

CONTENTS IN DETAIL

PRAISE FOR THE COMPLETE DEVELOPER

TITLE PAGE

COPYRIGHT

DEDICATION

ABOUT THE AUTHOR AND TECHNICAL REVIEWER

ACKNOWLEDGMENTS

INTRODUCTION
Who Should Read This Book?
What’s in This Book?
The Parts of a Full-Stack Application

The Frontend
The Middleware
The Backend

A Brief History of JavaScript and Full-Stack Development
Setting Up

PART I: THE TECHNOLOGY STACK
1
NODE.JS
Installing Node.js
Working with npm
The package.json File

Required Fields
Dependencies
Development Dependencies

The package-lock.json File

Creating a Project
Initializing a New Module or Project
Installing the Dependencies
Installing the Development Dependencies
Auditing the package.json File
Cleaning Up the node_modules Folder
Updating All Packages
Removing a Dependency
Installing a Dependency
Using npx to Execute a Script Only Once

Exercise 1: Build a “Hello World” Express.js Server
Setting Up
Writing the Server Code

Summary

2
MODERN JAVASCRIPT
ES.Next Modules

Using Named and Default Exports
Importing Modules

Declaring Variables
Hoisted Variables
Scope-Abiding Variables
Constant-Like Data

Arrow Functions
Writing Arrow Functions
Understanding Lexical Scope
Exploring Practical Use Cases

Creating Strings
Asynchronous Scripts

Avoiding Traditional Callbacks
Using Promises
Simplifying Asynchronous Scripts

Looping Through an Array
Dispersing Arrays and Objects
Exercise 2: Extend Express.js with Modern JavaScript

Editing the package.json File
Writing an ES.Next Module with Asynchronous Code
Adding the Modules to the Server

Summary

3
TYPESCRIPT
Benefits of TypeScript
Setting Up TypeScript

Installation in Node.js

The tsconfig.json File
Dynamic Feedback with TypeScript

Type Annotations
Declaring a Variable
Declaring a Return Value
Declaring a Function’s Parameters

Built-in Types
Primitive JavaScript Types
The union Type
The array Type
The object Type
The tuple Type
The any Type
The void Type

Custom Types and Interfaces
Defining Custom Types
Defining Interfaces
Using Type Declaration Files

Exercise 3: Extend Express.js with TypeScript
Setting Up
Creating the tsconfig.json File
Defining Custom Types
Adding Type Annotations to the routes.ts File
Adding Type Annotations to the index.ts File
Transpiling and Running the Code

Summary

4
REACT
The Role of React
Setting Up React
The JavaScript Syntax Extension

An Example JSX Expression
The ReactDOM Package

Organizing Code into Components
Writing Class Components
Providing Reusable Behavior with Hooks

Working with Built-in Hooks
Managing the Internal State with useState
Handling Side Effects with useEffect
Sharing Global Data with useContext and Context Providers

Exercise 4: Create a Reactive User Interface for the Express.js Server
Adding React to the Server
Creating the Endpoint for the Static HTML File
Running the Server

Summary

5
NEXT.JS
Setting Up Next.js

Project Structure
Development Scripts

Routing the Application
Simple Page Routes
Nested Page Routes
API Routes
Dynamic URLs

Styling the Application
Global Styles
Component Styles

Built-in Next.js Components
The next/head Component
The next/link Component
The next/image Component

Pre-rendering and Publishing
Server-Side Rendering
Static Site Generation
Incremental Static Regeneration
Client-Side Rendering
Static HTML Exporting

Exercise 5: Refactor Express.js and React to Next.js
Storing Custom Interfaces and Types
Creating the API Routes
Creating the Page Routes
Running the Application

Summary

6
REST AND GRAPHQL APIS
REST APIs

The URL
The Specification
State and Authentication
HTTP Methods

Working with REST
Reading Data
Updating Data

GraphQL APIs
The Schema
The Resolvers

Comparing GraphQL to REST
Over-Fetching
Under-Fetching

Exercise 6: Add a GraphQL API to Next.js
Creating the Schema
Adding Data
Implementing Resolvers
Creating the API Route
Using the Apollo Sandbox

Summary

7
MONGODB AND MONGOOSE
How Apps Use Databases and Object-Relational Mappers
Relational and Non-Relational Databases
Setting Up MongoDB and Mongoose
Defining a Mongoose Model

The Interface
The Schema
The Model
The Database-Connection Middleware

Querying the Database
Creating a Document
Reading a Document
Updating a Document
Deleting a Document

Creating an End-to-End Query
Exercise 7: Connect the GraphQL API to the Database

Connecting to the Database
Adding Services to GraphQL Resolvers

Summary

8
TESTING WITH THE JEST FRAMEWORK
Test-Driven Development and Unit Testing
Using Jest
Creating an Example Module to Test
Anatomy of a Test Case

Arrange
Act
Assert

Using TDD
Refactoring Code
Evaluating Test Coverage

Replacing Dependencies with Fakes, Stubs, and Mocks
Creating a Module with Dependencies
Creating a Doubles Folder
Using a Stub
Using a Fake

Using a Mock
Additional Types of Tests

Functional Tests
Integration Tests
End-to-End Tests
Snapshot Tests

Exercise 8: Add Test Cases to the Weather App
Testing the Middleware with Spies
Creating Mocks to Test the Services
Performing an End-to-End Test of the REST API
Evaluating the User Interface with a Snapshot Test

Summary

9
AUTHORIZATION WITH OAUTH
How OAuth Works

Authentication vs. Authorization
The Role of OAuth
Grant Types
Bearer Tokens

The Authorization Code Flow
Creating a JWT Token

The Header
The Payload
The Signature

Exercise 9: Access a Protected Resource
Setting Up the Client
Logging In to Receive the Authorization Grant
Using the Authorization Grant to Get the Access Token
Using the Access Token to Get the Protected Resource

Summary

10
CONTAINERIZATION WITH DOCKER
The Containerization Architecture
Installing Docker
Creating a Docker Container

Writing the Dockerfile
Building the Docker Image
Serving the Application from the Docker Container
Locating the Exposed Docker Port
Interacting with the Container

Creating Microservices with Docker Compose
Writing the docker-compose.yml File
Running the Containers
Rerunning the Tests

Interacting with Docker Compose
Summary

PART II: THE FULL-STACK APPLICATION
11
SETTING UP THE DOCKER ENVIRONMENT
The Food Finder Application
Building the Local Environment with Docker

The Backend Container
The Frontend Container

Summary

12
BUILDING THE MIDDLEWARE
Configuring Next.js to Use Absolute Imports
Connecting Mongoose

Writing the Database Connection
Fixing the TypeScript Warning

The Mongoose Model
Creating the Schema
Creating the Location Model

The Model’s Services
Creating the Location Service’s Custom Types
Creating the Location Services
Testing the Services

Summary

13
BUILDING THE GRAPHQL API
Setting Up
The Schemas

The Custom Types and Directives
The Query Schema
The Mutation Schema

Merging the Typedefs into the Final Schema
The GraphQL Resolvers
Adding the API Endpoint to Next.js
Summary

14
BUILDING THE FRONTEND
Overview of the User Interface

The Start Page
The List Item
The Locations List
The Page

The Global Layout Components
The Logo
The Header
The Layout

The Location Details Page
The Component
The Page

Summary

15
ADDING OAUTH
Adding OAuth with next-auth

Creating a GitHub OAuth App
Adding the Client Credentials
Installing next-auth
Creating the Authentication Callback
Sharing the Session Across Pages and Components

The Generic Button Component
The AuthElement Component
Adding the AuthElement Component to the Header
The Wish List Next.js Page
Adding the Button to the Location Detail Component
Securing the GraphQL Mutations
Summary

16
RUNNING AUTOMATED TESTS IN DOCKER
Adding Jest to the Project
Setting Up Docker
Writing Snapshot Tests for the Header Element
Summary

A
TYPESCRIPT COMPILER OPTIONS

B
THE NEXT.JS APP DIRECTORY
Server Components vs. Client Components

Server Components
Client Components

Rendering Components

Fetching Data
Static Rendering
Dynamic Rendering

Exploring the Project Structure
Updating the CSS
Defining a Layout
Adding the Content and Route
Catching Errors
Showing an Optional Loading Interface
Adding a Server Component That Fetches Remote Data
Completing the Application with the Navigation
Replacing API Routes with Route Handlers

C
COMMON MATCHERS
Built-in Matchers
The JEST-DOM Matchers

INDEX

PRAISE FOR THE COMPLETE DEVELOPER

“The Complete Developer . . . takes you through the crowded JavaScript
landscape and teaches you how to build a modern sample application with
containerization, authentication, and tests—a great resource for anyone
starting out in web development.”

—BRADLEY SMITH, AUTHOR OF DEVOPS FOR THE DESPERATE

“It’s really quite astounding how many different complementary
technologies you’ll understand by the end of this book!”

—NICK MORGAN, AUTHOR OF JAVASCRIPT CRASH COURSE

THE COMPLETE DEVELOPER

Master the Full Stack with
TypeScript, React, Next.js,

MongoDB, and Docker

by Martin Krause

San Francisco

THE COMPLETE DEVELOPER. Copyright © 2024 by Martin Krause.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information storage or
retrieval system, without the prior written permission of the copyright owner and the publisher.

First printing

28 27 26 25 24 1 2 3 4 5

ISBN-13: 978-1-7185-0328-1 (print)
ISBN-13: 978-1-7185-0329-8 (ebook)

Published by No Starch Press®, Inc.
245 8th Street, San Francisco, CA 94103
phone: +1.415.863.9900
www.nostarch.com; info@nostarch.com

Publisher: William Pollock
Managing Editor: Jill Franklin
Production Manager: Sabrina Plomitallo-González
Production Editor: Jennifer Kepler
Developmental Editor: Frances Saux
Cover Illustrator: Gina Redman
Interior Design: Octopod Studios
Technical Reviewer: Quentin Hartman
Copyeditor: Audrey Doyle
Proofreader: Sharon Wilkey
Indexer: BIM Creatives, LLC

Library of Congress Control Number: 2023033924

For customer service inquiries, please contact info@nostarch.com. For information on distribution,
bulk sales, corporate sales, or translations: sales@nostarch.com. For permission to translate this
work: rights@nostarch.com. To report counterfeit copies or piracy: counterfeit@nostarch.com.

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc.
Other product and company names mentioned herein may be the trademarks of their respective
owners. Rather than use a trademark symbol with every occurrence of a trademarked name, we are
using the names only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every
precaution has been taken in the preparation of this work, neither the author nor No Starch Press, Inc.
shall have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in it.

http://www.nostarch.com/

To true friends and partners. We run on caffeine and gasoline.

About the Author
Martin Krause has been making websites professionally for more than two
decades. He has served as an engineering manager at Publicis Sapient and
as a senior frontend architect at Razorfish, creating cutting-edge microsites
and leading frontend teams on large-scale projects for Fortune 500
companies. As a certified scuba diving professional and avid traveler, he
goes on frequent adventures above and below sea level. You can find him at
https://mkrause.info, and he is @martinkr.xyz on Bluesky.

https://mkrause.info/

About the Technical Reviewer
In his nearly 25-year career in technology, Quentin Hartman has managed
telecom systems, data centers, and public and private clouds and has acted
as a sysadmin, a database administrator, a network engineer, and an incident
responder. As a leader, he has advised tiny startups and Fortune 500
companies and run DevOps, QA, and development teams. He is passionate
about social-impact projects that use open source tools. He lives near
Denver with his family and can often be found building things, cooking, or
wandering the woods. He is @qhartman on X.

ACKNOWLEDGMENTS

This book is based on the experience I gained while working as a software
engineer. Thank you to all who encouraged me to push boundaries daily,
teaching me the skills necessary for performing large-scale, high-
performance frontend and full-stack development. Thank you equally to all
the developers who served as my first students when I started teaching these
skills to others back in 2008, and to the extraordinary friends and partners
who have always had my back. Lastly, I am thrilled to publish a book with
the extraordinary team at No Starch Press. I could not have done it without
the outstanding support and guidance they provided me.

INTRODUCTION

Nearly all programming jobs today
require at least a cursory understanding

of full-stack development, but if you’re a beginner,
you might struggle to find the right entry point to this
overwhelming topic. You might not even know what
the term means.

Simply put, full-stack web development typically refers to the creation
of complete web applications using JavaScript and the many frameworks
built for it. It requires a mastery of the traditional disciplines of frontend
and backend development, as well as the ability to write middleware and
various kinds of application programming interfaces (APIs).

Lastly, a well-rounded full-stack developer can handle databases and
has professional skills, such as the ability to craft automated tests and
deploy their code by themselves. To do all of this, they must understand
HTML, CSS, and JavaScript, as well as the language’s typed counterpart,
TypeScript. For a crash course on some of this terminology, see “The Parts
of a Full-Stack Application” on page xxiv.

If this sounds like a lot, you’ve come to the right place. This book will
introduce you to each component of a modern application and teach you
how to use some of the most widely used technologies to build them.

Who Should Read This Book?
There are two primary audiences for the book. The first includes
professional frontend or backend engineers who want to advance their
careers by mastering full-stack development. The second includes
inexperienced, beginning developers interested in learning about web
development.

While the book introduces many technologies from scratch, it assumes
some prior familiarity with HTML, CSS, and JavaScript, as well as the
client/server architecture of most web applications. For a refresher, see The
Coding Workbook by Sam Taylor (No Starch Press, 2020), which teaches
you how to build a website with HTML and CSS, and The Book of CSS3,
2nd edition, by Peter Gasston (No Starch Press, 2014) to sharpen your CSS
skills. To familiarize yourself with JavaScript, I recommend JavaScript
Crash Course by Nick Morgan (No Starch Press, 2024), which is a fast-
paced JavaScript tutorial for beginners, and Eloquent JavaScript, 3rd
edition, by Marijn Haverbeke (No Starch Press, 2018), for a deep dive into
JavaScript.

What’s in This Book?
The book is split into two parts. Part I, comprising Chapters 1 through 10,
introduces you to the components of a modern technology stack. Each
chapter focuses on one technology and highlights the topics you need to
know as a full-stack developer. The exercises will encourage you to begin
writing application code from page 1.

Chapter 1: Node.js Introduces you to Node.js and its ecosystem,
which let you run JavaScript code outside a browser. Then you’ll use
Node.js and the Express.js framework to create your own simple web
server with JavaScript.
Chapter 2: Modern JavaScript Focuses on contemporary JavaScript
syntax useful for full-stack developers, including how to use modules
to write maintainable code packages. We look at the different ways to
define variables and constants, the arrow function, and techniques for
asynchronous code. You’ll use these to rewrite your JavaScript server.
Chapter 3: TypeScript Introduces TypeScript, a superset of
JavaScript, and highlights how modern full-stack development benefits
from it. We discuss the shortcomings and pitfalls of JavaScript and how
to effectively leverage TypeScript’s type system through inference.
You’ll conclude the chapter by refactoring your JavaScript server with
type annotations, custom types, and interfaces.
Chapter 4: React Discusses React, one of the most common libraries
for creating user interface components. You’ll see how its components
simplify full-stack development and learn how to use its JSX elements,
the virtual DOM, and hooks. You’ll then use React to add a reactive
user interface to your Express.js server.
Chapter 5: Next.js Focuses on Next.js, the leading web application
framework built on top of React. You’ll create pages and custom API
routes with Next.js’s file-based routing before learning different ways
to render a page within the framework. Finally, you’ll migrate the
Express.js server to Next.js as an exercise.

Chapter 6: REST and GraphQL APIs Teaches you all about APIs,
what they are, and how to use them for full-stack web development. We
explore two kinds of APIs: REST and GraphQL. You’ll conclude the
chapter by adding an Apollo GraphQL server to your Next.js full-stack
application.
Chapter 7: MongoDB and Mongoose Discusses the differences
between traditional relational databases and non-relational databases
such as MongoDB. You’ll add the Mongoose object data modeling tool
to your technology stack to simplify working with a database. You’ll
then connect the GraphQL API to your own MongoDB database.
Chapter 8: Testing with the Jest Framework Explains the
importance of automated tests and test-driven development to full-stack
development. We explore different types of tests, common test patterns,
and the concepts of test doubles, stubs, fakes, and mocks. Lastly, you’ll
add a few basic snapshot tests to your Next.js application with the Jest
framework.
Chapter 9: Authorization with OAuth Discusses authentication and
authorization and how full-stack developers can use the OAuth
protocol to handle those tasks by integrating with a third-party service.
We walk through this authorization flow and its components. You’ll run
through a complete OAuth interaction on the command line to explore
each step in depth.
Chapter 10: Containerization with Docker Introduces you to using
Docker to deploy your application. We cover the concept of a
microservice architecture, then cover all relevant components of the
Docker ecosystem: the host, the Docker daemon, Dockerfiles, images,
containers, volumes, and Docker Compose. You’ll conclude by
splitting your application into self-contained microservices.

In Part II, you’ll use your newfound knowledge to build a web
application that applies the concepts, tools, and frameworks introduced in
Part I. The Food Finder application is a location search service that lets
users log in with their GitHub account and maintain a wish list of places to
visit.

Chapter 11: Setting Up the Docker Environment Create the
foundation of your Food Finder application by using your knowledge
of Docker and containerization to set up your development
environment. You’ll use Docker Compose to decouple the application
development from your local system and then add a MongoDB server
as its own service.
Chapter 12: Building the Middleware Create the first part of the
Food Finder application’s middleware. Here you’ll connect Mongoose
to the MongoDB service and create its schema, model, services, and
custom types. With these pieces in place, you’ll be able to create, read,
update, and delete data from your database.
Chapter 13: Building the GraphQL API Use your knowledge of
GraphQL to add an Apollo GraphQL server to your Food Finder
application, then implement a public GraphQL API. You’ll be able to
use the Apollo sandbox to read and update data with GraphQL on your
MongoDB server.
Chapter 14: Building the Frontend Use React components and the
Next.js framework to build the frontend for the Food Finder
application. At this point, you’ll have implemented a complete modern
full-stack application that reads data from the database through your
custom middleware and renders the data to your application’s frontend.
Chapter 15: Adding OAuth Add an OAuth flow to your app so that
visitors can log in to maintain a personal wish list of locations. You’ll
use the next-auth package from Auth.js to add login options using
GitHub.
Chapter 16: Running Automated Tests in Docker Set up automated
snapshot tests with Jest and configure a new service to run the tests
automatically.

Then, in the appendices, you’ll get detailed information on the
TypeScript Compiler options and the most common Jest matchers. Also,
you’ll use your newfound knowledge to explore and understand Next.js’s
modern app directory approach.

Appendix A: TypeScript Compiler Options Shows the most
common TypeScript Compiler (TSC) options so that you can customize
your own TypeScript projects to your liking.
Appendix B: The Next.js app Directory Explores a new routing
pattern using the app directory that Next.js introduced in version 13.
You can then choose to work with either the traditional pages approach
covered in Chapter 5 or the modern app directory in your own
upcoming projects.
Appendix C: Common Matchers Shows the most common matchers
for testing your applications with Jest and the Jest DOM.

The Parts of a Full-Stack Application
Throughout this book, we’ll discuss various portions of an application. This
section gives you a crash course on what we mean when we use the terms
frontend, middleware, and backend.

The Frontend
The frontend is the user-facing part of a website or web application. It runs
on the client, typically a web browser. You can think of it as the “front
office” of the web application. For example, on https://www.google.com,
the frontend is a page with a simple search bar, though of course, frontend
development can be much more complex than this; take a look at Google’s
search results page or the interface of the last website you visited.

Frontend developers focus on user engagement, experiences, and
interfaces. They rely on HTML for creating the elements of the website’s
interface, CSS for styling, JavaScript for user interactions, and frameworks
such as Next.js to pull everything together.

The Middleware
The middleware connects an application’s frontend and backend and
performs all of its chores, such as integrating with third-party services and
transferring and updating data. You can think of it as the employees on the
company floor.

As full-stack developers, we often write middleware for routing our
applications, which means serving the correct data for a particular URL,
handling database connections, and performing authorization. For example,
on https://www.google.com, the middleware asks the server for the landing
page’s HTML. Then a different part of the middleware checks whether the
user is logged in, and if so, which personal data it should show. Meanwhile,
a third part of the middleware consolidates the information from each of
these data streams and then answers the server’s requests with the correct
HTML.

One essential part of a full-stack application’s middleware is its API
layer, which exposes the application’s APIs. Generally, an API is code
written to connect two machines. Often, an API lets the frontend code (or a

https://www.google.com/
https://www.google.com/

third party) access the application’s backend. JavaScript-driven
development relies on two primary architectural frameworks for creating
APIs: REST and GraphQL, both of which are covered in Chapter 6.

You could write the middleware by using any programming language.
Most full-stack developers use modern JavaScript or TypeScript, but they
could instead use PHP, Ruby, or Go.

The Backend
The backend is the invisible part of a web application. In a JavaScript-
driven application, the backend runs on a server, typically Express.js,
though others might use Apache or NGINX. You can think of it as the “back
office” of the web application.

More concretely, the backend handles any operations involving the
application’s data. It performs create, read, update, and delete (CRUD)
operations on the values stored in the database and returns the datasets
requested by the user through the middleware’s API layer. For https://www
.google.com, the backend is the code that searches the database for the
keywords you entered in the frontend, which the backend received through
the middleware. The middleware would combine these search results with
other relevant pieces of information. Then the user would see the search
results page rendered by the frontend.

Backend development can be done in any programming language. Full-
stack developers usually employ modern JavaScript or TypeScript. Other
options include PHP, Ruby, Elixir, Python, Java, and frameworks like
Symfony, Ruby on Rails, Phoenix, and Django.

https://www.google.com/

A Brief History of JavaScript and Full-Stack
Development
All developers should understand the context of the tools they’re using.
Before we begin developing, let’s start with a bit of history.

The full-stack developer position evolved alongside JavaScript, which
began as nothing more than a scripting language that ran in users’ browsers.
Developers used it to add elements to their websites, such as accordions,
pop-up menus, and overlays, that reacted immediately to a user’s behavior,
without requiring requests to the application’s server.

Until the late 2000s, most JavaScript libraries were designed to provide
consistent interfaces to handle vendor-specific quirks. Often, the JavaScript
engines were slow, especially when interacting with, updating, or
modifying the HTML. Hence, JavaScript was considered a quirky scripting
language for the frontend and was frowned upon by backend developers.

Several projects attempted to popularize the use of JavaScript in the
backend, but until the release of Node.js in 2009, these didn’t gain any
traction. Node.js, covered in Chapter 1, is a JavaScript tool for developing
backends. Shortly thereafter, the Node.js package manager npm built the
missing ecosystem for full-stack JavaScript development.

This ecosystem includes a host of JavaScript libraries for working with
databases, building user interfaces, and writing server-side code (many of
which we’ll explore in this book). These new tools allowed developers to
use JavaScript reliably on both the client and the server. Of particular
importance, Google released the Angular framework in 2010, and Meta
(known as Facebook at the time) released React in 2013. The commitment
of these internet giants to building JavaScript tools turned full-stack web
development into a sought-after role.

Setting Up
Throughout this book, you’ll write code and run command line tools. You
can use any development environment you’d like, but here are some
guidelines.

The most common code editor these days is Visual Studio Code, which
you can download from https://code.visualstudio.com. It is Microsoft’s
open source editor and is free for Windows, macOS, and Linux. In addition,
you can extend and configure it through a plethora of third-party plug-ins
and adjust its appearance to your liking. However, if you’re used to a
different editor, such as Vim or Emacs, you can keep using it. The book
doesn’t require a particular tool.

Depending on your operating system, your default command line
program will be either the Command Prompt (on Windows) or the Terminal
(on macOS and Linux). These programs use slightly different syntax for
tasks like creating, changing, and listing the contents of a directory. This
book shows the Linux and macOS versions of these commands. If you’re
using Windows, you’ll have to adapt the commands for your operating
system. For example, instead of ls, Windows uses dir to list files and
folders in the current directory. Microsoft’s official command line reference
lists all available commands here: https://learn.microsoft.com/en-us
/windows-server/administration/windows-commands/windows-
commands#command-line-reference-a-z.

The most notable difference between operating systems relevant to this
book is the escape character used for line breaks in multiline cURL
commands. This escape character is \ on macOS and ^ on Windows. We’ll
point out these differences in Chapter 6, when we first use cURL.

You can download the code listings for the first part of the book and the
complete source code for the Food Finder application from https://www
.usemodernfullstack.dev/downloads.

https://code.visualstudio.com/
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/windows-commands#command-line-reference-a-z
https://www.usemodernfullstack.dev/downloads

PART I
THE TECHNOLOGY STACK

1
NODE.JS

Node.js is an open source runtime
environment that executes JavaScript

code outside a web browser. You could, for example,
use it as a scripting language to perform all kinds of
chores, such as deleting and moving files, logging
data on the server side, or even creating your own
web server (as we’ll do in this chapter’s exercise).

Knowing how to use Node.js is not really about understanding
individual commands or packages, because it relies on standard JavaScript
and you can refer to the documentation for details about its syntax and
parameters. Instead, all developers should strive to understand the Node.js
ecosystem and use it to their advantage. This chapter will introduce you to
it.

Installing Node.js
Begin by checking whether Node.js is already available on your local
machine by running the node command from your command line. The
version flag (-v) should return the current Node.js version:

$ node -v

If you see an output with a version number, Node.js is installed. If you
don’t, or if the version is lower than the currently recommended stable
release listed on https://nodejs.org, you should install this stable version.

To install Node.js locally, go to https://nodejs.org/en/download and
select the installer for your operating system. I recommend installing the
long-term support (LTS) version of Node.js because many Node.js modules
require this version. Run the installer package for Node.js LTS and npm,
then check the version number again. It should match the one you’ve just
installed.

Next, we’ll review the basic commands and features of the Node.js
runtime environment. If you prefer not to install Node.js, you can run the
Node.js command line examples and JavaScript code in the online
playgrounds at https://codesandbox.io/s/new and https://stackblitz.com.

Working with npm
The default package manager for Node.js is npm. You can find modules for
every task there, taken from the online registry at https://www.npmjs.com.
Verify that npm is available on your local machine by running the following
on the command line:

$ npm -v

If there is no listed version or if the version is lower than the current
release, install the latest Node.js LTS version, including npm.

Be aware that there is no vetting process or quality control on https://
www.npmjs.com. Anyone can publish packages, and the site relies on the
community to report any that are malicious or broken.

Running the following shows a list of available commands:

$ npm

NOTE
The most popular alternative to npm is yarn, which also uses the https://
www.npmjs.com registry and is fully compatible with npm.

https://nodejs.org/
https://nodejs.org/en/download
https://codesandbox.io/s/new
https://stackblitz.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/

The package.json File
The package.json file is a key element of each Node.js-based project. While
the node_modules folder contains actual code, the package.json file holds
all the metadata about the project. Found in the project’s root, it must
contain the project’s name and version; in addition, it can contain optional
data, such as the project’s description, a license, scripts, and many more
details.

Let’s take a look at the package.json file for the web server you’ll
create in Exercise 1 on page 13. It should look similar to the one shown in
Listing 1-1.

{

 "name": "sample-express",

 "version": "1.0.0",

 "description": "sample express server",

 "main": "index.js",

 "scripts": {

 "test": "echo \"Error: no test specified\" && exit

1",

 "run": "node index.js"

 },

 "author": "",

 "license": "ISC",

 "dependencies": {

 "express":"^4.18.2"

 }

}

Listing 1-1: The package.json file for the Express.js server project in Exercise 1

The package.json file includes all the information others will need to
install required modules on their machine and run the application. As a
result, you never have to ship or store the node_modules folder in your code
repository, which minimizes the repository’s size. Let’s take a detailed look
at the package.json file.

Required Fields
The package.json file must contain a name field and a version field. All
other fields are optional. The name field contains the package’s name, which
must be one lowercase word but can contain hyphens and underscores.

The version field must follow semantic versioning guidelines, which
suggest this format: major.minor.patch; for example, 1.2.3. We call this
semantic versioning because each number conveys a meaning. A major
version introduces an incompatible API change. You should generally be
very careful about switching to another major version, as you won’t be able
to expect that your application will work flawlessly. A minor version
change adds new functionality in a backward-compatible manner and
therefore shouldn’t pose problems for your application. A patch version
applies backward-compatible bug fixes, and you should always keep it up
to date.

NOTE
You can read more about semantic versioning and how to define different
ranges at https://semver.org.

Dependencies
The most important optional fields specify the dependencies and
development dependencies. The dependencies field lists all the
dependencies needed to run the project, along with their required version
ranges, following the semantic versioning syntax. By default, npm requires
only the major version and keeps the minor and patch ranges flexible. This
way, npm can always initialize your project with the latest compatible
version.

These dependencies are part of your bundled application. When you
install a project on a new machine, all dependencies listed in the package
.json file will be installed and placed in the node_modules folder, next to
package.json.

Your application could require all sorts of dependencies, such as
frameworks and helper modules. For example, the Food Finder application
we’ll build in Part II must contain at least Next.js as a single-page

https://semver.org/

application framework, and Mongoose with MongoDB for the database
layer.

Development Dependencies
The devDependencies field lists all the dependencies necessary to develop
the project, along with their versions. Again, only the major version is
fixed. These are required only to develop, and not to run, the application.
Hence, they are ignored by the packaging scripts and are not part of the
deployed application. When you install a project on a new machine, all the
development dependencies listed in the package.json file will be installed
and placed in the node_modules folder next to package.json. For our Food
Finder application, our development dependencies will include TypeScript’s
type definitions. Other typical entries are testing frameworks, linters, and
build tools such as webpack and Babel.

The package-lock.json File
The npm package manager automatically generates the package-lock.json
file for each project. This lock file resolves a problem introduced by the use
of semantic versioning for dependencies. As mentioned earlier, the npm
default is to define only the major version and to use the latest minor and
patch versions available. While this ensures that your application includes
the latest bug fixes, it introduces a new issue: without an exact version,
builds aren’t reproducible. Because there’s no quality control in the npm
registry, even a patch or minor version update could introduce an
incompatible API change that should have been a major version change.
Consequently, a slight deviation between versions could result in a broken
build.

The package-lock.json file solves this by tracking the exact version of
every package and its dependencies. This file is usually quite big, but its
entries for the web server you’ll create at the end of this chapter will look
similar to Listing 1-2.

{

 "name": "sample-express",

 "lockfileVersion": 2,

 "requires": true,

 "packages": {

 "": {

 "dependencies": {

 "express": "^4.18.2"

 }

 },

 "node_modules/accepts": {

 "version": "1.3.8",

 "resolved": "https://registry.npmjs.org/accepts/

-/accepts-1.3.8.tgz",

 "integrity": "sha512-PYAthTa2m2VKxuvSD3DPC/Gy+U+

sOA1LAuT8mkmRuvw+NACSaeXEhosdQ==",

 --snip--

 },

 --snip--

 "node_modules/express": {

 "version": "4.18.2",

 "resolved": "https://registry.npmjs.org/express/

-/express-4.18.2.tgz",

 "integrity": "sha512-5/PsL6iGPdfQ/lKM1UuielYgv3B

UoJfz1aUwU9vHZ+J7gyvwdQXFEBIEI==",

 "dependencies": {

 "accepts": "~1.3.8",

 --snip--

 "vary": "~1.1.2"

 },

 "engines": {

 "node": ">= 0.10.0"

 }

 },

 --snip--

 "vary": {

 "version": "1.1.2",

 "resolved": "https://registry.npmjs.org/vary/-/v

ary-1.1.2.tgz",

 "integrity": "sha512-BNGbWLfd0eUPabhkXUVm0j8uuvR

EyTh5ovRa/dyow/BqAbZJyC+bfhskkh=="

 }

 }

}

Listing 1-2: The package-lock.json file for Exercise 1

The lock file contains a reference to the project and lists the
information from the corresponding package.json file. Then it lists all the
project’s dependencies; for us, the only dependency is Express.js, with a
pinned version. (We’ll cover Express.js in Exercise 1.) In addition, the file
lists all the dependencies for the Express.js version in use, in this case the
accept and vary packages. The stored artifact’s SHA hash enables npm to
verify the integrity of the resource after downloading it.

Now, with all modules version-locked, every npm install command
will create an exact clone of the original setup. Like package.json, the
package-lock.json file is part of the code repository.

Creating a Project
Let’s cover the most important commands for your day-to-day work, in the
order in which you would logically use them to create and maintain a
project. After performing these steps, you’ll have a package.json file and a
production-ready project folder with one installed package, Express.js.

Initializing a New Module or Project
To start a new project, run npm init, which initializes a new module. This
should trigger an interactive guide through which you’ll populate the
project’s package.json file based on your input:

$ mkdir sample-express

$ cd sample-express

$ npm init

This utility will walk you through creating a package.json f

ile.

It only covers the most common items, and tries to guess sen

sible defaults.

--snip--

Is this OK? (yes)

At the beginning of each project, you need to initialize a new Node.js
setup in an empty folder (created here with mkdir sample-express) using
npm init. For simplicity, keep the default suggestions here. The assistant
creates a basic package.json file in your project folder. It should look
similar to Listing 1-3.

{

 "name": " sample-express",

 "version": "1.0.0",

 "description": "",

 "main": "index.js",

 "scripts": {

 "test": "echo \"Error: no test specified\" && exit 1"

 },

 "author": "",

 "license": "ISC"

}

Listing 1-3: The default package.json file

When we compare this file with the one shown in Listing 1-1, we see
that they are fairly similar, except for the dependencies and development
dependencies. With the package.json file ready, we can now install these
dependencies with npm install.

Installing the Dependencies
Node.js provides modules for tasks like accessing the filesystem’s input and
output, using networking protocols (such as DNS, HTTP, TCP, TLS/SSL,
and UDP), and handling binary data. It also provides cryptography
modules, interfaces for working with data streams, and much more.

Running npm install <package> downloads and places a specific
package in the node_modules folder, next to your package.json file, and
adds it to the dependencies list in package.json. You should use it whenever
you need to add a new module that is required to run the application.

Say you want to create a new Express.js-based server. You’ll need to
install the Express.js package from https://npmjs.com. Here we install a

https://npmjs.com/

particular version, but to install the latest version, omit the version number
and use npm install express instead:

$ npm install express@4.18.2

added 57 packages, and audited 58 packages in 1s

found 0 vulnerabilities

Now the node_modules folder contains an express folder and additional
folders with its dependencies. Also, Express.js is listed as a dependency in
package.json, as shown in Listing 1-4.

{

 "name": " sample-express",

 "version": "1.0.0",

 "description": "",

 "main": "index.js",

 "scripts": {

 "test": "echo \"Error: no test specified\" && exit 1"

 },

 "author": "",

 "license": "ISC",

 "dependencies": {

 "express": "^4.18.2"

 }

}

Listing 1-4: The default package.json file with Express.js as a dependency

We’ve successfully added Express.js as a dependency.

Installing the Development Dependencies
Now let’s say you want to use a package called karma for end-to-end
testing of the server. Instead of being a dependency like Express.js, this
package is used only during development and is not necessary for running
the actual application.

In cases like this, you should run npm install --save-dev package to
download this package and add it to the devDependencies list in the local

package.json file:

$ npm install --save-dev karma@5.0.0

added 128 packages, and audited 186 packages in 3m

9 vulnerabilities (1 moderate, 4 high, 4 critical)

To address issues that do not require attention, run:

 npm audit fix

To address all issues (including breaking changes), run:

 npm audit fix --force

Run `npm audit` for details.

Notice that, after installing the karma package, npm indicates that this
version has known vulnerabilities. Nonetheless, it is added to the
node_modules folder and listed as a devDependency in package.json. We
will follow the suggestions to fix the issues in a bit.

Auditing the package.json File
During installation, npm indicated that karma has a vulnerability, so let’s
verify this. The npm audit command inspects the local package.json file for
any known vulnerabilities:

$ npm audit

npm audit report

--snip--

karma <=6.3.15

Severity: high

Open redirect in karma - https://github.com/advisories/GHSA-

rc3x-jf5g-xvc5

Cross-site Scripting in karma - https://github.com/advisorie

s/GHSA-7x7c-qm48-pq9c

Depends on vulnerable versions of log4js

Depends on vulnerable versions of ua-parser-js

fix available via `npm audit fix --force`

Will install karma@6.4.1, which is a breaking change

--snip--

9 vulnerabilities (1 moderate, 4 high, 4 critical)

To address issues that do not require attention, run:

 npm audit fix

To address all issues (including breaking changes), run:

 npm audit fix --force

Running the command returns a detailed report about the version and
severity of each problematic package, as well as a summary of all the issues
found in the currently installed Node.js modules.

The npm package manager also indicated that the issues could be fixed
automatically with npm audit fix. Alas, it warns us about breaking
changes in the latest karma version. To accommodate those, we need to use
the --force flag. I recommend using npm audit every few months, along
with npm update, to avoid using outdated dependencies and creating
security risks:

$ npm audit fix --force

added 13 packages, removed 41 packages, changed 27 packages,

and audited 158 packages in 5s

Now we see that the devDependencies list in package.json has the
latest karma version, and another run of npm audit reports that there are no
more known vulnerabilities in the installed packages.

Cleaning Up the node_modules Folder
Running npm prune inspects the local package.json file, compares it to the
local node_modules folder, and removes all unnecessary packages. You
should use it during development, after adding and removing packages, or
when performing general cleanup chores.

Let’s check that the audit we just performed didn’t install any
unnecessary packages:

$ npm prune

up to date, audited 136 packages in 1s

found 0 vulnerabilities

The output looks fine; there are no issues with our packages.

Updating All Packages
Running npm update updates all installed packages to their latest
acceptable version. You should use this command frequently to avoid
outdated dependencies and security risks:

$ npm update

added 1 package, removed 1 package, changed 1 package, and a

udited 158 packages in 8s

found 0 vulnerabilities

As you can see, npm update displays a summary of the updates.

Removing a Dependency
Running npm uninstall package removes the package and its
dependencies from the local node_modules folder and package.json file.
You should use this command to delete modules you don’t need anymore.
Say you decide that end-to-end tests with karma are no longer necessary:

$ npm uninstall karma

removed 71 packages, and audited 138 packages in 3s

found 0 vulnerabilities

The command’s output shows the changes made to the node_modules
folder. The package was removed from package.json as well.

Installing a Dependency
Running npm install downloads all dependencies and devDependencies
from the npm repository and places them in the node_modules folder. Use
this command to install an existing project on a new machine. For example,
to install a copy of the Express.js project in a new folder, you could create a
new empty folder and copy only the package.json and package-lock.json
files into it. Then you could run the npm install command inside this
folder:

$ npm install

added 137 packages, and audited 138 packages in 3s

found 0 vulnerabilities

Whenever you clone the repository or create a new project from a
package.json file, run npm install. As with all previous commands, npm
shows a status report listing any vulnerabilities.

Using npx to Execute a Script Only Once
When you installed Node.js, you also installed npx, which stands for node
package execute. This tool enables you to execute any package from the
registry without installing it beforehand. This is useful when you need to
run some code only once. For example, you might use a scaffolding script
that initializes a project but is neither a dependency nor a development
dependency.

The npx tool works by checking whether the executable you’re trying
to run is available through the $PATH environment variable or local project
binaries. If this is not the case, npx installs the package to a central cache
instead of your local node_modules folder. Say you want to check your
package JSON for syntax errors. For this, you can use the jsonlint package.
As this package is neither required to run the project nor part of your
development process, you don’t want to install it into your node_modules
folder:

$ npx jsonlint package.json

Need to install the following packages:

 jsonlint

Ok to proceed? (y) y

{

 "name": " sample-express",

 "version": "1.0.0",

 "description": "",

 "main": "index.js",

 "scripts": {

 "test": "echo \"Error: no test specified\" && exit

1"

 },

 "author": "",

 "license": "ISC",

 "dependencies": {

 "express": "^4.18.2"

 }

}

This calls jsonlint to validate our package.json file via npx. First npx
installs the package into the global cache folder, then runs jsonlint. It prints
the content of our package.json file and reports no errors. Check your
node_modules folder; jsonlint shouldn’t be installed. Nonetheless, on each
subsequent call of npx, you’ll find jsonlint available.

Exercise 1: Build a “Hello World” Express.js Server
Express.js is a free and open source backend framework built on top of
Node.js. Designed for building web applications and APIs, it is the de facto
standard server framework for the Node.js ecosystem and is foundational to
full-stack web development.

Express.js offers common middleware used by HTTP servers for tasks
such as caching, content negotiation, cookie handling, handling cross-origin
requests, redirecting, and much more.

NOTE

Next.js uses its own built-in server that borrows heavily from Express.js.
For the Food Finder application that you’ll build in Part II of this book,
Next.js will be the foundation of the middleware you’ll use. As Next.js
abstracts this middleware for you, you won’t directly interact with the
server there.

Let’s build a simple Express.js-based Node.js server to practice your
Node.js skills.

Setting Up
If you’ve already created the sample-express folder and package.json file
while following along with this chapter, you can skip this setup. Otherwise,
create and switch to a new folder called sample-express. Then, to initialize a
new Node.js project, run npm init on the command line. The interactive
guide should ask you for some details, such as the name and version of your
application. Accept the defaults for now.

Next, you’ll want to use the Express.js package as the foundation of the
server. Run npm install express@4 to install the latest release of the
major version 4. You will see that the package.json file now contains
express as a dependency.

Writing the Server Code
Create an index.js file in the sample-express folder and add the code in
Listing 1-5.

const express = require('express');

const server = express();

const port = 3000;

server.get('/hello', function (req, res) {

 res.send('Hello World!');

});

server.listen(port, function () {

 console.log('Listening on ' + port);

});

Listing 1-5: A basic Express.js server

First we load the express package into the file, instantiate the app, and
define a constant for the port to use. Then we create a route for our server
so that it will respond to every GET request sent to the /hello base URL
with Hello World! We use the Express.js get method and pass /hello as
the first parameter and a callback function as the second parameter. Now,
for each GET request sent to the /hello endpoint, the server runs the
callback function that sends Hello World! as the response to the browser.
Finally, we use the Express.js listen method to spin up the web server and
tell it to listen on port 3000.

Start the server from your command line:

$ node index.js

Listening on 3000

Now visit http://localhost:3000/hello in your browser. You should see
the Hello World! message. Congratulations! You just wrote your first
Node.js web server in JavaScript.

Summary
This chapter taught you how to run JavaScript code outside a browser using
Node.js and its module ecosystem. You learned how to use, add, and
remove modules in your full-stack application with npm commands, as well
as how to read and use the package.json and package-lock.json files.
Finally, you peeked into Express.js, the de facto standard server for full-
stack development, and used it to build a sample Node.js server with just a
few lines of code.

This chapter only scratched the surface of Node.js. If you want to
explore its full potential, I recommend the Node.js tutorials from
W3Schools at https://www.w3schools.com/nodejs/ and the free ExpressJS
Fundamentals course from https://www.udemy.com/course/expressjs-
fundamentals/.

In the next chapter, you will get to know ES.Next, the latest iteration of
JavaScript, and master the modern features it brings to the table.

https://www.w3schools.com/nodejs/
https://www.udemy.com/course/expressjs-fundamentals/

2
MODERN JAVASCRIPT

In Chapter 1, you used basic JavaScript
to create a web server with Node.js.

Now we’ll take a closer look at the language’s more
advanced features and how you can effectively use
them to create full-stack web applications.

You’ll sometimes hear the term ES.Next used to refer to new versions
of JavaScript. In this book, we use ES.Next as a broad label for modern
JavaScript and its concepts. Most runtime environments have implemented
the features covered here. Otherwise, you can transpile them with Babel.js,
creating backward-compatible JavaScript that emulates the new features for
older runtimes.

ES.Next Modules
ES.Next modules allow you to separate code into files to improve
maintenance and testability. They encapsulate a piece of logic into easily
reusable code, and because variables and functions are limited to the
module’s scope, you can use the same variable name in different modules
without running into conflicts. (We discuss the concept of scopes in
“Declaring Variables” on page 17.)

The official ES.Next modules replaced various unofficial module
formats, such as UMD and AMD, which you would load with a require

statement. For example, you used require to include the Express.js
package for the Node.js server code in Chapter 1. Instead, ES.Next modules
use export and import statements to export functions from one module’s
scope and import them for use somewhere else. In other words, modules
allow you to create functions and variables and expose them to a new
scope.

Using Named and Default Exports
There are two kinds of Next.js exports: named and default. These exports
use slightly different syntaxes when you import them later. Default exports
require you to define new function names on import. For named exports,
renaming is optional and done with the as statement.

It’s considered a best practice to use named exports over default
exports, because named exports define a clear and unique interface for the
module’s functionality. When we use default exports, the user risks
importing the same function under different names. TypeScript, which we’ll
cover in Chapter 3, recommends that we use default exports if the module
has one clear purpose and a single export. In contrast, it recommends using
named exports whenever the module exports more than one item.

You should know the syntax of default exports so that you can work
with third-party modules that use them. Unlike named exports, there can be
only one default export per file, marked by the default keyword (Listing 2-
1).

const getFoo = function () {

 return 'foo';

};

export default getFoo;

Listing 2-1: Default exports

In this listing, we define an anonymous function and store it in the
constant getFoo. Then we export the constant with the default keyword to
make it the module’s default export.

You can export named exports inline or at the end of the file, with curly
brackets ({}). Listing 2-2 shows several named exports.

export const getFooBar = function () {

 return 'foo bar';

};

const getBar = function () {

 return 'bar';

};

const getBaz = function () {

 return 'baz';

};

export {getBar, getBaz};

Listing 2-2: Named exports

Here we define an anonymous function, store it in the constant
getFooBar, and immediately export it as getFooBar. Then we define two
more anonymous functions and export them as named exports in curly
brackets.

Importing Modules
The syntax to import an ES.Next module depends on the type of export you
created. Named exports do need to be imported using curly brackets,
whereas default exports do not. In Listing 2-3, we import the default export
getFoo by using the import statement followed by the local name we assign
to it. Finally, we conclude the import with a reference to the file that
contains the code.

import getFoo from "default.js";

Listing 2-3: Importing default exports

We follow a similar pattern for the named exports in Listing 2-4, except
that we need to refer to the original function names inside curly brackets. To

rename the functions locally, we would need to explicitly do so with an as
statement, and there is usually no reason to do so.

import {getFooBar, getBar, getBaz} from "named.js";

Listing 2-4: Importing named exports

Now you can use the imported functions in your code, as they are
available in the scope to which you imported them.

Declaring Variables
JavaScript offers three different ways to declare a variable: var, let, and
const. This section discusses the use cases for each of them. Often, you’ll
be given the advice to avoid var because it is “outdated.” You can rest
assured that it’s not, and you must understand each of these variable
declaration methods in order to choose the right tool for the job.

These variables differ in their scope, which defines the code area in
which we can access and use them. JavaScript has multiple levels of scope:
global, module, function, and block. Block scope, which applies to any
block of code enclosed in curly brackets, is the smallest unit of scope.
Every time you use curly brackets, you create a new block scope. In
comparison, you make a function scope when you define a function. The
scope is limited to the code area inside a specific function. The module
scope applies only to a specific module, whereas the global scope applies to
the entire program. Variables defined in the global scope are available in
every part of your code.

As you’ll see in the following code listings, a variable is always
available in its own scope and all of its child scopes. Hence, you should
remember that, for example, a function scope can contain multiple block
scopes. The same variable name can be defined twice in one program as
long as each variable occurs in different scopes.

Hoisted Variables
Traditional JavaScript declares variables with the var keyword. The scope
of these variables is the current execution context (usually the enclosing

function). If declared outside any function, the variable’s scope is global,
and the variable creates a property on the global object.

Unlike for all other variables, the runtime environment moves, or
hoists, the declaration of var to the top of its scope upon execution.
Therefore, you can call these variables in your code before you define them.
Listing 2-5 shows a short example of hoisting.

function scope() {

 foo = 1;

 var foo;

}

Listing 2-5: Using a hoisted variable before it is defined

In this listing, we assign a value to a variable before declaring it in the
following line. In languages like Java and C, we can’t use variables before
we declare them, and any attempt to do so will throw an error. However,
because of hoisting in JavaScript, the parser moves all variable declarations
defined with the var keyword to the top of the scope. Thus, the code is
equivalent to that in Listing 2-6.

function scope() {

 var foo;

 foo = 1;

}

Listing 2-6: Defining a variable before using it

Because of hoisting, block scope does not apply to variables declared
with the var keyword. They are always hoisted. To illustrate this, take a
look at Listing 2-7, where we declare a global variable globalVar, a
variable foo inside the function scope, and a variable bar inside a block
scope, all with the var keyword.

var globalVar = "global";

function scope() {

 var foo = "1";

 if (true) {

 var bar = "2";

 }

 console.log(globalVar);

 console.log(window.globalVar);

 console.log(foo);

 console.log(bar);

}

scope();

Listing 2-7: The scope of var

We run the scope function and see that globalVar and
window.globalVar are the same; the parser hoists both variables, foo and
bar, to the top of the function scope. Thus, the variable bar is available
outside the block scope, and the function scope writes both variables’
values, 1 and 2, to the console.

Scope-Abiding Variables
Modern JavaScript introduced the let keyword to supplement var. With
let, we can declare variables that are block-scoped and can be accessed
only after they have been declared. For this reason, they are considered
non-hoisted variables. Block-scoped variables are limited to the scope of
the block statement inside which they are defined. Unlike global variables
defined with var, a global let variable isn’t added to the window object.

Let’s look at the scope of a variable declared with let. In Listing 2-8,
we declare a variable foo inside a function scope, a variable bar inside a
block scope, and a global variable globalVar.

let globalVar = "global";

function scope() {

 let foo = "1";

 if (true) {

 let bar = "2";

 }

 console.log(globalVar);

 console.log(window.globalVar);

 console.log(foo);

 console.log(bar);

}

scope();

Listing 2-8: The scope of let

Each variable is available only in its respective scope. The parser does
not hoist them, and therefore, the variable bar is not available outside the
block statement. If you try to reference it elsewhere, the parser will throw
an error and notify you that bar is not defined.

We execute the function, and unlike the var code, it writes only the
value of foo to the console. When we try to access bar, we receive an error,
Uncaught ReferenceError: bar is not defined. For globalVar, we see
the value global printed on the console, whereas window.globalVar is
undefined.

Constant-Like Data
Modern JavaScript introduced another new keyword, const, for declaring
constants such as data types. Like let, const does not create properties of
the global object when declared globally. They, too, are considered non-
hoisted, as they cannot be accessed before being declared.

Constants in JavaScript are different from those in many other
languages, where they function as immutable data types. In JavaScript,
constants only look immutable. In fact, they are read-only references to
their value. Therefore, you cannot directly reassign another value to the
variable identifier for primitive data types. However, objects or arrays are
non-primitive data types, so even when you use const, you can mutate their
values through methods or direct property access.

In Listing 2-9, we declare both a primitive and a non-primitive data
type with the const keyword and try to change their content.

const primitiveDataType = 1;

try {

 primitiveDataType = 2;

} catch (err) {

 console.log(err);

}

const nonPrimitiveDataType = [];

nonPrimitiveDataType.push(1);

console.log(nonPrimitiveDataType);

Listing 2-9: Using const to declare primitive and non-primitive types

We declare and assign a value to two constant-like data structures. Now
when we try to reassign a value to the primitive data structure, the runtime
throws the error Attempted to assign to readonly property. Because
we used const, we cannot reassign its value. In contrast, we can modify the
nonPrimitiveDataType array (done here with the push method) and append
a value without running into an error. The array should now contain one
item with the value 1; hence, we see [1] in the console.

Arrow Functions
Modern JavaScript introduced arrow functions as alternatives to regular
functions. There are two concepts you need to know about arrow functions.
First, they use a different syntax than regular functions. Defining an arrow
function is much quicker, requiring just a few characters and one line of
code. The second important, but not so obvious, change is that they use
something called a lexical scope, making them more intuitive and less error
prone.

Writing Arrow Functions
Instead of using the function keyword to declare an arrow function, we use
the equal-to and greater-than signs to form an arrow (=>). This syntax, also
called the fat arrow, reduces noise and results in more compact code.
Therefore, modern JavaScript prefers this syntax when passing functions as
arguments.

In addition, if an arrow function has only one parameter and one
statement, we can omit the curly brackets and the return keyword. In this

compact form, we call the function a concise body function. Listing 2-10
shows the definition of a traditional function followed by an arrow function.

const traditional = function (x) {

 return x * x;

}

const conciseBody = x => x * x;

Listing 2-10: A traditional function and an arrow function with the concise body syntax

We first define a standard function with the function keyword and
familiar return statement. Then we write the same functionality as an
arrow function with the concise body syntax. Here we omit the curly
brackets and use an implied return statement, without the return keyword.

Understanding Lexical Scope
Unlike regular functions, arrow functions do not bind their scope to the
object that calls the function. Instead, they use a lexical scope, in which the
surrounding scope determines the value of the this keyword. Therefore, the
scope to which this refers in an arrow function always represents the
object defining the arrow function instead of the object calling the function.
Listing 2-11 illustrates the concepts of lexical and defining scopes.

❶ this.scope = "lexical scope";

const scopeOf = {

 ❷ scope: "defining scope",

 traditional: function () {

 ❸ return this.scope;

 },

 arrow: () => {

 return this.scope;

 },

};

console.log(scopeOf.traditional());

console.log(scopeOf.arrow());

Listing 2-11: An arrow function’s scope

We first declare the scope property on the lexical scope ❶; this is the
defining object. Then we create an object with a property of the same name
inside the defining scope ❷. Next, we define two functions, both of
which use this to return the value of this.scope ❸.

Upon calling them, you can see the difference between the two
references. Whereas this.scope in the arrow function refers to the property
defined in the lexical scope, the traditional function’s this refers to the
second property we defined. Consequently, the scopeOf.traditional
function outputs defining scope, whereas the scopeOf.arrow function
outputs lexical scope.

Exploring Practical Use Cases
Because functions are first-class citizens in JavaScript, we can pass them as
arguments to other functions. In Chapter 1, you used this pattern to define
callbacks in Node.js or previously when you worked with event handlers in
the browser. But when you use regular functions as callbacks, the code
quickly gets cluttered with function statements and curly brackets, even if
the actual code in the callback is quite simple. Arrow functions allow for a
clean and simple syntax in callbacks. In Listing 2-12, we use a callback on
the array filter method and define it as a traditional function and as an
arrow function.

let numbers = [-2, -1, 0, 1, 2];

let traditional = numbers.filter(function(num) {

 return num >= 0;

 }

);

let arrow = numbers.filter(num => num >= 0);

console.log(traditional);

console.log(arrow);

Listing 2-12: Passing a fat arrow function as a parameter

The first version of the callback is a traditional function, whereas the
second implementation uses an arrow function with a concise body syntax.
Both return the same array: [0, 1, 2]. We see that the actual functionality,
to remove all negative numbers from the array, is a simple check to see if
the current item is greater than or equal to zero. The traditional function is
harder to understand, as it requires additional characters. Once you fully
grasp the arrow syntax, you’ll enhance the readability of your code and, in
turn, improve the code quality.

Creating Strings
Modern JavaScript introduces untagged and tagged template literals.
Template literals are a simple way to add variables and expressions to a
string. This string interpolation can span multiple lines and include single
and double quotation marks without requiring escaping. We enclose
template literals in backticks (`) and indicate a variable or expression in the
template by using a dollar sign ($) and curly brackets.

An untagged template literal is just a string enclosed in backticks. The
parser interpolates the variables and expressions and returns a string. As a
full-stack developer, you’ll use this pattern every time you want to add
variables to a string or concatenate multiple strings. Listing 2-13 shows an
example of an untagged template literal. They can span multiple lines
without the need for any control characters.

let a = 1;

let b = 2;

let string = `${a} + ${b} = ${a + b}`;

console.log(string);

Listing 2-13: An untagged template literal

The parser will substitute the placeholders and evaluate the expression
in the template literal to the string 1 + 2 = 3.

As soon as an expression precedes a template literal, it becomes
tagged. In these cases, the function receives both a template literal and the
substitution values as arguments and then performs an action with both of
them before returning a value. This returned value can be of any primitive
or non-primitive type. In Listing 2-14, we use a tagged template literal with
a custom function to add or subtract numbers and explain the process using
words.

function tag(literal, ...values) {

 console.log("literal", literal);

 console.log("values", values);

 let result;

 switch (literal[1]) {

 case " plus ":

 result = values[0] + values[1];

 break;

 case " minus ":

 result = values[0] - values[1];

 break;

 }

 return `${values[0]}${literal[1]}${values[1]} is ${resul

t}`;

}

let a = 1;

let b = 2;

let output = tag`What is ${a} plus ${b}?`;

console.log(output);

Listing 2-14: A basic tagged template literal

Here the parser calls the tag expression and then passes the template
literal and substitution values as arguments to the function. The function
constructs a string from the parameters and returns it.

Let’s take a deeper look at our code. In our tag expression, the first
argument, literal, is an array that is split at the variables, like this: ['What
is ', ' minus ', '?']. The argument value is also an array, and it
contains the values of the template literal variables we passed to the
function: [1, 2]. We use a simple switch/case statement to calculate the
result based on the literal and values. Finally, we return a new string with
the answer to the “question” and see 1 plus 2 is 3 on the console.

With their simple interface for complex string substitutions, tagged
template literals provide an elegant way to create a domain-specific
language (DSL) in JavaScript. A DSL is a language targeted to solve a
particular task in a particular domain. It’s in contrast to a general-purpose
language, such as JavaScript, which we can use to solve a wide array of
software-related problems. A familiar example of a DSL is HTML, which
we use in the web development domain to mark up text but which we
cannot use for mathematical operations or reading file contents. You will
define your own DSL for full-stack development with GraphQL schemas.
When you define your first GraphQL schema in Chapter 6, you’ll
understand that its DSL is nothing more than a tagged template literal.

Asynchronous Scripts
JavaScript is single-threaded, which means that it can run only one task at a
time. Therefore, long-running tasks can block the application. A simple
solution is asynchronous programming, a pattern where you start a long-
running task without blocking the whole application. While your script
waits for a result, the rest of the application can still respond to interactions
or user interface events and perform other calculations.

Avoiding Traditional Callbacks
Traditional JavaScript implements asynchronous code with callback
functions executed after another function returns a result. You’ve probably
already used callbacks when your code has needed to react to an event
instead of running immediately. One common use case for this technique in
full-stack web development is performing I/O operations in Node.js or
calling remote APIs. Listing 2-15 provides an example of an I/O operation.
We import the Node.js fs module, which handles filesystem operations, and

use a callback function to display the file’s contents as soon as the operation
concludes.

const fs = require("fs");

const callback = (err, data) => {

 if (err) {

 return console.log("error");

 }

 console.log(`File content ${data}`);

};

fs.readFile(" file.txt", callback);

Listing 2-15: Reading a file in Node.js with a callback function

Reading a file is a common example of asynchronous scripting. We
don’t want the application to be blocked while waiting for the file content to
be ready; however, we also need to use the file’s content in a specific part of
the application.

Here we create the callback function and pass it as a parameter to the
fs.readFile function. This function reads a file from the filesystem and
executes the callback as soon as the I/O operation fails or succeeds. The
callback receives the file data and an optional error object, which we write
to the console for now.

Callbacks are a clumsy solution to asynchronous scripting. As soon as
you have multiple dependent callback functions, you end up in so-called
callback hell, where every callback function takes another callback function
as an argument. The result is a pyramid of functions that are difficult to read
and prone to errors. Modern JavaScript introduced promises and
async/await as an alternative to callbacks.

Using Promises
Promises provide a much cleaner syntax for chainable asynchronous tasks.
Similar to callbacks, they defer further tasks until a previous action has
completed or failed. Essentially, promises are function calls that do not
return an immediate result. Instead, they promise to return the result at

some later point. If there is an error, the promise is rejected instead of
resolved.

The Promise object has two properties: the state and the result. When
the state is pending, the result is undefined. However, as soon as the
promise resolves, the state changes to fulfilled, and the result reflects the
return value. If the promise is rejected instead, the state is also set to
rejected, and the result contains an error object.

Promises follow a unique syntax. To use them, you first create a new
Promise or call a function that returns a Promise. Then you consume the
Promise object, and finally you clean up. This is done by registering the
consuming functions then, catch, and finally. The promise initially calls
then as soon as the state changes from pending to fulfilled and passes the
returned data to it. Each following then method receives the return value of
the previous one, allowing you to create a single task chain that works with
and manipulates these return values.

The promise chain invokes the catch method only if an error occurs
either initially or later in the chain of tasks. In addition, a state change (of
this particular promise) to rejected also invokes it. In any case, the parser
calls the finally method after the stack of then methods has completed or
the catch method was invoked. You use the finally method for cleanup
tasks such as unlocking the user interface or closing database connections.
It’s similar to the finally call of a try...catch statement.

You can use promises in any function. In Listing 2-16, we use the
native fetch API to request JSON data.

function fetchData(url) {

 fetch(url)

 .then((response) => response.json())

 .then((json) => console.log(json))

 .catch((error) => {

 console.error(`Error : ${error}`);

 });

}

fetchData("https://www.usemodernfullstack.dev/api/v1/user

s");

Listing 2-16: Fetching remote data with promises

Like I/O operations on the filesystem, network requests are long-
running tasks that block the application. Therefore, we should use
asynchronous patterns to load remote datasets. As in Listing 2-15, we need
to wait until the operation is complete before we can process the requested
data or handle an error.

The fetch API is promise-based by default. As soon as the promise
resolves and the state changes to fulfilled, the following then function
receives the response object. We then parse the data and pass the JSON
object to the next function in the promise chain, a sequence of functions
connected with a dot (.then). If there is an error, the promise is rejected. In
this case, we catch the error and write it to the console.

Simplifying Asynchronous Scripts
Modern JavaScript introduces a new, simpler pattern for handling
asynchronous requests: the async/await keywords. Instead of relying on
chained functions, we can write code whose structure is similar to regular
synchronous code by employing these keywords.

