project, for example, class library,
console app, website, and so on.

Since you might want to run multiple web projects at the same time, and they will be hosted on a
local web server, we need to differentiate each project by assigning different port numbers for their
endpoints for both HTTP and HTTPS.

Commonly assigned local port numbers are 5000 for HTTP and 5001 for HTTPS. We will use a
numbering convention of 5<chapter>0 for HTTP and 5<chapter>1 for HTTPS. For example, for an
ASP.NET Core MVC website project that we will create in Chapter 2, we will assign 5020 for HTTP and
5021 for HTTPS.

We will therefore use the following project names and port numbers, as shown in Table 1.2:

Name Ports Description

Northwind.Common
N/A A class library project for common types like interfaces,

enums, classes, records, and structs, is used across
multiple projects.

Northwind.EntityModels

N/A A class library project for common EF Core entity
models. Entity models are often used on both the server
and client side, so it is best to separate dependencies on
specific database providers.

Northwind.DataContext N/A A class library project for the EF Core database context
with dependencies on specific database providers.

Northwind.UnitTests N/A An xUnit test project for the solution.

Northwind.Mvc
http 5020,

https 5021

An ASP.NET Core project for complex websites that uses
a mixture of static HTML files and MVC Razor Views.

Northwind.WebApi

http 5090,

https 5091

An ASP.NET Core project for a Web API aka HTTP
service. A good choice for integrating with websites
because it can use any .NET app, JavaScript library, or
Blazor to interact with the service.

Table 1.2: Example project names for various project types

Structuring folders in a project
In ASP.NET Core projects, organizing the project structure is vital for maintainability and scalability.
Two popular approaches are organizing by technological concerns and using feature folders.

Chapter 1 13

Folder structure based on technological concerns
In this approach, folders are structured based on the type of components, such as Controllers, Models,
Views, Services, and so on, as shown in the following output:

/Controllers
 ShoppingCartController.cs
 CatalogController.cs
/Models
 Product.cs
 ShoppingCart.cs
/Views
 /ShoppingCart
 Index.cshtml
 Summary.cshtml
 /Catalog
 Index.cshtml
 Details.cshtml
/Services
 ProductService.cs
 ShoppingCartService.cs

There are pros and cons to the technical concerns approach, as shown in the following list:

• Pro – Familiarity: This structure is common and well-documented, and many sample projects
use it, making it easier for developers to understand.

• Pro – IDE support: SDKs and IDEs assume this structure and may provide better support and
navigation for it.

• Con – Scalability: As the project grows, finding related files can become difficult since they
are spread across multiple folders.

• Con – Cross-cutting concerns: Managing cross-cutting concerns like logging and validation
can become cumbersome.

The .NET SDK project templates use this technological concerns approach to folder structure. This
means that many organizations use it by default despite it not being the best approach for their needs.

Folder structure based on features
In this approach, folders are organized by features or vertical slices, grouping all related files for a
specific feature together, as shown in the following output:

/Features
 /ShoppingCart
 ShoppingCartController.cs
 ShoppingCartService.cs

Introducing Web Development Using Controllers14

 ShoppingCart.cs
 Index.cshtml
 Summary.cshtml
 /Catalog
 CatalogController.cs
 ProductService.cs
 Product.cs
 Index.cshtml
 Details.cshtml

There are pros and cons to the feature folders approach, as shown in the following list:

• Pro – Modularity: Each feature is self-contained, making it easier to manage and understand.
Adding new features is straightforward and doesn’t affect the existing structure. Easier to
maintain since related files are located together.

• Pro – Isolation: Helps in isolating different parts of the application, promoting better testability
and refactoring.

• Con – Learning curve: Less familiar to some developers, requiring a learning curve.
• Con – Code duplication: Potential for code duplication if not managed properly.

Feature folders are a common choice for modular monolith architecture. It makes it easier to later
split the feature out into a separate project for deployment.

Feature folders align well with the principles of Vertical Slice Architecture (VSA). VSA focuses on
organizing code by features or vertical slices, each slice handling a specific business capability end-
to-end. This approach often includes everything from the UI layer down to the data access layer for a
given feature in one place, as described in the following key points:

• Each slice represents an end-to-end implementation of a feature.
• VSA promotes loose coupling between features, making the application more modular and

easier to maintain.
• Each slice is responsible for a single feature or use case, which fits well with SOLID’s Single

Responsibility Principle (SRP).
• VSA allows for features to be developed, tested, and deployed independently, which is beneficial

for microservices or distributed systems.

Folder structure summary
Both organizational techniques have their merits, and the choice depends on the specific needs of
your project. Technological concerns organization is straightforward and familiar but can become
unwieldy as the project grows. Feature folders, while potentially introducing a learning curve, offer
better modularity and scalability, aligning well with the principles of VSA.

Feature folders are particularly advantageous in larger projects or those with distributed teams, as
they promote better organization and isolation of features, leading to improved maintainability and
flexibility in the long run.

Chapter 1 15

Central Package Management
By default, with the .NET SDK CLI and most code editor-created projects, if you need to reference a
NuGet package, you add the reference to the package name and version directly in the project file.

Central Package Management (CPM) is a feature that simplifies the management of NuGet package ver-
sions across multiple projects within a solution. This is particularly useful for large solutions with many
projects, where managing package versions individually can become cumbersome and error-prone.

The key features and benefits of CPM include:

• Centralized Control: CPM allows you to define package versions in a single file, typically
Directory.Packages.props, which is placed in the root directory of your solution. This file
centralizes the version information for all NuGet packages used across the projects in your
solution.

• Consistency: Ensures consistent package versions across multiple projects. By having a single
source of truth for package versions, it eliminates discrepancies that can occur when different
projects specify different versions of the same package.

• Simplified Updates: Updating a package version in a large solution becomes straightforward.
You update the version in the central file, and all projects referencing that package automati-
cally use the updated version. This significantly reduces the maintenance overhead.

• Reduced Redundancy: Removes the need to specify package versions in individual project files
(.csproj). This makes project files cleaner and easier to manage, as they no longer contain
repetitive version information.

Let’s set up Central Package Management for a solution that we will use throughout the rest of the
chapters in this book:

1. Create a new folder named web-dev-net9 that we will use for all the code in this book. For
example, on Windows, create a folder: C:\web-dev-net9.

2. In the web-dev-net9 folder, create a new folder named MatureWeb.
3. In the MatureWeb folder, create a new file named Directory.Packages.props.
4. In Directory.Packages.props, modify its contents, as shown in the following markup:

<Project>

 <PropertyGroup>
 <ManagePackageVersionsCentrally>true</Man
agePackageVersionsCentrally>
 </PropertyGroup>

Good Practice: It is important to regularly update NuGet packages and their dependencies
to address security vulnerabilities.

Introducing Web Development Using Controllers16

 <ItemGroup Label="For EF Core.">
 <PackageVersion
 Include="Microsoft.EntityFrameworkCore.SqlServer"
 Version="9.0.0" />
 <PackageVersion
 Include="Microsoft.EntityFrameworkCore.Sqlite"
 Version="9.0.0" />
 <PackageVersion
 Include="Microsoft.EntityFrameworkCore.Design"
 Version="9.0.0" />
 <PackageVersion
 Include="Microsoft.EntityFrameworkCore.Tools"
 Version="9.0.0" />
 </ItemGroup>

 <ItemGroup Label="For testing.">
 <PackageVersion Include="coverlet.collector"
 Version="6.0.2" />
 <PackageVersion Include="Microsoft.NET.Test.Sdk"
 Version="17.11.1" />
 <PackageVersion Include="xunit" Version="2.9.2" />
 <!--The following package was still a preview on .NET 9 release day.-
->
 <PackageVersion
 Include="xunit.runner.visualstudio"
 Version="3.0.0-pre.49" />
 <PackageVersion Include="Microsoft.Playwright" Version="1.49.0" />
 <PackageVersion
 Include="Microsoft.AspNetCore.Mvc.Testing"
 Version="9.0.0" />
 </ItemGroup>

 <ItemGroup Label="For ASP.NET Core websites.">
 <PackageVersion Include=
 "Microsoft.AspNetCore.Diagnostics.EntityFrameworkCore"
 Version="9.0.0" />
 <PackageVersion Include=
 "Microsoft.AspNetCore.Identity.EntityFrameworkCore"
 Version="9.0.0" />
 <PackageVersion

Chapter 1 17

 Include="Microsoft.AspNetCore.Identity.UI"
 Version="9.0.0" />
 </ItemGroup>

 <ItemGroup Label="For deployment.">
 <PackageVersion Include=
"Microsoft.VisualStudio.Azure.Containers.Tools.Targets"
 Version="1.21.0" />
 </ItemGroup>

 <ItemGroup Label="For caching.">
 <!--The following package was still a preview on .NET 9 release day.-
->
 <PackageVersion
 Include="Microsoft.Extensions.Caching.Hybrid"
 Version="9.0.0-preview.9.24556.5" />
 </ItemGroup>

 <ItemGroup Label="For ASP.NET Core web services.">
 <PackageVersion
 Include="Microsoft.AspNetCore.OpenApi"
 Version="9.0.0" />
 <PackageVersion
 Include="NSwag.MSBuild" Version="14.1.0" />
 <PackageVersion Include=
 "Microsoft.AspNetCore.Authentication.JwtBearer"
 Version="9.0.0" />
 <PackageVersion
 Include="Microsoft.AspNetCore.OData"
 Version="9.0.0" />
 </ItemGroup>

 <ItemGroup Label="For FastEndpoints web services.">
 <PackageVersion Include="FastEndpoints"
 Version="5.31.0" />
 </ItemGroup>

 <ItemGroup Label="For Umbraco CMS.">
 <PackageVersion Include="Umbraco.Cms"
 Version="14.3.1" />
 <PackageVersion

Introducing Web Development Using Controllers18

 Include="Microsoft.ICU.ICU4C.Runtime"
 Version="72.1.0.3" />
 </ItemGroup>

</Project>

For any projects that we add underneath the folder containing this file, we can reference the packages
without explicitly specifying the version, as shown in the following markup:

<ItemGroup>
 <PackageReference
 Include="Microsoft.EntityFrameworkCore.SqlServer" />
 <PackageReference
 Include="Microsoft.EntityFrameworkCore.Design" />
</ItemGroup>

You should regularly review and update the package versions in the Directory.Packages.props file
to ensure that you are using the latest stable releases with important bug fixes and performance im-
provements. For example, the Microsoft.Extensions.Caching.Hybrid package was still in preview
on the day of .NET 9’s release when I finished final drafts. By the time you read this, it is likely to be
out of preview, so update its version number.

For example, in December 2024, there are likely to be new versions, so you can go to the NuGet page
for each of your packages. You can then update the versions if necessary, for example, as shown in
the following markup:

<ItemGroup Label="For EF Core.">
 <PackageVersion
 Include="Microsoft.EntityFrameworkCore.SqlServer"
 Version="9.0.1" />
 ...
</ItemGroup>

Warning! The <ManagePackageVersionsCentrally> element and its true value must
go all on one line. Also, you cannot use floating wildcard version numbers like 9.0-* as
you can in an individual project. Wildcards are useful to automatically get the latest patch
version, for example, monthly package updates on Patch Tuesday. But with CPM you must
manually update the versions.

Good Practice: I recommend that you set a monthly event in your calendar for the second
Wednesday of each month. This will occur after the second Tuesday of each month, which is
Patch Tuesday when Microsoft releases bug fixes and patches for .NET and related packages.

Chapter 1 19

Before updating package versions, check for any breaking changes in the release notes of the packages.
Test your solution thoroughly after updating to ensure compatibility.

Educate your team and document the purpose and usage of the Directory.Packages.props file to
ensure everyone understands how to manage package versions centrally.

You can override an individual package version by using the VersionOverride attribute on a
<PackageReference /> element, as shown in the following markup:

<ItemGroup>
 <PackageReference
 Include="Microsoft.EntityFrameworkCore.SqlServer"
 VersionOverride="9.0.0" />
 ...
</ItemGroup>

This can be useful if a newer version introduces a regression bug.

Making good use of the GitHub repository for this book
Git is a commonly used source code management system. GitHub is a company, website, and desktop
application that makes it easier to manage Git. Microsoft purchased GitHub in 2018, so it will continue
to get closer integration with Microsoft tools.

I created a GitHub repository for this book, and I use it for the following:

• To store the solution code for the book that can be maintained after the print publication date.
• To provide extra materials that extend the book, like errata fixes, small improvements, lists of

useful links, and optional sections about topics that cannot fit in the printed book.
• To provide a place for readers to get in touch with me if they have issues with the book.

More Information: You can learn more about CPM at the following link:

https://learn.microsoft.com/en-us/nuget/consume-packages/central-package-
management

Good Practice: I strongly recommend that all readers review the errata, improvements,
post-publication changes, and common errors pages before attempting any coding task
in this book. You can find them at https://github.com/markjprice/web-dev-net9/
blob/main/docs/errata/README.md.md.

https://learn.microsoft.com/en-us/nuget/consume-packages/central-package-management
https://learn.microsoft.com/en-us/nuget/consume-packages/central-package-management
https://github.com/markjprice/web-dev-net9/blob/main/docs/errata/README.md.md
https://github.com/markjprice/web-dev-net9/blob/main/docs/errata/README.md.md

Introducing Web Development Using Controllers20

Understanding the solution code on GitHub
The solution code in the GitHub repository for this book can be opened with any of the following
code editors:

• Visual Studio or Rider: Open the MatureWeb.sln solution file.
• VS Code: Open the MatureWeb.sln folder.

All the chapters in this book share a single solution file named MatureWeb.sln.

All the code solutions can be found at the following link:

https://github.com/markjprice/web-dev-net9/tree/main/code

Downloading solution code from the GitHub repository
If you just want to download all the solution files without using Git, click the green Code button and
then select Download ZIP, as shown in Figure 1.5:

Figure 1.5: Downloading the repository as a ZIP file

If you are new to .NET development, then the GitHub repository has step-by-step instruc-
tions for three code editors (Visual Studio, VS Code, and Rider), along with additional
screenshots:

https://github.com/markjprice/web-dev-net9/tree/main/docs/code-editors/

https://github.com/markjprice/web-dev-net9/tree/main/docs/code-editors/

Chapter 1 21

Using Git with VS Code and the command prompt
VS Code has integrations with Git, but it will use your operating system’s Git installation, so you must
install Git 2 or later first before you get these features.

You can install Git from the following link:

https://git-scm.com/download

If you like to use a GUI, you can download GitHub Desktop from the following link:

https://desktop.github.com

Cloning the book solution code repository
Let’s clone the book solution code repository. In the steps that follow, you will use the VS Code terminal,
but you could enter the commands at any command prompt or terminal window:

1. Create a folder named Repos-vscode in your User or Documents folder, or wherever you want
to store your Git repositories.

2. Open the Repos-vscode folder at the command prompt or terminal, and then enter the fol-
lowing command:

git clone https://github.com/markjprice/web-dev-net9.git

Building an entity model for use in the rest of the book
Websites and web services usually need to work with data in a relational database or another data
store. There are several technologies that could be used, from lower-level ADO.NET to higher-level
EF Core. We will use EF Core since it is flexible and more familiar to .NET developers.

In this section, we will define an EF Core entity data model for a database named Northwind stored
in SQL Server. It will be used in most of the projects that we create in subsequent chapters.

Good Practice: It is best to clone or download the code solutions to a short folder path, like
C:\web-dev-net9\ or C:\book\, to avoid build-generated files exceeding the maximum
path length. You should also avoid special characters like #. For example, do not use a
folder name like C:\C# projects\. That folder name might work for a simple console
app project but once you start adding features that automatically generate code, you are
likely to have strange issues. Keep your folder names short and simple.

Note that cloning all the solutions for all the chapters will take a minute or so, so please
be patient.

https://git-scm.com/download

https://desktop.github.com

Introducing Web Development Using Controllers22

Northwind database SQL scripts
The script for SQL Server creates 13 tables as well as related views and stored procedures. The SQL
scripts are found at https://github.com/markjprice/web-dev-net9/tree/main/scripts/sql-
scripts.

There are multiple SQL scripts to choose from, as described in the following list:

• Northwind4AzureSqlEdgeDocker.sql script: To use SQL Server on a local computer in Docker.
The script creates the Northwind database. It does not drop it if it already exists because the
Docker container should be empty anyway as a fresh one will be spun up each time. This is my
recommendation. Instructions to install Docker and set up a SQL Edge image and container
are in the next section of this book.

• Northwind4SqlServer.sql script: To use SQL Server on a local Windows or Linux computer. The
script checks if the Northwind database already exists and if necessary drops it before creating
it. Instructions to install SQL Server Developer Edition (free) on your local Windows computer
can be found in the GitHub repository for this book at https://github.com/markjprice/web-
dev-net9/blob/main/docs/sql-server/README.md.

• Northwind4AzureSqlDatabaseCloud.sql script: To use SQL Server with an Azure SQL Data-
base resource created in the Azure cloud. You will need an Azure account; these resources
cost money as long as they exist! The script does not drop or create the Northwind database
because you should manually create the Northwind database using the Azure portal user
interface. The script only creates the database objects, including the table structure and data.

Installing Docker and the Azure SQL Edge container image
Docker provides a consistent environment across development, testing, and production, minimizing
the “it works on my machine” issue. Docker containers are more lightweight than traditional virtual
machines, making them faster to start up and less resource-intensive.

Docker containers can run on any system with Docker installed, making it easy to move databases
between environments or across different machines. You can quickly spin up a SQL database container
with a single command, making setup faster and more reproducible. Each database instance runs in its
own container, ensuring that it is isolated from other applications and databases on the same machine.

You can install Docker on any operating system and use a container that has Azure SQL Edge, a
cross-platform minimal featured version of SQL Server that only includes the database engine. For
personal, educational, and small business use, Docker Desktop is free to use. It includes the full set
of Docker features, including container management and orchestration. The Docker Command-line
Interface (CLI) and Docker engine are open source and free to use, allowing developers to build, run,
and manage containers.

Docker also has paid tiers that offer additional features, such as enhanced security, collaboration
tools, more granular access control, priority support, and higher rate limits on Docker Hub image pull.

https://github.com/markjprice/web-dev-net9/tree/main/scripts/sql-scripts
https://github.com/markjprice/web-dev-net9/tree/main/scripts/sql-scripts
https://github.com/markjprice/web-dev-net9/blob/main/docs/sql-server/README.md
https://github.com/markjprice/web-dev-net9/blob/main/docs/sql-server/README.md

Chapter 1 23

The Docker image we will use has Azure SQL Edge based on Ubuntu 18.4. It is supported with Docker
Engine 1.8 or later. Azure SQL Edge requires a 64-bit processor (either x64 or ARM64), with a minimum
of one processor and 1 GB RAM on the host:

1. Install Docker Desktop from the following link: https://docs.docker.com/engine/install/
2. Start Docker Desktop, which could take a few minutes on the initial start, as shown in Figure 1.6:

Figure 1.6: Docker Desktop v4.33.1 (August 2024) on Windows

3. At the command prompt or terminal, pull down the latest container image for Azure SQL Edge,
as shown in the following command:

docker pull mcr.microsoft.com/azure-sql-edge:latest

4. Wait for the image as it is downloading, as shown in the following output:

latest: Pulling from azure-sql-edge
a055bf07b5b0: Pull complete
cb84717c05a1: Pull complete
35d9c30b7f54: Downloading [========================>
] 20.46MB/42.55MB
46be68282524: Downloading [============>
] 45.94MB/186MB
5eee3e29ad15: Downloading [======================================>
] 15.97MB/20.52MB
15bd653c6216: Waiting

https://docs.docker.com/engine/install/

Introducing Web Development Using Controllers24

d8d6247303da: Waiting
c31fafd6718a: Waiting
fa1c91dcb9c8: Waiting
1ccbfe988be8: Waiting

5. Note the results, as shown in the following output:

latest: Pulling from azure-sql-edge
2f94e549220a: Pull complete
830b1adc1e72: Pull complete
f6caea6b4bd2: Pull complete
ef3b33eb5a27: Pull complete
8a42011e5477: Pull complete
f173534aa1e4: Pull complete
6c1894e17f11: Pull complete
a81c43e790ea: Pull complete
c3982946560a: Pull complete
25f31208d245: Pull complete
Digest:
sha256:7c203ad8b240ef3bff81ca9794f31936c9b864cc165dd187c23c5bfe06cf0340
Status: Downloaded newer image for mcr.microsoft.com/azure-sql-
edge:latest
mcr.microsoft.com/azure-sql-edge:latest

Running the Azure SQL Edge container image
Now we can run the image:

1. At the command prompt or terminal, run the container image for Azure SQL Edge with a
strong password and name the container azuresqledge, as shown in the following command:

docker run --cap-add SYS_PTRACE -e 'ACCEPT_EULA=1' -e 'MSSQL_SA_
PASSWORD=s3cret-Ninja' -p 1433:1433 --name azuresqledge -d mcr.microsoft.
com/azure-sql-edge

Good Practice: The password must be at least eight characters long and contain
characters from three of the following four sets: uppercase letters, lowercase
letters, digits, and symbols. Otherwise, the container cannot set up the SQL Edge
engine and will stop working.

On Windows 11, running the container image at the command prompt failed
for me. See the next section titled Running a container using the user interface for
steps that worked.

Chapter 1 25

2. If your operating system firewall blocks access, then allow access.
3. In Docker Desktop, in the Containers section, confirm that the image is running, as shown

in Figure 1.7:

Figure 1.7: Azure SQL Edge running in Docker Desktop on Windows

4. At the command prompt or terminal, ask Docker to list all containers, both running and stopped,
as shown in the following command:

docker ps -a

5. Note the container is “Up” and listening externally on port 1433, which is mapped to its internal
port 1433, as shown highlighted in the following output:

CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS NAMES
183f02e84b2a mcr.microsoft.com/azure-sql-edge "/opt/mssql/bin/
perm…" 8 minutes ago Up 8 minutes 1401/tcp, 0.0.0.0:1433->1433/tcp
azuresqledge

Running a container using the user interface
If you successfully ran the SQL Edge container, then you can skip this section and continue with the
next section, titled Connecting to Azure SQL Edge in a Docker container.

More Information: You can learn more about the docker ps command at https://docs.
docker.com/engine/reference/commandline/ps/.

https://docs.docker.com/engine/reference/commandline/ps/
https://docs.docker.com/engine/reference/commandline/ps/

Introducing Web Development Using Controllers26

If entering a command at the prompt or terminal fails for you, try following these steps to use the
user interface:

1. In Docker Desktop, navigate to the Images tab.
2. In the mcr.microsoft.com/azuresqledge row, click the Run action.
3. In the Run a new container dialog box, expand Optional settings, and complete the configu-

ration, as shown in Figure 1.8 and in the following items:

• Container name: azuresqledge, or leave blank to use a random name.
• Ports:

• Enter 1401 to map to :1401/tcp.
• Enter 1433 to map to :1433/tcp.

• Volumes: leave empty.
• Environment variables (click + to add a second one):

• Enter ACCEPT_EULA with value Y (or 1).
• Enter MSSQL_SA_PASSWORD with value s3cret-Ninja.

4. Click Run.

Figure 1.8: Running a container for Azure SQL Edge with the user interface

Chapter 1 27

Connecting to Azure SQL Edge in a Docker container
Use your preferred database tool to connect to Azure SQL Edge in the Docker container. Some common
database tools are shown in the following list:

• Windows only:

• SQL Server Management Studio (SSMS): The most popular and comprehensive tool for
managing SQL Server databases. Free to download from Microsoft.

• SQL Server Data Tools (SSDT): Integrated into Visual Studio and free to use, SSDT
provides database development tools for designing, deploying, and managing SQL
Server databases.

• Cross-platform for Windows, macOS, Linux:

• VS Code’s MS SQL extension: Query execution, IntelliSense, database browsing, and
connection to SQL Server databases.

• Azure Data Studio: A cross-platform database management tool focused on query ed-
iting, data insights, and lightweight management.

Some notes about the database connection string for SQL Edge:

• Data Source, a.k.a. server: tcp:127.0.0.1,1433
• You must use SQL Server Authentication, a.k.a. SQL Login. That is, you must supply a user-

name and password. The Azure SQL Edge image has the sa user already created and you had
to give it a strong password when you ran the container. We chose the password s3cret-Ninja.

• You must select the Trust Server Certificate check box.
• Initial Catalog, a.k.a. database: master or leave blank. (We will create the Northwind database

using a SQL script so we do not specify that as the database name yet.)

Connecting from Visual Studio
To connect to SQL Edge using Visual Studio:

1. In Visual Studio, navigate to View | Server Explorer.
2. In the mini-toolbar, click the Connect to Database... button.

Introducing Web Development Using Controllers28

3. Enter the connection details, as shown in Figure 1.9:

Figure 1.9: Connecting to your Azure SQL Edge server from Visual Studio

Connecting from VS Code
To connect to SQL Edge using VS Code:

1. In VS Code, navigate to the SQL Server extension. Note that the mssql extension might take a
few minutes to initialize the first time.

2. In the SQL extension, click Add Connection....
3. Enter the server name tcp:127.0.0.1,1433, as shown in Figure 1.10:

Figure 1.10: Specifying the server name

4. Leave the database name blank by pressing Enter, as shown in Figure 1.11:

Chapter 1 29

Figure 1.11: Specifying the database name (leave blank)

5. Select SQL Login, as shown in Figure 1.12:

Figure 1.12: Choosing SQL Login to authenticate

6. Enter the user ID sa, as shown in Figure 1.13:

Figure 1.13: Entering the user ID of sa

7. Enter the password s3cret-Ninja, as shown in Figure 1.14:

Figure 1.14: Entering the password

8. Select Yes to save the password for the future, as shown in Figure 1.15:

Figure 1.15: Saving the password for future use

9. Enter a connection profile name, Azure SQL Edge in Docker, as shown in Figure 1.16:

Figure 1.16: Naming the connection

Introducing Web Development Using Controllers30

10. Click Enable Trust Server Certificate, as shown in Figure 1.17:

Figure 1.17: Trusting the local developer certificate

11. Note the success notification message.

Creating the Northwind database using a SQL script
Now you can use your preferred code editor (or database tool) to execute the SQL script to create the
Northwind database in SQL Edge:

1. Open the Northwind4AzureSQLEdgeDocker.sql file.
2. Execute the SQL script:

• If you are using Visual Studio, right-click in the script, then select Execute, and then
wait to see the Command completed successfully message.

• If you are using VS Code, right-click in the script, select Execute Query, select the Azure
SQL Edge in Docker connection profile, and then wait to see the Commands completed
successfully message.

3. Refresh the data connection:

• If you are using Visual Studio, then in Server Explorer, right-click Tables and select
Refresh.

• If you are using VS Code, then right-click the Azure SQL Edge in Docker connection
profile and choose Refresh.

4. Expand Databases, expand Northwind, and then expand Tables.
5. Note that 13 tables have been created, for example, Categories, Customers, and Products. Also

note that dozens of views and stored procedures have also been created, as shown in Figure 1.18:

Chapter 1 31

Figure 1.18: Northwind database created by SQL script in VS Code

You now have a running instance of Azure SQL Edge containing the Northwind database that you can
connect to from your ASP.NET Core projects.

Removing Docker resources
When you have completed all the chapters in the book, or you plan to use a full SQL Server or Azure
SQL Database instead of a SQL Edge container, and you want to remove all the Docker resources, then
follow these steps:

1. At the command prompt or terminal, stop the azuresqledge container, as shown in the fol-
lowing command:

docker stop azuresqledge

2. At the command prompt or terminal, remove the azuresqledge container, as shown in the
following command:

docker rm azuresqledge

3. At the command prompt or terminal, remove the azure-sql-edge image to release its disk
space, as shown in the following command:

docker rmi mcr.microsoft.com/azure-sql-edge

Warning! Removing the container will delete all data inside it.

Introducing Web Development Using Controllers32

Setting up the EF Core CLI tool
The .NET CLI tool named dotnet can be extended with capabilities useful for working with EF Core. It
can perform design-time tasks like creating and applying migrations from an older model to a newer
model and generating code for a model from an existing database.

The dotnet-ef command-line tool is not automatically installed. You must install this package as
either a global or local tool. If you have already installed an older version of the tool, then you should
update it to the latest version:

1. At a command prompt or terminal, check if you have already installed dotnet-ef as a global
tool, as shown in the following command:

dotnet tool list --global

2. Check in the list if an older version of the tool has been installed, like the one for .NET 7, as
shown in the following output:

Package Id Version Commands

dotnet-ef 9.0.0 dotnet-ef

3. If an old version is installed, then update the tool, as shown in the following command:

dotnet tool update --global dotnet-ef

4. If it is not already installed, then install the latest version, as shown in the following command:

dotnet tool install --global dotnet-ef

If necessary, follow any OS-specific instructions to add the dotnet tools directory to your PATH en-
vironment variable, as described in the output of installing the dotnet-ef tool.

By default, the latest GA release of .NET will be used to install the tool. To explicitly set a version, for
example, to use a preview, add the --version switch. For example, to update to the latest .NET 10
preview or release candidate version (that will be available from February 2025 to October 2025), use
the following command with a version wildcard:

dotnet tool update --global dotnet-ef --version 10.0-*

Once the .NET 10 GA release happens in November 2025, you can just use the command without the
--version switch to upgrade.

You can also remove the tool, as shown in the following command:

dotnet tool uninstall --global dotnet-ef

Creating a class library for entity models
You will now define entity data models in a class library so that they can be reused in other types of
projects, including client-side app models.

Chapter 1 33

We will automatically generate some entity models using the EF Core command-line tool:

1. Use your preferred code editor to create a new project and solution, as defined in the following
list:

• Project template: Class Library /classlib
• Project file and folder: Northwind.EntityModels
• Solution file and folder: MatureWeb

2. In the Northwind.EntityModels project, add package references for the SQL Server database
provider and EF Core design-time support, as shown in the following markup:

<ItemGroup>
 <PackageReference
 Include="Microsoft.EntityFrameworkCore.SqlServer" />
 <PackageReference
 Include="Microsoft.EntityFrameworkCore.Design">
 <PrivateAssets>all</PrivateAssets>
 <IncludeAssets>runtime; build; native; contentfiles; analyzers;
buildtransitive</IncludeAssets>
 </PackageReference>
</ItemGroup>

3. Delete the Class1.cs file.
4. Build the Northwind.EntityModels project to restore packages.
5. Make sure that the SQL Edge container is running because you are about to connect to the

server and its Northwind database.
6. At a command prompt or terminal, in the Northwind.EntityModels project folder (the folder

that contains the .csproj project file), generate entity class models for all tables, as shown in
the following command:

dotnet ef dbcontext scaffold "Data Source=tcp:127.0.0.1,1433;Initial
Catalog=Northwind;User Id=sa;Password=s3cret-Ninja;TrustServerCertificat

Good Practice: You should create a separate class library project for your entity data mod-
els from the class library for your data context. This allows easier sharing of the entity
models between backend web servers and frontend desktop, mobile, and Blazor clients,
while only the backend needs to reference the data context class library.

You can target either .NET 8 (LTS) or .NET 9 (STS) for all the projects in this book
but you should be consistent. If you choose .NET 9 for the class libraries, then
choose .NET 9 for later MVC and Web API projects.

Introducing Web Development Using Controllers34

e=true;" Microsoft.EntityFrameworkCore.SqlServer --namespace Northwind.
EntityModels --data-annotations

Note the following:

• The command to perform: dbcontext scaffold
• The connection string: "Data Source=tcp:127.0.0.1,1433;Initial

Catalog=Northwind;User Id=sa;Password= s3cret-Ninja';TrustServerCertific
ate=true;"

• The database provider: Microsoft.EntityFrameworkCore.SqlServer
• The namespace: --namespace Northwind.EntityModels
• To use data annotations as well as the Fluent API: --data-annotations

Creating a class library for a database context
You will now define a database context class library:

1. Add a new project to the solution, as defined in the following list:

• Project template: Class Library /classlib
• Project file and folder: Northwind.DataContext
• Solution file and folder: MatureWeb

2. In the Northwind.DataContext project, statically and globally import the Console class, add
a package reference to the EF Core data provider for SQL Server, and add a project reference
to the Northwind.EntityModels project, as shown in the following markup:

<ItemGroup Label="To simplify use of WriteLine.">
 <Using Include="System.Console" Static="true" />
</ItemGroup>

<ItemGroup Label="Versions are set at solution-level.">
 <PackageReference
 Include="Microsoft.EntityFrameworkCore.SqlServer" />
</ItemGroup>

<ItemGroup>

Warning! dotnet-ef commands must be entered all on one line and in a folder that
contains a project, or you will see the following error: No project was found. Change
the current working directory or use the --project option. Remember that
all command lines can be found at and copied from the following link:

https://github.com/markjprice/web-dev-net9/blob/main/docs/command-lines.
md

https://github.com/markjprice/web-dev-net9/blob/main/docs/command-lines.md
https://github.com/markjprice/web-dev-net9/blob/main/docs/command-lines.md

Chapter 1 35

 <ProjectReference Include="..\Northwind.EntityModels
\Northwind.EntityModels.csproj" />
</ItemGroup>

3. In the Northwind.DataContext project, delete the Class1.cs file.
4. Build the Northwind.DataContext project to restore packages.
5. In the Northwind.DataContext project, add a class named NorthwindContextLogger.cs.
6. Modify its contents to define a static method named WriteLine that appends a string to the

end of a text file named northwindlog-<date_time>.txt on the desktop, as shown in the
following code:

using static System.Environment;

namespace Northwind.EntityModels;

public class NorthwindContextLogger
{
 public static void WriteLine(string message)
 {
 string folder = Path.Combine(GetFolderPath(
 SpecialFolder.DesktopDirectory), "book-logs");

 if (!Directory.Exists(folder))
 Directory.CreateDirectory(folder);

 string dateTimeStamp = DateTime.Now.ToString(
 "yyyyMMdd_HHmmss");

 string path = Path.Combine(folder,
 $"northwindlog-{dateTimeStamp}.txt");

 StreamWriter textFile = File.AppendText(path);
 textFile.WriteLine(message);
 textFile.Close();
 }
}

Warning! The path to the project reference should not have a line break in your
project file.

Introducing Web Development Using Controllers36

7. Move the NorthwindContext.cs file from the Northwind.EntityModels project/folder to the
Northwind.DataContext project/folder.

8. In NorthwindContext.cs, note the second constructor can have options passed as a param-
eter, which allows us to override the default database connection string in any projects such
as websites that need to work with the Northwind database, as shown in the following code:

public NorthwindContext(
 DbContextOptions<NorthwindContext> options)
 : base(options)
{
}

9. In NorthwindContext.cs, in the OnConfiguring method, remove the compiler #warning about
the connection string and then add statements to dynamically build a database connection
string for SQL Edge in Docker, as shown in the following code:

protected override void OnConfiguring(
 DbContextOptionsBuilder optionsBuilder)
{
 if (!optionsBuilder.IsConfigured)
 {
 SqlConnectionStringBuilder builder = new();

 builder.DataSource = "tcp:127.0.0.1,1433"; // SQL Edge in Docker.
 builder.InitialCatalog = "Northwind";
 builder.TrustServerCertificate = true;
 builder.MultipleActiveResultSets = true;

 // Because we want to fail faster. Default is 15 seconds.
 builder.ConnectTimeout = 3;

 // SQL Server authentication.
 builder.UserID = Environment.GetEnvironmentVariable("MY_SQL_USR");
 builder.Password = Environment.GetEnvironmentVariable("MY_SQL_PWD");

 optionsBuilder.UseSqlServer(builder.ConnectionString);

In Visual Studio Solution Explorer, if you drag and drop a file between projects,
it will be copied. If you hold down Shift while dragging and dropping, it will be
moved. In VS Code EXPLORER, if you drag and drop a file between projects, it will
be moved. If you hold down Ctrl while dragging and dropping, it will be copied.

Chapter 1 37

 optionsBuilder.LogTo(NorthwindContextLogger.WriteLine,
 new[] { Microsoft.EntityFrameworkCore
 .Diagnostics.RelationalEventId.CommandExecuting });
 }
}

10. In the Northwind.DataContext project, add a class named NorthwindContextExtensions.cs.
Modify its contents to define an extension method that adds the Northwind database context
to a collection of dependency services, as shown in the following code:

using Microsoft.Data.SqlClient; // To use SqlConnectionStringBuilder.
using Microsoft.EntityFrameworkCore; // To use UseSqlServer.
using Microsoft.Extensions.DependencyInjection; // To use
IServiceCollection.

namespace Northwind.EntityModels;

public static class NorthwindContextExtensions
{
 /// <summary>
 /// Adds NorthwindContext to the specified IServiceCollection. Uses the
SqlServer database provider.
 /// </summary>
 /// <param name="services">The service collection.</param>
 /// <param name="connectionString">Set to override the default.</param>
 /// <returns>An IServiceCollection that can be used to add more
services.</returns>
 public static IServiceCollection AddNorthwindContext(
 this IServiceCollection services, // The type to extend.
 string? connectionString = null)
 {
 if (connectionString is null)
 {
 SqlConnectionStringBuilder builder = new();

 builder.DataSource = "tcp:127.0.0.1,1433"; // SQL Edge in Docker.
 builder.InitialCatalog = "Northwind";
 builder.TrustServerCertificate = true;
 builder.MultipleActiveResultSets = true;

 // Because we want to fail faster. Default is 15 seconds.

Introducing Web Development Using Controllers38

 builder.ConnectTimeout = 3;

 // SQL Server authentication.
 builder.UserID = Environment.GetEnvironmentVariable("MY_SQL_USR");
 builder.Password = Environment.GetEnvironmentVariable("MY_SQL_
PWD");

 connectionString = builder.ConnectionString;
 }

 services.AddDbContext<NorthwindContext>(options =>
 {
 options.UseSqlServer(connectionString);

 options.LogTo(NorthwindContextLogger.WriteLine,
 new[] { Microsoft.EntityFrameworkCore
 .Diagnostics.RelationalEventId.CommandExecuting });
 },
 // Register with a transient lifetime to avoid concurrency
 // issues with Blazor Server projects.
 contextLifetime: ServiceLifetime.Transient,
 optionsLifetime: ServiceLifetime.Transient);

 return services;
 }
}

11. Build the two class libraries and fix any compiler errors.

Setting the user and password for SQL Server authentication
If you are using SQL Server authentication, i.e., you must supply a user and password, then complete
the following steps:

1. In the Northwind.DataContext project, note the statements that set UserId and Password, as
shown in the following code:

// SQL Server authentication.
builder.UserId = Environment
 .GetEnvironmentVariable("MY_SQL_USR");
builder.Password = Environment
 .GetEnvironmentVariable("MY_SQL_PWD");.

Chapter 1 39

2. Set the two environment variables at the command prompt or terminal, as shown in the fol-
lowing commands:

• On Windows:

setx MY_SQL_USR <your_user_name>
setx MY_SQL_PWD <your_password>

• On macOS and Linux:

export MY_SQL_USR=<your_user_name>
export MY_SQL_PWD=<your_password>

3. You will need to restart any command prompts, terminal windows, and applications like Visual
Studio for this change to take effect.

Registering dependency services
You can register dependency services with different lifetimes, as shown in the following list:

• Transient: These services are created each time they’re requested. Transient services should
be lightweight and stateless.

• Scoped: These services are created once per client request and are disposed of, then the re-
sponse returns to the client.

• Singleton: These services are usually created the first time they are requested and then shared,
although you can provide an instance at the time of registration too.

Introduced in .NET 8 is the ability to set a key for a dependency service. This allows multiple services
to be registered with different keys and then retrieved later using that key:

builder.Services.AddKeyedsingleton<IMemoryCache, BigCache>("big");
builder.Services.AddKeyedSingleton<IMemoryCache, SmallCache>("small");

class BigCacheConsumer([FromKeyedServices("big")] IMemoryCache cache)
{
 public object? GetData() => cache.Get("data");
}

class SmallCacheConsumer(IKeyedServiceProvider keyedServiceProvider)

Good Practice: Although you could define the two environment variables in the
launchSettings.json file of an ASP.NET Core project, you must then be extremely
careful not to include that file in a GitHub repository! You can learn how to ignore files
in Git at https://docs.github.com/en/get-started/getting-started-with-git/
ignoring-files.

https://docs.github.com/en/get-started/getting-started-with-git/ignoring-files
https://docs.github.com/en/get-started/getting-started-with-git/ignoring-files

Introducing Web Development Using Controllers40

{
 public object? GetData() => keyedServiceProvider
 .GetRequiredKeyedService<IMemoryCache>("small");
}

In this book, you will use all three types of lifetime but we will not need to use keyed services.

By default, a DbContext class is registered using the Scope lifetime, meaning that multiple threads can
share the same instance. But DbContext does not support multiple threads. If more than one thread
attempts to use the same NorthwindContext class instance at the same time, then you will see the
following runtime exception thrown: A second operation started on this context before a
previous operation completed. This is usually caused by different threads using the same
instance of a DbContext. However, instance members are not guaranteed to be thread-safe.

This happens in Blazor projects with components set to run on the server side because, whenever in-
teractions on the client side happen, a SignalR call is made back to the server where a single instance
of the database context is shared between multiple clients. This issue does not occur if a component
is set to run on the client side.

Improving the class-to-table mapping
We will make some small changes to improve the entity model mapping and validation rules for SQL
Server.

We will add a regular expression to validate that a CustomerId value is exactly five uppercase letters:

1. In Customer.cs, add a regular expression to validate its primary key CustomerId to only allow
uppercase Western characters, as shown highlighted in the following code:

[Key]
[StringLength(5)]
[RegularExpression("[A-Z]{5}")]
public string CustomerId { get; set; } = null!;

2. In Customer.cs, add the [Phone] attribute to its Phone property, as shown highlighted in the
following code:

[StringLength(24)]
[Phone]
public string? Phone { get; set; }

Remember that all code is available in the GitHub repository for the book. Although you
will learn more by typing the code yourself, you never have to. Go to the following link
and press . to get a live code editor in your browser: https://github.com/markjprice/
web-dev-net9.

https://github.com/markjprice/web-dev-net9
https://github.com/markjprice/web-dev-net9

Chapter 1 41

3. In Order.cs, decorate the CustomerId property with the same regular expression to enforce
five uppercase characters.

Testing the class libraries using xUnit
Several benefits of using xUnit are shown in the following list:

• xUnit is open-source and has a strong community and active development team behind it. This
makes it more likely that it will stay up to date with the latest .NET features and best practices.
xUnit benefits from a large and active community, which means many tutorials, guides, and
third-party extensions are available for it.

• xUnit uses a more simplified and extensible approach compared to older frameworks. It en-
courages the use of custom test patterns and less reliance on setup and teardown methods,
leading to cleaner test code.

• Tests in xUnit are configured using .NET attributes, which makes the test code easy to read
and understand. It uses [Fact] for standard test cases and [Theory] with [InlineData],
[ClassData], or [MemberData] for parameterized tests, enabling data-driven testing. This
makes it easier to cover many input scenarios with the same test method, enhancing test
thoroughness while minimizing effort.

• xUnit includes an assertion library that allows for a wide variety of assertions out of the box,
making it easier to test a wide range of conditions without having to write custom test code. It
can also be extended with popular assertion libraries, like FluentAssertions, that allow you
to articulate test expectations with human-readable reasons.

• By default, xUnit supports parallel test execution within the same test collection, which can
significantly reduce the time it takes to run large test suites. This is particularly beneficial in
continuous integration environments where speed is critical. However, if you run your tests in a
memory-limited VPS (Virtual Private Server), then that impacts how much data the server can
handle at any given time and how many applications or processes it can run concurrently. In
this scenario, you might want to disable parallel test execution. Memory-limited VPS instances
are typically used as cheap testing environments.

• xUnit offers precise control over the test lifecycle with setup and teardown commands through
the use of the constructor and destructor patterns and the IDisposable interface, as well as
with the [BeforeAfterTestAttribute] for more granular control.

Now let’s build some unit tests to ensure the class libraries are working correctly.

Let’s write the tests:

1. Use your preferred coding tool to add a new xUnit Test Project [C#] / xunit project named
Northwind.UnitTests to the MatureWeb solution.

The [Phone] attribute adds the following to the rendered HTML: type="tel".
On a mobile phone, this makes the keyboard use the phone dialer instead of the
normal keyboard.

Introducing Web Development Using Controllers42

2. In the Northwind.UnitTests project, delete the version numbers specified for the testing pack-
ages in the project file. (Visual Studio and other code editors will give errors if you have projects
that should use CPM but specify their own package versions without using the VersionOverride
attribute.)

3. In the Northwind.UnitTests project, add a project reference to the Northwind.DataContext
project, as shown in the following configuration:

<ItemGroup>
 <PackageReference Include="coverlet.collector" />
 <PackageReference Include="Microsoft.NET.Test.Sdk" />
 <PackageReference Include="xunit" />
 <PackageReference Include="xunit.runner.visualstudio" />
</ItemGroup>

<ItemGroup>
 <ProjectReference Include="..\Northwind.DataContext
\Northwind.DataContext.csproj" />
</ItemGroup>

4. Build the Northwind.UnitTests project to build referenced projects.
5. Rename UnitTest1.cs to EntityModelTests.cs.
6. Modify the contents of the file to define two tests, the first to connect to the database and the

second to confirm there are eight categories in the database, as shown in the following code:

using Northwind.EntityModels; // To use NorthwindContext.

namespace Northwind.UnitTests;

public class EntityModelTests
{
 [Fact]
 public void DatabaseConnectTest()

Warning! The project reference must go all on one line with no line break.

Chapter 1 43

 {
 using NorthwindContext db = new();
 Assert.True(db.Database.CanConnect());
 }

 [Fact]
 public void CategoryCountTest()
 {
 using NorthwindContext db = new();

 int expected = 8;
 int actual = db.Categories.Count();

 Assert.Equal(expected, actual);
 }

 [Fact]
 public void ProductId1IsChaiTest()
 {
 using NorthwindContext db = new();

 string expected = "Chai";

 Product? product = db.Products.Find(keyValues: 1);
 string actual = product?.ProductName ?? string.Empty;

 Assert.Equal(expected, actual);
 }
}

7. Run the unit tests:

• If you are using Visual Studio, then navigate to Test | Run All Tests, and then view the
results in Test Explorer.

• If you are using VS Code, then in the Northwind.UnitTests project’s TERMINAL window,
run the tests, as shown in the following command: dotnet test. Alternatively, use the
TESTING window if you have installed C# Dev Kit.

Introducing Web Development Using Controllers44

8. Note that the results should indicate that three tests ran, and all passed, as shown in Figure 1.19:

Figure 1.19: Three successful unit tests ran

If any of the tests fail, then try fix the issue.

Practicing and exploring
Test your knowledge and understanding by answering some questions, getting some hands-on practice,
and exploring this chapter’s topics with deeper research.

Exercise 1.1 – Online material
If you have any issues with the code or content of this book, or general feedback or suggestions for
me for future editions, then please read the following short article:

https://github.com/markjprice/web-dev-net9/blob/main/docs/ch01-issues-feedback.md

If you are new to web development on the client side using HTML, CSS, and JavaScript, then you can
start with an online section found at the following link:

https://github.com/markjprice/web-dev-net9/blob/main/docs/ch01-web-dev.md

One of the best sites for learning client-side web development is W3Schools, found at https://www.
w3schools.com/.

A summary of what’s new with ASP.NET Core 9 can be found at the following link:

https://learn.microsoft.com/en-us/aspnet/core/release-notes/aspnetcore-9.0

If you need to decide between ASP.NET Core web UIs, check this link:

https://learn.microsoft.com/en-us/aspnet/core/tutorials/choose-web-ui

https://github.com/markjprice/web-dev-net9/blob/main/docs/ch01-issues-feedback.md

https://github.com/markjprice/web-dev-net9/blob/main/docs/ch01-web-dev.md

https://www.w3schools.com/
https://www.w3schools.com/
https://learn.microsoft.com/en-us/aspnet/core/release-notes/aspnetcore-9.0

https://learn.microsoft.com/en-us/aspnet/core/tutorials/choose-web-ui

Chapter 1 45

You can learn about ASP.NET Core best practices at https://learn.microsoft.com/en-us/aspnet/
core/fundamentals/best-practices.

Exercise 1.2 – Practice exercises
The following practice exercises help you to explore the topics in this chapter more deeply.

Troubleshooting web development
It is common to have temporary issues with web development because there are so many moving
parts. Sometimes, variations of the classic “turn it off and on again” can fix these!

1. Delete the project’s bin and release folders.
2. Restart the web server to clear its caches.
3. Reboot the computer.

Exercise 1.3 – Test your knowledge
Answer the following questions:

1. What was the name of Microsoft’s first dynamic server-side-executed web page technology
and why is it still useful to know this history today?

2. What are the names of two Microsoft web servers?
3. What are some differences between a microservice and a nanoservice?
4. What is Blazor?
5. What was the first version of ASP.NET Core that could not be hosted on .NET Framework?
6. What is a user agent?
7. What impact does the HTTP request-response communication model have on web developers?
8. Name and describe four components of a URL.
9. What capabilities does Developer Tools give you?
10. What are the three main client-side web development technologies and what do they do?

Know your webbreviations
What do the following web abbreviations stand for and what do they do?

1. URI
2. URL
3. WCF
4. TLD
5. API
6. SPA
7. CMS
8. Wasm

https://learn.microsoft.com/en-us/aspnet/core/fundamentals/best-practices
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/best-practices

Introducing Web Development Using Controllers46

9. SASS
10. REST

Exercise 1.4 – Explore topics
Use the links on the following page to learn more details about the topics covered in this chapter:

https://github.com/markjprice/web-dev-net9/blob/main/docs/book-links.md#chapter-1---
introducing-web-development-using-controllers

Summary
In this chapter, you have:

• Been introduced to some of the technologies that you can use to build websites and web ser-
vices using C# and .NET.

• Reviewed options for structuring ASP.NET Core projects.
• Reviewed how to get help and download code solutions for this book.
• Created class libraries to define an entity data model for working with the Northwind database

using SQL Server.

In the next chapter, you will learn the details about how to build a basic website using ASP.NET Core
MVC.

Learn more on Discord
To join the Discord community for this book – where you can share feedback, ask questions to the
author, and learn about new releases – follow the QR code below:

https://packt.link/RWD9

https://github.com/markjprice/web-dev-net9/blob/main/docs/book-links.md#chapter-1---introducing-web-development-using-controllers
https://github.com/markjprice/web-dev-net9/blob/main/docs/book-links.md#chapter-1---introducing-web-development-using-controllers
https://packt.link/RWD9

2
Building Websites Using ASP.NET
Core MVC

This chapter is about building websites with a modern HTTP architecture on the server side using
ASP.NET Core model-view-controller (MVC), including the models, views, and controllers that make
up the main components of an ASP.NET Core MVC project, and how to use Bootstrap for quick user
interface (UI) prototyping.

This chapter will cover the following topics:

• Setting up an ASP.NET Core MVC website
• Exploring an ASP.NET Core MVC website
• Prototyping with Bootstrap
• Customizing an ASP.NET Core MVC website

Setting up an ASP.NET Core MVC website
The MVC design pattern is useful for complex websites, where a formal structure is needed to man-
age that complexity. ASP.NET Core MVC uses technologies like Razor syntax, but allows a cleaner
separation of responsibilities, sometimes called technical concerns, as shown in the following list:

• Models: Classes that represent the data entities and view models used on the website.
• Views: Razor Views are .cshtml files that render data in view models into HTML for a dynam-

ically-generated web page.

Warning! When creating a Razor Views, you must not use the @page directive at
the top of the file! If you do, then you have created a Razor Page and this behaves
differently. For example, the controller will not pass the model and it will be null,
throwing a NullReferenceException when you try to access any of its members.

Building Websites Using ASP.NET Core MVC48

• Controllers: Classes that execute code when an HTTP request arrives at the web server. The
controller methods usually instantiate a view model and pass that to a view in order to gen-
erate an HTTP response. This is returned to the web browser or other client that made the
original request.

Let’s review a simplified diagram to understand how these components work together to process an
incoming HTTP request and send back an outgoing HTTP response, as shown in Figure 2.1:

Figure 2.1: An ASP.NET Core MVC website responding to an HTTP request

The HTTP request is processed as labeled in Figure 2.1 and as described in the following four steps:

1. Route: In Program.cs, there is a block of statements that configures the HTTP pipeline. A
default route is configured so that if no relative path is specified, it assumes a controller name
of Home (with a class name of HomeController) and an action method name of Index. If a
relative path is specified, for example, /Products/Detail/3, then the controller name would
be Products (with a class name of ProductsController), an action method name of Details,
and an id parameter value of 3.

2. Controller: In <controller>Controller.cs, the controller class is instantiated and the action
method is called. If the method has parameters, they are set automatically from parameters in
the HTTP request. These can come from the route path, query string, and any posted <form>
element or uploaded file.

3. Model: The action method constructs an instance of the appropriate model and passes it to a
view. The controller returns the rendered view to the HTTP pipeline as a response including
a status code like 200 OK or 400 Bad Request.

4. View: The appropriate view renders the model into a response format, typically HTML, but
could be anything, like an image, PDF, JSON, or XML.

Chapter 2 49

The best way to understand using the MVC design pattern is to see a working example.

Creating an ASP.NET Core MVC website
You will use a project template to create an ASP.NET Core MVC website project that has a database for
authenticating and authorizing users using individual accounts. A visitor to the website can register
their email, set a password, and then log in to the website using those credentials.

Visual Studio defaults to using SQL Server LocalDB for the accounts database. VS Code (or more ac-
curately, the dotnet CLI tool) uses SQLite by default and you can specify a switch to use SQL Server
LocalDB instead.

Let’s see it in action:

1. Use your preferred code editor to open the MatureWeb solution.
2. Add an MVC website project with authentication accounts stored in a local database, as defined

in the following list:

• Project template: ASP.NET Core Web App (Model-View-Controller) [C#] / mvc
• Project file and folder: Northwind.Mvc
• Solution file and folder: MatureWeb
• Framework: .NET 9.0 (Standard Term Support) or .NET 8.0 (Long Term Support)
• Authentication type: Individual Accounts / --auth Individual
• Configure for HTTPS: Selected
• Enable container support: Cleared
• Do not use top-level statements: Cleared

The MVC design pattern as implemented in ASP.NET Core MVC might have been better
named Route-Controller-Model-View (RCMV) to match the order of the components that
are used in the process. But MVC sounds better.

For VS Code, in the MatureWeb solution folder, use dotnet new mvc --auth
Individual -o Northwind.Mvc and dotnet sln add Northwind.Mvc.

For Rider, right-click the MatureWeb solution, navigate to Add | New Project…,
and in the New Project dialog box, select ASP.NET Core Web Application, for
Type, select Web App (Model-View-Controller), and for Auth, select Individual
authentication, and then click Create.

Warning! If you are using a Windows ARM machine, like the Surface Laptop 7 that
I used to write this book, then you might also want to use this CLI command to
create the project because SQL Server LocalDB does not work properly on ARM yet!

Building Websites Using ASP.NET Core MVC50

3. In the Northwind.Mvc.csproj project file, remove the Version attributes in <PackageReference>
elements because they are set in the solution-level Directory.Packages.props file.

4. Add an element to import the System.Console class globally and statically.
5. If you are using Visual Studio, in Solution Explorer, toggle Show All Files. If you are using Rider,

then hover the cursor over the Solution pane, and then click the eyeball icon. If you are using
VS Code, then all folders are files are already visible.

6. Expand the obj folder, expand the Debug folder, expand the net9.0 folder, select the Northwind.
Mvc.GlobalUsings.g.cs file, and note how the implicitly imported namespaces include all the
ones for a console app or class library, as well as some ASP.NET Core ones, such as Microsoft.
AspNetCore.Builder, as shown in the following code:

// <autogenerated />
global using global::Microsoft.AspNetCore.Builder;
global using global::Microsoft.AspNetCore.Hosting;
global using global::Microsoft.AspNetCore.Http;
global using global::Microsoft.AspNetCore.Routing;
global using global::Microsoft.Extensions.Configuration;
global using global::Microsoft.Extensions.DependencyInjection;
global using global::Microsoft.Extensions.Hosting;
global using global::Microsoft.Extensions.Logging;
global using global::System;
global using global::System.Collections.Generic;
global using global::System.IO;
global using global::System.Linq;
global using global::System.Net.Http;
global using global::System.Net.Http.Json;
global using global::System.Threading;
global using global::System.Threading.Tasks;
global using static global::System.Console;

7. Close the file and collapse the obj folder.
8. Build the Northwind.Mvc project.
9. At the command prompt or terminal, use the help switch to see other options for this project

template, as shown in the following command:

dotnet new mvc --help

10. Note the results, as shown in the following partial output:

ASP.NET Core Web App (Model-View-Controller) (C#)
Author: Microsoft
Description: A project template for creating an ASP.NET Core application
with example ASP.NET Core MVC Views and Controllers. This template can
also be used for RESTful HTTP services.

Chapter 2 51

There are many options, especially related to authentication, as shown in Table 2.1:

Switches Description

-au or --auth

The type of authentication to use:

None (default): This choice also allows you to disable HTTPS.

Individual: Individual authentication that stores registered users and
their passwords in a database (SQLite by default). We will use this in the
project we create for this chapter.

IndividualB2C: Individual authentication with Azure AD B2C.

SingleOrg: Organizational authentication for a single tenant.

MultiOrg: Organizational authentication for multiple tenants.

Windows: Windows authentication. Mostly useful for intranets.

-uld or --use-local-
db

Whether to use SQL Server LocalDB instead of SQLite. This option only
applies if --auth Individual or --auth IndividualB2C is specified.
The value is an optional bool with a default of false.

-rrc or --razor-
runtime-
compilation

This determines if the project is configured to use Razor runtime
compilation in Debug builds. This can improve the performance of the
startup process during debugging because it can defer the compilation of
Razor Views. The value is an optional bool with a default of false.

-f or --framework
The target framework for the project. Values can be net9.0 (default) or
net8.0. Older versions are no longer supported.

Table 2.1: Additional switches for the dotnet new mvc project template

Creating the authentication database for SQL Server LocalDB
If you created the MVC project using Visual Studio, or you used dotnet new mvc with the -uld or
--use-local-db switch, then the database for authentication and authorization will be stored in SQL
Server LocalDB. But the database itself does not exist yet.

If you created the MVC project using dotnet new or Rider, then the database for authentication and
authorization will be stored in SQLite and the file has already been created, named app.db.

The connection string for the authentication database is named DefaultConnection and it is stored
in the appsettings.json file in the root folder for the MVC website project.

For SQLite, see the following setting:

{
 "ConnectionStrings": {
 "DefaultConnection": "DataSource=app.db;Cache=Shared"
 },

Building Websites Using ASP.NET Core MVC52

If you created the MVC project using Visual Studio, then let’s create its authentication database now
by following a few simple steps:

1. In the Northwind.Mvc project, in appsettings.json, note the database connection string
named DefaultConnection, as shown highlighted in the following configuration:

{
 "ConnectionStrings": {
 "DefaultConnection": "Server=(localdb)\\mssqllocaldb;Database=aspnet-
Northwind.Mvc-440bc3c1-f7e7-4463-99d5-896b6a6500e0;Trusted_
Connection=True;MultipleActiveResultSets=true"
 },
 "Logging": {
 "LogLevel": {
 "Default": "Information",
 "Microsoft.AspNetCore": "Warning"
 }
 },
 "AllowedHosts": "*"
}

2. At a command prompt or terminal, in the Northwind.Mvc folder, enter the command to run
database migrations so that the database used to store credentials for authentication is created,
as shown in the following command:

dotnet ef database update

3. Note the database is created with tables like AspNetRoles, as shown in the following partial
output:

Build started...
Build succeeded.
info: Microsoft.EntityFrameworkCore.Infrastructure[10403]
 Entity Framework Core 9.0.0 initialized 'ApplicationDbContext'
using provider 'Microsoft.EntityFrameworkCore.SqlServer:9.0.0' with
options: None
info: Microsoft.EntityFrameworkCore.Database.Command[20101]
 Executed DbCommand (129ms) [Parameters=[], CommandType='Text',
CommandTimeout='60']

Your database name will use the pattern aspnet-[ProjectName]-[GUID] and
have a different GUID value from the example above.

Chapter 2 53

 CREATE DATABASE [aspnet-Northwind.Mvc-440bc3c1-f7e7-4463-99d5-
896b6a6500e0];
...
info: Microsoft.EntityFrameworkCore.Database.Command[20101]
 Executed DbCommand (3ms) [Parameters=[], CommandType='Text',
CommandTimeout='30']
 CREATE TABLE [AspNetRoles] (
 [Id] nvarchar(450) NOT NULL,
 [Name] nvarchar(256) NULL,
 [NormalizedName] nvarchar(256) NULL,
 [ConcurrencyStamp] nvarchar(max) NULL,
 CONSTRAINT [PK_AspNetRoles] PRIMARY KEY ([Id])
);
...
info: Microsoft.EntityFrameworkCore.Database.Command[20101]
 Executed DbCommand (8ms) [Parameters=[], CommandType='Text',
CommandTimeout='30']
 INSERT INTO [__EFMigrationsHistory] ([MigrationId],
[ProductVersion])
 VALUES (N'00000000000000_CreateIdentitySchema', N'9.0.0');

Changing the port numbers and starting the website
By default, the project template assigns random port numbers to host the website. The port numbers
could conflict with other port numbers used on your computer, so it is good practice to manually set
them.

Let’s review the behavior of the default ASP.NET Core MVC website project template:

1. In the Northwind.Mvc project, expand the Properties folder.

Warning! SQL Server LocalDB is not yet supported on Windows ARM. According to Mic-
rosoft employee Drew Skwiers-Koballa, “Connectivity to SQLLocalDB on arm64 remains on
our roadmap, but we do not have a release that I can commit to at this time. We understand that
connecting to LocalDB dramatically simplifies the SQL projects development process. You may
find installing SQL Server Developer edition on the local arm64 Windows machine for develop-
er purposes to be a suitable workaround.” The comment is at the following link: https://
developercommunity.visualstudio.com/t/Unable-to-load-the-SQLUserInstanc
edll/10188568#T-N10695492.

If you get an error because SQL Server LocalDB is not installed, you can install it manually
using the instructions at the following link: https://learn.microsoft.com/en-us/sql/
database-engine/configure-windows/sql-server-express-localdb.

https://developercommunity.visualstudio.com/t/Unable-to-load-the-SQLUserInstancedll/10188568#T-N10695492
https://developercommunity.visualstudio.com/t/Unable-to-load-the-SQLUserInstancedll/10188568#T-N10695492
https://developercommunity.visualstudio.com/t/Unable-to-load-the-SQLUserInstancedll/10188568#T-N10695492
https://learn.microsoft.com/en-us/sql/database-engine/configure-windows/sql-server-express-localdb
https://learn.microsoft.com/en-us/sql/database-engine/configure-windows/sql-server-express-localdb

Building Websites Using ASP.NET Core MVC54

2. In the Northwind.Mvc project/folder, expand the folder named Properties, open the file named
launchSettings.json, and note the profiles named http and https. They have randomly as-
signed port numbers that you will change in the next step, so for now, just note their locations,
as shown highlighted in the following configuration:

{
 "$schema": "http://json.schemastore.org/launchsettings.json",
 "iisSettings": {
 "windowsAuthentication": false,
 "anonymousAuthentication": true,
 "iisExpress": {
 "applicationUrl": "http://localhost:14842",
 "sslPort": 44352
 }
 },
 "profiles": {
 "http": {
 "commandName": "Project",
 "dotnetRunMessages": true,
 "launchBrowser": true,
 "applicationUrl": "http://localhost:5122",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 },
 "https": {
 "commandName": "Project",
 "dotnetRunMessages": true,
 "launchBrowser": true,
 "applicationUrl": "https://localhost:7155;http://localhost:5122",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 },
 "IIS Express": {
 "commandName": "IISExpress",
 "launchBrowser": true,
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 }

Chapter 2 55

 }
}

3. In launchSettings.json, change the configured port numbers for the https profile, as shown
highlighted in the following configuration:

"applicationUrl": "https://localhost:5021;http://localhost:5020",

4. Save the changes to the launchSettings.json file.
5. Start the Northwind.Mvc website using the https launch profile:

• If you are using Visual Studio, in the toolbar, select the https profile, select Google
Chrome as the Web Browser, and then start the project without debugging.

• If you are using VS Code, start the project with the https launch profile, as shown in the
following command: dotnet run --launch-profile https, and then start Chrome.

• If you are using Rider, navigate to Run | Edit Configurations…, and in the Run/Debug
Configurations dialog box, select Northwind.Mvc: https. At the bottom of the dialog box,
to the right of the After launch checkbox, select Chrome and then click OK. Navigate
to Run | Run ‘Northwind.Web: https’.

6. On Windows, if you see a Windows Security Alert saying Windows Defender Firewall has
blocked some features of this app, then click the Allow access button.

7. The first time you start a secure website, you might be prompted that your project is config-
ured to use SSL, and to avoid warnings in the browser, you can choose to trust the self-signed
certificate that ASP.NET Core has generated. Click Yes. When you see the Security Warning
dialog box, click Yes again.

8. At the command prompt or terminal, note that the MVC website is hosted on the two URLs
that we specified, as shown in the following output:

info: Microsoft.Hosting.Lifetime[14]

The launchSettings.json file is only for use during development. It has no
effect on the build process. It is not deployed with the compiled website project,
so it has no effect on the production runtime. It is only processed by code editors
like Visual Studio and Rider to set up environment variables and define URLs for
the web server to listen on when the project is started by a code editor. In Chapter
8, Configuring and Containerizing ASP.NET Core Projects, you will learn about how
to set options like these and how to containerize a project ready for deployment
to production.

The order of URLs in this setting is important. The first URL will be used by default,
and the second only used as a fallback.

Building Websites Using ASP.NET Core MVC56

 Now listening on: https://localhost:5021
info: Microsoft.Hosting.Lifetime[14]
 Now listening on: http://localhost:5020
info: Microsoft.Hosting.Lifetime[0]
 Application started. Press Ctrl+C to shut down.
info: Microsoft.Hosting.Lifetime[0]
 Hosting environment: Development
info: Microsoft.Hosting.Lifetime[0]
 Content root path: C:\web-dev-net9\MatureWeb\Northwind.Mvc

9. Leave the Kestrel web server running in the command prompt or terminal.
10. In Chrome, open Developer Tools and select the Network tab.
11. Navigate to http://localhost:5020/ and note the following, as shown in Figure 2.2:

• Requests for HTTP on port 5020 are automatically redirected to HTTPS on port 5021.
• The top navigation menu with links to Home, Privacy, Register, and Login. If the view-

port width is 575 pixels or less, then the navigation collapses into a hamburger menu.
• The title of the website, Northwind.Mvc, shown in the header and footer:

Figure 2.2: The ASP.NET Core MVC project template website home page

Visual Studio will also start your chosen browser automatically and navigate to
the first URL. If you are using VS Code, you will have to start Chrome manually.

Chapter 2 57

12. Leave the browser running.

Understanding browser requests during development
In Developer Tools, we can see all the requests made by the browser. Some will be requests that you
expect, for example:

• localhost: This is the request for the home page in the website project. For our current project,
the address will be http://localhost:5020/ or https://localhost:5021/.

• bootstrap.min.css: This is the request for Bootstrap’s styles. We added a reference to this on
the home page, so the browser then made this request for the stylesheet.

Some of the requests are made only during development and are determined by the code editor that
you use. You can usually ignore them if you see them in Developer Tools. For example:

• browserLink and aspnetcore-browser-refresh.js: These are requests made by Visual Studio 2022
to connect the browser to Visual Studio for debugging and Hot Reload. For example, https://
localhost:5201/_vs/browserLink and https://localhost:5201/_framework/aspnetcore-
browser-refresh.js.

• negotiate?requestUrl, connect?transport, abort?Transport, and so on: These are additional
requests used to connect Visual Studio with the browser.

• Northwind.Mvc/: This is a secure WebSockets request related to SignalR used to connect Visual
Studio with the browser: wss://localhost:44396/Northwind.Web/.

Now that you have seen how to set up a basic MVC website, let’s review how it implements visitor
registration.

Exploring visitor registration
By default, passwords must have at least one non-alphanumeric character, at least one digit (0-9),
and at least one uppercase letter (A-Z). I use Pa$$w0rd in scenarios like this when I am just exploring.

The MVC project template follows best practices for double-opt-in (DOI), meaning that after filling
in an email and password to register, an email is sent to the email address, and the visitor must click
a link in that email to confirm that they want to register.

We have not yet configured an email provider to send that email, so we must simulate that step:

1. In Chrome, close the Developer Tools pane so that you have more space to interact with the
website UI.

2. In the top navigation menu, click Register.
3. On the Register, Create a new account page, enter an email and password (twice), and then

click the Register button. (I used test@example.com and Pa$$w0rd.)
4. On the Register confirmation page, read the note telling you how to read the documentation

to enable real email confirmation, and then click the link labeled Click here to confirm your
account.

https://localhost:5021/

Building Websites Using ASP.NET Core MVC58

5. Note that you are redirected to a Confirm email web page that you can customize. By default,
the Confirm email page just says Thank you for confirming your email. You can click the x to
close the information box.

6. In the top navigation menu, click Login, enter your email and password (note that there is
an optional checkbox to remember you, and there are links if the visitor has forgotten their
password or wants to register as a new visitor), and then click the Log in button.

7. In the top navigation menu, click your email address (for me, it was labeled Hello test@exam-
ple.com!). This will navigate to an account management page. Note that you can set a phone
number, change your email address, change your password, enable two-factor authentication
(if you add an authenticator app), and download and delete your personal data. This last feature
is good for compliance with legal regulations like the European GDPR.

8. Close Chrome and shut down the web server by pressing Ctrl + C in the command prompt or
terminal that is hosting your website.

Reviewing an MVC website project structure
In your code editor, in Visual Studio Solution Explorer (toggle on Show All Files), VS Code EXPLORER,
or Rider, hover your mouse in the Solution pane, click the eyeball icon, and then review the structure
of an MVC website project. We will look in more detail at some of these parts later, but for now, note
the following in Figure 2.3:

Figure 2.3: The Visual Studio Solution Explorer view of an MVC project

• Properties: This folder contains a configuration file for Internet Information Services
(IIS) or IIS Express on Windows and for launching the website during development named
launchSettings.json. This file is only used on the local development machine and is not
deployed to your production website.

• wwwroot: This folder contains static content used by the website. For example, you should put
images and other static file resources like PDF documents here or in a subfolder.

• css: This folder contains a stylesheet for the website project.
• js: This folder contains a JavaScript file for the website project.

Chapter 2 59

• lib: This folder contains client-side libraries like Bootstrap and jQuery.
• favicon.ico: This file is shown on tabs by browsers.

• Areas: This folder contains nested folders and a file needed to integrate your website project
with ASP.NET Core Identity, which is used for authentication.

• Controllers: This folder contains C# classes that have methods (known as actions) that fetch
a model and pass it to a view, for example, HomeController.cs.

• Data: This folder contains Entity Framework Core (EF Core) migration classes used by the
ASP.NET Core Identity system to provide data storage for authentication and authorization,
for example, ApplicationDbContext.cs.

• Models: This folder contains C# classes that represent all of the data gathered together by a
controller and passed to a view, for example, ErrorViewModel.cs.

• Views: This folder contains the .cshtml Razor files that combine HTML and C# code to dy-
namically generate HTML responses:

• Home: This subfolder contains Razor files for the home and privacy pages.
• Shared: This subfolder contains Razor files for the shared layout, an error page, and

two partial views for logging in and validation scripts.
• _ViewImports: This file imports common namespaces used in all views like Tag Helpers.
• _ViewStart: This file sets the default layout.

• app.db: This is the SQLite database that stores registered visitors. (If you used SQL Server
LocalDB, then it will not be needed.)

• appsettings.json and appsettings.Development.json: These files contain settings that your
website can load at runtime, for example, the database connection string for the ASP.NET Core
Identity system and logging levels. These settings can be overridden by other mechanisms
like environment variables, application secrets, and command-line arguments. You will learn
details about how to control settings like these in Chapter 8, Configuring and Containerizing ASP.
NET Core Projects.

• Northwind.Mvc.csproj: This file contains project settings like the use of the web .NET SDK,
an entry for SQLite to ensure that the app.db file is copied to the website’s output folder, and a
list of NuGet packages that your project requires, including EF Core and ASP.NET Core Identity
packages. To edit it with Visual Studio, double-click the project name.

• Northwind.Mvc.csproj.user: This file contains Visual Studio session settings for remembering
options. For example, which launch profile was selected, like https. Visual Studio hides this
file, and it should not normally be included in source code control because it is specific to an
individual developer.

• Program.cs: This file defines a hidden Program class that contains the <Main>$ entry point. It
builds a pipeline for processing incoming HTTP requests and hosts the website using default
options like configuring the Kestrel web server and loading appsettings. It adds and config-
ures services that your website needs, for example, ASP.NET Core Identity for authentication,
SQLite or SQL Server for identity data storage, and so on, and routes for your application.

Building Websites Using ASP.NET Core MVC60

Reviewing the ASP.NET Core Identity database
When creating the ASP.NET Core MVC website project, if you choose to enable authentication using
individual accounts, then you need a database to store the user accounts, including emails and pass-
words. This could be a local SQLite database file or a SQL Server database. By default, the SQL Server
database will use SQL Server LocalDB as the database server, but you can configure the database
connection string to use a remote or cloud SQL Server instead.

Open appsettings.json to find the connection string used for the ASP.NET Core Identity database,
as shown highlighted for SQL Server LocalDB in the following markup:

{
 "ConnectionStrings": {
 "DefaultConnection": "Server=(localdb)\\mssqllocaldb;Database=aspnet-
Northwind.Mvc-2F6A1E12-F9CF-480C-987D-FEFB4827DE22;Trusted_
Connection=True;MultipleActiveResultSets=true"
 },
 "Logging": {
 "LogLevel": {
 "Default": "Information",
 "Microsoft.AspNetCore": "Warning"
 }
 },
 "AllowedHosts": "*"
}

If you used SQL Server LocalDB for the identity data store, then you can use Server Explorer to con-
nect to the database. You can copy and paste the connection string from the appsettings.json file.
Remember to remove the second backslash between (localdb) and mssqllocaldb.

You can then see the tables that the ASP.NET Core Identity system uses to register users and roles,
including the AspNetUsers table used to store the registered visitor, as shown in Figure 2.4:

Good Practice: Most ASP.NET Core MVC projects need to connect to other databases too.
For example, our project connects to the Northwind database. Although, by default, the
tables needed by ASP.NET Core Identity are stored in their own database, you could add
those tables to an existing database like Northwind. This could simplify deployments by
having a single database for everything needed by the MVC project, instead of multiple
separate databases.

Chapter 2 61

Figure 2.4: The AspNetUsers table with the registered user

You can use a cross-platform graphical database manager named SQLiteStudio to easily manage
SQLite databases:

1. Navigate to the following link, https://sqlitestudio.pl, and then download and install the
application.

2. Start SQLiteStudio.
3. Navigate to Database | Add a database.
4. For File, browse for and select app.db.
5. In the Databases pane, double-click AspNetUsers and then select the Data tab.

Configuring files included in an ASP.NET Core project
Until now, most of our projects have been simple console apps and class libraries with a few C# class
files. By default, when we compiled those projects, all .cs files in the project folder or subfolders were
automatically included in the build at compile time.

ASP.NET Core projects get more complicated. There are many more file types; some of them can be
compiled at runtime instead of compile time, and some of them are just content that does not need
to be compiled but does need to be deployed along with the compiled assemblies.

You can control how files are processed during a build, and which are included or excluded from a
deployment, by putting elements in the project file. These are processed by MS Build and other tools
during builds and deployments.

You declare items in the project file as child elements of an <ItemGroup> element. For example:

<--Include the greet.proto file in the build process.-->
<ItemGroup>
 <Protobuf Include="Protos\greet.proto" GrpcServices="Server" />

https://sqlitestudio.pl

Building Websites Using ASP.NET Core MVC62

</ItemGroup>

<--Remove the stylecop.json file from the build process.-->
<ItemGroup>
 <None Remove="stylecop.json" />
</ItemGroup>

<--Include the stylecop.json file in the deployment.-->
<ItemGroup>
 <AdditionalFiles Include="stylecop.json" />
</ItemGroup>

You can have as many <ItemGroup> elements as you want, so it is good practice to use them to logically
divide elements by type. They are merged automatically by build tools.

Usually, you manually add these elements when you know you need to use them, but unfortunately,
Visual Studio and other code editors sometimes mess things up by trying to be helpful.

For example, you might have added a new Razor Page file in the Pages folder named index.cshtml.
You start the web server, but the page does not appear. Or, you are working on a GraphQL service, and
you add a file named seafoodProducts.graphql. But when you run the GraphQL tool to auto-generate
client-side proxies, it fails.

These are both common indications that your code editor has decided that the new file should not be
part of the project. It has automatically added an element to the project file to remove the file from
the build process without telling you.

To solve this type of problem, review the project file for unexpected entries, like the following, and
delete them:

<ItemGroup>
 <Content Remove="Pages\index.cshtml" />
</ItemGroup>

<ItemGroup>
 <GraphQL Remove="seafoodProducts.graphql" />
</ItemGroup>

Good Practice: When using tools that automatically “fix” problems without telling you,
review your project file for unexpected elements when unexpected results happen.

Chapter 2 63

Project file build actions
As we have just seen, it is important that ASP.NET Core developers understand how project build
actions affect compilation.

All files in a .NET SDK project have a build action. Most are set implicitly based on their file extension.
You can override the default behavior by explicitly setting a build action. You can do this either by
directly editing the .csproj project file or by using your code editor’s Properties window, as shown
in Figure 2.5:

Figure 2.5: The properties of Suppliers.cshtml.cs show its default build action is C# compiler

Common build actions for ASP.NET Core project files are shown in Table 13.1:

Build action Description

AdditionalFiles This provides inputs to analyzers to verify code quality.

Compile or C# compiler This is passed to the compiler as a source file.

Content This is included as part of the website when it’s deployed.

Embedded Resource This is passed to the compiler as a resource to be embedded in the
assembly.

None This is not part of the build. This value can be used for
documentation and other files that should not be deployed with
the website.

Table 13.1: Common build actions for ASP.NET Core project files

More information: You can read more about managing MS Build items at the following
link: https://learn.microsoft.com/en-us/visualstudio/msbuild/msbuild-items.

https://learn.microsoft.com/en-us/visualstudio/msbuild/msbuild-items

Building Websites Using ASP.NET Core MVC64

Exploring an ASP.NET Core MVC website
Let’s walk through the parts that make up a modern ASP.NET Core MVC website.

ASP.NET Core MVC initialization
Appropriately enough, we will start by exploring the MVC website’s default initialization and config-
uration:

1. In Program.cs, note that it can be divided into four important sections from top to bottom. As
you review the sections, you might want to add regions and comments to remind yourself of
what each section is used for.

2. The first section imports some namespaces, as shown in the following code:

#region Import namespaces.

using Microsoft.AspNetCore.Identity; // To use IdentityUser.
using Microsoft.EntityFrameworkCore; // To use UseSqlServer method.
using Northwind.Mvc.Data; // To use ApplicationDbContext.

#endregion

3. The second section creates and configures a web host builder that does the following:

• It registers an application database context using SQL Server or SQLite. The database
connection string is loaded from the appsettings.json file.

• It adds ASP.NET Core Identity for authentication and configures it to use the applica-
tion database.

• It adds support for MVC controllers with views, as shown in the following code:

More information: You can learn more about build actions and .csproj entries at the
following link: https://learn.microsoft.com/en-us/visualstudio/ide/build-
actions.

.NET 5 and earlier ASP.NET Core project templates used both a Program class and a Startup
class to separate initialization and configuration, but with .NET 6 and later, Microsoft
encourages putting everything in a single Program.cs file. I mention this because you
might work on existing projects that use the older style. At the end of this chapter you will
find an online section that explains how this works.

Remember that, by default, many other namespaces are imported using the im-
plicit usings feature of .NET 6 and later. Build the project and then the globally
imported namespaces can be found in the following file: obj\Debug\net9.0\
Northwind.Mvc.GlobalUsings.g.cs.

https://learn.microsoft.com/en-us/visualstudio/ide/build-actions
https://learn.microsoft.com/en-us/visualstudio/ide/build-actions

Chapter 2 65

#region Configure the host web server including services.

var builder = WebApplication.CreateBuilder(args);

// Add services to the container.
var connectionString = builder.Configuration
 .GetConnectionString("DefaultConnection") ??
 throw new InvalidOperationException(
 "Connection string 'DefaultConnection' not found.");

builder.Services.AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlServer(connectionString)); // Or UseSqlite.

builder.Services.AddDatabaseDeveloperPageExceptionFilter();

builder.Services.AddDefaultIdentity<IdentityUser>(options =>
 options.SignIn.RequireConfirmedAccount = true)
 .AddEntityFrameworkStores<ApplicationDbContext>();

builder.Services.AddControllersWithViews();

var app = builder.Build();

#endregion

4. Note the builder object has two commonly used objects, Configuration and Services:

• Configuration contains merged values from all the places you could set configuration:
appsettings.json, environment variables, command-line arguments, and so on.

• Services is a collection of registered dependency services.

5. The third section configures the HTTP pipeline through which requests and responses flow
in and out. It configures a relative URL path to run database migrations if the website runs in
development, or a friendlier error page and HTTP Strict Transport Security (HSTS) for pro-
duction. HTTPS redirection, static files, routing, and ASP.NET Identity are enabled, and an
MVC default route and Razor Pages are configured, as shown in the following code:

#region Configure the HTTP request pipeline.

The call to AddDbContext is an example of registering a dependency service.
ASP.NET Core implements the dependency injection (DI) design pattern so that
other components like controllers can request needed services through their con-
structors. Developers register those services in this section of Program.cs.

Building Websites Using ASP.NET Core MVC66

if (app.Environment.IsDevelopment())
{
 app.UseMigrationsEndPoint();
}
else
{
 app.UseExceptionHandler("/Home/Error");
 // The default HSTS value is 30 days. You may want to change this for
production scenarios, see https://aka.ms/aspnetcore-hsts.
 app.UseHsts();
}

app.UseHttpsRedirection();
app.UseRouting();

app.UseAuthorization();

app.MapStaticAssets();

app.MapControllerRoute(
 name: "default",
 pattern: "{controller=Home}/{action=Index}/{id?}")
 .WithStaticAssets();

app.MapRazorPages()
 .WithStaticAssets();

#endregion

Note the following about the preceding code:

• The MapStaticAssets and WithStaticAssets methods were introduced with .NET 9. They
compress static assets in the wwwroot folder and allow MVC and Razor Pages to reference the
optimized assets.

• Arguably the most important method in this section of Program.cs is MapControllerRoute,
which maps a default route for use by MVC. This route is very flexible because it will map to
almost any incoming URL, as you will see in the next topic.

Chapter 2 67

• Although we will not create any Razor Pages in this book, we need to leave the method call
that maps Razor Page support because our MVC website uses ASP.NET Core Identity for au-
thentication and authorization, and that uses a Razor class library containing Razor Pages for
its UI components, like visitor registration and login.

• The fourth and final section has a thread-blocking method call that runs the website and waits
for incoming HTTP requests to respond to, as shown in the following code:

#region Start the host web server listening for HTTP requests.
app.Run(); // This is a blocking call.
#endregion

What does UseMigrationsEndPoint do?
What does the UseMigrationsEndPoint extension method do?

You could read the official documentation, but it does not help much, as you can see at the follow-
ing link: https://learn.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.
migrationsendpointextensions.usemigrationsendpoint.

For example, it does not tell us what relative URL path it defines by default.

Luckily, ASP.NET Core is open source, so we can read the source code and discover what it does. You can
find the source code for the UseMigrationsEndPoint extension method at the following link: https://
github.com/dotnet/aspnetcore/blob/main/src/Middleware/Diagnostics.EntityFrameworkCore/
src/MigrationsEndPointOptions.cs#L18.

Get into the habit of exploring the source code for ASP.NET Core to understand how it works.

Controlling the hosting environment
In ASP.NET Core 5 and earlier, the project template sets a rule to say that while in development mode,
any unhandled exceptions will be shown in the browser window for the developer to see the details
of the exception, as shown in the following code:

if (app.Environment.IsDevelopment())
{
 app.UseDeveloperExceptionPage();
}

With ASP.NET Core 6 and later, this code is executed automatically so it is no longer included in the
project template Program.cs source code.

How does ASP.NET Core know when we are running in development mode so that the IsDevelopment
method returns true, and this extra code executes to set up the developer exception page? Let’s find out.

ASP.NET Core can read from settings files and environment variables to determine what hosting en-
vironment to use, for example, DOTNET_ENVIRONMENT or ASPNETCORE_ENVIRONMENT.

https://learn.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.migrationsendpointextensions.usemigrationsendpoint
https://learn.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.migrationsendpointextensions.usemigrationsendpoint
https://github.com/dotnet/aspnetcore/blob/main/src/Middleware/Diagnostics.EntityFrameworkCore/src/MigrationsEndPointOptions.cs#L18
https://github.com/dotnet/aspnetcore/blob/main/src/Middleware/Diagnostics.EntityFrameworkCore/src/MigrationsEndPointOptions.cs#L18
https://github.com/dotnet/aspnetcore/blob/main/src/Middleware/Diagnostics.EntityFrameworkCore/src/MigrationsEndPointOptions.cs#L18

Building Websites Using ASP.NET Core MVC68

You can override these settings during local development:

1. In the Northwind.Mvc folder, expand the folder named Properties and open the file named
launchSettings.json. Note the https launch profile sets the environment variable for the
hosting environment to Development, as shown highlighted in the following configuration:

"https": {
 "commandName": "Project",
 "dotnetRunMessages": true,
 "launchBrowser": true,
 "applicationUrl": "https://localhost:5021;http://localhost:5020",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
},

2. Change the ASPNETCORE_ENVIRONMENT environment variable from Development to Production.
3. If you are using Visual Studio, optionally, change launchBrowser to false to prevent Visual

Studio from automatically launching a browser. This setting is ignored when you start a website
project using dotnet run or Rider.

4. In Program.cs, after the call to MapRazorPages, add a call to the MapGet method, as shown in
the following code:

app.MapGet("/env", () =>
 $"Environment is {app.Environment.EnvironmentName}");

5. Start the website project using the https launch profile and note the hosting environment is
Production, as shown in the following output:

info: Microsoft.Hosting.Lifetime[0]
 Hosting environment: Production

6. In Chrome, navigate to https://localhost:5021/env and note that the plain text is Environment
is Production.

7. Shut down the web server.
8. In launchSettings.json, change the environment variable back to Development.

More information: You can learn more about environments at the following link: https://
learn.microsoft.com/en-us/aspnet/core/fundamentals/environments.

https://learn.microsoft.com/en-us/aspnet/core/fundamentals/environments
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/environments

Chapter 2 69

The default MVC route
The responsibility of a route is to discover the name of a controller class to instantiate and an action
method to execute, with an optional id parameter to pass into the method that will generate an HTTP
response.

A default route is configured for MVC, as shown in the following code:

endpoints.MapControllerRoute(
 name: "default",
 pattern: "{controller=Home}/{action=Index}/{id?}");

The route pattern has parts in curly brackets {} called segments, and they are like named parameters
of a method. The value of these segments can be any string. Segments in URLs are not case-sensitive.

The route pattern looks at any URL path requested by the browser and matches it to extract the name
of a controller, the name of an action, and an optional id value (the ? symbol makes it optional).

If the user hasn’t entered these names, it uses the defaults of Home for the controller and Index for the
action (the = assignment sets a default for a named segment).

Table 2.2 contains example URLs and how the default route would work out the names of a controller
and action:

URL Controller Action ID

/ Home Index

/Muppet Muppet Index

/Muppet/Kermit Muppet Kermit

/Muppet/Kermit/Green Muppet Kermit Green

/Products Products Index

/Products/Detail Products Detail

/Products/Detail/3 Products Detail 3

Table 2.2: Example URLs mapped via the default route

Controllers and actions
In MVC, the C stands for controller. As you saw in Figure 2.1, the incoming request is handled by the
configured HTTP request pipeline, then by a route handler, and then by a controller, which creates
a model and passes it to a view. So, the design pattern could have been named PRCMV, for pipe-
line-route-controller-model-view, but MVC is simpler and is easier to say. The letters are not in the
order of processing!

Building Websites Using ASP.NET Core MVC70

The responsibilities of a controller
The responsibilities of a controller are as follows:

• Identify the services that the controller needs to be in a valid state and to function properly
in their class constructors.

• Use the action name to identify a method to execute.
• Extract parameters from the HTTP request.
• Use the parameters to fetch any additional data needed to construct a view model and pass it to

the appropriate view for the client. For example, if the client is a web browser, then a view that
renders HTML would be most appropriate. Other clients might prefer alternative renderings,
like document formats such as a PDF file or an Excel file, or data formats, like JSON or XML.

• Return the results from the view to the client as an HTTP response with an appropriate status
code.

Routing to controllers
From the route and an incoming URL, ASP.NET Core knows the name of the controller; so, it will then
look for a class that is decorated with the [Controller] attribute or derives from a class decorated
with that attribute. For example, the Microsoft-provided class named ControllerBase, as shown in
the following code:

namespace Microsoft.AspNetCore.Mvc
{
 //
 // Summary:
 // A base class for an MVC controller without view support.
 [Controller]
 public abstract class ControllerBase
 {
...

The ControllerBase class
As you can see in the XML comment, ControllerBase does not support views. It is used for creating
web services, as you will see in Chapter 9, Building Services Using ASP.NET Core Web API.

ControllerBase has many useful properties for working with the current HTTP context, as shown
in Table 2.3:

Good Practice: Controllers should be thin, meaning they only perform the above-listed
activities but do not implement any business logic. All business logic should be imple-
mented in services that the controller calls when needed.

Chapter 2 71

Property Description

Request
Just the HTTP request, for example, headers, query string parameters, the body
of the request as a stream that you can read from, the content type and length,
and cookies.

Response

Just the HTTP response, for example, headers, the body of the response as
a stream that you can write to, the content type and length, status code, and
cookies. There are also delegates like OnStarting and OnCompleted that you
can hook a method up to.

HttpContext

Everything about the current HTTP context including the request and response,
information about the connection, a collection of features that have been
enabled on the server with middleware, and a User object for authentication
and authorization.

Table 2.3: Useful properties for working with the current HTTP context

The Controller class
Microsoft provides another class named Controller that your classes can inherit from if they need
view support, as shown in the following code:

namespace Microsoft.AspNetCore.Mvc
{
 //
 // Summary:
 // A base class for an MVC controller with view support.
 public abstract class Controller : ControllerBase,
 IActionFilter, IFilterMetadata, IAsyncActionFilter, IDisposable
 {
...

Controller has many useful properties for working with views, as shown in Table 2.4:

Property Description

ViewData A dictionary in which the controller can store key/value pairs that is accessible in a
view. The dictionary’s lifetime is only for the current request/response.

ViewBag A dynamic object that wraps the ViewData to provide a friendlier syntax for setting
and getting dictionary values.

TempData

A dictionary in which the controller can store key/value pairs that is accessible in
a view. The dictionary’s lifetime is for the current request/response and the next
request/response for the same visitor session. This is useful for storing a value
during an initial request, responding with a redirect, and then reading the stored
value in the subsequent request.

Table 2.4: Useful properties for working with views

Building Websites Using ASP.NET Core MVC72

Controller has many useful methods for working with views, as shown in Table 2.5:

Method Description

View

This returns a ViewResult after executing a view that renders a full response,
for example, a dynamically generated web page. The view can be selected
using a convention or be specified with a string name. A model can be passed
to the view.

PartialView

This returns a PartialViewResult after executing a view that is part of a
full response, for example, a dynamically generated chunk of HTML. The
view can be selected using a convention or be specified with a string name. A
model can be passed to the view.

ViewComponent
This returns a ViewComponentResult after executing a component
that dynamically generates HTML. The component must be selected by
specifying its type or its name. An object can be passed as an argument.

Json
This returns a JsonResult containing a JSON-serialized object. This can be
useful for implementing a simple web API as part of an MVC controller that
primarily returns HTML for a human to view.

Table 2.5: Useful methods for working with views

Reviewing the project template controller
Let’s review the controller used to generate the home, privacy, and error pages:

1. Expand the Controllers folder.
2. Open the file named HomeController.cs.
3. Note, as shown in the following code, that:

• Extra namespaces are imported, which I have added comments to in order to show
which types they are needed for.

• A private read-only field is declared to store a reference to a logger for the HomeController
that is set in a constructor.

• All three action methods call a method named View and return the results as an
IActionResult interface to the client.

• The Error action method passes a view model into its view with a request ID used for
tracing. The error response will not be cached:

using System.Diagnostics; // To use Activity.
using Microsoft.AspNetCore.Mvc; // To use Controller, IActionResult.
using Northwind.Mvc.Models; // To use ErrorViewModel.

namespace Northwind.Mvc.Controllers;

public class HomeController : Controller

Chapter 2 73

{
 private readonly ILogger<HomeController> _logger;

 public HomeController(ILogger<HomeController> logger)
 {
 _logger = logger;
 }

 public IActionResult Index()
 {
 return View();
 }

 public IActionResult Privacy()
 {
 return View();
 }

 [ResponseCache(Duration = 0,
 Location = ResponseCacheLocation.None,
 NoStore = true)]
 public IActionResult Error()
 {
 return View(new ErrorViewModel { RequestId =
 Activity.Current?.Id ?? HttpContext.TraceIdentifier });
 }
}

If the visitor navigates to a path of / or /Home, then it is the equivalent of /Home/Index because those
were the default names for the controller and action in the default route.

The view search path convention
The Index and Privacy methods are identical in implementation, yet they return different web pages.
This is because of conventions. The call to the View method looks at different paths for the Razor file
to generate the web page.

Let’s deliberately break one of the page names so that we can see the paths searched by default:

1. In the Northwind.Mvc project, expand the Views folder and then the Home folder.
2. Rename the Privacy.cshtml file to Privacy2.cshtml.
3. Start the Northwind.Mvc website project using the https launch profile.

Building Websites Using ASP.NET Core MVC74

4. Start Chrome, navigate to https://localhost:5021/, click Privacy, and note the paths that
are searched for a view to render the web page (including in Shared folders for MVC views
and Razor Pages) in the exception in both the browser and the command prompt or terminal
output, as shown in Figure 2.6:

Figure 2.6: An exception showing the default search path for views

5. Close Chrome and shut down the web server.
6. Rename the Privacy2.cshtml file back to Privacy.cshtml.

You have now seen the view search path convention, as shown in the following list:

• Specific Razor View: /Views/{controller}/{action}.cshtml
• Shared Razor View: /Views/Shared/{action}.cshtml
• Shared Razor Page: /Pages/Shared/{action}.cshtml

Logging using the dependency service
You have just seen that some errors are caught and written to the console. You can write your own
messages to the console in the same way by using the logger:

1. In the Controllers folder, in HomeController.cs, in the Index method, add statements before
the return statement to use the logger to write some messages of various levels to the console,
as shown highlighted in the following code:

public IActionResult Index()
{

Good Practice: In Chapter 4, Building and Localizing Web User Interfaces, you will implement
feature folders. For these to work, you override the search paths by explicitly specifying
the path to Razor views for a feature because they will not be stored under the Views
folder, as shown in the preceding convention.

https://localhost:5021/

Chapter 2 75

 _logger.LogError("This is a serious error (not really!)");
 _logger.LogWarning("This is your first warning!");
 _logger.LogWarning("Second warning!");
 _logger.LogInformation("I am in the Index method of the
HomeController.");

 return View();
}

2. Start the Northwind.Mvc website project using the https launch profile.
3. Start Chrome and navigate to the home page of the website.
4. At the command prompt or terminal, note the messages, as shown in the following output:

fail: Northwind.Mvc.Controllers.HomeController[0]
 This is a serious error (not really!)
warn: Northwind.Mvc.Controllers.HomeController[0]
 This is your first warning!
warn: Northwind.Mvc.Controllers.HomeController[0]
 Second warning!
info: Northwind.Mvc.Controllers.HomeController[0]
 I am in the Index method of the HomeController.

5. Close Chrome and shut down the web server.
6. Now that you’ve seen what the different logging levels look like in output, comment out the

four logging statements so they do not clutter the output from now on.

Using entity and view models
In MVC, the M stands for model. Models represent the data required to respond to a request. There
are two types of models commonly used: entity models and view models.

Entity models represent entities in a database like SQL Server or SQLite. Based on the request, one or
more entities might need to be retrieved from data storage. Entity models are defined using classes
since they might need to change and then be used to update the underlying data store.

All the data that we want to show in response to a request is the MVC model, sometimes called a view
model, because it is a model that is passed into a view for rendering into a response format like HTML
or JSON. View models should be immutable, so they are commonly defined using C# record types.

More information: You can learn a lot more about ASP.NET Core logging at the following
link: https://learn.microsoft.com/en-us/aspnet/core/fundamentals/logging/.

https://learn.microsoft.com/en-us/aspnet/core/fundamentals/logging/

Building Websites Using ASP.NET Core MVC76

For example, the following HTTP GET request might mean that the browser is asking for the product
details page for product number 3: http://www.example.com/products/details/3.

The controller would need to use the ID route value 3 to retrieve the entity for that product and pass
it to a view that can then turn the model into HTML for display in a browser.

Controllers (and their action methods) actually do things, like make decisions, using business logic;
so, they have responsibilities. Models are just dumb structures that hold data. They don’t decide or
do anything; so, they don’t have responsibilities. Views just convert that data into some other format.
They should not have any complex business logic in them either.

View model example
Imagine that when a user comes to our website, we want to show them a carousel of categories, a list
of products, and a count of the number of visitors we have had this month.

EF Core is a natural way to get real data onto a website. In Chapter 1, Introducing Web Development Using
Controllers, you created a pair of class libraries: one for the entity models and one for the Northwind
database context, using the SQL Server data provider. You will now use them in your website project.

Functionality, such as EF Core database contexts, that is needed by an ASP.NET Core project should be
registered as a dependency service during website startup. The code in the GitHub repository solution
and below uses SQLite, but you can easily use SQL Server if you prefer.

Let’s see how:

1. In the Northwind.Mvc project, add a project reference to Northwind.DataContext, as shown
in the following markup:

<ItemGroup>
 <ProjectReference Include=
"..\Northwind.DataContext\Northwind.DataContext.csproj" />
</ItemGroup>

2. Build the Northwind.Mvc project to compile its dependencies and copy the assemblies to the
MVC project’s bin folder.

3. In appsettings.json, add a connection string for the Northwind database using SQL Server,
as shown highlighted in the following markup:

{
 "ConnectionStrings": {
 "DefaultConnection": "...",
 "NorthwindConnection": "Server=tcp:127.0.0.1,1433;Database=Northwind;
MultipleActiveResultSets=true;TrustServerCertificate=true;"
 },

http://www.example.com/products/details/3

Chapter 2 77

4. In Program.cs, import the namespace to work with your entity model types, as shown in the
following code:

using Northwind.EntityModels; // To use AddNorthwindContext method.
using Microsoft.Data.SqlClient; // To use SqlConnectionStringBuilder.

5. Before the builder.Build method call, add statements to load the appropriate connection
string, and then register the Northwind database context, as shown in the following code:

string? sqlServerConnection = builder.Configuration
 .GetConnectionString("NorthwindConnection");

if (sqlServerConnection is null)
{
 Console.WriteLine("Northwind database connection string is missing from
configuration!");
}
else
{
 // If you are using SQL Server authentication then disable
 // Windows Integrated authentication and set user and password.
 SqlConnectionStringBuilder sql = new(sqlServerConnection);

 sql.IntegratedSecurity = false;
 sql.UserID = Environment.GetEnvironmentVariable("MY_SQL_USR");
 sql.Password = Environment.GetEnvironmentVariable("MY_SQL_PWD");

 builder.Services.AddNorthwindContext(sql.ConnectionString);
}

6. In the Models folder, add a class file named HomeIndexViewModel.cs.

Modify the connection string to match wherever your Northwind database is. For
example, in SQL Edge in Docker or local SQL Server Developer edition. If you have
to use SQL Server authentication, do not store the user and password in this file!
You will set them from environment variables in code.

Good Practice: Although the ErrorViewModel class created by the MVC project
template does not follow this convention, I recommend that you use the naming
convention {Controller}{Action}ViewModel for your view model classes.

Building Websites Using ASP.NET Core MVC78

7. In HomeIndexViewModel.cs, add statements to define a record that has three properties for a
count of the number of visitors, and lists of categories and products, as shown in the following
code:

using Northwind.EntityModels; // To use Category, Product.

namespace Northwind.Mvc.Models;

public record HomeIndexViewModel(int VisitorCount,
 IList<Category> Categories, IList<Product> Products);

8. In HomeController.cs, import the Northwind.EntityModels namespace, as shown in the
following code:

using Northwind.EntityModels; // To use NorthwindContext.

9. Add a field to store a reference to a Northwind instance and initialize it in the constructor, as
shown highlighted in the following code:

public class HomeController : Controller
{
 private readonly ILogger<HomeController> _logger;
 private readonly NorthwindContext _db;

 public HomeController(ILogger<HomeController> logger,
 NorthwindContext db)
 {
 _logger = logger;
 _db = db;
 }

10. In the Index action method, after the statements that write to the log, create an instance of
the view model for this method, simulating a visitor count using the Random class to generate
a number between 1 and 1,000, and using the Northwind database to get lists of categories
and products and then pass the model to the view, as shown highlighted in the following code:

 HomeIndexViewModel model = new
 (
 VisitorCount: Random.Shared.Next(1, 1001),
 Categories: _db.Categories.ToList(),

ASP.NET Core will use constructor parameter injection to pass an instance of the
NorthwindContext database context using the connection string you specified
in Program.cs.

Chapter 2 79

 Products: _db.Products.ToList()
);

 return View(model); // Pass the model to the view.
}

Remember the view search convention: When the View method is called in a controller’s action meth-
od, ASP.NET Core MVC looks in the Views folder for a subfolder with the same name as the current
controller, that is, Home. It then looks for a file with the same name as the current action, that is, Index.
cshtml. It will also search for views that match the action method name in the Shared folder and for
Razor Pages in the Pages folder.

Implementing views
In MVC, the V stands for view. The responsibility of a view is to transform a model into HTML or
other formats.

There are multiple view engines that could be used to do this. The default view engine is called Razor,
and it uses the @ symbol to indicate server-side code execution.

Let’s modify the home page view to render the lists of categories and products:

1. Expand the Views folder, and then expand the Home folder.
2. In Index.cshtml, note the block of C# code wrapped in @{ }. This will execute first and can

be used to store data that needs to be passed into a shared layout file, like the title of the web
page, as shown in the following code:

@{
 ViewData["Title"] = "Home Page";
}

3. Note the static HTML content in the <div> element that uses Bootstrap for styling, for example,
class="text-center":

• Just as with Razor Pages, there is a file named _ViewStart.cshtml that gets executed
by the View method. It is used to set defaults that apply to all views.

• For example, it sets the Layout property of all views to a shared layout file, as shown
in the following markup:

@{
 Layout = "_Layout";
}

Good Practice: As well as defining your own styles, base your styles on a common
library, such as Bootstrap, that implements responsive design.

