
Beginning Git
and GitHub

Version Control, Project Management and
Teamwork for the New Developer
—
Second Edition
—
Mariot Tsitoara

Beginning Git and GitHub
Version Control, Project Management
and Teamwork for the New Developer

Second Edition

Mariot Tsitoara

Beginning Git and GitHub: Version Control, Project Management and Teamwork for
the New Developer, Second Edition

ISBN-13 (pbk): 979-8-8688-0214-0		 ISBN-13 (electronic): 979-8-8688-0215-7
https://doi.org/10.1007/979-8-8688-0215-7

Copyright © 2024 by Mariot Tsitoara

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: James Robinson-Prior
Development Editor: James Markham
Coordinating Editor: Gryffin Winkler
Copyeditor: Kim Burton

Cover designed by eStudioCalamar

Cover image by WangXiNa@Freepik.com

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.
springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science
+ Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub (https://github.com/Apress). For more detailed information, please visit
https://www.apress.com/gp/services/source-code.

Paper in this product is recyclable

Mariot Tsitoara
Antananarivo, Madagascar

https://doi.org/10.1007/979-8-8688-0215-7

This book is dedicated to the generous individuals who have made
the Git community an incredible environment to work in.

Your contributions have resulted in one of the most valuable tools
in the tech world. Thank you!

v

About the Author�� xiii

About the Technical Reviewer��xv

Acknowledgments��xvii

Introduction���xix

Part I: �Version Control with Git�� 1

Chapter 1: ��Version Control Systems�� 3

What Is Version Control?�� 3

Why Do I Need One?�� 4

What Are the Choices?��� 7

Local Version Control Systems��� 7

Centralized Version Control Systems��� 8

Distributed Version Control Systems�� 9

What Is Git?�� 11

What Can Git Do?�� 11

How Does Git Work?��� 13

What Is the Typical Git Workflow?�� 14

Summary��� 18

Chapter 2: ��Installation and Setup�� 19

Installation��� 19

Windows�� 21

macOS�� 33

Linux�� 35

Setting up Git��� 37

Summary��� 38

Table of Contents

vi

Chapter 3: ��Getting Started��� 39

Repositories��� 39

Working Directory�� 44

Staging Area��� 46

Commits��� 48

Quick Start with Git�� 52

Summary��� 53

Chapter 4: ��Diving into Git��� 55

Ignoring Files��� 55

Checking Logs and History�� 61

Viewing Previous Versions��� 63

Reviewing the Current Changes��� 64

Summary��� 66

Chapter 5: ��Commits��� 67

The Three States of Git��� 67

Navigating Between Versions�� 68

Undo a Commit�� 71

Modifying a Commit��� 77

Amending a Commit��� 83

Summary��� 84

Chapter 6: ��Git Best Practices��� 85

Commit Messages��� 85

Git Commit Best Practices��� 86

What to Do��� 88

What Not to Do��� 89

How Git Works (Again)�� 90

Summary��� 92

Table of Contents

vii

Chapter 7: ��Remote Git�� 93

Why Work in Remote Git��� 93

How Does It Work?��� 94

The Easy Way��� 96

Summary��� 97

Part II: Project Management with GitHub�� 99

Chapter 8: ��GitHub Primer��� 101

GitHub Overview�� 101

GitHub and Open Source�� 102

Personal Use�� 104

GitHub for Businesses�� 106

Summary��� 106

Chapter 9: ��Quick Start with GitHub�� 107

Project Management�� 107

How Remote Repositories Work��� 118

Linking Repositories�� 119

Pushing to Remote Repositories�� 120

Summary��� 123

Chapter 10: ��Beginning Project Management: Issues��� 125

Issues Overview��� 125

Creating an Issue��� 126

Interacting with an Issue��� 131

Labels��� 133

Assignees��� 137

Linking Issues with Commits��� 138

Working on the Commit�� 139

Referencing an Issue�� 140

Closing an Issue Using Keywords��� 144

Summary��� 146

Table of Contents

viii

Chapter 11: ��Diving into Project Management: Branches��������������������������������������� 147

GitHub Workflow�� 148

Branches�� 150

Creating a Branch��� 152

Switch to Another Branch��� 153

Deleting a Branch��� 156

Merging Branches�� 159

Pushing a Branch to Remote�� 164

Summary��� 166

Chapter 12: ��Better Project Management: Pull Requests��������������������������������������� 169

Why Use Pull Requests?�� 169

Pull Requests Overview��� 170

Pull��� 170

What Does a Pull Request Do?��� 172

Create a Pull Request��� 172

Code Reviews�� 185

Give a Code Review�� 185

Leave a Review Comment�� 186

Update a Pull Request�� 191

Summary��� 196

Part III: �Teamwork with Git�� 197

Chapter 13: ��Merge Conflicts�� 199

How Does a Merge Work?�� 199

Pulling��� 200

Fast-Forward Merge��� 203

Merge Conflicts�� 207

Pulling Commits from origin��� 212

Resolving Merge Conflicts�� 219

Summary��� 225

Table of Contents

ix

Chapter 14: ��More About Conflicts�� 227

Pushing After a Conflict Resolution�� 227

Review Changes Before Merging��� 228

Check the Branch Location��� 229

Review the Branch Differences�� 229

Merging�� 230

Reducing Conflicts��� 231

Having a Good Workflow��� 231

Aborting a Merge�� 232

Using a Visual Git Tool��� 233

Summary��� 233

Chapter 15: ��Git GUI Tools��� 235

Default Tools�� 235

Committing: git-gui��� 235

Browsing: gitk��� 247

IDE Tools��� 249

Visual Studio Code�� 249

Specialized Tools�� 251

GitHub Desktop��� 251

Summary��� 252

Chapter 16: ��Advanced Git�� 253

Reverting�� 253

Stashing��� 255

Resetting�� 260

Summary��� 263

Part IV: �More with GitHub�� 265

Chapter 17: ��More with GitHub��� 267

Wikis�� 267

GitHub Pages�� 270

Table of Contents

x

Releases�� 274

Project Boards�� 277

Summary��� 281

Chapter 18: ��Common Git Problems�� 283

Repository�� 283

Starting Over�� 283

Change Origin��� 284

Working Directory�� 285

git diff Is Empty�� 286

Undo Changes to a File��� 286

Commits��� 286

An Error in a Commit�� 287

Undo Commits�� 287

Branches�� 288

Detached HEAD��� 288

Working in the Wrong Branch��� 289

Catch up with the Parent Branch�� 290

Branches Have Diverged�� 292

Summary��� 294

Chapter 19: ��Git and GitHub Workflow�� 295

How to Use This Workflow��� 295

GitHub Workflow�� 296

Every Project Starts with a Project��� 296

Every Action Starts with an Issue��� 296

No Direct Push to main��� 297

Any Merge into the Main Branch Needs a Pull Request��� 297

Use the Wiki to Document Your Code��� 297

Git Workflow��� 298

Always Know Where You Are�� 298

Pull Remote Changes Before Any Action�� 298

Table of Contents

xi

Take Care of Your Commit Message��� 298

Don’t Rewrite History��� 299

Summary��� 299

Chapter 20: ��Making Git Yours with Aliases��� 301

What Are Git Aliases?��� 301

Using Git Aliases�� 301

Using the Git Config File��� 301

Editing the Git Config File Directly��� 302

Examples of Useful Git Aliases��� 302

Common Command Shortcuts��� 302

Listing Aliases�� 303

Summary��� 306

�Index�� 307

Table of Contents

xiii

About the Author

Mariot Tsitoara is a software engineer with a passion for the

open web. He has been involved with Mozilla as a rep and

a tech speaker since 2015 and has spoken extensively about

open source and new technology, including Rust, WebVR,

and online privacy. You can reach him at mariot@tsitoara.fr.  

xv

About the Technical Reviewer

Mihajatiana Maminiaina Rakotomalala was initially

inspired by movies highlighting futuristic technology and

hacking to ignite his passion for IT. 

His journey began as an IT support engineer,

demonstrating a keen understanding of network monitoring

and management and server maintenance.

Venturing into web application development, he

contributed significantly to creating dynamic websites using

JavaScript frameworks like ReactJS.

Simultaneously, he broadened my technical knowledge by installing and

troubleshooting different operating systems and applications providing essential

problem resolution services to users.

Currently serving as an IT engineer in the government sector, he oversees setting up

and improving the IT infrastructure.

xvii

Acknowledgments

I would like to express my gratitude to my parents, Jeanne and Tsitoara, for the incredible

opportunities they have provided me. Without their support and sacrifices, I wouldn’t be

where I am today.

I give special thanks to my wonderful wife, Miora, and my amazing daughter, Maeva.

I am also grateful to my siblings, Alice, Elson, Thierry, Eliane, Annick, and

Mamitiana, for being exceptional role models and offering unwavering support. To my

lifelong friends, Christino, Johanesa, Laza, Lova, Miandry, Mihaja, and Rindra, who have

taught me so much, I dedicate this book to you.

I must acknowledge my coworkers for imparting their knowledge of Git and being

helpful and enjoyable to work with.

xix

Introduction

This book has a clear objective: to serve as the resource I wish I had when I started my

tech career. Each chapter is designed to teach you only what you need to know as a

beginner. It’s not an exhaustive reference book, but it will equip you with the necessary

knowledge to significantly impact your career.

By the end of this book, you will understand the essential tools for version control

and project management.

�Who This Book Is For
This book is aimed at absolute beginners with Git and GitHub, as well as those who have

some experience but want to deepen their understanding. If you’re seeking the most

effective way to quick-start your journey in the right direction, this book is for you.

�How to Use This Book
Git is a straightforward tool to learn, but practical experience is crucial for grasping its

concepts. The best way to learn is by applying it directly to one of your real projects.

Reading the book without engaging in the exercises will prolong your learning curve.

PART I

Version Control with Git

3
© Mariot Tsitoara 2024
M. Tsitoara, Beginning Git and GitHub, https://doi.org/10.1007/979-8-8688-0215-7_1

CHAPTER 1

Version Control Systems
This chapter introduces you to version control systems. By the end of this chapter, you

will understand Git version control and its historical background. The primary goal is to

recognize the scenarios that necessitate version control and to comprehend why Git is a

reliable and secure choice.

�What Is Version Control?
As the name implies, version control involves managing multiple versions of a project. It

tracks every change made to project files (additions, edits, or deletions). Each change is

recorded, allowing for easy undoing or rolling back.

To effectively implement version control, you need to utilize version control systems.

These systems facilitate navigation through changes and provide a swift way to revert to

previous versions when needed.

Teamwork is a significant advantage of version control. When multiple individuals

contribute to a project, tracking changes can become chaotic, increasing the risk

of overwriting each other’s work. With version control, team members can work on

separate copies of the project (referred to as branches) and merge their changes into the

main project only when they, or other team members, are satisfied with the work.

Note  This book was written from a developer’s perspective; however, the
concepts and principles discussed apply to any type of text file, not just code.
Version control systems can track changes not only in text files but also in various
non-text files such as images or Gimp files.

https://doi.org/10.1007/979-8-8688-0215-7_1

4

�Why Do I Need One?
Have you ever worked on a text project or code that required you to recall the specific

changes made to each file? If yes, how did you manage and control each version?

Perhaps you attempted to duplicate and rename files using suffixes like Reviewed, Fixed,

or Final? Figure 1-1 illustrates that kind of version control.

Figure 1-1.  Compressed files with suffixes to track versions

The figure illustrates the approach that many people adopt to handle file changes.

However, this method can quickly become unmanageable. It is easy to lose track of file

identities and the specific changes made between them.

To effectively track versions, one suggestion is to compress the files and append

timestamps to their names. This arrangement organizes the versions based on their

creation dates. Figure 1-2 demonstrates this type of version tracking.

Figure 1-2.  Compressed files with prefixes sorted by date

The solution depicted in Figure 1-2 may seem ideal, but it becomes evident that

there is no way to determine the contents or descriptions of each version.

To address this issue, some developers employ a solution similar to the one shown in

Figure 1-3. They include a separate file containing a summary of the changes made. This

helps provide clarity and context to each version.

Chapter 1 Version Control Systems

5

Figure 1-3.  A separate file to track changes in the project

Figure 1-3 portrays the inclusion of a separate file within the project folder

containing concise descriptions of the changes made. Additionally, note the presence of

compressed files that store previous versions of the project.

However, this system falls short in comparing each version and tracking file changes.

Memorization becomes necessary, especially as the project grows and the folder

expands with each version.

Consider the challenges that arise when new team members join your project.

Would you resort to emailing files or versions back and forth? Or would you opt to work

on the same remote folder? In the latter case, how would you determine who is working

on which file and what changes have been made?

Furthermore, have you ever desired to undo a change made years ago without

disrupting the entire project? The need for an unlimited and powerful Ctrl+Z arises.

All these issues can be resolved using a version control system (VCS). A VCS tracks

every change made to each file in your project and provides a straightforward method

for comparing and reverting those changes. Each project version is accompanied by

a description of the modifications and a list of new or edited files. When additional

individuals join the project, a VCS can precisely identify the author of a specific file edit

at a given time. This saves you valuable time, as you can focus on writing instead of

meticulously tracking each change. Figure 1-4 depicts a versioned project managed by

Git, showcasing the combination of all the solutions discussed in this chapter: change

descriptions, teamwork, and edit dates.

Chapter 1 Version Control Systems

6

Figure 1-4.  A project versioned by Git

Chapter 1 Version Control Systems

7

Let’s find out more about version control systems.

�What Are the Choices?
There are many flavors of version control systems, each with its own advantages and

shortcomings. A VCS can be local, centralized, or distributed.

�Local Version Control Systems
These were the first VCSs created to manage source code. They worked by tracking the

changes made to files in a single database that was stored locally. This meant that all the

changes were kept on a single computer, and if there were any problems, all the work

would be lost. It also meant that working with a team was out of the question.

One of the most popular local VCSs was a source code control system (SCCS), which

was free but closed source. Developed by AT&T, it was widely used in the 1970s until the

introduction of a revision control system (RCS). RCS became more popular than SCCS

because it was open source, cross-platform, and much more effective. Released in 1982,

RCS is currently maintained by the GNU Project. One of the drawbacks of these two local

VCSs was that they only worked on one file at a time; there was no way to track an entire

project with them.

To help you visualize how it works, Figure 1-5 illustrates a simple local VCS.

Figure 1-5.  How a local VCS works

Chapter 1 Version Control Systems

8

As you can see in Figure 1-5, everything is on the user’s computer, and only one file is

tracked. The versioning is stored in a database managed by the local VCS.

�Centralized Version Control Systems
Centralized VCS (CVCS) stores the change history on a single server to which the clients

(authors) can connect. This offers a way to work with a team and allows monitoring a

project’s pace. They are still popular because the concept is simple and easy to set up.

The main problem with CVCS, like local VCS, is that a server error can result in losing

all of the team’s work. A network connection is also required since the main project is

stored on a remote server.

Figure 1-6 shows how it works.

Figure 1-6.  How a centralized VCS works

Figure 1-6 shows that a centralized VCS works similarly to a local VCS, but the

database is stored on a remote server.

The main problem teams face using a centralized VCS is that once someone uses

a file, it is locked, and other team members cannot work on it. As a result, they have to

coordinate among themselves to modify a single file. This creates significant delays in

development and leads to frustration for contributors. Moreover, the more members

there are on the team, the more problems arise.

Chapter 1 Version Control Systems

9

To address the issues of local VCS, the concurrent version system (CVS) was

developed. It was open source and could track multiple sets of files instead of just one.

Many users could also work on the same file simultaneously, hence the word concurrent

in the name. All the history was stored in a remote repository, and users would keep up

with the changes by checking out the server, which involved copying the contents of the

remote database to their local computers.

Apache Subversion (SVN) was developed in 2000 and offered everything that

CVS could, with an additional benefit: it could track non-text files. One of the main

advantages of SVN was that, instead of tracking a group of files like the previous VCS, it

tracked the entire project. Thus, it essentially tracked the directory instead of individual

files. This meant that renaming, adding, and removing files were also tracked. These

features, combined with its open source nature, made SVN a very popular VCS, which is

still widely used today.

�Distributed Version Control Systems
Distributed VCS works similarly to centralized VCS but with a significant difference:

no main server holds all the history. Instead, each client has a copy of the repository

(including the change history) rather than checking out a single server.

This greatly reduces the risk of losing everything since each client has a clone of the

project. With a distributed VCS, the concept of a “main server” becomes blurred because

each client has all the power within their own repository. This greatly encourages forking

within the open source community. Forking refers to cloning a repository to make your

own changes and have a different perspective on the project. The main benefit of forking

is that you can pull changes from other repositories if you see fit, and others can do the

same with your changes.

A distributed version control system is generally faster than other types of VCS

because it doesn’t require network access to a remote server. Nearly everything is done

locally. There is also a slight difference in how it works: instead of tracking the changes

between versions, it tracks all changes as patches, which can be freely exchanged

between repositories, so there is no main repository to keep up with.

Figure 1-7 illustrates how a distributed VCS works.

Chapter 1 Version Control Systems

10

Figure 1-7.  How a distributed VCS works

Note  When looking at Figure 1-7, it may be tempting to conclude that there
is a main server that the users are keeping up with. However, in the case of a
distributed VCS, it is important to note that it is only a convention many developers
follow to have a better workflow. In reality, there is no requirement for a centralized
main server in a distributed VCS setup. Each client has its own repository, and
changes can be exchanged directly between repositories without needing a
central server.

BitKeeper SCM was a proprietary distributed VCS that was released in 2000. Similar

to SCCS in the 1970s, BitKeeper SCM was closed source. It offered a free Community

version that lacked many of the advanced features of the full BitKeeper SCM. Despite

this limitation, being one of the first distributed VCSs, it gained popularity even within

the open source community.

The popularity of BitKeeper played a significant role in the creation of Git. In 2016,

the source code of BitKeeper was released under the Apache License, making it an open

source software. The current BitKeeper project is at www.bitkeeper.org. While the

development has slowed, the BitKeeper community is still actively contributing.

Chapter 1 Version Control Systems

http://www.bitkeeper.org

11

�What Is Git?
Remember the proprietary distributed version control system BitKeeper SCM from

the last section? Well, the Linux kernel developers used it for their development. The

decision to use it was wildly regarded as a bad move and made many people unhappy. In

2005, BitKeeper SCM ceased to be free, leading to the need for a new VCS for the Linux

kernel development. Since no suitable alternative was available, the decision was made

to develop a new VCS from scratch, creating Git.

Git shares similarities with BitKeeper SCM, a distributed VCS, but it offers several

improvements. It is known for its speed and efficiency, particularly when handling large

projects. The Git community is highly active, with numerous contributors involved in

its development and maintenance. To learn more about Git, visit the official website at

https://git-scm.com.

The features and workings of Git will be explained in more detail later in this section.

�What Can Git Do?
Remember all those problems at the beginning of this chapter? Well, Git can solve them

all. It can even solve problems you may not have been aware of. The following are some

of the key capabilities of Git.

•	 Track changes

–– Navigate back and forth between versions.

–– Review the differences between different versions.

–– Check the change history of specific files.

–– Tag specific versions for easy referencing.

•	 Collaboration and teamwork

–– Exchange “changesets” between repositories.

–– Review the changes made by other team members.

Chapter 1 Version Control Systems

https://git-scm.com

12

•	 Branching and merging

–– Git’s branching system allows you to create copies of the project, called

branches, where you can work independently without affecting the main

repository.

–– Merging enables you to incorporate changes in a branch back into the

main source.

•	 Stashing

–– Git provides a stashing feature that allows you to safely set aside your

current edits, creating a clean working environment to focus on a

different task.

–– Stashing is useful when temporarily storing changes while working on a

different feature or priority task. You can later retrieve and apply those

changes to your current working environment.

Git’s versatility and robust feature set make it a valuable tool for version control,

enabling efficient collaboration, flexible branching, merging capabilities, and the ability

to track changes effectively.

As a little appetizer, here are some of the Git commands you will learn in this book.

$ git init # Initialize a new git database

$ git clone # Copy an existing database

$ git status # Check the status of the local project

$ git diff # Review the changes done to the project

$ git add # Tell Git to track a changed file

$ git commit # Save the current state of the project to database

$ git push # Copy the local database to a remote server

$ git pull # Copy a remote database to a local machine

$ git log # Check the history of the project

$ git branch # List, create or delete branches

$ git merge # Merge the history of two branches together

$ git stash # Keep the current changes stashed away to be used later

As you can see, the commands are self-explanatory. Don’t worry about knowing all

of them by heart; you will learn them one by one. And, you won’t need to always use all

the commands. You will mostly use git add and git commit. This chapter focuses on

Chapter 1 Version Control Systems

13

the commands commonly used in a professional setting. But before diving into that, let’s

explore the inner workings of Git.

�How Does Git Work?
Unlike many version control systems, Git works with snapshots rather than differences.

This means that instead of tracking the difference between two versions of a file, Git

captures a complete snapshot of the project’s current state.

This approach contributes to Git’s exceptional speed compared to other distributed

VCSs. It allows for swift and effortless switching between versions and branches.

In contrast to centralized version control systems, Git operates differently. You don’t

need to communicate with a central server to perform work. As a distributed VCS, each

user has their own independent repository with a complete history and changesets.

Consequently, most actions in Git are performed locally, except for sharing patches or

changesets. While a central server is not necessary, many developers still use one as a

convention for easier collaboration.

Let’s discuss how Git identifies and associates changesets with respective users.

When Git captures a snapshot, it computes a checksum for it. This checksum allows Git

to determine which files have changed by comparing their checksums. This mechanism

enables Git to track changes between files and directories while checking for file

corruption.

The main feature of Git is its “three states” system, which consists of the working

directory, the staging area, and the git directory.

•	 The working directory represents the current snapshot of the project

that you are actively working on.

•	 The staging area is where modified files are marked in their current

version, indicating they are ready to be stored in the database.

•	 The git directory serves as the database where the project’s complete

history is stored.

In essence, Git operates in the following manner: you modify the files in the working

directory, then add each file you want to include in the next snapshot to the staging area

using the git add command. Once the files are added to the staging area, you can create

a snapshot of the project by committing the changes using the git commit command.

In Git terminology, a modified file added to the staging area is known as staged, and a

Chapter 1 Version Control Systems

14

file that has been committed and added to the database is committed. Therefore, the life

cycle of a file in Git progresses from modified to staged to committed.

�What Is the Typical Git Workflow?
To help you visualize the concepts discussed in this section, I will briefly demonstrate

a typical workflow using Git. Don’t worry if you don’t fully understand everything;

subsequent chapters guide you through the setup process.

On your first day at work, you must add your name to an existing project description

file. Since it’s your first day, a senior developer will review your code.

To begin, you need to obtain the project’s source code. You can ask your manager for

the server where the code is stored. In this demo, the code is stored on GitHub, which

means that the Git database is hosted on a remote server provided by GitHub. You

can access it through a URL or directly on the GitHub website. In this case, the clone

command is used to retrieve the database, but you could also download the project as a

zip file from the GitHub website. By cloning the repository, you receive a complete copy

of the project files along with its entire history.

So, to obtain the source code, you can use the clone command followed by the

repository’s URL. Figure 1-8 is an example.

$ git clone https://github.com/mariot/thebestwebsite.git

Figure 1-8.  The result of the git clone command

Git then downloads a copy of the repository into the current directory you are

working from. Once the cloning process is complete, you can navigate the newly created

directory and inspect its contents, as demonstrated in Figure 1-9.

Chapter 1 Version Control Systems

15

Figure 1-9.  The contents of the repository are shown

If you want to examine the recent changes made to the project, you can utilize the

log command to display the commit history. Here is an example of how it looks, similar

to Figure 1-10.

$ git log

Figure 1-10.  A typical Git history log

Running this command presents a chronological list of commits, including the

commit hash, author, date, and commit message. It provides an overview of the project’s

history and the changes made.

Chapter 1 Version Control Systems

16

Nice! Now, you should create a new branch to work on to avoid messing up with the

project. You can create a new branch by using the branch command and checking it out

with the checkout command.

$ git branch add-new-dev-name-to-readme

$ git checkout add-new-dev-name-to-readme

Now that the new branch is created, you can modify the files. You can use whatever

editor you want; Git tracks all the changes via checksums. Now that you have made

the necessary changes, it is time to put them in the staging area. As a reminder, you put

modified codes ready to be snapshotted in the staging area. If you modified the README.md

file, you could add it to the staging area using the add command.

$ git add README.md

You don’t have to add every file you modified to the staging area, only those you want

to be accounted for in the snapshot. Now that the file is staged, it is time to commit it or

put its change in the database. You do this by using the command commit and attaching

a brief description.

$ git commit -m "Add Mariot to the list of developers"

And that’s it! The changes you made are now in the database and safely stored. But

only on your computer! The others can’t see your work because you worked on your own

repository and a different branch. You must push your commits to the remote server to

show your work to others. But you must show the code to the senior dev before making

a push. If they are okay with it, you can merge your branch with the main snapshot of

the project (called the main branch). So first, you must navigate back to the main branch

using the checkout command.

$ git checkout main

You are now on the main branch, where all the team’s work is stored. But by the time

you worked on your fix, the project may have changed, meaning that a team member

may have changed some files. You should retrieve those changes before committing your

own changes to the main. This limits the risk of conflicts, which can happen when two

or more contributors change the same file. You must pull the project from the remote

server (also called origin) to get the changes.

$ git pull origin main

Chapter 1 Version Control Systems

17

Even if another coworker changed the same file as you, the risk of conflicts is low

because you only modified a line. Conflicts only arise when multiple people have

modified the same line. Everything would be okay if you and your coworkers each

changed different parts of the file.

Now, it’s time to commit your version to main. You can merge your branch with the

merge command.

$ git merge add-new-dev-name-to-readme

Now that the commit has been merged into the main, it is time to push the changes

to the main server. You do that by using the push command.

$ git push

Figure 1-11 shows the commands used and the results.

Figure 1-11.  A simple Git workflow

It’s that simple! And again, don’t worry if you don’t understand everything yet. This is

just a little demo of how Git is usually used. It is also unrealistic: no manager would give

a new recruit an all-access pass to their main repository like that.

Chapter 1 Version Control Systems

18

�Summary
This chapter offered a sneak peek at Git, which has many more powerful features to learn

about. Before moving to the next step, ask yourself: How will Git help me in my projects?

Which features are the most important? Will Git improve my workflow?

The main takeaway from this chapter is the difference between distributed and

centralized VCSs. Team workflows using CVCS is less organized and leaves too many

developers unfulfilled. Therefore, you must learn more about distributed VCS to keep up

with the times.

You’ve seen the typical workflow of a team using Git in this chapter. It’s the workflow

most teams use in professional environments and the open source community. This

workflow will increase your productivity even if you plan to work alone.

Don’t worry about understanding all of Git right now; focus on what it can do for

you. You will become familiar with it after a couple of chapters. Next, let’s focus on

installing Git on your system.

Chapter 1 Version Control Systems

19
© Mariot Tsitoara 2024
M. Tsitoara, Beginning Git and GitHub, https://doi.org/10.1007/979-8-8688-0215-7_2

CHAPTER 2

Installation and Setup
Now that you know what version control is and how Git works, you are ready to learn

how to install and set it up, which is quite easy.

�Installation
The files required to install Git are available at https://git-scm.com/downloads for all

systems. Follow the link and choose your operating system.

Figure 2-1 shows that GUI clients are available for Git. However, I recommend

not venturing into that area until you complete Part III of this book. It is important to

familiarize yourself with Git commands before using GUI clients; otherwise, you may

waste a lot of time trying to resolve a simple issue that could be easily resolved using

basic Git commands in seconds.

https://doi.org/10.1007/979-8-8688-0215-7_2
https://git-scm.com/downloads

20

Figure 2-1.  The download section of git-scm.com as of June 2023

Once familiar with Git commands, you can explore GUI clients and see for yourself.

There is a chapter about GUI clients in Part IV of this book. However, please refrain from

using any GUI client beforehand because it may significantly prolong your learning process.

Note  Git is bundled with two GUI tools: gitk, which is used for reviewing history,
and git-gui, which is used for basic commands. These tools are explained in
Chapter 15. Therefore, the previous advice still applies, and it is recommended to
follow it before delving into the GUI tools.

Chapter 2 Installation and Setup

21

�Windows
Installing Git on Windows systems is a straightforward process. After opening the link

(https://git-scm.com/download/win), the download should start automatically, and

you are directed to the confirmation page, as shown in Figure 2-2. If the download

doesn’t start automatically, you can manually download the build corresponding to your

Windows version.

Figure 2-2.  The Git download screen for Windows

To begin the installation, execute the downloaded exe file. The first screen is the

license declaration, which outlines the terms and conditions. Reading the license

agreement thoroughly (although it’s often skipped) is recommended. Once done, click

Next to proceed to the component selection screen, like the one shown in Figure 2-3. On

this screen, you are prompted to select which components to install.

Chapter 2 Installation and Setup

https://git-scm.com/download/win

22

Figure 2-3.  Select the components to install

I recommend leaving the default options selected for installation.

As Figure 2-3 depicts, you must check the components you wish to install. It is

advisable to leave the “Windows Explorer integration” option checked. This lets you

conveniently access Git by right-clicking a folder and finding the options to launch Git in

the default GUI or the Bash (command window) context menu. The other components

are self-explanatory, so deciding whether to install them is at your discretion.

Note  If you didn’t install the Windows Explorer integration and want to open the
command window in a folder, you must open the extended context menu. To do
this, you can use the Shift+right-click keyboard shortcut. This provides additional
options, including opening a command window in the selected folder.

Chapter 2 Installation and Setup

23

After making your choices, click Next, and you are presented with the default editor

selection screen, as shown in Figure 2-4. Git requires you to define a default editor since

you need an editor to write commit descriptions and comments.

