

Apress Pocket Guides

​Apress Pocket Guides present concise summaries of cutting-edge
developments and working practices throughout the tech industry.
Shorter in length, books in this series aim to deliver quick-to-read
guides that are easy to absorb, perfect for the time-poor professional.

This series covers the full spectrum of topics relevant to the modern
industry, from security, AI, machine learning, cloud computing, web
development, product design, to programming techniques and business
topics too.

Typical topics might include:

A concise guide to a particular topic, method, function or framework
Professional best practices and industry trends
A snapshot of a hot or emerging topic
Industry case studies
Concise presentations of core concepts suited for students and those
interested in entering the tech industry
Short reference guides outlining ‘need-to-know’ concepts and
practices.

More information about this series at
https://link.springer.com/bookseries/17385.

https://link.springer.com/bookseries/17385

Usman Abdur Rehman

Web Forms with React
Build Robust and Scalable Forms with React
Hook Form

Usman Abdur Rehman
Islamabad, Pakistan

ISSN 3004-927X e-ISSN 3004-9288
Apress Pocket Guides
ISBN 979-8-8688-1223-1 e-ISBN 979-8-8688-1224-8
https://doi.org/10.1007/979-8-8688-1224-8

© Usman Abdur Rehman 2025

This work is subject to copyright. All rights are solely and exclusively
licensed by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in
any other physical way, and transmission or information storage and
retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks,
service marks, etc. in this publication does not imply, even in the
absence of a specific statement, that such names are exempt from the
relevant protective laws and regulations and therefore free for general
use.

The publisher, the authors and the editors are safe to assume that the
advice and information in this book are believed to be true and accurate
at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the
material contained herein or for any errors or omissions that may have
been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

https://doi.org/10.1007/979-8-8688-1224-8

This Apress imprint is published by the registered company APress
Media, LLC, part of Springer Nature.
The registered company address is: 1 New York Plaza, New York, NY
10004, U.S.A.

Dedicated to my awesome mother, Waqarunnisa.

Introduction
Web Forms with React is a succinct and practical guide to building
robust, scalable, and reusable forms in React. Forms are an integral part
of any software and are the source of data we see entered on the Web.
From social media posts to selling products on ecommerce sites to
YouTube videos and blog posts, most of the information on the Web is
present because of the data that was entered through forms. It is
therefore vital that we know how to properly handle forms, how to
properly scale them, how to handle validations, etc. This book is a one-
stop guide to setting up web forms from scratch using one of the most
popular and robust frontend frameworks in use today, React Hook
Form.

Standards and best practices are vital for everything we do, and a
proper standard should be set in place so that everyone does the same
thing and everyone is aware of the pros/cons of whatever might occur
while adopting that practice. Forms in React can be handled in a
hundred different ways, and this book proposes to set the standard on
how to handle and set up forms using React. Once standards are in
place, developers will be able to code robust, bug-free forms because
they know they are making forms that are being used by millions of
developers and if they run into issues they would be able to find
solutions to those issues pretty easily.

It is also important that scalability is kept in mind while making any
software feature, whether it’s a server function, a UI component, or
something else. React Hook Form makes sure that the forms are not
only performant but also scalable. Most of the time, a certain part of a
form gets repeated across an application. For example, the email and
password fields are often present in the Signin, Signup, and Edit Profile
sections, and they have a similar set of validations, constraints, etc. So
we will look at how to handle these so they can be reused across the
application where they are required.

Validations are always important whether they are server-side or
client-side validations. React Hook Form provides a nice interface for
hooking up validations by either using normal HTML validation or
using a third-party validation library like Yup, Zod, etc.

By the end of this book, you will have the knowledge and confidence
to build strong and reusable web forms from the ground up.

Any source code or other supplementary material referenced by the
author in this book is available to readers on GitHub. For more detailed
information, please visit https://www.apress.com/gp/services/source-
code.

Table of Contents
Chapter 1:​ Forms in React

Native Form Handling

Handling State

Handling Validation

Standard

Learning

Scalability and Reusability

Robustness

The Solution

Summary

Chapter 2:​ React Hook Form

Why React Hook Form?​

Performance

GitHub Stats

npm Installs

Type Safety

Zero Dependencies

Validation

Subscriptions

Cross-Platform

Dev Tools

Form Builder

Features Comparison

Summary

Chapter 3:​ React Hook Form Basics

The Core

Basic Usage

Using TypeScript

useForm Returned Values

useForm Params

Summary

Chapter 4:​ Making Forms with React Hook Form

BMI Calculator

Signup Form

Integrating Controlled Components

Summary

Chapter 5:​ Validation

Using register Options

register with Validation and Error Message

register with the validate Function

Validation Options

mode/​reValidateMode

criteriaMode

shouldFocusError​

delayError

Validation Using Schema

Schema Validation Using Yup

Schema Validation Using Zod

Summary

Chapter 6:​ Common Use Cases

Deeply Nested Form

Dependent Fields

Reusable Fields

Reusable Controlled Components

Mapping Multiple Fields

Summary

Index

About the Author
Usman Abdur Rehman
is a frontend tech lead for a US-based
healthcare company with over four years
of professional experience. As a self-
taught developer, Usman studied
everything related to programming from
YouTube videos, tutorials, blogs, and
books. Since gaining his first developer
role, Usman has been motivated to give
back to the community by teaching
coding.

About the Technical Reviewer
Alexandru Tepes
is a full-time software engineer with a
love for technology and health. He enjoys
sharing what he's learned, reaching over
50,000 views on Medium with his simple
and practical insights. Passionate about
making complex ideas easy to
understand, Alexandru writes about
software, healthy living, and the ways
these worlds connect. His goal is to help
and inspire others to grow, learn, and
improve their lives. When not working
on software or writing, Alex explores
how technology can enhance everyday
experiences. This book is part of his
journey to share knowledge and make a
positive impact.

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2025
U. A. Rehman, Web Forms with React, Apress Pocket Guides
https://doi.org/10.1007/979-8-8688-1224-8_1

1. Forms in React

Usman Abdur Rehman1

Islamabad, Pakistan

Forms are an integral part of any software including the Web and are
the way of data entry for all the user data you see on the Web. From
social media posts to ecommerce products to YouTube videos/blog
posts, most data on the Web is present because of the data that was
entered through forms. It is therefore vital that you know how to
properly handle forms, how to properly scale them, how to handle
validations for them, etc.

This chapter talks about the usual approach taken by novice
developers for handling forms in React and the cons of it.

Native Form Handling
Working with forms requires a lot of different steps from handling state
to validation to making sure the form is robust, scalable, and reusable. I
would go through every step to see how native React handles all these
and what are the cons related to them.

Handling State
Listing 1-1 shows you what a traditional form looks like with native
state handling (using useState).

import { useState } from "react";

export const HandlingState = () => {

 const [name, setName] = useState("");

 return (

https://doi.org/10.1007/979-8-8688-1224-8_1

 <form>

 <input value={name} onChange={(e) =>

setName(e.target.value)} />

 </form>

);

};

Listing 1-1 The traditional way of handling state
What should you do in the case when there are multiple fields in a

form? Should you use two states for those two fields or one object state
that handles the state for the whole form? There is no standard for it.

Also, this traditional way of performing state update triggers
rerenders on every keystroke and can be disastrous if you have a large
form that hasn’t been memoized properly.

Handling Validation
Listing 1-2 shows you how traditional validation is performed in forms.

import { useState } from "react";

export const HandlingValidation = () => {

 const [name, setName] = useState("");

 const [error, setError] = useState("");

 return (

 <form>

 <input

 value={name}

 onChange={(e) => setName(e.target.value)}

 onBlur={(e) => {

 if (!e.target.value) setError("The name

is required");

 else setError("");

 }}

 />

 {error && <p>{error}</p>}

 </form>

);

};

Listing 1-2 The traditional way of handling validation
Again, there is no standard for validating forms natively. Maybe

there is a requirement for handling validations on change, focus, or
form submission; the way the validation is applied could differ
depending on which scenario it is.

Also let’s say you want to apply a complex validation use case where
you want that if a field is visited (touched) and the validation fails on
change, then the related validation error should be shown. The
inclusion of more states and conditions for handling cases like these
could introduce bugs in the form.

There is a need for a clear-cut standard for doing validations.

Standard
As discussed in the previous two sections, there is no standard for
performing validations, handling state, or making a form in React.
When that is the case, there is a high chance every developer on your
team would use a different strategy to make forms. Since everything
can be done in a million different ways, every person on the team would
use their strategy to implement a certain feature, which, when the
feature would be worked on again in the future, to fix a bug or to add an
enhancement, would not present an ideal solution since not everyone is
familiar with that strategy the developer used to code the feature.

Learning
Even if you have a particular custom form-making strategy/standard in
your company, if you get stuck somewhere, the only way to get through
that is to consult your team members. There would be no resources on
the Internet regarding learning it or fixing bugs if you ever encounter
one.

Scalability and Reusability
If you make a form using native state handling and custom validation
logic, it will not scale properly.

The first reason for that is performance. If you make a form in React
using no widely used/accepted standard, there is a chance it has some
performance flaws in it, which would hurt you in the longer run once
you start using these methodologies to make bigger forms.