Building Websites Using ASP.NET Core MVC80

4. In the Views folder, in _ViewImports.cshtml, note that it imports some namespaces and then
adds the ASP.NET Core Tag Helpers, as shown in the following code:

@using Northwind.Mvc
@using Northwind.Mvc.Models
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

5. In the Shared folder, open the _Layout.cshtml file.
6. Note that the title is being read from the ViewData dictionary that was set earlier in the Index.

cshtml view, as shown in the following markup:

<title>@ViewData["Title"] – Northwind.Mvc</title>

7. Note the rendering of links to support Bootstrap, a site stylesheet, and styles specific to this
project, where ~ means the wwwroot folder, as shown in the following markup:

<link rel="stylesheet"
 href="~/lib/bootstrap/dist/css/bootstrap.css" />
<link rel="stylesheet" href="~/css/site.css" />
<link rel="stylesheet" href="~/Northwind.Mvc.styles.css"
 asp-append-version="true" />

8. Note the rendering of a navigation bar in the header, as shown in the following markup:

<body>
 <header>
 <nav class="navbar ...">

9. Note the rendering of a collapsible <div> containing a partial view for logging in, and hyper-
links to allow users to navigate between pages using ASP.NET Core Tag Helpers with attributes
like asp-controller and asp-action, as shown in the following markup:

<div class=
 "navbar-collapse collapse d-sm-inline-flex justify-content-between">
 <ul class="navbar-nav flex-grow-1">
 <li class="nav-item">
 <a class="nav-link text-dark" asp-area=""
 asp-controller="Home" asp-action="Index">Home

 <li class="nav-item">
 <a class="nav-link text-dark"

The ASP.NET Core MVC project template uses a local copy of Bootstrap version
5.3.3. This might have been updated to a later version by the time you read this.

Chapter 2 81

 asp-area="" asp-controller="Home"
 asp-action="Privacy">Privacy

 <partial name="_LoginPartial" />
</div>

The <a> elements use Tag Helper attributes named asp-controller and asp-action to specify
the controller name and action name that will execute when the link is clicked on. If you want
to navigate to a feature in a Razor class library, like the employees component that you created
in the previous chapter, then you use asp-area to specify the feature name.

10. Note the rendering of the body inside the <main> element, as shown in the following markup:

<div class="container">
 <main role="main" class="pb-3">
 @RenderBody()
 </main>
</div>

The RenderBody method injects the contents of a specific Razor View for a page like the Index.
cshtml file at that point in the shared layout.

11. Note the rendering of <script> elements at the bottom of the page so that it does not slow
down the display of the page, and that you can add your own script blocks into an optional
defined section named scripts, as shown in the following markup:

<script src="~/lib/jquery/dist/jquery.min.js"></script>
<script src="~/lib/bootstrap/dist/js/bootstrap.bundle.min.js">
</script>
<script src="~/js/site.js" asp-append-version="true"></script>
@await RenderSectionAsync("Scripts", required: false)

12. In _LoginPartial.cshtml, note the login functionality is implemented using the ASP.NET
Core Identity system as Razor Pages using an asp-area named Identity, as shown in the
following markup:

@using Microsoft.AspNetCore.Identity
@inject SignInManager<IdentityUser> SignInManager
@inject UserManager<IdentityUser> UserManager

<ul class="navbar-nav">
 @if (SignInManager.IsSignedIn(User))
 {
 <li class="nav-item">
 <a class="nav-link text-dark" asp-area="Identity"

Building Websites Using ASP.NET Core MVC82

 asp-page="/Account/Manage/Index" title="Manage">
 Hello @User.Identity?.Name!

 <li class="nav-item">
 <form class="form-inline" asp-area="Identity"
 asp-page="/Account/Logout"
 asp-route-returnUrl="@Url.Action("Index", "Home",
 new { area = "" })">
 <button type="submit" class="nav-link btn
 btn-link text-dark">Logout</button>
 </form>

 }
 else
 {
 <li class="nav-item">
 <a class="nav-link text-dark" asp-area="Identity"
 asp-page="/Account/Register">Register

 <li class="nav-item">
 <a class="nav-link text-dark" asp-area="Identity"
 asp-page="/Account/Login">Login

 }

13. In _ValidationScriptsPartial.cshtml, note this partial view has references to a pair of
jQuery scripts for performing validation, as shown in the following markup:

<script src="~/lib/jquery-validation/dist/jquery.validate.min.js"></
script>
<script src="~/lib/jquery-validation-unobtrusive/jquery.validate.
unobtrusive.min.js"></script>

Good Practice: If you create a Razor View that uses a model with validation at-
tributes like [Required] and [StringLength], then add this partial view to the
Scripts block to enable validation on the client side by the browser, as shown
in the following markup:

@section Scripts {
 <partial name="_ValidationScriptsPartial" />
}

Chapter 2 83

How cache busting with Tag Helpers works
When asp-append-version is specified with a true value in a <link>, , or <script> element,
the Tag Helper for that tag type is invoked.

They work by automatically appending a query string value named v that is generated from a SHA256
hash of the referenced source file, as shown in the following example generated output:

<script src="~/js/site.js? v=Kl_dqr9NVtnMdsM2MUg4qthUnWZm5T1fCEimBPWDNgM"></
script>

If even a single byte within the site.js file changes, then its hash value will be different, and there-
fore if a browser or CDN is caching the script file, then it will bust the cached copy and replace it with
the new version.

The src attribute must be set to a static file stored on the local web server, usually in the wwwroot folder,
but you can configure additional locations. Remote references are not supported.

Prototyping with Bootstrap
Bootstrap is the world’s most popular framework for building responsive, mobile-first websites. It
combines CSS stylesheets with JavaScript libraries to implement its functionality. It is a good choice
for prototyping a website UI, although, before going public, you might want to hire a web designer to
build a custom Bootstrap theme or replace it with a completely custom set of CSS stylesheets to give
your website a distinct brand.

Bootstrap can be divided into four parts:

• Layout: The layout system in Bootstrap provides a responsive grid system, flexible containers,
and powerful utilities for creating structured, adaptive designs that adjust seamlessly across
various screen sizes and devices.

• Content: The content section of Bootstrap includes a variety of pre-styled HTML elements like
typography, images, and tables, ensuring a consistent and polished look for textual and visual
content across your web pages.

• Components: Bootstrap’s components are reusable, pre-built UI elements such as buttons,
navigation bars, modals, and forms, designed to enhance functionality and user experience
with minimal coding effort.

• Utilities: Utilities in Bootstrap offer a range of CSS classes that provide quick, low-level con-
trol over common styling tasks like spacing, alignment, display, and visibility, allowing easy
customization and fine-tuning of your designs.

You can use only the parts you need.

You can see this for yourself in the current project because the _Layout.cshtml file has
the <script src="~/js/site.js" asp-append-version="true"></script> element.

Building Websites Using ASP.NET Core MVC84

Breakpoints and containers
The first thing to understand about Bootstrap is its predefined breakpoints:

• X-small (no inline suffix): <576px
• Small (sm): >=576px
• Medium (md): >=768px
• Large (lg): >=992px
• Extra large (xl): >=1200px
• Extra extra large (xxl): >=1400px

Containers are the foundation of the Bootstrap grid layout system. Imagine you have a <div> element
that uses the Bootstrap container class, as shown in the following markup:

<div class="container">
 Some content.
</div>

As you can see in Table 2.6, when the width of the browser is less than 576 pixels wide, the <div> will
stretch to fill 100% of the available width. When the width of the browser is greater than or equal to
576 pixels, the width of the <div> becomes fixed at 540 pixels wide until the width of the browser is
greater than or equal to 768 pixels, at which point the width of the <div> becomes fixed at 720 pixels
wide. This repeats as the width of the browser increases; at each breakpoint, the fixed width of the
<div> snaps to a larger value.

X-Small

<576px

Small

>=576px

Medium

>=768

Large

>=992px

Extra large

>=1200px

XXL

>=1400px
.container 100% 540px 720px 960px 1140px 1320px
.container-sm 100% 540px 720px 960px 1140px 1320px
.container-md 100% 100% 720px 960px 1140px 1320px
.container-lg 100% 100% 100% 960px 1140px 1320px
.container-xl 100% 100% 100% 100% 1140px 1320px
.container-xxl 100% 100% 100% 100% 100% 1320px
.container-fluid 100% 100% 100% 100% 100% 100%

Table 2.6: Bootstrap container widths

Imagine that you now have a <div> element that uses the container-lg class, as shown in the fol-
lowing markup:

<div class="container-lg">
 Some content.
</div>

Chapter 2 85

As you can see in the table above, when the width of the browser is less than 992 pixels wide, the <div>
will always take up 100% of the available browser width. At 992 pixels and above, the <div> width
snaps to the breakpoints 960px, 1140px, and 1320px.

If you use the class container-fluid, the <div> always takes up 100% of the available width.

Rows and columns
A Bootstrap container can be divided into rows and columns, for example, one row with three columns,
as shown in the following markup:

<div class="container">
 <div class="row">
 <div class="col">
 Column
 </div>
 <div class="col">
 Column
 </div>
 <div class="col">
 Column
 </div>
 </div>
</div>

If you use the col class, then each column will have equal width. But each row is also divided into
12 virtual columns. If you specify a number suffix between 1 and 12, then that column will use that
number of twelfths and the others will divide the rest equally. For example, you could say the left
column should use two twelfths, and right column should use four twelfths, and the middle column
uses the rest, as shown in the following markup:

<div class="container">
 <div class="row">
 <div class="col-2">
 Column
 </div>
 <div class="col">
 Column
 </div>
 <div class="col-4">
 Column
 </div>
 </div>
</div>

Building Websites Using ASP.NET Core MVC86

Color themes
Bootstrap has eight built-in color themes in addition to the default (black on white), as shown in the
following list and Figure 2.7:

• primary: Bright blue theme. For example, white text on a bright blue background, or bright
blue text and outline on a white background.

• secondary: Gray theme. For example, white text on a gray background, or grey text and outline
on a white background.

• success: Green theme. For example, white text on a dark green background, or dark green
text and outline on a white background.

• danger: Red theme. For example, white text on a red background, or red text and outline on
a white background.

• warning: Yellow theme. For example, black text on a yellow background, or yellow text and
outline on a white background.

• info: Light blue theme. For example, black text on a light blue background, or light blue text
and outline on a white background.

• light: Light gray theme. For example, black text on a light gray background, or light grey text
and outline on a white background.

• dark: Dark gray theme. For example, white text on a dark gray background, or dark grey text
and outline on a white background.

Figure 2.7: Bootstrap color themes

Tables
Bootstrap styles for tables are not automatically applied. You must opt in by applying the table class.
You can then apply additional style classes:

• table: This is required to enable table styling.

The grid system is powerful but can get complicated quickly. To learn more, you can visit
the following link: https://getbootstrap.com/docs/5.3/layout/grid./

https://getbootstrap.com/docs/5.3/layout/grid

Chapter 2 87

• table-primary, table-warning, and so on: Alternative enabling of table styling with a color
theme.

• table-sm: To use half the default padding so the table is more compact.
• table-striped: Add zebra-striping to any table row within the <tbody>.
• table-hover: Enable a hover state to change highlights as the mouse moves over table rows

within a <tbody>.
• table-bordered: Add a border on all sides of the table and its cells.

Let’s see an example, as shown in the following markup:

<table class="table table-striped table-hover table-bordered">
 <thead>
 <tr>
 <th>
 ...
 </thead>
 <tbody>
 <tr>
 <td>
 ...
 </tbody>
</table>

The contents in cells in <thead> align to the bottom by default. The contents in cells in <tbody> align to
the top by default. Override these defaults and control other alignment by using the following classes:

• align-top: Align the contents of the row or cell to the top.
• vertical-align-middle: Align the contents of the row or cell to the middle vertically.
• align-bottom: Align the contents of the row or cell to the bottom.
• align-left: Align the contents of the row or cell to the left.
• align-middle: Align the contents of the row or cell to the middle horizontally.
• align-right: Align the contents of the row or cell to the right.

Buttons and links
Bootstrap has button styles that can be applied to actual <button> and <input type="button"> ele-
ments as well as hyperlinks, as shown in the following markup:

<button class="btn btn-primary" type="button">Click Me</button>
<input class="btn btn-primary" type="button" value="Click Me">
Click Me

All three elements above will look like a bright blue button with the label Click Me.

If you do not want the text in the button label to wrap, add the text-nowrap class.

Building Websites Using ASP.NET Core MVC88

Use btn-outline-primary (or any of the other color themes) to have more subtle styling that uses
the color for the outline and text with a white background until the mouse hovers over the button.

You can adjust the size of the button by adding btn-sm to make it smaller or btn-lg to make it larger.

Badges
Badges are used to show small pieces of information, like the number of unread messages. For example:

<button type="button" class="btn btn-primary">
 Messages 4
</button>

You can reposition the badge and use the rounded-pill class to turn the default rectangle badge into
a circular one like most apps do, to show the number of unread notifications or messages inside a
red circle:

<button type="button" class="btn btn-primary position-relative">
 Messages
 <span class="position-absolute top-0 start-100 translate-middle
 badge rounded-pill bg-danger">
 12 unread messages

</button>

You can use a more rounded corner to turn a badge into a pill, as shown in the following markup and
Figure 2.8:

Primary
Secondary
Success
Danger
Warning
Info
Light
Dark

Chapter 2 89

Figure 2.8: Pill badges using Bootstrap

Alerts
You will often need to show messages to website visitors. Alerts must use one of the eight color themes.
Any links within the alert element should use the alert-link class. The contents can be plain text or
use additional elements like headings, as shown in the following markup:

<div class="alert alert-success" role="alert">
 <h4 class="alert-heading">Order was accepted.</h4>
 <p>To view the order, click here.</p>
</div>

For more examples of alerts, for example, adding icons inside the alert, see the official doc-
umentation at the following link: https://getbootstrap.com/docs/5.2/components/
alerts/#icons.

https://getbootstrap.com/docs/5.2/components/alerts/#icons
https://getbootstrap.com/docs/5.2/components/alerts/#icons

Building Websites Using ASP.NET Core MVC90

Good practice for Bootstrap
Bootstrap is like Marmite. Some developers love it; some hate it.

Good reasons to use Bootstrap include:

• It saves time.
• It is customizable.
• It is open source.
• It is well documented officially and has lots of answers about it on sites like Stack Overflow.

But implementing Bootstrap without care has the following negatives:

• Your website will look generic.
• It is heavy compared to a hand-crafted solution.

Customizing an ASP.NET Core MVC website
Now that you’ve reviewed the structure of a basic MVC website, you will customize and extend it. You
have already registered an EF Core model for the Northwind database, so the next task is to output
some of that data on the home page.

Defining a custom style
The home page will show a list of the 77 products in the Northwind database. To make efficient use
of space, we want to show the list in three columns. To do this, we need to customize the stylesheet
for the website:

1. In the wwwroot\css folder, open the site.css file.
2. At the bottom of the file, add a new style that will apply to an element with the product-columns

ID, as shown in the following code:

#product-columns
{
 column-count: 3;
}

Good Practice: As well as defining your own styles, base your styles on a common library,
such as Bootstrap, that implements responsive design. However, if you are building a
website that needs a distinct identity or brand, make sure you use its theming support.
Do not just accept the defaults.

Chapter 2 91

Setting up the category images
The Northwind database includes a table of eight categories, but they do not have images, and websites
look better with some colorful pictures:

1. In the wwwroot folder, create a folder named images.
2. In the images folder, add eight image files named category1.jpeg, category2.jpeg, and so

on, up to category8.jpeg.

Razor syntax and expressions
Before we customize the home page view, let’s review an example Razor file. The file has an initial
Razor code block that instantiates an order with the price and quantity, and then outputs information
about the order on the web page, as shown in the following markup:

@{
 Order order = new()
 {
 OrderId = 123,
 Product = "Sushi",
 Price = 8.49M,
 Quantity = 3
 };
}

<div>Your order for @order.Quantity of @order.Product has a total cost of $@
order.Price * @order.Quantity</div>

The preceding Razor file would result in the following incorrect output:

Your order for 3 of Sushi has a total cost of $8.49 * 3

Although Razor markup can include the value of any single property using the @object.property
syntax, you should wrap expressions in parentheses, as shown in the following markup:

<div>Your order for @order.Quantity of @order.Product has a total cost of $@
(order.Price * order.Quantity)</div>

The preceding Razor expression results in the following correct output:

Your order for 3 of Sushi has a total cost of $25.47

You can download images from the GitHub repository for this book at the following
link: https://github.com/markjprice/web-dev-net9/tree/main/code/images/
Categories.

https://github.com/markjprice/web-dev-net9/tree/main/code/images/Categories
https://github.com/markjprice/web-dev-net9/tree/main/code/images/Categories

Building Websites Using ASP.NET Core MVC92

Defining a typed view
To improve the IntelliSense when writing a view, you can define what type the view can expect using
an @model directive at the top:

1. In the Views folder, in _ViewImports.cshtml, add a statement to import the EF Core entity
models for all Razor views and pages, as shown in the following code:

@using Northwind.EntityModels

2. In the Views\Home folder, open Index.cshtml.
3. At the top of the file, add statements to import the namespace for Northwind entities and set

the model type to use the HomeIndexViewModel, as shown in the following code:

@model HomeIndexViewModel

Now, whenever we type Model in this view, your code editor will know the correct type for the
model and will provide IntelliSense for it.

While entering code in a view, remember the following:

• Declare the type for the model using @model (with a lowercase m).
• Interact with the instance of the model using @Model (with an uppercase M).

Let’s continue customizing the view for the home page.

4. In the initial Razor code block, add a statement to declare a string variable for the current
item, as shown highlighted in the following markup:

@{
 ViewData["Title"] = "Home Page";
 string currentItem = "";
}

5. Under the existing <div> element, after its closing </div>, add new markup to output categories
in a carousel and products as an unordered list, as shown in the following markup:

@if (Model is not null)
{
<div id="categories" class="carousel slide" data-bs-ride="carousel"
 data-bs-interval="3000" data-keyboard="true">
 <ol class="carousel-indicators">
 @for (int c = 0; c < Model.Categories.Count; c++)
 {
 if (c == 0)
 {
 currentItem = "active";
 }

Chapter 2 93

 else
 {
 currentItem = "";
 }
 <li data-bs-target="#categories" data-bs-slide-to="@c"
 class="@currentItem">
 }

 <div class="carousel-inner">
 @for (int c = 0; c < Model.Categories.Count; c++)
 {
 if (c == 0)
 {
 currentItem = "active";
 }
 else
 {
 currentItem = "";
 }
 <div class="carousel-item @currentItem">
 <img class="d-block w-100" src=
 "~/images/category@(Model.Categories[c].CategoryId).jpeg"
 alt="@Model.Categories[c].CategoryName" />
 <div class="carousel-caption d-none d-md-block">
 <h2>@Model.Categories[c].CategoryName</h2>
 <h3>@Model.Categories[c].Description</h3>
 <p>
 <a class="btn btn-primary" href="/home/categorydetail/
@Model.Categories[c].CategoryId">View
 </p>
 </div>
 </div>
 }
 </div>
 <a class="carousel-control-prev" href="#categories"
 role="button" data-bs-slide="prev">
 <span class="carousel-control-prev-icon"
 aria-hidden="true">
 Previous

Building Websites Using ASP.NET Core MVC94

 <a class="carousel-control-next" href="#categories"
 role="button" data-bs-slide="next">

 Next

</div>
}

<div class="row">
 <div class="col-md-12">
 <h1>Northwind</h1>
 <p class="lead">
 We have had @Model?.VisitorCount visitors this month.
 </p>
 @if (Model is not null)
 {
 <h2>Products</h2>
 <div id="product-columns">
 <ul class="list-group">
 @foreach (Product p in @Model.Products)
 {
 <li class="list-group-item d-flex justify-content-between align-
items-start">
 <a asp-controller="Home" asp-action="ProductDetail"
 asp-route-id="@p.ProductId" class="btn btn-outline-primary">
 <div class="ms-2 me-auto">@p.ProductName</div>

 @(p.UnitPrice is null ? "zero" : p.UnitPrice.Value.
ToString("C"))

 }

 </div>
 }
 </div>
</div>

While reviewing the preceding Razor markup, note the following:

• Rider might tell you that Model is never null, so you do not need to check for null.

Chapter 2 95

Visual Studio will warn you the opposite, which is why I put in the null check. Unfortunately,
it is a common programmer error to pass an object for the model that is null.

• It is easy to mix static HTML elements such as and with C# code to output the car-
ousel of categories and the list of product names.

• The <div> element with the id attribute of product-columns will use the custom style that we
defined earlier, so all the content in that element will be displayed in three columns.

• The element for each category uses parentheses around a Razor expression to ensure that
the compiler does not include the .jpeg as part of the expression, as shown in the following
markup: "~/images/category@(Model.Categories[c].CategoryID).jpeg".

• The <a> elements for the product links use Tag Helpers to generate URL paths. Clicks on these
hyperlinks will be handled by the HomeController and its ProductDetail action method. This
action method does not exist yet, but you will add it later in this chapter. The ID of the product
is passed as a route segment named id, as shown in the following URL path for Ipoh Coffee:
https://localhost:5021/Home/ProductDetail/43.

Now, we are ready to see the results of our customizations.

Testing the home page with categories
Let’s see the result of our customized home page:

1. Start Docker and the azuresqledge container.
2. Start the Northwind.Mvc website project using the https launch profile.
3. Note the home page has a rotating carousel showing categories, a random number of visitors,

and a list of products in three columns, as shown in Figure 2.9:

Figure 2.9: The updated Northwind MVC website home page

Building Websites Using ASP.NET Core MVC96

For now, clicking on any of the categories or product links gives 404 Not Found. You will fix
this in the next chapter.

4. Close Chrome and shut down the web server.

Cross-functional filters
When you need to add some functionality to multiple controllers and actions, you can use existing
filters or define your own filters that are implemented as an attribute class.

Filters can be applied at the following levels:

• At the action level, by decorating an action method with the attribute. This will only affect that
one action method. An example is the [Route] attribute that you will see in the next section.

• At the controller level, by decorating the controller class with the attribute. This will affect all
methods of the controller.

• At the global level, by adding the attribute type to the Filters collection of the MvcOptions
instance, which can be used to configure MVC when calling the AddControllersWithViews
method, as shown in the following code:

builder.Services.AddControllersWithViews(options =>
 {
 options.Filters.Add(typeof(MyCustomFilter));
 });

Using a filter to define a custom route
You might want to define a simplified route for an action method instead of using the default route.

For example, showing the privacy page currently requires the following URL path, which specifies
both the controller and action: https://localhost:5021/home/privacy

We could make the route simpler, as shown in the following link: https://localhost:5021/private

Let’s see how to do that:

1. In HomeController.cs, add an attribute to the Privacy method to define a simplified route,
as shown highlighted in the following code:

[Route("private")]
public IActionResult Privacy()

https://localhost:5021/home/privacy
https://localhost:5021/private

Chapter 2 97

2. Start the Northwind.Mvc website project using the https launch profile.
3. In the address bar, enter the following URL path, and note that the simplified path shows the

Privacy page: https://localhost:5021/private
4. Close Chrome and shut down the web server.

Temporarily storing data
You often need to temporarily store data in a shared location that can then be accessed in other com-
ponents of the website. This allows one part of the website to share data with another. For example, a
specific page could share data with a layout for it to render, or one page could share data with another.

There are two useful dictionaries that you can write and read to:

• ViewData: This dictionary exists during the lifetime of a single HTTP request. A component
of the website, like middleware or a controller, can store some data in it that can then be read
by another component of the website, like a view or a shared layout, which executes later in
that same request process. It is named ViewData because it is mostly used to store information
that will later be needed for rendering in a Razor View.

• TempData: This dictionary exists during the lifetime of an HTTP request and the next HTTP
request from the same browser. This allows a part of the website, like a controller, to store
some data in it, respond to the browser with a redirect, and then another part of the website
can read the data on the second request. Only the browser that made the original request can
access this data.

For example, a typical ViewData scenario is shown in Figure 2.10 and includes the following steps:

1. A browser makes a request for a page like the home page.
2. Middleware could store some information about the request in the ViewData dictionary. (You

will learn more about middleware later in this chapter.)
3. The controller could store some data needed by the request, like a list of categories, in the

ViewData dictionary.
4. The action method could store its title in the ViewData dictionary.
5. The shared layout could read the title from the ViewData dictionary and render it in the <title>

element in the <head> section of the web page.
6. The view could read the information about the request and the data from the ViewData dictio-

nary and render it in appropriate elements of the web page.

https://localhost:5021/private

Building Websites Using ASP.NET Core MVC98

7. The web page is returned as HTML to the browser.

Figure 2.10: Using ViewData to share information during a single request

For example, a typical TempData scenario is shown in Figure 2.11 and includes the following steps:

1. A browser makes a request for a page like the home page.
2. Middleware or a controller could store some information about the request in the TempData

dictionary and then respond with status code 307 to tell the browser to make a second request.
3. The browser makes a second request, for example, for the page of orders.
4. A controller could read the data stored in TempData to process the request.
5. A Razor View or Razor Layout could read the data stored in TempData and render it to HTML.

Figure 2.11: Using TempData to share information between two requests

Chapter 2 99

Practicing and exploring
Test your knowledge and understanding by answering some questions, getting some hands-on practice,
and exploring this chapter’s topics with deeper research.

Exercise 2.1 – Online material
If you need to maintain ASP.NET Core projects that were built using .NET 5 or earlier, then they will
use an additional file along with Program.cs: a file named Startup.cs. I have written an online sec-
tion about this, found at the following link: https://github.com/markjprice/web-dev-net9/blob/
main/docs/ch02-startup.md.

The official documentation for ASP.NET Core MVC is found at the following link: https://learn.
microsoft.com/en-us/aspnet/core/mvc/overview.

Exercise 2.2 – Practice exercises
The following practice exercises help you to explore the topics in this chapter more deeply.

Practice building UIs with Bootstrap
Create a new ASP.NET Core MVC project named ExploringBootstrap. Add views that implement the
following Bootstrap features:

• Accordion: https://getbootstrap.com/docs/5.3/components/accordion/.
• Cards: https://getbootstrap.com/docs/5.3/components/card/.
• Carousel: https://getbootstrap.com/docs/5.3/components/carousel/.
• Navbar: https://getbootstrap.com/docs/5.3/components/navbar/.
• Popovers: https://getbootstrap.com/docs/5.3/components/popovers/.
• Toast: https://getbootstrap.com/docs/5.3/components/toasts/.
• Tooltips: https://getbootstrap.com/docs/5.3/components/tooltips/.

Exercise 2.3 – Test your knowledge
Answer the following questions:

1. What do the files with the special names _ViewStart and _ViewImports do when created in
the Views folder?

2. What are the names of the three segments defined in the default ASP.NET Core MVC route,
what do they represent, and which are optional?

3. What does UseMigrationsEndPoint do?
4. In a shared layout file like _Layout.cshtml, how do you output the content of the current view?
5. In a shared layout file like _Layout.cshtml, how do you output a section that the current view

can supply content for, and how does the view supply the contents for that section?

https://github.com/markjprice/web-dev-net9/blob/main/docs/ch02-startup.md
https://github.com/markjprice/web-dev-net9/blob/main/docs/ch02-startup.md
https://learn.microsoft.com/en-us/aspnet/core/mvc/overview
https://learn.microsoft.com/en-us/aspnet/core/mvc/overview
https://getbootstrap.com/docs/5.3/components/accordion/
https://getbootstrap.com/docs/5.3/components/card/
https://getbootstrap.com/docs/5.3/components/carousel/
https://getbootstrap.com/docs/5.3/components/navbar/
https://getbootstrap.com/docs/5.3/components/popovers/
https://getbootstrap.com/docs/5.3/components/toasts/
https://getbootstrap.com/docs/5.3/components/tooltips/

Building Websites Using ASP.NET Core MVC100

6. When calling the View method inside a controller’s action method, what paths are searched
for the view by convention?

7. What is Bootstrap and what a good reason to use it?
8. Why might you enable Razor Pages even if you are not creating any yourself?
9. How does ASP.NET Core MVC identify classes that can act as controllers?
10. In what ways does ASP.NET Core MVC make it easier to test a website?

Exercise 2.4 – Explore topics
Use the links on the following page to learn more about the topics covered in this chapter: https://
github.com/markjprice/web-dev-net9/blob/main/docs/book-links.md#chapter-2---building-
websites-using-aspnet-core-mvc.

Summary
In this chapter, you learned how to build simple ASP.NET Core MVC websites using the HTTP pipeline,
routes, models, views, and controllers, as summarized in the following list:

• HTTP pipeline: A sequence of middleware components that process HTTP requests and re-
sponses, allowing for handling tasks like routing, authentication, and exception handling.
You will learn more details about customizing the HTTP pipeline in Chapter 8, Configuring and
Containerizing ASP.NET Core Projects.

• Routes: These define URL patterns in ASP.NET Core that map incoming HTTP requests to
corresponding controllers and actions for processing.

• Controllers: These act as intermediaries between models and views in ASP.NET Core, handling
user input, updating models, and returning views or other types of responses like JSON.

• Models: These represent the data in ASP.NET Core applications and are used to manage and
manipulate data, often interacting with a database.

• Views: These are responsible for rendering the UI, typically using Razor templates to generate
dynamic HTML content based on data from the models.

You also learned about Bootstrap, which is great for rapid prototyping or internal websites that do
not need distinct branding.

In the next chapter, you will learn how to perform model binding, model validation, and retrieving
and modifying data using EF Core.

https://github.com/markjprice/web-dev-net9/blob/main/docs/book-links.md#chapter-2---building-websites-using-aspnet-core-mvc
https://github.com/markjprice/web-dev-net9/blob/main/docs/book-links.md#chapter-2---building-websites-using-aspnet-core-mvc
https://github.com/markjprice/web-dev-net9/blob/main/docs/book-links.md#chapter-2---building-websites-using-aspnet-core-mvc

3
Model Binding, Validation, and
Data Using EF Core

This chapter is about model binding, model validation, and retrieving and modifying data using En-
tity Framework (EF) Core in an ASP.NET Core MVC website project. These concepts work together
to simplify the common tasks of taking user input, processing it, and storing or retrieving data from
a database.

Model binding is at the heart of how ASP.NET Core MVC applications interact with user input. When
a user submits a form, the data in that form needs to be mapped to the models (objects or classes) in
your application. Model binding automates this process, converting incoming HTTP request data like
form fields, query strings, and route data into C# objects that your application can work with.

Model validation ensures that the data coming into your application meets the defined rules before
it is processed or saved. In ASP.NET Core MVC, this is often achieved by decorating your models with
data annotations like [Required], [StringLength], or custom validation attributes. This maintains
the integrity of the data your application deals with, especially when it interacts with a database.

ASP.NET Core’s model validation is tightly integrated with model binding, meaning as soon as the
data is bound to your model, the framework will automatically validate it. This is especially useful for
quickly validating user inputs and ensuring that only clean, safe, and correct data is passed further
into your business logic or database operations.

EF Core is an Object-Relational Mapper (ORM) that abstracts away much of the complexity involved
in querying, updating, and managing a relational database. Instead of writing raw SQL queries, EF
Core allows you to work with your data using strongly-typed C# objects called entities, which represent
the tables in your database.

EF Core integrates with ASP.NET Core in a way that supports dependency injection, allowing your
DbContext to be injected into your controllers. This ensures that each controller action method can
easily retrieve or modify data. When working with EF Core, it also takes care of tasks like change track-
ing (knowing which objects have been modified), cascading deletes, and even complex relationships
like one-to-many or many-to-many associations between tables.

Model Binding, Validation, and Data Using EF Core102

Imagine you are creating a blog website. Users might fill out a form to submit new blog posts. Model
binding automatically maps the form data to a Post object, which is then validated to ensure that, for
example, the title isn’t empty and the content isn’t too long. Once validated, EF Core takes over, saving
the new Post object to the database without the need to write any SQL queries.

This chapter will cover the following topics:

• Model binding and validation
• Using EF Core with ASP.NET Core
• Improving scalability using asynchronous tasks

Model binding and validation
Model binding and validation are features of ASP.NET Core MVC that help simplify getting data from
HTTP requests like GET or POST and ensure it meets specific criteria before processing.

How model binding works
Model binding is the process by which data from HTTP requests, like form fields, query strings, route
data, or the body of a POST or PUT request, is automatically mapped to .NET models. This allows you
to work with strongly typed objects in the controllers instead of dealing with raw HTTP data.

When an HTTP request is received, ASP.NET Core inspects the request data and attempts to bind it
to the parameters of the action method or the properties of a model object. For example, if you have
a form that posts data to a controller action, the fields in the form are automatically mapped to the
parameters of that action or a model class, as long as the names match.

ASP.NET Core is capable of binding complex objects that have properties matching the incoming data.
For example, if you have a class User with properties like Name, Email, and Address, the framework
can automatically bind incoming data to these properties.

You can also create custom model binders to handle more complex scenarios or specific data trans-
formations.

How validation rules are defined
Validation ensures that the data received through model binding meets specific business rules or
requirements before the application processes it. Validation is typically performed on models, where
attributes are used to enforce rules.

ASP.NET Core uses data annotations and custom validation attributes on model properties to specify
validation rules. For example, [Required], [StringLength(100)], or [Range(18, 99)] are common
data annotations that enforce validation rules like non-nullability, maximum string length, and nu-
meric ranges, respectively.

All solution code is available in the GitHub repository for this book. This chapter adds
code to the following project: https://github.com/markjprice/web-dev-net9/tree/
main/code/MatureWeb/Northwind.Mvc.

https://github.com/markjprice/web-dev-net9/tree/main/code/MatureWeb/Northwind.Mvc
https://github.com/markjprice/web-dev-net9/tree/main/code/MatureWeb/Northwind.Mvc

Chapter 3 103

When a model is bound, ASP.NET Core automatically checks if it meets the specified validation rules.
If the model is invalid, the framework adds error messages to the ModelState, which can then be
checked in the controller to determine how to proceed.

In addition to data annotations, developers can implement custom validation logic by creating custom
validation attributes or by implementing the IValidatableObject interface in their models, allowing
for more complex validation scenarios.

ASP.NET Core MVC supports client-side validation using JavaScript. Validation attributes are rendered
as data-* attributes on form fields, and JavaScript libraries can use these attributes to provide imme-
diate feedback to users without requiring a round-trip to the server.

Let’s see some practical examples.

Passing parameters using a route value
One way to pass a simple parameter is to use the id segment defined in the default route:

1. In the Northwind.Mvc project, in HomeController, import the namespace for calling the Include
extension method so that we can get related entities, as shown in the following code:

using Microsoft.EntityFrameworkCore; // To use Include method.

2. Add an action method named ProductDetail, as shown in the following code:

public IActionResult ProductDetail(int? id)
{
 if (!id.HasValue)
 {
 return BadRequest("You must pass a product ID in the route, for
example, /Home/ProductDetail/21");
 }

 Product? model = _db.Products.Include(p => p.Category)
 .SingleOrDefault(p => p.ProductId == id);

 if (model is null)
 {
 return NotFound($"ProductId {id} not found.");
 }

 return View(model); // Pass model to view and then return result.
}

Model Binding, Validation, and Data Using EF Core104

Note the following about the preceding code:

• This method uses a feature of ASP.NET Core called model binding to automatically
match the id passed in the route to the parameter named id in the method.

• Inside the method, we check to see whether id does not have a value, and if so, we call
the BadRequest method to return a 400 status code with a custom message explaining
the correct URL path format.

• Otherwise, we can connect to the database and try to retrieve a product using the id
value and include the related category information so we can see its name.

• If we find a product, we pass it to a view; otherwise, we call the NotFound method to
return a 404 status code and a custom message explaining that a product with that ID
was not found in the database. The view then renders the passed model into HTML,
which is then returned in an HTTP response from the web server to the browser.

3. In the Views\Home folder, add a new Razor View file named ProductDetail.cshtml. (In Visual
Studio, the item template is named Razor View – Empty. In Code, at the command prompt or
terminal, enter dotnet new view –n ProductDetail.)

4. Modify the contents, as shown in the following markup:

@model Northwind.EntityModels.Product
@{
 ViewData["Title"] = $"Product Detail - {Model.ProductName}";
}
<h2>Product Detail</h2>
<hr />
<div>
 <dl class="dl-horizontal">
 <dt>Product Id</dt>
 <dd>@Model.ProductId</dd>
 <dt>Product Name</dt>
 <dd>@Model.ProductName</dd>
 <dt>Category</dt>
 <dd>@Model.CategoryId - @Model.Category?.CategoryName</dd>
 <dt>Unit Price</dt>
 <dd>@(Model.UnitPrice is null ? "zero" :
 Model.UnitPrice.Value.ToString("C"))</dd>
 <dt>Units In Stock</dt>

Warning! Be careful not to add a Razor Page. If you do, then the file will have an
@page directive at the top, which will prevent the model from being passed from
the controller to the view and you will get a NullReferenceException!

Chapter 3 105

 <dd>@Model.UnitsInStock</dd>
 </dl>
</div>

5. Start the Northwind.Mvc project using the https launch profile.
6. When the home page appears with the list of products, click on one of them, for example, the

second product, Chang.
7. Note the URL path in the browser’s address bar, the page title shown in the browser tab, and

the product details page, as shown in Figure 3.1:

Figure 3.1: The product details page for Chang

8. View Developer Tools.
9. Edit the URL in the address box of Chrome to request a product ID that does not exist, like 99,

and note the 404 Not Found status code and custom error response.
10. Close Chrome and shut down the web server.

Disambiguating action methods
Although the C# compiler can differentiate between the two methods by noting that the signatures
are different, from the point of view of routing an HTTP request, both methods are potential matches.
We need an HTTP-specific way to disambiguate the action methods.

We could do this by creating different names for the actions or by specifying that one method should
be used for a specific HTTP verb, like GET, POST, DELETE, and so on. You do this by decorating the
action method with one of the following attributes: [HttpGet], [HttpPost], [HttpDelete], and so on.

Model Binding, Validation, and Data Using EF Core106

Model binders in detail
Model binders are a powerful yet easy way to set parameters of action methods based on values
passed in an HTTP request, and the default one does a lot for you. After the default route identifies a
controller class to instantiate and an action method to call, if that method has parameters, then those
parameters need to have values set.

Model binders do this by looking for parameter values passed in the HTTP request as any of the fol-
lowing types of parameters:

• Route parameter, like id, as we used in the previous section, as shown in the following URL
path: /Home/ProductDetail/2

• Query string parameter, as shown in the following URL path: /Home/ProductDetail?id=2
• Form parameter, as shown in the following markup:

<form action="post" action="/Home/ProductDetail">
 <input type="text" name="id" value="2" />
 <input type="submit" />
</form>

Model binders can populate almost any type:

• Simple types, like int, string, DateTime, and bool
• Complex types defined by class, record, or struct
• Collection types, like arrays and lists

The process of model binding can cause errors, for example, data type conversions or validation errors
if the model has been decorated with validation rules. What data has been bound and any binding or
validation errors are stored in ControllerBase.ModelState.

Let’s create a somewhat artificial example to illustrate what can be achieved using the default model
binder and what we can do with the model state by applying some validation rules to the bound model
and showing invalid data messages in the view:

1. In the Models folder, add a new file named Thing.cs. This will represent an entity model.
2. Modify the contents to define a record with three properties: a nullable integer named Id, a

string named Color, and a string named Email, each with appropriate validation attributes,
as shown in the following code:

// To use [Range], [Required], [EmailAddress].
using System.ComponentModel.DataAnnotations;

Good Practice: Data validation is not just about complying with business rules. It is also
important for security. A lack of validation opens the door to various types of attacks that
can compromise the integrity, confidentiality, and availability of your system. For example,
it helps prevent SQL injection and Cross-Site Scripting (XSS) attacks.

Chapter 3 107

namespace Northwind.Mvc.Models;

public record Thing(
 [Range(1, 10)] int? Id,
 [Required] string? Color,
 [EmailAddress] string? Email
);

3. In the Models folder, add a new class file named HomeModelBindingViewModel.cs. This will
represent a view model.

4. Modify its contents to define a record with properties to store the bound model, a flag to indi-
cate that there are errors, and a sequence of error messages, as shown in the following code:

namespace Northwind.Mvc.Models;

public record HomeModelBindingViewModel(Thing Thing, bool HasErrors,
 IEnumerable<string> ValidationErrors);

5. In HomeController, add two new action methods, one to show a page with a form and one to
display a thing with a parameter using your new model type, as shown in the following code:

// This action method will handle GET and other requests except POST.
public IActionResult ModelBinding()
{
 return View(); // The page with a form to submit.
}

[HttpPost] // This action method will handle POST requests.
public IActionResult ModelBinding(Thing thing)
{
 HomeModelBindingViewModel model = new(
 Thing: thing, HasErrors: !ModelState.IsValid,
 ValidationErrors: ModelState.Values
 .SelectMany(state => state.Errors)
 .Select(error => error.ErrorMessage)
);

 return View(model); // Show the model bound thing.
}

Model Binding, Validation, and Data Using EF Core108

6. In the Views\Home folder, add a new Razor View – Empty file named ModelBinding.cshtml.
7. Modify its contents, as shown in the following markup:

@model HomeModelBindingViewModel
@{
 ViewData["Title"] = "Model Binding Demo";
}
<h1>@ViewData["Title"]</h1>
<div>
 Enter values for your thing in the following form:
</div>
<form method="POST" action="/home/modelbinding?id=3">
 <input name="color" value="Red" />
 <input name="email" value="test@example.com" />
 <input type="submit" />
</form>
@if (Model is not null)
{
<h2>Submitted Thing</h2>
<hr />

The first ModelBinding action method will implicitly be used for all other
types of HTTP requests, like GET, PUT, DELETE, and so on, because the second
ModelBinding action method is decorated with [HttpPost].

Good Practice: While the preceding code passes the validation errors to the view
for display, alternatives would be to call a method like BadRequest or Problem to
return an HTTP error status code with details of the problem. You will see more
alternatives like these later in this section.

Chapter 3 109

<div>
 <dl class="dl-horizontal">
 <dt>Model.Thing.Id</dt>
 <dd>@Model.Thing.Id</dd>
 <dt>Model.Thing.Color</dt>
 <dd>@Model.Thing.Color</dd>
 <dt>Model.Thing.Email</dt>
 <dd>@Model.Thing.Email</dd>
 </dl>
</div>
 @if (Model.HasErrors)
 {
 <div>
 @foreach(string errorMessage in Model.ValidationErrors)
 {
 <div class="alert alert-danger" role="alert">@errorMessage</div>
 }
 </div>
 }
}
@* The following is required to enable validation. *@
@section Scripts {
 <partial name="_ValidationScriptsPartial" />
}

8. In the Views\Shared folder, in _Layout.cshtml, after the Home navigation menu item, add
one for Model Binding, as shown highlighted in the following markup:

<li class="nav-item">
 <a class="nav-link text-dark" asp-area="" asp-controller="Home" asp-
action="Index">Home

<li class="nav-item">
 <a class="nav-link text-dark" asp-area="" asp-controller="Home"
 asp-action="ModelBinding">Model Binding

9. Start the Northwind.Mvc website project using the https launch profile.
10. In the top navigation menu, click Model Binding.

Model Binding, Validation, and Data Using EF Core110

11. On the Model Binding Demo page, click the Submit button. Note the value for the Id property
is set from the query string parameter in the action of the form, and the values for the color
and email properties are set from the form elements, as shown in Figure 3.2:

Figure 3.2: The Model Binding Demo page

12. Close Chrome and shut down the web server.

Passing a route parameter
Now we will set the property using a route parameter:

1. In the Views\Home folder, in ModelBinding.cshtml, modify the action for the form to pass the
value 2 as an MVC route parameter, as shown in the following markup:

<form method="POST" action="/home/modelbinding/2?id=3">

2. Start the Northwind.Mvc website project using the https launch profile.
3. On the home page, click Binding.
4. Click the Submit button and note the value for the Id property is set from the route parameter.
5. Close Chrome and shut down the web server.

Passing a form parameter
Now we will set the property using a form parameter:

1. In the Views\Home folder, in ModelBinding.cshtml, modify the action for the form to pass the
value 1 as a form element parameter, as shown highlighted in the following markup:

<form method="POST" action="/home/modelbinding/2?id=3">
 <input name="id" value="1" />
 <input name="color" value="Red" />
 <input name="email" value="test@example.com" />

Chapter 3 111

 <input type="submit" />
</form>

2. Start the Northwind.Mvc website project using the https launch profile.
3. On the home page, click Binding.
4. Click the Submit button and note the values for all the properties are both set from the form

element parameters.

5. Enter an Id of 13, clear the color textbox, delete the @ from the email address, click the Submit
button, and note the error messages, as shown in Figure 3.3:

Figure 3.3: The Model Binding Demo page with field validations

6. Close Chrome and shut down the web server.

Avoiding over-posting aka mass assignment attacks
Over-posting, also known as mass assignment, is a vulnerability where an attacker sends unexpected
data in an HTTP request that might map to properties of your model that were not meant to be ex-
posed or modified. This can happen when an attacker manipulates form fields or query parameters
to include additional data not meant to be bound.

Good Practice: If you have multiple parameters with the same name, then remem-
ber that form parameters have the highest priority and query string parameters
have the lowest priority for automatic model binding.

Good Practice: What regular expression does Microsoft use for the implementation
of the EmailAddress validation attribute? Find out at the following link: https://
github.com/microsoft/referencesource/blob/5697c29004a34d80acdaf5742d
7e699022c64ecd/System.ComponentModel.DataAnnotations/DataAnnotations/
EmailAddressAttribute.cs#L54.

https://github.com/microsoft/referencesource/blob/5697c29004a34d80acdaf5742d7e699022c64ecd/System.ComponentModel.DataAnnotations/DataAnnotations/EmailAddressAttribute.cs#L54
https://github.com/microsoft/referencesource/blob/5697c29004a34d80acdaf5742d7e699022c64ecd/System.ComponentModel.DataAnnotations/DataAnnotations/EmailAddressAttribute.cs#L54
https://github.com/microsoft/referencesource/blob/5697c29004a34d80acdaf5742d7e699022c64ecd/System.ComponentModel.DataAnnotations/DataAnnotations/EmailAddressAttribute.cs#L54
https://github.com/microsoft/referencesource/blob/5697c29004a34d80acdaf5742d7e699022c64ecd/System.ComponentModel.DataAnnotations/DataAnnotations/EmailAddressAttribute.cs#L54

Model Binding, Validation, and Data Using EF Core112

For example, imagine a model representing a user profile with fields like Username, Email, and IsAdmin.
If your form is only intended to update the Username and Email, but you inadvertently expose the
IsAdmin field to model binding because you’ve declared the parameter to be a UserProfile object, an
attacker could include that field in the request, potentially elevating their privileges.

To defend against over-posting, ASP.NET Core MVC’s model binding and validation should be fine-tuned:

• Use view models (rather than directly exposing your domain models) to ensure only the fields
you intend to update are bindable.

• Apply validation attributes and explicitly define which properties can be bound in the controller
using the [Bind] attribute, further reducing the risk of over-posting.

• Implement data annotations that restrict which fields can be updated by which users, depend-
ing on their roles or permissions.

By combining model validation with proper model binding techniques, you can significantly reduce
the risk of mass assignment attacks.

Returning HTTP error status codes
In ASP.NET Core, a controller action method can return error HTTP status codes using several methods.
These methods are built into the ControllerBase class, and they allow you to return standardized
error responses with appropriate HTTP status codes, like 400 Bad Request, 404 Not Found, or 500
Internal Server Error.

Here are some of the key methods you can use in a controller action method to return error HTTP
status codes.

BadRequest
This returns a 400 Bad Request status code. It’s typically used when the request is malformed or
contains invalid data. This is useful in scenarios like validation errors or missing required fields in a
POST request.

• BadRequest(): Returns 400 Bad Request without a body.
• BadRequest(object error): Returns 400 Bad Request with an error message or an object

containing details of the error.

An example is shown in the following code:

public IActionResult CreateUser(UserDto user)
{
 if (!ModelState.IsValid)
 {
 return BadRequest(ModelState); // 400 Bad Request with validation errors.
 }
 // Rest of the logic
}

Chapter 3 113

NotFound
This returns a 404 Not Found status code. It’s used when a resource requested by the client cannot
be found. This is common in GET requests where the requested item doesn’t exist.

• NotFound(): Returns 404 Not Found without a body.
• NotFound(object value): Returns 404 Not Found with a custom error message or an object

detailing the issue.

An example is shown in the following code:

public IActionResult GetUserById(int id)
{
 UserDto user = _userService.GetUserById(id);
 if (user is null)
 {
 return NotFound(); // 404 Not Found.
 }
 return View(user); // 200 OK with rendered view.
}

Unauthorized
This returns a 401 Unauthorized status code. It indicates that the client needs to authenticate to ac-
cess the resource. It’s typically used when an authentication mechanism is required but not provided
or invalid.

• Unauthorized(): Returns 401 Unauthorized without a body.
• Unauthorized(object value): Returns 401 Unauthorized with additional details about the

error.

An example is shown in the following code:

public IActionResult GetProtectedResource()
{
 if (!User.Identity.IsAuthenticated)
 {
 return Unauthorized(); // 401 Unauthorized.
 }
 // Access protected resource.
}

Forbid
This returns a 403 Forbidden status code. It’s used when the client is authenticated but does not have
the necessary permissions to access the resource.

• Forbid(): Returns 403 Forbidden.

Model Binding, Validation, and Data Using EF Core114

An example is shown in the following code:

public IActionResult DeleteUser(int id)
{
 if (!User.HasClaim("Admin", "true"))
 {
 return Forbid(); // 403 Forbidden
 }
 // Delete user logic
}

Conflict
This returns a 409 Conflict status code. It’s used when there is a conflict with the current state of
the resource, for example, if two clients are attempting to update the same resource simultaneously.

UnprocessableEntity
This returns a 422 Unprocessable Entity status code. It’s used when the request is well formed but
the data can’t be processed, usually due to semantic errors, like validation failures. This status code
is often used in cases where 400 Bad Request doesn’t fully capture the nature of the issue.

StatusCode
This allows you to return any HTTP status code manually. It’s useful when you need to return a custom
status code that isn’t covered by the built-in methods or when you need to handle a specific HTTP
response outside the common scenarios.

• StatusCode(int statusCode): Returns the specified status code without a body.
• StatusCode(int statusCode, object value): Returns the specified status code along with

a message or object.

An example is shown in the following code:

public IActionResult SomeAction()
{
 // Custom logic
 return StatusCode(418, "I'm a teapot");
}

Problem
This returns a generic error response with a 500 Internal Server Error by default, but can be
customized for any status code. It returns a standardized response body using the Problem Details
format, which is useful for conveying rich error information in a structured way.

• Problem(): Returns a 500 Internal Server Error with a standardized Problem Details body.

Chapter 3 115

• Problem(string detail, string instance = null, int? statusCode = null, string
title = null, string type = null): Allows customization of the Problem Details response.

An example is shown in the following code:

public IActionResult SomeAction()
{
 try
 {
 // Some logic that may throw an exception
 }
 catch (Exception ex)
 {
 return Problem(detail: ex.Message, statusCode: 500);
 }
}

ValidationProblem
This returns a 400 Bad Request with a standardized validation error response. It’s used to return
validation errors in a standardized way when model validation fails.

• ValidationProblem(): Returns a 400 Bad Request with validation problem details.
• ValidationProblem(ValidationProblemDetails problemDetails): Returns a 400 Bad

Request with custom problem details.

By using these methods, you can handle various error cases in a structured, consistent manner, ensur-
ing that clients receive meaningful and accurate HTTP status codes that reflect the nature of any issues.

Modifying data using EF Core and ASP.NET Core
In Chapter 2, Building Websites Using ASP.NET Core MVC, you learned how to configure EF Core with
ASP.NET Core and register a data context as a dependency service. You then used it to retrieve cate-
gories and products for display on the home page.

Now, let’s see how to use EF Core to retrieve data to display on a web page, and to modify data to
perform inserts, updates, and deletes.

Displaying Northwind suppliers
We will start by creating a page to display Northwind suppliers:

1. In the Models folder, create a new class named HomeSuppliersViewModel.cs. This will contain
a sequence of suppliers to display in an HTML table in a Razor View.

2. Modify the contents, as shown in the following code:

using Northwind.EntityModels; // To use Supplier.

namespace Northwind.Mvc.Models;

Model Binding, Validation, and Data Using EF Core116

public record HomeSuppliersViewModel(
 IEnumerable<Supplier>? Suppliers);

3. In the Controllers folder, in HomeController.cs, add an action method to retrieve all suppliers
from the Suppliers property of the database context, sorted by country and then company
name, as shown in the following code:

// This action method will handle requests to display all suppliers.
public IActionResult Suppliers()
{
 HomeSuppliersViewModel model = new(_db.Suppliers
 .OrderBy(c => c.Country)
 .ThenBy(c => c.CompanyName));

 return View(model);
}

4. In Views\Home, create a Razor View – Empty named Suppliers.cshtml.
5. Modify the contents of Suppliers.cshtml to render multiple columns for each supplier, as

shown in the following markup:

@model Northwind.Mvc.Models.HomeSuppliersViewModel
<div class="row">
 <h1 class="display-2">Suppliers</h1>
 <table class="table">
 <thead class="thead-inverse">
 <tr>
 <th>Company Name</th>
 <th>Country</th>
 <th>Phone</th>
 <th>Actions</th>
 </tr>
 </thead>
 <tbody>
 @if (Model.Suppliers is not null)
 {
 @foreach(Supplier s in Model.Suppliers)
 {
 <tr>
 <td>@s.CompanyName</td>
 <td>@s.Country</td>
 <td>@s.Phone</td>

Chapter 3 117

 <td>
 Edit
 Delete
 </td>
 </tr>
 }
 }
 </tbody>
 </table>
</div>

6. In the Views\Shared folder, in _Layout.cshtml, after the Home navigation menu item, add
one for Suppliers, as shown highlighted in the following markup:

<li class="nav-item">
 <a class="nav-link text-dark" asp-area="" asp-controller="Home" asp-
action="Index">Home

<li class="nav-item">
 <a class="nav-link text-dark" asp-area="" asp-controller="Home"
 asp-action="Suppliers">Suppliers

7. Start the website using the https launch profile and go to the website home page.
8. In the top navigation menu, click Suppliers, and note that the suppliers are retrieved from

the Northwind database. Also, note that they are sorted first by country and then by company
name, as shown in Figure 3.4:

Figure 3.4: The Suppliers table loaded from the Northwind database

9. Close Chrome and shut down the web server.

Model Binding, Validation, and Data Using EF Core118

Inserting, updating, and deleting suppliers
Next, we will create some action methods and Razor Views to define a form that a visitor can fill in
and submit to insert a new supplier, and update or delete an existing supplier.

Since we are enabling a visitor to manipulate data, we should implement authentication and authori-
zation before we deploy this functionality into production. You will learn how to do this in Chapter 5,
Authentication and Authorization. For now, we are just going to implement the data access functionality
and make sure that it works locally on your development machine.

To perform these operations, you create pairs of action methods:

• First, create a GET action method and view to show a web page containing a form where the user
can enter details for a new supplier, edit the details of an existing supplier, or see a read-only
view of the details for an existing supplier, and then a button to submit the data.

• Second, create a POST action method to perform the add, update, or delete operation, and if
successful, redirect to the page of suppliers to review the change, or, if an error occurs, then
back to the single supplier page to try again.

Let’s go:

1. In the Models folder, create a new class named HomeSupplierViewModel.cs. This will contain
a single supplier and information about the success or failure of changes to affected entities
like inserts, updates, and deletes.

2. Modify the contents, as shown in the following code:

using Northwind.EntityModels; // To use Supplier.

namespace Northwind.Mvc.Models;

public record HomeSupplierViewModel(
 int EntitiesAffected, Supplier? Supplier);

3. In the Controllers folder, in HomeController.cs, add a GET action method to retrieve a single
supplier using a unique supplier ID and allow it to be edited, as shown in the following code:

// GET: /home/editsupplier/{id}
public IActionResult EditSupplier(int? id)
{
 Supplier? supplierInDb = _db.Suppliers.Find(id);

 HomeSupplierViewModel model = new(
 supplierInDb is null ? 0 : 1, supplierInDb);

 // Views\Home\EditSupplier.cshtml
 return View(model);
}

Chapter 3 119

4. In Views\Home, create a Razor View – Empty named EditSupplier.cshtml.
5. In EditSupplier.cshtml, add Microsoft common Tag Helpers so that we can use the Tag Helper

asp-for on this Razor View. Add a form to edit a supplier, and use the asp-for Tag Helper to
bind the CompanyName, Country, and Phone properties of the Supplier class to the input box,
as shown in the following markup:

@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers
@model HomeSupplierViewModel
<div class="row">
 <p>Edit the details for this supplier:</p>
 <form method="post">
 @Html.AntiForgeryToken()
 <div><input asp-for="Supplier.SupplierId" hidden /></div>
 <div><input asp-for="Supplier.CompanyName" /></div>
 <div><input asp-for="Supplier.Country" /></div>
 <div><input asp-for="Supplier.Phone" /></div>
 <input type="submit" value="Save Changes"
 class="btn btn-outline-primary" />
 <a href="/Home/Suppliers"
 class="btn btn-outline-secondary">Cancel
 </form>
</div>
@section Scripts {
 @{
 await Html.RenderPartialAsync("_ValidationScriptsPartial");
 }
}

While reviewing the preceding markup, note the following:

• The <form> element with a PUT method is ordinary HTML, so an <input type="submit"
/> element inside it will make an HTTP PUT request back to the current path with values
of any other elements inside that form.

• The Html.AntiForgeryToken() method makes it easy to mitigate Cross-Site Request
Forgery (CSRF) attacks using ASP.NET Core MVC. If you need to integrate client-side
technologies like AJAX, Angular, or React, then there are extra steps required. This is be-
yond the scope of this book, but you can learn more at the following link: https://learn.
microsoft.com/en-us/aspnet/core/security/anti-request-forgery#javascript-
ajax-and-spas.

• An <input> element with a Tag Helper named asp-for enables data binding to the
model for the Razor View.

https://learn.microsoft.com/en-us/aspnet/core/security/anti-request-forgery#javascript-ajax-and-spas
https://learn.microsoft.com/en-us/aspnet/core/security/anti-request-forgery#javascript-ajax-and-spas
https://learn.microsoft.com/en-us/aspnet/core/security/anti-request-forgery#javascript-ajax-and-spas

Model Binding, Validation, and Data Using EF Core120

6. In the Controllers folder, in HomeController.cs, add an action method to update a supplier,
as shown in the following code:

// POST: /home/editsupplier
// Body: JSON Supplier
// Updates an existing supplier.
[HttpPost]
[ValidateAntiForgeryToken]
public IActionResult EditSupplier(Supplier supplier)
{
 int affected = 0;

 if (ModelState.IsValid)
 {
 Supplier? supplierInDb = _db.Suppliers.Find(supplier.SupplierId);

 if (supplierInDb is not null)
 {
 supplierInDb.CompanyName = supplier.CompanyName;
 supplierInDb.Country = supplier.Country;
 supplierInDb.Phone = supplier.Phone;

 /*
 // Other properties not in the HTML form.
 supplierInDb.ContactName = supplier.ContactName;
 supplierInDb.ContactTitle = supplier.ContactTitle;
 supplierInDb.Address = supplier.Address;
 supplierInDb.City = supplier.City;
 supplierInDb.Region = supplier.Region;
 supplierInDb.PostalCode = supplier.PostalCode;
 supplierInDb.Fax = supplier.Fax;
 */

 affected = _db.SaveChanges();
 }
 }

Warning! Code editors can be overzealous with null warnings. If you get them in
the model binding expressions, you can apply the null-forgiving operator, as shown
in the following code expression: Model.Supplier!.CompanyName.

Chapter 3 121

 HomeSupplierViewModel model = new(
 affected, supplier);

 if (affected == 0) // Supplier was not updated.
 {
 // Views\Home\EditSupplier.cshtml
 return View(model);
 }
 else // Supplier was updated; show in table.
 {
 return RedirectToAction("Suppliers");
 }

7. In the Controllers folder, in HomeController.cs, add an action method to retrieve a single
supplier using a unique supplier ID and allow it to be deleted, as shown in the following code:

// GET: /home/deletesupplier/{id}
public IActionResult DeleteSupplier(int? id)
{
 Supplier? supplierInDb = _db.Suppliers.Find(id);

 HomeSupplierViewModel model = new(
 supplierInDb is null ? 0 : 1, supplierInDb);

 // Views\Home\DeleteSupplier.cshtml
 return View(model);
}

8. In Views\Home, create a Razor View – Empty named DeleteSupplier.cshtml.
9. In DeleteSupplier.cshtml, add Microsoft common tag helpers so that we can use the Tag

Helper asp-for on this Razor View, display a supplier, and use the asp-for Tag Helper to bind
the CompanyName, Country, and Phone properties of the Supplier class to the labels, as shown
in the following markup:

@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers
@model HomeSupplierViewModel
<div class="row">
 <p>Are you sure that you want to delete this supplier?</p>
 <form method="post">

Model Binding, Validation, and Data Using EF Core122

 @Html.AntiForgeryToken()
 <div><input asp-for="Supplier.SupplierId" hidden /></div>
 <div><input asp-for="Supplier.CompanyName" readonly /></div>
 <div><input asp-for="Supplier.Country" readonly /></div>
 <div><input asp-for="Supplier.Phone" readonly /></div>
 <input type="submit" value="Delete" />
 Cancel
 </form>
</div>

10. In the Controllers folder, in HomeController.cs, add an action method to delete a supplier,
as shown in the following code:

// POST: /home/deletesupplier/{id}
// Removes an existing supplier.
[HttpPost("/home/deletesupplier/{id:int?}")]
[ValidateAntiForgeryToken]
// C# won't allow two methods with the same name and signature.
public IActionResult DeleteSupplierX(int? id)
{
 int affected = 0;

 Supplier? supplierInDb = _db.Suppliers.Find(id);

 if (supplierInDb is not null)
 {
 _db.Suppliers.Remove(supplierInDb);
 affected = _db.SaveChanges();
 }

 HomeSupplierViewModel model = new(
 affected, supplierInDb);

 if (affected == 0) // Supplier was not deleted.
 {
 // Views\Home\DeleteSupplier.cshtml
 return View(model);
 }
 else
 {
 return RedirectToAction("Suppliers");
 }
}

Chapter 3 123

11. In the Controllers folder, in HomeController.cs, add an action method to allow a visitor to
enter details for a new supplier and then insert it, as shown in the following code:

// GET: /home/addsupplier
public IActionResult AddSupplier()
{
 HomeSupplierViewModel model = new(
 0, new Supplier());

 // Views\Home\AddSupplier.cshtml
 return View(model);
}

12. In Views\Home, create a Razor View – Empty named AddSupplier.cshtml.
13. In AddSupplier.cshtml, add Microsoft common tag helpers so that we can use the Tag Helper

asp-for on this Razor View, display a supplier, and use the asp-for Tag Helper to bind the
CompanyName, Country, and Phone properties of the Supplier class to the text boxes, as shown
in the following markup:

@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers
@model HomeSupplierViewModel
<div class="row">
 <p>Enter details for a new supplier:</p>
 <form method="POST">
 @Html.AntiForgeryToken()
 <div><input asp-for="Supplier.CompanyName"
 placeholder="Company Name" /></div>
 <div><input asp-for="Supplier.Country"
 placeholder="Country" /></div>
 <div><input asp-for="Supplier.Phone"
 placeholder="Phone" /></div>
 <input type="submit" value="Insert" class="btn btn-outline-primary"
/>
 Cancel</
a>
 </form>
</div>
@section Scripts {
 @{
 await Html.RenderPartialAsync("_ValidationScriptsPartial");
 }
}

Model Binding, Validation, and Data Using EF Core124

14. In the Controllers folder, in HomeController.cs, add an action method to insert a new sup-
plier, as shown in the following code:

// POST: /home/addsupplier
// Body: JSON Supplier
// Inserts a new supplier.
[HttpPost]
[ValidateAntiForgeryToken]
public IActionResult AddSupplier(Supplier supplier)
{
 int affected = 0;

 if (ModelState.IsValid)
 {
 _db.Suppliers.Add(supplier);
 affected = _db.SaveChanges();
 }

 HomeSupplierViewModel model = new(
 affected, supplier);

 if (affected == 0) // Supplier was not added.
 {
 // Views\Home\AddSupplier.cshtml
 return View(model);
 }
 else
 {
 return RedirectToAction("Suppliers");
 }
}

Manually trying to insert, update, and delete
In the real world, you would create automated tests for functionality like inserting, updating, and
deleting. You will learn how to do this in Chapter 7, Web User Interface Testing Using Playwright. For now,
we will just manually test on your local machine.

Chapter 3 125

Now we can try the functionality to manipulate the Northwind suppliers:

1. Start the website using the https launch profile and navigate to the website home page.
2. Click Suppliers, click Add New Supplier, and enter Bob's Burgers, USA, and (603) 555-4567,

as shown in Figure 3.5:

Figure 3.5: Typing details for a new supplier

3. Click Insert, and note that you are redirected to the Suppliers page.
4. On the Suppliers page, scroll down to the bottom of the table where the USA suppliers are

sorted and note the new supplier has been added, as shown in Figure 3.6:

Figure 3.6: The new supplier in the table

5. In the Bob’s Burgers row, click Edit.

Model Binding, Validation, and Data Using EF Core126

6. Change the last digit of the phone number from 7 to 8, and then click Save Changes, as shown
in Figure 3.7:

Figure 3.7: Editing a supplier’s phone number

7. In the Bob’s Burgers row, note the phone has been updated, and then click Delete.
8. Confirm that you are about to delete the Bob’s Burgers supplier entity, and then click Delete.
9. On the Suppliers page, scroll down to the bottom of the table where the USA suppliers are

sorted and note the Bob’s Burgers supplier has been deleted.
10. Optionally, review the logged SQL statements in the command prompt or terminal.
11. Close Chrome and shut down the web server.

Protecting against CSRF attacks
The Html.AntiForgeryToken() method protects your websites from CSRF attacks. It generates an
anti-forgery token that is used to ensure that form submissions or other types of requests to the server
are made by an authenticated user from the same site, rather than a malicious third party.

How CSRF attacks work
A CSRF attack tricks an authenticated user into performing actions on a site without their knowledge.
For instance, if a user is logged in to their bank’s website and unknowingly clicks on a malicious link,
a request might be sent to the bank, performing an action like transferring funds. Since the request
comes from the user’s authenticated session, the server processes it, thinking it is legitimate.

How anti-forgery tokens prevent CSRF
Anti-forgery tokens mitigate CSRF attacks by ensuring that any request made to your server originates
from a legitimate form submission on your site, rather than from an external source. The token mech-
anism is based on the principle that an attacker cannot easily obtain or replicate the token embedded
in legitimate requests.

Chapter 3 127

The Html.AntiForgeryToken() method generates a pair of tokens:

• Cookie Token: A token is generated and stored in an HTTP cookie (on the client side, named
.AspNetCore.AntiForgery). This cookie is tied to the user’s session and is sent along with every
HTTP request made to the server.

• Form Token: Another token is generated and inserted into the form as a hidden field. This
token is embedded within the HTML of the form and gets sent to the server when the form is
submitted, as shown in the following code:

<input type="hidden" name="__RequestVerificationToken"
 value="token_value_here" />

Both tokens are cryptographically linked and validated against each other on the server.

When the form is submitted, both the cookie token and the form token (hidden field) are sent to the
server. The server then validates these tokens to ensure they match and were generated by the same
user session. If the tokens do not match, the request is rejected, preventing CSRF attacks.

How to use Html.AntiForgeryToken()
You should include @Html.AntiForgeryToken() inside form elements that perform actions requiring
protection against CSRF, as shown in the following markup:

<form asp-action="PostData" method="post">
 @Html.AntiForgeryToken()
 <input type="text" name="data" />
 <button type="submit">Submit</button>
</form>

The anti-forgery token is automatically validated on the server if you are using ASP.NET Core MVC. By
default, ASP.NET Core includes an anti-forgery validation filter in all controllers that have [HttpPost]
methods. The framework automatically checks for the presence of the anti-forgery token in incoming
requests.

The validation ensures that the request originated from the same user session that received the page
and not from a third-party site.

• If the tokens match, the request is allowed to proceed.
• If the tokens don’t match or are missing, the request is rejected with an HTTP 400 Bad Request

response, protecting against CSRF.

If you want to explicitly ensure that anti-forgery validation is enforced in specific actions, you can use
the [ValidateAntiForgeryToken] attribute in your controller actions, as shown in the following code:

[HttpPost]
[ValidateAntiForgeryToken]
public IActionResult PostData(string data)

Model Binding, Validation, and Data Using EF Core128

{
 // The request will only reach here if the anti-forgery token is valid.
 return Ok();
}

Querying a database and using display templates
Let’s create a new action method that can have a query string parameter passed to it and use that to
query the Northwind database for products that cost more than a specified price.

In previous examples, we defined a view model that contained properties for every value that needed
to be rendered in the view. In this example, there will be two values: a list of products and the price
the visitor entered. To avoid having to define a class or record for the view model, we will pass the list
of products as the model and store the maximum price in the ViewData collection.

Let’s implement this feature:

1. In HomeController.cs, add a new action method, as shown in the following code:

public IActionResult ProductsThatCostMoreThan(decimal? price)
{
 if (!price.HasValue)
 {
 return BadRequest("You must pass a product price in the query string,
for example, /Home/ProductsThatCostMoreThan?price=50");
 }

 IEnumerable<Product> model = _db.Products
 .Include(p => p.Category)
 .Include(p => p.Supplier)
 .Where(p => p.UnitPrice > price);

 if (!model.Any())
 {
 return NotFound(
 $"No products cost more than {price:C}.");
 }

 // Format currency using web server's culture.
 ViewData["MaxPrice"] = price.Value.ToString("C");

 // We can override the search path convention.
 return View("Views/Home/CostlyProducts.cshtml", model);
}

Chapter 3 129

2. In the Views\Home folder, add a new file named CostlyProducts.cshtml.
3. Modify the contents, as shown in the following code:

@model IEnumerable<Product>
@{
 string title =
 $"Products That Cost More Than {ViewData["MaxPrice"]}";
 ViewData["Title"] = title;
}
<h2>@title</h2>
@if (Model is null)
{
 <div>No products found.</div>
}
else
{
 <table class="table">
 <thead>
 <tr>
 <th>Category Name</th>
 <th>Supplier's Company Name</th>
 <th>Product Name</th>
 <th>Unit Price</th>
 <th>Units In Stock</th>
 </tr>
 </thead>
 <tbody>
 @foreach (Product p in Model)
 {
 <tr>
 <td>
 @if (p.Category is not null) { Html.DisplayFor(modelItem =>
p.Category.CategoryName); }
 </td>
 <td>

Good Practice: One of the benefits of using an EF Core model to interact with our
database is that it helps prevent SQL injection by parameterizing queries.

Model Binding, Validation, and Data Using EF Core130

 @if (p.Supplier is not null) { Html.DisplayFor(modelItem =>
p.Supplier.CompanyName); }
 </td>
 <td>
 @Html.DisplayFor(modelItem => p.ProductName)
 </td>
 <td>
 @Html.DisplayFor(modelItem => p.UnitPrice)
 </td>
 <td>
 @Html.DisplayFor(modelItem => p.UnitsInStock)
 </td>
 </tr>
 }
 <tbody>
 </table>
}

4. In the Views\Home folder, open Index.cshtml.
5. Add the following form element below the Welcome heading and Learn about… paragraph.

This will provide a form for the user to enter a price. The user can then click Submit to call
the action method that shows only products that cost more than the entered price:

<h3>Query products by price</h3>
<form asp-action="ProductsThatCostMoreThan" method="GET">
 <input name="price" placeholder="Enter a product price" />
 <input type="submit" />
</form>

6. Start the Northwind.Mvc website project using the https launch profile.
7. On the home page, enter a price in the form, for example, 50, and then click on Submit.
8. Note the table of the products that cost more than the price that you entered, as shown in

Figure 3.8:

Chapter 3 131

Figure 3.8: A filtered list of products that cost more than £50

9. Close Chrome and shut down the web server.

Improving scalability using asynchronous tasks
When building a desktop or mobile app, multiple tasks (and their underlying threads) can be used to
improve responsiveness, because while one thread is busy with the task, another can handle inter-
actions with the user.

Threads and tasks on a web server
Tasks and their threads can be useful on the server side too, especially with websites that work with
files, or request data from a store or a web service that could take a while to respond. But they are
detrimental to complex calculations that are CPU-bound, so leave these to be processed synchronously
as normal.

When an HTTP request arrives at the web server, a thread from its pool is allocated to handle the re-
quest. But if that thread must wait for a resource, then it is blocked from handling any more incoming
requests. If a website receives more simultaneous requests than it has threads in its pool, then some
of those requests will respond with a server timeout error, 503 Service Unavailable.

The threads that are locked are not doing useful work. They could handle one of those other requests,
but only if we implement asynchronous code for our websites.

Model Binding, Validation, and Data Using EF Core132

Whenever a thread is waiting for a resource it needs, it can return to the thread pool and handle a
different incoming request, improving the scalability of the website, that is, increasing the number
of simultaneous requests it can handle.

Why not just have a larger thread pool? In modern operating systems, every thread in the pool has
a 1 MB stack. An asynchronous method uses a smaller amount of memory. It also removes the need
to create new threads in the pool, which takes time. The rate at which new threads are added to the
pool is typically one every two seconds, which is a loooooong time compared to switching between
asynchronous threads.

Making controller action methods asynchronous
In an earlier task, you imported the Microsoft.EntityFrameworkCore namespace so that you could
use the Include extension method. You are about to use another extension method that requires that
namespace to be imported.

It is easy to make an existing action method asynchronous:

1. In HomeController.cs, modify the Index action method to be asynchronous and await the
calls to asynchronous methods to get the categories and products, as shown highlighted in
the following code:

public async Task<IActionResult> Index()
{
 _logger.LogError("This is a serious error (not really!)");
 _logger.LogWarning("This is your first warning!");
 _logger.LogWarning("Second warning!");
 _logger.LogInformation("I am in the Index method of the
HomeController.");

 HomeIndexViewModel model = new
 (
 VisitorCount: Random.Shared.Next(1, 1001),
 Categories: await _db.Categories.ToListAsync(),
 Products: await _db.Products.ToListAsync()
);

 return View(model); // Pass the model to the view.
}

Good Practice: Make your controller action methods asynchronous.

Chapter 3 133

2. Modify the ProductDetail action method in a similar way, as shown highlighted in the fol-
lowing code:

public async Task<IActionResult> ProductDetail(int? id,

3. In the ProductDetail action method, await the calls to asynchronous methods to get the
product, as shown highlighted in the following code:

Product? model = await _db.Products.Include(p => p.Category)
 .SingleOrDefaultAsync(p => p.ProductId == id);

4. Start the Northwind.Mvc website project using the https launch profile.
5. Note that the functionality of the website is the same, but trust that it will now scale better.
6. Close Chrome and shut down the web server.

Practicing and exploring
Test your knowledge and understanding by answering some questions, getting some hands-on practice,
and exploring this chapter’s topics with deeper research.

Exercise 3.1 – Online material
Microsoft has an official tutorial series, ASP.NET Core MVC with EF Core - tutorial series, available at the
following link: https://learn.microsoft.com/en-us/aspnet/core/data/ef-mvc/.

Exercise 3.2 – Practice exercises
The following practice exercises help you to explore the topics in this chapter more deeply.

Practice implementing MVC by implementing a category detail page
The Northwind.Mvc project has a home page that shows categories, but when the View button is
clicked, the website returns a 404 Not Found error, for example, for the following URL: https://
localhost:5021/home/categorydetail/1.

Extend the Northwind.Mvc project by adding the ability to show a detail page for a category.

For example, add an action method to the HomeController class, as shown in the following code:

public async Task<IActionResult> CategoryDetail(int? id)
{
 if (!id.HasValue)
 {
 return BadRequest("You must pass a category ID in the route, for example, /
Home/CategoryDetail/6");
 }

https://learn.microsoft.com/en-us/aspnet/core/data/ef-mvc/
https://localhost:5021/home/categorydetail/1
https://localhost:5021/home/categorydetail/1

Model Binding, Validation, and Data Using EF Core134

 Category? model = await db.Categories.Include(p => p.Products)
 .SingleOrDefaultAsync(p => p.CategoryId == id);

 if (model is null)
 {
 return NotFound($"CategoryId {id} not found.");
 }

 return View(model); // Pass model to view and then return result.
}

And create a view that matches the name CategoryDetail.cshtml, as shown in the following markup:

@model Northwind.EntityModels.Category
@{
 ViewData["Title"] = "Category Detail - " + Model.CategoryName;
}
<h2>Category Detail</h2>
<div>
 <dl class="dl-horizontal">
 <dt>Category Id</dt>
 <dd>@Model.CategoryId</dd>
 <dt>Product Name</dt>
 <dd>@Model.CategoryName</dd>
 <dt>Products</dt>
 <dd>@Model.Products.Count</dd>
 <dt>Description</dt>
 <dd>@Model.Description</dd>
 </dl>
</div>

Exercise 3.3 – Test your knowledge
Answer the following questions:

1. What does the default model binder do, and what data types can it handle?
2. How do you specify validation rules for ASP.NET Core model binding?
3. Where can you find any validation errors caused during model binding?
4. What is over-posting, aka a mass assignment attack?
5. When should you return a 401 Unauthorized status code and when should you return a 403

Forbidden status code?

Chapter 3 135

6. To allow a user to insert an entity like a Customer, why do you typically define a pair of action
methods, GET and POST, and what do they do?

7. How does a CSRF attack work?
8. What should you do to prevent CSRF attacks in an ASP.NET Core project?
9. What are two ways to get data into a view?
10. How do you make an action method asynchronous?

Exercise 3.4 – Explore topics
Use the links on the following page to learn more about the topics covered in this chapter: https://
github.com/markjprice/web-dev-net9/blob/main/docs/book-links.md#chapter-3---model-
binding-validation-and-data-using-ef-core.

Summary
In this chapter, you learned how to bind models to data in an HTTP request, validate those models,
and use EF Core to manipulate data.

In the next chapter, you will learn how to build web user interfaces with ASP.NET Core, including more
details about views, Razor syntax, HTML, and Tag Helpers, and how to internationalize your website.

Learn more on Discord
To join the Discord community for this book – where you can share feedback, ask questions to the
author, and learn about new releases – follow the QR code below:

https://packt.link/RWD9

https://github.com/markjprice/web-dev-net9/blob/main/docs/book-links.md#chapter-3---model-binding-validation-and-data-using-ef-core
https://github.com/markjprice/web-dev-net9/blob/main/docs/book-links.md#chapter-3---model-binding-validation-and-data-using-ef-core
https://github.com/markjprice/web-dev-net9/blob/main/docs/book-links.md#chapter-3---model-binding-validation-and-data-using-ef-core
https://packt.link/RWD9

4
Building and Localizing Web User
Interfaces

This chapter looks into building web user interfaces with ASP.NET Core in more depth. You will learn
more details about ASP.NET Core MVC views, Razor syntax, HTML and Tag Helpers, and how to inter-
nationalize your website so that its user interface is understandable all over the world.

Razor is a view engine in ASP.NET Core that allows developers to define dynamic web user interfaces
using a clean, HTML-friendly syntax. Razor Views combine C# logic with HTML to create rich, da-
ta-driven pages. One of Razor’s core features is its ability to use shared layouts, which are templates
that provide a consistent structure and design across multiple pages of an application. Shared layouts
typically include common elements such as headers, footers, navigation bars, and styles, making it
easy to maintain a cohesive look and feel throughout the site. Developers can define a layout once and
then reuse it across different views by specifying it in the _ViewStart.cshtml file or directly within
individual Razor Views. This approach promotes DRY (Don’t Repeat Yourself) principles and simplifies
future updates to the user interface, as changes to the layout propagate across all views that use it.

Tag Helpers simplify the way developers interact with HTML elements and Razor Views. They pro-
vide a way to encapsulate C# logic and apply it directly to HTML tags, making the code more intuitive
and less verbose. For example, the built-in asp-for Tag Helper binds form input elements to model
properties, reducing boilerplate code and minimizing errors. This modularity not only enhances the
flexibility of web interfaces but also aligns well with the MVC architecture, where keeping concerns
separate is key to building maintainable, testable applications.

In today’s globalized world, creating applications that are accessible and usable by people from dif-
ferent cultural and linguistic backgrounds is increasingly important. ASP.NET Core offers decent
localization and globalization support, enabling developers to build web user interfaces that can
adapt to different languages, time zones, and regional formats. Localization involves translating and
formatting user interface elements, such as dates, numbers, and strings, according to the user’s culture
settings, while Localization ensures that the application is designed to support multiple languages
and cultures from the start.

Building and Localizing Web User Interfaces138

ASP.NET Core uses resource files (.resx) to store localized content and offers middleware for detecting
the user’s culture based on browser preferences or other factors.

This chapter will cover the following topics:

• Defining web user interfaces with Razor Views
• Defining web user interfaces with Tag Helpers
• Localizing web user interfaces with ASP.NET Core

Defining web user interfaces with Razor Views
Let’s review how we can build the user interface of a web page in a modern ASP.NET Core MVC website.

Using shared layouts with Razor Views
Most websites have more than one page. If every page had to contain all of the boilerplate markup that
is currently in index.cshtml, that would become a pain to manage. So, ASP.NET Core has a feature
named layouts. These can reduce code duplication and improve maintainability.

To use layouts, we must create a Razor file to define the default layout for all Razor Views and store it
in a Shared folder so that it can be easily found by convention. The name of this file can be anything,
because we will specify it, but _Layout.cshtml is good practice. We must also have a specially named
file to set the default layout file for all Razor Views. This file must be named _ViewStart.cshtml.

The _ViewStart.cshtml file is used to define settings or behaviors, like layout assignment, that should
apply to all views in the directory it resides in and in any subdirectories. You typically have one
_ViewStart.cshtml file in the root Views folder, which is global and applies to all views unless over-
ridden. For example, this file might set a default layout for the entire project.

If you place another _ViewStart.cshtml file in a specific folder, such as Views/Home or Views/Products,
this file will override the settings from the global _ViewStart.cshtml file, but only for the views within
that directory and its subdirectories. This allows for different layouts or behaviors for different parts
of the site.

If a directory-specific _ViewStart.cshtml file does not define all the settings or behaviors found in the
global _ViewStart.cshtml file, then those settings are inherited from the global file. For example, if
the _ViewStart.cshtml in a specific directory does not specify a layout, it will still inherit the layout
defined in the global _ViewStart.cshtml.

You can also create as many alternative layout files as you like, and a Razor View can explicitly specify
that it wants to use that layout. You can also nest layouts for even more power and flexibility.

Let’s see how the default layout works and how to override it:

1. In the Views folder, note the file named _ViewStart.cshtml. (The Visual Studio project item
template is named Razor View Start if you need to create one in the future.)

Chapter 4 139

2. Note the _ViewStart.cshtml file content, as shown in the following markup:

@{
 Layout = "_Layout";
}

3. In the Views folder, note the folder named Shared.
4. In the Shared folder, note the file named _Layout.cshtml. (The Visual Studio item template

is named Razor Layout if you need to create one in the future.)
5. Note the content of _Layout.cshtml, as shown in the following markup:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0"
/>
 <title>@ViewData["Title"] - Northwind.Mvc</title>
 <script type="importmap"></script>
 <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.min.
css" />
 <link rel="stylesheet" href="~/css/site.css" asp-append-version="true"
/>
 <link rel="stylesheet" href="~/Northwind.Mvc.styles.css" asp-append-
version="true" />
</head>
<body>
 <header>
 <nav class="navbar navbar-expand-sm navbar-toggleable-sm navbar-light
bg-white border-bottom box-shadow mb-3">
 <div class="container-fluid">
 <a class="navbar-brand" asp-area="" asp-controller="Home" asp-
action="Index">Northwind.Mvc
 <button class="navbar-toggler" type="button" data-
bs-toggle="collapse" data-bs-target=".navbar-collapse" aria-
controls="navbarSupportedContent"
 aria-expanded="false" aria-label="Toggle navigation">

 </button>

Building and Localizing Web User Interfaces140

 <div class="navbar-collapse collapse d-sm-inline-flex justify-
content-between">
 <ul class="navbar-nav flex-grow-1">
 <li class="nav-item">
 <a class="nav-link text-dark" asp-area="" asp-
controller="Home" asp-action="Index">Home

 <li class="nav-item">
 <a class="nav-link text-dark" asp-area="" asp-
controller="Home" asp-action="ModelBinding">Model Binding

 <li class="nav-item">
 <a class="nav-link text-dark" asp-area="" asp-
controller="Home" asp-action="Suppliers">Suppliers

 <li class="nav-item">
 <a class="nav-link text-dark" asp-area="" asp-
controller="Home" asp-action="Privacy">Privacy

 <partial name="_LoginPartial" />
 </div>
 </div>
 </nav>
 </header>
 <div class="container">
 <main role="main" class="pb-3">
 @RenderBody()
 </main>
 </div>

 <footer class="border-top footer text-muted">
 <div class="container">
 © 2024 - Northwind.Mvc - <a asp-area="" asp-controller="Home"
asp-action="Privacy">Privacy
 </div>
 </footer>
 <script src="~/lib/jquery/dist/jquery.min.js"></script>
 <script src="~/lib/bootstrap/dist/js/bootstrap.bundle.min.js"></script>
 <script src="~/js/site.js" asp-append-version="true"></script>
 @await RenderSectionAsync("Scripts", required: false)

Chapter 4 141

</body>
</html>

While reviewing the preceding markup, note the following:

• <title> is set dynamically using server-side code by reading from a dictionary named
ViewData. This is a simple way to pass data between different parts of an ASP.NET Core
website. In this case, the title value will be set in the controller action method and
then output in the shared layout. You learned about the ViewData and TempData dic-
tionaries in Chapter 2, Building Websites Using ASP.NET Core MVC.

• @RenderBody() marks the insertion point for the view being requested.
• A horizontal rule and footer will appear at the bottom of each page.
• At the bottom of the layout is a script to implement some cool features of Bootstrap,

such as a carousel of images.
• After the <script> elements for Bootstrap, we have defined a section named Scripts

so that a Razor View can optionally inject additional scripts that it needs.

6. In the Views folder, in _ViewStart.cshtml, add some comments and add a statement to set a
default page title, as shown highlighted in the following code:

@{
 // Set a default layout for all views in this folder hierarchy.
 Layout = "_Layout";

 // Set a default title for all views in this folder hierarchy.
 ViewData["Title"] = "Northwind MVC";
}

7. Save changes to the file.

Defining views with HTML Helper methods
While creating a view for ASP.NET Core MVC, you can use the Html object and its methods to gen-
erate markup. When Microsoft first introduced ASP.NET MVC in 2009, these HTML Helper methods
were the way to programmatically render HTML. Modern ASP.NET Core retains these HTML Helper
methods for backward compatibility and provides Tag Helpers that are usually easier to read and
write in most scenarios.

Good Practice: Use Tag Helpers wherever possible, but remember that there are notable
situations where Tag Helpers cannot be used, like in Razor components, primarily because
Tag Helpers and Razor components are fundamentally different technologies with distinct
rendering mechanisms and purposes. The key difference is that Razor components deal
with interactive UIs and dynamic rendering through the component model, where changes
to the user interface are handled reactively.

Building and Localizing Web User Interfaces142

Some useful methods include the following:

• ActionLink: Use this to generate an anchor <a> element that contains a URL path to the
specified controller and action. For example, Html.ActionLink(linkText: "Binding",
actionName: "ModelBinding", controllerName: "Home") would generate <a href="/home/
modelbinding">Binding. You can achieve the same result using the anchor tag helper <a
asp-action="ModelBinding" asp-controller="Home">Binding.

• AntiForgeryToken: Use this inside a <form> to insert a <hidden> element containing an an-
ti-forgery token that will be validated when the form is submitted.

• Display and DisplayFor: Use these to generate HTML markup for the expression relative
to the current model using a display template. There are built-in display templates for .NET
types, and custom templates can be created in the DisplayTemplates folder. The folder name
is case-sensitive on case-sensitive filesystems.

• DisplayForModel: Use this to generate HTML markup for an entire model instead of a single
expression.

• Editor and EditorFor: Use these to generate HTML markup for the expression relative to
the current model using an editor template. There are built-in editor templates for .NET
types that use <label> and <input> elements, and custom templates can be created in the
EditorTemplates folder. The folder name is case-sensitive on case-sensitive filesystems.

• EditorForModel: Use this to generate HTML markup for an entire model instead of a single
expression.

• TextBox, DropDownList, CheckBox, and so on: Use these to generate specific types of input
control.

• Encode: Use this to safely encode an object or string into HTML. For example, the string value
"<script>" would be encoded as "<script>". This is not normally necessary since the
Razor @ symbol encodes string values by default.

• Raw: Use this to render a string value without encoding it as HTML.
• PartialAsync and RenderPartialAsync: Use these to generate HTML markup for a partial

view. You can optionally pass a model and view data.

Defining web user interfaces with Tag Helpers
Tag Helpers make it easier to make HTML elements dynamic. The markup is cleaner and easier to
read, edit, and maintain than if you use HTML Helpers.

However, Tag Helpers do not completely replace HTML Helpers because there are some things that
can only be achieved with HTML Helpers, like rendering output that contains multiple nested tags.
Tag Helpers also cannot be used in Razor components. So, you must learn how to use HTML Helpers
and treat Tag Helpers as an optional choice that is better in some scenarios.

Tag Helpers are especially useful for Front End (FE) developers who primarily work with HTML, CSS,
and JavaScript because the FE developer does not have to learn C# syntax. Tag Helpers just use what
look like normal HTML attributes on elements. The attribute names and values can also be selected
from IntelliSense if your code editor supports that; both Visual Studio and VS Code do.

Chapter 4 143

Comparing HTML Helpers and Tag Helpers
For example, to render a linkable hyperlink to a controller action, you could use an HTML Helper
method, as shown in the following markup:

@Html.ActionLink("View our privacy policy.", "Privacy", "Index")

To make it clearer how it works, you could use named parameters, as shown in the following code:

@Html.ActionLink(linkText: "View our privacy policy.",
 action: "Privacy", controller: "Index")

But using a Tag Helper would be even clearer and cleaner for someone who works more with HTML
than C#, as shown in the following markup:

<a asp-action="Privacy" asp-controller="Home">View our privacy policy.

All three examples above generate the same rendered HTML element, as shown in the following
markup:

View our privacy policy.

In the next few sections, we will review some of the more common Tag Helpers:

• Anchor Tag Helper
• Cache Tag Helper
• Environment Tag Helper
• Image Tag Helper
• Forms-related Tag Helpers

Exploring the Anchor Tag Helper
First, we will create three clickable hyperlinks styled as buttons to view the home page with all orders,
the orders for a single customer, and the orders in a single country. This will allow us to see the basics
of creating links to controllers and actions, as well as passing parameters using a route parameter and
arbitrary query string parameters.

Let’s explore these examples of the Anchor Tag Helper:

1. In the Views folder, in _ViewImports.cshtml, note the @addTagHelper directive that adds the
ASP.NET Core Tag Helpers, as shown highlighted in the following code:

@using Northwind.Mvc
@using Northwind.Mvc.Models
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers
@using Northwind.EntityModels

Building and Localizing Web User Interfaces144

2. In the Views/Home folder, in Privacy.cshtml, at the bottom of the file, add markup to define
a paragraph with clickable hyperlinks styled as buttons using the <a> tag, as shown in the
following markup:

<p>
 <a asp-controller="Home" asp-action="Orders"
 class="btn btn-primary" role="button">Orders

 <a asp-controller="Home"
 class="btn btn-outline-primary" role="button">This Page

 <a asp-controller="Home" asp-action="Orders" asp-route-id="ALFKI"
 class="btn btn-outline-primary" role="button">
 Orders for Alfreds Futterkiste

 <a asp-controller="Home" asp-action="Orders" asp-route-country="Brazil"
 class="btn btn-outline-primary" role="button">Orders in Brazil
</p>

3. In the Controllers folder, in HomeController.cs, create an Orders action method with two
optional parameters to pass a customer ID and the name of a country, and write a LINQ query
to use them to filter orders if they are set, as shown in the following code:

public IActionResult Orders(
 string? id = null, string? country = null)
{
 // Start with a simplified initial model.
 IEnumerable<Order> model = _db.Orders
 .Include(order => order.Customer)

You could create your own Tag Helpers and you would have to register them in the
same way. But this is beyond the scope of this book, so if you want to learn how,
you can read the following documentation: https://learn.microsoft.com/
en-us/aspnet/core/mvc/views/tag-helpers/authoring.

If you set a controller name without an action name, then it defaults to the current
action, in this case, Privacy. The asp-route-{parametername} attribute can
use any arbitrary parameter name. In the code example above, we use id and
country. The ID will map to the route parameter with the same name. country
is not a route parameter, so it will be passed as a query string.

https://learn.microsoft.com/en-us/aspnet/core/mvc/views/tag-helpers/authoring
https://learn.microsoft.com/en-us/aspnet/core/mvc/views/tag-helpers/authoring

Chapter 4 145

 .Include(order => order.OrderDetails);

 // Add filtering based on parameters.
 if (id is not null)
 {
 model = model.Where(order => order.Customer?.CustomerId == id);
 }
 else if (country is not null)
 {
 model = model.Where(order => order.Customer?.Country == country);
 }

 // Add ordering and make enumerable.
 model = model
 .OrderByDescending(order => order.OrderDetails
 .Sum(detail => detail.Quantity * detail.UnitPrice))
 .AsEnumerable();

 return View(model);
}

4. In the Views\Home folder, add a new Razor View – Empty file named Orders.cshtml.
5. In Orders.cshtml, add statements to render the orders in an HTML table, as shown in the

following markup:

@model IEnumerable<Order>
@{
 ViewData["Title"] = "Orders";
}
<div class="text-center">
 <h1 class="display-4">@ViewData["Title"]</h1>
 <table class="table table-bordered table-striped">
 <thead>
 <tr>
 <th>Order ID</th>
 <th>Order Date</th>
 <th>Company Name</th>
 <th>Country</th>
 <th>Item Count</th>
 <th>Order Total</th>
 </tr>
 </thead>

Building and Localizing Web User Interfaces146

 <tbody>
 @foreach (Order order in Model)
 {
 <tr>
 <td>@order.OrderId</td>
 <td>@order.OrderDate?.ToString("D")</td>
 <td>@order.Customer?.CompanyName</td>
 <td>@order.Customer?.Country</td>
 <td>@order.OrderDetails.Count()</td>
 <td>@order.OrderDetails.Sum(detail => detail.Quantity * detail.
UnitPrice).ToString("C")</td>
 </tr>
 }
 </tbody>
 </table>
</div>

6. Start the Northwind.Mvc website project with the https profile.
7. View Developer Tools and click the Elements tab.
8. On the home page, click Privacy to navigate to that page, and note the buttons, including their

raw HTML that shows the href attribute paths that were generated by the Anchor Tag Helper,
as shown in Figure 4.1:

Figure 4.1: Three hyperlinks styled as buttons generated by the Anchor Tag Helper

9. Click each button and then come back to the Privacy Policy page to make sure they work
correctly.

10. Close the browser and shut down the web server.

Chapter 4 147

11. In the Views/Home folder, in Orders.cshtml, at the end of the table of orders, add an anchor
tag to indicate the end of the orders table, as shown highlighted in the following markup:

 </table>

</div>

12. In the Views/Home folder, in Privacy.cshtml, after the existing anchor tags, add another one
to link to the anchor with an id of endOfTable by setting the asp-fragment attribute, as shown
in the following markup:

<a asp-controller="Home" asp-action="Orders" asp-fragment="endOfTable"
 class="btn btn-outline-primary">Orders (end of table)

13. Modify the second anchor tag to explicitly set the protocol to use https, as shown highlighted
in the following markup:

<a asp-controller="Home" asp-protocol="https"
 class="btn btn-outline-primary">This Page

14. In the Controllers folder, in HomeController.cs, add an action method named Shipper.
Give it a parameter to receive a Shipper entity and then pass it to the view, as shown in the
following code:

public IActionResult Shipper(Shipper shipper)
{
 return View(shipper);
}

15. In the Controllers folder, in HomeController.cs, in the Privacy action method, make the
method asynchronous and then add statements to get the first shipper and store its properties
in ViewData to pass them to the view, as shown highlighted in the following code:

[Route("private")]
public async Task<IActionResult> Privacy()
{
 // Construct a dictionary to store properties of a shipper.
 Dictionary<string, string>? keyValuePairs = null;

 // Find the shipper with ID of 1.
 Shipper? shipper1 = await _db.Shippers.FindAsync(1);

This action method can respond to any method of request, for example, GET or
POST. With a GET request, the shipper entity would be passed as query string
key-value pairs. With a POST request, the shipper entity would be passed in the body.

Building and Localizing Web User Interfaces148

 if (shipper1 is not null)
 {
 keyValuePairs = new()
 {
 { "ShipperId", shipper1.ShipperId.ToString() },
 { "CompanyName", shipper1.CompanyName },
 { "Phone", shipper1.Phone ?? string.Empty }
 };
 }

 ViewData["shipper1"] = keyValuePairs;

 return View();
}

16. In the Views/Home folder, add an empty Razor View named Shipper.cshtml.
17. Modify the contents, as shown in the following markup:

@model Shipper
@{
 ViewData["Title"] = "Shippers";
}
<h1>@ViewData["Title"]</h1>
<div>
 <div class="mb-3">
 <label for="shipperIdInput" class="form-label">Shipper Id</label>
 <input type="number" class="form-control" id="shipperIdInput"
 value="@Model.ShipperId">
 </div>
 <div class="mb-3">
 <label for="companyNameInput" class="form-label">Company Name</label>
 <input class="form-control" id="companyNameInput"
 value="@Model.CompanyName">
 </div>
 <div class="mb-3">
 <label for="phoneInput" class="form-label">Phone</label>
 <input class="form-control" id="phoneInput" value="@Model.Phone">
 </div>
</div>

Chapter 4 149

18. In the Views/Home folder, in Privacy.cshtml, after the existing anchor tags, add another one
to pass the dictionary to the current page, as shown in the following markup:

<a asp-controller="Home" asp-action="Shipper" asp-all-route-data=
 "@ViewData["shipper1"] as IDictionary<string, string>"
 class="btn btn-outline-primary">Shipper

19. If your database server is not running, for example, because you are hosting it in Docker, a
virtual machine, or in the cloud, then make sure to start it.

20. Start the Northwind.Mvc website project.
21. View Developer Tools and click Elements.
22. On the home page, click Privacy to navigate to that page and note the buttons, including their

raw HTML that shows the href attribute paths that were generated by the Anchor Tag Helper,
as shown in Figure 4.2:

Figure 4.2: Using a fragment and passing a complex object using query string parameters

23. Click the Orders (end of table) button and note the browser navigates to the home page and
then jumps to the end of the Orders table.

Passing a complex object as a query string like this quickly hits the limit of about
1,000 characters for a URL. To send larger objects, you should use POST instead of
GET by using a <form> element instead of an anchor tag <a>.

A side benefit of specifying the protocol is that the generated URL must include
the protocol, domain, and any port number, as well as the relative path, so it is
a convenient way to get an absolute URL instead of the default relative path URL,
as shown in the second link above.

Building and Localizing Web User Interfaces150

24. Go back to the Privacy page, click the Shipper button, and note the shipper details are pre-en-
tered into the Shipper form.

25. Close the browser and shut down the web server.

Exploring the Cache Tag Helpers
The Cache and Distributed Cache Tag Helpers improve the performance of your web pages by caching
their content using the in-memory or registered distributed cache provider, respectively. We will cover
reading and writing objects to these caches in more detail in Chapter 6, Performance Optimization Using
Caching. For now, we will see how to store fragments of HTML for a view in those caches.

An in-memory cache is best for a single web server or a web server farm with session affinity enabled.
Session affinity means that subsequent requests from the same browser are served by the same web
server. A distributed cache is best for a web server farm or in a cloud provider like Azure.

Attributes that can be applied to the Cache Tag Helper include:

• enabled: The default value is true. This exists so that you can include the <cache> element in
the markup but decide at runtime if it should be enabled or not.

• expires-after: A TimeSpan value to expire after. The default is 00:20:00, meaning 20 minutes.
• expires-on: A DateTimeOffset value to expire at. No default.
• expires-sliding: A TimeSpan value to expire after if the value has not been accessed during

that time. This is useful when storing database entities that cost a lot to create and have varied
popularity. The popular entities will stay cached if they continue to be accessed. Less popular
entities will drop out. No default.

• vary-by-{type}: These attributes allow multiple different cached versions based on different
values for {type}, including an HTTP header value, the browser type, a user, a route, cookie,
a query string value, or a custom value.

Let’s see an example of the Cache Tag Helper:

1. In the Views/Home folder, in Index.cshtml, below the Welcome heading, add <div> elements
to define a Bootstrap row with two columns that show the current UTC date and time twice,
once live and then once cached, as shown in the following markup:

<div class="row">
 <div class="col">
 <h2>Live</h2>
 <p class="alert alert-info">
 UTC: @DateTime.UtcNow.ToLongDateString() at

More Information: You can register providers for SQL Server, Redis, or NCache,
or create your own custom provider, as you can learn about at the following link:
https://learn.microsoft.com/en-us/aspnet/core/performance/caching/
distributed#establish-distributed-caching-services.

https://learn.microsoft.com/en-us/aspnet/core/performance/caching/distributed#establish-distributed-caching-services
https://learn.microsoft.com/en-us/aspnet/core/performance/caching/distributed#establish-distributed-caching-services

Chapter 4 151

 @DateTime.UtcNow.ToLongTimeString()
 </p>
 </div>
 <div class="col">
 <h2>Cached</h2>
 <p class="alert alert-secondary">
 <cache>
 UTC: @DateTime.UtcNow.ToLongDateString() at
 @DateTime.UtcNow.ToLongTimeString()
 </cache>
 </p>
 </div>
</div>

2. Start the Northwind.Mvc website project.
3. Refresh the home page several times over several seconds and note the left-hand time is always

refreshed to show the live time, and the right-hand time is cached (for 20 minutes by default),
as shown in Figure 4.3:

Figure 4.3: Live and cached UTC times

4. Close the browser and shut down the web server.
5. In the Views/Home folder, in Index.cshtml, modify the <cache> element to expire after 10

seconds, as shown highlighted in the following markup:

<cache expires-after="@TimeSpan.FromSeconds(10)">

6. Start the Northwind.Mvc website project.
7. Refresh the home page several times over several seconds and note the left-hand time is al-

ways refreshed to show the live time, and the right-hand time is cached for 10 seconds before
it then refreshes.

8. Close the browser and shut down the web server.

Building and Localizing Web User Interfaces152

This section has been about the Cache Tag Helper. We will cover configuring caches of all types in
more detail in Chapter 6, Performance Optimization Using Caching.

Next, let’s see how to use the Environment Tag Helper.

Exploring the Environment Tag Helper
The Environment Tag Helper renders its content only if the current environment matches one of
the values in a comma-separated list of names. This is useful if you want to render some content like
instructions to a tester when hosted in a staging environment, or content like customer-specific in-
formation that developers and testers do not need to see while hosted in the production environment.

As well as a names attribute to set the comma-separated list of environments, you can also use include
(works the same as names) and exclude (renders for all environments except the ones in the list).