Figure 2-4.  Default editor selection

As shown in Figure 2-4, Vim is the default editor for Git. You can select your preferred

text editor from the drop-down list. The first two options, Nano and Vim, work within

the console or command window, eliminating the need to open another program. The

list includes popular editors like Sublime Text, Atom, and Visual Studio Code. If your

preferred editor is not listed, you can choose the last option, and a new input field

appears (as shown in Figure 2-5), allowing you to provide a link to the editor’s main

executable file.

Chapter 2 Installation and Setup

24

Figure 2-5.  Setting up a custom editor

In Figure 2-5, you can see the screen where you can set up your custom editor if it is

not listed in the drop-down options.

I have decided to stick with the default option and use Vim for this book. However, it

does not make a difference in this book if you use any other editor. If you are interested

in learning Vim (which takes some time), you can explore the Vim Tutor program

that comes with Vim or try out a fun video game at https://vim-adventures.com/.

Additionally, you can refer to the comprehensive guide at www.vi-improved.org/

vimusermanual.pdf, which spans more than 300 pages.

Do not worry, though, as this choice is not permanent. You can change your

preferred editor at any time. You learn how to do this in the last section of the chapter.

Caution N ever start or participate in an editor war while online. Just choose your
preferred text editor and refrain from discussing it with anyone. I still bear scars
from my previous experiences during the Emacs vs. Vim war.

Chapter 2 Installation and Setup

https://vim-adventures.com/
http://www.vi-improved.org/vimusermanual.pdf
http://www.vi-improved.org/vimusermanual.pdf

25

The next step is to choose the name of the initial branch, as shown in Figure 2-6. This

is the name of the first branch created when initializing a new repository. Traditionally,

the default name has been “master”. However, many teams prefer “main” as the default

branch name.

Figure 2-6.  Choosing git init default name

The choice of branch name does not have any impact on your Git journey, so you

can select the name that you are most comfortable with. Additionally, it’s worth noting

that you can always change the branch name when initializing a repository or at a later

stage. I use “main” for new projects, while my team at work uses “devel”.

Once you have chosen your favorite editor, you can proceed to the next screen,

which is the PATH environment adjustment screen as shown in Figure 2-7. The PATH

environment variable holds a list of directories where executable programs are located. It

is necessary so that you don’t have to enter the full path to an executable when you want

to run it in the console; you only need to type its name.

Chapter 2 Installation and Setup

26

Figure 2-7.  Choosing to add Git to PATH or not

For example, to launch Visual Studio Code from the console, you typically need to

type C:\Program Files (x86)\Microsoft VS Code\bin\code. However, you can type the

code to launch by adding C:\Program Files (x86)\Microsoft VS Code\bin to the PATH.

The same principle can be applied to Git if desired. If you prefer to use Git with its

own isolated console called Git Bash, select the first option. In this case, you would

need to launch Git from the Apps list or the context menu of a folder (if you installed the

Windows Explorer integration).

However, if you want to be able to use Git globally, it is recommended to leave the

default option checked to add Git to your PATH environment. By doing so, other tools

can also utilize Git, and you can work with Git from any command window. I highly

recommend choosing this option for greater convenience and flexibility.

The last option is invasive because it adds numerous Git commands to your PATH

and potentially overwrites some of Windows’ default tools. It is recommended to choose

this option only if you have a valid reason. In most cases, there is no need for such a

modification.

Please select an option shown in Figure 2-7 and proceed to the next step accordingly.

Next, you reach the SSH executable adjustment screen, shown in Figure 2-8. You can

Chapter 2 Installation and Setup

27

choose between using the bundled OpenSSH or an external SSH executable. Unless you

have a specific reason to use a different SSH executable, it is recommended to use the

bundled one.

Figure 2-8.  Choosing an SSH executable

Afterward, you encounter a screen regarding HTTPS connections, as depicted in

Figure 2-9. You must select the library for sending data over HTTPS on this screen. As

you progress through this book, you learn about connecting to remote servers since Git is

a distributed VCS. To share your commits with others, it is crucial to establish secure and

encrypted connections to protect your data from potential theft or unauthorized access.

Chapter 2 Installation and Setup

28

Figure 2-9.  Choosing the HTTPS transport backend

Unless you have a specific reason, such as company policy or personal security

setup, it is recommended to stick with the default option for HTTPS connections.

The next step involves line endings. This step presents you with a selection screen,

which should resemble the one shown in Figure 2-10. Different operating systems

handle text files differently, particularly when it comes to line endings. Considering the

likelihood of collaborating with a team that uses various operating systems, Git needs to

convert line endings to and from each style before sharing commits.

Chapter 2 Installation and Setup

29

Figure 2-10.  Line ending conversions

Selecting the default option for line endings is advisable if you are using Windows.

The other two options can potentially cause issues with your commits if you are not

careful with line endings. You can proceed to the next step once you have chosen the

default option.

Caution  This step is crucial because Windows and macOS use “\r\n” to end
lines, whereas Linux uses “\n”. If you do not convert line endings appropriately,
your files can become difficult to read, and Git may detect numerous changes even
if you made minimal modifications. It is important to ensure proper line-ending
conversion to maintain consistency and avoid unnecessary complications in your
Git workflow.

In the next step, you choose a default terminal emulator or console. This is a

straightforward selection screen like the previous ones, as shown in Figure 2-11. Git

Bash requires a console emulator to function properly, so you must make a choice. The

default emulator is MinTTY, while the alternative option is Windows’ default console.

Chapter 2 Installation and Setup

30

Figure 2-11.  Choosing a terminal emulator

I recommend sticking with the default option for the terminal emulator, as MinTTY

offers improved functionality compared to the Windows console window. Click Next to

proceed to the final steps.

Next, you select the default behavior for the git pull command. Choose the default

behavior as shown in Figure 2-12.

Chapter 2 Installation and Setup

31

Figure 2-12.  Configuring default git pull behavior

You have reached the end of the installation process. There are just a few

adjustments to make on the extra options screen, as depicted in Figure 2-13 and

Figure 2-14. This screen allows you to enable additional features that complement your

Git installation. For instance, the Git Credential Manager enhances secure connections

to remote servers and integrates well with other Git tools.

Chapter 2 Installation and Setup

32

Figure 2-13.  Configuring credential helper

Chapter 2 Installation and Setup

33

Figure 2-14.  Configuring extra options

Unless you have a specific reason not to, it is recommended to leave the default

options as they are. Once you have made your selections, launch the installation and

allow it to complete. Congratulations! Git is now installed on your Windows system. The

next section explains how to set it up properly.

�macOS
If you have previously done software development on macOS X, it’s likely that Git is

already installed on your system, because it comes bundled with Xcode (https://

developer.apple.com/xcode/). You can check if Git is installed by running the following

command in your console.

$ git --version

Chapter 2 Installation and Setup

https://developer.apple.com/xcode/
https://developer.apple.com/xcode/

34

This command displays the currently installed version of Git. If Git is not installed,

you are prompted to install Xcode’s command-line tools. Select the option in the prompt

to install Git, and you can skip the remaining steps in this section.

To install Git on macOS, visit https://git-scm.com/download/mac. There are

several choices available for installing Git on macOS, as depicted in Figure 2-15. Choose

the option you are most comfortable with and proceed with the installation.

Figure 2-15.  Downloads for macOS

Chapter 2 Installation and Setup

https://git-scm.com/download/mac

35

I recommend using Homebrew (https://brew.sh/) to install Git and its tools on

macOS. Run the brew install git git-gui command in your terminal. This command

installs Git along with its dependencies. The installation process may take some time as

it installs the necessary components.

Installing Git on macOS is relatively easier, especially if Homebrew is installed.

�Linux
If you are using a Linux distribution, the installation of Git can vary depending on your

distribution. However, most popular distributions have Git available in their package

manager. Let’s discuss the commands for some common Linux distributions.

The following are for Ubuntu and Debian.

$ sudo apt-get install git

or

$ sudo apt install git

The following is for Fedora.

$ sudo yum install git

or

$ sudo dnf install git

If you use a different distribution, you can visit the Git website’s Linux download

page (https://git-scm.com/download/linux) to find the appropriate installation

commands for your specific distribution. The commands provided should be like the

ones shown in Figure 2-16, with instructions for various Linux flavors.

Chapter 2 Installation and Setup

https://brew.sh/
https://git-scm.com/download/linux

36

Figure 2-16.  Downloads for Linux and Unix

Chapter 2 Installation and Setup

37

Since you are already familiar with your Linux distribution, you may have a preferred

method of package management or specific steps to install software. Feel free to use the

method you are most comfortable with to install Git on your Linux system.

After you use the command corresponding to your distribution listed in Figure 2-16,

Git is installed!

Caution L ike the editor war, the distribution war is a big no-no online.

�Setting up Git
Before using Git, you must do a little setup. This setup is typically done only once

because all the configuration is stored in an external global file, which means that all

your projects share the same settings. However, there is also a way to configure projects

individually, which is covered later.

Since Git is a distributed version control system, there will come a time when you

need to connect to remote repositories. To ensure no identity mistakes, you must provide

Git with some information about yourself. Don’t worry. It won’t ask for any fun facts!

To set up Git, open Git Bash (for Windows systems) or the default console window

(for Linux/ macOS or Windows systems that modified their PATH environment). In

the command prompt, specify your name and email address to Git using the following

commands.

$ git config --global user.name "Mariot Tsitoara"

$ git config --global user.email "mariot.tsitoara@gmail.com"

Note the global argument, which indicates that the configuration is applied to all

future Git repositories. This means you won’t have to set up your name and email again

in the future.

Using the config command, you can also change your default editor. If you ever

want to switch your editor because you found a new one or uninstalled your previous

one, the config command is there to assist you. For example, you would use the

following command to change the default editor to Nano.

$ git config --global core.editor="nano"

Chapter 2 Installation and Setup

38

The Git configuration file, which stores your setup, can be found in your home folder.

For Windows, it is located at C:\Users\YourName\.gitconfig. It is at /home/yourname/.

gitconfig for Linux and macOS.

You can manually edit this file if you prefer to make changes directly.

�Summary
Let’s review what we’ve learned so far! First, you should have Git installed on your system

by now. The installation process is very easy on Windows and even easier on macOS

and Linux. I suggest keeping all the default options (even if they aren’t shown in the

preceding screenshots) if you are unsure what you need.

Next, there is the setup. You only need to do this once in every system where you

install Git. Git uses your name and email to sign every action you make, so setting this up

first is necessary.

And that’s it! You are now ready to use Git with all its glory. Head to the next chapter

to jump-start with Git.

Chapter 2 Installation and Setup

39
© Mariot Tsitoara 2024
M. Tsitoara, Beginning Git and GitHub, https://doi.org/10.1007/979-8-8688-0215-7_3

CHAPTER 3

Getting Started
You’re finally ready to dive into Git! This chapter introduces you to some key Git

terminologies and concepts that are essential for any project. After that, you learn how

to set up a project, make changes, review those changes, and navigate between different

versions. So, let’s get started!

�Repositories
A repository serves as a storage for your project and keeps track of all its changes. You

can think of it as a “change database.” However, it’s important to note that a repository is

simply a regular folder on your system, making it easy to work with.

To manage a project with Git, you must set up a repository specifically for that

project. The process of setting up a repository is straightforward. Just navigate to the

desired folder where you want to track your project and instruct Git to initialize a

repository there.

To start a project and set up a repository, follow these steps.

	 1.	 Create a directory for your project.

	 2.	 Navigate into the directory using the command prompt or

terminal.

	 3.	 Initialize a Git repository by executing the appropriate command.

See? It’s very easy. Let’s convert those statements into commands. But first, let’s open

a console to enter the commands.

Follow these instructions to open a console or terminal on different operating

systems.

•	 Linux: Launch your favorite terminal using the shortcut Ctrl+Alt+T

for Debian-like distributions.

https://doi.org/10.1007/979-8-8688-0215-7_3

40

•	 macOS: Press Cmd+space to bring up Spotlight and search for the

Terminal app. Open it.

•	 Windows: There are two options available: cmd and PowerShell.

•	 cmd: Press Windows+R to open the Run dialog, then type cmd

and press Enter.

•	 PowerShell: Press Windows+R to open the Run dialog, then type

powershell and press Enter.

Note  If you had them open before installing Git for the first time, restart these
consoles. Additionally, Git for Windows offers the Git Bash console emulator, which
provides a similar environment to Linux and macOS consoles. If you’re using
Windows, I highly recommend using Git Bash to have a consistent experience with
users on different operating systems.

To open Git Bash and execute the commands, please follow these steps.

	 1.	 Open Git Bash from the Apps list or the contextual menu.

	 2.	 In the Git Bash terminal, type the following commands.

$ mkdir mynewproject

$ cd mynewproject/

$ git init

The mkdir command creates a directory (folder) named “mynewproject.” The cd

command navigates to the “mynewproject” directory. Finally, the git init command

initializes a Git repository in the current directory.

After executing the git init command, Git provides you with the location of the

repository, like shown in Figure 3-1.

Chapter 3 Getting Started

41

Figure 3-1.  Initialization of a new repository

Note  mkdir and cd are system commands the operating system manages,
whereas init is a Git command. Every Git command begins with git.

Git creates a directory called .git that contains all your changesets and snapshots.

To check it out, show hidden files from your File Explorer settings. The repository looks

like the directory shown in Figure 3-2.

Chapter 3 Getting Started

42

Figure 3-2.  An empty repository

And if you open the .git directory, you find many more items in the Git database.

Figure 3-3 shows an example.

Chapter 3 Getting Started

43

Figure 3-3.  Inside the .git directory

Chapter 1 mentioned that instead of tracking changes between versions, Git takes

snapshots? Well, all those snapshots are stored in the .git directory. Each snapshot is

called a commit, which is covered shortly.

The HEAD file in the .git directory points to the current “branch” or subversion of

the project you are working on. The default branch is called “main,” but it is just like any

other branch; the name is simply an old convention.

You should also know that initializing is the only way to create a repository. You can

copy an entire repository with all its history and snapshots. This process is called cloning,

which is explored in another chapter.

EXERCISE: CREATE AN EMPTY REPOSITORY

Our first exercise is quite simple. Just create an empty repository anywhere on your system.

You can use either the default console or Git Bash.

Chapter 3 Getting Started

44

�Working Directory
What about the empty area outside the .git directory? That area is called the working

directory, which contains the files you will be working on. Typically, the most recent

version of your project resides in the working directory.

Each file you work with is in the working directory. There is nothing particularly

special about this area except that it’s where you directly manipulate the files. It’s

important to note that you should never modify the files inside the .git directory.

Git detects any new files you add to the working directory. You can check the status

of the directory by using the status command.

$ git status

For example, if you create a new file called README.md in the working directory, Git

recognizes that the project has changed. Place your new file alongside the .git directory,

as shown in Figure 3-4, and not inside it.

Figure 3-4.  Creation of a new file in the working directory

Chapter 3 Getting Started

45

If you check the status of the working directory, you receive a result like the one

shown in Figure 3-5. Observe that you don’t have any commits yet because you are still

in the working directory and haven’t taken any snapshots. The status also indicates that

you are on the “main” branch, which is the default name for the initial branch created

during repository initialization. There is also a list of untracked files. These are the files

that have been modified or created in this instance.

Figure 3-5.  The status of the working directory

Essentially, the working directory is where you directly interact with your project

files. It is the space where you make changes, create new files, and modify existing ones

before committing them to the Git repository.

EXERCISE: CREATE SOME FILES FOR THE PROJECT

This exercise is also very easy. Create files within your project directory (repository) and check

the working directory status.

Chapter 3 Getting Started

46

�Staging Area
The staging area is where your files go before snapshots are taken. Not every file you

modify in the working directory should be included in the snapshot of the current state

of the project. Only the files placed in the staging area are captured in the snapshot.

So, before taking a snapshot of the project, you must select which changed files

to include. Changes in a file can involve creating, deleting, or editing it. Think of it as

deciding which files are in the family photo. Use the add command to add a file to the

staging area.

The following is an example.

$ git add nameofthefile

It’s that simple. To stage the README.md file created earlier, use git add README.md.

If you have created multiple files, you can add them individually or together, like

git add file1 file2 file3.

Let’s stage a new file by using the following command.

$ git add README.md

Then, let’s check the status using the git status command.

$ git status

Adding a file to the staging area won’t produce any visible result, but checking the

status gives you a result like what is shown in Figure 3-6.

Chapter 3 Getting Started

47

Figure 3-6.  Staging a file

Figure 3-6 shows that the working directory is cleaned after staging the file. That’s

because the git status command only tracks unstaged files, which are edited files that

have not been marked for a snapshot.

Additionally, as shown in Figure 3-6, you can unstage a file using the git rm

command with the --cached option.

$ git rm --cached README.md

Caution D on’t forget the --cached option when unstaging a file. If you forget it,
you could lose your file!

After you have staged all the files that you want the changes to be considered, you are

now ready to take your first snapshot!

EXERCISE: STAGE AND UNSTAGE YOUR FILES

Take the files you created in the previous exercise and stage them. Unstage one file and then

restage it. Check the working directory status after each stage/unstage.

Chapter 3 Getting Started

48

�Commits
As discussed, a commit represents a snapshot of the entire project at a specific point in

time. Git does not record individual changes to the files; it captures the project.

In addition to the snapshot, a commit includes information about the author of the

content and the committer who added the changeset to the repository.

Note T he author and the committer are typically the same person unless the
committer applied the changeset from another team member. It’s important to
remember that Git commits are interchangeable since it is a distributed version
control system (VCS).

A commit represents a snapshot of the project’s state, and each commit has a

previous state known as its parent commit. The initial commit in a repository, created

by Git upon repository creation, is the only commit without any parents. Subsequent

commits are linked to each other through parentage. The collection of commits that are

connected through parent-child relationships is called a branch.

Note  If a commit has two parents, it indicates that the commit was created by
merging two branches.

A commit is identified by its name, which is a 40-character string obtained by

hashing the commit. It is a simple SHA1 hash, so multiple commits with the same

information have the same name.

A reference to a specific commit is called a head, and it has a name. The head you are

currently working on is called HEAD.

Now, you can commit the files you staged earlier. Before each commit, it’s

recommended to check the status of the working directory and the staging area. You can

proceed with the commit if all the files you want to commit are in the staging area (under

the phrase “Changes to be committed”). Otherwise, you must stage them using the

git add command.

Chapter 3 Getting Started

49

To commit all the changes, use the git commit command.

$ git commit

Executing this command opens the default editor (refer to Chapter 2 if you want

to modify yours) and prompts you for a commit message. A commit message is a short

description of what has changed in the commit compared to the previous one.

For example, if my default editor is Notepad, executing the commit command

displays a screen like the one shown in Figure 3-7.

Figure 3-7.  Git opens the default editor so you can edit the commit message

Figure 3-7 shows that the first line of the file is empty, and that’s where you should

write the commit message. The commit message should ideally be written on a single

line, but you can also add additional lines for comments. Comments in the commit

message start with the # symbol, and Git ignores them. They only provide additional

information and make the commit message more descriptive. It’s important to note that

Git automatically includes the list of changed files in the commit comments (the same

files you saw with git status).

Chapter 3 Getting Started

50

In the later chapters, you will learn how to write commit messages properly. But for

now, you can enter a simple message like “Add README.md to the project” on the first

blank line, as shown in Figure 3-8.

Figure 3-8.  The commit message written on top of the file

After you have written your commit message, like in Figure 3-8, you can close the

editor after saving your changes. Upon closing the editor, you receive a summary of the

commit, as depicted in Figure 3-9.

Chapter 3 Getting Started

51

Figure 3-9.  Summary of the commit

The summary of the commit contains several pieces of information.

•	 The current branch: main

•	 The name of the previous commit: root-commit (since this is your

first commit)

•	 The name of the commit: the first seven characters of the

commit hash

•	 The commit message

•	 The number of files changed: one file

•	 The operation performed on each file: creation

Congratulations! You have taken your first snapshot. If you check the status of the

repository, you see that it is clean again unless you have left some files unstaged.

Chapter 3 Getting Started

52

EXERCISE: COMMIT YOUR CHANGES

Take your staged files from the previous exercise and commit them. Then, modify one of your

tracked files, stage it again, and make a new commit. Compare the summary of each commit.

What is different? In what way are those commits linked?

�Quick Start with Git
Now that you are familiar with the basic concepts of Git, you can apply them in a real

project. Let’s imagine you want to create a folder to hold your to-do list and make it

versioned so you can track when each item was completed.

To help you become more familiar with Git, complete the following exercise without

assistance. If you encounter any difficulties, refer to the previous sections for guidance.

Remember the basic principles of Git.

•	 Modify files in the working directory.

•	 Add the files you want to include in the current state to the

staging area.

•	 Create a snapshot of the project by committing the changes.

Ensure that you add the modified files to the staging area before committing, or

they are not included in the snapshot. Any modified files not added to the staging area

remain in the working directory until you decide to discard them or include them in a

future commit.

Let’s get started with the exercise! Please complete it thoroughly before moving on to

the next chapter. It is essential to have a clear understanding of how Git works.

EXERCISE: A VERSIONED TODO APP

	1.	 Create a new repository.

	2.	 Create a file named TODO.txt in the directory and add some text.

	3.	 Stage TODO.txt.

	4.	 Commit the project with a short commit message.

Chapter 3 Getting Started

53

	5.	 Create two new files named DONE.txt and WORKING.txt.

	6.	 Stage and commit those files.

	7.	R ename WORKING.txt to IN PROGRESS.txt.

	8.	 Add some text to DONE.txt.

	9.	 Check the directory status.

	10.	 Stage WORKING.txt and DONE.txt.

	11.	 Unstage DONE.txt.

	12.	 Commit the project.

	13.	 Check the directory status.

After completing this exercise, close the book and try to explain the following concepts to

yourself in your own words.

•	 Working directory

•	 Staging area

•	 Commit

If you understand these concepts well without encountering many problems, you are ready to

learn more Git commands and concepts.

�Summary
This chapter is of great importance for your understanding of Git. The following are the

three states that a file can be in.

•	 Modified: You have made changes to a file in the working directory.

•	 Staged: You have added the file to the staging area to prepare it for

snapshotting.

•	 Committed: You have captured a snapshot of the entire project,

including all unmodified and staged files.

Chapter 3 Getting Started

54

If a file was part of the previous commit and you haven’t made any modifications, it

is automatically included in the next commit. A modified but unstaged file is considered

unmodified. You need to explicitly stage those files to make Git track their changes.

You have also touched upon committing and commit messages. Opening an external

editor to write commit messages may initially feel unfamiliar, but you will become more

comfortable with it in time.

The next chapter delves into checking the project history, navigating between

versions, ignoring specific files, and reviewing the current changes made to the project

since the last commit.

Chapter 3 Getting Started

55
© Mariot Tsitoara 2024
M. Tsitoara, Beginning Git and GitHub, https://doi.org/10.1007/979-8-8688-0215-7_4

CHAPTER 4

Diving into Git
Now that you are familiar with the basic commands of Git, it’s time to dive deeper into its

other features.

�Ignoring Files
Not everything in the working directory should be tracked by Git. Certain files (configs,

passwords, bad code) are generally left untracked by authors or developers. The files (or

directories) to be ignored should be listed in a simple file named .gitignore. Note that

the proceeding period in the name is important.

Let’s return to the previous chapter’s repository, the to-do list. Let’s imagine that

you want to include a private, untracked file named PRIVATE.txt. First, you must create

the .gitignore file using your favorite text editor and write PRIVATE.txt in it, as shown in

Figure 4-1.

https://doi.org/10.1007/979-8-8688-0215-7_4

56

Figure 4-1.  The .gitignore file with PRIVATE.txt in it

If you create and modify the PRIVATE.txt file (like in Figure 4-2), it won’t be

considered by Git when you check the status.

Chapter 4 Diving into Git

57

Figure 4-2.  Adding PRIVATE.txt

Let’s try to check the status.

$ git status

You get a similar result as shown in Figure 4-3.

Chapter 4 Diving into Git

58

Figure 4-3.  Status of the working directory

As you can see from the status shown in Figure 4-3, PRIVATE.txt is not tracked.

However, you can also observe that the .gitignore file IS tracked. Therefore, after

modifying the .gitignore file, you must add and commit it to include the changes in the

Git repository.

$ git add .gitignore

$ git commit

Staging a file and committing the project result in a confirmation message

summarizing the changes made (see Figure 4-4).

Chapter 4 Diving into Git

59

Figure 4-4.  Committing .gitignore

Remember that the .gitignore global file should be placed at the root of your

repository. Placing it in a directory only ignores matching files in that specific directory.

It is generally considered bad practice to have multiple .gitignore files scattered across

various directories unless your project is enormous. Listing all the rules in a single

.gitignore file located at the root of your repository is preferable.

You might wonder what kind of files should be ignored when using Git. The general

rule of thumb is to ignore all files generated by the project. For instance, in a software

source code project, you should ignore the compiled outputs (such as executable

or translated files). Additionally, it’s recommended to exclude temporary files, logs,

and large libraries (e.g., node_modules). Also, remember to exclude any personal

configuration files and temporary files created by your text editor.

The .gitignore file is not limited to ignoring files by their exact names; you can

also ignore directories and files that match certain descriptions. Table 4-1 is a handy

reminder of all the templates you can use.

Chapter 4 Diving into Git

60

Table 4-1.  .gitignore Lines

.gitignore Line What Is Ignored Example

config.txt config.txt in any directory config.txt

local/config.txt

build/ any build directory and all files in it. But not a

file named build

build/target.bin

build/output.exe

not output/build

build any build directory, all files in it, and any file

named build

build/target.bin

output/build

∗.exe all files with the extension .exe target.exe

output/res.exe

bin/∗.exe all files with the extension .exe in the bin/

directory

bin/output.exe

temp∗ all files with name beginning by temp temp

temp.bin

temp_output.exe

∗∗/configs any directory named configs configs/prod.py

local/configs/preprod.py

∗∗/configs/local.py any file named local.py in any directory

named configs

configs/local.py

server/configs/local.py

not configs/fr/local.py

output/∗∗/result.exe any file named result.exe in any directory

inside output

output/result.exe

output/latest/result.exe

output/1991/12/16/result.exe

Those are the most common lines used with .gitignore. There are others, but they

are only used in specific situations and almost never used in common projects. If you

are using a computer language or framework, go to https://github.com/github/

gitignore for a template of the .gitignore file you should use.

Chapter 4 Diving into Git

https://github.com/github/gitignore
https://github.com/github/gitignore

61

But what if you want to ignore all files matching a description except one? Well, you

can tell Git to ignore all the files and then immediately make an exception. To exclude

a file from the ignored list, you use “!”. For example, if you want to ignore all .exe files

except output.exe, write .gitignore like in Figure 4-5.

Figure 4-5.  How to make an exception

Note the order of the lines. The exception comes after the rule!

This exception marking only works for lines describing file names, though. You can’t

use it with lines ignoring directories.

And that’s how you ignore files! It’s almost as easy as ignoring your responsibilities!

The .gitignore file is tracked and versioned, so don’t forget to stage it before

committing!

�Checking Logs and History
If you followed the exercises (as you should) or began to use Git for your projects,

you now have a problem I promised would solve easily with Git: how to consult the

history log.

This is one of the most used features of Git and one of the easiest Git commands:

git log.

$ git log

Try it! Open your repository and run the command. You should see a view similar to

the one shown in Figure 4-6.

Chapter 4 Diving into Git

62

Figure 4-6.  The commit log

The commit log lists (from the most recent to the oldest) all the snapshots you or

others committed. It also includes the following for each commit.

•	 The name (unique, obtained by hash)

•	 The author

•	 The date

•	 The description

Since the commit names are often lengthy, let’s only use the first five letters as the

name. This is important for the next section.

If your commit history is very long, you can use the keyboard to do the following.

•	 Go forward or backward one line: key up and down OR press j and k

•	 Go forward or backward one window: press f and b

•	 Go to the end of the log: press G

•	 Go to the beginning of the log: press g

Chapter 4 Diving into Git

63

•	 Get help: press h

•	 Quit the log: press q

You can use many parameters with git log, as presented in Table 4-2.

Table 4-2.  The Most Common Git Log Parameters

Command Use Example

git log --reverse reverse the order of commits

git log -n <number> Limit the number of commits shown git log -n 10

git log --since=<date>

git log –after=<date>

only show commits after a certain

date

git log

--since=2023/11/11

git log --until=<date>

git log --before=<date>

only show commits before a certain

date

git log --author=<name> Show all commits from a specific

author

git log

--author=Mariot

git log --stat Show change statistics

git log --graph Show commits in a simple graph

�Viewing Previous Versions
Now that you know how to check the history and commit logs, it is time to inspect the

files to see what changes were made.

Remember those long names that are created with each commit? You are going to

use those to navigate between commits or snapshots. To check your files in a specific

snapshot, you must know its name. The best way to find the name of each commit is to

check the history log.

To view and learn what changes have been made to your project, you can use the

git show command followed by the name of the commit. You don’t need to write the full

name; the first seven letters suffice.

$ git show <name>

Try it with your repository! You should get a result like the one shown in Figure 4-7.

Chapter 4 Diving into Git

64

Figure 4-7.  Result of git show

As you can see, the commit is displayed in a highly detailed manner. You can observe

the differences between the selected commit and the previous one. Additions are shown

in green, and deletions are displayed in red. Using the git show command, you can

examine the details of any commit.

�Reviewing the Current Changes
Checking previous versions is helpful, but what if you only want to review the changes

you just made? Examining differences between the last commit and the current working

directory is an essential feature of Git, which is very useful. The command to check these

differences is simple: git diff.

$ git diff

Chapter 4 Diving into Git

65

Modify one or multiple files in your directory, and then execute the command. You

get a result like the one shown in Figure 4-8, which is very similar to the result of the

git show command from the previous section. They display the same view because the

information shown is identical.

Figure 4-8.  Checking all the changes done in the working directory

Most of the time, you only need to check the changes made to a single file, not

the entire project. You can pass the file name as a parameter to review its differences

compared to the last commit.