When using this pattern, you mark functions explicitly as asynchronous
with async. Then you use await instead of the promise-based syntax for
your asynchronous code. In Listing 2-17, we use the native fetch API with
async/await to perform another long-running task and fetch JSON data
from a remote location. This code is functionally the same as Listing 2-16,
and you should see that its syntax is more intuitive and cleaner than the
chain of then calls.

async function fetchData (url) {

 try {

 const response = await fetch(url);

 const json = await response.json();

 console.log(json);

 } catch (error) {

 console.error(`Error : ${error}`);

 }

}

fetchData("https://www.usemodernfullstack.dev/api/v1/user

s");

Listing 2-17: Fetching remote data with async/await

First we declare the function as async to enable the await keyword
inside the function. Then we use await to wait for the response of the fetch
call. Unlike the promise syntax we used before, await simplifies the code.
It awaits the response object and returns it. Thus, the code block looks
similar to regular synchronous code.

This pattern requires us to handle errors manually. Unlike with
promises, there is no default reject function. Therefore, we must wrap
await statements in a try...catch block to handle error states gracefully.

Looping Through an Array
Modern JavaScript introduced a whole set of new array functions. The most
important one for full-stack web development is array.map. It allows us to
run a function on each array item and return a new array with the modified
items, preserving the original array. Developers commonly use it in React to
generate a list or populate JSX with datasets from arrays. You will use this
pattern extensively once we introduce React in Chapter 4.

In Listing 2-18, we use array.map to iterate over an array of numbers
and create an arrow function as a callback.

const original = [1,2,3,4];

const multiplied = original.map((item) => item * 10);

console.log(`original array: ${original}`);

console.log(`multiplied array: ${multiplied}`);

Listing 2-18: Using array.map to manipulate each item of an array

We iterate over the array items and pass each of them to the callback
function. Here we multiply each item by 10, and then array.map returns an
array with the multiplied items.

When we log the initial array and the returned array, we see that the
original array still contains the actual, unchanged numbers (1,2,3,4).

Only the multiplied array contains the new, modified items
(10,20,30,40).

Dispersing Arrays and Objects
Modern JavaScript’s spread operator is written as three dots (...). It
spreads out, or expands, the values of an array or the properties of an object
into their own variables or constants.

Technically, the spread operator copies its content to variables that
allocate their own memory. In Listing 2-19, we use the spread operator to
assign the multiple values of an object to several constants. You’ll use this
pattern in nearly all React code to access component properties.

let object = {fruit: "apple", color: "green"};

let {fruit, color} = {...object};

console.log(`fruit: ${fruit}, color: ${color}`);

color = "red";

console.log(`object.color: ${object.color}, color: ${color}

`);

Listing 2-19: Dispersing an object into constants with the spread operator

We first create an object with two properties, fruit and color. Then
we use the spread operator to expand the object into variables and log them
to the console. The variables’ names are the same as the object properties’
names. However, we can now access the values directly from the variables
instead of referring to the object. We do so in the template literal and see
fruit: apple, color: green as the console output.

Also, as these variables allocate their own memory, they are complete
clones. Therefore, modifying the variable color to red won’t change the
original value: object.color still returns green when we log both variables
to the console.

Using the spread operator to clone an array or object is useful because
JavaScript treats arrays as references to its values. When you assign an
array or object to a new variable or constant, this merely copies the

reference to the original; it does not clone the array or object by allocating
memory. Therefore, changing the copy also changes the original. Using
spread instead of the equals operator (=) allocates memory and keeps no
reference to the original value. Hence, it’s an excellent solution for cloning
an array or object, as shown in Listing 2-20.

let originalArray = [1,2,3];

let clonedArray = [...originalArray];

clonedArray[0] = "one";

clonedArray[1] = "two";

clonedArray[2] = "three";

console.log (`originalArray: ${originalArray}, clonedArray:

${clonedArray}`);

Listing 2-20: Cloning an array with the spread operator

Here we use the spread operator to copy the values from the original
array to the cloned array in the same operation. Then we modify the cloned
array’s items. Finally, we write the two arrays to the console and see that
the original array differs from the cloned array.

Exercise 2: Extend Express.js with Modern JavaScript
Modern JavaScript provides the tools you need to write clean and efficient
code. In Part II, you’ll use it in the Food Finder application. For now, let’s
apply your new knowledge to optimize the simple Express.js server you
created in Chapter 1.

Editing the package.json File
We’ll replace the server’s require call with named modules for different
routes. To do so, we need to explicitly specify that our project uses native
modules. Otherwise, Node.js will throw an error. Modify your package.json
file so that it looks like Listing 2-21.

{

 "name": "sample-express",

 "version": "1.0.0",

 "description": "sample express server",

 "license": "ISC",

 "type": "module",

 "dependencies": {

 "express":"^4.18.2",

 "node-fetch": "^3.2.6"

 },

 "devDependencies": {}

}

Listing 2-21: The modified package.json file

Add the property type with the value module. Also, you’ll want to
install the node-fetch package to make an asynchronous API call in one of
your routes. Run npm install node-fetch to do so.

Writing an ES.Next Module with Asynchronous Code
Create the file routes.js in the sample-express folder, next to the index.js
file, and add the code in Listing 2-22.

import fetch from "node-fetch";

const routeHello = () => "Hello World!";

const routeAPINames = async () => {

 const url = "https://www.usemodernfullstack.dev/api/v1/u

sers";

 let data;

 try {

 const response = await fetch(url);

 data = await response.json();

 } catch (err) {

 return err;

 }

 const names = data

 .map((item) => `id: ${item.id}, name: ${item.name}`)

 .join("
");

 return names;

};

export {routeHello, routeAPINames};

Listing 2-22: The route module in the routes.js file

First we import the fetch module for making asynchronous requests.
Then we create the first route, for our existing /hello endpoint. Its behavior
should be the same as before; using a fat arrow function with a concise
body syntax, it returns the string Hello World!

Next, we create a route for a new /api/names endpoint. This endpoint
will add a page to our web server displaying a list of usernames and IDs.
But first we explicitly define an async function so that we can use the
await syntax for our fetch call. Then we define the API endpoint in a
constant and another variable to store asynchronous data. We need to define
these before we use them because the await calls happen inside a
try...catch block, and these variables are block-scoped. If we defined
them inside the block, we wouldn’t be able to use them later.

We call the API and await the response data, which we convert to
JSON as soon as the call succeeds. The data variable now holds an array of
objects. We use array.map to iterate over the data and create the strings we
want to display. Then we join all array items with break tags (
) to
display them in rows and return the string.

Finally, we export the two routes under their names.

Adding the Modules to the Server
Modify the file index.js in the sample-express folder to match Listing 2-23.
We use native modules for importing the require module and the routes we
created in Listing 2-22.

import {routeHello, routeAPINames} from "./routes.js";

import express from "express";

const server = express();

const port = 3000;

server.get("/hello", function (req, res) {

 const response = routeHello(req, res);

 res.send(response);

});

server.get("/api/names", async function (req, res) {

 let response;

 try {

 response = await routeAPINames(req, res);

 } catch (err) {

 console.log(err);

 }

 res.send(response);

});

server.listen(port, function () {

 console.log("Listening on " + port);

});

Listing 2-23: The basic Express.js server with modern JavaScript

First we import routes with the syntax for named imports. Then we
replace the require call for the express package with an import statement.
The /hello endpoint we created earlier calls the route we imported, and the
server sends Hello World! as the response to the browser.

Finally, we create a new endpoint, /api/names, that contains
asynchronous code. Therefore, we mark the handler as async and await the
route inside a try...catch block.

Start the server from your command line:

$ node index.js

Listening on 3000

Now visit http://localhost:3000/api/names in your browser, as shown
in Figure 2-1.

Figure 2-1: The response the browser receives from the Node.js web server

You should see the new list of user IDs and names.

Summary
This chapter taught you enough modern JavaScript and ES.Next to create a
full-stack application. We covered how to use JavaScript modules to create
maintainable packages and import and export code, the different ways to
declare variables and constants, the arrow function, and tagged and
untagged template literals. We wrote asynchronous code with promises and
async/await. We also covered array.map, the spread operator, and their
usefulness for your full-stack code. Finally, you used your new knowledge
to update the sample Node.js server from Chapter 1 with modern JavaScript
concepts.

Modern JavaScript has many more features than this chapter covers.
From the freely available resources, I recommend the JavaScript tutorials at
https://www.javascripttutorial.net.

In the next chapter, we cover TypeScript, a superset of JavaScript with
support for types.

https://www.javascripttutorial.net/

3
TYPESCRIPT

TypeScript is a programming language
that adds static typing to the

dynamically typed JavaScript language. It’s a strict
syntactic superset of JavaScript, which means that all
existing JavaScript is valid TypeScript. By contrast,
TypeScript is not valid JavaScript, because it supplies
additional features.

This chapter will introduce you to the pitfalls of working with
JavaScript’s dynamic types and explain how TypeScript’s static typing
helps catch errors early, increasing the stability of your code. Full-stack
developers have embraced TypeScript: it was the runner-up in the most
wanted category of a recent Stack Overflow Developer Survey, and 78
percent of participants in a State of JS survey reported using it. According
to https://builtwith.com, TypeScript underlies 7 percent of the top 10,000
sites.

We’ll cover the essential and advanced TypeScript concepts necessary
for building full-stack applications. Along the way, you’ll get to know the
language’s most common configuration options, its most important types,
and how and when to use TypeScript’s static typing features.

https://builtwith.com/

Benefits of TypeScript
TypeScript makes working with JavaScript’s type system less error prone,
as its compiler helps us see type errors instantly. Because JavaScript is
dynamically typed, you don’t need to specify a variable’s type when
declaring it. As soon as the runtime executes the script, it checks these types
based on usage. However, this means that errors resulting from invalid
types (for example, calling array.map on a variable that holds a number
instead of an array) won’t be discovered until runtime, at which point the
complete program fails.

In addition to being dynamically typed, JavaScript is also weakly typed,
which means it implicitly converts variables to their most plausible values.
Listing 3-1 shows an implicit conversion from a number to a string.

let string = "1";

let number = 1;

let result;

result = number + number;

console.log("value: ", result, " type of ", typeof(result));

result = number + string;

console.log("value: ", result, " type of ", typeof(result));

Listing 3-1: Implicit conversion from a number to a string in JavaScript

We declare three variables, assigning the first a string, the second a
numeric value, and the third the result of using the arithmetic plus (+)
operator to add the number to itself. We then log the result of this sum
operation and its type to the console. If you executed this code, you would
see that the value is numeric and that the runtime assigned a type of number
to the variable.

Next, we use the same operator again, but instead of adding a numeric
value to the number variable, we add a string to it. You should see that the
logged value is 11, not 2, as you might have expected. Moreover, the
variable’s assigned type has changed to string. This happens because the
runtime environment needs to handle an impossible task: adding a number

and a string. It solves this issue by implicitly converting the number to a
string, then using the plus operator to concatenate the two strings. Without
TypeScript, we notice this conversion only when we run the code.

Another common problem caused by untyped variables relates to
function and API contracts, or the agreements about what the code accepts
and returns. When a function takes a parameter, it implicitly expects a
parameter of a specific type. But without TypeScript, there is no way to
ensure that the parameter type is correct. The same problem exists for the
function’s return value. To illustrate this, Listing 3-2 changes the code from
Listing 3-1 so that it uses a function to calculate the value of the result
variable.

let string = "1";

let number = 1;

let result;

const calculate = (a, b) => a + b;

result = calculate(number, number);

console.log("value: ", result, " type of ", typeof(result));

result = calculate(number, string);

console.log("value: ", result, " type of ", typeof(result));

Listing 3-2: A function that could return an invalid type due to implicit type conversion

The new calculate function takes two parameters, a and b, and as
before, adds the two values. Like in Listing 3-1, as soon as we pass a
number and a string as parameters, the function returns a string instead of a
number. Our function might expect both parameters to be numbers, but we
can’t verify this without manually checking the type by using logic similar
to that in Listing 3-3.

let string = "1";

let number = 1;

let result;

const calculate = (a, b) => {

 if (Number.isInteger(a) === false || Number.isInteger(b)

=== false) {

 throw new Error("Invalid type: a parameter is not an

integer");

 } else {

 return a + b;

 }

};

result = calculate(number, number);

console.log("value: ", result, " type of ", typeof(result));

result = calculate(number, string);

console.log("value: ", result, " type of ", typeof(result));

Listing 3-3: The refactored type-safe function

Here we use the native isInteger function of the Number object to
verify that the parameters a and b are integers. The first call of the function,
in which we pass it two integers, should calculate the result as expected.
The second call, in which we pass the function an integer and a string, looks
fine in the editor. However, when we run the code, the runtime environment
should throw the error Invalid type: a parameter is not an integer.

There are two main concerns with manually checking the types. First, it
adds a lot of noise to our code, as we need to check for all possible types
every time we work with function or API contracts, such as when we accept
a parameter or return a value. Second, we’re not notified of issues during
development. To see the errors in dynamically typed languages, we need to
execute the code so that the interpreter can inform us about errors at
runtime.

Unlike dynamically typed languages, statically typed languages
perform type checks on the code compilation, before runtime. The
TypeScript Compiler (TSC) handles this chore; it can run in the background
of our code editor or IDE and instantly report all errors based on invalid
type usage. Therefore, you can catch errors and see each variable’s assigned
types and data structures early.

Even if you don’t set up instant feedback like that, running your code
through TSC is necessary before it can be used, which ensures that these
kinds of errors are caught earlier than they otherwise would be. The ability
to check for these errors is one of the most important benefits of using
TypeScript over JavaScript. We will discuss how to benefit from type
annotations and when to use them in “Type Annotations” on page 38.

Setting Up TypeScript
TypeScript’s syntax isn’t valid JavaScript, so a regular JavaScript runtime
environment can’t execute it. To run TypeScript in Node.js or a browser, we
first need to use TSC to convert it to regular, backward-compatible
JavaScript. We then execute the resulting JavaScript.

Despite being called a compiler, TSC doesn’t actually compile
TypeScript into JavaScript. Instead, it transpiles it. The difference lies in the
level of abstraction. A compiler creates low-level code, while a transpiler is
a source-to-source compiler that produces equivalent source code in a
language of roughly the same abstraction. For example, you could transpile
ES.Next to legacy JavaScript or Python 2 to Python 3. (That said, the terms
transpiling and compiling are often used interchangeably.)

In addition to converting TypeScript to JavaScript, TSC checks your
code for type errors and verifies the contracts between your functions. The
transpiling and type-checking happen independently, and the TSC produces
JavaScript regardless of the types you defined. TypeScript errors are merely
warnings emitted during the build. They won’t stop the transpiling step as
long as the JavaScript itself doesn’t produce an error.

The use of TypeScript won’t affect your code’s performance. The
compiler removes types and type operations during the transpilation step,
essentially stripping all TypeScript syntax from the actual JavaScript code.
Therefore, they can’t affect the runtime or the size of the final code.
TypeScript is consequently no slower than JavaScript, although the
transpilation can take some time.

Installation in Node.js
If you’re using Node.js, you should define TypeScript and all type
definitions as development dependencies with the --save-dev flag in your

project’s package.json file. There is no need to install TypeScript globally.
Just add TypeScript directly to your project with this npm command:

$ npm install --save-dev typescript

TypeScript files use the extension .ts, and because TypeScript is a
superset of JavaScript, all valid JavaScript code is automatically valid
TypeScript code. Therefore, you can rename your .js files to .ts and
instantly use the static type checker with your existing code.

A tsconfig.json file defines TSC configuration options. We’ll cover the
most important ones in the next section. For now, run the following
command to generate a new file with the default configuration:

$ npx tsc -init

TSC looks for this file in the current path and all parent directories. The
optional -p flag points the TypeScript compiler directly to the file. TSC
then reads configuration information from this file and treats its folder as
TypeScript’s root directory.

NOTE
If you want to follow this chapter’s examples without creating a dedicated
project, you can run code in the online playground at https://www
.typescriptlang.org/play instead of installing TypeScript locally.

The tsconfig.json File
Take a look at the basic structure of a tsconfig.json file. The content of the
generated file depends on your installed TypeScript version, and there are
around 100 configuration properties, but for most projects, only the
following few are relevant:

{

 "extends": "@tsconfig/recommended/tsconfig.json",

 "compilerOptions": {},

 "include": [],

https://www.typescriptlang.org/play

 "exclude": []

}

The extends option is a string that configures the path to another
similar configuration file. Usually, this property extends a preset you used
as a template with minor, project-specific tweaks. It works similarly to
class-based inheritance in object-oriented programming. The preset
overrides the base configuration, and the configuration’s key-value pairs
overwrite the preset. The example shown here uses the recommended
configuration file for TypeScript to override the default settings.

The compilerOptions field configures the transpiling step. We list its
options in Appendix A. The value for include is an array of strings that
specifies the patterns or filenames to include for transpiling. The value for
exclude is an array of strings that specifies patterns or filenames to
exclude. Keep in mind that TSC applies these patterns on the list of files
found with the included pattern. Usually, we don’t need to include or
exclude files, as our whole project will consist of TypeScript code. Hence,
we can leave the arrays empty.

Dynamic Feedback with TypeScript
Most modern code editors have support for TypeScript, and they show us
the errors generated by TSC directly inside the code. Remember the
calculate function we used to explain how TypeScript verifies function
contracts? Figure 3-1 is a screenshot from Visual Studio Code highlighting
the type error and hinting at the solution.

Figure 3-1: Working with TypeScript in Visual Studio Code

You can use any code editor or IDE you’d like to write your TypeScript
code, though one that shows dynamic feedback like this is recommended.

Type Annotations
A type annotation is an optional way to explicitly tell the runtime
environment which types to expect. You add them following this schema:
variable: type. The following example shows a version of the calculate
function in which we type both parameters as numbers:

const calculate = (a: number, b: number) => a + b;

Some developers tend to add types to everything in their code, and by
doing so, they add noise that makes the code less readable. This antipattern,
called over-typing, stems from a false understanding of how type
annotations should work. The TypeScript compiler infers types from usage.
Therefore, you don’t need to explicitly type everything. Instead, the code
editor runs TSC in the background and leverages the results to display the
inferred type information and compiler errors as you saw in the “Dynamic
Feedback with TypeScript” section.

Rather, type annotations are a way to ensure that code honors the API
contracts. There are three scenarios in which you’ll want to verify the
contract, and only one of them is especially important. The first scenario,
upon a variable’s declaration, is usually not recommended. The second,
annotating the return value of a function, is optional, whereas the third
scenario, annotating a function’s parameters, is essential. We’ll now take a
look at all three of these cases in detail.

Declaring a Variable
The most obvious place to type a variable is upon an assignment or
declaration. Listing 3-4 demonstrates this by explicitly typing the variable
weather as a string and then assigning it a string value.

let weather: string = "sunny";

Listing 3-4: Over-typing during the variable’s declaration

In most cases, however, this is a form of over-typing, as you could
instead leverage the compiler’s type inference. Listing 3-5 shows the

alternative pattern of using type inference.

let weather = "sunny";

Listing 3-5: Inferring the variable’s type based on its value

Because TSC automatically infers the type of this variable, the code
editor should show the type information when you hover over the variable.
Without the explicit annotation, we have a much cleaner syntax and avoid
the noise that the redundant type declaration adds to the code. This
improves code readability, which is why this kind of over-typing is usually
to be avoided.

Declaring a Return Value
Although TypeScript can infer a function’s return type, you’ll usually want
to annotate it explicitly. This code pattern ensures that the function’s
contract is honored, as the compiler shows implementation errors where the
function is defined instead of where it is used.

Another reason to use type annotations in this situation is that, as a
programmer, you must explicitly define what a function does. By clarifying
the function’s input and output types, you’ll gain a better understanding of
what you actually want the function to do. Listing 3-6 shows you how to
declare a function’s return type upon declaration.

function getWeather(): string {

 const weather = "sunny";

 return weather;

}

Listing 3-6: Typing a function’s return value upon declaration

We create a function that returns the weather variable we declared
earlier. The weather variable has the inferred string type. Hence, the
function returns a string. Our type definition explicitly sets the function’s
return type.

Declaring a Function’s Parameters
It’s essential to annotate the parameters of a function, because TypeScript
doesn’t have enough information to infer function parameters in most cases.
By typing these parameters, you’re telling the compiler to check the types
when you call the function and pass it arguments. Take a look at Listing 3-7
to see this pattern in action.

const weather = "sunny";

function getWeather(weather: string): string {

 return weather;

};

getWeather(weather);

Listing 3-7: Typing a function’s parameters

Instead of declaring the weather variable as a constant inside the
function, we want the returned value to be dynamic. Therefore, we modify
the function to accept a parameter and return it immediately. We then call
the function with the weather constant as a parameter.

Good TypeScript code avoids noise and relies on inferring type
annotations. It always annotates a function’s parameters and opts for
annotated return values but never annotates local variables.

Built-in Types
Before you can use TypeScript and its annotations, you need to know what
types are available to you. One of TypeScript’s main benefits is that it
enables you to declare any of JavaScript’s primitive types explicitly. In
addition, TypeScript adds its own types, the most important of which are
unions, tuples, any, and void. You can also define custom types and
interfaces.

Primitive JavaScript Types
JavaScript has five primitive types: strings, numbers, Booleans, undefined,
and null. Everything else in the language is considered an object. Listing 3-
8 shows the syntax for defining variables of these primitive JavaScript types

with additional TypeScript type annotations. (Remember that, most of the
time, you can just rely on the compiler’s type inference in this situation.)

let stringType: string = "bar";

let booleanType: boolean = true;

let integerType: number = 1;

let floatType: number = 1.5;

let nullType: null = null;

let undefinedType: undefined = undefined;

Listing 3-8: JavaScript’s primitive types with TypeScript’s type annotations

First we define a string variable and a Boolean with the TypeScript
annotations. These are identical to strings and Booleans in JavaScript. Then
we define two numbers. Like JavaScript, TypeScript uses a single generic
type for numbers, without differentiating between integers and floating
points. Finally, we look at TypeScript’s null and undefined types. These
behave the same as JavaScript’s primitive types of the same name. Null
refers to a value that either is empty or doesn’t exist, and it indicates the
intentional absence of a value. In contrast, undefined indicates the
unintentional absence of a value. We did not assign a value in Listing 3-5
for the undefined type, because we don’t know it.

The union Type
There are a few additional types you should know about, because the more
precise your type annotations are, the more helpful you’ll find TSC to be.
TypeScript introduced the union type to the JavaScript ecosystem. Unions
are variables or parameters that can have more than one data type. Listing
3-9 shows an example of a union type that can be a string or a number.

let stringOrNumberUnionType: string | number;

stringOrNumberUnionType = "bar";

stringOrNumberUnionType = 1;

stringOrNumberUnionType = true;

Listing 3-9: TypeScript’s union type

We declare a union-type variable that can contain either a string or a
number, but nothing else. As soon as we assign a Boolean variable, TSC
throws an error, and the IDE shows the message Type 'boolean' is not
assignable to type 'string | number'.

While you might find union types useful for annotating function
parameters and arrays that can contain different types, you should use them
sparingly and avoid them whenever possible. This is because, before
working with union-typed items, you need to perform additional manual
type checks; otherwise, they could cause errors. For example, if you iterated
over an array of strings or numbers and then added all items, you would
first need to convert all strings to numbers. Otherwise, JavaScript would
implicitly convert the numbers to strings, as shown earlier in this chapter.

The array Type
TypeScript provides a generic array type that offers array functions similar
to JavaScript’s array. However, take a close look at the syntax for typing the
array, shown in Listing 3-10. You’ll notice that the type of the array
depends on the type of the array items.

let genericArray: [] = [];

genericArray.push(1);

let numberArray: number[] = [];

numberArray.push(1);

Listing 3-10: Typed arrays

First we define an array without specifying the type of its items.
Unfortunately, what seems to be a definition of a generic array leads to
issues down the road. As soon as we try to add a value, TSC throws the
error Argument of type 'number' is not assignable to parameter of
type 'never', because the array is not typed.

Hence, we need to type the items in the array. Therefore, we create an
array, numberArray, in which each item has the type of number. Now we
can add numeric values to the array without running into errors.

The object Type
TypeScript’s built-in object type is the same as JavaScript’s object.
Although you can define the properties’ types for TSC to type-check, the
compiler can’t ensure the order of the properties. Nonetheless, it typechecks
them, as shown in Listing 3-11.

let weatherDetail: {

 weather: string,

 zipcode: string,

 temp: number

} = {weather: "sunny", zipcode: "00000", temp: 1};

weatherDetail.weather = 2;

Listing 3-11: Typed objects

Here we define an object with three properties: two that take a string
and another that takes a number. Then we try to assign a number to the
property weather annotated as a string. Now TSC notifies us with an error
explaining that we assigned a value of the wrong type.

Note that, usually, you should avoid typing objects inline, as in this
example. Instead, it is a best practice to create a custom type, which is
reusable and avoids cluttering our code, enhancing its readability. We
discuss how to create and use them in “Custom Types and Interfaces” on
page 44.

The tuple Type
Another common type that TypeScript adds to JavaScript is the tuple type.
Shown in Listing 3-12, tuples are arrays with a specified number of typed
items. TypeScript’s tuples are similar to those you might have encountered
in programming languages such as Python and C#.

let validTuple: [string, number] = ["bar", 1];

let invalidTuple: [string, number] = [1, "bar"];

Listing 3-12: TypeScript’s tuple type

We define two tuples. In both, the first array item is a string, and the
second is a number. If the type, order, or number of items added to the tuple
differs from the tuple’s declaration, TSC throws an error. Here the first
assignment is acceptable, whereas the second one throws two errors
indicating a mismatch in types.

The any Type
TypeScript’s any type is generic, meaning it can take any value, and you
should avoid using it. As you can see in Listing 3-13, it accepts all values
without throwing an error, which defeats the purpose of static typing.

let indifferent: any = true;

indifferent = 1;

indifferent = [];

Listing 3-13: TypeScript’s any type

Using any might seem like an easy choice, and it is tempting to rely on
it as an escape hatch. Avoid this at all costs. When you pass any as a value
to, say, a function, you break the contract you specified in the function
declaration, and when you use any to define the contract, there effectively
isn’t one.

To view a scenario in which using the any type causes problems, take a
look at Listing 3-14.

const calculate = (a: any, b: any): any => a + b;

console.log(calculate (1,1));

console.log(calculate ("1",1));

Listing 3-14: Problems caused by the any type

We reuse the calculate function, which adds two numbers. When we
pass two numeric values, we receive the expected output of 2. In a previous
example, we typed the parameters as numbers, thus preventing the use of
invalid types as arguments.

However, when we use any instead of a number and pass a string to the
function, TSC doesn’t throw an error. JavaScript implicitly converts the

number to a string and returns an unexpected value of 11. We saw this
behavior at the beginning of the chapter, in the untyped version of the
function. As you can see, using any is the same as using no types at all.

While convenient, the any type masks your bugs during programming
and hides your type designs, rendering type-checking useless. It also
prevents your IDE from displaying errors and invalid types.

The void Type
TypeScript’s void type is the opposite of any: it indicates no type at all. Its
only use case is to annotate the return value of a function that shouldn’t
have one, as shown in Listing 3-15.

function log(msg: string): void {

 console.log(msg);

}

Listing 3-15: TypeScript’s void type

The custom log function we define here passes a parameter to the
console. It doesn’t return anything, so we use void as the return type.

To learn more about TypeScript types and other important details of the
language, take a look at The TypeScript Handbook at https://www
.typescriptlang.org/docs/handbook/intro.html.

Custom Types and Interfaces
The previous sections introduced you to enough TypeScript to begin using
the language. However, you’ll find it helpful to know a few more advanced
concepts. This section shows you how to create custom types and use
untyped third-party libraries in your TypeScript code. You’ll also learn
when to create a new type and use a custom interface.

While working with TypeScript, remember that a TypeScript file
without top-level imports or exports is not a module; therefore, it runs in the
global scope. Consequently, all of its declarations are accessible in other
modules. By contrast, a TypeScript file with top-level imports or exports is

https://www.typescriptlang.org/docs/handbook/intro.html

its own module, and all declarations are limited to the module scope,
meaning they’re available in the scope of this module only.

Defining Custom Types
TypeScript lets you define custom types by using the type keyword.
Custom types are a great way to simplify your code. To see how, take a
second look at the code shown back in Listing 3-8, when you created a
typed object. Now consider Listing 3-16, which optimizes the code with a
custom type definition. You should find it much cleaner and easier to read.

type WeatherDetailType = {

 weather: string;

 zipcode: string;

 temp?: number;

};

let weatherDetail: WeatherDetailType = {

 weather: "sunny",

 zipcode: "00000",

 temp: 30

};

const getWeatherDetail = (data: WeatherDetailType): WeatherD

etailType => data;

Listing 3-16: Custom types for typed objects with TypeScript

We create a custom type, WeatherDetailType, with the type keyword.
Note that the overall syntax is similar to that used to define an object; we
use the equal sign (=) to assign the definition to the custom type.

The custom type has two required properties: weather and zipcode. In
addition, it has an optional temp property, as indicated by the question mark
(?). Now when we create the getWeatherDetail function, we can annotate
the parameter, weatherDetail, as an object with a type of
WeatherDetailType. Using this technique, we avoid using inline
annotations and can reuse our custom type later, such as to annotate the
return type of a function.

Defining Interfaces
In addition to types, TypeScript has interfaces. However, the difference
between a type and an interface is blurry. You can freely decide which one
to use, so long as you follow a convention in your code.

In general, we consider a type definition to answer the question,
“Which type is this data?” A possible answer might be a union or a tuple.
An interface is a way to describe the shape of some data, such as the
properties of an object. It answers the question, “Which properties does this
object have?” The most practical difference is that, unlike an interface, we
cannot directly modify a type after we’ve declared it. For an in-depth look
at the distinction, consult The TypeScript Handbook.

As a rule of thumb, use an interface to define a new object or the
method of an object. More generally, consider using interfaces over types,
as they provide more precise error messages. A classic React use case for
interfaces is to define the properties of a specific component. Listing 3-17
shows how to use the interface keyword to create a new interface to
replace the type in Listing 3-16.

interface WeatherProps {

 weather: string;

 zipcode: string;

 temp?: number;

}

const weatherComponent = (props: WeatherProps): string => pr

ops.weather;

Listing 3-17: Custom interfaces for TypeScript functions

Here we use the interface keyword to define a new interface. Unlike
a custom type’s definition, an interface definition does not use the equal
sign to assign the interface’s properties to its name. We then use the custom
interface to type the properties object props of the weatherComponent,
which returns a string.

Using Type Declaration Files
To use custom types universally, you can define them in type declaration
files, which have the .d.ts extension. Unlike regular TypeScript files with
the .ts or .tsx extension, type declaration files shouldn’t contain any
implementation code. Instead, TSC uses these type definitions to
understand custom types and perform type checks. They aren’t transpiled to
JavaScript and are never part of the executed script.

Type declaration files prove useful when you find yourself working
with external code bases. Often, third-party libraries aren’t written in
TypeScript. Therefore, they don’t provide type declaration files for their
code bases. Luckily, the DefinitelyTyped repository at http://definitelytyped
.github.io provides type declaration files for more than 7,000 libraries. Use
these files to add TypeScript support to these libraries.

Type declaration files are collected under the @types scope in npm.
This scope holds all the declarations from DefinitelyTyped. Hence, they are
easy to find and are grouped next to each other in your package.json file.
All type declaration files from the @types scope should be considered
development dependencies of your project. Hence, we use the --save-dev
flag on the npm install command to add them.

Listing 3-18 shows a minimal example of a type declaration file that
exports a type and interface for an API.

interface WeatherQueryInterface {

 zipcode: string;

}

type WeatherDetailType = {

 weather: string;

 zipcode: string;

 temp?: number;

};

Listing 3-18: Defining custom types and interfaces

Save these definitions in a file called custom.d.ts in your root directory.
TSC should automatically load these definitions. You can now use the types

http://definitelytyped.github.io/

and interfaces from the file in your TypeScript modules.

Exercise 3: Extend Express.js with TypeScript
Let’s use your new knowledge of TypeScript to rewrite the Express.js server
you created in Exercises 1 and 2. In addition to adding type annotations,
we’ll add a new route to the server by using custom types.

Setting Up
Begin by adding TypeScript to the project following the steps described in
“Setting Up TypeScript” on page 36. Next, because Express.js isn’t typed,
add type definitions from DefinitelyTyped to your project by running the
following:

$ npm install --save-dev @types/express

Your package.json file should now look like this:

{

 "name": "sample-express",

 "version": "1.0.0",

 "description": "sample express server",

 "license": "ISC",

 "type": "module",

 "dependencies": {

 "express": "^4.18.2",

 "node-fetch": "^3.2.6"

 },

 "devDependencies": {

 "@types/express": "^4.17.15",

 "typescript": "^4.9.4"

 }

}

Now you can create configuration and type declaration files for the
project.

Creating the tsconfig.json File
Either create a new tsconfig.json file in the sample-express folder, next to
the index.ts file, or open the one you created earlier. Then add or replace its
content with the following code:

{

 "compilerOptions": {

 "esModuleInterop": true,

 "module": "es6",

 "moduleResolution": "node",

 "target": "es6",

 "noImplicitAny": true

 }

}

We configure TypeScript for our simple Express.js server, which
requires only a few settings. We use ES.Next modules for our TypeScript
code, and because we want to keep them after transpiling the TypeScript to
JavaScript, we set module and target to es6. The express package is a
CommonJS module. Therefore, we need to use the esModuleInterop option
and set the moduleResolution to node. Finally, we use the noImplicitAny
option to disallow the implicit use of the any type and require explicit
typing. Appendix A describes these configuration options in more detail.

Defining Custom Types
For our server, we’ll follow a simple rule of thumb: every time we use an
object, we should consider adding a custom type or interface to our project.
If the object is a function parameter, we’ll create a custom interface. If we
use this particular object more than once, we’ll create a custom type.

To define the custom types for this sample project, we create a file
custom.d.ts next to the index.ts file in the sample-express folder and add the
code from Listing 3-19.

type responseItemType = {

 id: string;

 name: string;

};

type WeatherDetailType = {

 zipcode: string;

 weather: string;

 temp?: number;

};

interface WeatherQueryInterface {

 zipcode: string;

}

Listing 3-19: The custom.d.ts file

We create two custom types and an interface. One defines the response
items of the asynchronous API call. The other type and the interface are
similar to examples shown earlier in this chapter. They are necessary for the
new weather route we will create shortly.

Adding Type Annotations to the routes.ts File
Next, we must add type annotations to our server code. Rename the
routes.js file in the sample-express folder to routes.ts to enable the TSC for
this file. You should instantly see the errors and warnings appear in your
editor. Take some time to look at these and then adjust the contents to match
the code in Listing 3-20. We’ve bolded all type annotations.

import fetch from "node-fetch";

const routeHello = (): string => "Hello World!";

const routeAPINames = async (): Promise<string> => {

 const url = "https://www.usemodernfullstack.dev/api/v1/u

sers";

 let data: responseItemType[];

 try {

 const response = await fetch(url);

 data = (await response.json()) as responseItemType

[];

 } catch (err) {

 return "Error";

 }

 const names = data

 .map((item) => `id: ${item.id}, name: ${item.name}`)

 .join("
");

 return names;

};

const routeWeather = (query: WeatherQueryInterface): Weather

DetailType =>

 queryWeatherData(query);

const queryWeatherData = (query: WeatherQueryInterface): Wea

therDetailType => {

 return {

 zipcode: query.zipcode,

 weather: "sunny",

 temp: 35

 };

};

export {routeHello, routeAPINames, routeWeather};

Listing 3-20: The typed routes.ts file

Following the principle discussed in “Type Annotations” on page 38,
we annotate only a function’s parameters and return types. We also annotate
local variables only when their types cannot be inferred, as when converting
the fetch response to JSON. Here we need to explicitly type the variable
with our custom responseItemType and cast the conversion’s return value
as an array of responseItemTypes.

In the rest of the listing, we create the functions for the additional
weather route. We use the custom interface for typing both functions’
parameters and the custom type for their return types. In this basic example,
the query function returns mostly static data, except the ZIP code, which it
takes from the passed parameters. A regular implementation would query a
database with the ZIP code and retrieve actual data.

Finally, we add the new route for the weather endpoint to the export
statement.

Adding Type Annotations to the index.ts File
Rename the file index.js in the sample-express folder to index.ts and adjust
the code to match Listing 3-20. In addition to the necessary type
annotations, create a new endpoint and follow the TypeScript convention to
prefix unused parameters with an underscore (_), shown in Listing 3-21.

import {routeHello, routeAPINames, routeWeather} from "./rou

tes.js";

import express, {Request, Response} from "express";

const server = express();

const port = 3000;

server.get("/hello", function (_req: Request, res: Respons

e): void {

 const response = routeHello();

 res.send(response);

});

server.get("/api/names",

 async function (_req: Request, res: Response): Promise<v

oid> {

 let response: string;

 try {

 response = await routeAPINames();

 res.send(response);

 } catch (err) {

 console.log(err);

 }

 }

);

server.get(

 "/api/weather/:zipcode",

 function (req: Request, res: Response): void {

 const response = routeWeather({zipcode: req.params.z

ipcode});

 res.send(response);

 }

);

server.listen(port, function (): void {

 console.log("Listening on " + port);

});

Listing 3-21: The typed index.ts file

First we import the new weather route from the available routes and the
Request and Response types from the express package. These are all named
exports. Thus, we use curly brackets ({}).

Then, following best practices, we add code annotations and, at the
same time, prefix the unused req parameters with an underscore. TSC will
follow the convention of functional programming languages by ignoring
these parameters. The api/names entry point is marked as an async function,
so it needs to return a value wrapped in a promise. Hence, nothing is
returned, and we return void as the promise’s value.

In the following lines of code, we create an additional route for a new
/api/weather/:zipcode endpoint. The colon (:) creates a parameter on the
request’s params object. We retrieve the value for zipcode with req.params
.zipcode and pass it down to the routeWeather function. Note that there is
no underscore on the request parameter this time. Finally, we use the same
function as before to start the Express.js server and listen to port 3000.

Transpiling and Running the Code
To transpile the code with the TypeScript compiler to JavaScript, run TSC
with npx on the command line:

$ npx tsc

TSC generates two new files, index.js and routes.js, from the
TypeScript files. Start the server from your command line with the regular

Node.js call:

$ node index.js

Listening on 3000

Now visit http://localhost:3000/api/weather/12345 in your browser.
You should see the weather details with the ZIP code 12345, as shown in
Figure 3-2.

Figure 3-2: Browser response from the Node.js web server

Success! You wrote your first TypeScript application.

Summary
This chapter taught you what you need to know about TypeScript to create a
full-stack application. We set up TypeScript and TSC in a new project, then
discussed its most important configuration options. Next, you learned to use
TypeScript efficiently, leveraging type-annotation inference to avoid over-
typing.

We also discussed primitive and advanced built-in types and how to
create custom types and interfaces. Finally, you used your new knowledge
to add TypeScript to the Express.js server built in previous exercises and
refactored the code with type annotations, custom types, and interfaces.

If you want to become a TypeScript expert, I recommend The
TypeScript Handbook and the tutorials at https://www.typescripttutorial.net.
In the next chapter, you’ll get to know React, a declarative JavaScript
library for building user interfaces.

https://www.typescripttutorial.net/

4
REACT

Developers can use the React library to
create a full-stack application’s user

interface. React is built upon the Node.js ecosystem,
and as one of the most commonly used web
frameworks, it currently forms the basis of more than
percent of the most visited websites.

To work effectively with React, you must understand the syntax used to
define the appearance of user interface elements and then combine these
into React components that can dynamically update. This chapter covers
everything you need to know to begin developing full-stack applications
using this library.

The Role of React
Modern frontend architectures split an application’s user interface into
small, self-contained, and reusable items. Some of these, such as headers,
navigations, and logos, might appear only once per page, while others are
repeated elements that form the page’s contents, such as headlines, buttons,
and teasers. Figure 4-1 shows some of these items. React’s syntax embraces
this pattern; the library focuses on building these independent components
and, in doing so, helps us develop our applications more efficiently.

Figure 4-1: User interface components

React uses a declarative programming paradigm, through which you
create a user interface by describing the desired results instead of explicitly
listing all the steps necessary to create it, as is done in imperative
programming. A classic example of the declarative paradigm is HTML.
Using HTML, you describe a web page’s elements, and the browser then
renders the page. By contrast, you could use JavaScript to write an
imperative program that creates each HTML element. In doing so, you
would explicitly list the steps to build the website.

In addition, these user interface components are reactive. This means
two things: one, that they handle their own isolated states, and two, that
each component updates the page’s HTML as soon as its state changes.
Changes to the React code instantly affect a browser’s document object
model (DOM), which represents a website as a tree in which each HTML
element is a node. The DOM also provides an API for each node and for the
website in general, enabling scripts to modify a website or a specific node.

DOM operations, such as re-rendering a component, are expensive. To
update the DOM, React uses a virtual DOM, which is an in-memory clone
of the actual browser DOM that it later syncs with the real thing. This
virtual DOM allows for incremental updates that reduce the number of
costly operations on the browser. The virtual DOM is a crucial principle of

React. React calculates the difference between the virtual DOM and the real
DOM with every call to one of its render functions and then decides what to
update. Usually, React performs batch updates to lower the performance
impact further. This process of reconciliation lets React deliver fast and
responsive user interfaces.

Although React is primarily a user interface library, developers can also
use it to build single-page applications that don’t require middleware or a
backend. These apps are nothing more than a view layer rendered in the
browser. To some extent, they can be dynamic: for example, we can change
the page’s language, open an image gallery, or toggle an element’s visibility.
However, all of this occurs in the browser, with additional React modules,
rather than on the server.

We can also perform more advanced functionality, like updating the
browser’s location to simulate the existence of distinct pages, purely in the
browser, with React’s Router module. This module lets us define routes,
similar to the ones we defined in our Express.js server, on the frontend. As
soon as a user clicks an internal link, the routing component updates the
view and changes the browser’s location. This makes it seem as though
they’ve loaded another HTML page. In reality, we’ve just changed the
current page’s contents. In doing so, we avoided another set of server
requests, so the simulated page loads much more quickly. Also, because our
JavaScript code controls the transition between pages, we can add effects
and animations to these transitions.

Setting Up React
Unlike, say, the basic Express.js server you created in Exercise 1 on page
13, which uses standard JavaScript and can run directly with Node.js, React
relies on an advanced setup with a complete build toolchain. For example, it
uses a custom JavaScript Syntax Extension (JSX) to describe HTML
elements and TypeScript for static typing, both of which require a transpiler
to convert the code to JavaScript. Therefore, the manual process for setting
up React is quite complex.

Thus, we generally rely on other tools. In the case of a single-page
application, we use a code generator, such as create-react-app, to
scaffold it. During this scaffolding process, create-react-app generates

the boilerplate code for a new React application, as well as the build chain
and folder structure for the project. It also provides a consistent project
layout that helps us easily understand other React projects.

To run the examples in this chapter, one option is to scaffold a simple
TypeScript React app with create-react-app by following the steps at
https://create-react-app.dev/docs/getting-started/. If you don’t want to
create a dedicated project, you can instead run code using React with a
TypeScript template in an online playground, such as https://codesandbox
.io or https://stackblitz.com. The playgrounds and create-react-app
follow the same file structure. In both cases, you should save your code to
the default App.tsx file.

For more complex apps, we’d use a complete web application
framework such as Next.js, which provides the necessary setup out of the
box. Covered in Chapter 5, Next.js is the most popular framework for full-
stack web applications that use React. Internally, Next.js employs a
variation of create-react-app for scaffolding. We’ll rely on it in future
chapters to work with React.

The JavaScript Syntax Extension
React uses JSX to define the appearance of user interface components. JSX
is an extension of JavaScript that a transpiler must convert before the
browser renders it to the DOM. While it has HTML-like syntax, it is more
than a simple templating language. Instead, it allows us to use any
JavaScript feature to describe React elements. For example, we can use JSX
syntax inside conditional statements, assign it to variables, and return it
from functions. The compiler will then embed any variable or valid
JavaScript expression wrapped in curly brackets ({}) into the HTML.

This logic allows us to, for instance, use array.map to loop over an
array, check each item for a certain condition, pass the item to another
function, and create a set of JSX elements based on the function’s return
value, directly inside a page’s template. While this may sound abstract,
we’ll use this pattern extensively when we create React components in the
Food Finder application you’ll build in Part II.

https://create-react-app.dev/docs/getting-started/
https://codesandbox.io/
https://stackblitz.com/

An Example JSX Expression
JSX expressions, like those in Listing 4-1, are the most essential part of the
React user interfaces. This JavaScript code defines a JSX function
expression, getElement, that takes one string as a parameter and returns a
JSX.Element.

import React from "react";

export default function App() {

 const getElement = (weather: string): JSX.Element => {

 const element = <h1>The weather is {weather}</h1>;

 return element;

 };

 return getElement("sunny");

}

Listing 4-1: A minimal example of a JSX expression

The entry point for each React application is the App function. Like the
index.js file of our Express.js server, this function is executed when the
application starts. Here, we usually set up the global elements, such as
stylesheets and the overall page layout.

React renders the function’s return value to the browser. In Listing 4-1,
we immediately return an element. As the smallest building blocks of React
user interfaces, elements describe what you’ll see on the screen, just as
HTML elements do. Examples of elements include custom buttons,
headlines, and images.

After importing the React package, we create the JSX element and
store it in an element constant. At first glance, you might wonder why it
isn’t wrapped in quotes, as it contains what appears to be a regular HTML
h1 element and looks like a string. The answer is that it isn’t a string but a
JSX element from which the library creates HTML elements
programmatically. As a result, the code will display a message about the
weather to the page.

As soon as we call the JSX expression, the React library transpiles it
into a regular JavaScript function call and creates an HTML string from the

JSX element displayed in the browser. In Chapter 3, you learned that all
valid JavaScript is also valid TypeScript. Hence, we can use JSX with
TypeScript as well. JSX files use a .jsx (JavaScript) or .tsx (TypeScript)
extension. Paste this code into the App.tsx file of the project you created,
and the browser should render an h1 HTML element with the text The
weather is sunny either in the preview pane of the online playground or
in your browser.

The ReactDOM Package
One easy way to work with elements is to use the ReactDOM package,
which contains APIs for working with the DOM. Note that the elements you
create aren’t browser DOM elements. Instead, they’re plain JavaScript
objects that will be rendered, using React’s render function, to the virtual
DOM’s root element and then attached to the browser DOM.

React elements are immutable: once created, they cannot be changed. If
you do alter any part of the element, React will create a new element and
re-render the virtual DOM, then compare the virtual DOM with the browser
DOM to decide whether the browser DOM needs an update. We’ll use JSX
abstractions for these tasks; nonetheless, it’s good to understand how React
works under the hood. If you want to dig deeper, consult the official
documentation at https://react.dev/learn.

Organizing Code into Components
We mentioned that components are independent, reusable pieces of code
built from React elements. Elements are objects that can contain other
elements. Once rendered to the virtual or browser DOM, they create DOM
nodes or whole DOM subtrees. Meanwhile, React components are classes
or functions that output elements and render them to the virtual DOM. We
will build a user interface using React components. For more information
about this distinction, read the deep dive at the official React blog: https://
reactjs.org/blog/2015/12/18/react-components-elements-and-instances
.html.

While other frameworks might separate a user interface’s code by
technology, splitting it into HTML, CSS, and JavaScript files, React instead
separates code into these logical building blocks. As a result, a single

https://react.dev/learn
https://reactjs.org/blog/2015/12/18/react-components-elements-and-instances.html

physical file contains all the information necessary for a component,
regardless of underlying technologies.

More concretely, a React component is a JavaScript function that, by
convention, starts with an uppercase letter. Furthermore, it takes a single
object argument, called props, and returns a React element. This props
argument should never be modified inside the component and is considered
immutable inside the React code.

Listing 4-2 shows a basic React component that displays the same
weather string as in the previous listings. In addition, we’ve added a custom
interface and a click handler. The custom interface enables us to set an
attribute on the JSX component and read its value in the TypeScript code.
It’s a common way to pass values to a function component without a global
state management library.

Here, we simply pass the component the same string used in the
previous listings and render it to the DOM, but for a real-world application,
the weather string might be part of an API response. To get the weather
data, a parent component might query the API and then send this data
through the component’s attribute to the component’s code, or each
component in the application would need to query the API to access that
data, impacting the overall performance of the application.

The click handler enables us to react to user interactions. In JSX, click
handlers have the same names as in HTML, and we add them the way we
might add inline DOM events. For example, to react to a user clicking an
element, we add an onClick attribute with a callback function.

import React from "react";

export default function App() {

 interface WeatherProps {

 weather: string;

 }

 const clickHandler = (text: string): void => {

 alert(text);

 };

 const WeatherComponent = (props: WeatherProps): JSX.Elem

ent => {

 const text = `The weather is ${props.weather}`;

 return (<h1 onClick={() => clickHandler(text)}>{tex

t}</h1>);

 };

 return (<WeatherComponent weather="sunny" />);

}

Listing 4-2: A basic React component

First we create a custom interface for our new component’s properties.
We’ll use this interface for the component’s prop parameter later. Because
we set a weather attribute on the component and define a matching
weather property on the interface, we can access the value of the weather
attribute with props.weather in our TypeScript code.

Then we create the event handler as an arrow function with one string
parameter. We use an onClick event property similar to inline DOM events
and assign a callback function, clickHandler. As soon as the user clicks the
page’s headline, we display a simple alert box.

Next, we define the component. As you can see, it’s a JSX expression
that implements the WeatherProps interface and returns a JSX element.
Inside the component, we use an untagged template literal to create text and
add the dynamic weather information with the value from the weather
attribute, via props.weather. Then we return the JSX element and, finally,
return and render the weather component, setting sunny as the attribute’s
value.

Paste this code into the App.tsx file. The browser should render an h1
HTML element with the text The weather is sunny in the preview pane.
When you click the text, an alert box will display it once more. Change the
value of the weather attribute to display different weather strings.

Writing Class Components
There are two kinds of components in React: class components and function
components. The component in Listing 4-2 is a function component, which

borrows heavily from functional programming. In particular, these
components follow the pattern of pure functions: they create some output
(JSX elements) based on some input (the props argument and the JSX
component’s attributes). While we emphasize this type of component in this
chapter, you should know the basics of class components too.

A class component follows the typical patterns of object-oriented
programming: it is defined as a class and inherits methods from its parent
React.Component class. Like all components, it has an argument called
props and returns a JSX element. Class components also have constructor
and super functions, and you can use the this keyword to refer to the
current component’s instance.

Of particular value, the internal property this.state provides you an
interface to store and access information about the component’s internal
state, such as opened elements, the current image in an image gallery, or, as
in the next example, a simple click counter. Of similar importance are the
class’s lifecycle methods, which run during specific lifecycle steps: for
example, whenever the component mounts, renders, updates, or unmounts.
In Listing 4-3, we use the componentDidMount lifecycle method. React runs
this method immediately after the component becomes part of the DOM. It
is similar to the browser’s DOMReady event, with which you might already
be familiar.

Listing 4-3 shows the previously created weather component defined as
a class component. To practice accessing the component’s state, we’ve
added a counter that will count the clicks on the headline element. Because
it records the internal component’s state, the counter resets on page reload.
Paste this code into the App.tsx file and click the headline to count up.

import React from "react";

export default function App() {

 interface WeatherProps {

 weather: string;

 }

 type WeatherState = {

 count: number;

 };

 class WeatherComponent extends React.Component<WeatherPr

ops, WeatherState> {

 constructor(props: WeatherProps) {

 super(props);

 this.state = {

 count: 0

 };

 }

 componentDidMount() {

 this.setState({count: 1});

 }

 clickHandler(): void {

 this.setState({count: this.state.count + 1});

 }

 render() {

 return (

 <h1 onClick={() => this.clickHandler()}>

 The weather is {this.props.weather}, and

the counter shows{" "}

 {this.state.count}

 </h1>

);

 }

 }

 return (<WeatherComponent weather="sunny" />);

}

Listing 4-3: A basic React class component

First we define the custom interface to use for the component’s
properties. We also define a type to use in the counter we’ll create later.

Next, we define the class component, extending the base class
React.Component. Following object-oriented programming patterns, the

constructor calls a super function and initializes the component’s state. We
set our counter to 0. As soon as the browser mounts the component, it calls
the lifecycle method componentDidMount, changing the component’s count
variable to 1. We modify the click handler to count the number of clicks
instead of displaying an alert box, and we call the render function. Here we
return the JSX elements that display the weather props and the current state
as HTML.

Finally, we return the WeatherComponent, and React initializes it. The
preview pane displays the string The weather is sunny, and the
counter shows 1. We see from the number 1 that the lifecycle method was
indeed called. Each click on the headline increases the number instantly,
because of the reactive nature of the component’s state. As soon as the state
changes, React re-renders the component and updates the view with the
current value of the state.

Providing Reusable Behavior with Hooks
Function components can use hooks to provide reusable behaviors, such as
for accessing a component’s state. Hooks are functions that offer simple and
reusable interfaces to state and lifecycle features. Listing 4-4 shows the
same weather component we created in Listing 4-3, this time written as a
function component. It uses hooks instead of lifecycle methods to update
the component’s counter.

import React, {useState,useEffect} from "react";

export default function App() {

 interface WeatherProps {

 weather: string;

 }

 const WeatherComponent = (props: WeatherProps): JSX.Elem

ent => {

 const [count, setCount] = useState(0);

 useEffect(() => {setCount(1)},[]);

 return (

 <h1 onClick={() => setCount(count + 1)}>

 The weather is {props.weather},

 and the counter shows {count}

 </h1>

);

 };

 return (<WeatherComponent weather="sunny" />);

}

Listing 4-4: A React function component that uses hooks

We’ve added two new features to this component: an indicator of the
component’s state and a way to run code as soon as we mount the
component. Therefore, we use the two hooks, useState and useEffect, by
importing them as named imports from the React module, then adding them
to the function component. The useState hook replaces the this.state
property from the class component, and the useEffect hooks the
componentDidMount lifecycle method. In addition, we replace the
clickHandler from the previous example with a simple inline function to
update the counter.

Each call to a hook produces an entirely isolated state, so we can use
the same hook multiple times in the same component and trust that the state
will update. This pattern keeps the hook callbacks small and focused. Also
note that the runtime does not hoist hooks. They are called in the order in
which we define them in the code.

When you compare Listings 4-3 and 4-4, you should instantly see that
the function component is more readable and easier to understand. For this
reason, we’ll exclusively use function components in the rest of this book.

Working with Built-in Hooks
React provides a collection of built-in hooks. You’ve just seen the most
common ones, useState and useEffect. Another useful hook is
useContext, for sharing data among components. Other built-in hooks

cover more specific use cases to enhance the performance of your
application or handle specific edge cases. You can look them up as needed
in the React documentation.

You can also create custom hooks whenever you need to break a
monolithic component into smaller, reusable packages. Custom hooks
follow a specific naming convention. They start with use, followed by an
action beginning with an uppercase letter. You should define only one
functionality per hook to make it easily testable.

This section will guide you through the three most common hooks and
the benefits of using them.

Managing the Internal State with useState
A pure function uses only the data that is available inside the function. Still,
it can react to local state changes, such as the counter in the weather
component we created. The useState hook is probably the most-used one
for handling regional states. This internal component’s state is available
only inside the component and is never exposed to the outside.

Because the component state is reactive, React re-renders the
component as soon as we update its state, changing the value across the
entire component. However, React guarantees that the state is stable and
won’t change on re-renders.

The useState hook returns the reactive state variable and a setter
function used to set the state, as shown in Listing 4-5.

const [count, setCount] = useState(0);

Listing 4-5: The useState hook viewed in isolation

We initialize the useState hook with the default value. The hook itself
returns the state variable count and the setter function we need to modify
the state variable’s value, because we cannot modify this variable directly.
For example, to set the state variable count we created in Listing 4-5 to 1,
we need to call the setCount function with the new value as a parameter,
like this: setCount(1). By convention, the setter function begins with a set
followed by the state variable’s name.

Handling Side Effects with useEffect
Pure functions should rely only on the data passed to them. When a function
uses or modifies data outside its local scope, we call this a side effect. The
simplest example of a side effect is modifying a global variable. This is
considered a bad practice both in JavaScript and in functional
programming.

Sometimes, however, our components need to interact with the
“outside world” or have an external dependency. In these cases, we can use
the useEffect hook, which handles side effects, providing an escape hatch
from the functional aspect of the component. For example, useEffect can
manage dependencies, call APIs, and fetch data required for the component.

This hook runs after React mounts the component into the layout and
the rendering process of the component is completed. It has an optional
return object, which runs before the component is unmounted. You can use
it for cleanup, for example, to remove event listeners.

One way to use this hook is to observe and react to dependencies. To
do this, we can pass it an optional array of dependencies. Any change to one
of these dependencies would trigger a rerun of the hook. If the dependency
array is empty, the hook won’t depend on any external value and never
reruns. This is the case in our weather component, where useEffect is
executed only after mounting and unmounting the component. It has no
external dependencies, so the dependency array remains empty and the
hook runs only once.

Sharing Global Data with useContext and Context
Providers
Ideally, React’s function components would be pure functions that operate
only on data passed through the props parameter. Alas, a component might
sometimes need to consume a shared, global state. In this case, React
implements the context provider to share global data with a tree of child
components.

The context provider wraps the child components, and we can access
the shared data with the useContext hook. As the context value changes,
React automatically re-renders all child components. Thus, it is quite an
expensive hook. You shouldn’t use it for datasets that change frequently.

In the full-stack application you’ll build in Part II, you’ll use
useContext to share session data with child components. Shared contexts
are also often employed to keep track of color schemes and themes. Listing
4-6 shows how to consume a theme through a context provider.

import React, {useState, createContext, useContext} from "re

act";

export default function App() {

 const ThemeContext = createContext("");

 const ContextComponent = (): JSX.Element => {

 const [theme, setTheme] = useState("dark");

 return (

 <div>

 <ThemeContext.Provider value={theme}>

 <button onClick={() => setTheme(theme ==

"dark" ? "light" : "dark")}>

 Toggle theme

 </button>

 <Headline />

 </ThemeContext.Provider>

 </div>

);

 };

 const Headline = (): JSX.Element => {

 const theme = useContext(ThemeContext);

 return (<h1 className={theme}>Current theme: {theme}

</h1>);

 };

 return (<ContextComponent />);

}

Listing 4-6: A complete context provider example

First we import the necessary functions from the React package and
use the createContext function to initialize the ThemeContext. Next, we
create the parent component and name it ContextComponent. This is the
wrapper that holds the context provider and all child components.

In the ContextComponent, we create the local theme variable with
useState and set the stateful variable as the content the context provides.
This enables us to change the variable in the context from inside a child
component. Because we used a reactive stateful variable for the value, all
instances of the theme variable will instantly update across all child
components.

We add a button element and toggle the value of the stateful variable
between light and dark whenever a user clicks the button. Finally, we create
the Headline component, which calls the useContext hook to get the theme
value provided by the ThemeContext to all child components. The Headline
component uses the theme value for the HTML class and displays the
current theme.

Exercise 4: Create a Reactive User Interface for the
Express.js Server
Let’s use your new knowledge and our weather component to create a
reactive user interface for the Express.js server. The new React component
will allow us to update text on the web page by clicking it.

Adding React to the Server
First we’ll include React in our project. For experimentation purposes, you
can add the React library and the stand-alone version of the Babel.js
transpiler directly inside your HTML head tag. Be aware, however, that this
technique is not suitable for production. Transpiling code in the browser is a
slow process, and the JavaScript libraries we add here aren’t optimized.
Using React with a skeleton Express.js server requires a decent number of
tedious setup steps and a decent amount of maintenance. We’ll use Next.js
in Chapter 5 to simplify developing React applications.

Create a folder, named public, next to the package.json file and then
create an empty file called weather.html inside it. Add the code in Listing 4-

7, which contains our React example with the weather component. Later,
we’ll create a new endpoint, /components/weather, that directly returns the
HTML file.

<!DOCTYPE html>

<html>

 <head>

 <meta charset="UTF-8" />

 <title>Weather Component</title>

 <script src="https://unpkg.com/react@18/umd/react.de

velopment.js"></script>

 <script src="https://unpkg.com/react-dom@18/umd/reac

t-dom.development.js"></script>

 <script src="https://unpkg.com/@babel/standalone/bab

el.min.js"></script>

 </head>

 <body>

 <div id="root"></div>

 <script type="text/babel">

 function App() {

 const WeatherComponent = (props) => {

 const [count, setCount] = React.useState

(0);

 React.useEffect(() => {

 setCount(1);

 }, []);

 return (

 <h1 onClick={() => setCount(count +

1)}>

 The weather is {props.weather},

 and the counter shows {count}

 </h1>

);

 };

 return (<WeatherComponent weather="sunny" /

>);

 }

 const container = document.getElementById("roo

t");

 const root = ReactDOM.createRoot(container);

 root.render(<App />);

 </script>

 </body>

</html>

Listing 4-7: The static file /public/weather.html renders React in the browser.

First we add three React scripts to the weather.html file: these are
react.development, react.dom.development, and the stand-alone babel.js,
which are all similar to the import of React we previously used in the
App.tsx file. Then we add ReactDOM to let React interact with the DOM.
The three files add a global property, React, to window.object. We use this
property as a global variable to reference React functions. The stand-alone
Babel script adds the Babel.js transpiler, which we need to convert the code
from JSX to JavaScript.

Next, we add the weather component’s code we developed previously.
Instead of referencing the App.tsx file, we place app functions directly
inside the HTML file and mark the script block as text/babel. This type
tells Babel to transpile the code inside the script tag into standard
JavaScript.

We make a few simple modifications to the weather component’s code.
First we remove the type annotations, as they are allowed only in
TypeScript files. Then, because we are using the browser environment, we
prefix the hooks with their global property name, React. Finally, we use
ReactDOM to create the React root container and render the <App />
component there.