Let’s see an example:

1. In the Views/Home folder, in Privacy.cshtml, inject the dependency service for the web host
environment, as shown in the following code:

@inject IWebHostEnvironment webhost

2. After the <h1> heading, add two <environment> elements, the first to show output only for
developers and testers, and the second to show output only for product visitors, as shown in
the following markup:

<environment names="Development,Staging">
 <div class="alert alert-warning">
 <h2>Attention developers and testers</h2>
 <p>
 This is a warning that only developers and testers will see.
 Current environment:
 @webhost.EnvironmentName
 </p>
 </div>
</environment>
<environment names="Production">
 <div class="alert alert-info">
 <h2>Welcome, visitor!</h2>
 <p>
 This is information that only a visitor to the production website
 will see. Current environment:
 @webhost.EnvironmentName
 </p>
 </div>
</environment>

Chapter 4 153

3. Start the Northwind.Mvc website project.
4. Navigate to the Privacy page, and note the message for developers and testers, as shown in

Figure 4.4:

Figure 4.4: The Privacy page in the Development environment

5. Close the browser and shut down the web server.
6. In the Properties folder, in launchSettings.json, for the https profile, change the environ-

ment setting to Production, as shown highlighted in the following JSON:

"https": {
 ...
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Production"
 }
},

7. Start the Northwind.Mvc website project.
8. Navigate to the Privacy page, and note the message for public visitors, as shown in Figure 4.5:

Figure 4.5: The Privacy page in the Production environment

9. Close the browser and shut down the web server.
10. In the Properties folder, in launchSettings.json, for the https profile, change the environ-

ment setting back to Development.

Building and Localizing Web User Interfaces154

Related to the Environment Tag Helper is the concept of environment-specific configuration settings.
This is achieved through a naming convention for appsettings.json files. If you include an environ-
ment name in the filename, then that settings file will only be processed for that environment. For
example, appsettings.Development.json will only be processed when the environment is set to
Development.

Exploring Forms-related Tag Helpers
Forms-related Tag Helpers generate the <form> elements action attribute for an MVC controller
action or named route. Like the Anchor Tag Helper, you can pass parameters using the asp-route-
<parametername> attribute. They also generate a hidden verification token to prevent cross-site request
forgery. You must apply the [ValidateAntiForgeryToken] attribute to the HTTP POST action method
to properly use this feature.

The Label and Input Tag Helpers bind labels and inputs to properties on a model. They can then gen-
erate the id, name, and for attributes automatically, as well as add validation attributes and messages.

Let’s see an example of a form for entering shipper information:

1. In the Views/Home folder, in Shipper.cshtml, duplicate the existing markup that outputs
shipper details, wrap it in a <form> element that uses the Form Tag Helper, and modify the
<label> and <input> elements to use the Label and Input Tag Helpers, as shown highlighted
in the following markup:

@model Shipper
@{
 ViewData["Title"] = "Shipper";
}
<h1>@ViewData["Title"]</h1>
<h2>Without Form Tag Helper</h2>
<div>
 <div class="mb-3">
 <label for="shipperIdInput" class="form-label">Shipper ID</label>
 <input type="number" class="form-control" id="shipperIdInput"
 value="@Model.ShipperId">
 </div>
 <div class="mb-3">
 <label for="companyNameInput" class="form-label">Company Name</label>
 <input class="form-control" id="companyNameInput"
 value="@Model.CompanyName">
 </div>
 <div class="mb-3">
 <label for="phoneInput" class="form-label">Phone</label>
 <input class="form-control" id="phoneInput" value="@Model.Phone">

Chapter 4 155

 </div>
</div>
<h2>With Form Tag Helper</h2>
<form asp-controller="Home" asp-action="ProcessShipper"
 class="form-horizontal" role="form">
 <div>
 <div class="mb-3">
 <label asp-for="ShipperId" class="form-label" />
 <input asp-for="ShipperId" class="form-control">
 </div>
 <div class="mb-3">
 <label asp-for="CompanyName" class="form-label" />
 <input asp-for="CompanyName" class="form-control">
 </div>
 <div class="mb-3">
 <label asp-for="Phone" class="form-label" />
 <input asp-for="Phone" class="form-control">
 </div>
 <div class="mb-3">
 <input type="submit" class="form-control">
 </div>
 </div>
</form>

2. In the Controllers folder, in HomeController.cs, add an action method named ProcessShipper.
Give it a parameter to receive a shipper entity and then return it as a JSON document using the
Json method, as shown in the following code:

[HttpPost]
[ValidateAntiForgeryToken]
public IActionResult ProcessShipper(Shipper shipper)
{
 return Json(shipper);
}

3. Start the Northwind.Mvc website project.
4. Navigate to the Privacy page, and then click the Shipper button.

When you use the asp-* attributes on a <form> element, the Tag Helper will
automatically add a method="post" to the form so that it can post back to the
controller action.

Building and Localizing Web User Interfaces156

5. On the Shipper page, right-click, select View page source, and note the different HTML output
for the form generated by the Form, Input, and Label Tag Helpers, including a hidden element
named __RequestVerificationToken, as shown in the following markup:

<h2>With Form Tag Helper</h2>
<form class="form-horizontal" role="form" action="/Home/ProcessShipper"
method="post">
 <div>
 <div class="mb-3">
 <label class="form-label" for="ShipperId" />
 <input class="form-control" type="number" data-val="true"
data-val-required="The ShipperId field is required." id="ShipperId"
name="ShipperId" value="1">
 </div>
 <div class="mb-3">
 <label class="form-label" for="CompanyName" />
 <input class="form-control" type="text" data-val="true" data-val-
length="The field CompanyName must be a string with a maximum length
of 40." data-val-length-max="40" data-val-required="The CompanyName
field is required." id="CompanyName" maxlength="40" name="CompanyName"
value="Speedy Express">
 </div>
 <div class="mb-3">
 <label class="form-label" for="Phone" />
 <input class="form-control" type="text" data-val="true" data-
val-length="The field Phone must be a string with a maximum length of
24." data-val-length-max="24" id="Phone" maxlength="24" name="Phone"
value="(503) 555-9831">
 </div>
 <div class="mb-3">
 <input type="submit" class="form-control">
 </div>
 </div>
<input name="__RequestVerificationToken" type="hidden"
value="CfDJ8NTt08jabvBCqd1P4J-HCq3X9CDrTPjBphdDdVmG6UT0GFBJk1w7F1OLmNT-jE
GjlGIjfV3kmNUaofOAxlGgiZJwbAR73g-QgFw8oFV_0vjlo45t9dL9E1l1hZzjLXtj8B7y
sDkCYcm8W9zS0T7V3R0" /></form>

6. In the form, change the shipper ID and company name, noting that attributes like maxlength="40"
prevent a company name longer than 40 characters, and type="number" only allows numbers
for the shipper ID.

Chapter 4 157

7. Click the Submit button and note the JSON document returned, as shown in the following
output:

{"shipperId":1,"companyName":"Speedy Express","phone":"(503)
555-9831","orders":[]}

8. Close the browser and shut down the web server.

Localizing web user interfaces with ASP.NET Core
Let’s look at an important intermediate-level topic that is often overlooked when building websites for
the World Wide Web: supporting all the world’s languages and cultures. In this section, we will look
at how to localize a website that uses ASP.NET Core.

Working with cultures
Internationalization is the process of enabling your code to correctly run all over the world. It has two
parts, globalization and localization, and both of them are about working with cultures.

Globalization is about writing your code to accommodate multiple languages and region combinations.
The combination of a language and a region is known as a culture. It is important for your code to
know both the language and region because, for example, the date and currency formats are different
in Quebec and Paris, despite them both using the French language.

There are International Organization for Standardization (ISO) codes for all culture combinations. For
example, in the code da-DK, da indicates the Danish language and DK indicates the Denmark region,
and in the code fr-CA, fr indicates the French language and CA indicates the Canada region.

Localization is about customizing the user interface to support a language, for example, changing the
label of a button to Close (en) or Fermer (fr). Since localization is more about the language, it doesn’t
always need to know about the region, although, ironically enough, the words standardization (en-US)
and standardisation (en-GB) suggest otherwise.

ISO is not an acronym. ISO is a reference to the Greek word isos (which means equal). You
can see a list of ISO culture codes at the following link: https://lonewolfonline.net/
list-net-culture-country-codes/.

Good Practice: I am not a professional translator of software user interfaces, so take all
examples in this chapter as general guidance. My research into French user interface
labeling common practice led me to the following links, but it would be best to hire a
professional if you are not a native language speaker: https://french.stackexchange.
com/questions/12969/translation-of-it-terms-like-close-next-search-etc
and https://www.linguee.com/english-french/translation/close+button.html.

https://lonewolfonline.net/list-net-culture-country-codes/
https://lonewolfonline.net/list-net-culture-country-codes/
https://french.stackexchange.com/questions/12969/translation-of-it-terms-like-close-next-search-etc
https://french.stackexchange.com/questions/12969/translation-of-it-terms-like-close-next-search-etc
https://www.linguee.com/english-french/translation/close+button.html

Building and Localizing Web User Interfaces158

Localizing your user interface
A localized application is divided into two parts:

• An assembly containing code that is the same for all locales and contains resources for when
no other resource file is found.

• One or more assemblies that contain the user interface resources, which are different for
different locales. These are known as satellite assemblies.

This model allows the initial application to be deployed with default invariant resources, and over
time, additional satellite assemblies can be deployed as the resources are translated. In the coding
task, you will create a console app with an embedded invariant culture and satellite assemblies for
Danish, French, French-Canadian, Polish, and Iranian (Persian). To add more cultures in the future,
just follow the same steps.

User interface resources include any text for messages, logs, dialog boxes, buttons, labels, or even file-
names of images, videos, and so on. Resource files are XML files with the .resx extension. The filename
includes a culture code, for example, PacktResources.en-GB.resx or PacktResources.da-DK.resx.

If a resource file or individual entry is missing, the automatic culture fallback search path for resources
goes from a specific culture (language and region) to a neutral culture (language only) to an invariant
culture (supposedly independent but, basically, US English). If the current thread culture is en-AU
(Australian English), then it will search for the resource file in the following order:

1. Australian English: PacktResources.en-AU.resx
2. Neutral English: PacktResources.en.resx
3. Invariant: PacktResources.resx

Web user interface localization
To localize Razor Views in ASP.NET Core MVC websites, there are some built-in types for loading string
values from resource files easily.

As well as localizing string values into languages like French and Spanish using IStringLocalizer,
you can localize HTML content using IHtmlLocalizer, but this should be used with care. Usually,
HTML markup should be the same for all locales. For MVC views, you can use IViewLocalizer.

Request localization means that the browser can request what culture it prefers in the following ways:

• Add a query string parameter, for example, ?culture=en-US&ui-culture=en-US.
• Send a cookie with the request, for example, c=en-US|uic=en-US.
• Set an HTTP header, for example, Accept-Language: en-US,en;q=0.9,fr-FR;q=0.8,fr;q=0.7,en-

GB;q=0.6.

To enable request localization, call the UseRequestLocalization method when you configure the
HTTP request pipeline in Program.cs. This tells ASP.NET Core to look for these requests and to au-
tomatically change the current thread that is processing that request (and only that request, no one
else’s requests) to use the appropriate culture to format data and load resource values.

Chapter 4 159

Creating resource files
Let’s create some resource files to localize the web user interface of the Orders page into American
English, British English, and French, and then globalize data like dates and currency values:

1. In the Northwind.Mvc project, add a new folder named Resources. This is the default name
for the folder that localizer services look in for *.resx resource files.

2. In Resources, add a new folder named Views.
3. In Views, add a new folder named Home.

How you create resource files (*.resx) depends on your code editor.

If you are using Visual Studio
You can use a special project item type and editor:

1. In the Resource\Views\Home folder, add a file type of Resources File named Orders.resx.
2. In Resource Explorer, click the green plus icon + to open the Add a new resource dialog box,

define a Name and Neutral value for Company Name, and then click Add, as shown in Figure 4.6:

Figure 4.6: Using the Resources File editor to define the localized labels

3. Use Resource Explorer to define six more Name and Neutral Value entries, as shown in the
following list and in Figure 4.7:

• Country

• Item Count

• Order Date

• Order ID

To save you from doing this task manually, you can just copy the .resx files from the GitHub
repository found in the folder at the following link: https://github.com/markjprice/
web-dev-net9/tree/main/code/MatureWeb/Northwind.Mvc/Resources/Views/Home.

https://github.com/markjprice/web-dev-net9/tree/main/code/MatureWeb/Northwind.Mvc/Resources/Views/Home
https://github.com/markjprice/web-dev-net9/tree/main/code/MatureWeb/Northwind.Mvc/Resources/Views/Home

Building and Localizing Web User Interfaces160

• Order Total

• Orders

Figure 4.7: Using the Resources File editor to define the localized labels

4. Close Resource Explorer.
5. Copy and paste the file and rename it Index.en-GB.resx.

6. Open Index.en-GB.resx. Note that you can see the Neutral Value as well as en-GB value in
side-by-side columns, and then modify Orders to Orders (UK), as shown in Figure 4.8:

Figure 4.8: Editing a UK resource value

Rider has its own resource file editor that combines all .resx files in one expe-
rience as a grid. Each language has its own column, side by side. To get the same
experience in Visual Studio, you must use version 17.11 or later. In earlier versions
of Visual Studio, you had to edit each .resx file individually.

Warning! You must not change any of the entries in the Name column because
these are used to look up localized values for all languages! You can only change
the entries in the Value or Comment column.

Chapter 4 161

7. Close Resource Explorer.
8. Copy and paste the file and rename it Index.fr-FR.resx.
9. In Index.fr-FR.resx, modify the value column to use French. (See the step-by-step instruc-

tions in the next section on VS Code for the translations.)
10. Copy and paste the file and rename it Index.fr.resx.
11. In Index.fr.resx, modify the last value to be Commandes (Neutral French).
12. Your Resource Explorer should now look like Figure 4.9:

Figure 4.9: The complete resources

If you are using VS Code
You will have to edit the file without a special editor:

1. In Resources\Views\Orders, add a new file named Index.resx.
2. Modify the contents to contain neutral (American English) language resources, as shown in

the following markup:

<?xml version="1.0" encoding="utf-8"?>
<root>
 <data name="Company Name" xml:space="preserve">
 <value>Company Name</value>
 </data>
 <data name="Country" xml:space="preserve">
 <value>Country</value>
 </data>
 <data name="Item Count" xml:space="preserve">
 <value>Item Count</value>

Warning! Resource Explorer is experimental and still has a few bugs. If you can-
not see all the expected columns for the different language files you have created,
then in the left-hand tree view, try clearing and reselecting the Orders checkbox.

Building and Localizing Web User Interfaces162

 </data>
 <data name="Order Date" xml:space="preserve">
 <value>Order Date</value>
 </data>
 <data name="Order ID" xml:space="preserve">
 <value>Order ID</value>
 </data>
 <data name="Order Total" xml:space="preserve">
 <value>Order Total</value>
 </data>
 <data name="Orders" xml:space="preserve">
 <value>Orders</value>
 </data>
</root>

3. Copy and paste the file and rename it Index.en-GB.resx.
4. In Index.en-GB.resx, modify Orders to Orders (UK). This is so we can see a difference.
5. Copy and paste the file and rename it Index.fr-FR.resx.
6. In Index.fr-FR.resx, modify the value column to use French, but do not change the name, as

shown highlighted in the following markup:

<?xml version="1.0" encoding="utf-8"?>
<root>
 <data name="Company Name" xml:space="preserve">
 <value>Nom de l'entreprise</value>
 </data>
 <data name="Country" xml:space="preserve">
 <value>Pays</value>
 </data>
 <data name="Item Count" xml:space="preserve">
 <value>Nombre d'éléments</value>
 </data>
 <data name="Order Date" xml:space="preserve">
 <value>Date de commande</value>
 </data>
 <data name="Order ID" xml:space="preserve">
 <value>Numéro de commande</value>
 </data>
 <data name="Order Total" xml:space="preserve">
 <value>Total de la commande</value>

Chapter 4 163

 </data>
 <data name="Orders" xml:space="preserve">
 <value>Commandes (France)</value>
 </data>
</root>

7. Copy and paste the file and rename it Index.fr.resx.
8. In Index.fr.resx, modify the last value to be Commandes (Neutral French).

Before we implement our views to use these resource files, let’s take a brief diversion to see some other
resource file tools and how to manage complex web projects with many resource files.

Other resource file tools
You can use tools like ResX Resource Manager (found at the following link: https://dotnetfoundation.
org/projects/resx-resource-manager) to create many more .resx files, compile them into satellite
assemblies, and then deploy them to users without needing to recompile the original console app.

Microsoft has an online tool (found at the following link: https://learn.microsoft.com/en-us/
globalization/reference/microsoft-language-resources) that can help you translate text in your
user interfaces.

Managing resource files
The process of translating an application into multiple languages can become quite complex, especially
as the number of supported languages increases.

Here are some key strategies for managing localization files effectively:

• Using a version control system (VCS), such as Git, is a natural part of managing any software
project, including those with multiple language translations. The key to using version control
effectively for localization is to treat .resx files just like any other source code. Consider cre-
ating feature branches when making significant localization changes for a particular language.
Translators or localization teams can work on those branches independently of the main
codebase. Once translations are completed and reviewed, the branch can be merged into the
main branch.

• For large-scale projects, or when working with external translators, dedicated localization
tools can vastly improve the workflow. These tools typically provide user-friendly interfaces
for translators, offer version control, and streamline the process of adding new translations.
Crowdin (https://crowdin.com/), Transifex (https://www.transifex.com/), and Phrase
(https://phrase.com/) are popular tools that provide a user interface for translators to work
on .resx files.

Good Practice: Consider whether your application needs to be internationalized, and plan
for that before you start coding! Think about all the data that will need to be globalized
(date formats, number formats, and sorting text behavior). Write down all the pieces of
text in the user interface that will need to be localized.

https://dotnetfoundation.org/projects/resx-resource-manager
https://dotnetfoundation.org/projects/resx-resource-manager
https://learn.microsoft.com/en-us/globalization/reference/microsoft-language-resources
https://learn.microsoft.com/en-us/globalization/reference/microsoft-language-resources
https://crowdin.com/
https://www.transifex.com/
https://phrase.com/

Building and Localizing Web User Interfaces164

• To streamline the localization process and reduce the manual overhead, you can adopt con-
tinuous localization, which aligns with the principles of Continuous Integration (CI) and
Continuous Deployment (CD). As part of your CI/CD pipeline, you can run automated tests to
ensure that all strings have translations in all supported languages. This ensures that missing
translations don’t make it to production.

Localizing Razor Views with an injected view localizer
Now we can continue with these steps for both code editors:

1. In the Views/Home folder, in Orders.cshtml, import the namespace for working with localiza-
tion, inject the IViewLocalizer service, and make changes to use the labels in the view model,
as shown highlighted in the following markup:

@using Microsoft.AspNetCore.Mvc.Localization
@model IEnumerable<Order>
@inject IViewLocalizer Localizer
@{
 ViewData["Title"] = Localizer["Orders"];
}

<div class="text-center">
 <h1 class="display-4">@ViewData["Title"]</h1>
 <table class="table table-bordered table-striped">
 <thead>
 <tr>
 <th>@Localizer["Order ID"]</th>
 <th>@Localizer["Order Date"]</th>
 <th>@Localizer["Company Name"]</th>
 <th>@Localizer["Country"]</th>
 <th>@Localizer["Item Count"]</th>
 <th>@Localizer["Order Total"]</th>
 </tr>
 </thead>

2. In Program.cs, before the call to AddControllersWithViews, add a statement to add local-
ization and set the path to find resource files to the Resources folder, and after the call to
AddControllersWithViews, append a call to add view localization, as shown highlighted in
the following code:

Good Practice: Key values like "Order ID" are used to look up the localized val-
ues. If a value is missing, then it returns the key as a default. It is good practice
to therefore use keys that also work as a good fallback, which is why I used US
English proper titles with spaces as the keys above and in the .resx files.

Chapter 4 165

builder.Services.AddLocalization(
 options => options.ResourcesPath = "Resources");

builder.Services.AddControllersWithViews()
 .AddViewLocalization();

3. In Program.cs, after the call to build the app object, in the region to configure the HTTP re-
quest pipeline, add statements to declare four cultures that we will support: US English, British
English, neutral French, and French in France. Then, create a new localization options object
and add those cultures as supported for both localization of user interfaces (UICultures) and
globalization of data values like dates and currency (Cultures), as shown in the following code:

string[] cultures = { "en-US", "en-GB", "fr", "fr-FR" };

RequestLocalizationOptions localizationOptions = new();

// cultures[0] will be "en-US"
localizationOptions.SetDefaultCulture(cultures[0])

 // Set globalization of data formats like dates and currencies.
 .AddSupportedCultures(cultures)

 // Set localization of user interface text.
 .AddSupportedUICultures(cultures);

app.UseRequestLocalization(localizationOptions);

4. Start the Northwind.Mvc website project using the https profile.
5. In Chrome, navigate to Settings.
6. In the Search settings box, type lang, and note you will find the Preferred languages section,

as shown in Figure 4.10:

Figure 4.10: Searching Chrome Settings for the Preferred languages section

Building and Localizing Web User Interfaces166

7. Click Add languages, search for french, select both French - francais and French (France) –
francais (France), and then click Add.

8. Add English (United States) and English (United Kingdom) if you do not have them on the
list already.

9. In the dots … menu to the right of French (France), click Move to the top, and confirm that it
is at the top of your list of languages.

10. Close the Settings tab.
11. In the top navigation menu, click Privacy.
12. On the Privacy page, click Orders.
13. In Chrome, perform a hard reload/refresh (for example, hold down Ctrl and click the Refresh

button), and note the home page now uses localized labels and French formats for dates and
currency, as shown in Figure 4.11:

Figure 4.11: The Orders table localized and globalized into French in France

14. Repeat the above steps for the other languages, for example, English (United Kingdom).
15. View Developer Tools, and note the request headers have been set with British English (en-GB)

first, as shown in Figure 4.12:

Warning! If you are using a localized version of Chrome (in other words, its user
interface is in your local language, like French), then you will need to search
for the word “language” in your own language. (Although “language” in French
is “langue,” so entering “lang” will still work. But in Spanish, you would need to
search for “idioma.”)

Warning! If you are using a localized version of Chrome, then you will need to
search for the word “French” in your own language. For example, in Spanish, it
would be “Francés,” and in Welsh, it would be “Ffrangeg.”

Chapter 4 167

Figure 4.12: Orders localized and globalized into British English due to the Accept-Language:
en-GB header

16. Close the browser and shut down the web server.

Understanding the Accept-Language header
Earlier in this section, you saw that the Accept-Language header in HTTP requests is used by the cli-
ent web browser to tell the server which languages it prefers for the content it requests. This allows
web servers and applications to serve localized or translated content based on the user’s language
preferences.

You might wonder how the Accept-Language header works. It can be confusing when you look at a
typical value, as shown in the following example:

Accept-Language: en-US,en;q=0.9,fr-FR;q=0.8,fr;q=0.7,en-GB;q=0.6

The Accept-Language header uses commas as separators between culture codes. Each culture code
can be neutral (just a language) or specific (language and region), and each can have a quality value
(q) between 0.0 and 1.0 (the default value if it is not explicitly specified). A higher q value indicates a
stronger preference for that language.

The preceding Accept-Language header example should therefore be read as follows:

• en-US: English language in the United States ranked highest at 1.0 (if q not explicitly set)
• en;q=0.9: English language anywhere in the world ranked at 0.9
• fr-FR;q=0.8: English language in France ranked at 0.8
• fr;q=0.7: French language anywhere in the world ranked at 0.7
• en-GB;q=0.6: English language in the United Kingdom ranked lowest at 0.6

Practicing and exploring
Test your knowledge and understanding by answering some questions, getting some hands-on practice,
and exploring this chapter’s topics with deeper research.

Building and Localizing Web User Interfaces168

Exercise 4.1 – Online material
Official documentation for ASP.NET Core MVC views can be found at the following link: https://
learn.microsoft.com/en-us/aspnet/core/mvc/views/overview.

Partial views are an effective way to break up large markup files into smaller components. You can
learn about partial views at the following link: https://learn.microsoft.com/en-us/aspnet/core/
mvc/views/partial.

Layouts in ASP.NET Core are documented at the following link: https://learn.microsoft.com/en-
us/aspnet/core/mvc/views/layout.

The following is a Razor syntax reference: https://learn.microsoft.com/en-us/aspnet/core/mvc/
views/razor.

Exercise 4.2 – Practice exercises
The following practice exercises help you to explore the topics in this chapter more deeply.

Practice creating a custom Tag Helper
A Tag Helper is any class that implements the ITagHelper interface. When you write your own Tag
Helper, it is usually derived from the TagHelper class because that gives you access to a minimal
implementation with the Process method.

Complete the following online tutorial to learn how to build your own Tag Helper: https://learn.
microsoft.com/en-us/aspnet/core/mvc/views/tag-helpers/authoring.

Practice unit testing MVC controllers
Controllers are where the business logic of your website runs, so it is important to test the correctness
of that logic using unit tests. Write some unit tests for HomeController.

Exercise 4.3 – Test your knowledge
Answer the following questions:

1. What is the advantage of declaring a strongly typed Razor View and how do you do it?
2. How do you enable Tag Helpers in a view?
3. What are the pros and cons of HTML Helper methods compared to Tag Helpers?
4. How can a browser request a preferred language for localization?
5. How do you localize text in a view?
6. What is the prefix for attributes recognized by Tag Helpers?

Good Practice: You can read more about how to unit test controllers at the following link:
https://learn.microsoft.com/en-us/aspnet/core/mvc/controllers/testing.

https://learn.microsoft.com/en-us/aspnet/core/mvc/views/overview
https://learn.microsoft.com/en-us/aspnet/core/mvc/views/overview
https://learn.microsoft.com/en-us/aspnet/core/mvc/views/partial
https://learn.microsoft.com/en-us/aspnet/core/mvc/views/partial
https://learn.microsoft.com/en-us/aspnet/core/mvc/views/layout
https://learn.microsoft.com/en-us/aspnet/core/mvc/views/layout
https://learn.microsoft.com/en-us/aspnet/core/mvc/views/razor
https://learn.microsoft.com/en-us/aspnet/core/mvc/views/razor
https://learn.microsoft.com/en-us/aspnet/core/mvc/views/tag-helpers/authoring
https://learn.microsoft.com/en-us/aspnet/core/mvc/views/tag-helpers/authoring
https://learn.microsoft.com/en-us/aspnet/core/mvc/controllers/testing

Chapter 4 169

7. How can you pass a complex object as a query string parameter?
8. How can you control how long the contents of the <cache> element are cached for?
9. What is the <environment> element used for?
10. How does cache busting with Tag Helpers work?

Exercise 4.4 – Explore topics
Use the links on the following page to learn more about the topics covered in this chapter: https://
github.com/markjprice/web-dev-net9/blob/main/docs/book-links.md#chapter-4---building-
and-localizing-web-user-interfaces.

Summary
In this chapter, you learned how to build user interfaces using ASP.NET Core MVC. You learned about:

• ASP.NET Core Razor Views and Razor syntax
• HTML Helpers and Tag Helpers
• Localizing an ASP.NET Core website

In the next chapter, you will learn how to secure your websites using authentication and authorization.

https://github.com/markjprice/web-dev-net9/blob/main/docs/book-links.md#chapter-4---building-and-localizing-web-user-interfaces
https://github.com/markjprice/web-dev-net9/blob/main/docs/book-links.md#chapter-4---building-and-localizing-web-user-interfaces
https://github.com/markjprice/web-dev-net9/blob/main/docs/book-links.md#chapter-4---building-and-localizing-web-user-interfaces

5
Authentication and Authorization

Most public websites have pages that should be public to everyone anonymously, and some pages that
should only be accessed by known users with the appropriate permission.

This chapter is about authentication and authorization and how to implement them for an ASP.NET
Core MVC website project. This means how to provide a web user interface for a visitor to register an
account with a password, and how they can log in to access secure areas of the website.

In Chapter 9, Building Web Services Using ASP.NET Core Web API, you will learn how to implement au-
thentication and authorization for ASP.NET Core Web API web service projects. This means learning
how to provide endpoints to request authentication tokens to then enable calls to secure endpoints
of a web service.

Authentication and authorization are important for any website because they ensure that only legiti-
mate users can access the system and that each user has the appropriate permissions.

Authentication verifies a user’s identity, typically through a login process, while authorization de-
termines what actions or resources that authenticated user is allowed to access. This is essential
for protecting sensitive data, ensuring privacy, and maintaining the overall security of the website,
preventing unauthorized access or misuse.

This chapter will cover the following topics:

• Introducing authentication and authorization
• Securing controller action methods using filters

Introducing authentication and authorization
Authentication and authorization are two concepts in web application security, often used together
but with distinct purposes, as described in the following list:

• Authentication, AKA “who are you?”: This is the process of verifying the identity of a user.
When a user attempts to log in to an application, the system checks whether the credentials,
for example, username and password, provided by the user match those stored in the system.
Successful authentication confirms that the user is who they claim to be.

Authentication and Authorization172

Once authentication has occurred, a system often provides the client with a token that the
client can submit with future requests to avoid having to re-authenticate each time. These
tokens can be HTTP cookies, JSON, or some other format like JWT (JSON Web Tokens) that
can encapsulate additional claims.

• Authorization, AKA “what can you do?”: Once the user is authenticated, authorization de-
termines what resources or actions the user is allowed to access within the application. For
instance, an authenticated user might have permission to view their account information,
but they might not have permission to access administrative features. Authorization is often
based on role or group membership rather than permissions assigned to an individual account.

Key concepts of authentication and authorization
You should be familiar with several concepts and techniques related to authentication and authori-
zation, particularly in the context of ASP.NET Core. In this section, I will introduce or remind you
of some of those key concepts, and if and when needed I will cover more details at the appropriate
points throughout the book.

Identity management
A key technology for authentication is identity management. This involves understanding how to
manage user identities, including the use of ASP.NET Core Identity, which provides a framework for
managing users, passwords, roles, claims, tokens, and more. You will learn more details about this
topic in this chapter and in Chapter 9, Building Web Services Using ASP.NET Core Web API. There are
many third-party choices as well, and you can optionally complete a tutorial for one of them, Auth0,
in the practice section at the end of this chapter.

Authentication schemes
Different methods can be used for authentication, such as cookies, JWT, OAuth2, OpenID Connect,
and so on. A developer should understand when and how to use these schemes based on the appli-
cation’s requirements. You will learn more details about this topic in Chapter 9, Building Web Services
Using ASP.NET Core Web API.

Role-based and claims-based authorization
ASP.NET Core supports role-based and claims-based authorization. Role-based is simpler, where users
are granted roles, for example, Administrator, Salesperson, or Visitor. Claims-based is more flexible,
allowing finer-grained control based on specific claims, for example, permission to edit a particular
table or record in a database. For example, only members of the finance department might be given
access to aggregate financial data. You will learn more details about this topic later in this chapter.

Security best practices
It is important for a .NET developer to understand security best practices like hashing passwords, which
ASP.NET Core Identity handles by default, enforcing HTTPS, implementing secure cookie practices,
regular software updates, using secure HTTP headers (CSP), input validation, and mitigating common
vulnerabilities such as SQL injection, Cross-Site Scripting (XSS), and Cross-Site Request Forgery (CSRF).

Chapter 5 173

For example, you learned how to mitigate SQL injection and CSRF attacks in Chapter 3, Model Binding,
Validation, and Data Using EF Core.

Cookie-based authentication
Cookie-based authentication can be vulnerable to several security risks if not properly handled. Here
are some potential vulnerabilities and best practices associated with using cookies for authentication:

• XSS: If an attacker can inject malicious scripts into your website, they may access cookies
stored in the user’s browser, especially if the cookies aren’t marked as HttpOnly. This allows
attackers to steal session cookies and impersonate users.

• CSRF: CSRF attacks trick users into unknowingly making requests on a website where they
are authenticated. If cookies are automatically sent with every request, attackers could exploit
this to perform actions on behalf of the user.

• Cookie Theft via Insecure Transmission: Without enforcing secure transmission (using the
Secure flag), cookies can be transmitted over unencrypted HTTP connections, making them
vulnerable to man-in-the-middle (MITM) attacks where attackers can intercept the cookies.

• Session Hijacking: If session cookies are not properly protected, an attacker may steal them
and hijack an authenticated session, potentially gaining unauthorized access to the application.

• Persistent Cookie Vulnerabilities: Persistent cookies that remain on the user’s device beyond
the session can be exploited if a device is lost or shared, allowing unauthorized access if not
properly protected.

Due to the preceding potential vulnerabilities, I recommend the following best practices:

• Use the HttpOnly Flag: The HttpOnly flag prevents client-side JavaScript from accessing cookies.
This significantly reduces the risk of XSS attacks being able to steal session cookies:

options.Cookie.HttpOnly = true;

• Set the SameSite Attribute: The SameSite attribute helps prevent CSRF attacks by ensuring
cookies are only sent in first-party contexts or when users explicitly navigate to your website.
Setting SameSite=Strict provides the highest level of protection, but SameSite=Lax can offer
a balance between security and usability for many applications:

options.Cookie.SameSite = SameSiteMode.Strict;

• Use the Secure Flag: Mark cookies with the Secure flag to ensure they are only transmitted
over HTTPS, preventing them from being sent over insecure HTTP connections. This protects
cookies from being intercepted by attackers in transit:

options.Cookie.SecurePolicy = CookieSecurePolicy.Always;

• Implement Short Session Expiration: Limit the lifespan of authentication cookies by setting a
short expiration time to reduce the window of opportunity for attackers if a session is hijacked.
Avoid persistent cookies unless absolutely necessary:

options.Cookie.Expiration = TimeSpan.FromMinutes(30);

Authentication and Authorization174

• Regenerate Session Cookies on Authentication: Always regenerate session cookies after a
user authenticates (after login) to prevent session fixation attacks, where an attacker forces a
user to use a known session ID.

• Enable Multi-Factor Authentication (MFA): Combining cookie-based authentication with MFA
adds an extra layer of security by requiring users to provide a second form of verification
beyond the password, even if the cookie is compromised.

• Use Strong, Random Session IDs: Ensure that session IDs stored in cookies are randomly
generated and sufficiently long, making them difficult to guess or brute-force.

• Restrict Cookie Scope: Limit the scope of cookies by setting the Domain and Path attributes
appropriately. For example, restrict cookies to only be sent on specific subdomains or paths,
reducing the risk of accidental or malicious exposure:

options.Cookie.Domain = "yourdomain.com";
options.Cookie.Path = "/secure-path";

Cookie-based authentication is a popular method for managing user sessions, and it is the default for
ASP.NET Core Identity. But it comes with potential vulnerabilities that should be addressed.

Password verifier best practices
Authentication systems include password verifiers that check a password entered during user regis-
tration. For example, the following is true of password verifiers:

• SHALL require passwords to be a minimum of eight characters in length.
• SHOULD require passwords to be a minimum of 15 characters in length.
• SHALL NOT impose composition rules like requiring mixtures of different character types.
• SHALL NOT require users to change passwords periodically.
• SHALL force a password change if there is evidence of compromise of the authenticator.

Implementing authentication and authorization
When implementing authentication and authorization in an ASP.NET Core MVC project, for your
future reference, here are the essential steps and considerations:

Good Practice: The latest recommendations can be found at https://pages.nist.
gov/800-63-4/sp800-63b.html#passwordver.

Warning! You do not need to complete these steps now! I am documenting them here as
a reference. Most of the steps have already been completed for you in your ASP.NET Core
MVC project because you enabled authentication in the project template.

https://pages.nist.gov/800-63-4/sp800-63b.html#passwordver
https://pages.nist.gov/800-63-4/sp800-63b.html#passwordver

Chapter 5 175

1. Start by adding ASP.NET Core Identity to your ASP.NET Core project. If you use the MVC proj-
ect template, it does this for you. At the command prompt or terminal, to add ASP.NET Core
Identity with its EF Core store provider to an existing project, use the following command:

dotnet add package Microsoft.AspNetCore.Identity.EntityFrameworkCore

2. Define an ASP.NET Core Identity data context class file named ApplicationDbContext.cs, as
shown in the following code:

public class ApplicationDbContext : IdentityDbContext<IdentityUser>
{
 public ApplicationDbContext(
 DbContextOptions<ApplicationDbContext> options) : base(options)
 {
 }
}

3. In Program.cs, configure ASP.NET Core Identity by adding an EF Core data context for the
store provider and configuring the default identity user class in the dependency services col-
lection, and then enabling authentication and authorization in the HTTP pipeline, as shown
highlighted in the following code:

var builder = WebApplication.CreateBuilder(args);

builder.Services.AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlServer(builder.Configuration
 .GetConnectionString("DefaultConnection")));

builder.Services.AddDefaultIdentity<IdentityUser>(options =>

While EF Core is the most common choice for ASP.NET Core Identity, the frame-
work is flexible enough to work with a wide range of data stores, from traditional re-
lational databases to modern NoSQL solutions and even custom store provider im-
plementations. Community-maintained store providers are available at https://
github.com/dotnet/AspNetCore/tree/main/src/Identity#community-
maintained-store-providers.

If you use the ASP.NET Core MVC project template, then this will be done for
you. You will find the ApplicationDbContext.cs file in the Data folder. The
code solution is found at https://github.com/markjprice/web-dev-net9/
blob/main/code/MatureWeb/Northwind.Mvc/Data/ApplicationDbContext.
cs. Optionally, you can customize this class by adding additional properties and
methods to manage your application’s specific data needs alongside user identity
information.

https://github.com/dotnet/AspNetCore/tree/main/src/Identity#community-maintained-store-providers
https://github.com/dotnet/AspNetCore/tree/main/src/Identity#community-maintained-store-providers
https://github.com/dotnet/AspNetCore/tree/main/src/Identity#community-maintained-store-providers
https://github.com/markjprice/web-dev-net9/blob/main/code/MatureWeb/Northwind.Mvc/Data/ApplicationDbContext.cs
https://github.com/markjprice/web-dev-net9/blob/main/code/MatureWeb/Northwind.Mvc/Data/ApplicationDbContext.cs
https://github.com/markjprice/web-dev-net9/blob/main/code/MatureWeb/Northwind.Mvc/Data/ApplicationDbContext.cs

Authentication and Authorization176

 options.SignIn.RequireConfirmedAccount = true)
 .AddEntityFrameworkStores<ApplicationDbContext>();

builder.Services.AddControllersWithViews();

var app = builder.Build();

app.UseAuthentication(); // Enable authentication middleware.
app.UseAuthorization(); // Enable authorization middleware.

Note the following about the preceding code:

• AddDbContext<ApplicationDbContext>() registers the ApplicationDbContext class as a data
context, just as you might for the Northwind database. UseSqlServer specifies using SQL Server
as the underlying data store. The connection string is retrieved from the configuration using
the name "DefaultConnection". At this point, the code has no connection with ASP.NET Core
Identity.

• AddDefaultIdentity<IdentityUser>() configures ASP.NET Core Identity with the default
IdentityUser class for user accounts.

• SignIn.RequireConfirmedAccount = true enforces an additional security measure by re-
quiring users to confirm their email address before logging in.

• AddEntityFrameworkStores<ApplicationDbContext>() connects the data context to
ASP.NET Core Identity.

4. Decorate classes and methods with the[Authorize] attribute to protect controllers or routes,
for example, as shown in the following code:

[Authorize(Roles = "Admin")]
public IActionResult AdminOnly()
{
 return View();
}

If you use the ASP.NET Core MVC project template, then this will be done for you.
The code solution is found at https://github.com/markjprice/web-dev-net9/
blob/main/code/MatureWeb/Northwind.Mvc/Program.cs.

Authorization based on role membership is just one type of authorization. You
can implement custom attributes with any business logic you need. For example,
you could define authorization based on the visitor’s age, as shown at https://
learn.microsoft.com/en-us/aspnet/core/security/authorization/iard.

https://github.com/markjprice/web-dev-net9/blob/main/code/MatureWeb/Northwind.Mvc/Program.cs
https://github.com/markjprice/web-dev-net9/blob/main/code/MatureWeb/Northwind.Mvc/Program.cs
https://learn.microsoft.com/en-us/aspnet/core/security/authorization/iard
https://learn.microsoft.com/en-us/aspnet/core/security/authorization/iard

Chapter 5 177

5. ASP.NET Core Identity uses cookie authentication by default. Optionally, customize the cookie
behavior, for example, change the login path and path to a route that shows when access is
denied, as shown in the following code:

builder.Services.ConfigureApplicationCookie(options =>
{
 options.LoginPath = "/Account/Login";
 options.AccessDeniedPath = "/Account/AccessDenied";
});

6. Implement login and logout actions in your controller, as shown in the following code:

public async Task<IActionResult> Login(LoginViewModel model)
{
 if (ModelState.IsValid)
 {
 var result = await _signInManager.PasswordSignInAsync(
 model.Username, model.Password, model.RememberMe,
 lockoutOnFailure: false);

 if (result.Succeeded)
 {
 return RedirectToAction("Index", "Home");
 }
 ModelState.AddModelError(string.Empty, "Invalid login attempt.");
 }
 return View(model);
}

public async Task<IActionResult> Logout()
{
 await _signInManager.SignOutAsync();
 return RedirectToAction("Index", "Home");
}

The default login page is implemented as a Razor Page, as shown at https://
github.com/dotnet/aspnetcore/blob/main/src/Identity/UI/src/Areas/
Identity/Pages/V5/Account/Login.cshtml. The default access denied page is
also implemented as a Razor Page, as shown at https://github.com/dotnet/
aspnetcore/blob/main/src/Identity/UI/src/Areas/Identity/Pages/V5/
Account/AccessDenied.cshtml.

https://github.com/dotnet/aspnetcore/blob/main/src/Identity/UI/src/Areas/Identity/Pages/V5/Account/Login.cshtml
https://github.com/dotnet/aspnetcore/blob/main/src/Identity/UI/src/Areas/Identity/Pages/V5/Account/Login.cshtml
https://github.com/dotnet/aspnetcore/blob/main/src/Identity/UI/src/Areas/Identity/Pages/V5/Account/Login.cshtml
https://github.com/dotnet/aspnetcore/blob/main/src/Identity/UI/src/Areas/Identity/Pages/V5/Account/AccessDenied.cshtml
https://github.com/dotnet/aspnetcore/blob/main/src/Identity/UI/src/Areas/Identity/Pages/V5/Account/AccessDenied.cshtml
https://github.com/dotnet/aspnetcore/blob/main/src/Identity/UI/src/Areas/Identity/Pages/V5/Account/AccessDenied.cshtml

Authentication and Authorization178

7. Create users and roles, and then assign roles to users. Add claims to users. This could be
scripted or via a custom user interface as part of the ASP.NET Core project.

Defining policies
As well as simple role-based authorization, you might want to define policies for more complex re-
quirements. Policies encapsulate a set of requirements or conditions that must be met for access to be
granted. For example, an employee might need to be a “Manager,” a member of the “HR” department,
and under the age of 60, and they must only access the page during working hours.

Policy-based authorization in ASP.NET Core provides flexibility to create complex authorization rules
tailored to specific application needs. Whether you require role-based, claim-based, or more custom
requirements, policies allow you to encapsulate and manage these rules effectively.

When configuring authorization, you can implement policies, for example, to require membership
of a role like Admin, as shown in the following code:

builder.Services.AddAuthorization(options =>
{
 options.AddPolicy("RequireAdministratorRole", policy =>
 policy.RequireRole("Admin"));
});

You can create policies for specific business logic, as shown in the following code:

builder.Services.AddAuthorization(options =>
{
 options.AddPolicy("Over18Only", policy =>
 policy.RequireClaim("Age", "Over18"));
});

You can implement custom authorization handlers when you need to implement complex logic that
can’t be captured by simple policies or roles, as shown in the following code:

public class MinimumAgeHandler : AuthorizationHandler<MinimumAgeRequirement>
{
 protected override Task HandleRequirementAsync(
 AuthorizationHandlerContext context,
 MinimumAgeRequirement requirement)

If you use the MVC project template, then this will be done for you by the Razor
Pages provided by the Microsoft.AspNetCore.Identity.UI package so you
will not see this code in an MVC project by default. You can see the code to log in
at https://github.com/dotnet/aspnetcore/blob/main/src/Identity/UI/
src/Areas/Identity/Pages/V5/Account/Login.cshtml.cs#L120.

https://github.com/dotnet/aspnetcore/blob/main/src/Identity/UI/src/Areas/Identity/Pages/V5/Account/Login.cshtml.cs#L120
https://github.com/dotnet/aspnetcore/blob/main/src/Identity/UI/src/Areas/Identity/Pages/V5/Account/Login.cshtml.cs#L120

Chapter 5 179

 {
 // Custom logic here.

 return Task.CompletedTask;
 }
}

External authentication
ASP.NET Core Identity supports external authentication providers like Google, Facebook, and Micro-
soft. This is useful for several reasons:

• Streamlined User Experience: Many users already have accounts with these providers, so
allowing them to sign in with existing credentials eliminates the need to create new accounts,
reducing friction during the registration and login process.

• Improved Security: External providers often offer more robust security measures than many
custom authentication systems. For example, Google and Microsoft use advanced security
practices, such as MFA, regular vulnerability patches, and large-scale monitoring, which can
give your users better protection than a home-grown system.

• Trust and Familiarity: Many users feel more comfortable using authentication providers they
already know and trust. This can boost confidence in your application, as users don’t have to
worry about creating and storing another password or trusting a smaller, less familiar system
with their personal information.

• Faster Onboarding: New users can quickly register and start using the application, as the
process is simplified to a few clicks when using an existing account from Google, Facebook,
or Microsoft. This removes the need for email verification steps and other traditional regis-
tration hurdles.

To integrate with external authentication providers like Google, you first need to register with their
account system. This will provide you with a unique client identifier and a client secret.

Next, you configure these providers in Program.cs, as shown in the following code:

builder.Services.AddAuthentication()
 .AddGoogle(options =>
 {
 options.ClientId = "GoogleClientId";
 options.ClientSecret = "GoogleClientSecret";
 });

Tutorials to walk you through integrating with various external authentication providers can be found
at the following links:

• Google: https://learn.microsoft.com/en-us/aspnet/core/security/authentication/
social/google-logins.

https://learn.microsoft.com/en-us/aspnet/core/security/authentication/social/google-logins
https://learn.microsoft.com/en-us/aspnet/core/security/authentication/social/google-logins

Authentication and Authorization180

• Facebook: https://learn.microsoft.com/en-us/aspnet/core/security/authentication/
social/facebook-logins.

• Microsoft: https://learn.microsoft.com/en-us/aspnet/core/security/authentication/
social/microsoft-logins.

Securing APIs with JWT
You will learn more about securing web services in Chapter 9, Building Web Services Using ASP.NET Core
Web API, but let’s briefly introduce you to one of the most important concepts.

If your application includes APIs, securing them with JWTs (JSON Web Tokens) is a common practice.

JWTs are a compact, URL-safe means of representing claims between two parties. They consist of three
parts: header, payload, and signature, encoded in base64. The header contains metadata, the payload
contains claims (for example, user info and permissions), and the signature ensures the token’s integrity.

JWTs are self-contained, meaning all the information needed to verify the user is in the token itself,
reducing the need for server-side session storage. JWTs are compact and can be easily transmitted
via URLs, headers, or in the body of HTTP requests.

JWTs use digital signatures to verify that the token hasn’t been tampered with, ensuring the integrity
of the data.

Since JWTs are stateless and transmitted in a compact format, they are ideal for distributed systems,
mobile apps, and APIs, allowing secure, token-based communication between different services or
platforms. Since they are stateless, JWTs help scale applications by reducing the server’s burden of
storing session data, making them ideal for cloud-based or microservice architectures.

You configure JWTs in Program.cs, as shown in the following code:

builder.Services.AddAuthentication(JwtBearerDefaults.AuthenticationScheme)
 .AddJwtBearer(options =>
 {
 options.TokenValidationParameters = new TokenValidationParameters
 {
 ValidateIssuer = true,
 ValidateAudience = true,
 ValidateLifetime = true,
 ValidateIssuerSigningKey = true,
 ValidIssuer = Configuration["Jwt:Issuer"],
 ValidAudience = Configuration["Jwt:Audience"],
 IssuerSigningKey = new SymmetricSecurityKey(
 Encoding.UTF8.GetBytes(Configuration["Jwt:Key"]))
 };
 });

https://learn.microsoft.com/en-us/aspnet/core/security/authentication/social/facebook-logins
https://learn.microsoft.com/en-us/aspnet/core/security/authentication/social/facebook-logins
https://learn.microsoft.com/en-us/aspnet/core/security/authentication/social/microsoft-logins
https://learn.microsoft.com/en-us/aspnet/core/security/authentication/social/microsoft-logins

Chapter 5 181

Now let’s add authentication and authorization to our MVC website project.

Securing controller action methods using filters
You might want to ensure that one particular action method of a controller class can only be called
by members of certain security roles. You do this by decorating the method with the [Authorize]
attribute, as described in the following list:

• [Authorize]: Only allow authenticated (non-anonymous, logged-in) visitors to access this
action method.

• [Authorize(Roles = "Sales,Marketing")]: Only allow visitors who are members of the
specified role(s) to access this action method.

Let’s see an example:

1. In HomeController.cs, import the namespace for working with authorization, as shown in
the following code:

using Microsoft.AspNetCore.Authorization; // To use [Authorize].

2. Add an attribute to the ModelBinding method to only allow access to logged-in users who are
members of a group/role named Administrators, as shown highlighted in the following code:

[Authorize(Roles = "Administrators")]
public IActionResult ModelBinding()

3. Start Docker Desktop and the azuresqledge container.
4. Start the Northwind.Mvc project website using the https profile.
5. If you are logged in, (for example, you might have selected the Remember me? check box),

then in the top navigation menu, on the far-right side, click Logout.
6. In the top navigation menu, click Model Binding and note that you are automatically redi-

rected to the login page because this page requires authorization. Therefore, you must first
be authenticated so the system then knows what permissions you have.

7. Enter your email and password.
8. Click Log in and note the message, Access denied - You do not have access to this resource.

(As mentioned earlier in this chapter, this user interface is provided by a Razor Page in the
Microsoft.AspNetCore.Identity.UI package.)

9. Close Chrome and shut down the web server.

Enabling role management and creating a role programmatically
By default, role management is not enabled in an ASP.NET Core MVC project, so we must first enable
it before creating roles.

Authentication and Authorization182

Then, we will create a controller that will programmatically create an Administrators role (if it does
not already exist) and assign our test user to that role:

1. In Program.cs, in the setup of ASP.NET Core Identity and its database, add a call to AddRoles
to enable role management, as shown highlighted in the following code:

services.AddDefaultIdentity<IdentityUser>(
 options => options.SignIn.RequireConfirmedAccount = true)
 .AddRoles<IdentityRole>() // Enable role management.
 .AddEntityFrameworkStores<ApplicationDbContext>();

2. In the Controllers folder, add an empty controller class named RolesController.cs and
modify its contents, as shown in the following code:

using Microsoft.AspNetCore.Identity; // To use RoleManager, UserManager.
using Microsoft.AspNetCore.Mvc; // To use Controller, IActionResult.

namespace Northwind.Mvc.Controllers;

public class RolesController : Controller
{
 private string AdminRole = "Administrators";
 private string UserEmail = "test@example.com";
 private readonly RoleManager<IdentityRole> _roleManager;
 private readonly UserManager<IdentityUser> _userManager;
 private readonly ILogger<RolesController> _logger;

 public RolesController(ILogger<RolesController> logger,
 RoleManager<IdentityRole> roleManager,
 UserManager<IdentityUser> userManager)
 {
 _logger = logger;
 _roleManager = roleManager;
 _userManager = userManager;
 }

 public async Task<IActionResult> Index()

The complete file can be found at https://github.com/markjprice/web-
dev-net9/blob/main/code/MatureWeb/Northwind.Mvc/Controllers/
RolesController.cs.

https://github.com/markjprice/web-dev-net9/blob/main/code/MatureWeb/Northwind.Mvc/Controllers/RolesController.cs
https://github.com/markjprice/web-dev-net9/blob/main/code/MatureWeb/Northwind.Mvc/Controllers/RolesController.cs
https://github.com/markjprice/web-dev-net9/blob/main/code/MatureWeb/Northwind.Mvc/Controllers/RolesController.cs

Chapter 5 183

 {
 if (!(await _roleManager.RoleExistsAsync(AdminRole)))
 {
 await _roleManager.CreateAsync(new IdentityRole(AdminRole));
 }
 IdentityUser? user = await _userManager.FindByEmailAsync(UserEmail);

 if (user == null)
 {
 user = new();
 user.UserName = UserEmail;
 user.Email = UserEmail;

 IdentityResult result = await _userManager.CreateAsync(
 user, "Pa$$w0rd");

 if (result.Succeeded)
 {
 _logger.LogInformation($"User {user.UserName} created
successfully.");
 }
 else
 {
 foreach (IdentityError error in result.Errors)
 {
 _logger.LogError(error.Description);
 }
 }
 }

 if (!user.EmailConfirmed)
 {
 string token = await _userManager
 .GenerateEmailConfirmationTokenAsync(user);

 IdentityResult result = await _userManager
 .ConfirmEmailAsync(user, token);

 if (result.Succeeded)

Authentication and Authorization184

 {
 _logger.LogInformation($"User {user.UserName} email confirmed
successfully.");
 }
 else
 {
 foreach (IdentityError error in result.Errors)
 {
 _logger.LogError(error.Description);
 }
 }
 }

 if (!(await _userManager.IsInRoleAsync(user, AdminRole)))
 {
 IdentityResult result = await _userManager
 .AddToRoleAsync(user, AdminRole);

 if (result.Succeeded)
 {
 _logger.LogInformation($"User {user.UserName} added to
{AdminRole} successfully.");
 }
 else
 {
 foreach (IdentityError error in result.Errors)
 {
 _logger.LogError(error.Description);
 }
 }
 }
 return Redirect("/");
 }
}

Note the following, which explains all the code in the preceding RolesController.cs file. You
should go through the code line-by-line matching the following bullet descriptions:

• Two fields for the name of the role and email of the user.
• The constructor gets and stores the registered user and role manager dependency

services.
• If the Administrators role does not exist, we use the role manager to create it.

Chapter 5 185

• We try to find a test user by its email, create it if it does not exist, and then assign the
user to the Administrators role.

• Since the website uses DOI, we must generate an email confirmation token and use it
to confirm the new user’s email address.

• Success messages and any errors are written out to the console.
• You will automatically be redirected to the home page.

3. Start the Northwind.Mvc website project using the https profile.
4. Click Model Binding and note that you are redirected to the login page.
5. Enter your email and password. (I used test@example.com and P@$$w0rd.)
6. Click Log in and note that you are denied access to the Model Binding page as before.
7. Click Home.
8. In the address bar, manually enter roles as a relative URL path, as shown at https://

localhost:5021/roles.
9. At the command prompt or terminal that is hosting the web server, note the success message

written to the console, as shown in the following output:

User test@example.com added to Administrators successfully.

10. Click Logout, because you must log out and back in to load your role memberships when they
are created after you have already logged in.

11. Try accessing the Model Binding page again, enter the email for the new user that was pro-
grammatically created, for example, test@example.com, and their password, and then click
Log in. You should now have access.

12. Close Chrome and shut down the web server.

Cross-functional filters
When you need to add some functionality to multiple controllers and actions, you can use or define
your own filters that are implemented as an attribute class. Filters allow you to run code before or
after certain stages in the request processing pipeline. They provide a mechanism to add cross-cutting
concerns like authentication, authorization, logging, error handling, and more.

Filters can be applied at the following levels:

• At the action level, by decorating an action method with the attribute. This will only affect the
one action method.

• At the controller level, by decorating the controller class with the attribute. This will affect all
methods of the controller.

If you did not register yourself as test@example.com, then you will also see the
message User test@example.com created successfully.

https://localhost:5021/roles
https://localhost:5021/roles

Authentication and Authorization186

• At the global level, by adding the attribute type to the Filters collection of the MvcOptions in-
stance that can be used to configure MVC when calling the AddControllersWithViews method,
as shown in the following code:

builder.Services.AddControllersWithViews(options =>
 {
 options.Filters.Add(typeof(MyCustomFilter));
 });

Filters execute in a specific order, both before and after the action method is executed. The order of
filter execution is determined by its type, as described in the following list:

1. Authorization Filters: a class that implements IAuthorizationFilter.
2. Resource Filters: a class that implements IResourceFilter.
3. Action Filters: a class that implements IActionFilter
4. Exception Filters: a class that implements IExceptionFilter.
5. Result Filters: a class that implements IResultFilter.

Filters are called in two phases:

• Before Action Execution: Filters are executed in the preceding order before the action method.
• After Action Execution: Filters are executed in the reverse order after the action method

completes.

Authorization filter (IAuthorizationFilter)
This runs first in the filter pipeline to ensure the user is authorized to access the resource. It executes
before anything else in the pipeline, even before model binding. If the user is unauthorized, the rest
of the pipeline is skipped.

A common use case is to validate that a user has the necessary permissions or roles, as shown in the
following code:

public class CustomAuthorizationFilter : IAuthorizationFilter
{
 public void OnAuthorization(AuthorizationFilterContext context)
 {
 if (!context.HttpContext.User.Identity.IsAuthenticated)
 {
 context.Result = new UnauthorizedResult();
 }
 }
}

The benefit is that they ensure that authorization logic is applied early, preventing unnecessary re-
source consumption, like model binding and action execution, for unauthorized users.

Chapter 5 187

Resource filter (IResourceFilter)
This handles resource-related concerns before and after the action. It can be used to short-circuit the
request processing pipeline, such as caching responses. They run after authorization filters but before
model binding and action execution.

A common use case is to implement caching, or modify the request or response before entering the
action, as shown in the following code:

public class CustomResourceFilter : IResourceFilter
{
 public void OnResourceExecuting(ResourceExecutingContext context)
 {
 // Logic before the action execution like checking cache.
 }

 public void OnResourceExecuted(ResourceExecutedContext context)
 {
 // Logic after the action execution like storing result in cache.
 }
}

The benefit is that they improve performance by handling resource-based logic like caching or request
manipulation before heavy processing begins.

Action filter (IActionFilter)
This executes logic before and after the action method execution. It runs after the resource filter and
before the result filters. It can modify the parameters passed to the action or the action result.

Common use cases include logging action execution, modifying input data, or altering the action
result, as shown in the following code:

public class CustomActionFilter : IActionFilter
{
 public void OnActionExecuting(ActionExecutingContext context)
 {
 // Logic before the action executes like logging or modifying parameters.
 }

 public void OnActionExecuted(ActionExecutedContext context)
 {
 // Logic after the action executes like logging or modifying the result.
 }
}

Authentication and Authorization188

The benefit is they are useful for logging, validating, or modifying the flow based on the action’s input
or output.

Exception filter (IExceptionFilter)
This handles exceptions thrown during the execution of an action or the result. It only runs if an
unhandled exception occurs in the pipeline. If the exception is caught, it can modify or handle the
error response.

To indicate that your filter has handled an exception, set the ExceptionContext.ExceptionHandled
property to true.

A common use case is to centralize exception handling, logging, and custom error responses, as
shown in the following code:

public class CustomExceptionFilter : IExceptionFilter
{
 public void OnException(ExceptionContext context)
 {
 // Logic to handle exceptions like logging or returning a custom error
response.
 context.Result = new ObjectResult("Something went wrong")
 { StatusCode = 500 };
 context.ExceptionHandled = true;
 }
}

The benefit is that they provide a centralized location for handling exceptions, preventing the need
for a try-catch block in every controller action and allowing consistent error responses.

Result filter (IResultFilter):
This executes logic before and after the result is returned, for example, a view or a JSON response.
They run after the action method execution but before the result is processed.

A common use case is to modify the result, like a view, or apply additional processing to the response
before it’s returned to the client, as shown in the following code:

public class CustomResultFilter : IResultFilter
{
 public void OnResultExecuting(ResultExecutingContext context)
 {
 // Logic before the result executes like modifying the result.
 }

 public void OnResultExecuted(ResultExecutedContext context)

Chapter 5 189

 {
 // Logic after the result executes like logging or altering the response.
 }
}

The benefit is that they allow final adjustments to the response before it is sent to the client, such as
adding response headers or modifying the result.

Common benefits of all filters
There are several benefits that come from using any filter:

• Separation of Concerns: Filters help keep your controller actions clean by separating cross-cut-
ting concerns like logging, authentication, and error handling, from the business logic of your
application.

• Reusability: Filters can be applied globally, to controllers, or specific actions, making them
easy to reuse across different parts of the application.

• Maintainability: Centralizing logic like authorization, error handling, and caching in filters
simplifies maintenance since you can update logic in one place rather than across multiple
actions.

• Consistency: Filters ensure that important logic like authorization or logging is applied con-
sistently across your application, reducing the chance of missing critical operations in certain
actions or controllers.

In summary, filters provide a clean, flexible way to handle cross-cutting concerns like authorization,
logging, exception handling, and more. They execute in a well-defined order, allowing for precise
control over the flow of requests and responses.

Practicing and exploring
Test your knowledge and understanding by answering some questions, getting some hands-on practice,
and exploring this chapter’s topics with deeper research.

Exercise 5.1 – Online material
You can learn how to build your own custom store provider for ASP.NET Core Identity at https://
learn.microsoft.com/en-us/aspnet/core/security/authentication/identity-custom-storage-
providers.

Exercise 5.2 – Practice exercises
The following practice exercises help you to explore the topics in this chapter more deeply.

Auth0 integration
Auth0 is an identity management platform that simplifies the process of implementing authentication
and authorization for your applications. It provides secure and scalable identity solutions, allowing
developers to manage user logins, single sign-on (SSO), multi-factor authentication (MFA), password-
less authentication, and more, without having to write complex authentication logic from scratch.

https://learn.microsoft.com/en-us/aspnet/core/security/authentication/identity-custom-storage-providers
https://learn.microsoft.com/en-us/aspnet/core/security/authentication/identity-custom-storage-providers
https://learn.microsoft.com/en-us/aspnet/core/security/authentication/identity-custom-storage-providers

Authentication and Authorization190

ASP.NET Core MVC developers often need to handle user authentication and authorization securely,
and Auth0 abstracts much of this complexity. Instead of manually writing code to manage user ses-
sions, password storage, and token-based authentication, you can offload these tasks to Auth0, which
already follows best security practices.

Auth0 supports various identity providers like social logins (Google, Facebook, GitHub, etc.), enterprise
logins (LDAP and Active Directory), and custom databases. This allows ASP.NET Core developers to
integrate a wide range of authentication methods without having to deal with different protocols and
providers manually.

Auth0 uses secure, token-based authentication protocols such as OAuth 2.0 and OpenID Connect.
These standards make it easier to build secure APIs and enable secure communication between the
frontend and backend services. ASP.NET Core MVC developers can easily integrate these protocols
through Auth0’s SDKs and middleware.

Auth0 offers SDKs and libraries specifically designed to work with ASP.NET Core MVC, making it
relatively straightforward to implement authentication using middleware like OpenID Connect or
JwtBearer. Auth0 also provides comprehensive documentation, code samples, and tutorials, making
integration easier for developers who are not experts in identity management.

You can walk through a tutorial showing how to integrate Auth0 with ASP.NET Core MVC at https://
github.com/auth0/auth0-dotnet-templates/blob/main/docs/auth0webapp.md.

Exercise 5.3 – Test your knowledge
Answer the following questions:

1. How many characters long should a password be and should it contain special characters?
2. How frequently should passwords be changed?
3. What are three authentication schemes?
4. Which external authentication providers are supported by ASP.NET Core Identity?
5. How can you significantly reduce the risk of XSS attacks being able to steal session cookies?
6. What are some of the security vulnerabilities of cookies?
7. Why might you enable Razor Pages even if you are not creating any yourself?
8. How can you customize the user interface provided by ASP.NET Core Identity, for example,

the login form?
9. What dependency service should you use to programmatically register a visitor to your website?
10. What are the five types of ASP.NET Core filters and in what order do they execute?

Exercise 5.4 – Explore topics
Use the links on the following page to learn more about the topics covered in this chapter:

https://github.com/markjprice/web-dev-net9/blob/main/docs/book-links.md#chapter-5---
authentication-and-authorization

https://github.com/auth0/auth0-dotnet-templates/blob/main/docs/auth0webapp.md
https://github.com/auth0/auth0-dotnet-templates/blob/main/docs/auth0webapp.md
https://github.com/markjprice/web-dev-net9/blob/main/docs/book-links.md#chapter-5---authentication-and-authorization

https://github.com/markjprice/web-dev-net9/blob/main/docs/book-links.md#chapter-5---authentication-and-authorization

Chapter 5 191

Summary
In this chapter, you learned how to secure an ASP.NET Core MVC website. You learned about the
following:

• Key concepts about authentication and authorization.
• How to implement basic authentication and authorization in an ASP.NET Core MVC website

project.
• How to secure controllers and action methods using authorization filters.
• How to build custom filters for other purposes.

In the next chapter, you will learn how to optimize the performance and scalability of your websites
and web services by using caching of various types.

6
Performance Optimization Using
Caching

This chapter is about optimizing the performance and scalability of your websites and web services
by using caching of various types.

Scalability in an ASP.NET Core project refers to the system’s ability to handle increased load, typically
in terms of more users, more requests, or higher data throughput, without compromising performance.
A scalable system can adjust to changing demands—whether through vertical or horizontal scaling:

• Vertical scaling: Adding more resources to the same machine
• Horizontal scaling: Adding more machines to a system

Caching is a technique that directly impacts scalability. By caching frequently accessed data or com-
putation results, you reduce the number of times expensive operations, like database calls or complex
calculations, need to be performed. This reduces the load on your backend resources, such as databases
and application servers, and speeds up response times for users.

In a scalable system, caching minimizes unnecessary resource consumption. Proper use of caching
can help prevent bottlenecks as the number of concurrent users grows. Caching strategies can reduce
the amount of processing per request, lowering latency and decreasing server load, thereby improving
the overall ability of the system to scale.

This chapter will cover the following topics:

• Introducing caching with ASP.NET Core
• Output caching
• Object caching
• More techniques to improve scalability

Performance Optimization Using Caching194

Introducing caching with ASP.NET Core
Caching can enable our systems to copy some data from a remote data center to a local data center,
or from a server or disk to memory. Caches store data as key-value pairs.

However, one of the hardest parts of caching is getting the balance right between storing enough data
and keeping it fresh. The more data we copy, the more resources we use. We also need to consider
how we will keep the copies synchronized with the original data.

General caching guidelines
Caching works best with data that costs a lot to generate and does not change often.

Follow these guidelines when caching:

• Your code should never depend on cached data. It should always be able to get the data from
the original source when the data is not found in the cache.

• Wherever you cache data (in-memory or in a database), it is a limited resource, so deliberately
limit the amount of data cached and for how long by implementing expirations and size limits.
You should monitor cache hits (when data is successfully found in the cache) to obtain the
right balance for your specific scenarios.

In the coding tasks in this section, you will implement these guidelines.

Reviewing types of caching
Let’s start by reviewing the caching technologies built into ASP.NET Core. Figure 6.1 shows a summary
diagram of types and locations of caching in an ASP.NET Core MVC project:

Figure 6.1: Types and locations for caching

Chapter 6 195

Let’s review a scenario. The numbered bullets match the numbered labels in Figure 6.1:

1. A web browser requests the product detail page for the product with an ID of 34 from an MVC
website using the relative path: /home/productdetail/34.

2. On the web server, the output caching system looks in the output cache to see if that web page
already exists with a match on its route. If not, the request is mapped to the appropriate con-
troller class and action method and the id value 34 is passed in as a parameter.

3. The action method implementation looks in the object cache to see if that entity already exists.
The object cache has multiple implementations to choose from: in-memory, distributed, and
in .NET 9 or later, a hybrid cache that automatically uses the best of both.

4. If not, it is retrieved from the database and stored in the object cache.
5. The action method passes the product entity to the appropriate Razor view, which renders it

into an HTML page and stores it in the output cache.
6. The action method adds response caching headers to the response before returning it.
7. Any intermediaries as well as the web browser can read the HTTP response headers and cache

it if allowed.

On the next request, caching at various levels could improve matters:

1. The web browser might have the page in its local cache due to response caching. No further
action is required. If not, a request is made to the web server. If intermediaries like a content
delivery network (CDN) were allowed to cache the response, then they could return it to the
browser without needing to forward the request to the web server.

2. If a request arrives at the web server, and the page is in the output cache, the action method pro-
cessing can be bypassed, and the page is immediately returned with new response headers set.

Caching HTTP responses for websites
To improve response times and scalability, you might want to try to cache the HTTP response that is
generated by an action method by decorating the method with the [ResponseCache] attribute. This
tells intermediaries like CDNs and the web browser itself how long they should cache the response
by adding HTTP headers to the response, like cache-control directives.

Common cache-control directives
Common cache-control directives include:

• public: This indicates that the response can be cached by any caching mechanism, including
browser, proxy, CDN, and so on. This is good practice for resources that are static or don’t
require restricted access.

• private: The response is specific to an individual visitor and should not be cached by shared
caches like proxies or CDNs. However, the client may cache it. This is good practice for re-
sources like personalized pages or user-specific data.

Performance Optimization Using Caching196

• no-cache: This instructs the client and any intermediary to always revalidate the response
with the server before using a cached copy. It does not mean “don’t cache” but rather “don’t
use it without checking with the server first.” It is useful for ensuring that content is always
fresh while still allowing caching for potential revalidation.

• no-store: This completely prevents the client or any intermediary from caching the response.
It will not store it at all. This is good practice for resources that include sensitive data, like bank
account information, where you don’t want it to be stored anywhere.

• max-age=<seconds>: This defines the maximum amount of time (in seconds) that a resource is
considered fresh. Once the max-age has passed, the client will revalidate the resource with the
server. For example, Cache-Control: max-age=3600 says that the resource will be considered
fresh for one hour (3600 seconds).

• s-maxage=<seconds>: Similar to max-age, but applies only to shared caches, like proxies or
CDNs. If both are specified, this overrides max-age for these caches. For example, this option
is useful for having different caching rules for public CDNs compared to browsers.

• must-revalidate: This instructs caches that once the resource becomes stale after max-age
expires, it must be revalidated with the server before serving it again. This ensures that clients
don’t use outdated resources without explicit validation.

• proxy-revalidate: Similar to must-revalidate, but only applies to shared caches, like proxies.
• no-transform: This prevents any intermediary, like a proxy, from altering the content or its

encoding, for example, compressing it. This is important when you want to ensure that re-
sponses are delivered exactly as they were originally generated.

• immutable: This tells the client that the resource will never change, so it doesn’t need to re-
validate it even after the max-age expires. This is good practice for static assets, like images or
CSS files, that are versioned in their URL and don’t need to be revalidated.

• stale-while-revalidate=<seconds>: This allows the client to use a stale resource while
asynchronously checking in the background whether a new version exists. This helps reduce
perceived latency. For example, Cache-Control: stale-while-revalidate=60 allows serving
stale data for 60 seconds while fetching fresh data.

• stale-if-error=<seconds>: If the origin server is unavailable, this directive allows the cache
to serve stale content for a specified time period. For example, Cache-Control: stale-if-
error=300 allows the serving of stale content for up to five minutes in case of errors.

These options are often combined. For example, a common HTTP response header for static assets,
like images or CSS files, that rarely changes, as shown in the following example:

Cache-Control: public, max-age=31536000, immutable

The resource will be publicly cacheable, fresh for one year, and marked as immutable to signal it will
not change.

The Cache-Control directive is important for the following reasons:

• Improving performance: By caching static or semi-static resources, you can reduce latency
and server load, allowing quicker delivery of content to users.

Chapter 6 197

• Reducing server load: Serving resources from the client’s cache or a CDN decreases the number
of requests that your server has to handle, allowing it to focus on more complex or person-
alized tasks.

• Ensuring freshness: It allows precise control over how resources are cached, so users always
get the most up-to-date version of resources or personalized content without unnecessary
validation requests.

• Security: By using directives like no-store, you can prevent sensitive information from being
stored anywhere, ensuring better protection of personal data.

Controlling cache-control directives in ASP.NET Core
You indicate where the response should be cached and for how long by setting parameters in the
[ResponseCache] attribute, as shown in Table 6.1:

Parameter Description
Duration This sets the max-age HTTP response header measured in seconds. Common

good practice values are 3600 (one hour) and 86400 (one day). Note that this sets a
maximum cached time not a guaranteed duration.

Location This sets the cache-control HTTP response header to one of the
following: public, private, or no-cache. The value must be one of the
ResponseCacheLocation values: Any, Client, or None.

NoStore If true, this ignores Duration and Location and sets the cache-control HTTP
response header to no-store.

Table 6.1: ResponseCache attribute parameters

Exploring cache-control directives
Let’s see a practical example:

1. In the Northwind.Mvc project, add a class named DurationInSeconds.cs.
2. In DurationInSeconds.cs, define constants for setting durations in seconds, as shown in the

following code:

namespace Northwind.Mvc;

public static class DurationInSeconds

Good Practice: Response caching is only advisory. You cannot force other systems to cache
if you do not control them. Keep in mind that any response caching you configure could be
ignored. However, response caching is often the most important type of caching to enable
in real-life web development. Organizations often find that up to 90% of client requests to
their websites and services can be handled by CDN caching. Only 1 in 10 requests actually
need to hit their web servers and use resources. Look at how well your CDN caches are
configured before wasting time optimizing your code or database queries.

Performance Optimization Using Caching198

{
 public const int TenSeconds = 10;
 public const int HalfMinute = 30;
 public const int OneMinute = 60;
 public const int TenMinutes = 600;
 public const int HalfHour = 1_800;
 public const int OneHour = 3_600;
 public const int EightHours = 28_800;
 public const int HalfDay = 43_200;
 public const int OneDay = 86_400;
 public const int OneWeek = 604_800;
}

3. In HomeController.cs, add an attribute to the Index method to cache the response for 10
seconds on the browser or any proxies between the server and browser, as shown highlighted
in the following code:

[ResponseCache(Duration = DurationInSeconds.TenSeconds,
 Location = ResponseCacheLocation.Any)]
public IActionResult Index()

4. In Views, in Home, open Index.cshtml, and after the Welcome heading, add a paragraph to
output the current time in long format to include seconds, as shown in the following markup:

<p class="alert alert-primary">@DateTime.Now.ToLongTimeString()</p>

5. Start the Northwind.Mvc website project using the https launch profile.
6. Note the time on the home page, as shown in Figure 6.2:

Figure 6.2: The current time on the home page

7. View Developer Tools, select the Network tab, select the localhost request, refresh the page,
and note the Cache-Control response header, as shown in the following output:

Cache-Control: public,max-age=10

Chapter 6 199

Seeing the effect of cache-control directives
Now, let’s navigate back and forth between different pages so we can see the effect of this cache-
control directive in different scenarios:

1. Click Register so that you leave the home page.

2. Click Home and note that the time on the home page is the same because a cached version
of the page is used.

3. Click Register. Wait at least 10 seconds.
4. Click Home and note the time has now updated.
5. Click Log in, enter your email and password, and then click Log in.
6. Note the time on the home page.
7. Click Model Binding.
8. Click Home and note that the page is not cached.
9. View the console and note the warning message explaining that your caching has been over-

ridden because the visitor is logged in and, in this scenario, ASP.NET Core uses anti-forgery
tokens and they should not be cached, as shown in the following output:

warn: Microsoft.AspNetCore.Antiforgery.DefaultAntiforgery[8]
 The 'Cache-Control' and 'Pragma' headers have been overridden
and set to 'no-cache, no-store' and 'no-cache' respectively to prevent
caching of this response. Any response that uses antiforgery should not
be cached.

10. Close Chrome and shut down the web server.

Summary of caching types
We can summarize the different types of caching in Table 6.2:

Type Where How to enable and configure

Response Browser, CDN Decorate the action method with the
[ResponseCache] attribute.

Output Web server Call UseOutputCaching, AddOutputCaching,
and CacheOutput methods in Program.cs.

Warning! Do not click the Reload the page button as this will override the cache
and refresh the page with a new request to the web server.

Performance Optimization Using Caching200

Object Web server, other processes Multiple implementations are available: in-
memory, distributed, and hybrid. Multiple
versions of distributed implementation are also
available, including Redis and SQL Server. You
will learn about them later in this chapter.

Table 6.2: Comparing types of caching

Output caching
Output caching middleware was introduced with ASP.NET Core 7, and it can be used in all types of
ASP.NET Core projects.

Output caching endpoints
Output caching stores dynamically generated responses on the server so that they do not have to be
regenerated again for another request. This can improve performance.

Let’s see it in action with examples of applying output caching to some endpoints:

1. In the Northwind.Mvc project, at the top of Program.cs, import the name for our class of du-
ration constants, as shown in the following code:

using Northwind.Mvc; // To use DurationInSeconds.

2. In Program.cs, before the call to Build, add statements to add the output cache middleware
and override the default expiration timespan to make it only 10 seconds, as shown highlighted
in the following code:

builder.Services.AddOutputCache(options =>
{
 options.DefaultExpirationTimeSpan =
 TimeSpan.FromSeconds(DurationInSeconds.TenSeconds);
});

var app = builder.Build();

3. In Program.cs, add statements before the call to map controllers to use the output cache, as
shown highlighted in the following code:

app.UseOutputCache();

Good Practice: The default expiration timespan if you call AddOutputCache with-
out configuring options is one minute. Think carefully about what the duration
should be based on your website’s typical visitor behavior.

Chapter 6 201

app.MapControllerRoute(
 name: "default",
 pattern: "{controller=Home}/{action=Index}/{id?}");

4. In Program.cs, add statements after the call to map Razor Pages to create two endpoints that
respond with plain text, one that is not cached and one that uses the output cache, as shown
highlighted in the following code:

app.MapRazorPages()
 .WithStaticAssets();

app.MapGet("/notcached", () => DateTime.Now.ToString());
app.MapGet("/cached", () => DateTime.Now.ToString())
 .CacheOutput();

5. In appsettings.Development.json, add a log level of Information for the output caching
middleware, as shown highlighted in the following configuration:

{
 "Logging": {
 "LogLevel": {
 "Default": "Information",
 "Microsoft.AspNetCore": "Warning",
 "Microsoft.AspNetCore.OutputCaching": "Information"
 }
 }
}

6. Start the Northwind.Mvc website project using the https launch profile.
7. Arrange the browser and command prompt or terminal window so that you can see both.
8. In the browser, make sure that you are not logged in because that would disable caching.
9. Navigate to https://localhost:5021/notcached, and note nothing is written to the command

prompt or terminal.
10. In the browser, click the Reload this page button several times and note that the time is always

updated because it is not served from the output cache.
11. In the browser, navigate to https://localhost:5021/cached, and note that messages are writ-

ten to the console or terminal to tell you that you have made a request for a cached resource,
but it does not have anything in the output cache, so it has now cached the output, as shown
in the following output:

info: Microsoft.AspNetCore.OutputCaching.OutputCacheMiddleware[7]
 No cached response available for this request.

https://localhost:5021/notcached
https://localhost:5021/cached

Performance Optimization Using Caching202

info: Microsoft.AspNetCore.OutputCaching.OutputCacheMiddleware[9]
 The response has been cached.

12. In the browser, click the Refresh button several times and note that the time is not updated,
and an output caching message tells you that the value was served from the cache, as shown
in the following output:

info: Microsoft.AspNetCore.OutputCaching.OutputCacheMiddleware[5]
 Serving response from cache.

13. Continue refreshing until 10 seconds have passed and note that messages are written to the
command prompt or terminal to tell you that the cached output has been updated.

14. Close the browser and shut down the web server.

Output caching MVC views
Now, let’s see how we can output cache an MVC view:

1. In the Views\Home folder, in ProductDetail.cshtml, add a paragraph <p> to show the current
time, as shown highlighted in the following markup:

<h2>Product Detail</h2>
<p class="alert alert-success">@DateTime.Now.ToLongTimeString()</p>

2. Start the Northwind.Mvc website project using the https launch profile.
3. Arrange the browser and command prompt or terminal window so that you can see both.
4. On the home page, scroll down and then select one of the products.
5. On the product detail page, note the current time, and then refresh the page and note that the

time updates every second.
6. Close the browser and shut down the web server.
7. In Program.cs, at the end of the call to map controllers, add a call to the CacheOutput method,

as shown highlighted in the following code:

app.MapControllerRoute(
 name: "default",
 pattern: "{controller=Home}/{action=Index}/{id?}")
 .WithStaticAssets()
 .CacheOutput();

8. Start the Northwind.Mvc website project using the https launch profile and arrange the browser
window and command prompt or terminal window so that you can see both.

9. On the home page, scroll down, select one of the products, and note that the product detail
page is not in the output cache, so SQL commands are executed to get the data. Then, once
the Razor view generates the page, it is stored in the cache, as shown in the following output:

info: Microsoft.AspNetCore.OutputCaching.OutputCacheMiddleware[7]
 No cached response available for this request.

Chapter 6 203

dbug: 20/09/2024 17:23:02.402 RelationalEventId.CommandExecuting[20100]
(Microsoft.EntityFrameworkCore.Database.Command)

 Executing DbCommand [Parameters=[@__id_0='?' (DbType = Int32)],
CommandType='Text', CommandTimeout='30']
 SELECT "p"."ProductId", "p"."CategoryId", "p"."Discontinued",
"p"."ProductName", "p"."QuantityPerUnit", "p"."ReorderLevel",
"p"."SupplierId", "p"."UnitPrice", "p"."UnitsInStock",
"p"."UnitsOnOrder", "c"."CategoryId", "c"."CategoryName",
"c"."Description", "c"."Picture"
 FROM "Products" AS "p"
 LEFT JOIN "Categories" AS "c" ON "p"."CategoryId" =
"c"."CategoryId"
 WHERE "p"."ProductId" = @__id_0
 LIMIT 2
info: Microsoft.EntityFrameworkCore.Database.Command[20101]
 Executed DbCommand (7ms) [Parameters=[@__id_0='?' (DbType =
Int32)], CommandType='Text', CommandTimeout='30']
 SELECT "p"."ProductId", "p"."CategoryId", "p"."Discontinued",
"p"."ProductName", "p"."QuantityPerUnit", "p"."ReorderLevel",
"p"."SupplierId", "p"."UnitPrice", "p"."UnitsInStock",
"p"."UnitsOnOrder", "c"."CategoryId", "c"."CategoryName",
"c"."Description", "c"."Picture"
 FROM "Products" AS "p"
 LEFT JOIN "Categories" AS "c" ON "p"."CategoryId" =
"c"."CategoryId"
 WHERE "p"."ProductId" = @__id_0
 LIMIT 2
info: Microsoft.AspNetCore.OutputCaching.OutputCacheMiddleware[9]
 The response has been cached.

10. On the product detail page, note the current time, and then refresh the page and note that the
whole page, including the time and product detail data, is served from the output cache, as
shown in the following output:

info: Microsoft.AspNetCore.OutputCaching.OutputCacheMiddleware[5]
 Serving response from cache.

11. Keep refreshing until 10 seconds have passed and note that the page is then regenerated from
the database and the current time is shown.

12. In the browser address bar, change the product ID number to a value between 1 and 77 to re-
quest a different product, and note that the time is current, and therefore a new cached version
has been created for that product ID because the ID is part of the relative path.

13. Refresh the browser and note that the time is cached (and therefore the whole page is).

Performance Optimization Using Caching204

14. In the browser address bar, change the product ID number to a value between 1 and 77 to re-
quest a different product, and note that the time is current, and therefore a new cached version
has been created for that product ID because the ID is part of the relative path.

15. In the browser address bar, change the product ID number back to the previous ID and note
the page is still cached with the time that the previous page was first added to the output cache.

16. Close the browser and shut down the web server.

Varying output cached data by query string
If a value is different in the relative path, then output caching automatically treats the request as a
different resource and so caches different copies for each, including differences in any query string
parameters. Consider the following URLs:

• https://localhost:5021/Home/ProductDetail/12

• https://localhost:5021/Home/ProductDetail/29

• https://localhost:5021/Home/ProductDetail/12?color=red

• https://localhost:5021/Home/ProductDetail/12?color=blue

All four requests will have their own cached copy of their own page. If the query string parameters
have no effect on the generated page, then that is a waste.

Let’s see how we can fix this problem. We will start by disabling varying the cache by query string
parameter values, and then implement some page functionality that uses a query string parameter:

1. In Program.cs, in the call to AddOutputCache, increase the default expiration to half a minute
and add a statement to define a named policy to disable varying by query string parameters,
as shown highlighted in the following code:

builder.Services.AddOutputCache(options =>
{
 options.DefaultExpirationTimeSpan =
 TimeSpan.FromSeconds(DurationInSeconds.HalfMinute);

 options.AddPolicy("views", p => p.SetVaryByQuery(""));
});

2. In Program.cs, in the call to CacheOutput for MVC, specify the named policy, as shown in the
following code:

app.MapControllerRoute(
 name: "default",
 pattern: "{controller=Home}/{action=Index}/{id?}")
 .WithStaticAssets()
 .CacheOutput(policyName: "views");

Chapter 6 205

3. In ProductDetail.cshtml, modify the <p> that outputs the current time to set its alert style
based on a value stored in the ViewData dictionary, as shown highlighted in the following
markup:

<p class="alert alert-@ViewData["alertstyle"]">
 @DateTime.Now.ToLongTimeString()</p>

4. In the Controllers folder, in HomeController.cs, in the ProductDetail action method, store
a query string value in the ViewData dictionary, as shown in the following code:

public IActionResult ProductDetail(int? id,
 string alertstyle = "success")
{
 ViewData["alertstyle"] = alertstyle;

5. Start the Northwind.Mvc website project using the https launch profile.
6. Arrange the browser and command prompt or terminal window so that you can see both.
7. On the home page, scroll down, select one of the products, and note the color of the alert is

green because the alertstyle defaults to success.
8. In the browser address bar, append a query string parameter, ?alertstyle=warning, and note

that it is ignored because the same cached page is returned.
9. In the browser address bar, change the product ID number to a value between 1 and 77 to re-

quest a different product and append a query string parameter, ?alertstyle=warning. Note
that the alert is yellow because it is treated as a new request.

10. In the browser address bar, append a query string parameter, ?alertstyle=info, and note
that it is ignored because the same cached page is returned.

11. Close the browser and shut down the web server.
12. In Program.cs, in the call to AddPolicy, set alertstyle as the only named parameter to vary

by for query string parameters, as shown highlighted in the following code:

options.AddPolicy("views", p => p.SetVaryByQuery("alertstyle"));

13. Start the Northwind.Mvc website project using the https launch profile.
14. Repeat the steps above to confirm that requests for different alertstyle values do have their

own cached copies but any other query string parameter would be ignored.
15. Close the browser and shut down the web server.

Disabling output caching to avoid confusion
Before we continue, let’s disable view output caching; otherwise, you are likely to be confused by the
website behavior if or when you forget caching is enabled!

1. In Program.cs, disable the output caching by commenting out the call to CacheOutput, as
shown highlighted in the following code:

app.MapControllerRoute(

Performance Optimization Using Caching206

 name: "default",
 pattern: "{controller=Home}/{action=Index}/{id?}")
 .WithStaticAssets();
// .CacheOutput(policyName: "views");

2. Save the changes.

Object caching
Object caching refers to the practice of temporarily storing objects or data in memory to improve the
performance and scalability of a website or web service by reducing redundant data retrieval and
computation.

In-memory and distributed caching work with any type of app or service, using any transport tech-
nology, because all the magic happens on the server.

By caching frequently accessed or expensive-to-create data, you can reduce the load on your database
or other backend services, minimize response times, and improve the overall user experience.

Common use cases for object caching include the following:

• Expensive database queries: Cache the result of complex or frequently accessed database
queries. You will do this for the Northwind MVC website home page that currently accesses
the SQL Server database on every request. Even with output caching enabled, that is only
currently cached for 30 seconds.

• External service calls: Cache responses from external APIs to reduce latency and cost.
• Computed data: Store results of computationally expensive operations.

Caching objects using in-memory caching
The IMemoryCache interface represents a cache that uses local web server memory. The Microsoft.
Extensions.Caching.Memory package has a modern implementation of IMemoryCache. Avoid the
older System.Runtime.Caching.

Expirations for in-memory caching
When you add an object to a cache, you should set an expiration. There are two types, absolute and
sliding, and you can set one or the other, both, or neither:

• Absolute expiration: This is a fixed date/time, for example, 1 a.m. on December 24, 2023. When
the date/time is reached, the object is evicted. To use this, set the AbsoluteExpiration property
of a cache entry to a DateTime value. Choose this if you need to guarantee that at some point,
the data in the cache will be refreshed.

Good Practice: If you have multiple servers hosting your web service or website, then
you must enable “sticky sessions.” This means that an incoming request from a client or
visitor will be directed to the same server as previous requests from that client or visitor,
allowing the request to find the correct cached data in that server’s memory.

Chapter 6 207

• Sliding expiration: This is a time span, for example, 20 seconds. When the time span expires,
the object is evicted. However, whenever an object is read from the cache, its expiration is
reset for another 20 seconds. This is why it is described as sliding. A common duration for a
content management system (CMS), where content like a web page is loaded from a database,
is 12 hours. Content frequently viewed by visitors, like the home page, is then likely to remain
in memory. To use this, set the SlidingExpiration property of a cache entry to a TimeSpan
value. Choose this if it is acceptable for data to potentially never be refreshed. A good CMS
will have an additional mechanism to reliably force a refresh when new content is published,
but this functionality is not built into .NET caching.

• Both expirations: If you only set a sliding expiration, an object may stay in the cache forever,
so you might also want to set the AbsoluteExpirationRelativeToNow property to a TimeSpan
further in the future, after which the object would definitely be evicted. Choose this if you
want the “best of both worlds.”

• Never: You can set a cache entry to have a priority of CacheItemPriority.NeverRemove.

You can also configure a method to call back to when an object is evicted from the cache. This allows you
to execute some business logic to decide if you want to add the object back into the cache, perhaps after
refreshing it from the original data source. You do this by calling the RegisterPostEvictionCallback
method.

Exploring in-memory object caching
Let’s explore the in-memory cache:

1. In the Northwind.Mvc project, in Program.cs, import the namespace to work with the in-mem-
ory cache, as shown in the following code:

using Microsoft.Extensions.Caching.Memory; // To use IMemoryCache and so
on.

2. In Program.cs, after the call to CreateBuilder, in the section for configuring services, register
an implementation for the in-memory cache, configured to store a maximum of 50 products,
as shown in the following code:

builder.Services.AddSingleton<IMemoryCache>(new MemoryCache(
 new MemoryCacheOptions
 {
 TrackStatistics = true,
 SizeLimit = 50 // Products.
 }));

Good Practice: Sizes of objects in the cache are defined using custom units. If you store
simple string values, then you could use the length of the string. If you don’t know the
size, you could just use 1 unit for each entry to simply limit the number of entries.

Performance Optimization Using Caching208

3. In HomeController.cs, import the namespace to work with the in-memory cache, as shown
in the following code:

using Microsoft.Extensions.Caching.Memory; // To use IMemoryCache.

4. In HomeController.cs, declare some fields to store the in-memory cache and a key for the
out-of-stock products, as shown in the following code:

private readonly IMemoryCache _memoryCache;
private const string ProductKey = "PROD";

public HomeController(ILogger<HomeController> logger,
 NorthwindContext db, IMemoryCache memoryCache)
{
 _logger = logger;
 _db = db;
 _memoryCache = memoryCache;
}

5. In HomeController.cs, in the ProductDetail action method, add statements to try to get the
product from the cache, and if it is not cached, get it from the database and set it in the cache,
using a sliding expiration of one hour, as highlighted in the following code:

public async Task<IActionResult> ProductDetail(int? id,
 string alertstyle = "success")
{
 ViewData["alertstyle"] = alertstyle;

 if (!id.HasValue)
 {
 return BadRequest("You must pass a product ID in the route, for
example, /Home/ProductDetail/21");
 }

 // Try to get the cached product.
 if (!_memoryCache.TryGetValue($"{ProductKey}{id}",
 out Product? model))
 {
 // If the cached value is not found, get the value from the database.
 model = await _db.Products.Include(p => p.Category)
 .SingleOrDefaultAsync(p => p.ProductId == id);

 if (model is null)

Chapter 6 209

 {
 return NotFound($"ProductId {id} not found.");
 }

 MemoryCacheEntryOptions cacheEntryOptions = new()
 {
 SlidingExpiration = TimeSpan.FromSeconds(5),
 Size = 1 // product
 };

 _memoryCache.Set($"{ProductKey}{id}", model, cacheEntryOptions);
 }

 MemoryCacheStatistics? stats = _memoryCache.GetCurrentStatistics();

 _logger.LogInformation($"Memory cache. Total hits: {stats?
 .TotalHits}. Estimated size: {stats?.CurrentEstimatedSize}.");

 return View(model); // Pass model to view and then return result.
}

6. Start the Northwind.Mvc project using the https profile.
7. Arrange the windows so that you can see the command prompt or terminal at the same time

as the web page.
8. Click on a product, like Chai, and then at the command prompt or terminal, note in the output

that EF Core executes a SQL statement to get the product, the total hit counter is zero, and one
product has now been cached, as shown in the following output:

info: Northwind.Mvc.Controllers.HomeController[0]
 Memory cache. Total hits: 0. Estimated size: 1.

9. Click Reload this page within 30 seconds, and continue to click it a few more times:

• Note that EF Core does not need to re-execute the SQL statement because the product
is cached, and if something reads them within a five-second sliding expiration, they
will stay in memory forever.

• Note the total hit counter for the cache increments each time the product is found in
the object cache, as shown in the following output:

info: Northwind.Mvc.Controllers.HomeController[0]
 Memory cache. Total hits: 1. Estimated size: 1.
info: Northwind.Mvc.Controllers.HomeController[0]
 Memory cache. Total hits: 2. Estimated size: 1.

Performance Optimization Using Caching210

info: Northwind.Mvc.Controllers.HomeController[0]
 Memory cache. Total hits: 3. Estimated size: 1.

10. Wait at least 30 seconds.
11. Click Reload this page, and note in the output that EF Core executes a SQL statement to get the

product because it has not been read within the 30-second sliding expiration window.
12. View some other product detail pages and note the estimated size of the object cache increases

as more products are added to it.
13. Close the browser and shut down the web server.

Caching objects using distributed caching
Distributed caches have benefits over in-memory caches. Objects stored in a distributed cache:

• Are consistent across requests to multiple servers
• Survive server restarts and service deployments
• Do not waste local server memory
• Are stored in a shared area; so, in a server farm scenario with multiple servers, you do not

need to enable sticky sessions

Microsoft provides the IDistributedCache interface with pre-defined methods to manipulate items
in any distributed cache implementation. The methods are:

• Set or SetAsync: To store an object in the cache.
• Get or GetAsync: To retrieve an object from the cache.
• Remove or RemoveAsync: To remove an object from the cache.
• Refresh or RefreshAsync: To reset the sliding expiration for an object in the cache.

There are many implementations of distributed caching to choose from, including the following:

• SQL Server: https://learn.microsoft.com/en-us/aspnet/core/performance/caching/
distributed#distributed-sql-server-cache

• Redis: https://learn.microsoft.com/en-us/aspnet/core/performance/caching/
distributed#distributed-redis-cache.

• NCache: http://www.alachisoft.com/ncache/aspnet-core-idistributedcache-ncache.
html.

We will use the Distributed Memory Cache, which is a Microsoft built-in implementation of
IDistributedCache that stores items in memory on the server where the service runs.

Warning! A disadvantage of distributed caches is that in-memory caches can store any
object, but a distributed cache can only store byte arrays. Your object needs to be serial-
ized and sent across a network to the remote cache.

https://learn.microsoft.com/en-us/aspnet/core/performance/caching/distributed#distributed-sql-server-cache
https://learn.microsoft.com/en-us/aspnet/core/performance/caching/distributed#distributed-sql-server-cache
https://learn.microsoft.com/en-us/aspnet/core/performance/caching/distributed#distributed-redis-cache
https://learn.microsoft.com/en-us/aspnet/core/performance/caching/distributed#distributed-redis-cache
http://www.alachisoft.com/ncache/aspnet-core-idistributedcache-ncache.html
http://www.alachisoft.com/ncache/aspnet-core-idistributedcache-ncache.html

Chapter 6 211

It is not an actual distributed cache, but it is useful for scenarios like unit testing, where you want to
remove the dependency on yet another external service, or while learning, as we are doing in this book.

Later, you only need to change the configured distributed cache, not the service implementation code
that uses it, because all interactions go through the registered IDistributedCache implementation.

Let’s go!

1. In the Northwind.Mvc project, in Program.cs, after the call to CreateBuilder, in the section
for configuring services, register the implementation for the distributed memory cache, as
shown in the following code:

builder.Services.AddDistributedMemoryCache();

2. In HomeController.cs, import the namespace for working with a distributed cache imple-
mentation and serialized JSON, as shown in the following code:

using Microsoft.Extensions.Caching.Distributed; // To use
IDistributedCache.
using System.Text.Json; // To use JsonSerializer.

3. In HomeController.cs, declare some fields to store the distributed cache implementation and
an item key for categories, as highlighted in the following code:

private readonly IDistributedCache _distributedCache;
private const string CategoriesKey = "CATEGORIES";

public ProductsController(ILogger<ProductsController> logger,
 NorthwindContext db, IMemoryCache memoryCache,
 IDistributedCache distributedCache)
{
 _logger = logger;
 _db = db;
 _memoryCache = memoryCache;
 _distributedCache = distributedCache;
}

4. In HomeController.cs, add a private method to get the categories from the database as a list
collection, and set it in the distributed cache, using a sliding expiration of one minute and an
absolute expiration of 20 minutes, and return them, as shown in the following code:

private async Task<List<Category>> GetCategoriesFromDatabaseAsync()
{
 List<Category> cachedValue = await _db.Categories.ToListAsync();

 DistributedCacheEntryOptions cacheEntryOptions = new()

Performance Optimization Using Caching212

 {
 // Allow readers to reset the cache entry's lifetime.
 SlidingExpiration = TimeSpan.FromMinutes(1),

 // Set an absolute expiration time for the cache entry.
 AbsoluteExpirationRelativeToNow = TimeSpan.FromMinutes(20),
 };

 byte[]? cachedValueBytes =
 JsonSerializer.SerializeToUtf8Bytes(cachedValue);

 await _distributedCache.SetAsync(CategoriesKey,
 cachedValueBytes, cacheEntryOptions);

 return cachedValue;
}

5. In HomeController.cs, in the Index action method, add statements to try to get the cached
categories, and if not cached, get them from the database. If a byte array is found in the cache,
try to deserialize it into a list of categories, but if that fails too, get the categories from the
database, as highlighted in the following code:

[ResponseCache(Duration = DurationInSeconds.TenSeconds,
 Location = ResponseCacheLocation.Any)]
public async Task<IActionResult> Index()
{
 /*
 _logger.LogError("This is a serious error (not really!)");
 _logger.LogWarning("This is your first warning!");
 _logger.LogWarning("Second warning!");
 _logger.LogInformation("I am in the Index method of the
HomeController.");
 */

 // Try to get the cached value.
 List<Category>? cachedValue = null;

 byte[]? cachedValueBytes =
 await _distributedCache.GetAsync(CategoriesKey);

 if (cachedValueBytes is null)
 {

Chapter 6 213

 cachedValue = await GetCategoriesFromDatabaseAsync();
 }
 else
 {
 cachedValue = JsonSerializer
 .Deserialize<List<Category>>(cachedValueBytes);

 if (cachedValue is null)
 {
 cachedValue = await GetCategoriesFromDatabaseAsync();
 }
 }

 HomeIndexViewModel model = new
 (
 VisitorCount: Random.Shared.Next(1, 1001),
 Categories: cachedValue ?? new List<Category>(),
 Products: await _db.Products.ToListAsync()
);

 return View(model); // Pass the model to the view.
}

6. Start the Northwind.Mvc project using the https profile.
7. Arrange the windows so that you can see the command prompt or terminal at the same time

as the web page, and note in the output that EF Core executes a SQL statement to get the cat-
egories to show on the home page.

8. Click Reload this page within five seconds, continue to click it a few more times, and note that
EF Core does not need to re-execute the SQL statement because the categories are cached. EF
Core continues to execute the SQL statement to get the products.

9. Close the browser and shut down the web server.

Hybrid object caching
The HybridCache API introduced with ASP.NET Core 9 addresses some limitations found in the
IDistributedCache and IMemoryCache APIs. As an abstract class with a default implementation,
HybridCache efficiently manages most tasks related to storing and retrieving data from the cache.

Unlike the in-memory cache that can store any live object, objects stored in dis-
tributed cache implementations must be serialized into byte arrays because they
need to be transmittable across networks.

Performance Optimization Using Caching214

The key points about hybrid caching are shown in the following list:

• Unified API: It provides a single interface for both in-process and out-of-process caching.
HybridCache can seamlessly replace any existing IDistributedCache and IMemoryCache usage.
It always uses the in-memory cache initially, and when an IDistributedCache implementation
is available, HybridCache leverages it for secondary caching. This dual-level caching approach
combines the speed of in-memory caching with the durability of distributed or persistent
caching.

• Stampede protection: HybridCache prevents cache stampedes, which occur when a frequently
used cache entry is invalidated, causing multiple requests to try to repopulate it simultaneously.
HybridCache merges concurrent operations, ensuring all requests for the same response wait
for the first request to complete.

• Configurable serialization: HybridCache allows for configurable serialization during service
registration, supporting both type-specific and generalized serializers via the WithSerializer
and WithSerializerFactory methods, which are chained from the AddHybridCache call. By
default, it manages string and byte[] internally and utilizes System.Text.Json for other
types. It can be configured to use other serializers, such as Protobuf or XML.

Now that you’ve learned the concepts and basic implementation options for caching, let’s create a
data repository for a customer’s page that caches entities to improve performance and scalability.

Creating data repositories with caching for entities
Defining and implementing a data repository to provide CRUD operations is good practice. We will
create a data repository for the Customers table in Northwind. There are only 91 customers in this
table, so we will cache a copy of the whole table in memory to improve scalability and performance
when reading customer records.

In .NET 9, the HybridCache was introduced, which automatically switches between in-memory and
distributed cache types.

Although HybridCache was introduced with .NET 9, its package targets .NET Standard 2.0,
so it can be used with older versions of .NET, even including .NET Framework 4.6.2 or later.

Good Practice: In a real web service, you should use a distributed cache like Redis, an
open-source data structure store that can be used as a high-performance, high-availability
database, cache, or message broker. You can learn about this at the following link: https://
learn.microsoft.com/en-us/aspnet/core/performance/caching/distributed.

More Information: You can learn more about HybridCache at the following link:
https://learn.microsoft.com/en-us/aspnet/core/performance/caching/
hybrid?view=aspnetcore-9.0.

https://learn.microsoft.com/en-us/aspnet/core/performance/caching/distributed
https://learn.microsoft.com/en-us/aspnet/core/performance/caching/distributed
https://learn.microsoft.com/en-us/aspnet/core/performance/caching/hybrid?view=aspnetcore-9.0
https://learn.microsoft.com/en-us/aspnet/core/performance/caching/hybrid?view=aspnetcore-9.0

Chapter 6 215

We will follow a modern good practice and make the repository API asynchronous. It will be instan-
tiated by an endpoint using parameter injection, so a new instance is created to handle every HTTP
request. It will use a singleton instance of the hybrid cache. Let’s go:

1. In the Northwind.Mvc.csproj project file, add a package reference for hybrid caching, as
shown in the following markup:

<PackageReference Include="Microsoft.Extensions.Caching.Hybrid" />

2. Build the Northwind.Mvc project to restore packages.
3. In Program.cs, import the namespace for working with a hybrid cache, as shown in the fol-

lowing code:

using Microsoft.Extensions.Caching.Hybrid; // To use
HybridCacheEntryOptions.