$ git diff TODO.txt

The main thing to remember is that git diff checks the changes made to the

files in the working directory; it doesn’t check staged files! You must use the --staged

parameter to examine changes made to staged files.

$ git diff --staged

Chapter 4 Diving into Git

66

You should always check the diff in the staged files before committing a project so

you can do a final review. You may forget to do so one day, so proceed to the next chapter

to learn how to undo or modify your commits.

Before moving on to the next chapter, please make sure you are comfortable with

these features.

•	 Ignoring files

•	 Checking history logs

•	 Reviewing local and staged changes

Congratulations if you are comfortable with these concepts and have completed the

exercises! However, you aren’t finished with commits yet!

�Summary
This chapter was all about project history. You learned about checking logs with git log

and git show. You also reviewed the current changes with git diff. git log and git

diff will be particularly useful in the future, so make sure you understand them well.

git diff is about comparing the current modified files to the files in the last commit. In

contrast, git log is just a list of all previous commits.

The ability to ignore files with .gitignore is also a valuable skill to have, so your

git status isn’t cluttered with modified files that you aren’t interested in committing.

It’s also a good way to ensure that a particular file (probably containing secret keys) isn’t

accidentally committed.

You still have a lot to learn about commits in the next chapter. Chapter 5 reviews the

three states of Git files and shows how to bring back previous versions into the working

directory. You also learn how to undo and modify commits. Hang tight!

Chapter 4 Diving into Git

67

CHAPTER 5

Commits
The previous chapter taught you a little about the essential features of Git. By now, you

should know how to check the history log and see the changes made to the current

version. However, Git commits can be a complex concept, so this chapter delves deeper

into them in this chapter. First, you explore (again) the inner workings of Git and its

terminology. Then, you’ll learn how to view and examine previous versions. Let’s get

started!

�The Three States of Git
Before delving into the details of commits, let’s revisit the basics and understand how Git

works. You may already know the three states a file can be in. Regardless, don’t skip this

chapter; it is essential for everything you do with Git. I encourage you to read on.

As you saw in the last chapter, not all files are tracked by Git; some files are ignored

(by the .gitignore file). Additionally, some files aren’t ignored but are not yet tracked by

Git. These are the newly created files that have never been part of a snapshot (commit).

Tracked files can be in three states.

•	 Modified: You changed the file.

•	 Staged: You changed the file and prepared it to be snapshotted.

•	 Committed: You took a snapshot of the entire project, and the file was

part of it.

Untracked files remain as such until you decide to stage and commit them or

explicitly ignore them.

Note  Git doesn’t track changes; it tracks snapshots. Each time you commit, the
state of the entire project is saved, not just the small changes that were made.

© Mariot Tsitoara 2024
M. Tsitoara, Beginning Git and GitHub, https://doi.org/10.1007/979-8-8688-0215-7_5

https://doi.org/10.1007/979-8-8688-0215-7_5

68

Nerd fact: Git is fast because you always work on the last state of the project. When

you want to see a previous commit, it just shows you the state of the project at that

specific time. Many version control systems stored each change made to a file, and when

you wanted to go back to a previous state, they replayed the changes in reverse. This

approach caused many problems with speed and memory when the project grew large.

However, Git’s way of thinking avoids such issues by creating efficient databases. When

you take a snapshot and a file doesn’t change, it is not stored again; instead, a reference

to the existing file is used.

Let’s revisit the three states and explore their relationship:

•	 The working directory is where you work with your files. It’s the

directory you created before initializing the repository. Here, you can

read, modify, and edit your files.

•	 The staging area is where you place your changed files before taking

a snapshot of the entire project. You cannot create a snapshot

(commit) without staging your changed files first. Only staged files

(along with unchanged files) are included in the snapshot. Unstaged

files (whether tracked or untracked) and ignored files remain in their

current state.

•	 The database or .git directory stores every snapshot you’ve taken.

These snapshots are known as commits.

Recall that staging concerns only the changed files you select, while committing

encompasses the entire project. You stage individual files, and then commit the entire

project to create a snapshot.

�Navigating Between Versions
Many times, you won’t only want to know what has changed in your project, but also to

see the state of the project at a specific point in time, to view the snapshot you took. With

Git, this is easy to achieve.

When you want to return the project to a previous state in the working directory,

you can use the git checkout command followed by the commit name. However,

it’s important to note that this operation changes the files in the working directory.

Therefore, you must ensure that you don’t have any unstaged files. Untracked files are

fine since Git doesn’t track their states yet.

Chapter 5 Commits

69

To view a project snapshot, use the git checkout command and pass the commit

name as a parameter. It allows you to see how the project looked at that specific point in

its history.

$ git checkout <name>

Let’s try it! Open your current project in a text editor and take note of its contents.

Then, check out a previous commit, as Figure 5-1 shows.

Chapter 5 Commits

70

Figure 5-1.  Checking out older commits

Chapter 5 Commits

71

Warning  You can’t check out any other commit if your working directory isn’t
clean! Make sure to commit your changes before switching snapshots.

If you check your text editor, you notice that the project is now just like when you

took the snapshot. That’s one of the best things about Git—nothing you took a snapshot

of is ever lost!

Now, let’s learn some Git terminology. Instead of saying name when talking about

commits, you use the term head. When switching between different commits, you need

a way to know which head you are on. A head refers to a commit (there can be multiple

heads in a repository), and the head pointing to the currently checked-out commit is

called HEAD.

But how do you return to the normal, current working directory? Since you didn’t

make any significant changes to the repository, returning to the working directory

is as simple as checking out the only branch you have. By convention, that branch is

called main.

$ git checkout main

Try it out! Remember the two golden rules of time travel.

•	 Only travel back in time when the present is clean (nothing unstaged

in the working directory).

•	 If you change the past, make sure to store the changes somewhere (in

a new branch).

Don’t forget to check out the current branch (main) after navigating between

versions.

�Undo a Commit
The time comes when you stage and commit files but later change your mind. It happens

to everyone. However, with traditional methods (without versioning), it is very difficult to

roll back changes, especially if they were made ages ago. With Git, it’s as simple as using

a single command: git revert.

Why not just delete the commit? That’s because of the time-traveling rule from the

previous section: never change the past. Whatever changes were committed must stay

Chapter 5 Commits

72

for the sake of history. Changing what has happened in the past is very dangerous and

counterintuitive. Instead, you use git revert to create a new commit that contains the

exact opposite of the commit you are trying to undo.

So, undoing a commit is just committing its exact opposite. It’s that simple! To use it,

you must pass the name of the commit to be undone as a parameter.

$ git revert <commit name>

You can revert any commit, but make sure to work on a clean working directory. So,

don’t forget to stage and commit your files before reverting a commit. Let’s try it!

First, ensure that the working directory is clean, as shown in Figure 5-2.

Figure 5-2.  Using git status to check the working directory

Perfect. Now that you know the working directory is clean, it’s time to check the

history to determine which commit to undo. You should get a result like the one shown

in Figure 5-3.

Chapter 5 Commits

73

Figure 5-3.  Checking commit history with git log

Note I f you don’t like the way the commit history is displayed, you can pass
the --oneline parameter to reduce the information shown. Figure 5-4 shows
an example.

Chapter 5 Commits

74

Figure 5-4.  A prettier git log output

Let’s revert the last commit! Use git revert followed by the commit name.

$ git revert d57c3a6

Since git revert only creates a new commit containing opposite changes, the rest

of the procedure is the same as any new commit. Figure 5-5 shows that you are asked to

describe your new commit. I suggest always keeping the default commit description, as

it makes it easy to identify.

Chapter 5 Commits

75

Figure 5-5.  The new commit description

After you save the commit description (as with all commits), you are presented

with a summary of the snapshot content. Figure 5-6 shows the result after running the

commands and saving the commit description.

Chapter 5 Commits

76

Figure 5-6.  Summary of the revert

As you can see, undoing changes is very easy with Git. The key thing to remember is

that git revert only creates a new commit containing opposite changes. This means

you can revert a revert! Reverting a revert reapplies your original commit, and the two

reverts cancel each other out. However, the commits remain in your history log because

you can’t change the past.

Note  You can change the past using various advanced Git techniques. But never
do it unless you know what you’re doing. It’s a very bad idea, and it likely leads
to more problems down the road. It’s always safer to use git revert to undo
changes.

Chapter 5 Commits

77

�Modifying a Commit
As I promised you in the last chapter, you learn how to modify a commit in this chapter.

It is used when you forgot to stage a file or want to change the commit message.

However, this should not be used to modify a lot of files, as doing so is counterintuitive.

The next chapter discusses in detail when and where to use this feature. And I’ll say it

again: never try to change the past.

To modify a commit, you must use the git commit command, but with --amend as

a parameter. It opens your default text editor, just like a normal commit, but with the

staged files and commit message already there.

$ git commit --amend

Then, save and close the text editor, as you would for any regular commit. The

term modify I used earlier is a bit misleading because you are not directly modifying an

existing commit; you are creating a new one and replacing the current one. So, from now

on, I use the term amend to refer to this process.

Amending a commit takes everything in the staged area and creates a new commit

with those changes. If you want to add a new file to the commit or remove a file from

it, you can stage and unstage them as needed. To unstage a file, you can use git reset

HEAD <file>.

For example, let’s use the TODO app again. First, edit an existing file, then create two

new files named filenottocommit.txt and fileforgotten.txt, as shown in Figure 5-7.

Chapter 5 Commits

78

Figure 5-7.  All the files in the working directory

You can check the project’s current state by executing the git status command.

$ git status

You might have a slightly different result depending on how many files you added to

the project before, but it should look like Figure 5-8.

Chapter 5 Commits

79

Figure 5-8.  The modified and untracked files are highlighted

The next thing you must do is stage the files to be part of the commit. Add the

changed files and filenottocommit.txt to the staging area to do this.

$ git add TODO.txt DONE.txt filenottocommit.txt

As you learned from the last chapter, you should always check what you’ve staged

with git diff --staged before committing. However, let’s pretend that you forgot to

check and proceed to commit immediately.

$ git commit

Even in that case, you arrive at the commit message screen that outlines the changes

to be committed, like Figure 5-9.

Chapter 5 Commits

80

Figure 5-9.  The commit message screen is the last failsafe

As you can see, the changes to be committed and the untracked files are outlined

and highlighted. It’s difficult to miss them, but let’s pretend to overlook them. Write a

simple commit message, save it, and close the editor. You get the usual summary shown

in Figure 5-10.

Chapter 5 Commits

81

Figure 5-10.  The commit summary

Now that you’ve read the commit summary, you notice that you committed the

wrong file and forgot to commit another. First, you should remove the last commit from

your project with git reset. You use the --soft option so that the changes you made

stay in the working directory. HEAD~1 refers to the previous commit, as HEAD refers to the

current one.

$ git reset --soft HEAD~1

After this, you can unstage the file with git reset again:

$ git reset HEAD filenottocommit.txt

Check if the commands worked as intended by reviewing the project’s current status.

Use the git status command to see if the last commit has been removed from the

project and the changes are in the working directory.

$ git status

Chapter 5 Commits

82

You get a result like the one shown in Figure 5-11.

Figure 5-11.  Status of the project after resetting

As you can see, filenottocommit.txt is untracked because you removed it from the

staging area. Naturally, fileforgotten.txt is also untracked because you didn’t stage it.

Only TODO.txt remains in the staging area because you haven’t made any changes after

the commit.

Warning  Be very careful when you use the reset command, as it can be quite
dangerous. Always make sure to double-check the command you write before
executing it.

Then, stage the correct one.

$ git add fileforgotten.txt

You can commit the project now that you have staged the correct files.

$ git commit

Chapter 5 Commits

83

Let’s intentionally add a grammatical error to the commit message to demonstrate

another feature of Git.

�Amending a Commit
There is no need to modify the entire commit for simple mistakes like an error in the

commit message. You need to amend it. Let’s try it with our project!

$ git commit --amend

The amend process looks just like a normal commit, but instead, the commit

message is already written, as you can see in Figure 5-12.

Figure 5-12.  Editing a commit message

You can change the commit message as you wish and then save and close the editor

as usual. It’s that simple! Look at the new commit’s name and compare it to the old

one. You’ll notice that they are different. That’s because the commit name is a hash

of the information in the snapshot—different states of the project result in different

commit names.

Chapter 5 Commits

84

A parting note about modifying commits: don’t abuse it! Yes, making errors is not

ideal when writing code, and you usually want to correct them immediately. However,

errors also help you become better; keeping track of your mistakes is a great way to learn

and improve.

�Summary
This chapter primarily focused on navigating, undoing, and amending versions of your

project. You should now be comfortable with making small corrections in your commits.

Review the first section of this chapter, as it’s essential for everything you do in Git. You

should know the differences between the three states of Git by heart.

The next chapter is a brief one, only discussing theory. You learn how to write a

nice commit message, what to include and ignore in commits, and common errors that

beginners often make. Read Chapter 6 carefully because it greatly benefits you and your

team. Let’s go!

Chapter 5 Commits

85
© Mariot Tsitoara 2024
M. Tsitoara, Beginning Git and GitHub, https://doi.org/10.1007/979-8-8688-0215-7_6

CHAPTER 6

Git Best Practices
Chapter 5 was one of the most important ones in this book. Make sure to return to

it whenever you have doubts about commits. At this point, you should be able to

create, review, and amend project snapshots without problems. Now that you know

the basic features of Git, it’s time to learn the best practices to make your life (and

your teammates’) easier. These are the things that I wish I knew when I first used Git.

This chapter covers commit messages, the dos and don’ts of Git, and a list of the most

common mistakes beginners make. It finishes with a reminder of how Git works.

�Commit Messages
Commit messages are one of the most important aspects of version control and yet often

overlooked. These messages help you understand what changes were made in the commit

and, most importantly, why those changes were made. Clean and readable commit

messages are essential for a better Git experience. Let’s begin by identifying the problem.

The most common problem faced with Git is that commit messages are often void

of sense and don’t convey any meaningful information. Moreover, most of the time,

the messages get less and less clear with each commit. This happens because of a

misunderstanding of Git concepts: each commit must stand by itself, and if a commit

requires other commits to make sense, it shouldn’t exist. You should never commit a

half-done project. Instead, if a task becomes too big, it’s best to split it into several logical

chunks, where each part makes sense independently.

A good way to gauge if you are on the right path when splitting tasks is to check the

potential commit message: if you think about using a very similar commit message for

multiple commits, you likely made an error when splitting the task. For example, if your

task is to make many small corrections in a large website, it would make sense to divide

it into smaller tasks, such as a commit for each page or a commit for each page category.

So remember: your commits must be independent, atomic, and complete.

https://doi.org/10.1007/979-8-8688-0215-7_6

86

One problem many beginners also have is including too much information in the

commit message, which can lead to unnecessary details clogging the commit history.

A commit message should be concise and straight to the point. You don’t need to list

everything that has changed; instead, focus on explaining why those changes were

made. The git show command can be used to see a complete recap of the changed files

in the commit if someone is interested in the specific changes.

It’s important to remember that you are not the only one who will read your code

or text. Take the time to explain the context of the changes and why they were made.

Thinking that you’ll remember it is a mistake and should never be practiced. For every

commit, ask yourself: If another person looks at my project, will they understand

the timeline of changes in the project just by looking at my commit messages? Also,

remember that the other person might be you in a few months; code is easily forgotten.

Your Git commit message should focus on why the changes were made. If someone

wants to see what has changed, they can refer to git diff.

�Git Commit Best Practices
For a better commit message and to avoid the problems listed earlier, here are some tips

that you should follow from now on. These tips help your coworkers and provide you

with a clear view of why a commit was made in the future. Having a good history log is

imperative in a fast-paced development environment.

The following are some tips.

•	 Commit messages should be easy to read at a glance. When you

use git log, long messages without newlines can be hard to

read, requiring unnecessary scrolling to view everything. Keeping

messages concise and well-formatted helps with easy searching and

retrieval of commits.

•	 Keep the commit messages to a maximum of 50 characters.

•	 Begin the message with a capital letter for clarity and consistency.

•	 Avoid ending the message with a period; it’s not necessary.

•	 Use the present tense to describe the changes made.

Chapter 6 Git Best Practices

87

•	 Avoid using unnecessary articles or words that don’t clarify the

message.

•	 Keep commit messages consistent in style and format throughout the

project.

By following these tips, you’ll improve the readability and usefulness of your commit

messages, making it easier for everyone, including your future self, to understand the

changes made in the project’s history.

Since Git commit messages are fundamental in any project, they should be

consistent and not subject to abrupt changes. Using the same language and following

internal logic for commit messages is essential. Changing writing styles mid-project can

make it challenging to search for specific commits and understand the project’s history.

Here are some best practices for writing commit messages.

•	 Messages must be clear and contextualized, especially in big projects

with multiple developers working on different parts. Consider

starting the commit message with the context or area of the project

impacted by the changes, particularly in large projects.

•	 Avoid using vague or unclear messages such as “change CSS,” “fix

tests,” “hotfix,” “little fixes,” and “updates.” These messages are

often misleading and require users to look at diffs to understand

the changes. Always include why the changes were made and never

force users to decipher the code changes to understand the commit’s

purpose.

•	 While you can expand the commit message in the body, avoid

providing excessive details. The focus of the commit message should

be WHY the changes were made, not a comprehensive list of WHAT

changed.

•	 Use clear, present-time, and imperative language in your commit

messages. The best commit messages are usually short, direct, and

easy to understand.

To make it clearer, let’s provide some examples. Table 6-1 is a handy tool to guide you

in the right direction when writing commit messages.

Chapter 6 Git Best Practices

88

Table 6-1.  Some Examples of the Best and Worst Commit Messages

Best Bad Worst

[login] Fix typo in DB call Fixed typo in DB call Fix typo

refactor login function for reuse Changing login function by moving

declarations to parameters

Code

refactoring

add new api for user program check adding a new api for user program check New user api

The examples presented in Table 6-1 should serve as guidance to help you write

better commit messages. They indicate whether you are heading in the right direction

when crafting a commit message.

It’s important to note that these are recommended actions and not strict rules set

in stone. In some exceptional cases, you may find it necessary to deviate from these

guidelines to make the message clearer and more informative. The key is to balance

providing sufficient context and keeping the message concise and to the point.

Ultimately, the goal of a commit message is to convey why the changes were made,

making it easier for you, your team, and anyone else who reads the commit history

to understand the purpose and intent behind each commit. So, while following best

practices is beneficial, use your judgment to adapt the message as needed for clarity and

comprehension.

�What to Do
Let’s enumerate the good practices you should always remember when using Git. These

practices are essential to your success and will save you significant time.

•	 Each commit should stand on its own. Keep your commits small and

independent. A commit should introduce a feature or fix a bug, not

track every change you make. If a task requires multiple independent

steps, separate them into multiple commits. For example, if a feature

needs both an API endpoint and a frontend call, make separate

commits for each, as they are not logically linked. This approach

improves readability in the commit history and provides clearer

commit messages.

Chapter 6 Git Best Practices

89

•	 Write informative commit messages. Each commit message should

answer a question. Why was the commit created? What problem

does it solve? Since commits can be shared among many users in

Git, the commit message should explain the result of applying the

commit. Use the present tense in commit messages, even though the

temptation to use the past tense might persist initially. Over time,

you’ll become more comfortable with the present tense convention.

That’s it! The list of things to do in Git is concise. Just focus on writing clear

messages for your small, independent commits. Now, let’s look at the things you should

avoid in Git.

�What Not to Do
This list is a bit longer than the previous one because Git is a powerful tool that doesn’t

limit what you can do. However, this can also lead to more opportunities for mistakes,

especially when trying to save time. Ultimately, bad practices will create more problems

than they solve, so it’s best to avoid them altogether.

One common mistake beginners make is trying to solve multiple problems in one

commit. For example, they might fix a bug when they notice another one, then solve

both problems and commit the project. This may seem fine initially, but later, it becomes

difficult to identify which changes introduced the new problems. It also makes writing

coherent and clear commit messages challenging. If you commit many changes from

different contexts, consider splitting the commits into smaller, more focused ones.

Another related mistake is combining commits that have nothing in common.

For instance, code refactoring should be in a separate commit from bug fixes or new

features. Keeping them separate facilitates bug tracking and maintains a cleaner

history log.

The next mistake is related to using Git as a backup system, which happens when

some developers commit their changes at the end of each day, regardless of whether

it makes sense. This is often driven by companies that measure productivity based on

the number of lines of code produced. However, this counterintuitive approach leads

to confusing commits that repeatedly try to resolve the same problem. It’s essential to

commit when the work is ready and not just to meet a daily quota. If you need to switch

tasks, you can use concepts like branching or stashing to handle unfinished work.

Chapter 6 Git Best Practices

90

Another misuse of Git is the overuse of the amend command. Amending commits

should be reserved for correcting typos, adding forgotten files, or making small changes.

It should not be used to introduce significant changes to a commit. If the changes are

substantial enough to require a new commit message, create a new commit instead. It’s

essential to keep track of your mistakes and not be afraid to leave them in the codebase.

Git is there to track versions and show what has changed, including errors. Trying to

erase mistakes does not help anyone and may cause more problems in the long run.

Finally, the last common mistake is attempting to change history in Git. This

dangerous practice can lead to confusion, frustration, and problems in the repository.

Instead of trying to change the past, the correct approach is to make a new commit to

introduce changes. The past should be left as it is, and developers should move forward

with new commits for any updates or corrections. Let the past die. Kill it if you have to.

Note  Later in the book, you are shown how to go back in time and change
history. Never do this.

�How Git Works (Again)
I know, I know. You’ve been through this already. But I want to make sure that you are

completely comfortable with it before moving on to Part II of this book.

Remember the three states of Git? They are also called the “three trees” (in fact, it is

the official appellation in the docs). Let’s review them once again. Figure 6-1 helps you

quickly identify the trees.

Chapter 6 Git Best Practices

91

Figure 6-1.  The relationship between the three states of Git

As shown in Figure 6-1, there’s nothing new here, just a reminder. To track changes

in a project, you need to take a snapshot of the entirety of it. Git doesn’t track changes; it

tracks versions.

You will only interact with the working directory because that’s where your files can

be freely edited. There is nothing to say about it; it’s just the current state of your files.

The staging area is where you put your files when ready to take a snapshot of your

project. Any changed files that haven’t been put on the staging area (or staging index) are

not part of the snapshot. The changes are still available in the working directory, though.

So, it’s necessary to check the state of the working directory before and after adding files

to the staging index to ensure everything is okay.

The repository is the database of the Git architecture. You will find all your commits

and history logs there. You can find it in the .git folder (which you should never touch

unless to adjust configs). Committing takes everything in the staging area and creates

a snapshot. That’s why we say, “commit a project,” not “commit a file” or “commit

changes.” Unchanged files committed in the past are already in the staging area. That’s

why you don’t have to stage everything, just the edited files. Remember to stage new or

deleted files, too!

Finally, checking out brings back the state of a project to a previous one. The

working directory updates to reflect the changes, so ensure no uncommitted files are

lying around.

Chapter 6 Git Best Practices

92

The following are the basic steps in Git.

	 1.	 Make changes (in the working directory).

	 2.	 Stage every changed file (in the staging index).

	 3.	 Commit the project (in the repository).

It’s that simple, but please be sure to understand the relationship between those

states before proceeding to the next chapter. Every section after this one assumes that

you are familiar with those.

But how do the commits look inside the repository? It’s simple: they look like linked

lists. A commit contains many pieces of information: the contents and the metadata. The

contents are just the project files (changed files and references to unchanged files). The

metadata contains other data that are also very important: the date of commit, committer

identity, and Git messages. Another metadata present in the commit is the parent pointer

or reference. It is just the name of the previous commit; if it’s empty, it means the commit

is the first one. So, each commit is linked to the next with a parent-child relationship.

�Summary
This chapter focused on important concepts and terminologies in Git, which are

essential to your success with version control. You should now understand when it’s

the right time to commit and how to write clear and meaningful commit messages.

Remember that the commit message should answer the question: what does the commit

bring? It should provide context and explain the reason behind the changes, making it

easier for others, including non-developers, to follow the project’s progress.

The key takeaway is that commits are the building blocks of your project, and each

one should be stable and independent. Your commit messages should explain why a

commit exists rather than detailing what was done.

Additionally, this chapter provided valuable tips on the dos and don’ts of Git.

Remembering these practices will save you significant time and effort in the long run,

especially when it comes to debugging.

This chapter concludes Part I of the book. Part II introduces a very useful tool:

GitHub. You can share and track your projects in GitHub, enhancing collaboration and

project management. Rest assured; the Git features promised earlier are covered in

subsequent chapters after the GitHub section. Let’s move forward with excitement and

dive into the next part!

Chapter 6 Git Best Practices

93
© Mariot Tsitoara 2024
M. Tsitoara, Beginning Git and GitHub, https://doi.org/10.1007/979-8-8688-0215-7_7

CHAPTER 7

Remote Git
Congratulations on completing the first part of this book! You’ve learned the basic

features of Git, which should make you comfortable making and tracking changes.

Writing meaningful commit messages might have been a bit challenging, but following

the advice from the last chapter can help you improve with each commit. Additionally,

you should now be able to view previous versions and access the history logs, which are

crucial features for the upcoming chapters.

Now, get ready for a new challenge: working with remote repositories. In this

chapter, you’ll discover the importance of working with remote repositories and how

it works. You’ll also be introduced to typical team workflows and the correct usage of

remote repositories. Since the concept of remote Git might seem complex, don’t worry!

You’ll use an easy tool that will greatly assist you throughout the process (hint: it’s in the

title of this book). Let’s dive into the world of online collaboration!

�Why Work in Remote Git
Throughout this book, you’ve been working alone in your local repository. However, Git

is an excellent tool for team collaboration, and it would be a shame to limit its usage to

only local repositories. This section explores remote Git and explains why it’s crucial for

effective teamwork.

As you know, Git is a distributed version control system, meaning repositories are

not centralized on a single server but spread across multiple local repositories. Each

team member has their own local repository, containing their commits and history.

These commits can be easily exchanged between repositories, and all files are constantly

ready for editing.

For effective team collaboration, a method must be devised to ensure that all

commits are readily accessible. Waiting for coworkers to arrive at work and start their

computers before gaining access to their commits would be highly inconvenient.

https://doi.org/10.1007/979-8-8688-0215-7_7

94

The solution lies in having a central server host the repository, and team members can

push and pull their commits to and from it. But wait, doesn’t that resemble a central

version control system workflow? Not entirely, though there are similarities.

Recall that distributed version control systems were developed to address the issues

associated with central repositories. In Git, each client has its own repository, allowing

them to work on it whenever they want. Almost all Git operations are performed locally.

The remote server is just treated as a client with a repository where everyone can push

their commits. This approach ensures that all changes are available to everyone at

any time. Notably, this method is only used to facilitate commit exchange and is not

an inherent part of Git. For Git, all repositories are considered equal; developers have

agreed that some repositories are more equal than others, in the sense that they serve as

designated central repositories for teamwork.

Caution  It is possible to share commits without the need for an intermediate
server, but it is such a bad idea that it is not covered in this book.

Even if you work alone, having a remote repository in addition to your local one is

still a good idea. That way, you have a backup of your project with all its history in a safe

location. You can also access your project anytime, provided you have network access to

the repository server.

Caution  Just because Git can be used as a backup system doesn’t make it one.
Using it for this sole purpose is not a good idea.

So, are you interested in that remote repository yet? Of course you are! It’s amazing!

Let’s see how it all works.

�How Does It Work?
Using a remote server means having a computer that holds a copy of your project and its

history. You don’t have to push all your commits into it; you only push the commits you

want to share. Your coworkers then pull the commits that interest them and apply them

to their own repositories. And that’s it! Working with a remote server involves copying

repositories and pushing and pulling changes. Let’s see in detail how it all works.

Chapter 7 Remote Git

95

To set up a remote repository, you first need a server capable of running the Git

software. Any computer worth its salt can run Git as it is a very small software. You won’t

need a lot of firepower to run it properly. Even a very small computer like the Raspberry

Pi is more than enough for Git.

Now that you have the server, you must find a way to communicate with it. Network

access to the server is necessary so that multiple clients can push and pull from the

same repository. This communication with the server should be very secure. It would

be extremely disappointing if anyone with access to the server could read and edit the

repository. To be able to interact with the repository, users must authenticate themselves

with each Git operation. A login/password HTTPS type of authentication can be used,

but it’s not secure enough. Using SSH authentication is better. The principle of SSH

authentication is simple: only the clients that have been predetermined can access the

repository.

And that’s it! Setting up a remote Git server is a straightforward task. Maintaining and

securing it, on the other hand...

Note  Git doesn’t distinguish between “server” and “client.” They are just social
constructs enforced by the developers.

Using your own server to host your Git projects is a good idea if you work alone or

want to keep them private. However, it becomes a pain when you work with a team. Each

team member must have access to the Git server via a network, so you need to set up a

local network if your team is in the same working space. The server should also run 24/7

so that there is no delay in Git operations.

What happens if some of your coworkers are remote or in a different working space?

Well, you need to hook your server up to the Internet. Thus, you also need to ramp up

your security game. The more coworkers you have, the more authentication exceptions

you have to manage.

Another problem with using your own Git server is that you need to deal with

permissions. As seen in Chapter 1, not all developers should have writing access to

the repository. Junior members, for example, need their commits reviewed by senior

members before pushing to the repository. Giving them direct access to the project is a

bad idea (due to their insatiable need to change history).

These are the problems that come with maintaining your own Git server. If only a

tool could take care of those for us...

Chapter 7 Remote Git

96

�The Easy Way
Guess what? There is a tool that takes care of all those things for us, and its name is

GitHub! GitHub is the tool of choice when dealing with remote repositories. You can

think of GitHub as a code hosting server for projects using Git. It works just like your own

Git server but with fewer headaches.