The second reason for that is reusability. You would be able to scale
better if you could make easy-to-use, reusable form components out of
an existing form. The crux of React or any other modern framework is
reusability, and if you can’t do that, then any development approach
would not work.

Robustness
Each and every part of your web application must be robust and not
error-prone. Using a nonstandard way of making forms won’t help
achieve that objective.

The Solution
The solution for every con that we face as described above is using a
library that is used by millions of developers around the world. Using a
library gives us the following advantages:

1. You would have a standard for building forms, and that standard
would be easily adaptable and learnable by developers who would
be joining your team. Following a standard would ensure there
would be a certain set of practices that would be used by
developers in your team so the chances of something going wrong
would be minimal as well.

2. This would ensure that the application you are building is robust
since a library with millions of downloads, hundreds of issue
resolutions, etc. is ideally bug-free and has been through the
rigorous cycle of development that every software practice goes
through.

3. Scalability/reusability would be available out of the box since it
would ensure that you are using one of the best strategies, if not the
best strategy, for building forms both performance- and coding-
wise.

4. It would have a developer-friendly API so you will be able to solve
complex issues while using minimal code and would be able to

focus on building vital features of your application without
worrying about the standard, robustness, etc. of your form code.

Summary
In this chapter we discussed the current form-making strategies in
React in detail and why it is not recommended to make forms that way.

In the next chapter, we will take a look at a very popular and widely
used React form library, React Hook Form, and we will see how it
addresses all our concerns that we discussed in this chapter.

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2025
U. A. Rehman, Web Forms with React, Apress Pocket Guides
https://doi.org/10.1007/979-8-8688-1224-8_2

2. React Hook Form

Usman Abdur Rehman1

Islamabad, Pakistan

In the last chapter, we looked at the cons of using our custom
approaches to manage form actions like state management, validations,
etc. We saw how using traditional ways of building forms can make our
forms less robust and scalable and how not following a standard brings
nonuniformity to your application.

In this chapter, we will discuss React Hook Form, a library that is
being used by millions of developers to make performant and robust
forms. We will take a look at why I chose this library and what it brings
to the table.

Why React Hook Form?
While searching for that one React form library, I stumbled upon a lot of
different options, some of which I had used in a professional capacity
before as well. React Hook Form checked a lot of boxes and was so far
the best choice compared with the other options like Formik, Redux
Form, etc.

In this section, we will take a look at why you as a React developer
should consider building your forms using this library and how React
Hook Form is comparatively better than other React form libraries like
Formik and Redux Form.

Performance
React state on every update rerenders the whole component, which
means every calculation and subcomponent would be recalculated and

https://doi.org/10.1007/979-8-8688-1224-8_2

rerendered if not properly memoized.
Normal React form libraries like Formik use React state for

managing field values, which means that for every keystroke in an input
field, for example, you are rerendering the whole form, which should
not be the case but that is how state works. This results in a decrease in
performance as the form size increases if the sub-form components are
not properly memoized.

React Hook Form on the other hand uses refs to manage form
values. Every input component in your form in React Hook Form is an
uncontrolled component. If you type in an input field in React Hook
Form, it does not trigger any rerender and only keeps track of the form
values using refs, which makes it much faster than other form libraries.

Also because React Hook Form has uncontrolled form components,
there is less overhead, and components mount very quickly.

GitHub Stats
The GitHub stats of any library dictate a lot regarding whether that
library is popular in the developer community, whether its
maintenance has stopped or not, whether it’s being worked on
frequently or not, etc. In this section, we will take a look at some of
these GitHub stats, which dictate that React Hook Form is the best form
library for React.

GitHub stars serve as a measure of a library’s popularity, quality,
and likeness. A developer is most likely to use a library with more stars.
At the time of writing, React Hook Form has 39.1k GitHub stars as
opposed to the 33.4k GitHub stars of Formik.

React Hook Form is maintained at a regular interval. Whenever you
open its GitHub page, you will see that the latest commit was made
almost one to two days ago, which means it’s being currently worked
on for either bug/issue fixes or new features and improvements. Its
counterparts, Formik and Redux Form, have the last commits from last
year, which speaks about the level of maintenance they receive.

The number of GitHub issues for React Hook Form at the time of
this writing is 1. This means it’s a robust library and doesn’t get a lot of
issues reported or even if issues are reported, they are being dealt with
by the team as quickly as possible. However, for Formik and Redux

Form at the time of this writing, they have 690 and 475 open issues,
respectively, and a large portion of them are bugs.

For React Hook Form, the number of open pull requests (PRs) is
very low because the pull request merge ratio is very high. For Formik
the number of open pull requests is very high, which means it is not
being maintained by its developers. For Redux Form, the open pull
requests are from 2023 meaning not a lot of people are actively using
this library. You can check out the GitHub stats for React Hook Form
and Formik in Figure 2-1.

Figure 2-1 GitHub stats for React Hook Form and Formik

npm Installs
React Hook Form slowly and gradually is becoming the most used React
form library out there. As a reference, in April 2023, both Formik and
React Hook Form had almost similar downloads (around 2 million).
However, at the time of this writing, React Hook Form has double the
downloads (around 5 million) than those of Formik (around 2.7
million) as depicted in Figure 2-2.

Figure 2-2 npm installs for React Hook Form and Formik as of March 17, 2024
It should be good practice to use a library that is the most

popular/used because it helps with a variety of things. The most
popular library would have the most learning material and Stack
Overflow questions on the Internet meaning developers would be up
and running in no time.

Type Safety
React Hook Form is built in TypeScript, so it provides end-to-end type
safety for everything. If we specify a type object for our form values,
every function or value given to us by React Hook Form for that form
would adhere to that type signature.

As you can see in Figure 2-3, a type FormData has been defined
with two properties firstName and lastName, both having a type of
string. Because of that when a string param is passed in the setValue
function alongside the lastName key, TypeScript does not give any
error. However, TypeScript does throw an error when the wrong type is
used with the firstName key in the setValue function (Boolean) as
well as when we try to access a property bill that doesn’t belong in
the FormData type we passed in the form.

Figure 2-3 TypeScript giving errors on wrong field names + value types

You don’t have to worry about what setValue and errors are.
We will take a detailed look at them in the next chapters.

Zero Dependencies
React Hook Form has 0 third-party dependencies. Normally libraries
like Formik have tons of third-party dependencies. The problem with
having third-party dependencies is that if one of them has a bug, this
could introduce a bug in the dependent library as well. This makes
React Hook Form more robust than its counterparts. Also, the

installation time + module size would be much less since no third-party
libraries would be installed along with it.

Validation
React Hook Form has a variety of ways to validate your form state. You
can validate your inputs using HTML5 validation; popular third-party
validation libraries like Yup, Joi, Zod, etc.; and custom validation
solutions. Also, along with that, you have diverse options of validation
strategies like applying validation on change, blur, touched, submit, or
all as well as the ability to choose revalidation strategies.

Formik on the other hand can validate using custom validation
solutions or Yup only. Even if you want to apply some easy validations
like required, min, max, etc., without any third-party library, you will
have to write JavaScript code for it, and you can’t use a simple solution
like passing an object with required, min, and max properties and so
on.

Subscriptions
React Hook Form provides you with the ability to subscribe to
individual input state changes without the need to rerender the entire
form on state change. Normally if you want to monitor any state change,
you need to have a useEffect that runs on state change. That means that
you must have a state for every input, which changes on every
keystroke (like in Formik and others).

Even though React Hook Form has uncontrolled React form
components (using refs), it still gives us the ability to subscribe to
individual field state changes, which makes it very powerful.

This has been explained in a brilliant way in Figure 2-4. The four
checkboxes can be considered as four individual child components of
the form. Components 1 and 3 are subscribed to the input field, so
whenever any value of that field would change, these components
would rerender and get the updated value, which can be used by them
to do anything like make a query to the backend, show or hide
something, etc. Components 2 and 4 however are not subscribed to the
input field (these components are not concerned with the input field’s
data), so they would not rerender at all. This is what makes React Hook
Form a performant library.

Figure 2-4 A figure showing field subscriptions in individual components in action

Cross-Platform
React Hook Form is available for both mobile and web (React Native
and React). A library for building forms for both major platforms with
the same API is a pretty cool thing to have in your arsenal.

Dev Tools
React Hook Form has amazing dev tools as depicted in Figure 2-5,
which can be used to monitor state changes related to the form fields. It
also can scroll to that exact input if that input’s label is clicked in the
dev tools. It can help debug our form state without the need to add
logging statements everywhere in our code.

Figure 2-5 An example form built using React Hook Form and its dev tools

Form Builder
React Hook Form has an amazing form builder on its website. You can
specify which inputs and their corresponding simple validations you
want to add to your form, and it generates the code for it. If the form
you are making is generic without any extra complicated functionality,
you can use the form builder to make your form. It can also be used to
make a boilerplate for your form so that you can add the other
complicated stuff in that form builder–generated code.

Features Comparison
All the features we discussed are summarized in Table 2-1.

Table 2-1 Features Comparison Between React Hook Form and Formik

Features React Hook Form Formik

Performance Fast (refs) Medium (state)

Type safety Available for everything Available but not for functions
like setFieldValue, setFieldError,
etc.