4. In Program.cs, before the call to Build, in the section for configuring services, register the
hybrid cache service with a default cache entry duration of 60 seconds overall, and 30 seconds
for local in-memory caching, as shown in the following code:

builder.Services.AddHybridCache(options =>
{
 options.DefaultEntryOptions = new HybridCacheEntryOptions
 {
 Expiration = TimeSpan.FromSeconds(60),
 LocalCacheExpiration = TimeSpan.FromSeconds(30)
 };
});

5. In the MatureWeb solution, add a new Class Library / classlib project named Northwind.
Repositories.

6. In the Northwind.Repositories.csproj project file, add a reference to the Northwind data
context project, as shown in the following markup:

<ItemGroup>
 <ProjectReference Include=
 "..\Northwind.DataContext\Northwind.DataContext.csproj" />
</ItemGroup>

7. Build the Northwind.Repositories project to build dependencies.
8. In the Northwind.Repositories project, add a new interface file and a class file to the

Repositories folder named ICustomerRepository.cs and CustomerRepository.cs.
9. In ICustomerRepository.cs, define an interface with five CRUD methods, as shown in the

following code:

using Northwind.EntityModels; // To use Customer.

Performance Optimization Using Caching216

namespace Northwind.Repositories;

public interface ICustomerRepository
{
 Task<Customer?> CreateAsync(Customer c);
 Task<Customer[]> RetrieveAllAsync();
 Task<Customer?> RetrieveAsync(string id,
 CancellationToken token);
 Task<Customer?> UpdateAsync(Customer c);
 Task<bool?> DeleteAsync(string id);
}

10. In CustomerRepository.cs, define a class that will implement the interface and uses the hybrid
cache (its methods will be implemented over the next few steps so for now, ignore the errors
you will be shown), as shown in the following code:

using Microsoft.EntityFrameworkCore.ChangeTracking; // To use
EntityEntry<T>.
using Northwind.EntityModels; // To use Customer.
using Microsoft.EntityFrameworkCore; // To use ToArrayAsync.
using Microsoft.Extensions.Caching.Hybrid; // To use HybridCache.

namespace Northwind.Repositories;

public class CustomerRepository : ICustomerRepository
{
 private readonly HybridCache _cache;

 // Use an instance data context field because it should not be
 // cached due to the data context having internal caching.
 private NorthwindContext _db;

 public CustomerRepository(NorthwindContext db,
 HybridCache hybridCache)
 {
 _db = db;
 _cache = hybridCache;
 }
}

Chapter 6 217

11. Implement the RetrieveAllAsync method to always read the latest customers from the data-
base, as shown in the following code:

public Task<Customer[]> RetrieveAllAsync()
{
 return _db.Customers.ToArrayAsync();
}

12. Implement the RetrieveAsync method to get the customer from the cache if possible or from
the data model and set it in the cache for next time, as shown in the following code:

public async Task<Customer?> RetrieveAsync(string id,
 CancellationToken token = default)
{
 id = id.ToUpper(); // Normalize to uppercase.

 return await _cache.GetOrCreateAsync(
 key: id, // Unique key to the cache entry.
 factory: async cancel => await _db.Customers
 .FirstOrDefaultAsync(c => c.CustomerId == id, token),
 cancellationToken: token);
}

13. Implement the CreateAsync method, as shown in the following code:

public async Task<Customer?> CreateAsync(Customer c)
{
 c.CustomerId = c.CustomerId.ToUpper(); // Normalize to uppercase.

 // Add to database using EF Core.
 EntityEntry<Customer> added =
 await _db.Customers.AddAsync(c);
 int affected = await _db.SaveChangesAsync();
 if (affected == 1)
 {
 // If saved to database then store in cache.
 await _cache.SetAsync(c.CustomerId, c);
 return c;
 }
 return null;
}

Performance Optimization Using Caching218

14. Implement the UpdateAsync method to update the database and, if successful, then update
the cached customer as well, as shown in the following code:

public async Task<Customer?> UpdateAsync(Customer c)
{
 c.CustomerId = c.CustomerId.ToUpper();

 _db.Customers.Update(c);
 int affected = await _db.SaveChangesAsync();
 if (affected == 1)
 {
 await _cache.SetAsync(c.CustomerId, c);
 return c;
 }
 return null;
}

15. Implement the delete method to delete the customer from the database and, if successful, then
remove the cached customer as well, as shown in the following code:

public async Task<bool?> DeleteAsync(string id)
{
 id = id.ToUpper();

 Customer? c = await _db.Customers.FindAsync(id);
 if (c is null) return null;

 _db.Customers.Remove(c);
 int affected = await _db.SaveChangesAsync();
 if (affected == 1)
 {
 await _cache.RemoveAsync(c.CustomerId);
 return true;
 }
 return null;
}

16. In the Northwind.Mvc.csproj project file, add a reference to the Northwind repositories project,
as shown highlighted in the following markup:

<ItemGroup>
 <ProjectReference Include=
 "..\Northwind.DataContext\Northwind.DataContext.csproj" />
 <ProjectReference Include=

Chapter 6 219

 "..\Northwind.Repositories\Northwind.Repositories.csproj" />
</ItemGroup>

17. Build the Northwind.Mvc project to build dependencies.

Configuring the customer repository
You will register a scoped dependency service implementation for the repository when the MVC web-
site starts up, and then use constructor parameter injection to get it in a new controller for working
with customers.

It will have five action methods to perform CRUD operations on customers—two GET methods (for all
customers or one customer), POST (create), PUT (update), and DELETE:

1. In the Northwind.Mvc project, in Program.cs, import the namespace for working with our
customer repository, as shown in the following code:

using Northwind.Repositories; // To use ICustomerRepository.

2. In Program.cs, add a statement before the call to the Build method, which will register the
CustomerRepository for use at runtime as a scoped dependency, as shown in the following code:

builder.Services.AddScoped<ICustomerRepository,
 CustomerRepository>();

3. In the Northwind.Mvc project, in the Controllers folder, add a new empty controller class
named CustomersController.cs.

4. In CustomersController.cs, add statements to define a controller with an Index action method
that responds to HTTP GET requests for all customers or customers within a specified country
in a simplified route, as shown in the following code:

using Microsoft.AspNetCore.Mvc; // To use ProblemDetails.
using Northwind.EntityModels; // To use Customer.
using Northwind.Repositories; // To use ICustomerRepository.

namespace Northwind.Mvc.Controllers;

public class CustomersController : Controller
{
 private readonly ICustomerRepository _repo;

Good Practice: Our repository uses a database context that is registered as a scoped
dependency. You can only use scoped dependencies inside other scoped depen-
dencies, so we cannot register the repository as a singleton. You can read more
about this at the following link: https://learn.microsoft.com/en-us/dotnet/
core/extensions/dependency-injection#scoped.

https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection#scoped
https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection#scoped

Performance Optimization Using Caching220

 public CustomersController(ICustomerRepository customerRepository)
 {
 _repo = customerRepository;
 }

 [Route("Customers/{country?}")]
 public async Task<IActionResult> Index(
 string? country = null)
 {
 IEnumerable<Customer> model = await _repo.RetrieveAllAsync();

 if (!string.IsNullOrWhiteSpace(country))
 {
 model = model.Where(customer => customer.Country == country);
 }

 return View(model);
 }
}

5. In the Views folder, create a folder named Customers.
6. In the Customers folder, create a Razor View – Empty file named Index.cshtml.
7. In Index.cshtml, add Razor statements to render the customers into an HTML table with

columns for Customer ID, Company Name, Contact Name, City, and Country, as shown in the
following markup:

@model IEnumerable<Customer>
@{
 ViewData["Title"] = "Customers";
}
<div class="text-center">
 <h1 class="display-4">@ViewData["Title"]</h1>
 <table class="table table-bordered table-striped">
 <thead>
 <tr>
 <th>Customer ID</th>
 <th>Company Name</th>
 <th>Contact Name</th>
 <th>City</th>
 <th>Country</th>
 </tr>
 </thead>

Chapter 6 221

 <tbody>
 @foreach (Customer customer in Model)
 {
 <tr>
 <td>@customer.CustomerId</td>
 <td>@customer.CompanyName</td>
 <td>@customer.ContactName</td>
 <td>@customer.City</td>
 <td>@customer.Country</td>
 </tr>
 }
 </tbody>
 </table>
</div>

8. In Views\Shared folder, in _Layout.cshtml, add a menu item to navigate to the customer’s
home page, as shown in the following markup:

<li class="nav-item">
 <a class="nav-link text-dark" asp-area=""
 asp-controller="Customers" asp-action="Index">Customers

9. Start the Northwind.Mvc website project using the https profile.
10. On the home page, click Customers, and note the table of 91 customers in all countries.
11. In the browser address bar, append /USA to the end of the path, press Enter, and note the table

is limited to customers in the USA.
12. Close Chrome and shut down the web server.

When an HTTP request is received by the website, it will create an instance of the Controller class,
call the appropriate action method, return the response as an HTML page generated by the appro-
priate Razor view, and release the resources used by the controller, including the repository and its
data context.

More techniques to improve scalability
Scalability in ASP.NET Core is all about ensuring that your application can handle increased load by
efficiently managing resources. In-memory and distributed caching play a role in scaling by reducing
the need for expensive operations.

Other techniques, like asynchronous programming, load balancing, and database optimization, all
contribute to making an ASP.NET Core application more scalable. Combining these strategies with
cloud-native tools, like auto-scaling and CDNs, ensures your application can grow with demand while
maintaining high performance.

Performance Optimization Using Caching222

Horizontal scaling with load balancing
This technique distributes incoming requests across multiple application instances. You can set up
load balancing using tools like NGINX, Azure Load Balancer, or AWS Elastic Load Balancing. This
helps distribute traffic and avoid overloading any single instance.

Asynchronous programming
Using async and await in ASP.NET Core ensures that your application does not block threads while
waiting for I/O-bound operations, such as database calls or API requests. This helps optimize the use
of server resources and improves concurrency, which is crucial when scaling.

At the end of this chapter, there is an optional practice about improving scalability by understanding
and implementing async action methods.

Database optimizations
There are a few database techniques that can improve scalability:

• Database indexing: Properly index your database to improve the speed of queries and reduce
the load on the database server. Slow database queries are often a bottleneck in scalability.

• Connection pooling: Use database connection pooling to minimize the overhead of opening
and closing database connections.

• Read replicas: Use database replication strategies to offload read-heavy operations to read
replicas while leaving write operations on the primary database.

Message queues and background services
Offload heavy or long-running tasks to background services using message queues, like Azure Service
Bus, RabbitMQ, or Kafka. This allows your web servers to quickly respond to user requests without
waiting for background tasks to complete.

Auto-scaling in the cloud
Use cloud services, such as Azure App Service or AWS Elastic Beanstalk, which automatically scale
your application instances based on traffic. This auto-scaling feature allows the infrastructure to
dynamically add or remove servers to meet current demand.

CDN
Use a CDN to offload static content like images, CSS, and JavaScript libraries to edge servers that are
geographically closer to users. This reduces the load on your web server and improves performance
for end users. Azure CDN or Cloudflare are commonly used solutions.

Health checks and monitoring
Regularly monitor your application performance and set up health checks to ensure that your instances
are running optimally. ASP.NET Core has built-in health check middleware that helps with monitoring
and reporting the health of your services, which is crucial for identifying bottlenecks or issues early.

Chapter 6 223

Practicing and exploring
Test your knowledge and understanding by answering some questions, getting some hands-on practice,
and exploring this chapter’s topics with deeper research.

Exercise 6.1 – Online material
“What are the best practices for optimizing content delivery using Cloudflare’s CDN? Any tips for improv-
ing website performance?”: https://community.cloudflare.com/t/what-are-the-best-practices-
for-optimizing-content-delivery-using-cloudflares-cdn-any-tips-for-improving-website-
performance/557911

Exercise 6.2 – Practice exercises
The following practice exercises help you to explore the topics in this chapter more deeply.

Practicing improving scalability by understanding and implementing
async action methods
Almost a decade ago, Stephen Cleary wrote an excellent article for MSDN Magazine explaining the
scalability benefits of implementing async action methods for ASP.NET. The same principles apply
to ASP.NET Core, but even more so because, unlike the old ASP.NET, as described in the article, ASP.
NET Core supports asynchronous filters and other components.

Read the article at the following link: https://learn.microsoft.com/en-us/archive/msdn-
magazine/2014/october/async-programming-introduction-to-async-await-on-asp-net.

Exercise 6.3 – Test your knowledge
Answer the following questions:

1. How can you instruct the visitor’s browser to cache the response for 24 hours?
2. What is the difference between the max-age=<seconds> and s-maxage=<seconds> directives?
3. When is it important to use the NoStore parameter on the [ResponseCache] attribute?
4. How do you set the default expiration time for output caching?
5. How do you enable output caching for an endpoint defined using MapGet?
6. Why might you need to set both a sliding and an absolute expiration for object caching?
7. What are some benefits of distributed object caching compared to in-memory object caching?
8. What is hybrid object caching?
9. What are some non-caching techniques to improve the scalability of a website?
10. What is a CDN and what are its benefits for a website?

Exercise 6.4 – Explore topics
Use the following link to learn more about the topics covered in this chapter: https://github.
com/markjprice/web-dev-net9/blob/main/docs/book-links.md#chapter-6---performance-
optimization-using-caching.

https://community.cloudflare.com/t/what-are-the-best-practices-for-optimizing-content-delivery-using-cloudflares-cdn-any-tips-for-improving-website-performance/557911
https://community.cloudflare.com/t/what-are-the-best-practices-for-optimizing-content-delivery-using-cloudflares-cdn-any-tips-for-improving-website-performance/557911
https://community.cloudflare.com/t/what-are-the-best-practices-for-optimizing-content-delivery-using-cloudflares-cdn-any-tips-for-improving-website-performance/557911
https://learn.microsoft.com/en-us/archive/msdn-magazine/2014/october/async-programming-introduction-to-async-await-on-asp-net
https://learn.microsoft.com/en-us/archive/msdn-magazine/2014/october/async-programming-introduction-to-async-await-on-asp-net
https://github.com/markjprice/web-dev-net9/blob/main/docs/book-links.md#chapter-6---performance-optimization-using-caching
https://github.com/markjprice/web-dev-net9/blob/main/docs/book-links.md#chapter-6---performance-optimization-using-caching
https://github.com/markjprice/web-dev-net9/blob/main/docs/book-links.md#chapter-6---performance-optimization-using-caching

Performance Optimization Using Caching224

Summary
In this chapter, you learned about the various types of caching, including HTTP response caching,
output caching, and object caching with in-memory or distributed, and new in .NET 9, hybrid caching,
to get the best of both worlds.

Always remember that caching works best with data that (a) costs a lot to generate and (b) does not
change often.

Follow these guidelines when caching:

• Your code should never depend on cached data. It should always be able to get the data from
the original source when the data is not found in the cache.

• Wherever you cache data (in-memory or in a database) it is a limited resource, so deliberately
limit the amount of data cached and for how long by implementing expirations and size limits.

In the next chapter, you will learn how to write automated tests of web user interfaces using Playwright.

Learn more on Discord
To join the Discord community for this book – where you can share feedback, ask questions to the
author, and learn about new releases – follow the QR code below:

https://packt.link/RWD9

https://packt.link/RWD9

7
Web User Interface Testing Using
Playwright

By focusing on automating key user flows, balancing between automated and manual testing, and
addressing cross-browser compatibility, developers can significantly enhance the reliability and quality
of their web UI.

This chapter introduces you to web user interface testing and how to use Microsoft Playwright to write
automated tests for web user interfaces.

This chapter covers the following topics:

• Introducing web user interface testing
• Testing web user interfaces using Playwright
• Interacting with a web user interface
• Generating tests with the Playwright Inspector

Introducing web user interface testing
Web UI testing helps to improve the functionality, usability, and performance of a web application
from the end-user’s perspective.

Before diving into practical examples using Playwright, let’s make sure you have a good grounding
in the general fundamentals.

Types of web UI testing
There are several approaches to web UI testing, each serving different purposes:

• Manual testing: This involves human testers interacting with the website and verifying that
the UI behaves as expected. This is often useful for exploratory or visual testing. Manual test-
ing can be time-consuming but an experienced human tester can improve the quality of your
website better than any automated testing.

Web User Interface Testing Using Playwright226

• Automated UI testing: This involves scripts or tools to automate the interaction with the UI.
For example, filling in forms, clicking buttons, selecting from dropdown lists, and so on. Au-
tomation is particularly useful for regression testing and ensuring that rapid changes do not
break the UI. This type of testing is the main focus of this chapter.

• Visual regression testing: This ensures that the appearance of the UI remains consistent. Tools
compare screenshots or DOM snapshots of a page before and after changes, raising alerts if
something looks different.

A wide variety of tools are available for automating UI tests, including:

• Selenium: One of the most popular tools for automating browsers. It supports multiple lan-
guages like C#, Python, and Java. However, Selenium tests can be flaky due to reliance on
timing and browser inconsistencies.

• Playwright and Puppeteer: Newer headless browser testing frameworks that are generally
more stable and offer features like parallel test execution and direct browser control.

• Cypress: Popular for UI testing, offering great speed and reliability by running directly in the
browser. It’s known for having a user-friendly API and detailed debugging tools.

• TestCafe: Another modern tool for UI testing, known for not requiring WebDriver and running
tests on multiple browsers.

What should you test in a web UI?
One of the most important decisions is about what you should test in a web UI. There is likely to be an
unending list of potential UI interactions that you could test. Let’s review what you should prioritize:

• Layout and design: Make sure elements like buttons, text boxes, images, and other UI compo-
nents are properly aligned and visible on different screen sizes and browsers.

• Functionality: Validate that UI controls, like buttons, links, and forms, are working correctly,
interacting with the backend properly, and triggering the right actions.

• Cross-browser compatibility: Ensure the application works across different browsers, like
Chrome, Firefox, Safari, and Edge, and across different browser versions.

• Responsive design: Test how the UI adapts to different screen resolutions and devices, including
desktops, tablets, and smartphones.

• User workflow: Validate that user flows, like login, checkout, and visitor registration, are
intuitive and error-free.

• Accessibility: Ensure that the UI is accessible to users with disabilities by following standards
like WCAG (Web Content Accessibility Guidelines). Tools like Axe or WAVE can help automate
this.

Challenges and good practices with web UI testing
Most developers find that web UI testing is more challenging than other types of testing, for example,
unit testing, for the following reasons:

Chapter 7 227

• Flakiness: Automated UI tests can be brittle due to timing issues, changing UI elements, or
dependencies on external services like APIs that you have no control over and could change
at any moment. For example, a temporarily slow network could make a button appear later
than expected, causing tests to fail. This can be extremely frustrating and can make some
developers give up on web UI testing altogether. Don’t give up hope!

• Dynamic content: Modern web apps often load content dynamically, which can make them
harder to test reliably. Synchronizing test scripts with the UI, for example, waiting for elements
to appear or certain actions to complete, is a key technique that when implemented will make
your tests more reliable and less frustrating.

• Test maintenance: Changes in the UI often break tests, requiring constant updates. You can
keep your tests more maintainable by using stable locators like unique IDs, or named CSS
classes, and avoiding hardcoded wait times.

• Speed: Automated UI tests can be slower compared to unit or integration tests since they
simulate full user interactions and render the UI. Balancing between UI and non-UI tests is
important to optimize feedback loops.

To deal with these challenges, there are some good practices that you should follow:

• Start small: Don’t test everything through the UI. UI tests should focus on high-level, critical
user interactions like the login and checkout process (because these are often how your website
pays for itself). For internal logic, rely on unit and integration tests to cover business rules.
You shouldn’t need to test internal logic via UI tests.

• Use stable locators: Selectors like IDs and data attributes like data-testid are more stable
than CSS or XPath locators, which may change more frequently.

• Test in multiple browsers: Unless your website is only used within your organization and
it dictates the web browser used, it is important to run your tests across different browsers
to catch issues that may only appear in specific environments. You can use data about actu-
al visitors’ browsers to prioritize which browsers it is most important to support. Different
geographic regions can have very different browser usage. It’s best not to assume what your
website’s visitors prefer.

• Accessibility and usability testing: Automated tools can check for accessibility issues, but
manual review is still required for subjective aspects like usability. Ensure that the application
is navigable using a keyboard, that alt-text is provided for images, and that the contrast ratio
is sufficient for visually impaired users.

• Mock dependencies: If external services are causing problems for your UI tests, then isolate
the tests by using mock servers or stubs. Doing so will improve test reliability and speed.

• Parallelize tests: Use parallel execution to speed up the test suite, especially with cloud-based
solutions like BrowserStack or Sauce Labs, which support running tests on multiple devices
concurrently.

• Continuous integration (CI): Integrate UI tests into your CI pipeline so that they run automat-
ically on every code commit or pull request. This helps catch UI issues early and ensures that
tests are run consistently.

Web User Interface Testing Using Playwright228

• Handling test data: Make sure that test environments are reset between test runs to avoid pollut-
ed data. Also, ensure that the test data used reflects real-life scenarios so you catch edge cases.

The roles of developers and testers
The roles of developers and testers in web UI testing are distinct but complementary. They need to
work together to ensure that the user interface functions correctly, looks good, and provides a seam-
less experience.

Developers and web UI testing
Developers are primarily responsible for writing unit tests and integration tests that focus on the
code behind the UI. While these tests don’t test the UI directly, they ensure that the business logic and
underlying components work as expected.

• Unit tests: Developers write tests for individual components or pieces of logic in isolation. For
instance, a developer might test that a form validation function works correctly, independent
of how it’s displayed in the UI.

• Integration tests: Developers also write tests that check interactions between different com-
ponents or services, ensuring that data flows correctly from the backend to the UI.

In some teams, developers contribute directly to UI testing by writing automated scripts that simulate
user interactions with the UI.

Developers typically focus on writing scripts that perform key user flows like login, form submission,
or navigating between pages. Developers ensure that UI tests are part of the CI pipeline. Developers
also refactor tests when the UI changes or by adding new test cases when new features are introduced.

To make the UI easier to test, developers can create stable CSS selectors, IDs, or custom attributes
like adding a data-testid attribute for elements. This helps testers or automated test scripts locate
elements more reliably, especially when UI designs change.

Developers may also add test hooks or specific test-friendly functionality to allow easier automation.
For instance, they might expose certain states or data specifically for testing purposes.

Developers need to work closely with testers to understand edge cases and user behaviors that need to
be tested. Developers need to quickly fix any bugs or issues found during testing and deploy patches
or improvements based on test feedback.

Developers are responsible for debugging UI defects found during testing. When a tester finds an issue,
like a button not responding, alignment issues, or functionality that breaks on certain browsers, then
the developer investigates the root cause. This could be a frontend code issue involving HTML, CSS,
and JavaScript, a backend data issue, or an integration problem.

Chapter 7 229

Testers and web UI testing
Testers play a role in manual testing by interacting directly with the web application as an end user
would. They focus on:

• Usability: Ensuring the UI is intuitive and user-friendly.
• Functionality: Verifying that all UI elements like buttons, forms, and links behave as expected.
• Cross-browser and cross-device compatibility: Manually checking that the application works

across different browsers, like Chrome, Firefox, Edge, and Safari, and across devices, like
desktops, tablets, and phones.

• Visual testing: Ensuring the layout, fonts, colors, and overall design are consistent with the
design specifications.

Testers may use exploratory testing techniques to find edge cases or unexpected behavior that auto-
mated scripts might not catch. Experience really matters with manual testing so hire the best.

Testers also write and maintain automated UI tests. They usually focus on automating critical user
flows like login, checkout, and form submissions to ensure these workflows work with each release.
They often manage regression testing by running automated tests to ensure that changes or new
features don’t break existing functionality.

Even when they don’t write the scripts themselves, testers have primary responsibility for designing
test cases based on:

• User stories or requirements: Ensuring that each piece of functionality works as intended.
• Common user scenarios: Focusing on what real users will do on the platform, ensuring that

typical and edge-case flows work as expected.
• Negative testing: Testers often try to break the system with unexpected inputs, such as enter-

ing invalid data or trying to perform actions that should be restricted, like submitting a form
with missing fields.

Testers evaluate the accessibility of the web UI, ensuring that it meets WCAG. For example, testers will:

• Check whether the application is navigable using just the keyboard (without a mouse).
• Ensure that screen readers can interpret the content.
• Verify contrast ratios, color choices, and font sizes to ensure that the UI is usable by people

with visual impairments.

Automated tools like Axe or WAVE can be used for basic accessibility checks, but manual review is
often necessary to evaluate usability from an accessibility perspective.

Testers document and communicate defects found during both manual and automated testing. Their
bug reports need to be clear and reproducible by providing enough information for developers to
reproduce the issue. They also need to indicate whether the bug is a critical failure, a minor glitch, or
something in between, to help developers focus on the most pressing issues first.

Web User Interface Testing Using Playwright230

Collaboration between developers and testers
Of course, developers and testers need to work closely together. Developers and testers need strong
communication, especially during the development lifecycle, to ensure that features are fully tested
and that bugs are addressed efficiently.

Both developers and testers should collaborate to set up a robust CI/CD pipeline where automated
tests run on every code change, providing quick feedback and ensuring a stable UI. In Agile teams,
developers and testers work in close-knit sprints, where testers validate features as soon as they are
developed, and both roles participate in sprint planning, daily standups, and retrospectives.

By dividing responsibilities in this way, developers and testers can work together to build and main-
tain a high-quality web UI that is functional, responsive, and user-friendly across all environments
and devices.

Real-life applications of web user interface testing
Web UI testing has proven to be vital in various real-life scenarios across industries, preventing software
defects and enhancing user experiences. The following examples illustrate how UI testing ensures
the reliability, usability, and overall quality of web applications.

E-commerce websites: preventing cart and checkout failures
UI testing can simulate a user’s shopping experience from product selection to payment, ensuring
that forms are correctly submitted, payments are processed, and orders are confirmed. Automated
UI tests catch errors in the checkout form or payment integration early, preventing loss of revenue
due to broken transactions. Visual regression testing can also ensure that product images, buttons,
and banners display correctly, maintaining trust in the brand.

Companies like Amazon and Walmart use automated UI testing for complex scenarios involving
dynamic content, promotions, multiple payment gateways, and global users. Missing a bug in these
areas could cause millions of dollars in lost revenue or damage user trust.

Financial applications: ensuring data integrity and accuracy
UI testing ensures that all forms accept the correct input, calculations are accurate, and reports gen-
erated match expected outcomes. It can also test responsiveness, ensuring that critical financial data
appears correctly on different screen sizes and browsers. Testing user inputs, error messages, and
data display can prevent financial applications from producing inaccurate results, which could lead
to serious trust issues or even regulatory penalties.

Companies like Intuit (the makers of TurboTax and QuickBooks) rely on extensive UI testing to ensure
users can input financial data correctly and that their dashboards display the correct information. A
UI bug in such tools could lead to wrong tax calculations or financial decisions.

Chapter 7 231

Healthcare portals: guaranteeing user and data safety
Automated UI tests can simulate user actions like booking appointments, filling in medical forms, and
reviewing personal records. UI testing ensures the app functions correctly, and visual tests can ensure
that sensitive medical data is displayed securely and properly across browsers. Catching booking
bugs before release prevents patient frustration and reduces the need for manual corrections. Secure
and stable UI testing can also help healthcare portals comply with HIPAA or other data protection
regulations.

Platforms like Epic Systems or MyChart must perform extensive UI and functional testing, as errors
could not only affect appointment scheduling but also patient privacy and compliance with health-
care regulations. A simple UI failure could expose sensitive medical data, leading to lawsuits or fines.

Banking applications: avoiding security and transaction errors
UI tests simulate core banking actions such as logging in, viewing account balances, transferring money,
and paying bills. Cross-browser and cross-device testing are essential to ensure these actions work
flawlessly across different user environments. Regular UI testing catches issues that could prevent
users from accessing their accounts or completing essential tasks, thereby avoiding costly support
interventions and frustrated customers.

Banks like Chase or Wells Fargo need robust UI testing because any downtime or malfunction in essen-
tial features like transfers or bill payments can damage trust and result in financial and reputational
loss. Additionally, security-related UI elements (such as password fields and two-factor authentication)
must function properly to avoid security vulnerabilities.

Government and public sector: ensuring accessibility compliance
Government websites are often required to meet accessibility standards, such as WCAG 2.1. UI testing
that incorporates accessibility checks ensures the website is usable by people with various disabilities.
By catching accessibility issues during testing, the organization avoids potential lawsuits and fines
while ensuring the service is accessible to all citizens.

Websites like IRS.gov and gov.uk must go through extensive UI and accessibility testing to ensure that
people of all abilities can navigate their services. Governments are often legally bound to ensure that
services are usable for people with disabilities, and testing helps prevent non-compliance.

SaaS platforms: preventing downtime and data loss
UI testing verifies that critical user actions such as saving, editing, and deleting data work as intended.
It can simulate complex user workflows that include data inputs, modifications, and integrations with
third-party APIs. UI testing prevents breaking changes from reaching production, avoiding costly
incidents where users might lose data or be unable to access key features.

Salesforce and HubSpot depend heavily on automated UI testing to ensure that their complex dash-
boards function correctly and that integrations with third-party tools work without issues. Any UI
malfunction could disrupt entire sales teams or customer service operations, leading to client dis-
satisfaction.

Web User Interface Testing Using Playwright232

Travel and booking platforms: ensuring smooth transactions
UI testing validates dynamic features such as calendars, maps, and real-time availability checks.
Cross-device testing ensures that the booking process works smoothly on both desktop and mobile
interfaces. By catching UI issues early, the platform prevents customers from abandoning their book-
ings due to frustrating interactions or display problems.

Companies like Expedia and Airbnb depend on thorough UI testing to ensure their booking and search
interfaces are fast, responsive, and work across multiple devices and browsers. Any defect could lead
to user frustration and result in lost revenue.

Now that you’ve been introduced to the important concepts and real-world benefits of thorough web
UI testing, let’s see some practical examples of how to test web user interfaces using Playwright.

Testing web user interfaces using Playwright
Playwright is an open source framework for the automated testing of websites and web apps across
various browsers. Playwright was developed by Microsoft and is maintained as an open source project.
The development of Playwright is primarily driven by Microsoft engineers, many of whom previously
worked on Puppeteer, a similar web testing tool developed by Google.

Playwright is hosted on GitHub under the Microsoft organization, which actively maintains it and
releases updates. The GitHub link is as follows: https://github.com/microsoft/playwright.

While it’s an open source project and contributions can come from the wider community, the core
direction and development are controlled by Microsoft. Playwright is a part of Microsoft’s broader
strategy to improve developer tools, especially for testing modern web applications.

What can Playwright do?
Playwright enables developers and testers to write scripts that simulate user interactions with web
pages. These interactions can include anything from navigating pages, filling out forms, and clicking
buttons to more complex scenarios like handling single-page applications, web components, and
even file downloads and uploads.

The most popular browsers to test with are WebKit, Firefox, Google Chrome, Microsoft Edge, and other
Chromium-based browsers. Playwright uses open source Chromium builds. The Chromium project is
ahead of the branded browsers, so when the latest branded release is Google Chrome N, Playwright
already supports Chromium N+1, which will be released in branded browsers a few weeks later.

Playwright’s Firefox version uses the most recent Firefox stable build. Playwright’s WebKit version uses
the most recent WebKit trunk build before it is used in Apple Safari and other WebKit-based browsers.
Playwright doesn’t work with the branded version of Firefox or Safari since they rely on patches.

Playwright can operate against branded browsers available on your computer. In particular, the cur-
rent Playwright version will support the stable and Beta channels of these browsers – for example, to
configure Microsoft Edge, as shown in the following markup:

https://github.com/microsoft/playwright

Chapter 7 233

<?xml version="1.0" encoding="utf-8"?>
<RunSettings>
 <Playwright>
 <BrowserName>chromium</BrowserName>
 <LaunchOptions>
 <Channel>msedge</Channel>
 </LaunchOptions>
 </Playwright>
</RunSettings>

To ensure that Playwright can recognize this configuration, you should place this file in the root folder
of your test project (the same directory as your test project file, like .csproj for .NET projects) or in
a dedicated folder for test settings. Typically, this file should be named something like Playwright.
runsettings or test.runsettings.

If you’re running tests via the command line, you can specify the run settings as shown in the follow-
ing command:

dotnet test --settings Playwright.runsettings

When running a test project, you can then specify the browser and channel, as shown in the following
command:

dotnet test -- Playwright.BrowserName=chromium Playwright.LaunchOptions.
Channel=msedge

Different browsers can render web pages differently due to variations in their underlying engines. By
specifying the browser, developers can ensure that their applications work correctly across multiple
browsers. This helps in catching browser-specific issues early in the development process. Specifying
the channel is particularly useful for ensuring compatibility with the latest browser features or with
certain versions that users might still be using.

Some bugs may only appear in certain browsers or channels. By explicitly specifying these in tests,
developers can catch and address browser-specific bugs, enhancing the overall reliability and user
experience of the web application.

You can run Playwright tests against multiple browsers at once. You can specify multiple browsers
using command-line arguments, although this approach is less common than using a configuration
file. By default, Playwright runs tests in parallel. When configured to run against multiple browsers,
it will parallelize the tests across those browsers as well. This can significantly speed up the testing
process and provide comprehensive coverage quickly.

Playwright has specific packages that integrate with NUnit and MSTest. For other testing systems,
like xUnit, or if you just want to write tests in a console app, then you can just reference the main
Playwright package, as we will do in the step-by-step task for this chapter.

Web User Interface Testing Using Playwright234

Benefits for .NET developers
For .NET developers, Playwright offers a comprehensive set of benefits that can streamline the devel-
opment and testing processes, including those shown in the following list:

• Cross-browser support: Playwright supports testing across all modern browsers, including
Chrome, Firefox, Safari, and Edge. This is particularly beneficial for ensuring application
compatibility and performance across different user environments without having to manually
test each browser.

• Rich set of APIs: Playwright provides a rich set of APIs for automating web interactions, includ-
ing support for modern web features like web components, shadow DOM, and asynchronous
operations. This allows for more sophisticated and accurate tests that closely mimic real user
behavior.

• Speed and reliability: Playwright tests are designed to be fast and reliable. Its architecture
minimizes flakiness and improves test stability, which is crucial for agile development and
fast iteration cycles.

• Headless mode: Playwright can run browsers in headless mode, meaning the browser is in-
visible, which is faster and uses less memory than a full browser UI, making it ideal for auto-
mated test pipelines and CI systems. While Selenium supports headless mode, Playwright’s
implementation is more optimized, resulting in faster execution times.

• Parallel test execution: Playwright supports running tests in parallel, significantly reducing
the time required to execute extensive test suites. This feature is incredibly beneficial in a CI/
CD environment, where speed and efficiency are paramount.

Alternatives to Playwright
There are several alternatives to Playwright that .NET developers might consider, including the two
main competitors shown in the following list:

• Selenium: One of the most well-known and widely used tools for web application testing, Sele-
nium offers a mature ecosystem and extensive browser support. However, it may be slower and
less efficient than Playwright in some scenarios, especially with modern web applications. For
example, Playwright automatically waits for elements to be ready before performing actions
on them. This reduces flakiness and the need for explicit waits or sleep commands, which
are more common in Selenium scripts and can slow down test execution. Parallelization is
more sophisticated in Playwright compared to Selenium, which tends to be slower due to its
architecture and the overhead of the WebDriver protocol.

The Playwright website and documentation can be found at the following link: https://
playwright.dev/dotnet/.

https://playwright.dev/dotnet/
https://playwright.dev/dotnet/

Chapter 7 235

Single-page applications rely heavily on JavaScript for rendering content dynamically; Play-
wright can interact with these apps more seamlessly because it was designed to work with
modern JavaScript frameworks and handle the complexity of client-side navigation better than
Selenium. Selenium requires different WebDriver implementations for each browser, adding
complexity and potential inconsistency. You can view the Selenium developer website at the
following link: https://www.selenium.dev/.

• Puppeteer: Developed by the Chrome DevTools team, Puppeteer is another popular choice for
browser automation, primarily focused on Chrome and Chromium-based browsers. While it
offers a similar feature set to Playwright, it lacks native support for other browsers like Fire-
fox and Safari. You can view the Puppeteer developer website at the following link: https://
pptr.dev/.

Both of these tools have their strengths and weaknesses, and the best choice depends on the specific
needs of your project, including the browsers you need to support, the complexity of your web appli-
cation, and your development environment.

The biggest benefit of Selenium over Playwright is its mature ecosystem and extensive community
support. Selenium has been around since 2004, making it one of the oldest and most widely adopted
web automation tools. This long history means it has a well-established ecosystem, with extensive
documentation, numerous tutorials, and a vast array of third-party tools and integrations.

Playwright, with its comprehensive browser support and .NET integration, represents a compelling
option for .NET developers looking for a modern and efficient way to automate their web application
testing.

The next few sections contain reference tables for the common types, and the common testing and
locating methods provided by Playwright when writing UI tests. I recommend scanning the informa-
tion to get a brief idea of what’s available, and then move on to the next section where you will see
some practical code examples. That’s when the information in the tables will make more sense and
you can return to them as a reference.

Common Playwright testing types
Playwright provides some useful types to test the user interface of a website. Some of the most com-
mon are described in Table 7.1 and you will use all of them in the coding tasks later in this chapter:

Type Description
IPlaywright Represents the Playwright system. Has properties like Chromium,

Firefox, and Webkit that represent browsers, and properties like
Selectors that configure how you can select elements on a web page
to automate testing.

IBrowser Represents a web browser. Has properties like Contexts, IsConnected,
BrowserType, and Version. Has methods like NewContextAsync and
NewPageAsync.

https://www.selenium.dev/
https://pptr.dev/
https://pptr.dev/

Web User Interface Testing Using Playwright236

IBrowserContext Represents a browser session. A good practice is to create a browser
context and then create a page within that context. Cookies and
cached objects are not shared between contexts. Has properties
like APIRequest and Pages. Has methods like NewPageAsync,
AddCookiesAsync, CookiesAsync, and StorageStateAsync. The
methods SetGeolocationAsync and SetOfflineAsync can be used to
simulate those features.

IResponse Represents an HTTP response from the web server. Has properties like
Headers, Ok, Status, and StatusText. Has methods like BodyAsync,
JsonAsync, and TextAsync to get the body of the response.

IPage Represents a web page. Each page belongs to a browser context, aka
session, and shares its cookies and cache.

ILocator Represents one or more HTML elements within a web page.

Table 7.1: Common Playwright testing types

For example, to write a web UI test to perform the following actions:

1. Create an instance of Playwright.
2. Launch the Chromium browser.
3. Create a new browser session.
4. Create a new page.
5. Navigate to your locally hosted website’s home page.
6. Get an element on the page using its data-testid attribute value.

You would write statements to automate Playwright types as shown in the following code:

using IPlaywright? playwright = await Playwright.CreateAsync();
IBrowser browser = await playwright.Chromium.LaunchAsync();
IBrowserContext session = await browser.NewContextAsync();
IPage page = await session.NewPageAsync();
IResponse response = await page.GotoAsync("https://localhost:5021/");
// Could check response.Ok or response.Status.
ILocator element = page.GetByTestId("visitor_count");

Common Playwright testing methods
Playwright provides some useful methods to automate and test a web page represented by an IPage
instance, as described in Table 7.2:

IPage method Description

GotoAsync,
GoBackAsync,
GotForwardAsync

Navigates to the specified resource or navigates back and forward.
Returns an IResponse instance. You saw a call to GotoAsync in the
preceding code example.

Chapter 7 237

ContentAsync Gets the full HTML content of the page.
TitleAsync Gets the page title.

Table 7.2: Common Playwright page automation methods

Common Playwright locator methods
Playwright provides some useful methods to get one or more elements on a web page, and they all
return an ILocator instance, as described in Table 7.3:

Method Description
GetByRole Match elements based on accessibility role. Specify the role and addi-

tional values, as shown in the following code: GetByRole(AriaRole.
Heading, new() { Name = "Sign up" })). These roles and
values select the following element: <h3>Sign up</h3>, or
GetByRole(AriaRole.Button, new() { Name = "Sign in" }).
This element will in turn select the following element: <button>Sign
in</button>.

GetByLabel Use to fill input fields in a form. For example,
GetByLabel("Password").FillAsync("secret") would fill the
following element: <label>Password <input type="password"
/></label>.

GetByPlaceholder Also useful to fill input fields in a form. For exam-
ple, GetByPlaceholder("name@example.com").
FillAsync("playwright@microsoft.com") would fill the following
element: <input type="email" placeholder="name@example.
com" />.

GetByTestId Test IDs are specified by adding the data-testid attribute to an ele-
ment. You saw a call to GetByTestId in the preceding code example.

GetByText Find an element by the text it contains, like <div>, , <p>, and
so on.

GetByTitle Locate an element with a matching title attribute. For example, use
GetByTitle("Unread messages") to locate <span title='Unread
messages'>3.

GetByAltText You can locate an image based on the text alternative. For example,
GetByAltText("playwright logo") would find the following im-
age: <img alt="playwright logo" src="/img/playwright-logo.
svg" width="100" />.

Locator Return an ILocator instance that matches the specified CSS or XPath
selector specified using css= or xpath=, although these prefixes are
optional. This should be avoided in favor of one of the GetBy... meth-
ods. CSS and XPath selectors are less resilient to changes.

Web User Interface Testing Using Playwright238

And, Or Combine multiple locators into a Boolean matching expression.

First, Last, Nth Return the first, last, or nth element when there are multiple match-
es. But avoid these methods because, when your page changes in the
future, Playwright may click on an element you did not intend.

Table 7.3: Common Playwright locator methods

Common Playwright locator automation methods
Playwright provides some useful methods for testing part of a page using an ILocator instance, and
most will throw an exception if more than one element is matched by the locator, as described in
Table 7.4:

ILocator method Description

CheckAsync, UncheckAsync Selects or clears a check box or a radio button.
SelectOptionAsync Selects an option in a list box.
ClickAsync Clicks a button or other element.
DblClickAsync Double-clicks a button or other element.
FillAsync Fills an input element like a text box.
FocusAsync Sets the focus to an element.
HoverAsync Hovers the mouse pointer over an element.
PressAsync Presses a key in the element.
PressSequentiallyAsync Presses a sequence of keys in the element.
ScreenshotAsync Takes a screenshot of the element.
ScrollIntoViewIfNeededAsync Scrolls the view port to show the element.
SelectTextAsync Selects text within an element.
TapAsync Taps on an element.

Table 7.4: Common Playwright locator automation methods

Good Practice

Use role locators to locate elements as much as possible because it is the closest way to
how users and assistive technology perceive the page.

Warning!

All operations on locators that imply a single DOM element will throw an exception if more
than one element matches. For example, if you have a locator that matches all buttons
and call ClickAsync, then an exception is thrown.

Chapter 7 239

Testing common scenarios
Playwright enables a wide range of automated testing scenarios, from basic navigations to complex
user interactions and validations.

In this first step-by-step task, we will walk through some key pages and functionality that we will then
test later.

Let’s get started:

1. Start the Northwind.Mvc project using the https profile without debugging.
2. If a browser is not started automatically, then start your preferred browser, navigate to https://

localhost:5021/, and scroll down the home page to show the visitor count and products, as
shown in Figure 7.1:

Figure 7.1: Northwind.Mvc home page showing visitors and products

3. Right-click in the middle of the page, select View page source, and note the <title> element
in <head>, as shown highlighted in the following markup:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0"
/>
 <title>Home Page - Northwind.Mvc</title>
...

More Information

You can learn more about locators at the following link: https://playwright.dev/
dotnet/docs/locators.

https://localhost:5021/
https://localhost:5021/
https://playwright.dev/dotnet/docs/locators
https://playwright.dev/dotnet/docs/locators

Web User Interface Testing Using Playwright240

4. Close the page source tab.
5. Right-click in the middle of the visitor count, select Inspect, and note the <p> for showing the

number of visitors, as shown highlighted in the following markup and in Figure 7.2:

<div class="col-md-12">
 <h1>Northwind</h1>
 <p class="lead">We have had 847 visitors this month.</p>
</div>

Figure 7.2: Inspecting a visitor count

6. Scroll up to the Query products by price section above the category photos, right-click the
input box, select Inspect, and note the two <input> elements in the <form> element, as shown
in the following markup and in Figure 7.3:

<h3>Query products by price</h3>
<form method="GET" action="/Home/ProductsThatCostMoreThan">
 <input name="price" placeholder="Enter a product price" />
 <input type="submit" />
</form>

Figure 7.3: Inspecting the form to filter products by price

Chapter 7 241

7. Close the browser’s inspection pane.
8. At the top of the home page, in the navigation menu, click Login.
9. Right-click the Email label, select Inspect, and note the two labels, two inputs, and the button

to log in, as shown in the following markup and in Figure 7.4:

<form id="account" method="post" novalidate="novalidate">
 <h2>Use a local account to log in.</h2>
 <hr>
 <div class="form-floating mb-3">
 <input class="form-control valid" autocomplete="username" aria-
required="true" placeholder="name@example.com" type="email" data-
val="true" data-val-email="The Email field is not a valid e-mail
address." data-val-required="The Email field is required." id="Input_
Email" name="Input.Email" value="" aria-describedby="Input_Email-error"
aria-invalid="false">
 <label class="form-label" for="Input_Email">Email</label>
 <span class="text-danger field-validation-valid" data-valmsg-
for="Input.Email" data-valmsg-replace="true">
 </div>
 <div class="form-floating mb-3">
 <input class="form-control valid" autocomplete="current-password"
aria-required="true" placeholder="password" type="password" data-
val="true" data-val-required="The Password field is required." id="Input_
Password" name="Input.Password" aria-describedby="Input_Password-error"
aria-invalid="false">
 <label class="form-label" for="Input_Password">Password</label>
 <span class="text-danger field-validation-valid" data-valmsg-
for="Input.Password" data-valmsg-replace="true">
 </div>
 ...
 <button id="login-submit" type="submit" class="w-100 btn btn-lg btn-
primary">Log in</button>

Good Practice

Elements that we might want to automate, like the <input> text box, should have a
data-testid attribute set to a unique value. If you have no control over the mark-
up, then you can use less optimal techniques to find and automate page elements.

Web User Interface Testing Using Playwright242

Figure 7.4: Inspecting the login form

10. Close the browser and shut down the web server. You can do this at the command prompt or
terminal by pressing Ctrl + C.

Let’s review some common examples of tests that developers often automate using Playwright, starting
with basic website navigation.

Page navigation and title verification
A fundamental test case is to navigate to a web page and verify its title to ensure the correct page is
loaded. To do this, we will use all the types in Table 7.1 and some of the methods like TitleAsync in
Table 7.2. This test can be used as a smoke test for website availability and correct routing.

Let’s go:

1. Use your preferred code editor to add a new xUnit Test Project [C#] / xunit project named
Northwind.WebUITests to the MatureWeb solution. For example, at the command prompt or
terminal in the MatureWeb folder, enter the following commands:

dotnet new xunit -o Northwind.WebUITests
dotnet sln add Northwind.WebUITests

2. In the Northwind.WebUITests.csproj project file, remove the version numbers from all pack-
age references and add a reference to the Playwright package, as shown highlighted in the
following markup:

<ItemGroup>
 <PackageReference Include="coverlet.collector" />
 <PackageReference Include="Microsoft.NET.Test.Sdk" />

Chapter 7 243

 <PackageReference Include="xunit" />
 <PackageReference Include="xunit.runner.visualstudio" />
 <PackageReference Include="Microsoft.Playwright" />
</ItemGroup>

3. Build the Northwind.WebUITests project to restore packages.
4. Navigate to Northwind.WebUITests\bin\Debug\net9.0 and, at the command prompt or ter-

minal, install browsers for Playwright to automate, as shown in the following command:

pwsh playwright.ps1 install

5. Note that Playwright downloads its own copies of Chrome, Firefox, and WebKit, as shown in
the following output:

Downloading Chromium 125.0.6422.26 (playwright build v1117) from https://
playwright.azureedge.net/builds/chromium/1117/chromium-win64.zip
136.2 MiB [====================] 100% 0.0s
Chromium 125.0.6422.26 (playwright build v1117) downloaded to C:\Users\
markj\AppData\Local\ms-playwright\chromium-1117
Downloading FFMPEG playwright build v1009 from https://playwright.
azureedge.net/builds/ffmpeg/1009/ffmpeg-win64.zip
1.4 MiB [====================] 100% 0.0s
FFMPEG playwright build v1009 downloaded to C:\Users\markj\AppData\Local\
ms-playwright\ffmpeg-1009
Downloading Firefox 125.0.1 (playwright build v1449) from https://
playwright.azureedge.net/builds/firefox/1449/firefox-win64.zip
84.8 MiB [====================] 100% 0.0s
Firefox 125.0.1 (playwright build v1449) downloaded to C:\Users\markj\
AppData\Local\ms-playwright\firefox-1449
Downloading Webkit 17.4 (playwright build v2003) from https://playwright.
azureedge.net/builds/webkit/2003/webkit-win64.zip
48.5 MiB [====================] 100% 0.0s
Webkit 17.4 (playwright build v2003) downloaded to C:\Users\markj\
AppData\Local\ms-playwright\webkit-2003

You can check the latest version at the following link: https://www.nuget.org/
packages/Microsoft.Playwright.

Playwright needs special versions of browser binaries to operate. You must use
the Playwright PowerShell script to install these browsers. If you have issues, you
can learn more at the following link: https://playwright.dev/dotnet/docs/
browsers.

https://www.nuget.org/packages/Microsoft.Playwright
https://www.nuget.org/packages/Microsoft.Playwright
https://playwright.dev/dotnet/docs/browsers
https://playwright.dev/dotnet/docs/browsers

Web User Interface Testing Using Playwright244

6. In the Northwind.WebUITests project, rename UnitTest1.cs to MvcWebUITests.cs.
7. In MvcWebUITests.cs, define a class with a factory method to set up Playwright to use Chro-

mium, and a test method that will confirm that the home page is returned successfully (the
page is not null and the request for it returned a 200 OK status code), then check that the title
of the home page is the text that we expect, and finally, ask Playwright to take a screenshot
and save it to the desktop so that we can see the home page as it appeared during the test, as
shown in the following code:

using Microsoft.Playwright; // To use Playwright, IBrowser, and so on.

namespace Northwind.WebUITests;

public class MvcWebUITests
{
 private IBrowser? _browser;
 private IBrowserContext? _session;
 private IPage? _page;
 private IResponse? _response;

 private async Task GotoHomePage(IPlaywright playwright)
 {
 _browser = await playwright.Chromium.LaunchAsync(
 new BrowserTypeLaunchOptions { Headless = false });

 _session = await _browser.NewContextAsync();
 _page = await _session.NewPageAsync();
 _response = await _page.GotoAsync("https://localhost:5021/");
 }

 [Fact]
 public async Task HomePage_Title()
 {
 // Arrange: Launch Chrome browser and navigate to home page.
 // using to make sure Dispose is called at the end of the test.
 using IPlaywright? playwright = await Playwright.CreateAsync();

If you do not run this script, then when you try to run Playwright tests, they will fail,
and you will see the following message in the test output: Looks like Playwright
was just installed or updated. Please run the following command to download
new browsers: pwsh bin/Debug/netX/playwright.ps1 install.

Chapter 7 245

 await GotoHomePage(playwright);

 if (_page is null)
 {
 throw new NullReferenceException("Home page not found.");
 }

 string actualTitle = await _page.TitleAsync();

 // Assert: Navigating to home page worked and its title is as
expected.
 string expectedTitle = "Home Page - Northwind.Mvc";
 Assert.NotNull(_response);
 Assert.True(_response.Ok);
 Assert.Equal(expectedTitle, actualTitle);

 // Universal sortable ("u") format: 2009-06-15 13:45:30Z
 // : and spaces will cause problems in a filename
 // so replace them with dashes.
 string timestamp = DateTime.Now.ToString("u")
 .Replace(":", "-").Replace(" ", "-");

 await _page.ScreenshotAsync(new PageScreenshotOptions
 {
 Path = Path.Combine(Environment.GetFolderPath(
 Environment.SpecialFolder.Desktop),
 $"homepage-{timestamp}.png")
 });
 }
}

8. Start the Northwind.Mvc project using the https profile without debugging.
9. Navigate to Test | Run All Tests to run the test and note the result is that it passes. You will note

that the Chrome browser briefly appears on your screen.
10. On your desktop, open the image and confirm that it is a screenshot of the home page.

Good Practice: Instead of a test method decorated with [Fact], in a real-life test,
you could make the method parameterized and decorate it with [Theory] so that
you can run the test multiple times with different parameter values for different
pages and titles (and even browsers).

Web User Interface Testing Using Playwright246

11. In MvcWebUITests.cs, in the GotoHomePage method, change the browser to Headless, as shown
highlighted in the following code:

browser = await playwright.Chromium.LaunchAsync(
 new BrowserTypeLaunchOptions { Headless = true });

12. Run the test again and note the result is that it passes. This time, the browser does not appear
and the test executes faster.

Now let’s try some more complex examples.

Interacting with a web user interface
Common web user interface interactions include selecting items from dropdown lists, clicking ele-
ments like buttons and icons, filling in and submitting forms, and validating that elements contain
specific text or are visible to the visitor.

Filling input boxes and clicking elements
A good practice is to add the data-testid attribute with a unique value to identify elements on a page
that will participate in UI tests.

The Northwind MVC website home page shows a visitor count, and it allows the visitor to filter the
products by entering a number and clicking a button. Let’s use the GetByTestId method in Table 7.3
to automate this. We will start by adding a data-testid attribute to the elements we want to locate:

1. In the Northwind.Mvc project, in the Views\Home folder, in Index.cshtml, wrap the visitor
count in a element with a unique attribute, as shown in the following markup:

We have had @Model?.VisitorCount
visitors this month.

2. In Index.cshtml, in the <form> for filtering products, add unique attributes to the input box
for the price and the submit button, as shown in the following markup:

<form asp-action="ProductsThatCostMoreThan" method="GET">
 <input name="price" placeholder="Enter a product price"
 data-testid="price" />
 <input type="submit" data-testid="submit_price" />
</form>

You could also just call the LaunchAsync method without passing a
BrowserTypeLaunchOptions object because Headless defaults to true.

Chapter 7 247

3. In MvcWebUITests.cs, statically import the Assertions class so that we can use its Expect
method, as shown in the following code:

using static Microsoft.Playwright.Assertions; // To use Expect.

4. In MvcWebUITests.cs, add a test to check that the visitor count is an integer and is visible to
the visitor, as shown in the following code:

[Fact]
public async Task HomePage_VisitorCount()
{
 // Arrange: Launch Chrome browser and navigate to home page.
 using IPlaywright? playwright = await Playwright.CreateAsync();
 await GotoHomePage(playwright);

 // The best way to select the element is to use its data-testid.
 ILocator? element = _page?.GetByTestId("visitor_count");

 string? countText = null;
 if (element is not null)
 {
 // The text content might contain whitespace like \n so
 // we must trim that away.
 countText = (await element.TextContentAsync())?.Trim();
 }

 bool isInteger = int.TryParse(countText, out int count);

 // Assert: Visitor count is as expected.
 Assert.True(isInteger);
 Assert.True(count >= 1 && count <= 1000);
 await Expect(element).ToBeVisibleAsync();
}

5. In MvcWebUITests.cs, add a test to check that the filtering products feature works correctly,
as shown in the following code:

[Fact]
public async Task HomePage_FilterProducts()
{
 // Arrange: Launch Chrome browser and navigate to home page.
 using IPlaywright? playwright = await Playwright.CreateAsync();

Web User Interface Testing Using Playwright248

 await GotoHomePage(playwright);

 if (_page is null)
 {
 throw new NullReferenceException("Home page not found.");
 }

 // Set the price input box to 60.
 ILocator price = _page.GetByTestId("price");
 await price.FillAsync("60");

 // Click the submit button to apply the filter.
 ILocator submit = _page.GetByTestId("submit_price");
 await submit.ClickAsync();

 string actualTitle = await _page.TitleAsync();

 // Assert: Navigating to products page worked.
 string expectedTitle = "Products That Cost More Than $60.00 -
Northwind.Mvc";
 Assert.NotNull(_response);
 Assert.True(_response.Ok);
 Assert.Equal(expectedTitle, actualTitle);

 string timestamp = DateTime.Now.ToString("u")
 .Replace(":", "-").Replace(" ", "-");

 await _page.ScreenshotAsync(new PageScreenshotOptions
 {
 Path = Path.Combine(Environment.GetFolderPath(
 Environment.SpecialFolder.Desktop),
 $"products-60-{timestamp}.png")
 });
}

6. If necessary, in the MatureWeb solution, start the Northwind.Mvc project using the https profile
without debugging.

7. In Test Explorer, right-click Northwind.WebUITests and select Run, or press Ctrl + R, T, (or run
all tests), and note that they all succeed and the screenshot shows the five matching products
correctly, as shown in Figure 7.5:

Chapter 7 249

Figure 7.5: Screenshot of filtered products taken by Playwright

Form submission, authentication, and validation
Automating form submissions and validating the responses or resulting actions is a common scenario
for testing web applications. Playwright can fill out forms, click submit buttons, and verify whether
the submission leads to the expected outcome, such as a thank you page, a validation error, or the
creation of a new database record.

Testing user authentication flows, including login and logout functionality, is another common use
case. Playwright can simulate a user logging in to an application, perform actions as an authenticated
user, and then log out, as shown in the following code:

// Navigate to log in page.
await page.GotoAsync("https://example.com/login");
await page.FillAsync("input#username", "dummyuser");
await page.FillAsync("input#password", "123456");
await page.ClickAsync("button#login");

// Verify login was successful by checking for a logout button
// and a welcome message.
bool isLoggedIn = await page.IsVisibleAsync("button#logout");
Assert.True(isLoggedIn);
string successMessage = await page.InnerTextAsync("div.success");
Assert.Equal("Welcome, Dummy!", successMessage);

// Perform actions as logged-in user and then logout
...
await page.ClickAsync("button#logout");

Responsive design testing
Testing your web user interfaces for how well they implement responsive design is important in
modern web development. Let’s review some common scenarios.

Web User Interface Testing Using Playwright250

Emulating screen sizes
With Playwright, you can test how your application behaves on different screen sizes, which is essen-
tial for ensuring a good user experience across devices, like making sure that an important section is
visible to mobile visitors, as shown in the following code:

await page.SetViewportSizeAsync(640, 480); // Set to a mobile view.
await page.GotoAsync("https://example.com");
bool isLoggedIn = await page.IsVisibleAsync("div#importantSection");
Assert.True(isLoggedIn);

You can set the view port back to desktop size, as shown in the following code:

await page.SetViewportSizeAsync(1920, 1080); // Set to a desktop view

Emulating devices
You can emulate specific devices when you create a browser context, as shown in the following code:

browser = await playwright.Chromium.LaunchAsync(
 new BrowserTypeLaunchOptions { Headless = false });
BrowserNewContextOptions iphone13 = playwright.Devices["iPhone 13"];
IBrowserContext context = await browser.NewContextAsync(iphone13);

Emulating locale, time zone, and geolocation
You can emulate the device locale and time zone, as shown in the following code:

BrowserNewContextOptions options = new()
{
 Locale = "de-DE", // Accept-Language header.
 TimezoneId = "Europe/Berlin"
};
IBrowserContext context = await browser.NewContextAsync(options);

You can grant geolocation permissions and set geolocation to a specific area, as shown in the following
code:

BrowserNewContextOptions options = new()
{
 Permissions = ["geolocation"],
 Geolocation = new() { Longitude = 41.890221F, Latitude = 12.492348F }

Valid time zones for Chromium are documented at the following link: https://source.
chromium.org/chromium/chromium/deps/icu.git/+/faee8bc70570192d82d2978a7
1e2a615788597d1:source/data/misc/metaZones.txt.

https://source.chromium.org/chromium/chromium/deps/icu.git/+/faee8bc70570192d82d2978a71e2a615788597d1:source/data/misc/metaZones.txt
https://source.chromium.org/chromium/chromium/deps/icu.git/+/faee8bc70570192d82d2978a71e2a615788597d1:source/data/misc/metaZones.txt
https://source.chromium.org/chromium/chromium/deps/icu.git/+/faee8bc70570192d82d2978a71e2a615788597d1:source/data/misc/metaZones.txt

Chapter 7 251

};
IBrowserContext context = await browser.NewContextAsync(options);

If you need to dynamically change the geolocation, then you can call a method, as shown in the fol-
lowing code:

await context.SetGeolocationAsync(new()
 { Longitude = 48.858455F, Latitude = 2.294474F });

Emulating dark mode and color schemes
You can emulate dark mode, as shown in the following code:

BrowserNewContextOptions options = new()
 { ColorScheme = ColorScheme.Dark };
IBrowserContext context = await browser.NewContextAsync(options);

If you need to dynamically change the color mode, then you can call a method on a page, as shown
in the following code:

await page.EmulateMediaAsync(new()
 { ColorScheme = ColorScheme.Dark });

Customizing the user agent, disabling JavaScript, and going offline
Not all clients are commonly used web browsers. For example, some are web crawlers and bots index-
ing the web or consuming web content to feed large language models (LLMs). Some browsers have
JavaScript disabled and this can severely affect many modern websites that rely on JavaScript. Many
parts of the world have unreliable internet connectivity so it is useful to test how your website would
behave during a disruption.

Playwright configuration options to simulate these scenarios include customizing the user agent,
disabling JavaScript, and going offline, as shown in the following code:

BrowserNewContextOptions options = new()
{
 UserAgent = "My User Agent",
 JavaScriptEnabled = false,
 Offline = true
};
IBrowserContext context = await browser.NewContextAsync(options);

More Information

You can learn more about emulation at the following link: https://playwright.dev/
dotnet/docs/emulation.

https://playwright.dev/dotnet/docs/emulation
https://playwright.dev/dotnet/docs/emulation

Web User Interface Testing Using Playwright252

Single-Page Applications (SPAs) and dynamic content
Playwright excels in handling complex web applications that use JavaScript heavily for dynamic con-
tent loading, SPAs, and AJAX calls. You can wait for elements to become visible or load, or for network
requests to complete before proceeding with tests, as shown in the following code:

await page.GotoAsync("https://example.com/spa");
await page.ClickAsync("button#loadData");

// Wait for data to load.
await page.WaitForSelectorAsync("div.dataLoaded");
string loadedData = await page.InnerTextAsync("div.dataLoaded");

Now let’s see how you can get Playwright to generate the testing code for you.

Generating tests with the Playwright Inspector
Code generation with Playwright for .NET is a super cool feature that can significantly speed up your
test automation workflow. Code generation is like having a personal assistant who watches over your
shoulder as you browse through your web application and automatically writes the test scripts for you.
In essence, it’s a way to automate the automation, which is meta in a good way.

The Playwright Inspector tool allows you to create comprehensive test scripts in a fraction of the time
it would take to write them manually. It captures user interactions with high precision, reducing the
chance of errors that can occur when writing tests by hand. Even if you’re new to test automation, you
can get started quickly. It’s also a great way to learn how Playwright structures its tests by examining
the generated code.

As you navigate through your application, Playwright records your actions, like clicks, text inputs, and
navigations, and then generates the corresponding C# test code in real time. Once you’re done, you
can stop the code generation tool, and it will output the generated script. You can then review this
code, make any necessary adjustments, and integrate it into your test suite.

After integrating the generated code into your project, you can run your tests using the Playwright
test runner, ensuring that your application behaves as expected across different browsers and devices.
The generated code is a great starting point, but don’t be afraid to refine and customize it to suit your
testing needs better.

Let’s see it in action:

1. If necessary, start the Northwind.Mvc project without debugging.
2. In the Northwind.WebUITests project folder, at the command prompt or terminal, enter this-

command to start the code generator:

pwsh bin/Debug/net9.0/playwright.ps1 codegen https://localhost:5021/

3. Note that two application windows will open, one for the special version of the Chromium
browser, which has a “Chrome” icon in shades of blue, and one for Playwright Inspector, which
has a pair of colorful actor masks, as shown in Figure 7.6:

Chapter 7 253

Figure 7.6: The Playwright Inspector and Chromium icons in the Windows taskbar

4. In the Chromium window, note that it has a floating toolbar with buttons for Record, Pick
locator, Assert visibility, Assert text, and Assert value, and when you move your mouse cursor
over an element on the page, like the price input box that applies a filter to products, it suggests
a locator to select that element, as shown in Figure 7.7:

Figure 7.7: Chromium with the Playwright Inspector toolbar

5. In the Playwright Inspector window, note the initial C# code to automate the browser test; in
the top-right corner is a dropdown list of targets that can be set to any of multiple languages
and testing frameworks like .NET C# - Library or NUnit, or Node.js - Test Runner, as shown
in Figure 7.8:

Figure 7.8: The Playwright Inspector showing initial C# code to automate the browser test

Web User Interface Testing Using Playwright254

6. Switch to the Chromium browser window.
7. Optionally, arrange the two application windows to be side by side and both visible so that you

can see the code written for you as you perform actions in the Chromium browser window.
8. On the website home page, in the top navigation, click Login and note that a new statement is

written for you to select, and then click that element, as shown in the following code:

await page.GetByRole(AriaRole.Link, new() { Name = "Login"
}).ClickAsync();

9. In the Email box, enter test@example.com.
10. In the Password box, enter Pa$$w0rd.
11. Click the Log in button.
12. On the home page, in the toolbar, click Assert text.
13. Click Hello test@example.com!.
14. In the Assert that element contains text popup window, note the value Hello test@example.

com!, and in the top-right corner, click the Accept tick icon to accept that text.
15. On the website home page, in the top navigation, click Logout.
16. On the toolbar, click the red Record button to stop recording.
17. In the Playwright Inspector window, note the code:

using Microsoft.Playwright;
using System;
using System.Threading.Tasks;

using var playwright = await Playwright.CreateAsync();
await using var browser = await playwright.Chromium.LaunchAsync(new
BrowserTypeLaunchOptions
{
 Headless = false,
});
var context = await browser.NewContextAsync();

var page = await context.NewPageAsync();
await page.GotoAsync("https://localhost:5021/");
await page.GetByRole(AriaRole.Button, new() { Name = "Log in"
}).ClickAsync();
await page.GetByPlaceholder("name@example.com").ClickAsync();

Warning!

When the Record button is red, you are recording. When the Record button is black,
you are not recording. The Playwright Inspector starts recording automatically.

Chapter 7 255

await page.GetByPlaceholder("name@example.com").FillAsync("test@example.
com");
await page.GetByPlaceholder("name@example.com").PressAsync("Tab");
await page.GetByPlaceholder("password").FillAsync("Pa$$w0rd");
await page.GetByRole(AriaRole.Button, new() { Name = "Log in"
}).ClickAsync();
await Expect(page.GetByRole(AriaRole.Navigation)).
ToContainTextAsync("Hello test@example.com!");
await page.GetByRole(AriaRole.Button, new() { Name = "Logout"
}).ClickAsync();

18. You would now copy and paste this code into your test project and edit it to remove unnecessary
statements like clicking on text boxes or pressing the Tab key, as shown in the following code:

// This statement is not needed.
await page.GetByPlaceholder("name@example.com").ClickAsync();

// This statement is not needed.
await page.GetByPlaceholder("name@example.com").PressAsync("Tab");

You can start the Playwright Inspector with emulation options like setting a view port size, as shown
in the following command:

pwsh bin/Debug/net9.0/playwright.ps1 codegen --viewport-size=800,600 https://
localhost:5021/

You could emulate a device, as shown in the following command:

pwsh bin/Debug/net9.0/playwright.ps1 codegen --device="iPhone 13" https://
localhost:5021/

Practicing and exploring
Test your knowledge and understanding by answering some questions, getting some hands-on practice,
and exploring the topics covered in this chapter with deeper research.

Note the assertion like await Expect(page.GetByRole(AriaRole.Navigation)).
ToContainTextAsync("Hello test@example.com!");.

More Information

Learn more about code generation with the Playwright Inspector at the following link:
https://playwright.dev/dotnet/docs/codegen.

https://playwright.dev/dotnet/docs/codegen

Web User Interface Testing Using Playwright256

Exercise 7.1 – Online-only material
You can read the official documentation for Playwright for .NET at the following link: https://
playwright.dev/dotnet/docs/intro.

The Playwright Community page has links to their Discord channel and other useful places like vid-
eos on conference talks, live streams, features and releases, and their YouTube channel: https://
playwright.dev/dotnet/community/welcome.

Search using the Playwright tag on Stack Overflow for commonly asked questions with good answers:
https://stackoverflow.com/tags/playwright.

For the second edition of this book, I am considering duplicating the coding tasks in this chapter but
using Selenium. If this would be valuable to you, please let me know on the Discord channel for this
book: https://packt.link/RWD9.

Exercise 7.2 – Practice exercises
If you are done with Playwright and you want to remove the special browsers (chromium, firefox,
and webkit) of the current Playwright installation, then run the Playwright PowerShell script with
the uninstall option, as shown in the following command:

pwsh bin/Debug/net9.0/playwright.ps1 uninstall

To remove browsers of other Playwright installations as well, add the --all switch, as shown in the
following command:

pwsh bin/Debug/net9.0/playwright.ps1 uninstall --all

Exercise 7.3 – Test your knowledge
Answer the following questions. If you get stuck, try googling the answers, while remembering that
if you get totally stuck, the answers are in the appendix:

1. What browsers does Playwright use when running its tests?
2. What are the main interfaces that represent important objects when writing tests for Playwright?
3. Using Playwright, what are some methods to get one or more elements on a web page?
4. What happens if more than one element matches and you call a method that implies a single

DOM element like ClickAsync?
5. What does the Playwright Inspector do?

Exercise 7.4 – Explore topics
Use the links on the following page to learn more details about the topics covered in this chapter:

https://github.com/markjprice/web-dev-net9/blob/main/docs/book-links.md#chapter-7---
web-user-interface-testing-using-playwright

https://playwright.dev/dotnet/docs/intro
https://playwright.dev/dotnet/docs/intro
https://playwright.dev/dotnet/community/welcome
https://playwright.dev/dotnet/community/welcome
https://stackoverflow.com/tags/playwright
https://packt.link/RWD9
https://github.com/markjprice/web-dev-net9/blob/main/docs/book-links.md#chapter-7---
web-user-interface-testing-using-playwright

Chapter 7 257

Summary
In this chapter, you learned:

• Important concepts about web UI testing, including the roles that developers and testers play
in the testing process

• How to test a web user interface using Playwright
• How to generate tests with the Playwright Inspector

In the next chapter, you will learn how to configure and containerize ASP.NET Core projects ready
for deployment.

Book Code for Supplementary Content
Your book code for the supplementary content package included with this book is NX58TTYO7R.
Happy learning!

8
Configuring and Containerizing
ASP.NET Core Projects

This chapter is about configuring and containerizing ASP.NET Core projects.

This chapter will cover the following topics:

• Configuring dependency services
• Configuring the HTTP pipeline
• Configuring options
• Containerizing ASP.NET Core projects

Configuring dependency services
Now that we have built a website that reads and writes to a database, implemented security and caching,
and tested the user interface, we will review how registering dependency services and configuring
dependency injection work in more detail.

Introducing dependency injection
Dependency injection (DI) is a design pattern used to implement inversion of control (IoC) to resolve
dependencies in a program. Traditionally, the flow of control is dictated by your code, as it makes
calls to reusable libraries or frameworks to use their functionality. IoC inverts this control so that the
framework controls it instead.

For example, ASP.NET Core uses DI for IoC extensively. The framework controls the flow of request
processing, and the developer’s code is executed in response to specific events like HTTP GET or POST
requests.

The main idea of DI is to decouple the creation of an object’s dependencies from its own behavior,
which allows more modular, testable, and maintainable code. Instead of objects creating dependencies
themselves, they are injected with their dependencies at runtime, often by an external framework
or container.

Configuring and Containerizing ASP.NET Core Projects260

For example, in Figure 8.1, on the left, you can see a statement that directly instantiates a calculator
that implements an interface, and on the right, you can see a statement that requests the registered
calculator from a service container:

Figure 8.1: Comparing object creation directly with using a DI container

The use of the service container allows us to swap out the registered implementation class and even
change its scope without changing the code. The service container is responsible for creating and
managing the lifetime of services, aka dependency objects.

Why use DI?
The most common reasons for using DI are shown in the following list:

• Decoupling: DI helps in decoupling components and their dependencies, making a system
more modular. When software is divided into modules, changes can be made to individual parts
without affecting the entire system. This makes it easier to update, fix bugs, and add new fea-
tures. Modularity enforces a clear structure, making it easier for developers to understand and
navigate the codebase. This reduces the learning curve for new developers joining the project.

• Testability: By injecting dependencies, it becomes easier to replace real dependencies with
mocks or stubs during testing. Modules can be tested independently from the rest of the ap-
plication. This makes it easier to identify and fix issues, as tests can be run on smaller, more
manageable pieces of code. When an issue arises, debugging is simplified because the problem
can often be isolated to a specific module so you don’t have to comb through the entire codebase.

• Flexibility: Changes in dependencies or their configurations have minimal impacts on the
client code. Modularity allows flexible architecture designs where modules can be easily added,
removed, or replaced as needed. By encapsulating functionality within modules, it is easier to
ensure that the internal workings of a module are hidden from other parts of an application,
promoting better data integrity and reducing unintended side effects.

Chapter 8 261

• Maintainability: With dependencies being centralized, updates and maintenance become more
manageable. Different developers or teams can work on separate modules simultaneously
without interfering with each other. This parallel development can significantly speed up the
development process. Teams can progress independently on their modules, making it easier
to manage large projects with multiple moving parts.

Injection mechanisms of DI in .NET
Imagine that we have an interface and an implementation, as shown in the following code:

public interface INotificationService
{
 void Notify(string message);
}

public class NotificationService : INotificationService
{
 public void Notify(string message)
 {
 // Send notification.
 }
}

There are primarily three ways to inject dependencies:

• Constructor injection: Dependencies are provided through a class constructor, as shown in
the following code. This is the best practice, since it enables the easiest mocking of services
during testing:

public class DataService
{
 private readonly INotificationService _service;

 // Constructor Injection
 public DataService(INotificationService service)
 {
 _service = service;
 }

 public void ProcessData(string data)
 {
 // Process data and send it using the notification service.
 _service.Notify(data);
 }
}

Configuring and Containerizing ASP.NET Core Projects262

• Property injection: Dependencies are set on public properties of the class, as shown in the
following code. Property injection is useful when the dependency is optional or when the de-
pendency might change during the lifetime of an object. It provides more flexibility compared
to constructor injection:

public class DataService
{
 // Property Injection
 public INotificationService Service { get; set; }

 public void ProcessData(string data)
 {
 // Process data and send it using the notification service.
 Service.Notify(data);
 }
}

• Method injection: Dependencies are provided through method parameters, as shown in the
following code. This approach is suitable for dependencies that are only needed for a specific
method. This keeps the rest of the class clean and focused on its core responsibilities:

public class DataService
{
 // ...other code.

 // Method Injection
 public void ProcessData(string data, INotificationService service)
 {
 // Process data and send it using the notification service.
 service.Notify(data);
 }
}

Examples in modern .NET
.NET includes built-in support for DI, making it straightforward to implement DI patterns in your
applications. Let’s look at an ASP.NET Core constructor injection example.

Constructor injection example
Suppose you have an IEmailService interface and an EmailService implementation. You want to
inject this service into a consumer class, UserController, that allows a user to register themselves
with your website. The interface, class, and controller are shown in the following code:

Chapter 8 263

public interface IEmailService
{
 void SendEmail(string to, string subject, string body);
}

public class EmailService : IEmailService
{
 public void SendEmail(string to, string subject, string body)
 {
 // Implementation to send an email.
 }
}

public class UserRegistrationController
{
 private readonly IEmailService _emailService;

 public UserRegistrationController(IEmailService emailService)
 {
 _emailService = emailService;
 }

 public void SendUserConfirmationEmail(string userId)
 {
 // Use _emailService to send an email to the user.
 }
}

In the ASP.NET Core project dependency services configuration section in Program.cs, you would
register your dependencies, as highlighted in the following code:

var builder = WebApplication.CreateBuilder(args);

// Add services to the container.
builder.Services.AddControllersWithViews();

builder.Services.AddSingleton<IEmailService, EmailService>();
// Other service registrations.

var app = builder.Build();

This setup tells the .NET DI container to inject an instance of EmailService whenever an IEmailService
is required.

Configuring and Containerizing ASP.NET Core Projects264

Property injection example
Property injection is commonly achieved using third-party libraries or custom solutions. It’s gener-
ally used in scenarios where constructor injection is not feasible or when optional dependencies are
involved.

For example, in Autofac 7.0 or later, all required properties are automatically resolved, in a similar
manner to constructor parameters, as shown in the following code:

public class NorthwindService
{
 // These properties will be automatically set by Autofac.
 public required ILogger Logger { protected get; init; }
 public required IConfigReader ConfigReader { protected get; init; }

 // More implementation.
}

All required properties of the component must be resolvable services; otherwise, an exception will
be thrown when trying to resolve the component.

You would then need to use Autofac to register the services, as shown in the following code:

ContainerBuilder builder = new();
builder.RegisterType<NorthwindService>();
builder.RegisterType<ConsoleLogger>().As<ILogger>();
builder.RegisterType<ConfigReader>().As<IConfigReader>();
var container = builder.Build();

Method injection example
Method injection is typically used when a specific method in a class requires a dependency but the
rest of the class does not. It’s not as commonly used as constructor injection but can be useful in cer-
tain scenarios, especially with Minimal APIs, which do not use classes with constructors, as shown
in the following code:

app.MapGet("/weather", (IWeatherService weatherService) =>
{
 return Results.Ok(new { Weather = weatherService.GetWeather() });
});

Autofac is an alternative third-party DI/IoC container. You can learn more about it at the
following link: https://autofac.org/.

https://autofac.org/

Chapter 8 265

In the MapGet method, the IWeatherService parameter in the lambda expression indicates that this
dependency should be provided by the DI container. The DI container automatically resolves the
IWeatherService and injects it into the handler method.

Dependency graphs and service resolution
It is common to use DI in a chained fashion. Each requested dependency, like WorkerService, requests
its own dependencies, like ILogger. The container finds the required dependencies in its graph of
services and returns the fully resolved service.

The set of dependencies that must be resolved is referred to as a dependency tree, dependency graph,
or object graph, as shown in Figure 8.2:

Figure 8.2: DI container and a dependency tree or graph

In Figure 8.2, the DI container manages the dependencies. WorkerService is a service that depends on
other services. ILogger is a dependency that is required by WorkerService. DataService is another
dependency that might be needed by WorkerService or other services. DbContext is a dependency
required by DataService.

The arrow from WorkerService to ILogger shows that WorkerService depends on ILogger. The DI
container resolves WorkerService and in the process resolves its dependencies, like ILogger and
DataService, which in turn might have their own dependencies, like DbContext. This chained reso-
lution ensures that all dependencies are fully resolved and injected where needed.

Registering dependency service lifetimes
You can register dependency services with different lifetimes, as shown in the following list:

• Transient: These services are created each time they’re requested. Transient services should
be lightweight and stateless. Use for lightweight, stateless services where a new instance is
required for each operation, such as utility or helper services.

• Scoped: For ASP.NET Core projects, these services are created once per client request and are
disposed of when the response returns to the client. For other types of projects, like console
apps, you need to define a scope manually. You can also create custom additional scopes in
ASP.NET Core projects if needed. Use them when you need a separate instance of a service for
each request; they are useful for services that interact with per-request data, such as database
contexts.

Configuring and Containerizing ASP.NET Core Projects266

• Singleton: These services are usually created the first time they are requested and then shared,
although you can provide an instance at the time of registration too. Use when you need a
single instance of a service for an entire application’s lifetime, typically for shared resources
or configurations.

Choosing the right service lifetime ensures that resources are used efficiently and that your application
behaves correctly, with services being instantiated and disposed of at the appropriate times.

In this chapter, you will use all three types of lifetimes, which are controlled by a service scope.

When are exceptions thrown?
When resolving dependencies in a DI container, several scenarios can lead to exceptions being thrown.
Understanding these scenarios can help you diagnose and fix issues related to dependency resolution.
Here are some common scenarios:

• Service not registered: If a service is not registered with the DI container, attempting to re-
solve it will result in an exception – for example: InvalidOperationException: Unable to
resolve service for type 'IMyService' while attempting to activate 'MyComponent'.

• Circular dependency: A circular dependency occurs when two or more components or
projects depend on each other in a way that creates a loop. If there is a circular dependen-
cy, the DI container cannot resolve the services and will throw an exception – for example:
InvalidOperationException: A circular dependency was detected for the service
of type 'ServiceA'.

• Missing constructor: If a service requires a constructor with parameters that cannot be resolved
by the DI container, it will throw an exception – for example: InvalidOperationException:
Unable to resolve service for type 'NonRegisteredDependency' while attempting
to activate 'MyService'.

• Wrong lifetime configuration: If services are registered with incompatible lifetimes, for ex-
ample, a scoped service depending on a transient service in a singleton context, this can lead
to exceptions or unexpected behavior. This may not throw an exception immediately but can
lead to issues like ObjectDisposedException when the scoped service is disposed of while
still referenced by the singleton.

• Multiple implementations: If multiple implementations of a service are registered without
specifying which one to use, the DI container may throw an exception or resolve the wrong
implementation – for example: InvalidOperationException: Multiple constructors
accepting all given argument types have been found in type 'MyService2'. There
should only be one applicable constructor.

• Invalid service descriptor: If a service is registered with an invalid descriptor, such as
using a type that does not implement the interface, it can lead to exceptions – for exam-
ple: InvalidOperationException: Type 'MyService' does not implement interface
'IMyService'.

Dependency resolution exceptions can arise from various misconfigurations. Understanding these
scenarios helps developers better configure their DI containers and debug issues more effectively.

Chapter 8 267

Registering services for features using extension methods
With a complex ASP.NET Core project, you are likely to need to register many related services for each
feature of the website or web service in Program.cs, as shown in the following code:

builder.Services.AddScoped<IShoppingCart, InMemoryShoppingCart>();
builder.Services.AddScoped<ICustomerAccount, CustomerAccount>();
builder.Services.AddScoped<IUserRegistration, UserRegistration>();

It is good practice to define an extension method to group all these registrations, as shown in the
following code:

public static class ServiceCollectionExtensions
{
 public static IServiceCollection AddNorthwindFeatures(
 this IServiceCollection services)
 {
 services.AddScoped<IShoppingCart, InMemoryShoppingCart>();
 services.AddScoped<ICustomerAccount, CustomerAccount>();
 services.AddScoped<IUserRegistration, UserRegistration>();
 return services;
 }
}

This will simplify the statements in Program.cs, as shown in the following code:

builder.Services.AddNorthwindFeatures();

The ASP.NET Core team does this themselves with methods like AddControllersWithViews.

When you cannot use constructor injection
If you are building ASP.NET Core MVC or controller-based Web API projects, then your controller
classes can use constructor injection to get registered services, just like any other class. But there are
other situations where you cannot use constructor injection to get registered services, as it forces a
scoped service to behave like a singleton, which throws a runtime exception.

There are several situations in ASP.NET Core where using constructor injection may not be appropriate
or possible. These scenarios typically arise when the service lifetimes are incompatible, or the context
in which the service is needed does not support constructor injection. Here are some of those situations:

• Background services, such as those derived from BackgroundService or IHostedService,
are typically singleton services. Injecting scoped services via the constructor is not appro-
priate due to their singleton nature. Injecting scoped services into background services via
the constructor can cause them to be treated as singletons, leading to issues with resource
management and state handling. The solution is to use method injection by resolving services
within the ExecuteAsync method.

Configuring and Containerizing ASP.NET Core Projects268

• Tag Helpers are created per view instance, and injecting services via the constructor is not
supported. Constructor injection is not feasible because Tag Helpers are not managed by the
DI container in the same way controllers or other services are. The solution is to use property
injection with the [ViewContext] attribute.

• Filters can be registered globally, per-controller, or per-action. Filters registered as singleton
services cannot depend on scoped services directly via constructor injection. The solution is to
use the ServiceFilter or TypeFilter attributes, or the DI container within the filter’s methods.

Constructor injection is not always feasible, particularly when dealing with middleware, background
services, Tag Helpers, and filters. In these cases, method injection, property injection, or resolving
services within the method scope are the preferred approaches to ensure that services are correctly
instantiated and managed according to their intended lifetimes.

Let’s look at one of these scenarios in more detail: dealing with middleware.

Using scoped services in middleware
Although singletons can be passed in the constructor to middleware, to use scoped and transient
services in middleware, you should inject a service into the middleware’s Invoke or InvokeAsync
method, as shown in the following code:

public class NorthwindMiddleware
{
 private readonly RequestDelegate _next;
 private readonly ILogger _logger;

 private readonly ISingletonService _singleton;

 // Singleton services can use constructor injection.
 public MyMiddleware(RequestDelegate next, ILogger<MyMiddleware> logger,
 ISingletonService singleton)
 {
 _logger = logger;
 _singleton = singleton;
 _next = next;
 }

 public async Task InvokeAsync(HttpContext context,
 // Transient and scoped services must use method injection.
 ITransientService transient, IScopedService scoped)
 {
 _logger.LogInformation("Transient: " + transient.ProductId);
 _logger.LogInformation("Scoped: " + scoped.ProductId);
 _logger.LogInformation("Singleton: " + _singleton.ProduceId);

Chapter 8 269

 await _next(context);
 }
}

Resolving services at startup
To resolve a scoped service when an ASP.NET Core project starts, you must define a scope, as shown
in the following code:

using Packt.Shared; // To use INorthwindService.

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);
builder.Services.AddScoped<INorthwindService, NorthwindService>();
WebApplication app = builder.Build();

using (IServiceScope scope = app.Services.CreateScope())
{
 INorthwindService service = scope.ServiceProvider
 .GetRequiredService<INorthwindService>();

 // Use the service here.
}

app.MapGet("/", () => "Hello World!");
app.Run();

In the rest of the project, for example, in a controller class or razor component, a service scope will
be created automatically to handle each incoming HTTP request.

As well as constructor injection, you can get the services container from the current HTTP context,
as shown in the following code:

IServiceProvider services = HttpContext.RequestServices;

DI and MVC controller action methods
If you are building controller-based MVC websites or Web API services then there are alternative
techniques to constructor injection.

You can use action method injection using attributes like [FromServices] and [FromKeyedServices].

First, register the services as normal, as shown in the following code:

builder.Services.AddSingleton<IOrderProcessor, OrderProcessor>();
builder.Services.AddKeyedSingleton<ICache, BigCache>("big");

Configuring and Containerizing ASP.NET Core Projects270

Then, decorate action method parameters with attributes, as shown in the following code:

public IActionResult SubmitOrder([FromServices] IOrderProcessor processor)
{
 // Use processor.
}

public ActionResult<object> GetCatalog([FromKeyedServices("big")] ICache cache)
{
 return cache.Get("catalog");
}

DI and MVC views
To inject a service into an MVC Razor view, use the @inject directive, as shown in the following code:

@inject NorthwindService nw

Disposing services
If a service implements IDisposable, then the container calls the Dispose method for the services
that it creates automatically. You should never explicitly dispose of a service created by the container
yourself because you do not know what the dependency tree or graph looks like, and just because
you don’t need a service anymore does not mean that it’s not needed by other services. You also do
not know what lifetime it has been registered with. If you dispose of it, other services are likely to fail.

However, if you use the technique of manually creating an instance of a service and passing that to
the container, then you will have to dispose of it manually, as shown in the following code:

// The service is manually instantiated so must be manually disposed.
builder.Services.AddSingleton(new NorthwindService());

Best practices for DI
You should use best practices when implementing DI, as shown in the following list:

• Prefer constructor injection: This makes the dependencies of your class explicit and ensures
that your class is always in a valid state.

• Use interfaces for dependencies: This makes it easier to swap implementations without chang-
ing the consuming class.

• Avoid the service locator pattern: This is when your code explicitly gets a service inside its im-
plementation. This is bad practice because it hides class dependencies, making the code harder
to understand and maintain, and tests cannot mock the dependency or replace it when needed.

• Keep scopes and lifetimes in mind: Be aware of the scope and, therefore, lifetime of your
dependencies to avoid memory leaks or unintended behavior.

Chapter 8 271

DI in .NET simplifies managing dependencies, leading to cleaner, more maintainable code. By lever-
aging the built-in DI container in .NET, developers can focus more on business logic rather than the
intricacies of object creation and management.

Configuring the HTTP pipeline
Now that we have reviewed how dependency services are registered and retrieved using dependency
injection, let’s have a look at related topics, including endpoint routing and how to configure the HTTP
pipeline in ASP.NET Core.

Understanding endpoint routing
Endpoint routing is designed to enable better interoperability between frameworks that need routing,
such as Razor Pages, MVC, or Web API services, and middleware that needs to understand how routing
affects them, such as localization, authorization, and so on.

Endpoint routing gets its name because it represents the route table as a compiled tree of endpoints
that can be walked efficiently by the routing system. One of the biggest improvements is the perfor-
mance of routing and action method selection.

Benefits of endpoint routing
Endpoint routing is a significant improvement over the previous routing system used pre-ASP.NET
Core 2.2. In previous versions, routing was decentralized across MVC controllers, Razor Pages, and
middleware. Endpoint routing unifies the routing system across the entire project, allowing you to
define all routes in one place.

One of the main goals of endpoint routing was to enhance performance. In earlier versions, routing
and middleware pipelines were distinct processes, which added overhead. Endpoint routing integrates
routing earlier in the request pipeline, allowing ASP.NET Core to make routing decisions before run-
ning middleware.

Prior to endpoint routing, it wasn’t easy to route directly to middleware. Endpoint routing allows you
to define routes that go directly to middleware, bypassing the MVC controller mechanism if needed.
This opens up a lot of flexibility for lightweight APIs, where full controller logic might not be necessary.

In previous routing systems, routing was often tightly coupled with MVC and controllers. Endpoint
routing decouples routing from the MVC framework, allowing you to route to anything, including
Razor Pages, gRPC, SignalR, and even custom endpoints.

Endpoint routing has improved support for attribute routing, making it easier to handle complex
routing scenarios with attributes on controllers and actions. It simplifies and optimizes how attributes
are processed, allowing better route resolution.

Endpoint routing introduces a more powerful model for extensibility. For example, you can attach
metadata to routes, allowing you to define things like policies, authorization requirements, or caching
strategies directly on the route.

Configuring and Containerizing ASP.NET Core Projects272

Endpoint routing provides a more efficient way of routing by using asynchronous matching and exe-
cution. This makes routing more performant and scalable in high-concurrency applications.

Endpoint routing supports complex routing scenarios by allowing you to apply constraints, policies,
and filters to routes easily. This includes things like route parameters, versioning, and localization.

Configuring endpoint routing
For more complex scenarios than we have seen so far, endpoint routing can use a pair of calls to the
UseRouting and UseEndpoints methods:

• UseRouting marks the pipeline position where a routing decision is made.
• UseEndpoints marks the pipeline position where the selected endpoint is executed.

Middleware such as the localization that runs in between these methods can see the selected endpoint
and switch to a different endpoint if necessary.

Endpoint routing uses the same route template syntax that has been used in ASP.NET MVC since 2010
with .NET Framework 4 and the [Route] attribute introduced with ASP.NET MVC 5 in 2013.

Reviewing the default endpoint routing configuration
Review the statements in Program.cs in a freshly created ASP.NET Core MVC project template, as
shown in the following code:

var builder = WebApplication.CreateBuilder(args);

// Add services to the container.
builder.Services.AddControllersWithViews();

var app = builder.Build();

// Configure the HTTP request pipeline.
if (!app.Environment.IsDevelopment())
{
 app.UseExceptionHandler("/Home/Error");

Chapter 8 273

 // The default HSTS value is 30 days. You may want to change this for
production scenarios, see https://aka.ms/aspnetcore-hsts.
 app.UseHsts();
}

app.UseHttpsRedirection();
app.UseRouting();

app.UseAuthorization();

app.MapStaticAssets();

app.MapControllerRoute(
 name: "default",
 pattern: "{controller=Home}/{action=Index}/{id?}")
 .WithStaticAssets();
app.Run();

The web application builder registers services that can then be retrieved when the functionality they
provide is needed using dependency injection. The naming convention for a method that registers a
service is AddService where Service is the service name, for example, AddControllersWithViews.

Common methods that register dependency services, including services that combine other method
calls that register services, are shown in Table 8.1:

Method Services that it registers

AddMvcCore Minimum set of services necessary to route requests and invoke
controllers. Most websites will need more configuration than this.

AddAuthorization Authentication and authorization services.

AddDataAnnotations MVC data annotations service.

AddCacheTagHelper MVC cache tag helper service.

AddRazorPages

Razor Pages, including the Razor view engine. Commonly used in
simple website projects. It calls the following additional methods:

AddMvcCore

AddAuthorization

AddDataAnnotations

AddCacheTagHelper

AddApiExplorer Web API explorer service.

AddCors Cross-origin resource sharing (CORS) support for enhanced security.

Configuring and Containerizing ASP.NET Core Projects274

AddFormatterMappings Mappings between a URL format and its corresponding media type.

AddControllers

Controller services but not services for views or pages. Commonly
used in ASP.NET Core Web API projects. It calls the following
additional methods:

AddMvcCore

AddAuthorization

AddDataAnnotations

AddCacheTagHelper

AddApiExplorer

AddCors

AddFormatterMappings

AddViews Support for .cshtml views including default conventions.

AddRazorViewEngine Support for the Razor view engine including processing the
@ symbol.

AddControllersWithViews

Controller, view, and page services. Commonly used in
ASP.NET Core MVC website projects. It calls the following additional
methods:

AddMvcCore

AddAuthorization

AddDataAnnotations

AddCacheTagHelper

AddApiExplorer

AddCors

AddFormatterMappings

AddViews

AddRazorViewEngine

AddMvc Similar to AddControllersWithViews, but you should only use it
for backward compatibility.

AddDbContext<T> Your DbContext type and its optional
DbContextOptions<TContext>.

AddNorthwindContext
A custom extension method we created to make it easier to register
the NorthwindContext class for either SQLite or SQL Server based
on the project referenced.

Table 8.1: Common methods that register dependency services

Chapter 8 275

Setting up the HTTP pipeline
After building the web application and its services, the next statements configure the HTTP pipeline
through which HTTP requests and responses flow in and out. The pipeline is made up of a connect-
ed sequence of delegates that can perform processing and then decide to either return a response
themselves or pass processing on to the next delegate in the pipeline. Responses that come back can
also be manipulated.

Remember that delegates define a method signature that a delegate implementation can plug into.
The delegate for the HTTP request pipeline is simple, as shown in the following code:

public delegate Task RequestDelegate(HttpContext context);

You can see that the input parameter is an HttpContext. This provides access to everything you might
need to process the incoming HTTP request, including the URL path, query string parameters, cookies,
and user agent.

These delegates are often called middleware because they sit in between the browser client and the
website or web service.

Middleware delegates are configured using one of the following methods or a custom method that
calls them itself:

• Run: Adds a middleware delegate that terminates the pipeline by immediately returning a
response instead of calling the next middleware delegate.

• Map: Adds a middleware delegate that creates a branch in the pipeline when there is a matching
request usually based on a URL path like /hello.

• Use: Adds a middleware delegate that forms part of the pipeline so it can decide if it wants to
pass the request to the next delegate in the pipeline. It can modify the request and response
before and after the next delegate.

For convenience, there are many extension methods that make it easier to build the pipeline, for
example, UseMiddleware<T>, where T is a class that has:

• A constructor with a RequestDelegate parameter that will be passed to the next pipeline
component.

• An Invoke method with a HttpContext parameter and returns a Task.

Summarizing key middleware extension methods
Key middleware extension methods used in our code include the following:

• UseHsts: Adds middleware for using HSTS, which adds the Strict-Transport-Security header.

HTTP Strict Transport Security (HSTS) is a simple and widely supported standard
to protect visitors by ensuring that their browsers always connect to a website over
HTTPS. You can learn more at the following link: https://en.wikipedia.org/
wiki/HTTP_Strict_Transport_Security.

https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security
https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security

Configuring and Containerizing ASP.NET Core Projects276

• UseHttpsRedirection: Adds middleware for redirecting HTTP requests to HTTPS, so in our
code a request for http://localhost:5020 would receive a 307 response telling the browser
to request https://localhost:5021.

• UseDefaultFiles: Adds middleware that enables default file mapping on the current path, so
in our code, it would identify files such as index.html or default.html.

• UseStaticFiles: Adds middleware that looks in wwwroot for static files to return in the HTTP
response. This is used by ASP.NET Core project templates using .NET 8 and earlier.

• MapStaticAssets: Adds middleware that looks in wwwroot for static files to return in the HTTP
response. This is used by ASP.NET Core project templates using .NET 9 and later.

• MapRazorPages: Adds middleware that will map URL paths such as /suppliers to a Razor Page
file in the /Pages folder named suppliers.cshtml and return the results as the HTTP response.

• MapGet: Adds middleware that will map URL paths such as /hello to an inline delegate that
writes plain text directly to the HTTP response. You will see a similar example that registers
an inline delegate with the Use method in the next section.

If we had chosen a different project template that supports more complex routing scenarios, for
example, the ASP.NET Core MVC website project template, then we would have seen other common
middleware extension methods, which include the following:

• UseRouting: Adds middleware that defines a point in the pipeline where routing decisions are
made and must be combined with a call to UseEndpoints where the processing is then executed.

• UseEndpoints: Adds middleware to execute to generate responses from decisions made earlier
in the pipeline.

Visualizing the HTTP pipeline
The HTTP request and response pipeline can be visualized as a sequence of request delegates, called
one after the other in a chain or pipeline, as shown in the simplified diagram shown in Figure 8.3,
which excludes some middleware delegates, such as UseHsts and MapGet:

Figure 8.3: The HTTP request and response pipeline

Chapter 8 277

The diagram shows two HTTP requests, as described in the following list:

• First, in yellow, an HTTP request is made for the static file index.html. The first middleware to
process this request is HTTPS redirection, which detects that the request is not for HTTPS and
responds with a 307 status code and the URL for the secure version of the resource. The browser
then makes another request using HTTPS, which gets past the HTTPS redirection middleware
and is passed on to the UseDefaultFiles and MapStaticAssets middleware (or UseStaticFiles
middleware). This finds a matching static file in the wwwroot folder and returns it.

• Second, in blue, an HTTPS request is made for the relative path /home/index. The request
uses HTTPS, so the HTTPS redirection middleware passes it through to the next middleware
component. No matching static file path is found in the wwwroot folder, so the static files
middleware passes the request through to the next middleware in the pipeline. A match is
found in the Controllers folder for the HomeController class and its Index action method.
The controller class is instantiated and its action method is executed, which passes a model
to the Views\Home\Index.cshtml view that generates an HTML page that is returned as the
HTTP response along with a 200 OK status code. Any code in the middleware that is part of
the pipeline could make changes to this HTTP response as it flows back through if needed,
although in this scenario none of it does.

Implementing an anonymous inline delegate as middleware
A delegate can be specified as an inline anonymous method. We will register one that plugs into the
pipeline after routing decisions for endpoints have been made.

It will output which endpoint was chosen, as well as handling one specific route: /bonjour. If that route
is matched, it will respond with plain text, without calling any further into the pipeline to find a match:

1. In the Northwind.Mvc.csproj project file, globally and statically import the Console class, as
shown in the following markup:

<ItemGroup Label="To simplify use of WriteLine.">
 <Using Include="System.Console" Static="true" />
</ItemGroup>

2. In Program.cs, add statements after the call to UseRouting to use an anonymous method as a
middleware delegate, as shown in the following code:

// Implementing an anonymous inline delegate as middleware
// to intercept HTTP requests and responses.
app.Use(async (HttpContext context, Func<Task> next) =>
{
 WriteLine($"Request: {context.Request.Method} {context.Request.Path}");

 RouteEndpoint? rep = context.GetEndpoint() as RouteEndpoint;

 if (rep is not null)
 {

Configuring and Containerizing ASP.NET Core Projects278

 WriteLine($"Endpoint: {rep.DisplayName}");
 WriteLine($"Route: {rep.RoutePattern.RawText}");
 }

 if (context.Request.Path == "/bonjour")
 {
 // In the case of a match on URL path, this becomes a terminating
 // delegate that returns so does not call the next delegate.
 await context.Response.WriteAsync("Bonjour Monde!");
 return;
 }

 // We could modify the request before calling the next delegate.

 // Call the next delegate in the pipeline.
 await next();

 // The HTTP response is now being sent back through the pipeline.
 // We could modify the response at this point before it continues.
});

3. Start the Northwind.Mvc website project using the https launch profile.
4. Arrange your terminal and the browser window so that you can see both.
5. In Chrome, navigate to https://localhost:5021/, look at the console output, and note that

there was a match on an endpoint route /; it was processed as /home/index, due to default
values in the default MVC route, and the Index action method in the HomeController class
was executed to return the response, as shown in the following output:

Request: GET /
Endpoint: Northwind.Mvc.Controllers.HomeController.Index (Northwind.Mvc)
Route: {controller=Home}/{action=Index}/{id?}

6. Note that requests for static assets like images/category1.jpeg and css/site.css are also
output by our custom middleware.

7. Navigate to https://localhost:5021/home/suppliers and note that you can see that there
was a match on an endpoint route /Suppliers, and the Suppliers.cshtml Razor Page was
executed to return the response, as shown in the following output:

Warning! You must add your delegate after the call to UseRouting or the
GetEndpoint() method will return null!

https://localhost:5021/
https://localhost:5021/home/suppliers

Chapter 8 279

Request: GET /home/suppliers
Endpoint: Northwind.Mvc.Controllers.HomeController.Suppliers (Northwind.
Mvc)
Route: {controller=Home}/{action=Index}/{id?}

8. Navigate to https://localhost:5021/bonjour and note that there is no output written to
the console because there was no matching endpoint route. Instead, our delegate matched
on /bonjour, wrote directly to the response stream, and returned with no further processing.

9. Close Chrome and shut down the web server.

Configuring options
Configuration in ASP.NET Core is designed to be flexible, allowing you to load settings from various
sources, such as JSON files, environment variables, and command-line arguments.

Configuration can be accessed using the IConfiguration interface, which allows you to retrieve
configuration values easily.

Configuration sources
ASP.NET Core can load configuration from multiple sources, as shown in Table 8.2:

Source Description

appsettings.json file
The most common source for configuration, typically containing
environment-specific settings.

Environment variables
Useful for settings that vary by environment, especially in
containerized or cloud environments.

Command-line arguments
Allows passing configuration settings via the command line during
application startup.

Secrets manager Used primarily in development to store sensitive data.

Custom providers
You can create your own configuration providers to load settings
from custom sources like databases or APIs.

Table 8.2: Configuration sources

Configuration classes and interfaces
In Program.cs, everything starts with a WebApplicationBuilder, as shown in the following code:

var builder = WebApplication.CreateBuilder(args);

More Information: You can learn more about the HTTP pipeline and middleware
order at the following link: https://learn.microsoft.com/en-us/aspnet/
core/fundamentals/middleware/#middleware-order.

https://learn.microsoft.com/en-us/aspnet/core/fundamentals/middleware/#middleware-order
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/middleware/#middleware-order

Configuring and Containerizing ASP.NET Core Projects280

I like to explicitly specify the type of the builder variable, as shown in the following code:

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

This class has properties to configure the setup of the environment, services, configuration, logging,
and the web server and host, and a method to build everything into a web application, as shown in
the following code:

namespace Microsoft.AspNetCore.Builder;

public sealed class WebApplicationBuilder : IHostApplicationBuilder
{
 public IWebHostEnvironment Environment { get; }
 public IServiceCollection Services { get; }
 public ConfigurationManager Configuration { get; }
 public ILoggingBuilder Logging { get; }
 public IMetricsBuilder Metrics { get; }
 public ConfigureWebHostBuilder WebHost { get; }
 public ConfigureHostBuilder Host { get; }

 public WebApplication Build();
}

So far in our Northwind.Mvc project, we have mostly added and configured dependency services in
the Services collection. Now, we will look at the Configuration property.