GitHub was created in 2008 to host Git projects and is now a subsidiary of Microsoft,

which has invested a lot in open source communities. Figure 7-1 shows the GitHub

home page at github.com.

Figure 7-1.  GitHub home page

GitHub covers nearly every need of developers, whether they are open source

developers wanting to share their software or professional teams seeking to work

privately without the hassle of managing their own servers.

Like a social media platform, GitHub provides a space for developers to build, share,

and document their projects, eliminating the need for external tools or websites. GitHub

is a vital tool for open source projects as it facilitates developer collaboration and code

release. Users can review and propose changes to each other’s projects, follow and

contribute to their favorite repositories, fostering a vibrant community of developers.

Chapter 7 Remote Git

97

GitHub is not limited to open source projects; companies and individual developers

can create private repositories accessible only to them. This allows them to benefit from the

powerful features of Git while also enjoying additional tools and functionalities provided by

GitHub. The platform’s versatility is a key factor in its popularity, appealing to many users.

Other software companies offer services like GitHub, with GitLab and BitBucket

being the most popular alternatives. GitLab is highly like GitHub in most of its features

and comes in two editions: Community and Enterprise. The Community edition is open

source and can be used alongside GitHub without issues. GitLab is also renowned in

DevOps circles, making it an attractive option for those interested in that career.

Initially designed to host Mercurial projects, BitBucket expanded its support to

include Git projects in 2011. Developed by Atlassian, BitBucket offers enterprise benefits

like GitHub and has become a trusted platform in the industry.

While using a local server has advantages and disadvantages, this book chooses

the easier route of utilizing GitHub for remote repositories. However, it is essential to

understand how a remote repository works and why it is needed. If you still wish to use

your own server, there is a guide in one of the annexes of this book to assist you. Enjoy

your journey. ☺

�Summary
This chapter explored the concept of remote repositories and why they are essential

for team collaboration. While working locally in Git is enjoyable, sharing commits with

teammates requires remote repositories. These repositories are typically hosted on servers,

and developers can push and pull changes to and from them to exchange code seamlessly.

GitHub is introduced as an excellent tool for remote repositories, offering code

hosting services for both open source projects and private teams. It serves as a version

control system and provides a platform for developers to build, share, and document

their projects, fostering a strong community of collaboration.

The chapter emphasized the importance of understanding how remote repositories

work and why they are needed, even if the decision is made to use a service like GitHub

to simplify the process.

The next chapter delves deeper into GitHub’s vast array of features. It explores bug

tracking, access control, feature requests, and many other functionalities that make

GitHub a powerful platform for team development. Let’s continue your journey into

GitHub’s capabilities!

Chapter 7 Remote Git

PART II

Project Management
with GitHub

101
© Mariot Tsitoara 2024
M. Tsitoara, Beginning Git and GitHub, https://doi.org/10.1007/979-8-8688-0215-7_8

CHAPTER 8

GitHub Primer
In the last chapter, you embarked on an initial exploration of remote repositories

and their significance. By now, you should understand how they function and, more

importantly, the advantages they offer. Now, let’s delve into the details of one of the most

renowned code hosting platforms: GitHub.

The chapter begins with a brief history of GitHub to help you gain better insights into

this platform. The chapter also discusses the diverse community of users who utilize

GitHub and the various purposes for which they use it.

�GitHub Overview
Defining GitHub is quite challenging because it encompasses numerous functionalities.

Therefore, I’ll use their own words: “GitHub is a development platform inspired by the

way you work. From open source to business, you can host and review code, manage

projects, and build software alongside 36 million developers.”

GitHub isn’t just a code hosting platform; it serves as a comprehensive development

platform. What does that entail? It means that GitHub goes beyond storing code; it aids

in planning and tracking the evolution of your projects. Its features are explored in the

next section, but the key takeaway is that GitHub is designed to assist you in building and

releasing your projects.

If there’s one compelling reason to use GitHub, it’s its development workflow. Gone

are the days when project managers would write pending tasks on a whiteboard, and

team members would send emails to keep track of who was working on what. There’s

no need for lengthy chain of back-and-forth emails to check a task’s progress. GitHub

efficiently manages all of these aspects.

https://doi.org/10.1007/979-8-8688-0215-7_8

102

�GitHub and Open Source
GitHub has always been a close ally of open source projects; in fact, it is home to the

largest open source community in the world. Since developers need a convenient place

to build and share their projects, GitHub is an obvious choice. This way, all decisions and

discussions concerning the projects can be accessed and joined by anyone, which is the

beauty of open source.

With GitHub, the best thing you can do for an open source project is now easier

than ever: contributing. When you find a project you like, you can follow it and track its

progress. If you want to work on a new feature or fix a bug, you must make a clone of the

project and start working on it. This process is called forking; it serves as the backbone

of open source projects. Once you have made all the changes to your copy of the project,

you can submit a pull request to the project’s maintainer. This means you request that

your changes be pulled and merged into the project. Other contributors review your

changes and may request some additional modifications. All this communication occurs

on GitHub, eliminating the need for email or instant messaging. Once all parties agree

on the changes, the pull request is accepted, and your changes become part of the

project!

Of course, open source projects involve more than just code; they require

documentation, translators, community managers, maintainers, and more. You can

contribute to projects by writing documentation, providing translations, or reviewing

the changes made by other contributors. Projects also need testers and individuals to

offer insights about the final products. Some projects have millions of contributors,

necessitating the need for community managers responsible for the community’s

well-being and enforcing the internal code of conduct. Additionally, some contributors

welcome and mentor beginners, which is challenging yet vital for any project.

Millions of open source projects have chosen GitHub because its workflow from

idea to release is simple and accessible. Forking a project to contribute to it is the driving

force behind any successful open source project. If you like a project but disagree with

its direction, you can fork it and start your own version. In this case, you become the

maintainer of the new project, and others can submit pull requests to you if they want to

contribute. This way, everyone is happy!

Again, open source projects need documentation and tutorials for beginners. A text

file (called README by convention) is sufficient for small projects. The README file should

present the project and convey the problems it aims to solve.

Chapter 8 GitHub Primer

103

It should also instruct users on how to install and use it, as well as how to contribute

to it. Refer to Figure 8-1 for an example of a README file (also available at https://

github.com/git/git).

Figure 8-1.  Git README file

As you can see in Figure 8-1, README files can have basic text formatting and links.

They can also include images and code examples.

Chapter 8 GitHub Primer

https://github.com/git/git
https://github.com/git/git

104

README files are written in the Markdown markup language. It’s a straightforward

language that can render simple formatting and linking. You can find a Markdown cheat

sheet in the Appendix of this book!

As you can see, GitHub has a lot to offer to the open source community, and all of

that is free of charge! But now, let’s see what GitHub has to offer you personally.

�Personal Use
Yes, open source is great, but what if it’s not your jam? Or when you have a project that

you want to keep to yourself? GitHub has you covered as well!

You don’t have to make all your GitHub repositories public; you can also make them

private. That way, only you and a few collaborators (that you choose) can access it. You

can create an unlimited number of public and private repositories on GitHub; the only

limit is your creativity and time. However, there is a limit on the number of contributors

you can have on private repositories: 3. If you want to work with more contributors, you

can sign up for GitHub Pro, a paid plan. But for almost everybody, the free plan is more

than enough.

Having a personal GitHub account to showcase your work is also a good way to

market yourself. That way, people can check the open source or personal projects you

contribute to and even review your code. It is a portfolio demonstrating your skills and

expertise to potential employers or collaborators. Additionally, many employers in the

tech industry value candidates who actively participate in the open source community

and have a visible presence on platforms like GitHub. So, having a well-maintained

GitHub profile can benefit your career advancement and networking opportunities.

And since there are 36 million developers on GitHub, you might want to connect

with some. One way to connect is to follow a particular project. When the project

progresses, you receive updates and can check out the changes. Note that you

automatically follow a repository you contribute to. Another way to show appreciation

for a project is to star it. It’s akin to liking a piece of content on social media.

Hence, the more stars a repository has, the more users are happy with it. GitHub

also offers a news feed that provides news and notifications from specific projects. These

projects are chosen because you contribute to or have “starred” them. The news feed is

also tailored by analyzing your most-used language or tools, providing relevant updates

and information. It’s a great way to stay connected with projects you are interested in

and to engage with the GitHub community.

Chapter 8 GitHub Primer

105

Before moving on to the next section, there is a cool feature you can check out on

GitHub: your contribution activity. If you enable the option, every commit you push on

GitHub is registered as a contribution—even to your personal or private repositories.

These activities are displayed in a nice illustration, like the one shown in Figure 8-2.

They showcase your contributions throughout the year and indicate your achievements

to your profile’s visitors. It’s a great way to visually represent your coding progress and

involvement in various projects.

Figure 8-2.  My contribution history in 2018

Chapter 8 GitHub Primer

106

�GitHub for Businesses
GitHub is not just for personal projects or open source communities; businesses also

have their place there. Many businesses now invest in open source for some of their

products, and what better place to find quality developers than GitHub?

GitHub offers an Enterprise plan that incorporates all the benefits of a paid plan and

many additional features. These features range from the choice of hosting to security and

online support. While all these features may be very attractive to businesses, a simple

Free plan is enough for most people.

�Summary
This chapter overviewed GitHub users and some of its small features. By now, you

should have some ideas about how you want to utilize GitHub. The next chapter explores

GitHub’s main features and shares tips on collaborating effectively with teammates. It

covers project management, code reviews, and more, and you start using GitHub with

your first repositories! Get ready for action in the next chapter, and review the previous

exercises to stay sharp. Let’s begin!

Chapter 8 GitHub Primer

107
© Mariot Tsitoara 2024
M. Tsitoara, Beginning Git and GitHub, https://doi.org/10.1007/979-8-8688-0215-7_9

CHAPTER 9

Quick Start with GitHub
So far, the book has only discussed what GitHub is and who can benefit from it. Now, you

will delve into its specific capabilities and main features. One of the most crucial aspects

of GitHub is its project management tools, which, when used with the right development

workflow, can propel a project forward with great efficiency.

This section of the book embarks on a series of exercises to familiarize ourselves

with GitHub. While I could explain all the advantages of GitHub, you will gain a better

understanding through hands-on exploration. Let’s get started by creating a GitHub

account and initiating a project.

�Project Management
The ability to manage a project while adhering to a well-established path is one of

GitHub’s most revered features. I encourage you to follow along with me in this section

because it gives you a comprehensive understanding of these features.

The first step is to create a GitHub account because you are managing your project

using Git and GitHub. The process is straightforward, and you only need to provide basic

information, such as your name and email, as shown in Figure 9-1.

https://doi.org/10.1007/979-8-8688-0215-7_9

108

Figure 9-1.  GitHub signup page

After signing up, you receive a confirmation link in your email. Simply follow the

provided link to complete the registration process. Once done, you are directed to the

GitHub dashboard, which should look like Figure 9-2.

Chapter 9 Quick Start with GitHub

109

Figure 9-2.  GitHub dashboard

Your GitHub dashboard may appear empty now, but you’ll work on filling it with

some cool projects soon. You’ll notice some trending repositories and news stories on

the right side of the page, but you won’t explore those just yet.

Now, as shown in Figure 9-2, there are three links you can follow to create a new

repository: one on the left side, one in the middle, and the last one in the navigation bar.

Click any of them to begin creating the repository.

The repository creation form is also straightforward, as illustrated in Figure 9-3.

You only need to provide a name and a short project description. While the description

is optional, try to make it concise so that users visiting your repository understand its

purpose.

Chapter 9 Quick Start with GitHub

110

Figure 9-3.  Starting a new repository

You can make the repository private if you prefer; in that case, only you can access

it. A public repository, however, doesn’t mean that anyone can freely edit it; it simply

means that anyone can read it, and logged-in users can propose changes to it. However,

you are still the project’s maintainer and the repository’s owner.

Regarding initializing the repository with a README file, you can ignore this option for

now, as you aim to create a repository from scratch. You’ll add the README, .gitignore,

and license files later.

Once you’ve made your selections, click the Submit button to create your first

GitHub repository! It’s as simple as that! You are redirected to your project page, which

has a unique link representing your repository. The link format is as follows: https://

github.com/your_username/your_repository. For example, the new repository

I created is accessible through https://github.com/link-skyloft/todo-list.

Therefore, you cannot create two repositories with the same name. Your project page

should look similar to the one shown in Figure 9-4.

Chapter 9 Quick Start with GitHub

https://github.com/your_username/your_repository
https://github.com/your_username/your_repository
https://github.com/link-skyloft/todo-list

111

Figure 9-4.  Your brand-new repository

As you can see in Figure 9-4, there are instructions on how to get started, whether

you want to create a new repository or push an existing one. Let’s proceed with pushing

the to-do list! For this, you need to choose the second option.

First, you must choose an authentication method. You have two options: HTTPS and

SSH. The main difference is that HTTPS uses a login/passphrase combination, while

SSH uses keys. Let’s opt for SSH to avoid the need to enter a passphrase with each action.

To learn more about SSH, you can check this link: https://docs.github.com/en/

authentication/connecting-to-github-with-ssh.

To generate an SSH key, follow the instructions provided in this link: https://docs.

github.com/en/authentication/connecting-to-github-with-ssh/generating-a-

new-ssh-key-and-adding-it-to-the-ssh-agent. From the time of writing this, the

website looks like the Figure 9-5.

Chapter 9 Quick Start with GitHub

https://docs.github.com/en/authentication/connecting-to-github-with-ssh
https://docs.github.com/en/authentication/connecting-to-github-with-ssh
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent

112

Figure 9-5.  Instructions on how to generate a new pair of keys

Chapter 9 Quick Start with GitHub

113

I used the following command on Git Bash to create my SSH keys.

$ ssh-keygen -t ed25519 -C "mariot@tsitoara.fr"

Use the default file location and the email you used to sign up with GitHub. You

could enter a passphrase if you want, but I don’t recommend doing so because you’ll

need to enter it each time. If you follow the instructions, you’ll get a result similar to the

one shown in Figure 9-6.

You’ll also notice that I changed my email to be the same as my GitHub account.

Now that you have your keys, add them to the ssh-agent. Follow the instructions as

you can see on the website shown in Figure 9-7.

Figure 9-6.  Generating a pair of keys

Chapter 9 Quick Start with GitHub

114

Figure 9-7.  How to add the keys to the ssh-agent

Chapter 9 Quick Start with GitHub

115

As you can see on the website, you must first ensure that the ssh-agent is running

with the following command.

$ eval "$(ssh-agent -s)"

Then, add the SSH private key to the ssh-agent with the following command.

$ ssh-add ~/.ssh/id_ed25519

You can see the result in Figure 9-8.

Figure 9-8.  Adding the private key to the ssh-agent

Now it’s time to add the public key to GitHub! Follow this link for the instructions:

https://docs.github.com/en/authentication/connecting-to-github-with-ssh/

adding-a-new-ssh-key-to-your-github-account. The website should look like the one

shown in Figure 9-9.

Chapter 9 Quick Start with GitHub

https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account

116

Figure 9-9.  Adding an SSH key to GitHub

Chapter 9 Quick Start with GitHub

117

You can use a clip to copy the public key to your clipboard.

$ clip < ~/.ssh/id_ed25519.pub

You should then go to your GitHub account and access the Settings page. Under the

Access section in the navigation pane on the left, click “SSH and GPG keys” and then

click the “New SSH Key” button, as shown in Figure 9-10.

Figure 9-10.  SSH keys settings

Choose a title for your key and paste the public key. And that’s it! Now, you are using

SSH to connect to GitHub. Let’s push the to-do list to GitHub!

Chapter 9 Quick Start with GitHub

118

�How Remote Repositories Work
In Chapter 7, you learned about remote Git and using GitHub as a remote repository

store. This section is a logical extension of that chapter because you will learn how

remote repositories managed with GitHub work.

When you created the repository using the GitHub website, you were provided

instructions to GitHub servers and asked them to initialize an empty repository. If you

recall Chapter 2, initializing a repository is simple: go to any directory and execute git

init. That’s what happened here, except not on your computer but on a server hosted

by GitHub.

So, it’s as if you executed the following commands on a faraway server with Git

installed.

$ mkdir todo-list

$ cd todo-list

$ git init

It’s the same commands used to create the local repository. So now, there is a remote

repository on GitHub’s servers to share your project.

Remote repositories are used, so you don’t have to use your own computer to share

your project. In the case of GitHub, the remote repositories are accessible by anyone, but

only the owner can edit them. Teamwork is discussed in a later section.

The main takeaway is that a remote repository lets you publish your project to make

it available to everyone. Anyone can clone your repository to follow your advancements

to get the latest changes.

Publishing your local repository to a remote one is called pushing. Getting the latest

commits from a remote repository to a local one is called pulling. Push and pull are

perhaps the most used commands in Git.

But how can I inform GitHub about the remote repository I want to link with my local

one? This is where the unique link to your repository comes into play. You’ll use this link

to push your local changes or pull any commits that you don’t already have.

In conclusion, GitHub has created an empty remote repository that can only be

modified by you but can be viewed by everyone. The next step is to create a local

repository and connect with the remote one.

Chapter 9 Quick Start with GitHub

119

�Linking Repositories
Now that GitHub has created the remote repository for us, it’s time to link your own local

repository to the remote one.

To list, add, or remove remotes, use the git remote command. For example, let’s

link your current remotes using the following command.

$ git remote

You shouldn’t get any results because it’s a brand-new repository, and you haven’t

linked any remote to it. Let’s add one now.

Important I f you see remotes in your results, you can remove them using git
remote rm [remote_name]. You shouldn’t see any remote if it’s a new repository.

You need the unique link to your repository to link a local repository to it, so grab

yours from the previous section. Mine is git@github.com:link-skyloft/todo-list.git,

as shown in Figure 9-4. Make sure to copy the SSH link and not the HTTPS!

You also need to create a name for your remote repository. That way, you can

have multiple remotes within a single project. It may be necessary when the test and

production remotes are different from each other. The default name is origin per

convention. Although you can choose any name, it is recommended to use origin as the

name of the remote where teammates share their work.

The command to add a link to a remote is simple.

git remote add [name] [link]

So, to add a link to the newly created repository, you’ll have to execute the following

command.

$ git remote add origin git@github.com:link-skyloft/todo-list.git

Chapter 9 Quick Start with GitHub

120

That’s it! You can check if the remote has been added by executing git remote or

git remote -v to get more information. You should get a result similar to the screen

shown in Figure 9-11.

Figure 9-11.  Adding the origin remote

And that’s it! Adding a new remote is a simple, straightforward task. Now that that is

cleared, let’s push the project to GitHub!

�Pushing to Remote Repositories
You finally got the local and remote repositories linked. It’s time to push the project to

GitHub so you can share your work.

The command to push changes to the remote is simple; you just need the name

of the remote repository and the branch to be pushed. Since you haven’t created any

branches yet (branches are discussed later), the only branch is called main. The following

shows the git push command.

Chapter 9 Quick Start with GitHub

121

git push <remote_name> <branch_name>

So, in this case, the command is as follows.

$ git push origin main

Git checks the authenticity of the GitHub server. Type yes to continue connecting;

the branch will be pushed. You get a result like the one shown in Figure 9-12.

Figure 9-12.  The first push

Now, the project is visible on GitHub for everyone to see! Let’s check it out on its

project page. If you refresh the project page, you should see a page like the one shown in

Figure 9-13.

Chapter 9 Quick Start with GitHub

122

Figure 9-13.  The updated project page

As you can see in Figure 9-13, the repository page now displays valuable information.

•	 The number of commits

•	 The last commit name and its committer

•	 A list of all project files

What you just did is the basis of code sharing: pushing changes. You will use this

command repeatedly when working with remote repositories. It is a simple feature, but

you must understand what it does. Pushing means copying all your current commits

(in a specific branch) to a remote branch in a remote repository. All history logs are

also copied.

Before you proceed to the next chapter, ask yourself these questions: Where are the

remote repositories stored? Who has read-only access to them? Who can edit them?

Also, you should understand the basics of linking remote and local repositories and why

it is necessary.

Chapter 9 Quick Start with GitHub

123

�Summary
In this chapter, you first interacted with remote Git repositories. They are just normal

repositories stored on a remote server instead of your local machine. You saw how to

create and link local and remote repositories, an often used feature. The main command

you learned was git push, which copies the state of your local repository to a remote one.

The next chapter dives into project management and explores other GitHub features.

You will learn how to pull changes from the remote repository and resolve push and pull

issues. Let’s get started!

Chapter 9 Quick Start with GitHub

125
© Mariot Tsitoara 2024
M. Tsitoara, Beginning Git and GitHub, https://doi.org/10.1007/979-8-8688-0215-7_10

CHAPTER 10

Beginning Project
Management: Issues
Chapter 9 offered a quick peek at using GitHub to host and share code. However, that

barely scratches the surface of what GitHub can offer; it has numerous features that

can assist in maturing your project. In this chapter, you start learning about managing

projects with GitHub. Therefore, let’s begin with the fundamental aspect of GitHub

project management: issues.

�Issues Overview
Planning is crucial to successfully manage any project; merely reacting to new inputs

and doing things based on whims is a perfect recipe for disaster. Managing a GitHub

project follows a similar principle; you must keep track of your actions before initiating

them. This is why GitHub incorporates an excellent Issues feature. This section delves

into discussing them and learning proper management techniques.

Throughout all the chapters in this book, you’ve assumed both developer and project

manager roles. However, in larger projects, you might not participate in the planning

phases. But for now, consider yourself temporarily promoted to project manager and

lead developer (while also being the sole developer). Congratulations! One of the

responsibilities of a project manager is to plan all the tasks that need completion. These

plans don’t need to be overly precise yet (in reality, they seldom are), but it’s crucial to

have a list of all the tasks that require attention. These tasks can encompass new features,

bug fixes, or team discussions. In GitHub, these tasks are called issues.

An issue tracks the progress of new features, bug fixing, or ideas team members

propose. They constitute the cornerstone of GitHub project management; ideally,

no action should proceed without an associated issue. The aim of every action you

undertake should be geared toward resolving an issue.

https://doi.org/10.1007/979-8-8688-0215-7_10

126

The era of organizing the next steps through tedious team meetings is long

gone. Now, you clearly understand your upcoming actions and, crucially, are aware

of everyone else’s tasks. Proposing new ideas to your colleagues has become more

straightforward than ever; open an issue to initiate a discussion with your team,

eliminating the need for additional apps or email clients. The greatest benefit of utilizing

issues is the everlasting preservation of history—each feature, bug, and discussion

remains documented indefinitely.

�Creating an Issue
To better understand issues, the most effective method is direct interaction with them.

Let’s return to the GitHub project page and engage with these issues.

Upon opening your GitHub project page, you’ll be directed to the Code section,

where your project files are showcased. Your project page should resemble mine at this

stage, as depicted in Figure 10-1.

Figure 10-1.  Project page open on the “code” section

Chapter 10 Beginning Project Management: Issues

127

Directly below the project name, numerous tabs showcase the various sections

of your project. Your primary focus typically revolves around the Code, Issues, Pull

Requests, and Projects sections. However, for the present task, let’s concentrate on the

Issues tab. Click it to begin. You’ll land on an empty section akin to the one depicted in

Figure 10-2 since your project currently lacks any issues.

Figure 10-2.  Issues section

Several calls to action are available to create a new issue. Click any of them, and

you’ll encounter a form similar to mine, as displayed in Figure 10-3.

Chapter 10 Beginning Project Management: Issues

128

Figure 10-3.  New issue form

The form is straightforward; only the title is mandatory. There’s also a comment

section below the title in case you need more space to elaborate. Let’s proceed to create

the first issue with the basic details. Don’t modify the values on the right side just yet.

For the inaugural issue, let’s discuss the product’s technology choices. Remember

that issues aren’t solely for feature and bug tracking; they are also instrumental in

initiating discussions and sharing ideas. Fill in your first issue similar to mine, as shown

in Figure 10-4. My issue, “Choose the technologies to be used for the app”, marks the

initial step of a project.

Chapter 10 Beginning Project Management: Issues

129

Figure 10-4.  The first issue

Now that you’ve completed the basic information for the issue, submit it. You

are redirected to the detailed view of your new issue. It should resemble my issue, as

depicted in Figure 10-5.

Chapter 10 Beginning Project Management: Issues

130

Figure 10-5.  Details of an issue

The first noticeable aspect is that your issue has been assigned a unique number.

Each issue retains its distinct number, which is never recycled. Even if an issue is deleted,

its number will not be reused. This number holds significance, as you’ll discover in this

section.

The details page also features a comment section where team members can discuss.

Additionally, a limited selection of emojis is available for use as responses. For instance,

using a thumbs-up emoji to agree is more efficient than cluttering the conversation with

repetitive comments like “mine too.” This helps maintain smoother communication and

avoids stalling the discussion.

You’ll find a Subscribe button at the bottom-right corner of the page. Opting to

subscribe to an issue ensures you receive notifications for any changes made to it,

including new comments and updates on milestones reached.

Since you are the sole team member, there won’t be much discussion. Simply add

a comment or a reaction emoji and then close the issue. Closing the issue does not

delete it; instead, it marks it as completed. Deleting issues is not recommended because

maintaining a project history is crucial, and issues are the best way to track changes.

Keep in mind that if your repository is public, anyone can read your comments. Thus,

please maintain kindness and address any unpleasantness that may arise.

Chapter 10 Beginning Project Management: Issues

131

After commenting and closing the issue, you’ll return to the issue details page,

resembling mine, as shown in Figure 10-6.

Figure 10-6.  A closed issue

While it’s possible to continue commenting on a closed issue, it’s generally

discouraged because everyone has acknowledged the issue’s completion and shifted

focus. Issues can also be locked, preventing further comments, a final resort to

maintaining peace. We all have differing opinions, so discussing them on the Internet,

especially in an open forum, can be challenging. However, maintain professionalism

because everything you communicate will be visible to anyone reading.

�Interacting with an Issue
You’ve successfully created and closed an issue, yet your involvement with them has

been limited. However, what purpose does an issue serve if it doesn’t impact the project?

This section actively engages with issues both on GitHub and within the code.

Chapter 10 Beginning Project Management: Issues

132

Put on your project manager hat for the initial segment because you need to

strategize the project. Until now, the TODO list app comprised multiple text files placed

side by side. Let’s use HTML5 to enhance its presentation. Executing this requires an

action plan, and it falls upon you, as a project manager, to outline this plan.

Given that it’s a simple HTML5 app, you don’t need an elaborate plan—just a few

essential bullet points will suffice. So, to create this app, you need to do the following.

	 1.	 Write the skeleton of the app with HTML5.

	 2.	 Add some styles to make it prettier with CSS3.

	 3.	 Describe the app in README.md.

	 4.	 Document the code.

	 5.	 Create a web page for the app.

These are the fundamental steps necessary to achieve the objective of shipping a

TODO app.

Since you’re familiar with creating issues, I’ll leave it to you to generate an issue

for each bullet point. Once completed, your Issues page should resemble mine, as

Figure 10-7 depicts.

Figure 10-7.  All open tasks

Chapter 10 Beginning Project Management: Issues

133

As observed, the tasks are presented in the order of their introduction, lacking

distinguishing features besides their numbers. This setup can lead to confusion,

particularly if there’s an abundance of issues. Let’s employ labels to ensure a clearer

overview of all the tasks.

�Labels
Labels serve precisely as you’d expect: texts that facilitate quick issue filtering. Let’s

directly apply them to help you become acquainted with this concept.

As depicted in Figure 10-7, the issues page contains a search bar to filter through

issues. However, since you haven’t assigned labels, the filtering options are limited

to basic search functions. Click the Labels button next to the search bar to display all

available labels. You’ll then encounter a list of default labels that can be utilized, as

illustrated in Figure 10-8.

Figure 10-8.  List of the default labels

Chapter 10 Beginning Project Management: Issues

134

These labels represent the most commonly used ones within the developers’

community. However, they aren’t mandatory or immutable; you can modify them based

on your preferences and project requirements. It’s generally inadvisable to alter these

labels, especially when working on an open source project, as many developers are

accustomed to these standard labels.

But given that this is your personal project and you serve as the project manager,

you can add, edit, or remove any label as needed. For instance, the label “help wanted”

might not serve a purpose if you work alone in a private setting. Labels can also signify

an issue’s severity; commonly used labels like “urgent” or “breaking” indicate severe

issues. Additionally, labels can differentiate the origin of an issue, especially in larger

projects. For instance, “frontend,” “backend,” or “database” labels can categorize issues

into distinct groups.

Once you’ve made changes to the labels (although I recommend adding new ones

as needed while retaining the default ones), return to your issues and access the details

page. Then, assign one or more labels to each issue by clicking the Labels button. You

can refer to Figure 10-9 for an example.

Figure 10-9.  Adding a label to an issue

Chapter 10 Beginning Project Management: Issues

135

After you add the labels, a notification appears in the comment section of the issue

page. Figure 10-10 shows an example.

Figure 10-10.  Notification about the newly added labels

Now, go through each of your issues and apply some labels to them. Once you’ve

finished, return to the issues page. It should resemble mine, as depicted in Figure 10-11.

Figure 10-11.  Labeled issues

Now that you’ve added labels to the issues, you can filter through them. For

instance, to view all issues labeled “enhancement”, click the Labels filter (as displayed in

Figure 10-12), and you’ll see a result similar to mine depicted in Figure 10-13.

Chapter 10 Beginning Project Management: Issues

136

Figure 10-12.  Filtering by label

Figure 10-13.  Filtered issues

Isn’t filtering fun?! But you know what is even more fun? Assign issues to others!

Let’s do it.

Chapter 10 Beginning Project Management: Issues

137

�Assignees
Now that the issues are correctly labeled, it’s time to assign them to a developer. It’s a

relatively easy task and is not so different from labeling.