Validation Built-in, Zod, Joi, Yup, Superstruct
+ custom

Yup + custom

npm downloads (at
the time of writing)

Around 5 million Around 2.7 million

GitHub stats (at the
time of writing)

39.1k GitHub stars
Few or no open PRs
Good issue resolution
Maintenance + continuous new
version releases

33.4k GitHub stars
Hundreds of open PRs
Bad issue resolution
No maintenance and new feature
development

Dependencies 0 8

Subscriptions Ability to subscribe to individual
inputs without rerendering the
whole form

Ability to subscribe to individual
inputs while rerendering the
whole form

Dev tools ✅ ✖

Form builder ✅ ✖

Summary
In this chapter, we discussed the React Hook Form library and, via
comparison with libraries like Formik and Redux Form, saw what
features it brings to the table like performance, type safety, etc. and
how it’s better than the others.

In the next chapter, we will take a look at the basics of React Hook
Form and even build a basic form by the end of that chapter.

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2025
U. A. Rehman, Web Forms with React, Apress Pocket Guides
https://doi.org/10.1007/979-8-8688-1224-8_3

3. React Hook Form Basics

Usman Abdur Rehman1

Islamabad, Pakistan

In the last chapter, I compared React Hook Form with other React form
libraries like Formik and Redux Form and pointed out the differences
these libraries had in terms of performance, implementation under the
hood, popularity, support, etc.

In this chapter, I will discuss the basics of React Hook Form. You will
look at some core API of this library to see how you can use it.

The Core
The core of the React Hook Form library is the useForm hook. This
hook returns everything you need to build your form, from refs for the
input fields, which would be used to do validations, to individual
change and blur handlers for the inputs, the submit handler for the
form, validation errors, etc.

In this section, I will inspect the useForm hook in detail so that you
can see what params it expects, what it returns, and how it works
overall.

Basic Usage
Here is a basic example of how you would make a form using React
Hook Form.

import { useForm, SubmitHandler } from "react-

hook-form";

https://doi.org/10.1007/979-8-8688-1224-8_3

type Inputs = {

 name: string;

 email: string;

};

export const BasicForm = () => {

 const { register, handleSubmit } =

useForm<Inputs>();

 const onSubmit: SubmitHandler<Inputs> = (data)

=> console.log(data);

 return (

 <form onSubmit={handleSubmit(onSubmit)}>

 <input placeholder="Name"

{...register("name")} />

 <input placeholder="Email"

{...register("email")} />

 <input type="submit" />

 </form>

);

};

Listing 3-1 Basic form built using React Hook Form

Figure 3-1 An example form built using React Hook Form

In this example form as can be seen in Figure 3-1. there are two input
fields Name and Email. I have used the register and
handleSubmit functions returned from the useForm hook to handle
this form. The register and handleSubmit functions would be
used for form state management and form submission, respectively.
These functions would be explained in detail in their respective
sections later in this chapter.

Using TypeScript

As mentioned in the previous chapter, React Hook Form is a TypeScript-
compatible library, which means that you should use types with it to
garner its full power. You can see in the start of Listing 3-1 that there is
a type Inputs with two properties name and email both having a
type of string. These two type properties indicate that there are two
input fields in this form that expect a type string as their value (text
field).

Then that type has been passed in the useForm hook as a type
generic. This ensures that whichever property or function you would
use from the useForm hook, it would adhere to the type you provided
+ would provide auto completions for object properties, which have to
correspond to the type property names in the type passed in the
useForm hook. Furthermore, if you would use any field key not
present in the type passed in the useForm hook, you would get a
TypeScript error, which would be good for developing robust forms.

You can also not pass any type to the useForm hook if you are using
JavaScript or if you don’t want to. Passing types in useForm is not
mandatory. However, I would recommend you use types with React
Hook Form to get appropriate linting/auto completions/errors in your
IDE/text editor.

useForm Returned Values
In the most basic implementation, the useForm hook can be used
without passing it any param. As shown in the example above, it gives
us some useful objects and functions that we can use to make our form.
Let’s go over them one by one.

register

const { onChange, onBlur, name, ref } =

register("firstName");

Listing 3-2 The register function

The register function as you can see in Listing 3-2, is one of the
core functions returned by the useForm hook. This function powers
every input field in the form. A string key has to be passed to this

function as a param, which should be unique to the form. The
register function when called returns the corresponding
onChange, onBlur, name, and ref for the respective field.

This ref is the key to how React Hook Form behaves. The whole
point of React Hook Form is that it is more performant than other
libraries, and using refs is the reason that is. As discussed in the
previous chapter, React Hook Form does data management of the form
using refs and not state. This ref returned by the register function
is responsible for writing the data to the fields if some initial values are
provided to the useForm hook plus getting the data in the onSubmit
function and so on (more details on this in a later section).

The onChange and onBlur functions and the name string are
responsible for keeping track of the data that is being entered and, in
turn, do various operations like applying validation for that data (on
change or on blur). You will look at validations in more detail in
Chapter 5. The name string has the same string value that we pass to
the register function.

This register function also takes in an object as a second param,
which is optional where you can supply basic native validation rules
like if the field should be required, the field should have a certain length
constraint and so on (more on this in future chapters).

handleSubmit

<form onSubmit={handleSubmit(onSubmit)}></form>

Listing 3-3 The handleSubmit function

handleSubmit as can be seen in Listing 3-3, is just a wrapper for
the onSubmit function we pass to the onSubmit prop of the form
component. This function only gets the form data when validations are
successful. Once the submit button is clicked, the validations (if any)
would be applied. If all validations are successful, this onSubmit
function would be called with the data of the form as a param;
otherwise, it would not be called and validation errors would be
populated in the formState (discussed in a later section). The

function passed in the handleSubmit function can be either
synchronous or asynchronous.

watch

watch("name");

watch(["name", "email"]);

Listing 3-4 The watch function

This function would watch for field value changes. This function
expects a string value or values (as an array) as a param (as can be seen
in Listing 3-4), which should coincide with any of the field names. If any
of the fields corresponding to the field names passed in the watch
function would change, then the entire form would rerender, and you
would be able to do anything you want to do based on those field
changes (e.g., using a useEffect to fetch new records based on a value
change in a dropdown in your form); otherwise, the component would
not rerender at all because of the ref model that React Hook Form is
based on.

This is awesome since you can only decide to rerender the form
component for specific input changes and not all input changes (like in
Formik as discussed in Chapter 2), which boosts the performance of
your forms.

If you want to rerender only a child component based on a field
change, then a better way to go about this would be to use the
useWatch hook. I will discuss this in a future chapter.

formState

const { errors, isLoading, isValid, ...rest } =

formState;

Listing 3-5 The formState object

formState is an object that contains information regarding the
state in which the form is as can be seen in Listing 3-5. This object
contains the current errors, current field names that have been touched
(fields that have been focused and blurred at least once), the state of

the form (is loading, has been edited, has been submitted successfully,
is validating), etc.

You can use this info to do certain things on the UI like display
errors, disable the submit button if any form field hasn’t been touched
or if any form field has no new data entered, display a loader while the
form is submitting, etc. The possibilities are endless.

reset
The reset function can be used to reset the entire form state to
whatever was originally specified as initial values (via the
defaultValues param) in the useForm hook. If nothing was
supplied in the defaultValues param, then this function would
empty all the fields.

The reset function also takes in an optional param. If you want
that the form’s state resets to something other than the
defaultValues, you can pass that object to the reset function as a
param.

useForm Params
The useForm hook also expects some params, and they can be divided
into two categories: form value–related params and validation-related
params. We are going to look at validation in detail in Chapter 5. For
now, let’s just only discuss the form value params.

defaultValues

useForm({

 defaultValues: {

 firstName: '',

 lastName: ''

 }

 })

useForm({

 defaultValues: async () => fetch('/api-

endpoint');

})

Listing 3-6 The defaultValues param

The defaultValues param is used to populate the initial data of
a form. It expects either an object conforming with the type signature
passed to the useForm hook or an async function that would return an
object (an async function fetching initial values from a backend)
conforming with that particular type signature as can be seen in Listing
3-6.

values

useForm({

 values: {

 firstName: '',

 lastName: ''

 }

 })

Listing 3-7 The values param

This param as can be seen in Listing 3-7, will react to changes, and
every time this param would change, the useForm hook would
forward this change to the entire form. This param is useful when you
want to change your form state based on some external change like a
prop value being passed from another component, some global state, or
some query data coming from a library that works with hooks
(TanStack Query).

Summary
In this chapter, we looked at the basics of how React Hook Form works.
We explored the core of React Hook Form, the useForm hook. We
looked at a basic example form, built using that hook, and explored its
API.

In this next chapter, we will dive into React Hook Form a bit more by
actually building some forms with React Hook Form.

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2025
U. A. Rehman, Web Forms with React, Apress Pocket Guides
https://doi.org/10.1007/979-8-8688-1224-8_4

4. Making Forms with React Hook Form

Usman Abdur Rehman1

Islamabad, Pakistan

In the last chapter, I discussed the core of React Hook Form, the
useForm hook. I discussed how you can use the useForm hook to
make a basic form and what each object and function returned by the
useForm hook is for.

In this chapter, I will make a couple of forms using React Hook Form.
I would first describe what I want to build, and then I will build those
forms step by step using React Hook Form so that you can understand it
thoroughly.