Creating the Endpoint for the Static HTML File
The second file we’ll edit is the index.ts file in the root directory. We add
the highlighted code in Listing 4-8 to add a new entry point,
/components/weather.

import {routeHello, routeAPINames, routeWeather} from "./rou

tes.js";

import express, {Request, Response} from "express";

import path from "path";

const server = express();

const port = 3000;

--snip--

server.get("/components/weather", function (req: Request, re

s: Response): void {

 const filePath = path.join(process.cwd(), "public", "wea

ther.html");

 res.setHeader("Content-Type", "text/html");

 res.sendFile(filePath);

});

server.listen(port, function (): void {

 console.log("Listening on " + port);

});

Listing 4-8: The refactored index.ts

To load the static HTML file, import path from Node.js’s default path
module. The path module provides all kinds of utilities for working with
files and directories. In particular, we’ll use the join function to create a
valid path that meets the operation system’s format.

We use the default global process.cwd function to get the current
working directory, and from there, we create the path to our HTML file.
Then we add the weather component’s entry point and set the response’s
Content -Type header to text/html. Finally, we use the sendFile function
to send to the browser the weather.html file we created previously.

Running the Server
We need to transpile the server code to JavaScript, so we run TSC with npx
on the command line:

$ npx tsc

The generated files, index.js and routes.js, are similar to the previously
created ones. TSC doesn’t touch the static HTML. The stand-alone Babel.js
script converts the JSX code on runtime in the browser. Start the server
from your command line:

$ node index.js

Listening on 3000

Now visit http://localhost:3000/components/weather-component in
your browser. You see the same text you saw when you rendered the
weather component in the React playground, as in Figure 4-2. As soon as
you click the text, the click handler increases the reactive state variable, and
the counter shows the new value.

Figure 4-2: Browser response from the Node.js web server

You successfully created your first React application. To gain more
experience with React, try adding a custom button component for the click
counter, with a style attribute that uses a JSX expression to change the
background color for odd and even counter values.

Summary
You should now have a solid foundation with which to create your React
apps. JSX elements are the building blocks of React components that return
JSX to be rendered as HTML in the DOM, via React’s virtual DOM. You
also explored the difference between class components and modern

function components, took a deep dive into React hooks, and used these
hooks to build a function component.

If you want to explore React’s full potential, take a look at the React
tutorials from W3Schools at https://www.w3schools.com/REACT
/DEFAULT.ASP and those created by the React team at https://react.dev
/learn/tutorial-tic-tac-toe.

In the next chapter, we’ll work with Next.js. Built on top of React,
Next.js is a production-ready full-stack web development framework for
single-page applications.

https://www.w3schools.com/REACT/DEFAULT.ASP
https://react.dev/learn/tutorial-tic-tac-toe

5
NEXT.JS

In Chapter 4, you used React to create
responsive user interface components.

But because React is just a library, building a full-
stack application requires additional tools. In this
chapter, we use Next.js, the leading web application
framework built on top of React. To create an app
with Next.js, you need to know only a few essential
concepts. This chapter covers them.

Next.js streamlines the creation of an application’s frontend,
middleware, and backend. On the frontend, it uses React. It also adds native
CSS modules to define styles, and custom Next.js modules to perform
routing, image handling, and additional frontend tasks. When it comes to
the middleware and the backend, Next.js uses a built-in server to provide
the entry points for HTTP requests and a clean API in which to work with
request and response objects.

We’ll cover its filesystem-based approach to routing, discuss ways to
build and render the web pages we deliver to clients, explore adding CSS
files to style pages, and refactor our Express.js server to work with Next.js.
This chapter uses the traditional pages directory to teach you these basic
concepts. To learn about Next.js’s alternative app directory, see Appendix
B.

Setting Up Next.js
Next.js is part of the npm ecosystem. While you could manually install all
of its required modules by running npm install next react react-dom
and subsequently create all of your project’s files and folders by yourself,
there is a much simpler way to set things up: running the create-next-app
command.

Let’s create a sample application to use throughout this chapter. Follow
these steps to set up a new empty folder called sample-next and build your
first Next.js application inside it. Keep the default answers from the setup
wizard, and choose to use the traditional pages directory instead of the app
directory:

$ mkdir sample-next

$ cd ./sample-next

$ npx create-next-app@latest --typescript --use-npm

--snip--

What is your project named? ... my-app

--snip--

Creating a new Next.js app in /Users/.../my-app.

Installing dependencies:

- react

- react-dom

- next

Installing devDependencies:

- eslint

- eslint-config-next

- typescript

- @types/react

- @types/node

- @types/react-dom

We create a new folder, switch to it, and then initialize a new Next.js
project. We use the npx command instead of npm because, as you learned in
Chapter 1, npx doesn’t require us to install anything as a dependency or

development dependency. We mentioned that a typical use case for it is
scaffolding, which is precisely what we’re doing here.

The create-react-app command has a few options, of which only two
are relevant to us: the --typescript option creates a Next.js project that
supports TypeScript, and the --use-npm flag selects npm as a package
manager.

We accept the default project name, my-app, and all the other default
settings. The script creates a folder based on the project name containing
the package.json file and a complete sample project with all necessary files
and folders. Finally, it installs the dependencies and development
dependencies through npm.

NOTE
Instead of setting up a new project, you can use the online playgrounds at
https://codesandbox.io/s/ or https://stackblitz.com to run the Next.js code
examples from this chapter. Just opt for the pages directory setup instead of
app there as well.

Project Structure
Let’s explore the boilerplate Next.js app’s project structure. Enter the
following commands to run it:

$ cd my-app

$ npm run dev

> my-app@0.1.0 dev

> next dev

ready - started server on 0.0.0.0:3000, url: http://localhos

t:3000

Visit the provided URL in your browser. You should see a default page
similar to the one in Figure 5-1 (this welcome page could change depending
on your Next.js version).

https://codesandbox.io/s/
https://stackblitz.com/

Figure 5-1: The boilerplate Next.js app viewed in a browser

Now open the my-app folder that the scaffolding script created, and
look around. The my-app folder contains a lot of folders, but only three are
currently important to you: public, styles, and pages.

The public folder holds all static assets, such as custom font files, all
images, and files the app makes available for download. We’ll link to these
assets from the app’s HTML and CSS files. The pages folder contains all of
the app’s routes. Each of its files is an endpoint belonging to a page route or
an API route (in the api subfolder).

NOTE
Recent versions of Next.js additionally include an app directory that you
can choose to use for routing as an alternative to the pages directory.
Because the app directory uses more advanced concepts, this chapter
covers the simpler pages architectural style. However, you can learn more
about the app directory in Appendix B, where we’ll cover its use in detail.

In the my-app folder, we also find the _app.tsx file, which is Next.js’s
equivalent to the App.tsx file we used in Chapter 4. This is the entry point
for the whole application and the place where we’ll add our global styles,

components, and context providers. Finally, the styles folder contains the
global CSS files and modules for locally scoped, component-specific files.

Development Scripts
The technologies our app uses, including TypeScript, React, and JSX, don’t
run directly in the browser. They all require a build pipeline with a
reasonably complex transpiler. Next.js provides four command line scripts
to simplify development.

The npx next dev and npm run dev commands starts the application
at http://localhost:3000 in development mode. As a result, Next.js rebuilds
and reloads the rendered application in the browser window as soon as we
change a file. In addition to this hot-code reloading, the development server
also displays errors and warning messages to aid the application’s
development. The installation wizard adds the server to package.json’s
script section, so we can start it with npm run dev as well.

The npx next build and npm run build commands create the
optimized build of our application. They remove unused code and reduce
the file size of our scripts, styles, and all other assets. You’ll use them for
the live deployment. The npx next start and npm run start commands
run the optimized application at http://localhost:3000 in production mode
on the built-in server or in a serverless environment. This production build
relies on a previously created build. Hence, we must have first run the
build command.

Finally, npx next export and npm run export commands create a
stand-alone version of your application that is independent of the built-in
Next.js server and can run on any infrastructure. This version of your app
won’t be able to use features that require Next.js on the server side,
however. Consult the official Next.js documentation at https://nextjs.org for
a guide to using it.

Routing the Application
When we built our sample Express.js server, we created an explicit routing
file that mapped each of the app’s endpoints to distinct functions that
performed corresponding behavior. Next.js offers a different, perhaps
simpler, routing system; it automatically creates the app’s routes based on

https://nextjs.org/

the files in the pages directory. If a file in this folder exports a React
component (in the case of a web page) or an async function (in the case of
an API), it becomes a valid endpoint, as either an HTML page or an API.

In this section, we’ll revisit the routes we created in our Express.js
server and remake them using Next.js’s routing technique.

Simple Page Routes
For our Express.js server, we manually created a /hello route in the index.ts
file. When visited, it returned Hello World! Let’s convert this route to a
page-based one in Next.js. The simplest kind of page route consists of a file
placed directly in the pages directory. For example, the pages/index.tsx file,
created by default, maps to http://localhost:3000. To create a simple /hello
route, make a new file, hello.tsx, in that directory. Now add to it the code
from Listing 5-1.

import type {NextPage} from "next";

const Hello: NextPage = () => {

 return (<>Hello World!</>);

}

export default Hello;

Listing 5-1: The pages/hello.tsx file

Our Express.js server used the routeHello function to return the Hello
World! string. Here we need to add a little more code to export a React
component. First we import the custom type NextPage from the Next.js
module and use it to create a constant, Hello. We assign the constant a fat
arrow function that returns a NextPage, which is nothing but a custom
wrapper for React components. In this case, we return JSX that renders the
Hello World! string. Finally, we export the NextPage as the file’s default
export.

Run the server and navigate to http://localhost:3000/hello. The page
you see should show Hello World! as its content.

The page looks different from the one in the sample Express.js server.
That’s because Next.js automatically renders all global styles defined in the
_app.tsx file to each page. Hence, the font looks different, even though we
didn’t explicitly define any styles in the hello.tsx file.

Nested Page Routes
Nested routes, such as /components/weather from the sample Express.js
server, are logical subroutes of other routes. In other words, weather is
nested inside the components entry point. You’ve probably already guessed
how we create a nested route with Next.js’s page-routing pattern. Yes, we
merely create a subfolder, and Next.js maps the folder structure to the URL
schema.

Create a new folder, components, inside the pages folder and add a new
file, weather.tsx, there. Figure 5-2 depicts the relationship between the URL
components/weather and the file structure pages/components/weather.tsx.

Figure 5-2: The relationship between the URL components/weather and the file structure
pages/components/weather.tsx

Our pages folder is the root of the URL, and each nested folder
becomes a URL segment. The file that exports the NextPage is the leaf

segment, or the final part of the URL. For this file, we reuse the weather
component code we wrote in Chapter 4, shown in Listing 5-2.

import type {NextPage} from "next";

import React, {useState, useEffect} from "react";

const PageComponentWeather: NextPage = () => {

 interface WeatherProps {

 weather: string;

 }

 const WeatherComponent = (props: WeatherProps) => {

 const [count, setCount] = useState(0);

 useEffect(() => {

 setCount(1);

 }, []);

 return (

 <h1 onClick={() => setCount(count + 1)}>

 The weather is {props.weather},

 and the counter shows {count}

 </h1>

);

 };

 return (<WeatherComponent weather="sunny" />);

};

export default PageComponentWeather;

Listing 5-2: The pages/components/weather.tsx file

The only difference from the functional component created in Chapter
4 is that we wrap the code in a function that returns a NextPage, which we
then export as the default export. This is consistent with the page we created
in Listing 5-1 and follows Next.js’s pattern requirement.

Visit the new page at http://localhost:3000/components/weather in the
browser. It should look similar to Figure 5-3.

Figure 5-3: The pages/components/weather.tsx file is rendered at the /components/weather
URL in the browser.

You should recognize the click-handler functionality you saw in
Chapter 4.

API Routes
In addition to a user-friendly interface, a full-stack application might also
need a machine-readable interface. For example, the Food Finder
application you’ll create in Part II will provide an API to external services
so that a mobile app or a third-party widget can display our wish list. As
JavaScript-driven full-stack developers, the most common API formats
we’ll use are GraphQL and REST, and we talk about these in depth in
Chapter 6. Here we will create REST APIs, which we like for their
simplicity.

With Next.js, we can design and create APIs via the same patterns we
use for pages. Each file in the pages/api/ folder is a single API endpoint,
and we can define nested API routes in the same way we define nested page
routes. However, unlike page routes, API routes are not React components.
Instead, they are async functions that take two parameters, NextApiRequest
and NextApiResponse, and return a NextApiResponse and JSON data.

There are two caveats you need to remember when it comes to API
routes. First, they do not specify a Cross-Origin Resource Sharing (CORS)
header by default. This set of HTTP headers, most notably the Access -
Control-Allow-Origin header, lets a server define the origins from which
client-side scripts can request resources. If you want client-side scripts

running in websites on third-party domains to access your API endpoints,
you’ll need to add additional middleware to enable CORS directly in the
Next.js server. Otherwise, external requests will prompt a CORS error. This
isn’t specific to Next.js; Express.js and most other server frameworks
require you to do the same.

The second caveat is that static exports done by running next export
do not support API routes. They rely on the built-in Next.js server and
cannot run as static files.

We used one API route, api/names, in the Express.js server. Now let’s
refactor the code and convert it to a Next.js API route. As before, create a
new file, names.ts, and place it in the api folder. Because API routes return
an async function instead of JSX, we use the .ts extension, not the .tsx
extension used for JSX code. Paste the code from Listing 5-3 into the file.

import type {NextApiRequest, NextApiResponse} from "next";

type responseItemType = {

 id: string;

 name: string;

};

export default async function handler(

 req: NextApiRequest,

 res: NextApiResponse

): Promise<NextApiResponse<responseItemType[]> | void> {

 const url = "https://www.usemodernfullstack.dev/api/v1/u

sers";

 let data;

 try {

 const response = await fetch(url);

 data = (await response.json()) as responseItemType

[];

 } catch (err) {

 return res.status(500);

 }

 const names = data.map((item) => {

 return {id: item.id, name: item.name};

 });

 return res.status(200).json(names);

}

Listing 5-3: The pages/api/names.ts file

First we import the custom types for the API request and response from
the Next.js package. Then we define the custom type for the API response.
In Chapter 3, we created the same type for typing the await call in the
routes.ts file. We’re using the same code and await call here, so we’ve
reused the type as well. We then create and directly export the API handler
function mentioned earlier. You learned in Chapter 2 that async functions
need to return a promise as their return type. Therefore, we wrap this API
response in a promise.

The code in the function’s body is similar to the code in the
routeAPINames function from Chapter 4. It makes an API request to fetch
the user data, converts the received data into the desired return format, and
finally returns the data. However, we need to make a few modifications.
First, instead of returning an error string, we return an API response with no
content and a generic status code of 500, for an Internal Server Error.

The second adjustment involves the data mapping. Previously, we
returned a string that rendered in the browser. Now, instead of this string,
we return a JSON object. Therefore, we modify the array.map function to
create an array of objects. Finally, we change the return statement to return
the API response with the names object as JSON and a status code of 200:
OK.

Now open the new API route in the browser at
http://localhost:3000/api/names. You should see the API response shown in
Figure 5-4.

Figure 5-4: The pages/api/names.ts file rendered from /api/names in the browser

Dynamic URLs
You now know how to create page and API routes, which are the foundation
of any full-stack application. However, you might be wondering how to
create dynamic URLs, which change based on input. We often use dynamic
URLs for profile pages, where the user’s name becomes part of the URL. In
fact, we implemented a dynamic URL in the Express.js server’s weather
API when we defined the route /api/weather/:zipcode in the index.ts file.
There, zipcode was a dynamic parameter, or a dynamic leaf segment, whose
value was provided by the req.params.zipcode function.

Next.js uses a slightly different pattern for dynamic URLs. Because it
creates the routes based on folders and files, we need to define dynamic
segments through their filenames by wrapping the variable portion in
square brackets ([]). The dynamic route /api/weather/:zipcode from the
Express.js server would thus translate to the file /api/weather/[zipcode].ts.

Let’s create a dynamic route in our sample Next.js application that
mimics the /api/weather/:zipcode route from the Express.js server. Make a
new folder, weather, in the api folder, and place a file named [zipcode].ts in
it. Then paste the code from Listing 5-4 into the file.

import type {NextApiRequest, NextApiResponse} from "next";

type WeatherDetailType = {

 zipcode: string;

 weather: string;

 temp?: number;

};

export default async function handler(

 req: NextApiRequest,

 res: NextApiResponse

): Promise<NextApiResponse<WeatherDetailType> | void> {

 return res.status(200).json({

 zipcode: req.query.zipcode,

 weather: "sunny",

 temp: 35

 });

}

Listing 5-4: The api/weather/[zipcode].ts file

This code should be familiar to you, as it follows the basic outline of an
API route in Next.js. We import the necessary types, then define a custom
type, WeatherDetailType, and use it as the type for the data returned by the
function. (By the way, this is the same type definition we created in Chapter
3.) In the function’s body, we return the response with a status code of 200:
OK and a JSON object. We fill the zipcode property with the ZIP code
from the dynamic URL parameter, retrieved with req.query .zipcode.

When you run the server, the browser should show the JSON response
with the dynamic URL parameter in the response type. If you navigate to
http://localhost:3000/api/weather/12345, you should see the API response.
If you change the “12345” part of the URL and request the data again, the
response data should change accordingly.

Note that the dynamic route /api/weather/[zipcode].ts matches
/api/weather/12345 and /api/weather/54321 but not sub-paths of those
routes, such as /api/weather/location/12345 or /api/weather/location/54321.
For this, you’ll need to use a catch all API route, which includes all paths
that are inside the current path. You can create a catch all route by adding
three dots (...) in front of the filename. For example, the catch all route
/api/weather/[...zipcode].ts could handle all four API endpoints mentioned
in this paragraph.

Styling the Application
To add styles to our Next.js application, we create regular CSS files, written
without the vendor prefixes used in other frameworks. Later, Next.js’s
postprocessor will add necessary properties to generate backward-
compatible styles. While CSS syntax is beyond the scope of this book, this
section describes how to use Next.js’s two kinds of CSS styles: global styles
and locally scoped component styles, defined in CSS modules.

Global Styles
Global styles affect all pages of an app. We stumbled across this behavior
when we rendered the hello.tsx file; the page used CSS even though we
hadn’t added any style information ourselves.

Practically speaking, global styles are just regular CSS files. They
aren’t modified during the build, and their class names are guaranteed to
stay the same. Therefore, we can use them as regular CSS classes across the
application. We import these CSS files in the app’s entry point, the
pages/_app.tsx file. Take a look at those in the boilerplate project. You
should see a line of code similar to Listing 5-5.

import "@/styles/globals.css";

Listing 5-5: Importing global styles in the _app.tsx file

Of course, you can adjust the filename and location of the imported
styles or import multiple files. Try playing around by adding a few styles in
the global.css file and some regular CSS classes to the HTML elements in
the hello.tsx file. Then visit the page at htttp://localhost:3000/hello to see
how it changed.

Component Styles
In Chapter 4, you saw that React lets us create user interfaces out of
independent, reusable components. Global styles aren’t the best approach
for styling independent components, as they require us to keep track of the
names we’ve already used in various components, and if we import
components from a previous project, we risk having the CSS classes collide
with one another.

We need the CSS classes to be scoped to individual modules to work
efficiently with modularized components. There are multiple architectural
patterns for implementing this. For example, using the Block Element
Modifier methodology, you can manually scope the styles to a component
or a user interface block.

Luckily, we don’t need to bother with such a clumsy solution. Next.js
lets us use CSS modules that are scoped during the build process. These
CSS modules follow the naming convention <component>.module.css. The

compiler automatically prefixes each CSS class name inside the module
with the component’s name and a unique identifier. This enables you to use
the same style names for multiple components without issue.

The actual CSS you write won’t have these prefixes. For example, look
at the Home.module.css file inside the styles folder, shown in Listing 5-6.

.container {

 padding: 0 2rem;

}

Listing 5-6: Regular CSS code in styles/Home.module.css

One problem is that, because the build process modifies the class
names and prefixes them, we can’t directly use these styles in our other
files. Instead, we must import the styles and treat them like a JavaScript
object. Then we can refer to them as a property of the styles object. For
example, the pages/index.tsx file in Listing 5-7 uses the container class
from Listing 5-6, providing an example of how to use scoped styles.

import styles from "../styles/Home.module.css"

--snip--

const Home: NextPage = () => {

 return (

 <div className={styles.container}>

 --snip--

 </div>

);

};

Listing 5-7: Using styles from the CSS module styles/Home.module.css in the index.tsx
file

This code imports the CSS file into a constant called styles. Now all
the CSS class names will be available as properties of the styles object. In
JSX, we use variables wrapped in curly brackets ({}), so we add a reference
to the container class as {styles.container}.

You can now build APIs and custom-styled pages out of React
components. The next section introduces useful custom components that

Next.js provides to enhance your full-stack application.

Built-in Next.js Components
Next.js provides a set of custom components. Each of these addresses one
specific use case: for example, accessing internal page properties such as
the page title or SEO metadata (next/head), improving the app’s overall
rendering performance and user experience (next/image), or enabling the
application’s routing (next/link). We’ll use the Next.js components
covered in this chapter in the full-stack application in Part II, where you can
see them applied in practice. For additional attributes and niche use cases,
refer to the Next.js documentation.

The next/head Component
The next/head component exports a custom Next.js-specific Head
component. We use it to set a page’s HTML title and meta elements, which
are found inside an HTML head component. To improve SEO ranking and
enhance usability, each page should have its own metadata. Listing 5-8
shows an example of the hello.tsx page from Listing 5-1 with a customized
title and meta element.

It is important to remember that the Head elements are not merged
across pages. Next.js’s client-side routing removes the content of the Head
element during the page transition.

import type {NextPage} from "next";

import Head from "next/head";

const Hello: NextPage = () => {

 return (

 <div>

 <Head>

 <title>Hello World Page Title</title>

 <meta property="og:title" content="Hello Wor

ld" key="title" />

 </Head>

 <div>Hello World!</div>

 </div>

);

};

export default Hello;

Listing 5-8: The pages/hello.tsx file with a customized title and meta element

We import the Head element from the next/head component and add it
to the returned JSX element, placing it above the existing content and
wrapping both in another div element because we need to return one
element instead of two.

The next/link Component
The next/link component exports a Link component. This component is
built on top of the React Link element. We use it instead of an HTML
anchor tag when we want to link to another page in the application,
enabling client-side transitions between pages. When clicked, the Link
component updates the browser DOM with the new DOM, scrolls to the top
of the new page, and adjusts the browser history. Furthermore, it provides
built-in performance optimizations, prefetching the linked page and its data
as soon as the Link component enters the viewport (the currently visible
part of the website). This background prefetch enables smooth page
transitions. Listing 5-9 adds the Next.js Link element to the page from the
previous listing.

import type {NextPage} from "next";

import Head from "next/head";

import Link from "next/link";

const Hello: NextPage = () => {

 return (

 <div>

 <Head>

 <title>Hello World Page Title</title>

 <meta property="og:title" content="Hello Wor

ld" key="title" />

 </Head>

 <div>Hello World!</div>

 <div>

 Use the HTML anchor for an

 external li

nk

 and the Link component for an

 <Link href="/components/weather"> internal p

age

 </Link>

 .

 </div>

 </div>

);

};

export default Hello;

Listing 5-9: The pages/hello.tsx file with an external link and an internal next/link
element

We import the component, then add it to the returned JSX element. For
comparison purposes, we use a regular HTML anchor to link to the No
Starch Press home page and the custom Link to connect to the weather
component page in our Next.js application. In the app, try clicking both
links to see the difference.

The next/image Component
The next/image component exports an Image component used to display
images. This component is built on top of the native HTML element.
It handles common layout requirements, such as filling all available space
and scaling images. The component can load modern image formats, such
as AVIF and WebP, and serve the image with the correct size for the client’s
screen. Furthermore, you have the option to use blurred placeholder images
and lazy-load the actual image as soon as it enters the viewport; this
enforces the visual stability of your website by preventing cumulative
layout shifts, which occur when an image renders after the page, causing the
page content to shift down. Cumulative layout shifts are considered a bad

user experience, and they can make the user lose their focus. Listing 5-10
provides a basic example of the next/image component.

import type {NextPage} from "next";

import Head from "next/head";

import Link from "next/link";

import Image from "next/image";

const Hello: NextPage = () => {

 return (

 <div>

 <Head>

 <title>Hello World Page Title</title>

 <meta property="og:title" content="Hello Wor

ld" key="title" />

 </Head>

 <div>Hello World!</div>

 <div>

 Use the HTML anchor for an <a href="https://

nostarch.com">

 external link and the Link component for

an

 <Link href="/components/weather"> internal p

age</Link>.

 <Image

 src="/vercel.svg"

 alt="Vercel Logo"

 width={72}

 height={16}

 />

 </div>

 </div>

);

};

export default Hello;

Listing 5-10: The pages/hello.tsx file using the next/image element

Here we display the Vercel logo from our application’s public folder.
First we import the component from the next/image package. Then we add
it to the page content. The syntax and the properties of our minimal
example are similar to the HTML img element. You can read more about the
component’s advanced properties in the official documentation at https://
nextjs.org/docs/api-reference/next/image.

Pre-rendering and Publishing
While you can start building full-stack Next.js applications with the
information you’ve learned so far, you’ll find it useful to know one more
advanced topic: the different ways to render and publish your application
and their implications for its performance.

Next.js provides three options for pre-rendering your app with its built-
in server. The first, static site generation (SSG), generates the HTML at
build time. Thus, each request will always return the same HTML, which
remains static and is never re-created. The second option, server-side
rendering (SSR), generates new HTML files on each request, and the third,
incremental static regeneration (ISR), combines both approaches.

Next.js lets us choose our pre-rendering option on a per-page basis,
meaning the full-stack application can contain pages with SSG, SSR, and
ISR, as well as client-side rendering for some React components. You can
also create a complete static export of your site by running next export.
The exported application will run independently on all infrastructures, as it
doesn’t need the built-in Next.js server.

To gain experience with these rendering approaches, we’ll create a new
page that displays the data from our names API for each rendering option.
Create a new folder, utils, next to the pages folder and add an empty file,
fetch-names.ts, to it. Then add the code in Listing 5-11. This utility function
calls the remote API and returns the dataset.

type responseItemType = {

 id: string;

 name: string;

};

https://nextjs.org/docs/api-reference/next/image

export const fetchNames = async () => {

 const url = "https://www.usemodernfullstack.dev/api/v1/u

sers";

 let data: responseItemType[] | [] = [];

 let names: responseItemType[] | [];

 try {

 const response = await fetch(url);

 data = (await response.json()) as responseItemType

[];

 } catch (err) {

 names = [];

 }

 names = data.map((item) => {return {id: item.id, name: i

tem.name}});

 return names;

};

Listing 5-11: The async utility in utils/fetch-names.ts

After defining a custom type, we create a function and directly export
it. This function contains the code from the previously created names.ts file,
with two adjustments: first we need to define the data array as possibly
empty; next, we return an empty array instead of an error string if the API
call fails. This change means that we don’t need to verify the type before
iterating over the array when we generate the JSX string.

Server-Side Rendering
Using SSR, Next.js’s built-in Node.js server creates an application’s HTML
in response to each request. You should use this technique if your page
depends on fresh data from an external API. Unfortunately, SSR is slower
in production, because the pages aren’t easily cacheable.

To use SSR for a page, export an additional async function,
getServerSideProps, from that page. Next.js calls this function on every
request and passes the fetched data to the page’s props argument to pre-
render it before sending it to the client.

Try this out by creating a new file, names-ssr.tsx, in the pages folder.
Paste the code from Listing 5-12 into the file.

import type {

 GetServerSideProps,

 GetServerSidePropsContext,

 InferGetServerSidePropsType,

 NextPage,

 PreviewData

} from "next";

import {ParsedUrlQuery} from "querystring";

import {fetchNames} from "../utils/fetch-names";

type responseItemType = {

 id: string;

 name: string;

};

const NamesSSR: NextPage = (props: InferGetServerSidePropsTy

pe<typeof getServerSideProps>) => {

 const output = props.names.map((item: responseItemType,

idx: number) => {

 return (

 <li key={`name-${idx}`}>

 {item.id} : {item.name}

);

 });

 return (

 {output}

);

};

export const getServerSideProps: GetServerSideProps = async

(

 context: GetServerSidePropsContext<ParsedUrlQuery, Previ

ewData>

) => {

 let names: responseItemType[] | [] = [];

 try {

 names = await fetchNames();

 } catch(err) {}

 return {

 props: {

 names

 }

 };

};

export default NamesSSR;

Listing 5-12: A basic page that displays data with SSR, page/names-ssr.tsx

To use Next.js’s SSR, we export the additional async function,
getServerSideProps. We also import necessary functionality from the next
and querystring packages and the fetchNames function we created earlier.
Then we define the custom type for the response to the API request. It’s the
same custom type we used in Chapter 3.

Next, we create the page and store the export as the default one. The
page returns a NextPage and takes the default properties for this page type.
We iterate over the props parameter’s names array and create a JSX string
that we render and return to the browser. Then we define the
getServerSideProps function, which gets the data from the API. We return
the created dataset from the async function and pass it to the NextPage
inside the page properties.

Navigate to the new page at http://localhost:3000/names-ssr. You
should see the list of the usernames.

Static Site Generation
SSG creates the HTML files only once and reuses them for every request. It
is the recommended option, because pre-rendered pages are easy to cache
and fast to deliver. For example, a content delivery network can easily pick
up your static files.

Usually, SSG applications have a lower time to first paint, or the time it
takes after a user requests the page (by, for example, clicking a link) until
the content appears in the browser. SSG also reduces blocking time, or the
time it takes until the user can actually interact with the page’s content.
Good scores in these metrics indicate a responsive website, and they are
part of Google’s scoring algorithm. Hence, these pages have increased SEO
rankings.

If your page relies on external data, you can still use SSG by exporting
an additional async function, getStaticProps, from the page’s file. Next.js
calls this function at build time, passes the fetched data to the page’s props
argument, and pre-renders the page with SSG. Of course, this works only if
the external data isn’t dynamic.

Try creating the same page as in the SSR example, this time with SSG.
Add a new file, names-ssg.tsx, in the pages folder and then paste in the code
shown in Listing 5-13.

import type {

 GetStaticProps,

 GetStaticPropsContext,

 InferGetStaticPropsType,

 NextPage,

 PreviewData,

} from "next";

import {ParsedUrlQuery} from "querystring";

import {fetchNames} from "../utils/fetch-names";

type responseItemType = {

 id: string,

 name: string,

};

const NamesSSG: NextPage = (props: InferGetStaticPropsType<t

ypeof getStaticProps>) => {

 const output = props.names.map((item: responseItemType,

idx: number) => {

 return (

 <li key={`name-${idx}`}>

 {item.id} : {item.name}

);

 });

 return (

 {output}

);

};

export const getStaticProps: GetStaticProps = async (

 context: GetStaticPropsContext<ParsedUrlQuery, PreviewDa

ta>

) => {

 let names: responseItemType[] | [] = [];

 try {

 names = await fetchNames();

 } catch (err) {}

 return {

 props: {

 names

 }

 };

};

export default NamesSSG;

Listing 5-13: A page that displays data with SSG, page/names-ssg.tsx

The code is mostly identical to Listing 5-9. We just need to change the
SSR-specific code to use SSG. Therefore, we export getStaticProps
instead of getServerSideProps and adjust the types accordingly.

When you visit the page, it should look similar to the SSR page. But
instead of requesting fresh data on each visit to

http://localhost:3000/names-ssg, the data is requested only once, on page
build.

Incremental Static Regeneration
ISR is a hybrid of SSG and SSR that runs purely on the server side. It
generates the HTML on the server during the initial build and sends this
pre-generated HTML the first time a page is requested. After a specified
time has passed, Next.js will fetch the data and regenerate the page on the
server in the background. In the process, it invalidates the internal server
cache and updates it with the new page. Every subsequent request will
receive the up-to-date page. Like SSG, ISR is less costly than SSR and
increases a page’s SEO ranking.

To enable ISR in SSG pages, we need to add a property to revalidate
getStaticProp’s return object. We define the validity of the data in
seconds, as shown in Listing 5-14.

return {

 props: {

 names,

 revalidate: 30

 }

};

Listing 5-14: Changing getServerSideProps to enable ISR

We add the revalidate property with a value of 30. As a result, the
custom Next.js server will invalidate the current HTML 30 seconds after the
first page request.

Client-Side Rendering
A completely different approach, client-side rendering involves first
generating the HTML with SSR or SSG and sending it to the client. The
client then fetches additional data at runtime and renders it in the browser
DOM. Client-side rendering is a good choice when working with highly
flexible, constantly changing datasets, such as real-time stock market or
currency prices. Other sites use it to send a skeleton version of the page to

the client and later enhance it with more content. However, client-side
rendering lowers your SEO performance, as its data can’t be indexed.

Listing 5-15 shows the page we created earlier, configured for client-
side rendering. Create a new file, names-csr.tsx, in the pages folder and then
add the code to it.

import type {

 NextPage

} from "next";

import {useEffect, useState} from "react";

import {fetchNames} from "../utils/fetch-names";

type responseItemType = {

 id: string,

 name: string,

};

const NamesCSR: NextPage = () => {

 const [data, setData] = useState<responseItemType[] | []

>();

 useEffect(() => {

 const fetchData = async () => {

 let names;

 try {

 names = await fetchNames();

 } catch (err) {

 console.log("ERR", err);

 }

 setData(names);

 };

 fetchData();

 });

 const output = data?.map((item: responseItemType, idx: n

umber) => {

 return (

 <li key={`name-${idx}`}>

 {item.id} : {item.name}

);

 });

 return (

 {output}

);

};

export default NamesCSR;

Listing 5-15: The client-side rendered page, page/names-csr.tsx

This code differs significantly from the previous examples. Here we
import the useState and useEffect hooks. The latter one will fetch the
data after the page is already available. As soon as the fetchNames function
returns the data, we use the useState hook and the reactive data state
variable to update the browser DOM.

We cannot declare the useEffect hook as an async function, because it
returns either an undefined value or a function, whereas an async function
returns a promise, and therefore TSC would throw an error. To avoid this,
we need to wrap the await call in an async function, fetchData, and then
call that function.

The page configured for client-side rendering should look similar to the
other versions. But when you visit http://localhost:3000/names-csr, you
might see a white flash. This is the page waiting for the asynchronous API
request.

To get a better feel for the different rendering types, modify the code
for each example in this section to use the API
https://www.usemodernfullstack.dev/api/v1/now, which returns an object
with the timestamp of the request.

Static HTML Exporting
The next export command generates a static HTML version of your web
application. This version is independent of the built-in Node.js-based

https://www.usemodernfullstack.dev/api/v1/now

Next.js web server and can run on any infrastructure, such as an Apache,
NGINX, or IIS server.

To use this command, your page must implement getStaticProps, as
in SSG. This command won’t support the getServerSideProps function,
ISR, or API routes.

Exercise 5: Refactor Express.js and React to Next.js
Let’s refactor the React and Express.js applications from the previous
chapters into a Next.js application that we’ll expand in the upcoming
chapters. As a first step, we’ll summarize the functionality we need to build.
Our application has an API route, api/names, that returns usernames, and
another API route, api/weather/:zipcode, that returns a static JSON object
and the URL parameter. We used it to understand dynamic URLs. In
addition, we created pages at /hello and component/weather.

Throughout this chapter, we’ve already refactored these various
elements to work with Next.js’s routing style. In this exercise, we’ll put it
all together. Follow the steps in “Setting Up Next.js” on page 70 to initialize
the Next.js application. Within the sample-next folder, name your
application refactored-app.

Storing Custom Interfaces and Types
We create a new file, custom.d.ts, in the root of the project to store our
custom interface and type definitions (Listing 5-16). It is similar to the one
we used in Chapters 3 and 4. The main difference is that we add custom
types for the Next.js application.

interface WeatherProps {

 weather: string;

}

type WeatherDetailType = {

 zipcode: string;

 weather: string;

 temp?: number;

};

type responseItemType = {

 id: string;

 name: string;

};

Listing 5-16: The custom.d.ts file

We’ll use the custom interface WeatherProps for the props argument
of the page that displays the weather components, components/weather. The
WeatherDetailType is for the API route api/weather/:zipcode, which uses a
dynamically fetched ZIP code. Finally, we use responseItemType in the
API route api/names to type the fetch response.

Creating the API Routes
Next, we re-create the two API routes from the Express.js server. Earlier
sections of this chapter showed this refactored code. For the api/names
route, create a new file, names.ts, in the api folder, then add the code from
Listing 5-3. Refer to that section for a detailed explanation of the code.

Migrate the dynamic route api/weather/:zipcode from the Express.js
server to the Next.js application by creating a [zipcode].js file in the api
folder and adding the code from Listing 5-4, shown in “Dynamic URLs” on
page 77. You can refer to that section for more details.

Creating the Page Routes
Now we work on the pages. First, for the simple page hello.tsx, we create a
new file in the pages folder and add the code from Listing 5-10. This code
renders the Hello World! example and uses the custom Next.js components
Head, Link, and Image, all of which are explained in detail in “Built-in
Next.js Components” on page 80.

The second page is the nested route pages/components/weather.tsx. As
before, we create a new file, weather.tsx, in a folder called components,
within the pages folder. Add the code from Listing 5-2. This listing uses the
useState and useEffect hooks to create a reactive user interface. We can
remove the custom interface definition for the WeatherProps from this file.
The custom.d.ts file already adds them to TSC.

Running the Application
Start the application with the npm run dev command. Now you can visit
the same routes we created for the Express.js server and see that they are
functionally the same. Congratulations! You created your first Next.js-based
full-stack application. Play around with the code and try using global and
component CSS to style your pages.

Summary
Next.js adds the missing functionality needed to create full-stack
applications with React. After scaffolding a sample project and exploring
the default file structure, you learned how to create page and API routes in
the framework. You also learned about global- and component-level CSS,
Next.js’s four built-in command line scripts, and its most useful custom
components.

We also discussed the different ways to render content and pages with
Next.js and when to choose each option. Finally, you used the code from
this chapter to quickly migrate the Express.js application you built in the
previous chapters to Next.js. To continue your adventures in this useful
framework, I recommend the official tutorials at https://nextjs.org.

In the next chapter, we’ll explore two types of web APIs: the standard
RESTful APIs and modern GraphQL.

https://nextjs.org/

6
REST AND GRAPHQL APIS

An API is a generic pattern used to
connect computers or computer

programs. Unlike a user interface, it’s designed to be
accessed not by a user but by another piece of
software. One purpose of APIs is to hide the internal
details of a system’s workings while exposing a
standardized gateway to the system’s data or
functionality.

As a full-stack developer, you’ll usually interact with, or consume, two
kinds of APIs: internal and third-party. When querying an internal API,
you’re consuming data from your own systems, typically from your own
database or service. Private APIs are not available to outside parties. For
example, your bank might use private APIs to check your credit score or
account balance on its internal systems and display them in your online
banking profile.

Third-party APIs provide access to data from an external system. For
example, the OAuth login you’ll implement in Part II uses an API. You
might also use an API to fetch a social media feed or weather information
from an external provider to display on your website. Because external
APIs are exposed to the public, you can reach them through a public URL,
and they document the conventions you should use to access their data in an

API contract. This contract defines the format of the communications, the
parameters the API expects, and the possible responses you might receive
for each request. We briefly discussed API and function contracts and why
you should type them in Chapter 3.

Full-stack web development primarily uses two types of APIs, REST
and GraphQL, both of which transmit data over HTTP. This chapter covers
these.

REST APIs
REST is an architectural pattern used to design RESTful web APIs. These
APIs are essentially a set of URLs, each of which provides access to a
single resource. They rely on the use of HTTP methods and the standard
HTTP status codes to transmit data and accept URL-encoded or request
header parameters. Typically, they respond with the requested data in JSON
or plaintext.

In fact, you’ve already built your first REST API. Recall the Next.js
server you created in Exercise 5 on page 89, which provided the
api/weather/:zipcode endpoint. So far, we’ve used this endpoint to play
with Next.js’s routing, understand dynamic URLs, and learn how to access
query parameters. You’ll soon see, however, that this API follows REST
conventions: to access it, we used the HTTP GET method to consume the
URL endpoint and received a JSON response with an HTTP status code of
200: OK. Common status code ranges are 2XX for successful requests and
3XX for redirects. If the request fails, we see the 4XX range to indicate a
client-related error, such as 401: Unauthorized, and 5XX for server errors,
often the generic 500: Internal Server Error.

As full-stack developers, we might sometimes create our own APIs;
more often, though, we’ll find ourselves consuming third-party APIs. Why
might we consume, say, a third-party weather API? Well, imagine that we
want our app to display the current weather at multiple remote locations.
Instead of setting up and maintaining various weather stations on our own
and then reading the data from the sensors, which would involve both
providing and consuming an API for each of them, we could consume data
from a third-party API offered by an existing weather service. Our code
might call that API, pass in a ZIP code as a parameter, and receive the

weather data for this location in a predetermined format. We’d then display
this data on our website.

RESTful APIs enable us to interact with data without knowing
anything about how that data was stored or what underlying technology
provided it. If you follow an API’s specifications, you should receive the
requested data, even if the underlying technology or architecture changes.
Beyond this, there are a handful of requirements for an API to be
considered RESTful.

The URL
A unique URL provides an interface to a RESTful API. Each of a provider’s
APIs typically has the same base URL, called the root entry point, such as
http://localhost:3000/api. You can think of this as the APIs’ family name.
Often, you’ll see a version number added to the root entry point, because a
provider might have multiple versions of an API. For example, there might
be the legacy http://localhost:3000/api/v1 and an updated
http://localhost:3000/api/v2. To honor this pattern, you can create a folder
v1 inside the api folder and move the REST API code there.

NOTE
Other common ways of versioning an API include custom headers and
query strings. In the first case, the client would request the API with a
custom Accept-Version header and receive a matching Content-Version
header. In the second case, an API request would use ?version=1.0.0 as a
query parameter in the URL.

The next part of the API’s URL is the path, often called the endpoint. It
specifies the resource we want to query (for example, the weather API). API
specifications usually mention only the endpoint itself, such as /v1/weather,
leaving the root entry point implied. The URL generally also accepts
parameters. These can be path parameters that are part of the URL, like in
our ZIP code API endpoint, /v1/weather/{zipcode}, or they can be query
parameters, which are added as encoded key-value pairs after an initial
question mark, as in /v1/weather?zipcode=<zipcode>. By convention, path
parameters are usually used to refer to a resource or resources, and query

parameters are used to perform operations on the data returned, like sorting
or filtering.

The Specification
The resources themselves are separate from the representations returned to
the client. In other words, the server might send data in formats like HTML,
XML, JSON, or others, regardless of the way in which the data is stored in
the application’s database. You can learn about an API’s response format in
its specification, which serves as the manual for an API. One excellent way
to document your APIs is with the OpenAPI format, which is widely used
in the industry and is part of the Linux Foundation. You can use the
Swagger graphical editor at https://editor.swagger.io to experiment with it.

For example, Listing 6-1 shows a specification for the /v1/weather/
{zipcode} endpoint, written as JSON. Paste the code into the Swagger editor
to explore the generated documentation in a more user-friendly manner.

{

 "openapi": "3.0.0",

 "info": {

 "title": "Sample Next.js - OpenAPI 3.x",

 "description": "The example APIs from our Next.js ap

plication",

 "version": "1.0.0"

 },

 "servers": [

 {"url": "https://www.usemodernfullstack.dev/api/"},

 {"url": "http://localhost:3000/api/"}

],

 "paths": {

 "/v1/weather/{zipcode}": {

 "get": {

 "summary": "Get weather by zip code",

 "parameters": [

 {

 "name": "zipcode",

 "in": "path",

 "description": "The zip code for the

location as string.",

https://editor.swagger.io/

 "required": true,

 "schema": {

 "type": "string",

 "example": 96815

 }

 }

],

 "responses": {

 "200": {

 "description": "Successful operatio

n",

 "content": {

 "application/json": {

 "schema": {

 "$ref": "#/components/sc

hemas/weatherDetailType"

 }

 }

 }

 }

 }

 }

 }

 },

 "components": {

 "schemas": {

 "weatherDetailType": {

 "type": "object",

 "properties": {

 "zipcode": {

 "type": "string",

 "example": 96815

 },

 "weather": {

 "type": "string",

 "example": "sunny"

 },

 "temp": {

 "type": "integer",

 "format": "int64",

 "example": 35

 }

 }

 }

 }

 }

}

Listing 6-1: The OpenAPI specification for the /v1/weather/{zipcode} endpoint

First we define general information, such as the API’s title and
description. The most important value here is the API version. In Exercise 6
on page 108, we’ll adjust our server to reflect this version. The next
property we set is the server, or the root entry point of the API. We use
localhost here, because our Next.js application runs locally for now.

Then we specify the unique API endpoints under paths, setting the
path, parameters, and responses for each of them. In this example, we
specify the minimum required data for one endpoint, the
/v1/weather/{zipcode}, and clarify that it uses the GET method. The curly
brackets ({}) indicate the URL parameter, but we also set the parameter
with the name zipcode explicitly in the path. In addition, we define the
schema, or format, for the parameter, which should be a string.

Next, in the responses section, we set the response that the API should
return if the HTTP status code is 200: OK. This content, in the
application/json format, is weatherDetailType, which you should
already be familiar with from previous chapters. It’s similar to the custom
type definition in our custom.d.ts file, except here we use JSON instead of
TypeScript.

Note that the Swagger editor also generates an interactive playground
based on the specification that lets us test the API’s endpoints against a
running server. In addition, we can generate a server and client directly in
the editor’s interface. The generated server will provide the REST API
described in the specification, whereas the client will generate a library we
can use in any application that consumes the API from the spec. This
interactive playground and generated code make working with third-party
APIs very easy.

State and Authentication
RESTful APIs are stateless, meaning they don’t store session information
on the server. Session information is any data about previous user
interactions. For example, imagine an online store’s shopping cart. In a
stateful design, the application would store the content of your cart on the
server and update it whenever you add new items. In a RESTful design, the
client instead sends all relevant session data in each request. User–server
interactions are understood in isolation, without context from previous
requests.

Even so, public RESTful APIs often require some form of
authentication. In order to distinguish the requests of authenticated users
from the requests of unauthenticated users, those APIs typically provide a
token that users should include in subsequent requests. Consumers send this
token as part of the request’s data or in the HTTP Authorization header.
We’ll provide more details about authorization tokens and how they work in
Chapter 9.

This stateless design means that the authentication works regardless of
whether the client requests the data from the end server directly, a proxy, or
a load balancer. Therefore, a RESTful API is capable of handling a layered
system. Stateless architectures are also ideal in high-volume situations,
because they remove the server load caused by the retrieval of session
information from a database.

HTTP Methods
In REST, there are four standard ways to interact with a dataset: create,
read, update, and delete. These interactions are commonly called CRUD
operations. REST APIs use the following HTTP methods to perform these
operations on the request’s resource:

GET Used to retrieve data from a resource. It’s the most common
request; each time you visit a website in your browser, you make a
GET request to the website’s address.
POST Used to add a new element to a collection resource. Sending the
same POST request multiple times creates a new element for each
request, resulting in multiple elements with the same content. When

you send an email or submit a web form, your client is usually sending
a POST request behind the scenes, because you’re creating a new
resource in a database.
PUT Used to overwrite or update an existing resource. Sending the
same PUT request multiple times creates or overwrites a single element
with updated content. For example, when you re-upload a picture on
Instagram or Facebook, you might send a PUT request.
PATCH Used to partially update an existing resource. Unlike with
PUT, you’re sending only the data that differs from the current dataset.
Hence, it’s a smaller and more performant operation. For example, an
update to your profile on a social media page might be done with a
PATCH request.
DELETE Used to delete a resource (for example, to remove a picture
on Instagram).

REST API requests suffer from the same performance implications as
do all HTTP requests. Developers must consider critical factors such as
network bandwidth, latency, and server load. While the application usually
can’t influence the network latency or user bandwidth, it can increase its
performance by caching the requests and responding with the previously
cached results.

In general, the recommended approach is to cache requests
aggressively. By avoiding additional server requests, we can speed up our
application significantly. Unfortunately, not all HTTP requests are
cacheable. The responses for GET requests are cacheable by default, but
PUT and DELETE answers aren’t cacheable at all, because they don’t
guarantee a predictable response. Between two similar PUT requests, a
DELETE request might have deleted the resource, or vice versa. POST and
PATCH request responses can, in theory, be cached if the response provides
an Expire header or a Cache-Control header and your subsequent calls are
GET requests to the same resource. Still, servers frequently won’t cache
those two types.

Working with REST
Let’s practice working with REST by taking a look at our fictional weather
service. Say we read the API contract and see that an authorized user can
receive and update datasets from the service by using its public REST API.
The API returns JSON data, the server’s URL is
https://www.usemodernfullstack.dev, and the endpoint at
/api/v2/weather/{zipcode} accepts GET and PUT requests. In this section,
we walk through the requests and responses for getting the current weather
data for a specific ZIP code with a GET request to the API, as well as for
updating the stored weather data with a PUT request.

Reading Data
To receive the weather for your location, you might make a GET request
containing the ZIP code 96815 and an authorization token. We can make
such a GET request with a command line tool like cURL, which should be
part of your system. If necessary, you can install it from https://curl.se. A
typical cURL request looks like this:

$ curl -i url

The -i flag displays the header details we are interested in. We can set
the HTTP method with the -X flag and send an additional header with the -
H flag. Use the escape character to send a multiline command (\ on macOS
and ^ on Windows). Avoid adding a space character behind the escape
character. If you’re curious, try using cURL to query one of the API
endpoints in the app you created in Exercise 5 on page 89. A cURL call for
a GET request to the weather API v2/weather/{zipcode} at
https://www.usemodernfullstack.dev/api would look like this:

$ curl -i \

 -X GET \

 -H "Accept: application/json" \

 -H "Authorization: Bearer 83dedad0728baaef3ad3f50bd05ed0

30" \

 https://www.usemodernfullstack.dev/api/v2/weather/96815

https://curl.se/

We make this request to the API endpoint v2/weather/{zipcode} on the
server at https://www.usemodernfullstack.dev/api. The ZIP code is included
in the URL. We set the return format to JSON in the Accept header and
pass an access token in the Authorization header. Because this is an
example API, it accepts any token; if one is not supplied, the API returns a
status code of 401.

Here is what the API’s response to our GET request looks like:

HTTP/2 200

content-type: application/json ; charset=utf-8

access-control-allow-origin: *

{"weather":"sunny","tempC":"25","tempF":"77","friends":["968

14","96826"]}

The API responds with an HTTP status code of 200, indicating that the
request was successful. We asked for a JSON response, and the content-
type header confirms that the response data is indeed of that type.

The Access-Control-Allow-Origin header, which we discussed in
Chapter 5, here allows access to any domain. With this setting, a browser
whose client-side JavaScript wants to access the API will allow these
requests regardless of the website’s domain. Without the CORS header, the
browser would block the request and the script’s access to the response and
instead throw a CORS error.

Finally, we see that the response’s body contains a JSON string with
the API response.

Updating Data
Now imagine that you want to add display data from your neighborhood
(96814) and the adjacent one (96826) to your website. Unfortunately, these
ZIP codes aren’t yet available on the API. Luckily, because it’s open source,
we can hook up our own weather station and extend the system. Say we’ve
set up our weather sensors and connected them to the API. As soon as the
weather changes, we add the dataset to it.

Here is the PUT request we make to update the weather for the ZIP
code 96814. PUT requests store data in the request body; therefore, we use

the -d flag in the cURL command to send the encoded JSON:

$ curl -i \

 -X PUT \

 -H "Accept: application/json" \

 -H "Authorization: Bearer 83dedad0728baaef3ad3f50bd05ed0

30" \

 -H "Content-Type: application/json" \

 -d "{\"weather\":\"sunny\",\"tempC\":\"20\",\"tempF

\":\"68\",

 \"friends\":\"['96815','96826']\"}" \

 https://www.usemodernfullstack.dev/api/v2/weather/96815

We request the same API endpoint, /api/v2/weather/, but replace the
GET method with PUT, because we don’t want to get the data from the
database; instead, we want to add data. We use the Content-Type header to
tell the API provider that the payload in the request body is a JSON string.
The API updates the dataset and responds with a status code of 200 and a
JSON object with additional status details:

HTTP/2 200

content-type: application/json ; charset=utf-8

access-control-allow-origin: *

{"status":"ok"}

You can learn more about RESTful APIs at https://restfulapi.net, which
covers more specific topics, such as compression and security models, and
guides you through designing your own RESTful APIs. Now let’s turn our
attention to GraphQL, a different, more advanced type of API.

GraphQL APIs
Unlike REST, GraphQL isn’t merely an architectural pattern. It’s a
complete, open source data query and manipulation language for APIs. It’s
also the most popular REST alternative in full-stack web development, used
by Airbnb, GitHub, PayPal, and many other companies. In fact, 10 percent
of the top 10,000 sites reportedly use GraphQL. This section covers only

https://restfulapi.net/

certain of its features but should give you a solid understanding of GraphQL
principles.

NOTE
Despite its name, GraphQL doesn’t require the use of a graph database like
Neo4j. We can use it to query any data source connected to the GraphQL
server, including common databases such as MySQL and MongoDB.

Like REST, GraphQL APIs operate over HTTP. However, a GraphQL
implementation exposes only a single API endpoint, typically called
/graphql, for accessing all resources and performing all CRUD operations.
By contrast, REST has one dedicated endpoint per resource.

Another difference is that we connect to the GraphQL server by using
POST requests exclusively. Rather than using HTTP methods to define a
desired CRUD operation, we use queries and mutations in the POST request
body. Queries are read operations, while mutations are operations for
creating, updating, and deleting data.

And unlike REST, which relies on standard HTTP status codes,
GraphQL returns 500, that is, an Internal Server Error, when an operation
cannot be executed at all. Otherwise, the response uses 200 even if there are
problems with the queries or mutations. The reason for this is that the
resolver might have partially executed before encountering an issue. Keep
this in mind when deploying a GraphQL API in production. Many standard
operational practices and tools may need to change to account for this
behavior.

The Schema
A GraphQL API defines the available queries and mutations in its schema,
which is equivalent to the REST API’s specification. Also called a typedef,
the schema is written in the Schema Definition Language (SDL). SDL’s
core elements are types, which are objects that contain typed fields defining
their properties, and optional directives that add additional information, for
example, to specify caching rules for queries or mark fields as deprecated.

Listing 6-2 shows a GraphQL schema for our fictional weather API,
which returns the weather data for a location.

export const typeDefs = gql`

 type LocationWeatherType {

 zip: String!

 weather: String!

 tempC: String!

 tempF: String!

 friends: [String]!

 }

 input LocationWeatherInput {

 zip: String!

 weather: String

 tempC: String

 tempF: String

 friends: [String]

 }

 type Query {

 weather(zip: String): [LocationWeatherType]!

 }

 type Mutation {

 weather(data: LocationWeatherInput): [LocationWeathe

rType]!

 }

`;

Listing 6-2: The GraphQL schema for the weather API

You should notice that the schema is a tagged template literal, which
you learned about in Chapter 2. We begin by describing custom GraphQL
object types. These object types represent the data that the API returns.
They are similar to the custom types we defined in TypeScript. A type has a
name and can implement an interface. Each of these custom object types
contains fields, which have a name and a type. GraphQL has the built-in
scalar types Int, Float, String, Boolean, and ID. Exclamation marks (!)

denote non-nullable fields, and lists within square brackets ([]) indicate
arrays.

The first custom object type is LocationWeatherType, which describes
the location information for a weather query. Here we use the String!
expression to mark the ZIP field as non-nullable. Hence, the GraphQL
service always returns a value for this field. We define a friends field as an
array of strings to represent related weather stations by ZIP code. It is also
non-nullable, so it will always contain an array (with zero or more items)
when added to the return values. The String inside the friends array
ensures that every item will be a string.

Then we define the input type object for our first mutation. These types
are necessary for mutations, and they represent the input received from the
API’s consumer. Because consumers should be able to pass in only the
fields they’d like to update, we omit the exclamation marks to make the
fields optional. In GraphQL, we need to define input objects and types for
the return value separately, with the built-in types. Unlike in TypeScript, we
can’t use generic custom types.

The schema also defines the query and mutation functions. These are
the operations that consumers can send to the API. The weather query takes
a ZIP code as a parameter and always returns an array of
WeatherLocationType objects. The weather mutation takes a
WeatherLocationInput parameter and always returns the modified
WeatherLocationType object.

Our schema doesn’t contain any directives, and we won’t go deep into
their syntax in this chapter. However, one reason to use directives is for
caching. Because GraphQL queries use POST, which isn’t cacheable using
the default HTTP cache, we must implement caching manually, on the
server side. We can configure caching statically on the type definitions with
the directive @cacheControl or dynamically, in the resolver functions, with
cacheControl.setCacheHint.

The Resolvers
In GraphQL, the resolvers are the functions that implement the schema.
Each resolver function maps to a field. Query resolvers implement the
reading of data, whereas mutation resolvers implement the creation,

updating, and deletion of data. Together they provide complete CRUD
functionality.

To understand how resolvers work, you can think of each GraphQL
operation as a tree of nested function calls. In such an abstract syntax tree
(AST), each part of the operation represents a node. For example, consider a
complex, nested GraphQL query, which asks for the location’s current
weather, as well as the weather of all its neighbors. Our GraphQL schema
for this example looks like Listing 6-3.

export const typeDefs = gql`

 type FriendsType {

 zip: String!

 weather: String!

 }

 type LocationWeatherType {

 zip: String!

 weather: String!

 tempC: String!

 tempF: String!

 friends: [FriendsType]!

 }

 type Query {

 weather(zip: String): [LocationWeatherType]!

 }

`;

Listing 6-3: The GraphQL schema for the nested GraphQL query example

In the schema for the example, we replace the content of the friends
array. Instead of a simple string, we want it to contain an object with a ZIP
code and weather information. Therefore, we define a new FriendsType
and use this type for the array items.

Listing 6-4 defines the complex example query.

query GetWeatherWithFriends {

 weather(zip: "96815") {

 weather

 friends {

 weather

 }

 }

}

Listing 6-4: The nested GraphQL query

This query takes the zip parameter 96815 and then returns its weather
property, as well as all of its friends’ weather properties, as strings. But
how does the query work under the hood?

Figure 6-1 shows the resolver chain and corresponding AST. The
GraphQL server would first parse the query into this structure and then
validate the AST against the type-definition schema to ensure that the query
can be executed without running into logical problems. Finally, the server
would execute the query.

Figure 6-1: Querying the GraphQL AST

Let’s examine the resolver chain for the query. The Query.weather
function takes one argument, the ZIP code, and returns the location object
for this ZIP code. Then the server continues along each branch separately.
For the weather in the query, it returns the weather property of the
location object, Location.weather, at which point the branch ends. The
second part of the query, which asks for all friends from the location
object and their weather properties, runs the Location.Friends query and
then returns the Friends.weather property for each result. The resolver
object of each step contains the result returned by the parent field’s resolver.

Let’s return to our weather schema and define the resolvers. We’ll keep
these simple. In Listing 6-5, you can see that their names match those
defined in the schema.

export const resolvers = {

 Query: {

 weather: async (_: any, param: WeatherInterface) =>

{

 return [

 {

 zip: param.zip,

 weather: "sunny",

 tempC: "25C",

 tempF: "70F",

 friends: []

 }

];

 },

 },

 Mutation: {

 weather: async (_: any, param: {data: WeatherInterfa

ce}) => {

 return [

 {

 zip: param.data.zip,

 weather: "sunny",

 tempC: "25C",

 tempF: "70F",

 friends: []

 }

];

 }

 },

};

Listing 6-5: The GraphQL resolvers for the weather API

We first define async functions for the query and mutation properties
and assign the object to the const resolvers. Each takes two parameters.
The first one represents the previous resolver object in the resolver chain.
We aren’t using a nested or complex query; hence, here it is always
undefined. For this reason, we use the any type to avoid a TypeScript error
and use the underscore (_) convention you learned in Chapter 3 to mark it
as unused. The second parameter is an object containing the data passed to
the function on invocation. For the weather query and the weather
mutation, it is an object that implements the WeatherInterface.

For now, both functions ignore this parameter for the most part, using
only the zip property to reflect the input. Also, they return a static JSON
object similar to the REST API we created in the previous listings. The
static data is just a placeholder, which we’ll replace with the result from our
database queries later. The response honors the API contract we defined in
the GraphQL schema, as this data consists of arrays with weather location
datasets.

Comparing GraphQL to REST
We’ve already implemented RESTful APIs in our Next.js application, and
as you saw in this chapter, REST is fairly simple to work with. You might
be wondering why you’d even consider using GraphQL. Well, GraphQL
solves two problems common in REST APIs: over-fetching and under-
fetching.

Over-Fetching
When a client queries a REST endpoint, the API always returns the
complete dataset for that endpoint. This means that, often, the API delivers
more data than necessary, a common performance problem called over-

fetching. For example, our example RESTful weather API at
/api/v2/weather/zip/96815 delivers all weather data for a ZIP code even if
all you need is the temperature in Celsius. You’d then need to manually
filter the results. In GraphQL, the API requests explicitly define the data
they want returned.

Let’s look at an example to see how GraphQL lets us keep the API
response data to a minimum. The following GraphQL query returns only
the temperature in Celsius for the location with the ZIP code 96815:

query Weather {

 weather(zip: "96815") {

 tempC

 }

}

In GraphQL, we send the query as a JSON string with the POST
request’s data:

$ curl -i \

 -X POST \

 -H "Accept: application/json" \

 -H "Authorization: Bearer 83dedad0728baaef3ad3f50bd05ed0

30" \

 -H "Content-Type: application/json" \

 -d '{"query":"\nquery Weather {\n weather(zip: \"96815

\") {\n tempC \n }\n}"}' \

 https://www.usemodernfullstack.dev/api/graphql

We consume the API with a POST request to the /api/graphql endpoint,
then set the Content-Type header and Accept header to JSON to explicitly
tell the API that we’re sending a JSON object in the request body and
expect a JSON response. We set the access token in the Authorization
header, as in a RESTful request. The POST body contains the query for the
weather data, and the \n control characters indicate the newlines in the
GraphQL query. As defined in the contract, the query expects a parameter,

zip, for which we pass in the ZIP code 96815. In addition, we request that
the API return only the tempC field of the weather node.