You can assign an issue to up to 10 members of your team. However, you can only

assign yourself since you’re the only one currently. Let’s proceed! Navigate to the issues

titled “Write the skeleton of the app with HTML5” and “Add some styles to make it

prettier with CSS3” and assign them to yourself. Assigning an issue to a team member

operates similarly to adding labels. You can refer to Figure 10-14 as an example.

Figure 10-14.  Assigning an issue

After you assign these two issues to yourself, you get a result like mine, as shown in

Figure 10-15 on your Issues page. You can now filter through your issues by labels and

assignees.

Chapter 10 Beginning Project Management: Issues

138

Figure 10-15.  A complete issues list

Now that the issues are assigned to you, take off your manager’s hat and put on your

developer’s hat. It’s time to get your hands dirty!

�Linking Issues with Commits
Every action performed with Git should aim to resolve an issue. When using Git, most of

your work involves commits; thus, each commit should be associated with an issue. In

this section, you learn how to link the commits to issues.

Firstly, let’s determine which issues to address. As seen in Figure 10-15, two issues

are assigned: “Write the skeleton of the app with HTML5” and “Add some styles to make

it prettier with CSS3”. Let’s start by working on writing the app skeleton because it’s a

logical starting point. Therefore, access the details page of this issue and make a note of

its number. As depicted in Figure 10-16, mine is issue number 2 (#2).

Chapter 10 Beginning Project Management: Issues

139

Figure 10-16.  Issue number 2 details page

�Working on the Commit
Now that you have an issue to resolve and its number, it’s time to prepare the commit.

Since simple HTML5 is used for this app, you only need a single file for the skeleton. So,

create a file named index.html in your working directory and paste it into this code.

<!doctype html>

<html>

 <head>

 <meta charset="utf-8">

 <title>TODO list</title>

 </head>

 <body>

 <h1>TODO list</h1>

 <h3>Todo</h3>

 Buy a hat for the bat

Chapter 10 Beginning Project Management: Issues

140

 Clear the fogs for the frogs

 Bring a box to the fox

 <h3>Done</h3>

 Put the mittens on the kittens

 </body>

</html>

I’ll let you stage the newly created file, but don’t commit it yet; first, let’s talk about

the commit message.

�Referencing an Issue
You are prepared to commit the project in its current state; however, you need to modify

the commit message to link the commit to an issue. The most common method to link a

commit to an issue is by referencing the issue number within the commit message.

Thus far, you’ve solely used very concise commit messages, aiming to keep them

within a single line. However, as you now require a more detailed way to describe the

commits, you’ll structure the commit messages as follows: a title, a body, and a footer

separated by a blank line. Refer to Figure 10-17.

Chapter 10 Beginning Project Management: Issues

141

Figure 10-17.  The commit message structure

Caution  Don’t forget the blank line between each part of the commit message. It
is important.

The body and footer sections within the commit structure are optional and should

only be used when necessary, particularly the body. People tend to skim, often reading

only the title before moving on. Therefore, ensure the title is self-explanatory even

without the body.

The footer section is now the focus; it’s designated for issue trackers like GitHub.

Utilize the footer to reference issues by their numbers. For instance, to reference the

issue you’re addressing, include its number in the footer preceded by a #. Once GitHub

detects this formatting, it automatically links the commit to the referenced issue.

Note  You can put the references to the issues anywhere in the commit message,
even in the title. But this practice is very ugly and should be discouraged.

Combining all of that, let’s make the commit with a proper commit message. Look at

the example of my commit, as shown in Figure 10-18.

Chapter 10 Beginning Project Management: Issues

142

Figure 10-18.  Commit message linked to issue #2

I skipped the body part in my commit message because it was unnecessary. I only

needed to link this commit to issue #2, so I put that number in the footer.

Now, push it! Look at the previous chapter if you forgot how.

Next, let’s go back to the issue’s details page. The first thing you notice is that a new

comment has been added: the reference to the commit. It should look like mine depicted

in Figure 10-19.

Figure 10-19.  A reference to the last commit

Chapter 10 Beginning Project Management: Issues

143

This a very useful feature of GitHub that you will certainly use; show all the commits

linked to a particular issue. That’s why no commit should be pushed without being tied

to an issue. It’s better for the management of the project.

If you tap the name of the commit shown on the reference (see Figure 10-19), you see

a familiar screen. I’ll let you discover which screen is depicted in Figure 10-20.

Figure 10-20.  A detailed view of a commit

That’s right! It’s the git show view. There is no need to get lost in Git commands to

see what a commit does; you can directly see it in GitHub!

Now that you have resolved the issue, go back to its details page and close it. Let’s

resolve the next one!

Chapter 10 Beginning Project Management: Issues

144

�Closing an Issue Using Keywords
It was nice to work on an issue and close it, right? There is still something even more fun:

closing an issue by using keywords in a commit message!

First, you must decide which issue to resolve. The next issue is “Add some styles to

make it prettier with CSS3,” which has the number 3. Let’s resolve it! Open index.html

and change the contents to the following.

<!doctype html>

<html>

 <head>

 <meta charset="utf-8">

 <title>TODO list</title>

 <style>

 h1 {

 text-align:center;

 }

 h3 {

 text-transform: uppercase;

 }

 li {

 overflow: hidden;

 padding: 20px 0;

 border-bottom: 1px solid #eee;

 }

 </style>

 </head>

 <body>

 <h1>TODO list</h1>

 <h3>Todo</h3>

 Buy a hat for the bat

 Clear the fogs for the frogs

 Bring a box to the fox

Chapter 10 Beginning Project Management: Issues

145

 <h3>Done</h3>

 Put the mittens on the kittens

 </body>

</html>

Stage the file, but don’t commit yet. The following are keywords to close an issue.

•	 close

•	 closes

•	 closed

•	 fix

•	 fixes

•	 fixed

•	 resolve

•	 resolves

•	 resolved

Using one of these words followed by an issue number, mark it as resolved and

close it. The commit resolves issue #3, so it puts that in the commit message footer. Your

commit message should look like mine (see Figure 10-21).

Figure 10-21.  Resolving an issue by commit message

Chapter 10 Beginning Project Management: Issues

146

Like commit messages, the issue references should use the imperative tone, so it is

preferred to use resolve instead of resolved. Now, it’s time to push the commit and see for

ourselves!

Navigate to the issue you worked on (you won’t find it in the open issues, use the

filter to see the closed issues) and open the details page. You should see a new comment

on it, just like mine, as shown in Figure 10-22.

Figure 10-22.  Issue close by keywords

If you tap the commit name, you again see the git show view of the commit.

The little feature of GitHub is useful, but be very careful when using it. Only close

an issue when you are perfectly sure that it was resolved. Closing and reopening issues

confuse people and generate a lot of notifications. And don’t close a different issue by

mistake! 83% of all workplace violence is due to issues closing mistakes. And just because

I invented this statistic doesn’t mean you should take it seriously!

�Summary
Phew! This chapter was a bit lengthy, wasn’t it? It delved into understanding issues,

notably learning how to link them to commits. Always remember to log all your actions

into issues before executing them. And ensure you triage them using labels and assignees.

That wraps up basic project management. By now, you should be familiar with

planning your GitHub moves. Yet, project management isn’t solely about pre-planning

tasks; having a clear record of past events and achieved milestones is crucial. Therefore,

the next chapter dives into “proper” project management. It also provides a concise

summary of various GitHub workflows. Let’s proceed!

Chapter 10 Beginning Project Management: Issues

147
© Mariot Tsitoara 2024
M. Tsitoara, Beginning Git and GitHub, https://doi.org/10.1007/979-8-8688-0215-7_11

CHAPTER 11

Diving into Project
Management: Branches
In the last chapter, you discovered issues and used them to plan a project. You also

learned how to link commits to issues so that you can track each change in a project. The

workflow was simple: choose an issue, create a commit that can resolve it, and push it

to GitHub. The issue was then marked as resolved and closed. However, this workflow is

not well-suited for most real-world projects, as the potential for mistakes is too high.

What if you need more than one commit to resolve an issue? What if other team

members have pushed commits that contain changes to the same files you’re working

on? How can you ensure that the pushed commits truly resolve the issue? These are

some of the reasons why making direct changes to the project is not advisable, even if

you’re working alone.

Remember, closing an issue by using keywords in the commit message is convenient,

but it requires caution. You may have overlooked issues in your work, or your changes

might introduce new bugs into the project. That’s why it’s advisable to have someone

else review your code before accepting the changes. This is the aspect covered in this

chapter.

First, you are introduced to the most common GitHub workflow, which is how most

teams work on GitHub. Then, you delve into the concept of branches.

But before beginning this chapter, here’s a little thing that you should always

remember: “You will make mistakes. A lot of the time. So, you must make sure to use as

many safeguards as possible.” Let’s go!

https://doi.org/10.1007/979-8-8688-0215-7_11

148

�GitHub Workflow
This section discusses the most common way that developers use GitHub. Remember

that each team has its way of doing things, but each way of working is inspired by the

basic workflow to present.

Remember the little fact about making mistakes? This omnipresent possibility

of mistakes is why you need to follow this GitHub workflow so that even if mistakes

happen, you isolate their repercussions in a controlled manner. The way of working from

the previous chapter was to commit everything directly to the main project, which is

very dangerous. The main project is usually the “production” line, the version the clients

see and use. So, this version must be very clean and should always be exploitable. If

errors are made in the main version, the clients will experience bugs, disrupting every

team member.

One way to resolve this issue is to create a copy of the main project and work on this

clone. Each change you make to this copy does not affect the main project, so none of

your mistakes can impact clients. And when you (and other people) are perfectly sure

that the changes you made resolve the issue, you can reproduce those changes in the

main version.

These copies of the main project are called branches, and the concept of reproducing

changes into another branch is called merging. You can make as many branches as you

like and trade commits between them. When you first create a repository, Git creates a

new branch for you, called main. Most developers put their main or production version

in main and only re-create changes there when they are sure that it’s okay to do so.

Just like tree branches, Git branches can have many ramifications, meaning that

you can even create new branches from branches other than the main one, even if it’s

difficult to maintain such architecture. Most of the time, you create a branch when

working on an issue and delete it after the issue is resolved.

To put all this into perspective, you will learn about the default or common GitHub

workflow. As you know, everything should begin with an issue. You are already familiar

with this. So, let’s talk about each of the next steps of the workflow.

When you want to resolve an issue by making code changes, you should first copy

the project’s current working version and create a new branch.

Then, as usual, you make your changes and commit the state of the project. You can

make any number of commits you need; it won’t affect the main branch. You can also

push your commits to GitHub so that your code can be seen.

Chapter 11 Diving into Project Management: Branches

149

Then, you link your branch to the main one so that others can compare the changes

and review your code. This link is called a pull request; you request that your commits be

applied to the main branch.

Other team members can then review and comment on your code on GitHub. You

then push more commits addressing those comments until all problems are solved.

The pull request is accepted if every party (developers, managers, testers, or clients)

agrees that your changes are okay and resolve the issue at hand. This means every

commit you make on your branch is applied to the main branch. You can then delete the

branch you created.

And that’s it! You might wonder how it differs from directly pushing to the main

branch. It’s very different because mistakes and omissions are caught before applying

the changes to the production version. This means that the number of production bugs

is reduced to a minimum. It also makes it possible for various members of your team to

review the changes before they are applied, which is the standard way of working in most

tech companies. Bundling the changes into one pull request also solves the problem of

multiple people pushing commits to solve different issues at the same time. It keeps the

history log clean.

You might be tempted to open pull requests only when you feel that you are done

with your work. Unless your work is very small and straightforward, don’t wait long

before opening a pull request. By opening a pull request early in your development, you

can receive feedback before making too many changes. It is very useful for beginners

especially because following the wrong path from the start takes a long time to correct,

and you would wish that you were told the correct way earlier. Opening a pull request

doesn’t mean the work is done; it just means that you are considering applying commits

from one branch to another.

Note  You can create branches from any branch and open pull requests. It’s not
only reserved for the main branch.

Chapter 11 Diving into Project Management: Branches

150

Figure 11-1 summarizes all the steps.

Figure 11-1.  Basic Git workflow

As you can see, you can create branches from any branch in the project. Git created

a branch called “main” at the initialization of the repository. You can then create more

branches (for example, a bugfix branch or a feature branch) to introduce changes to the

this branch.

�Branches
Branches are the main feature behind code reviews. You must work on your own branch

before publishing your work so that you won’t be bothered by other people’s changes.

Simply put, a branch is your independent copy of the project at a certain time. Let’s see

how they work and create and delete some.

The logic behind branches is simple: make a copy of the current state of the project.

In this copy, you can make your changes without affecting other people. You can use

branches to have distinct channels of distribution or to try new things with the project.

When creating a repository, you get a branch by default: main. This branch is

enough when working on very small projects, but most projects need more branches

to get the best results. First, they need a production branch where clients can get the

latest stable version of the software; this is the main branch. You will mostly work on the

development branch, where most of the action happens. Finally, there are short-lived

Chapter 11 Diving into Project Management: Branches

151

patching branches that you create to hold your commits before merging them into the

development branch. These patching branches live and die with a pull request. You

create one when you are solving an issue and delete them afterward.

To summarize a little bit, there are three sorts of branches.

•	 Production branch: where you release stable versions of your project

•	 Development branch: where you test your latest version

•	 Patching branch: where you work on your issues

Unless there is a very urgent major problem that needs solving immediately,

you never commit directly to the production or the development branch. To update

those branches, you use pull requests to review and test the changes. There are some

companies where every developer commits directly to the development branch, but this

is very counterintuitive because if a bug is discovered, they won’t know which commit

introduced it. Also, it forces the developer to push “do-it-all” commits, which is an anti-

pattern. Do-it-all commits are commits that try to resolve many issues at the same time;

for example, a commit that fixes a bug and introduces a new feature simultaneously.

The laziness of developers often causes this practice when they don’t want to create a

new branch for another issue. This creates very bad pull requests and makes tracking

the project’s progress difficult. It also creates a big challenge for the testers as they don’t

know which version is stable. It’s an all-around bad idea; don’t do it even with small

projects. Creating and deleting branches all the time may seem tiring, but it is the best

workflow when working with Git.

The one thing to remember about Git branches is that they are simple references

to commits; that’s why creating and deleting them is so fast. Recall that Git stores its

commits in chained links. Well, a branch is just a reference to one of those commits.

A commit contains information about the author, the date, the snapshot, and, most

importantly, the name of the previous commit. The name of the previous commit is

called the parent, and every commit except the first one has at least one parent. Thus,

each commit is linked to the previous one so that you can re-create the change history of

the project.

For now, you only have the default “main” branch, which references your project’s

last commit. To create a new commit, Git checks where the reference is and uses the

information in that commit to build the link between the new commit and the previously

referenced one. So, each time you commit, the reference moves to the new commit, and

Chapter 11 Diving into Project Management: Branches

152

the cycle continues. Thus, a branch is just a reference to a commit designed to be the

parent of the next one.

But how does Git know which branch you are on? Well, it uses another reference

called HEAD that references the current commit. If you are on a branch, HEAD references

the last commit of that branch. But if you are checking out a previous version (like you

did when you used git checkout <commit_name>), the HEAD references that commit,

and you are in a state called detached HEAD.

Caution  You never want to be in a “detached HEAD” state. It is a very dangerous
situation to find yourself in.

For most situations, you can think of HEAD as the reference to the current branch, and

every commit you create uses the last commit in that branch as a parent.

When you merge a branch into another, a new commit is created. It has two parents:

one from each branch. So, you can recognize a commit type from its number of parents.

•	 No parents: the very first commit

•	 One parent: normal commit in a branch

•	 Multiple parents: a commit created by the merge of branches

�Creating a Branch
Now that you know a lot about branches, let’s create one! It’s very easy; you need to use

the git branch command followed by the branch name. Remember that the branch

name should only contain alphanumeric values and dashes or underscores; no spaces

are allowed.

$ git branch <name>

For example, let’s create a development branch for the project. Let’s name it develop.

Here’s how to do it.

$ git branch develop

Chapter 11 Diving into Project Management: Branches

153

After executing the command, you notice that nothing has changed in your project.

That’s because creating a branch is simply about referencing the last commit of the

current branch, and nothing else. To begin working with a branch, you must switch to it.

�Switch to Another Branch
You created the development branch, and now it’s time to switch to it. But here’s the

problem: I’ve forgotten the name I gave to the branch. Someone might suggest you turn

back and look at the previous section to find the name. But I have a better idea: list all the

current branches. To do so, execute the git branch command without any parameters.

$ git branch

This command gives you the list of branches you currently have and puts an asterisk

next to the one you’re currently on (the HEAD). Check out Figure 11-2 for an example of a

branch list.

Figure 11-2.  List of branches in the project

Chapter 11 Diving into Project Management: Branches

154

Notice that you are still on the main branch because you haven’t created anything

other than a branch. Now, let’s switch to it.

You already know the command to switch between versions. Well, you use the same

command to navigate between branches. Simply use git checkout with the name of the

branch as a parameter.

$ git checkout <name>

So, if you want to switch to the develop branch, you must execute the following.

$ git checkout develop

Note A s when you navigated between versions, you can’t switch branches if you
have uncommitted changed files. Commit before you move. Or use a technique
called stashing, which is covered in later chapters.

After checking out the new branch, you get a confirmation message from Git, and

you can also check the result of Git status to make sure. Figure 11-3 shows the result of

those commands.

Chapter 11 Diving into Project Management: Branches

155

Figure 11-3.  Switching branches

EXERCISE: CREATE A TESTING BRANCH

Let’s do a simple exercise before moving on to the next task. It’s very straightforward because

all the answers are in this section. The exercise is to create a branch named testing

where you test a project before merging all the commits to the main branch. You must do the

following.

	1.	G o back to the main branch.

	2.	 Create a new branch named testing.

	3.	S witch to the new branch.

Tip T o immediately switch to a new branch after creating it, use the -b option
with the git checkout command. For example, is the same as git branch
testing and then git checkout testing.

Chapter 11 Diving into Project Management: Branches

156

�Deleting a Branch
Did you have fun creating the testing branch? Good. It’s time to delete it because you

already have a testing branch: develop. That’s where you merge the patching branches,

and all the testing is done there.

You can delete a pushed branch, which is present on the remote repository, by

checking the “delete branch after PR merged” option when creating a pull request. This

deletes the remote branch, but your local branches are unchanged. You have to delete

your local branches manually.

To delete a branch, use the same command to create one but with the option -d.

$ git branch -d <name>

So, to delete the testing branch, use the following.

$ git branch -d testing

Like a real tree branch, you don’t cut the Git branch you are currently standing on.

Check out another branch before deleting the branch; for this reason, you can’t have less

than one branch in a project. If you try anyway, you get an error like the one shown in

Figure 11-4.

Chapter 11 Diving into Project Management: Branches

157

Figure 11-4.  Deleting current branch

Thus, you must check out the main or develop branch before deleting the testing

branch. If you did it correctly, you should get a result like mine shown in Figure 11-5.

Chapter 11 Diving into Project Management: Branches

158

Figure 11-5.  Deleting of a branch (we hardly knew ye)

Take note of the confirmation message; it gives you the SHA-1 name of the branch

you just deleted. Since the branch you created and deleted contained no commits, it

just referenced the last commit of the current branch. Let’s check the history log to

confirm this. Execute the git log command to get the list of the latest commits, just like in

Figure 11-6.

Chapter 11 Diving into Project Management: Branches

159

Figure 11-6.  Commit name check

The last commit name and the branch name are the same because you haven’t

made any commits in the branch. You also see on the history log where the branches

are originating from. In this example, the develop branch originates from the 98c0ec8

commit, the branch’s parent.

�Merging Branches
Merging branches has been discussed in this chapter, but you haven’t made a single

merge. Let’s change that.

Let’s imagine that you want to improve the project’s README file by adding a few

pieces of information. This task is already listed in the GitHub issues, so there’s no

problem with that. The next step is to create a new branch from the development branch

so you can merge them later. You must create a new branch from the develop branch

instead of the main branch because you won’t touch the main branch until everything is

properly tested. If everything is clear and clean, you merge the development branch into

the main branch.

Chapter 11 Diving into Project Management: Branches

160

It’s clear then, let’s create the new branch where you will work. Let’s name it

improve-readme-description. Don’t forget to check out the develop branch before

creating a new one. Thus, you execute the following.

$ git checkout develop

$ git branch improve-readme-description

Now that the branch has been created, switch to it so you can begin to work. To

switch to the new branch, use the checkout command.

$ git checkout improve-readme-description

Perfect! Now you have a branch named improve-readme-description originating

from the develop branch. You like branches so much that you created a branch from

a branch!

Now let’s get to work. Open the README.md file and change its content to the

following.

TODO list

A simple app to manage your daily tasks.

It uses HTML5 and CSS3.

Features

* List of daily tasks

Now, stage the file and get ready to commit. I’ll let you choose the commit message,

but don’t forget to put a reference to the issue you are trying to resolve! Thus, the

following are the next steps.

$ git add README.md

$ git commit

There is nothing new here because every command is the same for any branch. The

only slight change is that the branch name differs in the commit description. You can see

it in my result shown in Figure 11-7.

Chapter 11 Diving into Project Management: Branches

161

Figure 11-7.  Committing on another branch

After you have made the commit, check the Git history to put everything you did in

perspective. Execute the git log command to view the project’s history.

$ git log

Tip  Use the --oneline option when using git log to get a prettier result

Your project history log should look like the one shown in Figure 11-8 after you have

committed.

Chapter 11 Diving into Project Management: Branches

162

Figure 11-8.  History log after committing on a branch

As you can see in the figure, HEAD now points to the last commit of the new

branch. This means that every commit you create has that as a parent. Also, note that

the main and develop branches didn’t change because you only worked on the newly

created branch.

If you are satisfied with the fix, let’s merge the branch into the develop branch so

you can test it. To merge the branch into develop, you first must check it out. So, navigate

there by using the git checkout command.

$ git checkout develop

Now, let’s try to merge this branch into the develop branch. Merging means

reproducing all the commits from one branch into another. To do so, use the git merge

command followed by the name of the branch to be merged.

$ git merge <name>

Since you want to merge improve-readme-description into develop, the following

is the command to execute on the develop branch.

Chapter 11 Diving into Project Management: Branches

163

$ git merge improve-readme-description

This command integrates your commits from improve-readme-description into

develop. You receive a similar result as a confirmation for the merge. Figure 11-9 shows

an example.

Figure 11-9.  Merge result

Let’s recheck the git log to better understand what happened. After executing git

log --oneline, you see a result similar to mine, as shown in Figure 11-10.

Chapter 11 Diving into Project Management: Branches

164

Figure 11-10.  History log after merge

As you can see, HEAD now points to develop because it’s the checked-out branch.

Note that develop and improve-readme-description now point to the same commit

because of the merge.

Congratulations on your first merge! It won’t be so easy next time. (Hint: Merge

conflicts appear when the same line of code has been modified in different commits.)

�Pushing a Branch to Remote
Branches are not only made for working locally; you can also publish them to the world

by pushing them to the remote repository. For example, let’s push the development

branch to GitHub so everyone can see the progress.

The command for pushing a branch to remote is (you guessed it!) git push, just like

what you learned in a previous chapter. The command is as follows.

$ git push <remote_name> <branch_name>

Chapter 11 Diving into Project Management: Branches

165

The remote name hasn’t changed; it’s still origin. It’s the branch name that is

different this time. Instead of main, you push the develop branch. So, the command is as

follows.

$ git push origin develop

Since you’ve already pushed to remote before, the result shown in Figure 11-11 is

familiar to you.

Figure 11-11.  Pushing to a remote branch

As you can see, there is a little difference in the result. It has a link to create a pull

request to ask for permission to reproduce the commits on develop into main. Take note

of the link because you will learn about pull requests in the next chapter.

If you return to GitHub to check your project page, you also have the call-to-action

button for creating pull requests. Ignore this for now and instead navigate between the

main branch and the develop branch. Figure 11-12 shows an example of a project page

after a new branch has been pushed.

Chapter 11 Diving into Project Management: Branches

166

Figure 11-12.  The new project page

It’s all about branches for now. You now know how to create, merge, and delete

them. And most importantly, you have a basic knowledge of the GitHub workflow: create

a branch, work on that branch, and create a pull request.

Now, you may be wondering if you even used the workflow. No, you didn’t use the

workflow because you used the direct approach: directly messing with the branches.

In a real-world project, you won’t commit and push directly to the main or the develop

branch as you did earlier. Instead, you use pull requests to merge branches together.

That way, your work can be reviewed by your coworkers before you can merge them into

the develop or main branch.

�Summary
This chapter dealt with what makes Git a powerful tool for project management:

branches. Branches are necessary for fast-paced development because you probably

work on many issues at once. Keeping all those changes in the same place is a recipe for

disaster. For example, you need to start in a clean environment to fix a bug or introduce

a feature; trying to do both at the same time seriously increases the risk of introducing

more bugs.

Chapter 11 Diving into Project Management: Branches

167

The main takeaway of this chapter is the importance of using a workflow when

developing with Git. And those workflows all use branches to separate the different types

of work necessary for clean issue resolution.

You’ve seen how to create, check out, and delete branches. Now, let’s learn more

about pull requests and code review so you can propose changes to the main branch!

Chapter 11 Diving into Project Management: Branches

169
© Mariot Tsitoara 2024
M. Tsitoara, Beginning Git and GitHub, https://doi.org/10.1007/979-8-8688-0215-7_12

CHAPTER 12

Better Project
Management: Pull
Requests
In the last chapter, you learned about the typical GitHub workflow that most companies

use or variations of it for their day-to-day work. You also learned about branches and

how to use them. However, there is one crucial aspect you didn’t cover: how to combine

these two concepts effectively. The answer is simple: pull requests and code reviews.

The previous chapter highlighted many reasons why using a traditional approach to

code management (where everybody commits to the same branch) is a bad idea. Even

though you work alone on this project, you might not experience the inconveniences yet.

But they do exist, and resolving them can be time-consuming. So, trust me, it’s better to

follow the workflow.

This chapter demonstrates how to implement the workflow presented in the

previous chapter. You utilize the branches created to introduce changes to older

branches. Additionally, you delve into code review and how to manage it effectively.

�Why Use Pull Requests?
Many developers who don’t follow a particular workflow argue that it wastes time

because it consumes valuable development time. There is truth in this statement

because adhering to the workflow may involve waiting for others to review your code.

However, it’s essential to remember that you don’t have to sit idle while waiting for a

review. You can continue working on other tasks, such as solving another issue. This

is precisely why branches are so powerful in version control systems; they enable you

to work on multiple issues concurrently. With the workflow, you can initiate work on

https://doi.org/10.1007/979-8-8688-0215-7_12

170

an issue, seek ideas or guidance from your peers, and then switch to another issue

while waiting for responses. Once you receive the necessary feedback, you can resume

work on the first issue. You can also start working on an issue even if you don’t have

complete information about what needs to be done; you can pause midway to gather

more information. Importantly, having someone else review your code is one of the

most effective ways to reduce bugs. The time saved by not chasing bugs later is more

significant than the time you gain by committing directly to the main branch.

The GitHub workflow is also the preferred method of work for open source

contributors. It would be chaotic if anyone could push commits directly to a branch

without any review. Instead, each contributor has a working clone of the project and can

propose changes that other contributors review and discuss.

In conclusion, working with the GitHub workflow is the best approach, significantly

reducing the likelihood of introducing bugs. As you saw in the last chapter, using

branches is just the first step; you must also use pull requests to complete the workflow.

Let’s learn more about them!

�Pull Requests Overview
Pull requests are a relatively easy-to-understand concept. Submitting a pull request

is a way to ask for permission to apply all the commits in a branch to another branch.

However, before diving into the subject, it’s essential to understand what a pull is.

�Pull
In Git terminology, a pull is essentially the opposite of a push (congratulations if you

guessed that correctly!). When you push, you take your local branch and copy all its

commits to a remote branch, creating the branch on the server if it doesn’t exist. On the

other hand, a pull is the reverse; it looks at a remote branch and copies the commits from

that branch to your local repository. It’s essentially an exchange of commits: push when

moving from local to remote and pull when moving from remote to local.

The syntax is very similar, too.

$ git pull <remote_name> <branch_name>

Chapter 12 Better Project Management: Pull Requests

171

So, for example, if you wanted to fetch the commits from the main branch on GitHub

and bring them into your local repository, you would execute the following command

while checking out the main branch.

$ git pull origin main

Always be on the branch corresponding to the one you are pulling before running

any command. So, in this case, you must check out main before running git pull. After

executing the command, you get a result like mine, as shown in Figure 12-1.

Figure 12-1.  Pulling main from origin

Nothing happened since you have the same commits in your local repository and on

GitHub. But once you start working with other people, you have to pull their branches to

your local machine to review their changes, or review the changes on GitHub.

That’s it! Pulling is just copying commits from a remote branch to a local one. And

don’t worry. You will have more opportunities to use git pull soon.

Chapter 12 Better Project Management: Pull Requests

172

�What Does a Pull Request Do?
Now that you know more about pulling, you should have a clearer idea of how a pull

request works. It requests permission to execute a pull action on a remote repository.

However, pulling a branch alone is not enough for the action to be complete; you must

also merge the branches.

Remember when you merged a patch branch into the development branch? A pull

request is just a way of formally asking for permission. You can do anything you want

with your local branches, but when you deal with upstream branches (branches in the

remote repository), it’s considered good practice to ask for permission first. This ensures

that every fix committed to the main branches is properly tested and reviewed.

So, to put it all together, a pull request is a request you make to get GitHub to perform

these actions: pull your patching branch and merge it with another branch. For example,

in this project, you currently have three local branches (main, develop, and improve-

readme-description) and two remote branches (main and develop). If you made any

new commits to improve-readme-description and wanted to merge it with develop,

you would open a pull request. After it is accepted, GitHub performs the following

actions: pulls the improve-readme-description branch and merges it with the

develop branch.