BMI Calculator
In this section, I will develop a BMI calculator. This form would have the
following salient features:

A form with two number fields, height and weight.
The height and weight fields would be required since both of those
values are required to calculate the BMI. The respective validation
errors, for example, height is required, and so on would be shown
below each field when validation would be performed.
Upon form submission, the BMI would be calculated based on the
formula Weight in kilograms/(Height in meters)2, which would then
be shown alongside the submit button.

First of all, I will write the HTML for the form. It would contain a
React component that would return a form tag with two input fields

https://doi.org/10.1007/979-8-8688-1224-8_4

and a submit button inside as seen in Listing 4-1.

export default function BMI() {

 return (

 <form>

 <input type="number" placeholder="Height (in

meters)" step="any" />

 <input type="number" placeholder="Weight (in

kg)" step="any" />

 <div />

 <div className="footer">

 <button type="submit">Calculate</button>

 <p className="result">BMI:</p>

 </div>

 </form>

);

}

Listing 4-1 HTML skeleton for the BMI calculator
Styling is not our priority, but I will still apply some basic styles to it

as can be seen in Listing 4-2.

input {

 margin-bottom: 10px;

 padding: 12px;

 border-radius: 4px;

 border: 1px solid black;

 display: block;

}

p {

 margin: 0;

}

.error {

 margin-bottom: 5px;

 color: red;

 font-size: 14px;

}

.footer {

 display: flex;

 align-items: center;

 gap: 12px;

}

.result {

 font-size: 14px;

}

Listing 4-2 CSS styles for the BMI form
The form would look something like Figure 4-1.

Figure 4-1 BMI calculator form

Let’s start adding code related to React Hook Form to our form. First of
all, I will define the type for the useForm hook as given in Listing 4-3.
Since there are two fields in our form (height and weight) and both are
of type number, the type for the form would look something like the
following.

interface FormData {

 height: number;

 weight: number;

}

Listing 4-3 FormData type for useForm

I will then call the useForm hook inside the BMI component and
pass the FormData type there as you can see in Listing 4-4.

import { useForm } from "react-hook-form";

export default function BMI() {

 const {

 register,

 handleSubmit,

 formState: { errors },

 } = useForm<FormData>();

Listing 4-4 Calling the useForm hook

As discussed in the previous chapter, the register function is key
in the working of React Hook Form. The register function returns
the onChange, onBlur, name, and ref for a specific field.

I would spread the register function in both fields as can be seen
in Listing 4-5.

<input

 type="number"

 {...register("height", { required: true,

valueAsNumber: true })}

 placeholder="Height (in meters)"

 step="any"

 />

 <input

 type="number"

 {...register("weight", { required: true,

valueAsNumber: true })}

 placeholder="Weight (in kg)"

 step="any"

 />

Listing 4-5 Spreading the register function in input fields

As you can see, in addition to the first param in the register
function (field key), I have also passed an object as a second param with
two key–value pairs, required:true and valueAsNumber:true.

The required property if true would add a validation in the
form for that field where you won’t be able to submit a form if there is
no text entered in that particular field.

By default, any value inside an input text field would be a string
value. However, I need number values for the text I would enter inside
the height/weight fields. valueAsNumber:true would parse the
value entered to a number, because of which I would get number values
for height and weight inside the onSubmit function.

Now I would like to show the validation errors in the form. I would
show the individual validation errors below each field. I would get the
validation errors from the formState object, which is returned from
the useForm hook as seen in Listing 4-4.

The errors variable would be an object. The key would be the field
name, and the value would be an error object of the following type as
can be seen in Listing 4-6.

{

 message: string;

 type: string;

 ref: React.RefObject;

}

Listing 4-6 Shape of the error object

where the type property would have the value required in case
of required validation. For this particular form, I will check if the
errors object has a field key corresponding to the field (there is an
error). Then I will check if the type property of that object has the
value required. If that is so, I will show an error for the
corresponding field below it as can be seen in Listing 4-7.

 <input

 type="number"

 {...register("height", { required: true,

valueAsNumber: true })}

 placeholder="Height (in meters)"

 step="any"

 />

 {errors.height?.type === "required" && (

 <p className="error">Height is

required</p>

)}

 <input

 type="number"

 {...register("weight", { required: true,

valueAsNumber: true })}

 placeholder="Weight (in kg)"

 step="any"

 />

 {errors.weight?.type === "required" && (

 <p className="error">Weight is

required</p>

)}

Listing 4-7 Mapping the errors
Now I would add the onSubmit function for the form. I will pass in

a handleSubmit function as a prop value to the onSubmit function
of the form component with a custom onSubmit function as a param
where I will write the code for form submission. This function would
receive the form data, and I would use the formula I mentioned in the
form description I provided to calculate the value.

After calculating the value, I will set a state, which I would display
alongside the BMI label in the form footer as can be seen in Listing 4-8.

import { useState } from "react"

import { useForm, SubmitHandler } from "react-

hook-form"

export default const BMI() {

 const [bmi, setBMI] = useState<string>();

 const onSubmit: SubmitHandler<FormData> =

(data) => {

 const { height, weight } = data;

 const bmi = (weight / height **

2).toFixed(1);

 setBMI(bmi);

 };

 return (

 <form onSubmit={handleSubmit(onSubmit)}>

Listing 4-8 The form submission logic
If you now enter a valid height and weight like 3 meters and 50

kilograms and click the Calculate button, you will see the BMI 5.6 being
shown alongside the BMI: label like in Figure 4-2.

Figure 4-2 BMI value calculated from the BMI calculator

And that is it. Just like that I was able to make a basic form using React
Hook Form.

Signup Form
In this section, I will build a Signup form. This form would have the
following salient features:

A form with four fields, first name, last name, email, and password.
The first name, email, and password fields would be required. The
email field would have an email pattern validation so that it only
allows valid email to be entered in the text field. The password field

would have a minimum length validation of at least ten characters so
that the password is long. The respective validation errors, for
example, the first name is required, and so on would be shown below
each field when validation would be performed.
Upon form submission, the form data would be sent to a dummy
endpoint /signup.
During submission the submit button text would change from Signup
to Submitting …. During submission or when no input field has been
modified, the submit button would be disabled.
A third-party UI components library (Material UI) would be
integrated.

The basic HTML structure of the form would look like the following
as can be seen in Listing 4-9.

export default function Signup() {

 return (

 <form>

 <div className="form-container">

 <div>

 <input placeholder="First name" />

 </div>

 <div>

 <input placeholder="Last name" />

 </div>

 <div>

 <input placeholder="Email" />

 </div>

 <div>

 <input placeholder="Password" />

 </div>

 </div>

 <button type="submit">Signup</button>

 </form>

);

}

Listing 4-9 HTML skeleton for the Signup form

I will apply some basic styles as can be seen in Listing 4-10.

* {

 box-sizing: border-box;

}

.form-container {

 width: 400px;

 display: grid;

 grid-template-columns: 200px 200px;

 column-gap: 10px;

}

input {

 margin-bottom: 10px;

 padding: 12px;

 border-radius: 4px;

 border: 1px solid black;

 display: block;

 width: 100%;

}

.error {

 margin: 0;

 margin-bottom: 10px;

 color: red;

 font-size: 14px;

}

Listing 4-10 CSS styles for the Signup form

The form would look something like in Figure 4-3.

Figure 4-3 Signup form

Now I will define the type for the useForm hook. Since I have four
fields and all of them would be of type string, the type would look
something like the following as can be seen in Listing 4-11.

interface FormData {

 firstName: string;

 lastName: string;

 password: string;

 email: string;

}

Listing 4-11 FormData type for the useForm hook

I will then call the useForm hook and pass this type there as can be
seen in Listing 4-12.

import { useForm } from "react-hook-form";

export default function Signup() {

 const {

 register,

 handleSubmit,

 formState: { errors },

 } = useForm<FormData>();

Listing 4-12 Calling the useForm hook

Now I will spread the register function in all fields. Since I know
that the first name, email, and password fields are required, I would
add required:true in the register options object like in Listing 4-13.

<div className="form-container">

 <div>

 <input

 {...register("firstName", { required: true

})}

 placeholder="First name"

 />

 </div>

 <div>

 <input {...register("lastName")}

placeholder="Last name" />

 </div>

 <div>

 <input

 {...register("email", {

 required: true,

 })}

 placeholder="Email"

 />

 </div>

 <div>

 <input

 {...register("password", {

 required: true,

 })}

 placeholder="Password"

 />

 </div>

</div>

Listing 4-13 Spreading the register function in input fields
Now I would like to add pattern matching validation to the email

field. That can easily be done by passing a pattern property in the
register options param, which would have a regex as a value. If the
corresponding input value doesn’t match with that regex, then a
validation error would be added for the pattern.

The email regex would look something like the following as can be
seen in Listing 4-14.

/^[\w\-\.]+@([\w-]+\.)+[\w-]{2,4}$/

Listing 4-14 Regex pattern for an email
where

^[\w\-\.]+ would match the start of the string with word
characters, -, and . one or more times.
@ would match the @ character.
([\w-]+\.)+ would match word characters one or more times. \.
would match a dot.
[\w-]{2,4}$ would match the end of the string with word
characters between lengths 2 and 4.