How to manually set up configuration
Configuration in ASP.NET Core is set up in the Program.cs file using the ConfigurationManager class
(that implements the IConfigurationBuilder interface), as shown in the following code:

namespace Microsoft.Extensions.Configuration;

public sealed class ConfigurationManager : IConfiguration,
 IConfigurationBuilder, IConfigurationManager, IConfigurationRoot,
 IDisposable
{
 public ConfigurationManager();

 public string? this[string key] ...
 public IList<IConfigurationSource> Sources { get; }

 public void Dispose();
 public IEnumerable<IConfigurationSection> GetChildren();
 public IConfigurationSection GetSection(string key);
}

Chapter 8 281

Note the indexer this[string key] to quickly access configuration settings by their key, and the
GetSection method to extract sections by their key from configuration files.

The IConfigurationBuilder interface is extended by many built-in and third-party packages to enable
configuration with extension methods, as shown in the following code:

namespace Microsoft.Extensions.Configuration;

public interface IConfigurationBuilder
{
 ...
 IConfigurationRoot Build();
}

public static class FileConfigurationExtensions
{
 public static IConfigurationBuilder SetBasePath(
 this IConfigurationBuilder builder, string basePath);
 ...
}

public static class JsonConfigurationExtensions
{
 public static IConfigurationBuilder AddJsonFile(
 this IConfigurationBuilder builder, string path,
 bool optional, bool reloadOnChange);
 ...
}

public static class CommandLineConfigurationExtensions
{
 public static IConfigurationBuilder AddCommandLine(
 this IConfigurationBuilder configurationBuilder, string[] args);
 ...
}

An instance of ConfigurationManager is available as the Configuration property of the
WebApplicationBuilder class.

Configuring and Containerizing ASP.NET Core Projects282

Here’s an example of manually setting up configuration to load options from a JSON file, environment
variables, and command-line arguments, as shown in the following code:

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

// Add configuration sources.
builder.Configuration
 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile("appsettings.json", optional: false, reloadOnChange: true)
 .AddJsonFile($"appsettings.{builder.Environment.EnvironmentName}.json",
 optional: true, reloadOnChange: true)
 .AddEnvironmentVariables()
 .AddCommandLine(args);

var app = builder.Build();

Note the following in the preceding code:

• SetBasePath sets the base path for the configuration files.
• AddJsonFile loads the configuration from appsettings.json and an optional environment-spe-

cific JSON file. For example, during development, it would load appsettings.Development.
json.

• AddEnvironmentVariables loads configuration from environment variables.
• AddCommandLine allows configuration via command-line arguments.

Understanding IConfiguration and IConfigurationRoot
Both IConfiguration and IConfigurationRoot are interfaces that are used to manage configuration
settings, but they serve slightly different purposes and are used in different contexts. Understanding the
distinction between them can help you better structure and manage configuration in your applications.

IConfiguration for combined settings from all providers
IConfiguration represents a key-value pair collection of all configuration settings across many provid-
ers. It is commonly used throughout an application and it allows hierarchical configuration, meaning
you can have nested configurations that are accessible via key paths.

For example, IConfiguration is injected into a controller, and it is used to retrieve a value from the
configuration and passed as the model of a view, as shown in the following code:

More Information: The preceding set up is not needed if you use the default
WebApplication.CreateBuilder. You can learn more about what this does
for you by default at the following link: https://learn.microsoft.com/en-
us/aspnet/core/fundamentals/configuration/#default-application-
configuration-sources.

https://learn.microsoft.com/en-us/aspnet/core/fundamentals/configuration/#default-application-configuration-sources
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/configuration/#default-application-configuration-sources
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/configuration/#default-application-configuration-sources

Chapter 8 283

public class MyController
{
 private readonly IConfiguration _configuration;

 public MyController(IConfiguration configuration)
 {
 _configuration = configuration;
 }

 public void Index()
 {
 string model = $"Setting1: {_configuration["MySettings:Setting1"]}";
 View(model);
 }
}

The setting itself could be set in any of the configured source providers, from a JSON file to com-
mand-line arguments.

IConfigurationRoot for more advanced scenarios
IConfigurationRoot extends the IConfiguration interface with additional capabilities. Specifically,
it represents the root of the configuration hierarchy and includes methods to reload and access un-
derlying providers. It is typically used internally by the framework or in advanced scenarios where
you need to manage configuration providers directly.

While IConfiguration is what most developers interact with, IConfigurationRoot is used when you
need to programmatically manage the configuration’s lifecycle, such as reloading configuration or
accessing specific configuration providers, as shown in the following code:

ConfigurationBuilder builder = new()
 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile("appsettings.json", optional: false, reloadOnChange: true)
 .AddEnvironmentVariables();

IConfigurationRoot configurationRoot = builder.Build();

// Reload the configuration.
configurationRoot.Reload();

// Accessing the reloaded configuration data.
string settingValue = configurationRoot["MySettings:Setting1"];
Console.WriteLine($"Setting1: {settingValue}");

Configuring and Containerizing ASP.NET Core Projects284

To summarize:

• IConfiguration is a more general interface that can be used throughout the application to
access configuration data. IConfiguration is typically injected into services and used to access
configuration settings. In practice, IConfiguration is what you’ll interact with most of the time.

• IConfigurationRoot is the specific implementation that serves as the root of the configura-
tion system, managing the lifecycle and underlying providers. IConfigurationRoot is usually
handled during the configuration setup phase in the Program.cs, where you might need to
interact with the configuration in more advanced ways, such as reloading the configuration
dynamically. IConfigurationRoot provides the Reload() method, which allows you to reload
the configuration from the sources. This is particularly useful when using configuration sources
that may change at runtime, like JSON files with reloadOnChange set to true.

Showing providers and settings
Now, let’s see some example code that will show the provider sources for configuration and any set-
tings that have been configured:

1. In the Northwind.Mvc project, in the Models folder, add a new class file named
ConfigIndexViewModel.cs.

2. In ConfigIndexViewModel.cs, define a record with a Providers property to store the sources of
configuration, and a Settings property as a string dictionary, as shown in the following code:

namespace Northwind.Mvc.Models;

public record ConfigIndexViewModel(
 IEnumerable<string?> Providers,
 IDictionary<string, string?> Settings);

3. In the Controllers folder, add an empty controller class named ConfigController.cs.
4. In ConfigController.cs, define a class with an Index action method to show the sources of

configuration, as shown in the following code:

using Microsoft.AspNetCore.Mvc;
using Northwind.Mvc.Models; // To use ConfigIndexViewModel.

namespace Northwind.Mvc.Controllers;

public class ConfigController : Controller
{
 private readonly IConfigurationRoot _configRoot;

 public ConfigController(IConfiguration config)
 {
 // No service is registered for IConfigurationRoot but

Chapter 8 285

 // one is registered for IConfiguration and it also
 // implements IConfigurationRoot.
 _configRoot = (IConfigurationRoot)config;
 }

 public IActionResult Index()
 {
 ConfigIndexViewModel model = new(
 Providers: _configRoot.Providers
 .Select(provider => provider.ToString()),
 Settings: _configRoot.AsEnumerable().ToDictionary());

 return View(model);
 }
}

5. If you are using Visual Studio, then right-click in View(model), select Add View…, select Razor
View – Empty, and click Add. Visual Studio will create a view named Index.cshtml in a new
folder named Config in the Views folder. If you are using Visual Studio Code, then you’ll have
to do this manually.

6. In the Views\Config folder, in Index.cshtml, add statements to output the providers in a table,
as shown in the following markup:

@model ConfigIndexViewModel
@{
 ViewData["Title"] = "Configuration";
}
<div class="text-center">
 <h1 class="display-4">@ViewData["Title"]</h1>
 <h2>Providers</h2>
 <table class="table table-bordered table-striped">
 <thead>
 <tr>
 <th>Provider</th>
 </tr>
 </thead>
 <tbody>
 @foreach (string? provider in Model.Providers)
 {
 <tr>
 <td>@provider</td>
 </tr>

Configuring and Containerizing ASP.NET Core Projects286

 }
 </tbody>
 </table>
 <h2>Settings</h2>
 <dl>
 @foreach (KeyValuePair<string, string?> setting in Model.Settings)
 {
 <dt>@setting.Key</dt>
 <dd>@setting.Value</dd>
 }
 </dl>
</div>

7. In the Views\Shared folder, in _Layout.cshtml, add a menu item for the configuration page,
as shown in the following markup:

<li class="nav-item">
 <a class="nav-link text-dark" asp-area="" asp-controller="Config"
 asp-action="Index">Config

8. Start the Northwind.Mvc website project using the https launch profile.
9. Note the table of providers showing sources of configuration, including environment variables

and JSON files, as shown in Figure 8.4:

Figure 8.4: Providers table showing sources of configuration

10. Note the table of settings, including logging levels that come from appsettings.Development.
json, as shown in Figure 8.5, and that match the contents of the file:

Chapter 8 287

{
 "Logging": {
 "LogLevel": {
 "Default": "Information",
 "Microsoft.AspNetCore": "Warning",
 "Microsoft.AspNetCore.OutputCaching": "Information"
 }
 }
}

Figure 8.5: Settings from appsettings.Development.json

11. Also note in the table of settings, database connection strings that come from appsettings.
json, as shown in Figure 8.6 and that match the contents of the file:

{
 "ConnectionStrings": {
 "DefaultConnection": "DataSource=app.db;Cache=Shared",
 "NorthwindConnection":
"Server=tcp:127.0.0.1,1433;Database=Northwind;MultipleActiveResultSets=
true;TrustServerCertificate=true;"
 },
 "Logging": {
 "LogLevel": {
 "Default": "Information",
 "Microsoft.AspNetCore": "Warning"
 }
 },
 "AllowedHosts": "*"
}

Most of these settings come from environment variables, including ones you set
yourself, like MY_SQL_USR and MY_SQL_PWD.

Configuring and Containerizing ASP.NET Core Projects288

Figure 8.6: Database connection strings from appsettings.json

12. Close Chrome and shut down the web server.
13. In the Models folder, in ConfigIndexViewModel.cs, add two properties to store the Identity

database connection string and the output caching logging level, as shown highlighted in the
following code:

namespace Northwind.Mvc.Models;

public record ConfigIndexViewModel(
 IEnumerable<string?> Providers,
 IDictionary<string, string?> Settings,
 string OutputCachingLoggingLevel,
 string IdentityConnectionString);

14. In the Controllers folder, in ConfigController.cs, set the two properties in the model, as
highlighted in the following code:

ConfigIndexViewModel model = new(
 Providers: _configRoot.Providers
 .Select(provider => provider.ToString()),
 Settings: _configRoot.AsEnumerable().ToDictionary(),
 OutputCachingLoggingLevel: _configRoot[
 "Logging:LogLevel:Microsoft.AspNetCore.OutputCaching"]
 ?? "Not found.",
 IdentityConnectionString: _configRoot[
 "ConnectionStrings:DefaultConnection"]
 ?? "Not found.");

15. In the Views\Config folder, in Index.cshtml, immediately after the Settings heading and
before the definitions list <dl>, output the two properties, as shown in the following markup:

<div class="alert alert-primary" role="alert">
 <dl>
 <dt>Output caching logging level</dt>

Chapter 8 289

 <dd>@Model.OutputCachingLoggingLevel</dd>
 <dt>Identity connection string</dt>
 <dd>@Model.IdentityConnectionString</dd>
 </dl>
</div>

16. Start the Northwind.Mvc website project using the https launch profile.
17. Note the table of providers showing sources of configuration, including environment variables

and JSON files, as shown in Figure 8.7:

Figure 8.7: Providers table showing sources of configuration

Configuration overriding in production deployments
Configuration overriding is particularly useful in cloud environments, where you need different con-
figurations for development, testing, and production environments.

Remember that configuration is hierarchical and supports multiple sources, like appsettings.json
and appsettings.{Environment}.json (for example, appsettings.Production.json), environment
variables, command-line arguments, and Azure Key Vault or other external configuration providers
(for cloud environments).

When the website project starts, it reads configuration settings from all available sources in the order
they are added. By default, ASP.NET Core loads the configuration in a specific order, allowing later
sources to override earlier ones.

Environment variables are often the preferred method for overriding configurations in cloud deploy-
ments because they are easy to change without altering the application itself, which is especially useful
for containerized and serverless systems. By default, ASP.NET Core includes environment variables
as a configuration source, so an explicit AddEnvironmentVariables() call is optional unless you’re
customizing the configuration setup.

ASP.NET Core maps environment variables to configuration settings using a specific naming convention.
The default settings in JSON files use a hierarchical structure (sections and subsections). Environment
variables use a colon (:) or double underscore (__) to represent the hierarchy.

Configuring and Containerizing ASP.NET Core Projects290

For example, given the following appsettings.json file:

{
 "Logging": {
 "LogLevel": {
 "Default": "Information",
 "Microsoft": "Warning"
 }
 }
}

You can override this configuration to set the default logging level from Information to Debug by using
the following environment variable:

Logging:LogLevel:Default=Debug

Configuration overriding in Docker
In a Docker container, you would typically set the environment variable in the Docker container or
the container orchestration system, like Kubernetes, as shown in the following Dockerfile:

FROM mcr.microsoft.com/dotnet/aspnet:9.0 AS base
WORKDIR /app
Set environment variable to override configuration.
ENV Logging__LogLevel__Default=Debug
COPY . .
ENTRYPOINT ["dotnet", "YourApp.dll"]

Environment variables are especially useful in cloud scenarios for the following reasons:

• Configuration per environment: Cloud environments often differ in configuration needs. For
example, you might have different logging levels, database connection strings, or API keys for
development, staging, and production environments. Using environment variables makes it
easy to adjust these settings without modifying the code or even the configuration files.

• Security: Sensitive information like database passwords, API keys, or connection strings can
be stored securely in environment variables. This keeps them out of version control instead of
committing them in appsettings.json, and they can be managed by cloud platforms securely
by using features like Azure Key Vault and AWS Secrets Manager.

• Containerized applications: Containers like Docker are designed to be immutable. Changing
configuration should not involve rebuilding the image. Instead, you can inject configuration
through environment variables at runtime, either via the Docker CLI or orchestrators like
Kubernetes, which support setting environment variables for pods and containers.

• Serverless platforms: In serverless platforms such as Azure Functions or AWS Lambda, you
don’t control the underlying infrastructure, so environment variables offer a straightforward
way to modify the configuration between deployments without modifying the code.

Chapter 8 291

Configuration overriding in Kubernetes
In Kubernetes, you can set environment variables at the pod level in your deployment.yaml file:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: myapp-deployment
spec:
 replicas: 1
 template:
 spec:
 containers:
 - name: myapp
 image: myapp:latest
 env:
 - name: Logging__LogLevel__Default
 value: Debug
 - name: ConnectionStrings__MyDatabase
 value: "Server=prod-db-server;Database=mydb;User
Id=myuser;Password=mypassword;"

In the preceding example, the Logging:LogLevel:Default and ConnectionStrings:MyDatabase
values will be overridden by the environment variables, allowing Kubernetes to inject cloud-specific
configuration.

Using environment variables to override configuration in cloud deployments is one of the most flexible
and secure approaches to managing settings. It keeps sensitive data out of source control, makes it
easy to apply configuration changes without rebuilding or redeploying your application, and works
seamlessly across containers, serverless environments, and more traditional cloud-based VMs.

By using environment variables, you create a more portable and maintainable application that’s easier
to configure per environment and scale in cloud platforms.

Loading configuration using the Options pattern
ASP.NET Core promotes the use of the Options pattern to manage settings. This involves binding
sections of your configuration to strongly-typed classes, which are then injected into services or
controllers. This pattern provides type safety and IntelliSense, making it easier to manage and use
configuration settings.

Configuring and Containerizing ASP.NET Core Projects292

Let’s implement this pattern in our MVC project:

1. In the Northwind.Mvc project, in appsettings.json, add a new section for a couple of settings
related to the website, as highlighted in the following markup:

{
 ...,
 "Northwind": {
 "SiteTitle": "Northwind B2B",
 "PagerSize": 20
 }
}

2. In the Northwind.Mvc project, add a new class file to represent these settings named
NorthwindOptions.cs, as shown in the following code:

namespace Northwind.Mvc;

public class NorthwindOptions
{
 public string SiteTitle { get; set; } = "Missing title.";
 public int PagerSize { get; set; } = 10;
}

3. In Program.cs, bind this section of the configuration to the NorthwindOptions class, as shown
in the following code:

builder.Services.Configure<NorthwindOptions>(builder
 .Configuration.GetSection("Northwind"));

4. In the Models folder, in ConfigIndexViewModel.cs, add another property to store the options,
as highlighted in the following code:

namespace Northwind.Mvc.Models;

public record ConfigIndexViewModel(
 IEnumerable<string?> Providers,
 IDictionary<string, string?> Settings,
 string OutputCachingLoggingLevel,
 string IdentityConnectionString,
 NorthwindOptions Options);

5. To access the configured options in a service, you inject IOptions<NorthwindOptions> into
the constructor, as highlighted in the following code:

public class ConfigController : Controller
{

Chapter 8 293

 private readonly IConfigurationRoot _configRoot;
 private readonly NorthwindOptions _options;

 public ConfigController(IConfiguration config,
 IOptions<NorthwindOptions> options)
 {
 // No service is registered for IConfigurationRoot but
 // one is registered for IConfiguration and it also
 // implements IConfigurationRoot.
 _configRoot = (IConfigurationRoot)config;

 _options = options.Value;
 }

 public IActionResult Index()
 {
 ConfigIndexViewModel model = new(
 Providers: _configRoot.Providers
 .Select(provider => provider.ToString()),
 Settings: _configRoot.AsEnumerable().ToDictionary(),
 OutputCachingLoggingLevel: _configRoot[
 "Logging:LogLevel:Microsoft.AspNetCore.OutputCaching"]
 ?? "Not found.",
 IdentityConnectionString: _configRoot[
 "ConnectionStrings:DefaultConnection"]
 ?? "Not found.",
 Options: _options);

 return View(model);
 }
}

6. Now, we can show the options in the view, as shown in the following code:

<div class="alert alert-danger" role="alert">
 <dl>
 <dt>Site title</dt>
 <dd>@Model.Options.SiteTitle</dd>
 <dt>Pager size</dt>
 <dd>@Model.Options.PagerSize</dd>
 </dl>
</div>

Configuring and Containerizing ASP.NET Core Projects294

7. Start the Northwind.Mvc website project using the https launch profile.
8. Click Config, and note the options displayed, as shown in Figure 8.8:

Figure 8.8: Providers table showing sources of configuration

Using IOptionsSnapshot and IOptionsMonitor
There are related classes that you can use:

• IOptionsSnapshot<T>: This is useful if you want the options to be reloaded when the config-
uration changes. This is typically used in scoped services.

• IOptionsMonitor<T>: Provides notifications when options change. It can be used to watch for
changes in configuration at runtime and react accordingly.

Here’s an example of using IOptionsMonitor:

public class HomeController : Controller
{
 private readonly ILogger<HomeController> _logger;
 private readonly NorthwindOptions _settings;

 public HomeController(ILogger<HomeController> logger,
 IOptionsMonitor<NorthwindOptions> optionsMonitor)
 {
 _logger = logger;
 _settings = optionsMonitor.CurrentValue;

 optionsMonitor.OnChange(changedSettings =>
 {
 _settings = changedSettings;
 _logger.LogInformation("Northwind settings have changed.");
 });
 }
}

Chapter 8 295

Configuration validation
ASP.NET Core allows you to validate configuration options. This can be done by implementing the
IValidateOptions<T> interface or using the Validate extension method, as shown in the following
code:

builder.Services
 .Configure<NorthwindOptions>(builder.Configuration.GetSection("Northwind"))
 .Validate(settings => settings.PagerSize > 0,
 "PagerSize must be greater than zero.");

With the preceding validation rule, if PagerSize is less than or equal to 0, the application will throw
an OptionsValidationException during startup.

Using custom configuration providers
If your application needs to load configuration from a custom source, you can create a custom configura-
tion provider by inheriting from ConfigurationProvider and implementing an IConfigurationSource,
as shown in the following code:

public class MyCustomConfigurationSource : IConfigurationSource
{
 public IConfigurationProvider Build(IConfigurationBuilder builder)
 {
 return new MyCustomConfigurationProvider();
 }
}

public class MyCustomConfigurationProvider : ConfigurationProvider
{
 public override void Load()
 {
 // Load custom settings into the Data dictionary.
 Data = new Dictionary<string, string>
 {
 { "CustomSetting", "CustomValue" }
 };
 }
}

Then, add this custom provider to the configuration pipeline:

builder.Configuration.Add(new MyCustomConfigurationSource());

Configuring and Containerizing ASP.NET Core Projects296

ASP.NET Core provides a flexible configuration system that can load settings from a wide range of
sources. The Options pattern is the recommended approach for managing configuration in a type-safe
way, and advanced techniques like validation and custom providers extend its capabilities.

By structuring your application’s configuration effectively, you can ensure that it is maintainable,
scalable, and easy to manage as your project grows.

Now, let’s see how you can prepare your web projects for deployment by containerizing them.

Containerizing ASP.NET Core projects
Containerization is a technology that is about making software development, deployment, and exe-
cution more efficient, consistent, and scalable.

How containers work and their benefits
Containers run on a single machine’s OS kernel and share that kernel with other containers. They’re
lightweight because they don’t need the extra load of a hypervisor that manages VMs. Containers run
directly within the host machine’s kernel. This makes them more efficient, faster, and less resource-in-
tensive than traditional VMs that require a full-blown OS for each VM. This makes containers especially
useful for hosting microservices.

The primary benefits of containerization are shown in the following list:

• Portability: Once a container is created, it can be run anywhere, making it easy to move appli-
cations across different operating system environments like variations of Linux or Windows
Server with confidence. This allows you to switch container hosting providers with no issues
so you are not tied to an expensive host if Microsoft, Amazon, or whoever you are paying in-
creases their prices for container hosting services, like any of the following:

• Azure App Service: https://azure.microsoft.com/en-us/products/app-service
• Azure Kubernetes Service (AKS): https://azure.microsoft.com/en-us/products/

kubernetes-service

• Elastic Kubernetes Service (EKS): https://aws.amazon.com/eks/

• Consistency: Containers provide a consistent environment for applications from development
through to production, reducing bugs and inconsistencies.

• Isolation: Each container is isolated, so it doesn’t interfere with others or the host system.
• Efficiency: Containers use system resources more efficiently than VMs, allowing you to get

more out of your hardware.
• Scalability: Containers can be easily scaled up or down, making it simple to adjust resources

to meet demand.
• Speedy deployments: Containers can be created and destroyed in seconds, making it easier

to dynamically adjust to workload demands.

https://azure.microsoft.com/en-us/products/app-service
https://azure.microsoft.com/en-us/products/kubernetes-service
https://azure.microsoft.com/en-us/products/kubernetes-service
https://aws.amazon.com/eks/

Chapter 8 297

No technology solution is perfect, so let’s review some of the potential downsides to containerization:

• Security concerns: Since containers share the host OS kernel, a vulnerability in the kernel
could potentially compromise all containers running on that host. Containers provide process
isolation, but it is not as robust as the hardware-level isolation provided by VMs. This can
increase the risk of container escape attacks, where a malicious container could access the
host system. But overall, your container host provider should manage this better than you
could on your own.

• Management complexity: In production, managing a large number of containers requires
orchestration tools like Kubernetes, which add complexity and require significant expertise
to configure and maintain. During development, managing containers can be significantly
improved using .NET Aspire. Container networking can become complex, especially when
dealing with multi-host networking, service discovery, and network policies.

• Persistent storage management: Containers are designed to be ephemeral, which can make
managing persistent storage challenging. Solutions like volume mounts and network-attached
storage are available from any good container host provider but must be carefully implemented
to ensure data persistence and consistency.

• Compatibility issues: Not all applications are easily containerized, particularly legacy appli-
cations that may depend on specific hardware or OS features.

• Debugging challenges: The layered nature of container images and the complexity of container
orchestration can make debugging more challenging compared to traditional applications.

While containerization offers significant advantages in terms of efficiency, scalability, and consistency,
you should consider the potential downsides.

Now, let’s introduce you to some technologies that enable containerization.

Docker and .NET Aspire
Docker is a platform that popularized containerization and made it accessible to developers by pro-
viding an open standard for packaging and distributing containerized applications. Building, ship-
ping, and running applications are streamlined with Docker, making development workflows more
predictable and scalable. It packages applications and their dependencies into a container, which can
then be run on any Linux server or Windows that supports Docker. These containers are lightweight,
ensuring that you can pack a lot of applications into a single host.

Beyond Docker, there’s a whole ecosystem to support containerization, including orchestration tools
like Kubernetes, which automates the deployment, scaling, and management of containerized ap-
plications in production. .NET Aspire performs a similar role on a developer’s computer during local
development.

Docker and Kubernetes serve different but complementary roles in the world of containerization.
If we consider containerization as organizing and shipping goods, Docker would be the packaging
system that wraps up the goods (applications and their dependencies) into neat, transportable con-
tainers, while Kubernetes would be the shipping hub that manages where and how these containers
are shipped, stored, and scaled.

Configuring and Containerizing ASP.NET Core Projects298

Docker provides the tools for managing the life cycle of containers: building images, running containers,
moving them around, managing versions, and so on. It simplifies the process of creating containers,
making it accessible even to those new to the technology.

Docker containers can be integrated into CI/CD pipelines to automate the deployment process, making
it faster and reducing the chances of errors.

.NET Aspire is a part of the broader .NET ecosystem, focusing on modernizing .NET with the latest
technologies and practices. This includes embracing cloud-native practices, microservices archi-
tectures, and, notably, containerization technologies like Docker. Containerizing .NET applications
with Docker enables developers to take full advantage of the portability, efficiency, and isolation that
containers offer.

Installing Docker and using prebuilt images
Let’s install Docker and explore how to use it to manage containers:

1. If you do not already have Docker Desktop installed on your computer, please install it now
from the following link: https://www.docker.com/products/docker-desktop/.

2. Start Docker Desktop and note the user interface, including the Containers view, which will
probably be empty if you have not run any containers yet, as shown in Figure 8.9:

Figure 8.9: The Containers view in Docker Desktop

Aspire 9 supports both .NET 8 and .NET 9, so you can continue to target a long-term sup-
port version of .NET if you choose.

https://www.docker.com/products/docker-desktop/

Chapter 8 299

3. In the left navigation bar, click Images, and note that on my machine I already have a few
Docker images downloaded, as shown in Figure 8.10:

Figure 8.10: The Images view in Docker Desktop

4. In a terminal, list the Docker images, as shown in the following command:

docker images

5. Note the results on my computer, as shown in the following output that matches Figure 8.10:

REPOSITORY TAG IMAGE ID CREATED SIZE
rabbitmq 3 d6745c548476 4 weeks ago 221MB
redis latest d1397258b209 2 months ago 138MB
ankane/pgvector latest f2c967e41f72 5 months ago 440MB

6. In a terminal, download the Docker image for the sample ASP.NET Core project image and
run it with external port 8000 mapped to internal port 8080, interactive TTY mode (-it), and
remove it when the container stops (--rm), as shown in the following command:

docker run --rm -it -p 8000:8080 mcr.microsoft.com/dotnet/
samples:aspnetapp

In the table of images, note the Tag column, which is often used for version infor-
mation. If you don’t have any Docker images, then none will be listed, of course!
For now, just look at my list and imagine the possibilities.

Configuring and Containerizing ASP.NET Core Projects300

7. Note the results, including downloading the image, starting the container, and outputting the
console output from inside the container that is hosting the ASP.NET Core sample project, as
shown in the following output:

Unable to find image 'mcr.microsoft.com/dotnet/samples:aspnetapp' locally
aspnetapp: Pulling from dotnet/samples
4abcf2066143: Pull complete
4e1692478f05: Pull complete
73df137ef55b: Pull complete
0ab1344a44f8: Pull complete
c9a33571af57: Pull complete
458c6e372327: Pull complete
d57ff6e481d4: Pull complete
Digest:
sha256:0bca5ff4b566b29c7d323efc0142ee506681efb31a7839cec91a9acbf760dfa8
Status: Downloaded newer image for mcr.microsoft.com/dotnet/
samples:aspnetapp
warn: Microsoft.AspNetCore.DataProtection.Repositories.
FileSystemXmlRepository[60]
 Storing keys in a directory '/root/.aspnet/DataProtection-Keys'
that may not be persisted outside of the container. Protected data will
be unavailable when container is destroyed. For more information go to
https://aka.ms/aspnet/dataprotectionwarning
warn: Microsoft.AspNetCore.DataProtection.KeyManagement.XmlKeyManager[35]
 No XML encryptor configured. Key {419c59e8-3d0b-43fa-bf2c-
4574734788c4} may be persisted to storage in unencrypted form.
info: Microsoft.Hosting.Lifetime[14]
 Now listening on: http://[::]:8080
info: Microsoft.Hosting.Lifetime[0]
 Application started. Press Ctrl+C to shut down.
info: Microsoft.Hosting.Lifetime[0]
 Hosting environment: Production
info: Microsoft.Hosting.Lifetime[0]
 Content root path: /app

8. Start your preferred web browser, navigate to http://localhost:8000/, and you can see that
the home page shows information about the container, as shown in Figure 8.11:

http://localhost:8000/

Chapter 8 301

Figure 8.11: An ASP.NET Core website hosted in a Docker container

9. In Docker Desktop, you can see that the container is running with a random name like fo-
cused_mclean, as shown in Figure 8.12:

Figure 8.12: Randomly named running container

10. Close the browser and, at the terminal, shut down the web server by pressing Ctrl + C.
11. In Docker Desktop, note the container automatically removes itself due to the --rm switch but

the image remains on the local disk.

Although Visual Studio does have support for working with Docker containers directly, the modern
way of doing so is via .NET Aspire. Let’s review what Aspire does for you.

Configuring and Containerizing ASP.NET Core Projects302

Aspire project types
To work, Aspire solutions need two special projects:

• AppHost: This is a console app that starts all the other projects and ensures the correct con-
figuration of all resources and endpoints.

• ServiceDefaults: This is a class library that centralizes the configuration of all the Aspire re-
sources, including components like databases and .NET projects.

The AppHost project will run any .NET projects, containers, or executables needed as part of your
cloud-native distributed application. If you are using Visual Studio, then debugging will attach to all
the running projects, allowing you to step into and across each service.

The ServiceDefaults project contains common service and component logic that applies to each of
the projects in the app. This is where components like service discovery, telemetry, and health checks
are configured. It is a centralized convention where you would go to customize configurations to be
developer-friendly.

All Aspire solutions will have these two special projects, as well as any other projects that make up
your complete distributed solution, as shown in Figure 8.13:

Figure 8.13: DCP, Aspire projects, your projects, and containers in an Aspire application model

The Developer Control Plane (DCP) is a closed-source orchestrator used by Aspire. The
team doesn’t like to talk about it much because it is closed source and therefore not open
to developers to customize. Everything else about Aspire is designed to be open and ex-
tendable.

Chapter 8 303

The AppHost project reads configuration from the ServiceDefaults project and uses the DCP to or-
chestrate the startup of any containers and your projects. Your projects should read the configuration
from the ServiceDefaults project too.

Aspire resource types
In Aspire, the built-in types of resource are:

• Project: A .NET project, for example, an ASP.NET Core web service or website
• Container: A container image, for example, a Docker image of Redis or RabbitMQ
• Executable: An executable file

For container resources, you can either have Aspire launch a container during development or connect
to an existing resource via connection strings.

Developer dashboard for monitoring
Starting an Aspire project brings you to the developer dashboard. This is an essential tool for debug-
ging distributed applications because it gives you a unified view of your services alongside their logs,
metrics, and traces.

You can use it to see logs and traces across all projects, for example, a distributed trace showing a re-
quest to the weather page. Traces are very helpful for diagnosing problems in distributed applications.

The developer dashboard uses all the same open standards you would use in production when you
configure production telemetry systems like Grafana and Prometheus.

The Aspire developer dashboard is visible while the AppHost project is running and will launch au-
tomatically when you start the project. The left navigation provides links to the different parts of the
dashboard, as described in the following list:

• Resources: This is the home page of the dashboard, and it lists all the projects, containers,
executables, and other resources in your Aspire solution. It shows the state of each resource
and gives you links directly to parts of the solution like web services and web user interfaces.
It also highlights errors when they are logged so that you can easily jump to more details to
zero in on problems.

• Console: This provides access to the logs of all the parts of your Aspire solution that write to
the console or standard output using plain text.

• Structured: This provides a filterable view of your logs. The structured logs maintain the
properties of your log messages so that they can be filtered and searched on, in contrast with
the console log, which merges all properties into a single string message.

• Traces: This shows the path of a single action through all the layers of your solution as a dis-
tributed trace. This helps you to find the root cause of errors and performance bottlenecks,
and diagnose other behaviors.

• Metrics: This shows all the metrics for your application.

Configuring and Containerizing ASP.NET Core Projects304

Adding Aspire to an existing solution
Aspire can also be used with existing applications so you can incrementally adopt the parts of the stack.
Aspire is only available with .NET 8 or later. If you have existing projects that target earlier versions,
then you will need to upgrade to at least .NET 8 before you use any of the parts of the Aspire stack. You
will also need Visual Studio version 17.10 or later if you want to use the Visual Studio tooling.

Let’s try adding Aspire to an existing solution:

1. Use your preferred code editor to open the MatureWeb solution.
2. Use your preferred code editor to open Directory.Packages.props and add a new ItemGroup,

as shown in the following code:

<ItemGroup Label="For .NET Aspire.">
 <PackageVersion Include="Aspire.Hosting.AppHost"
 Version="9.0.0" />
 <PackageVersion Include=
 "Microsoft.Extensions.Http.Resilience"
 Version="9.0.0" />
 <PackageVersion Include=
 "Microsoft.Extensions.ServiceDiscovery"
 Version="9.0.0" />
 <PackageVersion Include=
 "OpenTelemetry.Exporter.OpenTelemetryProtocol"
 Version="1.9.0" />
 <PackageVersion Include=
 "OpenTelemetry.Extensions.Hosting"
 Version="1.9.0" />
 <PackageVersion Include=
 "OpenTelemetry.Instrumentation.AspNetCore"
 Version="1.9.0" />
 <PackageVersion Include=
 "OpenTelemetry.Instrumentation.Http"
 Version="1.9.0" />
 <PackageVersion Include=
 "OpenTelemetry.Instrumentation.Runtime"
 Version="1.9.0" />
</ItemGroup>

More Information: You can learn more about the Aspire dashboard at the following link:
https://learn.microsoft.com/en-us/dotnet/aspire/fundamentals/dashboard/
overview. Information about how you can run the dashboard standalone without an
Aspire solution is found at the following link: https://learn.microsoft.com/en-us/
dotnet/aspire/fundamentals/dashboard/standalone.

https://learn.microsoft.com/en-us/dotnet/aspire/fundamentals/dashboard/overview
https://learn.microsoft.com/en-us/dotnet/aspire/fundamentals/dashboard/overview
https://learn.microsoft.com/en-us/dotnet/aspire/fundamentals/dashboard/standalone
https://learn.microsoft.com/en-us/dotnet/aspire/fundamentals/dashboard/standalone

Chapter 8 305

3. In Solution Explorer, right-click the Northwind.Mvc project and select Add | .NET Aspire
Orchestrator Support....

4. In the Add .NET Aspire Orchestrator Support dialog box, review the options and then click
OK, as shown in Figure 8.14:

Figure 8.14: Adding .NET Aspire Orchestrator Support

5. In the MatureWeb.AppHost.csproj project file, remove the version attribute from the Aspire.
Hosting.AppHost package reference, and note this project uses the Aspire 9 SDK and this
console app project is an Aspire host, as shown in the following markup:

<Sdk Name="Aspire.AppHost.Sdk" Version="9.0.0" />
...
<IsAspireHost>true</IsAspireHost>

6. In the MatureWeb.ServiceDefaults.csproj project file, remove the version attributes from
the package references and note this project is a shared Aspire class library, as shown in the
following markup:

<IsAspireSharedProject>true</IsAspireSharedProject>

7. In the Northwind.Mvc.csproj project file, note the project reference to the Aspire service
defaults project.

8. In the Northwind.Mvc.csproj project file, in Program.cs, note the statements that call
AddServiceDefaults and MapDefaultEndpoints, as shown in the following code:

var builder = WebApplication.CreateBuilder(args);

builder.AddServiceDefaults();

...

var app = builder.Build();

app.MapDefaultEndpoints();

Configuring and Containerizing ASP.NET Core Projects306

9. Right-click in AddServiceDefaults, click Go To Definition (or press F12), and note the Aspire
extension method that configures OpenTelemetry, health checks, service discovery, and re-
silience for the MVC project, as shown in the following code:

public static TBuilder AddServiceDefaults<TBuilder>(
 this TBuilder builder)
 where TBuilder : IHostApplicationBuilder
{
 builder.ConfigureOpenTelemetry();

 builder.AddDefaultHealthChecks();

 builder.Services.AddServiceDiscovery();

 builder.Services.ConfigureHttpClientDefaults(http =>
 {
 // Turn on resilience by default
 http.AddStandardResilienceHandler();

 // Turn on service discovery by default
 http.AddServiceDiscovery();
 });

 // Uncomment the following to restrict the allowed schemes for service
discovery.
 // builder.Services.Configure<ServiceDiscoveryOptions>(options =>
 // {
 // options.AllowedSchemes = ["https"];
 // });

 return builder;
}

10. In the Northwind.Mvc.csproj project file, in Program.cs, right-click in MapDefaultEndpoints,
click Go To Definition (or press F12), and note the Aspire extension method that adds health
check endpoints if in the development environment, as shown in the following code:

public static WebApplication MapDefaultEndpoints(
 this WebApplication app)
{
 // Adding health checks endpoints to applications in non-development
environments has security implications.

Chapter 8 307

 // See https://aka.ms/dotnet/aspire/healthchecks for details before
enabling these endpoints in non-development environments.
 if (app.Environment.IsDevelopment())
 {
 // All health checks must pass for app to be considered ready to
accept traffic after starting
 app.MapHealthChecks("/health");

 // Only health checks tagged with the "live" tag must pass for app to
be considered alive
 app.MapHealthChecks("/alive", new HealthCheckOptions
 {
 Predicate = r => r.Tags.Contains("live")
 });
 }

 return app;
}

11. In the MatureWeb.AppHost project, in Program.cs, add statements to add the existing SQL Edge
container to the Aspire orchestration, as shown highlighted in the following code:

var builder = DistributedApplication.CreateBuilder(args);

IResourceBuilder<ContainerResource> sqlServer = builder
 .AddContainer(name: "azuresqledge",
 image: "mcr.microsoft.com/azure-sql-edge")
 .WithLifetime(ContainerLifetime.Persistent);

builder.AddProject<Projects.Northwind_Mvc>("northwind-mvc")
 .WaitFor(sqlServer);

builder.Build().Run();

12. Start Docker Desktop.
13. Start the MatureWeb.AppHost project without debugging.

Configuring a container to be persistent and forcing a project to wait for a resource
to be ready are features introduced with Aspire 9.0.

Configuring and Containerizing ASP.NET Core Projects308

14. At the command prompt or terminal, note that the distributed application starts and shows
the URL for the dashboard for the cases when the browser does not start and navigate to it
automatically, as shown in the following output:

info: Aspire.Hosting.DistributedApplication[0]
 Aspire version: 8.0.0+6596fdc41a8d419876a6bf4abc17b7c66b9ef63a
info: Aspire.Hosting.DistributedApplication[0]
 Distributed application starting.
info: Aspire.Hosting.DistributedApplication[0]
 Application host directory is: C:\GitHub\eshop\src\eShop.AppHost
info: Aspire.Hosting.DistributedApplication[0]
 Now listening on: https://localhost:19888
info: Aspire.Hosting.DistributedApplication[0]
 Login to the dashboard at https://localhost:19888/
login?t=42930028c8398321487a942b8aeb6cd0
info: Aspire.Hosting.DistributedApplication[0]
 Distributed application started. Press Ctrl+C to shut down.

15. In the Aspire developer dashboard, wait for the Aspire resources to successfully start and have
a State value of Running, as shown in in Figure 8.15:

Figure 8.15: Resources running in Aspire developer dashboard

16. Click the endpoint for the MVC project and note that a new tab or browser window opens
showing the website project you created.

17. Close the solution.

If you are not using Visual Studio, you can manually create new instances of the
AppHost and ServiceDefaults projects using dotnet new and then add them
to an existing solution, but they will not already reference an existing project.

Chapter 8 309

Deployment with Aspire
The AppHost project has two execution modes, run and publish:

• Run mode is used during the developer inner loop on your local computer.
• Publish mode produces a manifest file that statically describes the application model that can

be used in deployment scenarios.

The application model can produce a manifest definition that describes the solution’s relationships
and dependencies that tools can consume, augment, and build upon for deployment.

With this manifest, you can get your Aspire solution into Azure using Azure Container Apps in the
simplest and fastest way possible. The Azure Developer CLI and Aspire work together to enable you
to quickly provision and deploy the Azure resources in one step. The Azure Developer CLI can also
create Bicep from the manifest to allow developers and platform engineers to audit or augment the
deployment processes.

Although Aspire today works best for deploying to Azure, it is open to other deployment systems.

The final artifacts of an Aspire application are .NET apps and configurations that can be deployed
to your cloud environments. With the strong container-first mindset of Aspire, the .NET SDK native
container builds serve as a valuable tool to publish these apps to containers.

While Aspire itself doesn’t natively provide a direct mechanism to deploy your applications to their
final destinations, the Aspire application model that you build knows all about the dependencies,
configurations, and connections to all the distributed solution’s resources.

Another deployment tool is Aspir8, which can generate a deployment YAML for a .NET Aspire Ap-
pHost project, but be warned that it is still in preview, so you can only install prerelease versions. You
can learn more about Aspir8 at the following link: https://prom3theu5.github.io/aspirational-
manifests/getting-started.html.

Important!

The AppHost project itself is not deployed and does not run outside of local development
and test scenarios.

Bicep is a domain-specific language (DSL) that uses declarative syntax to deploy Azure
resources.

More Information: You can learn about deploying to Azure Container Apps at the following
link: https://devblogs.microsoft.com/dotnet/how-to-deploy-dotnet-aspire-
apps-to-azure-container-apps/.

https://prom3theu5.github.io/aspirational-manifests/getting-started.html
https://prom3theu5.github.io/aspirational-manifests/getting-started.html
https://devblogs.microsoft.com/dotnet/how-to-deploy-dotnet-aspire-apps-to-azure-container-apps/
https://devblogs.microsoft.com/dotnet/how-to-deploy-dotnet-aspire-apps-to-azure-container-apps/

Configuring and Containerizing ASP.NET Core Projects310

Aspir8’s GitHub repository can be found at the following link:

https://github.com/prom3theu5/aspirational-manifests

Practicing and exploring
Test your knowledge and understanding by answering some questions, getting some hands-on practice,
and exploring this chapter’s topics with deeper research.

Exercise 8.1 – Online material
You can read more about the Options pattern in ASP.NET Core at the following link:

https://learn.microsoft.com/en-us/aspnet/core/fundamentals/configuration/options

The official ASP.NET Core documentation has useful pages about deployment, as shown at the fol-
lowing links:

• Deploy to IIS (Windows Internet Information Service): https://learn.microsoft.com/en-us/
aspnet/core/tutorials/publish-to-iis.

• Deploy to Azure Web App using Visual Studio: https://learn.microsoft.com/en-us/aspnet/
core/tutorials/publish-to-azure-webapp-using-vs.

• Deploy to Nginx on Linux: https://learn.microsoft.com/en-us/aspnet/core/host-and-
deploy/linux-nginx.

Exercise 8.2 – Practice exercises
The following practice exercises help you to explore the topics in this chapter more deeply.

Learn how to run a custom container in Azure with the following Microsoft official tutorial:

https://learn.microsoft.com/en-us/azure/app-service/quickstart-custom-container

Exercise 8.3 – Test your knowledge
Answer the following questions:

1. What is the main idea of DI?
2. In .NET, you can register dependency services with different lifetimes. What are they?
3. What makes containers lightweight compared to VMs?
4. What is the relationship between a Docker registry, a Docker image, and a Docker container?
5. In a Dockerfile, how do you specify the base image?
6. What are the three main types of Aspire resource?
7. What role do the AppHost project and the ServiceDefaults project play in an Aspire solution?
8. What are the benefits of referencing an Aspire component package instead of the usual package

for a component like Redis?
9. What container technologies are supported by Aspire?
10. What does the AddProject method do?

https://github.com/prom3theu5/aspirational-manifests

https://learn.microsoft.com/en-us/aspnet/core/fundamentals/configuration/options

https://learn.microsoft.com/en-us/aspnet/core/tutorials/publish-to-iis
https://learn.microsoft.com/en-us/aspnet/core/tutorials/publish-to-iis
https://learn.microsoft.com/en-us/aspnet/core/tutorials/publish-to-azure-webapp-using-vs
https://learn.microsoft.com/en-us/aspnet/core/tutorials/publish-to-azure-webapp-using-vs
https://learn.microsoft.com/en-us/aspnet/core/host-and-deploy/linux-nginx
https://learn.microsoft.com/en-us/aspnet/core/host-and-deploy/linux-nginx
https://learn.microsoft.com/en-us/azure/app-service/quickstart-custom-container

Chapter 8 311

Exercise 8.4 – Explore topics
Use the links on the following page to learn more about the topics covered in this chapter:

https://github.com/markjprice/web-dev-net9/blob/main/docs/book-links.md#chapter-8---
configuring-and-containerizing-asp-net-core-projects

Summary
In this chapter, you learned how to:

• Configure dependency services
• Configure the HTTP pipeline
• Configure options and override them in deployments
• Containerize ASP.NET Core projects ready for deployments anywhere

In the next four chapters, you will learn how to build and test web services. Unlike a website that will
be used by a human visitor and therefore has a user interface, web services are called by code so they
have different requirements. For example, although the most common web service technologies use
controllers and models, they do not need views.

The first three of the four chapters review different technologies for building web services:

• Chapter 9 covers ASP.NET Core Web API using controllers: This provides maximum flexibility
and control, but it requires the most developer effort.

• Chapter 10 covers ASP.NET Core OData: This provides maximum developer productivity but
can be less performant and provides less control, especially over security, so works best for
internal websites like intranets.

• Chapter 11 covers FastEndpoints: This provides good developer productivity and production
performance but is not a standard part of ASP.NET Core because it relies on a third-party
NuGet package.

By comparing three mechanisms for building web services, you will be able to choose the best for
your needs.

The last of the four web service chapters covers testing web services, specifically integration testing.

https://github.com/markjprice/web-dev-net9/blob/main/docs/book-links.md#chapter-8---
configuring-and-containerizing-asp-net-core-projects

9
Building Web Services Using
ASP.NET Core Web API

This chapter is about learning how to build web services, aka HTTP (Hypertext Transfer Protocol) or
Representational State Transfer (REST) services, using ASP.NET Core Web API with controllers. You
will then learn how to consume web services using HTTP clients, which could be any other type of

.NET app, including a website, mobile, or desktop app.

While some developers use the terms HTTP and REST interchangeably when describing web services,
it is worth highlighting that they are not directly synonymous. An HTTP service is any service that
uses the HTTP protocol to communicate, regardless of architectural style. HTTP services therefore
include SOAP services, RPC (Remote Procedure Call) over HTTP, and GraphQL APIs.

REST is an architectural style that typically uses HTTP as the underlying protocol but is more specific
in how the interactions and structures are designed. So REST is a type of HTTP service, but not all
HTTP services are RESTful.

REST follows a specific set of architectural constraints like statelessness, resource orientation, and
having a uniform interface, while HTTP services don’t necessarily follow these rules. HTTP is a pro-
tocol, while REST is an architectural style that can, but doesn’t have to, use HTTP.

In this chapter, we will cover the following topics:

• Introducing web services
• Creating a web service for the Northwind database
• Documenting and trying out web services
• Caching and logging
• Consuming web services using HTTP clients
• Relaxing the same origin security policy using Cross-Origin Resource Sharing (CORS)
• Understanding identity services

Building Web Services Using ASP.NET Core Web API314

Introducing web services
Before we build a modern web service, we need to cover some background to set the context for this
chapter.

Aspects of RESTful services
REST is an architectural style for designing networked applications, particularly web services. It was
introduced by Roy Fielding in his doctoral dissertation in 2000, and its principles are widely adopted
today in web service development. Let’s review REST’s key architectural aspects.

Statelessness
RESTful services are stateless, meaning each request from a client to the server must contain all the
information needed to understand and process the request. The server doesn’t store any session
information between requests.

For example, if a client sends a request to retrieve a user’s profile, it must include everything the
server needs like authentication, user ID, and so on. The server doesn’t rely on previous interactions
to process the request.

The benefit of this aspect is scalability. Since the server doesn’t need to remember the state of any
client, it can handle multiple requests from multiple clients independently. This also makes REST
suitable for distributed, large-scale systems.

Resource-based
In REST, everything is considered a resource. For example, a user, a blog post, and a comment are all
resources. These resources are identified by URIs (Uniform Resource Identifiers).

For example, a user might be represented by the URI /users/123, and a blog post might be /posts/567.

The benefit of this aspect is that this creates a clean, structured API design, and resources can be
manipulated through standard HTTP methods like GET, POST, PUT, and DELETE.

Uniform interface
The uniform interface is one of the most important principles of REST. It dictates that RESTful APIs
must have a consistent, standardized way of interacting with resources.

The main components of the RESTful uniform interface are as follows:

• Identification of resources through URIs
• Manipulation of resources using representations like JSON or XML to represent data
• Self-descriptive messages where the server response contains all the necessary information

including status, headers, and so on for the client to interpret
• Hypermedia as the engine of application state (HATEOAS), meaning that the client should

discover the actions they can take by following links provided by the server

For example, using the HTTP method GET to retrieve a resource, POST to create a new resource, PUT
to update, and DELETE to remove it.

Chapter 9 315

The benefit is that this uniformity ensures that clients and servers can communicate with minimal
knowledge about each other, leading to flexibility and independent evolution.

Client-server architecture
The client and server are separated into distinct entities. The client handles the user interface and
user interactions, while the server manages the resources and handles requests.

For example, a web browser makes a request to a web server to retrieve a resource. The client only
needs to know how to interact with the API, and it doesn’t need to know the server’s inner workings.

The benefit is that this separation allows each to evolve independently, and the client-side technology
can be completely different from the server-side technology. For example, you could build an Angular
front-end that consumes a Python Django web service API. But that’d be crazy! .NET is so much better.

Cacheability
Responses from the server should explicitly indicate whether they are cacheable or not. Caching can
significantly improve performance, especially for read-heavy applications.

For example, if a request is sent to retrieve a user’s public profile, the response can be cached so that
subsequent requests don’t need to go back to the server as long as the data remains valid.

The benefit is that properly using caching reduces the server’s load, decreases latency, and improves
user experience.

Layering
REST allows the architecture to be composed of multiple layers where each layer operates independent-
ly and handles specific responsibilities. For example, intermediaries such as load balancers, proxies,
or gateways can sit between the client and the server.

For example, a client may make a request that is handled by a load balancer, which forwards it to a
particular server in a server cluster.

The benefit is that this approach increases scalability, security, and flexibility. Intermediary layers
can handle things like authentication, logging, and load balancing without affecting the client-server
relationship.

Representation of resources
Resources in REST can have multiple representations like JSON, XML, HTML, and so on. When a
client requests a resource, the server can respond with the requested representation. Typically, REST
services use JSON as it is lightweight and easier to parse for web clients . Specifically, REST services
use JSON for the following reasons:

• The ability to negotiate the media type of content exchanged in requests and responses, such
as XML and JSON. Content negotiation happens when the client specifies a request header like
Accept: application/xml,*/*;q=0.8. This means: my preference for XML is weighted at 1.0
(the default), and my preference for all other formats is weighted at 0.8.

Building Web Services Using ASP.NET Core Web API316

• The default response format used by ASP.NET Core Web API is JSON, which means one of the
response headers would be Content-Type: application/json; charset=utf-8.

Idempotency
Certain HTTP methods like PUT, DELETE, and GET are idempotent, meaning that making the same
request multiple times will produce the same result without side effects.

For example, sending multiple DELETE /posts/123 requests will always result in that one post being
deleted (if it exists), and if it’s already deleted, nothing else is affected.

Hypermedia as the Engine of Application State (HATEOAS)
This states that a RESTful service should not only return data but also provide links for the client
to discover other actions they can take. The client navigates the application by following the links
included in the server’s response.

For example, when a client retrieves a user profile from /users/123, the response might include links
to edit the profile or delete it, as shown in the following JSON:

{
 "id": 123,
 "name": "John Doe",
 "links": {
 "edit": "/users/123/edit",
 "delete": "/users/123/delete"
 }
}

Why REST matters
Let’s summarize why REST is a great architectural style for implementing web services:

• REST’s simplicity is one of its greatest strengths. By leveraging existing web protocols and the
HTTP standard, REST makes APIs more understandable and easier to implement.

• REST’s stateless nature makes it inherently scalable, as servers can handle each request in
isolation, enabling large systems to scale horizontally by adding more servers.

• The separation of client and server, combined with standardized communication, allows for
the independent evolution of both sides.

• REST has become the de facto standard for designing web APIs, especially in environments
that require interoperability between different systems or microservices.

Understanding HTTP versions
HTTP has evolved through multiple versions since its creation, each introducing improvements in
performance, security, and functionality. The primary versions are HTTP/0.9, HTTP/1.0, HTTP/1.1,
HTTP/2, and HTTP/3.

Chapter 9 317

HTTP/0.9 (1991)
The very first version of HTTP was released in 1991, and developed for early web browsers and serv-
ers. It was a simple text-based protocol and only supported the GET method for retrieving HTML files.
It didn’t support HTTP headers, meaning there was no metadata like content type, status codes, or
content length exchanged between the client and server. It had no support for multimedia like images,
scripts, or different content types, and the connection closed after each request.

HTTP/1.0 (1996)
This was the first official version of HTTP, standardized by the IETF in RFC 1945. It introduced support
for metadata through headers, including Content-Type and Content-Length. It introduced methods
like GET, POST, and HEAD, and status codes like 200 OK and 404 Not Found.

A separate connection for each request made HTTP/1.0 inefficient and slow for complex web pages,
where multiple resources are needed. It didn’t define proper caching mechanisms, making every
resource retrieval start from scratch, impacting performance.

HTTP/1.1 (1997, updated in 1999)
Standardized in RFC 2068 (and updated in RFC 2616), HTTP/1.1 brought many improvements over
HTTP/1.0 and became the most widely used version for over a decade.

Some of its key features include the following:

• Persistent connections: Allowed the reuse of the same TCP connection for multiple requests
and responses, reducing overhead.

• Chunked transfer encoding: Enabled servers to send data in chunks, which is especially useful
for streaming and large files.

• More methods: Added methods like OPTIONS, PUT, DELETE, TRACE, and CONNECT.
• Improved caching: Introduced cache-control mechanisms through headers like ETag, Cache-

Control, and Last-Modified, allowing better control over caching.
• Content negotiation: Servers could serve different versions of resources based on the client’s

capabilities like language or format preferences.

HTTP/2 (2015)
HTTP/2 (based on Google’s SPDY protocol) was standardized in RFC 7540, offering major performance
improvements to address the inefficiencies of HTTP/1.1.

Some of its key improvements include the following:

• Multiplexing: Multiple requests and responses can be sent over a single TCP connection con-
currently, eliminating head-of-line blocking and the need for multiple connections.

• Header compression: Uses HPACK header compression to reduce the overhead caused by
large HTTP headers, improving performance for repeated requests.

• Binary framing: HTTP/2 uses a binary format instead of the text-based format of HTTP/1.x,
making it more efficient to parse and transfer data.

Building Web Services Using ASP.NET Core Web API318

• Stream prioritization: Clients can assign different priorities to streams, allowing the most
important resources (like HTML) to be loaded first.

• Improved security: While not mandatory, HTTP/2 is often implemented over TLS (though it
can also be used over plain TCP).

HTTP/2 dramatically reduces latency, improves page load speed due to multiplexing, and reduces
overhead through header compression and persistent connections.

HTTP/3 (2020)
HTTP/3, based on Google’s QUIC (Quick UDP Internet Connections) protocol, was standardized in
RFC 9114. It represents a significant departure from previous versions by shifting from TCP to UDP.

Some of its key features include the following:

• Uses QUIC over UDP: Instead of relying on TCP, HTTP/3 uses QUIC, which is based on UDP, to
improve latency and reliability.

• Eliminates TCP head-of-line blocking: By leveraging QUIC’s stream multiplexing, each stream
is independent. Packet loss in one stream does not block others, unlike TCP-based HTTP/2.

• Zero Round-Trip Time (0-RTT) handshakes: QUIC allows faster connections by reducing the
number of round trips needed to establish a secure connection, significantly speeding up
initial request times.

• Built-in encryption: HTTP/3 is always encrypted using TLS 1.3, meaning there is no unen-
crypted HTTP/3.

• Stream multiplexing: Similar to HTTP/2, but without the same head-of-line blocking issues
at the transport layer.

• Faster connection recovery: If a connection drops, QUIC can recover without re-establishing
the entire connection, improving resilience on unreliable networks.

The benefits of HTTP/3 include faster page loads and more resilient connections, especially over poor
network conditions like mobile or wireless connections. It has reduced latency compared to HTTP/2,
particularly for secure connections.

Since HTTP/3 uses UDP, it may face deployment issues in networks with firewalls or middleboxes that
restrict UDP traffic. While HTTP/3 is rapidly being adopted (especially by major CDNs like Cloudflare),
it still isn’t as universally supported as HTTP/2.

Understanding HTTP requests and responses for web APIs
HTTP defines standard types of requests and standard codes to indicate a type of response. Most of
them can be used to implement web API services.

GET requests
The most common type of request is GET, to retrieve a resource identified by a unique path, with ad-
ditional options like what media type is acceptable set as a request header, such as Accept, as shown
in the following example:

Chapter 9 319

GET /path/to/resource
Accept: application/json

Common response status codes
Common responses include success and multiple types of failure, as summarized in the following
list and shown in Table 9.1:

• 1xx: Information
• 2xx: Success
• 3xx: Redirect
• 4xx: Client Error
• 5xx: Server Error

Status code Description

101 Switching
Protocols

The requester has asked the server to switch protocols and the server
has agreed to do so. For example, it is common to switch from HTTP to
WebSockets (WS) for more efficient communication.

103 Early Hints

This is used to convey hints that help a client make preparations to process
the final response. For example, the server might send the following
response before then sending a normal 200 OK response for a web page that
uses a stylesheet and JavaScript file:

HTTP/1.1 103 Early Hints
Link: </style.css>; rel=preload; as=style
Link: </script.js>; rel=preload; as=script

200 OK

The path was correctly formed. The resource was successfully found,
serialized into an acceptable media type, and then returned in the response
body. The response headers specify the Content-Type, Content-Length,
and Content-Encoding, for example, GZIP.

301 Moved
Permanently

Over time, a web service may change its resource model, including the path
used to identify an existing resource. The web service can indicate the new
path by returning this status code and a response header named Location
that has the new path. Any future requests for this resource should use the
new URI.

302 Found

This is like 301 but the resource is only temporarily located at a different
URL. It tells the client that it should continue to use the original URL for
future requests. Use this when you’re temporarily redirecting traffic, such
as during website maintenance, a temporary campaign, or A/B testing new
features. It’s also used for geographic redirection by redirecting users to
different versions of a website based on their location, while still maintaining
the original URL as canonical.

Building Web Services Using ASP.NET Core Web API320

304 Not Modified

If the request includes the If-Modified-Since header, then the web service
can respond with this status code. The response body is empty because
the client should use its cached copy of the resource. You will see a fuller
example later in this section.

307 Temporary
Redirect

The requested resource has been temporarily moved to the URL in the
Location header. The browser should make a new request using that URL.
For example, this is what happens if you enable UseHttpsRedirection and
a client makes an HTTP request.

400 Bad Request The request was invalid; for example, it used a path for a product using an
integer ID where the ID value is missing.

401 Unauthorized

The request was valid and the resource was found, but the client did
not supply credentials or is not authorized to access that resource. Re-
authenticating may enable access, for example, by adding or changing the
Authorization request header.

403 Forbidden The request was valid and the resource was found, but the client is not
authorized to access that resource. Re-authenticating will not fix the issue.

404 Not Found
The request was valid, but the resource was not found. The resource may be
found if the request is repeated later. To indicate that a resource will never be
found, return 410 Gone.

406 Not
Acceptable

This is returned if the request has an Accept header that only lists media
types that the web service does not support. For example, if the client
requests JSON but the web service can only return XML.

451 Unavailable
for Legal Reasons

A website hosted in the USA might return this for requests coming from
Europe to avoid having to comply with the General Data Protection
Regulation (GDPR). The number was chosen as a reference to the novel
Fahrenheit 451, in which books are banned and burned.

500 Server Error The request was valid, but something went wrong on the server side while
processing the request. Retrying later might work.

503 Service
Unavailable

The web service is busy and cannot handle the request. Trying again later
might work.

Table 9.1: Common HTTP status code responses to the GET method

Caching requests example
Let’s review a typical client-server interaction using caching and the 304 Not Modified status, as
shown in the following steps:

1. Initial request: The client requests a resource, GET /index.html HTTP/1.1, and the server
returns a 200 OK response with the resource and caching headers like ETag and Last-Modified,
as shown in the following response:

Chapter 9 321

HTTP/1.1 200 OK
Content-Type: text/html
ETag: "686897696a7c876b7e"
Last-Modified: Tue, 21 Oct 2024 07:28:00 GMT
Cache-Control: max-age=3600

2. Subsequent request: The client makes another request for the same resource but includes con-
ditional headers to check if the cached version is still valid, as shown in the following request:

GET /index.html HTTP/1.1
If-None-Match: "686897696a7c876b7e"
If-Modified-Since: Tue, 21 Oct 2024 07:28:00 GMT

3. 304 Not Modified Response: If the server determines that the resource has not changed, it
returns a 304 Not Modified status with relevant headers:

HTTP/1.1 304 Not Modified
Date: Wed, 23 Oct 2024 10:00:00 GMT
ETag: "686897696a7c876b7e"
Cache-Control: max-age=3600

HTTP’s caching mechanism reduces bandwidth and speeds up web performance by avoiding the
unnecessary transfer of unchanged resources. The headers in a 304 response provide information
for managing the cache and ensuring that the client can continue to serve fresh content efficiently.

POST, PUT, and other requests
Other common types of HTTP requests include POST, PUT, PATCH, and DELETE, which create, modify,
or delete resources.

To create a new resource, you might make a POST request with a body that contains the new resource,
as shown in the following code:

POST /path/to/resource
Content-Length: 123
Content-Type: application/json

The client stores the ETag and Last-Modified values along with the cached version
of the resource. In subsequent requests, the client sends them back to the server to
check whether the resource has been modified. The ETag value is typically a hash
or a version number that uniquely identifies the resource at that particular state.

If-None-Match contains the ETag from the previous response. If-Modified-
Since contains the Last-Modified date from the previous response.

Building Web Services Using ASP.NET Core Web API322

To create a new resource or update an existing resource, you might make a PUT request with a body that
contains a whole new version of the existing resource, and if the resource does not exist, it is created,
or if it does exist, it is replaced (sometimes called an upsert operation), as shown in the following code:

PUT /path/to/resource
Content-Length: 123
Content-Type: application/json

To update an existing resource more efficiently, you might make a PATCH request with a body that
contains an object with only the properties that need changing, as shown in the following code:

PATCH /path/to/resource
Content-Length: 123
Content-Type: application/json

To delete an existing resource, you might make a DELETE request, as shown in the following code:

DELETE /path/to/resource

As well as the responses shown in the table above for a GET request, all the types of requests that cre-
ate, modify, or delete a resource have additional possible common responses, as shown in Table 9.2:

Status code Description

201 Created
The new resource was created successfully, the response header named
Location contains its path, and the response body contains the newly
created resource. Immediately GET-ting the resource should return 200.

202 Accepted

The new resource cannot be created immediately so the request is queued
for later processing and immediately GET-ting the resource might return 404.
The body can contain a resource that points to some form of status checker or
an estimate of when the resource will become available.

204 No Content

This is commonly used in response to a DELETE request since returning
the resource in the body after deleting it does not usually make sense! It’s
sometimes used in response to POST, PUT, or PATCH requests if the client does
not need to confirm that the request was processed correctly.

405 Method Not
Allowed

This is returned when the request used a method that is not supported. For
example, a web service designed to be read-only may explicitly disallow PUT,
DELETE, and so on.

415 Unsupported
Media Type

This is returned when the resource in the request body uses a media type that
the web service cannot handle. For example, if the body contains a resource
in XML format but the web service can only process JSON.

Table 9.2: Common HTTP status code responses to other methods like POST and PUT

Chapter 9 323

Creating an ASP.NET Core Web API with controllers project
We will build a web service that provides a way to work with data in the Northwind database using
ASP.NET Core so that the data can be used by any client application on any platform that can make
HTTP requests and receive HTTP responses.

We will use the ASP.NET Core Web API / dotnet new webapi project template. This allows the creation
of a sample weather web service implemented using either controllers like MVC or the newer Minimal
APIs. Using controllers is still the most popular choice although Microsoft has changed the default to
Minimal APIs to encourage their use.

We will build on your experience with MVC by creating a Web API service using controllers. For
simplicity, we will allow anonymous requests to the web service by selecting none for authentication.

Let’s go:

1. Use your preferred code editor to open the MatureWeb solution and then add a new project, as
defined in the following list:

• Project template: ASP.NET Core Web API / webapi --use-controllers
• Solution file and folder: MatureWeb
• Project file and folder: Northwind.WebApi

2. If you are using Visual Studio, then confirm the following defaults have been chosen:

• Framework: .NET 9.0 (Standard Term Support)
• Authentication type: None
• Configure for HTTPS: Selected
• Enable container support: Cleared
• Enable OpenAPI support: Selected
• Do not use top-level statements: Cleared
• Use controllers: Selected

Warning! With .NET 6 and .NET 7, the dotnet new webapi command creates a service
implemented using controllers. To implement a service using Minimal APIs, you need to
add the --use-minimal-apis switch to the command. Using .NET 8 and later, the dotnet
new webapi command creates a service implemented using Minimal APIs. To implement
the service using controllers, you need to add the --use-controllers switch.

.NET 8 introduced the ASP.NET Core Web API (native AOT) / dotnet new webapiaot
project template, which can only use Minimal APIs and supports native AOT publishing. I
cover this in my books C# 13 and .NET 9 – Modern Cross-Platform Development Fundamentals
and Apps and Services with .NET 8.

Building Web Services Using ASP.NET Core Web API324

3. If you are using VS Code or Rider, then in the MatureWeb directory, at the command prompt
or terminal, enter the following commands:

dotnet new webapi --use-controllers -o Northwind.WebApi
dotnet sln add Northwind.WebApi

4. In the Northwind.WebApi.csproj project file, delete the version attribute from the package
reference, as shown in the following markup:

<Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>
 <TargetFramework>net9.0</TargetFramework>
 <Nullable>enable</Nullable>
 <ImplicitUsings>enable</ImplicitUsings>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.OpenApi" />
 </ItemGroup>

</Project>

5. Build the Northwind.WebApi project.
6. In the Controllers folder, open and review WeatherForecastController.cs, which was cre-

ated by the project template, as shown in the following code:

using Microsoft.AspNetCore.Mvc;

namespace Northwind.WebApi.Controllers
{
 [ApiController]
 [Route("[controller]")]
 public class WeatherForecastController : ControllerBase
 {
 private static readonly string[] Summaries = new[]
 {
 "Freezing", "Bracing", "Chilly", "Cool", "Mild",
 "Warm", "Balmy", "Hot", "Sweltering", "Scorching"

Warning! Make sure to select the Use controllers checkbox or your code will look
very different because it will use Minimal APIs instead of controllers!

Chapter 9 325

 };

 private readonly ILogger<WeatherForecastController> _logger;

 public WeatherForecastController(
 ILogger<WeatherForecastController> logger)
 {
 _logger = logger;
 }

 [HttpGet(Name = "GetWeatherForecast")]
 public IEnumerable<WeatherForecast> Get()
 {
 return Enumerable.Range(1, 5).Select(index => new WeatherForecast
 {
 Date = DateOnly.FromDateTime(DateTime.Now.AddDays(index)),
 TemperatureC = Random.Shared.Next(-20, 55),
 Summary = Summaries[Random.Shared.Next(Summaries.Length)]
 })
 .ToArray();
 }
 }
}

While reviewing the preceding code, note the following:

• The Controller class inherits from ControllerBase. This is simpler than the Controller
class used in MVC because it does not have methods like View to generate HTML re-
sponses by passing a view model to a Razor file.

• The [Route] attribute registers the /weatherforecast relative URL for clients to use
to make HTTP requests that will be handled by this controller. For example, an HTTP
request for https://localhost:5001/weatherforecast/ would be handled by this
controller. Some developers like to prefix the controller name with api/, which is a
convention to differentiate between MVCs and Web APIs in mixed projects. If you use
[controller] as shown, it uses the characters before Controller in the class name,
in this case, WeatherForecast. You can also simply enter a different name without the
square brackets, for example, [Route("api/forecast")].

Good Practice: Specifying a route using a literal string like this is poor
practice. I am only doing so here to keep the example simple. It would
be better in practice to define a static class with string constant values
and use those instead. Then, you have a central place to change routes if
needed in the future.

Building Web Services Using ASP.NET Core Web API326

• The [ApiController] attribute was introduced with ASP.NET Core 2.1 and enables
REST-specific behavior for controllers, like automatic HTTP 400 responses for invalid
models, as you will see later in this chapter.

• The [HttpGet] attribute registers the Get method in the Controller class to respond
to HTTP GET requests, and its implementation uses the shared Random object to return
an array of WeatherForecast objects with random temperatures and summaries like
Bracing or Balmy for the next five days of weather.

7. In WeatherForecastController.cs, add a second Get method that allows the call to specify
how many days ahead the forecast should be by implementing the following:

a. Add a comment above the original method to show the action method and URL path
that it responds to.

b. Add a new method with an integer parameter named days.
c. Cut and paste the original Get method implementation code statements into the new

Get method. We are cutting because we need to move the statements from the original
method to the new method.

d. Modify the new method to create an IEnumerable of integers up to the number of days
requested.

e. Modify the original Get method to call the new Get method and pass the value 5.
f. Modify the registered name of the original Get method to GetWeatherForecastFiveDays.

Your modifications and additions should be as shown highlighted in the following code:

// GET /weatherforecast
[HttpGet(Name = "GetWeatherForecastFiveDays")]
public IEnumerable<WeatherForecast> Get()
{
 return Get(days: 5); // Five-day forecast.
}

// GET /weatherforecast/7
[HttpGet(template: "{days:int}", Name = "GetWeatherForecast")]
public IEnumerable<WeatherForecast> Get(int days)
{
 return Enumerable.Range(1, days).Select(index => new WeatherForecast
 {
 Date = DateOnly.FromDateTime(DateTime.Now.AddDays(index)),
 TemperatureC = Random.Shared.Next(-20, 55),
 Summary = Summaries[Random.Shared.Next(Summaries.Length)]
 })
 .ToArray();
}

Chapter 9 327

Trying out the weather forecast web service’s functionality
Now, we will try out the web service’s functionality:

1. In the Properties folder, in launchSettings.json, note that by default, if you are using Visual
Studio, the https profile will launch the browser and navigate to the /weatherforecast relative
URL path, as shown highlighted in the following markup:

"https": {
 "commandName": "Project",
 "dotnetRunMessages": true,
 "launchBrowser": true,
 "launchUrl": "weatherforecast",
 "applicationUrl": "https://localhost:7189;http://localhost:5249",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }

2. For the https profile, for its applicationUrl, change the random port number for HTTPS to
5091 and for HTTP to 5090, as shown highlighted in the following markup:

"applicationUrl": "https://localhost:5091;http://localhost:5090",

3. Save changes to all modified files.
4. Start the Northwind.WebApi web service project using the https launch profile.
5. On Windows, if you see a Windows Security Alert dialog box saying Windows Defender Firewall

has blocked some features of this app, then click the Allow access button.
6. Start Chrome, and navigate to https://localhost:5091/. Note that you will get a 404 status

code response because we have not enabled static files and there is not an index.html, nor is
there an MVC controller with a route configured. Remember that this project is not designed
for a human to view and interact with, so this is expected behavior for a web service.

7. In Chrome, show Developer Tools.

In the [HttpGet] attribute, note the route template pattern {days:int} constrains the
days parameter to int values.

Building Web Services Using ASP.NET Core Web API328

8. Navigate to https://localhost:5091/weatherforecast and note the Web API service should
return a JSON document with five random weather forecast objects in an array, as shown in
Figure 9.1:

Figure 9.1: A request and response from a weather forecast web service

9. Note that your browser might request a favicon.ico file to show in the browser tab. If the 404
errors when this file is missing annoy you, then you could create one, but we are only using
the browser for basic web service testing at this time.

10. Close Developer Tools.
11. Navigate to https://localhost:5091/weatherforecast/14 and note that the response when

requesting a two-week weather forecast contains 14 forecasts.
12. Close Chrome and shut down the web server.

Creating a web service for the Northwind database
Unlike MVC controllers, Web API controllers do not call Razor views to return HTML responses for
website visitors to see in browsers. Instead, they use content negotiation with the client application
that made the HTTP request to return data in formats such as XML, JSON, or X-WWW-FORM-URLENCODED
in their HTTP response.

X-WWW-FORM-URLENCODED format looks like the following example:

firstName=Mark&lastName=Price&jobtitle=Author

The client application must then deserialize the data from the negotiated format. The most used
format for modern web services is JSON because it is compact and works natively with JavaScript in
a browser when building Single-Page Applications (SPAs) with client-side technologies like Angular,
React, and Vue.

One of the limitations of Minimal APIs compared to controller-based Web APIs is that
Minimal APIs do not support content negotiation with the client, so clients must under-
stand JSON, or you must implement content negotiation yourself.

Chapter 9 329

We will reference the Entity Framework Core entity data model for the Northwind database that you
created in Chapter 1, Introducing Web Development with Controllers:

1. In the Northwind.WebApi.csproj project file, add a project reference to the Northwind data
context class library, and globally and statically import the System.Console class, as shown
in the following markup:

<ItemGroup Label="To use the Northwind entity models." >
 <ProjectReference Include=
"..\Northwind.DataContext\Northwind.DataContext.csproj" />
</ItemGroup>

<ItemGroup Label="To simplify use of WriteLine.">
 <Using Include="System.Console" Static="true" />
</ItemGroup>

2. Build the Northwind.WebApi project and fix any compile errors in your code.
3. In Program.cs, import namespaces for working with web media formatters and the Northwind

entity model classes and extension methods, as shown in the following code:

using Microsoft.AspNetCore.Mvc.Formatters; // To use IOutputFormatter.
using Northwind.EntityModels; // To use AddNorthwindContext method.

4. In Program.cs, add a statement before the call to AddControllers to register the Northwind
database context class, as shown in the following code:

builder.Services.AddNorthwindContext();

5. In the call to AddControllers, add a lambda block with statements to write the names and
supported media types of the default output formatters to the console, and then add XML
serializer formatters, as shown highlighted in the following code:

builder.Services.AddControllers(options =>
{
 WriteLine("Default output formatters:");
 foreach (IOutputFormatter formatter in options.OutputFormatters)
 {
 OutputFormatter? mediaFormatter = formatter as OutputFormatter;
 if (mediaFormatter is null)
 {
 WriteLine($" {formatter.GetType().Name}");
 }
 else // OutputFormatter class has SupportedMediaTypes.
 {

Building Web Services Using ASP.NET Core Web API330

 WriteLine(" {0}, Media types: {1}",
 arg0: mediaFormatter.GetType().Name,
 arg1: string.Join(", ",
 mediaFormatter.SupportedMediaTypes));
 }
 }
})
.AddXmlDataContractSerializerFormatters()
.AddXmlSerializerFormatters();

6. Start the Northwind.WebApi web service project using the https launch profile.
7. In the command prompt or terminal, note that there are four default output formatters, in-

cluding ones that convert null values into 204 No Content and ones to support responses that
are plain text, byte streams, and JSON, as shown in the following output:

Default output formatters:
 HttpNoContentOutputFormatter
 StringOutputFormatter, Media types: text/plain
 StreamOutputFormatter
 SystemTextJsonOutputFormatter, Media types: application/json, text/
json, application/*+json

8. Close the browser (if necessary) and shut down the web server.

There are other output formatters that can be used in ASP.NET Core Web API services, and you can
build your own custom ones. For example, CSV is a simple, lightweight format mainly used for tabular
data export in APIs. It’s human-readable but not suitable for complex or nested data structures, and
is usually implemented via custom output formatters in ASP.NET Core.

Controlling XML serialization
In Program.cs, we added the XmlSerializer so that our Web API service can return XML as well as
JSON if the client requests that.

However, the XmlSerializer cannot serialize interfaces, and our entity classes use ICollection<T>
to define related child entities. This causes a warning at runtime, for example, for the Customer class
and its Orders property, as shown in the following output:

warn: Microsoft.AspNetCore.Mvc.Formatters.XmlSerializerOutputFormatter[1]
An error occurred while trying to create an XmlSerializer for the type
'Northwind.EntityModels.Customer'.
System.InvalidOperationException: There was an error reflecting type
'Northwind.EntityModels.Customer'.
---> System.InvalidOperationException: Cannot serialize member 'Northwind.
EntityModels.Customer.Orders' of type 'System.Collections.Generic.
ICollection`1[[Northwind.EntityModels.Order, Northwind.EntityModels,
Version=1.0.0.0, Culture=neutral, PublicKeyToken=null]]', see inner exception
for more details.

Chapter 9 331

We can prevent this warning by excluding the Orders property when serializing a Customer into XML:

1. In the Northwind.EntityModels project, in Customer.cs, import the namespace so that we
can use the [XmlIgnore] attribute, as shown in the following code:

using System.Xml.Serialization; // To use [XmlIgnore].

2. Decorate the Orders property with an attribute to ignore it when serializing, as shown high-
lighted in the following code:

[InverseProperty(nameof(Order.Customer))]
[XmlIgnore]
public virtual ICollection<Order> Orders { get; set; } = new
List<Order>();

3. Decorate the CustomerTypes property with [XmlIgnore] too, as shown highlighted in the
following code:

[ForeignKey("CustomerId")]
[InverseProperty("Customers")]
[XmlIgnore]
public virtual ICollection<CustomerDemographic> CustomerTypes
 { get; set; } = new List<CustomerDemographic>();

You will confirm that the web service can return XML as well as JSON later in this chapter.

For now, we will continue adding functionality to the service to access the Northwind database.

Routing web service requests to action methods
With MVC controllers, a route like /home/index tells us the controller class name and the action method
name, for example, the HomeController class and the Index action method.

With Web API controllers, a route like /weatherforecast only tells us the controller class name, for
example, WeatherForecastController. To determine the action method name to execute, we must
map HTTP methods like GET and POST to methods in the controller class.

You should decorate controller methods with the following attributes to indicate the HTTP method
that they will respond to:

• [HttpGet] and [HttpHead]: These action methods respond to GET or HEAD requests to retrieve a
resource and return either the resource and its response headers or just the response headers.

• [HttpPost]: This action method responds to POST requests to create a new resource or perform
some other action defined by the service.

We use the [XmlIgnore] attribute because we are using XmlSerializerOutputFormatter.
If you use alternatives like XmlDataContractSerializerOutputFormatter, then they will
have different attributes like [DataContract] and [DataMember] to define the structure
of the XML.

Building Web Services Using ASP.NET Core Web API332

• [HttpPut] and [HttpPatch]: These action methods respond to PUT or PATCH requests to update
an existing resource either by replacing it or updating a subset of its properties.

• [HttpDelete]: This action method responds to DELETE requests to remove a resource.
• [HttpOptions]: This action method responds to OPTIONS requests.

As well as routing a web service request to a method within a controller, you can further control
routing with constraints.

Route constraints
Route constraints allow us to control matches based on data types and other validation rules like
numeric ranges and pattern matching. They are summarized in Table 9.3:

Constraint Example Description

required {id:required} The parameter has been provided

int and long {id:int} Any integer of the correct size

decimal, double,
and float

{unitprice:decimal} Any real number of the correct size

bool {discontinued:bool} Case-insensitive match on true or
false

datetime {hired:datetime} An invariant culture date/time

guid {id:guid} A GUID value

minlength(n),
maxlength(n),
length(n), and
length(n, m)

{title:minlength(5)},
{title:length(5, 25)}

The text must have the defined
minimum and/or maximum length

min(n), max(n), and
range(n, m)

{age:range(18, 65)} The integer must be within the defined
minimum and/or maximum range

alpha, regex
{firstname:alpha},
{id:regex(^[A-Z]{{5}}$)}

The parameter must match one or
more alphabetic characters or the
regular expression

Table 9.3: Route constraints with examples and descriptions

Use colons to separate multiple constraints, as shown in the following example:

[Route("employees/{years:int:minlength(3)}")]
public Employees[] GetLoyalEmployees(int years)

For regular expressions, RegexOptions.IgnoreCase | RegexOptions.Compiled | RegexOptions.
CultureInvariant is added automatically. Regular expression tokens must be escaped (replace \ with
\\, { with {{, and } with }}) or use verbatim string literals.

Chapter 9 333

Short-circuit routes
When routing matches a request to an endpoint, it lets the rest of the middleware pipeline run before
invoking the endpoint logic. That takes time, so in ASP.NET Core 8 or later, you can invoke the endpoint
immediately and return the response.

You do this by calling the ShortCircuit method on a mapped endpoint route, as shown in the fol-
lowing code:

app.MapGet("/", () => "Hello World").ShortCircuit();

Alternatively, you can call the MapShortCircuit method to respond with a 404 Missing Resource or
other status code for resources that don’t need further processing, as shown in the following code:

app.MapShortCircuit(404, "robots.txt", "favicon.ico");

Understanding action method return types
An action method can return .NET types like a single string value; complex objects defined by a
class, record, or struct; or collections of complex objects. ASP.NET Core will serialize them into
the requested data format set in the HTTP request Accept header, for example, JSON, if a suitable
serializer has been registered.

For more control over the response, there are helper methods that return an ActionResult wrapper
around the .NET type.

Declare the action method’s return type to be IActionResult if it could return different return types
based on the input or other variables. Declare the action method’s return type to be ActionResult<T>
if it will only return a single type but with different status codes.

You can create custom route constraints by defining a class that implements
IRouteConstraint. This is beyond the scope of this book but you can read about
it at https://learn.microsoft.com/en-us/aspnet/core/fundamentals/
routing#custom-route-constraints.

Good Practice: Decorate action methods with the [ProducesResponseType] attribute
to indicate all the known types and HTTP status codes that the client should expect in a
response. This information can then be publicly exposed to document how a client should
interact with your web service. Think of it as part of your formal documentation. Later
in this chapter, you will learn how you can install a code analyzer to give you warnings
when you do not decorate your action methods like this.

https://learn.microsoft.com/en-us/aspnet/core/fundamentals/routing#custom-route-constraints
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/routing#custom-route-constraints

Building Web Services Using ASP.NET Core Web API334

For example, an action method that gets a product based on an id parameter will be decorated with
three attributes—one to indicate that it responds to GET requests and has an id parameter and two to
indicate what happens when it succeeds and when the client has supplied an invalid product ID, as
shown in the following code:

[HttpGet("{id}")]
[ProducesResponseType(200, Type = typeof(Product))]
[ProducesResponseType(404)]
public IActionResult Get(string id)

The ControllerBase class has methods to make it easy to return different responses, as shown in
Table 9.4:

Method Description

Ok
This returns a 200 status code and a resource converted into the client’s
preferred format, like JSON or XML. It’s commonly used in response to a GET
request.

CreatedAtRoute
This returns a 201 status code and the path to the new resource. It’s
commonly used in response to a POST request to create a resource that can
be performed quickly.

Accepted

This returns a 202 status code to indicate the request is being processed
but has not been completed. It’s commonly used in response to a POST, PUT,
PATCH, or DELETE request that triggers a background process that takes a
long time to complete.

NoContentResult
It returns a 204 status code and an empty response body. It’s commonly used
in response to a PUT, PATCH, or DELETE request when the response does not
need to contain the affected resource.

BadRequest This returns a 400 status code and an optional message string with more
details.

NotFound It returns an e status code and automatically populates the ProblemDetails
body (and requires a compatibility version of 2.2 or later).

Table 9.4: ControllerBase helper methods that return a response

Configuring the customer repository and Web API controller
Now that you’ve learned enough theory, you will put it into practice to configure the Northwind re-
pository that you created in Chapter 6, Performance Optimization Using Caching, so that it can be called
from within a Web API controller.

You will register a scoped dependency service implementation for the repository when the web ser-
vice starts up, and then use constructor parameter injection to get it in a new Web API controller for
working with customers.

Chapter 9 335

It will have five action methods to perform CRUD operations on customers—two GET methods (for all
customers or one customer), POST (create), PUT (update), and DELETE:

1. In the Northwind.WebApi.csproj project file, add a package reference for hybrid caching, and
add a reference to the Northwind repositories project, as shown highlighted in the following
markup:

<ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.OpenApi" />
 <PackageReference Include="Microsoft.Extensions.Caching.Hybrid" />
</ItemGroup>

<ItemGroup Label="To use the Northwind entity models.">
 <ProjectReference Include=
 "..\Northwind.DataContext\Northwind.DataContext.csproj" />
 <ProjectReference Include=
 "..\Northwind.Repositories\Northwind.Repositories.csproj" />
</ItemGroup>

2. Build the Northwind.WebApi project to build dependencies and restore packages.
3. In Program.cs, import the namespaces for working with a hybrid cache and for working with

our customer repository, as shown in the following code:

using Microsoft.Extensions.Caching.Hybrid; // To use
HybridCacheEntryOptions.
using Northwind.Repositories; // To use ICustomerRepository.

4. In Program.cs, before the call to Build, in the section for configuring services, register the
hybrid cache service with a default cache entry duration of 60 seconds overall, and 30 seconds
for local in-memory caching. This is shown in the following code:

builder.Services.AddHybridCache(options =>
{
 options.DefaultEntryOptions = new HybridCacheEntryOptions
 {
 Expiration = TimeSpan.FromSeconds(60),
 LocalCacheExpiration = TimeSpan.FromSeconds(30)
 };
});

5. In Program.cs, before the call to the Build method, in the section for configuring services,
add a statement that will register the CustomerRepository for use at runtime as a scoped
dependency, as shown in the following code:

builder.Services.AddScoped<ICustomerRepository, CustomerRepository>();

Building Web Services Using ASP.NET Core Web API336

6. In the Controllers folder, add a new class named CustomersController.cs. If you are using
Visual Studio, then you can choose the API Controller - Empty project item template.

7. In CustomersController.cs, add statements to define a Web API controller class to work with
customers, as shown in the following code:

// To use [Route], [ApiController], ControllerBase and so on.
using Microsoft.AspNetCore.Mvc;
using Northwind.EntityModels; // To use Customer.
using Northwind.Repositories; // To use ICustomerRepository.

namespace Northwind.WebApi.Controllers;

// Base address: api/customers
[Route("api/[controller]")]
[ApiController]
public class CustomersController : ControllerBase
{
 private readonly ICustomerRepository _repo;

 // Constructor injects repository registered in Program.cs.
 public CustomersController(ICustomerRepository repo)
 {
 _repo = repo;
 }
}

Good Practice: Our repository uses a database context that is registered as a scoped
dependency. You can only use scoped dependencies inside other scoped dependen-
cies, so we cannot register the repository as a singleton. You can read more about
this at https://learn.microsoft.com/en-us/dotnet/core/extensions/
dependency-injection#scoped.

The Controller class registers a route using the [Route] attribute that starts
with api/ and includes the name of the controller, that is, api/customers.
The [controller] part is automatically replaced with the class name with the
Controller suffix removed. Therefore, the base address of the route to the
CustomersController is api/customers. The constructor uses dependency
injection to get the registered repository for working with customers.

https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection#scoped
https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection#scoped

Chapter 9 337

8. In CustomersController.cs, add statements to define an action method that responds to HTTP
GET requests for all customers, as shown in the following code:

// GET: api/customers
// GET: api/customers/?country=[country]
// this will always return a list of customers (but it might be empty)
[HttpGet]
[ProducesResponseType(200, Type = typeof(IEnumerable<Customer>))]
public async Task<IEnumerable<Customer>> GetCustomers(string? country)
{
 if (string.IsNullOrWhiteSpace(country))
 {
 return await _repo.RetrieveAllAsync();
 }
 else
 {
 return (await _repo.RetrieveAllAsync())
 .Where(customer => customer.Country == country);
 }
}

9. In CustomersController.cs, add statements to define an action method that responds to HTTP
GET requests for an individual customer, as shown in the following code:

// GET: api/customers/[id]
[HttpGet("{id}", Name = nameof(GetCustomer))] // Named route.
[ProducesResponseType(200, Type = typeof(Customer))]
[ProducesResponseType(404)]
public async Task<IActionResult> GetCustomer(string id, default)
{
 Customer? c = await _repo.RetrieveAsync(id);
 if (c == null)
 {
 return NotFound(); // 404 Resource not found.
 }
 return Ok(c); // 200 OK with customer in body
}

The GetCustomers method can have a string parameter passed with a country
name. If it is missing, all customers are returned. If it is present, it is used to filter
customers by country.

Building Web Services Using ASP.NET Core Web API338

10. In CustomersController.cs, add statements to define an action method that responds to HTTP
POST requests to insert a new customer entity, as shown in the following code:

// POST: api/customers
// BODY: Customer (JSON, XML)
[HttpPost]
[ProducesResponseType(201, Type = typeof(Customer))]
[ProducesResponseType(400)]
public async Task<IActionResult> Create([FromBody] Customer c)
{
 if (c == null)
 {
 return BadRequest(); // 400 Bad request.
 }
 Customer? addedCustomer = await _repo.CreateAsync(c);
 if (addedCustomer == null)
 {
 return BadRequest("Repository failed to create customer.");
 }
 else
 {
 return CreatedAtRoute(// 201 Created.
 routeName: nameof(GetCustomer),
 routeValues: new { id = addedCustomer.CustomerId.ToLower() },
 value: addedCustomer);
 }
}

11. In CustomersController.cs, add statements to define an action method that responds to HTTP
PUT requests, as shown in the following code:

// PUT: api/customers/[id]
// BODY: Customer (JSON, XML)
[HttpPut("{id}")]
[ProducesResponseType(204)]
[ProducesResponseType(400)]
[ProducesResponseType(404)]
public async Task<IActionResult> Update(

The GetCustomer method has a route explicitly named GetCustomer so that it
can be used to generate a URL after inserting a new customer.

Chapter 9 339

 string id, [FromBody] Customer c)
{
 id = id.ToUpper();
 c.CustomerId = c.CustomerId.ToUpper();
 if (c == null || c.CustomerId != id)
 {
 return BadRequest(); // 400 Bad request.
 }
 Customer? existing = await _repo.RetrieveAsync(id, default);
 if (existing == null)
 {
 return NotFound(); // 404 Resource not found.
 }
 await _repo.UpdateAsync(c);
 return new NoContentResult(); // 204 No content.
}

Note the following:

• The Create and Update methods both decorate the customer parameter with [FromBody]
to tell the model binder to populate it with values from the body of the POST request.

• The Create method returns a response that uses the GetCustomer route so that the
client knows how to get the newly created resource in the future. We are matching up
two methods to create and then get a customer.

• In the past, the Create and Update methods would need to check the model state of the
customer passed in the body of the HTTP request. If it is invalid, they should return
a 400 Bad Request containing details of the model validation errors. This happens
automatically now because the controller is decorated with [ApiController].

12. In CustomersController.cs, add statements to define an action method that responds to HTTP
DELETE requests, as shown in the following code:

// DELETE: api/customers/[id]
[HttpDelete("{id}")]
[ProducesResponseType(204)]
[ProducesResponseType(400)]
[ProducesResponseType(404)]
public async Task<IActionResult> Delete(string id)
{
 Customer? existing = await _repo.RetrieveAsync(id, default);
 if (existing == null)
 {
 return NotFound(); // 404 Resource not found.

Building Web Services Using ASP.NET Core Web API340

 }
 bool? deleted = await _repo.DeleteAsync(id);
 if (deleted.HasValue && deleted.Value) // Short circuit AND.
 {
 return new NoContentResult(); // 204 No content.
 }
 else
 {
 return BadRequest(// 400 Bad request.
 $"Customer {id} was found but failed to delete.");
 }
}

13. Save all the changes.

When an HTTP request is received by the service, it will create an instance of the Controller class,
call the appropriate action method, return the response in the format preferred by the client, and
release the resources used by the controller, including the repository and its data context.

Specifying problem details
A feature added in ASP.NET Core 2.1 and later is an implementation of a web standard for specifying
problem details. In Web API controllers decorated with [ApiController] in a project where com-
patibility with ASP.NET Core 2.2 or later is enabled, action methods that return IActionResult and
return a client error status code, that is, 4xx, will automatically include a serialized instance of the
ProblemDetails class in the response body.

If you want to take control, then you can create a ProblemDetails instance yourself and include
additional information.

Let’s simulate a bad request that needs custom data returned to the client.

At the top of the implementation of the Delete action method, add statements to check if the id
matches the literal string value "bad", and if so, then return a custom ProblemDetails object, as
shown in the following code:

// Take control of problem details.
if (id == "bad")
{
 ProblemDetails problemDetails = new()
 {
 Status = StatusCodes.Status400BadRequest,
 Type = "https://localhost:5091/customers/failed-to-delete",
 Title = $"Customer ID {id} found but failed to delete.",
 Detail = "More details like Company Name, Country and so on.",
 Instance = HttpContext.Request.Path

Chapter 9 341

 };
 return BadRequest(problemDetails); // 400 Bad Request
}

You will test this functionality in the next section.

Documenting and trying out web services
You can easily try out a web service by making HTTP GET requests using a browser. To try out other
HTTP methods, we need a more advanced tool. But let’s start by trying out GET requests using a browser.

Making GET requests using a browser
You will use Chrome to try out the three implementations of a GET request—for all customers, for
customers in a specified country, and for a single customer using their unique customer ID:

1. In Northwind.WebApi, in the Properties folder, in launchSettings.json, for the https profile,
change the launchUrl to request all customers, as shown highlighted in the following markup:

"launchUrl": "api/customers",

2. Start the Northwind.WebApi web service project using the https launch profile.
3. Start Chrome, navigate to https://localhost:5091/api/customers, and note the JSON doc-

ument returned, containing all 91 customers in the Northwind database (unsorted), as shown
in Figure 9.2:

Figure 9.2: Customers from the Northwind database as a JSON document

4. Navigate to https://localhost:5091/api/customers?country=Germany and note the JSON
document returned, containing only the customers in Germany.

Recent versions of Chrome have a Pretty print checkbox, which formats data for-
mats like JSON in a manner easier for humans to read. Try it out to see the effect.

If you get an empty array returned, then make sure you have entered the country
name using the correct casing, because the database query is case-sensitive. For
example, compare the results of uk and UK.

Building Web Services Using ASP.NET Core Web API342

5. Navigate to https://localhost:5091/api/customers/alfki and note the JSON document
returned containing only the customer named Alfreds Futterkiste.

Unlike country names, we do not need to worry about casing for the customer id value because, in
the customer repository implementation, we normalized the string value as uppercase.

Trying out complex scenarios gets trickier with a browser. How can we try out the other HTTP methods,
such as POST, PUT, and DELETE? And how can we document our web service so it’s easy for anyone to
understand how to interact with it?

To solve the first problem, we can use the HTTP Editor tool built into Visual Studio and install a VS
Code extension named REST Client. Rider has its own equivalent. These are tools that allow you to
send any type of HTTP request and view the response in your code editor.

To solve the second problem, the Web API project template uses OpenAPI, the world’s most popular
technology for documenting and trying out HTTP APIs.

But first, let’s see what is possible with the code editor HTTP/REST tools.

Making GET requests using HTTP/REST tools
We will start by creating a file for trying out GET requests:

1. If you have not already installed REST Client by Huachao Mao (humao.rest-client), then
install it in VS Code now.

2. In your preferred code editor, open the MatureWeb solution and then start the Northwind.
WebApi project web service.

3. In File Explorer, Finder, or your favorite Linux file tool, in the MatureWeb folder, create a
HttpRequests folder.

4. In the HttpRequests folder, create a file named get-customers.http, and open it in your
preferred code editor like Visual Studio or VS Code. They should recognize the file extension
and provide a suitable editing experience.

5. In get-customers.http, modify its contents to contain an HTTP GET request to retrieve all
customers, as shown in the following code:

Configure a variable for the web service base address.
@base_address = https://localhost:5091/api/customers/

Make a GET request to the base address.
GET {{base_address}}

There are many tools for trying out Web APIs, for example, Postman. Although Postman
is popular, I prefer tools like HTTP Editor in Visual Studio or REST Client in VS Code be-
cause they do not hide what is happening. I feel Postman is too GUI-y. But I encourage you
to explore different tools and find the ones that fit your style. You can learn more about
Postman at https://www.postman.com/.

https://www.postman.com/

Chapter 9 343

6. Above the HTTP GET request, click Send request, and note the response is shown in a new
tabbed window, as shown in Figure 9.3:

Figure 9.3: Sending an HTTP GET request using Visual Studio

7. In get-customers.http, add more GET requests, each separated by three hash symbols, to
get customers in various countries and get a single customer using their ID, as shown in the
following code:

Get customers in Germany
GET {{base_address}}?country=Germany

Get customers in USA in XML format
GET {{base_address}}?country=USA
Accept: application/xml

Get Alfreds Futterkiste
GET {{base_address}}ALFKI

Get a non-existant customer
GET {{base_address}}abcxy

HTTP Editor in Visual Studio is designed to add REST Client-like capabilities and
its user interface is likely to evolve rapidly as it catches up. You can read its official
documentation at https://learn.microsoft.com/en-us/aspnet/core/test/
http-files.

https://learn.microsoft.com/en-us/aspnet/core/test/http-files
https://learn.microsoft.com/en-us/aspnet/core/test/http-files

Building Web Services Using ASP.NET Core Web API344

8. Click the Send Request link above each request to send it; for example, the GET request that
has a request header to request customers in the USA as XML instead of JSON using the VS
Code extension REST Client, as shown in Figure 9.4:

Figure 9.4: Sending a request for XML and getting a response using REST Client

Making other requests using HTTP/REST tools
Next, we will create a file for making other requests like POST:

1. In the HttpRequests folder, create a file named create-customer.http and modify its contents
to define a POST request to create a new customer, as shown in the following code:

Configure a variable for the web service base address.
@base_address = https://localhost:5091/api/customers/

Make a POST request to the base address.
POST {{base_address}}
Content-Type: application/json

{
 "customerID": "ABCXY",
 "companyName": "ABC Corp",
 "contactName": "John Smith",
 "contactTitle": "Sir",
 "address": "Main Street",
 "city": "New York",
 "region": "NY",
 "postalCode": "90210",
 "country": "USA",
 "phone": "(123) 555-1234"
}

Chapter 9 345

2. Send the request and note the response is 201 Created. Also, note that the Location (that is,
the URL) of the newly created customer is https://localhost:5091/api/Customers/abcxy,
as shown in Figure 9.5:

Figure 9.5: Adding a new customer by POSTing to the Web API service

I will leave you an optional challenge to create .http files that update a customer (using PUT) and
delete a customer (using DELETE). Try them on customers that do exist (that you created) as well as
customers that do not. Solutions are in the GitHub repository for this book at https://github.com/
markjprice/web-dev-net9/tree/main/code/MatureWeb/HttpRequests.

Passing environment variables
To get an environment variable, use $processenv, as shown in the following command:

{{$processEnv [%]envVarName}}

For example, if you have set an environment variable to store a secret value like a password to connect
to a SQL Server database that must be kept out of any files committed to a GitHub repository, you can
use the following command:

{{$processEnv MY_SQL_PWD}}

Now that we’ve seen a quick and easy way to try out our service, which also happens to be a great way
to learn HTTP, what about external developers? We want it to be as easy as possible for them to learn
and then call our service. For that purpose, we will use OpenAPI.

More Information: You can learn more about using environment variables with REST
Client at https://marketplace.visualstudio.com/items?itemName=humao.rest-
client#environments. You can learn more about using environment variables and Se-
cret Manager with HTTP Editor at https://devblogs.microsoft.com/visualstudio/
safely-use-secrets-in-http-requests-in-visual-studio-2022/.

https://github.com/markjprice/web-dev-net9/tree/main/code/MatureWeb/HttpRequests
https://github.com/markjprice/web-dev-net9/tree/main/code/MatureWeb/HttpRequests
https://marketplace.visualstudio.com/items?itemName=humao.rest-client#environments
https://marketplace.visualstudio.com/items?itemName=humao.rest-client#environments
https://devblogs.microsoft.com/visualstudio/safely-use-secrets-in-http-requests-in-visual-studio-2022/
https://devblogs.microsoft.com/visualstudio/safely-use-secrets-in-http-requests-in-visual-studio-2022/

Building Web Services Using ASP.NET Core Web API346

Understanding the OpenAPI Specification
The OpenAPI Specification defines a REST-style contract for your API, detailing all its resources and
operations in a human- and machine-readable format for easy development, discovery, and integration.

It is important to version the OpenAPI documentation for your web service as you version its func-
tionality. You should also put effort into adding quality descriptions and examples rather than just
relying on the auto-generated files that are only based on your code.

Developers can use the OpenAPI Specification for a Web API to automatically generate strongly typed
client-side code in their preferred language or library.

Let’s review how OpenAPI is enabled for our web service using the Web API project template:

1. If the web service is running, shut down the web server.
2. In Northwind.WebApi.csproj, note the package reference for Microsoft.AspNetCore.OpenApi

that was added by the project template, as shown in the following markup:

<PackageReference Include="Microsoft.AspNetCore.OpenApi" />

3. In Program.cs, in the section for adding services to the container, note the services registered
by the project template to use OpenAPI, as shown in the following code:

// Learn more about configuring OpenAPI at https://aka.ms/aspnet/openapi
builder.Services.AddOpenApi();

4. In the section that configures the HTTP request pipeline, note the statement for using Swagger
when in development mode, as shown highlighted in the following code:

// Configure the HTTP request pipeline.
if (builder.Environment.IsDevelopment())
{
 app.MapOpenApi();
}

5. Start the Northwind.WebApi web service project using the https launch profile.
6. Navigate to https://localhost:5091/openapi/v1.json, and note the JSON document that

documents the service, including validation rules to post to the service, as shown in the fol-
lowing partial markup and in Figure 9.6:

{
 "openapi": "3.0.1",
 "info": {

Before .NET 9, the Web API project template used a third-party package named
Swashbuckle, but the developer has abandoned it, so Microsoft wrote its own.