You might wonder, “If the end goal of a pull request is to merge a branch, why not

call it a merge request?” Well, many people (including other Git hosting services like

GitLab) do call it a merge request. It means the same thing. This book uses the two terms

interchangeably.

�Create a Pull Request
Let’s get down to business! Creating a new pull request is very easy. You only need two

branches: one to work on and another to merge into. Let’s do it!

First, let’s create an issue to work on. So, go to GitHub and create an issue called

“Improve the app style”. Yes, there was a similar issue previously, but since you’ve already

solved that issue, you will open a new one. Recycling issues is not a good idea because it

makes it harder to follow your progress.

After you’ve created the issue, it’s time to go back to your terminal because each

pull request begins with a branch. Create a branch named improve-app-style from the

latest development branch (develop). As you saw in the last chapter, the way to create

Chapter 12 Better Project Management: Pull Requests

173

a new branch from another is to check out the source branch and execute the branch

creation command. So, you have to execute those commands one after another.

$ git checkout develop

$ git branch improve-app-style

$ git checkout improve-app-style

After executing those three commands, the new branch is checked out, as seen in

Figure 12-2.

Figure 12-2.  Creation of a new branch

Let’s work on the issue within the newly created branch. Open index.html and

replace its contents with the following.

<!doctype html>

<html>

 <head>

 <meta charset="utf-8">

 <title>TODO list</title>

Chapter 12 Better Project Management: Pull Requests

174

 <style>

 h1 {

 text-align:center;

 }

 h3 {

 text-transform: uppercase;

 }

 ul {

 margin: 0;

 padding: 0;

 }

 ul li {

 cursor: pointer;

 position: relative;

 padding: 12px 8px 12px 40px;

 background: #eee;

 font-size: 18px;

 transition: 0.2s;

 }

 ul li:nth-child(odd) {

 background: #f9f9f9;

 }

 ul li:hover {

 background: #ddd;

 }

 </style>

 </head>

 <body>

 <h1>TODO list</h1>

 <h3>Todo</h3>

 Buy a hat for the bat

 Clear the fogs for the frogs

 Bring a box to the fox

Chapter 12 Better Project Management: Pull Requests

175

 <h3>Done</h3>

 Put the mittens on the kittens

 </body>

</html>

Then, stage the file and prepare to commit. Put something very simple as a commit

message; there’s no need to reference the issue. You’ll do this later. As a commit message,

you can state: “Add basic color changes on item rows”. As usual, you get a confirmation

message after the commit, like the one shown in Figure 12-3.

Figure 12-3.  Commit confirmation

Now it’s time to push it to GitHub. As you’ve seen, you have to use the git push

command, followed by the remote name and the branch name. So, the command is as

follows.

$ git push origin improve-app-style

Chapter 12 Better Project Management: Pull Requests

176

After you’ve pushed your branch to GitHub, you get another familiar confirmation

message. Figure 12-4 shows an example of this.

Figure 12-4.  Pushing the branch to GitHub

As you can see in the confirmation message, Git provides a link for you to follow so

you can create a pull request. However, let’s create it using another method: directly

on GitHub.

Go to your project page and look for something different in the layout. After a recent

push to a new branch, your project page should look like the one shown in Figure 12-5.

Chapter 12 Better Project Management: Pull Requests

177

Figure 12-5.  Project page after a recent push

As you can see, there is a new call to action on the page above the list of branches.

It displays the name of the branch that you just created and a prominent button for

creating a pull request. Click the button to proceed, and you should be taken to the

creation form, as shown in Figure 12-6.

Chapter 12 Better Project Management: Pull Requests

178

Figure 12-6.  Pull request creation form

You can note that the pull request creation form is similar to the issue creation

form. On the right, you can find the same information about assignees and labels; they

work the same. At the bottom of the page, you can see the commits that the pull request

applies; if you scroll down, you’ll find the differences between the versions. Figure 12-7

shows an example of this.

Chapter 12 Better Project Management: Pull Requests

179

Figure 12-7.  Differences between versions

Chapter 12 Better Project Management: Pull Requests

180

But you might ask yourself why there are two commits to be applied. It’s because of

the target branch. If you examine Figure 12-6 closely, you’ll find that the base branch

for the pull request is set to main. This is not what you want because you are targeting

the develop branch. Change the base branch to develop. After you change it, the page

reloads, and you’ll get a different result, as shown in Figure 12-8.

Chapter 12 Better Project Management: Pull Requests

181

Figure 12-8.  Pull request on develop

Chapter 12 Better Project Management: Pull Requests

182

As you change it, notice that the pull request name has also changed because it takes

the last commit message as a default name. But you can change it, especially if you have

multiple commits in one. Remember one thing about the pull request name: it should

be as clear and straight to the point as commit messages. The name should answer

this question: What will this pull request do if I merge it? Be thoughtful when choosing

a name and description so the reviewers know which problem you are trying to solve

without reading your code.

You can expand your pull request explanation in the description textbox, and

don’t hesitate to provide more information about the changes. You should also include

keywords for closing issues there. Figure 12-9 shows an example of this.

Chapter 12 Better Project Management: Pull Requests

183

Figure 12-9.  A completed pull request

Once you are ready, click “Create pull request” to submit it; you are taken to a page

similar to the one shown in Figure 12-10.

Chapter 12 Better Project Management: Pull Requests

184

Figure 12-10.  Your new pull request

Chapter 12 Better Project Management: Pull Requests

185

Again, this view is very similar to its issues counterpart, with the pull request number

following the issues number. The only difference is the “Merge pull request” button.

Tapping it merges the branches. But don’t do that yet! Let’s play around with the pull

request before merging it.

Once the pull request is submitted, it’s time to review it! Remove your developer hat

for a while and put on your tech lead hat; it’s time to do a code review!

�Code Reviews
Code reviews are one of the best features of GitHub. Long gone are the days when you

had to schedule a one-on-one meeting with your tech lead so they could check your

code. There is no need to send each other long chains of emails (with many annoyed

people on the cc list) for each change request in the code. Now, everything is done in

GitHub. Let’s see!

�Give a Code Review
Figure 12-9 provided a glimpse of the code review process. You saw all the changes made

to the files compared to the current version, but you couldn’t interact with them yet. This

section teaches how to review your co-contributors’ code.

Figure 12-10 shows that the pull request page has many sections, just like the Issues

page. You must click “Files changed” to begin the code review. You then arrive on a page

like the one shown in Figure 12-11.

Chapter 12 Better Project Management: Pull Requests

186

Figure 12-11.  The Code Review section

This view should remind you of the git diff results because it’s essentially the same

thing. It shows you the differences between the versions in detail, which means that you

see what has been added, removed, or replaced.

�Leave a Review Comment
Now, let’s pretend to review this code. During code reviews, you can comment on the

overall changes or a specific piece of code. For example, let’s put a comment on the ul

li CSS definition on line 17. As you move your cursor around, the code review changes,

Chapter 12 Better Project Management: Pull Requests

187

and a little plus icon (+) follows it. It means that you can comment there. Let’s do that.

Place your cursor on line 17, and when the plus icon appears, click it. It opens a small

comment section like in Figure 12-12.

Figure 12-12.  A code review on a line

As always, you can make all kinds of comments in this section with the help

of Markdown syntax. For this example, add this comment: “Make the list items

unselectable for a cleaner UX. Use user-select: none”. You should check the preview

before you submit the comment.

If you are satisfied with your comment, tap “Start a review” to go to the next step.

The comment is displayed on the Review page, and there is also a Reply button on the

comment, just like in the result shown in Figure 12-13.

Chapter 12 Better Project Management: Pull Requests

188

Figure 12-13.  The posted comment

Chapter 12 Better Project Management: Pull Requests

189

Using this button, the developer can discuss the comment with the reviewer before

reworking the pull request. You can comment more if you want because comments

constitute a code review. If you are satisfied, tap the “Finish your review” button at the

top of the page. You are again greeted with a small section, similar to the one shown in

Figure 12-15.

Figure 12-14.  Finishing the review

Chapter 12 Better Project Management: Pull Requests

190

Upon finishing the review, you get three choices: Comment, Approve, or Request

changes. Since it’s your own pull request, you cannot approve or request changes to it.

Choose the default option, which is general feedback on the changes. Let’s put: “Don’t

forget to take into account different browsers” as a comment and submit the review. You

return to the pull request details page, as shown in Figure 12-15.

Figure 12-15.  Your completed code review

The details page shows overall comments and those by the reviewer. Let’s address

these comments.

Chapter 12 Better Project Management: Pull Requests

191

�Update a Pull Request
The comment left by the reviewer suggested that you should make some changes to the

code before the pull request can be accepted. So, let’s do that! You must update it by

pushing new commits to the patching branch.

Note T he patching branch is also called the topic branch because each branch
should have its own topic to resolve.

Open index.html once again and change its contents to the following.

<!doctype html>

<html>

 <head>

 <meta charset="utf-8">

 <title>TODO list</title>

 <style>

 h1 {

 text-align:center;

 }

 h3 {

 text-transform: uppercase;

 }

 ul {

 margin: 0;

 padding: 0;

 }

 ul li {

 cursor: pointer;

 position: relative;

 padding: 12px 8px 12px 40px;

 background: #eee;

 font-size: 18px;

 transition: 0.2s;

 -webkit-user-select: none;

Chapter 12 Better Project Management: Pull Requests

192

 -moz-user-select: none;

 -ms-user-select: none;

 user-select: none;

 }

 ul li:nth-child(odd) {

 background: #f9f9f9;

 }

 ul li:hover {

 background: #ddd;

 }

 </style>

 </head>

 <body>

 <h1>TODO list</h1>

 <h3>Todo</h3>

 Buy a hat for the bat

 Clear the fogs for the frogs

 Bring a box to the fox

 <h3>Done</h3>

 Put the mittens on the kittens

 </body>

</html>

Stage the file again and commit the changes with the message: “Make the list items

unselectable”. Then, push the branch to GitHub again using the git push origin

improve-app-style command.

After you’ve pushed the branch, return to the Pull Requests page. Notice a new

comment on the details page, as shown in Figure 12-16.

Chapter 12 Better Project Management: Pull Requests

193

Figure 12-16.  New changes detected by GitHub

After each commit you push, GitHub updates the pull request to reflect the changes

made to the branch. Click “View changes” to review the new changes. You arrive on

the Code Review page again, but this time, you only see the new changes that haven’t

been reviewed yet. This makes it easier for the reviewer to track the progress of the pull

request.

Chapter 12 Better Project Management: Pull Requests

194

Since there aren’t any additional comments, click “Finish review” and provide a

general comment. In a work environment, you would have the option to approve the

changes, but since you’re working alone, leave a general comment like “Good job!” to

acknowledge the developer’s hard work. The general comment appears on the details

page, as shown in Figure 12-17.

Figure 12-17.  A final comment has been made

You can safely merge your branch into the base branch because your code has been

properly reviewed. Click the big green “Merge pull request” button to accept and merge

it. You are asked for confirmation before the branch is merged. After you confirm, the

branches are merged, and the pull request is closed. You can even delete the source

branch, as Figure 12-18 shows.

Chapter 12 Better Project Management: Pull Requests

195

Figure 12-18.  Pull request accepted

Whether or not you want to delete the branch is up to you. Sometimes, teams don’t

delete branches until a tester has confirmed that everything is working as expected.

You might wonder why your issue wasn’t automatically closed. That’s because

the issue is associated with the develop branch, which is not the default branch. Only

fixes merged into the default branch (main) automatically close issues. But since you’re

concerned about that issue, let’s complete an exercise before moving on to the next

chapter.

EXERCISE: MERGE DEVELOP INTO MAIN

Let’s pretend a tester tested a new feature and said it was okay to release. So, you must

merge the develop into the main branch. The exercise is to do the following.

	1.	G o back to the project page.

	2.	O pen a pull request to merge develop.

	3.	A ccept the pull request and merge.

Chapter 12 Better Project Management: Pull Requests

196

�Summary
Congratulations on getting your first pull requests accepted! (Although it would be more

impressive if you didn’t accept them yourself). This chapter has been quite long, but

it’s important to fully understand it to benefit from the awesome features of GitHub.

Remember to open a pull request for your issues instead of committing directly to the

main branch. Keep in mind that in most professional settings, committing to the main

branch is discouraged and denied by default in GitHub. Each change should come from

a pull request.

You should now be comfortable with using pull requests. If not, consider revisiting

the first sections of this chapter. The key thing to remember is that a pull request is just a

formal way of requesting permission to apply commits to a branch.

You might have some questions now, like “What if somebody else pushed some

changes to the base branch before I completed my pull request?” or “What if someone

else modified the same file as me?” or “What if I’m tasked with resolving another issue

while I’m working on a pull request?” These are indeed important questions, so they

are addressed in the next chapter. You’ll learn about merge conflicts and how to resolve

them. But first, you’ll learn how to avoid them altogether! Let’s go!

Chapter 12 Better Project Management: Pull Requests

PART III

Teamwork with Git

199
© Mariot Tsitoara 2024
M. Tsitoara, Beginning Git and GitHub, https://doi.org/10.1007/979-8-8688-0215-7_13

CHAPTER 13

Merge Conflicts
This chapter revisits how branch merging works and discuss some common problems

you might encounter in your development journey. You explore the solutions to these

problems, particularly when resolving merge conflicts. While merge conflicts can be

frustrating, they are a natural part of collaborative development and can be managed

effectively. Let’s dive into these topics to better understand and address the challenges of

working with branches and merging changes.

�How Does a Merge Work?
It’s important to understand the fundamental purpose of merging in Git. Merging

combines the changes made in one branch with another. However, even with careful

planning, conflicts can arise when multiple people work on the same file. Git allows

for distributed development, meaning each contributor has their own copy of the

project and can make changes independently. When these changes conflict, merging is

necessary to reconcile the differences.

A key principle to remember is that you should only merge a branch when you are

certain that the commits in that branch are final and the work is complete. Merging

incomplete or unfinished work can lead to confusion and disrupt the clarity of your

project’s history. It’s acceptable to open a pull request for review even if you don’t intend

to merge it immediately, but merging should be reserved for fully completed work. This

ensures that your project’s history remains coherent and understandable.

https://doi.org/10.1007/979-8-8688-0215-7_13

200

�Pulling
Let’s revisit the pulling command once again. Pulling means copying a remote branch

to the local repository. For example, you have merged a branch into develop and main

but have not made any changes to the local branches. This means that you are “behind”

in the history timeline because there are commits in the remote repository that you

don’t have.

The word behind is a bit of a misnomer because, as established, every repository

is independent, and there are no central repositories in Git. A main remote repository

makes team collaboration easier. However, in practice, you can exchange commits

as you like; the concept of being “behind” was introduced to simplify developers’

workflows.

Let’s attempt to pull the main branch into the local repository. Please ensure that you

have completed the exercise from the last chapter (merging develop into main) before

proceeding with the steps in this chapter. First, check out your local main branch and

ensure it’s clean.

$ git checkout main

$ git status

If you haven’t made any unexpected changes in your working directory, you should

see the same result depicted in Figure 13-1: a clean directory.

Chapter 13 Merge Conflicts

201

Figure 13-1.  A clean directory is needed before a pull

Now, let’s check the history log before making any changes.

$ git log --online

This displays the commit history of the main branch, which does not include the

recent changes you made because those changes are currently only in the remote

repository. The main branch’s history log should resemble the one shown in Figure 13-2.

Chapter 13 Merge Conflicts

202

Figure 13-2.  The history log before the pull

Figure 13-2 shows that the HEAD is pointing to the branch’s last commit (most of the

time, it is that way). According to this result, the local main branch and the remote main

branch are on the same level, meaning they contain the same commits. However, you

know that this isn’t true because you’ve made changes on the remote main branch. Your

local Git repository doesn’t know this because you haven’t yet fetched any commits from

the server. Let’s do that.

As you saw in the last chapter, the pull and push commands work the same way:

you need to provide the remote repository name and the remote branch name as

parameters. So, the command is as follows.

$ git pull origin main

After executing this code on a clean working directory, you get the result shown in

Figure 13-3.

Chapter 13 Merge Conflicts

203

Figure 13-3.  Pulling main from origin

�Fast-Forward Merge
After you’ve pulled main from origin, you receive a summary of the operation. This

summary includes the number of files changed and the type of merging performed.

In this case, it is a fast-forward merge, which is the easiest type. A fast-forward merge

occurs when the commits on the remote branch are on the same timeline as the local

branch. Consequently, Git only needs to move HEAD to the last commit of the origin

branch. Recall the discussion on commits being linked to one another through parent-

child relationships. If Git recognizes this link between the commits on the first branch

and the branch to be merged, it performs a fast-forward merge. Only a pointer move is

necessary, making Git very efficient. You should always aim to use fast-forward merging

because it’s the easiest and, most importantly, the cleanest method for the history log.

Speaking of the history log, let’s check it to see the changes you’ve fetched from the

server. Once again, use the --oneline option to obtain a more readable result.

$ git log --oneline

Chapter 13 Merge Conflicts

204

The result is shown in Figure 13-4.

Figure 13-4.  History log after pulling from origin

You have additional commits now! Commits from the remote branch have been

merged into your local branch. Consequently, your local main branch now points to the

same commit as the origin branch.

Let’s break this down. First, let’s discuss the branch colors. Green branches represent

your local branches, while red branches are remote branches. Remote branches have

two names, as their names are combined with the remote repository name.

You can observe that improve-readme-description, develop, and origin/develop

are at the same level. You know this is not correct because you made changes to

develop on GitHub. Git won’t know these changes until you pull the develop branch

from origin.

You’ll also notice there are commits in this history that you didn’t make. Specifically,

“Merge pull request #3 from link-skyloft/develop” and “Merge pull request #2 from link-

skyloft/improve-app-style”. These are called merge commits, which Git creates when you

merge two or more commits. This project merges improve-app-style into develop and

develop into main. Each of these merges generates a merge commit.

Chapter 13 Merge Conflicts

205

Like regular commits, you can view more information about them using the git show

command. Let’s examine the details of the first merge commit.

$ git show 438a30e

This results in a familiar view: the commit intel view. You should get the same result

shown in Figure 13-5.

Figure 13-5.  A detailed view of a merge commit

This view might not seem particularly interesting as it primarily displays the commit

parents and the user who performed the merge. However, it’s important to note that the

committer and the merger can be different individuals. Additionally, it’s advisable to

include keywords for resolving issues in the merge commit message rather than in the

commit messages themselves. Most of the time, a single commit won’t be sufficient to

address a problem, so including these keywords in the pull request message ensures that

the issue is only closed when the branch is merged.

Chapter 13 Merge Conflicts

206

The history log displayed in Figure 13-4 is visually appealing but doesn’t effectively

illustrate the concept of branches and merges. To get a more appropriate representation,

you can use the --graph parameter with --oneline when using the git log command.

This combination provides a graph-style view of your commit history, making it easier to

understand branching and merging.

$ git log --oneline --graph

This command produces simple graphs like the one shown in Figure 13-6.

Figure 13-6.  The history graph of the project

The log graph indeed provides a more detailed history of your project. Each

asterisk represents a commit, as usual, but there’s a new element shown on this graph:

branches. You can see how the project’s history has diverged and merged over time. For

example, you diverged from the main branch to create the develop branch, which in turn

diverged to form the improve-app-style branch. Commits were made to this branch

before merging it back into develop. Finally, the develop branch was merged into the

main branch.

When working on a project with many branches and frequent merges (as you should

in a collaborative environment), the graph view is more helpful than the traditional view.

It provides a clearer visual representation of your project’s history, and the use of colors

can make it even more intuitive.

Chapter 13 Merge Conflicts

207

If you want to maintain a cleaner history log, consider deleting the local improve-

app-style branch, especially if it’s no longer needed for your current work. However,

ensure that you’ve already pushed any relevant changes to the remote repository or

merged them into other branches before deleting the branch locally.

$ git branch -D improve-app-style

Deleting an already merged branch carries little risk, but many developers avoid it in

case they need to revisit it later. Most of the time, this situation doesn’t arise. A good rule

of thumb is to delete branches only when you’re certain you won’t need to check them

out again for testing or other purposes.

What is demonstrated here is the simplest form of merging: a fast-forward. However,

you’re in a completely separate context after you’ve diverged from a branch, as you

did with main and develop. You won’t automatically receive updates from the other

branches; you need to request them explicitly. This also means that the other branches

evolve independently of your branch. When you create a pull request on a branch, that

branch may have already changed. For instance, multiple contributors can create new

branches from develop and work on their respective issues. These issues may not be

resolved simultaneously, so each pull request is accepted one after the other. This is

where the challenge arises: your target branch can change independently while you’re

working on your issue. The reality you’re working with might evolve when you finish

your changes. Perhaps multiple people have modified the same files in their respective

branches. These situations occur frequently in your career, and often, a pull request

won’t go as smoothly as ours did in this chapter. These challenges are known as conflicts,

and learning how to resolve them is crucial to your Git journey. Let’s delve into it!

�Merge Conflicts
The best way to understand merge conflicts is to create one. So, let’s deliberately

introduce a conflict into the project! First, ensure that you’re on your local develop

branch. Since you haven’t made any changes to this branch, it should still be clean.

$ git checkout develop

Next, let’s check the history log to see the current state of the branch.

$ git log --oneline --graph

Chapter 13 Merge Conflicts

208

You get the same result because you haven’t pulled from “origin” yet. The result is

depicted in Figure 13-7.

Figure 13-7.  develop history log before pull

There is nothing spectacular here—just a good old log without any problems. Since

you deleted the improve-readme-description branch, no branch is left in the develop

history log.

The log says that develop and origin/develop are in the same state, but this isn’t

true because you made changes on GitHub. But instead of pulling from origin, let’s

make changes in the branch first—changes that cause conflicts with the changes

from origin.

Open index.html and replace its contents with the following code.

<!doctype html>

<html>

 <head>

 <meta charset="utf-8">

 <title>TODO list</title>

 <style>

 h1 {

 text-align: left;

 }

Chapter 13 Merge Conflicts

209

 h3 {

 text-transform: capitalize;

 }

 li {

 overflow: hidden;

 padding: 22px 0;

 border-bottom: 2px solid #eee;

 }

 </style>

 </head>

 <body>

 <h1>TODO list</h1>

 <h3>Todo</h3>

 Buy a hat for the bat

 Clear the fogs for the frogs

 Bring a box to the fox

 <h3>Done</h3>

 Put the mittens on the kittens

 </body>

</html>

Run git diff to review your changes. These were only small changes, so it shouldn’t

be a big deal, right?

$ git diff

The result is very familiar because you see it all the time on GitHub and with

git show. Your result should be the same as mine, as shown in Figure 13-8.

Chapter 13 Merge Conflicts

210

Figure 13-8.  Difference between develop and the working directory

Nothing new here. Let’s add the changed file to the staging area and then commit the

current project.

$ git add index.html

Tip I s opening your text editor for each commit tiresome? Well, you can skip it
if you are in a hurry. To commit the project while skipping the commit message
editing phase, you can pass the commit message as a parameter.

$ git commit -m "<commit_message>"

Don’t forget the -m!

$ git commit -m "Change CSS to introduce conflicts"

Chapter 13 Merge Conflicts

211

Caution  Using the shorthand form of the git commit command can save you a
few seconds, but it also makes it easier to make mistakes because you won’t have
the chance to review your changes before committing. I highly suggest only using
it when you have only one changed file. Plus, you can’t use it to write a multiline
commit message.

This won’t produce any results that you haven’t seen before. Figure 13-9 shows a

standard result because there is no conflict yet.

Figure 13-9.  The commit that introduces conflicts

To produce the conflict, you need to retrieve the commits you pushed to develop

when merging a branch into it.

Chapter 13 Merge Conflicts

212

�Pulling Commits from origin
You’ve already seen the pull command in action, but in this scenario, you encounter a

little problem: you’ve made changes to the same file in different commits. This leads to

conflicts that must be resolved before you can complete the pull operation. Don’t forget

that pulling means copying remote commits into your local repository.

Let’s start by directly pulling the develop branch from origin. Again, the command

is very similar to the push command. You need to specify the remote repository and

branch name.

$ git pull origin develop

The result is quite different from what you’ve seen earlier. Instead of a successful

merge, you encounter a conflict, and the repository is now in a state where it’s stuck

between two conflicting versions. Figure 13-10 shows an example of this.

Figure 13-10.  Merge conflict during the pull command

Let’s break down the result step by step. First, the URL is being used for the pull,

which is straightforward.

Chapter 13 Merge Conflicts

213

Next, you encounter the first action performed by Git, which is called fetch. Its role

is to copy the selected branch from the remote repository to the local repository. This

branch is then stored in a temporary storage area called FETCH_HEAD. Just like HEAD refers

to the last commit you are working from, FETCH_HEAD references the tip of the branch

that you just fetched from origin.

The following action is a basic merge, like you’ve seen before. You fetched the remote

branch, and it’s time to merge it with the current branch. The details of the action specify

the branches being merged, which are develop and origin/develop. It even specifies

the commits that would be used. Your commit names are different, but to verify the first

commit, you can use the following command to check the commit log.

$ git log --oneline

You find the commit name on the second to last commit, as shown in Figure 13-11.

Figure 13-11.  The second to last commit is used for the merge

Note that the merge won’t use the last commit because that’s the commit you are

currently working on, the one that introduced the changes.

Chapter 13 Merge Conflicts

214

Figure 13-10 also references another commit for the merge, and you can find that

commit on origin/develop. Select the develop branch to see the history log of the

remote branch on your project page on GitHub. Alternatively, you can directly access

it using your GitHub link, such as https://github.com/link-skyloft/todo-list/

commits/develop. This provides you with a view of the latest commits, as shown in

Figure 13-12.

Figure 13-12.  The commits on origin/develop

As you can see, the second commit referenced in Figure 13-10 is the latest commit of

the remote branch, the one that was created by the previous merge on GitHub. You can

click it and access the commit details to gather even more information. You can refer to

Figure 13-13 for an example of this.

Chapter 13 Merge Conflicts

https://github.com/link-skyloft/todo-list/commits/develop
https://github.com/link-skyloft/todo-list/commits/develop

215

Figure 13-13.  More info on the merge commit

Figure 13-13 shows that this commit has two parents because it’s a commit created

by merging two branches. One of the parents is also referenced in Figure 13-10 because it

was the last commit pushed before you merged the branches on GitHub.

Now, let’s return to Figure 13-10. In the next part of the result, Git attempts to merge

the branches automatically. This usually goes smoothly when different files or different

parts of the files have been changed in the branches to be merged. However, in this case,

conflicts were found, so the merge failed. It’s now up to you to resolve these conflicts.

Git tried to merge the local develop branch with FETCH_HEAD. Because both branches

contain changes to the same parts of the index.html file, you must decide which

changes to keep. You’ll see how to do that in the next section.

The last information to note from Figure 13-10 is the state of the local repository.

If you look at the left part of the console, you’ll see that the repository is in the

develop|MERGING state instead of the standard develop branch. This indicates that there

are unresolved conflicts in the project, and the merge (and, by extension, the pull) is

not complete. You can use the git status command to get more information about the

current state of the repository.

$ git status

This provide you with a new result that you haven’t seen before, as shown in

Figure 13-14.

Chapter 13 Merge Conflicts

216

Figure 13-14.  Status of the merge

This result is quite straightforward and provides helpful guidance for the next steps.

First, it advises on what to do: resolve conflicts and commit the project. Additionally,

it mentions a way to abort the current merge if you decide to give up on resolving the

conflicts. In some cases, this can be a good option because you can work on the local

branch to resolve the conflicts before attempting the merge again. For example, you

could abort this merge, revert the commit that introduced the conflicts, and then pull

again. This would result in an automatic merge without any conflicts. However, for the

sake of learning, let’s resolve the conflicts the hard way!

Next, there’s a list of files affected by the merge. In this case, only index.html is

involved and has been modified in both branches. Let’s open this file to examine the

conflicts. You’ll see substantial changes in it, as shown in Figures 13-15 and 13-16.

Chapter 13 Merge Conflicts

217

Figure 13-15.  index.html in Visual Studio Code

Chapter 13 Merge Conflicts

218

Figure 13-16.  index.html in vim

You’ll notice the three prominent lines that divide your code within the file. These

lines are consistent in every code conflict but might appear differently depending

on your text editor. For instance, an integrated development environment (IDE) like

Visual Studio Code may render the code with different colors and even provide buttons

to interact with the code, as shown in Figure 13-15. On the other hand, a basic text

editor might display these lines as regular lines of code, potentially disrupting your

color scheme. In Figure 13-16, I used Vim without additional tools, resulting in a more

straightforward rendering. However, there are many plugins available to enhance this

experience.

Chapter 13 Merge Conflicts

219

�Resolving Merge Conflicts
Let’s start by explaining the meaning of those three lines. The “<<<<<<<” and “>>>>>>>”

lines delineate the region where a conflict exists. It’s important to note that a file can

have multiple conflicting regions.

These regions are separated by the “=======” line, which displays the code from

the two branches. The first part represents the code from your current branch, while the

second part represents the code from the branch you’re attempting to merge.

To resolve the merge conflict, you need to edit the file so that only one changeset

remains. This doesn’t necessarily mean you must choose between the two changesets;

you need to combine them into one coherent code. In this case, retaining most of the

second part is advisable since those changes have already been reviewed and accepted.

However, there might be some elements from the first part that should be incorporated.

To achieve this, copy the code you need from the first part and paste it into the

second part. The resulting code should look like the following.