Here is the response from the GraphQL API:

HTTP/2 200

content-type: application/json ; charset=utf-8

access-control-allow-origin: *

{"data":{"weather":[{"tempC":"25C"}]}}

The API responds with a status code of 200. We specified in the
request’s query that we are interested in only the requested field tempC of
the weather object, so this is what we received. The API doesn’t return the
ZIP code, temperature in Fahrenheit, weather string, or friends array.

Under-Fetching
On the other hand, a REST dataset might not contain all the data you need,
requiring you to send follow-up requests. This problem is called under-
fetching. Imagine that your friends also have weather stations and that you
want to get the current weather at their ZIP codes. The RESTful weather
API returns an array with related ZIP codes (friends). However, you’d
need to make additional requests for each ZIP code to receive their weather
information, potentially causing performance issues.

GraphQL treats datasets as nodes in a graph, with relationships
between them. Therefore, extending a single query to receive related data is
pretty simple. Our example GraphQL server’s resolvers are set up to fetch
additional data about friends if the request’s query contains the friends
field. We define the GraphQL query as follows:

query Weather {

 weather(zip: "96815") {

 tempC

 friends {

 tempC

 }

 }

}

The following shows an example request that fetches all related nodes
through the friends array. Again, we define the return data and query the
friends only for the field tempC:

$ curl -i \

 -X POST \

 -H "Accept: application/json" \

 -H "Authorization: Bearer 83dedad0728baaef3ad3f50bd05ed0

30" \

 -H "Content-Type: application/json" \

 -d '{"query":"query Weather {\n weather(zip: \"96815

\")

 {\n tempC\n friends {\n tempC\n }\n }

\n}"}' \

 https://www.usemodernfullstack.dev/api/graphql

The POST body contains the query for weather data pertaining to the
96815 ZIP code in one line and asks for the tempC field, as in the previous
request. To extend the query, we add a sub-selection on the friends field.
Now GraphQL traverses the related nodes and their fields and returns the
tempC field of the nodes whose ZIP codes match the ones in the 96815
node’s friends array.

Here is the response from the GraphQL server. We see that it contains
data from the related nodes:

HTTP/2 200

content-type: application/json ; charset=utf-8

access-control-allow-origin: *

{"data":{"weather":[{"tempC":"25C","friends":

[{"tempC":"20C"},{"tempC":"30C"}]}]}}

As you’ve discovered, GraphQL lets us easily extend queries by
adjusting the data in the request.

Exercise 6: Add a GraphQL API to Next.js
Let’s rework our weather application’s API to use GraphQL. To do so, we
must first add GraphQL to the project. GraphQL isn’t a pattern but an
environment that consists of a server and a query language, both of which
we must add to Next.js.

We’ll install the stand-alone Apollo server, one of the most popular
GraphQL servers, which also provides a Next.js integration. Open your
terminal and navigate to the refactored application you built in Chapter 5. In
the directory’s top level, next to the package.json file, execute this
command:

$ npm install @apollo/server @as-integrations/next graphql g

raphql-tag

This command also installs the GraphQL language and the GraphQL
tag modules we’ll need.

Creating the Schema
As we discussed, every GraphQL API starts with a schema definition.
Create a folder called graphql next to the pages folder in the Next.js
directory. This is where we’ll add all GraphQL-related files.

Now create a file called schema.ts and paste the code you wrote back in
Listing 6-2. We’ve already defined and discussed the type definition used
here. Simply add one line to the top of the file:

import gql from "graphql-tag";

This line imports the qql tagged template literal we use to define the
schema.

Adding Data
We want our API to return different data depending on the parameters and
properties of the queries sent to it. Therefore, we need to add datasets to our
project. GraphQL can query any database, even static JSON data. So let’s

implement a JSON dataset. Create the file data.ts inside the graphql
directory and add the code from Listing 6-6.

export const db = [

 {

 zip: "96815",

 weather: "sunny",

 tempC: "25C",

 tempF: "70F",

 friends: ["96814", "96826"]

 },

 {

 zip: "96826",

 weather: "sunny",

 tempC: "30C",

 tempF: "86F",

 friends: ["96814", "96814"]

 },

 {

 zip: "96814",

 weather: "sunny",

 tempC: "20C",

 tempF: "68F",

 friends: ["96815", "96826"]

 }

];

Listing 6-6: The graphql/data.ts file for the GraphQL API

This JSON defines three weather locations and their properties. A
consumer will be able to query our API for these datasets.

Implementing Resolvers
Now we can define our resolvers. Add the file resolvers.ts to the graphql
directory and paste in the code from Listing 6-7. This is similar to the code
we previously discussed when we introduced resolvers, but instead of
returning the same static JSON object to the consumer, we query our new
dataset.

import {db} from "./data";

declare interface WeatherInterface {

 zip: string;

 weather: string;

 tempC: string;

 tempF: string;

 friends: string[];

}

export const resolvers = {

 Query: {

 weather: async (_: any, param: WeatherInterface) =>

{

 return [db.find((item) => item.zip === param.zi

p)];

 }

 },

 Mutation: {

 weather: async (_: any, param: {data: WeatherInterfa

ce}) => {

 return [db.find((item) => item.zip === param.dat

a.zip)];

 }

 }

};

Listing 6-7: The graphql/resolvers.ts file for the GraphQL API

We import the array of JSON objects we created earlier and define an
interface for the resolvers. The query resolver finds an object by using the
ZIP code passed to it and returns it to the Apollo server. The mutation does
the same, except that the parameter structure is slightly different: it is
accessible through the data property. Alas, we can’t actually change the
data by using the mutation, as the data is a static JSON file. We’ve
implemented the mutation here for illustration purposes only.

Creating the API Route
The Apollo GraphQL server exposes one endpoint, graphql/, which we’ll
implement now. Create a new file, graphql.ts, in the api folder and add the
code from Listing 6-8. This code initializes the GraphQL server and adds a
CORS header so that we can access the API from different domains and use
the built-in GraphQL sandbox explorer to play with GraphQL later. You
saw this header in the previous cURL responses.

import {ApolloServer} from "@apollo/server";

import {startServerAndCreateNextHandler} from "@as-integrati

ons/next";

import {resolvers} from "../../graphql/resolvers";

import {typeDefs} from "../../graphql/schema";

import {NextApiHandler, NextApiRequest, NextApiResponse} fro

m "next";

//@ts-ignore

const server = new ApolloServer({

 resolvers,

 typeDefs

});

const handler = startServerAndCreateNextHandler(server);

const allowCors =

 (fn: NextApiHandler) => async (req: NextApiRequest, res:

NextApiResponse) => {

 res.setHeader("Allow", "POST");

 res.setHeader("Access-Control-Allow-Origin", "*");

 res.setHeader("Access-Control-Allow-Methods", "POS

T");

 res.setHeader("Access-Control-Allow-Headers", "*");

 res.setHeader("Access-Control-Allow-Credentials", "t

rue");

 if (req.method === "OPTIONS") {

 res.status(200).end();

 }

 return await fn(req, res);

 };

export default allowCors(handler);

Listing 6-8: The api/graphql.ts file, which creates the API entry point for GraphQL

This code is all we need to create the GraphQL entry point. First we
import the necessary modules, including our GraphQL schema and the
resolvers, both of which we created previously. Then we initialize a new
GraphQL server with typedefs and resolvers.

We start the server and continue by creating the API handler. To do
this, we use the Next.js integration helper to start the server and return the
Next.js handler. The integration helper connects the serverless Apollo
instance to the Next.js custom server. Before we define the default export as
an async function that takes the API’s request and response objects as
parameters, we create a wrapper to add the CORS headers to the request.
The first block inside the function sets up the CORS headers, and we limit
the allowed request to POST requests. We need the CORS headers here to
make our GraphQL API publicly available. Otherwise, we wouldn’t be able
to connect to the API from a website running on a different domain or even
use the server’s built-in GraphQL sandbox.

Part of the CORS setup here is that we immediately return 200 for any
OPTIONS requests. The CORS patterns use OPTIONS requests as preflight
checks. Here the browser requests only headers, and then checks the
response’s CORS headers to verify that the domain from which it calls the
API is allowed to access the resource before making the actual request.

However, our Apollo server allows only POST and GET requests and
would return 405: Method Not Allowed for the preflight OPTIONS request.
So, instead of passing this request to the Apollo server, we end the request
and return 200 with the previous CORS headers. The browser should then
proceed with the CORS pattern. Finally, we start the server and create the
API handler on the desired path, api/graphql.

Using the Apollo Sandbox
Start your Next.js server with npm run dev. You should see the Next.js
application running on http://localhost:3000. If you navigate to the
GraphQL API at http://localhost:3000/api/graphql, you’ll find the Apollo
sandbox interface for querying the API, as in Figure 6-2.

Figure 6-2: The Apollo sandbox’s API querying interface

In the Documentation pane on the left side, we see the available queries
as fields of the query object we defined earlier. As expected, we see the
Weather query here, and when we click it, a new query appears in the
Operation pane in the middle. At the same time, the interface changes, and
we see the available arguments and fields. Clicking each provides more
information. Using the plus (+) button, we can add fields to the Query pane
and run them against the data.

Try creating a Weather query that returns the zip and weather
properties. This query requires a ZIP code as an argument; add it through
the user interface on the left-hand side, and then add the ZIP code 96826 as

a string to the JSON object in the variables section of the lower pane.
Now run the query by clicking the Weather button at the top of the
Operation pane. You should receive the result for this ZIP code in the
Response pane on the right as JSON. Compare your screen with Figure 6-3.

Figure 6-3: The GraphQL query and response from the server

Play around with crafting queries, accessing properties, and creating
errors with invalid arguments to get a feel for GraphQL before moving on
to the next chapter.

Summary
This chapter explored RESTful and GraphQL web APIs and their role in
full-stack development. Although we used a REST design in previous
chapters, you should now be familiar with the concept of stateless servers,
as well as the five HTTP methods for performing CRUD operations in
REST. You also practiced working with a public REST API to read and
update data, then evaluated its requests and responses.

GraphQL APIs require a bit more work to implement, but they reduce
the over-fetching and under-fetching issues often experienced in REST. You
learned to define the API contract with a schema and implement its
functionality with resolvers. Then you queried an API and defined the
dataset to return in the request.

Finally, you added a GraphQL API to your existing Next.js application
by adding the Apollo server to it. You should now be able to create your
own GraphQL API and consume third-party resources. To learn more about
GraphQL, I recommend the tutorials at https://www.howtographql.com and
the official GraphQL introduction at https://graphql.org/learn/.

In the next chapter, you’ll explore the MongoDB database and
Mongoose, an object data modeling library, for storing data.

https://www.howtographql.com/
https://graphql.org/learn/

7
MONGODB AND MONGOOSE

Most applications rely on a database
management system, or database for

short, to organize and grant access to a collection of
datasets. In this chapter, you’ll work with the
MongoDB non-relational database and Mongoose, its
accompanying object mapper.

Because MongoDB returns data as JSON and uses JavaScript for
database queries, it provides a natural choice for full-stack JavaScript
developers. In the following sections, you’ll learn how to create a
Mongoose model through which you can query your database, simplify
your interactions with MongoDB, and craft middleware that connects your
frontend to your backend database. You’ll also write service functions to
implement the four CRUD operations on the database.

In Exercise 7 on page 125, you’ll add a database to the GraphQL API
you created in Chapter 6, replacing its current static datastore.

How Apps Use Databases and Object-Relational
Mappers
An app needs a database to store and manipulate data. So far in this book,
our app’s APIs returned only predefined datasets, saved in files, that
couldn’t change. We used parameters in our requests to add to the dataset

but couldn’t store the data between different API calls (called persisting the
data). If we wanted to update the app’s weather information, for example,
we’d need a database to persist the data so that the next API call could read
it. In full-stack development, we commonly use databases to store user-
related data. Another example of a database is the one that your email client
uses to store your messages.

To work with a database, we first need to connect to it and authenticate
with it. Once we have access to the data, we can execute queries to ask for
certain datasets. The query returns the results containing data that our app
can display or use in some other way. How each of these steps works in
practice depends on the specific database in use.

Querying the data by using the database’s API tends to be clumsy
because it usually requires a good amount of boilerplate code, even to
simply establish and maintain the connection. Hence, we often use an
object-relational mapper or object data modeling tool, which simplifies
working with the databases by abstracting some of the details. For example,
the Mongoose object data modeling tool for MongoDB handles database
connections for us, saving us from having to check for an open database
connection during each interaction.

Mongoose also makes it easier to handle the fact that MongoDB runs
on a separate database server. Working with distributed systems requires
making asynchronous calls, which you learned about in Chapter 2. With
Mongoose, we can access the data with an object-oriented async/await
interface instead of using clumsy callback functions.

In addition, MongoDB is schema-less; it doesn’t require us to predefine
and strictly adhere to a schema. While convenient, this flexibility is also a
common source of errors, especially in large-scale applications or projects
with a rotating cast of developers. In Chapter 3, we discussed the benefits of
adding types to JavaScript by using TypeScript. Mongoose types and
verifies the integrity of MongoDB’s data models similarly, as you’ll
discover in “Defining a Mongoose Model” on page 118.

Relational and Non-Relational Databases
Databases can organize data in several ways, which fall into two main
categories: relational and non-relational. Relational databases, such as

MySQL and PostgreSQL, store data in one or more tables. You can think of
these databases as resembling Excel spreadsheets. As in Excel, each table
has a unique name and contains columns and rows. The columns define
properties, such as the data type, for all data stored in the column, and the
rows contain the actual datasets, each of which is identified by a unique ID.
Relational databases use some variation of Structured Query Language
(SQL) for their database operations.

MongoDB is a non-relational database. Unlike traditional relational
databases, it stores data as JSON documents instead of tables and doesn’t
use SQL. Sometimes termed NoSQL, non-relational databases can store
data in many different formats. For example, the popular NoSQL databases
Redis and Memcached use key-value storage, which makes them highly
performant and easily scalable. Thus, they’re often used as in-memory
caches. Another NoSQL database, Neo4j, is a graph database that uses
graph theory to store data as nodes, a concept we mentioned in Chapter 6.
These are just a few examples of non-relational databases.

MongoDB is the most widely used document database; instead of
tables, rows, and columns, it organizes data in collections, documents, and
fields. The field is the smallest unit in the database. It defines the data type
and additional properties and contains the actual data. You can consider it
the rough equivalent of a column in a SQL table. Documents, which are
made of fields, are like rows in a SQL table. We sometimes call them
records, and MongoDB uses BSON, a binary representation of a JSON
object, to store them. A collection is roughly equivalent to a SQL table, but
instead of rows and columns, it aggregates documents.

Because non-relational databases can store data in different formats,
each database uses a specific, optimized query language for CRUD
operations. These low-level APIs focus on accessing and manipulating the
data, and not necessarily on the developer experience. By contrast, object-
relational mappers provide a high-level abstraction with a clean and
simplified interface to the query language. So, while MongoDB has the
MongoDB Query Language (MQL), we’ll use Mongoose to access it.

Setting Up MongoDB and Mongoose
Before you start using MongoDB and Mongoose, you must add them to
your sample project. For the sake of simplicity, we’ll use an in-memory
implementation of MongoDB rather than install and maintain a real
database server on our machines. This is appropriate for testing the
chapter’s examples, but not for deploying an actual application, as it does
not persist the data between restarts. You’ll gain experience setting up a real
MongoDB server when you build the Food Finder application in Part II.
Chapter 11 will show you how to use a pre-built Docker container that
contains the MongoDB server.

Run this command in the root directory of the refactored Next.js app
from Chapter 6:

$ npm install mongodb-memory-server mongoose

Then create two new folders in the root directory, next to the package
.json file: one for the Mongoose code, called mongoose, with subfolder
weather, and one called middleware, which will hold the necessary
middleware.

Defining a Mongoose Model
In order to verify the integrity of our data, we must create a schema-based
Mongoose model, which acts as a direct interface to a MongoDB collection
in a database. All interactions with the database will happen through the
model. Before we create the model, though, we need to create the schema
itself, which defines the structure of the database’s data and maps the
Mongoose instance to the documents in the collection.

Our Mongoose schema will match the schema created for the GraphQL
API in Chapter 6. That’s because we’ll connect the GraphQL API to the
database in Exercise 7 on page 125, allowing us to replace the static JSON
object with datasets we queried from the database.

The Interface
Before writing the Mongoose model and schema in TypeScript, let’s declare
a TypeScript interface. Without a matching interface, we won’t be able to
type the model or schema for TSC, and the code won’t compile. Paste the
code shown in Listing 7-1 into the mongoose/weather/interface.ts file.

export declare interface WeatherInterface {

 zip: string;

 weather: string;

 tempC: string;

 tempF: string;

 friends: string[];

};

Listing 7-1: The interface for the Mongoose weather model

The code is a regular TypeScript interface with properties matching the
GraphQL and Mongoose schemas.

The Schema
Listing 7-2 shows the Mongoose schema. Its top-level properties represent
the fields in the document. Each field has a type and a flag indicating
whether it is required. Fields can also have additional optional properties,
such as custom or built-in validators. Here we use the built-in required
validator; other common built-in validators are minlength and maxlength
for strings, and min and max for numbers. Add the code to the
mongoose/weather/schema.ts file.

import {Schema} from "mongoose";

import {WeatherInterface} from "./interface";

export const WeatherSchema = new Schema<WeatherInterface>({

 zip: {

 type: "String",

 required: true,

 },

 weather: {

 type: "String",

 required: true,

 },

 tempC: {

 type: "String",

 required: true,

 },

 tempF: {

 type: "String",

 required: true,

 },

 friends: {

 type: ["String"],

 required: true,

 },

});

Listing 7-2: The schema for the Mongoose weather model

We use an object passed to the schema constructor to create the schema
and set WeatherInterface as its SchemaType. Therefore, we import the
Schema function from the mongoose package and the interface we created
previously.

Like TypeScript, which adds custom types to JavaScript, Mongoose
casts each property to its associated SchemaType, which provides the
configuration of the model. The available types are a mixture of built-in
JavaScript types, like Array, Boolean, Date, Number, and String, and
custom types, like Buffer and ObjectId, the latter of which refers to the
default unique _id property that Mongoose adds to each document upon
creation. This is similar to the primary key you might know from relational
databases.

The weather API we created in Chapter 6 returned an object with four
properties: zip, weather, tempC, and tempF, each of which is a string. In
addition, we have one array of strings in the friends property. In this
schema, we define the same properties, then export the schema.

The Model
Now that we have a schema, we can create the Mongoose model. This
wrapper on the schema will provide access to the MongoDB documents in
the collection for all CRUD operations. We write the model in the
mongoose/weather/model.ts file, whose code is in Listing 7-3. Keep in mind
that we haven’t yet connected it to the MongoDB database on the server.

import mongoose, {model} from "mongoose";

import {WeatherInterface} from "./interface";

import {WeatherSchema} from "./schema";

export default mongoose.models.Weather ||

 model<WeatherInterface>("Weather", WeatherSchema);

Listing 7-3: The Mongoose weather model

First we import the Mongoose module and the model constructor from
the mongoose package, as well as the interface and the schema we created
earlier. Then we set up the Weather model, using WeatherInterface to type
it. We pass it two parameters: the model’s name, Weather, and the schema,
which defines the model’s internal data structure. Mongoose binds the
newly created model to our MongoDB instance’s collection. The Weathers
collection resides in the Weather database, both of which Mongoose creates.
Note that we need to check for an existing Weather model on
mongoose.models before creating a new one; otherwise, Mongoose will
throw an error. We export the model so that we can use it in our following
modules.

The Database-Connection Middleware
Several times in this book so far, we’ve mentioned that full-stack
development covers an application’s frontend, backend, and middleware,
which is often also referred to as “application glue.” Now it’s time to create
our first dedicated middleware.

This middleware will open a connection to the database, then use
Mongoose’s asynchronous helper function to maintain that connection.
Next, it will map Mongoose’s models to the MongoDB collections so that

we can access them through Mongoose. Conveniently, the connection
helper will buffer the operations and reconnect to the database if necessary,
so we don’t need to handle connectivity issues by ourselves. Paste the code
from Listing 7-4 into the middleware/db-connect.ts file.

import mongoose from "mongoose";

import {MongoMemoryServer} from "mongodb-memory-server";

async function dbConnect(): Promise<any | String> {

 const mongoServer = await MongoMemoryServer.create();

 const MONGOIO_URI = mongoServer.getUri();

 await mongoose.disconnect();

 await mongoose.connect(MONGOIO_URI, {

 dbName: "Weather"

 });

}

export default dbConnect;

Listing 7-4: The Mongoose middleware

We import the mongoose package and the mongodb-memory-server
database. The async function dbConnect, which we define and then export,
manages the connection to the database server through the
mongoose.connect function. We create an instance of the
MongoMemoryServer to persist our data in memory rather than use a real
database server, as discussed. Then we store the connection string in the
constant MONGOIO_URI. Because we are using the in-memory server, this
string is dynamic, but for a remote database, it would be a static string
representing the database’s server address. Then we close all existing
connections and use Mongoose to open a new connection. The Mongoose
models are already mapped and available, so we’re ready to perform our
first queries.

Querying the Database
Now it’s time to write database queries. Instead of sprinkling these queries
around your application code or writing them directly in the GraphQL

resolvers, you should extract them as services.
A service is a function that performs the actual CRUD operations on

the Mongoose model and returns the result. Each GraphQL resolver can
then call a service function, and all internal database access should happen
through these functions. Moreover, each service should be responsible for
only one specific CRUD operation. Mongoose automatically queues the
commands and executes them, maintains the connection, and then processes
the queue as soon as there is a connection to the database.

This section introduces service functions and basic Mongoose
commands. However, it isn’t a complete reference. When you start working
with Mongoose on your own projects, look up all the functions you’ll need
in the Mongoose documentation.

Creating a Document
The first and most basic operation is the “create” operation. It is
conveniently called mongoose.create and, fortunately, we can use it to both
create and update a dataset. That’s because Mongoose automatically creates
a new database entry, or document, if the entry doesn’t already exist. Hence,
we don’t need to check whether a dataset exists and then conditionally
create it before updating it.

Listing 7-5 shows a basic implementation of a service function that
stores a dataset in the database. Place the code in the mongoose/weather/
services.ts file.

import WeatherModel from "./model";

import {WeatherInterface} from "./interface";

export async function storeDocument(doc: WeatherInterface):

Promise<boolean> {

 try {

 await WeatherModel.create(doc);

 } catch (error) {

 return false;

 }

 return true;

}

Listing 7-5: Creating a document through Mongoose

To store a document, we create and export the async function
storeDocument, which takes the dataset as the argument. Here we type it as
WeatherInterface. Then we call the create function on the model and
pass the dataset to it. The function will create and insert the document in
WeatherModel, which is the weather collection in the MongoDB instance.
Finally, it returns a Boolean to indicate the status of the operation.

Reading a Document
To implement the “read” operation, we query MongoDB through
Mongoose’s findOne function. It takes one argument, an object with the
properties to look for, and returns the first match. Extend the
mongoose/weather/services.ts file with the code in Listing 7-6. It defines a
findByZip function to find and return the first document from the Weathers
collection whose zip property matches the ZIP code passed to the function
as a parameter.

export async function findByZip(

 paramZip: string

): Promise<Array<WeatherInterface> | null> {

 try {

 return await WeatherModel.findOne({zip: paramZip});

 } catch (err) {

 console.log(err);

 }

 return [];

}

Listing 7-6: Reading data through Mongoose

We add and export the async function readByZip to the services in the
services.ts file. The function takes one string parameter, the ZIP code, and
returns either an array with documents or an empty array. Inside the new
service function, we call Mongoose’s findOne function on the model and
pass a filter object, looking for the document whose zip field matches the
parameter’s value. Finally, the function returns the result or null.

Updating a Document
We mentioned that we can use the create function to update documents.
However, there is also a specific API for this task: updateOne. It takes two
arguments. The first is the filter object, similar to the filter we used with
findOne, and the second is an object with the new values. You can think of
updateOne as a combination of the “find” and “create” functions. Extend
the mongoose/weather/services.ts file with the code from Listing 7-7.

export async function updateByZip(

 paramZip: string,

 newData: WeatherInterface

): Promise<boolean> {

 try {

 await WeatherModel.updateOne({zip: paramZip}, newDat

a);

 return true;

 } catch (err) {

 console.log(err);

 }

 return false;

}

Listing 7-7: Updating data through Mongoose

The updateByZip function that we add to the services takes two
parameters. The first one is a string, paramZip, which is the ZIP code we
use to query for the document we want to update. The second parameter is
the new dataset, which we type as WeatherInterface. We call Mongoose’s
updateOne function on the model, passing it a filter object and the latest
data. The function should return a Boolean to indicate the status.

Deleting a Document
The last CRUD operation we need to implement is a service to delete a
document. For this, we use Mongoose’s deleteOne function and add the
code from Listing 7-8 to the mongoose/weather/services.ts file. It is similar
to the findOne function, except that it directly deletes the query’s result.

Mongoose queues the operations and deletes the document from the
database automatically once there is a connection.

export async function deleteByZip(

 paramZip: string

): Promise<boolean> {

 try {

 await WeatherModel.deleteOne({zip: paramZip});

 return true;

 } catch (err) {

 console.log(err);

 }

 return false;

}

Listing 7-8: Deleting data through Mongoose

The async function deleteByZip takes one string parameter, zip. We
use it to query the model and find the document to delete, passing the filter
to Mongoose’s deleteOne function. The function should return a Boolean.

Creating an End-to-End Query
In full-stack development, end-to-end typically refers to the ability of data
to travel all the way from the app’s frontend (or from one of its APIs)
through the middleware to the backend, and then all the way back to its
original source. For practice, let’s create a simple end-to-end example using
the /zipcode endpoint of our REST API.

We’ll modify the API to take the query parameter from the URL, find
the weather object for the requested ZIP code in the database, and then
return it, effectively replacing the static JSON response with a dynamic
query result. Modify the file pages/api/v1/weather/[zipcode].ts to match
Listing 7-9.

import type {NextApiRequest, NextApiResponse} from "next";

import {findByZip} from "./../../../../mongoose/weather/serv

ices";

import dbConnect from "./../../../..//middleware/db-connec

t";

dbConnect();

export default async function handler(

 req: NextApiRequest,

 res: NextApiResponse

): Promise<NextApiResponse<WeatherDetailType> | void> {

 let data = await findByZip(req.query.zipcode as string);

 return res.status(200).json(data);

}

Listing 7-9: The end-to-end REST API

Notice the modified API handler. We made two major changes to it.
First we called dbConnect to connect to the database. Then we used the
imported findByZip service and passed it the query parameter cast to a
string type. Instead of the static JSON object as before, we now return the
dynamic data that we receive from the service function.

We need to perform one more step before we can receive data in
response to the API call: seeding the database, or adding initial datasets to
it. For simplicity, we use the storeDocuments service and seed directly in
the dbConnect function. Modify the middleware/db-connect.ts file to match
the code in Listing 7-10, which imports the storeDocument service and
adds the datasets after establishing the database connection.

import mongoose from "mongoose";

import {MongoMemoryServer} from "mongodb-memory-server";

import {storeDocument} from "../mongoose/weather/services";

async function dbConnect(): Promise<any | String> {

 const mongoServer = await MongoMemoryServer.create();

 const MONGOIO_URI = mongoServer.getUri();

 await mongoose.disconnect();

 let db = await mongoose.connect(MONGOIO_URI, {

 dbName: "Weather"

 });

 await storeDocument({

 zip: "96815",

 weather: "sunny",

 tempC: "25C",

 tempF: "70F",

 friends: ["96814", "96826"]

 });

 await storeDocument({

 zip: "96814",

 weather: "rainy",

 tempC: "20C",

 tempF: "68F",

 friends: ["96815", "96826"]

 });

 await storeDocument({

 zip: "96826",

 weather: "rainy",

 tempC: "30C",

 tempF: "86F",

 friends: ["96815", "96814"]

 });

}

export default dbConnect;

Listing 7-10: The naive data seeding in the dbConnect function

Now we can perform the end-to-end request. Visit the REST API
endpoint in the browser at http://localhost:3000/api/v1/weather/96815. You
should see the dataset from the MongoDB database as the API response.
Try adjusting the query parameter in the URL to another valid ZIP code.
You should get another dataset in the response.

Exercise 7: Connect the GraphQL API to the Database
Let’s rework our weather application’s GraphQL API so that it reads the
response data from the database instead of from a static JSON file. The
code will look familiar, as we’ll use the same patterns as for the REST API
example in the preceding section.

First, verify that you’ve added the MongoDB memory implementation
and Mongoose to your project. If not, add them now by following the
instructions in “Setting Up MongoDB and Mongoose” on page 117. Next,
check that you’ve created the files in the middleware and mongoose folders
described throughout this chapter and that they contain the code from
Listings 7-1 through 7-10.

Now, to connect the GraphQL API to the database, we need to do two
things: implement the database connection and refactor the GraphQL
resolvers to use its datasets.

Connecting to the Database
To query the database through the GraphQL API, we need to have a
connection to the database. As you learned in Chapter 6, all API calls have
the same endpoint, /graphql. This fact will now prove incredibly convenient
for us; because all requests have the same entry point, we need to handle the
database connection only once. Hence, we open the file api/graphql.ts and
modify it to match the code in Listing 7-11.

import {ApolloServer} from "@apollo/server";

import {startServerAndCreateNextHandler} from "@as-integrati

ons/next";

import {resolvers} from "../../graphql/resolvers";

import {typeDefs} from "../../graphql/schema";

import {NextApiHandler, NextApiRequest, NextApiResponse} fro

m "next";

import dbConnect from "../../middleware/db-connect";

//@ts-ignore

const server = new ApolloServer({

 resolvers,

 typeDefs

});

const handler = startServerAndCreateNextHandler(server);

const allowCors = (fn: NextApiHandler) =>

 async (req: NextApiRequest, res: NextApiResponse) => {

 res.setHeader("Allow", "POST");

 res.setHeader("Access-Control-Allow-Origin", "*");

 res.setHeader("Access-Control-Allow-Methods", "POS

T");

 res.setHeader("Access-Control-Allow-Headers", "*");

 res.setHeader("Access-Control-Allow-Credentials", "t

rue");

 if (req.method === "OPTIONS") {

 res.status(200).end();

 }

 return await fn(req, res);

 };

const connectDB = (fn: NextApiHandler) =>

 async (req: NextApiRequest, res: NextApiResponse) => {

 await dbConnect();

 return await fn(req, res);

 };

export default connectDB(allowCors(handler));

Listing 7-11: The api/graphql.ts file including a connection to the database

We made three changes to the file. First we imported the dbConnect
function from the middleware; then we created a new wrapper similar to the
allowCors function and used it to ensure that each API call connects to the
API. We could safely do so because we implemented dbConnect to enforce
only one database connection at the same time. Finally, we wrapped the
handler with the new wrapper and exported it as the default.

Adding Services to GraphQL Resolvers
Now it’s time to add the services to the resolvers. In Chapter 6, you learned
that query resolvers implement the reading of data, whereas mutation
resolvers implement the creation, updating, and deletion of data.

There, we also defined two resolvers: one to return a weather object for
a given ZIP code and one to update a location’s weather data. Now we’ll
add the services findByZip and updateByZip, which we created in this
chapter, to the resolvers. Instead of the naïve implementations with the

static data object, we modify the resolvers to query and update the
MongoDB documents through the services.

Listing 7-12 shows the modified code for the graphql/resolvers.ts file
in which we refactor these two resolvers.

import {WeatherInterface} from "../mongoose/weather/interfac

e";

import {findByZip, updateByZip} from "../mongoose/weather/se

rvices";

export const resolvers = {

 Query: {

 weather: async (_: any, param: WeatherInterface) =>

{

 let data = await findByZip(param.zip);

 return [data];

 },

 },

 Mutation: {

 weather: async (_: any, param: {data: WeatherInterfa

ce}) => {

 await updateByZip(param.data.zip, param.data);

 let data = await findByZip(param.data.zip);

 return [data];

 },

 },

};

Listing 7-12: The graphql/resolvers.ts file using services

We replace the naive array.filter functionality with the appropriate
services. To query the data, we use the findByZip service and pass it the
zip variable from the request payload and then return the result data
wrapped in an array. For the mutation, we use the updateByZip service. Per
type definition, the weather mutation returns the updated dataset. To do so,
we query for the modified document with the findByZip service once again
and return the result as an array item.

Visit the GraphQL sandbox at http://localhost:3000/api/graphql and
play with the API endpoints to read and update documents from the
MongoDB database.

Summary
In this chapter, you explored using the non-relational database MongoDB
and its Mongoose object data modeling tool, which lets you add and enforce
schemas as well as perform CRUD operations on MongoDB instances. We
covered the differences between relational and non-relational databases and
how they store data. Then you created a Mongoose schema and a model,
connected Mongoose to the MongoDB instance, and wrote the services to
perform operations on the MongoDB collection.

Finally, you connected the REST and GraphQL APIs to the MongoDB
database. Now, instead of static datasets, all of your APIs return dynamic
documents, and you can both read and update documents through them.

MongoDB and Mongoose are extensive technologies with a huge array
of functionalities. To learn more about them, consult the official
documentation at https://mongoosejs.com and read the articles at https://
www.geeksforgeeks.org/mongoose-module-introduction/.

The next chapter covers Jest, a modern testing framework for
conducting unit, snapshot, and integration tests.

https://mongoosejs.com/
https://www.geeksforgeeks.org/mongoose-module-introduction

8
TESTING WITH THE JEST FRAMEWORK

Whenever you modify your code, you
risk causing unforeseen side effects in

another part of your application. As a result,
guaranteeing the integrity and stability of a code base
can be challenging. To do so, developers follow two
main strategies.

In the first, an architectural pattern, we split our code into small, self-
contained React components. By nature, these components don’t interfere
with one another. Hence, changing one shouldn’t lead to any side effects. In
the second, we perform automated unit testing, which this chapter covers
using the Jest framework.

In the following sections, we discuss the essentials of automated unit
testing and the benefits of using it. You’ll learn how to write a test suite in
Jest and use its reports to improve your code. You’ll also handle
dependencies by using code doubles. Lastly, you’ll explore other kinds of
tests you might want to run against your application.

Test-Driven Development and Unit Testing
Developers sometimes use the technique of test-driven development (TDD),
in which they write their automated tests before implementing the actual
code to be tested. They first create a test to evaluate that the smallest

possible unit of code would work as expected. Such a test is called a unit
test. Next, they write the minimum amount of code necessary to pass the
test.

This approach has distinct benefits. First, it lets you focus on your
app’s requirements by explicitly defining the code’s functionality and edge
cases. Therefore, you have a clear picture of its desired behavior, and you
can identify unclear or missing specifications sooner rather than later. When
you write tests after completing the functionality, they might reflect the
behavior you implemented rather than the behavior you require.

Second, limiting yourself to writing only necessary code prevents your
functions from becoming too complex and splits your application into
small, understandable sections. Testable code is maintainable code. In
addition, the technique ensures that your tests cover a large portion of the
app’s code, a metric called code coverage, and by running the tests
frequently during development, you’ll instantly recognize bugs introduced
by new lines of code.

Depending on the situation, the unit targeted by a unit test can be a
module, a function, or a line of code. The tests aim to verify that each unit
works in isolation. The single lines inside each test function are the test
steps, and the whole test function is called a test case. Test suites aggregate
test cases into logical blocks. To be considered reproducible, the test must
return the same results every time we run it. As we will explore in this
chapter, this means that we must run the tests in a controlled environment
with a defined dataset.

Facebook developed the Jest testing framework in conjunction with
React, but we can use it with any Node.js project. It has a defined syntax for
setting up and writing tests. Its test runner executes these tests,
automatically replaces any dependencies in our code, and generates a test-
coverage report. Additional npm modules provide custom code for testing
DOM or React components and, of course, adding TypeScript types.

Using Jest
To use Jest in a project, we must install its required packages, create a
directory for all test files, and add an npm script that will run the tests.
Execute the following in your Next.js application’s root directory to install

the framework, as well as type definitions from DefinitelyTyped as
development dependencies:

$ npm install --save-dev jest @types/jest

Then create the directory in which to save your tests. Jest uses the
__tests__ folder by default, so make one in your root directory. Next, to add
the npm script test to your project, open the package.json file and modify
the scripts object to match the one in Listing 8-1.

 "scripts": {

 "dev": "next dev",

 "build": "next build",

 "start": "next start",

 "lint": "next lint",

 "test": "jest"

 },

Listing 8-1: The package.json file with the new text command

Now we can run tests with the npm test command. Usually, build
servers execute this command by default during the build process. Lastly, to
enable TypeScript support in Jest, add the ts-jest transpiler:

$ npm install --save-dev ts-jest

Also create a jest.config file to add TypeScript by running npx ts-jest
config:init.

Creating an Example Module to Test
Let’s write some example code to help us understand unit testing and TDD.
Say we want to create a new module in our app, ./helpers/sum.ts. It should
export a function, sum, that returns the sum of its parameters. To follow a
TDD pattern, we’ll begin by creating test cases for this module.

First we need to create the function that will run our tests. Create a file
called sum.test.ts in the default test directory and add the code from Listing

8-2.

import {sum} from "../helpers/sum";

describe("the sum function", () => {

});

Listing 8-2: The empty test suite

We import the sum function we’ll write later and use Jest’s describe
function to create an empty test suite. As soon as we run the (nonexistent)
tests with npm test, Jest should complain that there is no file called sum.ts
in the helpers directory. Create this file and folder now, at the root directory
of your project. Within the file, write the sum function shown in Listing 8-3.

const sum = () => {};

export {sum};

Listing 8-3: The bare bones of the sum function

Now run the tests again with npm test. Because the code just exports a
placeholder sum function that returns nothing, the Jest test runner again
complains. This time, it informs us that the test suite needs to contain at
least one test.

Let’s look at the anatomy of a test case and add a few test cases to the
sum.test.ts file during the process.

Anatomy of a Test Case
There are two types of unit tests: state and interaction based. An
interaction-based test case verifies that the code under evaluation invokes a
specific function, whereas a state-based test case checks the code’s return
value or resulting state. Both types follow the same three steps: arrange, act,
and assert.

Arrange
To write independent and reproducible tests, we need to first arrange our
environment by defining prerequisites, such as test data. If we need these
prerequisites for only one particular test case, we define them at the
beginning of the case. Otherwise, we set them globally for all tests in the
test suite by using the beforeEach hook, which gets executed before each
test case, or the beforeAll hook, which gets executed before all tests run.

If, for example, we had some reason to use the same global dataset for
each test case and knew that our test steps would modify the dataset, we
would need to re-create the dataset before each test. The beforeEach hook
would be the perfect place to do this. On the other hand, if the test cases
merely consume the data, we’d need to define the datasets only once and so
would use the beforeAll hook.

Let’s define two test cases and create the input values for each. Our
input parameters will be specific to each test case, so we’ll declare them
inside the test cases instead of using a beforeEach or beforeAll hook.
Update the sum.test.ts file with the code from Listing 8-4.

import {sum} from "../helpers/sum";

describe("the sum function", () => {

 test("two plus two is four", () => {

 let first = 2;

 let second = 2;

 let expectation = 4;

 });

 test("minus eight plus four is minus four", () => {

 let first = -8;

 let second = 4;

 let expectation = -4;

 });

});

Listing 8-4: The test suite containing the arrange steps

The describe function creates our test suite, which comprises two calls
to the test function, each of which is a test case. For both, the first
argument is the description we see on the test runner’s report.

Each of our tests evaluates the result of the sum function. The first
checks the addition feature, verifying that 2 plus 2 returns 4. The second
test confirms that the function correctly returns negative values as well. It
adds 4 to −8 and expects a result of −4.

You might want to check the return type of the sum function, too.
Usually, we would have done so, but because we’re using TypeScript, there
is no need for this additional test case. Instead, we can define the return
type in the function signature, and TSC will verify it for us.

Act
As soon as the test runner executes a case, the test steps act on our behalf
by invoking the code under test with the data for the particular test case.
Each test case should test exactly one feature or variant of the system. This
step is the line of code that invokes the function to execute. Listing 8-5 adds
it to the test cases in sum.test.ts.

import {sum} from "../helpers/sum";

describe("the sum function", () => {

 test("two plus two is four", () => {

 let first = 2;

 let second = 2;

 let expectation = 4;

 let result = sum(first, second);

 });

 test("minus eight plus four is minus four", () => {

 let first = -8;

 let second = 4;

 let expectation = -4;

 let result = sum(first, second);

 });

});

Listing 8-5: The test suite containing the act steps

Our new lines call the sum function and pass it the values we defined as
parameters. We store the returned values in the result variable. In your
editor, TSC should throw an error along the lines of Expected 0
arguments, but got 2. This is fine, as the sum function is just an empty
placeholder and doesn’t yet expect any parameters.

Assert
The final step of our test case is the assertion that the code fulfills the
expectations we defined. We create this assertion with two parts: the Jest
expect function, used in conjunction with a matcher function from Jest’s
assert library that defines the condition for which we are testing. Depending
on the unit test’s category, this condition could be a specific return value, a
state change, or the invocation of another function. Common matchers
check whether a value is a number, a string, and so on. We can also use
them to assert that a function returns true or false.

Jest’s assert library provides us with a built-in set of basic matchers,
and we can add additional ones from the npm repository. One of the most
common assert packages is testing-library/dom, used to query the DOM for
a particular node and assert its characteristics. For example, we can check
for a class name or attribute or work with native DOM events. Another
common assert package, testing-library/react, adds utilities for React and
gives us access to the render function and React hooks in our asserts.

Because each test case evaluates one condition in one unit of code, we
limit each test to one assert. In this way, as soon as the test run succeeds or
fails and the test reporter generates the report, we can easily spot which test
assumption failed. Listing 8-6 adds one assert per test case. Paste it into the
sum.test.ts file.

import {sum} from "../helpers/sum";

describe("the sum function", () => {

 test("two plus two is four", () => {

 let first = 2;

 let second = 2;

 let expectation = 4;

 let result = sum(first, second);

 expect(result).toBe(expectation);

 });

 test("minus eight plus four is minus four", () => {

 let first = -8;

 let second = 4;

 let expectation = -4;

 let result = sum(first, second);

 expect(result).toBe(expectation);

 });

});

Listing 8-6: The test suite containing the assert steps

These lines use the expect assert function with the toBe matcher to
compare the expected result to be the same as our expectation. Our test
cases are now complete. Each follows the arrange, act, assert pattern and
verifies one condition. Appendix C lists additional matchers.

Using TDD
Our test cases still haven’t executed, and if you run npm test, the test
runner should fail immediately. TSC checks the code and throws an error
for the missing parameter declarations on the sum function:

FAIL __tests__/sum.test.ts

 • Test suite failed to run

--snip--

Test Suites: 2 failed, 2 total

Tests: 0 total

Snapshots: 0 total

It’s time to implement this sum function. Following the principles of
TDD, we’ll incrementally add features to the code and run the test suites
after each addition, continuing this process until all tests pass. First we’ll
add those missing parameters. Replace the code in sum.ts with the contents
of Listing 8-7.

const sum = (a: number, b: number) => {};

export {sum};

Listing 8-7: The sum function with added parameters

We’ve added the parameters and typed them as numbers. Now we
rerun the test cases and, as expected, they fail. The console output tells us
that the sum function doesn’t return the expected results. This shouldn’t
surprise us, because our sum function doesn’t return anything at all:

FAIL __tests__/sum.test.ts (5.151 s)

 the sum function

 × two plus two is four (6 ms)

 × minus eight plus four is minus four (1 ms)

 • the sum function › two plus two is four

 Expected: 4

 Received: undefined

 • the sum function › minus eight plus four is minus four

 Expected: -4

 Received: undefined

Test Suites: 1 failed, 1 total

Tests: 2 failed, 2 total

Snapshots: 0 total

Time: 5.328 s, estimated 11 s

The code in Listing 8-8 adds this functionality to the sum.ts file. We
type the function’s return type as a number and add the two parameters.

const sum = (a: number, b: number): number => a + b;

export {sum};

Listing 8-8: The complete sum function

If we rerun npm test, Jest should report that all test cases succeed:

PASS __tests__/sum.test.ts (8.045 s)

 the sum function

 ✓ two plus two is four (2 ms)
 ✓ minus eight plus four is minus four (2 ms)

Test Suites: 1 passed, 1 total

Tests: 2 passed, 2 total

Snapshots: 0 total

Time: 8.291 s

As you can see, everything worked.

Refactoring Code
Unit tests are particularly useful when we need to refactor our code. As an
example, let’s rewrite the sum function so that, instead of two parameters, it
accepts an array of numbers. The function should return the sum of all array
items.

We begin by rewriting our existing test cases into a more compact form
and then expanding the test suite to verify the new behavior. Replace the
code in the sum.test.file with Listing 8-9.

import {sum} from "../helpers/sum";

describe("the sum function", () => {

 test("two plus two is four", () => {

 expect(sum([2, 2])).toBe(4);

 });

 test("minus eight plus four is minus four", () => {

 expect(sum([-8, 4])).toBe(-4);

 });

 test("two plus two plus minus four is zero", () => {

 expect(sum([2, 2, -4])).toBe(0);

 });

});

Listing 8-9: The test suite for the refactored sum function

Notice that we rewrote the test cases in a more compact form.
Explicitly splitting the arrange, act, and assert statements across multiple
lines may be easier to read, but for simple test cases, such as those in
Listing 8-9, we often write them in one line. We’ve changed their
functionality to accommodate the new requirements. Instead of accepting
two values, our sum function receives an array with numbers. Again, the
TSC instantly notifies us of the mismatching parameters between the sum
function in the test suite and the actual implementation.

Once we’ve written our tests, we can rewrite our code. Listing 8-10
shows the code for the helpers/sum.ts file. Here the sum function now
accepts an array of numbers as a parameter and returns a number.

const sum = (data: number[]): number => {

 return data[0] + data[1];

};

export {sum};

Listing 8-10: The rewritten sum function in the helpers/sum.ts file

We changed the parameter to an array of numbers. This fixes the
TypeScript error caused by the test suite in Listing 8-9. But because we’re
following TDD and making only one functional change at a time, we keep
the function’s original behavior of adding two values. As expected, one of
the test cases fails when we run the automated tests with npm test:

FAIL __tests__/sum.test.ts (7.804 s)

 the sum function

 ✓ two plus two is four (7 ms)
 ✓ minus eight plus four is minus four (1 ms)
 ✕ two plus two plus minus four is zero (9 ms)

 • the sum function › two plus two plus minus four is zero

 Expected: 0

 Received: 4

Test Suites: 1 failed, 1 total

Tests: 1 failed, 2 passed, 3 total

Snapshots: 0 total

Time: 8.057 s, estimated 9 s

The third test case, which tests the new requirement, is the one that
failed. Not only did we expect this result, but we also wanted the test to fail;
this way, we know that the tests themselves are working. If they succeeded
before we implemented the corresponding functionality, the test cases
would be faulty.

With the failing test as the baseline, it is now time to refactor the code
to accommodate the new requirement. Paste the code in Listing 8-11 into
the sum.ts file. Here we refactor the sum function to return the sum of all
array values.

const sum = (data: number[]): number => {

 return data.reduce((a, b) => a + b);

};

export {sum};

Listing 8-11: The corrected sum function with array.reduce

Although we could loop through the array with a for loop, we use
modern JavaScript’s array.reduce function. This native array function
runs a callback function on each array element. The callback receives the

return value of the previous iteration and the current array item as
parameters: exactly what we need to calculate the sum.

Run all the test cases in our test suite to verify that they are working as
expected:

PASS __tests__/sum.test.ts (7.422 s)

 the sum function

 ✓ two plus two is four (2 ms)
 ✓ minus eight plus four is minus four
 ✓ two plus two plus minus four is zero

Test Suites: 1 passed, 1 total

Tests: 3 passed, 3 total

Snapshots: 0 total

Time: 7.613 s

The test runner should show that the code passed every test.

Evaluating Test Coverage
To measure exactly which lines of code our test suites cover, Jest generates
a test-coverage report. The higher the percentage of code our tests assess,
the more thorough they are, and the more confident we can be about the
application’s quality and maintainability. As a general rule of thumb, you
should aim for code coverage of 90 percent or above, with a high coverage
for the most critical part of your code. Of course, the test cases should add
value by testing the code’s functions; adding tests just to increase the test
coverage is not the goal we are aiming for. But as soon as you’ve tested
your code base thoroughly, you can refactor existing features and
implement new ones without worrying about introducing regression bugs. A
high code coverage verifies that changes have no hidden side effects.

Modify the npm test script in the package.json file by adding the --
coverage flag to it, as shown in Listing 8-12.

 "scripts": {

 "dev": "next dev",

 "build": "next build",

 "start": "next start",

 "lint": "next lint",

 "test": "jest --coverage"

 },

Listing 8-12: Enabling Jest’s test-coverage feature in the package.json file

If we rerun the test suite, Jest should show what percentage of the code
our unit tests cover. It generates a code-coverage report and stores it in the
coverage folder. Compare your output with the following:

PASS __tests__/sum.test.ts (7.324 s)

 the sum function

 ✓ two plus two is four (2 ms)
 ✓ minus eight plus four is minus four
 ✓ two plus two plus minus four is zero (1 ms)
----------|---------|----------|---------|---------|--------

File | % Stmts | % Branch | % Funcs | % Lines | Uncover

ed Line #s

----------|---------|----------|---------|---------|--------

All files | 100 | 100 | 100 | 100 |

 sum.ts | 100 | 100 | 100 | 100 |

----------|---------|----------|---------|---------|--------

Test Suites: 1 passed, 1 total

Tests: 3 passed, 3 total

Snapshots: 0 total

Time: 7.687 s, estimated 8 s

The report shows the coverage broken down by statements, branches,
functions, and lines. We see that our simple sum function has a code
coverage of 100 percent across all categories. Hence, we know that we’ve
left no code untested and can trust that the test cases reflect the function’s
quality.

Replacing Dependencies with Fakes, Stubs, and Mocks
We mentioned that our tests should run in isolation, without depending on
external code. You might have wondered how to handle imported modules;
after all, as soon as you import code, you add a dependency to the unit
under evaluation. Those third-party modules might not work as expected,
and we don’t want our code to depend on the assumption that they all
operate correctly. Consequently, you should provide a set of test cases for
each imported module to verify its functionality. They, too, are units to test.

Separately, instead of importing modules into our other code units, we
need to replace them with test doubles that return a defined set of static data
tailored to the test. Test doubles replace an object or a function, effectively
removing a dependency. Because they return a defined dataset, their
response is known and predictable. You can compare them to stunt doubles
in movies.

Besides replacing an object or function, test doubles have a second
important purpose: they record their calls and let us spy on them. We can
thus use them to test whether the test double has been called at all, how
often, and which arguments it received. There are three main types of test
doubles: fakes, stubs, and mocks. However, you’ll sometimes hear the term
mock to refer to all three.

Creating a Module with Dependencies
To practice using test doubles in our sum function, we’ll create a new
function that calculates a specified number of values in the Fibonacci
sequence. The Fibonacci sequence is a pattern in which each subsequent
number is the sum of the previous two, a simple use case for a sum module.

All developers must figure out how fine-grained their test cases need to
be. The Fibonacci sequence is a good example, because trying to test every
possible number submitted to the function would be useless, as the
sequence has no end. Instead, we want to verify that the function properly
handles edge cases and that its underlying functionality works. For instance,
we’ll check how it handles an input with a length of 0; in that case, the
function should return an empty string. Then we’ll test how it calculates a
Fibonacci sequence of any length longer than 3. Create the fibonacci.test.ts

test suite inside the __tests__ folder and then add the code from Listing 8-
13 to it.

import {fibonacci} from "../helpers/fibonacci";

describe("the fibonacci sequence", () => {

 test("with a length of 0 is ", () => {

 expect(fibonacci(0)).toBe(" ");

 });

 test("with a length of 5 is '0, 1, 1, 2, 3' ", () => {

 expect(fibonacci(5)).toBe("0, 1, 1, 2, 3");

 });

});

Listing 8-13: The test suite for the fibonacci function

We define two test cases: one that checks for a length input of 0 and
another that calculates a Fibonacci sequence of five numbers. Both tests
follow the arrange, act, assert pattern in the compact variant we used
earlier.

After we’ve created the test cases, we can move on to writing the
Fibonacci function code. Create the fibonacci.ts file in the helpers folder,
next to the sum.ts file, and add the code from Listing 8-14 to it.

import {sum} from "./sum";

const fibonacci = (length: number): string => {

 const sequence: number[] = [];

 for (let i = 0; i < length; i++) {

 if (i < 2) {

 sequence.push(sum([0, i]));

 } else {

 sequence.push(sum([sequence[i - 1], sequence[i -

2]]));

 }

 }

 return sequence.join(", ");

};

export {fibonacci};

Listing 8-14: The fibonacci function

We import the sum function from the module we created earlier in this
chapter. It is now a dependency that we’ll need to replace with a test double
later. Then we implement the fibonacci function, which accepts the length
of the sequence to calculate and returns a string. We store the current
sequence in an array so that we have a simple way to access the two
previous values needed to calculate the next one. Notice that the first
number in the sequence is always 0 and the second is always 1. Finally, we
return a string with the requested number of values. If you save this code
and rerun the test suites, both sum.test.js and fibonacci.test.ts should pass
successfully.

Creating a Doubles Folder
Because we import the sum function in the Fibonacci module, our code has
an external dependency. This is problematic for testing purposes: if the sum
function breaks, the test for the Fibonacci sequence will fail as well, even if
the logic of the Fibonacci implementation is correct.

To decouple the test from the dependency, we’ll replace the sum
function in the fibonacci.ts file with a test double. Jest can replace any
module that has an identically named file saved in a __mocks__
subdirectory adjacent to the test file during the test run. Create such a folder
in the helpers folder next to the test file and place a sum.ts file inside it.
Leave the file empty for now.

To enable the test double, we call the jest.mock function, passing it
the path to the original module saved in the test file. In Listing 8-15, we add
this call to fibonacci.test.ts.

import {fibonacci} from "../helpers/fibonacci";

jest.mock("../helpers/sum");

describe("the fibonacci sequence", () => {

 test("with a length of 0 is ", () => {

 expect(fibonacci(0)).toBe(" ");

 });

 test("with a length of 5 is '0, 1, 1, 2, 3' ", () => {

 expect(fibonacci(5)).toBe("0, 1, 1, 2, 3");

 });

});

Listing 8-15: The test suite for the fibonacci function with the test double

This new line replaces the sum module with the test double. Now let’s
create all three basic types of test doubles, adding their code to the file in
the __mocks__ folder.

Using a Stub
Stubs are merely objects that return some predefined data. This makes them
very simple to implement but limited in use; often, returning the same data
isn’t enough to mimic a dependency’s original actions. Listing 8-16 shows a
stub implementation for the sum function’s test double. Paste the code into
the sum.ts file inside the __mocks__ folder.

const sum = (data: number[]): number => 999;

export {sum};

Listing 8-16: A stub for the sum function

The stubbed function has the same signature as the original function. It
accepts the same arguments, an array of numbers, and returns a string.
Unlike the original, however, this test double always returns the same
number, 999, regardless of the data it received.

To successfully run the test suites with this stub function, we’d need to
adjust our expectations about what our code will do. Instead of returning
five numbers in the Fibonacci sequence, it would produce the string 999,

999, 999, 999, 999. If we see such a string, we know that the sum
function was called five times. Experiment with the stub, modifying the test
suite’s expectations to match it. Then restore the matchers to those shown in
Listing 8-15 so that you can use them for the upcoming tests.

Using a Fake
Fakes are the most complex kind of test double. They are working
implementations of the original functionality, but unlike the real
implementation, they provide only the functionality necessary for the unit
test. Their implementation is simplified and often doesn’t cater to edge
cases.

The fake for the sum adds the first and second items of the array
manually, instead of using array.reduce. This simplified implementation
strips the sum function of the ability to sum more than two data points, but
for the Fibonacci sequence, it is sufficient. The reduced complexity makes
it easy to understand and less prone to error. Replace the content of the
sum.ts file inside the __mocks__ folder with the code in Listing 8-17.

const sum = (data: number[]): number => {

 return data[0] + data[1];

}

export {sum};

Listing 8-17: A fake for the sum function

Our fake uses a simple mathematical plus operator (+) to add the first
and second items of the data parameter. Its main benefit is that it returns a
result similar to that of the actual implementation. We can now run the test
suites, and they should pass successfully without our having to adjust our
expectations, returning the Fibonacci sequence.

Using a Mock
Mocks lie somewhere between stubs and fakes. Although less sophisticated
than fakes, they return more realistic data than stubs. While they don’t
simulate a dependency’s true behavior, they can react to the data they
receive.

For example, our naive mock implementation of the sum function will
return a result from a hardcoded hash map. Replace the code in the
__mocks__/sum.ts file with the code from Listing 8-18, which inspects the
request and enables the Fibonacci calculator to use the original test suites.

type resultMap = {

 [key: string]: number;

}

const results : resultMap= {

 "0 + 0": 0,

 "0 + 1": 1,

 "1 + 0": 1,

 "1 + 1": 2,

 "2 + 1": 3

};

const sum = (data: number[]): number => {

 return results[data.join("+")];

}

export {sum};

Listing 8-18: A mock for the sum function

We create a type, called resultMap, that uses a string as a key and a
number as a value. Then we use the newly created type for a hash map that
stores our desired responses. Next, we define the mock function with the
same interface as the original implementation. Inside the mock, we
calculate the key to use in the hash map based on the parameters we
receive. This lets us return the correct dataset and produce an actual
Fibonacci sequence. The main benefit of using the mock over sum is that we
can control its outcome, as it returns values from a known dataset.

Conveniently, Jest provides us with helpers to work with test doubles.
The jest.mock function replaces imported modules with mocks. The
jest.fn API creates a basic mock that can return any kind of predefined

data, and jest.spyOn lets us record calls to any function without modifying
it. We will use all of those in Exercise 8 on page 146.

In typical developer contexts, you won’t bother with the subtle
differences between stubs, fakes, and mocks and will use the term mock as a
generic term for test doubles. Don’t spend too much time overengineering
your mocks; they’re just tools to help you test your code.

Additional Types of Tests
The tests covered in this chapter so far are the most common ones you’ll
encounter as a full-stack developer. This section briefly explains additional
types of tests and when to use them. These aren’t meant to replace unit
tests; rather, they supplement unit tests by covering specific aspects of your
implementation that aren’t otherwise testable. For example, because unit
tests run in isolation, they can’t evaluate the interaction between modules.
Theoretically, if every function and module passes its test, the whole
program should work as expected. Practically, you’ll often face issues
caused by faulty module documentation. Commonly, the documentation
will claim that an API returns a specific type, but the actual implementation
will return a different one.

Functional Tests
While unit tests examine the implementation of a feature from a developer’s
perspective, functional tests cover the user’s perspective by verifying that
code works as the user expects it to work. Put otherwise, these tests check
that a given input results in an expected output. Most functional tests are a
type of black-box test, which ignores the module’s internal code, side
effects, and intermediate results and tests only the interfaces. Functional
tests do not generate a code-coverage report. Generally, a quality assurance
manager will write and use functional tests during a system testing stage.
By contrast, developers write and use unit tests during development.

Integration Tests
You learned that the goal of a unit test is to check the smallest possible
section of code in isolation. An integration test is the complete opposite. It
verifies the behavior of entire subsystems, whether they be layers of code,

such as an app’s data storage mechanism, or specific functions consisting of
multiple modules. Integration tests check the integration of the subsystem in
the context of the current environment. Hence, they never run in isolation
and typically don’t use test doubles.

Integration tests are helpful for finding three types of problems. The
first type is problems related to inter-module communication, which is the
communication between modules. Common problems are faulty internal
API integrations and undetected side effects, such as a function that doesn’t
delete old files before writing new data to the filesystem. The second type is
problems related to the environment, which describes the hardware and
software setup the code runs on. Different software versions or hardware
configurations can introduce significant issues for your code. The most
common problem for full-stack developers involves differences in Node.js
versions and outdated dependencies in the modules.

The third type is problems related to gateway communications, which
relates to testing any API communication with a third-party API gateway.
Any communication with external APIs should be tested with integration
tests. This is the only instance in which integration tests might use test
doubles, such as stubbed versions of the external API, in order to simulate a
specific API behavior, like a timeout or successful request. As with
functional tests, a quality assurance manager generally writes and uses
integration tests. Developers do so less often.

End-to-End Tests
You can think of the end-to-end test as a combination of functional tests and
integration tests. As another kind of black-box test, they examine the
application’s functionality across the full stack, from the frontend to the
backend, in a specific environment. These business-facing tests should
provide confidence that the overall application is still working as expected.

End-to-end tests run the application in a specific environment. Often,
the complexity of the many dependencies increases the risk of flaky tests in
which the application works correctly but the environment causes the tests
to fail. End-to-end tests are thus the most time-consuming to create and
maintain. Due to their complexity, we must craft them carefully. During
execution, they are known to be slow, prone to encountering timeouts, and,
like nearly all black-box tests, unable to provide detailed error reports.

Therefore, they test only the most critical business-facing scenarios.
Generally, a quality assurance manager writes them.

Snapshot Tests
The tests described earlier in this chapter check the code against some
assertion. By contrast, a snapshot test compares the application’s current
visual (or user interface) state to a previous version of it. Hence, these tests
are also called visual regression tests. In each test, we create new snapshots
and then compare them with ones stored earlier, providing a cheap way to
test user interface components and complete pages. Instead of manually
creating and maintaining tests that describe every property of an interface,
such as a component’s height, width, position, and colors, we can establish
a snapshot containing all of these properties.