Chapter 9 347

 "title": "Northwind.WebApi | v1",
 "version": "1.0.0"
 },
 "servers": [
 {
 "url": "https://localhost:5091"
 },
 {
 "url": "http://localhost:5090"
 }
],
 "paths": {
 "/api/Customers": {
 "get": {
 "tags": [
 "Customers"
],
 "parameters": [
 {
 "name": "country",
 "in": "query",
 "schema": {
 "type": "string",
 "nullable": true
 }
 }
],
 "responses": {
 "200": {
 "description": "OK",
 "content": {
...
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/ArrayOfCustomer"
 }
 },
...
 },
 "post": {
 "tags": [

Building Web Services Using ASP.NET Core Web API348

 "Customers"
],
 "requestBody": {
 "content": {
 "application/json": {
 "schema": {
 "type": "object",
 "properties": {
 "customerId": {
 "maxLength": 5,
 "minLength": 0,
 "pattern": "[A-Z]{5}",
 "type": "string"
 },
 "companyName": {
 "maxLength": 40,
 "minLength": 0,
 "type": "string"
 },

Figure 9.6: JSON documenting the Northwind web service

Generating clients using an OpenAPI specification
One of the benefits of enabling your web service to automatically provide a JSON file to document itself
is that there are many tools available that can generate clients to simplify interacting with the service.

One of the most popular ones for .NET is NSwag. NSwag is a powerful toolchain that allows you to
generate C# clients from OpenAPI specifications. It integrates well with .NET projects and can be
used in a variety of ways, including command-line tools, MSBuild, and directly within Visual Studio.

More Information: You can learn more about NSwag at https://github.com/RicoSuter/
NSwag.

https://github.com/RicoSuter/NSwag
https://github.com/RicoSuter/NSwag

Chapter 9 349

Caching and logging
You can improve the performance and scalability of a web service by implementing caching. You can
simplify troubleshooting a web service by enabling logging.

Caching HTTP responses for web services
Response (aka HTTP) caching, is tied to HTTP GET requests and responses because it is based on HTTP
headers. Therefore, it only works with websites and web services that use HTTP as their transport
technology, like web services built using controller-based Web APIs and OData.

Requirements for HTTP, aka response, caching include the following:

• The request must be a GET or HEAD one. POST, PUT, and DELETE requests, and so on, are never
cached by HTTP caching.

• The response must have a 200 OK status code.
• If the request has an Authorization header, then the response is not cached. When a user is

logged in to a website, their requests will have an Authorization header.
• If the request has a Vary header, then the response is not cached when the values are not

valid or *.

The web server sets response caching headers, and then intermediate proxies and clients should
respect the headers to tell them how they should cache the responses.

The Cache-Control HTTP header for requests and responses has some common directives, as shown
in Table 9.5:

Directive Description

public Clients and intermediaries can cache this response.

private Only a client should cache this response.

max-age The client does not accept responses older than the specified number of seconds.

More Information: You can read the official standard for HTTP caching at https://www.
rfc-editor.org/rfc/rfc9111.

Good Practice: Response, aka HTTP, caching is not typically useful for web user interfaces
because web browsers often set request headers that prevent HTTP caching. For web user
interfaces, output caching is better suited.

https://www.rfc-editor.org/rfc/rfc9111
https://www.rfc-editor.org/rfc/rfc9111

Building Web Services Using ASP.NET Core Web API350

no-cache A client request is asking for a non-cached response. A server is telling the client and
intermediaries not the cache the response.

no-store A cache must not store the request or response.

Table 9.5: Common Cache-Control HTTP header directives

As well as Cache-Control, there are other headers that might affect caching, as shown in Table 9.6:

Header Description

Age Estimated number of seconds old the response is.

Expires An absolute date/time after which the response should be considered expired.

Vary All fields must match for a cached response to be sent. Otherwise, a fresh response is
sent. For example, a query string of color.

Table 9.6: Common HTTP headers for caching

For example, a client could ask for a fresh list of discontinued products, and the service should not
use any cached version, as shown in the following HTTP response:

GET api/products/discontinued
Cache-Control: no-cache

A service could return some products as a JSON array, with a header to say that intermediaries should
not cache the response but clients can, as shown in the following HTTP response:

content-type: application/json; charset=utf-8
date: Fri,09 Jun 2024 06:05:13 GMT
server: Kestrel
cache-control: private

[
 {
 "productId": 5,
 "productName": "Chef Anton's Gumbo Mix",
 ...

Decorate a controller or method with the [ResponseCache] attribute to control caching responses from
the server (code to control caching requests has to go in the client code). This attribute has common
parameters, as shown in Table 9.7:

Property Description

Duration How long to cache in seconds.

Location Where the response can be cached: Any (cache-control: public), Client
(cache-control: private), None (cache-control: no-cache).

Chapter 9 351

NoStore Sets cache-control: no-store.

VaryByHeader Sets the Vary header.

VaryByQueryKeys Query keys to vary by.

Table 9.7: Common parameters of the [ResponseCache] attribute

Let’s apply response caching to the web service:

1. In the Northwind.WebApi project, in Program.cs, before the call to Build, add a statement to
add response caching middleware as a dependency service, as shown in the following code:

builder.Services.AddResponseCaching();

2. In Program.cs, after the call to use HTTPS redirection, add a statement to use response caching
middleware, as shown in the following code:

app.UseResponseCaching();

3. In CustomersController.cs, decorate the Get method with an int id parameter with the
[ResponseCache] attribute, as highlighted in the following code:

// GET: api/customers/[id]
[HttpGet("{id}", Name = nameof(GetCustomer))] // Named route.
[ProducesResponseType(200, Type = typeof(Customer))]
[ProducesResponseType(404)]
[ResponseCache(Duration = 5, // Cache-Control: max-age=5
 Location = ResponseCacheLocation.Any, // Cache-Control: public
 VaryByHeader = "User-Agent" // Vary: User-Agent
)]
public async Task<IActionResult> GetCustomer(string id)
{
 Customer? c = await _repo.RetrieveAsync(id, default);
 if (c == null)
 {
 return NotFound(); // 404 Resource not found.
 }
 return Ok(c); // 200 OK with customer in body.
}

Warning! If you are using CORS middleware, then UseCors must be called before
UseResponseCaching.

Building Web Services Using ASP.NET Core Web API352

4. Start the web service project, using the https profile without debugging.
5. In the HttpRequests folder, open the get-customers.http file.
6. Send the request for a specific customer, as shown in the following code:

GET {{base_address}}ALFKI

7. Note that the response includes headers to control caching, as shown in Figure 9.7:

Figure 9.7: Headers for response caching

8. Close the browser and shut down the web server.

Caching is one of the best ways to improve the performance and scalability of your services. We
covered invalidation strategies for cached data in Chapter 6, Performance Optimization Using Caching.

Next, we will learn how to enable logging to help resolve issues.

Enabling HTTP logging
HTTP logging is an optional middleware component that is useful when trying out a web service. It
logs information about HTTP requests and HTTP responses, including the following:

• Information about the HTTP request
• Headers
• Body
• Information about the HTTP response

This is valuable in web services for auditing and debugging scenarios but beware because it can neg-
atively impact performance. You might also log Personally Identifiable Information (PII), which can
cause compliance issues in some jurisdictions.

Good Practice: Response caching will only be enabled for anonymous requests.
Authenticated requests and responses will not be cached.

Chapter 9 353

Log levels can be set to the following:

• Error: Only Error level logs.
• Warning: Error and Warning level logs.
• Information: Error, Warning, and Information level logs.
• Verbose: All level logs.

Log levels can be set for the namespace in which the functionality is defined. Nested namespaces
allow us to control which functionality has logging enabled:

• Microsoft: Include all log types in the Microsoft namespace.
• Microsoft.AspNetCore: Include all log types in the Microsoft.AspNetCore namespace.
• Microsoft.AspNetCore.HttpLogging: Include all log types in the Microsoft.AspNetCore.

HttpLogging namespace.

Let’s see HTTP logging in action:

1. In the Northwind.WebApi project, in appsettings.Development.json, add an entry to set HTTP
logging to Information level, as shown highlighted in the following code:

{
 "Logging": {
 "LogLevel": {
 "Default": "Information",
 "Microsoft.AspNetCore": "Warning",

 // To enable logging HTTP requests, this must be
 // set to Information (3) or higher.
 "Microsoft.AspNetCore.HttpLogging": "Information"
 }
 }
}

Good Practice: The JSON format specification does not allow comments but the
JSON with Comments format specification does. You can use JavaScript-style com-
ments using // or /* */. You can read more at https://code.visualstudio.
com/docs/languages/json#_json-with-comments. If you are using a fussy
code editor, just delete the comment I added.

Although the Default log level might be set to Information, more specific con-
figurations take priority. For example, any logging systems in the Microsoft.
AspNetCore namespace will use the Warning level. By making the change
we did, any logging systems in the Microsoft.AspNetCore. HttpLogging.
HttpLoggingMiddleware namespace will now use Information.

https://code.visualstudio.com/docs/languages/json#_json-with-comments
https://code.visualstudio.com/docs/languages/json#_json-with-comments

Building Web Services Using ASP.NET Core Web API354

2. In Program.cs, import the namespace for working with HTTP logging, as shown in the fol-
lowing code:

using Microsoft.AspNetCore.HttpLogging; // To use HttpLoggingFields.

3. In the services configuration section, before the call to builder.Build, add a statement to add
and configure HTTP logging, as shown in the following code:

builder.Services.AddHttpLogging(options =>
{
 options.LoggingFields = HttpLoggingFields.All;
 options.RequestBodyLogLimit = 4096; // Default is 32k.
 options.ResponseBodyLogLimit = 4096; // Default is 32k.
});

4. In the HTTP pipeline configuration section, after the call to builder.Build, add a statement
to add HTTP logging before the call to use routing, as shown in the following code:

app.UseHttpLogging();

5. Start the Northwind.WebApi web service using the https launch profile.
6. Start Chrome and navigate to https://localhost:5091/api/customers.
7. At the command prompt or terminal hosting the web service, note the request and response

have been logged, as shown in the following partial output:

info: Microsoft.AspNetCore.HttpLogging.HttpLoggingMiddleware[1]
 Request:
 Protocol: HTTP/2
 Method: GET
 Scheme: https
 PathBase:
 Path: /api/customers
 Accept: text/html,application/xhtml+xml,application/
xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-
exchange;v=b3;q=0.7
 Host: localhost:5091
 User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0.0 Safari/537.36
 Accept-Encoding: gzip, deflate, br, zstd
 Accept-Language: en-GB,en;q=0.9,fr-FR;q=0.8,fr;q=0.7,en-US;q=0.6
 Upgrade-Insecure-Requests: [Redacted]
 sec-ch-ua: [Redacted]
...
info: Microsoft.AspNetCore.HttpLogging.HttpLoggingMiddleware[2]
 Response:

Chapter 9 355

 StatusCode: 200
 Content-Type: application/json; charset=utf-8
info: Microsoft.AspNetCore.HttpLogging.HttpLoggingMiddleware[4]
 ResponseBody: [{"customerId":"ALFKI","companyName":"Alfreds
Futterkiste","contactName":"Maria Anders","contactTitle":"Sales
Representative",
...
info: Microsoft.AspNetCore.HttpLogging.HttpLoggingMiddleware[8]
 Duration: 925.24ms

8. Close Chrome and shut down the web server.

Support for logging additional request headers in W3CLogger
W3CLogger is a middleware that writes logs in the W3C standard format. You can do the following:

• Record details of HTTP requests and responses.
• Filter which headers and parts of the request and response messages are logged.

In ASP.NET Core 7 or later, you can specify that you want to log additional request headers when using
W3CLogger. Call the AdditionalRequestHeaders method and pass the name of the header you want
to log, as shown in the following code:

services.AddW3CLogging(options =>
{
 options.AdditionalRequestHeaders.Add("x-forwarded-for");
 options.AdditionalRequestHeaders.Add("x-client-ssl-protocol");
});

If you are hosting your web service in the cloud, then you can integrate logging
with monitoring solutions like CloudWatch or Azure Application Insights.

Warning! W3CLogger can reduce the performance of an app.

W3CLogger is like HTTP logging so I will not cover details of how to use it in this book. You
can learn more about W3CLogger at https://learn.microsoft.com/en-us/aspnet/
core/fundamentals/w3c-logger/.

https://learn.microsoft.com/en-us/aspnet/core/fundamentals/w3c-logger/
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/w3c-logger/

Building Web Services Using ASP.NET Core Web API356

Logging and security principles
Logging sensitive or personal information can lead to security vulnerabilities, breaches of privacy,
or even regulatory violations (such as GDPR or HIPAA). To maintain security, it’s important to log
responsibly, ensuring that sensitive data isn’t inadvertently exposed.

Here are good practices for logging with security in mind, along with examples and explanations of
what to avoid and how to implement safe logging.

Avoid logging sensitive information
Certain types of information should never be logged because they can be used maliciously if exposed.
Examples of sensitive data include passwords, authentication tokens like JSON Web Tokens (JWTs)
and OAuth tokens, and API keys.

You should avoid logging PII like names, addresses, phone numbers, Social Security numbers, credit
card numbers, bank account numbers, medical records, insurance numbers, and so on.

If you need to log something related to a sensitive operation, only log non-sensitive metadata, like the
username (without the password) or some indication of a request without including sensitive details.

Mask or obfuscate sensitive data
Sometimes it’s necessary to log sensitive data, but only in a masked or obfuscated form. For instance,
you might need to log part of a credit card number for transaction purposes, as shown in the follow-
ing code:

string creditCardNumber = "4111111111111111";
string maskedCardNumber = creditCardNumber.Substring(0, 4)
 + "****" + creditCardNumber.Substring(12);
_logger.LogInformation("Payment processed for card: {CardNumber}",
maskedCardNumber);

In this case, only the first four and last four digits of the credit card number are logged. This provides
enough information to identify the transaction without exposing the full credit card number.

Avoid logging request and response bodies for sensitive endpoints
Logging HTTP request and response bodies can be useful for debugging, but it’s risky for endpoints
that handle sensitive data, such as authentication or payment endpoints. Logging these bodies may
expose sensitive details like passwords, tokens, or credit card information.

Avoid logging bodies for sensitive endpoints or filter out sensitive information from the body before
logging. If you must log request/response bodies, ensure that sensitive fields are removed.

Use structured logging for sensitive data management
Structured logging, whereby you log specific properties instead of free-form text, helps ensure that
sensitive data is treated in a controlled manner.

Chapter 9 357

With structured logging, sensitive properties like passwords can be controlled at the logging provider
level, allowing you to redact or filter sensitive information. This helps you log actionable events without
accidentally leaking sensitive data in free-form log messages.

Log security events without sensitive data
It’s important to log security events like failed login attempts, unauthorized access, or errors in a
secure manner, as shown in the following code:

_logger.LogWarning("Failed login attempt for user {Username} from IP
{IPAddress}", username, context.Connection.RemoteIpAddress);

This captures important metadata about a failed login attempt like the username and IP address,
which is useful for detecting security issues like brute-force attacks. However, it does not expose any
sensitive data like passwords or tokens.

Beware of third-party library logging
Some third-party libraries may perform their own logging. Make sure you review their logging practices
and configurations to ensure they aren’t logging sensitive data. You may need to adjust their logging
levels or configure logging settings to prevent accidental data leaks.

For example, when using Entity Framework Core, avoid logging SQL queries that might contain sensitive
parameters like user passwords or personal information in query strings, as shown in the following
code:

services.AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlServer(connectionString)
 .EnableSensitiveDataLogging(false)); // Disable sensitive logging.

Disabling sensitive data logging ensures that personal data is not logged with SQL queries.

Log errors with caution
When logging exceptions, avoid logging detailed stack traces or error messages that might contain
sensitive data, especially for publicly exposed services. This might inadvertently log sensitive details
from the exception message, such as internal server paths or even data that was part of the exception.

Consider logging only generic error information and capturing detailed errors for internal use only.

You are now ready to build applications that consume your web service.

Consuming web services using HTTP clients
Now that we have built and tried calling our Northwind service using tools, we will learn how to call
it from any .NET app using the HttpClient class and its factory.

Building Web Services Using ASP.NET Core Web API358

Understanding HttpClient
The easiest way to consume a web service is to use the HttpClient class. However, many people use it
wrongly because it implements IDisposable, and Microsoft’s own documentation shows poor usage
of it. See the book links in the GitHub repository for articles with more discussion of this.

Usually, when a type implements IDisposable, you should create it inside a using statement to ensure
that it is disposed of as soon as possible. HttpClient is different because it is shared, reentrant, and
partially thread-safe.

The problem has to do with how the underlying network sockets must be managed. The bottom line
is that you should use a single instance of it for each HTTP endpoint that you consume during the life
of your application. This will allow each HttpClient instance to have defaults set that are appropriate
for the endpoint it works with while managing the underlying network sockets efficiently.

Configuring HTTP clients using HttpClientFactory
Microsoft is aware of the issue of .NET developers misusing HttpClient, and in ASP.NET Core 2.1, it
introduced HttpClientFactory to encourage best practices; that is the technique we will use.

In the following example, we will use the Northwind MVC website as a client for the Northwind Web
API service. Let’s configure an HTTP client:

1. In the Northwind.Mvc project, in Program.cs, import the namespace for setting a media type
header value, as shown in the following code:

using System.Net.Http.Headers; // To use MediaTypeWithQualityHeaderValue.

2. In Program.cs, before calling the Build method, add a statement to enable HttpClientFactory
with a named client to make calls to the Northwind Web API service using HTTPS on port 5091
and request JSON as the default response format, as shown in the following code:

builder.Services.AddHttpClient(name: "Northwind.WebApi",
 configureClient: options =>
 {
 options.BaseAddress = new Uri("https://localhost:5091/");
 options.DefaultRequestHeaders.Accept.Add(
 new MediaTypeWithQualityHeaderValue(
 mediaType: "application/json", quality: 1.0));
 });

Getting customers as JSON in the controller
We can now create an MVC controller action method that does the following:

• Uses the factory to create an HTTP client.
• Makes a GET request for customers.
• Deserializes the JSON response using convenient extension methods introduced with .NET 5

in the System.Net.Http.Json assembly and namespace.

Chapter 9 359

Let’s go:

1. In the Northwind.Mvc project, in the Controllers folder, in HomeController.cs, declare a
field for storing the HTTP client factory, as shown in the following code:

private readonly IHttpClientFactory _clientFactory;

2. Set the field in the constructor, as shown highlighted in the following code:

public HomeController(
 ILogger<HomeController> logger,
 NorthwindContext db, IMemoryCache memoryCache,
 IDistributedCache distributedCache,
 IHttpClientFactory httpClientFactory)
{
 _logger = logger;
 _db = db;
 _memoryCache = memoryCache;
 _distributedCache = distributedCache;
 _clientFactory = httpClientFactory;
}

3. Create a new action method for calling the Northwind Web API service, fetching all customers,
and passing them to a view, as shown in the following code:

public async Task<IActionResult> Customers(string country)
{
 string uri;

 if (string.IsNullOrEmpty(country))
 {
 ViewData["Title"] = "All Customers Worldwide";
 uri = "api/customers";
 }
 else
 {
 ViewData["Title"] = $"Customers in {country}";
 uri = $"api/customers/?country={country}";
 }

 HttpClient client = _clientFactory.CreateClient(
 name: "Northwind.WebApi");

 HttpRequestMessage request = new(
 method: HttpMethod.Get, requestUri: uri);

Building Web Services Using ASP.NET Core Web API360

 HttpResponseMessage response = await client.SendAsync(request);

 IEnumerable<Customer>? model = await response.Content
 .ReadFromJsonAsync<IEnumerable<Customer>>();

 return View(model);
}

4. In the Views/Home folder, create a Razor file named Customers.cshtml.
5. Modify the Razor file to render the customers, as shown in the following markup:

@model IEnumerable<Customer>
<h2>@ViewData["Title"]</h2>
<table class="table">
 <thead>
 <tr>
 <th>Company Name</th>
 <th>Contact Name</th>
 <th>Address</th>
 <th>Phone</th>
 </tr>
 </thead>
 <tbody>
 @if (Model is not null)
 {
 @foreach (Customer c in Model)
 {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => c.CompanyName)
 </td>
 <td>
 @Html.DisplayFor(modelItem => c.ContactName)
 </td>
 <td>
 @Html.DisplayFor(modelItem => c.Address)
 @Html.DisplayFor(modelItem => c.City)
 @Html.DisplayFor(modelItem => c.Region)
 @Html.DisplayFor(modelItem => c.Country)
 @Html.DisplayFor(modelItem => c.PostalCode)
 </td>

Chapter 9 361

 <td>
 @Html.DisplayFor(modelItem => c.Phone)
 </td>
 </tr>
 }
 }
 </tbody>
</table>

6. In the Views/Home folder, in Index.cshtml, after the form to query projects by price, add a form
to allow visitors to enter a country and see the customers, as shown in the following markup:

<h3>Query customers from a service</h3>
<form asp-action="Customers" method="get">
 <input name="country" placeholder="Enter a country" />
 <input type="submit" />
</form>

Starting multiple projects
Up to this point, we have only started one project at a time. Now we have two projects that need to
be started, a web service and an MVC website. In the step-by-step instructions, I will only tell you to
start individual projects one at a time, but you should use whatever technique you prefer to start them.

If you are using Visual Studio
Visual Studio can start multiple projects manually one by one if the debugger is not attached, as de-
scribed in the following steps:

1. In Solution Explorer, right-click on the solution or any project and then select Configure
Startup Projects…, or select the solution and navigate to Project | Configure Startup Projects….

2. In the Solution ‘<name>’ Property Pages dialog box, select Current selection.
3. Click OK.
4. Select a project in Solution Explorer so that its name becomes bold.
5. Navigate to Debug | Start Without Debugging or press Ctrl + F5.
6. Repeat steps 2 and 3 for as many projects as you need.

If you need to debug the projects, then you must start multiple instances of Visual Studio. Each instance
can start a single project with debugging.

You can also configure multiple projects to start up at the same time using the following steps:

1. In Solution Explorer, right-click the solution or any project and then select Configure Startup
Projects…, or select the solution and navigate to Project | Configure Startup Projects….

Building Web Services Using ASP.NET Core Web API362

2. In the Solution ‘<name>’ Property Pages dialog box, select Multiple startup projects, and for
any projects that you want to start, select either Start or Start without debugging, as shown
in Figure 9.8:

Figure 9.8: Selecting multiple projects to start up in Visual Studio

3. Click OK.
4. Navigate to Debug | Start Debugging or Debug | Start Without Debugging or click the equivalent

buttons in the toolbar to start all the projects that you selected.

If you are using VS Code
If you need to start multiple projects at the command line with dotnet, then write a script or batch file
to execute multiple dotnet run commands, or open multiple command prompt or terminal windows.

If you need to debug multiple projects using VS Code, then after you’ve started the first debug session,
you can just launch another session. Once the second session is running, the user interface switches to
multi-target mode. For example, in the CALL STACK, you will see both named projects with their own
threads, and then the debug toolbar shows a drop-down list of sessions with the active one selected.
Alternatively, you can define compound launch configurations in the launch.json.

You can learn more about multi-project start-up using Visual Studio at https://learn.
microsoft.com/en-us/visualstudio/ide/how-to-set-multiple-startup-
projects.

You can learn more about multi-target debugging using VS Code at https://code.
visualstudio.com/Docs/editor/debugging#_multitarget-debugging.

https://learn.microsoft.com/en-us/visualstudio/ide/how-to-set-multiple-startup-projects
https://learn.microsoft.com/en-us/visualstudio/ide/how-to-set-multiple-startup-projects
https://learn.microsoft.com/en-us/visualstudio/ide/how-to-set-multiple-startup-projects
https://code.visualstudio.com/Docs/editor/debugging#_multitarget-debugging
https://code.visualstudio.com/Docs/editor/debugging#_multitarget-debugging

Chapter 9 363

Starting the web service and MVC client projects
Now we can try out the web service with the MVC client calling it:

1. Start the Northwind.WebApi project and confirm that the web service is listening on ports 5091
and 5090, as shown in the following output:

info: Microsoft.Hosting.Lifetime[14]
 Now listening on: https://localhost:5091
info: Microsoft.Hosting.Lifetime[14]
 Now listening on: http://localhost:5090

2. Start the Northwind.Mvc project and confirm that the website is listening on ports 5021 and
5020, as shown in the following output:

info: Microsoft.Hosting.Lifetime[14]
 Now listening on: https://localhost:5021
info: Microsoft.Hosting.Lifetime[14]
 Now listening on: http://localhost:5020

3. Start Chrome and navigate to https://localhost:5021/.
4. On the home page, in the customer form, enter a country like Germany, UK, or USA, click Submit,

and note the list of customers, as shown in Figure 9.9 for the UK:

Figure 9.9: Customers in the UK

5. Click the Back button in your browser, clear the Country textbox, click Submit, and note the
worldwide list of customers.

Building Web Services Using ASP.NET Core Web API364

6. At the command prompt or terminal hosting the web service, note that the HttpClient writes
each HTTP request that it makes and each HTTP response that it receives, as shown in the
following output:

info: System.Net.Http.HttpClient.Northwind.WebApi.LogicalHandler[100]
 Start processing HTTP request GET https://localhost:5091/api/
customers
info: System.Net.Http.HttpClient.Northwind.WebApi.ClientHandler[100]
 Sending HTTP request GET https://localhost:5091/api/customers
info: System.Net.Http.HttpClient.Northwind.WebApi.ClientHandler[101]
 Received HTTP response headers after 91.829ms - 200
info: System.Net.Http.HttpClient.Northwind.WebApi.LogicalHandler[101]
 End processing HTTP request after 92.4345ms – 200

7. Close Chrome and shut down the two web servers.

Relaxing the same origin security policy using CORS
Modern web browsers support multiple tabs so users can visit multiple websites at the same time
efficiently. If code executing in one tab could access resources in another tab, then that could be a
vector of attack.

All web browsers implement a security feature called the same origin policy. This means that only
requests that come from the same origin are allowed. For example, if a block of JavaScript is served
from the same origin that hosts a web service or served an <iframe>, then that JavaScript can call
the service and access the data in the <iframe>. If a request is made from a different origin, then the
request fails. But what counts as the “same origin?”

An origin is defined by the following:

• Scheme, aka protocol, for example, http or https.
• Port, for example, 801 or 5081. The default port for http is 80 and for https is 443.
• Host/domain/subdomain, for example, www.example.com, www.example.net, or example.com.

If the origin is https://www.example.com/about-us/, then the following are not the same origin:

• Different scheme: http://www.example.com/about-us/
• Different host/domain: https://www.example.co.uk/about-us/
• Different subdomain: https://careers.example.com/about-us/
• Different port: https://www.example.com:444/about-us/

It is the web browser that sets the Origin header automatically when making a request. This cannot
be overridden.

https://www.example.com/about-us/
http://www.example.com/about-us/
https://www.example.co.uk/about-us/

Chapter 9 365

Let’s see some examples of calling the web service from a web page with a different origin and from
a .NET app.

Configuring HTTP logging for the web service
First, let’s enable HTTP logging for the web service and configure it to show the origin of requests, and
then let’s create a web page client that will attempt to use JavaScript to call the web service:

1. In Program.cs, in the call to AddHttpLogging, add a statement to include the Origin header,
as shown in the following code:

builder.Services.AddHttpLogging(options =>
{
 // Add the Origin header so it will not be redacted.
 options.RequestHeaders.Add("Origin");

 options.LoggingFields = HttpLoggingFields.All;
 options.RequestBodyLogLimit = 4096; // Default is 32k.
 options.ResponseBodyLogLimit = 4096; // Default is 32k.
});

2. In the Northwind.Mvc project, in the Views\Shared folder, in _Layout.cshtml, add a naviga-
tion menu item to go to a CORS controller with a JavaScript action method, as shown in the
following markup:

<li class="nav-item">
 <a class="nav-link text-dark" asp-area="" asp-controller="Cors"
 asp-action="JavaScript">CORS

3. In the Controllers folder, add a new MVC Controller – Empty file named CorsController.cs.
4. In CorsController.cs, define a controller class with a JavaScript action method, as shown

in the following code:

using Microsoft.AspNetCore.Mvc;

namespace Northwind.Mvc.Controllers;

public class CorsController : Controller

Warning! The same origin policy does not apply to any requests that come from a non-web
browser because, in those cases, the programmer could change the Origin header anyway.
If you create a console app or even an ASP.NET Core project that uses .NET classes like
HttpClient to make a request, the same origin policy does not apply unless you explicitly
set the Origin header.

Building Web Services Using ASP.NET Core Web API366

{
 public IActionResult JavaScript()
 {
 return View();
 }
}

5. In the Views/Tools folder, add a new Razor View - Empty file named JavaScript.cshtml. If
you are using Visual Studio, then you can right-click the JavaScript action method and select
Add View….

6. In JavaScript.cshtml, replace the existing markup with the markup that follows, which has
a link to a route that has not been defined yet to define a textbox and button, and a JavaScript
block that makes a call to the web service to get customers that contain a partial name, as
shown in the following code:

@{
 ViewData["Title"] = "Customers using JavaScript";
}
<div class="text-center">
 <h1 class="display-4">@ViewData["Title"]</h1>
 <div>
 Go to Customers using .NET
 </div>
 <div>
 <input id="country" placeholder="Enter a country" />
 <input id="getCustomersButton" type="button" value="Get Customers" />
 </div>
 <div>
 <table id="customersTable" class="table">
 <thead>
 <tr>
 <th scope="col">Company Name</th>
 <th scope="col">City</th>
 <th scope="col">Country</th>
 </tr>
 </thead>
 <tbody id="tableBody">
 <!-- This will be populated from the web service. -->
 </tbody>
 </table>
 </div>
 <script>

Chapter 9 367

 var baseaddress = "https://localhost:5091/";

 function xhr_load() {
 console.log(this.responseText);

 var customers = JSON.parse(this.responseText);

 var out = "";
 var i;
 for (i = 0; i < customers.length; i++) {
 out += '<tr><td><a href="' + baseaddress + 'api/customers/' +
 customers[i].customerId + '">' +
 customers[i].companyName + '</td><td>' +
 customers[i].city + '</td><td>' +
 customers[i].country + '</td></tr>';
 }
 document.getElementById("tableBody").innerHTML = out;
 }

 function getCustomersButton_click() {
 xhr.open("GET", baseaddress + "api/customers/?country=" +
 document.getElementById("companyName").value);

 xhr.send();
 }

 document.getElementById("getCustomersButton")
 .addEventListener("click", getCustomersButton_click);

 var xhr = new XMLHttpRequest();
 xhr.addEventListener("load", xhr_load);
 </script>
</div>

7. Start the Northwind.WebApi project using the https profile without debugging.
8. Start the Northwind.Mvc project using the https profile without debugging.
9. In Chrome, show Developer Tools and the Console.
10. On the home page, in the top navigation menu, click CORS.

Building Web Services Using ASP.NET Core Web API368

11. In the Customers using JavaScript web page, in the text box, enter USA, click the Get Customers
button, and note the error, as shown in the following output and in Figure 9.10:

Access to XMLHttpRequest at 'https://localhost:5091/api/customers/man'
from origin 'https://localhost:5021' has been blocked by CORS policy:
No 'Access-Control-Allow-Origin' header is present on the requested
resource.
GET https://localhost:5091/api/customers/?country=USA net::ERR_FAILED 200
(OK)

Figure 9.10: CORS error in the Chrome Developer Tools console

12. At the command prompt or terminal for the Northwind.WebApi project, note the HTTP log for
the request and that the Host is on a different port number to the Origin so they are not the
same origin, as shown highlighted in the following output:

info: Microsoft.AspNetCore.HttpLogging.HttpLoggingMiddleware[1]
 Request:
 Protocol: HTTP/2
 Method: GET
 Scheme: https
 PathBase:
 Path: /api/customers
 Accept: */*
 Host: localhost:5091
 User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/113.0.0.0 Safari/537.36
 Accept-Encoding: gzip, deflate, br
 Accept-Language: en-US,en;q=0.9,sv;q=0.8
 Origin: https://localhost:5021

Chapter 9 369

 Referer: [Redacted]
 ...

13. Also, note that the output shows that the web service did execute the database query and return
the USA customers in a JSON document response to the browser, as shown in the following
output:

info: Microsoft.AspNetCore.HttpLogging.HttpLoggingMiddleware[2]
 Response:
 StatusCode: 200
 Content-Type: application/json; charset=utf-8
info: Microsoft.AspNetCore.HttpLogging.HttpLoggingMiddleware[4]
 ResponseBody: [{"customerId":"GREAL","companyName":"Great
Lakes Food Market","contactName":"Howard
Snyder","contactTitle":"Marketing Manager","address":"2732 Baker
Blvd.","city":"Eugene","region":"OR","postalCode":"97403","country":
"USA","phone":"(503)
555-7555","fax":null,"orders":[],"customerTypes":[]},
...
,{"customerId":"WHITC","companyName":"White
Clover Markets","contactName":"Karl
Jablonski","contactTitle":"Owner","address":"305 - 14th Ave. S. Suite
3B","city":"Seattle","region":"WA","postalCode":"98128","country":
"USA","phone":"(206) 555-4112","fax":"(206)
555-4115","orders":[],"customerTypes":[]}]

14. Close the browser(s) and shut down the web servers.

Creating a .NET client
Next, let’s create a .NET client sending a request to the web service to see that the same origin policy
does not apply to non-web browsers:

1. In the Northwind.Mvc project, in the Controllers folder, in CorsController.cs, import the
namespace for the entity models, as shown in the following code:

using Northwind.EntityModels; // To use Customer.

Although the browser receives a response containing the data requested, it is
the browser that enforces the same origin policy by refusing to reveal the HTTP
response to the JavaScript. The web service is not “secured” by CORS.

Building Web Services Using ASP.NET Core Web API370

2. In CorsController.cs, add statements to store the logger and the registered HTTP client
factory in a private readonly field, as shown in the following code:

private readonly ILogger<CorsController> _logger;
private readonly IHttpClientFactory _httpClientFactory;

public CorsController(ILogger<CorsController> logger,
 IHttpClientFactory httpClientFactory)
{
 _logger = logger;
 _httpClientFactory = httpClientFactory;
}

3. In CorsController.cs, add an asynchronous action method named Net that will use the HTTP
factory to request customers in a country entered as an optional country parameter, as shown
in the following code:

public async Task<IActionResult> Net(string? country)
{
 HttpClient client = _httpClientFactory.CreateClient(
 name: "Northwind.WebApi");

 HttpRequestMessage request = new(
 method: HttpMethod.Get, requestUri: $"api/
customers/?country={country}");

 HttpResponseMessage response = await client.SendAsync(request);

 IEnumerable<Customer>? model = await response.Content
 .ReadFromJsonAsync<IEnumerable<Customer>>();

 ViewData["baseaddress"] = client.BaseAddress;

 return View(model);
}

4. In the Views/Cors folder, add a new file named Net.cshtml. (The Visual Studio project item
template is named Razor View - Empty. The Rider project item template is named Razor MVC
View.)

5. In Net.cshtml, modify its contents to output a table of customers in the country entered in a
text box, as shown in the following markup:

@model IEnumerable<Customer>?
@{

Chapter 9 371

 ViewData["Title"] = "Customers using .NET";
}
<div class="text-center">
 <h1 class="display-4">@ViewData["Title"]</h1>
 <div>
 Go to Customers using JavaScript
 </div>
 <form action="/cors/net">
 <input name="country" placeholder="Enter a country" />
 <input type="submit" value="Get Customers" />
 </form>
 <div>
 <table class="table">
 <thead>
 <tr>
 <th scope="col">Company Name</th>
 <th scope="col">City</th>
 <th scope="col">Country</th>
 </tr>
 </thead>
 <tbody>
 @if (Model is not null)
 {
 @foreach (Customer c in Model)
 {
 <tr>
 <td><a href="@(ViewData["baseaddress"])api/customers/
@c.CustomerId">@c.CompanyName</td>
 <td>@c.City</td>
 <td>@c.Country</td>
 </tr>
 }
 }
 </tbody>
 </table>
 </div>
</div>

6. Start the Northwind.WebApi project using the https profile without debugging.
7. Start the Northwind.Mvc project using the https profile without debugging.

Building Web Services Using ASP.NET Core Web API372

8. On the home page, click CORS, and then on the Customers using JavaScript page, click Cus-
tomers using .NET.

9. Note that all customers are shown in the table.
10. In the text box, enter USA, click Get Customers, and note that 13 customers are shown in the

table, as shown in Figure 9.11:

Figure 9.11: Getting customers in the USA from a web service using .NET

11. Click one of the company names to make a direct request to the web service for an individual
customer and note the response, as shown in the following document:

{"customerId":"GREAL","companyName":"Great
Lakes Food Market","contactName":"Howard
Snyder","contactTitle":"Marketing Manager","address":"2732 Baker
Blvd.","city":"Eugene","region":"OR","postalCode":"97403","country":
"USA","phone":"(503) 555-7555","fax":null,"orders":[],"customerTypes":[]}

12. Close the browser and shut down the web servers.

It is the .NET HTTP client that is calling the web service, so the same origin policy
does not apply. If you were to check the logs at the command line or terminal as
you did before, you would see the ports are different, but it does not matter.

Chapter 9 373

Understanding CORS
CORS is an HTTP-header-based feature that asks the browser to disable its same-origin security policy
in specific scenarios. The HTTP headers indicate which origins should be allowed in addition to the
same origin.

Let’s enable CORS in the web service so that it can send extra headers to indicate to the browser that
it is allowed to access resources from a different origin:

1. In the Northwind.WebApi project, in Program.cs, after creating the builder, add CORS support
to the web service, as shown in the following code:

builder.Services.AddCors(options =>
{
 options.AddPolicy(name: "Northwind.Mvc.Policy",
 policy =>
 {
 policy.WithOrigins("https://localhost:5021");
 });
});

2. In Program.cs, after the call to UseHttpsRedirection, add a statement to use the CORS policy,
as shown in the following code:

app.UseCors(policyName: "Northwind.Mvc.Policy");

3. Start the Northwind.WebApi project using the https profile without debugging.
4. Start the Northwind.Mvc project using the https profile without debugging.
5. Show Developer Tools and the Console.

CORS is not about strengthening security; it is about weakening security to allow the
sharing of resources across different origins!

Building Web Services Using ASP.NET Core Web API374

6. On the home page, click CORS, and then in the text box, enter USA, click Get Customers, and
note that the console shows the JSON document returned from the web service, and the table
is filled with the 13 customers, as shown in Figure 9.12:

Figure 9.12: A successful cross-origin request to the web service using JavaScript

7. Close the browser and shut down the web servers.

Understanding other CORS policy options
You can control the following:

• Allowed origins, for example, https://*.example.com/.
• Allowed HTTP methods, for example, GET, POST, DELETE, and so on.
• Allowed HTTP request headers, for example, Content-Type, Content-Language, x-custom-

header, and so on.
• Exposed HTTP response headers, meaning which headers to include unredacted in a response

(because, by default, response headers are redacted), for example, x-custom-header.

Now that you know that CORS does not secure a web service, let’s look at how you can actually identify,
authenticate, and authorize requests.

You can learn more about options for CORS policies at https://learn.microsoft.com/
en-us/aspnet/core/security/cors#cors-policy-options.

https://learn.microsoft.com/en-us/aspnet/core/security/cors#cors-policy-options
https://learn.microsoft.com/en-us/aspnet/core/security/cors#cors-policy-options

Chapter 9 375

Understanding identity services
In Chapter 5, Authentication and Authorization, you learned about security in the context of an ASP.NET
Core MVC website. You saw an example of a local authentication database that a visitor could register
with and then used it to authorize visitors identified as administrators to access protected areas of the
website. But what if we don’t want to authenticate using a local database?

Identity services are used to identify, authenticate, and authorize requests. It is important for these
services to implement open standards so that you can integrate disparate systems. Common standards
include OpenID Connect and OAuth 2.0.

Microsoft has no plans to officially support third-party authentication servers like IdentityServer4
because “creating and sustaining an authentication server is a full-time endeavor, and Microsoft al-
ready has a team and a product in that area, Azure Active Directory, which allows 500,000 objects for
free.” This quote is from an ASP.NET Core GitHub repository issue that you can find at the following
link: https://github.com/dotnet/aspnetcore/issues/32494.

JWT bearer authorization
JWT is a standard that defines a compact and secure method to transmit information as a JSON object.
The JSON object is digitally signed so it can be trusted. The most common scenario for using a JWT
is authorization.

A user logs in to a trusted party using credentials like a username and password or biometric scan or
two-factor authentication, and the trusted party issues a JWT. This is then sent with every request to
the secure web service.

In their compact form, JWTs consist of three parts separated by dots. These parts are the header,
payload, and signature, as shown in the following format: aaa.bbb.ccc. The header and payload are
base64 encoded.

Authenticating service clients using JWT bearer authentication
During local development, the dotnet user-jwts command-line tool is used to create and manage
local JWTs. The values are stored in a JSON file in the local machine’s user profile folder.

Let’s secure the web service using JWT bearer authentication and try it with a local token:

1. In the Northwind.WebApi project, add a reference to the package for JWT bearer authentication,
as shown in the following markup:

<PackageReference Include=
 "Microsoft.AspNetCore.Authentication.JwtBearer" />

2. Build the Northwind.WebApi project to restore packages.
3. In Program.cs, import the namespace for security claims, as shown in the following code:

using System.Security.Claims; // To use ClaimsPrincipal.

https://github.com/dotnet/aspnetcore/issues/32494

Building Web Services Using ASP.NET Core Web API376

4. In Program.cs, after creating the builder, add statements to add authorization and authenti-
cation using JWT, as shown highlighted in the following code:

var builder = WebApplication.CreateBuilder(args);

builder.Services.AddAuthorization();
builder.Services.AddAuthentication(defaultScheme: "Bearer")
 .AddJwtBearer();

5. In Program.cs, after mapping controllers, add a statement to map an HTTP GET request for
the secret path to return the authenticated user’s name if they are authorized, as shown in
the following code:

app.MapControllers();

app.MapGet("/secret", (ClaimsPrincipal user) =>
 string.Format("Welcome, {0}. The secret ingredient is love.",
 user.Identity?.Name ?? "secure user"))
 .RequireAuthorization();

6. In the Northwind.WebApi project folder, at the command prompt or terminal, create a local
JWT, as shown in the following command:

dotnet user-jwts create

7. Note the automatically assigned ID, Name, and Token, as shown in the following output:

New JWT saved with ID 'f2d14dfa'.
Name: markj

Token: eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.
eyJ1bmlxdWVfbmFtZSI6Im1hcmtqIiwic3ViIjoibWFya2oiLCJqdGkiOiJmMmQxNGRmYSIs
ImF1ZCI6WyJodHRwOi8vbG9jYWxob3N0OjUwOTAiLCJodHRwczovL2xvY2FsaG9zdDo1MDkxI
l0sIm5iZiI6MTcyNDUwMzE5NCwiZXhwIjoxNzMyNDUxOTk0LCJpYXQiOjE3MjQ1MDMxOTUs
ImlzcyI6ImRvdG5ldC11c2VyLWp3dHMifQ.grLo3oRI2j2-
LuF7IEZSLxjVFOh57FcRWO9SyC4se2M

8. At the command prompt or terminal, print all the information for the ID that was assigned, as
shown in the following command:

dotnet user-jwts print f2d14dfa --show-all

9. Note that the scheme is Bearer so the token must be sent with every request, the audience(s)
lists the authorized client domains and port numbers, and the token expires after three months.
Also note the JSON objects that represent the header and payload, and finally, the compact token
with its base64-encoded three parts separated by dots, as shown in the following partial output:

Chapter 9 377

Found JWT with ID 'f2d14dfa'.
ID: f2d14dfa
Name: markj
Scheme: Bearer
Audience(s): http://localhost:5090, https://localhost:5091
Not Before: 2024-08-24T12:39:54.0000000+00:00
Expires On: 2024-11-24T12:39:54.0000000+00:00
Issued On: 2024-08-24T12:39:55.0000000+00:00
Scopes: none
Roles: [none]
Custom Claims: [none]
Token Header: {"alg":"HS256","typ":"JWT"}
Token Payload: {"unique_
name":"markj","sub":"markj","jti":"f2d14dfa","aud":
["http://localhost:5090","https://
localhost:5091"],"nbf":1724503194,"exp":
1732451994,"iat":1724503195,"iss":"dotnet-user-jwts"}
Compact Token: eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.
eyJ1bmlxdWVfbmFtZSI6Im
1hcmtqIiwic3ViIjoibWFya2oiLCJqdGkiOiJmMmQxNGRmYSIsIm
F1ZCI6WyJodHRwOi8vbG9jYWxob3N0OjUwOTAiLCJodHRwczovL2xvY2FsaG9zdDo1MDkxIl0s
Im5
iZiI6MTcyNDUwMzE5NCwiZXhwIjoxNzMyNDUxOTk0LCJpYXQiOjE3MjQ1MDMxOTUsImlzcyI6Im
RvdG5ldC11c2VyLWp3dHMifQ.grLo3oRI2j2-LuF7IEZSLxjVFOh57FcRWO9SyC4se2M

10. In your preferred browser, navigate to https://jwt.io/. Then, copy and paste your JWT
compact token into the box to decode it, as shown in Figure 9.13:

Figure 9.13: Decoding a JWT

https://jwt.io/

Building Web Services Using ASP.NET Core Web API378

11. Scroll down the page and note that it believes the signature is invalid. This is because the
secret is base64 encoded. Select the secret base64 encoded checkbox and it will be validated,
as shown in Figure 9.14:

Figure 9.14: Validating the signature

12. In the Northwind.WebApi project, in appsettings.Development.json, note the new section
named Authentication, as shown highlighted in the following configuration:

{
 "Logging": {
 "LogLevel": {
 "Default": "Information",
 "Microsoft.AspNetCore": "Warning",
 "Microsoft.AspNetCore.HttpLogging": "Information"
 }
 },
 "Authentication": {
 "Schemes": {
 "Bearer": {
 "ValidAudiences": [
 "http://localhost:5090"
 "https://localhost:5091"
],
 "ValidIssuer": "dotnet-user-jwts"
 }
 }
 }
}

13. Start the Northwind.WebApi project using the https profile without debugging.
14. In the browser, change the relative path to /secret and note the response is rejected with a

401 status code, as shown in Figure 9.15:

Chapter 9 379

Figure 9.15: A failed request to a protected resource

15. In the HttpRequests folder, create a file named webapi-secure-request.http and modify its
contents to contain a request to get the secret ingredient, as shown in the following code (but
use your Bearer token, of course):

Get the secret ingredient.
GET https://localhost:5091/secret/
Authorization: Bearer eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.
eyJ1bmlxdWVfbmFtZSI6Im1hcmtqIiwic3ViIjoibWFya2oiLCJqdGkiOiJmMmQxNGRmYSIs
ImF1ZCI6WyJodHRwOi8vbG9jYWxob3N0OjUwOTAiLCJodHRwczovL2xvY2FsaG9zdDo1MDkx
Il0sIm5iZiI6MTcyNDUwMzE5NCwiZXhwIjoxNzMyNDUxOTk0LCJpYXQiOjE3MjQ1MDMxOTUs
ImlzcyI6ImRvdG5ldC11c2VyLWp3dHMifQ.grLo3oRI2j2-
LuF7IEZSLxjVFOh57FcRWO9SyC4se2M

16. Click Send Request, and note the response, as shown in the following output:

Welcome, secure user. The secret ingredient is love.

17. Close the browser and shut down the web service.

Practicing and exploring
Test your knowledge and understanding by answering some questions, getting some hands-on practice,
and exploring this chapter’s topics with deeper research.

Exercise 9.1 – Online material
JSON Web Tokens are an open, industry-standard RFC 7519 method for representing claims securely
between two parties. JWT.IO allows you to decode, verify, and generate JWTs:

https://jwt.io/introduction

https://jwt.io/introduction

Building Web Services Using ASP.NET Core Web API380

Improved route tooling
For .NET 8, Microsoft improved the tooling for working with routes for all ASP.NET Core technologies
including controller-based Web APIs, Minimal APIs, and Blazor. The features include the following:

• Route syntax highlighting: Different parts of routes are now highlighted in your code editor.
• Autocompletion of parameter and route names, and route constraints.
• Route analyzers and fixers: These address the common problems that developers have when

implementing their routes.

You can read about them in the blog article ASP.NET Core Route Tooling Enhancements in .NET 8, found
at https://devblogs.microsoft.com/dotnet/aspnet-core-route-tooling-dotnet-8/.

Implementing advanced features for web services
If you would like to learn about web service health checks, OpenAPI analyzers, adding security HTTP
headers, and enabling HTTP/3 support for HttpClient, then you can read the optional online-only
section at https://github.com/markjprice/web-dev-net9/blob/main/docs/ch09-advanced.md.

Exercise 9.2 – Practice exercise
Creating and deleting customers with HttpClient
Extend the Northwind.Mvc website project to have pages where a visitor can fill in a form to create a
new customer, or search for a customer and then delete them. The MVC controller should make calls
to the Northwind web service to create and delete customers.

Exercise 9.3 – Test your knowledge
Answer the following questions:

1. Which class should you inherit from to create a controller class for an ASP.NET Core Web API
service?

2. When configuring an HTTP client, how do you specify the format of data that you prefer in
the response from the web service?

3. What must you do to specify which controller action method will be executed in response to
an HTTP request?

4. What must you do to specify what responses should be expected when calling an action method?
5. List three methods that can be called to return responses with different status codes.
6. List four ways that you can try out a web service.
7. Why should you not wrap your use of HttpClient in a using statement to dispose of it when

you are finished, even though it implements the IDisposable interface, and what should you
use instead?

8. What is CORS?
9. How can you significantly reduce the risk of XSS attacks being able to steal session cookies?
10. What are the three parts of a JWT?

https://devblogs.microsoft.com/dotnet/aspnet-core-route-tooling-dotnet-8/
https://github.com/markjprice/web-dev-net9/blob/main/docs/ch09-advanced.md

Chapter 9 381

Exercise 9.4 – Explore topics
Use the links in the following GitHub repository to learn more details about the topics covered in this
chapter:

https://github.com/markjprice/web-dev-net9/blob/main/docs/book-links.md#chapter-9---
building-web-services-using-asp-net-core-web-api

Summary
In this chapter, you learned the following:

• How to build an ASP.NET Core Web API service that can be called by any app on any platform
that can make an HTTP request and process an HTTP response.

• How to try out and document web service APIs with Swagger.
• How to consume services efficiently.

In the next chapter, you will learn how to build web services using OData.

Learn more on Discord
To join the Discord community for this book – where you can share feedback, ask questions to the
author, and learn about new releases – follow the QR code below:

https://packt.link/RWD9

https://github.com/markjprice/web-dev-net9/blob/main/docs/book-links.md#chapter-9---building-web-services-using-asp-net-core-web-api

https://github.com/markjprice/web-dev-net9/blob/main/docs/book-links.md#chapter-9---building-web-services-using-asp-net-core-web-api

https://packt.link/RWD9

10
Building Web Services Using
ASP.NET Core OData
In this chapter, you will be introduced to OData, a standard that makes it easy to expose data via the
web to make it accessible to any client that can make an HTTP request.

Websites often need to display data, and that data often comes from relational databases. To improve
modularity and reuse, instead of a website directly calling the database, it should instead call a web
service. That web service can then be called by other clients, like mobile and desktop apps, as well as
the website itself or even other web services.

If you already have a well-structured relational database, instead of manually defining control-
lers with action methods that query the database and return responses, as you learned to do with
ASP.NET Core Web API in Chapter 9, Building Web Services Using ASP.NET Core Web API, it would be even
better if you could just wrap an EF Core entity model with a web service that automatically supports
complex querying using HTTP standards.

Guess what? That’s exactly what ASP.NET Core OData does for you!

OData is great for scenarios where a standardized, flexible data protocol is needed—especially for
internal enterprise environments that integrate with Microsoft products like Excel and Power BI. It
simplifies the development of data-driven applications by offering built-in querying, CRUD operations,
and deep integration with many tools.

While there are performance considerations that we will consider, OData’s strengths lie in its stan-
dardization, metadata-driven model, and ease of integration with complex relational data systems.

This chapter will cover the following topics:

• Understanding OData
• Building a web service that supports OData
• Exploring OData services using HTTP/REST tools
• Implementing versions and data modifications
• Building clients for OData services

Building Web Services Using ASP.NET Core OData384

Understanding OData
One of the most common uses of a web service is to expose a database to clients that do not know
how to work directly with the native database, or cannot for security reasons. Another common use
is to provide a simplified or abstracted API that exposes an authenticated interface to a subset of the
data to control access.

In Chapter 1, Introducing Web Development Using Controllers, you created an EF Core model to expose
an SQL Server database to any .NET project. But what about non-.NET projects? I know it’s crazy to
imagine, but not every developer uses .NET! Non-.NET developers cannot use our EF Core entity
model class libraries.

Luckily, all development platforms support HTTP, so all development platforms can call web services,
and ASP.NET Core has a package for making that easy and powerful using a standard named OData.

Understanding the OData standard
OData (Open Data Protocol) is an ISO/IEC-approved, OASIS standard that defines a set of best prac-
tices for building and consuming RESTful APIs. Microsoft created it in 2007 and released versions
1.0, 2.0, and 3.0 under its Microsoft Open Specification Promise. Version 4.0 was then standardized at
OASIS and released in 2014. OData is based on HTTP and has multiple endpoints to support multiple
versions and entity sets.

Benefits of OData
OData has many benefits when it comes to simplifying data access over HTTP.

Standardized querying
Unlike traditional ASP.NET Core Web APIs where the service defines all the methods and what gets
returned, OData uses URL query strings to define its queries. This enables the client to have more
control over what is returned and minimizes round trips. Of course, the OData service controls the
scope of those queries, but within that scope, the client has complete control.

More Information: ASP.NET Core OData implements OData version 4.0. You can learn
more about the OData standard at the following link: https://www.odata.org/.

https://www.odata.org/

Chapter 10 385

For example, with a Web API controller-based web service, an endpoint defined by a controller action
might always return all columns from the Products table in the HTTP response, but only data from
the Products table, not from related tables like Categories. If a client app needs to show a list of
product names with their category names, then the client app might have to make two round trips
to call two Web API endpoints and then match up the response data at the client side, throwing away
the unneeded data. With OData, the client can request just the columns it needs and from multiple
related tables in a single round trip.

OData uses familiar HTTP methods (GET, POST, PUT, and DELETE) and supports rich querying features
like filtering, sorting, paging, and projections, which make it easy to interact with data from any
OData-compliant service.

OData comes with built-in query options that save developers time in implementing filtering, sorting,
and pagination logic. These features are easily enabled, and clients can pass query options directly
in the URL, like $filter, $select, $top, and so on, reducing the need for custom server-side logic
for such tasks.

For example, the following request retrieves products with a price greater than 100, sorted by price
in descending order, and limited to 10 results, as shown in the following URL relative path:

/products?$filter=Price gt 100&$orderby=Price desc&$top=10

As another example, when querying the Northwind database, a client might only need two fields of data,
ProductName and Cost, and the related Supplier object, and only for products where the ProductName
contains the word burger and the cost is less than 4.95, with the results sorted by country and then
cost. The client would construct their query as a URL query string using standard named parameters,
as shown in the following request:

GET https://example.com/v1/products?$filter=contains(ProductName,
'burger') and UnitPrice lt 4.95&$orderby=Shipper/
Country,UnitPrice&$select=ProductName,UnitPrice&$expand=Supplier

Cross-platform interoperability and integration with Microsoft
ecosystem
OData is designed to be platform-agnostic, meaning it can be used across various environments and
technologies. Whether you are using .NET, Java, Python, or any other platform, you can interact with
an OData service using standard HTTP methods, making it easy to integrate systems that may other-
wise not communicate smoothly.

Being an open standard with wide adoption ensures that OData services and clients can be easily
integrated with existing tools, reducing the overhead of building custom data access layers. This also
means you can take advantage of a wealth of community support and documentation.

Building Web Services Using ASP.NET Core OData386

As well as supporting maximum interoperability with almost any developer platform, OData is well
supported within the Microsoft ecosystem. Technologies like Power BI, Excel, and EF Core can na-
tively consume OData endpoints, making it particularly useful for businesses that rely on Microsoft
tools, as shown in Figure 10.1:

Figure 10.1: Any client that can make an HTTP request can call an OData web service

This integration allows users to easily connect to data sources, create reports, and perform data anal-
ysis with minimal setup. Because OData is built for querying and manipulating data, it’s particularly
useful for applications that are heavily data-driven, such as reporting systems, dashboards, and ana-
lytics tools. Its ability to represent relationships between entities like in relational databases makes
it a great fit for applications needing to work with complex data models.

Self-describing and rich metadata
One of OData’s strengths is its ability to expose rich metadata about the data service it offers. OData
includes a standardized way of describing the schema of the data, which clients can read to understand
the structure of the underlying data model. For example, OData documents the available entities and
their types, relationships, and so on. This allows dynamic, client-side tools to work effectively without
prior knowledge of the schema.

An OData metadata document, which describes the entire data model, makes it easier for clients to
dynamically discover and consume the service without needing external documentation. The client
can use this document to understand what entities are available, their relationships, and the opera-
tions that can be performed.

Supports RESTful principles and CRUD operations
OData is built on top of REST principles, which makes it familiar to developers accustomed to REST
APIs. It uses HTTP methods like GET for retrieving, POST for creating, and so on, in a predictable man-
ner, and its stateless interactions align with standard web service design patterns.

Chapter 10 387

OData allows for full CRUD (Create, Read, Update, Delete) operations, which makes it more than just
a query language. You can use it to not only fetch data but also modify data on the server, providing
a comprehensive data access layer over HTTP.

Supports multiple data formats
OData supports multiple data formats, like JSON, XML, and AtomPub, giving it flexibility based on
client needs. JSON is particularly valuable for web and mobile applications due to its lightweight nature,
while XML and AtomPub can be useful for enterprise-level integrations.

Built-in support for data relationships
OData naturally supports data relationships, aka navigation properties, making it easy to traverse
and query related data. This is particularly useful when working with relational databases, as you can
retrieve entities and their related data with minimal effort.

For example, you can retrieve an order and its related customer information in a single query, as
shown in the following URL relative path:

/Orders?$expand=Customer

Extensibility
OData is flexible and can be extended. For instance, you can add custom actions and functions that go
beyond basic CRUD operations to provide additional behaviors, such as custom workflows, without
breaking the RESTful nature of the protocol. This makes it more powerful and adaptable to different
business needs.

Standard security features
OData leverages existing web security standards like OAuth, OpenID Connect, and HTTPS. While not
exclusive to OData, the protocol doesn’t require creating a custom security solution and can fit into
existing security models.

Disadvantages of OData
This chapter would not be complete without a discussion of when it is not appropriate to use OData
to build a web service.

OData can introduce additional complexity and overhead compared to simpler web services, especially
for developers unfamiliar with its structure and metadata format. The learning curve can be steep for
those accustomed to traditional REST APIs or other simpler alternatives.

If implemented poorly, OData can have performance concerns:

• Over-Fetching Data: By default, OData may return large datasets when only a small portion
is needed. Although you can fine-tune queries, the default behavior can result in significant
performance overhead if not properly managed.

Building Web Services Using ASP.NET Core OData388

• Query Complexity: OData supports complex queries, including filtering and sorting, which
can impact server performance if users make unoptimized queries. This complexity also puts
more burden on the server to process these queries.

While the flexibility of OData queries is one of its strengths, it can also be a drawback. Client developers
can craft complex queries that might be inefficient or hard to optimize, causing unpredictable perfor-
mance issues. This is especially concerning when exposing public endpoints that allow developers to
run extensive filtering and sorting operations on large datasets.

OData services may struggle when working with large datasets or high concurrency, as the query
structure can introduce processing overhead. Other APIs built around simpler REST principles can be
more efficient and easier to scale because they often don’t need to process complex queries directly
within the URL.

OData can be difficult to version over time. REST APIs typically version by the endpoint, but OData
services are generally designed around a single, large API surface. Adding new functionality or making
changes can become challenging without breaking existing clients.

OData doesn’t provide robust mechanisms for fine-grained security control. It may be difficult to re-
strict access to certain parts of data or prevent certain query types. Because it supports a wide array
of querying options, you have to manually enforce many security measures, making it more prone to
exposing sensitive data unintentionally.

OData’s adherence to strict standards like the AtomPub (XML) and JSON formats can result in bloated
responses, particularly when metadata is included by default. This can be especially problematic for
mobile or low-bandwidth environments, where minimizing payload size is important for performance.

While OData simplifies querying for the client, it can also add complexity on the client side to pro-
cess the responses. Clients need to understand the OData protocol and how to construct complex
queries, and this can be cumbersome in environments where the primary goal is simplicity, such as
lightweight mobile apps.

While there are OData libraries and support outside of Microsoft, its popularity tends to wane when
working in non-Microsoft environments, leading to fewer resources, documentation, and community
support if you’re not primarily working within Microsoft tools.

OData works best with relational data, as it was designed with SQL databases in mind. When working
with NoSQL databases or unstructured data, OData can become cumbersome.

While OData is a powerful tool for specific use cases—particularly in enterprise environments or
where data interoperability is important—it does have drawbacks related to performance, complexity,
security, and scalability. If you’re building services where interoperability, simplicity, speed, or light-
weight interactions are more important than maturity, then simpler REST or GraphQL alternatives
might be more appropriate than OData.

I cover modern options for building web services like Minimal APIs and GraphQL in my
book Apps and Services with .NET 8. It also covers efficient non-web microservices using
gRPC and nano-services using Azure Functions.

Chapter 10 389

Building a web service that supports OData
There is no dotnet new project template for ASP.NET Core OData, but it uses controller classes, so
we will use the ASP.NET Core Web API project template and then add package references to add the
OData capabilities:

1. Use your preferred code editor to add a new project, as defined in the following list:

• Project template: ASP.NET Core Web API / webapi --use-controllers
• Solution file and folder: MatureWeb
• Project file and folder: Northwind.OData

2. If you are using Visual Studio, then confirm the following defaults have been chosen:

• Framework: .NET 9.0 (Standard Term Support)
• Authentication type: None
• Configure for HTTPS: Selected
• Enable container support: Cleared
• Enable OpenAPI support: Selected
• Do not use top-level statements: Cleared
• Use controllers: Selected

3. If you are using VS Code or Rider, then in the MatureWeb directory, at the command prompt
or terminal, enter the following commands:

dotnet new webapi --use-controllers -o Northwind.OData
dotnet sln add Northwind.OData

4. In the Northwind.OData.csproj project file, delete the version attribute from the OpenAPI
package reference, add a package reference for OData integration with ASP.NET Core, and
add a project reference to the Northwind database context project, as shown highlighted in
the following markup:

<Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>
 <TargetFramework>net9.0</TargetFramework>
 <Nullable>enable</Nullable>
 <ImplicitUsings>enable</ImplicitUsings>
 </PropertyGroup>

Make sure to select the Use controllers check box or your code will look very
different because it will use Minimal APIs instead of controllers!

Building Web Services Using ASP.NET Core OData390

 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.OpenApi" />
 <PackageReference Include="Microsoft.AspNetCore.OData" />
 </ItemGroup>

 <ItemGroup>
 <ProjectReference Include=
 "..\Northwind.DataContext\Northwind.DataContext.csproj" />
 </ItemGroup>

</Project>

5. In the Northwind.OData project folder, delete WeatherForecast.cs.
6. In the Controllers folder, delete WeatherForecastController.cs.
7. Build the Northwind.OData project to compile dependencies and restore packages.

Defining OData models for the EF Core models
The first task is to define what we want to expose as OData models in the web service. You have com-
plete control, so if you have an existing EF Core model, as we do for Northwind, you do not have to
expose all of it.

You do not even have to use EF Core models. The data source can be anything. In this book, we will
only look at using it with EF Core because that is the most common use for .NET developers.

Traditionally, if you only had a single data model, then you would use odata as the name, as shown
in Table 10.1:

Endpoint Description Response

/odata Retrieve service
document.

JSON-based representation of the service
document listing all the top-level entity
sets

/odata/$metadata Retrieve service
metadata.

Service metadata XML document
describing the Entity Data Model (EDM)
for the service

Although it is the most popular downloaded package for OData, do not reference
Microsoft.Data.OData because it only supports versions 1 to 3 and it is not being
maintained. The other popular packages for OData are Microsoft.OData.Core
and Microsoft.OData.Edm, which are both dependencies of the package you just
referenced, so they will be included in your project automatically.

Chapter 10 391

/odata/<entityset>

/odata/Products

Retrieve all
entities in an
entity set.

Collection of products

/odata/<entityset>/$count

/odata/Products/$count

Retrieve number
of entities in an
entity set.

Count of products

/odata/<entityset>(<key>)

/odata/<entitytset>/<key>

/odata/Products(77)

/odata/Products/77

Retrieve entity
by ID.

Entity object, for example, the product
with an ID of 77

Table 10.1: Conventions for OData endpoints

But using odata is just a convention. Let’s define two OData models—one to expose the Northwind
product catalog named catalog, including the Categories and Products tables, and one to expose
the customers, their orders, and related tables named ordersystem:

1. In the Northwind.OData project folder, add a new class file named Program.Methods.cs.
2. In Program.Methods.cs, import some namespaces for working with OData and our entity

models, and then add a method to define and return an OData model for the Northwind catalog
that will only expose the entity sets, i.e., tables for Categories, Products, and Suppliers, as
shown in the following code:

using Microsoft.OData.Edm; // To use IEdmModel.
using Microsoft.OData.ModelBuilder; // ODataConventionModelBuilder
using Northwind.EntityModels; // To use Northwind entity models.

partial class Program
{
 static IEdmModel GetEdmModelForCatalog()
 {
 ODataConventionModelBuilder builder = new();
 builder.EntitySet<Category>("Categories");
 builder.EntitySet<Product>("Products");
 builder.EntitySet<Supplier>("Suppliers");
 return builder.GetEdmModel();
 }
}

Building Web Services Using ASP.NET Core OData392

3. Add a method to define an OData model for the Northwind customer orders, and note that
the same entity set can appear in multiple OData models like Products does, as shown in the
following code:

static IEdmModel GetEdmModelForOrderSystem()
{
 ODataConventionModelBuilder builder = new();
 builder.EntitySet<Customer>("Customers");
 builder.EntitySet<Order>("Orders");
 builder.EntitySet<Employee>("Employees");
 builder.EntitySet<Product>("Products");
 builder.EntitySet<Shipper>("Shippers");
 return builder.GetEdmModel();
}

4. In Program.cs, import the namespace for working with OData and the namespace for the
database context registration extension method, as shown in the following code:

using Microsoft.AspNetCore.OData; // To use AddOData.
using Northwind.EntityModels; // To use AddNorthwindContext.

5. In the services configuration section, before the call to AddControllers, add a statement to
register the Northwind database context, as shown in the following code:

builder.Services.AddNorthwindContext();

6. In the services configuration section, after the call to AddControllers, chain a call to the
AddOData extension method to define two OData models and enable features like projection,
filtering, and sorting, as shown highlighted in the following code:

builder.Services.AddControllers()
 // Register OData models.
 .AddOData(options => options

 // GET /catalog and /catalog/$metadata
 .AddRouteComponents(routePrefix: "catalog",
 model: GetEdmModelForCatalog())

 // GET /ordersystem and /ordersystem/$metadata
 .AddRouteComponents(routePrefix: "ordersystem",
 model: GetEdmModelForOrderSystem())

 // Enable query options:
 .Select() // $select for projection
 .Expand() // $expand to navigate to related entities

Chapter 10 393

 .Filter() // $filter
 .OrderBy() // $orderby
 .SetMaxTop(100) // $top
 .Count() // $count
);

7. In the Properties folder, open launchSettings.json.
8. In the https profile, modify the applicationUrl to use port 5101 for HTTPS and 5100 for HTTP,

as shown in the following markup:

"applicationUrl": "https://localhost:5101;http://localhost:5100",

9. In the https profile, modify the launchUrl to request the catalog service document, as shown
in the following markup:

"launchUrl": "catalog",

10. Save the changes.

Testing the OData models
Now we can check that the OData models have been defined correctly:

1. Set the Northwind.OData project as the startup project.
2. Start the Northwind.OData project with the https launch profile.
3. Start Chrome if it does not start automatically.
4. Navigate to https://localhost:5101/catalog and note the Northwind.OData service catalog

entity sets are included in a JSON document, as shown in the following markup:

{
 "@odata.context": "https://localhost:5101/catalog/$metadata",
 "value": [
 {
 "name": "Categories",
 "kind": "EntitySet",
 "url": "Categories"
 },
 {
 "name": "Products",
 "kind": "EntitySet",
 "url": "Products"
 },
 {
 "name": "Suppliers",
 "kind": "EntitySet",
 "url": "Suppliers"

Building Web Services Using ASP.NET Core OData394

 }
]
}

5. Navigate to https://localhost:5101/catalog/$metadata and note the Northwind.OData
service catalog entity model is fully documented in an XML document, as shown in Figure 10.2:

Figure 10.2: Documentation for the Northwind.OData project catalog

6. Navigate to https://localhost:5101/ordersystem and https://localhost:5101/
ordersystem/$metadata, and note the Northwind.OData service order system entity model
is also documented.

7. Close Chrome and shut down the web server.

At this point, we have documented the two models, but if we try to access the entities in those models,
it fails. The next step is to create an OData controller for each entity set with code to read and write
to the data.

Creating and testing OData controllers
Next, we must create OData controllers, one for each type of entity, to retrieve data:

1. In the Controllers folder, add an empty controller class file named CategoriesController.cs.
2. Modify its contents to inherit from ODataController, get an instance of the Northwind data-

base context using constructor parameter injection, and define two Get methods to retrieve
all categories or one category using a unique key, as shown in the following code:

using Microsoft.AspNetCore.Mvc; // To use IActionResult.
using Microsoft.AspNetCore.OData.Query; // To use [EnableQuery].

The @odata.context value tells us the URL to request for a complete XML file that
documents the catalog model. The url values tell us the relative path to access
the entities in those entity sets. For example, to retrieve all suppliers, you would
use https://localhost:5101/catalog/Suppliers.

Chapter 10 395

using Microsoft.AspNetCore.OData.Routing.Controllers; // ODataController
using Northwind.EntityModels; // To use NorthwindContext.

namespace Northwind.OData.Controllers;

public class CategoriesController : ODataController
{
 protected readonly NorthwindContext _db;

 public CategoriesController(NorthwindContext db)
 {
 _db = db;
 }

 [EnableQuery]
 public IActionResult Get()
 {
 return Ok(_db.Categories);
 }

 [EnableQuery]
 public IActionResult Get(int key)
 {
 return Ok(_db.Categories.Where(
 category => category.CategoryId == key));
 }
}

3. Repeat the above step for Products and Suppliers.

Good Practice: Make sure that your Get methods are decorated with [EnableQuery]
so that OData can work its magic and extend the LINQ query so that the generated
SQL statement is optimized.

I will leave it as an optional task for you to do the same for the other entities to
enable the order system OData model. Note the CustomerId is a string instead
of an int. The solution code for all OData controllers can be found at the follow-
ing link: https://github.com/markjprice/web-dev-net9/tree/main/code/
MatureWeb/Northwind.OData/Controllers.

https://github.com/markjprice/web-dev-net9/tree/main/code/MatureWeb/Northwind.OData/Controllers
https://github.com/markjprice/web-dev-net9/tree/main/code/MatureWeb/Northwind.OData/Controllers

Building Web Services Using ASP.NET Core OData396

4. Start the Northwind.OData web service using the https launch profile.
5. Start Chrome, navigate to https://localhost:5101/catalog/Products, and note the response

body that shows a JSON document containing all products in the entity set, as partially shown
in the following output and in Figure 10.3:

{
 "@odata.context": "https://localhost:5101/catalog/$metadata#Products",
 "value": [
 {
 "ProductId": 1,
 "ProductName": "Chai",
 "SupplierId": 1,
 "CategoryId": 1,
 "QuantityPerUnit": "10 boxes x 20 bags",
 "UnitPrice": 18,
 "UnitsInStock": 39,
 "UnitsOnOrder": 0,
 "ReorderLevel": 10,
 "Discontinued": false
 },
 {
 "ProductId": 2,
 "ProductName": "Chang",
 "SupplierId": 1,
 "CategoryId": 1,
 "QuantityPerUnit": "24 - 12 oz bottles",
 "UnitPrice": 19,
 "UnitsInStock": 17,
 "UnitsOnOrder": 40,
 "ReorderLevel": 25,
 "Discontinued": false
 },
 ...
]
}

Chapter 10 397

Figure 10.3: The Products entity set

6. At the command prompt or terminal, note the output from logging the SQL command that was
executed, as shown in the following output:

info: Microsoft.EntityFrameworkCore.Database.Command[20101]
 Executed DbCommand (5ms) [Parameters=[], CommandType='Text',
CommandTimeout='30']
 SELECT [p].[ProductId], [p].[CategoryId], [p].[Discontinued],
[p].[ProductName], [p].[QuantityPerUnit], [p].[ReorderLevel], [p].
[SupplierId], [p].[UnitPrice], [p].[UnitsInStock], [p].[UnitsOnOrder]
 FROM [Products] AS [p]

7. Close Chrome and shut down the web server.

Exploring OData services using HTTP/REST tools
Instead of a browser, a better tool for exploring your OData service is the VS Code extension named
REST Client or the HTTP editor built into Visual Studio.

Creating an HTTP file for making requests
Let’s explore the many types of queries that your OData web service can automatically handle by
creating an .http file:

1. In your preferred code editor, start the Northwind.OData project web service and leave it
running.

We are noting the SQL statement now so that you can see that all the columns
and rows are requested by the OData service when it receives a GET request to the
catalog/Products path. Later, we will use EF Core logs again to see how OData
queries are automatically translated into efficient SQL queries. OData services do
not have to return all columns and rows from the database to the service and then
perform the filtering inside the service.

Building Web Services Using ASP.NET Core OData398

2. In the HttpRequests folder, create a file named odata-catalog.http and modify its contents
to contain some basic requests to the catalog model, as shown in the following code:

Configure a variable for the web service base address.
@base_address = https://localhost:5101/catalog/

Make a GET request to the base address.
GET {{base_address}}

Make a GET request to the base address for metadata.
GET {{base_address}}$metadata

Make a GET request to get all categories.
GET {{base_address}}categories

Make a GET request to get all products.
GET {{base_address}}products

Make a GET request to get all suppliers.
GET {{base_address}}suppliers

3. For each request, click Send request, and note the response, for example, a JSON document
containing all categories, as shown in Figure 10.4:

Figure 10.4: Visual Studio’s HTTP Editor getting the categories from the OData service

Chapter 10 399

4. In odata-catalog.http, add more requests separated by ###, as shown in Table 10.2 (remember
to prefix it with {{base_address}}):

Relative request Response

categories(3)

{
 "@odata.context":
"https://localhost:5101/catalog/$metadata#Categories/$en
tity",
 "CategoryId": 3,
 "CategoryName": "Confections",
 "Description": "Desserts, candies, and sweet breads",
 "Picture": "FRwvAA..."

}

categories/3 Same as above

categories/$count 8

products/$count 77

suppliers/$count 29

products(2)

{
 "@odata.context": "https://localhost:5101/
catalog/$metadata#Products",
 "value": [
 {
 "ProductId": 77,
 "ProductName": "Original Frankfurter grüne Soße",
 "SupplierId": 12,
 "CategoryId": 2,
 "QuantityPerUnit": "12 boxes",
 "UnitPrice": 13.0000,
 "UnitsInStock": 32,
 "UnitsOnOrder": 0,
 "ReorderLevel": 15,
 "Discontinued": false
 }
]
}

Table 10.2: Additional requests to the OData service

Building Web Services Using ASP.NET Core OData400

Understanding OData queries
Let’s review some of the common features of OData queries.

Note that OData queries use the standard query string features of URLs. In other words, they start with
a ? at the end of the relative path, and if you specify multiple query options, they must be separated
by the & character.

OData standard query options
One of the benefits of OData is that it defines standard query options, as shown in Table 10.3:

Option Description Example

$select Selects properties for each entity. $select=CategoryId,CategoryName

$expand Selects related entities via
navigation properties.

$expand=Products

$filter

The expression is evaluated for
each resource, and only entities
where the expression is true are
included in the response. Use
parentheses to wrap expressions
to explicitly specify priority.

$filter=startswith(ProductName,'ch') or
(UnitPrice gt 50)

$orderby

Sorts the entities by the
comma-separated properties
listed in ascending (default) or
descending order.

$orderby=UnitPrice desc,ProductName

$skip

$top

Skips the specified number
of items. Takes the specified
number of items.

$skip=40&$top=10

Table 10.3: OData query options

OData operators
OData has operators for use with the $filter option, as shown in Table 10.4:

Operator Description

eq Equal to

ne Not equal to

I strongly recommend using VS Code and its REST Client extension to write your OData
queries because it allows you to split an HTTP request over multiple lines and you can
use normal spaces in them. Visual Studio’s HTTP Editor does not support multiple lines
or spaces.

Chapter 10 401

lt Less than

gt Greater than

le Less than or equal to

ge Greater than or equal to

and And

or Or

not Not

add Arithmetic add for numbers and date/time values

sub Arithmetic subtract for numbers and date/time values

mul Arithmetic multiply for numbers

div Arithmetic division for numbers

mod Arithmetic modulus division for numbers

Table 10.4: OData query operators

OData functions
OData has functions for use with the $filter option, as shown in Table 10.5:

Operator Description

startswith(stringToSearch, string) Text values that start with the specified value

endswith(stringToSearch, string) Text values that end with the specified value

concat(string1, string2) Concatenate two text values

contains(stringToSearch, string) Text values that contain the specified value

indexof(stringToSearch, string) Returns the position of a text value

length(string) Returns the length of a text value

substring(string, index, length) Extracts a substring from a text value

tolower(string) Converts to lowercase

toupper(string) Converts to uppercase

trim(string) Trims whitespace before and after text value

now The current date and time

day(datetime), month(datetime),
year(datetime)

Extracts date components

hour(datetime), minute(datetime),
second(datetime)

Extracts time components

Table 10.5: OData query functions

Building Web Services Using ASP.NET Core OData402

Exploring OData queries
Let’s experiment with some OData queries:

1. In the HttpRequests folder, create a file named odata-catalog-queries.http and modify its
contents to contain a request to get all categories, as shown in the following code:

Configure a variable for the web service base address.
@base_address = https://localhost:5101/catalog/

Make a GET request for two columns for categories.
GET {{base_address}}categories/?$select=CategoryId,CategoryName

2. Arrange the command prompt or terminal window so that you can see it alongside the HTTP file.
3. Click Send request and note that the response is a JSON document containing all categories,

but only the ID and name properties, and the OData service used the EF Core model to execute
a dynamically generated SQL statement that efficiently requested only those two columns, as
shown in Figure 10.5:

Figure 10.5: OData service efficiently executing SQL against the Northwind database

4. Add and send a request to get the names and prices of products with names that start with
Ch, like Chai and Chef Anton's Gumbo Mix, or have a unit price of more than 50, like Mishi
Kobe Niku or Sir Rodney's Marmalade, as shown in the following request and in Figure 10.6:

Make a GET request for products that start with Ch or cost more than
$50.
GET {{base_address}}products/
 ?$select=ProductName,UnitPrice
 &$filter=startswith(ProductName,'Ch') or (UnitPrice gt 50)

Chapter 10 403

Figure 10.6: VS Code and the REST Client extension executing a multi-line OData request

Figure 10.7: Visual Studio’s HTTP Editor executing an encoded request

5. Add and send a request to get products sorted with the most expensive at the top, and then
for each price, sorted by product name, only including the ID, name, and price properties, as
shown in the following request:

Make a GET request for products sorted by price.
GET {{base_address}}products/
 ?$orderby=UnitPrice desc,ProductName
 &$select=ProductId,ProductName,UnitPrice

Visual Studio’s HTTP Editor cannot execute multi-line HTTP requests, nor does it
support spaces in paths. To use it, you must encode the URL. For example, replace
each space character with %20, as shown in the following request and in Figure
10.7: GET {{base_address}}products/?$select=ProductName,UnitPrice&
$filter=startswith(ProductName,'Ch')%20or%20(UnitPrice%20gt%2050)

Building Web Services Using ASP.NET Core OData404

6. Add and send a request to get a specific product, and only include the ID, name, and price
properties, as shown in the following request:

Make a GET request for a subset of properties for product 77.
GET {{base_address}}products(77)/
 ?$select=ProductId,ProductName,UnitPrice

7. Add and send a request to get categories and their related products, as shown in the following
request:

Make a GET request for categories and their related products.
GET {{base_address}}categories/
 ?$select=CategoryId,CategoryName
 &$expand=Products

8. Add and send a request to get a specific category and its related products, as shown in the
following request:

Make a GET request for category 8 and its related products.
GET {{base_address}}categories(8)/
 ?$select=CategoryId,CategoryName
 &$expand=Products

9. Shut down the web server.

Using logs to review the efficiency of OData requests
How does OData querying work? Let’s find out by using logging in the Northwind database context to
see the actual SQL statements that are executed:

1. Start the Northwind.OData web service.
2. Start Chrome and navigate to https://localhost:5101/catalog/products/?$filter=star

tswith(ProductName,'Ch') or (UnitPrice gt 50)&$select=ProductId,ProductName,Un
itPrice.

3. In Chrome, note the result, as shown in the following output:

{"@odata.context":"https://localhost:5101/
catalog/$metadata#Products(ProductId,ProductName,UnitPrice)","value":
[{"ProductId":1,"ProductName":"Chai","UnitPrice":18.0000},{"ProductId":2,
"ProductName":"Chang","UnitPrice":19.0000},{"ProductId":4,"ProductName":
"Chef Anton's Cajun
Seasoning","UnitPrice":22.0000},{"ProductId":5,"ProductName":"Chef

More Information: For the official documentation of OData URL conventions and standard
queries, use the following link: http://docs.oasis-open.org/odata/odata/v4.01/
odata-v4.01-part2-url-conventions.html#_Toc31360954.

https://localhost:5101/catalog/products/?$filter=startswith(ProductName,'Ch') or (UnitPrice gt 50)&$select=ProductId,ProductName,UnitPrice
https://localhost:5101/catalog/products/?$filter=startswith(ProductName,'Ch') or (UnitPrice gt 50)&$select=ProductId,ProductName,UnitPrice
https://localhost:5101/catalog/products/?$filter=startswith(ProductName,'Ch') or (UnitPrice gt 50)&$select=ProductId,ProductName,UnitPrice
http://docs.oasis-open.org/odata/odata/v4.01/odata-v4.01-part2-url-conventions.html#_Toc31360954
http://docs.oasis-open.org/odata/odata/v4.01/odata-v4.01-part2-url-conventions.html#_Toc31360954

Chapter 10 405

Anton's Gumbo
Mix","UnitPrice":21.3500},{"ProductId":9,"ProductName":"Mishi Kobe
Niku","UnitPrice":97.0000},{"ProductId":18,"ProductName":"Carnarvon
Tigers","UnitPrice":62.5000},{"ProductId":20,"ProductName":"Sir Rodney's
Marmalade","UnitPrice":81.0000},{"ProductId":29,"ProductName":"Th\
u00fcringer
Rostbratwurst","UnitPrice":123.7900},{"ProductId":38,"ProductName":"C\
u00f4te de
Blaye","UnitPrice":263.5000},{"ProductId":39,"ProductName":"Chartreuse
verte","UnitPrice":18.0000},{"ProductId":48,"ProductName":"Chocolade",
"UnitPrice":12.7500},{"ProductId":51,"ProductName":"Manjimup Dried
Apples","UnitPrice":53.0000},{"ProductId":59,"ProductName":"Raclette
Courdavault","UnitPrice":55.0000}]}

4. At the command prompt or terminal, note the logged SQL statement that was executed, as
shown in the following output:

info: Microsoft.EntityFrameworkCore.Database.Command[20101]
 Executed DbCommand (57ms) [Parameters=[@__TypedProperty_0='?' (Size
= 4000), @__TypedProperty_0_1='?' (Size = 40), @__TypedProperty_1='?'
(Precision = 2) (DbType = Decimal)], CommandType='Text',
CommandTimeout='30']
 SELECT [p].[ProductId], [p].[ProductName], [p].[UnitPrice]
 FROM [Products] AS [p]
 WHERE @__TypedProperty_0 = N'' OR LEFT([p].[ProductName],
LEN(@__TypedProperty_0_1)) = @__TypedProperty_0 OR [p].[UnitPrice] >
@__TypedProperty_1

5. Close the browser and shut down the web server.

It might look like the Get action method on the ProductsController returns the entire Products table
with an 200 OK status code, but it actually returns an IQueryable<Products> object.

In other words, it returns a LINQ query, not the results. We decorated the Get action method with
the [EnableQuery] attribute. This enables OData to extend the LINQ query with filters, projections,
sorting, and so on, and only then does it execute the query, serialize the results, and return them to
the client with the 200 OK status code (or the 404 Missing Resource status code in the case where an
ID was passed that does not exist).

This makes OData services as flexible and efficient as possible when it translates from its query lan-
guage to LINQ and then into SQL statements.

Implementing versions and data modifications
Now let’s look at how you can implement some more features, including versioning and enabling
data modifications.

Building Web Services Using ASP.NET Core OData406

Versioning OData controllers
It is good practice to plan for future versions of your OData models that might have different schemas
and behavior.

To maintain backward compatibility, you can use OData URL prefixes to specify a version number:

1. In the Northwind.OData project, in Program.cs, in the services configuration section, after add-
ing the two OData models for catalog and orders, add a third OData model that has a version
number and uses the same GetEdmModelForCatalog method, as shown in the following code:

// GET /catalog/v1, /catalog/v2, and so on.
.AddRouteComponents(routePrefix: "catalog/v{version}",
 model: GetEdmModelForCatalog())

2. In ProductsController.cs, modify the Get methods to add a string parameter named version
that defaults to "1", and use it to change the behavior of the methods if version 2 is specified
in a request, as shown highlighted in the following code:

[EnableQuery]
public IActionResult Get(string version = "1")
{
 Console.WriteLine($"*** ProductsController version {version}.");
 return Ok(db.Products);
}

[EnableQuery]
public IActionResult Get(int key, string version = "1")
{
 Console.WriteLine($"*** ProductsController version {version}.");

 IQueryable<Product> products = _db.Products.Where(
 product => product.ProductId == key);

 Product? p = products.FirstOrDefault();

 if ((products is null) || (p is null))
 {
 return NotFound($"Product with id {key} not found.");
 }

 if (version == "2")
 {
 p.ProductName += " version 2.0";
 }

Chapter 10 407

 return Ok(p);
}

3. In your preferred code editor, start the Northwind.OData project web service.
4. In odata-catalog-queries.http, add a request to get the product with ID 50 using the v2

OData model, as shown in the following code:

GET product 50 using version 2 of the implementation.
GET {{base_address}}v2/products(50)

5. Click Send Request, and note the response is the product with its name appended with version
2.0, as shown highlighted in the following output:

{
 "@odata.context": "https://localhost:5101/
v2/$metadata#Products/$entity",
 "ProductId": 50,
 "ProductName": "Valkoinen suklaa version 2.0",
 "SupplierId": 23,
 "CategoryId": 3,
 "QuantityPerUnit": "12 - 100 g bars",
 "UnitPrice": 16.2500,
 "UnitsInStock": 65,
 "UnitsOnOrder": 0,
 "ReorderLevel": 30,
 "Discontinued": false
}

6. At the command prompt or terminal, note version 2 is used, as shown in the following output:

*** ProductsController version 2.

7. In odata-catalog-queries.http, add a request to get the product with ID 50 using the default
(v1) OData model, as shown in the following code:

GET product 50 using the default version 1 of the implementation.
GET {{base_address}}products(50)

8. Click Send Request, and note the response is the product with its name unmodified.
9. At the command prompt or terminal, note version 1 is used, as shown in the following output:

*** ProductsController version 1.

10. Shut down the web server.

Building Web Services Using ASP.NET Core OData408

Enabling entity inserts, updates, and deletes
Although the most common use for OData is to provide a Web API that supports custom queries, you
might also want to support CRUD operations like inserts.

Let’s see how to do that:

1. In ProductsController.cs, add an action method to respond to POST requests, as shown in
the following code:

public IActionResult Post([FromBody] Product product)
{
 _db.Products.Add(product);
 _db.SaveChanges();
 return Created(product);
}

2. Set a breakpoint on the open brace of the method.
3. Start the Northwind.OData web service project using the https launch profile with debugging

so it will pause when it hits the breakpoint.
4. In the HttpRequests folder, create a new file named odata-catalog-modify-product.http,

as shown in the following HTTP request:

Configure a variable for the web service base address.
@base_address = https://localhost:5101/catalog/

Insert a new product.
POST {{base_address}}products
Content-Type: application/json

{
 "ProductName": "Impossible Burger",
 "SupplierId": 7,
 "CategoryId": 6,
 "QuantityPerUnit": "Pack of 4",
 "UnitPrice": 40.25,
 "UnitsInStock": 50,
 "UnitsOnOrder": 0,
 "ReorderLevel": 30,
 "Discontinued": false
}

5. Click Send Request.

Chapter 10 409

6. In your code editor, note the breakpoint is hit, and you can use the debugging tools to see
the product parameter successfully deserialized from the body of the HTTP POST request, as
shown in Figure 10.8:

Figure 10.8: Debugging the OData POST request method handler

7. Allow the code to continue executing.

8. Note the successful response, as shown in Figure 10.9:

Figure 10.9: A successful POST response

If you get an error response saying, “The request was canceled due to the con-
figured timeout of 20 seconds elapsing.”, then click Send Request again, and this
time, immediately allow the code to continue after hitting the breakpoint, or
remove the breakpoint.

Building Web Services Using ASP.NET Core OData410

9. Optionally, implement two more methods to enable updates using an HTTP PUT request and
deletes using an HTTP DELETE request.

Building clients for OData services
Finally, let’s see how a .NET client might call the OData web service. Let’s review how clients interact
with an OData service.

If we wanted to query the OData service for products that start with the letters Cha, then we would
need to send a GET request with a relative URL path similar to the following:

catalog/products/?$filter=startswith(ProductName,
'Cha')&$select=ProductId,ProductName,UnitPrice

OData returns data in a JSON document with a property named value that contains the resulting
products as an array, as shown in the following JSON document:

{
 "@odata.context": "https://localhost:5101/catalog/$metadata#Products",
 "value": [
 {
 "ProductId": 1,
 "ProductName": "Chai",
 "UnitPrice": 18
 },

We will use our Northwind.Mvc project as a client and define a model class to make it easy to deseri-
alize the HTTP response:

1. In the Northwind.Mvc project, in the Models folder, add a new class file named ODataProducts.
cs, as shown in the following code:

using Northwind.EntityModels; // To use Product.

namespace Northwind.Mvc.Models;

public class ODataProducts
{
 public Product[]? Value { get; set; }
}

The solution code can be found at the following link: https://github.com/
markjprice/web-dev-net9/blob/main/code/MatureWeb/Northwind.OData/
Controllers/ProductsController.cs.

https://github.com/markjprice/web-dev-net9/blob/main/code/MatureWeb/Northwind.OData/Controllers/ProductsController.cs
https://github.com/markjprice/web-dev-net9/blob/main/code/MatureWeb/Northwind.OData/Controllers/ProductsController.cs
https://github.com/markjprice/web-dev-net9/blob/main/code/MatureWeb/Northwind.OData/Controllers/ProductsController.cs

Chapter 10 411

2. In Program.cs, before the call to builder.Build(), add statements to register an HTTP client
for the OData service that will request JSON for the response data format, as shown in the
following code:

builder.Services.AddHttpClient(name: "Northwind.OData",
 configureClient: options =>
 {
 options.BaseAddress = new Uri("https://localhost:5101/");
 options.DefaultRequestHeaders.Accept.Add(
 new MediaTypeWithQualityHeaderValue(
 "application/json", 1.0));
 });

Calling services in the Northwind MVC website
Next, we will call the service in a new controller:

1. In the Northwind.Mvc project, in the Views\Shared folder, in _Layout.cshtml, add a naviga-
tion menu item to go to a CORS controller with a JavaScript action method, as shown in the
following markup:

<li class="nav-item">
 <a class="nav-link text-dark" asp-area=""
 asp-controller="ODataClient" asp-action="Index">OData

2. In the Controllers folder, add a new MVC Controller – Empty file named ODataClientController.
cs.

3. In ODataClientController.cs, define a controller class with an Index action method, declare
fields to store a logger and the registered HTTP client factory service, and then add statements
that call the OData service to get products that start with Cha and store the result in the ViewData
dictionary, as shown in the following code:

using Microsoft.AspNetCore.Mvc;

namespace Northwind.Mvc.Controllers;

public class ODataClientController : Controller
{
 protected readonly ILogger<ODataClientController> _logger;
 protected readonly IHttpClientFactory _httpClientFactory;

 public ODataClientController(
 ILogger<ODataClientController> logger,
 IHttpClientFactory httpClientFactory)

Building Web Services Using ASP.NET Core OData412

 {
 _logger = logger;
 _httpClientFactory = httpClientFactory;
 }

 public async Task<IActionResult> Index(string startsWith = "Cha")
 {
 IEnumerable<Product>? model = Enumerable.Empty<Product>();
 try
 {
 HttpClient client = _httpClientFactory.CreateClient(
 name: "Northwind.OData");

 HttpRequestMessage request = new(
 method: HttpMethod.Get, requestUri:
 "catalog/products/?$filter=startswith(ProductName," +
 $"'{startsWith}')&$select=ProductId,ProductName,UnitPrice");

 HttpResponseMessage response = await client.SendAsync(request);

 ViewData["startsWith"] = startsWith;
 model = (await response.Content
 .ReadFromJsonAsync<ODataProducts>())?.Value;
 }
 catch (Exception ex)
 {
 _logger.LogWarning(
 $"Northwind.OData exception: {ex.Message}");
 }

 return View(model);
 }
}

4. In a Views/ODataClient folder, add a new Razor View - Empty file named Index.cshtml. If you
are using Visual Studio, then you can right-click the Index action method and select Add View….

5. In Views/ODataClient, in Index.cshtml, delete its existing markup and then add markup to
render the products with a form for the visitor to enter the start of a product name, as shown
in the following markup:

Chapter 10 413

@model IEnumerable<Product>?
@{
 ViewData["Title"] = "OData Products";
}
<div class="text-center">
 <h1 class="display-4">@ViewData["Title"]</h1>
 @if (Model is not null)
 {
 <h2>Products that start with '@ViewData["startsWith"]' using OData</
h2>
 <p>
 @if (!Model.Any())
 {
 No products found.</
span>
 }
 else
 {
 @foreach (Product p in Model)
 {

 @p.ProductId
 @p.ProductName
 @(p.UnitPrice is null ? "" : p.UnitPrice.Value.ToString("c"))

 }
 }
 </p>
 }
 <form method="get">
 Product name starts with:
 <input name="startsWith" value="@ViewData["startsWith"]" />
 Press ENTER to search.
 </form>
</div>

6. Start the Northwind.OData project using the https profile without debugging.
7. Optionally, start the Northwind.WebApi project using the https profile without debugging.
8. Start the Northwind.Mvc project using the https profile without debugging.
9. Start Chrome and navigate to https://localhost:5021/.
10. On the home page, in the top navigation menu, click OData.

https://localhost:5021/

Building Web Services Using ASP.NET Core OData414

11. Note that three products are returned from the OData service, as shown in Figure 10.10:

Figure 10.10: Three product names starting with Cha returned from the OData service

12. At the command line or terminal for the OData service, note the SQL command used, as shown
in the following output:

info: Microsoft.EntityFrameworkCore.Database.Command[20101]
 Executed DbCommand (43ms) [Parameters=[@__TypedProperty_0_
startswith='?' (Size = 40)], CommandType='Text', CommandTimeout='30']
 SELECT [p].[ProductId], [p].[ProductName], [p].[UnitPrice]
 FROM [Products] AS [p]
 WHERE [p].[ProductName] LIKE @__TypedProperty_0_startswith ESCAPE
N'\'

13. At the command line or terminal for the MVC website, note the HTTP request made and its
response, as shown in the following output:

info: System.Net.Http.HttpClient.Northwind.OData.LogicalHandler[100]
 Start processing HTTP request GET https://localhost:5101/catalog/
products/?*
info: System.Net.Http.HttpClient.Northwind.OData.ClientHandler[100]
 Sending HTTP request GET https://localhost:5101/catalog/products/?*
info: System.Net.Http.HttpClient.Northwind.OData.ClientHandler[101]
 Received HTTP response headers after 1587.4018ms - 200
info: System.Net.Http.HttpClient.Northwind.OData.LogicalHandler[101]
 End processing HTTP request after 1609.3402ms – 200

14. Type b in the text box, press Enter, and note the results only include the one product that starts
with the letter b, Boston Crab Meat.

15. Type d in the text box, press Enter, and note the error message saying that no products were
found.

16. Close Chrome and shut down both web servers.

Chapter 10 415

Revisiting the introductory query
At the start of this chapter, I introduced an example of a query you could run against an OData service.
Let’s see if it works with our service:

1. In the HttpRequests folder, create a new file named odata-final-query.http, as shown in
the following HTTP request:

Configure a variable for the web service base address.
@base_address = https://localhost:5101/catalog/

Make a complex GET request for products.
GET {{base_address}}products
 ?$filter=contains(ProductName, 'ch') and UnitPrice lt 44.95
 &$orderby=Supplier/Country,UnitPrice
 &$select=ProductName,UnitPrice
 &$expand=Supplier

2. Make sure the OData web service project has been started.
3. Click Send Request and note the response contains products and their suppliers, sorted by

country first and then, within each country, sorted by unit price, as shown in the following
partial output and in Figure 10.11:

Figure 10.11: A complex OData query in VS Code and REST Client

The parts of the output that I clipped out to save space are indicated with ellipses (…).

Building Web Services Using ASP.NET Core OData416

HTTP/1.1 200 OK
Connection: close
Content-Type: application/json; odata.metadata=minimal; odata.
streaming=true
Date: Sun, 25 Aug 2024 11:53:13 GMT
Server: Kestrel
Transfer-Encoding: chunked
OData-Version: 4.0

{
 "@odata.context": "https://localhost:5101/
catalog/$metadata#Products(ProductName,UnitPrice,Supplier())",
 "value": [
 ...
 {
 "ProductName": "Chartreuse verte",
 "UnitPrice": 18.0000,
 "Supplier": {
 ...
 "Country": "France",
 ...
 }
 },
 ...
 {
 "ProductName": "Gnocchi di nonna Alice",
 "UnitPrice": 38.0000,
 "Supplier": {
 ...
 "Country": "Italy",
 ...
 }
 },
 {
 "ProductName": "Chocolade",
 "UnitPrice": 12.7500,
 "Supplier": {
 ...
 "Country": "Netherlands",
 ...
 }

Chapter 10 417

 },
 ...
 {
 "ProductName": "Chai",
 "UnitPrice": 18.0000,
 "Supplier": {
 ...
 "Country": "UK",
 ...
 }
 },
 {
 "ProductName": "Chang",
 "UnitPrice": 19.0000,
 "Supplier": {
 ...
 "Country": "UK",
 ...
 }
 },
 ...
]
}

Practicing and exploring
Test your knowledge and understanding by answering some questions, getting some hands-on practice,
and exploring this chapter’s topics with deeper research.

Exercise 10.1 – Online material
ASP.NET Core OData overview: https://learn.microsoft.com/en-us/odata/webapi-8/overview

ASP.NET Core OData: A server library built upon ODataLib and ASP.NET Core: https://github.com/
OData/AspNetCoreOData

Exercise 10.2 – Practice exercises
The following practice exercises help you to explore the topics in this chapter more deeply.

Make sure that you have implemented controllers for the entity sets in the order system, and then
write queries that will return the following results:

1. The company names, cities, and countries of customers in Germany, sorted by city.
2. The contact names and phone numbers of customers in the USA.
3. The number of orders made by customer ALFKI.

https://learn.microsoft.com/en-us/odata/webapi-8/overview
https://github.com/OData/AspNetCoreOData
https://github.com/OData/AspNetCoreOData

Building Web Services Using ASP.NET Core OData418

Exercise 10.3 – Test your knowledge
Answer the following questions:

1. What transport protocol does an OData service use?
2. Why is an OData service more flexible than a traditional ASP.NET Core Web API service?
3. What must you do to an action method in an OData controller to enable query strings to cus-

tomize what it returns?
4. What URL path would return customers in Germany who have made more than one order?
5. How do you get related entities?

Exercise 10.4 – Explore topics
Use the links on the following page to learn more details about the topics covered in this chapter:

https://github.com/markjprice/web-dev-net9/blob/main/book-links.md#chapter-10---
building-web-services-using-asp-net-core-odata

Summary
In this chapter, you learned:

• The concepts around OData services
• How to build an OData service using ASP.NET Core and a Microsoft NuGet package
• How to query an OData service
• How to perform data modifications
• How to build an OData client

In the next chapter, you will learn about FastEndpoints, a third-party package for building performant
web services.

https://github.com/markjprice/web-dev-net9/blob/main/book-links.md#chapter-10---building-web-services-using-asp-net-core-odata

https://github.com/markjprice/web-dev-net9/blob/main/book-links.md#chapter-10---building-web-services-using-asp-net-core-odata

11
Building Web Services Using
FastEndpoints

This chapter is about building web services using FastEndpoints, a popular third-party package that
shuns controllers in favor of a more efficient way of defining web service endpoints. While 95% of this
book is about controller-based technologies, real-world web development shouldn’t be dogmatic about
technology choices. This chapter is the only one that doesn’t use controllers, to show an alternative
way to build web services that is popular with .NET developers.

ASP.NET Core Web API, ASP.NET Core OData, and FastEndpoints are all options for building web ser-
vices (mostly for developers to call using HTTP, although user apps like Excel and Power BI can also
pull data from web services, especially those built using OData due to its flexible nature).

All web services can be interacted with using the same tools like VS Code’s REST Client and Visual
Studio’s HTTP Editor, and web services can be called by a developer in your own apps in the same
way. For example, a .NET developer would typically use HttpClient to call any web service regardless
of how it was built.

You learned how to “try out” or build a client to a web service in Chapter 9, Building Web Services Us-
ing ASP.NET Core Web API, so you already know how to do the same with a web service built using
FastEndpoints.

This chapter will cover the following topics:

• Introducing FastEndpoints
• Implementing FastEndpoints
• Configuring FastEndpoints

You can skip this chapter if you want to purely stick to only using controller-based tech-
nologies, but I believe that it’s beneficial for you to see an alternative way of building a
web service. You can then decide if the benefits outweigh the costs.

Building Web Services Using FastEndpoints420

Introducing FastEndpoints
FastEndpoints is a high-performance, open-source library designed to simplify and speed up the
development of HTTP/REST APIs using .NET.

It provides an alternative to ASP.NET Core Web API, focusing on ease of use, performance, and a
streamlined development process.

FastEndpoints embraces the concept of “endpoint-first” development, where developers define the
endpoints of their API explicitly, without the need for the controllers and actions typical in traditional
ASP.NET Core Web API services.

Pros and cons of FastEndpoints
There are a few benefits of using FastEndpoints:

• Performance: FastEndpoints is optimized for speed, providing better performance out of
the box compared to ASP.NET Core Web API. This is achieved through streamlined request
processing, reduced middleware overhead, and a minimalist approach to endpoint execution.

• Simplicity: It simplifies the development process by eliminating the need for controllers and
actions. Instead, you define your endpoints directly, making the codebase more straightfor-
ward and easier to maintain.

• Minimal boilerplate: FastEndpoints minimizes the amount of boilerplate code typically re-
quired in ASP.NET Core Web API projects. This allows developers to focus more on writing
business logic rather than repetitive setup code.