I would pass this pattern in the pattern property of register
options as can be seen in Listing 4-15.

 <input

 {...register("email", {

 required: true,

 pattern: /^[\w-\.]+@([\w-]+\.)+[\w-]

{2,4}$/,

 })}

 placeholder="Email"

 />

Listing 4-15 Passing the pattern property in register options

Similarly for password I want to add a minimum length validation.
That can be done easily by passing the required length in the
minLength property of the register options as can be seen in Listing
4-16.

<input

 {...register("password", {

 required: true,

 minLength: 10,

 })}

 placeholder="Password"

 />

Listing 4-16 Passing the minLength property in register options

Let’s map the errors. With required I was mapping the required
errors only when type had a value required. Now for other error types
like pattern, I would show the errors only when type would have a
value pattern and so on. It would look something like Listing 4-17.

<div className="form-container">

 <div>

 <input

 {...register("firstName", { required:

true })}

 placeholder="First name"

 />

 {errors.firstName?.type === "required"

&& (

 <p className="error">First Name is

required</p>

)}

 </div>

 <div>

 <input {...register("lastName")}

placeholder="Last name" />

 </div>

 <div>

 <input

 {...register("email", {

 required: true,

 pattern: /^[\w-\.]+@([\w-]+\.)+[\w-]

{2,4}$/,

 })}

 placeholder="Email"

 />

 {errors.email?.type === "required" && (

 <p className="error">Email is

required</p>

)}

 {errors.email?.type === "pattern" && (

 <p className="error">Email is

invalid</p>

)}

 </div>

 <div>

 <input

 {...register("password", {

 required: true,

 minLength: 10,

 })}

 placeholder="Password"

 />

 {errors.password?.type === "required" &&

(

 <p className="error">Password is

required</p>

)}

 {errors.password?.type === "minLength"

&& (

 <p className="error">Password should

have at least 10 characters</p>

)}

 </div>

</div>

Listing 4-17 Mapping the errors
Now I would add the onSubmit functionality for the form. As

discussed initially, I will send the form data to a dummy endpoint
/signup as can be seen in Listing 4-18.

import { SubmitHandler } from "react-hook-form";

export default function Signup() {

 const onSubmit: SubmitHandler<FormData> =

(data) => {

 fetch("/signup", {

 method: "post",

 body: JSON.stringify(data),

 });

 };

 return (

 <form onSubmit={handleSubmit(onSubmit)}>

Listing 4-18 Adding form submission logic
Now I would like to add some features to the submit button as

described initially. For that I would get the isDirty and
isSubmitting values from formState as can be seen in Listing 4-
19.

const {

 register,

 handleSubmit,

 formState: { errors, isDirty, isSubmitting },

 } = useForm<FormData>();

Listing 4-19 Extracting isDirty and isSubmitting from formState

Using these values, I will disable the submit button if isDirty is
false or if isSubmitting is true. Also, I will change the submit
button text from Signup to Submitting … if isSubmitting is true as
can be seen in Listing 4-20.

<button type="submit" disabled={!isDirty ||

isSubmitting}>

 {isSubmitting ? "Submitting..." : "Signup"}

</button>

Listing 4-20 Using isDirty and isSubmitting

In order to see the isSubmitting in action, I will add a dummy
delay in the onSubmit function of 1 s as can be seen in Listing 4-21.

const sleep = (timeout: number) =>

 new Promise((resolve) => {

 setTimeout(resolve, timeout);

 });

 const onSubmit: SubmitHandler<FormData> = async

(data) => {

 await sleep(1000);

 fetch("/signup", {

 method: "post",

 body: JSON.stringify(data),

 });

 };

Listing 4-21 Adding a dummy delay in the onSubmit function

Now you will be able to see the isSubmitting effect in action.
The button would be disabled initially when no field would be
modified. During submission the text of the submit button would
change from Signup to Submitting …, and it would be disabled to avoid
multiple submissions.

Integrating Controlled Components
Usually when frontend developers work on the UI, they don’t make
their components themselves; they use UI components from third-party
libraries like Material UI and others.

However, these libraries mostly have controlled components, and
you know that React Hook Form works in an uncontrolled manner. In
order to integrate controlled components (made by you or a third
party), you will need to use React Hook Form’s Controller interface.

I will import the Controller component from React Hook Form.
Then I will use that component instead of our usual input field.

The main prop of this component is the control prop, which I will
get from the useForm hook. In the name prop, the field key would go. I
can pass the register options in the rules prop of the Controller
component. Finally in the render prop, I will render the controlled
TextField component I would get from Material UI.

For demonstration I will use this Controller component in place
of the first name input field as can be seen in Listing 4-22. The same
principle would be used for other instances as well where applicable.

import { Controller, SubmitHandler, useForm } from

"react-hook-form";

import { TextField } from "@mui/material";

export default function Signup() {

const {

 register,

 handleSubmit,

 control,

 formState: { errors, isValid, isDirty,

isSubmitting },

 } = useForm<FormData>();

 return (

 <form onSubmit={handleSubmit(onSubmit)}>

 <div className="form-container">

 <div>

 <Controller

 name="firstName"

 control={control}

 rules={{ required: true }}

 render={({ field }) => (

 <TextField

 style={{ marginBottom: 10 }}

 label="First name"

 variant="outlined"

 {...field}

 />

)}

 />

 {errors.firstName?.type === "required"

&& (

 <p className="error">First Name is

required</p>

)}

 </div>

Listing 4-22 Integrating controlled components in React Hook Form
The form after replacing the first name input field with Material UI’s

TextField would look like Figure 4-4.

Figure 4-4 Material UI TextField component integration

Summary
In this chapter, I built two forms using React Hook Form, one BMI
calculator and one Signup form. You saw how we could, using details
regarding a form, build that form with validations and a lot of other
custom functionalities.

In the next chapter, I will take a deep dive into validations using
React Hook Form.

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2025
U. A. Rehman, Web Forms with React, Apress Pocket Guides
https://doi.org/10.1007/979-8-8688-1224-8_5

5. Validation

Usman Abdur Rehman1

Islamabad, Pakistan

In the last chapter, I made two forms using React Hook Form, a BMI
calculator and a Signup form. During this process, you learned how to
integrate state with input fields, how to add basic validations, how to
add custom features like disabling the submit button when the form is
submitting, and finally how to integrate controlled components with
React Hook Form.

In this chapter, I will discuss validation in detail. I will demonstrate
how you can validate or revalidate forms at particular intervals
(change, blur, submit). I will also demonstrate how you can integrate
third-party schema solutions like Yup and Zod to validate your forms.

For styling, I will use the same stylesheet we used for the Signup
form in Chapter 4 since we will be using the same form for
understanding different validation patterns in this chapter. I will name
this stylesheet Validation.css and will be using it throughout this
chapter.

Using register Options
In the previous chapter, I used the register options in the register
function to apply some validation rules on input fields like required,
pattern matching, minimum length, etc.

In this section, I will apply the same rules again but using a slightly
different approach so that you can know all the ways in which you can
do validation using register options.

https://doi.org/10.1007/979-8-8688-1224-8_5

register with Validation and Error Message
In the previous chapter, I defined validation rules in the register
function in such a way that I passed the validation criteria directly as a
value to the register options object properties like the following.

 <input

 {...register("email", {

 required: true,

 pattern: /^[\w-\.]+@([\w-]+\.)+[\w-]

{2,4}$/,

 })}

 placeholder="Email"

 />

Listing 5-1 Validation using register options

In order to show error messages, I checked if the type property of
the error object is required, pattern, or something else, and based
on that I mapped the errors as can be seen in Listing 5-2.

 {errors.email?.type === "required" && (

 <p className="error">Email is

required</p>

)}

 {errors.email?.type === "pattern" && (

 <p className="error">Email is

invalid</p>

)}

Listing 5-2 Mapping errors

Another way to do it is to specify the error message inside the
register options so that it can be used directly like
errors?.email?.message.

For required validation only, you would specify the error message as
a value to the required property of register options. For other
validation options, you can assign an object as a value, which would be
of the following shape as can be seen in Listing 5-3.

{

 value: any;

 message: string;

}

Listing 5-3 Shape of the register options validation object
The validation criteria value (e.g., /^[\w-\.]+@([\w-]+\.)+[\w-]

{2,4}$/ in the case of pattern in Listing 5-1) would go in the value
property, and the error message would go in the message property.
After making these changes, the validations for the email field would
look like the following as can be seen in Listing 5-4.

<div>

 <input

 {...register("email", {

 required: "Email is required",

 pattern: {

 value: /^[\w-\.]+@([\w-]+\.)+[\w-]

{2,4}$/,

 message: "Email is invalid",

 },

 })}

 placeholder="Email"

 />

 <p className="error">

{errors?.email?.message}</p>

 </div>

Listing 5-4 Validation using register options with a validation message

The same principle would be applied for other validations like
minLength in the password field. minLength would receive an
object as a value where the value property would have the value 10
and the message property would have the corresponding error
message.

register with the validate Function

Using the predefined register options described above (required,
pattern, minLength), you can do basic validations like checking if a
value is present, pattern matching, etc. However, if you want to do
complex validations without using any third-party library like Zod, you
can make use of the validate function.