One way to perform this type of test is to create and compare
screenshots. Generally, a headless browser renders the component; the test
runner waits for the page to render and then captures an image of it.
Unfortunately, this process is relatively slow, and headless browsers are
flaky. Jest takes a different approach to snapshot testing. Instead of working
with headless browsers and image files, it renders the React user interface
components to the virtual DOM, serializes them, and saves them as
plaintext in snap files stored in the __snapshots__ directory. Hence, Jest
snapshot tests are much more performant and less flawed. The Food Finder
application you’ll build in Part II will use snapshot tests to verify the
integrity of the build and test your React components.

Exercise 8: Add Test Cases to the Weather App
As long as you follow the basic principles we’ve discussed, there is no right
or wrong way to test your code. Unit, snapshot, and end-to-end tests are all
different tools in your tool belt, and you must strike a balance between the
time you spend writing the tests and the usefulness of each. There is also no
consensus on what to test. While you should strive for 90 percent code
coverage or higher, the general rule of thumb is to cover at least the most
critical parts of your application with unit tests and then write some
integration tests to verify that your application works on each deployment.

When it comes to our weather application, we’ll want our test cases to
cover four core aspects. First we’ll add unit tests to evaluate the middleware
and services. Even though the REST API endpoints and React user interface
component are easy to test directly in the browser, we’ll add test cases for
both of them: a basic snapshot test for the user interface component and an
end-to-end test for the REST API endpoint /v1/weather/[zipcode].ts.

We’ve opted to test the REST endpoint rather than the GraphQL API
for simplicity’s sake, as each REST endpoint has its own file, while all
GraphQL APIs share an entry point, making their testing more complex.
However, testing this GraphQL API would make an excellent exercise for
exploring end-to-end-tests after you’ve finished the chapter.

Testing the Middleware with Spies
The middleware to connect to the database is a core part of the application,
but we can’t access it directly, as it doesn’t expose any API. We can only
implicitly test it by examining the database or by running a query through
Mongoose, some service, or an API endpoint. Each of these methods would
work, but if we want to test the connection to the database as a unit test, we
need to do so in a way that isolates that component as much as possible.

To do so, we’ll use Jest’s built-in spies to verify that our middleware
successfully calls all the functions necessary for establishing the connection
to the MongoDB memory server. Navigate to your __tests__ folder and
create a new folder, middleware, and a file, db-connect.test.ts, inside it.
Then copy the code from Listing 8-19 into the file.

/**

 * @jest-environment node

 */

import dbConnect from "../../middleware/db-connect";

import mongoose from "mongoose";

import {MongoMemoryServer} from "mongodb-memory-server";

describe("dbConnect ", () => {

 let connection: any;

 afterEach(async () => {

 jest.clearAllMocks();

 await connection.stop();

 await mongoose.disconnect();

 });

 afterAll(async () => {

 jest.restoreAllMocks();

 });

 test("calls MongoMemoryServer.create()", async () => {

 const spy = jest.spyOn(MongoMemoryServer, "create");

 connection = await dbConnect();

 expect(spy).toHaveBeenCalled();

 });

 test("calls mongoose.disconnect()", async () => {

 const spy = jest.spyOn(mongoose, "disconnect");

 connection = await dbConnect();

 expect(spy).toHaveBeenCalled();

 });

 test("calls mongoose.connect()", async () => {

 const spy = jest.spyOn(mongoose, "connect");

 connection = await dbConnect();

 const MONGO_URI = connection.getUri();

 expect(spy).toHaveBeenCalledWith(MONGO_URI, {dbName:

"Weather"});

 });

});

Listing 8-19: The __tests__/middleware/db-connect.test.ts suite for the database
connection

Most of this code resembles the test suites you wrote earlier in this
chapter. But instead of testing simplified example code, we’re now testing
real code, which requires us to make some adjustments.

First we set the testing environment for Jest to node, which simulates a
Node.js runtime. Later, when writing snapshot tests, we’ll use Jest’s default
environment, called jsdom, which simulates a browser by providing a
window object, as well as all the usual DOM properties and functions. By
always setting these environments in the file, we avoid issues caused by
using the wrong environment. Then, as usual, we import the packages we
need.

Now we can start writing the test suite for the dbConnect function. We
define a connection variable in the test suite’s scope to store the database
connection, and then we can access the MongoDB’s server instance,
including its methods and properties. For example, we’ll use these to stop
the connection and disconnect from the server after each test to guarantee
that each test case is independent.

To be able to store the connection, we first need to return the
mongoServer constant from the dbConnect function in the file db-
connect.ts. Open the file and add the line return mongoServer to the
dbConnect function right before the function’s closing curly bracket (}).
From time to time, you’ll need to modify the code you wrote earlier to
accommodate the requirements of your tests. In other words, you need to
adapt the code to make it testable.

Now we use the connection we just exposed and set up the afterEach
hook, which runs after each test case, to reset the mocked functions to their
initial mocked state, thus clearing all previously gathered data. This is
necessary, because otherwise, the spies would report information gained
during the previous calls, as they retain their state across all test suites.
Also, we re-create the database connection for each test case. Therefore, we
need to stop the current connection and explicitly disconnect from the
database after each test. Then we set up the afterAll hook to remove all
mocks and restore the original functions through the restoreAllMocks
function.

Our test cases should all follow the arrange, act, assert pattern. As we
review them, you might find it useful to open the db-connect.ts file in the
middleware folder and follow along. The initial test case verifies the call to
the create function on the MongoMemoryServer, as this is the first function
that we call in the db-connect.ts file. To do so, we create a spy with the jest

.spyOn method. As arguments, this method takes the name of an object and
the object’s method on which to spy. Then we act on the code under test and
call the dbConnect function. Finally, we assert that the spy has been called.

The second test case works similarly except that it spies on a different
method. We use it to check that mongoose.disconnect was called
successfully during the execution of dbConnect. The third test case
introduces a new matcher. Instead of verifying only the call itself with
toHaveBeenCalled, we now also verify the call’s arguments using
toHaveBeenCalledWith. Here we grab the connection string directly from
the connection and store it in the variable MONGO_URI. We also hardcode the
database we want to connect to. Then we call the matcher, passing it the
expected arguments and verifying that they meet our expectations.

Now run the test suites with npm test. All tests should pass with 100
percent test coverage.

Creating Mocks to Test the Services
While the tests we wrote for the middleware were quite simple, the service
tests are a bit more complicated. If you open the
mongoose/weather/services.ts file, you’ll see that the services depend on
WeatherModel, which is Mongoose’s gateway to the MongoDB collection.
Each service calls a method on the model that, in turn, requires a database
connection. We won’t reevaluate those database connections here; instead,
the goal of this test suite will be to verify that the service functions call the
correct WeatherModel functions. To do so, we’ll create a mock
WeatherModel that exposes the same set of APIs as mocked functions.

We first write the mocked model. Following convention, we create the
file mongoose/weather/__mocks__/model.ts and add the code in Listing 8-
20.

import {WeatherInterface} from "../interface";

type param = {

 [key: string]: string;

};

const WeatherModel = {

 create: jest.fn((newData: WeatherInterface) => Promise.r

esolve(true)),

 findOne: jest.fn(({zip: paramZip}: param) => Promise.res

olve(true)),

 updateOne: jest.fn(({zip: paramZip}: param, newData: Wea

therInterface) =>

 Promise.resolve(true)

),

 deleteOne: jest.fn(({zip: paramZip}: param) => Promise.r

esolve(true))

};

export default WeatherModel;

Listing 8-20: The mock for the WeatherModel

We implement WeatherInterface and define the new param type,
which is an object with key-value pairs that we use to type the first
parameter. We make the mocked WeatherModel the default export and use
an object that implements the four methods of the actual WeatherModel,
each of which takes the same parameters as the original. They also take the
original Mongoose model’s method. Because they are asynchronous
functions, we return a promise resolved to true.

Now we can write the test suite for the services. These check that each
service returns true upon success and calls the correct method of the
mocked WeatherModel. Create the file
/__tests__/mongoose/weather/services.test.ts and add the code from Listing
8-21 to it.

/**

 * @jest-environment node

 */

import {WeatherInterface} from "../../../mongoose/weather/in

terface";

import {

 findByZip,

 storeDocument,

 updateByZip,

 deleteByZip,

} from "../../../mongoose/weather/services";

import WeatherModel from "../../../mongoose/weather/model";

jest.mock("../../../mongoose/weather/model");

describe("the weather services", () => {

 let doc: WeatherInterface = {

 zip: "test",

 weather: "weather",

 tempC: "00",

 tempF: "01",

 friends: []

 };

 afterEach(async () => {

 jest.clearAllMocks();

 });

 afterAll(async () => {

 jest.restoreAllMocks();

 });

 describe("API storeDocument", () => {

 test("returns true", async () => {

 const result = await storeDocument(doc);

 expect(result).toBeTruthy();

 });

 test("passes the document to Model.create()", async

() => {

 const spy = jest.spyOn(WeatherModel, "create");

 await storeDocument(doc);

 expect(spy).toHaveBeenCalledWith(doc);

 });

 });

 describe("API findByZip", () => {

 test("returns true", async () => {

 const result = await findByZip(doc.zip);

 expect(result).toBeTruthy();

 });

 test("passes the zip code to Model.findOne()", async

() => {

 const spy = jest.spyOn(WeatherModel, "findOne");

 await findByZip(doc.zip);

 expect(spy).toHaveBeenCalledWith({zip: doc.zi

p});

 });

 });

 describe("API updateByZip", () => {

 test("returns true", async () => {

 const result = await updateByZip(doc.zip, doc);

 expect(result).toBeTruthy();

 });

 test("passes the zip code and the new data to Model.

updateOne()", async () => {

 const spy = jest.spyOn(WeatherModel, "updateOn

e");

 const result = await updateByZip(doc.zip, doc);

 expect(spy).toHaveBeenCalledWith({zip: doc.zip},

doc);

 });

 });

 describe("API deleteByZip", () => {

 test("returns true", async () => {

 const result = await deleteByZip(doc.zip);

 expect(result).toBeTruthy();

 });

 test("passes the zip code Model.deleteOne()", async

() => {

 const spy = jest.spyOn(WeatherModel, "deleteOn

e");

 const result = await deleteByZip(doc.zip);

 expect(spy).toHaveBeenCalledWith({zip: doc.zi

p});

 });

 });

});

Listing 8-21: The updated test suite in __tests__/mongoose/weather/services.test.ts

As in the previous test suite, we begin by setting up the environment
and importing modules. We also import WeatherModel and call jest.mock
with the path to the mocked model we created, effectively replacing the
original model in the code under test. Then we create a document
containing some test data. We store it in the constant doc and will pass it to
the mocked model’s methods. As done previously, we use the afterEach
hook to reset all mocks after each test and the afterAll hook to remove the
mocks and restore the original functions after all test cases have been
finished.

We create a nested test suite for each of the four services. Each has the
same two unit tests: one to verify the return value upon success with the
toBeTruthy matcher and one to spy on a particular WeatherModel mock
function. The code follows the same pattern as the previous test suite and
uses the same matchers as well.

The code-coverage report we receive after running npm test shows
that we tested around 70 percent of the service code. If you take a look at
the uncovered lines listed in the last column, you’ll see that they contain the
console.log(err); output. This output is used whenever an asynchronous
call to the model’s methods fails:

PASS __tests__/mongoose/weather/services.test.ts

PASS __tests__/middleware/dbconnect.test.ts (7.193 s)

--------------------|---------|----------|---------|--------

-|-------------------

File | % Stmts | % Branch | % Funcs | % Lines

| Uncovered Lines

--------------------|---------|----------|---------|--------

-|-------------------

All files | 83.63 | 100 | 88.23 | 82.35

|

 middleware | 100 | 100 | 100 | 100

|

 db-connect.test.ts| 100 | 100 | 100 | 100

|

 mongoose/weather. | 77.41 | 100 | 100 | 75.86

|

 services.test.ts | 70.83 | 100 | 100 | 70.83

|8,20-22,33-35,43-45

--------------------|---------|----------|---------|--------

-|-------------------

For the purposes of this chapter, we’ll leave these lines uncovered.
Otherwise, we could modify the mocked model to throw an error—for
example, by supplying an invalid document—and then add a third test case
per service verifying the error.

Performing an End-to-End Test of the REST API
Sophisticated API tests might use a dedicated API testing library such as
SuperTest, which provides matchers for HTTP status codes and simplifies
the handling of requests and responses. Alternatively, they might use a GUI
tool like Postman. In this example, we’ll merely test that the returned data
matches our expectations by using the native fetch method.

Unlike the previous tests, this one doesn’t isolate any single
component, as our goal is to verify that all components of the system work
together as expected. To check whether the API returns a proper response
from the database when supplied some input, our end-to-end test will make
certain assumptions: that all layers have already been tested independently,
that the database contains its initial seed data, and that our application runs
at http://localhost:3000/.

To verify our first assumption, open the API endpoint file
pages/api/v1/weather/[zipcode].ts. You’ll notice that the API code imports
two functions, findByZip from the service module and the middleware’s
dbConnect, both of which we’ve already tested. The second assumption is
also satisfied; the database loads the initial seed on each startup. Create the
file zipcode.e2e .test.ts in __tests__/pages/api/v1/weather/ and add the code
from Listing 8-22.

/**

 * @jest-environment node

 */

describe("The API /v1/weather/[zipcode]", () => {

 test("returns the correct data for the zipcode 96815", a

sync () => {

 const zip = "96815";

 let response = await fetch(`http://localhost:3000/ap

i/v1/weather/${zip}`);

 let body = await response.json();

 expect(body.zip).toEqual(zip);

 });

});

export {};

Listing 8-22: The test suite for the REST API

We set the environment to node and then define the test suite with one
test case. In it, we supply a ZIP code that matches one of the initial seed
datasets. Then we use the native fetch method, which has been available
since Node.js version 17.5, to call our weather API on our localhost and
check whether the returned ZIP code is the same as the one passed as a
parameter. We add an empty export statement to define this file as an ES6
module.

The test should pass and have 100 percent code coverage. Now that
we’re confident that the core of our application is working as expected, we
can test the user interface components.

When using fetch, there are two common error messages you might
encounter. The first, ECONNREFUSED, tells you that fetch could not connect
to your application because it is not running. Use npm run dev to start the
application or adjust the port in the fetch call if you’re not using port 3000.
The second error mentions that the test exceeded the timeout of 5,000 ms
for a test. If you started your application for the purposes of testing and did
not use a previously running application, Next.js compiles the API route as
soon as the test consumes it. Depending on your environment, this might

take longer than the default timeout. Add the line
jest.setTimeout(20000); before the describe method at the top of your
file to increase the timeout and make the test wait 20,000 ms instead of
5,000 ms.

Evaluating the User Interface with a Snapshot Test
Snapshot tests verify that a page’s rendered HTML didn’t change between
two test runs. To achieve this with Jest, we must first prepare our
environment. Add the jsdom environment, react-testing-library, and
the react-test-renderer to the project:

$ npm install --save-dev jest-environment-jsdom

$ npm install --save-dev @testing-library/react @testing-lib

rary/jest-dom

$ npm install --save-dev @types/react-test-renderer react-te

st-renderer

We’ll need these to simulate a browser environment and render React
components during our test cases. Now we’ll modify the jest.config.js file
in our root directory accordingly. Replace its content with the code in
Listing 8-23.

const nextJest = require("next/jest");

const createJestConfig = nextJest({});

module.exports = createJestConfig(nextJest({}));

Listing 8-23: The updated jest.config.js file

This code imports the next/jest package and exports a Jest
configuration with the default properties of a Next.js project. It is the
simplest form of Next.js-compatible Jest configuration. If you take a look at
the official Next.js setup guide at https://nextjs.org/docs/testing, you’ll see
that it outlines some basic configuration options, none of which we need.

https://nextjs.org/docs/testing

The First Version
A snapshot test renders a component or a page, takes a snapshot of it as
serialized JSON, and stores it in a __snapshots__ folder next to the test
suite. On each consecutive run, Jest compares the current snapshot with the
stored reference. As long as they are the same, the snapshot test passes. To
generate the initial snapshot, create a new folder,
__tests__/pages/components, and the file weather.snapshot.test.tsx, and then
add the code in Listing 8-24 to it.

/**

 * @jest-environment node

 */

import {act, create} from "react-test-renderer";

import PageComponentWeather from "../../../pages/components/

weather";

describe("PageComponentWeather", () => {

 test("renders correctly", async () => {

 let component: any;

 await act(async () => {

 component =

 await create(<PageComponentWeather></PageCom

ponentWeather>);

 });

 expect(component.toJSON()).toMatchSnapshot();

 });

});

Listing 8-24: The snapshot test for PageComponentWeather

The first lines of our snapshot test set the environment to jsdom and
import the test renderer’s act and create methods to test the React
component, which we import in the next line.

Next, we write the simulated user behavior and wrap the component’s
creation in the asynchronous act function. As you might have guessed, this
function draws its name from the arrange, act, assert pattern and ensures

that all relevant updates to the DOM have been applied before proceeding
with the test case. It is required for all statements that cause updates to the
React state, and here, it delays the test execution until after the useEffect
hook runs.

Then we write a test case that awaits the create function, which
renders the JSX component. This lets us generate HTML in a simulated
browser environment and store the result in a variable. We await the
component’s rendering so that the HTML is available for our follow-up
interactions before we continue with the test case. Then we serialize the
rendered component to a JSON string and use a new matcher,
toMatchSnapshot, which compares the current JSON string with the stored
reference.

A trial run shows that all tests succeed. We see two interesting things—
that the test created one snapshot and that we achieved a test coverage of 81
percent:

PASS __tests__/mongoose/weather/services.test.ts

PASS __tests__/pages/api/v1/weather/zipcode.e2e.test.ts

PASS __tests__/middleware/dbconnect.test.ts (7.193 s)

PASS __tests__/pages/components/weather.snapshot.test.tsx

---------------------|---------|----------|---------|-------

--|-------------------

File | % Stmts | % Branch | % Funcs | % Line

s | Uncovered Lines

---------------------|---------|----------|---------|-------

--|-------------------

All files | 83.63 | 100 | 88.23 | 82.3

5 |

 middleware | 100 | 100 | 100 | 10

0 |

 db-connect.test.ts | 100 | 100 | 100 | 10

0 |

 mongoose/weather | 77.41 | 100 | 100 | 75.8

6 |

 services.test.ts | 70.83 | 100 | 100 | 70.8

3 |8,20-22,33-35,43-45

 pages/api/v1/ | | | |

|

 weather | | | |

|

 [zipcode].ts | 100 | 100 | 100 | 10

0 |

 pages/components | 81.81 | 100 | 60 | 8

0 |

 weather.tsx | 81.81 | 100 | 60 | 8

0 |8,12

---------------------|---------|----------|---------|-------

--|-------------------

Snapshot Summary

 › 1 snapshot written from 1 test suite.

You can look at the created snapshot by opening the
weather.snapshot.test.tsx.snap file in the __snapshots__ folder. It should
look fairly similar to the code in Listing 8-25, and you’ll see that it is
nothing more than the rendered HTML saved as a multiline template literal.
Your HTML might not be identical to that shown here; the important aspect
is that it looks the same after each test run when react-test-renderer
rendered the component.

// Jest Snapshot v1, https://goo.gl/fbAQLP

exports[`PageComponentWeather renders correctly 1`] = `

<h1

 data-testid="h1"

 onClick={[Function]}

>

 The weather is

 sunny

 , and the counter shows

 0

</h1>

`;

Listing 8-25: The weather.snapshot.test.tsx.snap file with the serialized HTML

We also see that the counter is set to 0, which indicates that the
useEffect did not run before we created the snapshot. If you open the
component’s file and check the uncovered lines, you’ll learn that they relate
to the click handler that increases the state variable and, as suspected, the
useEffect hook. We want to test these core functionalities as well.

The Second Version
We’ll modify the test code to cover the previously untested functionalities.
Paste the code from Listing 8-26 into the snapshot test file.

/**

 * @jest-environment node

 */

import {act, create} from "react-test-renderer";

import PageComponentWeather from "../../../pages/components/

weather";

describe("PageComponentWeather", () => {

 test("renders correctly", async () => {

 let component: any;

 await act(async () => {

 component = await create(<PageComponentWeather>

</PageComponentWeather>);

 });

 expect(component.toJSON()).toMatchSnapshot();

 });

 test("clicks the h1 element and updates the state", asyn

c () => {

 let component: any;

 await act(async () => {

 component = await create(<PageComponentWeather>

</PageComponentWeather>);

 component.root.findByType("h1").props.onClick();

 });

 expect(component.toJSON()).toMatchSnapshot();

 });

});

Listing 8-26: The updated snapshot test

In the updated code, we’ve added another test case that finds the
headline on the page and simulates a user clicking it. Remember from
previous chapters that this increases the state variable counter. Again, we
await the creation of the component and use the act function.

If you rerun the tests, you should see a failure. The test runner tells us
that the snapshots do not match:

FAIL __tests__/pages/components/weather.snapshot.test.tsx

 • PageComponentWeather › renders correctly

--snip--

 › 1 snapshot failed.

--snip--

Snapshot Summary

 › 1 snapshot failed from 1 test suite.

› Inspect your code changes or run `npm test -- -u` to updat

e them.

Because we modified the test case to wait for the useEffect hook and
set the state variable counter to 1 instead of 0, the DOM changed as well.
Follow the test runner’s advice and rerun the tests with npm test -- -u to
create a new, updated snapshot. The tests should now succeed, reporting a
test coverage of 100 percent for our component.

Try experimenting with your newfound knowledge. For example, can
you write a snapshot test for the page routes in the pages directory or a set
of end-to-end tests for the GraphQL API?

Summary
You should now be able to create automated tests with Jest and, more
broadly, design a testing plan on your own to strike a balance between effort
and reward. We discussed the benefits of TDD and unit testing and then
used the arrange, act, assert pattern to develop a simple sum function

following test-driven principles. Next, we used three types of test doubles to
replace the sum function while calculating the Fibonacci sequence. Finally,
we added unit and snapshot tests to our existing Next.js application, created
a mock of a Mongoose model, and used spies to verify our assumptions.

To learn more about Jest and automated testing, consult the official Jest
documentation at https://jestjs.io/docs/getting-started. In the next chapter,
you’ll explore the differences between authorization and authentication and
how you can leverage OAuth in your applications.

https://jestjs.io/docs/getting-started

9
AUTHORIZATION WITH OAUTH

Certain apps store data about users as
part of a login workflow. There are

many ways to implement this authentication and
authorization, but one of the easiest is to use OAuth2
to piggyback on the existing accounts of well-known
companies. OAuth2, or simply OAuth, is an open
standard for access delegation, and you’ve probably
encountered it if you’ve ever used an app’s “log in
with Facebook, GitHub, or Google Account” feature.

The OAuth protocol essentially allows our web application to access
another application’s login data without requiring the third party to share a
user’s credentials with us. To do so, the user grants our application access
rights to their third-party account through the creation of an access token.
OAuth is the accepted standard for authorization-based access delegation,
and Amazon, Google, Facebook, Microsoft, and GitHub all support OAuth
workflows.

This chapter will introduce you to the OAuth workflow and then
explore the structure of the bearer tokens used for its access delegation,
laying the foundation for implementing OAuth2 into your Food Finder
application in Part II. In Exercise 9 on page 168, we won’t update our

sample Next.js application with an OAuth flow but instead manually walk
through the OAuth authorization process.

How OAuth Works
Before we explore OAuth, you need to understand the differences between
authentication and authorization. In short, we use authentication to verify
the identity of a user, whereas authorization specifies the permissions that
the authenticated user possesses and enforces those permissions. OAuth
allows for that process to be delegated to a third party with which the user
already has an account, which simplifies the login process for the user.

Authentication vs. Authorization
Every time an app receives a login request, it checks the user’s credentials
before allowing access, a process called authentication. Usually, those
credentials consist of a username and a password, but they could also be
hardware tokens or involve biometric factors such as fingerprints or facial
recognition. The application then verifies that the credentials match the
ones stored in the database.

The simplest form of authentication is single-factor authentication,
which requires only one factor, usually a password. Unfortunately, it is also
the least secure method of implementing authentication. A more robust and
recommended form is multifactor authentication, in which a user must
supply at least two factors. These might be something the user knows, such
as a password, as well as something the user has, such as a physical token,
or something the user is, such as the owner of a fingerprint. You probably
use multifactor authentication when you log in to PayPal or Google, both of
which require you to supply your password and an additional one-time
password (OTP).

The OTP is a code that is created based on a secret shared between you
and the application when you register your account. Both actors regenerate
the pair in short intervals. Yours may be generated by an authenticator app,
like Google Authenticator, or received in a text message. The application at
which you have the account (for example, PayPal or Google) generates its
own OTP code and keeps it on the server. As soon as you send yours, the
server verifies that the codes cryptographically match.

We perform authorization after we’ve authenticated a user. Broadly
speaking, this involves looking at the user’s data and deciding whether they
have the access rights needed to access a resource. A typical full-stack
application can either handle this user data or enable users to log in without
providing user data. There are benefits to the latter approach, as handling
and storing user data can be inconvenient. It also comes with additional
responsibilities, such as the need to adhere to stricter privacy and data
retention laws, and requires your users to create another account.

Suppose you provide users with the option to log in with an existing
account through an authorization provider. In that case, you’ve removed an
entry barrier. Also, you don’t need to worry about handling their data. If you
need user data—for example, to bill your customers—you can use an
OAuth workflow and save the data you receive from the provider, such as
the user’s payment details, in your own database if necessary.

The Role of OAuth
Every time a web application enables you to log in through a third-party
provider such as Facebook, GitHub, or Google, it uses the OAuth
authorization code flow behind the scenes. OAuth isn’t authentication;
rather, it’s a way of authorizing the web application you use to perform
actions or to access resources on your behalf. Common actions include
posting to your Facebook feed and accessing data such as your name,
profile picture, or email address. Consequently, each time you use an
OAuth-based login function, the application asks for particular permissions
and can use only those you grant to it.

To understand OAuth, you must understand its terminology. Each
OAuth flow uses a set of RESTful APIs to authorize the client (an
application) to get resources (such as the user’s profile information) from a
resource provider (such as Facebook, GitHub, or Google) that has the
protected resources the client wants to access. In addition, we call the server
that provides the OAuth API endpoints the authorization server, and the
party that owns the access rights (and, hence, has the ability to grant an
application access to a resource) the resource owner. In most scenarios, the
resource owner is the application’s end user.

To get the resource owner’s authorization, the client application sends
its client credentials, the ID, the secret, and the user credentials to the

authorization server, which usually is part of the same system as the
resource provider. The authorization server authenticates the resource
owner and handles the OAuth flow that results in granting them an access
token, which allows the user to access the protected resources on the
resource provider. Both the authorization server and the resource provider
are two sets of APIs on the same system.

The client ID is a public identifier for the client app; you can make it
public and store it in the code. Unlike the client ID, the client secret should
be kept private; it is the app-specific password, and you should never store
it in your code. Instead, handle it using Next.js’s environment files or your
server’s environment variables.

Grant Types
There are several variants of the OAuth flow. Each of these grant types
covers a specific use case, but all result in the generation of an access token.
OAuth specifies four grant types: the client credentials flow, the implicit
flow, the authorization code flow, and the resource owner password
credentials flow.

The client credentials flow covers machine-to-machine communication;
we use it when no actual end user authorization is necessary, as in the case
of automated tasks that connect to an API. Here, the task itself is both the
client and the resource owner. It knows the resource owner’s credentials,
the client ID, and the client secret and passes these to the authorization
server to receive an access token.

The most common grant type for full-stack web development is the
authorization code flow. In this scenario, our web application is a client,
and it makes two calls to two separate API endpoints. The first is to receive
an authorization grant code, and the second is to exchange this
authorization grant for an access token. “The Authorization Code Flow” on
page 161 provides a deep dive into this process.

The last two grant types shouldn’t be used. The implicit flow is similar
to the authorization code flow, but instead of making separate requests to
receive the authorization grant and access token, the client receives the
access token directly. This flow skips the authorization step, doesn’t include
client authentication, and is deprecated. The resource owner password
credentials flow should be avoided because it involves the end user passing

their user credentials to the client and then the client sending these
credentials to the OAuth server to exchange them for the access token.
While this sounds straightforward, sending actual user credentials to the
remote authorization server is an immense security risk.

Bearer Tokens
After the client application initiates an OAuth flow, it receives a shared
access token, most commonly a bearer token that is easy to implement. This
access token replaces the user’s credentials; hence, anyone who has the
token can access the data. To prevent security gaps caused by stolen tokens,
a bearer token usually has a defined shelf life. Upon expiration, the token
can be refreshed only with a valid refresh token. These are long-lived
tokens that we use to generate new bearer tokens.

Refreshing the token can be done implicitly or explicitly, and there are
multiple strategies for preventing stolen refresh tokens from compromising
the OAuth access. For example, the OAuth provider can require a unique
ID or the client secret to issue a new token. The provider usually rotates the
refresh token each time a new bearer token is issued and accepts each
refresh token only once. From our perspective as OAuth clients, the details
of the refresh token are unimportant, as the OAuth provider handles this
token.

The bearer token that contains the user session and authentication data
is a JSON Web Token (JWT). JWT is an open standard for securely
transmitting data in a JSON object. Because JSON is fairly compact, JWTs
can be sent as URL parameters, as part of the POST data, or even inside an
HTTP header, all without impacting the application’s performance.

JWT tokens can be signed as well as encrypted, saving the application
from needing to make an additional request to verify it or retrieve extra
data. Encrypted tokens hide the contained data from other parties. These
aren’t very common in OAuth due to their additional overhead, so we can
ignore them for now. Signed tokens guarantee the integrity of the contained
data, because any modification to the token would change its signature.
Thus, the application can trust the information stored in it.

The most common cryptographic algorithm for signing JWTs is hash-
based message authentication code (HMAC) with the SHA-256 hash
algorithm. An HMAC is a type of message authentication code (MAC). A

MAC’s main feature is that it enables you to verify the authenticity of a
message by calculating a checksum from the message. The checksum uses a
mathematical function to produce a unique, reproducible value or data
string based on the initial message. If the message changes, the checksum
changes as well. This way, we can quickly verify the integrity of the data.
For the JWT token, we use two checks: the authenticity check confirms that
the actual sender sent the message, whereas the data integrity checks verify
that the message’s content did not change.

Unlike other types of MACs, HMAC uses a cryptographic hash
function and a secret key. You can freely choose the cryptographic hash
function, but the strength of your HMAC implementation depends on the
cryptographic strength of the selected function. JWTs commonly use the
SHA-256 hash function, a fast and collision-resistant cryptographic
function from the SHA-2 collection also used for authenticating Debian
software packages and Bitcoin transactions. In cryptography, collisions
occur when two different inputs result in the same output. The higher the
possibility of a collision, the less we can trust the checksum of the hash
function. If a collision is likely, our message could be replaced with a
different one, but the hash function could indicate that it hasn’t changed.
Therefore, we want collision-resistant cryptographic functions.

The Authorization Code Flow
To understand how an OAuth interaction takes place using the authorization
code flow mentioned earlier, let’s return to our fictional weather service.
Imagine that you want to grant weather stations the ability to write data to
the application by using the API, but a station should be able to modify only
its own ZIP code. You also want the application to display the weather
stations’ locations and additional details about them. Additionally, you
prefer not to deal with the maintenance of user accounts or to manually set
up permissions for each station, so using OAuth is your best bet.

Let’s assume that each weather station already has a social media
account for publishing weather updates. These accounts include typical user
information and the stations’ ZIP codes. We could easily use the social
media provider as an OAuth authorization provider to access this data. The
stations would log in to the weather app using the social media provider,

and the app would request access to the weather station’s user profile. We
could then check the ZIP code stored in the OAuth session against the one
in our dataset, provide the appropriate write access, and retrieve any other
data we need.

Only a few steps are necessary for implementing this authorization
code flow. Figure 9-1 is a simplified description of these steps. Usually,
developers use an SDK or a Node.js module to implement the steps and
need to provide only a few properties, such as the client ID, client secret,
and callback URL.

Figure 9-1: A simplified OAuth authorization grant flow

To register our app as an OAuth client, we need to provide GitHub with
a callback URL to our application, to which GitHub will redirect the user
after the authorization request. This endpoint on our application receives the
authorization grant. Recent OAuth implementations require the callback
URL to use HTTPS as a way to protect the token from being intercepted.

Our app must use the resource owner’s credentials and the client
credentials, an ID, and a secret to communicate with GitHub’s authorization
server. The ID identifies the client, and the secret authenticates it. The app
can then request the authorization to access specific resources, such as a
weather station’s profile data. To do so, the weather station user needs to
log in to GitHub’s authorization server. They’ll see a prompt that
summarizes the requested access resources, such as read and write access to

the profile or stream. If the user authorizes the requests with their user
credentials, the OAuth client receives the authorization grant as a GET
parameter in the callback URL, and the OAuth SDK we use in our
application exchanges the authorization grant for an access token at the
authorization server in the next step of the flow.

Here, the OAuth client uses the client credentials, which are the client
ID and client secret, in combination with the previously received
authorization grant to request an access token from the OAuth provider’s
authorization server. It is part of the GitHub infrastructure, and to complete
the authorization flow, the authorization server authenticates the identity
and verifies that the grant is valid for this identity. Finally, the app receives
the bearer token from here and stores it in the user session.

With the token and the user session received from the OAuth provider,
our app can now act on the user’s behalf and access their protected
resources, such as the profile data from the resource server. To act on their
behalf, we add the bearer token to the Authorization header in the HTTP
requests; the OAuth provider checks our granted permission and verifies
our identity with this token. To access the user’s data, we simply extract it
from the session data and use it in our application’s code.

For the weather application, we could use the second option to query
location-specific weather data from our database. We’d need to read the
location property from the user’s session data and use that value as the ZIP
code supplied to our API endpoint. In addition, we can access other
properties, such as the description and the name or profile picture, to
display them on the weather application’s status page for each station.

Creating a JWT Token
Most bearer tokens are JWTs, and while the authorization server
automatically issues them, it’s good to know what kind of information you
can find in them. This section will walk you through the process of creating
an example OAuth JWT for the weather service app. The JWT is a string
made up of three sections divided by periods (.): the header, the payload,
and the signature. The first two sections are Base64-encoded JSON objects,
whereas the signature is a checksum of the previous two.

The Header
The first string we create is the header, which defines basic metadata such
as the token’s type and the signatures used for the signing algorithm. Listing
9-1 shows the creation of a simple header in JavaScript with the most
essential metadata.

const headerObject = {

 "typ": "JWT",

 "alg": "HS256"

}

Listing 9-1: The JWT header for the OAuth2 weather service

We set the type of the weather service’s token to JWT and specify that
we use the HMAC-SHA-256 algorithm to calculate the signature later.
Finally, we store the JSON object in a constant to use later.

The Payload
Next, we create the second string, the payload, which stores the token’s
data. Each property of the payload is called a claim. In OAuth, the claims
describe the user object and, usually, the session data. The JWT
specification contains three types of claims: registered, public, and private.

Registered Claims
There are seven registered claims, each three letters long. While not
necessary in general JWTs, the iss, sub, auth, and exp registered claims
are required for OAuth JWTs.

The issuer claim, iss, contains a unique identifier for the entity that
issued the JWT. A good value might be the application’s URL, as shown in
Listing 9-2.

{

 "iss": "https://www.usemodernfullstack.dev/

}

Listing 9-2: A registered issuer claim

The subject claim, sub, identifies the principal to which the JWT
belongs. For an OAuth client authentication flow, the subject claim must be
the client ID of the OAuth client, whereas for an OAuth authorization grant,
the subject should identify the resource owner or should pseudonymously
identify an anonymous user. We create a sample subject claim in Listing 9-
3.

{

 "sub": "THE_CLIENT_ID"

}

Listing 9-3: A registered subject claim

The audience claim, aud, identifies the token’s recipient. Its value
could be the token endpoint URL on the authorization server or anything
else that identifies the recipient, such as an application ID. See Listing 9-4
for an example.

{

 "aud": "api://endpoint"

}

Listing 9-4: A registered audience claim

The expiration claim, exp, identifies the time window during which the
token is valid. After that period, the authorization server will reject the
token and you’ll need to request a new one. An expiration claim’s value is a
number whose date is defined in “seconds since the Unix Epoch,” a
common format for timestamps. It is calculated by counting the number of
seconds that have elapsed since January 1, 1970. Listing 9-5 shows an
example.

{

 "exp": 1134156400

}

Listing 9-5: A registered expiration claim

The issued at claim, iat, is optional and identifies the time at which
the authorization server issued the token. You can determine a token’s age
from this claim, which is also defined in seconds since the Unix Epoch, as
shown in Listing 9-6.

{

 "iat": 1134156200

}

Listing 9-6: A registered issued at claim

The not before claim, nfb, is optional and identifies the time at which
the authorization server should start accepting the token. The authorization
server will reject every token with an nfb claim in the future. We define it
as a number in seconds since the Unix Epoch, as you can see in Listing 9-7.

{

 "nfb": 1134156100

}

Listing 9-7: A registered not before claim

The JWT claim, jti, is optional and sets a unique ID for the token (see
Listing 9-8).

{

 "jti": "b5f8f86f-82ab-451e-b391-bf6a07041787"

}

Listing 9-8: A registered JWT claim

The authorization server might keep a list of recent tokens and their
expiration dates to check whether the token is being reused in a replay
attack, which occurs when an attacker tries to access data by reusing a
previously issued token.

Public Claims
A token’s issuer can define public claims for the purpose of adding an
application-specific public API. Unlike private claims, these are custom
properties defined for public access. The issuer should register these claims
in the JWT Claims registry or use collision-resistant names with custom
namespaces—for example, a UUID or the application’s name. Also, as
public claims are meant for public consumption, they should never include
private or sensitive information.

A public claim for the OAuth JWT of our fictional weather service
might include the ZIP code to directly provide each station’s location data.
By making the ZIP code a public claim, we won’t need to parse the user
object and extract the ZIP code manually. Also, as the location is publicly
available information on social media profiles, it’s not sensitive.

Private Claims
Private claims are custom claims that are neither registered claims nor
public claims. We can define them to our liking, and they can be specific to
our application or use case. Even though they don’t need to be collision
resistant, using a private namespace is recommended. Unlike public claims,
private claims contain information specific to the application and are
intended to be used only internally. Whereas the public claims store generic
information such as the name, the private claims contain the application’s
user ID and role. For example, we could define a private claim for the
OAuth JWT of our fictional weather service to specify the type of service
we are using.

Now that you understand the payload object’s possible properties, you
can create a complete payload like the one in Listing 9-9, which specifies
GitHub as the service.

const payloadObject = {

 "exp": 234133423,

 "weather_public_zip": "96815",

 "weather_private_type": "GitHub"

}

Listing 9-9: The JWT payload for the OAuth weather service

Again, we create a constant and store the object there. Our payload has
three claims, each of a different type. It’s up to the publisher of the JWT
token to decide which claims to include; for this example, we limit the size
of the token to one of each type. The registered claim exp sets the
expiration date and time, zip is a public claim, and role is a private claim.
Both use the custom namespace weather to minimize the risk of a collision.

The Signature
With the header and payload in place, we create a JWT signature by using
the algorithm specified in the header to calculate the checksum. We pass the
header and payload as Base64-encoded strings and a custom secret to the
checksum function. As an exercise, we’ll create the signature in TypeScript
with the code from Listing 9-10. You’ll see that the secret is hardcoded for
simplicity here. In production code, this secret should be stored in an
environment variable.

Save the code as index.ts in a TypeScript project, or use npx ts-node
index.ts to run it locally. If you prefer, you can also use a TypeScript
sandbox at https://codesandbox.io or https://stackblitz.com to run it.
Generate a fresh secret (https://www.usemodernfullstack.dev/generate-
secret) and use it instead of the one in the listing to see how the token
changes.

import {createHmac} from "crypto";

const base64UrlEncode = (data: string): string => {

 return Buffer.from(data, "utf-8").toString("base64");

};

const headerObject = {

 typ: "JWT",

 alg: "HS256"

};

const payloadObject = {

 exp: 234133423,

 weather_public_zip: "96815",

 weather_private_type: "GitHub"

https://codesandbox.io/
https://stackblitz.com/
https://www.usemodernfullstack.dev/generate-secret

};

const createJWT = () => {

 const base64Header = base64UrlEncode(JSON.stringify(head

erObject));

 const base64Payload = base64UrlEncode(JSON.stringify(pay

loadObject));

 const secret = "59c4b48eac7e9ac37c046ba88964870d";

 const signature: string = createHmac("sha256", secret)

 .update(`${base64Header}.${base64Payload}`)

 .digest("hex");

 return [base64Header, base64Payload, signature].join

(".");

};

console.log(createJWT());

Listing 9-10: An index.ts file to calculate the JWT signature for the OAuth2 weather
service

We use Node.js’s standard crypto module and then create a library for
transforming the JSON objects into Base64-encoded strings via buffers. We
pass the strings and the secret to the crypto module’s createHmac function
to initialize the HMAC object with sha256 as the hashing algorithm, Then
we feed the Base64-encoded header and payload string, separated by a
period, to the HMAC object. Finally, we convert the result to a hexadecimal
format.

To obtain the JWT string, we create an array containing the Base64-
encoded strings from the header and payload objects, as well as the Base64-
encoded signature. To convert the array into a string that uses a period to
separate every part, we call Array.join with a period as a separator and
return the resulting JWT.

To generate the JWT, we run the script. The final JWT token logged to
the console should look similar to the one in Listing 9-11.

eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJleHAiOjIzNDEzMzQyMyw

id2VhdGhlcl9wdWJsa

WNfemlwIjoiOTY4MTUiLCJ3ZWF0aGVyX3ByaXZhdGVfdHlwZSI6IkdpdEh1Y

iJ9.f667c81749886e

e01831376a38fbdba4d7f59a14c14f3a60e1bbee977c993ac9

Listing 9-11: The final JWT token for the OAuth2 weather service

In the next section, we’ll use our new knowledge to walk through an
actual OAuth flow.

Exercise 9: Access a Protected Resource
Now that you understand OAuth’s components and the theory behind the
authorization code flow, let’s work with a practical example. We’ll try to
access the protected resource hosted by an OAuth server at
https://www.usemodernfullstack.dev/protected/resource. Run the exercise’s
cURL commands from your terminal to follow along.

First, attempt to access the protected resource without an access token
by sending a GET request for it:

$ curl -i \

 -X GET 'https://www.usemodernfullstack.dev/protected/res

ource' \

 -H 'Accept: text/html'

--snip--

HTTP/2 401

Content-Type: text/html; charset=utf-8

--snip--

<h1>Unauthorized request: no authentication given</h1>

We use the -i flag to output the headers, and when we search the
response for the HTTP code, we see a 401 status code, which tells us that
we’re not authorized to access the resource and must obtain an access
token.

To get an access token, we’ll set up an OAuth client by creating a user
account and registering it with the provider to receive a client ID and client

https://www.usemodernfullstack.dev/protected/resource

secret. Then we’ll make a request to the /oauth/authorize endpoint, log in
with the user’s credentials, and receive the authorization grant on our
callback URL. Next, we’ll exchange the grant code for an access token on
the /oauth/access_token endpoint. Finally, we’ll make the same request
again, providing the access token in the header.

The callback URL can be any URL here, as we’re not sending any
actual data to it. But for a real authorization grant flow, it needs to be an
endpoint on your application. Usually, an OAuth SDK provides these, as it
handles the response and tokens.

Setting Up the Client
Before we start the OAuth flow, we need to create a user and register an
OAuth client. Open https://www.usemodernfullstack.dev/register in your
browser. On the form shown in Figure 9-2, create a user account with a
username and password of your choice.

Figure 9-2: Creating a user account with the OAuth provider

https://www.usemodernfullstack.dev/register

Then proceed to register a client by providing a callback URL (Figure
9-3). This callback URL points to the OAuth callback endpoint on our
application. Usually, the SDK or the OAuth provider supplies you with
instructions on how to set this up.

Figure 9-3: Registering a client application with the OAuth server to receive the client
credentials

The form is prefilled with a callback URL similar to a typical OAuth
callback structure. Usually, you find them in the SDK’s documentation.
Don’t worry that the URL http://localhost:3000/oauth/callback doesn’t
exist on your application. For this exercise, we won’t send any actual data
to it; instead, we’ll see that it’s part of the request and response flow when
we go through the API calls. Click the button to move on to the next step,
where you create the OAuth client. Make sure to write down your
username, password, client ID, and client secret. You’ll need all of these for
the next steps. Then click Register Your OAuth Client to complete the
process.

Logging In to Receive the Authorization Grant
Now the user we registered must use their credentials to log in to the OAuth
provider, allowing the client application to access their resources. We call
the OAuth REST API endpoint /oauth/authorize and (as the resource
owner) log in with our user credentials, which is the first step of the flow.
The API response returns a redirect to the callback URL, which contains the
authorization grant in the URL parameter code.

In a real application, the resource owner would click some “Log in
with OAuth” button and enter their credentials, and the API calls would
happen behind the scenes. But for the purposes of this exercise, we’ll
perform all API requests manually. By using the raw API calls, we’ll see the
actions that SDKs usually abstract. Call the REST endpoint directly with
the following cURL command:

$ curl -i \

 -X POST 'https://www.usemodernfullstack.dev/oauth/authen

ticate' \

 -H 'Accept: text/html' \

 -H 'Content-Type: application/x-www-form-urlencoded' \

 -d "response_type=code\

&client_id=<OAUTH_CLIENT_ID>\

&state=4nBjkh31\

&scope=read\

&redirect_uri=http://localhost:3000/oauth/callback\

&username=<OAUTH_USER>\

&password=<OAUTH_PASSWORD>"

--snip--

HTTP/2 302

Content-Type: text/html; charset=utf-8

location: http://localhost:3000/oauth/callback?code=<AUTHORI

ZATION_GRANT>&state=4nBjkh31

This POST request logs in to the OAuth provider. We set the URL to
the oauth/authenticate endpoint, as well as our Accept header and the
appropriate Content-Type header, application/x-www-form-urlencoded,
for form data.

We use the -d flag to send the POST data indicating that we’re looking
for an authorization code. To split the POST data into readable chunks, we
need to use double quotes (") to wrap it and the backslash (\) for line
breaks. We add the client ID we received from the OAuth provider and the
callback URL we discussed earlier. The scope parameter specifies the
permissions we’re asking for, while the state parameter contains a unique
random string that mitigates cross-site request forgery (CSRF) attacks. The
OAuth provider should return this state parameter along with the
authorization code so that we can verify that its value hasn’t changed,
proving that the response originated from the correct API and not from a
third party. In addition, we send the user credentials we registered before.

The response headers show us that everything worked as expected. The
OAuth API responds with a status code of 302 and redirects to the callback
URL we provided. As you can see in the location header, the redirect to
the callback URL contains the authorization grant in the code parameter, as
well as the state parameter we sent. Unlike the state, which is just being
reflected, the authorization grant is unique and depends on the request data.

Using the Authorization Grant to Get the Access Token
Next, we use the authorization grant to request an access token from the
OAuth server. Copy the code you received in the preceding step and use it
to request the bearer access token with the client credentials from the
/oauth/access_token API endpoint:

$ curl -i \

 -X POST 'https://www.usemodernfullstack.dev/oauth/access

_token' \

 -H 'Accept: text/html, application/json' \

 -H 'Content-Type: application/x-www-form-urlencoded' \

 -d "code=<AUTHORIZATION_GRANT>\

&grant_type=authorization_code\

&redirect_uri=http://localhost:3000/oauth/callback\

&client_id=<OAUTH_CLIENT_ID>\

&client_secret=<OAUTH_CLIENT_SECRET>"

--snip--

HTTP/2 200 OK

Content-Type: application/json; charset=utf-8

{

 "access_token":"9bd55e2acf046128a54b76eada1ea6e0f909ca5

3",

 "token_type":"Bearer",

 "expires_in":3599,

 "refresh_token":"79a22d2b37c635a6095f5548ca08ea632deae57

3",

 "scope":"read"

}

This POST request to the OAuth server uses the Accept header to
accept a JSON response and sets the Content-Type header to a value for
POST form data. We send the form data itself with the data-raw flag. The
data contains the authorization grant we received in the code parameter, a
grant_type parameter that tells the API endpoint to expect an authorization
grant flow, and the same redirect URL as before. We also pass in the client
ID and secret.

The response has an HTTP status code of 200, which means the request
succeeded. In the response body, we received the access token and
additional details. Copy the access token’s value for the next step.

Using the Access Token to Get the Protected Resource
We now have an access token from the OAuth server that we can use to
retrieve the protected resource we couldn’t access at the beginning of this
exercise. Use the same cURL command to request
https://www.usemodernfullstack.dev/protected/resource, and replace the
ACCESS_TOKEN placeholder with the access token:

$ curl -i \

 -X GET 'https://www.usemodernfullstack.dev/protected/res

ource' \

 -H 'Accept: text/html' \

 -H 'Authorization: Bearer <ACCESS_TOKEN>'

--snip--

HTTP/2 200 OK

https://www.usemodernfullstack.dev/protected/resource

Content-Type: text/html; charset=utf-8

--snip--

<h1>This page is secured.</h1>

--snip--

We use the Authorization header with the Bearer keyword and the
access token we received from the authorization grant flow in the
access_token property. When we search for the HTTP status code, we see
that instead of a code of 401, we receive a code of 200. On closer
inspection, we also see that the response’s body contains the secured
content.

We manually walked through all the necessary steps for receiving a
working access token. This exercise is appropriate for educational purposes
only; as mentioned earlier in this chapter, we usually use an SDK or a
library such as next-auth to implement an OAuth flow.

Summary
Authentication involves using credentials to authorize access, whereas
authorization defines and grants access rights. This chapter covered
implementing authorization with the OAuth2 protocol. You became familiar
with the authorization grant flow, the most common OAuth flow used in
full-stack web applications, and learned how to create JWTs. Then you
practiced manually working with OAuth, getting and using the JWT bearer
token, and applying the OAuth flow to your application from a bird’s-eye
view.

You can find additional resources, tutorials, and specifications at
https://oauth.net. The next chapter covers Docker, a containerization
platform that decouples your development environment from your local
machine.

https://oauth.net/

10
CONTAINERIZATION WITH DOCKER

Professional full-stack developers
frequently work with Docker and, more

broadly, containers. Docker, an open source
containerization platform, solves three common
problems.

First, it lets us run a particular version of some software, such as
Node.js, for each of our projects. Second, it decouples the development
environment from our local machine and creates a reproducible way to run
the application. Third, unlike traditional virtual machines, Docker
containers run on a shared host. Therefore, they are smaller in size and
consume less memory than classic virtual machines, which emulate a
complete system and are often hardware specific. As a result, container-
based applications are lightweight and easy to scale. These advantages have
made Docker the most appreciated development platform in recent years.

This chapter covers the fundamentals of Docker. We first walk through
the steps required to containerize our Next.js application by creating a
Docker container running the latest Node.js version and serving the
application from inside the container. Then we explore the concept of a
microservice architecture and create two microservices using Docker.

The Containerization Architecture
In their daily lives, developers must regularly switch between applications
that require different versions of the same library. For example, a
JavaScript-focused developer might need a different Node.js or TypeScript
version for each of their projects. Of course, they could switch the installed
Node.js version on their local machine with tools such as nvm whenever
they need to work on a different project. But instead of resorting to crude
hacks, they could choose a more elegant solution.

Using Docker, we can separate our application or its services into
independent containers, each of which provides a service-specific
environment. These containers run on an operating system of our choosing
(often Debian, Ubuntu, or Alpine), with only the dependencies necessary to
this particular application. Containers are isolated from one another and
communicate through defined APIs.

When we use a Docker container during the development process, we
facilitate the application’s later deployment. After all, the container provides
a location-independent version of our application that is platform agnostic.
Therefore, we already know that our application works with the installed
dependencies and that no conflicts or additional installation steps are
necessary. Instead of setting up a remote server with the required software
and then deploying and testing our application afterward, we can simply
move our Docker container to the server and spin it up there.

In situations when we need to move to a different server, scale our
application, add additional database servers, or distribute instances across
several locations, Docker lets us deploy our application by using the same
straightforward process. Instead of managing different hosts and
configurations, we can effectively build a platform-agnostic application and
run the same containers everywhere.

Installing Docker
To check whether you already have Docker installed, open the command
line and run docker -v. If you see a version number higher than 20, you
should be able to follow along with the examples in this chapter. Otherwise,
you’ll need to install the most recent version of Docker from Docker Inc.

Go to https://www.docker.com/products/docker-desktop/. Then choose the
Docker desktop installer for your operating system and download it.
Execute the application and check the Docker version number on the
command line. It should match the one you downloaded.

Creating a Docker Container
Docker has several components. The physical or virtual machine on which
the Docker daemon runs is the host system. While you’re developing your
application locally, the host is your physical machine, and when you deploy
your container, the host is the server that runs the application.

We use the Docker daemon service on the host system to interact with
all components of the Docker platform. The daemon provides Docker’s
functionality through APIs and is the actual Docker application installed on
our machine. Access the daemon using the docker command from the
command line. Run docker --help to display all possible interactions.

We use Docker containers to run our containerized applications. These
containers are running instances of a particular Docker image, which is the
artifact that contains the application. Each Docker image relies on a
Dockerfile, which defines the configuration and the content of the Docker
image.

Writing the Dockerfile
A Dockerfile is a text file containing the information we need to set up a
Docker image. It commonly builds upon some existing base image, such as
a bare-bones Linux machine on which we’ve installed additional software
or a pre-provisioned environment. For example, we might use a Linux
image with Node.js, MongoDB, and all relevant dependencies installed.

Often, we can build upon an official image. For example, Listing 10-1
shows the basic Dockerfile we use to containerize our refactored Next.js
application. Dockerfiles contain keywords followed by commands, and we
use the FROM keyword here to select the official Node.js Docker image.
Create a file called Dockerfile in your project’s root directory, next to the
package.json file, and add the code in Listing 10-1 to it.

https://www.docker.com/products/docker-desktop/

FROM node:current

WORKDIR /home/node

COPY package.json package-lock.json /home/node/

EXPOSE 3000

Listing 10-1: A simple Dockerfile for a typical Node.js-based application

The image we’ve selected contains a preconfigured Node.js system
running on Debian. The version tag current gives you the most recent
Node.js version; alternatively, we could provide a particular version number
here. Hence, if you need to lock any application to a specific Node.js
version, this is the line to do so. You could also use the slimmer
node:current-slim image, a lightweight Debian distribution that contains
only the software packages necessary to run Node.js. However, we need
MongoDB’s in-memory server, so we’ll choose the regular image. You can
see a list of the available images at https://hub.docker.com. Other images
you’ll probably use in your career include those for WordPress, MySQL,
Redis, Apache, and NGINX.

Finally, we use the WORKDIR keyword to set the working directory
inside the Docker image to the user’s home directory. All future commands
will now execute in this directory. We use the COPY keyword to add the
package .json and package-lock.json files to the working directory. A
Node.js application runs on port 3000 by default, so we use the EXPORT
keyword to choose port 3000 for TCP connections. This connection will
provide access to the application from outside the container.

Building the Docker Image
To create a Docker image from the Dockerfile, we use the docker image
build command. During the build process, the Docker daemon reads the
Dockerfile and executes the commands defined there to download and
install software, copy local files into the image, and configure the
environment. Run the following next to your Dockerfile to build the image
from it:

https://hub.docker.com/

$ docker image build --tag nextjs:latest .

[+] Building 11.9s (10/10) FINISHED

 => [internal] load build definition from Dockerfile

0.1s

 => => transferring dockerfile: 136B

0.0s

 => [1/2] FROM docker.io/library/node:current-alpine@sha256:

HASH 0.0s

 => [2/2] WORKDIR /home/node

0.0s

 => => naming to docker.io/library/ nextjs:latest

The --tag flag gives the image the name nextjs and sets its version to
latest. Now we can easily refer to this specific image at a later time. We
use a period (.) at the end of the command to set the build context, limiting
the docker build command’s file access to the current directory. In the
output, the Docker daemon indicates that it successfully built the tagged
image.

Now, to verify that we have access to the image, run the following.
This command lists all locally available Docker images:

$ docker image ls

REPOSITORY TAG IMAGE

nextjs latest 98b28358e19a

As expected, our newly created image has a random ID
(98b28358e19a), is tagged as nextjs, and is available in the latest version.
The Docker daemon may also display additional information, such as the
size and age of the image, which aren’t relevant to us for now.

Docker provides additional commands for managing local and remote
images. You can view a list of all available commands by running docker
image --help. For example, to remove an existing image from your local
machine, use docker image rm:

$ docker image rm <name:version or ID>

After a while, you’ll find that you’ve collected unused or outdated
versions of your images, so deleting them to free up space on your machine
with docker image prune is a good practice.

Serving the Application from the Docker Container
Docker containers are running instances of Docker images. You could use
the same Docker image to spin up multiple containers, each with a unique
name or ID. Once the container is running, you can synchronize local files
to it. It listens on an exposed TCP or UDP port, so you can connect to it and
execute commands inside it using SSH.

Let’s containerize our application. We’ll spin up the Docker container
from our image, map the local Next.js files to the working directory, publish
the exposed port, and finally start the Next.js development server. We can
do all of this using docker container run:

$ docker container run \

--name nextjs_container \

--volume ~/nextjs_refactored/:/home/node/ \

--publish-all \

nextjs:latest npm run dev

> refactored-app@0.1.0 dev

> next dev

ready - started server on 0.0.0.0:3000, url: http://localhos

t:3000

event - compiled client and server successfully in 10.9s (20

8 modules)

At first glance, this command might look complicated, but once we
take a closer look at it, you’ll easily understand what it is doing. We pass it
several flags, starting with the --name flag, which assigns a unique name to
the running container. We’ll use this name to identify the container later.

Then we use the --volume flag to create a Docker volume. Volumes are
a simple way to share data between containers. Docker itself manages them,
and they let us synchronize our application files to the home/node/ directory
inside the container. We use the format source:destination to define a

volume, and depending on your file structure, you might need to adjust the
absolute path to this folder. In this example, we map /nextjs_refactored/
from the user’s home folder into the container.

The --publish-all flag publishes all exported ports and assigns them
to random ports on the host system. We use docker container ls later to
view the ports for our application. The last two arguments are intuitive:
nextjs:latest points to the Docker image we want to use for the
container, and npm run dev starts the Next.js development server as usual.
The console output shows that the Node.js app inside the container is
running and listening on port 3000.

Locating the Exposed Docker Port
Unfortunately, as soon as we try to access our Next.js application on port
3000, the browser notifies us that it isn’t accessible; no application is
listening there. The problem is that we didn’t map the exposed Docker port
3000 to the host’s port 3000. Instead, we used the --publish-all flag and
assigned a random port to the exposed Docker port.

Let’s run docker container ls to see details about all running Docker
containers:

$ docker container ls

CONTAINER ID IMAGE PORTS N

AMES

dff681898013 nextjs:latest 0.0.0.0:55000->3000/tcp n

extjs_container

Search for the name we assigned to our container, nextjs_container,
and notice that port 55000 on the host maps to the Docker port 3000.
Hence, we can access our application at http://localhost:55000. Open this
URL in your browser. You should see the Next.js application.

If you glance at the URL bar, you’ll notice that the port we use to
access the application is different from the one used in previous chapters
because it is now running inside the Docker container. Try to access all of
the pages and APIs we created previously before moving to the next
section.

Interacting with the Container
You can view a list of all Docker commands for interacting with containers
by running docker container --help. In most contexts, though, you’ll
find it sufficient to know just a few of these. For example, use exec to
execute commands inside an already running Docker container. We could
use exec to connect to a shell inside the container by passing it the -it flag
and the path to the shell, such as /bin/sh. The -i flag is short for --
interactive, whereas -t runs a pseudoterminal. The interactive option lets
us interact with the container, and the tty pseudoterminal keeps the Docker
container running so that we can actually interact with it:

$ docker container exec -it <container ID or name> /bin/sh

The kill command stops a running Docker container:

$ docker container kill <containerid or name>

We can select the container by name or by using the container ID
shown in the list of local running containers.

Creating Microservices with Docker Compose
Docker provides us with a way to break up an application into small,
autonomous units, called microservices. A microservice-driven architecture
splits an application into a collection of self-contained services that
communicate through well-defined APIs. It’s a relatively new architectural
concept that gained traction around the late 2000s to early 2010s, when
Docker and other tools that allowed for easier partitioning and orchestration
of server resources became available. These tools form the technical
foundation of a microservice architecture.

Microservices have several advantages. First, each independent service
has a single purpose, which reduces its complexity. Therefore, it is more
testable and maintainable. We can also deploy the microservices separately,
spin up multiple instances of a single microservice to improve its
performance, or swap it out altogether without affecting the whole

application. Contrast these features with a traditional monolithic application
whose user interface, middleware, and data storage exist in one single
program built from a single code base. Even if a monolith uses a more
modular approach, the code base couples them tightly, and you can’t swap
out the elements easily.

Another characteristic feature of microservices is that dedicated teams
can own just a single service and its code base. This means that they can
select the appropriate tools, frameworks, and programming languages on a
per-service basis. On the other hand, you’d typically use a single core
language to write a monolithic application.

Now that you know how to create a single container from scratch, we’ll
practice creating multiple containers; each will serve one part of an
application. One way to use microservices is to create one service for the
frontend and a second for the backend. The Food Finder application we’ll
create in Part II will use this structure. The main benefit of this approach is
that it lets us use a preconfigured MongoDB image for the database. For the
example in this chapter, we’ll create a second service that watches our
weather service and reruns its test suite as soon as the file changes. To do
so, we’ll use the Docker Compose interface and define our microservice
architecture in a docker-compose.yml file.