• Flexibility: FastEndpoints provides flexibility in how you structure your endpoints, allowing
you to define them as classes with specific request and response types, middleware, and other
components. This can lead to cleaner, more organized code.

• Customizability: You can easily customize various aspects of the request pipeline, including
validation, authorization, and serialization, without having to dig deep into the ASP.NET Core
infrastructure.

FastEndpoints has some cons compared to ASP.NET Core Web API:

• Learning curve: Developers familiar with the traditional ASP.NET Core Web API might find
the FastEndpoints approach unconventional, requiring some time to get used to it. The end-
point-first approach might not align with every team’s preferred architectural style, especially
those deeply ingrained in the controller paradigm.

• Ecosystem: ASP.NET Core Web API has a more extensive ecosystem, including documentation,
community support, and third-party libraries. FastEndpoints, while growing, does not yet have
the same level of resources. ASP.NET Core Web API has a much larger user base and community
support, which might make it easier to find help and resources compared to FastEndpoints.

What makes it “fast”?
FastEndpoints is “fast” due to several optimizations and design choices:

Chapter 11 421

• Direct endpoint mapping: Instead of routing requests through controllers and actions, Fast-End-
points maps requests directly to endpoints, reducing the complexity and time involved in
routing and handling requests.

• Optimized request processing with minimal middleware overhead: FastEndpoints reduces
the number of middleware components involved in the request processing pipeline, leading to
faster request handling. Developers can fine-tune the request pipeline to remove unnecessary
steps, leading to performance gains specific to their application needs.

• Reduced reflection usage: By minimizing the use of reflection and other costly operations,
FastEndpoints can improve runtime performance.

The TechEmpower benchmarks that can be found at https://fast-endpoints.com/benchmarks rank
FastEndpoints at #2, after ASP.NET Core Minimal APIs, and well above ASP.NET Core MVC/Web API
at #8, as shown in Figure 11.1:

Figure 11.1: TechEmpower benchmarks comparing FastEndpoints with Core MVC/Web API

FastEndpoints is a good choice if you are looking for a high-performance, simple, and flexible alterna-
tive to ASP.NET Core Web API with controllers. However, it might not be the best fit for every project,
especially those deeply integrated into the broader ASP.NET Core ecosystem or those with teams more
comfortable with traditional controller-based Web API patterns.

FastEndpoints does not and likely will never support AOT-native compilation. To take
advantage of AOT, you will need to switch to ASP.NET Core Minimal APIs until the ASP.
NET Core team enables AOT with controllers.

https://fast-endpoints.com/benchmarks

Building Web Services Using FastEndpoints422

How to define an endpoint
An endpoint in FastEndpoints is a class that inherits from one of the base classes shown in Table 11.1:

Base class Description

Endpoint<TRequest> An endpoint with no response model.

Endpoint<TRequest, TResponse> An endpoint with both a request model and a
response model.

Endpoint<TRequest, TResponse, TMapper>
An endpoint with both a request model and a
response model, and a class that implements the
IMapper interface to handle complex mappings.

EndpointWithoutRequest

An endpoint with no request model or
response model. You could also inherit from
Endpoint<EmptyRequest, EmptyResponse> to
achieve the same effect.

EndpointWithoutRequest<TResponse> An endpoint with no request model.

EndpointWithoutRequest<TResponse,
TMapper>

An endpoint with no request model and a class that
implements the IMapper interface.

Table 11.1: Base classes of an endpoint in FastEndpoints

The FastEndpoints system scans all referenced assemblies for classes that derive from one of the
Endpoint base classes and maps their routes.

In your class implementation, you override one or more methods, as shown in Table 11.2:

Method to override Description

Configure

Called once during initial registration at service start-up, not every
time the endpoint is executed. Common configuration includes what
actions the endpoint responds to (for example, GET and POST) and
authentication and authorization requirements.

ExecuteAsync(string,
CancellationToken) Called every time the endpoint is executed. It returns the response.

HandleAsync(string,
CancellationToken) Called every time the endpoint is executed.

OnBeforeHandle,
OnBeforeHandleAsync,
OnAfterHandle,
OnAfterHandleAsync

Event handlers if you need to run code before and after handling an
endpoint request.

OnBeforeValidate,
OnBeforeValidateAsync,
OnAfterValidate,
OnAfterValidateAsync

Event handlers if you need to run code before and after validation.

Chapter 11 423

OnValidationFailed,
OnValidationFailedAsync

Event handlers if you need to run code if the validation fails.

Table 11.2: Common Endpoint methods to override

By deriving from one of the Endpoint base classes, your class can call any of the following methods
to configure and implement the endpoint that your class represents, as shown in Table 11.3:

Member Description

Verbs

Specifies which HTTP methods (verbs) the endpoint will handle. Without this,
an endpoint will default to handling all HTTP methods. For example:

Verbs(Http.POST, Http.PUT);

Routes

Specifies the URL route(s) that the endpoint responds to. It simplifies route
definition directly in the endpoint class. For example:

Routes("/api/products", "/api/items");

ResponseCache

Enables caching for the endpoint response, reducing load and improving
performance by serving cached responses to repeated requests. For example:

ResponseCache(60);

AllowAnonymous

Specifies an endpoint as publicly accessible, bypassing any authentication
mechanism that may otherwise be required for accessing it. When this method
is used, no authentication (like OAuth, JWT, or other mechanisms) is required
to access the endpoint.

Roles

This method restricts access to the endpoint based on user roles. You specify
one or more roles that users must have to access the endpoint. For example:

Roles("Admin", "Manager");

Authorize

This method enforces authorization policies on the endpoint. You can specify
a policy that needs to be satisfied for access to be granted. It requires callers
to pass specific authorization rules, allowing more fine-grained access control
than just role-based checks. For example:

Authorize("MyCustomPolicy");

PreProcessors,
PostProcessors

These are methods that can be used to inject logic before or after the request
is processed by the HandleAsync method. They allow you to perform common
tasks such as validation, logging, and so on. For example:

PreProcessors(new MyRequestValidator());

PostProcessors(new MyResponseLogger());

SendAsync

This is a helper method to send an HTTP response asynchronously. You can
use it to send a response back to the client with a specific status code and
optional data. It handles the serialization of objects and ensures the response is
returned asynchronously to avoid blocking the thread.

Table 11.3: Common inherited methods

Building Web Services Using FastEndpoints424

In FastEndpoints, methods like Verbs, Routes, AllowAnonymous, and SendAsync simplify configuring
web endpoints, defining how they should behave and interact with HTTP requests. Other common
members such as HandleAsync, Roles, and Authorize further enhance the security and control over
endpoints.

This declarative and minimal approach is designed to reduce boilerplate while ensuring high perfor-
mance and scalability.

Example FastEndpoints endpoint implementation
Here’s some example code for a basic FastEndpoints endpoint implementation.

First, set up an endpoint in a class that derives from one of the Endpoint<T> base classes, perhaps in
a file named HelloEndpoint.cs, as shown in the following code:

using FastEndpoints; // To use Endpoint<TRequest, TResponse>.

namespace Northwind.FastEndpoints.Endpoints;

public class HelloEndpoint : Endpoint<HelloRequest, HelloResponse>
{
 public override void Configure()
 {
 Verbs(Http.GET);
 Routes("/hello");
 AllowAnonymous();
 }

 public override async Task HandleAsync(HelloRequest req, CancellationToken
ct)
 {
 HelloResponse response = new($"Hello, {req.Name
 }. You're looking great for {req.Age}!");

 await SendAsync(response, cancellation: ct);
 }
}

public record HelloRequest(string Name, int Age);

public record HelloResponse(string Message);

Chapter 11 425

Finally, set up FastEndpoints in Program.cs, as shown in the following code:

using FastEndpoints; // To use AddFastEndpoints and so on.
var builder = WebApplication.CreateBuilder(args);
builder.Services.AddFastEndpoints();
var app = builder.Build();
app.MapFastEndpoints();
app.Run();

Implementing FastEndpoints
Let’s build a web service using FastEndpoints that provides endpoints to work with customers in
Northwind, so that you can see the difference FastEndpoints or Web API and OData.

Adding FastEndpoints to an empty ASP.NET Core project
To see how to implement FastEndpoints, we will start with the simplest ASP.NET Core project:

1. Use your preferred code editor to open the MatureWeb solution and then add a new project, as
defined in the following list:

• Project template: ASP.NET Core Empty / web
• Solution file and folder: MatureWeb
• Project file and folder: Northwind.FastEndpoints

2. If you are using Visual Studio, then confirm the following defaults have been chosen:

• Framework: .NET 9.0 (Standard Term Support)
• Configure for HTTPS: Selected
• Enable container support: Cleared
• Do not use top-level statements: Cleared

3. If you are using VS Code or Rider, then in the MatureWeb directory, at the command prompt
or terminal, enter the following commands:

dotnet new web -o Northwind.FastEndpoints
dotnet sln add Northwind.FastEndpoints

4. In the Northwind.FastEndpoints.csproj project file, globally and statically import the Console
class, add a reference to the Northwind data context project, and add a reference to the Fast-End-
points package, as shown highlighted in the following markup:

<Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>
 <TargetFramework>net9.0</TargetFramework>
 <Nullable>enable</Nullable>

Building Web Services Using FastEndpoints426

 <ImplicitUsings>enable</ImplicitUsings>
 </PropertyGroup>

 <ItemGroup Label="To simplify use of WriteLine.">
 <Using Include="System.Console" Static="true" />
 </ItemGroup>

 <ItemGroup Label="To use the Northwind entity models.">
 <ProjectReference Include="..\Northwind.DataContext\Northwind.
DataContext.csproj" />
 </ItemGroup>

 <ItemGroup>
 <PackageReference Include="FastEndpoints" />
 </ItemGroup>

</Project>

5. Build the Northwind.FastEndpoints project.
6. In the Properties folder, in launchSettings.json, for the https profile, for its applicationUrl,

change the random port number for HTTPS to 5111 and for HTTP to 5110, as shown highlighted
in the following markup:

"applicationUrl": "https://localhost:5111;http://localhost:5110",

7. Save changes to all modified files.

Enabling FastEndpoints and defining endpoints
It is easy to enable FastEndpoints in any ASP.NET Core project by adding its dependency service and
mapping any endpoints defined in the current and any referenced assemblies:

1. In Program.cs, import the FastEndpoints namespace. Then add statements to add the
FastEndpoints middleware and use it in the HTTP pipeline, and register the Northwind data
context as a dependency service, as shown in the following code:

using FastEndpoints; // To use AddFastEndpoints and so on.
using Northwind.EntityModels; // To use AddNorthwindContext method.

var builder = WebApplication.CreateBuilder(args);

builder.Services.AddFastEndpoints();
builder.Services.AddNorthwindContext();

var app = builder.Build();

Chapter 11 427

app.MapGet("/", () => """
 Hello FastEndpoints!

 GET /hello?Name=<string>&Age=<int>
 GET /hello/<name>/<age>

 GET /customers/
 GET /customers/<country>
 """);

app.MapFastEndpoints();

app.Run();

2. In the Northwind.FastEndpoints project, add a new folder named Endpoints.
3. In the Endpoints folder, add a new class file named HelloEndpoint.cs.
4. In HelloEndpoint.cs, define an endpoint to say hello in response to a request with a name

and age, as shown in the following code:

using FastEndpoints; // To use Endpoint<TRequest, TResponse>.

namespace Northwind.FastEndpoints.Endpoints;

public class HelloEndpoint : Endpoint<HelloRequest, HelloResponse>
{
 public override void Configure()
 {
 // Automatically supports query strings, for example:
 // GET /hello?Name=Bob&Age=50

 // Explicitly specify route parameters:
 // GET /hello/Bob/50

 Verbs(Http.GET);
 Routes("/hello", "/hello/{Name}/{Age}");

 AllowAnonymous();
 }

 public override async Task HandleAsync(
 HelloRequest req, CancellationToken ct)

Building Web Services Using FastEndpoints428

 {
 HelloResponse response = new($"Hello, {req.Name
 }. You're looking great for {req.Age}!");

 await SendAsync(response, cancellation: ct);
 }
}

public record HelloRequest(string Name, int Age);

public record HelloResponse(string Message);

5. In the Endpoints folder, add a new class file named CustomersEndpoint.cs.
6. In CustomersEndpoint.cs, define an endpoint to get all customers or customers in a named

country, as shown in the following code:

using FastEndpoints; // To use Endpoint<TRequest, TResponse>
using Northwind.EntityModels; // To use Customer.

namespace Northwind.FastEndpoints.Endpoints;

public class CustomersEndpoint : Endpoint<CustomersRequest, Customer[]>
{
 private readonly NorthwindContext _db;

 public CustomersEndpoint(NorthwindContext db)
 {
 _db = db;
 }

 public override void Configure()
 {
 Verbs(Http.GET);
 Routes("/customers", "/customers/{Country}");
 AllowAnonymous();
 }

 public override async Task HandleAsync(
 CustomersRequest request, CancellationToken ct)
 {

Chapter 11 429

 IQueryable<Customer> query = _db.Customers;

 if (!string.IsNullOrWhiteSpace(request.Country))
 {
 query = query.Where(customer => customer.Country == request.
Country);
 }

 Customer[] response = query.ToArray();

 await SendAsync(response, cancellation: ct);
 }
}

public record CustomersRequest(string Country);

7. Start the Northwind.FastEndpoints web service project using the https launch profile.
8. Note the plain text documentation for the web service, as shown in Figure 11.2:

Figure 11.2: Plain text documentation for the FastEndpoints web service

9. At the end of the address bar, add a relative path and parameters to call the hello endpoint,
as shown in the following text and in Figure 11.3:

https://localhost:5111/hello?Name=Mark&Age=52

Figure 11.3: Making a request using query string parameters

Building Web Services Using FastEndpoints430

10. Enter a relative path to call the hello endpoint, as shown in the following text and in Figure 11.4:

https://localhost:5111/hello/Mark/52

Figure 11.4: Making a request using route parameters

11. Enter a relative path to call the customers endpoint, as shown in the following text and in
Figure 11.5:

https://localhost:5111/customers

Figure 11.5: Making a request using query string parameters

12. Enter a relative path to call the customers endpoint and return only customers in a specified
country, like UK, as shown in the following text and in Figure 11.6:

https://localhost:5111/customers/UK

Figure 11.6: Making a request using query string parameters

13. Close the browser and shut down the web server.

Configuring FastEndpoints
You configure how an endpoint should listen to incoming requests in your overridden Configure()
method. You call inherited methods like Get(), Post(), AllowAnonymous(), and so on.

Chapter 11 431

Configuration methods and properties
A more complete list of configuration methods is shown in Table 11.4:

Methods Description

Get, Head, Post, Patch, Put, Delete

All these methods can have a comma-separated
list of string values passed, params string[]
routePatterns. You cannot configure multiple
verbs using these methods.

Verbs, Routes

Pass a comma-separated list of HTTP verbs, and
pass a comma-separated list of string values
passed, params string[] routePatterns.
Often used together as an alternative to the
preceding individual HTTP verb methods.

AllowAnonymous Allow unauthenticated requests to this endpoint.

Claims Allow access if any of the listed claims are valid
for the current user’s request.

Description Add metadata for OpenAPI documentation.

EnableAntiforgery Enables anti-forgery verification for this endpoint.

Options(builder => builder

 .RequireCors(x => x.AllowAnyOrigin())

 .RequireHost("domain.com")

 .ProducesProblem(404));

Use this method to customize aspects of endpoint
registration like CORS and documentation. The
builder object is a RouteHandlerBuilder.

Version Specify the version of the endpoint.

Table 11.4: Methods to configure FastEndpoints

A more complete list of configuration properties is shown in Table 11.5:

Properties Description

BaseURL The base URL for the current request.

Config

Provides access to the project configuration via the standard
IConfiguration interface. If you need to access this property from
within your Configure method, you must pass the configuration
explicitly, as shown in the following code: .AddFastEndpoints(config:
builder.Configuration).

Definition Represents the configuration settings of an endpoint.

Env Represents the environment of an endpoint. For example, Env.
EnvironmentName and Env.IsDevelopment().

Files The files sent with the request.

Building Web Services Using FastEndpoints432

Form The <form> sent with the request.

HttpContext A standard HttpContext object that encapsulates the HTTP-specific
information about an individual request.

HttpMethod An enum value of FastEndpoints.Http that specifies a verb like GET or
POST.

Logger An ILogger implementation.

Response The response object sent to the client. Its type is TResponse.

User A standard ClaimsPrincipal object.

ValidationFailures A collection of validation failures for example when model binding.

Table 11.5: Methods to configure FastEndpoints

Mapping requests and responses to entity models
Sometimes the default mapping system cannot work out how to map between an incoming request and
entity models, or how to construct a response model from entity models. This is particularly relevant
when your internal domain model differs from the structure of your external API contracts. In these
scenarios, you can define a mapper class.

Suppose you’re building a web service to work with Product entities. In the domain entity model, the
Product class might have more properties or a different structure than what you expose through your
web service API.

The Product class might be defined as shown in the following code:

public class Product
{
 public Guid Id { get; set; }
 public string Name { get; set; }
 public string Description { get; set; }
 public decimal Price { get; set; }
 public DateTime CreatedAt { get; set; }
 public DateTime UpdatedAt { get; set; }
}

The request and response DTO models for an endpoint used to create a new product and add it to the
database might be defined as shown in the following code:

public class CreateProductRequest
{
 public string Name { get; set; }
 public string Description { get; set; }
 public decimal Price { get; set; }
}

Chapter 11 433

public class ProductResponse
{
 public Guid Id { get; set; }
 public string Name { get; set; }
 public string Description { get; set; }
 public decimal Price { get; set; }
 public DateTime CreatedAt { get; set; }
}

You then define a mapper class to handle the conversion between your DTOs and domain models, as
shown in the following code:

public class ProductMapper :
 Mapper<CreateProductRequest, ProductResponse, Product>
{
 // This method maps the request DTO to the domain model.
 public override Product ToEntity(CreateProductRequest req)
 {
 return new Product
 {
 Id = Guid.NewGuid(),
 Name = req.Name,
 Description = req.Description,
 Price = req.Price,
 CreatedAt = DateTime.UtcNow,
 UpdatedAt = DateTime.UtcNow
 };
 }

 // This method maps the domain model to the response DTO
 public override ProductResponse FromEntity(Product entity)
 {
 return new ProductResponse
 {
 Id = entity.Id,
 Name = entity.Name,
 Description = entity.Description,
 Price = entity.Price,
 CreatedAt = entity.CreatedAt
 };
 }
}

Building Web Services Using FastEndpoints434

Now you can use the ProductMapper in your endpoint to handle the transformation seamlessly, as
shown in the following code:

public class CreateProductEndpoint :
 Endpoint<CreateProductRequest, ProductResponse, ProductMapper>
{
 public override void Configure()
 {
 Post("/products");
 AllowAnonymous();
 }

 public override async Task HandleAsync(
 CreateProductRequest req, CancellationToken ct)
 {
 Product product = Map.ToEntity(req); // Maps request DTO to domain model.

 // Assume we successfully save the product to the database here.

 // Maps domain model to response DTO.
 ProductResponse response = Map.FromEntity(product);

 await SendAsync(response, 201, ct);
 }
}

To summarize:

• The domain model – Product: Represents your internal business object with full properties
• DTO models – CreateProductRequest and ProductResponse: Represent the data structures

exposed through your web service API
• Mapperr – ProductMapper: Handles the transformation between the domain model and DTOs
• Endpoint – CreateProductEndpoint: Uses the mapper to handle data conversion and imple-

ments the business logic

This structure is useful because it separates concerns, ensuring that your business logic isn’t tightly
coupled with how data is transmitted over the wire. By using a mapper, you can easily adapt your API
to changing requirements without affecting the core logic of your application.

Practicing and exploring
Test your knowledge and understanding by answering some questions, getting some hands-on practice,
and exploring this chapter’s topics with deeper research.

Chapter 11 435

Exercise 11.1 – Online material
Read the official documentation for FastEndpoints at https://fast-endpoints.com/.

Learn how to add OpenAPI, aka Swagger, support using NSwag to your FastEndpoints web services at
https://fast-endpoints.com/docs/swagger-support.

FastEndpoints recommends xUnit, WebApplicationFactory, and FluentAssertions for unit and integra-
tion testing. Learn more in Chapter 12, Web Service Integration Testing, and at https://fast-endpoints.
com/docs/integration-unit-testing.

Exercise 11.2 – Practice exercises
FastEndpoints has an extensive tutorial for learning it in more depth that can be found at the follow-
ing link:

https://dev.to/djnitehawk/building-rest-apis-in-net-6-the-easy-way-3h0d

Exercise 11.3 – Test your knowledge
Answer the following questions:

1. Why is a web service built using FastEndpoints “fast”?
2. How do you define an endpoint that has complex request and response models using Fas-

tEndpoints?
3. If you do not call the Verbs method in the overridden Configure method of a FastEndpoints

endpoint class, which HTTP methods does the endpoint respond to?
4. Why would you call the Authorize method rather than the Roles method to control access to

a FastEndpoints endpoint?
5. Why might you call the PreProcessors and PostProcessors methods?

Exercise 11.4 – Explore topics
Use the links on the following page to learn more about the topics covered in this chapter:

https://github.com/markjprice/web-dev-net9/blob/main/docs/book-links.md#chapter-11---
building-web-services-using-fastendpoints

Summary
In this chapter, you learned how to build a web service using the FastEndpoints third-party package.
You learned about the following:

• The benefits of the FastEndpoints package
• How to implement an endpoint using FastEndpoints
• How to configure an endpoint using FastEndpoints

https://fast-endpoints.com/
https://fast-endpoints.com/docs/swagger-support
https://fast-endpoints.com/docs/integration-unit-testing
https://fast-endpoints.com/docs/integration-unit-testing
https://dev.to/djnitehawk/building-rest-apis-in-net-6-the-easy-way-3h0d

https://github.com/markjprice/web-dev-net9/blob/main/docs/book-links.md#chapter-11---building-web-services-using-fastendpoints

https://github.com/markjprice/web-dev-net9/blob/main/docs/book-links.md#chapter-11---building-web-services-using-fastendpoints

Building Web Services Using FastEndpoints436

You learned that FastEndpoints is designed with performance in mind. You further learned that it
leverages the .NET runtime’s performance optimizations to minimize overhead and improve request/
response times. Compared to controller-based frameworks like ASP.NET Core Web API, FastEndpoints
has a lower footprint and faster execution times, which is particularly beneficial for high-load appli-
cations and microservices that require minimal latency.

FastEndpoints focuses on reducing the amount of boilerplate code needed to define and handle API
endpoints, as you learned in this chapter. You learned that you don’t need controllers, attributes, or
complex configurations. The framework simplifies the process by letting developers define routes,
HTTP methods, and request/response handling in a clear and concise manner. This allows you to
focus more on business logic rather than configuration and setup.

You learned that FastEndpoints uses a declarative approach to defining endpoints, including HTTP
verbs, routes, roles, and authentication/authorization policies. The Configure method centralizes the
setup for each endpoint, making it easy to see and manage how the endpoint behaves, as you learned
in this chapter. This style reduces ambiguity and allows developers to understand the behavior of an
endpoint at a glance without searching through annotations and configurations.

This chapter established that these benefits make FastEndpoints ideal for developers who want
high-performance, clear, and maintainable web services with minimal setup and maximum flexibility.

In the next chapter, you will learn how to write integration tests for web services.

12
Web Service Integration Testing

This chapter is about testing your web services. Unit tests are good at detecting errors in business logic
in a class or method, but you also need to verify that larger parts of your codebase work together with
each other and external systems. This is where integration testing becomes important for web services.

Some external systems should be used directly in integration tests, and some should be replaced with
a test double. Integration tests commonly call out-of-process systems like databases, event buses, and
message queues. This makes integration tests slower than unit tests, but integration tests cover more
code, both in your codebase and external libraries. Integration tests are more likely to catch regressions.

One tool available at the command line and in Visual Studio that makes it easier to perform integration
tests on web services is dev tunnels. We will see how to use them to simplify testing services. Dev tun-
nels are incredibly useful for testing web services, especially in team environments where you might
be a developer writing and debugging code, and writing and running unit tests, but someone else on
the team is a tester, running the more complex cross-functional tests like integrating components,
including web services. Dev tunnels solve the problem of accessing local development environments
from external networks, like the internet, which is particularly useful for services that need to interact
with external APIs, webhooks, or remote clients.

Many APIs like payment gateways and messaging platforms send HTTP requests to your web service.
Using a dev tunnel, you can easily receive these requests on your local machine without deploying your
service to a live production environment. If you are developing a backend for a mobile app, you can
point your app to the dev tunnel’s public URL, which routes requests to your locally running web service.

One of the biggest advantages of using dev tunnels is the ability to run and debug your code in a fa-
miliar local development environment while simultaneously interacting with remote services. Since
the requests are routed directly to your local server, you can hit breakpoints, inspect variables, and
analyze logs in real time as your service responds to external requests. When you make changes to
your local code, you don’t have to redeploy it to a remote server to test those changes. You can simply
reload or restart your local environment, and the dev tunnel will continue routing traffic to it.

Web Service Integration Testing438

This chapter covers the following topics:

• Basics of integration testing
• Integration testing with data stores
• Testing web services using xUnit
• Mocking in tests
• Testing services using dev tunnels

Basics of integration testing
Integration testing is a phase of software testing where individual modules or components of an
application are combined and tested as a group to ensure they work together correctly. This type of
testing focuses on detecting issues that arise from the interaction between integrated units, such as
data transfer errors, interface mismatches, and communication failures.

By validating the combined functionality of these interconnected components, integration testing
helps ensure that the overall system operates seamlessly and meets specified requirements. It typi-
cally follows unit testing and precedes other types of high-level testing like security and performance
testing in the software development lifecycle.

Integration testing uses similar tools to unit testing. For example, you can write integration tests
using xUnit.

Unit tests must be:

• A single unit of behavior.
• As fast-executing as possible.
• Isolated from other tests.

The simplest definition of an integration test is any coded test that does not meet the criteria for a
unit test!

One other difference between the two types of testing is how many tests you typically write. One
way of visually comparing integration testing to unit testing (and end-to-end (E2E) testing) is the test
pyramid, as shown in Figure 12.1:

Chapter 12 439

Figure 12.1: The test pyramid shows the weighting of test types

Lower-level tests like unit tests should have a higher number of tests than higher-level tests like E2E
tests. Integration tests should have a number of tests in the middle.

Testing terminology
Let’s review some of the common terms used in testing, as shown in Table 12.1:

Term Definition

SUT, MUT
System under test (SUT) is a type, like a class, being tested. You often create a
test class with multiple test methods to group all the test methods for the SUT.
Method under test (MUT) is a method within a SUT being tested.

Test double

An object that has the same public API as a dependency but simplified and
predictable behavior. The name is derived from the concept of a stunt double
in film production. It has nothing to do with the double number type. It is an
umbrella term for any non-production test-only dependencies.

Mock
A subtype of test double that is used to verify interactions between objects by
setting up expectations and behaviors on the mock object and then asserting
that these expectations were met during the test.

Regression When code stops working as intended after a code modification.

Good Practice: Define integration tests for the most common scenarios that occur in
the real-life usage of your projects. Write enough integration tests to interact with every
external system used. Edge cases are scenarios that result in errors and should mostly be
covered by unit tests. Only define integration tests for edge cases that cannot be covered
by unit tests.

Web Service Integration Testing440

Coverage metric

This measures how much code a test project executes. This can be 0% to 100%.
It’s good practice to have a high level of coverage in the core business logic of
your project but do not make this a requirement, especially in non-core parts. A
good separation of business logic helps to make it clear what requires testing.

Test fixture

An object the test needs to run, like a dependency. It could be an argument
passed to the test, or some state in a file or database. The key point is that the
value should be fixed so the test produces the same result each time it runs,
hence the name fixture.

Dependency
Injection (DI)

Dependencies like services, components, or objects are provided from the
outside, rather than being created internally. For testing, this allows you to
inject mock or fake versions of dependencies, making it easier to isolate and
test the functionality of the SUT without relying on actual external systems,
databases, or services. This improves test reliability, as tests focus solely on
the behavior of the code being tested. DI was covered in detail in Chapter 8,
Configuring and Containerizing ASP.NET Core Projects.

Table 12.1: Common testing terms

Attributes of all good tests
All good tests must have the following attributes:

• Verifies the most important parts of the codebase: For unit tests, this is typically the domain
model and business logic algorithms. For integration tests, it is typically controllers or orches-
trators for a process that spans as many external systems as possible. Code coverage for tests is
a useful metric for identifying untested areas of your codebase, especially in the critical parts,
but coverage does not need to be 100%. Tests should verify the end result of a process, not its
implementation’s technical details.

• Integrates automatically into the development process: Set up your continuous integration
and deployment system to run tests automatically. These are important for automating testing
and ensuring early detection of issues.

• Avoids regressions: As you add more features and your codebase becomes more complex, bugs
can be introduced that break your code. Good tests will highlight these regressions so you can
immediately fix them. They are an early warning system.

• Resistant to refactoring: This means that if you refactor the implementation of a feature, its
tests continue to pass. Tests that fail after refactoring lack resistance. They are false positives,
aka false alarms.

• Balances costs and benefits: Strike a balance between the maintenance cost and the benefit
gained from tests. Testing trivial code, like setting and getting properties on a model, is not
worth the effort.

• Easy to understand and maintain: Like all code, you should write tests using clear naming
conventions and good organization, and minimize setup and teardown code.

Chapter 12 441

Test outcomes
When discussing test outcomes, we use the terms positive and negative, which refer to whether a test
indicates the presence or absence of a defect or error. Like testing negative for a disease, a negative
outcome is a good thing!

We also use the terms true and false, which refer to the correctness of the test result in relation to the
actual condition of the code being tested. True is good and false is bad!

• Positive: This indicates that the test has found an error or defect in the code.
• Negative: This indicates that the test has not found any error or defect in the code.
• True: The test result accurately reflects the actual condition of the code.
• False: The test result does not accurately reflect the actual condition of the code.

To summarize, by combining these terms, there are four possible test outcomes, as shown in Table 12.2:

Positive Negative

True

The test correctly identifies a defect. This
means the code is faulty, and the test
detects it. This is a good outcome. The
test finds a defect that actually exists in
the code.

The test correctly identifies that there is no
defect. This means the code is correct, and
the test confirms it. This is a good outcome.
The test confirms that there are no defects in
the code.

False

The test incorrectly identifies a defect.
This means the code is correct, but the
test mistakenly reports a defect. This is
a bad outcome. The test reports a defect,
but the code is actually correct.

The test fails to identify a defect. This means
the code is faulty, but the test mistakenly
reports that there are no defects. This is a
bad outcome. The test fails to report a defect
that exists in the code.

Table 12.2: Four possible test outcomes

Let’s review some scenarios for a method to help you understand, as shown in Table 12.3:

Scenario Test Outcome

True
Positive
(TP)

There’s a bug in
the method.

A unit test runs and fails,
indicating an error.

The test correctly identifies the bug.

True
Negative
(TN)

The method is
bug-free.

A unit test runs and passes,
indicating no errors.

The test correctly confirms the
method has no bugs.

Good Practice: It is always better not to write a test than to write a bad test! Every state-
ment adds to the maintenance costs of a project. If those statements do not provide value,
that test is bad.

Web Service Integration Testing442

False
Positive
(FP)

The method is
bug-free.

A unit test runs and fails,
indicating an error.

The test incorrectly reports a bug
in the method.

False
Negative
(FN)

There’s a bug in
the method.

A unit test runs and passes,
indicating no errors.

The test fails to identify the bug.

Table 12.3: Test outcome scenarios

Why false positives and false negatives are bad
FPs and FNs are both problematic in testing and quality assurance processes, each with its own set
of negative consequences.

FPs primarily affect the efficiency of the development and testing process, resulting in wasted resources
and time. They can be frustrating but are usually manageable if kept under control.

FNs, on the other hand, are much more dangerous because they allow real defects to go unnoticed.
These can cause functional problems, security vulnerabilities, and production failures, making them
more costly and risk-laden in the long term.

An FP occurs when a test incorrectly identifies a problem that doesn’t actually exist. For example, a
test might report a bug or error in a system where there is none. The bad consequences of FPs include:

• Wasted time and resources: Developers and testers spend time investigating and fixing issues
that aren’t real, diverting attention from genuine problems. Repeating this process often leads to
inefficiency, as teams repeatedly chase non-existent issues, increasing the cost of development.

• Eroded confidence in testing: Frequent FPs reduce trust in automated tests or testing processes.
Developers may begin ignoring or bypassing tests, which undermines the effectiveness of the
entire testing strategy. Over time, a high rate of FPs can lead to “test fatigue,” where test results
are dismissed or not taken seriously, even when they correctly flag issues.

• Delays in the release process: When time is wasted on FPs, it can delay the overall development
cycle. FPs in continuous integration / continuous deployment (CI/CD) pipelines can halt the
deployment of working software, causing unnecessary delays.

• Unnecessary code changes: Developers might introduce unnecessary fixes or refactors based
on FPs, potentially leading to new bugs or instability. Unwarranted code changes can also lead
to technical debt if they don’t improve functionality.

An FN occurs when a test fails to identify an existing problem. In other words, a defect is present, but
the test incorrectly passes. The bad consequences of FNs include:

• Undetected defects in production: The most critical impact of FNs is that defects can slip
through to production, where they can cause major system failures, crashes, or poor user
experiences. These issues may not be discovered until they are experienced by end users,
which can harm the product’s reputation. These are particularly dangerous in mission-critical
systems like healthcare, finance, or safety-critical software where undetected defects could
have severe consequences.

Chapter 12 443

• Increased maintenance costs: Undetected bugs are typically more expensive to fix once they
reach production, requiring additional resources for debugging, hotfixes, and patch releases.
Once a defect has gone undetected, it can cause a cascade of other issues as developers build
new features or integrations on top of faulty code.

• Eroded user trust and satisfaction: If defects escape testing and make their way to the user, it
can lead to a loss of user trust and damage to the product’s reputation. End users might experi-
ence poor functionality, broken features, or data loss, which impacts satisfaction and retention.

• Regulatory or compliance failures: In regulated industries, failing to catch defects through
testing can result in breaches of compliance standards, leading to fines or legal consequences.
This is particularly significant in industries like healthcare, banking, and automotive manu-
facturing.

Test doubles, mocks, and stubs
A test double is the umbrella term for any fake dependency in a test. They are used in tests in place
of real dependencies that would be harder to set up consistently than a double.

There are multiple types of double. The most common are mocks and stubs:

• Mocks are doubles for outgoing interactions. For example, the test could call a mocked de-
pendency that fakes sending an email during user registration. The state could be changed
in the external system. Mocks are usually created using a mocking framework. When they
are manually created, they are sometimes called spies. You will see mocks in action using
the NSubstitute mocking framework in the section titled Mocking in tests later in this chapter.

• Stubs are doubles for incoming interactions. For example, the test could call a stubbed depen-
dency that retrieves product information from a database. No state is changed in the external
system. When the dependency does not yet exist, for example, if using TDD, then a stub is
known as a fake. When a stub is a simple value and does not affect the outcome, then it is
known as a dummy.

Which external systems to test
External systems come in two types: ones under your control and ones outside your control. Exter-
nal systems under your control include data stores that only your project accesses. No other system
updates the data. External systems outside your control include email systems and public services
like weather or government systems.

As you can probably already guess, you should directly use external systems under your control but
mock external systems that you don’t control.

The separation of mocks and stubs is related to the Command Query Separation (CQS)
principle. Every method should be either a command or a query. Mocks are for methods
that could have side effects and do not return a value. Stubs are for methods that do not
have side effects and return a value.

Web Service Integration Testing444

What if the database is used by other systems? You might start with a database that’s only used by your
system, but over time other systems might want the convenience of direct access to it too. This breaks
the design principles of microservices and leads to problems later, but it is very common in the real
world. In this case, you will have to treat the database as out of your control and mock it.

Sharing fixtures in integration tests
There is a common scenario where you might want to initialize a fixture because it is genuinely shared
between all tests: when using a database or EF Core model, especially when creating integration tests.

But in this case, use inheritance so that your unit test class does not need a constructor, as shown in
the following code:

public class NorthwindStoreTests : DatabaseIntegrationTests
{
 [Fact]
 public void Checkout_ShouldFailWhenLowInventory()
 {
 // Use the _db fixture here.
 }
 ...
}

public abstract class DatabaseIntegrationTests : IDisposable
{
 protected readonly NorthwindContext _db;

 protected DatabaseIntegrationTests(NorthwindContext db)
 {
 _db = db;
 }

 public void Dispose()
 {
 _db.Dispose();
 }
}

If NorthwindContext requires additional setup or teardown steps, like seeding or clearing data, then
you can implement these in the base class or a separate fixture setup/teardown method.

Understanding web service functional and end-to-end testing
Functional testing verifies that individual components or features of an application work as intended
by comparing actual outcomes against specified requirements. It is granular, often automated, and
tests inputs and expected outputs without delving into the system’s internals.

Chapter 12 445

E2E testing simulates real user scenarios by testing the entire application flow from start to finish,
encompassing multiple integrated components to ensure that they work properly together. This type
of testing validates the complete system, identifying issues that may arise from interactions between
different parts of the application, thus providing a more holistic assurance of software functionality
and reliability.

Imagine you have an ASP.NET Core web API that serves as the backend for a task management appli-
cation. The API includes endpoints to create, retrieve, update, and delete tasks.

End-to-end test scenario
A user creates a new task, updates it, marks it as completed, and then retrieves it to confirm the changes:

1. Call the POST endpoint to create a new task with specific details.
2. Call the PUT endpoint to update the task’s title and description.
3. Call another PUT endpoint to mark the task as completed.
4. Call the GET endpoint to retrieve the task and verify that all changes have been applied correctly.

Tools: You could use Postman for manual testing, create these tests with their AI assistant named
Postbot, or write automated tests using RestSharp or your own client library along with xUnit.

Functional test scenario
Ensure that the task creation endpoint correctly handles input validation:

1. Call the POST endpoint with invalid input, for example, missing required fields.
2. Verify that the API returns a 400 Bad Request status code with a descriptive error message,

usually generated using the ProblemDetails class in the .NET service.

Tools: You could use xUnit to write the test, FluentAssertions for more expressive assertions, and
NSubstitute for mocking.

Test automation
Test automation is recommended in both functional and E2E testing for several reasons. It enhances
the efficiency, reliability, and scalability of the testing process while ensuring that tests are repeatable,
consistent, and easily maintainable.

Automated tests run consistently with the same inputs, reducing the likelihood of human error and
ensuring repeatable results across multiple test cycles. Running automated functional tests is faster
than manual testing, allowing for frequent and quick feedback during development. Test automation
enables the execution of thousands of tests quickly, something that’s impractical manually. This is
essential for regression testing, ensuring that bug fixes or updates don’t break existing functionality.

Automated E2E tests simulate how users interact with the system, making sure real-life use cases work
across the entire workflow. With multiple services, APIs, and microservices interacting, automation is
key in catching integration bugs early. It also helps test external systems or APIs that may not always be
available during manual testing. While writing E2E automation tests can be time-consuming upfront,
it saves significant effort in the long term. This is especially true for projects with frequent releases, as
automated tests can be reused in every build cycle, reducing the need for manual regression testing.

Web Service Integration Testing446

As you have seen in the preceding examples, E2E tests are more complex and involve multiple features,
whereas functional tests focus more on testing a single feature.

Now, let’s look at the biggest challenge with integration testing, which is managing data stores.

Integration testing with data stores
One of the most common systems that will interact with integration tests is data stores, and they
require special handling.

The schema for your data stores should be treated like code and be tracked in a source control system
like Git. This allows you to keep all the schema changes over time in sync with changes to code that
works on data in that structure.

The database schema includes table structure, index definitions, views, and stored procedures. For
a SQL-based database, these are defined in SQL script files. You should also consider reference data,
which is data that should be inserted into the database to prepopulate it. For example, you might need
to add about 200 rows to a CountryRegion table used by your project for location lookups.

NoSQL databases like MongoDB and Couchbase are designed to handle unstructured or semi-struc-
tured data. Unlike SQL databases, they don’t enforce strict schemas. Data can be stored in formats
like JSON, and records (documents) can differ from one another in structure.

Since NoSQL databases are schema-less or schema-flexible, integration tests should focus more on
the data structure validation within each document rather than relying on predefined schemas. The
structure of the data, for example, required fields in a document, can be validated using tools like
JSON Schema. Validation often occurs at the application level, where models are expected to conform
to certain structures, even if the database itself doesn’t enforce it.

You may need to set up specific collections and populate them with the necessary test data before
running tests. While migrations are less of a concern, you still need to ensure that data models are
aligned with the codebase’s expectations.

Many NoSQL databases offer in-memory testing capabilities. For example, the MongoDB memory
server makes integration tests faster without the need for a full database instance.

Many integration tests for SQL databases rely on transaction rollbacks. The test framework starts a
transaction, executes the test, and then rolls back the transaction to leave the database in its original
state.

Developer instances of the database and migrations
Each developer in a team should have their own instance of the database to work with locally. This is
so that tests run by different developers do not interfere with each other. Doing this also maximizes
performance during test executions.

Over time, the database structure will change. New tables will be added. Columns will be added to
tables. The best way to handle this is to use migrations.

Chapter 12 447

These are schema changes represented by the SQL statements that make the change, for example,
CREATE TABLE and ALTER TABLE. Object-Relational Mappers (ORMs) like EF Core support migrations
with classes with equivalent commands, as shown in the following code:

using Microsoft.EntityFrameworkCore.Migrations; // To use Migration.

namespace YourApp.Migrations;

public partial class AddPosts : Migration
{
 protected override void Up(MigrationBuilder migrationBuilder)
 {
 migrationBuilder.CreateTable(name: "Posts", columns: table => new
 {
 PostId = table.Column<int>(nullable: false)
 .Annotation("SqlServer:ValueGenerationStrategy",
 SqlServerValueGenerationStrategy.IdentityColumn),
 Title = table.Column<string>(nullable: true),
 Content = table.Column<string>(nullable: true),
 DateCreated = table.Column<DateTime>(nullable: false)
 },
 constraints: table =>
 {
 table.PrimaryKey("PK_Posts", x => x.PostId);
 });
 }

 protected override void Down(MigrationBuilder migrationBuilder)
 {
 migrationBuilder.DropTable(name: "Posts");
 }
 }
}

Note the following about the preceding code:

• The Up method creates a new table called Posts with four columns: PostId, Title, Content,
and DateCreated. The PostId column is configured as an identity column, which means its
value will be automatically generated by the database when a new row is inserted. The table.
PrimaryKey method is used to specify PostId as the primary key of the Posts table.

• The Down method reverses the changes made by the Up method. In this case, it simply drops
the Posts table. This method ensures that you can revert your database schema to its previous
state if needed.

Web Service Integration Testing448

A migration class can be auto-generated by the EF Core tools based on your model definitions and
DbContext configuration. Whenever you make changes to your models that affect the database schema,
you should create a new migration, as shown in the following command:

dotnet ef migrations add <MigrationName>

Here, <MigrationName> would be something like AddPosts.

This technique allows you to version your database schema alongside your application code, making
it easier to manage changes and deployments.

To run any outstanding migrations, which call their Up methods, use the following command:

dotnet ef database update

To revert to a specified migration point, which calls the Down methods on the migration classes after
that point, use the following command:

dotnet ef database update <MigrationName>

This will revert all migrations applied after the specified migration, so the database schema will match
the state defined by the specified migration.

To revert all migrations so that the database returns to its original state, which calls all the Down meth-
ods of each migration in order, use the following command:

dotnet ef database update 0

Data lifecycle
Tests should not depend on the state of the database. Your tests should initialize the state of the data-
base themselves to ensure consistency and remove data between test runs.

If you cannot do this, then your tests will need to execute sequentially so that the state of the database
is known. If you execute tests in parallel, then you are more likely to get the state out of sync.

There are common ways to reset data between tests:

• Restore a database backup before each test. This can be slow depending on the size of the
database.

The actual SQL commands executed by these methods depend on the database provider
you’re using. EF Core translates the methods into the appropriate SQL commands for the
configured database provider, like SQL Server, SQLite, or PostgreSQL.

Good Practice: It is important to include the database migration scripts in the applica-
tion’s source control system to ensure that schema changes are tracked and can be easily
reverted or shared.

Chapter 12 449

• Create a database transaction and then roll it back at the end of the test. If the transaction is
only used in the test, then production behavior is different.

• Scripting the cleanup of data after each test. This is fast but if a test fails without performing
the cleanup, it will cause problems for other tests.

• Scripting the cleanup of data before each test. This is fast and less likely to leave the database
in an unknown state if a test fails.

You should define a base class for integration tests that share a common database and the same initial
state. Call a SQL script to clean up and initialize the database state, as shown in the following code:

using Microsoft.Data.SqlClient; // To use SqlConnection and so on.
using System.Data; // To use CommandType.

public abstract class DatabaseIntegrationTests
{
 private const string _connectionString;

 protected DatabaseIntegrationTests()
 {
 ResetDatabase();
 }

 public void ResetDatabase()
 {
 string sql = "DELETE FROM ...;" +
 "DELETE FROM ...;" +
 "INSERT INTO ...;";

 // Or load the SQL statements from a script file.

 using SqlConnection con = new(_connectionString);

 SqlCommand cmd = new(sql, con);
 cmd.CommandType = CommandType.Text;

 con.Open();
 cmd.ExecuteNonQuery();
 }
}

Web Service Integration Testing450

You should define factory methods in a helper class to create entities, as shown in the following code:

public static class ObjectMother
{
 public static Category CreateCategory(
 int categoryId = 1,
 string categoryName = "Beverages",
 string description = "...")
 {
 using NorthwindContext db = new();
 Category category = new Category()
 {
 CategoryId = categoryId,
 CategoryName = categoryName,
 Description = description
 };
 db.Categories.Add(category);
 db.SaveChanges();
 return category;
 }
}

You should use the factory method in a test, as shown in the following code:

using static ObjectMother;

Category c1 = CreateCategory(); // Create Beverages.
Category c2 = CreateCategory(2, "Condiments", "..."); // Create Condiments.

Testing web services using xUnit
There are multiple ways to test web services:

• Automatically using testing frameworks like xUnit, NUnit, and MSTest.
• Manually using HTTP request editors like REST Client for VS Code or HTTP Editor in Visual

Studio.
• Manually using GUI tools like Postman, NSwag, or Swagger UI.

Good Practice: Avoid in-memory database replacements. Although they are faster, modern
databases are almost as fast, and only an integration test that uses a real database is a
true integration test. Use the same data store system in tests as you will use in production.

Chapter 12 451

Unit testing using xUnit
xUnit.net, often simply referred to as xUnit, is a popular unit testing framework for the .NET ecosys-
tem. xUnit has been specifically designed to address some of the limitations found in older testing
frameworks like NUnit and MSTest.

Even internal Microsoft teams avoid MSTest in favor of xUnit. For example, the ASP.NET Core team
uses xUnit, as shown at the following link: https://github.com/dotnet/aspnetcore/tree/main/
src/Testing/src/xunit.

xUnit utilizes a range of .NET attributes to define and control the behavior of tests within your test
suite. These attributes are crucial for organizing tests, specifying test behaviors, and managing test
data. Let’s review them next.

Common xUnit attributes
The most common xUnit attributes with examples of usage and descriptions are shown in Table 12.4:

Attribute example Description

[Fact]

public void TestAdding2and2()

[Fact] declares a test method that does not take any
parameters and is run once by the test runner.

[Theory]

[...]

public void TestAdding(

 double expected,

 double number1,

 double number2)

[Theory] declares a test method that has one or more
parameters that are run multiple times with different
data. It must be used in conjunction with data-providing
attributes like [InlineData], [ClassData], or
[MemberData].

[InlineData(4, 2, 2)]

[InlineData(5, 2, 3)]

[InlineData] supplies fixed values for parameters in the
defined order for a MUT decorated with [Theory].

Warning!

Swagger UI integration using the Swashbuckle package has been removed from the
ASP.NET Core 9 project templates. You can learn more about this at the following link:
https://github.com/dotnet/aspnetcore/issues/54599. The ASP.NET Core team
has replaced the OpenAPI document generation with a built-in feature, but they have no
plans to replace the Swagger UI for testing.

If you are familiar with other testing frameworks, then you can review summary compar-
ison tables at the following link: https://xunit.net/docs/comparisons.

https://github.com/dotnet/aspnetcore/tree/main/src/Testing/src/xunit
https://github.com/dotnet/aspnetcore/tree/main/src/Testing/src/xunit
https://github.com/dotnet/aspnetcore/issues/54599
https://xunit.net/docs/comparisons

Web Service Integration Testing452

[ClassData(

 typeof(AddingNumbersData))]

[ClassData] supplies enumerated values for parameters
in the defined order for a MUT decorated with [Theory].
The class can implement IEnumerable<object[]>. To
provide strongly typed data, the class must derive from
TheoryData.

[MemberData(

 nameof(GetTestData))]

[MemberData] supplies enumerated values for
parameters in the defined order for a MUT decorated
with [Theory]. The method must be static and return
IEnumerable<object[]>.

[Trait("Feature",

 "Shopping Cart")]

This allows the addition of metadata to tests, categorizing
them for filtering during test runs.

Table 12.4: Common xUnit attributes

[Fact] and [Theory] both allow you to change the display name of the test shown in results and set
a timeout as an integer in milliseconds, as shown in the following code:

[Fact(Timeout = 3000)] // Test will timeout after 3 seconds.

If you want to temporarily skip running a [Fact] or [Theory] test, you can just set the Skip parameter
to a text reason for skipping it, as shown in the following code:

[Fact(Skip = "Skipping this test for now.")]

Now, let’s see how we can host a web service during testing.

Web service hosting with WebApplicationFactory
One of the trickier aspects of testing web services is how to host the web service during testing and
how to simulate an HTTP context. Integration tests for ASP.NET Core projects require the following:

• A test project to contain and execute the tests. The test project has a reference to the website
or web service project aka the SUT.

• The test project creates a test web host for the SUT and uses a test server client to handle re-
quests and responses with the SUT.

The Microsoft.AspNetCore.Mvc.Testing package handles the following tasks:

• It sets the content root to the SUT’s project root so that static files and pages/views are found
when the tests are executed

• It provides the WebApplicationFactory class to streamline bootstrapping the SUT with the
TestServer class

We will create an example weather service using the built-in project template. Then, we will write
integration tests for it.

Chapter 12 453

WebApplicationFactory<Program> is used to create an instance of the application under test, where
Program is the class that contains your minimal API’s Main method. The CreateClient method of
WebApplicationFactory<T> creates an HttpClient configured to send requests to this instance.

The first test will send a GET request to the /weatherforecast endpoint and assert that the response
is successful by checking for a status code in the range 200–299. The second test will make the same
request and check that there are five weather forecasts in the deserialized JSON response.

By using WebApplicationFactory<T>, the tests will automatically handle the setup and teardown of
the test server for you. This means you get to test your application in an environment very close to
production, without the overhead of deploying and hosting the web service.

Enabling an ASP.NET Core project to be tested
By default, ASP.NET Core projects use top-level statements, meaning the Program class is generated
automatically. In this scenario, it will not be a public class.

To automate integration tests, we need the Program class to be public so that we can reference it in
a separate testing project.

Let’s do that now:

1. In the Northwind.WebApi project, in Program.cs, add an explicit declaration of the Program
class and its Main method, as shown highlighted in the following code:

public class Program
{
 public static void Main(string[] args)
 {
 var builder = WebApplication.CreateBuilder(args);

 ...
 }
}

2. Build the Northwind.WebApi project.

Creating the test project
Now, we can create a test project that references the web service project:

1. Use your preferred code editor to add a new xUnit Test Project / xunit project named Northwind.
IntegrationTests to the MatureWeb solution.

2. In the Northwind.IntegrationTests.csproj project file, remove all the version attributes
for the default packages, and add a package reference for ASP.NET Core testing, as shown in
the following markup:

<PackageReference
 Include="Microsoft.AspNetCore.Mvc.Testing" />

Web Service Integration Testing454

3. In the Northwind.IntegrationTests.csproj project file, add a project reference to the web
service, as shown in the following markup:

<ItemGroup>
 <ProjectReference Include="..\Northwind.WebApi\Northwind.WebApi.csproj"
/>
</ItemGroup>

4. In the Northwind.IntegrationTests project, rename UnitTest1.cs to WeatherForecastTests.
cs.

5. In WeatherForecastTests.cs, define a class with test methods, as shown in the following code:

using Microsoft.AspNetCore.Mvc.Testing; // To use
WebApplicationFactory<T>.
using System.Net.Http.Json; // To use ReadFromJsonAsync.
using Northwind.WebApi; // To use Program.

namespace WebServiceTests;

public class WeatherForecastTests :
 IClassFixture<WebApplicationFactory<Program>>
{
 private readonly WebApplicationFactory<Program> _factory;
 private const string relativePath = "/weatherforecast";

 public WeatherForecastTests(WebApplicationFactory<Program> factory)
 {
 _factory = factory;
 }

 [Fact]
 public async Task Get_WeatherForecasts_ReturnsSuccessStatusCode()
 {
 // Arrange
 HttpClient client = _factory.CreateClient();

 // Act
 HttpResponseMessage response =

You can check the latest version of the package at the following link: https://
www.nuget.org/packages/Microsoft.AspNetCore.Mvc.Testing/.

https://www.nuget.org/packages/Microsoft.AspNetCore.Mvc.Testing/
https://www.nuget.org/packages/Microsoft.AspNetCore.Mvc.Testing/

Chapter 12 455

 await client.GetAsync(relativePath);

 // Assert
 Assert.True(response.IsSuccessStatusCode); // Status Code 200-299.
 }

 [Fact]
 public async Task Get_WeatherForecasts_ReturnsFiveForecasts()
 {
 // Arrange
 HttpClient client = _factory.CreateClient();

 // Act
 HttpResponseMessage response = await client.GetAsync(relativePath);
 WeatherForecast[]? forecasts = await response.Content
 .ReadFromJsonAsync<WeatherForecast[]>();

 // Assert
 Assert.NotNull(forecasts);
 Assert.True(forecasts.Length == 5);
 }
}

6. Run the tests in the WebServiceTests project and note that they succeed without needing to
start the web service project because the web service is hosted in a TestServer instance in
the test project.

Mocking in tests
Mocking in unit tests is a technique used to isolate the unit of code being tested by replacing its de-
pendencies with controlled, pre-configured substitutes known as “mocks.” This allows the developer
to focus on testing the specific functionality of the unit without interference from its dependencies.

The key concepts of mocking include the following:

• Isolation: The primary purpose of mocking is to isolate the unit of code under test. This isola-
tion ensures that the test is focused only on the behavior of the unit itself, rather than on the
behavior of its dependencies. By using mocks, you create a controlled environment where you
can precisely control the inputs and outputs of the dependencies.

• Substitutes for real objects:

• Mocks are stand-ins for the real objects that the unit under test interacts with. They
mimic the behavior of real objects but are configured to return specific values or per-
form specific actions.

Web Service Integration Testing456

• Fakes are simpler implementations of interfaces or classes used in the test environment.
Unlike mocks, they provide working implementations but may not be as configurable
or detailed.

• Stubs provide predefined responses to specific calls, without implementing the entire
behavior of the dependency. They are typically used for providing fixed inputs to the
unit under test.

• Spies are like mocks but also record information about how they were called, which
can be useful for verifying interactions.

• Dummies are objects passed around but never actually used. They are typically used
to fill parameter lists.

• Verification of interactions. Mocks can be set up with expectations about how they should be
used, such as which methods should be called, how many times they should be called, and with
what arguments. After the test runs, the mock framework verifies whether these expectations
were met. This helps ensure that the unit under test interacts with its dependencies as expected.

There are many benefits of mocking, such as:

• Isolation and focus: By isolating the unit under test from its dependencies, you can focus on
testing its specific behavior without interference.

• Control over your test environment: Mocks allow you to simulate various scenarios by con-
trolling the inputs and outputs of the dependencies.

• Improved test reliability: By removing the dependencies, you reduce the chance of flaky tests
caused by external factors such as network issues or database states.

• Faster tests: Mocking often leads to faster tests since mocks usually run in memory and do not
involve time-consuming operations like database access or network communication.

• Better coverage: Mocks allow you to simulate edge cases and error conditions that might be
difficult or impossible to reproduce with real dependencies.

A use case for mocking is mocking an interface to test a service method that depends on a repository
layer without hitting the actual database. Another is creating a substitute for a logging service to verify
that error logging occurs for a given input without actually writing to a log file.

Libraries for mocking
The choice of mocking framework often comes down to personal or team preference, the specific
needs of the project, and the existing technological stack. Moq, NSubstitute, and FakeItEasy each
offer a modern, developer-friendly approach to mocking, with active communities and ongoing de-
velopment, making them excellent choices for most .NET projects today. When selecting a mocking
framework, consider experimenting with a few to see which one best fits your development style and
project requirements.

Moq is widely regarded as one of the easiest-to-use mocking libraries for .NET. It’s particularly known
for its straightforward syntax and ability to quickly set up mocks without needing to manage complex
configurations or setups.

Chapter 12 457

Moq supports a wide range of features, including the ability to mock interfaces, abstract classes, and
concrete classes, as well as setting up returns, verifying method calls, and handling properties. It uses
lambda expressions for setting up mocks in a strongly typed manner, which helps with refactoring
and code readability.

NSubstitute is designed with a focus on simplicity and ease of use, offering a concise API that can
reduce the amount of mock-related code you need to write. It’s a great choice for developers who
prioritize readability and efficiency. Like Moq, NSubstitute allows for mocking interfaces and classes.
It also supports argument matching and checking calls to specific methods and has a unique feature
for automatically creating substitute instances for dependencies when constructing an object.

FakeItEasy aims to be the most user-friendly mocking library for .NET, with a syntax that’s designed
to be easy to read and write. It’s a good choice for teams looking for a balance between functionality
and simplicity. It allows for easy creation of fake objects for interfaces and classes, with straightfor-
ward methods for configuring behavior, returns, and exceptions. FakeItEasy also supports advanced
scenarios like calls to specific methods with certain arguments.

Using NSubstitute to create test doubles
NSubstitute is designed to make it easy to create test doubles like mocks, stubs, and so on for unit
testing. This allows you to test components in isolation from their dependencies.

Warning!

Moq developer kzu courted controversy by adding a component known as SponsorLink
in version 4.20.0 on August 7, 2023. You can read the pull request at the following link:
https://github.com/devlooped/moq/pull/1363. Moq “now ships with a closed-source
obfuscated dependency that scrapes your Git email and phones it home” and was consid-
ered by many developers to be unacceptable, as you can read at the following link: https://
www.reddit.com/r/programming/comments/15m2q0o/moq_a_net_mocking_library_
now_ships_with_a/. Four days later, kzu removed SponsorLink from Moq version 4.20.69
but the damage had already been done. Many organizations have switched to alternatives
like NSubstitute, as you can read at the following link: https://www.reddit.com/r/
dotnet/comments/173ddyk/now_that_the_controversy_from_moqs_dependencies/.

More Information

You can discover more about NSubstitute at the following link: https://github.com/
nsubstitute/NSubstitute.

More Information

You can discover more about FakeItEasy at the following link: https://fakeiteasy.
github.io/.

https://github.com/devlooped/moq/pull/1363
https://www.reddit.com/r/programming/comments/15m2q0o/moq_a_net_mocking_library_now_ships_with_a/
https://www.reddit.com/r/programming/comments/15m2q0o/moq_a_net_mocking_library_now_ships_with_a/
https://www.reddit.com/r/programming/comments/15m2q0o/moq_a_net_mocking_library_now_ships_with_a/
https://www.reddit.com/r/dotnet/comments/173ddyk/now_that_the_controversy_from_moqs_dependencies/
https://www.reddit.com/r/dotnet/comments/173ddyk/now_that_the_controversy_from_moqs_dependencies/
https://github.com/nsubstitute/NSubstitute
https://github.com/nsubstitute/NSubstitute
https://fakeiteasy.github.io/
https://fakeiteasy.github.io/

Web Service Integration Testing458

To create a mock, call the Substitute.For<T> method, where T is the interface or class that you need
to mock, as shown in the following code:

ICalculator calc = Substitute.For<ICalculator>();

You can pass parameters if the class has a constructor, as shown in the following code:

var substitute = Substitute.For<ClassWithConstructor>(5, "Error");

The substitute object will not just have the members of the type it substitutes for, like Add for
ICalculator. It will also have extension methods used to configure how the substitute should work,
as shown in Table 11.5:

Extension method Description

Returns

To set a return value for a method call on a substitute, call the method as
normal, then follow it with a call to the Returns() extension method. For
example: calc.Add(2, 3).Returns(5). Instead of specifying a literal value to
return, you can execute any lambda block, for example, to throw an exception.

Received
To check that a method has been called on a substitute, call the Received()
extension method, followed by the call being checked. For example: calc.
Received().Add().

Table 11.5: NSubstitute extension methods

You can match arguments using Args.Any<T>. For example, when adding any integer to 5, you could
specify to return 7, as shown in the following code:

calc.Add(Arg.Any<int>(), 5).Returns(7);

You can match specific arguments using Args.Is<T>. For example, when adding any integer greater
than 3 to 5, you could specify to return 9, as shown in the following code:

calc.Add(Arg.Is<int>(x => x > 3), 5).Returns(9);

You can throw exceptions, as shown in the following code:

calc.Add(-1, -1).Returns(x => { throw new Exception(); });

Mocking with NSubstitute example
Let’s explore:

1. Use your preferred code editor to add a new Class Library / classlib project named
BusinessLogic to the MatureWeb solution.

2. In the BusinessLogic.csproj project file, treat errors as errors and statically and globally
import the Console class.

3. In the BusinessLogic project, add a new interface file named IEmailSender.cs.

Chapter 12 459

4. In IEmailSender.cs, define an interface for sending emails, as shown in the following code:

namespace Packt.Shared;

public interface IEmailSender
{
 bool SendEmail(string to, string subject, string body);
}

5. In the BusinessLogic project, add a new class file named UserService.cs.
6. In UserService.cs, define a class for creating a user that sends an email as part of its process,

as shown in the following code:

namespace Packt.Shared;

public class UserService
{
 private readonly IEmailSender _emailSender;

 public UserService(IEmailSender emailSender)
 {
 _emailSender = emailSender;
 }

 public bool CreateUser(string email, string password)
 {
 // Create user.
 bool successfulUserCreation = true;

 // Send email to user.
 bool successfulEmailSend = _emailSender.SendEmail(
 to: email,
 subject: "Welcome!",
 body: "Your account is created.");

 return successfulEmailSend && successfulUserCreation;
 }
}

7. Build the BusinessLogic project.

Web Service Integration Testing460

8. Use your preferred coding tool to add a new xUnit Test Project [C#] / xunit project named
BusinessLogicUnitTests to the MatureWeb solution. For example, at the command prompt
or terminal in the Chapter11 folder, enter the following commands:

dotnet new xunit -o BusinessLogicUnitTests
dotnet sln add BusinessLogicUnitTests

9. In the BusinessLogicUnitTests project, add a project reference to the BusinessLogic project,
as shown in the following markup:

<ItemGroup>
 <ProjectReference Include="..\BusinessLogic\BusinessLogic.csproj" />
</ItemGroup>

10. Build the BusinessLogicUnitTests project.
11. In the BusinessLogicUnitTests project, add a package reference for NSubstitute, as shown

in the following markup:

<PackageReference Include="NSubstitute" Version="5.1.0" />

12. Build the BusinessLogicUnitTests project to restore packages.
13. In the BusinessLogicUnitTests project, add a new class file named EmailSenderUnitTests.cs.
14. In EmailSenderUnitTests.cs, define a class with a test method that uses NSubstitute to create

a mock of the IEmailSender interface, as shown in the following code:

using NSubstitute; // To use Substitute.
using Packt.Shared; // To use IEmailSender.
using Xunit.Abstractions; // To use ITestOutputHelper.

namespace BusinessLogicUnitTests;

public class EmailSenderUnitTests
{
 private readonly ITestOutputHelper _output;

The path for a project reference can use either forward (/) or back (\) slashes
because the paths are processed by the .NET SDK and changed if necessary for
the current operating system.

You can check for the latest version at the following link: https://www.nuget.
org/packages/NSubstitute.

https://www.nuget.org/packages/NSubstitute
https://www.nuget.org/packages/NSubstitute

Chapter 12 461

 public EmailSenderUnitTests(ITestOutputHelper output)
 {
 _output = output;
 }

 [Fact]
 public void SendEmailTest()
 {
 #region Arrange
 IEmailSender emailSender = Substitute.For<IEmailSender>();

 emailSender.SendEmail(
 to: Arg.Any<string>(),
 subject: Arg.Any<string>(),
 body: Arg.Any<string>())
 .Returns(true);

 emailSender.When(x => x.SendEmail(
 to: Arg.Is<string>(s => s.EndsWith("example.com")),
 subject: Arg.Any<string>(),
 body: Arg.Any<string>()))
 .Do(x => _output.WriteLine("Email sent to example domain."));

 UserService sut = new(emailSender);
 #endregion

 #region Act
 bool result = sut.CreateUser("user@example.com", "password");
 #endregion

 #region Assert
 Assert.True(result);
 emailSender.Received(requiredNumberOfCalls: 1)
 .SendEmail(to: "user@example.com",
 subject: Arg.Any<string>(), body: Arg.Any<string>());
 #endregion
 }
}

15. Run the test and note that it succeeds.

Web Service Integration Testing462

Note the following about the code for the test method:

• Substitute.For<IEmailSender>() creates a mock object for the IEmailSender interface.
• The Returns method is used to specify the return value when the SendEmail method is called

with any arguments.
• The When and Do methods are used to specify an action that executes only when the email is

sent to an address in the example.com domain, and if so, a message is written to the test output.
• The Received method checks that SendEmail was called exactly once with the expected ar-

guments.

Testing services using dev tunnels
Dev tunnels are a technology concept that’s gained traction among web service developers. Dev tunnels
create a secure, public URL that maps to a local server on your machine. This means you can share
your local development environment with anyone in the world, without deploying the web service
to a public server.

Imagine you’re working on a web application on your laptop. Normally, the app would only be ac-
cessible to you, since it’s running on your local server as localhost. If you, the developer, wanted
someone else, like a tester, to try it out, you’d have to deploy it to a public server, which can be a hassle,
especially for quick feedback loops.

Dev tunnels work by establishing a secure connection between your local server and a service that
creates a publicly accessible URL. This URL points directly back to your local server. When someone
accesses this URL, the dev tunnel service routes that traffic to your machine, letting others interact
with your local development project as if it were hosted online.

Dev tunnels provide several benefits, as shown in the following list:

• Simplified collaboration: Dev tunnels make it easy to share your work with clients, testers,
or colleagues without the need to deploy it to a public staging environment. This is especially
handy for quick reviews or collaborative debugging.

• Real-world testing: Dev tunnels allow for testing webhooks, third-party integrations, and mo-
bile apps that require a public URL to function correctly, directly from your local environment.

• Learning: For learners and educators, dev tunnels provide a straightforward way to work on
projects, experiment with new technologies, and share progress without the complexities of
server management.

There is some dev tunnel terminology that you should be familiar with, as shown in Table 12.6:

Term Description

Tunnel
This provides secure remote access to one host through a relay service. A dev
tunnel has a unique DNS name, multiple ports, access controls, and other
associated metadata.

Chapter 12 463

Tunnel relay
service

This facilitates secure connections between a dev tunnel host and clients via a
cloud service, even when the host may be behind a firewall and unable to accept
incoming connections directly.

Tunnel host
This accepts client connections to a dev tunnel via the dev tunnel relay service
and forwards those connections to local ports.

Tunnel port

This is an IP port number (1-65535) that is allowed through a dev tunnel. A dev
tunnel only allows connections on ports that have been added. One dev tunnel
can support multiple ports, and different ports within a dev tunnel may use
different protocols (HTTP, HTTPS, etc.) and may have different access controls.

Table 12.6: Dev tunnel terminology

While dev tunnels are secure, exposing your local environment to the public internet always comes
with risks. It’s important to use these tools judiciously, ensure that any sensitive data is protected, and
possibly limit access using authentication or IP whitelisting.

The performance seen through a dev tunnel might not accurately reflect the performance of a fully de-
ployed application, due to the overhead of tunneling and the specifics of your local development setup.

Installing the dev tunnel CLI
Before you can use dev tunnels, you must install the dev tunnel CLI:

• On Windows, use winget, as shown in the following command:

winget install Microsoft.devtunnel

• On macOS, use Homebrew, as shown in the following command:

brew install --cask devtunnel

• On Linux, use curl, as shown in the following command:

curl -sL https://aka.ms/DevTunnelCliInstall | bash

Exploring a dev tunnel with the CLI and an echo service
An echo service is a simple server or endpoint that receives HTTP requests and sends back the same
data in the response. It is often used for testing, debugging, and educational purposes because it
allows developers to see exactly what data is being sent to the server and verify that it is correctly
received and processed.

You will need to restart your command prompt or terminal before the devtunnel CLI will
be available on your computer path.

Web Service Integration Testing464

Let’s explore how to use dev tunnels with an echo service to do a basic “sanity check” that it is working:

1. Before you can create a dev tunnel, you must log in with a Microsoft Entra ID, Microsoft, or
GitHub account, as shown in the following command:

devtunnel user login

2. Select your account and note the result, as shown in the following output:

Logged in as <your-email-account> using Microsoft.

3. Start hosting a simple service on port 8080 that just echoes any HTTP requests to it, as shown
in the following command:

devtunnel echo http -p 8080

4. In another command prompt or terminal window, start hosting a dev tunnel for port 8080, as
shown in the following command:

devtunnel host -p 8080

5. Note the result, as shown in the following output:

Hosting port: 8080
Connect via browser: https://40bhwxgp.uks1.devtunnels.ms:8080,
https://40bhwxgp-8080.uks1.devtunnels.ms
Inspect network activity: https://40bhwxgp-8080-inspect.uks1.devtunnels.
ms

Ready to accept connections for tunnel: happy-hill-zw1k7n8

6. Start your preferred web browser and navigate to the URL specified in the output. For example,
for me, it was the following link: https://40bhwxgp.uks1.devtunnels.ms:8080.

7. Log in using the same account as you used to host the dev tunnel because, by default, dev
tunnels are only accessible to you.

8. Note the warning that confirms that you are about to connect to your dev tunnel, as shown
in Figure 12.2:

Chapter 12 465

Figure 12.2: Connecting to a dev tunnel

9. Close the browser, because we don’t actually need to connect to it at this point. We are just
confirming that it’s there.

10. At the command prompt or terminal, press Ctrl + C to shut down the dev tunnel host.
11. At the command prompt or terminal, press Ctrl + C to shut down the echo service.

Now, let’s see how to use a dev tunnel with an ASP.NET Core project.

Exploring a dev tunnel with an ASP.NET Core project
Now, let’s look at a more practical example of how to use a dev tunnel with an ASP.NET Core project.

Let’s explore:

1. In the Northwind.WebApi project, in Program.cs, before the call to app.Run(), add statements
to output the tunnel URL, as shown in the following code:

string? tunnelUrl = Environment.GetEnvironmentVariable("VS_TUNNEL_URL");
if (tunnelUrl is not null)
{
 WriteLine($"Tunnel URL: {tunnelUrl}");
}

2. Start the Northwind.WebApi project using the https launch profile without debugging.

Web Service Integration Testing466

3. Try out the weather service by navigating to https://localhost:5091/weatherforecast/10,
and note it returns random weather, as shown in Figure 12.3:

Figure 12.3: Random weather from a service in localhost

4. At the command prompt or terminal, note the web service is hosted on localhost and listening
on ports 5091 and 5090, as shown highlighted in the following output:

Default output formatters:
 HttpNoContentOutputFormatter
 StringOutputFormatter, Media types: text/plain
 StreamOutputFormatter
 SystemTextJsonOutputFormatter, Media types: application/json, text/
json, application/*+json
info: Microsoft.Hosting.Lifetime[14]
 Now listening on: https://localhost:5091
info: Microsoft.Hosting.Lifetime[14]
 Now listening on: http://localhost:5090
info: Microsoft.Hosting.Lifetime[0]
 Application started. Press Ctrl+C to shut down.
info: Microsoft.Hosting.Lifetime[0]
 Hosting environment: Development
info: Microsoft.Hosting.Lifetime[0]
 Content root path: C:\web-dev-net9\MatureWeb\Northwind.WebApi

5. Close the browser and shut down the web service.

https://localhost:5091/weatherforecast/10

Chapter 12 467

6. In Visual Studio, in the standard toolbar, navigate to https | Dev Tunnels (no active tunnel) |
Create a Tunnel..., as shown in Figure 12.4:

Figure 12.4: Creating a dev tunnel in Visual Studio

7. In the dialog box, select a Microsoft or GitHub account, enter a name for the tunnel, like
Northwind Web API, select Temporary for the tunnel type, select Private for the access level,
and click OK, as shown in Figure 12.5:

Figure 12.5: Creating a dev tunnel in Visual Studio

8. Start the Northwind.WebApi project using the https profile without debugging.
9. If you are using a GitHub account, then you may need to authorize dev tunnels to verify your

identity.

Web Service Integration Testing468

10. Try out the weather service and note it returns random weather, as shown in Figure 12.6:

Figure 12.6: Random weather from a web service callable on the public internet

11. At the command prompt or terminal, note the web service is still hosted on localhost and
listening on ports 5091 and 5090. But now, a dev tunnel is redirecting public HTTP requests
via the public URL to your local web service so the environment variable containing the tunnel
URL is available, as shown in the following output:

Tunnel URL: https://mws9wxk4-5091.uks1.devtunnels.ms/

12. In Visual Studio, navigate to View | Output, select Show output from: Dev Tunnels, and note
the results, as shown in the following output and in Figure 12.7:

Getting dev tunnels for account 'Mark Price (markjprice@msn.com)':
Succeeded
Getting dev tunnels for account 'markjprice (GitHub)': Failed to get the
list of dev tunnels. Tunnel service response status code: Unauthorized
Request ID: 0c27c229-0843-4d16-9dab-01382ae77890 Response status code
does not indicate success: 401 (Unauthorized).
Dev tunnel 'Northwind Web API' was created successfully
Successfully configured the following urls on dev tunnel 'Northwind Web
API':
 https://localhost:5091 -> https://mws9wxk4-5091.uks1.
devtunnels.ms/

Figure 12.7: Dev Tunnels output in Visual Studio

Chapter 12 469

Whether you’re a solo developer working on a side project or part of a team iterating rapidly on a
complex application, dev tunnels offer a flexible, powerful way to bridge the gap between local devel-
opment and public accessibility. Just remember to consider the implications of exposing your local
environment and to use these tools wisely.

Practicing and exploring
Test your knowledge and understanding by answering some questions, getting some hands-on practice,
and exploring the topics covered in this chapter with deeper research.

Exercise 12.1 – Online-only material
You can learn more about integration tests in ASP.NET Core at the following link: https://learn.
microsoft.com/en-us/aspnet/core/test/integration-tests.

You can review common questions about ASP.NET Core and integration testing on Stack Overflow at
the following link: https://stackoverflow.com/questions/tagged/asp.net-core+integration-
testing.

You can learn more about testing web services using dev tunnels at the following link: https://learn.
microsoft.com/en-us/aspnet/core/test/dev-tunnels.

Exercise 12.2 – Practice exercises
Create integration tests for three web service technologies
In Chapters 9 to 11, you created projects that implement web services to work with customers in the
Northwind database with the following technologies:

1. Web API using controllers
2. OData
3. FastEndpoints

Create a new xUnit project and then write integration tests to retrieve a single customer and all cus-
tomers in Germany from each of these three projects.

Exercise 12.3 – Test your knowledge
Answer the following questions. If you get stuck, try googling the answers, while remembering that
if you get totally stuck, the answers are in the appendix:

1. What is a MUT?
2. What is a test double?
3. What is the most dangerous test outcome from the following: TN, TP, FN, and FP? Why?
4. For integration testing, what types of external systems should you test, and which should you

mock?
5. What are the benefits of automating tests?

https://learn.microsoft.com/en-us/aspnet/core/test/integration-tests
https://learn.microsoft.com/en-us/aspnet/core/test/integration-tests
https://stackoverflow.com/questions/tagged/asp.net-core+integration-testing
https://stackoverflow.com/questions/tagged/asp.net-core+integration-testing
https://learn.microsoft.com/en-us/aspnet/core/test/dev-tunnels
https://learn.microsoft.com/en-us/aspnet/core/test/dev-tunnels

Web Service Integration Testing470

6. What should you consider when integration testing with data stores?
7. How are tests in xUnit configured?
8. Why would you use the WebApplicationFactory class in an integration test?
9. Using NSubstitute, how do you configure the return value of a faked method?
10. What are dev tunnels and how are they useful to .NET developers?

Exercise 12.4 – Explore topics
Use the following link to learn more details about the topics covered in this chapter: https://github.
com/markjprice/web-dev-net9/blob/main/docs/book-links.md#chapter-12--- web-service-
integration-testing.

Summary
In this chapter, you learned:

• The basic concepts of integration testing
• Considerations about integration testing with data stores
• How to test web services using xUnit
• How to mock dependencies in tests
• How to test web services using dev tunnels

In the next chapter, you will learn about Umbraco CMS, a .NET web content management system.

Learn more on Discord
To join the Discord community for this book – where you can share feedback, ask questions to the
author, and learn about new releases – follow the QR code below:

https://packt.link/RWD9

https://github.com/markjprice/web-dev-net9/blob/main/docs/book-links.md#chapter-12---
https://github.com/markjprice/web-dev-net9/blob/main/docs/book-links.md#chapter-12---
web-service-integration-testing
web-service-integration-testing
https://packt.link/RWD9

13
Web Content Management Using
Umbraco

This chapter is about building ASP.NET Core website projects that integrate with Umbraco CMS, a
popular third-party web content management system. However, it is important to understand what
this chapter does and does not cover with regard to Umbraco content management system (CMS).

The audience for this book is .NET developers. This chapter focuses on covering what a .NET developer
needs to know about Umbraco CMS. That includes knowing how to integrate Umbraco CMS with an
ASP.NET Core project and knowing what features are built in and therefore do not need to be created
by the developer. This chapter is not about how a senior marketer might use Umbraco CMS to design
the branding of a website or how a junior marketer might use Umbraco CMS to create or edit web
pages of content.

As a .NET developer tasked with enabling and possibly extending Umbraco CMS, you should know
some of the basic capabilities that are built in so that if you are asked to add a feature, you will know
if that feature already exists, or if you will need to write custom code to extend Umbraco CMS to add
that capability.

To understand the limits of what this chapter covers, it helps to understand that there are three main
roles that work with a CMS, as described in the following list:

• CMS developer: This role does the technical work to enable the CMS on a development plat-
form like Umbraco on .NET or Django on Python. Once the website with CMS is deployed, a
CMS developer rarely needs to perform user tasks, like creating content and uploading images,
or administering content types and assigning user permissions. One of the major benefits of
implementing a CMS is that non-technical users do that work without developer involvement.
But if the built-in CMS features are not enough, then a developer might be asked to write
code to implement a custom feature. You will learn about this in Chapter 14, Customizing and
Extending Umbraco.

Web Content Management Using Umbraco472

• CMS editor: This role typically works in the marketing department of an organization and
manages content for a website. They create web pages, upload images and other documents
for use on the website, and update existing pages when changes occur in the organization,
like when a C-level executive moves on. Often, CMS editors are trained internally for an hour
or two about the available content types designed for the organization, and how to use the
basic CMS tools, like the HTML editor, including how to add images and links to other pages.
The CMS features for editors are as easy to learn as a word processor so it shouldn’t take long.
Sometimes, a group of CMS editors will be trained together by a professional CMS expert
training provider. Some CMSs have additional specialized types of editors. For example, Um-
braco defines translators and writers as well as editors. These groups have slightly different
permissions within the CMS.

• CMS administrator: This role has complete access to all features of the CMS and typically
defines the content types, assigns user permissions to areas of the website, and so on. CMS
administrators need to know more details about how the CMS works, so they are more often
trained by a professional CMS expert training provider.

These days, many CMSs only exist in the cloud as a software-as-a-service (SaaS) solution, like Square-
space, Wix, and the many WordPress hosts. For a small organization, or a department within a large
organization, these are good choices, despite their potential limitations in not having total control.

There are also many choices of CMS that integrate with web development platforms and therefore
provide complete flexibility and customization. For cross-platform C# and .NET web developers, the
best for learning about the important principles is Umbraco CMS. It was one of the first CMSs to
support modern .NET.

More Information: The official Umbraco CMS Editor’s Manual is available at the fol-
lowing link: https://docs.umbraco.com/umbraco-cms/tutorials/editors-
manual. This chapter shows enough of the built-in editor features that a developer
can then scan through the rest of the functionality to know what’s built in. This
chapter does not teach you how to use all the editor tools. So, please read the
manual if you do need that. For example, some organizations do seem to expect
developers to train marketers on how to use the CMS to manage their content!

https://docs.umbraco.com/umbraco-cms/tutorials/editors-manual
https://docs.umbraco.com/umbraco-cms/tutorials/editors-manual

Chapter 13 473

Umbraco has three related products: Umbraco CMS, Umbraco Cloud, and Umbraco Heartcore. Um-
braco Heartcore is a headless system. Umbraco Cloud is a hosted CMS. We will look at Umbraco CMS
because that provides the Umbraco CMS functionality as NuGet packages that can be integrated with
any ASP.NET Core project and therefore gives you control over where you host it.

This chapter will cover the following topics:

• Understanding the benefits of a CMS
• Introducing Umbraco CMS
• Defining document types
• Working with media

Understanding the benefits of a CMS
In previous chapters, you learned how to create static HTML web pages and configure ASP.NET Core
to serve them when requested by a visitor’s browser.

You also learned how ASP.NET Core MVC Razor views can add C# code that executes on the server side
to generate HTML dynamically, including from information loaded live from a database, like a product
catalog grouped into categories as in the Northwind database, as shown in Figure 13.1. Additionally,
you learned how ASP.NET Core MVC provides a separation of technical concerns to make building
more complex websites more manageable.

In the real world, if you are a .NET developer working on a web development project,
99% of the time you will not be working only with ASP.NET Core, even ignoring the many
frontend frameworks you might have to work with. You will almost certainly be working
with another server-side platform built on top of ASP.NET Core. In this book, I wanted to
emphasize that fact by including a chapter about a third-party platform for web develop-
ment with .NET. I decided to use Umbraco CMS for this purpose, but I could equally have
chosen Piranha CMS (https://piranhacms.org/), ABP Framework (https://abp.io/),
nopCommerce (https://www.nopcommerce.com/), or any of dozens of others. By the end
of this book, I want you to have an appreciation of how a typical real-life web platform
extends ASP.NET Core. The goal is not to cover in depth any particular platform. I know
that only a fraction of my readers will actually work with Umbraco CMS, but I believe that
all my readers will find value in seeing a common example.

https://piranhacms.org/
https://abp.io/
https://www.nopcommerce.com/

Web Content Management Using Umbraco474

Developers typically also build specialized web pages that are more like tools or apps. These have
complex processing requirements that are best implemented by programmers and updated only when
a new website deployment occurs.

On its own, ASP.NET Core does not solve the problem of managing website content. In those previous
websites, the person creating and managing the content would have to have programming and HTML
editing skills, or the ability to edit the data in the Northwind database, to change what visitors see on
the website.

This is where a CMS becomes useful. A CMS separates the content (data values) from templates (layout,
format, and style). Most CMSs generate web responses like HTML for humans viewing the website
with a browser.

Some CMSs generate open data formats, like JSON and XML, to be processed by a web service or
rendered in a browser using client-side technologies, like Angular, React, or Vue. This is often called
a headless CMS.

Non-technical CMS administrators, often senior marketers within the organization, define the struc-
ture of data stored in the CMS using content type classes for different purposes, like a product page,
with content templates that render the content data loaded from the CMS database into HTML, JSON,
or other formats.

Non-technical CMS editors, aka content owners, can log into the CMS and use a simple user interface
to create, edit, delete, and publish content that will fit the structure defined by the content type classes,
without needing the involvement of developers or tools like Visual Studio.

For example, most websites have a section for important people in the organization, like biographies
of the CEO, an About Us section with contact information and location maps, and a News or Blog
section, as shown in Figure 13.1. All these need to be manually managed, typically by a member of
the marketing or HR department, all non-technical people.

Figure 13.1: One part of a website is managed by developers, and the other part is managed by editors

Chapter 13 475

Understanding basic CMS features
Any decent basic CMS will include the following core features:

• A user interface that allows non-technical content owners to log in and manage their content.
• Media asset management of images, videos, documents, and other files.
• Sharing and reuse of pieces of content, often named blocks.
• Saved drafts of content that are hidden from website visitors until they are published.
• Search engine optimized URLs, page titles and related metadata, sitemaps, and so on.
• Authentication and authorization including management of users, groups, and their access

rights to content.
• A content delivery system that converts the content from simple data into one or more formats,

like HTML and JSON.

Understanding enterprise CMS features
Any decent commercial enterprise-level CMS would add the following additional features:

• Forms designer for gathering input from visitors.
• Marketing tools, like tracking visitor behavior and A/B testing of content.
• Personalization of content based on rules, like geographic location or machine learning pro-

cessing of tracked visitor behavior.
• Retaining multiple versions of content and enabling the re-publishing of old versions.
• Translation of content into multiple human languages, like English and German.

Understanding CMS platforms
CMSs exist for most development platforms and languages, as shown in the following table:

Development Platform Content Management Systems

PHP WordPress, Drupal, Joomla!, Magento

Python Django CMS

Java
Adobe Experience Manager, Bloomreach Experience Manager
(formerly Hippo CMS)

.NET
Umbraco CMS, Optimizely CMS, Sitecore, Kentico CMS, Piranha
CMS, Orchard Core CMS

Table 13.1: CMS for different development platforms

Web Content Management Using Umbraco476

Introducing Umbraco CMS
Umbraco CMS is an open source CMS built on the Microsoft .NET framework. It’s designed to be
flexible, scalable, and user-friendly, making it a popular choice for developers and businesses that
require a robust yet customizable platform for managing web content.

The key features of Umbraco CMS include the following:

• Built on .NET: Being based on .NET, Umbraco integrates with Microsoft technologies, which
is a significant advantage for businesses already invested in the Microsoft ecosystem. It offers
strong support for C# and .NET, making it a natural choice for developers familiar with these
technologies.

• Open source: Umbraco is open-source, which means that it is free to use and benefits from
contributions from a large community of developers. This also ensures that the platform is
continuously improved and updated.

• Ecosystem: Umbraco has a vibrant community of developers, designers, and users who con-
tribute plugins and extensions and provide support. There’s also a commercial arm, Umbraco
HQ, which offers professional support, cloud hosting, and additional tools, like Umbraco
Forms and Umbraco Cloud.

• Flexibility: Developers can create custom content types, layouts, and workflows tailored to
the specific needs of a project. This makes it suitable for everything from simple websites to
complex, enterprise-level applications.

• User-friendly: The backend interface of Umbraco is designed with usability in mind. Content
editors and non-technical users can easily navigate the system to manage and publish content
without needing extensive technical knowledge.

• Scalability: Umbraco is highly scalable, making it suitable for a wide range of projects, from
small blogs by .NET developers who want to host their own websites to large corporate websites.
Its architecture allows it to handle large amounts of content and traffic without sacrificing
performance.

• API-first: Umbraco is designed to be API-driven, making it easier to integrate with other systems,
develop custom applications, or serve as a headless CMS, where content is managed centrally
and delivered to various platforms like websites, mobile apps, and IoT devices.

Why is Umbraco popular?
Umbraco is particularly popular among developers because of its flexibility, extensibility, and the fact
that it’s built on .NET. The ability to use familiar tools and languages makes it an attractive choice for

.NET developers.

Unlike some other CMS platforms that might be more rigid or opinionated, Umbraco offers a high
degree of customization. Developers can build exactly what they need without being constrained by
the CMS.

Chapter 13 477

The open-source nature of Umbraco means there’s a large, active community that contributes plugins,
extensions, and themes. This community also offers support, documentation, and regular updates,
which helps keep the platform modern and secure.

Umbraco strikes a good balance between making it easy for non-technical users to manage content
and providing powerful tools for developers to create complex, dynamic websites.

For businesses that need more than what the open-source community can provide, Umbraco HQ
offers commercial support, which includes service-level agreements, cloud hosting, and advanced
features. This blend of open-source flexibility with optional enterprise-level support is a significant
draw for larger organizations.

Organizations that are heavily invested in Microsoft technologies find Umbraco particularly appealing
because it integrates well with other .NET applications, Azure services, and SQL Server.

With the increasing need for content to be delivered across multiple platforms (web, mobile, IoT),
Umbraco’s support for headless CMS architecture makes it future-proof and adaptable to modern
web development trends.

Umbraco is used across various industries, including corporate websites, e-commerce, government
portals, and more. Its flexibility allows it to serve different purposes, from simple content management
to complex, multi-site setups with extensive custom functionality.

Umbraco versions and setup
Since Umbraco version 10, it has had a major release every six months. Umbraco has a Long Term
Support (LTS) release every two years that aligns with .NET LTS releases. Like .NET, LTS releases are
supported for three years. But unlike .NET, Short Term Support (STS) releases are only supported
for one year.

Umbraco has current and future versions planned, as shown in Table 13.2:

Version Released End of life .NET

8 February 26, 2019 February 24, 2025

10 LTS June 16, 2022 June 16, 2025 6 LTS

13 LTS December 14, 2023 December 14, 2026 8 LTS

14 STS May 30, 2024 May 30, 2025 8 LTS

15 STS November 14, 2024 November 14, 2025 8 LTS

16 STS June 12, 2025 June 12, 2026 8 LTS

17 LTS November 27, 2025 November 27, 2028 10 LTS

Table 13.2: Umbraco versions and support summary

This book was written using Umbraco 14. By the time of publishing, Umbraco 15 will be released and
you should be able to target that version and complete all the same tasks in this book. But both are
STS releases that reach their end-of-life one year later.

Web Content Management Using Umbraco478

If you need to target an LTS version, then target the latest minor and patch for Umbraco 13 on .NET
8 until November 2025, and then target Umbraco 17 on .NET 10.

Installing Umbraco CMS
Umbraco CMS is installed as .NET SDK project templates. Let’s do that now:

1. At a command prompt or terminal, install the Umbraco project templates, as shown in the
following command:

dotnet new install Umbraco.Templates::14.2.0

2. Note the three new project templates, as shown in the following output:

Templates Short Name Language

Umbraco Project umbraco [C#]
Umbraco Package RCL umbracopackage-rcl [C#]
Umbraco Package umbracopackage [C#]

3. In the future, you can confirm that the project templates are installed using the list switch,
as shown in the following command:

dotnet new list umbraco

4. In Visual Studio, the project templates should be found automatically, or you can type umbraco
in the search box, as shown in Figure 13.2:

More Information: Learn more about Umbraco versions and support at the following link:
https://umbraco.com/products/knowledge-center/long-term-support-and-end-
of-life/. Learn more about Umbraco requirements at the following link: https://docs.
umbraco.com/umbraco-cms/fundamentals/setup/requirements.

https://umbraco.com/products/knowledge-center/long-term-support-and-end-of-life/
https://umbraco.com/products/knowledge-center/long-term-support-and-end-of-life/
https://docs.umbraco.com/umbraco-cms/fundamentals/setup/requirements
https://docs.umbraco.com/umbraco-cms/fundamentals/setup/requirements

Chapter 13 479

Figure 13.2: Searching for Umbraco project templates in Visual Studio

Creating and initializing a new Umbraco project
Now, let’s set up a new Umbraco project with example content to easily explore its features. Later, we
will see how to add Umbraco capabilities to an existing ASP.NET Core project.

Let’s go:

1. Use your preferred code editor to open the MatureWeb solution and then add a new project, as
defined in the following list:

• Project template: Umbraco Project (Umbraco HQ) / umbraco
• Solution file and folder: MatureWeb
• Project file and folder: Northwind.Cms

Web Content Management Using Umbraco480

2. If you are using Visual Studio, then confirm the following defaults have been chosen:

• Framework: .NET 8.0 (Long Term Support)
• Umbraco version: 14.2.0
• Use HTTPS redirect: Selected
• Exclude .gitignore: Cleared
• Minimal .gitignore: Cleared
• Connection string: <empty>
• Connection string provider name: Microsoft.Data.SqlClient
• Others: leave as defaults.

3. In Northwind.Cms.csproj, delete the version numbers for any package references, as shown
in the following markup:

<Project Sdk="Microsoft.NET.Sdk.Web">
 <PropertyGroup>
 <TargetFramework>net8.0</TargetFramework>
 <ImplicitUsings>enable</ImplicitUsings>
 <Nullable>enable</Nullable>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="Umbraco.Cms" />
 </ItemGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.ICU.ICU4C.Runtime" />
 ...

4. Build the Northwind.Cms project to restore packages.
5. In the Properties folder, in launchSettings.json, for the Umbraco.Web.UI profile’s

applicationUrl, change the random port number for HTTPS to 5131 and for HTTP to 5130,
as shown highlighted in the following markup:

"applicationUrl": "https://localhost:5131;http://localhost:5130",

You can check the latest version of Umbraco CMS at the following link:
https://www.nuget.org/packages/Umbraco.Cms/#versions-body-
tab.

https://www.nuget.org/packages/Umbraco.Cms/#versions-body-tab
https://www.nuget.org/packages/Umbraco.Cms/#versions-body-tab

Chapter 13 481

6. Save changes to all modified files.
7. In Program.cs, note the differences with an empty or MVC project so that you can understand

what is needed to integrate Umbraco CMS with an ASP.NET Core project, as shown highlighted
in the following code and explained below the code:

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.CreateUmbracoBuilder()
 .AddBackOffice()
 .AddWebsite()
 .AddDeliveryApi()
 .AddComposers()
 .Build();

WebApplication app = builder.Build();

await app.BootUmbracoAsync();

app.UseHttpsRedirection();

app.UseUmbraco()
 .WithMiddleware(u =>
 {
 u.UseBackOffice();
 u.UseWebsite();
 })
 .WithEndpoints(u =>
 {
 u.UseBackOfficeEndpoints();
 u.UseWebsiteEndpoints();
 });

await app.RunAsync();

Web Content Management Using Umbraco482

8. Set the Northwind.Cms project as the startup project.
9. Start the Northwind.Cms project using the Umbraco.Web.UI launch profile without debugging.
10. At the command prompt or terminal hosting the web server, note the background services

started so that you understand what extra work must be completed for an ASP.NET Core proj-
ect with Umbraco CMS integrated compared to an empty or basic MVC project, as shown in
the following output:

[11:12:16 INF] Acquiring MainDom.
[11:12:16 INF] Acquired MainDom.
[11:12:16 INF] Starting recurring background jobs hosted services
[11:12:16 INF] Starting background hosted service for
OpenIddictCleanupJob
[11:12:16 INF] Starting background hosted service for
HealthCheckNotifierJob
[11:12:16 INF] Starting background hosted service for LogScrubberJob
[11:12:16 INF] Starting background hosted service for
ContentVersionCleanupJob
[11:12:16 INF] Starting background hosted service for
ScheduledPublishingJob
[11:12:16 INF] Starting background hosted service for TempFileCleanupJob
[11:12:16 INF] Starting background hosted service for
TemporaryFileCleanupJob
[11:12:16 INF] Starting background hosted service for
InstructionProcessJob
[11:12:16 INF] Starting background hosted service for TouchServerJob
[11:12:16 INF] Starting background hosted service for WebhookFiring
[11:12:16 INF] Starting background hosted service for
WebhookLoggingCleanup
[11:12:16 INF] Starting background hosted service for ReportSiteJob

After creating an Umbraco builder, the AddBackOffice, AddWebsite,
AddDeliveryApi, and AddComposers methods register dependency services that
provide the following features to the project: a backoffice for admin functions,
a frontend website for visitors, a headless delivery API for content distribution,
and custom components to extend functionality. The BootUmbracoAsync method
performs actions like initiating the database connection to verify connectivity and
confirming that the database is ready for CRUD operations. It might also include
running any outstanding database migrations to ensure schema compatibility
with the code. Many CMS applications, including Umbraco, need background ser-
vices for tasks like content caching, scheduled publishing, or running scheduled
jobs. In the configuration of the HTTP pipeline, the UseUmbraco method registers
endpoints for the backoffice at the /umbraco relative path and other endpoints.

Chapter 13 483

[11:12:16 INF] Completed starting recurring background jobs hosted
services
[11:12:17 INF] Now listening on: https://localhost:5131
[11:12:17 INF] Now listening on: http://localhost:5130
[11:12:17 INF] Application started. Press Ctrl+C to shut down.
[11:12:17 INF] Hosting environment: Development
[11:12:17 INF] Content root path: C:\web-dev-net9\MatureWeb\Northwind.Cms

11. In your browser, note the Install Umbraco page that appears the first time that you start a fresh
Umbraco project, as shown in Figure 13.3:

Figure 13.3: Installation page

12. Enter your name and email, type a strong password, and then click Next.
13. On the Consent for telemetry data page, select 1 Minimal, and then click Next.
14. On the Database Configuration page, select a Database type, complete any other necessary

information, like the connection string, and then click Next.

15. On the Welcome log-in page, enter your email and password, and then click Login.

Since we are just learning about Umbraco CMS functionality rather than building
a production system, I recommend that you leave it on the default of SQLite with
a database name of Umbraco.

Web Content Management Using Umbraco484

16. On the Umbraco backoffice home page, note the top menu to navigate between sections (Con-
tent, Media, Settings, Packages, Users, Members, Dictionary) and the left navigation bar
labeled Content with no content yet, as shown in Figure 13.4:

Figure 13.4: Umbraco backoffice home page

17. Click Users, and then click User groups, and note that different groups have access to different
sections, as shown in Figure 13.5:

Figure 13.5: User groups and the sections they have access to

The Umbraco backoffice is accessed through the /umbraco relative path, so for our
project, it is at the following link: https://localhost:5131/umbraco.

https://localhost:5131/umbraco

Chapter 13 485

Unattended installs
Umbraco has a feature that allows it to install without manually using the user interface. But this
means that if you need to manually perform an installation task, you cannot use an unattended install.

It’s important to know that the install feature will only work if there is a connection string configured
pointing to an empty database. A configuration for an unattended install is shown in the following code:

{
 "$schema": "https://json.schemastore.org/appsettings.json",
 "ConnectionStrings": {
 "umbracoDbDSN": "Server=.;Database=UmbracoDb;Integrated Security=true"
 },
 "Umbraco": {
 "CMS": {
 "Unattended": {
 "InstallUnattended": true,
 "PackageMigrationsUnattended": true,
 "UpgradeUnattended": true,
 "UnattendedUserName": "<administrators_name>",
 "UnattendedUserEmail": "<administrators_email>",
 "UnattendedUserPassword": "<administrators_password>"
 }
 }
 }
}

This will automatically install Umbraco to the UmbracoDb database on the local SQL Server, and will
also automatically upgrade whenever there is an upgrade to install.

Defining document types
In Umbraco, a document type is a blueprint for content on your site. It defines the structure and
properties of a piece of content, such as a page or a component of a page.

The relative path to the Umbraco backoffice for your website is /umbraco. So, the absolute
link to the website will be https://localhost:5131/ and the absolute link to the website
will be https://localhost:5131/umbraco.

Good Practice: You should not store user credentials in config files. I recommend that you
use environment variables for these settings.

https://localhost:5131/
https://localhost:5131/umbraco

Web Content Management Using Umbraco486

Document types allow you to manage and organize content consistently across a website by setting
up rules and templates that content editors follow when creating new pages or elements.

There are several key aspects of document types, as shown in Table 13.3:

Component Description

Properties These are the individual fields within a document type, like Title, Body Text,
Image, Meta Description, and so on. Each property has a specific data type,
such as Text, Rich Text, Media Picker, or Date Picker.

Templates Templates define how the content of a particular document type is
presented on the website. A document type can be associated with one or
more templates, providing flexibility in how content is displayed.

Relationships Document types can have hierarchical relationships. For example, a Blog
Post document type might be a child of a Blog document type, reflecting
the structure of content on the site.

Table 13.3: Components of document types

Example document types
Some common examples of document types that you might define on a typical website are shown in
Table 13.4:

Name and purpose Common properties Template

Home page: The main
landing page of the
website.

Hero image: Media Picker to select the main
banner image.

Intro text: Rich Text Editor for the welcome
message or tagline.

Featured articles: Content Picker to highlight
specific articles or blog posts.

Call to action buttons: Text fields or content
pickers for buttons leading to key pages.

Custom layout for
the home page,
with designated
areas for the
hero image, intro
text, and featured
articles.

Chapter 13 487

Blog post: To create
individual blog entries.

Title: Text string for the blog post title.

Body: Rich Text Editor for the main content of
the post.

Author: Text string or content picker for the
author’s name or profile.

Publish date: Date Picker for when the post
should be published.

Tags: Multiple text strings or tags for categorizing
the post.

Featured image: Media Picker for the main
image associated with the post.

A layout that
presents the title,
author, publish
date, body text, and
featured image in a
blog format.

Product page: To
display information
about a product.

Product name: Text string for the name of the
product.

Description: Rich Text Editor for the product
description.

Price: Numeric field for the product’s price.

Image gallery: Media Picker for adding multiple
images of the product.

Specifications: Text string or rich text for listing
the technical specs.

Related products: Content Picker to link to other
products.

A detailed product
layout with
areas for images,
descriptions, and
pricing.

Contact page: A page
where users can find
contact information or
submit inquiries.

Address: Text string or rich text for the
company’s address.

Phone number: Text string for contact phone
numbers.

Email: Text string for contact email addresses.

Contact form: Rich text or a Form Picker for
embedding a contact form.

Map: Media Picker or a Google Maps integration
for displaying the location.

A straightforward
layout with sections
for contact details,
a form, and a map.

Web Content Management Using Umbraco488

Landing page: A
customizable page
often used for
marketing campaigns.

Title: Text string for the page title.

Main content: Rich Text Editor for detailed
content or promotional information.

Call to action: Text field or content picker for
buttons or links.

Banner image: Media Picker for a top-of-the-
page image.

SEO metadata: Text fields for meta descriptions
and keywords.

Flexible layout
options to
accommodate
various marketing
needs, often with
sections that can
be toggled on or off
depending on the
campaign.

Table 13.4: Examples of document types

Document types in Umbraco matter because they ensure that content is consistent and manageable,
regardless of who creates it. They enforce structure and provide a clear framework that content editors
can follow, minimizing errors and maintaining the design integrity of the site.

In practice, a well-organized set of document types can greatly improve the efficiency of managing
a website, especially as it grows in complexity. They also enable developers to create modular and
reusable templates, which can be applied across multiple pages or sections of a site.

When you create a new document type, you have four choices:

• Document type: The data definition for a content component that can be created by editors
in the content tree and be picked on other pages but has no direct URL.

• Document type with template: The data definition for a content page that can be created by
editors in the content tree and is directly accessible via a URL.

• Element type: This defines the schema for a repeating set of properties, for example, in a Block
List or Block Grid property editor.

• Folder: This is used to organize the document types, compositions, and element types created
in this document type tree.

Creating a document type
Let’s define a few document types for our website:

1. In the Umbraco backoffice, navigate to Settings | Document Types.
2. Click the +, or click … and then click + Create.
3. In the Create an item under Document Types pane, click Document Type with Template.

Chapter 13 489

4. Enter a name and description for your content type, as shown in the following bullets and
Figure 13.6:

• Name: Home Page
• Description: The main landing page of the website.