The validate property in register options can accept a function or
an object with functions as values as can be seen in Listing 5-5.

{

 // function

 validate: () => {},

 // object of functions

 validate: {

 key1: () => {},

 key2: () => {},

 },

};

Listing 5-5 Types of values the validate property in register options can take

If I just specify a function as a value to the validate property, then
I can only add one validation in this function. If this function returns
true, then that means that validation has passed, and it shouldn’t
show any error. Otherwise, I have to return a string, which would be the
validation error. I can redo the email pattern matching validation using
the validate function as can be seen in Listing 5-6.

<input

 {...register("email", {

 required: "Email is required",

 validate: (email) => {

 if (/^[\w-\.]+@([\w-]+\.)+[\w-]

{2,4}$/.test(email)) {

 return true;

 }

 return "Email is invalid";

 },

 })}

 placeholder="Email"

 />

Listing 5-6 validate property with a function value
I used the regex’s test function in JavaScript to test if the email

value in the input matches that particular regex pattern. If that was the
case, I returned true; otherwise, I returned the error string.

The validate function can also be async. Let’s say I want to
check, by sending a call to a backend, if the email entered is valid or not.
I can do that by making validate an async function as can be seen
in Listing 5-7.

<input

 {...register("email", {

 required: "Email is required",

 validate: async (email) => {

 const isValid = await (

 await fetch(`/isValidEmail?

email=${email}`)

).json();

 return isValid || "Email is

invalid";

 },

 })}

 placeholder="Email"

 />

Listing 5-7 validate property with an async function value

If I want to add multiple validations to an input in the validate
function as the case for the email input field (required and pattern
matching), I can pass an object in the validate property, as can be
seen in Listing 5-8, that expects a string key that would be used as the
error type and a function value that works the exact same way as
shown before.

<input

 {...register("email", {

 validate: {

 isRequired: (email) => {

 return !!email || "Email is

required";

 },

 isEmailValid: (email) => {

 if (/^[\w-\.]+@([\w-]+\.)+[\w-]

{2,4}$/.test(email)) {

 return true;

 }

 return "Email is invalid";

 },

 },

 })}

 placeholder="Email"

 />

Listing 5-8 validate property with an object of functions value
Using this syntax, I was able to combine both validations, required

and pattern matching, in one validate object.
However, you saw that up until now I was only able to show one

validation error at a time. Sometimes you would want to show multiple
validation errors at once for a field. I will take a look at it in the next
section.

Validation Options
There are a lot of validation options that can be passed to the useForm
hook to change how validation is applied to the form fields. In this
section, I will cover those options.

mode/reValidateMode
Validation in React Hook Form is divided into two categories, validation
and revalidation. The validation that happens before the first form
submission is just called validation, while the validation that happens
after the first form submission is called revalidation.

Using the mode and reValidateMode params in the useForm
hook, you can change the validation strategy before and after form
submission (for validation and revalidation). By default, validation
would be triggered on the submit event, and revalidation would
happen on change events.

The mode param can have any of the values shown in Listing 5-9.
The default value for the mode param is onSubmit.

onChange | onBlur | onSubmit | onTouched | all

Listing 5-9 Type for the mode param

Based on what value you pass to the mode param, the validation
would be triggered at different stages of the form cycle. Table 5-1 would
help you understand that.

Table 5-1 Value Descriptions for the mode Param

Name Description

onSubmit Validation is triggered on the submit event.

onBlur Validation is triggered on the blur event.

onChange Validation is triggered on the change event.

onTouched Validation is initially triggered on the first blur event. After that, it is triggered on
every change event.

all Validation is triggered on both blur and change events.

The reValidateMode param can have any of the values shown in
Listing 5-10. The default value for the reValidateMode param is
onChange.

onChange | onBlur | onSubmit

Listing 5-10 Type for the reValidateMode param

Based on what value you pass to the reValidateMode param, the
validation would be triggered at different stages of the form cycle. Table
5-2 will help you understand that.

Table 5-2 Value Descriptions for the reValidateMode Param

Name Description

onSubmit Validation is triggered on the submit event.

onBlur Validation is triggered on the blur event.

onChange Validation is triggered on the change event.

You can choose a combination of these params based on what your
form needs. If you value performance more, then maybe try to trigger
validations on blur and submit events. If you constantly want to
perform validation on every keystroke (change event) because that is
what your form demands, then you can trigger validation on the change
event. And so on …

For a small form, the default values for these params are okay.
However, for larger forms, I would advise you to choose onBlur for the
reValidateMode param so that revalidation only occurs on blur
events.

criteriaMode
For the validation examples I have shown you, the errors object only
contains one error even if multiple validation errors are present for an
input. This can be controlled via the criteriaMode param.

The default value of criteriaMode param is firstError. This
means that React Hook Form would only return the first error based on
its validation order (random). If you want to change this behavior and
want all errors to be returned, then you would change its value to all.

When the criteriaMode param value is all, another property,
types, would be added to the corresponding field error object, which
would have the following shape as can be seen in Listing 5-11.

{

 type: string;

 ref: HTMLInputElement;

 message: string;

 types:{

 [errorKey: string]: string

 };

}

Listing 5-11 The shape for the types property inside the errors object

where the key would be a predefined error key like required and
minLength in case you are using those to add validations or the key in
the validate object if you are using the validate object for adding
validations. The value would be the error string you would specify in
the corresponding validation.

If now I want to show all the current errors of a field, for example,
the email field, it would look like the following as can be seen in Listing
5-12.

 {/* Map errors in random order */}

 {Object.values(errors?.email?.types ||

{})?.map((error) => (

 <p className="error">{error}</p>

))}

 {/* Map errors in order of your choice */}

 {[

 errors?.email?.types?.isRequired,

 errors?.email?.types?.isEmailValid,

].map((error) => (

 <p className="error">{error}</p>

))}

Listing 5-12 Mapping errors using the types property

As you can see in this example, if you don’t care about the order in
which validation errors are shown, you can just map over them using
Object.values. However, if you do care about the order, then you
can create an array of errors yourself with your specified order and
then map that.

shouldFocusError
This param is true by default. If this param is true, upon form
submission, the first field that has a validation error would be focused,
which is a good UX. However, if you want to disable this behavior, you
can pass false in this param.

delayError

If you want that the errors are not displayed instantly when validation
happens, then you can pass the number of milliseconds by which you
want the error display to be delayed in this param.

Validation Using Schema
Validation can also be done by passing a schema defined using a third-
party library like Yup, Zod, Joi, etc. This is usually the preferred
approach to do validation as well, if you are already using Yup, Zod, etc.,
in your project to validate something else. Using a schema to do
validation would make sure there is a standard approach being used to
do validation. Let’s see how you can integrate these libraries with React
Hook Form.

First of all, in order to use schema validation, I would have to install
a package @hookform/resolvers using the installation command in
Listing 5-13.

npm install @hookform/resolvers

Listing 5-13 Installation command for the @hookform/resolvers library

After that I will import the resolver function for the corresponding
schema library from this package. I would use this to create a resolver
from the schema generated from the third-party library and pass it in
the resolver param of the useForm hook.

In this section, I will only discuss Yup and Zod, Yup because Yup is
already used as a schema validation library for Formik and Zod because
it is the most popular schema validation library. Now I will take the
Signup form from the last chapter and implement validation for that
form using Yup and Zod.

Schema Validation Using Yup
First of all, I will import the yupResolver as discussed before. Then I
will create the schema using Yup, pass that schema in the
yupResolver function, and then pass the result into the resolver
property of the useForm hook as can be seen in Listing 5-14.

import { SubmitHandler, useForm } from "react-

hook-form";

import { yupResolver } from

"@hookform/resolvers/yup";

import * as yup from "yup";

import "./Validation.css";

interface FormData {

 firstName: string;

 lastName?: string;

 password: string;

 email: string;

}

const schema = yup.object().shape({

 firstName: yup.string().required("First Name is

required"),

 email: yup.string().email("Email is

 invalid").required("Email is required"),

 password: yup

 .string()

 .required("Password is required")

 .min(10, "Password should have at least 10

characters"),

});

export default function Signup() {

 const {

 register,

 handleSubmit,

 formState: { errors },

 } = useForm<FormData>({

 criteriaMode: "all",

 resolver: yupResolver(schema),

 });

 const onSubmit: SubmitHandler<FormData> = async

() => {};

 return (

 <form onSubmit={handleSubmit(onSubmit)}>

 <div className="form-container">

 <div>

 <input {...register("firstName")}

placeholder="First name" />

 {Object.values(errors?.firstName?.types

|| {})?.map((error) => (

 <p className="error">{error}</p>

))}

 </div>

 <div>

 <input {...register("lastName")}

placeholder="Last name" />

 </div>

 <div>

 <input {...register("email")}

placeholder="Email" />

 {Object.values(errors?.email?.types ||

{})?.map((error) => (

 <p className="error">{error}</p>

))}

 </div>

 <div>

 <input {...register("password")}

placeholder="Password" />

 {Object.values(errors?.password?.types

|| {})?.map((error) => (

 <p className="error">{error}</p>

))}

 </div>

 </div>

 <button type="submit">Signup</button>

 </form>

);

}

Listing 5-14 Schema validation using Yup

Schema Validation Using Zod
I will do the same thing for Zod where I will create the schema using
Zod, pass that schema in the zodResolver function, and then pass the
result into the resolver property of the useForm hook as can be
seen in Listing 5-15.

import { zodResolver } from

"@hookform/resolvers/zod";

import { z } from "zod";

const schema = z.object({

 firstName: z.string().min(1, { message: "First

Name is required" }),

 email: z

 .string()

 .min(1, { message: "Email is required" })

 .email("Email is invalid"),

 password: z.string().min(10, "Password should

have at least 10 characters"),

});

const {

 register,

 handleSubmit,

 formState: { errors },

 } = useForm<FormData>({

 criteriaMode: "all",

 resolver: zodResolver(schema),

 });

Listing 5-15 Schema validation using Zod

Summary
In this section, we looked at validations in detail. I explained how you
can display custom validation messages, make custom validation

functions using the validate register option, change validation
strategies using various useForm params, and at the end perform
validations using third-party libraries like Zod and Yup.