Writing the docker-compose.yml File
We define all services in docker-compose.yml, a text file in the YAML
format. This file also sets the properties, dependencies, and volumes for
each service. Most properties are similar to the command line flags you
specify when creating Docker images and containers. Create the file in the
root folder of your application and add the code from Listing 10-2 to it.

version: "3.0"

services:

 application:

 image:

 nextjs:latest

 ports:

 - "3000:3000"

 volumes:

 - ./:/home/node/

 command:

 "npm run dev"

 jest:

 image:

 nextjs:latest

 volumes:

 - ./:/home/node/

 command:

 "npx jest ./__tests__/mongoose/weather/services.

test.ts --watchAll"

Listing 10-2: A basic docker-compose.yml file that defines the application and Jest
services

Every docker-compose.yml file starts by setting the version of the
Docker Compose specification used. Depending on the version, we can use
different properties and values. We then define each service as a single
property under services. As discussed, we want to have two services: our
Next.js application running on port 3000 and the Jest service, which
watches the services .test.ts file we created in Chapter 8 and reruns the tests
as soon as we change a file. We limit the watch command to retest only the
services. This limits the scope of the exercises, but of course, you can rerun
all tests if you’d like.

Each service follows roughly the same structure. First we define the
image from which Docker Compose should create each container. This can
be an official distribution or a locally built one. We use the nextjs image in
the latest version for both services. Then, instead of using the --
publishAll flag, we map the ports directly from 3000 to 3000. By doing
so, we can connect to the application’s port 3000 from the host’s port 3000.

With the volumes property, we synchronize the files and paths from the
host system into the container. This is similar to the mapping we used in the
docker run command, but instead of supplying an absolute path, we can
use relative paths for the source. Here we map the whole local directory ./
into the container’s working directory /home/node. As before, we can edit
the TypeScript files locally, and the application inside the container always
uses the latest version of the files.

Until now, these properties have matched the command line arguments
we used in the docker run command. Now we add the command property,
which specifies the command that each container executes on startup. For
the application service, we’ll start Next.js with the usual npm run dev
command, whereas the Jest service should call Jest directly through npx.
Providing the path to the test file and the --watchAll flag causes Jest to
rerun the tests when the source code changes.

Running the Containers
Start the multi-container app with the docker compose up command. The
output should look similar to what is shown here:

$ docker compose up

 [+] Running 2/2

 ⠿ Container application-1 Created

0.0s

 ⠿ Container jest-1 Recreated

0.4s

Attaching to application-1, jest-1

application-1 |

application-1 | > refactored-app@0.1.0 dev

application-1 | > next dev

application-1 |

application-1 | ready - started server on 0.0.0.0:3000,

URL:

application-1 | http://localhost:3000

jest-1 | PASS __tests__/mongoose/weather/service

s.test.ts

jest-1 | the weather services

jest-1 | API storeDocument

jest-1 | ✓ returns true (9 ms)
jest-1 | ✓ passes the document to Model.cre
ate() (6 ms)

jest-1 | API findByZip

jest-1 | ✓ returns true (1 ms)
jest-1 | ✓ passes the zip code to Model.fin
dOne() (1 ms)

jest-1 | API updateByZip

jest-1 | ✓ returns true (1 ms)
jest-1 | ✓ passes the zip code and the new
data to

jest-1 | Model.updateOne() (1 ms)

jest-1 | API deleteByZip

jest-1 | ✓ returns true (1 ms)
jest-1 | ✓ passes the zip code Model.delete
One() (1 ms)

jest-1 |

jest-1 | Test Suites: 1 passed, 1 total

jest-1 | Tests: 8 passed, 8 total

jest-1 | 0 total

jest-1 | Time: 4.059 s

jest-1 | Ran all test suites matching

jest-1 | /.\/__tests__\/mongoose\/weather\/ser

vices.test.ts/i.

The Docker daemon spins up all services. As soon as the application is
ready, we see the status message from the Express.js server and can connect
to it on the exposed port 3000. At the same time, the Jest container runs the
tests for the weather services and reports that all are successful.

Rerunning the Tests
Now that we’ve started the Docker environment, let’s verify that the
command to look for changes in the code and rerun tests is working as
intended. To do so, we need to modify the source code to trigger Jest.
Therefore, we open the mongoose/weather/service.ts file and modify the
contents by adding a blank line and then saving the file. Jest should rerun
the test inside the container, as you can see from the output in Listing 10-3.

jest-1 | Ran all test suites matching

jest-1 | /.\/__tests__\/mongoose\/weather\/ser

vices.test.ts/i.

jest-1 |

jest-1 | PASS __tests__/mongoose/weather/service

s.test.ts

jest-1 | the weather services

jest-1 | API storeDocument

jest-1 | ✓ returns true (9 ms)
jest-1 | ✓ passes the document to Model.cre
ate() (6 ms)

jest-1 | API findByZip

jest-1 | ✓ returns true (1 ms)
jest-1 | ✓ passes the zip code to Model.fin
dOne() (1 ms)

jest-1 | API updateByZip

jest-1 | ✓ returns true (1 ms)
jest-1 | ✓ passes the zip code and the new
data to

jest-1 | Model.updateOne() (1 ms)

jest-1 | API deleteByZip

jest-1 | ✓ returns true (1 ms)
jest-1 | ✓ passes the zip code Model.delete
One() (1 ms)

jest-1 |

jest-1 | Test Suites: 1 passed, 1 total

jest-1 | Tests: 8 passed, 8 total

jest-1 | 0 total

jest-1 | Time: 7.089 s

jest-1 | Ran all test suites matching

jest-1 | /.\/__tests__\/mongoose\/weather\/ser

vices.test.ts/i

Listing 10-3: Rerunning the tests on files changed with jest --watchAll

All tests continue to pass. Connect to http://localhost:3000 and verify
that your browser can still render the application.

Interacting with Docker Compose
Docker Compose provides a complete interface for managing microservice
applications. You can see a list of available commands by running docker
compose --help. The following are the most essential.

We use docker compose ls to get a list of all locally running Docker
applications defined in docker-compose.yml files. The command returns the
name and status of the application:

$ docker compose ls

To shut down all running services defined in the docker-compose.yml
file in the current directory, run docker compose kill, which sends a
SIGKILL command to the primary process inside each container:

$ docker compose kill

To kill the services with a more graceful SIGTERM command, use the
following:

$ docker compose down

Instead of forcing a shutdown, this command gracefully removes all
processes, containers, networks, and volumes created by docker compose
up.

Summary
Using the Docker containerization platform makes it easy to deploy
applications and use a microservice architecture. This chapter covered the
building blocks of the Docker ecosystem: the host, the Docker daemon,
Dockerfiles, images, and containers. Using Docker Compose and Docker
volumes, you split your application into single, self-contained services.

To unleash the full potential of Docker, read the official tutorials at
https://docs.docker.com/get-started/ or those at https://docker-curriculum
.com. In the next chapter, you’ll start to build the Food Finder application.
This full-stack web application will build upon the knowledge you’ve
gained in all previous chapters.

https://docs.docker.com/get-started/
https://docker-curriculum.com/

PART II
THE FULL-STACK APPLICATION

11
SETTING UP THE DOCKER ENVIRONMENT

In this part of the book, you’ll build a
full-stack application from scratch by

using the knowledge you’ve acquired so far. While
previous chapters explained parts of the technology
stack, the remaining chapters focus on the code in
more detail.

This chapter describes the application you’ll build and walks you
through configuring the environment using Docker. While I recommend
reading previous chapters before you start writing code, the only real
requirement is that you have Docker installed and running before moving
on. Consult Chapter 10 for instructions on doing so.

NOTE
You can download the complete source code for the Food Finder
application at http://www.usemodernfullstack.dev/downloads/food-finder
and a ZIP file with only the required assets from http://www
.usemodernfullstack.dev/downloads/assets.

The Food Finder Application
The Food Finder application shows a list of restaurants and their locations.
The user can click these to see additional details about each location. In

http://www.usemodernfullstack.dev/downloads/food-finder
http://www.usemodernfullstack.dev/downloads/assets

addition, they can log in to the app with their GitHub accounts by using
OAuth so that they can maintain a wish list of locations.

Behind the scenes, we’ll write this simple single-page application in
TypeScript. After setting up the local environment, we’ll build the backend
and middleware with Next.js, Mongoose, and MongoDB, which we’ll seed
with initial data. Then we’ll add GraphQL to expose an API layer through
which we can access a user’s wish list. To build the frontend, we’ll use our
knowledge of React components, Next.js pages, and routing. We’ll also add
an OAuth authorization flow with next-auth to let users log in with GitHub.
Finally, we’ll write automated tests with Jest to verify the integrity and
stability of the application.

Building the Local Environment with Docker
Docker decouples the development environment from our local machine.
We’ll use it to create self-contained services for each part of our
application. In the docker-compose file, we’ll add one service for the
backend, which provides the MongoDB database, and a second to run the
Next.js application hosting the frontend and the middleware.

To start the development, create a new empty folder, code. This folder
will serve as the application’s root and contain all the code for the Food
Finder application. Later in this chapter, we’ll use the create-next-app
helper command to add files to it.

Next, create an empty docker-compose.yml file and a .docker folder in
this root folder. In the file, we will define the two services for our
environment and store the seed data we need to create the container.

The Backend Container
The backend container provides nothing but the app’s MongoDB instance.
For this reason, we can use the official MongoDB image, which Docker can
download automatically, from the Docker registry without creating a
custom Dockerfile.

Seeding the Database
We want MongoDB to begin with a prefilled database that contains a valid
set of initial datasets. This process is called seeding the database, and we

can automate it by copying the seeding script seed-mongodb.js into the
container’s /docker-entrypoint-initdb.d/ directory on startup. The MongoDB
image executes the scripts in this folder against the database defined in the
MONGO_INITDB_DATABASE environment variable if there is no data in the
container’s /data/db directory on startup.

Create a new folder, foodfinder-backend, in the .docker folder, and then
copy into the newly created folder the seed-mongodb.js file from the
assets.zip file you downloaded earlier. The seed file’s content should look
similar to Listing 11-1.

db.locations.insert([

 {

 address: "6220 Avenue U",

 zipcode: "NY 11234",

 borough: "Brooklyn",

 cuisine: "Cafe",

 grade: "A",

 name: "The Roasted Bean",

 on_wishlist: [],

 location_id: "56018",

 },

--snip--

 {

 address: "405 Lexington Avenue",

 zipcode: "NY 10174",

 borough: "Manhattan",

 cuisine: "American",

 grade: "A",

 name: "The Diner At The Corner",

 on_wishlist: [],

 location_id: "63426",

 }

]);

Listing 11-1: The seed-mongodb.js file

You can see that the script interacts directly with a collection in the
MongoDB instance that we’ll set up in the next section. We use

MongoDB’s insert method to fill the database’s location collection with
the documents. Note that we are working with the native MongoDB driver
to insert the documents instead of using Mongoose. We do so because
Mongoose is not installed on the default MongoDB Docker image, and
inserting the documents is a relatively simple task. Although we do not use
Mongoose for seeding the database, the documents we insert need to match
the schema we define with Mongoose later.

Creating the Backend Service
We can now define the backend service in the Docker setup. Add the code
from Listing 11-2 into the empty docker-compose.yml file we created
earlier.

version: "3.0"

services:

 backend:

 container_name: foodfinder-backend

 image: mongo:latest

 restart: always

 environment:

 DB_NAME: foodfinder

 MONGO_INITDB_DATABASE: foodfinder

 ports:

 - 27017:27017

 volumes:

 - "./.docker/foodfinder-backend/seed-mongodb.js:

/docker-entrypoint-initdb.d/seed-mongodb.js"

 - mongodb_data_container:/data/db

volumes:

 mongodb_data_container:

Listing 11-2: The docker-compose.yml file with the backend service

We first define the container’s name so that we can easily reference it
later. As discussed earlier, we use the latest version of the official
MongoDB image and specify that this container should always be restarted
if it stops. Next, we use the environment variables to define the collections

we’ll use with MongoDB. We define two of those: DB_NAME points to the
collection we’ll use with Mongoose, and MONGO_INITDB_DATABASE points to
the seed script. The scripts in /docker-entrypoint-initdb.d/ use this latter
collection by default.

We want the script to populate our application’s database, so we set
both variables to the same name, foodfinder, and thus we have a prefilled
database for our Mongoose model.

Then we map and expose the container’s internal port 27017 to the
host’s port 27017 so that the MongoDB instance is accessible to the
application at mongodb://backend:27017/foodfinder. Notice that the
connection string contains the service name, the port, and the database.
Later, we store this connection string in the environment variables and use it
to connect to the database from the middleware. Finally, we map and copy
the seed script to the setup location and save the database data from
/data/db into the Docker volume mongodb_data_container. Because we
want to split the string across two lines, we need to wrap it in double quotes
(") according to the YAML conventions.

Now complete the Docker setup with docker compose up:

$ docker compose up

[+] Running 2/2

 ⠿ Network foodfinder_default Created

0.1s

 ⠿ Container foodfinder-backend Created

0.3s

Attaching to foodfinder-backend

foodfinder-backend | /usr/local/bin/docker-entrypoint.sh: r

unning /docker

 /entrypoint-initdb.d/seed-mongodb.js

The output shows us that the Docker daemon successfully created the
foodfinder-backend container and that the seeding script was executed
during startup. Instead of going through the hassle of installing and
maintaining MongoDB locally or finding a free or low-cost cloud instance,

we’ve added MongoDB to our project with just a few lines of code in the
docker -compose file.

Stop the container with CRTL-C and remove it with docker compose
down:

$ docker compose down

[+] Running 2/2

 ⠿ Container foodfinder-backend Removed

0.0s

 ⠿ Network foodfinder_default Removed

Now we can add the frontend container.

The Frontend Container
Now we’ll create the containerized infrastructure for the frontend and
middleware. Our approach will involve using create-next-app to scaffold
the Next.js application, as we did in Chapter 5, relying on the official
Node.js Docker image to decouple the application from any local Node.js
installation.

As we’ll execute all Node.js-related commands inside this container,
we technically don’t even need Node.js installed on our local machine; nor
must we make sure the Node.js versions we use comply with Next.js’s
requirements. Also, npm might install packages that are optimized for the
operating system on which it is running, so by using npm inside the
container, we ensure that npm installs the correct versions for Linux.

Nonetheless, we’ll want Docker to synchronize the Node.js modules
folder to our local system. This will allow our IDE to automatically use the
installed dependencies, such as the TypeScript compiler and ESLint. Let’s
start by creating a minimal Dockerfile.

Creating the Application Service
We add the combined frontend and middleware service to our Docker setup
by placing the code from Listing 11-3 into the services property of the
project’s docker-compose.yml file.

--snip--

services:

 application:

 container_name: foodfinder-application

 image: node:lts-alpine

 ports:

 - "3000:3000"

 volumes:

 - ./code:/home/node/code

 working_dir: /home/node/code/

 depends_on:

 - backend

 environment:

 - HOST=0.0.0.0

 - CHOKIDAR_USEPOLLING=true

 - CHOKIDAR_INTERVAL=100

 tty: true

 backend:

--snip--

Listing 11-3: The docker-compose.yml file with the backend and application service

The service for the Food Finder application follows the same structure
as the service for the backend. First we set the container’s name. Then we
define the image to be used for this particular service. While the backend
service used the official MongoDB image, we now use the official Node.js
image with the current LTS version running on Alpine Linux, a lightweight
Linux distribution that requires significantly less memory than a Debian-
based image.

We then expose and map port 3000, making the application available
on http://localhost:3000, and map the local application’s code directory into
the container. Next, we set the working directory to the code directory. We
specify that our container requires a running backend service, because the
Next.js application will need a working connection to the MongoDB
instance. In addition, we add environment variables. In particular, chokidar
supports hot-reloading for the Next.js code. Finally, setting the tty property

to true makes the container provide an interactive shell instead of shutting
down. We’ll need the shell to execute commands inside the container.

Installing Next.js
With both services in place, we can now install Next.js inside the container.
To do so, we need to start the container with docker compose up:

$ docker compose up

[+] Running 3/3

 ⠿ Network foodfinder_default Created

0.1s

 ⠿ Container foodfinder-backend Created

0.3s

 ⠿ Container foodfinder-application Created

0.3s

Attaching to foodfinder-application, foodfinder-backend

--snip--

foodfinder-application | Welcome to Node.js ...

--snip--

Compare this command line output with the previous docker compose
up output. You should see that the application container started successfully
and that it runs a Node.js interactive shell.

Now we can use docker exec to execute commands inside the running
container. Doing so has two main advantages. First, we don’t need any
particular version of Node.js (or any version at all) on our local machine.
Second, we run the Node.js application and npm commands on the Node.js
Linux Alpine image so that the dependencies will be optimized for Alpine
instead of for our host system.

To run npm commands inside the container, use docker exec -it
foodfinder-application followed by the command to run. The Docker
daemon connects to the terminal inside the container and executes the
provided command in the application container’s working directory,
/home/node/code, which we set previously. Let’s install the Next.js
application there using the npx command discussed in Chapter 5:

/home/node/code# docker exec -it foodfinder-application \

npx create-next-app@latest foodfinder-application \

--typescript --use-npm

Need to install the following packages:

 create-next-app

Ok to proceed? (y)

✔ Would you like to use ESLint with this project? ... No / Y

es

Creating a new Next.js app in /home/node/code/foodfinder-app

lication.

Success! Created foodfinder-application at /home/node/code/f

oodfinder-application

We set the project name to foodfinder-application and accept the
defaults. The rest of the output should look familiar to you.

As soon as the scaffolding is done, we can start the Next.js application
with npm run dev. If you visit http://localhost:3000 in your browser, you
should see the familiar Next.js splash screen. The foodfinder-application
folder should be mapped into the local code folder, so we can edit the
Next.js-related files locally.

Adjusting the Application Service for Restarts
Currently, connecting to the application container requires running docker
exec after each restart through docker compose up and then calling npm
run dev manually. Let’s make two minor adjustments in our application
service to allow for a more convenient setup. Modify the file to match
Listing 11-4.

--snip--

services:

--snip--

 application:

--snip--

 volumes:

 - ./code:/home/node/code

 working_dir: /home/node/code/foodfinder-application

--snip--

 command: "npm run dev"

--snip--

Listing 11-4: The docker-compose.yml file to start Next.js automatically

First, change the working_dir property. Because we’re working with
Next.js, we set it to the Next.js application’s root folder,
/home/node/code/foodfinder-application, which contains the package.json
file. Then we add the command property with a value of npm run dev. With
these two modifications, each docker compose up call should instantly
start the Next.js application. Try starting the containers with docker
compose up; the console output should show that Next.js runs and that it’s
available at http://localhost:3000:

$ docker compose up

[+] Running 3/3

 ⠿ Network foodfinder_default Created

0.1s

 ⠿ Container foodfinder-backend Created

0.3s

 ⠿ Container foodfinder-application Created

0.3s

Attaching to foodfinder-application, foodfinder-backend

foodfinder-application |

foodfinder-application | > foodfinder-application@0.1.0 dev

foodfinder-application | > next dev

foodfinder-application |

foodfinder-application | ready - started server on 0.0.0.0:

3000,

foodfinder-application | url: foodfinder-application | htt

p://localhost:3000

foodfinder-application | info - Loaded env from /home/nod

e/code/foodfinder-

foodfinder-application | application/.env.local

If you visit http://localhost:3000 in your browser, you should see the
Next.js splash screen without having to start the Next.js application

manually.
Note that, if you’re using Linux or macOS without being the

administrator or root user, you’ll need to adjust the application service and
the startup command. Because the Docker daemon runs as a root user by
default, all files it creates require root privileges. Your regular user doesn’t
have those and cannot access those files. To avoid these possible issues,
modify your setup so that the Docker daemon transfers the ownership to
your user. Start by adding the code in Listing 11-5 to the application service
in the docker-compose file.

services:

--snip--

 application:

--snip--

 user: ${MY_USER}

--snip--

Listing 11-5: The docker-compose.yml file with the user property

We add the user property to the application service and use the
environment variable MY_USER as the property’s value. Then we modify the
docker compose commands so that, on startup, we add the current user’s
user ID and group ID to this environment variable. Instead of a plain
docker compose up call, we use the following code:

MY_USER=$(id -u):$(id -g) docker compose up

We use the id helper program to save the user ID and group ID in the
format userid:groupid to our environment variable, which the docker-
compose file then picks up. The -u flag returns the user ID, and the -g flag
returns the group ID.

Summary
We’ve set up our local development environment with Docker containers.
With the docker-compose.yml file we created in this chapter, we decoupled
the application development from our local host system. Now we can

switch our host systems and, at the same time, ensure that the Food Finder
application always runs with the same Node.js version. In addition, we
added a container running our MongoDB server, to which we’ll connect in
the next chapter when we implement our application’s middleware.

12
BUILDING THE MIDDLEWARE

The middleware is the software glue
connecting the frontend we’ll create

later to the existing MongoDB instance in the
backend container. In this chapter, we’ll set up
Mongoose, connect it to our database, and then create
a Mongoose model for the application. In the next
chapter, we’ll complete the middleware by writing a
GraphQL API.

This middleware is part of Next.js; hence, we’ll work with the
application container. But because the Docker daemon ensures that the files
in our local application directory are instantly available within the working
directory inside the application container, we can use our local code editor
or IDE to modify files on our local machine. There is no need to connect to
the container shell, let alone interact with docker compose; you should see
all changes instantly on http://localhost:3000.

Configuring Next.js to Use Absolute Imports
Before we write our first line of code in Next.js, let’s make a minor
adjustment to the Next.js configuration. We want the paths of any module
imports to be absolute, meaning they start from the application’s root folder

rather than the location of the file that is importing them. The imports in
Listing 12-1, which come from the pages/api/graphql.ts file we created in
Chapter 6, are examples of relative imports.

import {resolvers} from "../../graphql/resolvers";

import {typeDefs} from "../../graphql/schema";

Listing 12-1: The import statements in pages/api/graphql.ts

You should see that they start from the file’s location, then go up two
levels to the root folder, and finally find the graphql folder containing the
resolvers and schema TypeScript files.

The more complex our application becomes, the more levels of nesting
we’ll have, and the more inconvenient we’ll find this manual traversing of
the directories up to the root folder. This is why we want to use absolute
imports that start directly from the root folder, as shown in Listing 12-2.

import {resolvers} from "graphql/resolvers";

import {typeDefs} from "graphql/schema";

Listing 12-2: The absolute import statements for pages/api/graphql.ts

Notice that we don’t need to traverse up to the root level before
importing files. To achieve this, open the tsconfig.json file that create-
next-app created in the application’s code root directory, code/foodfinder-
application, on your local machine, and add a line that sets the baseUrl to
the root folder (Listing 12-3).

{

 "compilerOptions": {

 "baseUrl": ".",

--snip--

 }

}

Listing 12-3: Using absolute URLs

Restart the application’s container, as well as the Next.js application,
with docker compose restart foodfinder-application in a new
command line tab.

Connecting Mongoose
Now it’s time to start working on the middleware. We’ll begin by adding
Mongoose to the application. Connect to the application’s container
terminal:

$ docker exec -it foodfinder-application npm install mongoos

e

Here we use npm install mongoose to install the package. As long as
the containers are running, we don’t need to rebuild the frontend image
immediately, as we’ve installed the packages directly into the running
container.

Writing the Database Connection
To connect the Next.js application to the MongoDB instance, we’ll define
the environment variable MONGO_URI and assign it a connection string that
matches the backend’s exposed port and location. Create a new .env.local
file in the application’s root directory, next to the tsconfig.json file, and add
this line to it:

MONGO_URI=mongodb://backend:27017/foodfinder

Now we can connect the application to the MongoDB instance that the
Docker container exposes on port 27017. Create a folder, middleware, in the
root folder code/foodfinder-application. Here we’ll place all the
middleware-related TypeScript files. Create a new file, db-connect.ts, in this
folder and paste in the code from Listing 12-4.

import mongoose, {ConnectOptions} from "mongoose";

const MONGO_URI = process.env.MONGO_URI || " ";

if (!MONGO_URI.length) {

 throw new Error(

 "Please define the MONGO_URI environment variable (.

env.local)"

);

}

let cached = global.mongoose;

if (!cached) {

 cached = global.mongoose = {conn: null, promise: null};

}

async function dbConnect(): Promise<any> {

 if (cached.conn) {

 return cached.conn;

 }

 if (!cached.promise) {

 const opts: ConnectOptions = {

 bufferCommands: false,

 maxIdleTimeMS: 10000,

 serverSelectionTimeoutMS: 10000,

 socketTimeoutMS: 20000,

 };

 cached.promise = mongoose

 .connect(MONGO_URI, opts)

 .then((mongoose) => mongoose)

 .catch((err) => {

 throw new Error(String(err));

 });

 }

 try {

 cached.conn = await cached.promise;

 } catch (err) {

 throw new Error(String(err));

 }

 return cached.conn;

}

export default dbConnect;

Listing 12-4: The TypeScript code to connect the application to the database in db-
connect.ts

We import the mongoose package and the ConnectOptions type, both
of which we need to connect to the database. We then load the connection
string from the environment variables and verify that the string is not
empty.

Next, we set up our connection cache. We use a global variable to
maintain the connection across hot-reloads and ensure that multiple calls to
our dbConnect function always return the same connection. Otherwise,
there is the risk that our application will create new connections during each
hot-reload or on each call of the function, both of which would fill up our
memory quickly. If there’s no cached connection, we initialize it with a
dummy object.

We create the asynchronous function dbConnect, which actually opens
and handles the connection. The database is remote and not instantly
available, so we use an async function that we export as the module’s
default function. Inside the function’s body, we first check for an already
existing cached connection and directly return any existing ones. Otherwise,
we create a new one. Therefore, we define the connection options, and then
we create a new connection; here, we use the promise pattern to remind us
of the two possible ways to handle asynchronous calls. Finally, we await
the connection to be available, and then return the Mongoose instance.

To open a cached connection to MongoDB through Mongoose, we can
now import the dbConnect function from the middleware/db-connect
module and await the Mongoose connection.

Fixing the TypeScript Warning
In your IDE, you should immediately see that TSC warns us about using
global.mongoose. A closer look at the message, Element implicitly has

an 'any' type because type 'typeof globalThis' has no index

signature.ts (7017), tells us that we need to add the mongoose property
to the globalThis object.

As we discussed in Chapter 3, we use the custom.d.ts file to define
custom global types. Create a new file, custom.d.ts, next to the middleware
folder in the root directory. As soon as you paste the code from Listing 12-5
into it, the global namespace should contain the mongoose property typed as
mongoose, and TSC can find it.

import mongoose from "mongoose";

declare global {

 var mongoose: mongoose;

}

Listing 12-5: The code in custom.d.ts used to define the custom global type mongoose

With the custom global type definition in place, the TSC should no
longer complain about the missing type definition for global.mongoose.
We can move on to create the Mongoose model for our full-stack
application.

The Mongoose Model
Our application has one database containing a collection of documents
representing location data, as you saw in the seed script from Chapter 11.
We’ll create a Mongoose model for this location collection. In Chapter 7,
you learned that this requires having an interface to type the documents for
TypeScript, a schema to describe the documents for the model, a type
definition, and a set of custom types to define the Mongoose model. In
addition, we’ll create a set of custom types to perform the CRUD operations
on the locations model for the application.

Create a mongoose folder with the subfolder locations next to the
middleware folder in Next.js’s root directory. The mongoose folder will host
all files relevant to Mongoose in general, and the locations folder will
contain all files specific to the location model.

Creating the Schema
In Chapter 7, you learned that the schema describes the structure of a
database’s documents and that you need to create a TypeScript interface
before creating a schema so that you can type the schema and model
accordingly. Technically, in versions of Mongoose later than 6.3.1, we don’t
need to define this interface by ourselves. Instead, we can automatically
infer the interface as a type from the schema. Create the file schema.ts
inside the mongoose/locations folder and paste the code from Listing 12-6
into it.

import {Schema, InferSchemaType} from "mongoose";

export const LocationSchema: Schema = new Schema<LocationTyp

e>({

 address: {

 type: "String",

 required: true,

 },

 street: {

 type: "String",

 required: true,

 },

 zipcode: {

 type: "String",

 required: true,

 },

 borough: {

 type: "String",

 required: true,

 },

 cuisine: {

 type: "String",

 required: true,

 },

 grade: {

 type: "String",

 required: true,

 },

 name: {

 type: "String",

 required: true,

 },

 on_wishlist: {

 type: ["String"],

 required: true,

 },

 location_id: {

 type: "String",

 required: true,

 },

});

export declare type LocationType = InferSchemaType<typeof Lo

cationSchema>;

Listing 12-6: The mongoose/locations/schema.ts file

We import the Schema constructor and InferSchemaType, the function
for inferring the schema type, both of which are part of the Mongoose
module. Then we define and directly export the schema. The schema itself
is straightforward. A document in the location collection has a few self-
explanatory properties that are all typed as strings except for the
on_wishlist property, which is an array of strings. To keep the application
simple, we will store the IDs of users who added a particular location to
their wish list directly in a location’s document instead of creating a new
Mongoose model and MongoDB document for each user’s wish list. This
isn’t a great design for a real application, but it’s fine for our purposes.
Lastly, we infer and export the LocationType directly from the schema
instead of creating the interface manually.

Creating the Location Model
With the schema and required interface in place, it’s time to create the
model. Create the file model.ts in the mongoose/location folder and paste
the code from Listing 12-7 into it.

import mongoose, {model} from "mongoose";

import {LocationSchema, LocationType} from "mongoose/locatio

ns/schema";

export default mongoose.models.locations ||

 model<LocationType>("locations", LocationSchema);

Listing 12-7: The mongoose/locations/model.ts file

After importing the required dependencies from the Mongoose
package, we import the LocationSchema and LocationType from the
schema.ts file we created previously. Then we use these to create and export
our locations model, unless there is already a model called locations
initialized and present. In this case, we return the existing one.

At this point, we’ve successfully created the Mongoose model and
connected it to the database. We can now access the MongoDB instance and
create, read, update, and delete documents in the locations collection
through Mongoose’s API.

To test that everything is working, try creating a temporary REST API
that initializes a connection to the database and then queries all documents
through the model. You can make this new file, test-middleware.ts, in the
application’s pages/api folder and paste the code from Listing 12-8 into it.

import type {NextApiRequest, NextApiResponse} from "next";

import dbConnect from "middleware/db-connect";

import Locations from "mongoose/locations/model";

export default async function handler(

 req: NextApiRequest, res: NextApiResponse<any>

) {

 await dbConnect();

 const locations = await Locations.find({});

 res.status(200).json(locations);

}

Listing 12-8: A temporary REST API to test the database connection

This API imports required dependencies from Next.js, the dbConnect
function, and the Locations model we created earlier. In the asynchronous
API handler, it calls the dbConnect function and waits until Mongoose
connects to the database. Then it calls Mongoose’s find API on the
Locations model with an empty filter object. Once it receives the locations,
the API handler will send them to the client.

If you open http://localhost:3000/api/test-middleware, you should see a
JSON object with all available locations, similar to Figure 12-1.

Figure 12-1: The API to test the middleware returns a JSON object with all locations stored
in the database.

You’ve successfully created the Mongoose model and run your first
database query.

The Model’s Services
Chapter 6 discussed how we usually abstract database CRUD operations
into service calls to simplify the implementation of GraphQL APIs down

the line. This is what we’ll do now, and as a first step, let’s outline the
required functionality.

We need one public service that queries all available locations so that
they can be displayed in the app’s overview page. To display a location’s
details, we need another public service that can find a specific location.
We’ll opt to use the location’s ID as a parameter for the service and then
look up the location by ID. To handle the wish list functionality, we need a
service that can update a user’s wish list, as well as another service that we
can use to decide whether a given location is currently on the user’s wish
list; depending on the result, we’ll display either an Add To or Remove
From button.

To design the service calls that find and return locations, we’ll create
one public function for each public API and a unified internal function,
findLocations, that calls Mongoose’s find function. The public APIs
construct the filter object that Mongoose uses to filter the documents in the
collection. In other words, it creates the database query. Also, it sets up
additional options we’ll pass to the Mongoose API. This design should
reduce the amount of code we need to write and prevent repetition.

Creating the Location Service’s Custom Types
You may have noticed that we’ll need two custom types for the parameters
to the unified findLocations function. One parameter defines the
properties for a find operation related to the wish list, and one is a
location’s ID. Create the file custom.d.ts in the mongoose/location folder to
define these types, as shown in Listing 12-9.

export declare type FilterLocationType = {

 location_id: string | string[];

};

export declare type FilterWishlistType = {

 on_wishlist: {

 $in: string[];

 };

};

Listing 12-9: The mongoose/locations/custom.d.ts file

We define and directly export these two custom types.
FilterLocationType is straightforward. It defines an object with one
property, the location’s ID, which is either a string or an array of strings. We
use it to find a location by its ID. The second type is FilterWishlistType,
which we’ll use to find all locations that contain the user’s ID in their
on_wishlist property. We set the value for Mongoose’s $in operator as an
array of strings.

Creating the Location Services
Now that we’ve created custom types for the services, we can implement
them. As usual, we create a file services.ts in the mongoose/location folder
and add the code from Listing 12-10 to it.

import Locations from "mongoose/locations/model";

import {

 FilterWishlistType,

 FilterLocationType,

} from "mongoose/locations/custom";

import {LocationType} from "mongoose/locations/schema";

import {QueryOptions} from "mongoose";

async function findLocations(

 filter: FilterLocationType | FilterWishlistType | {}

): Promise<LocationType[] | []> {

 try {

 let result: Array<LocationType | undefined> = await Loca

tions.find(

 filter

);

 return result as LocationType[];

 } catch (err) {

 console.log(err);

 }

 return [];

}

export async function findAllLocations(): Promise<LocationTy

pe[] | []> {

 let filter = {};

 return await findLocations(filter);

}

export async function findLocationsById(

 location_ids: string[]

): Promise<LocationType[] | []> {

 let filter = {location_id: location_ids};

 return await findLocations(filter);

}

export async function onUserWishlist(

 user_id: string

): Promise<LocationType[] | []> {

 let filter: FilterWishlistType = {

 on_wishlist: {

 $in: [user_id],

 },

 };

 return await findLocations(filter);

}

export async function updateWishlist(

 location_id: string,

 user_id: string,

 action: string

) : Promise<LocationType | null | {}>

 {

 let filter = {location_id: location_id};

 let options: QueryOptions = {upsert: true, returnDocumen

t: "after"};

 let update = {};

 switch (action) {

 case "add":

 update = {$push: {on_wishlist: user_id}};

 break;

 case "remove":

 update = {$pull: {on_wishlist: user_id}};

 break;

 }

 try {

 let result: LocationType | null = await Locations.fi

ndOneAndUpdate(

 filter,

 update,

 options

);

 return result;

 } catch (err) {

 console.log(err);

 }

 return {};

}

Listing 12-10: The mongoose/locations/services.ts file

After importing dependencies, we create the function that will actually
call Mongoose’s find API on the model and await the data from the
database. This function will query the database for all public services that
use find, so it’s the foundation of all our services. Its one parameter, the
filter object, can be passed to the model’s find function to retrieve the
documents that match the filter. The filter is either an empty object that
returns all locations or one of our custom types, FilterLocationType or
FilterWishlistType. As soon as we have the data from the database, we
cast it to the LocationType and then return it. If there is an error, we log it
and then return an empty array to match the defined return types: either an
array of LocationTypes or an empty array.

The following three functions are the public services, which will
provide database access to other TypeScript modules and the user interface.
All follow the same structure. First, within the findLocationsById
function, we set the filter object to a particular parameter. Then we call
the findLocations function with this service-specific filter object.
Because every service calls the same function, services also have the same

return signature, and each returns an array of locations or an empty array.
The first uses an empty object. Hence, it filters for nothing and instead
returns all documents from the collection. The function findLocationsById
uses the FilterLocationType and returns the documents that match the
given location IDs.

The next function, onUserWishlist, uses a slightly more complex
filter object. It has the type FilterWishlistType, and we pass it to the
findLocations function to get all locations whose on_wishlist array
contains the given user ID. Note that we type the filter objects explicitly
upon declaration. This deviates from the advice given in Chapter 3, but we
do it here to ensure that TSC verifies the object properties, as it cannot infer
the types from their usage in this case.

Finally, we implement the updateWishlist function. It is slightly
different from the previous ones, but the overall structure should look
familiar. Again, we build the filter object from the first parameter, and we
use the second one, the user ID, to update the on_wishlist array. Unlike in
previous functions, however, we use another parameter to specify whether
we want to add or remove the user ID to or from the array. Using a
switch/case statement here is a convenient way to reduce the number of
exposed services. Depending on the action parameter, we fill the update
object with either the $push operator, which adds the user ID to the
on_wishlist array, or the $pull operator, which removes the user ID. We
pass the object to Mongoose’s findOneAndUpdate API to look for the first
document that matches the filter, and we directly update the record and then
return the updated document or an empty object.

Testing the Services
Let’s use our temporary REST API to evaluate the services. Open the test-
middleware.ts file we created earlier and update it with the code from
Listing 12-11.

import type {NextApiRequest, NextApiResponse} from "next";

import dbConnect from "middleware/db-connect";

import {findAllLocations} from "mongoose/locations/service

s";

export default async function handler(

 req: NextApiRequest,

 res: NextApiResponse<any>

) {

 await dbConnect();

 const locations = await findAllLocations();

 res.status(200).json(locations);

}

Listing 12-11: The pages/api/test-middleware.ts file using the services

Instead of directly importing the model and using Mongoose’s find
method on it, we import the location services and query all locations with
the findAllLocations service. If you open the API at
http://localhost:3000/api/test-middleware in your browser, you should once
again see a JSON object with all available locations.

Summary
We’ve successfully created the first part of the middleware. With the code
in this chapter, we can use a Mongoose model to create, read, update, and
delete documents in the MongoDB collection. To perform these actions, we
set up the services we’ll connect to our upcoming GraphQL API. In the next
chapter, we’ll delete the temporary testing API middleware and replace it
with a proper GraphQL API.

13
BUILDING THE GRAPHQL API

In this chapter, you’ll add a GraphQL
API to the middleware by defining its

schema, as well as resolvers for each query and
mutation. These resolvers will complement the
Mongoose services created in Chapter 12. The
queries will be public; however, we’ll expose our
mutations as protected APIs by adding an
authorization layer via OAuth.

Unlike in the GraphQL API of Chapter 6, we’ll follow a pattern of
modularization to implement these schemas and resolvers. Instead of
writing everything in one big file, we’ll split the elements into separate
files. Like using modules in modern JavaScript, this approach has the
benefit of breaking down the code into smaller logical units, each with a
clear focus. These units enhance the code’s readability and maintainability.

Setting Up
We’ll create the API’s single-entry point /api/graphql with the Apollo
server, which integrates into Next.js with the @as-integrations/next
package. Start by installing the packages necessary for the GraphQL setup
from the npm registry:

$ docker exec -it foodfinder-application npm install @apoll

o/server graphql graphql-tag

@as-integrations/next \

After the installation is complete, create the folder graphql/locations
next to the middleware folder in the application’s root.

The Schemas
The first step to writing the schemas is to define the query and mutation
typedefs, as well as any custom types we use for the schema. To do so,
we’ll split the schema into three files, custom.gql.ts, queries.gql.ts, and
mutations.gql.ts, in the graphql/locations folder. Then we’ll use an ordinary
template literal to merge them into the final schema definition.

The Custom Types and Directives
Add the code from Listing 13-1 to the custom.gql.ts file to define the
schema for the GraphQL queries.

export default `

 directive @cacheControl(maxAge: Int) on FIELD_DEFINITION

| OBJECT

 type Location @cacheControl(maxAge: 86400) {

 address: String

 street: String

 zipcode: String

 borough: String

 cuisine: String

 grade: String

 name: String

 on_wishlist: [String] @cacheControl(maxAge: 60)

 location_id: String

 }

`;

Listing 13-1: The graphql/locations/custom.gql.ts file

The GraphQL API will return location objects from the Mongoose
schema. Therefore, we must define a custom type representing these
location objects. Create a custom Location type. To instruct the server to
cache the retrieved values, set an @cacheControl directive for the whole
custom type and a shorter one for the on_wishlist property because we
expect this particular property to change frequently.

The Query Schema
Now add the code from Listing 13-2 to the queries.gql.ts file to define the
schema for the queries.

export default `

 allLocations: [Location]!

 locationsById(location_ids: [String]!): [Location]!

 onUserWishlist(user_id: String!): [Location]!

`;

Listing 13-2: The graphql/locations/queries.gql.ts file

We define a template literal with three GraphQL queries, all of which
are entry points to the services we implemented for the Mongoose locations
model in Chapter 12. The names and parameters are similar to those in the
services, and the queries follow the GraphQL syntax you learned about in
Chapter 6.

The Mutation Schema
To define the mutation schema, paste the code from Listing 13-3 into the
mutations.gql.ts file.

export default `

 addWishlist(location_id: String!, user_id: String!): Loc

ation!

 removeWishlist(location_id: String!, user_id: String!):

Location!

`;

Listing 13-3: The graphql/locations/mutations.gql.ts file

We create two mutations as template literals using GraphQL syntax:
one for adding an item to the user’s wish list and one for removing it. Both
will use the updateWishlist function we implemented on the location
services, so they require the location_id and the user_id as parameters.

Merging the Typedefs into the Final Schema
We’ve split the location schema into two files, one for the queries and one
for the mutations, and placed their custom types in a third file; however, to
initiate the Apollo server, we’ll need a unified schema. Luckily, the typedefs
are nothing more than template literals, and if we use template literal
placeholders, the parser can interpolate these into a complete string. To
accomplish this, create a new file, schema.ts, in the graphql folder and add
the code from Listing 13-4.

import gql from "graphql-tag";

import locationTypeDefsCustom from "graphql/locations/custo

m.gql";

import locationTypeDefsQueries from "graphql/locations/queri

es.gql";

import locationTypeDefsMutations from "graphql/locations/mut

ations.gql";

export const typeDefs = gql`

 ${locationTypeDefsCustom}

 type Query {

 ${locationTypeDefsQueries}

 }

 type Mutation {

 ${locationTypeDefsMutations}

 }

`;

Listing 13-4: The graphql/schema.ts file

We import the gql tag from the graphql-tag package. Even though
doing so is optional when working with the Apollo server, we keep the gql
tag in front of our tagged template to ensure compatibility with all other
GraphQL implementations. This also produces proper syntax highlighting
in the IDE, which statically analyzes type definitions as GraphQL tags.

Next, we import the dependencies and schema fragments we’ll use to
implement the unified schema. Finally, we create a tagged template literal
with the gql function, using template literal placeholders to merge the
schema fragments into the schema skeleton. We add the custom Location
type and then merge the queries’ typedefs into the Query object and the
Mutations into the mutation object and export the schema const as
typedefs.

The GraphQL Resolvers
Now that we have the schema, we’ll turn to the resolvers. We’ll use a
similar development pattern, writing the queries and mutations in separate
files, then merging them into the single file we need for the Apollo server.
Start by creating the queries.ts and mutations.ts files in the
graphql/locations folder and then add the code from Listing 13-5 to
queries.ts.

import {

 findAllLocations,

 findLocationsById,

 onUserWishlist,

} from "mongoose/locations/services";

export const locationQueries = {

 allLocations: async (_: any) => {

 return await findAllLocations();

 },

 locationsById: async (_: any, param: {location_ids: stri

ng[]}) => {

 return await findLocationsById(param.location_ids);

 },

 onUserWishlist: async (_: any, param: {user_id: string})

=> {

 return await onUserWishlist(param.user_id);

 },

};

Listing 13-5: The graphql/locations/queries.ts file

We import our services from the Mongoose folder and then create and
export the location query object. The structure of each query follows the
structure discussed in Chapter 6. We make one query for each service, and
their parameters match those in the services.

For our mutations, add the code from Listing 13-6 to the mutations.ts
file.

import {updateWishlist} from "mongoose/locations/services";

interface UpdateWishlistInterface {

 user_id: string;

 location_id: string;

}

export const locationMutations = {

 removeWishlist: async (

 _: any,

 param: UpdateWishlistInterface,

 context: {}

) => {

 return await updateWishlist(param.location_id, para

m.user_id,

 "remove"

);

 },

 addWishlist: async (_: any, param: UpdateWishlistInterfa

ce, context: {}) => {

 return await updateWishlist(param.location_id, para

m.user_id, "add");

 },

};

Listing 13-6: The graphql/locations/mutations.ts file

Here we import only the updateWishlist function from our services.
This is because we defined it as the single entry point for updating our
documents, and we opted to use the third parameter, with the value add or
remove, to distinguish between the two actions the mutation should
perform. We also create the UpdateWishlistInterface, which we don’t
export. Instead, we’ll use it inside this file to avoid repeating code when we
define the interface for the functions’ param argument.

As mutations, we create two functions at the locationMutations
object, one for adding an item from a user’s wish list and one for removing
it. Both use the updateWishlist service and supply the value parameter
corresponding to the action the user would like to take. The two mutations,
removeWishlist and addWishlist, also take a third object called context.
For now, it’s an empty object, but in Chapter 15, we’ll replace it with the
session information necessary to verify the identity of the user performing
the action.

Create the final resolvers file, resolvers.ts, in the graphql folder and
add the code from Listing 13-7 to it. This code will merge the mutation and
query definitions.

import {locationQueries} from "graphql/locations/queries";

import {locationMutations} from "graphql/locations/mutation

s";

export const resolvers = {

 Query: {

 ...locationQueries,

 },

 Mutation: {

 ...locationMutations,

 },

};

Listing 13-7: The graphql/resolvers.ts file

In addition to the schema, we must pass the Apollo server an object
containing all resolvers, as discussed in Chapter 6. To be able to do so, we
must import the queries and mutations. Then we use the spread operator to
merge the imported objects into the resolvers object, which we export.
Now, with the schema and resolvers object available, we can create the
API endpoint and instantiate the Apollo server.

Adding the API Endpoint to Next.js
When we discussed the differences between REST and GraphQL APIs, we
pointed out that unlike REST, where every API has its own endpoint,
GraphQL provides only one endpoint, typically exposed as /graphql. To
create this endpoint, we’ll use the Apollo server’s Next.js integration, as we
did in Chapter 6.

Create the graphql.ts file in the pages/api folder and copy the code in
Listing 13-8, which defines the API handler and its single entry point.

import {ApolloServer, BaseContext} from "@apollo/server";

import {startServerAndCreateNextHandler} from "@as-integrati

ons/next";

import {resolvers} from "graphql/resolvers";

import {typeDefs} from "graphql/schema";

import dbConnect from "middleware/db-connect";

import {NextApiHandler, NextApiRequest, NextApiResponse} fro

m "next";

❶ const server = new ApolloServer<BaseContext>({

 resolvers,

 typeDefs,

});

❷ const handler = startServerAndCreateNextHandler(server, {

 context: async () => {

 const token = {};

 return {token};

 },

});

❸ const allowCors =

 (fn: NextApiHandler) =>

 async (req: NextApiRequest, res: NextApiResponse) => {

 res.setHeader("Allow", "POST");

 res.setHeader("Access-Control-Allow-Origin", "*");

 res.setHeader("Access-Control-Allow-Methods", "POS

T");

 res.setHeader("Access-Control-Allow-Headers", "*");

 res.setHeader("Access-Control-Allow-Credentials", "t

rue");

 if (req.method === "OPTIONS") {

 res.status(200).end();

 }

 return await fn(req, res);

 };

❹ const connectDB =

 (fn: NextApiHandler) =>

 async (req: NextApiRequest, res: NextApiResponse) => {

 await dbConnect();

 return await fn(req, res);

 };

export default connectDB(allowCors(handler));

Listing 13-8: The pages/api/graphql.ts file

We import all the elements we need to create the API handler: the
Apollo server, a helper for the Apollo–Next.js integration, our resolvers, the
GraphQL schema files, the function used to connect to the database, and the
Next.js API helpers.

We create a new Apollo server with the resolvers and schema ❶. Then
we use the Next.js integration helper ❷ to start the Apollo server and return
a Next.js handler. The integration helper uses a serverless Apollo setup to
smoothly integrate into the Next.js custom server instead of creating its

own. In addition, we pass the context with an empty token to the handler.
This is how we’ll access the JWT we receive in the OAuth flow and pass it
to the resolvers later.

Next, we create the wrapper functions discussed in Chapter 6 to add the
CORS headers ❸ and ensure that we have a database connection on each
API call ❹. We can safely do so because we set up our database connection
in a way that returns the existing cached connection. Finally, we export the
returned asynchronous wrapped handler.

Visit the Apollo sandbox at http:/localhost:3000/api/graphql and run a
few queries to test the GraphQL API before moving on to the next chapter.
If you see the weather queries and mutations instead of the Food Finder’s,
clear your browser’s cache and do a hard reload.

Summary
We’ve successfully added the GraphQL API to the middleware. With the
code in this chapter, we can now use the Apollo sandbox to read and update
values in the database. We’ve also already prepared the Apollo handler for
authentication by providing it with an empty token. Now we’re ready to use
the JWT token we’ll receive from the OAuth flow in Chapter 15 to protect
the API’s mutations. But before we add this authentication, let’s build the
frontend.

14
BUILDING THE FRONTEND

In this chapter, you’ll build the frontend
using React components and Next.js

pages, discussed in Chapters 4 and 5. By the end,
you’ll have an initial version of the app to which you
can add OAuth authentication.

Overview of the User Interface
Our application will consist of three Next.js pages. The start page will show
the list of locations retrieved from the database. Each item in the list will
link to its respective location detail page, whose URL we’ll construct using
the location’s ID, like this: /location/:location_id. The third page is the
user’s wish list page. It resembles the start page and follows the same
dynamic URL pattern as the location detail page, except it supplies the
user’s ID instead of the location’s. This page shows only the locations
already added to the wish list.

We must also consider what rendering strategy to use for each page.
Because the content of the start page never changes, we’ll use static site
generation (SSG) to render the HTML on build time. Because the detail
page and wish list page will change based on the user’s actions, we’ll use
static site rendering (SSR) to regenerate them upon every request.

Lastly, all three pages should have headers containing the logo and a
link to the start page. When we add the OAuth data in the next chapter,

we’ll show the user’s name, a link to the user’s wish list, and the sign-
in/sign-out button in the header as well.

To achieve this, we need to create the following React components:

The locations list component, which will use the locations list item
component to render the list of locations on the start page. Later, we’ll
use these same components to implement the list of locations on a user’s
wish list page.
The overall layout component, header component, and logo component,
which define the global layout of each page.
The authentication element component, which lets users log in or out in
the header.
A universal button component we’ll use for different tasks.

Let’s begin with the components necessary for the start page.

The Start Page
We’ll begin by crafting the smallest parts of the user interface and then use
these to build the more complex components and pages. On the start page,
we need the layout component, the locations list component, and the
locations list item component, which is the smallest building block, so we’ll
start there.

Create the components folder in the application’s root directory, next to
the middleware folder. This is where we’ll place all our React components,
in their own folders.

The List Item
The locations list item component represents a single item in a list of
locations. Create the locations-list-item folder and add two files, index.tsx
and index.module.css, following the pattern we discussed in Chapter 5.
Then add the code in Listing 14-1 to index.module.css. We’ll use this CSS
to style the component.

.root {

 background-color: #fff;

 border-radius: 5px;

 color: #1d1f21;

 cursor: pointer;

 list-style: none;

 margin: 0.5rem 0;

 padding: 0.5rem;

 transition: background-color 0.25s ease-in, color 0.25s

ease-in;

 will-change: background-color, color;

}

.root:hover {

 background-color: rgba(0, 118, 255, 0.9);

 color: #fff;

}

.root h2 {

 margin: 0;

 padding: 0;

}

.root small {

 font-weight: 300;

 padding: 0 1rem;

}

Listing 14-1: The components/locations-list-item/index.module.css file

The CSS module uses dark letters on a white background. In addition,
it adds a simple hover effect, causing the background to turn blue and the
font color white when a user hovers over it. We remove the list marker and
set the margin and padding accordingly.

Now add the code from Listing 14-2 to the index.tsx file.

import Link from "next/link";

import styles from "./index.module.css";

import {LocationType} from "mongoose/locations/schema";

interface PropsInterface {

 location: LocationType;

}

const LocationsListItem = (props: PropsInterface): JSX.Eleme

nt => {

 const location = props.location;

 return (

 <>

 {location && (

 <li className={styles.root}>

 <Link href={`/location/${location.locati

on_id}`}>

 <h2>

 {location.name}

 <small className={styles.detail

s}>

 {location.cuisine} in {locat

ion.borough}

 </small>

 </h2>

 </Link>

)}

 </>

);

};

export default LocationsListItem;

Listing 14-2: The components/locations-list-item/index.tsx file

You should be familiar with this file’s structure from Chapter 5. First
we import the next/link component, which we need to create a link to the
detail page, the styles we just added, and the LocationType from the
Mongoose schema.

We then define the PropsInterface, a private interface used for the
component’s properties object. The component has the usual props
parameter whose structure defines the PropsInterface and returns a JSX
element. These props hold the data in the location property, which we pass

to the component through its location attribute. Finally, we define the
LocationsListItem component and store it in a constant that we export at
the end of the file.

In the component itself, we have a list item that contains a Next.js Link
element linking to the location’s detail page. These links use a dynamic
URL pattern that incorporates the respective location’s ID, so we create the
link target to match /location/:location_id. In addition, we render the
location’s name, cuisine, and borough values to the component. Keep in
mind that until we create the page for the route /location/:location_id,
clicking those links will result in a 404 error page.

The Locations List
Using the list item component, we’ll build the locations list. This
component will loop through an array of locations and display them on the
start page and wish list page. Create the components/locations-list folder
and then add the files index.tsx and index.module.css to them. Copy the
code in Listing 14-3 to the index.module.css file.

.root {

 margin: 0;

 padding: 0;

}

Listing 14-3: The components/locations-list/index.module.css file

The styles for the locations list component are simple; we remove the
margin and padding from the component’s root element. We create the
component itself in Listing 14-4, which you should copy to index.tsx.

import LocationsListItem from "components/locations-list-ite

m";

import styles from "./index.module.css";

import {LocationType} from "mongoose/locations/schema";

interface PropsInterface {

 locations: LocationType[];

}

const LocationsList = (props: PropsInterface): JSX.Element =

> {

 return (

 <ul className={styles.root}>

 {props.locations.map((location) => {

 return (

 <LocationsListItem

 location={location}

 key={location.location_id}

 />

);

 })}

);

};

export default LocationsList;

Listing 14-4: The components/locations-list/index.tsx file

We import the LocationsListItem we just implemented, along with
the module’s styles and the LocationType from Mongoose’s schema. We
then define the component’s PropsInterface to describe the component’s
props object. In the LocationsList component, we use the array map
function to iterate over the location objects, rendering a
LocationsListItem component for each array item and using the location
attribute to pass the location details to the components. React requires that
each item rendered in a loop have a unique ID. We use the location IDs for
this purpose.

We can now create the start page and pass all available locations to this
component. Later, we’ll use the same component for the wish list page to
return the locations on the user’s wish list.

The Page
At this point, we have the components we need for the start page, which is a
basic Next.js page. Save this page’s global styles in styles/globals.css and
its code in pages/index.tsx. Listing 14-5 contains the styles. Delete all other

files from the styles directory. Those are default styles we don’t need for the
application.

html,

body {

 font-family: -apple-system, Segoe UI, Roboto, sans-seri

f;

 margin: 0;

 padding: 0;

}

* {

 box-sizing: border-box;

}

h1 {

 font-size: 3rem;

}

a {

 color: inherit;

 text-decoration: none;

}

Listing 14-5: The styles/globals.css file

We set a few global styles, such as the default font family, and change
the box model to the more intuitive border-box for all elements. By using a
border-box instead of a content-box, an element adopts whatever width
we assign to it with the width property. Otherwise, the width property
would define only the width of the content, and we’d need to add the border
and padding to calculate the actual dimensions of the element on the page.
We set the font families to the defaults for each operating system to ensure
readability.

Now replace the existing content of the pages/index.tsx file with the
code in Listing 14-6.

import Head from "next/head";

import type {GetStaticProps, InferGetStaticPropsType, NextPa

ge} from "next";

import LocationsList from "components/locations-list";

import dbConnect from "middleware/db-connect";

import {findAllLocations} from "mongoose/locations/service

s";

import {LocationType} from "mongoose/locations/schema";

❶ const Home: NextPage = (

 props: InferGetStaticPropsType<typeof getStaticProps>

) => {

 ❷ const locations: LocationType[] = JSON.parse(props.dat

a?.locations);

 let title = `The Food Finder - Home`;

 return (

 <div>

 <Head>

 <title>{title}</title>

 <meta name="description" content="The Food F

inder - Home" />

 </Head>

 <h1>Welcome to the Food Finder!</h1>

 <LocationsList locations={locations} />

 </div>

);

};

❸ export const getStaticProps: GetStaticProps = async () => {

 let locations: LocationType[] | [];

 try {

 await dbConnect();

 ❹ locations = await findAllLocations();

 } catch (err: any) {

 return {notFound: true};

 }

 ❺ return {

 props: {

 data: {locations: JSON.stringify(locations)},

 },

 };

};

export default Home;

Listing 14-6: The pages/index.tsx file

We implemented the Next.js page, similar to the structure discussed in
Chapter 5. First we import all dependencies; then we create the NextPage
and store it in a constant that we export at the end of the file ❶.

The Next.js page’s props object, the page properties, contains the data
we return from the getStaticProps function ❺, discussed in Chapter 5. In
this asynchronous function, we connect to the database ❸. As soon as the
connection is ready, we call the service method to retrieve all locations ❹
and then pass them as a JSON string to the NextPage in the
data.locations property of the props object. Next.js calls the
getStaticProps function on build time and generates the HTML for this
page only once. We can use this rendering method because the list of
available locations never changes; it is static.

Then we retrieve the locations from the page properties ❷, parse the
JSON string back to an array, and store the page title in a variable. We type
the locations constant explicitly because TSC cannot easily infer the type.
Then we construct the JSX. In the first step, we use the next/head
component to set the page-specific metadata. Then we call the
LocationList component we previously implemented with the locations
array in the locations attribute. By doing so, the LocationList component
renders all locations as an overview list.

As soon as you save the file, you should see, in the Docker command
line, that Next.js recompiles the application. Open the web application at
http://localhost:3000 in your browser to see a list of locations similar to
Figure 14-1.

Figure 14-1: The start page showing all available locations

Now we’ll move on to styling the frontend and adding basic global
components, such as the application’s header with the Food Finder logo.

The Global Layout Components
Now it’s time to create the three global components. These include the
overall layout component, which we’ll use to format the start and wish list
page content, a sticky header (which is always visible, “sticking” to the
browser’s upper edge), and the Food Finder logo to go in the header. Again,
we’ll start with the smallest units and then use those as building blocks for
the overall components.

The Logo
The smallest component, the logo, is nothing more than a next/image
component wrapped in a next/link element; when users click the logo
image, they’ll be redirected to the start page. Add a header folder to the
components folder, then add a logo folder to the header folder and create

two files there, index.tsx and index.module.css, into which you should paste
the code in Listing 14-7.

.root {

 display: inline-block;

 height: 35px;

 position: relative;

 width: 119px;

}

@media (min-width: 600px) {

 .root {

 height: 50px;

 width: 169px;

 }

}

Listing 14-7: The components/header/logo/index.module.css file

These basic styles for the component’s root element set the image’s
dimensions. We use a mobile-first design pattern by initially defining the
styles to use on smaller screens and then, using a standard CSS media
query, modifying them for screens bigger than 600px. We’ll use a bigger
image on bigger screens.

Now let’s create the logo component. Create an assets subfolder in the
Next.js public folder and place the logo.svg file extracted from assets.zip
into it. Then add the code in Listing 14-8 to the logo’s index.tsx file.

import Image from "next/image";

import Link from "next/link";

import logo from "/public/assets/logo.svg";

import styles from "./index.module.css";

const Logo = (): JSX.Element => {

 return (

 <Link href="/" passHref className={styles.root}>

 <Image

 src={logo}

 alt="Logo: Food Finder"

 sizes="100vw"

 fill

 priority

 />

 </Link>

);

};

export default Logo;

Listing 14-8: The components/header/logo/index.tsx file

As usual, we import the dependencies and then create an exported
constant that contains the JSX code. We don’t pass any data to it through
attributes or child elements; hence, we don’t need to define the component’s
props object here.

We use a basic next/image inside a next/link element to link back to
the start page and set the next/image’s attributes to fill the available space
defined in the CSS file.

The Header
The header component will wrap the logo component we just created.
Create the index.tsx file and index.module.css file in the header folder, then
add the code in Listing 14-9 to the CSS file.

.root {

 background: white;

 border-bottom: 1px solid #eaeaea;

 padding: 1rem 0;

 position: sticky;

 top: 0;

 width: 100%;

 z-index: 1;

}

Listing 14-9: The components/header/index.module.css file

We use the CSS definitions position: sticky and top: 0 to stick the
header to the upper edge of the browser. Now the header will automatically
stay there even when users scroll down the page; the page’s content should
scroll below the header because we set the header’s z-index, placing the
header in front of the other elements. You can think of the z-index as
determining which floor of a building an element is on.

Listing 14-10 shows the code for the header component. Copy it into
the component’s index.tsx file.

import styles from "./index.module.css";

import Logo from "components/header/logo";

const Header = (): JSX.Element => {

 return (

 <header className={styles.root}>

 <div className="layout-grid">

 <Logo />

 </div>

 </header>

);

};

export default Header;

Listing 14-10: The components/header/index.tsx file

We define a basic component that displays the logo. Then we wrap the
imported Logo component in an element with a global layout-grid class,
which we’ll define in the next section.

The Layout
Currently, we have one Next.js page (the start page) and a header
component. The easiest way to add the header to the page would be to
import it into the Next.js page and place it directly into the JSX. However,
we’ll add two more pages to the app, the wish list page and the location
detail page, so we want to avoid importing the header three times.

To streamline the overall app design, Next.js provides the concept of a
layout, which is really just another component, and we can use it to add the
header component as a sibling element to a page’s content. Let’s create a
new layout component. First, to create this component’s CSS file, add
layout.css to the styles folder and paste the code in Listing 14-11 into it.