<!doctype html>

<html>

 <head>

 <meta charset="utf-8">

 <title>TODO list</title>

 <style>

 h1 {

 text-align: left;

 }

 h3 {

 text-transform: capitalize;

 }

<<<<<<< HEAD

 li {

 overflow: hidden;

 padding: 22px 0;

 border-bottom: 2px solid #eee;

=======

Chapter 13 Merge Conflicts

220

 ul {

 margin: 0;

 padding: 0;

 }

 ul li {

 cursor: pointer;

 position: relative;

 padding: 12px 8px 12px 40px;

 background: #eee;

 font-size: 18px;

 transition: 0.2s;

 -webkit-user-select: none;

 -moz-user-select: none;

 -ms-user-select: none;

 user-select: none;

 overflow: hidden;

 }

 ul li:nth-child(odd) {

 background: #f9f9f9;

 }

 ul li:hover {

 background: #ddd;

>>>>>>> 33753ecaebae2ba1c3ffdc1e543d372385884c78

 }

 </style>

 </head>

 <body>

 <h1>TODO list</h1>

 <h3>Todo</h3>

 Buy a hat for the bat

 Clear the fogs for the frogs

 Bring a box to the fox

Chapter 13 Merge Conflicts

221

 <h3>Done</h3>

 Put the mittens on the kittens

 </body>

</html>

You’ve only copied one line from the first part since the second part was already

almost complete. Now, it’s time to clean the file of unnecessary parts. First, you can

remove the first part of the code conflict (between “<<<<<<<” and “=======”) because

you don’t need it anymore. Then, you can simply remove the remaining line (“>>>>>>>”)

because it doesn’t make sense to keep it. The file then looks like the following.

<!doctype html>

<html>

 <head>

 <meta charset="utf-8">

 <title>TODO list</title>

 <style>

 h1 {

 text-align: left;

 }

 h3 {

 text-transform: capitalize;

 }

 ul {

 margin: 0;

 padding: 0;

 }

 ul li {

 cursor: pointer;

 position: relative;

 padding: 12px 8px 12px 40px;

 background: #eee;

 font-size: 18px;

 transition: 0.2s;

Chapter 13 Merge Conflicts

222

 -webkit-user-select: none;

 -moz-user-select: none;

 -ms-user-select: none;

 user-select: none;

 overflow: hidden;

 }

 ul li:nth-child(odd) {

 background: #f9f9f9;

 }

 ul li:hover {

 background: #ddd;

 }

 </style>

 </head>

 <body>

 <h1>TODO list</h1>

 <h3>Todo</h3>

 Buy a hat for the bat

 Clear the fogs for the frogs

 Bring a box to the fox

 <h3>Done</h3>

 Put the mittens on the kittens

 </body>

</html>

The file is back to normal, with a merged version of the conflicting codes and no

more of those three big lines. Now, you can continue the merge process. If you forgot the

next step, you could run git status again (see Figure 13-14).

Chapter 13 Merge Conflicts

223

So, now that the file is ready, you must stage it.

$ git add index.html

After that, you must commit the project as usual.

$ git commit

You are greeted by the familiar commit message view, but with a little twist: the

commit message is already written. Figure 13-17 shows an example of this.

Figure 13-17.  The default commit message

Of course, you can always modify the commit message, but I suggest leaving the

default one unless you follow a personal or company guideline. You can save the commit

message and move on.

If you look at the command result (see Figure 13-18), you see that you are back on

the develop branch and no longer in the merging state.

Chapter 13 Merge Conflicts

224

Figure 13-18.  Back to normal state

You can also check if the merge has been completed by checking the history log.

Make sure to add a graph option for a beautiful result.

$ git log --oneline --graph

Chapter 13 Merge Conflicts

225

This produces this stunning visual shown in Figure 13-19.

Figure 13-19.  The recent history of the project

You can see on that graph that when the origin/develop branch was merged, all

its history was imported. So, it seems like there is a branch from a branch. In big Git

projects, it happens all the time.

�Summary
Congratulations on completing this chapter! You’ve learned about pulling code from a

remote server, handling merge conflicts when two branches modify the same code, and

resolving those conflicts.

Remember that pulling involves two steps: fetching, which copies the remote branch

into a temporary branch, and merging, which combines the temporary branch with the

current one. When conflicts arise, you must manually decide which code to keep, stage

the changes, and commit them.

Merge conflicts can be frustrating, but they are a common part of working with Git.

In the next chapter, you’ll learn how to reduce the occurrence of conflicts and manage

branches more effectively. Keep up the good work!

Chapter 13 Merge Conflicts

227

CHAPTER 14

More About Conflicts
The last chapter was intense, wasn’t it? It talked about what merge conflicts are and

when they would happen. You also saw how to resolve them manually. Don’t worry.

This chapter is much easier to digest. It covers how to push your branch to remote after

a merge conflict. Also, you will see some strategies to adopt to reduce the number of

conflicts that might happen. Let’s go!

�Pushing After a Conflict Resolution
I’ve made some grammar and style improvements to the text. Here’s the revised version.

As you saw in the earlier chapters, pushing means copying the local commits to a

remote branch. This means that every commit you have locally is applied to the remote

repository.

You learned in the last section that a pull action is just two actions executed one

after the other: a fetch action that copies the remote branch into a temporary location

and a merge action that merges the temporary branch with the local one. Since the pull

and push actions are essentially the same but in different directions, they work similarly

when pushing your local branch to origin.

So, a push action is divided into two parts: the copy of your local branch to the

remote and the merging of the branches. The only difference between push and pull

actions is who initiates the action: you or the server.

Under normal circumstances, the push goes smoothly because the merge is

automatically performed using fast-forward, which is possible when the commits on

your local branch can be directly linked to the commits on the remote branch. For

example, simply adding commits one after another to the main branch (like you’ve done

until now) and then pushing them results in a fast-forward merge, with no need to create

a merge commit.

© Mariot Tsitoara 2024
M. Tsitoara, Beginning Git and GitHub, https://doi.org/10.1007/979-8-8688-0215-7_14

https://doi.org/10.1007/979-8-8688-0215-7_14

228

It also happens in this situation since you’ve only added new commits to the develop

branch. You won’t encounter any problems unless you or someone else tampered with

the commit history in the past. Never attempt to do this.

With that said, let’s push the develop branch using the usual command.

$ git push origin develop

As expected, you get the usual result shown in Figure 14-1.

Figure 14-1.  Pushing the develop branch

In conclusion, pushing a branch back to origin after pulling and merging the changes

shouldn’t lead to unexpected behavior unless someone has tampered with the commit

history.

�Review Changes Before Merging
Before attempting any merge, reviewing all the changes your branch introduces is

crucial. This step should not be ignored, as it can save you countless hours of battling

with Git.

Chapter 14 More About Conflicts

229

�Check the Branch Location
First, ensure that you are in the correct branch location. You must have the target branch

checked out to merge two branches together. For instance, if you intend to merge

develop into main, you should first check out main. The commands would be as follows

(please don’t execute the second command at this moment).

$ git checkout main

$ git merge develop

�Review the Branch Differences
Reviewing differences is not limited to commits; you can also use it to check the

variances between two branches. This is particularly helpful in delicate situations like

merging. The command is relatively straightforward.

$ git diff branch1..branch2

Take note of the two dots between the two branch names. This command displays

the differences between the two branches in a familiar diff view. Let’s compare develop

to main.

$ git diff main..develop

The result is quite like the diff output when comparing commits. Refer to Figure 14-2

as an example.

Chapter 14 More About Conflicts

230

Figure 14-2.  Differences between branches

If you’ve made numerous changes and don’t want to scroll through them all in the

terminal, you can also view them on GitHub. Simply push the branch and open a pull

request!

�Merging
You’ve learned various concepts about Git merges, but let’s summarize them to better

understand this feature. As discussed, merging involves combining two branches or,

more accurately, integrating the changes from one branch into another.

Branches can be created from any other branch, and once a branch is created, it

becomes independent from its parent branch. Changes made in one branch do not

immediately affect the other; they remain separate until it’s time to merge.

Consider a scenario where you create a child branch and make commits on that new

branch. When it’s time to merge, several situations can arise.

Chapter 14 More About Conflicts

231

•	 No changes in parent branch: If the parent branch hasn’t changed

(no new commits have been made), and you attempt to merge, Git

performs a fast-forward merge. Technically, this isn’t a merge but a

reference change in Git. Git moves the reference of the parent branch

forward, effectively appending the commits from the child branch

to the parent branch. This is the easiest type of merge but is less

common, especially in collaborative settings.

•	 Parent branch has changes: If the parent branch has changed

(received new commits), a fast-forward merge is not possible.

Instead, a true merge, or a three-way merge, occurs. This type of

merge was discussed in the last chapter. It creates a new commit

that incorporates all the changes from the child branch and appends

this commit to the parent branch. This new commit is called a merge

commit, it has two parents: one from the parent branch and one from

the child branch. A conflict can arise if different commits in both

branches modify the same lines of code, requiring the developer to

manually select which changes to keep.

In essence, merges are a sophisticated way of creating commits that contain all the

changes from a child branch and adding them to the parent branch. Understanding this

process is crucial for minimizing the frequency of merge conflicts.

�Reducing Conflicts
In the previous chapter, you learned that resolving conflicts can be a challenging

and time-consuming process, especially when conflicts are extensive. Therefore, it’s

advantageous to adopt strategies to minimize conflicts. This section explores these

strategies.

�Having a Good Workflow
Many problems in Git and GitHub can be mitigated by implementing a well-defined

workflow. The most common Git workflow was covered in previous chapters, but let’s

revisit it for clarity.

Chapter 14 More About Conflicts

232

First and foremost, it’s essential not to commit directly to your main branches. In

other words, any changes you intend to make to your primary or development branches

should be carried out through merging. Each merge should be initiated via a pull

request. This approach allows you to receive feedback as you work, provides testers with

a clear means of tracking project alterations, and ensures that all changes are well-

documented in your project’s history. Even if you’re working solo, using PRs to introduce

changes to main branches is advisable.

Every pull request should be focused on resolving a single issue. Whether it’s a bug

fix, a feature enhancement, or documentation changes, keep each pull request dedicated

to one specific task. Avoid the temptation to address multiple issues in a single pull

request, which can lead to merge conflicts.

Another aspect that developers often overlook is line endings and file formatting. As

discussed in an earlier chapter, different operating systems use different line endings.

Your team must agree on a consistent line-ending style for each project. Most teams

opt for Unix-style line endings, so Windows users should configure their Git clients

accordingly. The specifics can vary regarding formatting, but all team members must

adhere to the same formatting standards for indentations and line returns.

Caution T hings might get heated when discussing tabs vs. spaces. Prepare your
arguments in advance!

�Aborting a Merge
Keep in mind that many merge conflicts won’t necessarily arise from clashes in code

logic; some can stem from differences in formatting and whitespace. For instance, a

trailing space or variations in the number of indentation spaces can lead to conflicts,

even if the code remains unchanged.

When you encounter conflicts of this nature, it’s often best to abort the merge,

reconcile the formatting differences, and then attempt the merge again. You can abort a

merge using the following command.

$ git merge --abort

This action won’t delete any of your commits; it simply cancels the ongoing merge

and leaves you in your current state.

Chapter 14 More About Conflicts

233

�Using a Visual Git Tool
Resolving conflicts can be challenging when working with a basic text editor, as it often

disrupts the code’s color scheme and formatting. An effective solution to this issue

is to employ specialized Git tools. These tools can take the form of IDE extensions or

dedicated Git software. The next chapter explores these options in more detail!

�Summary
This chapter was a valuable refresher on merge in Git. It explored the different types of

Git merges and the scenarios in which they come into play. Additionally, it delved into

the mechanics of how a merge functions, which is essentially about integrating commits

from one branch into another.

The key takeaways from this chapter are the various strategies you can employ to

reduce the occurrence of merge conflicts. While you might not be able to eliminate them

entirely, following these guidelines helps keep conflicts to a minimum.

Up to this point, you’ve made significant progress in the Git journey, all through the

command-line interface. It’s time to add some color to the Git projects by exploring Git

GUIs in the next chapter!

Chapter 14 More About Conflicts

235

CHAPTER 15

Git GUI Tools
The earlier chapters covered many important Git features and concepts. You’ve delved

into commits, branches, pull requests, and merging. Armed with these concepts, you’re

already equipped to accomplish a wide range of tasks in Git. However, one small caveat:

you’ve primarily used the terminal or console window for these operations. In this

chapter, you won’t encounter new Git concepts or features. Instead, you’ll learn how to

apply what you already know with style. 😊
Let’s begin by exploring the default tools bundled with Git and then delve into

integrated development environments that seamlessly integrate Git functionality.

Finally, you’ll look at specialized tools designed to enhance your Git experience.

�Default Tools
If you’ve followed the installation steps outlined in the earlier chapters, you should

already have these tools installed on your computer. If not, you can easily obtain them

from your preferred software store. These default tools are bundled with Git to offer users

straightforward GUIs (Graphical User Interfaces) for navigating their repositories and

preparing commits. They are accessible on almost any operating system, so you needn’t

worry about compatibility. I’m presenting them in this book for historical context

because they are integrated directly into Git.

�Committing: git-gui
The first tool to explore is called git-gui, which serves as a graphical interface for

committing changes in Git. You’ll use it for committing your projects and reviewing

proposed modifications. For more information about git-gui, visit https://git-scm.com/

docs/git-gui.

© Mariot Tsitoara 2024
M. Tsitoara, Beginning Git and GitHub, https://doi.org/10.1007/979-8-8688-0215-7_15

https://git-scm.com/docs/git-gui
https://git-scm.com/docs/git-gui
https://doi.org/10.1007/979-8-8688-0215-7_15

236

To open git-gui, you can follow the same methods you use to open Git Bash: through

the command line, context menu, or the Start page. Choose the method that suits you

best. On Windows and Debian-based operating systems, you can open a Git GUI by

navigating to the directory of your repository and right-clicking an empty space. Doing

so brings up a menu similar to the one shown in Figure 15-1.

Figure 15-1.  Windows context menu

The menu shows you can access Git GUI or Git Bash. Let’s select Git GUI. This opens

a small program window that provides details about the current status of your working

directory. You can see what the window looks like in Figure 15-2.

Chapter 15 Git GUI Tools

237

Figure 15-2.  Git GUI interface

If you don’t want to use the context menu or cannot, you can open Git GUI by

launching a terminal or command prompt in the directory of your Git repository and

running the following command.

$ git gui

The Git GUI interface is lightweight and consistent across different operating

systems, making it easy to use. It is divided into four main sections.

•	 Top left: A list of edited files not staged for commit.

•	 Bottom left: A list of files that have been staged for commit.

•	 Top right: A diff view that displays the changes between the current

state and the previous commit.

•	 Bottom right: A text area for entering the commit message.

Since you haven’t made any changes to the project, everything is currently empty.

To demonstrate how Git GUI works, let’s make some additional commits. First, ensure

that you are on the main branch, and then create a new branch from it. You can do this

by going to the Branch menu and selecting “Checkout...”. This opens the branch selection

window, as shown in Figure 15-3.

Chapter 15 Git GUI Tools

238

Figure 15-3.  Choosing a branch to check out

You’ll notice that information about its last commit appears when you hover

your cursor over a branch. This can help identify the right branch, although it ideally

shouldn’t be necessary if you have clear and descriptive branch names.

To proceed, check out the main branch and create a new one. You can do this by

selecting “Create...” from the Branch menu. This opens the branch creation window, as

Figure 15-4 shows.

Chapter 15 Git GUI Tools

239

Figure 15-4.  Creating a new branch

The first input area is crucial; it’s where you provide the name of your new branch.

Let’s name the branch separate-code-and-styles.

The second input is a choice menu where you need to select the branch you want

to create from. In this case, you want to create a new branch based on your local main

branch. So, choose Local Branch and select main.

The third part consists of options, and it’s generally a good idea to stick with the

default settings. With the default options, Git fetches the latest commits from the remote

tracking branch and checks out the new branch.

Now, click Create. You’ll notice that the message box in the top left corner now lists

separate-code-and-styles as the current branch. To provide some perspective, here

are the equivalent command-line commands for what you just did.

$ git checkout main

$ git branch -b separate-code-and-styles

Chapter 15 Git GUI Tools

240

You can start working on the commit now that you’re in the correct branch. Each

commit should have an issue resolution as its goal. Create the issue.

EXERCISE: CREATE AN ISSUE

	1.	 Go to GitHub issues.

	2.	 Create an issue called “Separate code and styles”.

	3.	T ake note of the issue number.

Now you’re ready to commit! Create a new file called style.css in your repository

and paste it into the following code.

h1 {

 text-align:center;

}

h3 {

 text-transform: uppercase;

}

ul {

 margin: 0;

 padding: 0;

}

ul li {

 cursor: pointer;

 position: relative;

 padding: 12px 8px 12px 40px;

 background: #eee;

 font-size: 18px;

 transition: 0.2s;

 -webkit-user-select: none;

 -moz-user-select: none;

 -ms-user-select: none;

 user-select: none;

}

Chapter 15 Git GUI Tools

241

ul li:nth-child(odd) {

 background: #f9f9f9;

}

ul li:hover {

 background: #ddd;

}

Then, open index.html and change its content to the following.

<!doctype html>

<html>

 <head>

 <meta charset="utf-8">

 <title>TODO list</title>

 <link rel="stylesheet" href="style.css" />

 </head>

 <body>

 <h1>TODO list</h1>

 <h3>Todo</h3>

 Buy a hat for the bat

 Clear the fogs for the frogs

 Bring a box to the fox

 <h3>Done</h3>

 Put the mittens on the kittens

 </body>

</html>

Save the two files, and now let’s switch to Git GUI to see the result. Initially, you won’t

see any changes because Git GUI isn’t aware of the recent modifications. To make Git

GUI recognize the changes, click Rescan near the commit message box. This refreshes

the view, and you’ll see the result, which is depicted in Figure 15-5.

Chapter 15 Git GUI Tools

242

Figure 15-5.  Changes shown on Git GUI

Now that the changes have been loaded, you can observe the list of modified files in

the top left of Git GUI, which represents the unstaged files. You’ll notice that these files

have different icons, each indicating a different status.

•	 An empty file icon signifies a new file (never been committed).

•	 A file icon indicates a modified file (previously committed).

•	 A question mark (?) icon suggests a deleted file (also previously

committed).

This view should remind you of the git status command. Clicking Rescan in Git

GUI is equivalent to executing the following command in the terminal.

$ git status

In this case, you’ve modified index.html and created style.css. If you click the file

names (not the icons), you’ll see the diff view changes, as illustrated in Figure 15-6.

Chapter 15 Git GUI Tools

243

Figure 15-6.  Diff on the newly created style.css file

It’s certainly quicker than executing git diff! Also, it’s easier on the eyes if you have

a lot of changed files. So, clicking the file name is equivalent to executing the following

commands.

$ git diff index.html

$ git diff style.css

Now is the time to stage the files in preparation for the commit. Staging and

unstaging a file is easy: just click its icon. Alternatively, you can select the files you want

to stage (by clicking their names) and select “Stage to Commit” in the Commit menu.

Clicking the file icons is the same as executing the following commands.

$ git add index.html style.css

$ git reset HEAD index.html

$ git reset HEAD style.css

See? Way quicker than typing commands!

Chapter 15 Git GUI Tools

244

You can finally commit the project! But first, make sure that all the files you created

or modified are staged, meaning that they are in the bottom-left section. Then, you

can write your commit message in the bottom right section of Git GUI, just like in

Figure 15-7.

Figure 15-7.  Writing of a commit message

You’re ready to commit now that the files are staged and the commit message is

written. Click the Commit button near the commit message box. After doing so, Git GUI

returns to its normal, empty state. You’ve committed using the graphical tool!

Clicking the Commit button has the same result as executing the following

command.

$ git commit -m "Move style code to external file"

Since you’re my best student (don’t tell the others), I’ll let you make another commit

in the branch.

Chapter 15 Git GUI Tools

245

EXERCISE: MAKE ANOTHER COMMIT

	1.	O pen README.md.

	2.	A dd this line at the end of the file: License: MIT.

	3.	 Create a new file called LICENSE.

	4.	 Copy the license text from https://choosealicense.com/licenses/mit/

into the LICENSE file.

	5.	S tage both files.

	6.	 Commit with the message, “Add MIT license”.

Great job! Now you have two commits on your new branch, and it’s time to push

them to the remote repository. Clicking the Push button gives you the result shown in

Figure 15-8.

Figure 15-8.  Pushing a branch

Chapter 15 Git GUI Tools

https://choosealicense.com/licenses/mit/

246

It’s a straightforward interface. You just have to select the branch you want to push

and the location where you want to push it.

The current branch is selected by default, so you don’t have to change anything.

The second section is the destination selection drop-down, and again, you don’t have

to change anything because you only have one remote repository. Ignore the options for

now; you see them in a later chapter.

Press the Push button to push! If you use HTTPS authentication to connect with

GitHub, you are asked for your GitHub username and password and then get the result

shown in Figure 15-9.

Figure 15-9.  Push result

Tip I f you don’t want to enter your password each time you push, you can cache
them or use SSL authentication. All of this was explained in the previous chapters.

Nothing new here. You got the same result as the following command.

$ git push origin separate-code-and-styles

Chapter 15 Git GUI Tools

247

EXERCISE: CREATE A PULL REQUEST

	1.	 Follow the link you got after pushing.

	2.	 Create a pull request with this description: “Fix #10” (replace the number with

the issue number you created earlier).

	3.	 Merge the PR.

	4.	R ejoice.

And that’s how you commit with Git GUI! Simple, right? And very quick, too. It’s a

great tool that can save you time when reviewing commits. Speaking of commits, let’s

look at the other default tool!

�Browsing: gitk
The previous section explained creating and pushing commits. Now, you will visualize

those commits in their natural habitat: the repository. gitk is a simple tool to visually

represent your project’s history. You can think of it as a more powerful version of the

git log command. More information is available at https://git-scm.com/docs/gitk.

Since you already have the Git GUI open, let’s use it to open gitk. Simply choose

Visualize All Branch History from the Repository menu. You see the window shown in

Figure 15-10.

Chapter 15 Git GUI Tools

https://git-scm.com/docs/gitk

248

Figure 15-10.  The gitk interface

At the top of the window is a list of all your project’s commits from all branches. It is

presented in a graphical view that you can reproduce in the console with the following

command.

$ git log --oneline --graph

You can click the commits to get more information about them. Selecting a commit

updates the views at the bottom of the window. The bottom-left is a diff view again,

but with a twist: you can choose to view the old or the new version of the files. The

bottom-right shows a list of all the files changed in the commit. You can click them to

see the changes in the diff view. Clicking a commit is the equivalent of executing the

following code.

$ git show <commit_name>

And that’s it for gitk, the default browsing tool of Git! Since you can now commit and

browse with the default graphical tools, it’s time to introduce you to other tools.

Chapter 15 Git GUI Tools

249

�IDE Tools
As you saw in the previous section, committing with a graphical tool is much faster than

typing in the console. However, there’s still a drawback: you must leave your integrated

development environment (IDE) to use these tools. Wouldn’t it be great if you could

access these graphical tools directly from your code editor?

This is possible with many modern code editors. I’ll introduce you to two popular

IDEs that have Git integration built-in, allowing you to use Git seamlessly within your

development environment. Additionally, if you prefer to use a different code editor or

are already attached to your current one, chances are that it also has integrated Git tools

or plugins, especially if it’s a modern IDE. Each IDE offers a unique interface and user

experience, so in this section, I’ll provide an overview of the available features without

going into specific details.

�Visual Studio Code
Visual Studio Code, often abbreviated as VS Code, is a highly popular code editor.

It’s a lightweight IDE developed by Microsoft, and you can download it from

https://code.visualstudio.com. Despite being relatively new, it has quickly gained

popularity and boasts a wide range of integrated features, including robust Git

integration. You can get a glimpse of the look and feel of VS Code in Figure 15-11.

Chapter 15 Git GUI Tools

https://code.visualstudio.com

250

Figure 15-11.  Visual Studio Code

It features a familiar interface like any other IDE but with a little bonus: you’ll find

traces of Git integration throughout the editor. First, the edited parts are highlighted

when you modify a tracked file (in the example, README.md). There’s no need to run git

diff separately anymore.

You can see the current branch name in the bottom left of the window. If you click it,

you can select the branch you want to switch to or create a new one. If you have unstaged

changes, you’ll see a little asterisk (*) next to your branch name and an M icon next to

the file names with changes. If you’ve staged but not committed files, you’ll see a plus

sign (+).

Clicking the source control icon in the left-hand sidebar opens the Git tab, as

illustrated in Figure 15-12.

Chapter 15 Git GUI Tools

251

Figure 15-12.  Source Control view

This view looks and works very much like git-gui, so I’ll let you discover it yourself!

�Specialized Tools
The previous sections explored the default Git tools and Git integration in popular IDEs,

and now, let’s delve into some specialized tools designed specifically for Git.

�GitHub Desktop
GitHub Desktop is a great choice if you appreciate the functionality of the default Git

tools (like gitk and git-gui) but find their interfaces outdated. It offers a more modern

and user-friendly interface while retaining all the essential features of those tools. You

can download GitHub Desktop from https://desktop.github.com/. The interface of

GitHub Desktop is depicted in Figure 15-13.

Chapter 15 Git GUI Tools

https://desktop.github.com/

252

Figure 15-13.  GitHub desktop

�Summary
This chapter was fun, wasn’t it? You learned how to use a graphical tool to make and

browse commits. You also discovered many new tools available, whether integrated into

an IDE or as specialized tools. And how can you forget about the good old default tool?!

You may wonder why the graphical tool wasn’t used from the very beginning. It’s

because using a tool without understanding the concepts behind it is counterproductive

and a waste of time. Trust me, learning to use the terminal was worth it! Speaking of

terminals, let’s get back to it for some more advanced Git commands!

Chapter 15 Git GUI Tools

253
© Mariot Tsitoara 2024
M. Tsitoara, Beginning Git and GitHub, https://doi.org/10.1007/979-8-8688-0215-7_16

CHAPTER 16

Advanced Git
In Chapter 15, you learned how to use basic Git features in a graphical context. Now, let’s

explore some additional Git commands that you won’t use as frequently as the others

but are powerful and necessary for improved productivity. These commands are easy to

learn and invaluable if you ever make a mistake when using Git.

This chapter addresses common problems you will likely encounter after using

Git for some time, and then you’ll explore the easiest ways to resolve them. While this

chapter may seem relatively straightforward, it dives into some powerful Git features.

�Reverting
You’ve already learned how to revert a commit in previous chapters. However, often, you

only want to revert a single file to a previous state. This situation typically arises when

you’ve been working on a file for some time, only to realize that your entire approach

was incorrect. Instead of manually undoing changes with hundreds of Ctrl+Z or Cmd+Z

keystrokes, it’s more efficient to revert the file.

You probably already know how to do this because Git provides instructions after

you check the git status. First, let’s open the README.md file and add some text to it.

TODO list

A simple app to manage your daily tasks.

It uses HTML5 and CSS3.

Features

* List of daily tasks

* Pretty colors

License: MIT

https://doi.org/10.1007/979-8-8688-0215-7_16

254

Now, let’s see the status.

$ git status

As usual, you see the status of your repository (shown in Figure 16-1).

Figure 16-1.  Git status after a changed file

There is nothing new here, but please direct your attention to the instructions above

the modified file. As you can see, reverting a file to a previous state involves checking it

out. The following is the command for this.

$ git checkout -- <file>

This command discards any changes you’ve made to a particular file. Be cautious

when using it to avoid erasing valuable code. It might be better to use a GUI tool to

quickly review the current changes before discarding them. Let’s try to discard the

changes to README.md using the following command.

$ git checkout -- README.md

You won’t receive any response from this command, but if you check git status

again, you’ll see that README.md has been reverted to its previous state.

Chapter 16 Advanced Git

255

�Stashing
You’ll often want to navigate between branches but can’t because your working directory

is dirty. In this context, dirty means you have uncommitted changes in files, whether

modified or staged. The only way to change branches is to first commit these changes.

However, you often won’t be ready to commit because the issue you’re working on isn’t

resolved yet.

One solution to this dilemma is to make a temporary commit, switch branches, work

on the new branch, and then go back and amend the temporary commit. However, this

method has several drawbacks:

First, the working directory is clean after you commit, so you won’t know which files

were being changed anymore.

Second, it’s a somewhat dirty and inelegant approach. This isn’t why the amend

command was created.

The ideal solution is to use a technique called stashing, which involves taking any

modified tracked file in your working directory and putting it away for later. This allows

you to have a clean directory and move around your repository without committing

changes. These changes are stored in a small database called the stash. You can think

of the stash as a temporary repository for your unfinished commits. It’s designed as a

last-in, first-out (LIFO) database, meaning the most recent changes you stashed are

presented to you first. The best way to understand it is to try it out. So, let’s make changes

to the README.md file again.

TODO list

A simple app to manage your daily tasks.

It uses HTML5 and CSS3.

Features

* List of daily tasks

* Pretty colors

License: MIT

If you check the status, you’ll see that README.md has been modified but is unstaged,

resulting in the same result as before (see Figure 16-1).

Let’s suppose that while you’re working on this issue, an urgent one requires your

attention. You can’t switch to the main branch now because your working directory

is dirty, and you can’t commit your current changes because you haven’t quite

Chapter 16 Advanced Git

256

finished yet. The solution is to stash your current changes somewhere so you can have

a clean directory to work with. To do this, you’ll use the stash command, which is

straightforward.

$ git stash push

Note  Using the command git stash is the same as using git stash push.
Using the full command is recommended because it’s more intuitive and easier to
understand.

This command stages your modified files and creates a temporary commit within

the stash, leaving your working directory clean. Try it, and you get the result shown in

Figure 16-2.

Figure 16-2.  Stashing current changes

As you can see, your stashed changes were given a name and a description, just like

a regular commit. This is normal because the stash is a temporary repository with only

one branch. If you check the repository status, you will find a clean working directory

as intended, as shown in Figure 16-3. Now, you can navigate to other branches without

any issues.

Chapter 16 Advanced Git

257

Figure 16-3.  A stash push produces a clean working directory

Pushing changes into the stash can provide more flexibility and freedom to move

between branches without losing your current work. This can be especially useful in

fast-paced development environments where you frequently need to switch between

different tasks and branches.