In the next chapter, I will demonstrate how you can implement
some common form scenarios using React Hook Form.

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2025
U. A. Rehman, Web Forms with React, Apress Pocket Guides
https://doi.org/10.1007/979-8-8688-1224-8_6

6. Common Use Cases

Usman Abdur Rehman1

Islamabad, Pakistan

In the last chapter, I discussed validation in detail. I discussed how
custom error messages can be added in register options for validations,
the validate function, the useForm hook params related to
validation, and how third-party schema validation libraries like Zod and
Yup can be integrated with React Hook Form for validation.

In this chapter, I will discuss some common form use cases like
reusable fields, nested forms, etc. and how they can be implemented
using React Hook Form.

For some form examples I will discuss in this chapter, I will be using
a minimal stylesheet, which is given below in Listing 6-1. I will
reference this in the code examples as Form.css wherever I will use it.

* {

 box-sizing: border-box;

}

form {

 width: 200px;

}

select,

input[type="text"] {

 padding: 12px;

 margin-bottom: 10px;

 border-radius: 4px;

https://doi.org/10.1007/979-8-8688-1224-8_6

 border: 1px solid black;

 display: block;

 width: 100%;

}

label {

 font-size: 14px;

}

input[type="checkbox"] {

 margin-bottom: 10px;

}

.error {

 margin: 0;

 margin-bottom: 10px;

 color: red;

 font-size: 14px;

}

.name-list-item {

 display: flex;

 gap: 6px;

 margin-bottom: 10px;

}

.name-list-item > input {

 margin: 0;

 width: 140px;

}

Listing 6-1 CSS styles for form scenario examples

Deeply Nested Form
For smaller forms, if some field needs to use some method or state from
the useForm hook, that field can get it directly from the useForm
hook via props. However, for larger forms with deeply nested fields and

sub-forms, you would need to do prop drilling to get the props
everywhere, which is not a recommended approach in React.

In cases like these, it is better to use React Hook Form’s
FormProvider component. The FormProvider component uses
React’s Context API under the hood to provide all form-related methods
and data to every child component of the FormProvider. If you want
to get any form method or state in any child component of the
FormProvider, you can get it using the useFormContext hook. Its
usage would look like the following.

import { useForm, FormProvider, useFormContext }

from "react-hook-form";

import "./Form.css";

interface FormData {

 name: string;

}

const NestedInput = () => {

 const {

 register,

 formState: { errors },

 } = useFormContext<FormData>();

 return (

 <div>

 <input

 {...register("name", { required: "Name is

required" })}

 type="text"

 placeholder="Name"

 />

 <p className="error">{errors.name?.message}

</p>

 </div>

);

};

export default function NestedForm() {

 const form = useForm<FormData>();

 const { handleSubmit } = form;

 const onSubmit = () => {};

 return (

 <FormProvider {...form}>

 <form onSubmit={handleSubmit(onSubmit)}>

 <NestedInput />

 <button type="submit">Signup</button>

 </form>

 </FormProvider>

);

}

Listing 6-2 Example of a deeply nested form using FormProvider/useFormContext
As you can see in Listing 6-2, NestedInput is a child of the

FormProvider component, and I was able to use the form methods
and state like register and errors inside the NestedInput
without any need for prop drilling from the parent to the child via the
useFormContext hook. This method can be very useful for creating
reusable fields, which I will be taking a look at in a later section.

Dependent Fields
In a previous chapter, I discussed the watch function. The watch
function can be used to watch for changes in any field. But the
downside of this is that the whole form will rerender whenever a
particular field would change.

If you want that only a particular child component (an isolated
dependent field component) should rerender on some field change,
then you can use the useWatch hook.

The useWatch hook expects certain params, the most important of
which is name.

You can pass either a string or an array of strings (which
corresponds to field keys in the form) to the name param. Another

param is the control param. If you are using the FormProvider
component, you don't need to pass this control in the useWatch hook;
otherwise, you will have to pass the control you get from the useForm
hook in the control param of the useWatch hook.

In this example as can be seen in Listing 6-3, I have three fields, a
text field Name, a checkbox Is graduated?, and a specializations select
field. I only want to show the specializations select field if the Is
graduated? checkbox is checked. I can do that by extracting the
specializations select field (the dependent field) into a separate
component and then, using the useWatch hook, rendering that
component if the particular checkbox is checked (its corresponding
value is true). Otherwise, I can return null. It would look something
like the following.

import {

 FormProvider,

 SubmitHandler,

 useForm,

 useFormContext,

 useWatch,

} from "react-hook-form";

import "./Form.css";

interface FormData {

 name: string;

 isGraduated: boolean;

 specialization: string;

}

const SPECIALIZATIONS = ["Electrical", "Software",

"Data Science"];

const SpecializationField = () => {

 const isGraduated = useWatch({ name:

"isGraduated" });

 const { register } = useFormContext<FormData>();

 if (!isGraduated) return null;

 return (

 <select {...register("specialization")}>

 {SPECIALIZATIONS.map((specialization) => (

 <option value={specialization}>

{specialization}</option>

))}

 </select>

);

};

export default function DependentFields() {

 const form = useForm<FormData>();

 const { register, handleSubmit } = form;

 const onSubmit: SubmitHandler<FormData> = async

(data) => {};

 return (

 <FormProvider {...form}>

 <form onSubmit={handleSubmit(onSubmit)}>

 <input {...register("name")}

placeholder="Name" type="text" />

 <div>

 <label>

 <input {...register("isGraduated")}

type="checkbox" />

 Is Graduated?

 </label>

 </div>

 <SpecializationField />

 <button type="submit">Submit</button>

 </form>

 </FormProvider>

);

}

Listing 6-3 Example of dependent fields using useWatch

As you can see in the SpecializationField component, I have
passed the field key of the checkbox, isGraduated, in the useWatch
hook, which gives me the value of that checkbox. If it is false, then I
return null, which means nothing would be rendered; otherwise, I
would render the specializations select field. If you would put a
console.log on the DependentFields component as well as in
the SpecializationField component, you will see that whenever
the Is graduated? checkbox would change, only the
SpecializationField component would rerender, not the whole
form, which is a very performant approach for making dependent
fields.

Reusable Fields
In any application, there are a lot of fields/sub-forms and so on, which
are reusable across many forms, for example, the email and password
fields. For a general website, the email and password fields are present
in the Signin form, Signup form, Edit Profile form, etc. These two fields
along with their respective code regarding the register function and
validations can be made into a separate component known as
Credentials, which can then be reused in any form like Signin,
Signup, etc. I will make use of the FormProvider component so that I
can extract the register function and necessary logic right there in
the Credentials component using the useFormContext hook and
the component doesn't require any props for its usage. It would look
something like the following.

import {

 FormProvider,

 SubmitHandler,

 useForm,

 useFormContext,

} from "react-hook-form";

import "./Form.css";

interface UserFormData {

 firstName: string;

 lastName: string;

 bio: string;

 age: number;

 email: string;

 password: string;

}

const Credentials = () => {

 const {

 register,

 formState: { errors },

 } = useFormContext<UserFormData>();

 return (

 <>

 <div>

 <input

 {...register("email", {

 required: true,

 pattern: /^[\w-\.]+@([\w-]+\.)+[\w-]

{2,4}$/,

 })}

 placeholder="Email"

 type="text"

 />

 {errors.email?.type === "required" && (

 <p className="error">Email is

required</p>

)}

 {errors.email?.type === "pattern" && (

 <p className="error">Email is

invalid</p>

)}

 </div>

 <div>

 <input

 {...register("password", {

 required: true,

 minLength: 10,

 })}

 placeholder="Password"

 type="text"

 />

 {errors.password?.type === "required" && (

 <p className="error">Password is

required</p>

)}

 {errors.password?.type === "minLength" &&

(

 <p className="error">Password should

have at least 10 characters</p>

)}

 </div>

 </>

);

};

export function ReusableSignup() {

 const form = useForm<UserFormData>();

 const { register, handleSubmit } = form;

 const onSubmit: SubmitHandler<UserFormData> =

async (data) => {};

 return (

 <FormProvider {...form}>

 <form onSubmit={handleSubmit(onSubmit)}>

 <input

 {...register("firstName")}

 placeholder="First Name"

 type="text"