.layout-grid {

 align-items: center;

 display: flex;

 flex-direction: column;

 justify-content: space-between;

 margin: 0 auto;

 max-width: 800px;

 padding: 0 1rem;

 width: 100%;

}

@media (min-width: 600px) {

 .layout-grid {

 flex-direction: row;

 padding: 0 2rem;

 }

}

Listing 14-11: The styles/layout.css file

We use the mobile-first pattern once again to define a basic grid
wrapper, setting the global padding and maximum width for the content
area. We set the wrapper’s left and right margins to auto, which centers the
container, because the margins take up all available space between the
fixed-width wrapper and the window’s edges.

We use flexbox to set the direction of the wrapper’s direct child
elements to column, displaying them one on top of the next. Because the
logo and all other upcoming header elements are direct children of an
element with the layout-grid class, they are affected by the flexbox
layout. In contrast, the location items aren’t direct siblings. Hence, they
won’t change their direction when switching between screen sizes.

Then we use a media query to adjust the styles for screens whose width
is greater than 600px. Here we increase the padding and change the layout
order of the direct child elements. Instead of using column, we set it to row,
and immediately we display the elements next to one another.

Because this is a global styles file and not a CSS module, Next.js won’t
automatically scope the class names. Hence, we prefix them with layout-
and don’t import the styles into the component before using them.

Now create a layout folder inside the components folder and add the
index.tsx file to it with the component code in Listing 14-12.

import Header from "components/header";

interface PropsInterface {

 children: React.ReactNode;

}

const Layout = (props: PropsInterface): JSX.Element => {

 return (

 <>

 <Header />

 <main className="layout-grid">

 {props.children}

 </main>

 </>

);

};

export default Layout;

Listing 14-12: The components/layout/index.tsx file

In the layout component, we define a private interface and the
component with the usual structure. Inside the component, we add the
Header and the main element that uses the global layout styles and acts as a
wrapper for the children elements we’ll pass to this component in the
_app.tsx file.

Open the _app.tsx file and modify it as shown in Listing 14-13.

import "../styles/globals.css";

import "../styles/layout.css";

import type {AppProps} from "next/app";

import Layout from "components/layout";

export default function App({Component, pageProps}: AppProp

s) {

 return (

 <Layout>

 <Component {...pageProps} />

 </Layout>

);

}

Listing 14-13: The pages/_app.tsx file

First we add layout.css as a global style. As for the layout, we have
only one layout component we’ll use for all pages, and we import it here.
Then we wrap our application, the pages, with the layout and pass the
current page in the component’s children property.

Now all our Next.js pages will follow the same structure: they’ll have
the Header component next to the main element containing the page’s
content. One advantage of following this pattern is that the component’s
state will be preserved across page changes and React component re-
rendering.

Once Next.js has recompiled the application, try reloading the
application at http://localhost:3000 in your browser. It should look like
Figure 14-2.

Figure 14-2: The start page with the header and layout component

You should now see the header, and the new layout component centers
the content.

The Location Details Page
Our application now has a start page with a header and a list of all available
locations. The list items link to their particular location’s detail page
because we added a next/link component to them, but those pages don’t
exist yet. If you click one of the links, you’ll get a 404 error. To display the
location details pages, we first need to implement the component that lists a
particular location’s details and then create a new Next.js page.

The Component
Let’s start with the details component. Create the location-details folder in
the components directory and add the index.module.css and index.tsx files to
it. Then add the code from Listing 14-14 to the CSS module.

.root {

 margin: 0 0 2rem 0;

 padding: 0;

}

.root li {

 list-style: none;

 margin: 0 0 0.5rem 0;

}

Listing 14-14: The components/locations-details/index.module.css file

The styles for the component are basic. We remove the default margin
and padding, as well as the list styles, and then add a custom margin at the
end of each list item and root element.

To implement the location details component, add the code from
Listing 14-15 to the index.tsx file in the components/locations-details
folder.

import {LocationType} from "mongoose/locations/schema";

import styles from "./index.module.css";

interface PropsInterface {

 location: LocationType;

}

const LocationDetail = (props: PropsInterface): JSX.Element

=> {

 let location = props.location;

 return (

 <div>

 {location && (

 <ul className={styles.root}>

 Address:

 {location.address}

 Zipcode:

 {location.zipcode}

 Borough:

 {location.borough}

 Cuisine:

 {location.cuisine}

 Grade:

 {location.grade}

)}

 </div>

);

};

export default LocationDetail;

Listing 14-15: The components/locations-details/index.tsx file

The locations detail component is structurally similar to the locations
list item. Both take an object containing the location’s data and add a
specific set of properties to the returned JSX element. The main difference
is in the JSX structure we create. Otherwise, we follow the known pattern,
importing the required styles and type, defining the component’s props
interface using the LocationType, and then returning a JSX element with
the location details.

The Page
We mentioned in “Overview of the User Interface” on page 215 that a
location’s detail page should be available at the dynamic URL
location/:location"ePub-I">location folder in the pages directory and add
the [locationId].tsx file containing the code in Listing 14-16.

import Head from "next/head";

import type {

 GetServerSideProps,

 GetServerSidePropsContext,

 InferGetServerSidePropsType,

 PreviewData,

 NextPage,

} from "next";

import LocationDetail from "components/location-details";

import dbConnect from "middleware/db-connect";

import {findLocationsById} from "mongoose/locations/service

s";

import {LocationType} from "mongoose/locations/schema";

import {ParsedUrlQuery} from "querystring";

const Location: NextPage = (

 props: InferGetServerSidePropsType<typeof getServerSideP

rops>

) => {

 let location: LocationType = JSON.parse(props.data?.loca

tion);

 ❶ let title = `The Food Finder - Details for ${location?.n

ame}`;

 return (

 <div>

 <Head>

 <title>{title}</title>

 <meta

 name="description"

 content={`The Food Finder.

 Details for ${location?.name}`}

 />

 </Head>

 <h1>{location?.name}</h1>

 ❷ <LocationDetail location={location} />

 </div>

);

};

❸ export const getServerSideProps: GetServerSideProps = async

(

 context: GetServerSidePropsContext<ParsedUrlQuery, Previ

ewData>

) => {

 let locations: LocationType[] | [];

 ❹ let {locationId} = context.query;

 try {

 await dbConnect();

 locations = await findLocationsById([locationId as s

tring]);

 ❺ if (!locations.length) {

 throw new Error(`Locations ${locationId} not fou

nd`);

 }

 } catch (err: any) {

 return {

 notFound: true,

 };

 }

 return {

 ❻ props: {data: {location: JSON.stringify(locations.po

p())}},

 };

};

Listing 14-16: The pages/location/[locationId].tsx file

The start page and location detail page look fairly similar. The only
visual difference is the page’s title, which we construct with the location’s
name ❶, and instead of the LocationsList component, we use the
LocationDetail component with a single location object ❷.

From a functional perspective, however, the pages are not similar.
Unlike the start page, which uses SSG, the location detail page uses SSR
with getServerSideProp ❸. This is because as soon as we add the wish list
functionality and implement the Add To/Remove button, the page’s content
should change along with a user’s action. Hence, we need to regenerate the
HTML on each request. We discussed the differences between SSR and
SSG in depth in Chapter 5.

We use the page’s context and its query property to get the location ID
from the dynamic URL ❹. Then we use the ID to get the matching location
from the database. As before, we use the service directly instead of calling
the publicly exposed API, as Next.js runs both get...Prop functions on the
server side and can directly access the services in our application’s
middleware.

We also implement two exit scenarios. First, if there is no result, we
throw an error to step into the catch block ❺, and by doing so, redirect the
user to the 404 Not Found error page. Otherwise, we store the first location
from the results in the location property ❻ and pass it to the Next.js page
function we export in the last line.

Summary
We’ve successfully built the frontend for the Food Finder application. At
this point, you’ve implemented a full-stack web application that reads data
from a MongoDB database and renders the results as React user interface
components in Next.js. Next, we’ll add an OAuth authentication flow with
GitHub so that users can log in with their GitHub account and store a
personalized wish list.

15
ADDING OAUTH

In this chapter, you’ll add OAuth
authentication to the Food Finder app,

giving users the opportunity to log in with their
GitHub accounts. You’ll also implement the wish list
page to which authenticated users can add and
remove locations, as well as the button component
needed to accomplish this. Lastly, you’ll learn how to
protect your GraphQL mutations from
unauthenticated users.

Adding OAuth with next-auth
Developers usually use third-party libraries or SDKs to implement OAuth.
For the Food Finder application, we’ll use the next-auth package from
Auth.js, which comes with an extensive set of preconfigured templates that
allow us to connect to an OAuth service easily. These templates are called
providers, and we’ll use one of them: the GitHub provider, which adds a
Log In with GitHub button to our app. For a refresher on the OAuth
authentication process, return to Chapter 9.

Creating a GitHub OAuth App
First we need to create an OAuth application using GitHub. This should
give us the client ID and client secret that the Food Finder application needs
to connect to GitHub. If you don’t already have a GitHub account, create
one now at https://github.com, then log in. Navigate to https://github.com
/settings/developers and create a new OAuth app in the OAuth Apps
section. Enter the Food Finder app’s details in the resulting form, which
should look similar to Figure 15-1.

Figure 15-1: The GitHub user interface for adding a new OAuth application

Enter Food Finder as the name, set the home page URL to
http://localhost:3000/, and set the authorization callback URL to
http://localhost:3000/api/auth/callback/github. After registering the
application, GitHub should show us the client ID and let us generate a client
secret.

Adding the Client Credentials
Now copy these credentials as GITHUB_CLIENT_ID and
GITHUB_CLIENT_SECRET to the env.local file in the application’s code root

https://github.com/
https://github.com/settings/developers

folder. This file looks like this:

MONGO_URI=mongodb://backend:27017/foodfinder

GITHUB_CLIENT_ID=ADD_YOUR_CLIENT_ID_HERE

GITHUB_CLIENT_SECRET=ADD_YOUR_CLIENT_SECRET_HERE

Fill in the placeholders with your credentials.

Installing next-auth
To add Auth.js’s OAuth SDK for next-auth to the Food Finder app and
configure it to connect to the provider, run the following:

$ docker exec -it foodfinder_application npm install next-au

th

By default, this SDK uses encrypted JWTs to store and attach session
information to API requests. The library automatically handles the
encryption and decryption as long as we provide it with a secret. To add
such a secret, open the env.local file and add the following line to the end:

NEXTAUTH_SECRET=78f6cc4bf633b1102f4ca4d72602c60f

Use any secret you’d like. The string used here was randomly
generated with OpenSSL at
https://www.usemodernfullstack.dev/api/v1/generate-secret, and you should
use a fresh one for each application.

Creating the Authentication Callback
Now we’ll develop the api/auth route for the authorization callback URL
we supplied to GitHub when registering the OAuth application. Create the
auth folder in the pages/api directory containing the file [...nextauth].ts.
The ... in the filename tells the Next.js router that this is a catch all,
meaning it handles all API calls to endpoints below /auth; for example,
auth/signin or auth/callback/github. Add the code from Listing 15-1 to the
file.

https://www.usemodernfullstack.dev/api/v1/generate-secret

import GithubProvider from "next-auth/providers/github";

import {NextApiRequest, NextApiResponse} from "next";

import NextAuth from "next-auth";

import {createHash} from "crypto";

const createUserId = (base: string): string => {

 return createHash("sha256").update(base).digest("hex");

};

export default async function auth(req: NextApiRequest, res:

NextApiResponse) {

 return await NextAuth(req, res, {

 providers: [

 GithubProvider({

 clientId: process.env.GITHUB_CLIENT_ID || "

",

 clientSecret: process.env.GITHUB_CLIENT_SECR

ET || " ",

 }),

],

 callbacks: {

 async jwt({token}) {

 if (token?.email && !token.fdlst_private_use

rId) {

 token.fdlst_private_userId = createUserI

d(token.email);

 }

 return token;

 },

 async session({session}) {

 if (

 session?.user?.email &&

 !session?.user.fdlst_private_userId

) {

 session.user.fdlst_private_userId = crea

teUserId(

 session?.user?.email

);

 }

 return session;

 },

 },

 });

}

Listing 15-1: The pages/api/auth/[...nextauth].ts file

We import our dependencies, including the built-in GithubProvider
and the default crypto module. Then we create a simple createUserId
function, which takes a string as an argument and calls the crypto module’s
createHash function to return the hashed user ID from this string.

Next, we create and export the default asynchronous auth function. To
do so, we initialize the NextAuth module and add the GithubProvider to
the providers array. We configure it to use the clientId and the
clientSecret we stored in the environment variables.

Since we want to keep our application as simple as possible, we’ll keep
it stateless; hence, we use the jwt and session callbacks, which next-auth
uses every time it creates a new session or JWT internally. In the callback,
we calculate the hashed user ID from the user’s email with our createId
function (if it’s not already available in the current token or session object).
Finally, we store it in a private claim.

We’ve just created a new property, fdlst_private_userId, on the
user object in the next-auth session. As expected, TSC warns us that this
property doesn’t exist on the Session type. We need to augment the type’s
interface by adjusting the customs.d.ts file in our application’s root
directory to match Listing 15-2.

import mongoose from "mongoose";

import {DefaultSession} from "next-auth";

declare global {

 var mongoose: mongoose;

}

declare module "next-auth" {

 interface Session {

 user: {

 fdlst_private_userId: string;

 } & DefaultSession["user"];

 }

}

Listing 15-2: The updated customs.d.ts file with the augmented Session interface

In the updated code, we import the next-auth package’s
DefaultSession, which defines the default session object, and then create
and redeclare the Session interface’s user object with the new
fdlst_private_userId property. Because TypeScript overwrites the
existing user object, we explicitly add it from the DefaultSession object.
In other words, we add our new fdlst_private_userId property to the
Session interface.

Sharing the Session Across Pages and Components
With the callback URL set up, we need to ensure that a user’s session is
shared among all Next.js pages and React components. We can use the
useContext hook discussed in Chapter 4, which next-auth provides for us.
In the pages/_app .tsx file, wrap the application in a SessionProvider, as
shown in Listing 15-3.

import "../styles/globals.css";

import "../styles/layout.css";

import type {AppProps} from "next/app";

import Layout from "components/layout";

import {SessionProvider} from "next-auth/react";

export default function App({

 Component, pageProps: {session, ...pageProps}}: AppProp

s) {

 return (

 <SessionProvider session={session}>

 <Layout>

 <Component {...pageProps} />

 </Layout>

 </SessionProvider>

);

}

Listing 15-3: The modified pages/_app.tsx file

We import the SessionProvider from the next-auth package and
enhance the pageProps with the session object. We store the current
session in the provider’s session attribute, making it available throughout
the Next.js application.

Before we can access the session in the frontend and middleware, we
need to add the auth-element with the Sign In button, which will allow
users to log in.

The Generic Button Component
It’s time to implement the generic button component we mentioned earlier.
Technically, this component will be a generic div element that we’ll style to
look like a button, with a few variations. It will serve as the Sign In/Sign
Out button in the auth-element and the Add To/Remove From button in the
location detail component. Create a new folder, button, in the components
folder, adding an index.module.css file with the code in Listing 15-4, as
well as an index.tsx file.

.root {

 align-items: center;

 border-radius: 5px;

 color: #1d1f21;

 cursor: pointer;

 display: inline-flex;

 font-weight: 500;

 height: 35px;

 letter-spacing: 0;

 margin: 0;

 overflow: hidden;

 place-content: flex-start;

 position: relative;

 white-space: nowrap;

}

.root > a,

.root > span {

 padding: 0 1rem;

 white-space: nowrap;

}

.root {

 transition: border-color 0.25s ease-in, background-color

0.25s ease-in,

 color 0.25s ease-in;

 will-change: border-color, background-color, color;

}

.root.default,

.root.default:link,

.root.default:visited {

 background-color: transparent;

 border: 1px solid transparent;

 color: #1d1f21;

}

.root.default:hover,

.root.default:active {

 background-color: transparent;

 border: 1px solid #dbd8e3;

 color: #1d1f21;

}

.root.blue,

.root.blue:link,

.root.blue:visited {

 background-color: rgba(0, 118, 255, 0.9);

 border: 1px solid rgba(0, 118, 255, 0.9);

 color: #fff;

 text-decoration: none;

}

.root.blue:hover,

.root.blue:active {

 background-color: transparent;

 border: 1px solid #1d1f21;

 color: #1d1f21;

 text-decoration: none;

}

.root.outline,

.root.outline:link,

.root.outline:visited {

 background-color: transparent;

 border: 1px solid #dbd8e3;

 color: #1d1f21;

 text-decoration: none;

}

.root.outline:hover,

.root.outline:active {

 background-color: transparent;

 border: 1px solid rgba(0, 118, 255, 0.9);

 color: rgba(0, 118, 255, 0.9);

 text-decoration: none;

}

.root.disabled,

.root.disabled:link,

.root.disabled:visited {

 background-color: transparent;

 border: 1px solid #dbd8e3;

 color: #dbd8e3;

 text-decoration: none;

}

.root.disabled:hover,

.root.disabled:active {

 background-color: transparent;

 border: 1px solid #dbd8e3;

 color: #dbd8e3;

 text-decoration: none;

}

Listing 15-4: The components/button/index.module.css file

We add styles for each of the button variations we’d like to create. All
are 35 pixels tall and have rounded corners. We define a default style, a
variation with a blue background and white color, and an outlined version
whose background is white. In addition, we define styles to use for
deactivated buttons.

With the styles in place, we can write code for the component. Copy
the contents of Listing 15-5 into the component’s index.tsx file.

import React from "react";

import styles from "./index.module.css";

interface PropsInterface {

 disabled?: boolean;

 children?: React.ReactNode;

 variant?: "blue" | "outline";

 clickHandler?: () => any;

}

const Button = (props: PropsInterface): JSX.Element => {

 const {children, variant, disabled, clickHandler} = prop

s;

 const renderContent = (children: React.ReactNode) => {

 if (disabled) {

 return (

 {children}

);

 } else {

 return (

 <span className={styles.span} onClick={click

Handler}>

 {children}

);

 }

 };

 return (

 <div

 className={[

 styles.root,

 disabled ? styles.disabled : " ",

 styles[variant || "default"],

].join(" ")}

 >

 {renderContent(children)}

 </div>

);

};

export default Button;

Listing 15-5: The components/button/index.tsx file

After importing the dependencies, we define the interface for the
component’s prop argument. We also define the Button component as a
function that returns a JSX element and then use object-destructuring
syntax to split the props object into constants representing the object’s key-
value pairs. We define the internal renderContent function with one
argument, children, typed as a ReactNode and rendered wrapped in a span
element. Depending on the state of the disabled property, we also add the
click handler from the props object. The component itself returns a div that
we styled to look like a button.

The AuthElement Component
Although we’ve added the next-auth package to the project, created the
OAuth API route, and configured our OAuth provider, we still can’t access
session information, as there is no Sign In button. Let’s create this
AuthElement component and then add it to the header. This component uses

our default button component, and as soon as the user is logged in, it
displays their full name, as well as a link to their wish list.

Create the folder auth-element in the components/header directory and
then add the index.module.css file with the code in Listing 15-6.

.root {

 align-items: center;

 display: flex;

 justify-content: space-between;

 margin: 0;

 padding: 1rem 0;

 width: auto;

}

.root > * {

 margin: 0 0 0 2rem;

}

.name {

 margin: 1rem 0 0 0;

}

@media (min-width: 600px) {

 .name {

 margin: 0 0 0 1rem;

 }

}

Listing 15-6: The components/header/auth-element/index.module.css file

We define a set of basic styles for the component, using a flexbox and
margins to align them vertically, and change their layout for smaller
screens.

To write the component itself, add an index.tsx file to the auth-element
folder and enter the code from Listing 15-7 into it.

import Link from "next/link";

import {signIn, signOut, useSession} from "next-auth/react";

import Button from "components/button";

import styles from "./index.module.css";

const AuthElement = (): JSX.Element => {

 const {data: session, status} = useSession();

 return (

 <>

 {status === "authenticated" (

 Hi {session?.user?.name}

)}

 <nav className={styles.root}>

 {status === "authenticated" && (

 <>

 <Button variant="outline">

 <Link

href={`/list/${session?.user.fdlst_private_userId}`}

 >

 Your wish list

 </Link>

 </Button>

 <Button variant="blue" clickHandler=

{() => signOut()}>

 Sign out

 </Button>

 </>

)}

 {status == "unauthenticated" && (

 <>

 <Button variant="blue" clickHandler=

{() => signIn()}>

 Sign in

 </Button>

 </>

)}

 </nav>

 </>

);

};

export default AuthElement;

Listing 15-7: The components/header/auth-element/index.tsx file

The most notable imports are the signIn and signOut functions and
the useSession hook from next-auth. The latter enables us to access session
information easily, whereas the two functions trigger the sign-in flow or
terminate the session.

We then define the AuthElement component and retrieve the session
data and the session status from the useSession hook. We need both of
these to construct the JSX element we return from the component. On the
client side, we can access the session information directly via the
useSession hook. On the server side, though, we’ll need to access it
through the JWT, because the session information is part of the API
request’s HTTP cookies.

When the session’s status is authenticated, we render the user’s name
from the session data and add the Your Wish List and Sign Out buttons to
the navigation’s nav element. Otherwise, we add the Sign In button to start
the OAuth flow. For all of those, we use the generic button component and
the signIn and signOut functions we imported from the next-auth module,
both of which handle the OAuth flow automatically.

We use the next/link element to link to the user’s wish list. (This is
another Next.js page we’ll implement in a moment.) The wish list is
available at the dynamic route /list/:userId, which uses the user ID we
created by hashing the user’s email address and storing it in
fdlst_private_userId.

Adding the AuthElement Component to the Header
Now we have to add the new component to the header. Open the index.tsx
file in the components/header directory and adjust it so that it matches
Listing 15-8.

import styles from "./index.module.css";

import Logo from "components/header/logo";

import AuthElement from "components/header/auth-element";

const Header = (): JSX.Element => {

 return (

 <header className={styles.root}>

 <div className="layout-grid">

 <Logo />

 <AuthElement />

 </div>

 </header>

);

};

export default Header;

Listing 15-8: The modified components/header/index.tsx file

The update is simple; we import the AuthElement component and add
it next to the Logo inside the header.

Test the OAuth workflow to see our session management in practice.
When you open http://localhost:3000, the Sign In button should be in the
header, as in Figure 15-2.

Figure 15-2: The header in a logged-out state with the Sign In button

Let’s log in using OAuth. Click the Sign In button, and next-auth
should redirect you to the login screen, where you can select to sign in with
the configured OAuth providers to use (Figure 15-3).

Figure 15-3: OAuth requires us to choose a provider.

Click the button to log in. OAuth should redirect you to the application,
where the AuthElement renders your name and new buttons based on the
session information. The screen should look similar to Figure 15-4.

Figure 15-4: The header in the logged-in state with the session information

The header element has changed according to the session’s state. We
display the current user’s name received from the OAuth provider, the link
to their public wish list, and the Sign Out button.

The Wish List Next.js Page
The wish list button in the header should link to a wish list page at the
dynamic URL list/:userId. This regular Next.js page should display all
locations whose on_wishlist property contains the user ID specified in the
dynamic URL. It will look quite similar to the start page, and we can build
it out of existing components.

To create the page’s route, create the list folder with the [userId].tsx
file in the pages directory. Then add the code from Listing 15-9 to this .tsx
file.

import type {

 GetServerSideProps,

 GetServerSidePropsContext,

 NextPage,

 PreviewData,

 InferGetServerSidePropsType,

} from "next";

import Head from "next/head";

import {ParsedUrlQuery} from "querystring";

import dbConnect from "middleware/db-connect";

import {onUserWishlist} from "mongoose/locations/services";

import {LocationType} from "mongoose/locations/schema";

import LocationsList from "components/locations-list";

import {useSession} from "next-auth/react";

const List: NextPage = (

 props: InferGetServerSidePropsType<typeof getServerSideP

rops>

) => {

 const locations: LocationType[] = JSON.parse(props.dat

a?.locations);

 const userId: string | undefined = props.data?.userId;

 const {data: session} = useSession();

 let title = `The Food Finder- A personal wish list`;

 let isCurrentUsers =

 userId && session?.user.fdlst_private_userId === use

rId;

 return (

 <div>

 <Head>

 <title>{title}</title>

 content={`The Food Finder. A personal wish l

ist.`}

 </Head>

 <h1>

 {isCurrentUsers ? " Your " : " A "}

 wish list!

 </h1>

 {isCurrentUsers && locations?.length === 0 && (

 <>

 <h2>Your list is currently empty! :(</h2

>

 <p>Start adding locations to your wish l

ist!</p>

 </>

)}

 <LocationsList locations={locations} />

 </div>

);

};

export const getServerSideProps: GetServerSideProps = async

(

 context: GetServerSidePropsContext<ParsedUrlQuery, Previ

ewData>

) => {

 let {userId} = context.query;

 let locations: LocationType[] | [] = [];

 try {

 await dbConnect();

 locations = await onUserWishlist(userId as string);

 } catch (err: any) {}

 return {

 // the props will be received by the page component

 props: {

 data: {locations: JSON.stringify(locations), use

rId: userId},

 },

 };

};

export default List;

Listing 15-9: The pages/list/[userId].tsx file

Although we want the wish list page to look similar to the start page,
we use SSR, with getServerSideProps, as we did for the location detail
page. The wish list page is highly dynamic; hence, we need to regenerate
the HTML on each request.

Another approach would be to use client-side rendering, then request
the user’s locations through the GraphQL API in a useEffect hook.

However, this would cause the user to see a loading screen each time they
opened the wish list page. We can avoid this inferior user experience
altogether with SSR.

In the server-side part of the page’s code, we first extract the URL
parameter, userId, from the context’s query object. We use the user’s ID
and the onUsersWishlist service to get all locations for the user’s wish list.
If there is an error, we simply continue instead of redirecting to the 404
error page, rendering an empty list.

We then pass the locations array and the user’s ID to the Next.js page,
where we extract the locations as usual, as well as the userId. We compare
the user ID from the URL with the user ID in the current session. If they
match, we know that the currently logged-in user has visited their own wish
list and adjust the user interface accordingly.

Adding the Button to the Location Detail Component
We can now visit the wish list page, but it will always be empty. We haven’t
yet provided users with a way to add items to it. To change this, we’ll place
a button in the location details component that lets users add or remove a
particular location. We’ll use the generic button component and session
information. Open the index.ts file in the components/location-details.tsx
directory and modify the code to match Listing 15-10.

import {LocationType} from "mongoose/locations/schema";

import styles from "./index.module.css";

import {useSession} from "next-auth/react";

import {useEffect, useState} from "react";

import Button from "components/button";

interface PropsInterface {

 location: LocationType;

}

interface WishlistInterface {

 locationId: string;

 userId: string;

}

const LocationDetail = (props: PropsInterface): JSX.Element

=> {

 let location: LocationType = props.location;

 const {data: session} = useSession();

 const [onWishlist, setOnWishlist] = useState<Boolean>(fa

lse);

 const [loading, setLoading] = useState<Boolean>(false);

 useEffect(() => {

 let userId = session?.user.fdlst_private_userId;

 setOnWishlist(

 userId && location.on_wishlist.includes(userId)

? true : false

);

 }, [session]);

 const wishlistAction = (props: WishlistInterface) => {

 const {locationId, userId} = props;

 if (loading) {return false;}

 setLoading(true);

 let action = !onWishlist ? "addWishlist" : "removeWi

shlist";

 fetch("/api/graphql", {

 method: "POST",

 headers: {

 "Content-Type": "application/json",

 },

 body: JSON.stringify({

 query: `mutation wishlist {

 ${action}(

 location_id: "${locationId}",

 user_id: "${userId}"

) {

 on_wishlist

 }

 }`,

 }),

 })

 .then((result) => {

 if (result.status === 200) {

 setOnWishlist(action === "addWishlist" ? tru

e : false);

 }

 })

 .finally(() => {

 setLoading(false);

 });

 };

 return (

 <div>

 {location && (

 <ul className={styles.root}>

 Address:

 {location.address}

 Zipcode:

 {location.zipcode}

 Borough:

 {location.borough}

 Cuisine:

 {location.cuisine}

 Grade:

 {location.grade}

)}

 {session?.user.fdlst_private_userId && (

 <Button

 variant={!onWishlist ? "outline" : "blu

e"}

 disabled={loading ? true : false}

 clickHandler={() =>

 wishlistAction({

 locationId: session?.user.fdlst_

private_userId,

 userId: session?.user?.userId,

 })

 }

 >

 {onWishlist && <>Remove from your Wishli

st</>}

 {!onWishlist && <>Add to your Wishlist</

>}

 </Button>

)}

 </div>

);

};

export default LocationDetail;

Listing 15-10: The modified components/location-details/index.tsx file

First we import useSession from next-auth, useEffect and useState
from React, and the generic Button component. Then we define
WishlistInterface, the interface for the wishlistAction function we’ll
implement in a bit.

Inside the component, we get the session from the useSession hook,
then create the onWishlist and loading state variables with useState as
Boolean values. We use the first state variable to specify whether a location
is currently on the user’s wish list, then update the user interface

accordingly. We calculate the initial state in the useEffect hook based on
the location’s on_wishlist property. As soon as we’ve successfully added
or removed the location to or from the wish list, we update the state variable
and the button’s text.

We implement the wishlistAction function to update the
on_wishlist property. First we deconstruct the argument object and then
check the loading state to see if there is currently a running request. If so,
we exit the function. Otherwise, we set the loading state to true to block
the user interface, calculate the action for the GraphQL mutations, and use
it to call the wishlist mutation. After successfully modifying the document
in the database, we update the onWishlist state and unblock the user
interface.

We check the current session to see if the user is logged in. If so, we
render the Button component and set the disabled and class name
attributes based on the loading state, as well as an on-click event. With each
click of the button, we call the wishlistAction function with the current
location ID and user ID as arguments. Finally, we set the button’s text based
on the onWishlist state, either adding the current location to the wish list
or removing it.

Try adding and removing a few locations to the wish list before moving
on. Check that the button’s text changes accordingly and that a list of
locations similar to the one on the start page appears on the wish list page.

Securing the GraphQL Mutations
There is one more thing we have to do to wrap up the application: secure
the GraphQL API. While the queries should be publicly available, the
mutations should be accessible only to logged-in users, who should be able
to add or remove only their own user ID for the on_wishlist property.

But if you test the API with the curl command, you’ll see that,
currently, everyone can access the API. Note that you must enter the values
supplied to the -d flag on a single line, or the server might return an error:

$ curl -v \

 -X POST \

 -H "Accept: application/json" \

 -H "Content-Type: application/json" \

 -d '{"query":"mutation wishlist {removeWishlist(location

_id: \"12340\",

 user_id: \"exampleid\") {on_wishlist}}"}' \

 http://localhost:3000/api/graphql

< HTTP/1.1 200 OK

<

{"data":{"removeWishlist":{"on_wishlist":[]}}}

As a test, we send a simple mutation to remove the location with the ID
12340 from a nonexistent user’s wish list. (The mutation won’t work, which
is fine; we just want to verify whether the API is accessible to the public.)
The command receives a 200 response and the expected JSON, proving that
the mutations are public.

Let’s implement an authGuard to protect our mutations. A guard is a
pattern that checks a condition and then throws an error if it isn’t met, and
an auth guard protects a route or an API from unauthorized access.

We begin by creating the file auth-guards.ts in the middleware folder
and adding the code in Listing 15-11.

import {GraphQLError} from "graphql/error";

import {JWT} from "next-auth/jwt";

interface paramInterface {

 user_id: string;

 location_id: string;

}

interface contextInterface {

 token: JWT;

}

export const authGuard = (

 param: paramInterface,

 context: contextInterface

): boolean | Error => {

 ❶ if (!context || !context.token || !context.token.fdlst_pr

ivate_userId) {

 return new GraphQLError("User is not authenticated",

{

 extensions: {

 http: {status: 500},

 code: "UNAUTHENTICATED",

 },

 });

 }

 ❷ if (context?.token?.fdlst_private_userId !== param.user_i

d) {

 return new GraphQLError("User is not authorized", {

 extensions: {

 http: {status: 500},

 code: "UNAUTHORIZED",

 },

 });

 }

 return true;

};

Listing 15-11: The middleware/auth-guards.ts file

We also import JWT from next-auth and the GraphQLError constructor
from graphql. We’ll use the latter to create the error objects returned to the
user if authentication fails. Next, we define our interfaces for the authGuard
function’s arguments and export the function itself.

We’ll call the auth guard from the mutation resolver with two
parameters: an object with the user ID and the location ID, for which we
defined the paramInterface, and the context object with the token, the
contextInterface. The auth guard returns either a Boolean indicating that
authentication succeeded or an error. In the authGuard function, we verify
that every access to our mutation has a token with a private claim ❶ and
that the user ID in the private claim matches the user ID we pass to the
mutation ❷. In other words, we verify that a logged-in user has made the
API request and that they’re modifying their own wish list.

If the checks fail, we create an error with a message and code. In
addition, we set the HTTP status code to 500. Remember that unlike REST
APIs, which rely on an extensive list of precise HTTP status codes to
communicate with the caller, a GraphQL API usually uses either 200 or 500
as the status code for errors. Broadly speaking, we send a 500 status code
when GraphQL can’t execute the query at all and 200 when the query can
be executed. In both cases, the GraphQL API should include precise
information about what error occurred.

Now we must pass the user’s OAuth token to the resolvers, which will
then pass it to the auth guard. To do so, we’ll use the context function we
implemented in the startServerAndCreateNextHandler function, found in
the pages/api/graphql.ts file. Open the file and adjust it to match the code in
Listing 15-12.

import {ApolloServer, BaseContext} from "@apollo/server";

import {startServerAndCreateNextHandler} from "@as-integrati

ons/next";

import {resolvers} from "graphql/resolvers";

import {typeDefs} from "graphql/schema";

import dbConnect from "middleware/db-connect";

import {NextApiHandler, NextApiRequest, NextApiResponse} fro

m "next";

import {getToken} from "next-auth/jwt";

const server = new ApolloServer<BaseContext>({

 resolvers,

 typeDefs,

});

const handler = startServerAndCreateNextHandler(server, {

 context: async (req: NextApiRequest) => {

 const token = await getToken({req});

 return {token};

 },

});

const allowCors =

 (fn: NextApiHandler) =>

 async (req: NextApiRequest, res: NextApiResponse) => {

 res.setHeader("Allow", "POST");

 res.setHeader("Access-Control-Allow-Origin", "*");

 res.setHeader("Access-Control-Allow-Methods", "POS

T");

 res.setHeader("Access-Control-Allow-Headers", "*");

 res.setHeader("Access-Control-Allow-Credentials", "t

rue");

 if (req.method === "OPTIONS") {

 res.status(200).end();

 }

 return await fn(req, res);

 };

const connectDB =

 (fn: NextApiHandler) =>

 async (req: NextApiRequest, res: NextApiResponse) => {

 await dbConnect();

 return await fn(req, res);

 };

export default connectDB(allowCors(handler));

Listing 15-12: The modified pages/api/graphql.ts file with the JWT token

Unlike on the client side, where we can access the session information
directly via the useSession hook, here we need to access it through the
JWT on the server side. This is because the session information is part of
the API request’s HTTP cookies on the server instead of the
SessionProvider’s shared session state, and we need to extract it from the
request. To do so, we import the getToken function from the next-auth jwt
module. Then we pass the request object we receive from the context
function to call getToken and await the decoded JWT. Next, we return the

token from the context function so that we can access the token in the
resolver functions.

Finally, let’s use the token to add the authGuard to our resolvers to
protect them from unauthenticated and unauthorized access. Open the
graphql/locations/mutations.ts file and update it with the code from Listing
15-13.

import {updateWishlist} from "mongoose/locations/services";

import {authGuard} from "middleware/auth-guard";

import {JWT} from "next-auth/jwt";

interface UpdateWishlistInterface {

 user_id: string;

 location_id: string;

}

interface contextInterface {

 token: JWT;

}

export const locationMutations = {

 removeWishlist: async (

 _: any,

 param: UpdateWishlistInterface,

 context: contextInterface

) => {

 const guard = authGuard(param, context);

 if (guard !== true) {return guard;}

 return await updateWishlist(param.location_id, para

m.user_id, "remove");

 },

 addWishlist: async (

 _: any,

 param: UpdateWishlistInterface,

 context: contextInterface

) => {

 const guard = authGuard(param, context);

 if (guard !== true) {return guard;}

 return await updateWishlist(param.location_id, para

m.user_id, "add");

 },

};

Listing 15-13: The graphql/locations/mutations.ts file with the added authGuard

We define a new interface for the context and update the context
parameter to contain the JWT. Next, we add the authGuard function to our
mutations and follow the guard pattern by returning the error immediately
instead of proceeding with the code.

To test the authGuard functionality, run curl again. The command line
output should look similar to Listing 15-14.

$ curl -v \

 -X POST \

 -H "Accept: application/json" \

 -H "Content-Type: application/json" \

 -d '{"query":"mutation wishlist {removeWishlist(location

_id: \"12340\",

 user_id: \"exampleid\") {on_wishlist}}"}' \

 http://localhost:3000/api/graphql

< HTTP/1.1 500 Internal Server Error

<

{

 "errors":[

 {

 "message":"User is not authenticated",

 "locations": [{"line":1,"column":20}],

 "path": ["removeWishlist"],

 "extensions": {"code":"UNAUTHENTICATED","data":n

ull}

 }

]

}

Listing 15-14: The curl command to test our API

Unlike the previous curl call, the GraphQL API now responds with
HTTP/1.1 500 Internal Server Error and an extensive error message,
which we defined when we created the GraphQLError in the auth-guards.ts
file.

Summary
We’ve successfully added an OAuth authentication flow to the Food Finder
application. Now the user can log in with their GitHub account. Once
logged in, they can maintain their personal public wish list. In addition,
we’ve protected the GraphQL mutations, meaning they are no longer
available to anyone; instead, only logged-in users can access them. In the
final chapter, we’ll add automated tests to evaluate the application using
Jest.

16
RUNNING AUTOMATED TESTS IN DOCKER

In this short final chapter, you’ll write a
couple of automated tests that verify the

state of the Food Finder application. Then you’ll
configure a Docker service to continuously run them.

We’ll focus on evaluating the application’s header by using a snapshot
test and mocking the user session. We won’t create tests for the other
components or our middleware, services, or APIs. However, I encourage
you to build these on your own. Try using browser-based end-to-end tests,
with a specialized framework such as Cypress or Playwright, to test entire
pages. You can find installation instructions and examples for both
frameworks at https://nextjs.org/docs/testing.

Adding Jest to the Project
Install the Jest libraries with npm:

$ docker exec -it foodfinder-application npm install --save-

dev jest \

jest-environment-jsdom @testing-library/react @testing-libra

ry/jest-dom

Next, configure Jest to work with our Next.js setup by creating a new
file called jest.config.js containing the code in Listing 16-1. Save the file in

https://nextjs.org/docs/testing

the application’s root folder.

const nextJest = require("next/jest");

const createJestConfig = nextJest({

 dir: "./",

});

const customJestConfig = {

 moduleDirectories: ["node_modules", "<rootDir>/"],

 testEnvironment: "jest-environment-jsdom",

};

module.exports = createJestConfig(customJestConfig);

Listing 16-1: The jest.config.js file

We leverage the built-in Next.js Jest configuration, so we need to
configure the project’s base directory to load the config and .env files into
the test environment. Then we set the location of the module directories and
the global test environment. We use a global setting here because our
snapshot tests will require a DOM environment.

Now we want to be able to run the tests with npm commands.
Therefore, add the two commands in Listing 16-2 to the scripts property
of the project’s package.json file.

 "test": "jest ",

 "testWatch": "jest --watchAll"

Listing 16-2: Two commands added to the package.json file’s scripts property

The first command executes all available tests once, and the second
continuously watches for file changes and then reruns the tests if it detects
one.

Setting Up Docker
To run the tests using Docker, add another service to docker-compose.yml
that uses the Node.js image. On startup, this service will run npm run
testWatch, the command we just defined. In doing so, we’ll continuously
run the tests and get instant feedback about the application’s state. Modify
the file to match the code in Listing 16-3.

version: "3.0"

services:

 backend:

 container_name: foodfinder-backend

 image: mongo:latest

 restart: always

 environment:

 DB_NAME: foodfinder

 MONGO_INITDB_DATABASE: foodfinder

 ports:

 - 27017:27017

 volumes:

 - "./.docker/foodfinder-backend/seed-mongodb.js:

/docker-entrypoint-initdb.d/seed-mongodb.js"

 - mongodb_data_container:/data/db

 application:

 container_name: foodfinder-application

 image: node:lts-alpine

 working_dir: /home/node/code/foodfinder-application

 ports:

 - "3000:3000"

 volumes:

 - ./code:/home/node/code

 depends_on:

 - backend

 environment:

 - HOST=0.0.0.0

 - CHOKIDAR_USEPOLLING=true

 - CHOKIDAR_INTERVAL=100

 tty: true

 command: "npm run dev"

 jest:

 container_name: foodfinder-jest

 image: node:lts-alpine

 working_dir: /home/node/code/foodfinder-application

 volumes:

 - ./code:/home/node/code

 depends_on:

 - backend

 - application

 environment:

 - NODE_ENV=test

 tty: true

 command: "npm run testWatch"

volumes:

 mongodb_data_container:

Listing 16-3: The modified docker-compose.yml file with the jest service

Our small service, named jest, uses the official Node.js Alpine image
we’ve used previously. We set the working directory and use the volumes
property to make our code available in this container as well. Unlike our
application’s service, however, the jest service sets the Node.js environment
to test and runs the testWatch command.

Restart the Docker containers; the console should indicate that Jest is
watching our files.

Writing Snapshot Tests for the Header Element
As in Chapter 8, create the __tests__ folder to hold our test files in the
application’s root directory. Then add the header.snapshot.test.tsx file
containing the code in Listing 16-4.

import {act, render} from "@testing-library/react";

import {useSession} from "next-auth/react";

import Header from "components/header";

jest.mock("next-auth/react");

describe("The Header component", () => {

 it("renders unchanged when logged out", async () => {

 (useSession as jest.Mock).mockReturnValueOnce({

 data: {user: {}},

 status: "unauthenticated",

 });

 let container: HTMLElement | undefined = undefined;

 await act(async () => {

 container = render(<Header />).container;

 });

 expect(container).toMatchSnapshot();

 });

 it("renders unchanged when logged in", async () => {

 (useSession as jest.Mock).mockReturnValueOnce({

 data: {

 user: {

 name: "test user",

 fdlst_private_userId: "rndmusr",

 },

 },

 status: "authenticated",

 });

 let container: HTMLElement | undefined = undefined;

 await act(async () => {

 container = render(<Header />).container;

 });

 expect(container).toMatchSnapshot();

 });

});

Listing 16-4: The __tests__/header.snapshot.test.tsx file

This test should resemble those you wrote in Chapter 8. Note that we
import the useSession hook from next-auth/react and then use jest.mock
to replace it in the arrange step of each test. By replacing the session with a
mocked one that returns the state, we can verify that the header component

behaves as expected for both logged-in and logged-out users. We describe
the test suite for the Header component by using the arrange, act, and assert
pattern and verify that the rendered component matches the stored snapshot.

The first test case uses an empty session and the unauthenticated status
to render the header in a logged-out state. The second test case uses a
session with minimal data and sets the user’s status to authenticated. This
lets us verify that an existing session shows a different user interface than
an empty session does.

If you write additional tests, make sure to add them to the __tests__
folder.

Summary
You’ve successfully added a few simple snapshot tests to verify that the
Food Finder application works as intended. Using an additional Docker
service, you can continuously verify that additional developments won’t
break the application.

Congratulations! You’ve successfully created your first full-stack
application with TypeScript, React, Next.js, Mongoose, and MongoDB.
You’ve used Docker to containerize your application and Jest to test it. With
the knowledge gained in the book and its exercises, you’ve laid the
foundation for your career as a full-stack developer.

A
TYPESCRIPT COMPILER OPTIONS

Pass any of these options to the
tsconfig.json file’s compilerOptions

field to configure TSC’s transpilation of TypeScript
code to JavaScript. For more information about this
process, see Chapter 3.

Here we look at the most common options. You can find more
information and the complete list in the official documentation at https://
www.typescriptlang.org/tsconfig.

allowJs A Boolean that specifies whether the project can import
JavaScript files.
baseUrl A string that defines the root directory to use for resolving
module paths. For example, if you set it to "./", TypeScript will
resolve file imports from the root directory.
esModuleInterop A Boolean that specifies whether TypeScript should
import CommonJS, AMD, or UMD modules seamlessly or treat them
differently from ES.Next modules. In general, this is necessary if you
use third-party libraries without ES.Next module support.
forceConsistentCasingInFileNames A Boolean that specifies
whether file imports are case sensitive. This can be important when
some developers are working on case-sensitive filesystems and others
are not, to ensure file-loading behaviors are consistent for everyone.

https://www.typescriptlang.org/tsconfig

incremental A string that defines whether the TypeScript compiler
should save the last compilation’s project graph, use incremental type
checks, and perform incremental updates on consecutive runs. This can
make transpiling faster.
isolatedModules A Boolean that specifies whether TypeScript should
issue warnings for code not compatible with third-party transpilers
(such as Babel). The most common cause for those warnings is that the
code uses files that are not modules; for example, they don’t have any
import or export statements. This value doesn’t change the behavior
of the actual JavaScript; it only warns about code that can’t be correctly
transpiled.
jsx A string that specifies how TypeScript handles JSX. It applies only
to .tsx files and how the TypeScript compiler emits them; for example,
the default value react transforms and emits the code by using React
.createElement, whereas preserver does not transform the code in
your component and emits it untouched.
lib An array that adds missing features through polyfills. In general,
polyfills are snippets of code that add support for features and functions
the target environment does not support natively. We need to emulate
modern JavaScript features when we target less-compliant systems,
such as older browsers or node versions. The compiler adds the
polyfills defined in the lib array to the generated code.
module A string that sets the module syntax for the transpiled code. For
example, if you set it to commonjs, TSC will transpile this project to use
the legacy CommonJS module syntax with require for importing and
module.exports for exporting the code, whereas with ES2015 the
transpiled code will use the import and export keywords. This is
independent of the target property, which defines all available
language features except the module syntax.
moduleResolution A string that specifies the module resolution
strategy. This strategy also defines how TSC locates definition files for
modules at compile time. Changing the approach can resolve fringe
problems with the importing and exporting of modules.

noEmit A Boolean that defines whether TSC should produce files or
only check the types in the project. Set it to false if you want third-
party tools such as webpack, Babel.js, or Parcel to transpile the code
instead of TSC.
resolveJsonModule A Boolean that specifies whether TypeScript
imports JSON files. It generates type definitions based on the JSON
inside the file and validates the types on import. We need to manually
enable JSON imports as TypeScript can’t import them by default.
skipLibCheck A Boolean that defines whether the TypeScript compiler
performs type checks on all type declaration files. Setting it to false
decreases compilation time and is your escape hatch for working with
untyped third-party dependencies.
target A string that specifies the language features to which the
TypeScript code should be transpiled. For example, if you set it to es6,
or the equivalent ES2015, TSC will transpile this project to ES2015-
compatible JavaScript, which, for example, uses let and const.

B
THE NEXT.JS APP DIRECTORY

In version 13, Next.js introduced a new
routing paradigm that uses an app

directory instead of the pages directory. This
appendix discusses this new feature so that you can
explore it further on your own. As there are no plans
to deprecate the pages directory, you can continue
using the routing approach you learned in Chapter 5.
You can even use both directories simultaneously;
just be careful not to add to both directories folders
and files that would create the same route, as this
could cause errors.

Both the app and pages directories use folders and files to create
routes. However, the app directory distinguishes between server and client
components. In the pages folder, everything is a client component, meaning
that all the code is part of the JavaScript bundle Next.js sends to the client.
But every file in the app directory is a server component by default, and its
code is never sent to the client.

This appendix takes a look at the basic concepts of the new approach
and then initializes a Next.js application using the new structure.

Server Components vs. Client Components
The terms client and server in this context refer to the environments in
which the Next.js runtime renders a component. The client environment is
the user’s environment (usually the browser), whereas the server refers to
the Next.js server that receives the request from the client, whether it runs
on your local host or in a remote location.

With the introduction of server components, Next.js no longer purely
uses client-side routing. In server-centric routing, the server renders
components and then sends the rendered code to the client. This means the
client doesn’t download a routing map, which reduces the initial page size.
Additionally, the user doesn’t have to wait until all resources have loaded
before the page becomes interactive. Next.js server components leverage
React’s streaming architecture to progressively render each component’s
content. With this model, the page becomes interactive before it has
finished loading.

Server Components
Next.js server components build upon the React server components that
have been available since React version 18. Because the server renders
these components, they don’t add anything to the JavaScript sent to the
client, reducing the overall page size and increasing page performance
scores. Also, the JavaScript bundle is cacheable, so the client won’t
redownload it when we add new additional server components, only when
we add new client-side scripts through additional client components.

In addition, because these components are rendered completely on the
server, they can contain sensitive server information, such as access tokens
and API keys. (To add an additional layer of protection, Next.js’s rendering
engine replaces with an empty string all environment variables that are not
explicitly prefixed with NEXT_PUBLIC.) Finally, we can use large-scale
dependencies and additional frameworks without bloating the client-side
scripts and access backend resources directly, increasing the application’s
performance.

Listing B-1 shows the basic structure of a server component.

export default async function ServerComponent(props: Weather

Props): Promise<JSX.Element> {

 return (

 <h1>The weather is {props.weather}</h1>

);

}

Listing B-1: A basic server component

In Chapter 4, you learned that a React component is a JavaScript
function that returns a React element; Next.js server components follow that
same structure, except that they’re asynchronous functions, so we can use
the async/await pattern with fetch. Thus, instead of returning the React
element, it returns a promise of it. The code in Listing B-1 should remind
you of the WeatherComponent created in the previous chapters, except it
doesn’t contain any client-side code.

Client Components
By contrast, a client component is a component rendered by the browser
rather than by the server. You already know how to write client components,
because all React and Next.js components were traditionally client
components.

To render these components, the client needs to receive all required
scripts and their dependencies. Each component increases the bundle size,
decreasing the application’s performance. For that reason, Next.js offers
options to optimize the application’s performance, such as server-side
rendering (SSR), which pre-renders the pages on the server, then lets the
client add interactive elements to the page.

All components in the app directory are server components by default.
Client components, however, can reside anywhere (for example, in the
components directory we’ve used previously). Listing B-2 shows the
WeatherComponent created in Listing 5-4 refactored into a client component
that works with the app directory.

"use client";

import React, {useState, useEffect} from "react";

export default function ClientComponent (props: WeatherProp

s): JSX.Element {

 const [count, setCount] = useState(0);

 useEffect(() => {setCount(1);}, []);

 return (

 <h1

 onClick={() => setCount(count + 1)} >

 The weather is {props.weather},

 and the counter shows {count}

 </h1>

);

}

Listing B-2: A basic client component that is similar to the WeatherComponent created in
Listing 5-4

We export the component as the default function with the name
ClientComponent. Because we’re using the client-side hooks useEffect
and useState as well as the onClick event handler, we need to declare the
component as a client component with the "use client" directive at the
top of the file. Otherwise, Next.js will throw an error.

Rendering Components
In Chapter 5, we performed server-side rendering with the
getServerSideProps function and used static site generation (SSG) with
the getStaticProps function. In the app directory, both functions are
obsolete. If we want to optimize an application, we can instead use Next.js’s
built-in fetch API, which controls data retrieval and rendering at the
component level.

Fetching Data
The new asynchronous fetch API extends the native fetch web API and
returns a promise. Because server components are just exported functions
that return a JSX element, we can declare them as asynchronous functions
and then use fetch with the async/await pattern.

This pattern is beneficial because it allows us to fetch data for only the
segment that uses the data rather than for an entire page. This lets us
leverage React features to automatically display loading states and
gracefully catch errors, as discussed in “Exploring the Project Structure” on
page 269. If we follow this pattern, a loading state will block the rendering
of only a particular server component and its user interface; the rest of the
page will be fully functional and interactive.

NOTE
Client components shouldn’t be asynchronous functions, because the way
JavaScript handles asynchronous calls can easily lead to multiple re-
renders and slow down the whole application. Next.js developers have
discussed adding a generic use hook that lets us use asynchronous functions
in client components by caching the results, but this hook is not yet
finalized. If you absolutely need client-side data fetching, I recommend
using a specialized library such as SWR, which you can find at https://swr
.vercel.app.

You might worry that, when each server component loads its own data,
you’ll end up with a massive number of requests. How do these numbers
impact the overall page performance? Well, Next.js’s fetch comes with
multiple optimizations to speed up the application. For example, it
automatically caches the response data for GET requests sent from a server
component to the same API, reducing the number of requests.

However, POST requests aren’t usually cacheable, as the data they
contain might change, so fetch won’t automatically cache them. This is a
problem for us because GraphQL typically uses POST requests.
Fortunately, React exposes a cache function that memorizes the result of
the function it wraps. Listing B-3 shows an example of using cache with a
GraphQL API.

https://swr.vercel.app/

import {cache} from 'react';

export const getUserFromGraphQL = cache(async (id:string) =>

{

 return await fetch("/graphql," {method: "POST", body: "q

uery":" "});

});

Listing B-3: A simple outline of a cached POST API call

We wrap the API call in the cache function we imported from React
and return the API’s response object. Note that the cached arguments can
use only primitive values because the cache function doesn’t perform a
deep comparison for the arguments.

Another optimization we can implement is to leverage the
asynchronous nature of fetch to request data for the server component in a
parallel fashion instead of sequentially. Here, the most common pattern is to
use Promise.all to start all requests at the same time and block the
rendering until all requests have been completed. Listing B-4 shows us the
relevant code for this pattern.

const userPromiseOne = getUserFromGraphQL ("0001");

const userPromiseTwo = getUserFromGraphQL ("0002");

const [userDataOne, userDataTwo] = await Promise.all([userPr

omiseOne, userPromiseTwo]);

Listing B-4: Two parallel API calls with Promise.all

We set up two requests, both of which return a promise user object.
Then we await the result of both promises and call Promise.all with an
array of the previously created asynchronous API calls. The Promise.all
function resolves as soon as both promises return their data, and then the
server component’s code continues.

Static Rendering
Static rendering is the default setting for both server and client components.
It resembles static site generation, which we used with getStaticProps in
Chapter 5. This rendering option pre-renders both client and server
components in the server environment at build time. As a result, requests
will always return the same HTML, which remains static and is never re-
created.

Each component type is rendered slightly differently. For client
components, the server pre-renders the HTML and JSON data; the client
then receives the pre-rendered data, including the client-side script, to add
interactivity to the HTML. For server components, the browser receives
only the rendered payload to hydrate the component. They neither have
client-side JavaScript nor use JavaScript for hydration; hence they do not
send any JavaScript to the client and, in turn, don’t bloat the bundled
scripts.

Listing B-5 shows how to statically render the utils/fetch-names.ts file
from Listing 5-8.

export default async function ServerComponentUserList(): Pro

mise<JSX.Element> {

 const url = "https://www.usemodernfullstack.dev/api/v1/u

sers";

 let data: responseItemType[] | [] = [];

 let names: responseItemType[] | [];

 try {

 const response = await fetch(url, {cache: "force-cac

he"});

 data = (await response.json()) as responseItemType

[];

 } catch (err) {

 throw new Error("Failed to fetch data");

 }

 names = data.map((item) => {

 return {id: item.id, name: item.name};

 });

 return (

 {names.map((item) => (

 <li key="{item.id}">{item.name}

))}

);

}

Listing B-5: A server component that uses static rendering

First we define a server component as an asynchronous function that
directly returns a JSX.Element wrapped in a promise.

In Chapter 5, we returned the page’s data and then used the page props
to pass it the NextPage function, where we generated the element. Here,
after setting the url, we use the asynchronous fetch function to get the data
from the remote API. Next.js will cache the results of the API call and the
rendered component, and the server will reuse the generated code and never
re-create it.

If you use fetch without an explicit cache setting, it will use force-
cache as the default to perform static rendering. To switch to incremental
static regeneration instead, replace the fetch call from Listing B-5 with the
one in Listing B-6.

 const response = await fetch(url, {next: {revalidate: 2

0}});

Listing B-6: The modified fetch call for ISR-like rendering

We simply add the revalidate property with a value of 30. The server
will then render the component statically but invalidate the current HTML
30 seconds after the first page request and re-render it.

Dynamic Rendering
Dynamic rendering replaces Next.js’s traditional server-side rendering
(SSR), which we used by exporting the getServerSideProps function from
a page route in Chapter 5. Because Next.js uses static rendering by default,
we must actively opt in to using dynamic rendering in one of two ways: by

disabling the cache in our fetch requests or by using a dynamic function. In
Listing B-7, we disable the cache.

export default async function ServerComponentUserList(): Pro

mise<JSX.Element> {

 const url = "https://www.usemodernfullstack.dev/api/v1/u

sers";

 let data: responseItemType[] | [] = [];

 let names: responseItemType[] | [];

 try {

 const response = await fetch(url, {cache: "no-ca

che"});

 data = (await response.json()) as responseItemType

[];

 } catch (err) {

 throw new Error("Failed to fetch data");

 }

 names = data.map((item) => {

 return {id: item.id, name: item.name};

 });

 return (

 {names.map((item) => (

 <li key="{item.id}">{item.name}

))}

);

}

Listing B-7: A server component that uses dynamic rendering by disabling the cache

We explicitly set the cache property to no-cache. Now the server will
re-fetch the data for the component upon each request.

Instead of disabling the cache, we could use dynamic functions,
including the header function or the cookies function in server components
and the useSearchParams hook in client components. These functions use
dynamic data such as request headers, cookies, and search parameters that

are unknown during build time and are part of the request object we pass to
the function. The server needs to run these functions for each request
because the required data depends on the request.

Keep in mind that dynamic rendering affects the whole route. If one
server component in a route opts for dynamic rendering, Next.js will render
the whole route dynamically at request time.

Exploring the Project Structure
Let’s set up a new Next.js application to explore the features we’ve
discussed. First, use the npx create-next-app@latest command with the
--typescript --use-npm flags to create a sample application. When
answering the setup wizard’s questions, choose to use the app directory
instead of the pages directory.

NOTE
You can also use the online playground at https://codesandbox.io/s/ to run
the Next.js code examples in this appendix. Search for the official Next.js
(App router) template when creating a new code sandbox there.

Now enter the npm run dev command to start the application in
development mode. You should see a Next.js welcome screen in your
browser at http://localhost:3000. Unlike the welcome screen you saw in
Chapter 5, which encouraged us to edit the pages/index.tsx file, here the
welcome screen directs us to the app/page.tsx file.

Take a look at the files and folders the wizard created and compare
them with the ones from Chapter 5. You should see that the pages and styles
directories are not part of the new structure. Instead, the router replaces
both with the app directory. Inside it, you should see neither the _app.tsx
file nor the _document.tsx file. Instead, it uses the root layout file layout.tsx
to define the HTML wrapper for all rendered pages and the page.tsx file to
render the root segment (the home page).

The pages directory uses only one file to create the final content of the
page route. By contrast, the app directory uses multiple files to create a
page route and add additional behavior.

https://codesandbox.io/s/

The page.tsx file generates the user interface and the content for the
route, and its parent folder defines the leaf segment. Without a page.tsx file,
the URL path won’t be accessible. We can then add other special files to the
page’s folder. Next.js will automatically apply them to this URL segment
and its children. The most important of these special files are layout.tsx,
which creates a general user interface; loading.tsx, which uses a React
suspense boundary to automatically create a “loading” user interface while
the page loads; and error.tsx, which uses a React error boundary to catch
errors and then show the user a custom error interface.

Figure B-1 compares the files and folders for the components/weather
page route when using the pages directory and the app directory.

Figure B-1: Comparing the page route components/weather in the pages and app directory
structures

When the app directory is the root folder, its subfolders still correspond
to URL segments, but now the folder that contains the page.tsx file defines

the URL’s final leaf segment. The optional special files next to it affect only
the contents of the components/weather page.

Let’s rebuild the components/weather page route you created in Listing
5-1 with the app directory. Create the components folder and weather
subfolder inside the app directory and then copy the custom.d.ts file from
the previous code exercises into the root folder.

Updating the CSS
Begin by opening the existing app/globals.css file and replacing its content
with the code from Listing B-8. We’ll need to make some modifications to
use special files in our component.

html,

body {

 background-color: rgb(230, 230, 230);

 font-family: -apple-system, BlinkMacSystemFont, Segoe U

I, Roboto, Oxygen,

 Ubuntu, Cantarell, Fira Sans, Droid Sans, Helvetica

Neue, sans-serif;

 margin: 0;

 padding: 0;

}

a {

 color: inherit;

 text-decoration: none;

}

* {

 box-sizing: border-box;

}

nav {

 align-items: center;

 background-color: #fff;

 box-shadow: 0 0 10px rgba(0, 0, 0, 0.25);

 display: flex;

 height: 3rem;

 justify-content: space-evenly;

 padding: 0 25%;

}

main {

 display: flex;

 justify-content: center;

}

main .content {

 height: 300px;

 padding-top: 1.5rem;

 width: 400px;

}

main .content li {

 height: 1.25rem;

 margin: 0.25rem;

}

main .loading {

 animation: 1s loading linear infinite;

 background: #ddd linear-gradient(110deg, #eeeeee 0%, #f5

f5f5 15%, #eeeeee 30%);

 background-size: 200% 100%;

 min-height: 1.25rem;

 width: 90%;

}

@keyframes loading {

 to {

 background-position-x: -200%;

 }

}

main .error {

 background: #ff5656;

 color: #fff;

}

section {

 background: #fff;

 border: 1px dashed #888;

 box-shadow: 0 0 10px rgba(0, 0, 0, 0.25);

 margin: 2rem;

 padding: 0.5rem;

 position: relative;

}

section .flag {

 background: #888;

 box-shadow: 0 0 10px rgba(0, 0, 0, 0.25);

 color: #fff;

 font-family: monospace;

 left: 0;

 padding: 0.25rem;

 position: absolute;

 top: 0;

 white-space: nowrap;

}

Listing B-8: The app/globals.css file with basic styles for our code examples

We create one nav element for the navigation with a main content area
below it. Then we add styles for the loading and error states we’ll create
later. In addition, we use the section element to outline the boundaries of
the files and flag styles to add labels to the sections.