Figure 13.6: Entering a name and description for a content type

5. Click Save.
6. Click Structure and select Allow at root. This will allow editors to create content of this type

in the root of the content tree.

7. Click Settings and select Allow vary by culture. This will allow editors to create content in
different languages. For example, later in this chapter, you will create an English (US) home
page, an English (GB) home page, and a French (France) home page.

8. Click Design, click + Add tab, and enter the tab name SEO.
9. Click Add group, and enter the group name Head section.
10. In Head section, click Add property.
11. In the Add property pane, fill in the following values, as shown in the following bullets and

Figure 13.7:

• Enter a name: Title
• Enter a description: The page title. Should be between 5 and 50 characters.
• Type: Text Box | Textstring

You control which page types are allowed at various points within the tree hier-
archy by selecting this option and by selecting allowed child nodes. For example,
you might choose to only allow Blog Article document types to be created under
a Blog document type.

Web Content Management Using Umbraco490

• Field is mandatory: Selected
• Custom validation: No validation
• Allow variations: Selected (Vary by culture)

Figure 13.7: Setting properties for a content type property

12. Click Submit.
13. In Head section, click Add property.
14. In the Add property pane, fill in the values as shown in the following bullets:

• Enter a name: Keywords
• Select Property Editor: Text Area | Textarea
• Allow variations: Selected (Vary by culture)

15. Click Submit.
16. Click + Add tab, and enter the name Body.
17. Click Add property.
18. In the Add property pane, fill in the values as shown in the following bullets:

• Enter a name: Main Content
• Select Property Editor: Rich Text Editor | Richtexteditor
• Allow variations: Selected (Vary by culture)

Chapter 13 491

19. Click Submit.
20. Click Save.

There are many element types that you can choose to use in a content type. I encourage you to explore
all of them in your own time so that you know what capabilities are built into Umbraco CMS that you
as a developer do not need to implement. You can learn more about them at the following link:

https://docs.umbraco.com/umbraco-cms/fundamentals/data/data-types/default-data-types

Setting up languages
By default, your website will support English (US). Let’s enable some other languages:

1. In Settings, scroll down the left navigation until you find Languages.
2. On the Languages page, click Create.
3. In the Language box, enter english, select English (United Kingdom), and note:

• The ISO culture code is en-GB. This has two parts: en (language is English) and GB
(region is Great Britain). This is known as a specific culture.

• We could switch the default language for the website from English (US) to English (GB).
• We can force editors to provide property values in English (GB) by setting it to be a

mandatory language. We will leave that optional.

4. In the Fallback language section, click Choose, select English (US), and then click Submit.
5. Click Save.
6. Click the back arrow button to return to the list of languages.
7. Click Create and add the French language, and note:

• The ISO culture code is fr. French (without a region like France) is known as a neutral
culture.

Good Practice: You might have to help a CMS administrator or marketer define content
types. For example, you might have to work with a web designer who gives you a static web
page and CSS file and then you will be expected to create the content types. I recommend
that you encourage them to do it themselves. They don’t need to know that the markup
is actually a Razor View file. To them, it’s just HTML with a few @ symbols to insert fields.

https://docs.umbraco.com/umbraco-cms/fundamentals/data/data-types/default-data-types
￼

https://docs.umbraco.com/umbraco-cms/fundamentals/data/data-types/default-data-types
￼

Web Content Management Using Umbraco492

8. On the Languages page, note the table of three languages, as shown in Figure 13.8:

Figure 13.8: Managing languages in Umbraco

Defining a document template
When we created the content type, we chose Document Type with Template. We have added properties
to the document type. Now, we need to define the template so content can be rendered into HTML:

1. In the top navigation menu, click Settings.
2. In the left navigation, in the Templating section, expand the Templates folder, select Home

Page, and note that an Umbraco template is an MVC Razor view so it can use layouts, and that
it inherits from an Umbraco class named UmbracoViewPage and imports any published models
that you have defined, as shown in Figure 13.9:

Figure 13.9: Editing the Home Page template

Chapter 13 493

3. We will create a layout for all templates, so hover your mouse pointer over the Templates folder
and then click the + icon, or click the … menu and then click + Create.

4. Enter the name NorthwindCMS, and note the suggested internal name is northwindCms.
5. In the editing area, change the contents, as shown in the following markup:

@using Umbraco.Cms.Web.Common.PublishedModels;
@inherits Umbraco.Cms.Web.Common.Views.UmbracoViewPage
<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content=
 "width=device-width, initial-scale=1, shrink-to-fit=no" />
 <meta name="keywords" content="@ViewData["keywords"]" />
 <link href="https://cdn.jsdelivr.net/npm/bootstrap@5.3.3/dist/css/
bootstrap.min.css" rel="stylesheet" integrity="sha384-QWTKZyjpPEjISv5WaRU
9OFeRpok6YctnYmDr5pNlyT2bRjXh0JMhjY6hW+ALEwIH" crossorigin="anonymous">
 <title>@ViewData["title"]</title>
</head>
<body>
 @RenderBody()
</body>
</html>

6. Click Save.
7. In the left navigation, in the Templating section, expand the Templates folder, and select

Home Page.
8. Click Master template: No master, select NorthwindCMS, click the Choose button, and note

that this changes the layout for this MVC Razor view: Layout = "northwindCms.cshtml";.
9. Under the code block, add HTML to define the page, as shown in the following markup:

@using Umbraco.Cms.Web.Common.PublishedModels;
@inherits Umbraco.Cms.Web.Common.Views.UmbracoViewPage
@{
 Layout = "northwindCms.cshtml";
 ViewData["title"] = Model.Value("title");
 ViewData["keywords"] = Model.Value("keywords");
}
<div class="container">
 <div class="jumbotron">
 <h1 class="display-3">@Model.Value("title")</h1>
 <p class="lead">@Model.Value("mainContent")</p>

Web Content Management Using Umbraco494

 </div>
</div>

10. Optionally, when entering field values from the defined content type, instead of typing the ex-
pressions like Model.Value("title") manually, you can click the Insert button and complete
a form, as shown in Figure 13.10:

Figure 13.10: Insert feature building an expression to get a model property value

11. Click Submit.

Reviewing the website
I spent many years teaching developers how to implement a CMS, and you’d be surprised how many
developers forget to publish their content when trying out their website and then get confused when
they view the website as a visitor and do not see their content. You are about to see this common mis-
take so that you recognize it and can fix it when you make the same mistake in the future.

Chapter 13 495

So, let’s review what a visitor would see at this point so that you can experience that and then know
what we should have done:

1. In your browser, navigate to https://localhost:5131/, and note that the website does not yet
have any published content, so it shows a standard page with a button to log in to the Umbraco
backoffice, as shown in Figure 13.11:

Figure 13.11: The website home page without published content

2. Click the Open Umbraco button.
3. Enter your email and password and click Login.

Adding a home page as content
Now, we can add a home page for the default language, aka culture of English (United States):

1. In the top navigation menu, click Content.
2. In the left navigation menu, click + or click … and then click + Create.
3. In the Create item under Content pane, click Home Page.

Web Content Management Using Umbraco496

4. Enter the name Home, and then set the following property values, as shown in the following
list and Figure 13.12:

• Title: Hello World
• Keywords: home;welcome;northwind

Figure 13.12: Creating a Home page as content

5. Click the Body tab, and enter some rich text in the Main Content property.

6. Click Save and publish.
7. In your browser, navigate to https://localhost:5131/, and note that the website now shows

the content, as shown in Figure 13.13:

Umbraco uses TinyMCE for its Rich Text Editor. You can learn more about its
capabilities at the following link: https://docs.umbraco.com/umbraco-cms/
tutorials/editors-manual/working-with-content.

https://localhost:5131/
https://docs.umbraco.com/umbraco-cms/tutorials/editors-manual/working-with-content
https://docs.umbraco.com/umbraco-cms/tutorials/editors-manual/working-with-content

Chapter 13 497

Figure 13.13: The home page content is published and visible to public visitors

8. You can also navigate to the Info tab for a piece of content and click one of its links in the Links
section, as shown in Figure 13.14:

Figure 13.14: The Info tab for the Home page content with the Links section

Creating and publishing a French variant home page
Now, let’s see how to create a French variant of the home page:

1. In the left navigation, in the Content section, select Home Page.
2. Click Actions, and then in the menu, select Culture and Hostnames. (Alternatively, hover

your mouse pointer over Home Page, click the … menu, and select Culture and Hostnames.)
3. In the Domains section, click Add new domain.
4. Enter /fr and select French.
5. In the Domains section, click Add new domain.
6. Enter /en-gb and select English (United Kingdom).

Web Content Management Using Umbraco498

7. Confirm that you have defined two explicit domains using relative paths, as shown in Figure
13.15, and then click Save:

Figure 13.15: Two explicit domains using relative paths

8. In the Content section, click Home.
9. In the top bar to the right side of the document name, Home, click English (United States),

and then select + French (fr) NotCreated, as shown in Figure 13.16:

Figure 13.16: Creating a language variant

10. Set the document name to Maison, set Title to Bonjour Monde, and set Main Content to C'est
un texte riche. with the word “riche” in bold and italics.

11. Click Save and publish.

Chapter 13 499

12. Click Info and note that you now have additional links, as shown in Figure 13.17:

Figure 13.17: Links for multiple languages

13. Click the /fr/ link and note that a new tab opens showing the French language variant of the
home page, as shown in Figure 13.18:

Figure 13.18: French variant of the home page

14. Optionally, create a British variant of the home page that says something like, “Oi, Dizzy whirl,
how’s your pearl?”

Working with media
Before we look at how to upload media to Umbraco, let’s review some good practices for working
with media.

Good media practices
Effective media management in Umbraco CMS keeps content organized, optimizes performance, and
provides a consistent user experience. Here’s some solid advice for editors and suggestions for custom
features that a developer could implement to get the most out of Umbraco’s media library.

Organizing media using folders
Organize media into folders by content type, year, project, or department. For instance, use separate
folders for Products, Team Photos, Blogs, and so on. This structure will save editors time in locating
files later.

Web Content Management Using Umbraco500

But while folders are helpful, too many nested folders can make navigation cumbersome. Aim for
a balance by using 1-2 levels of categorization. Developers could implement custom validation to
enforce this.

Using tags to enhance searchability
Umbraco allows tagging media, which can make files easier to locate later. Tags like Product, Team,
or Event help in filtering files when browsing the media library.

Administrators should establish a set of tags relevant to your content and then editors should use
them consistently to improve the searchability of assets across the team. Developers could implement
custom validation to enforce rules to do this.

Optimizing image sizes before uploading
Avoid uploading full-resolution images directly from a camera or stock site. Instead, resize them to
the actual display size you need, which reduces load times and saves storage.

Use tools like TinyPNG (https://tinypng.com/) or ImageOptim (https://imageoptim.com/) to com-
press images before uploading. Optimized images reduce bandwidth usage and load faster on the
user end. As a developer, you may be asked to implement automatic image optimization, although
it’s usually better for the editors to have manual control.

Using meaningful file names and alt text
Editors should name media files descriptively before uploading, for example, team-photo-john-doe.
jpg instead of IMG_1234.jpg. This makes it easier to find files and is better for SEO. As a developer,
you could write custom validation rules to enforce this.

Editors should always include alternative text for images to improve accessibility. In Umbraco, this
can be done in the media properties. Alt text also helps search engines understand image content,
boosting SEO. Again, a developer could enforce this.

Leveraging image cropping and variants
Umbraco allows you to set image crops for different aspect ratios, which is helpful for using the same
image across various screen sizes and layouts. You can define crops like square, landscape, and portrait,
and use them in different templates without needing separate files.

The cropper tool in Umbraco allows editors to preview how an image will appear in each variant. They
should check each preview to ensure critical parts of the image remain in focus.

Avoiding duplicate media uploads
Duplicate images and files can clutter the media library and consume unnecessary storage. Always
search the media library before uploading a new file to prevent duplicates. A developer could write
an extension that integrates modern LLM-based image search to automate this process.

When images are used across multiple pages or documents, editors should link to the existing media
rather than re-uploading it. This also helps maintain consistency across the site.

https://tinypng.com/
https://imageoptim.com/

Chapter 13 501

Removing unused media regularly
Editors should periodically review and delete unused or outdated files to keep the media library clean.
Umbraco’s media cleanup tools can help identify and remove orphaned media files.

Before deleting any media file, the editor should confirm it’s not in use on any live page. Umbraco’s
media usage report can be useful here, as it identifies where each file is used across the site.

Using Umbraco’s built-in permissions for media access
If certain teams or roles need access to specific folders, administrators should use Umbraco’s per-
missions to limit access. This prevents accidental changes and reduces clutter for editors who don’t
need access to all media files.

Training editors on best practices and providing resources
Encourage all editors to follow these media guidelines and ensure they know how to use Umbraco’s
tools effectively. Regular training sessions can help reinforce good habits and introduce new features.

Uploading images to Umbraco CMS
Now, let’s upload some images for use with our content:

1. In the top navigation menu, click Media.
2. Click Create, and then Image, enter the name Categories, click the Click to upload icon, and

browse to select categories.jpeg.

3. Repeat for the following names and files:

• Beverages: category1.jpeg
• Condiments: category2.jpeg
• Confections: category3.jpeg
• Dairy Products: category4.jpeg
• Grains/Cereals: category5.jpeg
• Meat/Poultry: category6.jpeg
• Produce: category7.jpeg
• Seafood: category8.jpeg

4. Navigate to Content and select Home.

All the category images are downloadable from the following link: https://github.
com/markjprice/web-dev-net9/tree/main/code/images/Categories.

https://github.com/markjprice/web-dev-net9/tree/main/code/images/Categories
https://github.com/markjprice/web-dev-net9/tree/main/code/images/Categories

Web Content Management Using Umbraco502

5. Edit the Body | Main Content, and add the Categories image into the Rich Text Editor, as shown
in Figure 13.19:

Figure 13.19: Adding an image to the Rich Text Editor

6. View the home page on the website.
7. Right-click the image, select Open image in new tab, and note the path, as shown in Figure 13.20:

Figure 13.20: The path to an uploaded media file

8. Close the browser and shut down the web server.

Good Practice: Consider applying security access control or permissions to your uploaded
media files to prevent misuse.

Chapter 13 503

Practicing and exploring
Test your knowledge and understanding by answering some questions, getting some hands-on practice,
and exploring this chapter’s topics with deeper research.

Exercise 13.1 – Online material
Umbraco CMS documentation: https://docs.umbraco.com/umbraco-cms

Editor’s Manual: https://docs.umbraco.com/umbraco-cms/tutorials/editors-manual

Learn about scheduled publishing: https://docs.umbraco.com/umbraco-cms/fundamentals/data/
scheduled-publishing

Learn about dictionary items for translating text into different languages: https://docs.umbraco.
com/umbraco-cms/fundamentals/data/dictionary-items

Learn about relations for structuring the content tree: https://docs.umbraco.com/umbraco-cms/
fundamentals/data/relations

Exercise 13.2 – Practice exercises
The following practice exercises help you to explore the topics in this chapter more deeply.

Define a document type for a blog entry with the following properties:

• Title: Text string for the blog post title.
• Body Text: Rich Text Editor for the main content of the post.
• Author: Text string or Content Picker for the author’s name or profile.
• Publish Date: Date Picker for when the post should be published.
• Tags: Multiple text strings or tags for categorizing the post.
• Featured Image: Media Picker for the main image associated with the post.

Exercise 13.3 – Test your knowledge
Answer the following questions:

1. What are some basic features that every CMS would have?
2. For how long are Umbraco LTS releases supported?
3. How do you make Umbraco CMS available as a .NET project template?
4. What does the BootUmbracoAsync method do?
5. What is the relative path to the Umbraco backoffice?
6. What sections of the Umbraco backoffice can a member of the Editors user group access?

More Information: Image optimization like resizing and compressing is important for
faster website load times. You can learn more about these techniques in Ben Frain’s Re-
sponsive Web Design with HTML5 and CSS.

https://docs.umbraco.com/umbraco-cms
https://docs.umbraco.com/umbraco-cms/tutorials/editors-manual
https://docs.umbraco.com/umbraco-cms/fundamentals/data/scheduled-publishing
https://docs.umbraco.com/umbraco-cms/fundamentals/data/scheduled-publishing
https://docs.umbraco.com/umbraco-cms/fundamentals/data/dictionary-items
https://docs.umbraco.com/umbraco-cms/fundamentals/data/dictionary-items
https://docs.umbraco.com/umbraco-cms/fundamentals/data/relations
https://docs.umbraco.com/umbraco-cms/fundamentals/data/relations

Web Content Management Using Umbraco504

7. In Umbraco, what is a document type, and what are its three main components or aspects?
8. In the settings for a content type, why might you select the Allow vary by culture check box?
9. What syntax is used to define an Umbraco content template?
10. What are two ways of organizing media?

Exercise 13.4 – Explore topics
Follow this link to learn more about the topics covered in this chapter: https://github.com/markjprice/
web-dev-net9/blob/main/docs/book-links.md#chapter-13--- web-content-management-using-
umbraco.

Summary
In this chapter, you learned how to:

• Create an Umbraco project
• Define a document type with properties
• Define a document template that renders properties in HTML
• Set up multiple languages and create language variants of content

In the next chapter, you will learn how to customize Umbraco websites.

https://github.com/markjprice/web-dev-net9/blob/main/docs/book-links.md#chapter-13---
https://github.com/markjprice/web-dev-net9/blob/main/docs/book-links.md#chapter-13---
web-content-management-using-umbraco
web-content-management-using-umbraco

14
Customizing and Extending
Umbraco

This chapter is about customizing and extending Umbraco. There are many examples of doing this
because almost every project needs some kind of customization beyond what’s built in. But it’s therefore
also tricky to provide examples that do not get too complex and obscure for an intermediate-level book.

This chapter will cover the following topics:

• Techniques for customizing and extending Umbraco
• Customizing Umbraco behavior using settings
• Working with MVC views and Razor syntax
• The UmbracoHelper class

Techniques for customizing and extending Umbraco
Let’s review, in theory, a few real-life advanced example techniques that illustrate the flexibility and
scalability that Umbraco offers.

Building custom property editors for enhanced content creation
Imagine a media company that needs to manage a vast library of multimedia assets, like videos,
images, and audio, within Umbraco. Standard property editors are too limited for this purpose, as
the media company needs advanced metadata tagging, file categorization, and asset previews right
within the editor.

I am keen to get feedback from readers about the Umbraco CMS content in this book.
Please either raise an issue in the book’s GitHub repository or leave a message in the
Discord channel. I want to hear if you use Umbraco or other third-party platforms, and if
I should go even deeper into Umbraco or cover something else.

Customizing and Extending Umbraco506

A potential solution would be to build custom property editors using Blazor (or another client frame-
work like React) and Umbraco’s APIs, allowing content editors to add metadata tags, preview files, and
categorize assets easily. These custom editors could dramatically improve the efficiency of the content
team at a low cost by centralizing asset management and minimizing the need for third-party tools.

The company streamlines its workflow, improves content discoverability, and maintains consistency
across its platform, demonstrating the power of customization in simplifying complex tasks.

Integrating third-party APIs to enhance functionality
Imagine an e-commerce website using Umbraco where the company wants to integrate real-time
currency conversion for international customers, which isn’t available in the standard Umbraco setup.

The solution could be to develop a custom plugin that integrates with a third-party currency con-
version API, so the team can enable real-time currency updates directly within Umbraco’s backend.
The developers would build the plugin using .NET, leveraging Umbraco’s extension points to manage
configurations and update rates.

This integration would provide a seamless user experience for international customers and reduce
manual data entry for editors. This example shows how external services can be woven into Umbraco
to expand its capabilities.

Custom workflow automation for content approval
A large organization with a layered content approval process might need a customized workflow where
different roles would approve specific content types before they go live.

Using Umbraco’s workflow customization capabilities, a developer could build a custom workflow to
handle multiple stages of content approval. This might involve creating a content approval plugin that
incorporates notifications, conditional approvals, and escalation rules. It could use Umbraco’s Events
API and additional .NET code to automate role-specific approvals and notify the relevant team members.

The custom workflow would reduce approval time, minimize errors, and ensure that content is reviewed
by the correct teams, and is a great example of Umbraco’s adaptability for large-scale enterprise needs.

Multilingual capabilities with custom language switching
A tourism board needs a multi-language site where visitors can easily switch between languages without
losing their place on a page, which is not fully supported by default in Umbraco.

The development team could create a language-switching module that saves a user’s location on the
page and then dynamically loads the equivalent content in the selected language. They extend Um-
braco’s language management capabilities and incorporate session handling to maintain the current
page state as users switch languages.

This custom approach provides a smooth multilingual experience, deemed crucial for the tourism
board’s diverse audience, keeping visitors on the site and booking holidays.

Chapter 14 507

Each of these examples highlights the ways Umbraco can be customized and extended to solve unique
business problems. But all the preceding examples are advanced, requiring quite deep knowledge of
Umbraco and how it works, and are therefore beyond the scope of this book. So now, let’s see some
built-in settings that can tweak the behavior of Umbraco with minimal effort.

Customizing Umbraco behavior using settings
Umbraco has hundreds of settings that can be configured to customize its behavior. Settings are
grouped into categories, including the following main ones:

• Content settings: For example, allowed upload file types, allowed image file types or autofill
image properties, visuals like the background image shown on the login page, and so on.

• Security settings: For example, whether to keep users logged in, password rules, and so on.
• Imaging settings: Configure the browser cache and resize settings for processed images on

your project.
• Global settings: Configure default UI language, reserved links, and so on.

Content settings
Content settings includes settings such as allowed upload file types, image settings, and more. All the
values in the content settings have default values, so all configuration is optional.

An appsettings.json file that shows the default values of content settings in Umbraco is shown in
the following file:

"Umbraco": {
 "CMS": {
 "Content": {
 "ContentVersionCleanupPolicy": {
 "EnableCleanup": false,
 "KeepAllVersionsNewerThanDays": 7,
 "KeepLatestVersionPerDayForDays": 90
 },
 "AllowEditInvariantFromNonDefault": true,
 "AllowedUploadFiles": [],
 "AllowedMediaHosts": [],
 "AllowedUploadedFileExtensions": [],
 "DisableDeleteWhenReferenced": false,
 "DisableUnpublishWhenReferenced": false,
 "DisallowedUploadFiles": ["ashx", "aspx", "ascx", "config", "cshtml",
"vbhtml", "asmx", "air", "axd", "xamlx"],
 "DisallowedUploadedFileExtensions": ["ashx", "aspx", "ascx", "config",
"cshtml", "vbhtml", "asmx", "air", "axd", "xamlx"],
 "Error404Collection": [],
 "HideBackOfficeLogo": false,

Customizing and Extending Umbraco508

 "Imaging": {
 "ImageFileTypes": ["jpeg", "jpg", "gif", "bmp", "png", "tiff", "tif"],
 "AutoFillImageProperties": [
 {
 "Alias": "umbracoFile",
 "ExtensionFieldAlias": "umbracoExtension",
 "HeightFieldAlias": "umbracoHeight",
 "LengthFieldAlias": "umbracoBytes",
 "WidthFieldAlias": "umbracoWidth"
 }
]
 },
 "LoginBackgroundImage": "login/login.jpg",
 "LoginLogoImage": "login/logo_light.svg",
 "LoginLogoImageAlternative": "login/logo_dark.svg",
 "Notifications": {
 "DisableHtmlEmail": false,
 "Email": null
 },
 "PreviewBadge": "<![CDATA[My HTML here]]>",
 "ResolveUrlsFromTextString": false,
 "ShowDeprecatedPropertyEditors": false,
 "ShowDomainWarnings": true
 }
 }
}

Some of the content settings are shown in Table 14.1:

Setting Description

Content version
cleanup policy

The global settings for the scheduled job which cleans historic content
versions. These settings can be overridden per document type. Current draft
and published versions will never be removed, nor will individual content
versions that have been marked as preventCleanup.

If you don’t wish to retain any content versions except for the current draft and
those currently published, you can set both of the keep settings values to 0.
After doing this, the next time the scheduled job runs (hourly), all non-current
versions (except those marked preventCleanup) will be removed.

Chapter 14 509

Allow edit invariant
from non-default

Invariant properties are properties on a multilingual site that are not varied by
culture. This means that they share the same value across all languages added
to the website.

When the setting is set to false, the invariant properties that are shared
between all languages can only be edited from the default language. This
means you need access to the default language, in order to edit the property.

When set to true (default), the invariant properties will need to be unlocked
before they can be edited. The lock exists in order to make it clear that this
change will affect more languages.

Allowed upload files If provided, only files with these extensions can be uploaded via the backoffice.

Allowed media hosts

By default, only relative URLs are allowed when getting URLs for resized
images or thumbnails using ImagesController. If you need absolute URLs,
you will have to add the allowed hosts to this list. For example, the value could
be ["northwind.com", "www.northwind.com", "images.northwind.
com"].

Disable delete when
referenced

This allows you to specify whether a user can delete content or media items
that depend on other items. This also includes any descendants that have
dependencies. Setting this to true will remove or disable the Delete button.

Disable unpublish
when referenced

This allows you to specify whether or not users can unpublish content items
that depend on other items or have descendants that have dependencies.
Setting this to true will disable the Unpublish button.

Disallowed upload
files

This setting consists of a list of file extensions that editors shouldn’t be allowed
to upload via the backoffice. This is important to prevent users from uploading
malicious files. By default, it lists extensions for dynamically executable
ASP.NET Core files, like Web Forms and Razor files.

Error 404 collection

In case of a 404 error (page not found), Umbraco can return a default page
instead. This is set here. Notice you can also set a different error page, based
on the current culture, so a 404 page can be returned in the correct language.

"Error404Collection": [{ "ContentId": 1, "Culture": "en-US" },

 { "ContentId": 34, "Culture": "fr-CA" }]

Login background
image and logo
image

You can specify your own background image and the small logo in the top-left
corner of the login screen, which is a common requirement for organizations
with strong brands. These paths are relative to the wwwroot/umbraco path.

Show domain
warnings

If you do not configure domains for each language on a multilingual site, then
every time you publish your content, you get a warning.

Table 14.1: Content settings

Customizing and Extending Umbraco510

Security settings
This allows you to configure all matters related to security, for example, whether to keep users logged
in, password rules, and more.

An appsettings.json file that shows the default values of security settings in Umbraco is shown in
the following file:

"Umbraco": {
 "CMS": {
 "Security": {
 "KeepUserLoggedIn": false,
 "HideDisabledUsersInBackOffice": false,
 "AllowPasswordReset": true,
 "AuthCookieName": "UMB_UCONTEXT",
 "AuthCookieDomain": "",
 "UsernameIsEmail": true,
 "UserPassword": {
 "RequiredLength": 10,
 "RequireNonLetterOrDigit": false,
 "RequireDigit": false,
 "RequireLowercase": false,
 "RequireUppercase": false,
 "HashAlgorithmType": "PBKDF2.ASPNETCORE.V3",
 "MaxFailedAccessAttemptsBeforeLockout": 5
 },
 "MemberPassword": {
 "RequiredLength": 10,
 "RequireNonLetterOrDigit": false,
 "RequireDigit": false,
 "RequireLowercase": false,
 "RequireUppercase": false,
 "HashAlgorithmType": "PBKDF2.ASPNETCORE.V3",
 "MaxFailedAccessAttemptsBeforeLockout": 5
 },
 "UserDefaultLockoutTimeInMinutes": 43200,
 "MemberDefaultLockoutTimeInMinutes": 43200,
 "AllowConcurrentLogins": false
 }
 }
}

Chapter 14 511

Some of the security settings are shown in Table 14.2:

Setting Description

Keep user logged in
When set to false, a user will be logged out after a specific amount of time has
passed with no activity. You can specify this time span in the global settings
with the TimeOut key.

Hide disabled users
in the backoffice

When this is set to true, it’s not possible to see disabled users. This means it’s
not possible to re-enable their access to the backoffice again. It also means you
can’t create an identical username if the user was disabled by mistake.

Allow password reset
This feature allows users to reset their passwords if they have forgotten them.
By default, this is enabled. It can be disabled at both the UI and API level by
setting this value to false.

Username is email

This setting specifies whether the username and email address are separate
fields in the backoffice editor. When set to false, you can specify an email
address and username, but only the username can be used to log on. When set
to true (the default value), the username is hidden and always the same as the
email address.

User and member
password settings

This lets you define the password rules for users and members; for example,
the minimum length a user password is allowed to be, the required special
characters, and the maximum amount of failed password attempts allowed
before the user is locked out of the site.

User and member
default lockout time

Use this setting to configure how long a user is locked out of the Umbraco
backoffice when a lockout occurs. The setting accepts an integer, which defines
the lockout in minutes. The default lockout time for users is 30 days (43,200
minutes).

Allow concurrent
logins

When set to false, any user account is prevented from having multiple
simultaneous sessions. In this mode, only one session per user can be active
at any given time. This enhances security and prevents concurrent logins with
the same user credentials.

Table 14.2: Security settings

Imaging settings
The options in the imaging section allow you to configure the cache and resize settings for processed
images on your project (using ImageSharp.Web as the default implementation). If you need to con-
figure allowed image file types or autofill image properties, you want to use content settings instead.

An appsettings.json file that shows the default values of imaging settings in Umbraco is shown in
the following file:

"Umbraco": {
 "CMS": {
 "Imaging": {

Customizing and Extending Umbraco512

 "Cache": {
 "BrowserMaxAge": "7.00:00:00",
 "CacheMaxAge": "365.00:00:00",
 "CacheFolderDepth": 8,
 "CacheHashLength": 12,
 "CacheFolder": "~/umbraco/Data/TEMP/MediaCache"
 },
 "Resize": {
 "MaxWidth": 5000,
 "MaxHeight": 5000
 }
 }
 }
}

Some of the imaging settings are shown in Table 14.3:

Setting Description

Cache

This contains configuration for browser and server caching. When changing
these cache headers, it is recommended to clear your media cache. This is due
to the data being stored in the cache and not updated when the configuration is
changed.

Browser max age
This specifies how long a requested processed image may be stored in the
browser cache by using this value in the Cache-Control response header. The
default is seven days (formatted as a timespan).

Cache max age
This specifies how long a processed image may be used from the server cache
before it needs to be re-processed again. The default is one year (365 days,
formatted as a timespan).

Cache folder depth
This gets or sets the depth of the nested cache folder structure to store the
images. Defaults to eight.

Cache hash length
This gets or sets the length of the filename to use (minus the extension) when
storing images in the image cache. Defaults to 12 characters.

Cache folder
This allows you to specify the location of the cached images folder. By default,
the cached images are stored in ~/umbraco/Data/TEMP/MediaCache. The tilde
(~) resolves to the content root of your project/application.

Resize | Max width/
max height

This specifies the maximum width and height an image can be resized to. If
the requested width and height are both above the configured maximums, no
resizing will be performed. This adds basic security to prevent resizing to big
dimensions and using a lot of server CPU/memory to do so.

Table 14.3: Imaging settings

Chapter 14 513

Global settings
The options in the security section allow you to configure the default UI language, reserved links, and
much more. All of these, except for SMTP settings, contain default values, meaning that all configu-
ration is optional unless you wish to send emails from your site.

An appsettings.json file that shows the default values of global settings in Umbraco is shown in the
following file:

"Umbraco": {
 "CMS": {
 "Global": {
 "ReservedUrls": "~/.well-known,",
 "ReservedPaths": "~/app_plugins/,~/install/,~/mini-profiler-resources/,~/
umbraco/,",
 "TimeOut": "00:20:00",
 "DefaultUILanguage": "en-US",
 "HideTopLevelNodeFromPath": true,
 "UseHttps": false,
 "VersionCheckPeriod": 7,
 "IconsPath": "~/umbraco/assets/icons",
 "UmbracoCssPath": "~/css",
 "UmbracoScriptsPath": "~/scripts",
 "UmbracoMediaPath": "~/media",
 "UmbracoMediaPhysicalRootPath": "X:/Shared/Media",
 "InstallMissingDatabase": false,
 "DisableElectionForSingleServer": false,
 "DatabaseFactoryServerVersion": "SqlServer.V2019",
 "MainDomLock": "FileSystemMainDomLock",
 "MainDomKeyDiscriminator": "",
 "Id": "184a8175-bc0b-43dd-8267-d99871eaec3d",
 "NoNodesViewPath": "~/umbraco/UmbracoWebsite/NoNodes.cshtml",
 "Smtp": {
 "From": "person@umbraco.dk",
 "Host": "localhost",
 "Port": 25,
 "SecureSocketOptions": "Auto",
 "DeliveryMethod": "Network",
 "PickupDirectoryLocation": "",
 "Username": "person@umbraco.dk",
 "Password": "SuperSecretPassword"
 },
 "DatabaseServerRegistrar": {

Customizing and Extending Umbraco514

 "WaitTimeBetweenCalls": "00:01:00",
 "StaleServerTimeout": "00:02:00"
 },
 "DatabaseServerMessenger": {
 "MaxProcessingInstructionCount": 1000,
 "TimeToRetainInstructions": "2.00:00:00",
 "TimeBetweenSyncOperations": "00:00:05",
 "TimeBetweenPruneOperations": "00:01:00"
 },
 "DistributedLockingMechanism": "",
 "DistributedLockingReadLockDefaultTimeout": "00:01:00",
 "DistributedLockingWriteLockDefaultTimeout": "00:00:05",
 }
 }
}

Some of the global settings are shown in Table 14.4:

Setting Description

Reserved URLs
A comma-separated list of files to be left alone by Umbraco; these files will be
served and the Umbraco request pipeline will not be triggered.

Reserved paths
A comma-separated list of all the folders in your directory to be left alone by
Umbraco. If you have folders with custom files, add them to this setting to
make sure Umbraco leaves them alone.

Timeout

Configure the session timeout to determine how much time without a
request being made can pass before the user is required to log in again. The
session timeout format needs to be set as HH:MM:SS. Any activity within the
backoffice will reset the timer.

Version check period
This controls how frequently the system checks for updates or new versions of
Umbraco CMS. By default, Umbraco will check for a new version every 7 days.

Umbraco icon
resources, CSS,
scripts, and media
paths

By adding this, you can specify a new/different folder for storing your CSS,
script, and media files, and still be able to edit them within Umbraco. By
default, static content will only be served from the wwwroot folder.

No nodes view path This specifies what view to render when there is no content on the site.

SMTP settings

This enables you to be able to send out emails from your Umbraco installation.
This could be notification emails if you are using content workflow, or, if you
are using Umbraco Forms, you also need to specify SMTP settings to be able
to use the email workflows. The forgot password function from the backoffice
also needs an SMTP server to send the email with the reset link.

Chapter 14 515

Database server
registrar settings,
messenger, and
distributed locking
mechanism

It’s unlikely that you will have to change these settings unless you’re using a
load-balanced setup.

Table 14.4: Global settings

Content version cleanup
Whenever you save and publish a content item in Umbraco, a new version is generated. This allows
you to roll back to any previous version when needed. Each saved version creates an entry in the
database, not just for the version itself but also for each property of the content item in that version.
In a multi-lingual site, additional rows are added for each cultural variation.

Over time, this accumulation of data can grow significantly, consuming your SQL Server’s resources
and potentially impacting the performance of the Umbraco backoffice, although the performance of
the website from a visitor’s perspective should not be affected.

The default cleanup policy follows these rules:

• It retains all versions created within the last seven days, preserving recent version history. This
is controlled by the KeepAllVersionsNewerThanDays setting.

• After seven days, it prunes older versions, keeping only the last version saved each day while
deleting earlier versions from that day.

• Versions older than 90 days are deleted. This is governed by the KeepLatestVersionPerDayForDays
setting.

• Published versions are never deleted.
• Versions specifically marked with preventCleanup in the backoffice version history are also

never deleted.

For an individual content type, you can override the global settings.

Cleanup is performed by a scheduled job. Scheduled jobs are typically triggered at defined intervals,
such as every hour, daily, or weekly. The timing can be managed directly in Umbraco for some tasks
or configured more precisely using custom code.

Working with views and Razor syntax
All Umbraco views inherit from UmbracoViewPage<ContentModels.NameOfYourDocType> in the
Umbraco.Cms.Web.Common.Views namespace. If you use the following statement:

@using ContentModels = Umbraco.Cms.Web.Common.PublishedModels

More information: You can learn more about scheduled jobs at the following link: https://
docs.umbraco.com/umbraco-cms/reference/scheduling.

https://docs.umbraco.com/umbraco-cms/reference/scheduling
https://docs.umbraco.com/umbraco-cms/reference/scheduling

Customizing and Extending Umbraco516

This gives you access to various properties that can be used in Razor. You can access the properties
of the document type in several ways:

• @Model (of type Umbraco.Web.Mvc.ContentModel): This is the model for the view, which con-
tains the standard list of IPublishedContent properties and gives access to the strongly typed
current page (of the type you defined in the angled brackets).

• @Umbraco (of type UmbracoHelper): Provides many useful methods, such as rendering fields
or retrieving content by ID, along with many other helpful features.

• @Html (of type HtmlHelper): This is the familiar HtmlHelper in ASP.NET Core, enhanced with
additional extension methods like @Html.BeginUmbracoForm.

• @UmbracoContext (of type Umbraco.Cms.Web.Common.UmbracoContext): This provides context
for Umbraco within the current session.

What is IPublishedContent?
IPublishedContent is a core interface in Umbraco CMS that represents a piece of content or media
in a structured, strongly typed way. It’s one of the main ways that developers interact with content
within Umbraco, allowing you to access fields, properties, and metadata of pages, media items, or
members directly in their Razor views or custom code.

Core functionality of IPublishedContent
IPublishedContent represents a published version of content, meaning that it only deals with content
that has been published but not draft or unpublished versions of content. IPublishedContent is used
across the board in Umbraco for content types like pages, posts, media items (images, videos), and
members (registered visitors on a website).

IPublishedContent provides several properties and methods that allow you to access various parts
of the content item. Here are some of the most commonly used ones:

• Name: The name or title of the content item. This property is useful for displaying page titles,
media names, and so on. If you call the Name() method, then you can pass a culture to get the
name in alternative languages.

• Url: The link to the content item. This is useful for linking to pages or media directly. You can
pass a culture to get the link in alternative languages.

• Id: An int unique identifier for the content item within Umbraco CMS.
• ContentType: This represents the type of content, like Article, BlogPost, and so on. This is

useful so that you can know what fields or properties might be available.
• CreateDate, UpdateDate: This returns the DateTime that the content was created/last updated.

More Information: Learn more about the UmbracoContext helper at the following link:
https://docs.umbraco.com/umbraco-cms/reference/querying/umbraco-context.

https://docs.umbraco.com/umbraco-cms/reference/querying/umbraco-context

Chapter 14 517

• Children: A collection of child items, which allows you to retrieve and iterate over items that
are nested under the current item in the content tree.

• Parent: The parent node, which lets you traverse back up the content hierarchy.
• Level: The tree level (depth) of the content item.
• Properties: A collection of all properties associated with the content, including custom fields

defined in the Umbraco backoffice, like bodyText, heroImage, and so on.
• Value<T>(propertyAlias): This method retrieves the value of a specific property on the con-

tent item in a strongly typed way. This is particularly helpful for accessing custom properties.

Let’s see some example usage that gets the name, link, and a custom field containing the rich text
body of a content page, as shown in the following code:

string title = Model.Name; // Or Model.Name("fr-FR").
string url = Model.Url();
string bodyText = Model.Value<string>("bodyText");

IPublishedContent provides a strongly typed, consistent interface for content retrieval, minimizing
the risk of runtime errors. Since it has properties for accessing parent and child items, it’s straight-
forward to navigate through nested structures like page hierarchies.

Umbraco’s caching system uses IPublishedContent to efficiently load published content, improving
page load speeds and performance by reducing the need for database lookups.

Using IPublishedContent with ModelsBuilder
When using ModelsBuilder (Umbraco’s code-generation tool), IPublishedContent is automatically
extended with strongly typed models, meaning you can access properties directly without needing
Value<T>(). ModelsBuilder generates classes for each content type, making code easier to read and
maintain:

@Model.Title // Using ModelsBuilder-generated property directly.

Rendering fields in a strongly typed view
Rendering the content of a field using its alias is one of the most common tasks. For example, to render
the content of a bodyContent field, write the following code:

@Model.Value("bodyContent")

More Information: You can learn more about IPublishedContent at the following link:
https://docs.umbraco.com/umbraco-cms/reference/querying/ipublishedcontent.

https://docs.umbraco.com/umbraco-cms/reference/querying/ipublishedcontent

Customizing and Extending Umbraco518

If you’re working within a partial view, you’ll need to inherit the context to ensure the correct type is
used for retrieving values. You can do this at the top of the partial view, as shown in the following code:

@inherits UmbracoViewPage<HomePage>
@Model.Value("title")

When looping over a collection, you must pass the context to the @Model.Value() method to access
the appropriate values; for example, if you’re iterating through a collection of items, as shown in the
following code:

@{
 IEnumerable<IPublishedContent> collection = Model.ItemList;
}

 @foreach(IPublishedContent item in collection)
 {
 <p>@item.Name</p>
 }

If you need to work with a specific type and conversion is possible, you can cast a property to a custom
type, as shown in the following code:

@foreach (TeamMember person in Model.TeamMembers)
{

 <p>@person.Name</p>

}

In this case, we are looping through a collection of TeamMember objects, allowing access to strongly
typed properties on each item.

Rendering complex field types
When rendering fields of a content type model in a Razor view with Umbraco, there are specific
considerations for certain field types, like Rich Text and Multinode Treepicker (MNTP). These fields
require particular handling to display properly, especially given their complex data structures.

Rendering Rich Text Editor (RTE) fields
RTE fields store HTML content, so you don’t need to encode the content when rendering it in a Razor
view. If you use @Html.Raw, the HTML will render as intended in the view. Encoding it with @Model.
MyRichTextField (without Html.Raw) will escape the HTML tags and show the raw HTML code instead,
which is usually undesirable for rich text fields:

@Html.Raw(Model.Content.GetPropertyValue<string>("myRichTextField"))

Chapter 14 519

If you want to display a preview or excerpt of the Rich Text content without HTML tags, consider using
UmbracoHelper.StripHtml. This method removes HTML tags and allows you to limit the text length.

Rendering Multi-Node Tree Picker (MNTP) fields
MNTP fields allow selecting multiple content nodes (pages), returning an
IEnumerable<IPublishedContent> if you have set it up to allow multiple selections, or a single
IPublishedContent if only one item is allowed. You must check which type is returned in your view
to avoid runtime errors.

If the MNTP is configured to allow multiple selections, loop through the IEnumerable<IPublishedContent>
collection to access each selected item. Use properties on each item, such as Url, Name, or custom
fields, to render content from the selected nodes, as shown in the following code:

@foreach (IPublishedContent content in Model.Content
 .GetPropertyValue<IEnumerable<IPublishedContent>>("myMultiNodePickerField"))
{
 @content.Name
}

If the MNTP only allows a single node selection, you can render it directly without looping, as shown
in the following code:

IPublishedContent content = Model.Content
 .GetPropertyValue<IPublishedContent>("mySingleNodePickerField");
if (content is not null)
{
 @content.Name
}

Handling Media Picker fields
When using Media Picker, Umbraco will return IPublishedContent objects for selected media items.
You can access members like Url, Name, and AltText (if available) on these items, as shown in the
following code:

IPublishedContent mediaItem = Model.Content
 .GetPropertyValue<IPublishedContent>("myMediaPickerField");
if (mediaItem is not null)
{

}

Handling Nested Content and Block List editors
If your content model includes Nested Content or Block List fields, Umbraco returns an
IEnumerable<IPublishedElement>, allowing you to iterate over nested items.

Customizing and Extending Umbraco520

Each IPublishedElement represents a Nested Content item, and you can access its properties using
Value<T>() or similar methods. This is especially useful for creating reusable components, as each
Nested Content item can be rendered using partial views, as shown in the following code:

@foreach (IPublishedElement block in Model.Content
 .GetPropertyValue<IEnumerable<IPublishedElement>>("myNestedContentField"))
{
 <div>@block.Value<string>("nestedContentProperty")</div>
}

Common considerations
Always check for null when working with optional fields to avoid runtime errors, particularly when
using Media Picker, MNTPs, or Nested Content.

Using lazy loading for large MNTP collections can help improve performance. Consider caching
complex MNTP lookups or heavy RTE content if they don’t change often.

Accessing member data
Members are registered visitors or users of the website or CMS. To work with member-related data,
you can use the IMemberManager service. It provides a gateway to member management features. For
example, you can check if a member is logged in, as shown in the following code:

@using Umbraco.Cms.Core.Security;
@inject IMemberManager _memberManager;

@if (_memberManager.IsLoggedIn())
{
 <p>A Member is logged in</p>
}
else
{
 <p>No member is logged in</p>
}

Using Models Builder
The Models Builder feature allows you to work with strongly typed models in your views. For example,
if you have a document type with the property BodyText, you can access it, as shown in the following
code:

More Information: Learn more about IMemberManager, including how to find a member
by ID, name, or email, at the following link: https://docs.umbraco.com/umbraco-cms/
reference/querying/imembermanager.

https://docs.umbraco.com/umbraco-cms/reference/querying/imembermanager
https://docs.umbraco.com/umbraco-cms/reference/querying/imembermanager

Chapter 14 521

@Model.BodyText

Models Builder also utilizes value converters to automatically convert data into more usable forms,
making it easier to work with nested objects in a strongly typed way, reducing potential errors that
could arise from using dynamic types.

The UmbracoHelper class
The UmbracoHelper class is designed to provide various helper methods for working with content,
media, members, and other components of an Umbraco-powered website. It simplifies common tasks,
such as retrieving content by ID, rendering field values, and working with media files.

Some examples of uses of UmbracoHelper include the following list:

• Fetching content and media items by ID or GUID.
• Rendering field values from content items using the property aliases.
• Querying for published content using LINQ-like syntax.
• Working with members for user login and registration.
• Utility functions for URL generation, and so on.

The most common methods in UmbracoHelper are shown in Table 14.5:

Method Description

TypedContent This returns an IPublishedContent item based on an ID or GUID.

TypedMedia This returns an IPublishedContent item from the media section.

RenderTemplate This renders a specific template for a given content item.

GetDictionaryValue This retrieves values from the dictionary (used for multilingual sites).

Query This allows querying content using LINQ-like syntax.

IsMemberAuthorized This checks if the current member is authorized based on permissions.

Table 14.5: Common methods in UmbracoHelper

Retrieving content by ID
This method fetches a published content item, like the CEO biography web page, by its unique ID.
The content is returned as an IPublishedContent object, which gives you access to its properties, as
shown in the following code:

@using Umbraco.Cms.Web.Common.PublishedModels;
@inject UmbracoHelper _umbracoHelper;

More Information: Learn more about Models Builder at the following link: https://docs.
umbraco.com/umbraco-cms/reference/templating/modelsbuilder.

https://docs.umbraco.com/umbraco-cms/reference/templating/modelsbuilder
https://docs.umbraco.com/umbraco-cms/reference/templating/modelsbuilder

Customizing and Extending Umbraco522

@{
 // Fetch content by its content node ID: 1234.
 IPublishedContent? content = _umbracoHelper.Content(1234);
}

@if (content is not null)
{
 <h1>@content.Name</h1>
 <p>@content.Value("bodyText")</p> <!-- Renders a property called "bodyText"
-->
}
else
{
 <p>Content not found.</p>
}

In this example, the UmbracoHelper.Content(1234) method retrieves the content node with ID 1234.
You can then access properties using the @content.Value("propertyAlias") method.

Retrieving media by ID
To get a media item, for example, an image or document, by its ID, you can use the TypedMedia method,
as shown in the following code:

@{
 IPublishedContent? media = _umbracoHelper.Media(5678); // 5678 is the media
ID.
}

@if (media is not null)
{

}
else
{
 <p>Media not found.</p>
}

In the preceding code, UmbracoHelper.Media(5678) returns a media item, for example, an image,
and we display the image’s URL using the @media.Url() method.

Rendering a content template
You can use the RenderTemplate method to render a specific template for a given content item, as
shown in the following code:

Chapter 14 523

@{
 IPublishedContent? content = _umbracoHelper.Content(1234);
 IHtmlEncodedString renderedTemplate =
 await _umbracoHelper.RenderTemplateAsync(1234);
}

@if (!string.IsNullOrEmpty(renderedTemplate))
{
 @Html.Raw(renderedTemplate)
}
else
{
 <p>Template could not be rendered.</p>
}

In this example, RenderTemplateAsync(1234) renders the template assigned to the content item with
ID 1234.

Getting dictionary values
For multilingual sites, Umbraco allows you to define dictionary items. You can retrieve their values
using GetDictionaryValue, as shown in the following code:

@{
 string? welcomeText = _umbracoHelper.GetDictionaryValue("WelcomeText");
}

<p>@welcomeText</p>

This will fetch the dictionary value for the key WelcomeText based on the current language.

Querying content using LINQ
You can retrieve content based on more complex queries, like fetching all descendant content of a
specific document type, as shown in the following code:

@{
 IEnumerable<IPublishedContent> articles = Model
 .DescendantsOrSelf("articlePage")
 .Where(x => x.IsVisible());
}

@foreach (IPublishedContent article in articles)
{

Customizing and Extending Umbraco524

 @article.Name

}

This example retrieves all content items of type articlePage that are descendants and filters only
the visible ones.

Checking member authorization
The IsMemberAuthorized method allows you to verify if the current member has the required per-
missions to access certain content, as shown in the following code:

@{
 bool isAuthorized = _umbracoHelper.IsMemberAuthorized("someSection");
}

@if (isAuthorized)
{
 <p>Welcome, authorized member!</p>
}
else
{
 <p>You do not have permission to view this content.</p>
}

This checks if the currently logged-in member is authorized to access a specific section of the site.

UmbracoHelper summary
The UmbracoHelper class is a central tool for developers working with content, media, and members
in Umbraco. Its methods simplify common tasks such as fetching content and media, rendering
templates, working with multilingual dictionary values, and ensuring correct member permissions.

Practicing and exploring
Test your knowledge and understanding by answering some questions, getting some hands-on practice,
and exploring this chapter’s topics with deeper research.

More Information: You can read more about UmbracoHelper at the following link:
https://docs.umbraco.com/umbraco-cms/reference/querying/umbracohelper.

https://docs.umbraco.com/umbraco-cms/reference/querying/umbracohelper

Chapter 14 525

Exercise 14.1 – Online material
You can find tutorials for Umbraco at the following link: https://docs.umbraco.com/umbraco-cms/
tutorials/overview.

Exercise 14.2 – Practice exercises
The following practice exercises help you to explore the topics in this chapter more deeply.

The Starter Kit
The Starter Kit is the name of one of the starter kit builds for Umbraco by Umbraco HQ. It is a great
way to familiarize yourself with Umbraco CMS.

The Starter Kit will install sample content for a small site. You can edit the content, or delete it and
build your content from scratch. The sample content includes:

• Home: The home (or front page) of the site.
• Text pages: Generic text page with multi-column layout options.
• Blog: Blog section for the site, with blog overview and blog posts.
• Products: Product section, with featured products ready for shop integration.
• People: People section, with people profiles. Can be used for an employee section, for example.
• Contact page: The contact page contains a customizable map and contact form.

https://docs.umbraco.com/umbraco-cms/tutorials/starter-kit

Extending Umbraco
Extending Umbraco often involves TypeScript and Lit, which are beyond the scope of this book. You
can learn more about them at the following links:

• TypeScript documentation: https://www.typescriptlang.org/docs/.
• Lit documentation: https://lit.dev/docs/.

To complete tutorials about customizing the Umbraco editing experience, use the following link:
https://docs.umbraco.com/umbraco-cms/tutorials/overview#customize-the-editing-
experience.

Exercise 14.3 – Test your knowledge
Answer the following questions:

1. Why might you build a custom property editor for Umbraco CMS?
2. What file types are disallowed for uploads by default?
3. By default, does Umbraco CMS follow the modern security good practice of enforcing password

minimum length without enforcing special characters?
4. What is the difference between the KeepAllVersionsNewerThanDays and

KeepLatestVersionPerDayForDays settings?

https://docs.umbraco.com/umbraco-cms/tutorials/overview
https://docs.umbraco.com/umbraco-cms/tutorials/overview
https://docs.umbraco.com/umbraco-cms/tutorials/starter-kit

https://www.typescriptlang.org/docs/
https://lit.dev/docs/
https://docs.umbraco.com/umbraco-cms/tutorials/overview#customize-the-editing-experience
https://docs.umbraco.com/umbraco-cms/tutorials/overview#customize-the-editing-experience

Customizing and Extending Umbraco526

5. What are the two most commonly rendered properties of a published content item?
6. What does the Models Builder feature allow you to do?
7. How can you programmatically load media?
8. How can you programmatically render content using a template?
9. What are dictionary values used for?
10. In Umbraco CMS, what is a member?

Exercise 14.4 – Explore topics
Use the links on the following page to learn more about the topics covered in this chapter: https://
github.com/markjprice/web-dev-net9/blob/main/docs/book-links.md#chapter-14---
customizing-and-extending-umbraco.

Summary
In this chapter, you learned some of the techniques that can be used to customize and extend the
behavior of Umbraco CMS. You learned about:

• Suggestions for advanced techniques for customizing and extending Umbraco
• How to customize Umbraco behavior using settings
• How to render published content in Razor views
• How to use UmbracoHelper for common tasks

In the Epilogue, I will make some suggestions for books to take you further with real-life web devel-
opment using .NET.

https://github.com/markjprice/web-dev-net9/blob/main/docs/book-links.md#chapter-14---customizing-and-extending-umbraco
https://github.com/markjprice/web-dev-net9/blob/main/docs/book-links.md#chapter-14---customizing-and-extending-umbraco
https://github.com/markjprice/web-dev-net9/blob/main/docs/book-links.md#chapter-14---customizing-and-extending-umbraco

15
Epilogue

I wanted this book to be different from others on the market. I hope that you found it to be a brisk,
fun read, packed with practical, hands-on walk-throughs of each subject.

This epilogue contains the following short sections:

• Next steps on your web development learning journey
• The next edition for .NET 10
• Good luck!

Next steps on your web development learning journey
For subjects that I didn’t have space to include in this book, but you might want to learn more about,
I hope that the notes, good practice tips, and links in the GitHub repository point you in the right
direction: https://github.com/markjprice/web-dev-net9/blob/main/docs/book-links.md.

Companion books to continue your learning journey
I have written four books about .NET that further your journey with .NET 8 and .NET 9. The other
books act as companions to this book, and together they all form a .NET 8 and .NET 9 quartet of books,
as described in the following list and shown in Figure 15.1:

1. The first book covers the fundamentals of C#, .NET, and ASP.NET Core for modern web de-
velopment. The 9th edition on .NET 9 contains minimal changes from the 8th edition because

.NET 9 is a Standard Term Support release (released only 18 months after .NET 8). The errata
and improvements listed since the publishing of the 8th edition can be found at the following
link: https://github.com/markjprice/cs12dotnet8/blob/main/docs/errata/README.md.

2. The second book covers more specialized topics, like internationalization and popular third-par-
ty packages, including Serilog and Noda Time. You will learn how to build native AOT-compiled
services with ASP.NET Core minimal APIs and how to improve performance, scalability, and
reliability using caching, queues, and background services.

https://github.com/markjprice/web-dev-net9/blob/main/docs/book-links.md
https://github.com/markjprice/cs12dotnet8/blob/main/docs/errata/README.md

Epilogue528

You will implement more services using GraphQL, gRPC, SignalR, and Azure Functions. Finally,
you will learn how to build graphical user interfaces for websites and desktop and mobile apps
with Blazor and .NET MAUI. This book will not be updated for .NET 9. The next edition will be
published for .NET 10 in November 2025.

3. The third book covers important tools and skills you should learn to become a well-rounded
professional .NET developer. These include design patterns and solution architecture, debug-
ging, memory analysis, all the important types of testing, from unit and integration to perfor-
mance and web UI testing, and then topics like Docker and .NET Aspire. Finally, we will look
at how to prepare for an interview to get the .NET developer job that you want. This book will
not be updated for .NET 9. The next edition will be published for .NET 10 in November 2025.

4. The fourth book (the one you’re reading now) covers real-world web development with .NET
9. This means it covers technologies that are mature and proven and are based on controller
architecture. This includes MVC, Web APIs using controllers, OData, and the most popular

.NET CMS, Umbraco.

A summary of the companion .NET 8 and .NET 9 books to this one and their most important topics
is shown in Figure 15.1:

Figure 15.1: Companion books for learning C# and .NET

To see a list of all the books that I have published with Packt, you can use the following link: https://
subscription.packtpub.com/search?query=mark+j.+price.

Other books to take your learning further
If you are looking for other books from my publisher that cover related subjects, there are many to
choose from, as shown in Figure 15.2:

https://subscription.packtpub.com/search?query=mark+j.+price
https://subscription.packtpub.com/search?query=mark+j.+price

Chapter 15 529

Figure 15.2: Packt books to take your web development with .NET learning further

You will also find a list of Packt books in the GitHub repository at the following link: https://github.
com/markjprice/web-dev-net9/blob/main/docs/book-links.md#learn-from-other-packt-books.

The next edition for .NET 10
I have already started working to identify areas for improvement for the next edition, which we plan to
publish alongside updates to the other members of my quartet of .NET books starting with the release
of .NET 10 in November 2025. I expect .NET 10 to make worthwhile improvements to all aspects of .NET.

You can learn how to use .NET 10 with this book, including its previews, starting in February 2025 at
the following link: https://github.com/markjprice/web-dev-net9/blob/main/docs/dotnet10.md.

If you have suggestions for topics that you would like to see covered or expanded upon, or you spot
mistakes that need fixing in the text or code, then please let me know the details via chat in the Dis-
cord channel or the GitHub repository for this book, found at the following link: https://github.
com/markjprice/web-dev-net9.

Good luck!
I wish you the best of luck with all your .NET web development projects!

Learn more on Discord
To join the Discord community for this book – where you can share feedback, ask questions to the
author, and learn about new releases – follow the QR code below:

https://packt.link/RWD9

https://github.com/markjprice/web-dev-net9/blob/main/docs/book-links.md#learn-from-other-packt-books
https://github.com/markjprice/web-dev-net9/blob/main/docs/book-links.md#learn-from-other-packt-books
https://github.com/markjprice/web-dev-net9/blob/main/docs/dotnet10.md
https://github.com/markjprice/web-dev-net9
https://github.com/markjprice/web-dev-net9
https://packt.link/RWD9

Index

Symbols
503 Service Unavailable 131

.NET Aspire 297, 298

.NET developers
benefits 234

_ViewStart.cshtml file 138

A
ABP Framework

URL 473
Accept-Language header

example 167
Action Filter (IActionFilter) 187
action methods

disambiguating 105
Active Server Pages (ASP) 3
ActiveX Data Objects (ADO) 2
Anchor Tag Helper

exploring 143-149
anonymous inline delegate

implementing, as middleware 277, 278
APIs

securing, with JWT 180
AppHost project 302, 303

execution modes 309

Aspir8
references 309

Aspire
adding, to existing solution 304-308
for deployment 309

Aspire developer dashboard 303
references 304

Aspire, project types
AppHost 302, 303
ServiceDefaults 302, 303

Aspire, resource types
container 303
executable 303
project 303

ASP.NET Core 1-3
cultures, working with 157
file types, comparing 8, 9
history 2
resource files, creating 159
used, for building websites 5-8
used, for caching 194
used, for localizing web user

interfaces 157, 158
used, for modifying data 115
user interface, localizing 158

ASP.NET Core Identity 59, 172
database reviewing 60, 61

ASP.NET Core MVC 1, 5

Index532

ASP.NET Core MVC website
action 69
authentication database, creating for SQL

Server LocalDB 51-53
browser requests, during development 57
category images, setting up 91
ControllerBase class 70
Controller class 71, 72
controllers 69
controllers, responsibilities 70
controllers, routing 70
creating 49-51
cross-functional filters 96
cross-functional filters, using to define custom

route 96, 97
customizing 90
custom style, defining 90
data, storing temporarily 97, 98
default MVC route 69
entity and view models, using 75, 76
exploring 64
files included, configuring 61, 62
home page, testing with categories 95, 96
hosting environment, controlling 67, 68
identity database, reviewing 60, 61
initialization 64-67
logging, with dependency service 74, 75
port numbers, modifying 53-57
project file build actions 63, 64
project structure, reviewing 58, 59
project template controller, reviewing 72, 73
Razor syntax and expressions 91
setting up 47-49
starting 53-57
typed view, defining 92-95
UseMigrationsEndPoint, considerations 67
view search path convention 73, 74
views, implementing 79-82
visitor registration, exploring 57, 58

ASP.NET Core OData 1

ASP.NET Core project
enabling, for testing 453
folders, structuring 12
packages, managing 11
structuring 11
structuring, in solution 12
used, for exploring dev tunnel 465-469

ASP.NET Core project, folder structure
by features 13, 14
by technological concerns 13
summary 14

ASP.NET Core projects
containerizing 296

ASP.NET Core Razor Pages 5
ASP.NET Core Web API 11

creating, with controllers project 323-326
ASP.NET MVC 3
ASP.NET SignalR 3
ASP.NET Web API 3
ASP.NET Web Forms 3
asynchronous tasks

controller action methods asynchronous,
making 132, 133

threads and tasks, on web server 131, 132
used, for improving scalability 131

authentication 171
cookie-based authentication 173, 174
external authentication 179
identity management 172
implementing 174-178
password verifier best practices 174
schemes 172

authorization 172
claims-based authorization 172
implementing 174-178
policy-based authorization 178
role-based authorization 172

Authorization Filter (IAuthorizationFilter) 186

Index 533

Autofac
URL 264

automated UI testing 226
Azure Data Studio 27
Azure Kubernetes Service (AKS)

URL 296
Azure SQL Edge

connecting, from Visual Studio 27, 28
connecting, from VS Code 28-30
connecting, in Docker container 27

Azure SQL Edge container image 22
running 24, 25

B
BadRequest status code 112
banking applications

security and transaction errors, avoiding 231
Bicep 309
Blazor 5
Blazor Server 5
Blazor WebAssembly 5
Block List editors

handling 519, 520
Bootstrap

alerts 89
badges 88
breakpoints and containers 84, 85
buttons and links 87
color themes 86
good practices 90
parts 83
prototyping with 83
rows and columns 85
tables 86, 87

breakpoints 84

C
Cache Tag Helper

attributes 150
example 150
exploring 150, 151

caching 193
types 194
with ASP.NET Core 194

caching, with ASP.NET Core
general guideline 194
HTTP responses, caching for websites 195
types 194, 195, 199, 200

category images
setting up 91

Central Package Management (CPM) 15-19
features and benefits 15
reference link 19

claims-based authorization 172
classic ASP.NET

versus modern ASP.NET Core 4
class libraries

testing, with xUnit 41
unit tests, building 41-44

class library
creating, for database context 34-38
creating, for EF Core entity model 32-34

class-to-table mapping
improving 40, 41

clients, for OData services
building 410, 411
calling, in Northwind MVC website 411-414
introductory query, revisiting 415

cloud providers 11
Command-line Interface (CLI) 22
Command Query Separation (CQS) 443

Index534

complex field types
rendering 518

Component Object Model (COM) 2
configuration

classes 279
interfaces 280
loading, with Options pattern 291-293
manual setup 280-282
providers, showing 284-289
settings, showing 284-289
sources 279

configuration overriding
in Docker 290
in Kubernetes 291
in production deployments 289, 290

configuring options 279
validation 295

Conflict status code 114
constructor injection 261

example 262, 263
unsupported scenarios 267, 268

containerization 11, 296
containers

benefits 296
downsides 297
working 296

content delivery network (CDN) 195, 222
content management system (CMS) 1, 9, 207

administrator 472
benefits 473, 474
developer 471
editor 472
features 475
platforms 475
used, for building websites 9, 10

content negotiation 328
continuous deployment (CD) 164

continuous integration (CI) 164, 227, 228
systems 234

controller action methods
role, creating programmatically 182-185
role management, enabling 181, 185
securing, with filters 181

controller action methods asynchronous
making 132, 133

ControllerBase class 70
Controller class 71, 72
controllers 48, 69

responsibilities 70
routing 70

cookie-based authentication
best practices 173
Cookie Theft via Insecure Transmission 173
CSRF 173
persistent cookie vulnerabilities 173
session hijacking 173
XSS 173

cookie token 127
Create, Read, Update, Delete (CRUD)

operations 387
cross-functional filters 96, 185, 186

Action Filter (IActionFilter) 187
Authorization Filter (IAuthorizationFilter) 186
benefits 189
Exception Filter (IExceptionFilter) 188
Resource Filter (IResourceFilter) 187
Result Filter (IResultFilter) 188, 189
using, to define custom route 96, 97

Cross-Origin Resource Sharing (CORS) 373
enabling, in web service 373, 374
policy options 374
reference link 374

cross-platform interoperability 385, 386
Cross-Site Request Forgery (CSRF)

attacks 119 126, 173

Index 535

anti-forgery tokens prevention 126, 127
working 126

Cross-Site Scripting (XSS) 172
custom configuration providers

using 295, 296
customer repository

configuring 219-221
custom style 90

D
data

modifying, with ASP.NET Core 115
modifying, with EF Core 115

database indexing 222
data repositories

creating, with caching for entities 214-218
data stores

integration testing with 446
default endpoint routing configuration

reviewing 272, 273
dependency graph 265
dependency injection (DI) 259

benefits 260, 261
best practices 270
exceptions thrown, scenarios 266
injection mechanisms 261-264
MVC controller action methods 269
MVC views 270

dependency service
configuring 259
registering 39, 40
logging with 74, 75

dependency service lifetimes
registering 265, 266
scoped 265
singleton 266
transient 265

deployment
with Aspire 309

Developer Control Plane (DCP) 302
developer dashboard 303
Developer Tools 57
dev tunnels

CLI, installing 463
exploring, with ASP.NET Core project 465-469
exploring, with CLI and echo services 463-465
used, for testing services 462, 463

distributed caching
used, for caching objects 210-213
services, reference link 150

Distributed Memory Cache 210
Docker 297

configuration overriding 290
installing 22, 298-301
resources, removing 31

Docker container
used, for connecting Azure SQL Edge 27

Docker Desktop installation
reference link 23

docker ps command
reference link 25

domain-specific language (DSL) 309
double-opt-in (DOI) 57
dummy 443, 456
dynamic content 252

E
E-Commerce websites

cart and checkout failures, preventing 230
EF Core CLI tool

setting up 32
EF Core entity data model

Azure SQL Edge container image 22-24
Northwind database SQL scripts 22

Index536

Azure SQL Edge, connecting from
Visual Studio 27

Azure SQL Edge, connecting in Docker
container 27

Azure SQL Edge container image,
running 24, 25

building 21
class libraries, testing with xUnit 41
class library, creating 32-34
class library, creating for database

context 34-38
class-to-table mapping, improving 40, 41
dependency services, registering 39, 40
Docker, installing 22-24
Docker resources, removing 31
EF Core CLI tool, setting up 32
Northwind database, creating with

SQL script 30
SQL Edge container, running with

user interface 25, 26
user and password, setting for SQL Server

authentication 38
EF Core models

OData models, defining 390-393
Elastic Kubernetes Service (EKS)

URL 296
endpoint routing 271

benefits 271, 272
configuring 272

end-to-end (E2E) testing 438
scenario 445

enterprise CMS
features 475

Entity Framework (EF) Core 101
database, querying 128-131
display templates, using 128-131
Northwind suppliers, deleting 118-126
Northwind suppliers, displaying 115-117
Northwind suppliers, inserting 118-126
Northwind suppliers, updating 118-126

used, for modifying data 115
entity models 75, 76
Environment Tag Helper

example 152, 153
exploring 152

Exception Filter (IExceptionFilter) 188
executable 303
expirations, for in-memory caching

absolute expiration 206
sliding expiration 207

extension methods
services, registering for features 267

external authentication 179

F
fake 443, 456
FakeItEasy 456, 457
false negatives (FNs)

bad consequences 442, 443
FastEndpoints 419-421

adding, to empty ASP.NET Core
project 425, 426

benefits 420
configuration methods 431
configuration properties 431
configuring 430
enabling 426-430
endpoint, defining 422-430
endpoint implementation 424, 425
features 420
implementing 425
limitations 420
requests and responses, mapping to entity

models 432-434
TechEmpower benchmarks 421

feature folders approach
cons 14
pros 14

Index 537

financial applications
data integrity and accuracy, ensuring 230

Forbidden status code 113
form parameter 106

passing 110, 111
Forms-related Tag Helper

exploring 154-156
form token 127
Front End (FE) 142
functional test

scenario 445

G
Git 19

using, with command prompt 21
using, with VS Code 21

GitHub 19
GitHub Desktop

reference link 21
GitHub repository 19

book solution code repository, cloning 21
solution code 20
solution code, downloading 20

Git installation
reference link 21

globalization 157
government and public sector

accessibility compliance, ensuring 231

H
headless CMS 9, 474
healthcare portals

user and data safety, guaranteeing 231
horizontal scaling 193

with load balancing 222
hosting model 5

Html.AntiForgeryToken() method 126
cookie token 127
form token 127
usage 127

HTML Helper methods
ActionLink 142
AntiForgeryToken 142
CheckBox 142
Display 142
DisplayFor 142
DisplayForModel 142
DropDownList 142
Editor 142
EditorFor 142
EditorForModel 142
Encode 142
PartialAsync 142
Raw 142
RenderPartialAsync 142
TextBox 142
used, for defining Razor views 141
versus Tag Helpers 143

HTTP caching
reference link 349

HttpClient class 358
HTTP clients

configuring, with HttpClientFactory 358
HTTP Editor tool 342
HTTP error status codes 112

BadRequest status code 112
Conflict status code 114
Forbidden status code 113
NotFound status code 113
problem 114
StatusCode 114
Unauthorized status code 113
UnprocessableEntity status code 114
validation problem 115

Index538

HTTP file
creating, for making requests 397-399

HTTP logging
enabling 352-355

HttpOnly flag 173
HTTP pipeline

configuring 271
setting up 275
visualizing 276, 277

HTTP pipeline and middleware order
reference link 279

HTTP requests and responses, for Web APIs
caching requests example 320, 321
common response status codes 319, 320
DELETE request 322
GET requests 318
POST requests 321
PUT requests 321

HTTP responses
caching, for web services 349-352

HTTP responses, caching for websites
cache-control directives 195, 196
cache-control directives, controlling in ASP.NET

Core 197
cache-control directives effect, checking 199
cache-control directives, exploring 197, 198

HTTP/REST tools
GET requests, implementing with 342, 343
POST requests, implementing with 344, 345
used, for exploring OData services 397

HTTP Strict Transport Security (HSTS) 65, 275
reference link 275

HTTP versions 316
HTTP/0.9 317
HTTP/1.0 317
HTTP/1.1 317
HTTP/2 317, 318
HTTP/3 318

hybrid object caching 214

Hypertext Transfer Protocol (HTTP) 313
hypermedia as the engine of application state

(HATEOAS) 314, 316

I
IConfiguration 282-284
IConfigurationRoot 282-284
identity management 172
IdentityServer4 375
identity services 375

JWT bearer authorization 375
ImageOptim

URL 500
images

uploading, to Umbraco CMS 501, 502
IMemberManager

reference link 520
injected view localizer

used, for localizing Razor views 164-167
injection mechanisms, DI 261

constructor injection 261-263
property injection 262-264

in-memory caching
expirations 206, 207
used, for caching objects 206

in-memory object caching 207-210
integration testing 228, 438, 439

end-to-end testing 445
external systems, testing 443
false negatives (FNs) 442, 443
false positives (FPs) 442, 443
fixtures, sharing 444
good tests, attributes 440
test automation 445, 446
testing terminologies 439
test outcomes 441
web service functional testing 444
with data stores 446

Index 539

integration testing, with data stores 446
data lifecycle 448-450
developer instances, of database and

migrations 446-448
International Organization for

Standardization (ISO) 157
Internet Information Services (IIS) 4, 58
inversion of control (IoC) 259
IOptionsMonitor 294

example 294
IOptionsSnapshot
IPublishedContent 516

core functionality 516, 517
reference link 517
using, with ModelsBuilder 517

ISO culture codes
reference link 157

J
JavaScript Object Notation (JSON) 328
jQuery Validate 103
JWT bearer authorization 375

service clients, authenticating with 375-379
JSON Web Tokens (JWT) 172, 180, 356

APIs, securing with 180

K
Kestrel

non-open source components 4
Kubernetes 297

configuration overriding 291

L
legacy .NET 2
localization 137, 157
logging and security principles 356

errors logging, with caution 357

logging request and response bodies,
avoiding 356

logging sensitive information, avoiding 356
security events, logging without

sensitive data 357
sensitive data, masking 356
structured logging, for sensitive data

management 356
third-party library logging, reviewing 357

Long-Term Support (LTS) 1, 2

M
manual testing 225
mass assignment attack 111
Media Picker fields

handling 519
method injection 262

example 264
method under test (MUT) 439
microservice 11
Microsoft ecosystem

integration with 385, 386
middleware 275

anonymous inline delegate, implementing as
277, 278

extension methods 275, 276
scoped services, using 268

mocking
benefits 456
in tests 455
isolation 455
libraries 456, 457
substitutes for real objects 455
with NSubstitute example 458-462

mocks 443, 455
model binding 101-104

action methods, disambiguating 105
business rules, defining 102, 103
form parameter, passing 110, 111

Index540

HTTP error status codes, returning 112
over-posting, avoiding 112
parameter 106-110
parameter, passing with route value 103-105
route parameter, passing 110
working 102

ModelBinding action method 108
model binding, parameter types

form parameter 106
query string parameter 106
route parameter 106

models 47
Models Builder 520

reference link 521
ModelsBuilder

IPublishedContent, using with 517
model validation 101, 102
model-view-controller (MVC) 5, 47
modern ASP.NET Core

versus classic ASP.NET 4
modern .NET 2
Moq 456
Multi-Node Tree Picker (MNTP) 518

fields, rendering 519
MVC client projects

starting, in web services 363, 364
MVC model 75

N
nanoservice 11
Nested Content

handling 519, 520
neutral culture 491
non-technical CMS administrators 474
non-technical CMS editors 474
nopCommerce

URL 473

Northwind database
creating, with SQL script 30

Northwind database SQL scripts
Northwind4AzureSqlDatabaseCloud.sql

script 22
Northwind4AzureSqlEdgeDocker.sql script 22
Northwind4SqlServer.sql script 22

Northwind MVC website
services, calling 411-414

Northwind suppliers
deleting 118-126
displaying 115-117
inserting 118-126
updating 118-126

NotFound status code 113
NSubstitute 456, 457

using, to create test doubles 458
NSwag

URL 348

O
OAuth 2.0 375
object caching 206
object-relational mapper (ORM) 101, 447
OData models

controllers, creating and testing 394-397
defining, for EF Core models 390-393
testing 393, 394

OData queries 400
exploring 402-404
functions 401
logs, using to review efficiency of 404, 405
operators 400
standard query options 400

OpenAPI 342
OpenAPI specification 346

clients, generating with 348

Index 541

Open Data Protocol (OData) 384
benefits 384
controllers, versioning 406, 407
data modifications, implementing 405
disadvantages 387, 388
entity deletes, enabling 408-410
entity inserts, enabling 408-410
 entity updates, enabling 409, 410
entity updates, enabling 408
performance concerns 387
services, exploring with HTTP/REST tools 397
standard 384
versions, implementing 405

Open Data Protocol (OData), benefits
built-in support, for data relationships 387
cross-platform interoperability 385, 386
CRUD operations 386, 387
extensibility 387
integration, with Microsoft ecosystem 385, 386
RESTful principles 386, 387
self-describing and rich metadata 386
standardized querying 384, 385
standard security features 387
supports multiple data formats 387

OpenID Connect 375
Options pattern

configuration, loading 291-293
output caching

disabling 205
endpoints 200, 201
MVC views 202-204
output cached data, varying by

query string 204, 205
types 200

over-posting 111

P
parameter

passing, with route value 103-105

password verifiers
best practices 174

Personally Identifiable Information (PII) 352
Piranha CMS

URL 473
Playwright

alternatives 234, 235
common scenarios, testing 239-242
locator automation methods 238, 239
locator methods 237, 238
page navigation 242-246
testing methods 236
testing types 235, 236
title verification 242-246
usage, considerations 232, 233
used, for web UI testing 232

Playwright Inspector
used, for generating tests 252-255

policies
defining 178

policy-based authorization 178
Postman 342
prebuilt images

using 298-301
production deployments

configuration overriding 289, 290
project 303
property injection 262

example 264

Q
query string parameter 106

R
Razor 79, 137
Razor syntax and expressions 91

Index542

Razor views
defining, with HTML Helper methods 141
localizing, with injected view localizer 164-167
shared layouts, using 138-141
used, for defining web user interfaces 138

reference data 446
Representational State Transfer (REST) 313

features 316
request localization 158
resource files

creating 159
creating, with other file tools 163
creating, with Visual Studio 159-161
creating, with VS Code 161-163
managing 163

Resource Filter (IResourceFilter) 187
REST Client 342
RESTful principles 386
RESTful services 314

cacheability 315
client-server architecture 315
HATEOAS 316
idempotency 316
layering 315
resource-based 314
resources 315
statelessness 314
uniform interface 314, 315

Result Filter (IResultFilter) 188
ResX Resource Manager

reference link 163
Rich Text Editor (RTE) fields

rendering 518
Rider 342
role-based authorization 172
route parameter 106

passing 110

route value
used, for passing parameter 103-105

S
SaaS platforms

downtime and data loss, preventing 231
same origin security policy

HTTP logging, configuring for
web service 365-368

.NET client, creating 369-372
with CORS 364

SameSite attribute 173
satellite assemblies 158
scalability, improving techniques 221

asynchronous programming 222
auto-scaling in cloud 222
CDN 222
database optimizations 222
health checks and monitoring 222
horizontal scaling, with load balancing 222
message queues and background services 222

scheduled jobs
reference link 515

scoped services
resolving, at startup 269
using, in middleware 268

Secure Flag 173
security best practices 172
service 11

diposing 270
ServiceDefaults project 302, 303
shared layouts

using, with Razor views 138-141
Single-Page Application (SPA) 10, 252, 328
Single Responsibility Principle (SRP) 14
software-as-a-service (SaaS) 472
SPA frameworks

used, for building web applications 10

Index 543

spies 443, 456
SponsorLink 457
SQL Edge container

running, with user interface 26
SQLiteStudio 61
SQL script

used, for creating Northwind database 30
SQL Server authentication

used, for setting user and password 38
SQL Server Data Tools (SSDT) 27
SQL Server LocalDB

authentication database, creating 51-53
SQL Server Management Studio (SSMS) 27
StatusCode 114
stubs 443, 456
system under test (SUT) 439

T
Tag Helpers 137, 142

Anchor Tag Helper, exploring 143-149
Cache Tag Helper, exploring 150, 151
Environment Tag Helper, exploring 152
Forms-related Tag Helper, exploring 154-156
used, for cache busting 83
used, for defining web user interfaces 142
versus HTML Helpers 143

technological concerns approach
cons 13
pros 13

test double 443
creating, with NSubstitute 457, 458
mocks 443
stubs 443

testers
role, in web UI testing 228, 229

tests
generating, with Playwright Inspector 252-255

TinyMCE
reference link 496

TinyPNG
URL 500

travel and booking platforms
smooth transactions, ensuring 232

typed view
defining 92-95

U
Umbraco 10

content settings 507-509
content version cleanup 515
document template, defining 492-494
document type, creating 488-491
document type, defining 485
document type, examples 486-488
effective media management 499-501
features 476
French variant home page, creating 497-499
global settings 507, 513-515
home page, adding as content 495, 496
image sizes, optimizing before uploading 500
imaging settings 507, 511, 512
images, uploading to 501, 502
installing 478
languages, setting up 491
media, organizing into folders 499, 500
project, setting up 479-484
reasons, for popularity 476, 477
reference link for requirements 478
security settings 507-511
setup 477
tags, used to enhance searchability 500
unattended installs 485
versions 477
versions, reference link 478
website, reviewing 494, 495

Umbraco Cloud 473

Index544

Umbraco CMS Editor's Manual
reference link 472

UmbracoContext helper
reference link 516

Umbraco Heartcore 473
UmbracoHelper class 521, 524

content, querying with LINQ 523
content, retrieving by ID 521, 522
content template, rendering 522
dictionary values, obtaining 523
examples 521
media, retrieving by ID 522
member authorization, checking 524
methods 521
reference link 524

Umbraco, advanced technique
custom property editors, building for enhanced

content creation 505
custom workflow automation, for content

approval 506
multilingual capabilities, with custom language

switching 506, 507
third-party APIs, integrating to enhance

functionality 506
Umbraco views

complex field types, rendering 518
fields, rendering in strongly

typed view 517, 518
member data, accessing 520
Models Builder, using 520
working with 515, 516

Unauthorized status code 113
Uniform Resource Identifiers (URIs) 314
Unique Resource Locators (URLs) 5
unit testing 228

with xUnit 451
UnprocessableEntity status code 114
upsert operation 322
URL query strings 384

user interface (UI)
used, for running SQL Edge container 26

V
validation problem 115
version control system (VCS) 163
vertical scaling 193
Vertical Slice Architecture (VSA) 14
view engines 79
view model 75, 76

examples 76-79
views 47

implementing 79-82
view search path convention 73, 74
Virtual Private Server (VPS) 41
visitor registration

exploring 57, 58
visual regression testing 226

multiple projects, starting 361, 362
reference link 362

Visual Studio (VS Code) 2
multiple projects, starting 361, 362
reference link 362

VS Codes MS SQL extension 27

W
W3CLogger 355

support, for logging additional
request headers 355

weather forecast web service
testing 327, 328

web applications
building, with SPA frameworks 10

web service 314
building 11
clients, authenticating with JWT bearer

authorization 375-379

Index 545

consuming, with HTTP clients 357
documenting 341
environment variables, passing 345
GET requests, implementing

with browser 341, 342
GET requests, implementing with

HTTP/REST tools 342-344
hosting, with WebApplicationFactory 452, 453
multiple projects 361
multiple projects, with Visual Studio 361, 362
multiple projects, with VS Code 362
MVC client projects 363, 364
OpenAPI specification 346
POST requests, implementing with HTTP/REST

tools 344, 345
RESTful services 314
testing, with xUnit 450
test project, creating 453-455
trying out 341

web service, for Northwind database
action method return types 333, 334
creating 328-330
customer repository, configuring 334-340
customers, fetching as JSON in

controller 358-361
problem details, specifying 340, 341
requests, routing to action methods 331
route constraints 332
short-circuit routes 333
Web API controller, configuring 334-340
XML serialization, controlling 330, 331

web service, with OData
building 389, 390

websites
building, with content management

system 9, 10
web UI

defining, with Razor views 138
defining, with Tag Helpers 142
interacting with 246

localizing, with ASP.NET Core 157, 158
web UI interactions

dynamic content 252
elements, clicking 246-248
form authentication 249
form submissions 249
form validation 249
input boxes, filling 246-248
responsive design testing 249
Single-Page Applications (SPAs) 252

web UI interactions, responsive design testing
dark mode and color schemes, emulating 251
devices, emulating 250
geolocation, emulating 250, 251
going offline 251
JavaScript, disabling 251
locale, emulating 250, 251
screen sizes, emulating 250
time zone, emulating 250, 251
user agent, customizing 251

web UI testing 225
applications 230
automating tools 226
challenges and best practices 226-228
collaboration, between developers

and testers 230
considerations 226
roles, of developers 228
roles, of testers 229
types 225
with Playwright 232

web UI testing, applications
banking applications 231
E-Commerce websites 230
financial applications 230
government and public sector 231
healthcare portals 231
SaaS platforms 231
travel and booking platforms 232

Index546

web UI testing, with Playwright
alternatives 234, 235
common scenarios, testing 239-242
locator automation methods 238, 239
locator methods 237, 238

.NET developers, benefits 234
page navigation and title verification 242-246
testing methods 236
testing types 235, 236
usage, considerations 232, 233

Windows Communication Foundation (WCF) 3

X
xUnit 41

attributes 451, 452
benefits 41
used, for testing class libraries 41
used, for testing web services 450, 451
used, for unit testing 451

Download the free PDF and supplementary content
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

Additionally, with this book you get access to supplementary/bonus content for you to learn more. You
can use this to add on to your learning journey on top of what you have in the book.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free
content in your inbox daily.

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below:

https://packt.link/supplementary-content-9781835880388

2. Submit your proof of purchase.
3. Submit your book code. You can find the code on page no. 257 of the book.
4. That’s it! We’ll send your free PDF, supplementary content, and other benefits to your email

directly.

	Cover
	Copyright
	Contributors
	Table of Contents
	Preface
	Chapter 1: Introducing Web Development Using Controllers
	Understanding ASP.NET Core
	A Brief History of ASP.NET Core
	Classic ASP.NET versus modern ASP.NET Core
	Building websites using ASP.NET Core
	Comparison of file types used in ASP.NET Core
	Building websites using a content management system
	Building web applications using SPA frameworks
	Building web and other services
	Cloud providers and deployment tools

	Structuring projects and managing packages
	Structuring projects in a solution
	Structuring folders in a project
	Folder structure based on technological concerns
	Folder structure based on features
	Folder structure summary

	Central Package Management

	Making good use of the GitHub repository for this book
	Understanding the solution code on GitHub
	Downloading solution code from the GitHub repository
	Using Git with VS Code and the command prompt
	Cloning the book solution code repository

	Building an entity model for use in the rest of the book
	Northwind database SQL scripts
	Installing Docker and the Azure SQL Edge container image
	Running the Azure SQL Edge container image
	Running a container using the user interface
	Connecting to Azure SQL Edge in a Docker container
	Connecting from Visual Studio
	Connecting from VS Code

	Creating the Northwind database using a SQL script
	Removing Docker resources
	Setting up the EF Core CLI tool
	Creating a class library for entity models
	Creating a class library for a database context
	Setting the user and password for SQL Server authentication
	Registering dependency services
	Improving the class-to-table mapping
	Testing the class libraries using xUnit

	Practicing and exploring
	Exercise 1.1 – Online material
	Exercise 1.2 – Practice exercises
	Troubleshooting web development

	Exercise 1.3 – Test your knowledge
	Know your webbreviations

	Exercise 1.4 – Explore topics

	Summary

	Chapter 2: Building Websites Using ASP.NET Core MVC
	Setting up an ASP.NET Core MVC website
	Creating an ASP.NET Core MVC website
	Creating the authentication database for SQL Server LocalDB
	Changing the port numbers and starting the website
	Understanding browser requests during development
	Exploring visitor registration
	Reviewing an MVC website project structure
	Reviewing the ASP.NET Core Identity database
	Configuring files included in an ASP.NET Core project
	Project file build actions

	Exploring an ASP.NET Core MVC website
	ASP.NET Core MVC initialization
	What does UseMigrationsEndPoint do?
	Controlling the hosting environment
	The default MVC route
	Controllers and actions
	The responsibilities of a controller
	Routing to controllers
	The ControllerBase class
	The Controller class
	Reviewing the project template controller
	The view search path convention
	Logging using the dependency service

	Using entity and view models
	View model example

	Implementing views
	How cache busting with Tag Helpers works

	Prototyping with Bootstrap
	Breakpoints and containers
	Rows and columns
	Color themes
	Tables
	Buttons and links
	Badges
	Alerts
	Good practice for Bootstrap

	Customizing an ASP.NET Core MVC website
	Defining a custom style
	Setting up the category images
	Razor syntax and expressions
	Defining a typed view
	Testing the home page with categories
	Cross-functional filters
	Using a filter to define a custom route

	Temporarily storing data

	Practicing and exploring
	Exercise 2.1 – Online material
	Exercise 2.2 – Practice exercises
	Practice building UIs with Bootstrap

	Exercise 2.3 – Test your knowledge
	Exercise 2.4 – Explore topics

	Summary

	Chapter 3: Model Binding, Validation, and Data Using EF Core
	Model binding and validation
	How model binding works
	How validation rules are defined
	Passing parameters using a route value
	Disambiguating action methods
	Model binders in detail
	Passing a route parameter
	Passing a form parameter
	Avoiding over-posting aka mass assignment attacks
	Returning HTTP error status codes
	BadRequest
	NotFound
	Unauthorized
	Forbid
	Conflict
	UnprocessableEntity
	StatusCode
	Problem
	ValidationProblem

	Modifying data using EF Core and ASP.NET Core
	Displaying Northwind suppliers
	Inserting, updating, and deleting suppliers
	Manually trying to insert, update, and delete
	Protecting against CSRF attacks
	How CSRF attacks work
	How anti-forgery tokens prevent CSRF
	How to use Html.AntiForgeryToken()

	Querying a database and using display templates

	Improving scalability using asynchronous tasks
	Threads and tasks on a web server
	Making controller action methods asynchronous

	Practicing and exploring
	Exercise 3.1 – Online material
	Exercise 3.2 – Practice exercises
	Practice implementing MVC by implementing a category detail page

	Exercise 3.3 – Test your knowledge
	Exercise 3.4 – Explore topics

	Summary

	Chapter 4: Building and Localizing Web User Interfaces
	Defining web user interfaces with Razor Views
	Using shared layouts with Razor Views
	Defining views with HTML Helper methods

	Defining web user interfaces with Tag Helpers
	Comparing HTML Helpers and Tag Helpers
	Exploring the Anchor Tag Helper
	Exploring the Cache Tag Helpers
	Exploring the Environment Tag Helper
	Exploring Forms-related Tag Helpers

	Localizing web user interfaces with ASP.NET Core
	Working with cultures
	Localizing your user interface
	Web user interface localization
	Creating resource files
	If you are using Visual Studio
	If you are using VS Code
	Other resource file tools
	Managing resource files

	Localizing Razor Views with an injected view localizer
	Understanding the Accept-Language header

	Practicing and exploring
	Exercise 4.1 – Online material
	Exercise 4.2 – Practice exercises
	Practice creating a custom Tag Helper
	Practice unit testing MVC controllers

	Exercise 4.3 – Test your knowledge
	Exercise 4.4 – Explore topics

	Summary

	Chapter 5: Authentication and Authorization
	Introducing authentication and authorization
	Key concepts of authentication and authorization
	Identity management
	Authentication schemes
	Role-based and claims-based authorization
	Security best practices
	Cookie-based authentication
	Password verifier best practices

	Implementing authentication and authorization
	Defining policies
	External authentication
	Securing APIs with JWT

	Securing controller action methods using filters
	Enabling role management and creating a role programmatically
	Cross-functional filters
	Authorization filter (IAuthorizationFilter)
	Resource filter (IResourceFilter)
	Action filter (IActionFilter)
	Exception filter (IExceptionFilter)
	Result filter (IResultFilter):
	Common benefits of all filters

	Practicing and exploring
	Exercise 5.1 – Online material
	Exercise 5.2 – Practice exercises
	Auth0 integration

	Exercise 5.3 – Test your knowledge
	Exercise 5.4 – Explore topics

	Summary

	Chapter 6: Performance Optimization Using Caching
	Introducing caching with ASP.NET Core
	General caching guidelines
	Reviewing types of caching
	Caching HTTP responses for websites
	Common cache-control directives
	Controlling cache-control directives in ASP.NET Core
	Exploring cache-control directives
	Seeing the effect of cache-control directives

	Summary of caching types

	Output caching
	Output caching endpoints
	Output caching MVC views
	Varying output cached data by query string
	Disabling output caching to avoid confusion

	Object caching
	Caching objects using in-memory caching
	Expirations for in-memory caching
	Exploring in-memory object caching
	Caching objects using distributed caching
	Hybrid object caching
	Creating data repositories with caching for entities
	Configuring the customer repository

	More techniques to improve scalability
	Horizontal scaling with load balancing
	Asynchronous programming
	Database optimizations
	Message queues and background services
	Auto-scaling in the cloud
	CDN
	Health checks and monitoring

	Practicing and exploring
	Exercise 6.1 – Online material
	Exercise 6.2 – Practice exercises
	Practicing improving scalability by understanding and implementing async action methods

	Exercise 6.3 – Test your knowledge
	Exercise 6.4 – Explore topics

	Summary

	Chapter 7: Web User Interface Testing Using Playwright
	Introducing web user interface testing
	Types of web UI testing
	What should you test in a web UI?
	Challenges and good practices with web UI testing
	The roles of developers and testers
	Developers and web UI testing
	Testers and web UI testing
	Collaboration between developers and testers

	Real-life applications of web user interface testing
	E-commerce websites: preventing cart and checkout failures
	Financial applications: ensuring data integrity and accuracy
	Healthcare portals: guaranteeing user and data safety
	Banking applications: avoiding security and transaction errors
	Government and public sector: ensuring accessibility compliance
	SaaS platforms: preventing downtime and data loss
	Travel and booking platforms: ensuring smooth transactions

	Testing web user interfaces using Playwright
	What can Playwright do?
	Benefits for .NET developers
	Alternatives to Playwright
	Common Playwright testing types
	Common Playwright testing methods
	Common Playwright locator methods
	Common Playwright locator automation methods
	Testing common scenarios
	Page navigation and title verification

	Interacting with a web user interface
	Filling input boxes and clicking elements
	Form submission, authentication, and validation
	Responsive design testing
	Emulating screen sizes
	Emulating devices
	Emulating locale, time zone, and geolocation
	Emulating dark mode and color schemes
	Customizing the user agent, disabling JavaScript, and going offline

	Single-Page Applications (SPAs) and dynamic content

	Generating tests with the Playwright Inspector
	Practicing and exploring
	Exercise 7.1 – Online-only material
	Exercise 7.2 – Practice exercises
	Exercise 7.3 – Test your knowledge
	Exercise 7.4 – Explore topics

	Summary

	Chapter 8: Configuring and Containerizing ASP.NET Core Projects
	Configuring dependency services
	Introducing dependency injection
	Why use DI?
	Injection mechanisms of DI in .NET
	Examples in modern .NET
	Constructor injection example
	Property injection example
	Method injection example

	Dependency graphs and service resolution
	Registering dependency service lifetimes
	When are exceptions thrown?
	Registering services for features using extension methods
	When you cannot use constructor injection
	Using scoped services in middleware

	Resolving services at startup
	DI and MVC controller action methods
	DI and MVC views
	Disposing services
	Best practices for DI

	Configuring the HTTP pipeline
	Understanding endpoint routing
	Benefits of endpoint routing
	Configuring endpoint routing
	Reviewing the default endpoint routing configuration
	Setting up the HTTP pipeline
	Summarizing key middleware extension methods
	Visualizing the HTTP pipeline
	Implementing an anonymous inline delegate as middleware

	Configuring options
	Configuration sources
	Configuration classes and interfaces
	How to manually set up configuration
	Understanding IConfiguration and IConfigurationRoot
	IConfiguration for combined settings from all providers
	IConfigurationRoot for more advanced scenarios

	Showing providers and settings
	Configuration overriding in production deployments
	Configuration overriding in Docker
	Configuration overriding in Kubernetes

	Loading configuration using the Options pattern
	Using IOptionsSnapshot and IOptionsMonitor
	Configuration validation
	Using custom configuration providers

	Containerizing ASP.NET Core projects
	How containers work and their benefits
	Docker and .NET Aspire
	Installing Docker and using prebuilt images
	Aspire project types
	Aspire resource types
	Developer dashboard for monitoring
	Adding Aspire to an existing solution
	Deployment with Aspire

	Practicing and exploring
	Exercise 8.1 – Online material
	Exercise 8.2 – Practice exercises
	Exercise 8.3 – Test your knowledge
	Exercise 8.4 – Explore topics

	Summary

	Chapter 9: Building Web Services UsingASP.NET Core Web API
	Introducing web services
	Aspects of RESTful services
	Statelessness
	Resource-based
	Uniform interface
	Client-server architecture
	Cacheability
	Layering
	Representation of resources
	Idempotency
	Hypermedia as the Engine of Application State (HATEOAS)

	Why REST matters
	Understanding HTTP versions
	HTTP/0.9 (1991)
	HTTP/1.0 (1996)
	HTTP/1.1 (1997, updated in 1999)
	HTTP/2 (2015)
	HTTP/3 (2020)

	Understanding HTTP requests and responses for web APIs
	GET requests
	Common response status codes
	Caching requests example
	POST, PUT, and other requests

	Creating an ASP.NET Core Web API with controllers project
	Trying out the weather forecast web service’s functionality

	Creating a web service for the Northwind database
	Controlling XML serialization
	Routing web service requests to action methods
	Route constraints
	Short-circuit routes
	Understanding action method return types
	Configuring the customer repository and Web API controller
	Specifying problem details

	Documenting and trying out web services
	Making GET requests using a browser
	Making GET requests using HTTP/REST tools
	Making other requests using HTTP/REST tools
	Passing environment variables
	Understanding the OpenAPI Specification
	Generating clients using an OpenAPI specification

	Caching and logging
	Caching HTTP responses for web services
	Enabling HTTP logging
	Support for logging additional request headers in W3CLogger
	Logging and security principles
	Avoid logging sensitive information
	Mask or obfuscate sensitive data
	Avoid logging request and response bodies for sensitive endpoints
	Use structured logging for sensitive data management
	Log security events without sensitive data
	Beware of third-party library logging
	Log errors with caution

	Consuming web services using HTTP clients
	Understanding HttpClient
	Configuring HTTP clients using HttpClientFactory
	Getting customers as JSON in the controller
	Starting multiple projects
	If you are using Visual Studio
	If you are using VS Code

	Starting the web service and MVC client projects

	Relaxing the same origin security policy using CORS
	Configuring HTTP logging for the web service
	Creating a .NET client
	Understanding CORS
	Understanding other CORS policy options

	Understanding identity services
	JWT bearer authorization
	Authenticating service clients using JWT bearer authentication

	Practicing and exploring
	Exercise 9.1 – Online material
	Improved route tooling
	Implementing advanced features for web services

	Exercise 9.2 – Practice exercise
	Creating and deleting customers with HttpClient

	Exercise 9.3 – Test your knowledge
	Exercise 9.4 – Explore topics

	Summary

	Chapter 10: Building Web Services UsingASP.NET Core OData
	Understanding OData
	Understanding the OData standard
	Benefits of OData
	Standardized querying
	Cross-platform interoperability and integration with Microsoft ecosystem
	Self-describing and rich metadata
	Supports RESTful principles and CRUD operations
	Supports multiple data formats
	Built-in support for data relationships
	Extensibility
	Standard security features

	Disadvantages of OData

	Building a web service that supports OData
	Defining OData models for the EF Core models
	Testing the OData models
	Creating and testing OData controllers

	Exploring OData services using HTTP/REST tools
	Creating an HTTP file for making requests
	Understanding OData queries
	OData standard query options
	OData operators
	OData functions

	Exploring OData queries
	Using logs to review the efficiency of OData requests

	Implementing versions and data modifications
	Versioning OData controllers
	Enabling entity inserts, updates, and deletes

	Building clients for OData services
	Calling services in the Northwind MVC website
	Revisiting the introductory query

	Practicing and exploring
	Exercise 10.1 – Online material
	Exercise 10.2 – Practice exercises
	Exercise 10.3 – Test your knowledge
	Exercise 10.4 – Explore topics

	Summary

	Chapter 11: Building Web Services Using FastEndpoints
	Introducing FastEndpoints
	Pros and cons of FastEndpoints
	What makes it “fast”?
	How to define an endpoint
	Example FastEndpoints endpoint implementation

	Implementing FastEndpoints
	Adding FastEndpoints to an empty ASP.NET Core project
	Enabling FastEndpoints and defining endpoints

	Configuring FastEndpoints
	Configuration methods and properties
	Mapping requests and responses to entity models

	Practicing and exploring
	Exercise 11.1 – Online material
	Exercise 11.2 – Practice exercises
	Exercise 11.3 – Test your knowledge
	Exercise 11.4 – Explore topics

	Summary

	Chapter 12: Web Service Integration Testing
	Basics of integration testing
	Testing terminology
	Attributes of all good tests
	Test outcomes
	Why false positives and false negatives are bad

	Test doubles, mocks, and stubs
	Which external systems to test
	Sharing fixtures in integration tests
	Understanding web service functional and end-to-end testing
	End-to-end test scenario
	Functional test scenario
	Test automation

	Integration testing with data stores
	Developer instances of the database and migrations
	Data lifecycle

	Testing web services using xUnit
	Unit testing using xUnit
	Common xUnit attributes
	Web service hosting with WebApplicationFactory
	Enabling an ASP.NET Core project to be tested
	Creating the test project

	Mocking in tests
	Libraries for mocking
	Using NSubstitute to create test doubles
	Mocking with NSubstitute example

	Testing services using dev tunnels
	Installing the dev tunnel CLI
	Exploring a dev tunnel with the CLI and an echo service
	Exploring a dev tunnel with an ASP.NET Core project

	Practicing and exploring
	Exercise 12.1 – Online-only material
	Exercise 12.2 – Practice exercises
	Create integration tests for three web service technologies

	Exercise 12.3 – Test your knowledge
	Exercise 12.4 – Explore topics

	Summary

	Chapter 13: Web Content Management Using Umbraco
	Understanding the benefits of a CMS
	Understanding basic CMS features
	Understanding enterprise CMS features
	Understanding CMS platforms

	Introducing Umbraco CMS
	Why is Umbraco popular?
	Umbraco versions and setup
	Installing Umbraco CMS
	Creating and initializing a new Umbraco project
	Unattended installs

	Defining document types
	Example document types
	Creating a document type
	Setting up languages
	Defining a document template
	Reviewing the website
	Adding a home page as content
	Creating and publishing a French variant home page

	Working with media
	Good media practices
	Organizing media using folders
	Using tags to enhance searchability
	Optimizing image sizes before uploading
	Using meaningful file names and alt text
	Leveraging image cropping and variants
	Avoiding duplicate media uploads
	Removing unused media regularly
	Using Umbraco’s built-in permissions for media access
	Training editors on best practices and providing resources

	Uploading images to Umbraco CMS

	Practicing and exploring
	Exercise 13.1 – Online material
	Exercise 13.2 – Practice exercises
	Exercise 13.3 – Test your knowledge
	Exercise 13.4 – Explore topics

	Summary

	Chapter 14: Customizing and Extending Umbraco
	Techniques for customizing and extending Umbraco
	Building custom property editors for enhanced content creation
	Integrating third-party APIs to enhance functionality
	Custom workflow automation for content approval
	Multilingual capabilities with custom language switching

	Customizing Umbraco behavior using settings
	Content settings
	Security settings
	Imaging settings
	Global settings
	Content version cleanup

	Working with views and Razor syntax
	What is IPublishedContent?
	Core functionality of IPublishedContent
	Using IPublishedContent with ModelsBuilder

	Rendering fields in a strongly typed view
	Rendering complex field types
	Rendering Rich Text Editor (RTE) fields
	Rendering Multi-Node Tree Picker (MNTP) fields
	Handling Media Picker fields
	Handling Nested Content and Block List editors
	Common considerations

	Accessing member data
	Using Models Builder

	The UmbracoHelper class
	Retrieving content by ID
	Retrieving media by ID
	Rendering a content template
	Getting dictionary values
	Querying content using LINQ
	Checking member authorization
	UmbracoHelper summary

	Practicing and exploring
	Exercise 14.1 – Online material
	Exercise 14.2 – Practice exercises
	The Starter Kit
	Extending Umbraco

	Exercise 14.3 – Test your knowledge
	Exercise 14.4 – Explore topics

	Summary

	Epilogue
	Next steps on your web development learning journey
	Companion books to continue your learning journey
	Other books to take your learning further

	The next edition for .NET 10

	Index