 />

 <input {...register("lastName")}

placeholder="Last Name" type="text" />

 <Credentials />

 <button type="submit">Submit</button>

 </form>

 </FormProvider>

);

}

export function ReusableSignin() {

 const form = useForm<UserFormData>();

 const { handleSubmit } = form;

const onSubmit: SubmitHandler<UserFormData> =

async (data) => {};

 return (

 <FormProvider {...form}>

 <form onSubmit={handleSubmit(onSubmit)}>

 <Credentials />

 <button type="submit">Submit</button>

 </form>

 </FormProvider>

);

}

export function ReusableProfile() {

 const form = useForm<UserFormData>();

 const { register, handleSubmit } = form;

 const onSubmit: SubmitHandler<UserFormData> =

async (data) => {};

 return (

 <FormProvider {...form}>

 <form onSubmit={handleSubmit(onSubmit)}>

 <input

 {...register("firstName")}

 placeholder="First Name"

 type="text"

 />

 <input {...register("lastName")}

placeholder="Last Name" type="text" />

 <Credentials />

 <textarea {...register("bio")}

placeholder="Bio" />

 <input

 {...register("age", { valueAsNumber:

true })}

 placeholder="Age"

 type="number"

 />

 <button type="submit">Submit</button>

 </form>

 </FormProvider>

);

}

Listing 6-4 Example of reusable fields/forms using FormProvider/useFormContext
As you can see in Listing 6-4, I utilized the same principle I used in

the nested form example where I created a component Credentials
where I got the form-related accessories from the useFormContext
hook and I reused these fields very easily without the need to pass any
props in three forms (Signin, Signup, and Edit Profile) by wrapping
them up in the FormProvider component.

If you want to use any component from this example, you can
import them using named imports like import
{ReusableProfile} from … since I haven't used any default
export in this example.

Reusable Controlled Components
In a previous chapter, I talked about how you need to use the
Controller interface to integrate controlled components with React
Hook Form since React Hook Form works in an uncontrolled manner
because of the use of refs.

However, a lot of repetition of code occurs while integrating
controlled components where every controlled component in the form
needs to be wrapped by the Controller component. A better
approach is to extract these controlled components into separate
components where they can get the field-related methods and data
using the useController hook.

The useController hook just like the useWatch hook would
get the control automatically via context if FormProvider is being
used; otherwise, it has to be passed manually via props. All the other
params to this hook are the same as the Controller component
discussed previously (name, rules, etc.). I will make a reusable
component (as can be seen in Listing 6-5) for the Material UI’s
TextField component using the useController hook and then
use it just like I would use a normal HTML input like the following.

import { TextField } from "@mui/material";

import {

 FormProvider,

 RegisterOptions,

 SubmitHandler,

 useController,

 useForm,

} from "react-hook-form";

interface FormData {

 name: string;

}

const Input = ({

 name,

 rules,

 label,

}: {

 name: string;

 rules?: RegisterOptions;

 label?: string;

}) => {

 const { field } = useController({

 name,

 rules,

 });

 return (

 <TextField

 {...field}

 inputRef={field.ref}

 style={{ marginBottom: 10 }}

 label={label}

 />

);

};

export const ReusableControlledForm = () => {

 const form = useForm<FormData>();

 const {

 handleSubmit,

 formState: { errors },

 } = form;

 const onSubmit: SubmitHandler<FormData> = async

(data) => {};

 return (

 <FormProvider {...form}>

 <form onSubmit={handleSubmit(onSubmit)}>

 <Input name="name" label="Name" rules={{

required: true }} />

 {errors.name && <p>Name is required</p>}

 <div />

 <button type="submit">Submit</button>

 </form>

 </FormProvider>

);

};

Listing 6-5 Example of reusable controlled components using useController

Mapping Multiple Fields
Oftentimes you need to map multiple fields of a similar type in your
form. It is essential that there is a standard approach for mutating the
array state for the fields data, for example, appending, removing,
updating, replacing fields, etc. from the field list.

React Hook Form provides a hook useFieldArray for that
particular purpose. useFieldArray expects a control param if the
form isn't wrapped with FormProvider; otherwise, it gets it from
the form context. It also expects a name param, which should match a
field key. It returns a fields variable, which is an array you can map
to render the fields + a plethora of array functions like append,
remove, etc., which can be used to perform mutation operations on
the array state easily.

Let's say I have a form in which I have to enter the names of users in
the form of a list. For that purpose, I will map a series of fields
comprising of a text input and a delete button, which can be used to
remove the corresponding field from the list.

This implementation using the useFieldArray hook would look
like the following.

import { useForm, useFieldArray, SubmitHandler }

from "react-hook-form";

import "./Form.css";

interface FormData {

 users: { name: string }[];

}

export default function MultipleFields() {

 const { register, control, handleSubmit } =

useForm<FormData>({

 defaultValues: { users: [{ name: "Usman" }] },

 });

 const { fields, append, remove, replace, insert,

swap, prepend } =

 useFieldArray({

 control,

 name: "users",

 });

 const onSubmit: SubmitHandler<FormData> = (data)

=> {};

 return (

 <form onSubmit={handleSubmit(onSubmit)}>

 <div>

 {fields.map((item, index) => (

 <div key={item.id} className="name-list-

item">

 <input

{...register(`users.${index}.name`)} type="text"

/>

 <button type="button" onClick={() =>

remove(index)}>

 Delete

 </button>

 </div>

))}

 </div>

 <button type="button" onClick={() =>

append({ name: "" })}>

 Add new user

 </button>

 </form>

);

}

Listing 6-6 Example of mapping multiple fields using useFieldArray
As you can see in Listing 6-6, I mapped the fields using the fields

variable I got from the useFieldArray hook. Every object in the

fields array will have an id that would uniquely distinguish each field.
This id would be generated by the useFieldArray hook. This id
would be used as a key for each field. The index would be used to
create the field key for the register function for each field.

I also used the append and remove functions I got from the hook
to add and remove fields from the field list. The append method expects
an object of the type of the field specified in the FormData type (type
passed in the useForm hook). Calling the append method would add
that object to the corresponding field array state. The remove function
expects a number param that corresponds to the index of the item you
want to be removed from the field list.

Similarly, there are a lot of other array functions that you get from
the useFieldArray hook like replace, insert, swap, etc., and
you can use them to perform array operations easily without the need
of manually mutating state.

As the MultipleFields function in this example is a default
exported function, in order to render this component in another
component, you will use a default import like import
MultipleFields from ... to import it.

Summary
In this chapter, I looked at some common form scenarios that
developers face while working on forms from reusable fields to nested
forms, dependent fields, mapping of multiple fields, etc. I then showed
you how React Hook Form makes it very convenient to work with these
scenarios.

And that is it for this book. I hope this book helped you level up your
forms skills in React. I wish you the best of luck in your frontend career.

Index
A
async function

B
BMI calculator

CSS styles
error object
form
HTML skeleton
HTML structure
onSubmit function
react component
register function
required property
salient features
type property
useForm hook
valueAsNumber:true
values

C
Common form use cases

CSS styles
deeply nested form
dependent fields
mapping multiple fields
reusable controlled components
reusable fields

Controlled components
integrating
reusable

Credentials component
criteriaMode param
Cross-platform

D

Deeply nested form
defaultValues param
delayError param
DependentFields component
dev tools

E
Email regex

F
Form builder
Formik
FormProvider component
formState function
formState object
Form submission logic

G
GitHub stats

H, I, J, K, L
handleSubmit function
Handling validation
HTML5 validation

M
Material UI’s TextField
minLength
mode and reValidateMode params
MultipleFields function

N
Native form handling

handling validation
learning
library, advantages
robustness
scalability and reusability
standard

state handling
Native state handling
NestedInput
npm installs

O
onChange and onBlur functions
onSubmit function
onSubmit functionality

P, Q
Pull requests (PRs)

R
React form libraries
React Hook Form library

core
basic usage
useForm params
useForm returned values
using TypeScript

cross-platform
dev tools
form builder
vs. Formik
GitHub stats
npm installs
options
performance
subscriptions
type safety
useForm hook
validation
zero dependencies

Regex’s test function
register and handleSubmit functions
register function
reset function

Reusability
Reusable controlled components
Reusable fields

S
Scalability
setValue function (Boolean)
shouldFocusError param
Signup form

CSS styles
email regex
FormData type
HTML structure
isDirty and isSubmitting values
isSubmitting effect
layout
mapping errors
minimum length validation
onSubmit function
onSubmit functionality
pattern matching validation
register function
register options
salient features

SpecializationField component

T
TypeScript

U
useFieldArray hook
useFormContext hook
useForm hook
useForm params

defaultValues
values

useForm returned values
formState functions

handleSubmit functions
register functions
reset functions
watch functions

useWatch hook

V
Validate function
Validation patterns

criteriaMode param
delayError
mode and reValidateMode params
register options
register with validate function
register with validation and error message
schema validation using Yup
schema validation using Zod
shouldFocusError
validation options
validation using schema

Values param

W, X
watch function

Y
yupResolver

Z
zodResolver function

	Cover
	Front Matter
	1. Forms in React
	2. React Hook Form
	3. React Hook Form Basics
	4. Making Forms with React Hook Form
	5. Validation
	6. Common Use Cases
	Back Matter