Defining a Layout
Layouts are server components that define the user interface for a particular
route segment. Next.js renders this layout when this segment is active.
Layouts are shared across all pages, so they can be nested into each other,
and all layouts for a specific route and its children will be rendered when
this route segment is active. Figure B-2 shows the relationship between the
URL, the files, and the component hierarchy for the components/weather
route.

Figure B-2: The simplified layout component hierarchy

In this example, each folder contains a layout.tsx file. Next.js will
render these in a nested fashion and make the page’s content the final
rendered component.

Although we can fetch data in a layout, we can’t share data between a
parent layout and its children. Instead, we can leverage the fetch API’s
automatic deduplication to reuse data in each child segment or component.
When we navigate from one page to another, only the layouts that change
are re-rendered. Shared layouts won’t be re-rendered when their child
segments change.

The root layout, which returns the skeleton structure with the html and
body elements for the page, is required, while all other layouts we create are
optional. Let’s create a root layout. First, add a new interface to the end of
the custom.d.ts file, which we copied from the previous exercise. We’ll use
the LayoutProps interface to type the layout’s properties object:

interface LayoutProps {

 children: React.ReactNode;

}

Now open the app/layout.tsx file and replace its content with the code
from Listing B-9.

import "./globals.css";

export const metadata = {

 title: "Appendix C",

 description: "The Example Code",

};

export default function RootLayout(props: LayoutProps): JSX.

Element {

 return (

 <html lang="en">

 <body>

 <section>

 app/layout(.tsx)

 {props.children}

 </section>

 </body>

 </html>

);

}

Listing B-9: The file app/layout.tsx defines the root layout.

We import the global.css file that we created earlier and then define the
default SEO metadata, the page title, and the page description through the
metadata object. This replaces the next/head component we used in the
pages directory for all pages in the app directory.

Then we define the RootLayout component, which accepts an object of
the LayoutProps type and returns a JSX.Element. We also create the
JSX.Element, explicitly adding the html and body elements, then use the

section and a span with the CSS class flag to outline the page structure.
We add the children property from the LayoutProps object to wrap them
with our root HTML structure.

Now let’s add optional layouts to the app/components and
app/components/weather folders. Create a layout.tsx file in each and then
place the code from Listing B-10 to the app/components/layout.tsx file.

export default function ComponentsLayout(props: LayoutProp

s): JSX.Element {

 return (

 <section>

 app/components/layout(.ts

x)

 <nav>Navigation Placeholder</nav>

 <main>{props.children}</main>

 </section>

);

}

Listing B-10: The file app/components/layout.tsx defines the segment layout.

This segment layout file follows the same basic structure as the root
layout. We define a layout component that receives the LayoutProps object
with the children property and returns a JSX.Element. Unlike in the root
layout, we set only the inner structure, the nav element with the navigation
placeholder, and the main content area where we render the child elements
from the LayoutProps object, representing this segment’s child content (the
leaf).

Lastly, create the leaf’s layout by adding the code from Listing B-11 to
the app/components/weather/layout.tsx file.

export default function WeatherLayout(props: LayoutProps): J

SX.Element {

 return (

 <section>

 app/components/weather/la

yout(.tsx)

 {props.children}

 </section>

);

}

Listing B-11: The file app/components/weather/layout.tsx defines the leaf layout.

The leaf’s layout resembles the segment layout from Listing B-10, but
it returns a more straightforward HTML structure, as the children property
does not contain another layout; instead, it contains the page’s content (in
page.tsx), and the suspense boundary and error boundary from loading.tsx
and error.tsx.

Adding the Content and Route
To expose the page route, we need to create the page.tsx file; otherwise, if
we tried to visit the components/weather page route at
http://localhost:3000/components/weather, we’d see Next.js’s default 404
error page. To re-create the page content from Listing 5-1, we’ll create two
files. One is component .tsx, which contains the WeatherComponent, and the
other is page.tsx, which resembles the NextPage wrapper we used in Listing
5-1. Of course, pages could contain additional components located in other
folders.

Let’s start by creating the component.tsx file inside the
apps/components/weather folder and adding the code from Listing B-12
into it.

"use client";

import {useState, useEffect} from "react";

export default function WeatherComponent(props: WeatherProp

s): JSX.Element {

 const [count, setCount] = useState(0);

 useEffect(() => {

 setCount(1);

 }, []);

 return (

 <h1 onClick={() => {setCount(count + 1)}} >

 The weather is {props.weather}, and the counter

shows {count}

 </h1>

);

}

Listing B-12: The file app/components/weather/component.tsx defines the
WeatherComponent.

This code is similar to the code in Listing 5-1 for the
WeatherComponent constant, except we add the "use client" statement to
explicitly set it as a client component and export it as the default function
instead of storing it in a constant. The component itself has the same
functionality as before: we create a headline that shows the weather string
and a counter we can increase by clicking the headline.

Now we add the page.tsx file and the code from Listing B-13 to create
the page route and expose the route to the user.

import WeatherComponent from "./component";

export const metadata = {

 title: "Appendix C - The Weather Component (Weather & Co

unt)",

 description: "The Example Code For The Weather Component

(Weather & Count)",

};

export default async function WeatherPage() {

 return (

 <section className="content">

 app/components/weather/pa

ge(.tsx)

 <WeatherComponent weather="sunny" />

 </section>

);

}

Listing B-13: The file app/components/weather/page.tsx defines the page route.

We import the WeatherComponent we just created and then set the SEO
metadata on the page level. Then we export the page route as the default
async function. When we compare it to Listing 5-1, which contains a
similar page, we see that we no longer need to export a NextPage; instead,
we use a basic function. The app directory simplifies the structure of the
code.

Now visit our components/weather page route at
http://localhost:3000/components/weather in the browser. You should see a
page that looks similar to Figure B-3.

Notice two things here. First, you should recognize the component
from Chapter 5, whose counter increases when we click the headline. In
addition, the combination of the styles and the span elements we added to
each .tsx file visualizes the relations between the files. We see that the
nested layout files resemble the simplified component hierarchy from
Figure B-3.

Figure B-3: The components/weather page showing the nested components

Catching Errors
As soon as we add an error.tsx file to the folder, Next.js wraps our page’s
content with a React error boundary. Figure B-4 shows the simplified
component hierarchy of the components/weather route with an added
error.tsx file.

Figure B-4: The simplified layout component hierarchy includes the error boundary.

We see that the error.tsx file automatically creates an error boundary
around the page’s content. By doing so, Next.js enables us to catch errors
on a page level and gracefully handle those instead of freezing the whole
user interface or redirecting the user to a generic error page. Think about it
as a try...catch block on a component level. We can now show a tailored
error message and display a button that lets the user re-render the page
content in a previously working state without reloading the whole
application.

The error.tsx file exports a client component that the error boundary
uses as the fallback interface. In other words, this component replaces the
content when the code throws an error and activates the error boundary. As
soon as it is active, it contains the error, ensuring that the layouts above the
boundary remain active and maintain their internal state. The error
component receives the error object and the reset function as parameters.

Let’s add an error boundary to the components/weather route. Start by
adding a new ErrorProps interface to type the component’s properties into
the customs.d.ts file:

interface ErrorProps {

 error: Error;

 reset: () => void;

}

Next, create the error.tsx file next to page.tsx in the
app/components/weather directory and add the code from Listing B-14.

"use client";

export default function WeatherError(props: ErrorProps): JS

X.Element {

 return (

 <section className="content error">

 app/components/weather/er

ror(.tsx)

 <h2>Something went wrong!</h2>

 <blockquote>{props.error?.toString()}</blockquot

e>

 <button onClick={() => props.reset()}>Try again

(re-render)</button>

 </section>

);

}

Listing B-14: The file app/components/weather/error.tsx adds the error boundary and the
fallback UI.

Because we know that the error component needs to be a client
component, we add the "use client" directive to the top of the file and
then define and export the component. We use the ErrorProps interface we
just created to type the component’s properties. We then convert the error
property to a string and display it to inform the user of the type of error that
occurred. Finally, we render a button that calls the reset function that the

component received through the properties object. The user can re-render
the component into a previous working state by clicking the button.

Now, with the error boundary in place, we’ll modify component.tsx to
throw an error if the counter hits 4 or more. Open the file and add the code
from Listing B-15 below the first useEffect hook.

 useEffect(() => {

 if (count && count >= 4) {

 throw new Error("Count >= 4! ");

 }

 }, [count]);

Listing B-15: The additional useEffect hook for app/components/weather/component.tsx

The additional useEffect hook we add to the component is
straightforward; as soon as the count variable changes, we verify the error
condition, and as soon as the variable’s value is 4 or more, we throw an
error with the message Count >= 4!, which the error boundary catches and
gracefully handles by showing the fallback user interface that the error.tsx
file exports.

To test this feature, open http://localhost:3000/components/weather in
the browser and click the headline until you trigger the error. You should
see the error component instead of the weather component, as in Figure B-
5.

Figure B-5: The components/weather page in the error state

The layout markers show us that error.tsx has replaced page.tsx. We
also see the string Error: Count >=4!, which we passed to the error
constructor. As soon as we click the re-render button, page.tsx should
replace error.tsx, and the screen will look like Figure B-4 previously.

Showing an Optional Loading Interface
Now we’ll create the loading.tsx file. With this feature in place, Next.js
automatically wraps the page content with a React suspense component,
creating a component hierarchy that looks similar to Figure B-6.

Figure B-6: The simplified layout component hierarchy with the loading interface

The loading.tsx file is a basic server component that returns the pre-
rendered loading user interface. When we load a page or navigate between
pages, Next.js will instantly display this component while loading the new
segment’s content. Once rendering is complete, the runtime will swap the
loading state with the new content. In this way, we can easily display
meaningful loading states, such as skeletons or custom animations.

Let’s add a basic loading user interface to the weather component route
by adding the code from Listing B-16 to the loading.tsx file.

export default function WeatherLoading(): JSX.Element {

 return (

 <section className="content">

 app/components/weather/lo

ading(.tsx)

 <h1 className="loading"></h1>

 </section>

);

}

Listing B-16: The file app/components/weather/loading.tsx adds a suspense boundary
with the loading user interface.

We define and export the WeatherLoading component, which returns a
JSX.Element. In the HTML, we add a headline element similar to the one in
page.tsx, except this one adds the loading class we created in the global.css
file to the headline and shows an animated placeholder.

When we open http://localhost:3000/components/weather in the
browser, we should see a loading interface similar to Figure B-7.

Figure B-7: The components/weather page while loading the page’s content

If you don’t see the animated placeholder, this means Next.js has
already cached your segment’s content.

Adding a Server Component That Fetches Remote Data
Now that you understand the folders and files in the app directory, let’s add
a server component that uses the fetch API to receive the list of users from
the remote API https://www.usemodernfullstack.dev/api/v1/users and
renders it to the browser. We wrote a version of this code in Chapter 5.

Create the folder app/components/server-component and add the
special files component.tsx, loading.tsx, error.tsx, layout.tsx, and page.tsx to
it. Then set up the component’s functionality by adding the code from
Listing B-17 to the component.tsx file.

export default async function ServerComponentUserList(): Pro

mise<JSX.Element|Error> {

 const url = "https://www.usemodernfullstack.dev/api/v1/u

sers";

 let data: responseItemType[] | [] = [];

 let names: responseItemType[] | [];

 try {

 const response = await fetch(url, {cache: "force-cac

he"});

 data = (await response.json()) as responseItemType

[];

 } catch (err) {

 throw new Error("Failed to fetch data");

 }

 names = data.map((item) => {

 return {id: item.id, name: item.name};

 });

 return (

 {names.map((item) => (

 <li id="{item.id}" key="{item.id}">

 {item.name}

))}

);

}

Listing B-17: The app/components/server-component/component.tsx file

Here we create a default server component that uses the fetch API to
await the API response. To be able to do so, we define it as an
asynchronous function that returns a promise of a JSX.Element or an Error.
Then we store the API endpoint in a constant and define the variables we’ll
need later on. We wrap the API call in a try...catch statement to activate
the Error Boundary if the API request fails. We then transform the data in a
manner similarly to the way we did in Chapter 5 and return a JSX.Element
that displays a list of users.

Now we add the loading user interface that Next.js automatically
displays while we await the API’s response and the component’s JSX
response. Place the code from Listing B-18 into the loading.tsx file.

export default function ServerComponentLoading(): JSX.Elemen

t {

 return (

 <section className="content">

 app/components/server-component/loading(.ts

x)

 <ul id="load">

 {[...new Array(10)].map((item, i) => (

 <li className="loading">

))}

 </section>

);

}

Listing B-18: The app/components/server-component/loading.tsx file

As before, the loading component is a server component that returns a
JSX.Element. This time, the loading skeleton is a list with 10 items
resembling the component’s rendered HTML structure. You’ll see that this
gives the user a good impression of the expected content and should
improve the user’s experience.

Next, we create the error boundary by adding the code from Listing B-
19 to the error.tsx file.

"use client"; // Error components must be Client components

export default function ServerComponentError(props: ErrorPro

ps): JSX.Element {

 return (

 <section className="content">

 app/components/server-com

ponent/error(.tsx)

 <h2>Something went wrong!</h2>

 <code>{props.error?.toString()}</code>

 <button onClick={() => props.reset()}>Try again

(re-render)</button>

 </section>

);

}

Listing B-19: The app/components/server-component/error.tsx file

Except for the flag outlining the file structure, the error boundary is
similar to the one we used in the weather component.

Then we add the code from Listing B-20 to the layout.tsx file.

export default function ServerComponentLayout(props: LayoutP

rops): JSX.Element {

 return (

 <section>

 app/components/server-com

ponent/layout(.tsx)

 {props.children}

 </section>

);

}

Listing B-20: The app/components/server-component/layout.tsx file

Again, the code is similar to the code we used for the weather
component. We adjust only the flag outlining the component hierarchy.

Finally, with all the parts in place, we add the code from Listing B-21
to the page.tsx file to expose the page route.

import ServerComponentUserList from "./component";

export const metadata = {

 title: "Appendix C - Server Side Component (User API)",

 description: "The Example Code For A Server Side Compone

nt (User API)",

};

export default async function ServerComponentUserListPage():

JSX.Element {

 return (

 <section className="content">

 app/components/server-com

ponent/page(.tsx)

 {/* @ts-expect-error Async Server Component */}

 <ServerComponentUserList />

 </section>

);

}

Listing B-21: The app/components/server-component/page.tsx file

Completing the Application with the Navigation
With two pages in the application, we can now use the next/link
component to replace the navigation placeholder in the nav element. This
should create a fully functional application prototype that lets us navigate
between the pages. Open the app/components/layout.tsx file and replace the
code in the file with the code from Listing B-22.

import Link from "next/link";

export default function ComponentsLayout(props: LayoutProp

s): JSX.Element {

 return (

 <section>

 app/components/layout(.ts

x)

 <nav>

 <Link href="/components/server-component">

 User API

 (Server Component)

 </Link>{" "}

 |

 <Link href="/components/weather">

 Weather Component

 (Client Component)

 </Link>

 </nav>

 <main>{props.children}</main>

 </section>

);

}

Listing B-22: The updated app/components/layout.tsx file

We import the next/link component and then add two links to our
navigation, one pointing to the user list server component we just created
and the other pointing to the weather client component.

Let’s visit the application’s weather component page at
http://localhost:3000/components/weather. You should see an application
that looks similar to the screenshot in Figure B-8.

As soon as you navigate between the pages, you should see the loading
user interface. With the outlines we’ve added to all the files, we easily keep
track of which files Next.js uses to render the current page.

Figure B-8: The components/weather page with the functional navigation

Replacing API Routes with Route Handlers
If you look at the folder structure Next.js created for you, you should see
that the app directory contains an api subfolder. You probably already
guessed that we use this folder to define APIs. But unlike the API routes
discussed in Chapter 5, which were regular functions, the app directory uses
route handlers, which are functions that require a particular naming
convention.

These route handlers belong in special files named route.ts that usually
reside in a subfolder of the app/api folder. They are asynchronous functions
that receive a Request object and an optional context object as parameters.
We name each function after the HTTP method it should react to. For
example, the code in Listing B-23 shows how to define route handlers that
handle GET and POST requests for the same API.

import {NextRequest, NextResponse} from 'next/server';

export async function GET(request: NextRequest): Promise<Nex

tResponse> {

 return NextResponse.json({});

}

export async function POST(request: NextRequest): Promise<Ne

xtResponse {

 return NextResponse.json({});

}

Listing B-23: A skeleton structure of a route.ts file defining route handlers

To create the route handlers, we import the NextRequest and
NextResponse objects from Next.js’s server package. Next.js adds
additional convenience methods for cookie handling, redirects, and
rewrites. You can read more about them in the official documentation at
https://nextjs.org.

We then define two asynchronous functions, both of which receive a
NextRequest and return a promise of a NextResponse. The function names
correspond to the HTTP method they should respond to. Next.js supports
using the GET, POST, PUT, PATCH, DELETE, HEAD, and OPTIONS
methods as function names.

When defining page routes and route handlers, remember that these
files take over all requests for a given segment. This means that a route.ts
file cannot be in the same folder as a page.tsx file. Also, route handlers are
the only way to define APIs if you use the app directory: you can’t have an
api folder in both the pages directory and app directory.

Next.js has statically and dynamically evaluated route handlers.
Statically evaluated route handlers will be cached and reused for every
request, whereas dynamically evaluated route handlers must request the
data upon each request. By default, the runtime statically evaluates all GET
route handlers that don’t use a dynamic function or the Response object. As
soon as we use a different HTTP method, the dynamic cookies or headers
function, or the Response object, the route handler becomes dynamically
evaluated. The same applies to APIs with dynamic segments, which receive
the dynamic parameters through the context object.

Let’s re-create the API route api/v1/weather/[zipcode].ts from Listing
5-1 as a route handler that we can use in the app directory. Add the code

https://nextjs.org/

from Listing B-24 to a route.ts file in the folder structure
app/api/v1/weather/[zipcode].

import {NextResponse, NextRequest} from "next/server";

interface ReqContext {

 params: {

 zipcode: number;

 }

}

export async function GET(req: NextRequest, context: ReqCont

ext): Promise<NextResponse> {

 return NextResponse.json(

 {

 zipcode: context.params.zipcode,

 weather: "sunny",

 temp: 35,

 },

 {status: 200}

);

}

Listing B-24: The route handler in app/api/v1/weather/[zipcode]/route.ts

Notice that we’ve used the square brackets pattern on the folder
structure to access the dynamic segment through the function’s second
parameter context object.

Within the file, we import the Next.js Response and NextRequest
objects from the server package and then define the interfaces for the route
handler. On the RequestContext interface, we add the zipcode property to
params, representing the API’s dynamic segment. Finally, we export the
asynchronous GET function, the API route handler that reacts to all GET
requests for this API endpoint. It receives the request object and the request
context as parameters and uses the NextResponse’s json function to return
the response data. We access the URL parameter zipcode through the
context object’s params object and then add it to the response data. We set

additional response options through the json function’s second parameter,
explicitly setting the HTTP status code to 200.

Now try querying the API with curl:

$ curl -i \

 -X GET \

 -H "Accept: application/json" \

 http://localhost:3000/api/v1/weather/12345

You should receive this JSON response:

HTTP/1.1 200 OK

content-type: application/json

--snip--

{"zipcode":"12345","weather":"sunny","temp":35}

This is the same response received in Chapter 5, where we accessed the
API through the browser.

C
COMMON MATCHERS

In Jest, matchers let us check a specific
condition, such as whether two values

are equal or whether an HTML element exists in the
current DOM. Jest comes with a set of built-in
matchers. In addition, the JEST-DOM package from
the testing library provides DOM-specific matchers.

Built-in Matchers
This section covers the most common built-in Jest matchers. You can find a
complete list in the official JEST documentation at https://jestjs.io/docs
/expect.

toBe This matcher is the simplest and by far the most common. It’s a
simple equality check to determine whether two values are identical. It
behaves similarly to the strict equality (===) operator, as it considers
type differences. Unlike the strict equality operator, however, it
considers +0 and -0 to be different.

test('toBe', () => {

 expect(1 + 1).toBe(2);

})

https://jestjs.io/docs/expect

toEqual We use toEqual to perform a deep-equality check between
objects and arrays, comparing all of their properties or items. This
matcher ignores undefined values and items. Furthermore, it does not
check the object’s types (for example, whether they are instances or
children of the same class or parent object). If you require such a
check, consider using the toStrictEqual matcher instead.

test('toEqual', () => {

 expect([undefined, 1]).toEqual([1]);

})

toStrictEqual The toStrictEqual matcher performs a structure and
type comparison for objects and arrays; passing this test requires that
the objects are of the same type. In addition, the matcher considers
undefined values and undefined array items.

test('toStrictEqual', () => {

 expect([undefined, 1]).toStrictEqual([undefined, 1]);

})

toBeCloseTo For floating-point numbers, we use toBeCloseTo instead
of toBe. This is because JavaScript’s internal calculations of floating-
point numbers are flawed, and this matcher considers those rounding
errors.

test('toBeCloseTo', () => {

 expect(0.1 + 0.2).toBeCloseTo(0.3);

})

toBeGreaterThan/toBeGreaterThanOrEqual For numeric values, we
use these matchers to verify that the result is greater than or equal to a
value, similar to the > and >= operators.

test('toBeGreaterThan', () => {

 expect(1 + 1).toBeGreaterThan(1);

})

toBeLessThan/toBeLessThanOrEqual These are the opposite of the
GreaterThan... matchers for numeric values, similar to the < and <=
operators.

test('toBeLessThan', () => {

 expect(1 + 1).toBeLessThan(3);

})

toBeTruthy/toBeFalsy These matchers check if a value exists,
regardless of its value. They consider the six JavaScript values 0, ' ',
null, undefined, NaN, and false to be falsy and everything else to be
truthy.

test('toBeTruthy', () => {

 expect(1 + 1).toBeTruthy();

})

toMatch This matcher accepts a string or a regular expression, then
checks if a value contains the given string or if the regular expression
returns the given result.

test('toMatch, () => {

 expect('apples and oranges').toMatch('apples');

})

toContain The toContain matcher is similar to toMatch, but it accepts
either an array or a string and checks these for a given string value.
When used on an array, the matcher verifies that the array contains the
given string.

test('toMatch, () => {

 expect(['apples', 'oranges']).toContain('apples');

})

toThrow This matcher verifies that a function throws an error. The
function being checked requires a wrapping function or the assertion
will fail. We can pass it a string or a regular expression, similar to the
toMatch function.

function functionThatThrows() {

 throw new Error();

}

test('toThrow', () => {

 expect(() => functionThatThrows()).toThrow();

})

The JEST-DOM Matchers
The JEST-DOM package provides matchers to work directly with the DOM,
allowing us to easily write tests that run assertions on the DOM, such as
checking for an element’s presence, HTML contents, CSS classes, or
attributes.

Say we want to check that our logo element has the class name center.
Instead of manually checking for the presence of an element and then
checking its class name attribute with toMatch, we can use the toHaveClass
matcher, as shown in Listing C-1.

<img data-testid="image" class="center full" alt="The Logo"

src="logo.svg" />

test('toHaveClass', () => {

 const element = getByTestId('image');

 expect(element).toHaveClass('center');

})

Listing C-1: The basic syntax for testing with the DOM

First we add the data attribute testid to our image element. Then, in
the test, we get the element using this ID and store the reference in a

constant. Finally, we use the toHaveClass matcher on the element’s
reference to see if the element’s class names contain the class center.

Let’s take a look at the most common DOM-related matchers.
getByTestId This matcher lets us directly access a DOM element and
store a reference to it, which we then use with custom matchers to
assert things about this element.

<img data-testid="image" class="center full" alt="The Logo"

src="logo.svg" />

test('toHaveClass', () => {

 const element = getByTestId('image');

--snip--

})

toBeInTheDocument This matcher verifies that an element was added
to the document tree. This matcher works only on elements that are
currently part of the DOM and ignores detached elements.

<img data-testid="image" class="center full" alt="The Logo"

src="logo.svg" />

test('toHaveClass', () => {

 const element = getByTestId('image');

 expect(element).toBeInTheDocument();

})

toContainElement This matcher tests our assumptions about the
element’s child elements, letting us verify, for example, whether an
element is a descendant of the first.

<div data-testid="parent">

 <img data-testid="image" class="center full" alt="The Lo

go" src="logo.svg" />

</div>

test('toHaveClass', () => {

 const parent = getByTestId('parent');

 const element = getByTestId('image');

 expect(parent).toContainElement(element);

})

toHaveAttribute This matcher lets us run assertions on the element’s
attributes, such as an image’s alt attribute and the checked, disabled,
or error state of form elements.

<img data-testid="image" class="center full" alt="The Logo"

src="logo.svg" />

test('toHaveClass', () => {

 const element = getByTestId('image');

 expect(element).toHaveAttribute('alt', 'The Logo');

})

toHaveClass The toHaveClass matcher is a specific variant of the
toHave Attribute matcher. It lets us explicitly assert that an element
has a particular class name, allowing us to write clean tests.

<img data-testid="image" class="center full" alt="The Logo"

src="logo.svg" />

test('toHaveClass', () => {

 const element = getByTestId('image');

 expect(element).toHaveClass('center');

})

INDEX

SYMBOLS
` (backtick), 23
$ (dollar sign), 23
=> (fat arrow), 21
! (exclamation mark), 102
. (period), 176
+ (plus operator), 34, 142
? (question mark), 45
... (spread operator), 27–28, 78
[] (square brackets), 77, 102
_ (underscore), 105

NUMBERS
200 status code, 107, 248–249
404 status code, 227
405 status code, 111
500 status code, 77, 101, 249

A
absolute imports, 196
abstract syntax tree (AST), 103–104
access token, 159

using authorization grant to get, 171
using to get protected resource, 172

act, test cases, 133
allowJs option, 259
AMD format, 16
anonymous functions, 16–17
any type, 43
APIs (application programming interfaces), 57

containers communicating through, 174
contracts, 34, 38, 94
GraphQL APIs, 101–113
microservices communicating through, 178
REST APIs, 93–101
routes

creating, 90
for GraphQL API, 110–111
overview, 75–77
replacing with route handlers, 285–287

Apollo sandbox, 111–113
Apollo server, 108
app directory, 72, 263–287

exploring project structure, 269–287
adding content and route, 275–277
adding server component that fetches remote data, 281–284
catching errors, 277–279
completing application with navigation, 284–285
defining layout, 273–275
replacing API routes with route handlers, 285–287
showing optional loading interface, 279–281
updating CSS, 271–272

rendering components
dynamic rendering, 268–269
fetching data, 266–267
static rendering, 267–268

server components vs. client components
client components, 265
server components, 264–265

App function, 56
application glue, 120
application programming interfaces. See APIs
apps

serving from Docker container, 177

using databases and object-relational mappers, 116
arranging test cases, 132–133
array.map function, 27
arrays

dispersing, 27–28
identifying object types as, 102
looping through, 27

array type, 41–42
arrow functions, 20–22

exploring practical use cases, 22
lexical scope, 21–22
writing, 21

assertion, test cases, 133–134
AST (abstract syntax tree), 103–104
asynchronous scripts

avoiding traditional callbacks, 24–25
simplifying, 26–27
using promises, 25–26
writing ES.Next module with, 29–30

async keyword, 26–27
audience claim, 164
auditing package.json file, 10
AuthElement component

adding to header, 241–243
overview, 238–240

authentication
authorization vs., 158–159
REST APIs, 97–98

authentication callback, 233–236
auth guard, 248–249
authorization, 157–172

accessing protected resource, 168–172
logging in to receive authorization grant, 170–171
setting up client, 168–170
using access token to get protected resource, 172
using authorization grant to get access token, 171

authentication vs., 158–159
bearer tokens, 160–161
code flow, 160–163
creating JWT tokens, 163–168

header, 163
payload, 163–166
signature, 166–168

grant types, 159–160
role of OAuth, 159

authorization code flow, 160–163
authorization grant

logging in to receive, 170–171
using to get access token, 171

authorization server, 159
automated tests, 253–257

adding Jest to project, 254
setting up, 254–256
writing snapshot tests for header element, 256–257

await keyword, 26–27

B
Babel.js, 15
backend container

creating backend service, 187–189
seeding the database, 186–187

backtick (`), 23
baseUrl option, 259
bearer tokens, 160–161
beforeAll hook, 132
beforeEach hook, 132
black-box test, 144
blocking time, 86
block scope, 17
Booleans, 40
Boolean scalar type, 102
built-in components

next/head, 80–81
next/image, 82–83
next/link, 81–82

built-in hooks
handling side effects with useEffect, 62–63
managing internal state with useState, 62
sharing global data with useContext and context providers, 63–64

built-in matchers, 289–291
built-in types

any, 43
array, 41–42
object, 42
primitive types, 40–41
tuple, 42–43
union, 41
void, 43–44

built-in validators, 118
button, generic, 235–238, 244–247

C
@cacheControl directive, 103
cacheControl.setCacheHint resolver function, 103
cached connection, 198
callback hell, 25
callbacks

array function running, 138
array.map function, 27
arrow functions simplifying, 22
avoiding traditional, 24–25

callback URL, 162
cases, test, 130
catch all API route, 78
catch method, 25–26
claims, 163–166

private, 166
public, 165
registered, 164–165

class components, 59–60
client components, 265
client credentials, 232

flow, 160
client ID, 159
clients, 159
client secret, 159
client-side rendering, 88–89
cloning arrays and objects, 28
code coverage, 130, 138–139
code generator, 55
collections, 117
collisions, 161
compilerOptions field, 37
compilers, 36
components, 57–61

Next.js built-in components, 80–83
next/head, 80–81
next/image, 82–83
next/link, 81–82

providing reusable behavior with hooks, 61
styles for, 79–80
writing class components, 59–60

concise body function, 21
constant-like data, 20
const keyword, 20
constructor function, 59
container class, 80

containerization, 173–182. See also Docker
context providers, 63–64
COPY keyword, 176
create-next-app command, 70
create-react-app command, 55
Cross-Origin Resource Sharing (CORS), 75–76
CRUD operations, 121–123, 199
CSS styles, 78–80

adding to list item, 216–217
component styles, 79–80
global styles, 79
updating, 271–272

cumulative layout shifts, 82
curl command, 248, 251–252
cURL tool, 99
custom types, 44–45, 208
Cypress, 253

D
daemon service, 175
database-connection middleware, 120–121
data mapping, 77
data types, 20
declarative programming, 54
declaring variables, 17–20

constant-like data, 20
hoisted variables, 18–19
scope-abiding variables, 19

default exports, 16–17
default keyword, 16
DefinitelyTyped repository, 46
DELETE method, 98
deleteOne function, 123
deleting document, 123
dependencies

installing, 8–9
overview, 6
removing, 11
replacing, 139–143

creating doubles folder, 141
creating module with dependencies, 140–141
using fakes, 142
using mocks, 143
using stubs, 142

useEffect hook managing, 63
details component, 227–228
development dependencies

installing, 9–10
overview, 6

development scripts, Next.js, 72
directives, 208
dispersing arrays and objects, 27–28
Docker, 173–182, 185–193

building local environment with
backend container, 186–189
frontend container, 189–192

containerization architecture, 174
containers, 174–178

building Docker image, 176
interacting with, 178
locating exposed Docker port, 177–178
serving application from, 177
writing Dockerfile, 175–176

Docker Compose, 178–182

interacting with, 182
rerunning tests, 181–182
running containers, 180–181
writing docker-compose.yml file, 179–180

Food Finder application, 186
installing, 174
running automated tests in, 253–257

adding Jest to project, 254
setting up, 254–256
writing snapshot tests for header element, 256–257

docker-compose.yml file, 179–180
document databases, 117
document object model (DOM), 54, 57
documents, 117
dollar sign ($), 23
domain-specific language (DSL), 24
doubles folder, 141
dynamically typed languages, 34
dynamic feedback, 38
dynamic rendering, 268–269
dynamic URLs, 77–78

E
element constant, 57
elements, 56
encrypted tokens, 161
endpoint, 95
end-to-end query, 123–125
end-to-end tests, 145, 151–153
environment problems, 144
errors, 133

catching, 277–279
with const keyword, 20
Internal Server Error, 77
non-hoisted variables, 19
promises and, 25–26
TypeScript, 36
using variables before declaring, 18

escape character, 99
esModuleInterop option, 259
ES.Next modules, 15–17

importing modules, 17
using named and default exports, 16–17
writing with asynchronous code, 29–30

exclamation mark (!), 102
exclude option, 37
executing script, using npx, 12
expect function, 133–134
expiration claim, 164
export statement, 16
exposed Docker port, 177–178
ExpressJS Fundamentals course, 14
Express.js server

building “Hello World,” 13–14
creating reactive user interface for, 64–67
extending with modern JavaScript, 29–31
extending with TypeScript, 46–51

adding type annotations to index.ts file, 49–50
adding type annotations to routes.ts file, 48–49
creating tsconfig.json file, 47
defining custom types, 47–48
setting up, 46–47
transpiling and running code, 50–51

refactoring, 89–91
extends option, 37
external APIs, 93–94

F
fakes, 142
fat arrow (=>), 21
fetch API, 26–27, 266–267, 281–284
Fibonacci sequence, 140–143
fields, 117
filter method, 22
finally method, 25–26
findOne function, 122
Float scalar type, 102
Food Finder application, 186
forceConsistentCasingInFileNames option, 260
--force flag, 10
FROM keyword, 175
frontend container

application service
adjusting for restarts, 191–192
creating, 189–190

global layout components, 222–226
header, 223–224
layout, 224–226
logo, 222–223

installing Next.js, 190–191
location details page, 227–230
start page, 216–222

list item component, 216–218
location list component, 218–219

user interface, 215–216
fs module, 24–25
functional tests, 144
function components, 59
functions

arrow, 20–22
exploring practical use cases, 22
lexical scope, 21–22
writing, 21

avoiding traditional callbacks, 24–25
type annotations declaring parameters of, 39–40

function scope, 17–18

G
gateway communications, 144–145
generic button component, 235–238, 244–247
getByTestId matcher, 292
GET method, 98–100
getServerSideProps function, 84–85
getToken function, 250
GitHub OAuth app, 232
global data, sharing with useContext hook, 63–64
global layout components, 222–226

header, 223–224
layout, 224–226
logo, 222–223

global scope, 18, 44
global styles, 79, 219–220
Google Authenticator, 158
Google scoring algorithm, 86
gql tag, 210
grant types, 159–160
graph databases, 117
GraphQL APIs, 75, 101–113, 207–214

adding API endpoint to Next.js, 212–214
adding to Next.js

adding data, 109
creating API route, 110–111
creating schema, 108–109
implementing resolvers, 109–110
using Apollo sandbox, 111–113

comparing REST to
over-fetching, 106–107
under-fetching, 107–108

connecting MongoDB to
adding services to GraphQL resolvers, 126–127
connecting to database, 125–126

merging typedefs into final schema, 209–210
resolvers, 103–106, 210–212
schemas, 101–103

custom types and directives, 208
mutation schema, 209
query schema, 209

securing mutations, 247–252
setting up, 208

GraphQL queries, 209
GraphQL schema, 24
guards, 248

H
hash-based message authentication code (HMAC), 161
Head elements, 80–81
header

adding AuthElement component to, 241–243
global layout components, 223–224
JWT tokens, 163
writing snapshot tests for, 256–257

hoisted variables, 18–19
hooks, 62–64

handling side effects with useEffect, 62–63
managing internal state with useState, 62
providing reusable behavior with, 61
sharing global data with useContext and context providers, 63–64

host system, 174–175
hot-code reloading, 72
HTML, 24

incremental static regeneration, 87
JSX elements and, 57
reactive user interface and, 54
static HTML exporting, 89

HTTP methods, 98–99

I
id helper program, 192
ID scalar type, 102
Image component, 82–83
images, Docker, 176
 element, 82
immutable data types, 20
immutable elements, 57
implicit flow, 160
importing modules, 17
import statement, 16–17
include option, 37
incremental option, 260
incremental static regeneration (ISR), 87
integration tests, 144–145
interaction-based tests, 132
interface keyword, 45
interfaces

defining, 45
Mongoose model, 118
storing, 90

inter-module communication, 144
internal APIs, 93
Internal Server Error, 77, 101
internal state, managing with useState hook, 62
Int scalar type, 102
I/O operations, 24–25
isolatedModules option, 260
ISR (incremental static regeneration), 87
issued at claim, 165
issuer claim, 164

J
JavaScript

arrow functions, 20–22
exploring practical use cases, 22
lexical scope, 21–22
writing, 21

asynchronous scripts
avoiding traditional callbacks, 24–25
simplifying, 26–27
using promises, 25–26

creating strings, 22–24
declaring variables, 17–20
dispersing arrays and objects, 27–28
ES.Next modules, 15–17, 29–30
Express.js server

building “Hello World,” 13–14
extending, 29–31

looping through arrays, 27
Node.js, 3–14

creating projects, 8–12
installing, 4
package.json file, 4–6
package-lock.json file, 6–7
working with npm, 4

TypeScript, 33–51
benefits of, 34–36
built-in types, 40–44
custom types and interfaces, 44–46
extending Express.js server with, 46–51
setting up, 36–38
type annotations, 38–40

JavaScript Syntax Extension (JSX)
example expression, 56–57
ReactDOM package, 57

JEST-DOM matchers, 292–293
Jest framework, 129–156

adding test cases to weather app
creating mocks to test services, 148–151
evaluating user interface with snapshot test, 153–156
performing end-to-end test of REST API, 151–153
testing middleware with spies, 146–148

adding to project, 254
anatomy of test case

act, 133
arrange, 132–133
assertion, 133–134

creating example module to test, 131–132
matchers

built-in, 289–291
JEST-DOM, 292–293

replacing dependencies, 139–143
creating doubles folder, 141
creating module with dependencies, 140–141
using fakes, 142
using mocks, 143
using stubs, 142

setting up, 130–131
test-driven development, 135–139

evaluating test coverage, 138–139
overview, 130
refactoring code, 136–138

types of tests
end-to-end tests, 145
functional tests, 144
integration tests, 144–145
snapshot tests, 145

unit testing, 130
jsonlint package, 12
JSX. See JavaScript Syntax Extension
jsx option, 260
JWT (JSON Web Token)

defined, 160–161
header, 163
payload, 163–166

private claims, 166
public claims, 165
registered claims, 164–165

signature, 166–168
JWT claim, 165

K
key-value storage, 117
kill command, 178

L
layout

app directory, 273–275
global layout components, 224–226

let keyword, 19
lexical scope, 21–22
lib option, 260
lifecycle methods, 59
Link component, 81–82
list item component, 216–218
loading user interface, 279–281
local environment

backend container, 186–189
creating backend service, 187–189
seeding the database, 186–187

frontend container, 189–192
adjusting application service for restarts, 191–192
creating application service, 189–190
installing Next.js, 190–191

location details page, 215
adding button to, 244–247
overview, 227–230

location ID, 215
location list component, 218–219
location services

creating, 203–205
custom types for, 203

logo, 222–223
long-term support (LTS) version, 4
looping through arrays, 27

M
MAC (message authentication code), 161
major version changes, 5
matcher function, 134
matchers

built-in, 289–291
JEST-DOM, 292–293

Memcached, 117
message authentication code (MAC), 161
microservices, 178–182

interacting with Docker Compose, 182
rerunning tests, 181–182
running containers, 180–181
writing docker-compose.yml file, 179–180

middleware, 120–121, 195–206
configuring Next.js to use absolute imports, 196
connecting Mongoose, 196–199

fixing TypeScript warning, 198–199
writing database connection, 197–198

creating Mongoose model
creating location model, 201–202
creating schema, 199–200

model services, 202–206
creating location services, 203–205
testing, 206

testing with spies, 146–148
minor version changes, 5
mobile-first design pattern, 222
mocks, 143, 148–151
module option, 260
moduleResolution option, 260
module scope, 18, 44
MongoDB, 101, 115–128

connecting GraphQL API to database, 125–126
adding services to GraphQL resolvers, 126–127

creating end-to-end query, 123–125
defining Mongoose model

database-connection middleware, 120–121
interfaces, 118
model, 119–120
schema, 118–119

how apps use databases and object-relational mappers, 116
querying database

creating document, 121–122
deleting document, 123
reading document, 122

updating document, 122–123
relational and non-relational databases, 116–117
setting up Mongoose and, 117

MongoDB Query Language (MQL), 117
Mongoose

connecting middleware, 196–199
fixing the TypeScript warning, 198–199
writing database connection, 197–198

creating model
creating location model, 201–202
creating schema, 199–200

defining model
database-connection middleware, 120–121
interfaces, 118
model, 119–120
schema, 118–119

setting up, 117
MQL (MongoDB Query Language), 117
multifactor authentication, 158
mutations, 101, 211–212

defining schema, 209
input type object for, 102–103
securing GraphQL, 247–252

MySQL, 101

N
named exports, 16–17
name field, 5
--name flag, 177
navigation, 284–285
Neo4j, 117
nested page routes, 73–75
networking protocols, 8
next-auth, 231–235

adding client credentials, 232
creating authentication callback, 233–236
creating GitHub OAuth app, 232
installing, 233
sharing session across pages and components, 235

next export command, 89
next/head component, 80–81
next/image component, 82–83
Next.js, 13, 69–91

adding API endpoint to, 212–214
adding GraphQL API to, 108–113

adding data, 109
creating API route, 110–111
creating schema, 108–109
implementing resolvers, 109–110
using Apollo sandbox, 111–113

app directory, 263–287
exploring project structure, 269–287
rendering components, 266–269
server components vs. client components, 264–265

built-in components
next/head, 80–81
next/image, 82–83
next/link, 81–82

configuring to use absolute imports, 196
installing in container, 190–191
pre-rendering and publishing, 83–89

client-side rendering, 88–89
incremental static regeneration, 87
server-side rendering, 84–85
static HTML exporting, 89
static site generation, 86–87

refactoring React and Express.js applications, 89–91
routing applications, 72–78

API routes, 75–77
dynamic URLs, 77–78
nested page routes, 73–75

simple page routes, 73
setting up, 70–72

development scripts, 72
project structure, 71–72

styling applications, 78–80
component styles, 79–80
global styles, 79

wish list page, 243–244
next/link component, 81–82
Node.js, 3–14

creating projects, 8–12
auditing package.json file, 10
cleaning up node_modules folder, 11
executing script only once using npx, 12
initializing new module or project, 8
installing dependencies, 8–9, 11–12
installing development dependencies, 9–10
removing dependencies, 11
updating all packages, 11

Express.js-based Node.js server, 13–14
installing, 4
package.json file, 4–6

dependencies, 6
development dependencies, 6
required fields, 5

package-lock.json file, 6–7
TypeScript installation in, 36–37
working with npm, 4

node_modules folder
cleaning up, 11
package.json file vs., 4–5

node package execute (npx) tool, 12
noEmit option, 260
non-hoisted variables, 19–20
non-nullable fields, 102
non-primitive data types, 20
non-relational databases, 116–117
NoSQL databases, 117
not before claim, 165
npm, 4
npm audit command, 10
npm init command, 8
npm install command, 7, 11–12
npm prune command, 11
npm run build command, 72
npm test command, 131
npm uninstall command, 11

npm update command, 11
npx command, 70
npx next build command, 72
npx tool, 12
null types, 40–41
numbers, as primitive types, 40

O
OAuth, 157–172

accessing protected resource
logging in to receive authorization grant, 170–171
setting up client, 168–170
using access token to get protected resource, 172
using authorization grant to get access token, 171

adding button to location detail component, 244–247
adding with next-auth, 231–235

adding client credentials, 232
creating authentication callback, 233–236
creating GitHub OAuth app, 232
installing next-auth, 233
sharing session across pages and components, 235

AuthElement component
adding to header, 241–243
overview, 238–240

authentication vs., 158–159
authorization code flow, 161–163
bearer tokens, 160–161
creating JWT tokens

header, 163
payload, 163–166
signature, 166–168

generic button component, 235–238
grant types, 159–160
role of OAuth, 159
securing GraphQL mutations, 247–252
wish list Next.js page, 243–244

object data modeling, 116
object-relational mappers, 116
objects, 27–28
object type, 42
one-time password (OTP), 158
online playground, 37, 55
online registry, npm, 4
OpenAPI format, 95
over-fetching, 106–107
over-typing, 38–39

P
package.json file, 4–6

auditing, 10
dependencies, 6
development dependencies, 6
editing, 29
required fields, 5

package-lock.json file, 6–7
packages

npm online registry, 4
updating, 11

page routes
adding, 275–277
creating, 90–91
nested, 73–75
simple, 73

pages folder, 71–72
parameters of functions, 39–40
PATCH method, 98
patch version changes, 5
$PATH environment variable, 12
payload, JWT tokens, 163–166

private claims, 166
public claims, 165
registered claims, 164–165

period (.), 176
persisting the data, 116
Playwright, 253
plus operator (+), 34, 142
POST method, 98
prefixes, 79–80
pre-rendering, 83–89

client-side rendering, 88–89
incremental static regeneration, 87
server-side rendering, 84–85
static HTML exporting, 89
static site generation, 86–87

primitive types, 20, 40–41
private APIs, 93
private claims, 166
profile pages, 77
promise chain, 26
Promise object, 25
props argument, 57–58, 84, 86
protected resource

logging in to receive authorization grant, 170–171

setting up client, 168–170
using access token to get protected resource, 172
using authorization grant to get access token, 171

providers, 231
public claims, 165
public folder, 71
--publish-all flag, 177
push method, 20
PUT method, 98

Q
queries, 101
querying database, 121–123
query schema, 209
question mark (?), 45

R
ReactDOM package, 57
reactive user interface, 54
React, 53–67

creating reactive user interface for Express.js server, 64–67
JavaScript Syntax Extension, 56–57
organizing code into components, 57–61

providing reusable behavior with hooks, 61
writing class components, 59–60

refactoring, 89–91
role of, 53–55
setting up, 55–56
working with built-in hooks

handling side effects with useEffect, 62–63
managing internal state with useState, 62
sharing global data with useContext and context providers, 63–64

reading
data, 99–100
document, 122
files, 25

Redis, 117
refactoring code, 136–138
refresh token, 160
registered claims, 164–165
relational databases, 116–117
remote data, fetching, 281–284
rendering components

dynamic rendering, 268–269
fetching data, 266–267
static rendering, 267–268

replacing dependencies, 139–143
creating doubles folder, 141
creating module with dependencies, 140–141
using fakes, 142
using mocks, 143
using stubs, 142

replay attack, 165
report, test-coverage, 138–139
require statement, 16
resolveJsonModule option, 260
resolvers, 210–212

implementing, 109–110
overview, 103–106

resource owner, 159–160
resource providers, 159
REST APIs, 75, 93–101, 212

comparing GraphQL to
over-fetching, 106–107
under-fetching, 107–108

creating end-to-end query, 123–125
HTTP methods, 98–99
overview, 94–95
performing end-to-end test of, 151–153
specification, 95–97
state and authentication, 97–98
URLs, 95
working with

reading data, 99–100
updating data, 100–101

restarts, 191–192
RESTful APIs, 159
return value, type annotations declaring, 39
reusable behavior, 61
root entry point, 95
root privileges, 192
route handlers, 285–287
routing applications, 72–78

API routes, 75–77
dynamic URLs, 77–78
nested page routes, 73–75
simple page routes, 73

S
--save-dev flag, 36–37, 46
scaffolding process, 55
scalar types, 102
Schema Definition Language (SDL), 101
schemas

GraphQL APIs, 101–103, 108–109
custom types and directives, 208
merging typedefs into final schema, 209–210
mutation schema, 209
query schema, 209

Mongoose, 118–119, 199–200
scope, variable, 17
scope-abiding variables, 19
scope property, 22
screenshots, 145
script, executing once using npx, 12
SDL (Schema Definition Language), 101
secrets, 233
securing GraphQL mutations, 247–252
seeding the database, 124, 186–187
semantic versioning, 5–6
SEO metadata, 80, 86
server components, 264–265
server-side rendering (SSR), 84–85
services, 121
session information, 97–98
sessions, sharing across pages and components, 235
SHA-256 hash algorithm, 161
side effects, 62–63
SIGKILL command, 182
signature, JWT tokens, 166–168
signed tokens, 161
SIGTERM command, 182
single-factor authentication, 158
skipLibCheck option, 260
snapshot tests, 145

evaluating user interface with, 153–156
writing for header, 256–257

specification, 95–97
spies, 146–148
spread operator (...), 27–28, 78
SQL (Structured Query Language), 116–117
square brackets ([]), 77, 102
SSG (static site generation), 86–87, 215
SSR (server-side rendering), 84–85

SSR (static site rendering), 216, 244
start page, 216–222

list item component, 216–218
location list component, 218–219

state-based tests, 132
stateless, REST APIs, 97–98
statically typed languages, 36
static exports

API routes and, 76
HTML, 89

static HTML file, 66
static rendering, 267–268
static site generation (SSG), 86–87, 215
static site rendering (SSR), 216, 244
steps, test, 130
sticky header, 222–223
strings

benefits of TypeScript, 34
creating, 22–24
as primitive types, 40
template literals for, 22–24

String scalar type, 102
Structured Query Language (SQL), 116–117
stubs, 142
styles folder, 71–72
styles object, 80
styling applications, 78–80

component styles, 79–80
global styles, 79

subject claim, 164
suites, test, 130
sum function, 131–132, 135
super function, 59–60
Swagger, 95–97

T
--tag flag, 176
tagged template literal, 22–24
target option, 260
template literals, 22–24
test-coverage report, 138–139
test doubles, 139
test-driven development (TDD), 135–139

evaluating test coverage, 138–139
overview, 130
refactoring code, 136–138

testing, 129–156
adding test cases to weather app

creating mocks to test the services, 148–151
evaluating user interface with snapshot test, 153–156
performing end-to-end test of REST API, 151–153
testing middleware with spies, 146–148

anatomy of test case
act, 133
arrange, 132–133
assertion, 133–134

creating example module to test, 131–132
model services, 206
replacing dependencies, 139–143

creating doubles folder, 141
creating module with dependencies, 140–141
using fakes, 142
using mocks, 143
using stubs, 142

rerunning, 181–182
running automated tests in Docker, 253–257

adding Jest to project, 254
setting up, 254–256
writing snapshot tests for header element, 256–257

setting up, 130–131
test-driven development, 135–139

evaluating test coverage, 138–139
overview, 130
refactoring code, 136–138

types of
end-to-end tests, 145
functional tests, 144
integration tests, 144–145
snapshot tests, 145

unit testing, 130
testing-library/dom assert package, 134

testing-library/react assert package, 134
test runner, 130
testWatch command, 254–256
then method, 25–26
third-party APIs, 93–94
this keyword, 21–22, 59
time to first paint, 86
toBeCloseTo matcher, 290
toBeGreaterThan/toBeGreater ThanOrEqual matcher, 290
toBeInTheDocument matcher, 292
toBeLessThan/toBeLessThanOrEqual matcher, 290–291
toBe matcher, 289–290
toBeTruthy/toBeFalsy matcher, 291
toContainElement matcher, 293
toContain matcher, 291
toEqual matcher, 290
toHaveAttribute matcher, 293
toHaveClass matcher, 293
toMatch matcher, 291
toStrictEqual matcher, 290
toThrow matcher, 291
transpilers, 36
TSC. See TypeScript Compiler
tsconfig.json file, 37–38
tuple type, 42–43
type annotations, 38–40

declaring parameters of functions, 39–40
declaring return value, 39
declaring variables, 39

type declaration files, 45–46
typedefs, 101, 209–210
type keyword, 44–45
TypeScript, 16, 33–51

benefits of, 34–36
built-in types

any, 43
array, 41–42
object, 42
primitive types, 40–41
tuple, 42–43
union, 41
void, 43–44

custom types and interfaces
defining custom types, 44–45
defining interfaces, 45
using type declaration files, 45–46

extending Express.js server with, 46–51

setting up
dynamic feedback, 38
installation in Node.js, 36–37
tsconfig.json file, 37–38

type annotations, 38–40
declaring parameters of functions, 39–40
declaring return value, 39
declaring variables, 39

using JSX with, 57
TypeScript Compiler (TSC), 36

fixing warning, 198–199
options, 259–261

@types scope, 46

U
UMD format, 16
undefined type, 40–41
under-fetching, 107–108
underscore (_), 105
union type, 41
unit testing, 130
untagged template literal, 22–23
updateOne function, 122–123
useContext hook, 63–64
useEffect hook, 61–63, 89, 244
user ID, 215, 244
user interfaces

evaluating with snapshot tests, 153–156
frontend container, 215–216
showing optional loading user interface, 279–281

user property, 192
useSession hook, 240
useState hook, 61–62, 89

V
-v (version) flag, 4
variables, 17–20

constant-like data, 20
hoisted variables, 18–19
scope-abiding variables, 19
type annotations declaring, 39

var keyword, 18–19
version field, 5
versioning APIs, 95
viewport, 81
virtual DOM, 54
Visual Studio Code, 38
void type, 43–44
--volume flag, 177
volumes, 177
vulnerabilities, 10

W
W3Schools tutorials, 14, 67
weather app

creating mocks to test the services, 148–151
evaluating user interface with snapshot test, 153–156
performing end-to-end test of REST API, 151–153
testing middleware with spies, 146–148

wish list Next.js page, 243–244
WORKDIR keyword, 175

Y
YAML, 188
yarn, 4

	Praise for The Complete Developer
	Title Page
	Copyright
	Dedication
	About the Author and Technical Reviewer
	Acknowledgments
	Introduction
	Who Should Read This Book?
	What’s in This Book?
	The Parts of a Full-Stack Application
	The Frontend
	The Middleware
	The Backend

	A Brief History of JavaScript and Full-Stack Development
	Setting Up

	Part I: The Technology Stack
	1. Node.JS
	Installing Node.js
	Working with npm
	The package.json File
	Required Fields
	Dependencies
	Development Dependencies

	The package-lock.json File
	Creating a Project
	Initializing a New Module or Project
	Installing the Dependencies
	Installing the Development Dependencies
	Auditing the package.json File
	Cleaning Up the node_modules Folder
	Updating All Packages
	Removing a Dependency
	Installing a Dependency
	Using npx to Execute a Script Only Once

	Exercise 1: Build a “Hello World” Express.js Server
	Setting Up
	Writing the Server Code

	Summary

	2. Modern Javascript
	ES.Next Modules
	Using Named and Default Exports
	Importing Modules

	Declaring Variables
	Hoisted Variables
	Scope-Abiding Variables
	Constant-Like Data

	Arrow Functions
	Writing Arrow Functions
	Understanding Lexical Scope
	Exploring Practical Use Cases

	Creating Strings
	Asynchronous Scripts
	Avoiding Traditional Callbacks
	Using Promises
	Simplifying Asynchronous Scripts

	Looping Through an Array
	Dispersing Arrays and Objects
	Exercise 2: Extend Express.js with Modern JavaScript
	Editing the package.json File
	Writing an ES.Next Module with Asynchronous Code
	Adding the Modules to the Server

	Summary

	3. Typescript
	Benefits of TypeScript
	Setting Up TypeScript
	Installation in Node.js
	The tsconfig.json File
	Dynamic Feedback with TypeScript

	Type Annotations
	Declaring a Variable
	Declaring a Return Value
	Declaring a Function’s Parameters

	Built-in Types
	Primitive JavaScript Types
	The union Type
	The array Type
	The object Type
	The tuple Type
	The any Type
	The void Type

	Custom Types and Interfaces
	Defining Custom Types
	Defining Interfaces
	Using Type Declaration Files

	Exercise 3: Extend Express.js with TypeScript
	Setting Up
	Creating the tsconfig.json File
	Defining Custom Types
	Adding Type Annotations to the routes.ts File
	Adding Type Annotations to the index.ts File
	Transpiling and Running the Code

	Summary

	4. React
	The Role of React
	Setting Up React
	The JavaScript Syntax Extension
	An Example JSX Expression
	The ReactDOM Package

	Organizing Code into Components
	Writing Class Components
	Providing Reusable Behavior with Hooks

	Working with Built-in Hooks
	Managing the Internal State with useState
	Handling Side Effects with useEffect
	Sharing Global Data with useContext and Context Providers

	Exercise 4: Create a Reactive User Interface for the Express.js Server
	Adding React to the Server
	Creating the Endpoint for the Static HTML File
	Running the Server

	Summary

	5. Next.JS
	Setting Up Next.js
	Project Structure
	Development Scripts

	Routing the Application
	Simple Page Routes
	Nested Page Routes
	API Routes
	Dynamic URLs

	Styling the Application
	Global Styles
	Component Styles

	Built-in Next.js Components
	The next/head Component
	The next/link Component
	The next/image Component

	Pre-rendering and Publishing
	Server-Side Rendering
	Static Site Generation
	Incremental Static Regeneration
	Client-Side Rendering
	Static HTML Exporting

	Exercise 5: Refactor Express.js and React to Next.js
	Storing Custom Interfaces and Types
	Creating the API Routes
	Creating the Page Routes
	Running the Application

	Summary

	6. Rest and Graphql APIs
	REST APIs
	The URL
	The Specification
	State and Authentication
	HTTP Methods

	Working with REST
	Reading Data
	Updating Data

	GraphQL APIs
	The Schema
	The Resolvers

	Comparing GraphQL to REST
	Over-Fetching
	Under-Fetching

	Exercise 6: Add a GraphQL API to Next.js
	Creating the Schema
	Adding Data
	Implementing Resolvers
	Creating the API Route
	Using the Apollo Sandbox

	Summary

	7. Mongodb and Mongoose
	How Apps Use Databases and Object-Relational Mappers
	Relational and Non-Relational Databases
	Setting Up MongoDB and Mongoose
	Defining a Mongoose Model
	The Interface
	The Schema
	The Model
	The Database-Connection Middleware

	Querying the Database
	Creating a Document
	Reading a Document
	Updating a Document
	Deleting a Document

	Creating an End-to-End Query
	Exercise 7: Connect the GraphQL API to the Database
	Connecting to the Database
	Adding Services to GraphQL Resolvers

	Summary

	8. Testing With the Jest Framework
	Test-Driven Development and Unit Testing
	Using Jest
	Creating an Example Module to Test
	Anatomy of a Test Case
	Arrange
	Act
	Assert

	Using TDD
	Refactoring Code
	Evaluating Test Coverage

	Replacing Dependencies with Fakes, Stubs, and Mocks
	Creating a Module with Dependencies
	Creating a Doubles Folder
	Using a Stub
	Using a Fake
	Using a Mock

	Additional Types of Tests
	Functional Tests
	Integration Tests
	End-to-End Tests
	Snapshot Tests

	Exercise 8: Add Test Cases to the Weather App
	Testing the Middleware with Spies
	Creating Mocks to Test the Services
	Performing an End-to-End Test of the REST API
	Evaluating the User Interface with a Snapshot Test

	Summary

	9. Authorization With OAuth
	How OAuth Works
	Authentication vs. Authorization
	The Role of OAuth
	Grant Types
	Bearer Tokens

	The Authorization Code Flow
	Creating a JWT Token
	The Header
	The Payload
	The Signature

	Exercise 9: Access a Protected Resource
	Setting Up the Client
	Logging In to Receive the Authorization Grant
	Using the Authorization Grant to Get the Access Token
	Using the Access Token to Get the Protected Resource

	Summary

	10. Containerization With Docker
	The Containerization Architecture
	Installing Docker
	Creating a Docker Container
	Writing the Dockerfile
	Building the Docker Image
	Serving the Application from the Docker Container
	Locating the Exposed Docker Port
	Interacting with the Container

	Creating Microservices with Docker Compose
	Writing the docker-compose.yml File
	Running the Containers
	Rerunning the Tests
	Interacting with Docker Compose

	Summary

	Part II: The Full-Stack Application
	11. Setting Up the Docker Environment
	The Food Finder Application
	Building the Local Environment with Docker
	The Backend Container
	The Frontend Container

	Summary

	12. Building the Middleware
	Configuring Next.js to Use Absolute Imports
	Connecting Mongoose
	Writing the Database Connection
	Fixing the TypeScript Warning

	The Mongoose Model
	Creating the Schema
	Creating the Location Model

	The Model’s Services
	Creating the Location Service’s Custom Types
	Creating the Location Services
	Testing the Services

	Summary

	13. Building the Graphql API
	Setting Up
	The Schemas
	The Custom Types and Directives
	The Query Schema
	The Mutation Schema

	Merging the Typedefs into the Final Schema
	The GraphQL Resolvers
	Adding the API Endpoint to Next.js
	Summary

	14. Building the Frontend
	Overview of the User Interface
	The Start Page
	The List Item
	The Locations List
	The Page

	The Global Layout Components
	The Logo
	The Header
	The Layout

	The Location Details Page
	The Component
	The Page

	Summary

	15. Adding OAuth
	Adding OAuth with next-auth
	Creating a GitHub OAuth App
	Adding the Client Credentials
	Installing next-auth
	Creating the Authentication Callback
	Sharing the Session Across Pages and Components

	The Generic Button Component
	The AuthElement Component
	Adding the AuthElement Component to the Header
	The Wish List Next.js Page
	Adding the Button to the Location Detail Component
	Securing the GraphQL Mutations
	Summary

	16. Running Automated Tests in Docker
	Adding Jest to the Project
	Setting Up Docker
	Writing Snapshot Tests for the Header Element
	Summary

	A. Typescript Compiler Options
	B. The Next.JS App Directory
	Server Components vs. Client Components
	Server Components
	Client Components

	Rendering Components
	Fetching Data
	Static Rendering
	Dynamic Rendering

	Exploring the Project Structure
	Updating the CSS
	Defining a Layout
	Adding the Content and Route
	Catching Errors
	Showing an Optional Loading Interface
	Adding a Server Component That Fetches Remote Data
	Completing the Application with the Navigation
	Replacing API Routes with Route Handlers

	C. Common Matchers
	Built-in Matchers
	The JEST-DOM Matchers

	Index