Caution E ven though this isn’t a book about productivity, here’s a little tip: if you
find yourself jumping back and forth between issues, you may have a problem
with your priorities, and resolving two issues at the same time can cost you
precious time.

Since the stash is just a mini repository, you can execute most Git features, like

checking the history log or getting a detailed view of the changes. Let’s explore the stash

to get a better understanding of it. First, show the history log using the git stash list

command.

$ git stash list

Chapter 16 Advanced Git

258

This gives you a familiar, albeit simplified, view of the history log, as shown in

Figure 16-4.

Figure 16-4.  List of stashed changes

Again, this database works on a LIFO basis, so if you made other changes to the

working directory and stashed them, they appear on top of the current stash.

Figure 16-4 shows that each stash has a number. It’s easier to interact with them;

unlike commits, where you must call them by their names. Let’s look at the detailed view

of the stashed change using the stash show command.

$ git stash show

This simple command shows you the files changed at the tip of the stash, meaning

the last changes pushed into it. Figure 16-5 shows an example of this.

Chapter 16 Advanced Git

259

Figure 16-5.  Detailed view of the tip of the stash

The stash show command shows you the description of the changes in the stash, but

not much else. To see the changes, you must apply the stash. Applying the stash is very

simple: execute the following command.

$ git stash pop

This command applies the latest changes in the stash to the current branch. And

as the name implies, popping the changes removes them from the stash. So, if you only

had one set of changes in your stash, it would be empty after you popped the tip. If you

execute the previous command, the result is the same as if you re-created the changes

and then checked the status (see Figure 16-6).

Chapter 16 Advanced Git

260

Figure 16-6.  Popping the last set of changes

Back at the beginning! But you could have changed branches, made commits, or

pushed to origin without losing precious changes. Stashing is particularly useful when

setting aside your current changes to make quick changes elsewhere. As a rule of thumb,

you might be handling your workflow incorrectly if you need to use more than one set of

stashed changes.

�Resetting
I hope you won’t need to use this feature often because it’s very destructive! Sometimes,

you may want to discard everything you’ve done and start with a clean slate, even if

you’ve already committed your project. Let’s create a commit and discard it to better

understand it. Make some modifications to README.md, stage it, and then commit the

project, as shown in Figure 16-7.

Chapter 16 Advanced Git

261

Figure 16-7.  Add a bad commit to the project

To put this into perspective, let’s check the current history log after this commit using

the git log command.

$ git log --oneline

This command shows you the latest commits on this branch, just like in Figure 16-8.

Figure 16-8.  History log of the current branch

Chapter 16 Advanced Git

262

As you can see, the latest commit sits at the top of the log. Notice that the HEAD

reference is pointed to it, which means that the next commit (or branch) has that commit

as the parent. Note that the remote branch origin/separate-code-and-styles hasn’t

changed because you haven’t pushed the project yet.

But let’s imagine that you are utterly dissatisfied with that last commit and want to

start over. Your only choice is to reset the branch back to a previous state. To reset the

project, you use the git reset command followed by the state of the project to reset to. You

must use the option --hard to accomplish this because it’s a very dangerous command.

For example, returning to the same state as the remote branch requires the following

command.

$ git reset --hard origin/separate-code-and-styles

This command erases everything so the project can return to its previous state.

Figure 16-9 shows the results.

Figure 16-9.  Status of the project after a reset

Your commits made after the target state, current changes, and the staged files are

all deleted because the --hard option overwrites everything in its path. It’s the most

dangerous command in Git, and you should think hard before using it.

Resetting should only be done as a last resort. Revert the commit, if possible, or work

on a new branch. When used carelessly, a reset can destroy your data.

Chapter 16 Advanced Git

263

�Summary
This chapter dealt with some advanced concepts of Git that are useful when confronted

with certain situations. Use reset to revert a file to a previous state without much effort,

and of course, you can revert those changes using the GUI, too. Stashing is also useful

when you need a quick change of context. And finally, the hard reset is an all-powerful

feature that is very destructive; don’t use it unless you have no other choice.

This concludes the lesson about advanced Git commands. Let’s return to GitHub to

discover more features to help with project management.

Chapter 16 Advanced Git

PART IV

More with GitHub

267
© Mariot Tsitoara 2024
M. Tsitoara, Beginning Git and GitHub, https://doi.org/10.1007/979-8-8688-0215-7_17

CHAPTER 17

More with GitHub
You’ve seen almost every Git feature that you use daily in the previous chapters. Now,

let’s turn your eyes to GitHub, which only served as a code hosting site until now. But

GitHub is so much more than that. You can use it to host project documentation and

software releases. You also mainly use it as a project management tool and a way to

connect with your collaborators. Let’s learn about those features.

�Wikis
Your project can be the best in its category, but you would get nowhere if other people

don’t know how to use it or how it works. That’s why documentation is important,

especially in software development. GitHub provides a nice way to document your

project: wikis.

GitHub wikis work much like the world’s most popular wiki: Wikipedia. Their goal

is to provide in-depth information about your project: what it does, how it works, how

someone can contribute, and so on.

Let’s create a wiki page so you can better understand it. Go to your project’s main

page and click Wiki. You arrive at the page shown in Figure 17-1.

https://doi.org/10.1007/979-8-8688-0215-7_17

268

Figure 17-1.  Wiki home page

On the Wiki home page, click the button to create your first page. You’ll arrive at the

page creation page, shown in Figure 17-2.

Figure 17-2.  Creation of a page

Chapter 17 More with GitHub

269

As you can see, it’s a very simple view that is divided into three sections: the title, the

content, and the edit message. Think of the title as a web page title, so it must adhere

to the same standards: clear and inviting. The content should be written in Markdown,

just like README.md. You can write the wikis in other formats, but Markdown is the

recommended choice because so many editors already use it, and it’s much easier

to read. The edit message is just like commit messages: a simple description of your

proposed changes.

Change the content of your wiki. The following is an example.

What is this

This is a simple app to track your daily goals

Why another TODO app

Because that is never enough TODO apps in the world

How does it work

Open `index.html` and update the goals as you wish

How can I contribute to the project

You can contribute by forking the project and proposing pull requests.

Check [Issues](https://github.com/mtsitoara/issues) to see the current

areas that need help

Save the changes. You are redirected to the wiki home page, as shown in Figure 17-3.

Chapter 17 More with GitHub

270

Figure 17-3.  Wiki home page showing the newly created wiki

As you can see, the wiki you just created is automatically visible on your project page,

and each page you create appears on the sidebar on the right. You can create as many

wiki pages as you like, but make sure they are understandable and useful. Don’t forget to

add images and relevant links!

�GitHub Pages
In simple terms, GitHub Pages is a website hosting service provided by GitHub. You

can use it to showcase a project, host your portfolio, or even create an online version of

your resume.

Chapter 17 More with GitHub

271

GitHub Pages can be used for your personal account, where you might showcase

your portfolio or resume, or for your projects to create showcases for them. If you choose

to use it for your account, you can create a single page. However, if it’s for showcasing

your projects, you can create a page for each. For a more detailed explanation, you can

visit https://pages.github.com/.

Let’s say you want to create a page to showcase your to-do list project. First, you’ll

need to go to your project page and click Settings, which takes you to the page displayed

in Figure 17-4.

Figure 17-4.  Settings page

Chapter 17 More with GitHub

https://pages.github.com/

272

Scroll down to the GitHub Pages settings, as shown in Figure 17-5.

Figure 17-5.  GitHub Pages settings

The first option is a drop-down list that contains the location of your page source.

You must host your page on the main branch, but you have two choices for the source

files. One is to place them directly on the main branch, and the other is to use a docs

directory within the main branch. I recommend the second option as it provides a

clearer structure for any visitors.

First, you need to create the docs directory. Then, using GitHub or Git tools, create

a file called “index.html” within the directory. In this file, write the following basic

HTML code.

<!doctype html>

<html>

 <head>

 <meta charset="utf-8">

 <title>Docs</title>

 </head>

 <body>

 <h1>Docs</h1>

 <p>Example of documentation</p>

 </body>

</html>

Chapter 17 More with GitHub

273

This serves as your documentation. Your main branch should now resemble what is

shown in Figure 17-6.

Figure 17-6.  Docs folder and index.html

You can then return to the settings page and choose the documentation source.

Select the docs folder as the source, and the page refresh, displaying a link as shown in

Figure 17-7.

Figure 17-7.  Page published

Chapter 17 More with GitHub

274

Following the provided link takes you to a splendid view of your GitHub project

page! The possibilities are boundless, as you can design your page just like any other

static website page. If you’re looking for enhanced styling options, consider checking out

https://jekyllrb.com/, which can assist you in generating GitHub Pages quickly!

�Releases
Your project won’t remain in development indefinitely; it must be released sooner or

later. And what better platform to release your app than GitHub? It’s straightforward.

To start, return to your project page and click Releases. You are directed to the main

page, as depicted in Figure 17-8.

Figure 17-8.  Releases page

Let’s create your very first release! Click the “Create a new release” button to be

directed to the release creation view shown in Figure 17-9.

Chapter 17 More with GitHub

https://jekyllrb.com/

275

Figure 17-9.  Release creation form

It’s a straightforward form to fill out, with clear and easy-to-understand sections. The

main task is to upload the release binaries by dragging and dropping them onto the form

shown in Figure 17-9. Since this app is in HTML, let’s attach compressed versions of the

main branch. It would be an executable binary for installable apps, but here they are

zip and 7z files. Don’t forget to change the target of the release if necessary. The default

option is the main branch, but you can specify another branch or a specific commit. The

form then looks like the one shown in Figure 17-10.

Chapter 17 More with GitHub

276

Figure 17-10.  Filled release form with binaries

Click “Publish release” to finalize it. You are then redirected back to the Releases list,

where your new release is listed. You can refer to Figure 17-11 for an example.

Chapter 17 More with GitHub

277

Figure 17-11.  List of all the releases

As you can see, GitHub also bundles the source code with your release! When

creating a release, thoroughly test everything to ensure it functions correctly.

�Project Boards
Project boards are a very useful feature of GitHub because they provide a way to track

and organize your project. For example, you can create cards for any new ideas you have

so you can discuss them with your team later. However, the main use of project boards

is to track the advancement of your project. They go beyond issues because issues

only describe a feature or a bug to be worked on, while project boards can show you if

someone is actively working on it or if it’s just a plan to be executed.

The best way to understand project boards is to experiment with them directly. So,

go back to your project page and select Projects. You see the empty project board shown

in Figure 17-12.

Chapter 17 More with GitHub

278

Figure 17-12.  Projects main page

The project main page is still empty because you haven’t created any projects yet. It

also provides examples of situations where you might want to use project boards. Click

“Create a project” to continue. You see the page shown in Figure 17-13.

Chapter 17 More with GitHub

279

Figure 17-13.  Creation of a project

Again, it’s a very simple form, but pay attention to the Template section; it’s quite

important. As a beginner, you should use the basic kanban template because it is

prefilled. You can create the boards yourself, but let’s stick to the basics for now. Create

the project. You will see the semi-empty board shown in Figure 17-14.

Chapter 17 More with GitHub

280

Figure 17-14.  New project created

As you can see, there are three boards created: “To do,” “In progress,” and “Done,”

just like your app! You can see a list of the open issues on the right side of the screen.

Drag and drop those issues into their respective boards. In the “To do” board, you have

a little example of what you can do with your boards; it’s not only for issues but also for

pull requests or simple notes. After you’ve placed your issues in the desired boards, you

get a result like Figure 17-15.

Figure 17-15.  Project boards

As you move the issues around the board, the colored bar near the project name

changes. It’s a good way to track your progress!

Chapter 17 More with GitHub

281

Project boards are more than just project progress trackers! You can create project

boards for many situations: release tracking, meeting notes, developer idea notes, user

feedback, and so on. You can find the project board for this book in Figure 17-16, which

is also available at https://github.com/mariot/boky/projects/1.

Figure 17-16.  A project board for this book

I advise you to use project boards for future projects because having a clear view

of your progress is a sure way to success. If you’re feeling adventurous, check out the

automated kanban, which automatically moves the cards for you. For example, every

new issue is placed under “To do” and every closed issue is moved to “Done.”

�Summary
This chapter took you away from Git and focused on GitHub. You’ve seen that GitHub

is more than just a storage place for your code; it’s a complete tool for managing and

releasing your projects. After this chapter, you should be able to create a basic website for

your project, have some documentation for it, and make your first release.

The most important feature covered was project boards. Use them to better

understand what you’ve accomplished and where you’re headed. They may seem

simple, but they are incredibly useful for project management.

You’ve now mastered the basics of Git and GitHub. However, there are still

challenges ahead in a real-world working environment. The next chapter explores the

common problems you’ll encounter when collaborating with others and how to resolve

them. Stay tuned!

Chapter 17 More with GitHub

https://github.com/mariot/boky/projects/1

283
© Mariot Tsitoara 2024
M. Tsitoara, Beginning Git and GitHub, https://doi.org/10.1007/979-8-8688-0215-7_18

CHAPTER 18

Common Git Problems
You’ve come a long way since your first Git command! You’ve learned a lot about basic

and advanced Git features and when to use them. However, since you are only human,

you will encounter a lot of problems during your Git journey. Most of these problems

result from inadvertent mistakes, so simply being aware of their existence is a significant

step toward avoiding them. But if you still run into them, here are the best solutions!

�Repository
The repository is the backbone of your Git experience; everything begins and ends there.

It’s very difficult to mess it up, but in the slight chance that something goes wrong, here

are some tips.

�Starting Over
This is the most radical "solution" in the chapter, and I hope you never have to use it.

This solution is essentially a way to delete everything and start over. It should only be

considered an option when you have a remote repository and want to delete your local

one for some reason. Reasons to do this might include the following.

•	 Changing your work computer

•	 Encountering unreadable sectors in the hard drive

•	 Facing unrecoverable errors in the .git directory

To start over, you must clone the remote repository using the git clone command.

$ git clone <repository_location>

The repository location is the HTTPS or SSH link to your remote repository, which

you can find on your GitHub project page.

https://doi.org/10.1007/979-8-8688-0215-7_18

284

Cloning has the same effect as initializing a repository but with a significant bonus:

all history and commits are copied to your new local repository. You won’t need to

specify the origin link anymore.

�Change Origin
Under normal circumstances, you would want to keep the remote repository’s URL the

same throughout your development. However, there are certain circumstances where it’s

necessary to change it.

•	 When switching between HTTPS and SSH links

•	 When transferring the repository to another host

•	 When adding a dedicated repository for release or testing

First, let’s gather some more information about the current remotes. To do this, use

the git remote command with the -v option.

$ git remote -v

It lists your current remotes, as shown in Figure 18-1.

Figure 18-1.  List of current remotes

Chapter 18 Common Git Problems

285

To modify the remote URL, use the git remote set-url subcommand in the

following format.

$ git remote set-url <remote_name> <remote_url>

For example, you can execute the following command if you want to switch from

using an HTTPS link to an SSH link for your GitHub access.

$ git remote set-url origin git@github.com:mtsitoara/todo-list.git

Doing this allows you to push to and pull from GitHub without providing your

username and password. The authentication is handled using a private key stored

on your local computer and a corresponding public key needed to upload to GitHub.

If you’re interested in using SSH for authentication, you can find more information

in the GitHub Help documentation based on your operating system at https://

docs.github.com/en/get-started/getting-started-with-git/about-remote-

repositories#choosing-a-url-for-your-remote-repository.

You can use a credential helper if you prefer to continue using HTTPS but want to

cache your password to avoid typing it every time. More information about this can

be found in the GitHub Help documentation, also based on your operating system at

https://docs.github.com/en/get-started/getting-started-with-git/caching-

your-github-credentials-in-git.

Caution I f you change your remote name, don’t forget to use the new name for
every push and pull action.

�Working Directory
You spend most of your time in the working directory, and here again, there are few

things you can break.

Chapter 18 Common Git Problems

https://docs.github.com/en/get-started/getting-started-with-git/about-remote-repositories#choosing-a-url-for-your-remote-repository
https://docs.github.com/en/get-started/getting-started-with-git/about-remote-repositories#choosing-a-url-for-your-remote-repository
https://docs.github.com/en/get-started/getting-started-with-git/about-remote-repositories#choosing-a-url-for-your-remote-repository
https://docs.github.com/en/get-started/getting-started-with-git/caching-your-github-credentials-in-git
https://docs.github.com/en/get-started/getting-started-with-git/caching-your-github-credentials-in-git

286

�git diff Is Empty
This comes up a lot, but it’s not dangerous. Sometimes, you’ve made a lot of changes and

want to check the differences. But when you run git diff, the result is empty. Don’t

panic! git diff only shows modified files, so if your file is staged, you won’t see it there. To

see changes done to staged files, you must run the following.

$ git diff --staged

Tip  Using a GUI tool greatly helps when reviewing changes.

�Undo Changes to a File
This comes up a lot when you use Git. Sometimes, you want to revert a file back to its

previous state without having to check out an entire commit and then copy-paste the

code. You’ve already seen the command earlier.

$ git checkout <commit_name> -- <file_name>

This command checks out the file as it was in the commit and, thus, changes your

working directory. Be careful not to lose any uncommitted changes!

�Commits
Most problems arise when you try to commit your current project. But don’t worry, there

is always a simple solution for these problems. The most important thing to consider is:

are the commands you are using destructive? Commands like reset or checkout change

your working directory, so please make sure that you know what you are doing before

executing them.

Chapter 18 Common Git Problems

287

�An Error in a Commit
This is a basic error in Git. After you commit your hard work, you’ll sometimes notice

that a little grammatical error found its way into your commit message or that you forgot

to stage a file. The solution to these problems is to amend the commit, meaning that you

cancel the immediate commit and make a new one. The command is simple.

$ git commit --amend

The commit name changes because you are changing its content. That’s why you

should not amend a commit you’ve already pushed to a remote branch, especially if

somebody else works on that branch. This is rewriting history, and you should never do it.

That said, if you’ve pushed your commit and are alone on the branch, you can

amend a commit and try to push it again. But since the commit name changed, Git

won’t allow you to change history without a fight. You have to erase all the history on the

remote branch and replace it with yours, meaning that you overwrite everything on the

remote branch. That’s why you should never amend a commit if you aren’t alone on a

branch. To push a branch with amended commits, you must force it.

$ git push <remote_name> <branch_name> -f

The “-f” option forces Git to overwrite everything on the remote branch and replace

it with your current branch history.

Caution R ewriting history on a branch where somebody else is working is just
plain rude and selfish. Don’t do it.

�Undo Commits
If you committed on a branch but then realized it’s the wrong one, you can undo it, but

only when you haven’t pushed to a remote branch.

The command is simple but dangerous: it’s the reset command. But in contrast to a

hard reset where everything is cleared, a soft reset is necessary to undo the commit but

keep the changes.

$ git reset HEAD~ --soft

Chapter 18 Common Git Problems

288

The commit disappears, leaving you with options to stash the changes and apply

them to another branch.

Again, this is rewriting history and should not be used if you’ve already pushed to a

remote branch.

�Branches
You need to work with branches a lot to have an optimized workflow. When working on

a new feature or bugfix, your first instinct should be creating a branch. But the more you

get comfortable with branches, the more likely you are to forget a little detail that can

lead to problems. Here are the most common problems that you encounter with Git.

�Detached HEAD
HEAD refers to the currently checked-out commit, which means it points to the parent

commit of any future commit you create. Usually, HEAD points to the last commit of the

current branch, and all future branches and commits have it as their parent.

When you check out branches, HEAD moves back and forth between the last commits

of the branches. But when you check out a specific commit, you enter a state called

detached HEAD, which means that you are in a state where nothing you create is attached

to anything. Trying to commit during this state is useless because any changes are lost.

Git informs you when you are in that state (as shown in Figure 18-2), so you will

never be in that state unknowingly.

Chapter 18 Common Git Problems

289

Figure 18-2.  Checking out a commit

Checking out a commit is thus only needed to test something on your software.

You can, however, create a branch from that specific commit if you want to keep the

commits you intend to make. The command is the same as creating a branch from

another branch.

$ git checkout -b <branch_name>

�Working in the Wrong Branch
Working in the wrong branch happens a lot. The situation is usually like this: you receive

a task and are so eager to complete it that you begin to code immediately. You are

already an hour into the task when you notice that you were working in the main branch

all along! Don’t worry. It’s very simple to resolve this.

If you modify some files on the wrong branch, you can create a new branch (and

check it out) to take the current changes there. It’s the same command again.

$ git checkout -b <branch_name>

It creates a new branch with your current changes and checks it out. You can then

stage your modified files and commit the project.

Chapter 18 Common Git Problems

290

However, this won’t work if you’ve already pushed the branch to a remote repository;

history is history, so don’t change it. The only way to fix that is to revert to the commit

you push and live with that shame all your life.

�Catch up with the Parent Branch
When you create a branch from another (usually main), their histories are not linked

anymore, so what happens in one branch doesn’t have any incidence on the other. This

means that while you are working on your branch, other people can commit on the base

branch, and those commits won’t be available to your branch.

If you are still working on your branch but are interested in having those new

commits on the base branch, you must first have a clean plate, which means that you

need to commit your project (or stash your current changes).

Then, you must check out the parent branch, pull the new commits, and then go

back to your branch.

$ git checkout main

$ git pull origin main

$ git checkout <branch_name>

Safely on your local branch, you can then catch up to the parent branch. The concept

is simple: Git takes out your current commits and creates a new branch from the tip of

the parent branch; your commits can then be applied to your new branch. It would be

like you create a branch from the latest commit of the main branch. The command is

called rebase.

$ git rebase main

The commits on main might introduce conflicts in your branch, so be prepared to

get your hands dirty. Resolving those merge conflicts is the same as what’ve you’ve done

previously: open each conflicted file and choose which code you want to keep; then, you

can stage them and commit.

You can find an example of rebase conflict in Figure 18-3, on which both commits on

main and test_branch modified README.md.

Chapter 18 Common Git Problems

291

Figure 18-3.  Merge conflict during rebase

As you can see, it’s almost exactly like any merge conflict, and the resolution is

the same.

$ git add <conflicted_files>

$ git rebase --continue

If you are not feeling brave enough for conflicts, you can abort the rebase and return

to the initial state.

$ git rebase --abort

If you work on a branch for a long time, it’s a good idea to rebase occasionally so you

aren’t left too far behind the parent branch. Of course, you can face merge conflicts, but

those are more likely to appear the bigger your changes are. And if you delay rebases for

fear of conflicts, you only set yourself up for failures because those conflicts appear again

when you attempt to merge the branches anyway. It’s better to occasionally deal with

small conflicts with a rebase than having to merge many conflicted files simultaneously.

Chapter 18 Common Git Problems

292

�Branches Have Diverged
This can happen if you’re using an inefficient Git workflow. It’s advisable to work on your

own branch when resolving an issue because multiple people committing to the same

branch can lead to problems.

The term diverged describes a situation where you can’t push to your remote branch

anymore due to changes in the commit history. This occurs when you’ve committed

changes to your local branch, but others have pushed their commits to the remote

branch before you. When you attempt to push, Git prevents you from doing so because

the latest commit on the remote branch doesn’t exist in your local history. You’ll

encounter an error message like the one shown in Figure 18-4.

Figure 18-4.  Rejected changes

Chapter 18 Common Git Problems

293

The most practical solution is to pull the commits from the remote branch and

merge your changes. This way, you incorporate their changes into your history (after

resolving any potential merge conflicts) and then push your changes.

$ git pull origin <branch_name>

$ git push origin <branch_name>

This approach may result in a messy history log, but it ensures that all commits are

preserved. You can see an example of this in Figure 18-5.

Figure 18-5.  Merge local and remote branch

Another solution is more drastic: overwriting everything on the remote branch and

replacing its history with yours. To do this, you can push with the force option.

$ git push origin <branch_name> -f

However, this approach results in lost commits and potential conflicts, and it’s

strongly discouraged. It’s best to avoid this situation altogether by following a well-

structured Git and GitHub workflow.

Chapter 18 Common Git Problems

294

�Summary
This chapter guides you toward the right solutions when faced with common Git

problems. While you may encounter more complex issues as you gain experience, this

chapter provides a solid starting point. The key takeaway is always to double-check your

context before taking any actions, especially when committing.

However, these problems should ideally not arise if you adhere to the standard

Git and GitHub workflow. So, let’s revisit this workflow in the next chapter. It’s worth

revisiting now that you’re familiar with the most commonly used Git and GitHub

features.

Chapter 18 Common Git Problems

295
© Mariot Tsitoara 2024
M. Tsitoara, Beginning Git and GitHub, https://doi.org/10.1007/979-8-8688-0215-7_19

CHAPTER 19

Git and GitHub Workflow
A substantial amount of information was covered in the previous chapters, particularly

the technical aspects of Git. You now have a solid understanding of how to effectively

version control your projects and how to address common issues that may arise. You’ve

also learned the fundamentals of project management using GitHub.

It’s time to bring it all together and create a comprehensive game plan for your

projects. In this chapter, you’ll be introduced to a meticulously designed workflow that

you can follow to ensure the success of your projects. Think of it as a “best practices”

section or a practical “how-to” guide for your project management needs.

�How to Use This Workflow
The workflow outlined in this chapter has been crafted with both beginners and

experienced users in mind. It’s widely utilized in open source projects, so many

developers are already familiar with it. However, it’s essential to understand that this

workflow isn’t set in stone. If those changes are reasonable, you can adjust to align with

your specific project requirements.

For beginners, I recommend following this workflow diligently. It helps you grasp

the workings and rituals of Git and GitHub. As you gain more experience, you can tailor

the workflow to increase efficiency. But never compromise security for the sake of saving

time. Skipping essential steps might seem like a time-saver initially, but it can lead to

more bugs and merge conflicts, ultimately counterproductive.

After several years of using Git and GitHub, you’ll become a main and can develop

your workflow. Your changes should aim to enhance your team’s efficiency and

productivity.

https://doi.org/10.1007/979-8-8688-0215-7_19

296

�GitHub Workflow
One of the most fundamental mistakes you can make when working with GitHub is

viewing it solely as a code hosting service. In other words, use it solely to share code

among collaborators or release your product to users. GitHub is an incredibly powerful

tool, and it would be a tremendous missed opportunity not to leverage its full potential.

Consider GitHub as your primary project management tool. Every action you plan to

take within your project should be meticulously tracked within GitHub. This ensures that

you can always refer to and comprehend the project’s history. You cannot simply make

changes without adequately documenting the reasons behind those changes. Therefore,

here are the golden rules of GitHub.

�Every Project Starts with a Project
When starting a new project, it’s advisable to create a GitHub project shortly after setting

up the repository. This step should be taken as early as possible because utilizing project

boards is the most effective means of monitoring your project’s progress. At the very

least, you should establish a kanban board to keep track of your project’s to-do tasks.

You can also utilize other boards to manage user feedback or compile a list of your

spontaneous ideas. The key lesson here is to always document everything that crosses

your mind, because you’ll likely forget many details otherwise.

�Every Action Starts with an Issue
Using issues is an effective method to keep track of the tasks that need to be addressed in

your project. When you encounter a bug in your program, your initial response should

not be to start fixing it in your integrated development environment (IDE) immediately

but rather to create an issue to document and track it. The same principle applies to

feature ideas; even if you’re unsure whether you’ll implement them in the future, create

an issue to record your intent. You can close it later if you decide not to proceed with the

implementation.

This practice emphasizes that every action you take in your local Git should

ultimately contribute to resolving an issue. So, when working on something in your IDE,

it’s essential to ask yourself: Which issue does this address? You should create an issue,

regardless of how small the task may seem.

Chapter 19 Git and GitHub Workflow

297

�No Direct Push to main
This primary ritual can be challenging to adhere to but significantly simplifies project

management for everyone involved. The concept is straightforward: no one should push

commits directly to the main branch. The sole method for introducing changes to the

main branch is by merging other branches into it.

The direct consequence of this practice is that every change you make should

be isolated on its own branch before it’s eligible for merging into the main branch.

Therefore, any new feature or bugfix should originate from a branch and then be

merged into the main branch when it’s considered “ready,” which in this context means

thoroughly reviewed and tested.

�Any Merge into the Main Branch Needs a Pull Request
Since you can’t push changes directly to the main branch, the only option is to merge

branches into it. However, you shouldn’t blindly merge any branches into main either.

Instead, you must create pull requests to propose the changes. This way, another team

member can thoroughly review your code to ensure everything is in order.

In the pull request description, you should include references to the issue numbers

that the pull request resolves. This practice ensures that the associated issues are

automatically closed when the pull request is accepted.

�Use the Wiki to Document Your Code
This might seem like an additional burden, but it’s the best way to document your code

thoroughly. The README file, while helpful, isn’t always sufficient for comprehensive

code documentation, which is where the wiki comes in. It might appear to be a daunting

task, but the most effective approach is to write documentation concurrently with your

code development. This way, you only need to document small changes periodically. If

you postpone documentation until later stages, you risk becoming overwhelmed and

forgetting critical information.

Chapter 19 Git and GitHub Workflow

298

�Git Workflow
Let’s now discuss Git. By this point, you’re likely familiar with all of Git’s most commonly

used features. However, using them at the appropriate times is the best way to prevent

errors and conflicts.

�Always Know Where You Are
This is a fundamental aspect that’s also easy to overlook. You should always be aware of

the branch you’re working on before making any changes or executing any commands. If

you’re using a modern IDE, your current branch is often displayed at the bottom of your

screen. If not, you can always rely on the trusty git status command!

�Pull Remote Changes Before Any Action
Before creating a branch from the remote main branch, it’s a good practice to pull the

latest changes from it. This helps you stay up-to-date with your colleagues and reduces

the likelihood of merge conflicts. Additionally, while working on your local branch,

consider rebasing occasionally to incorporate the latest updates. This reduces the

chance of future merge conflicts and keeps your git log graph looking cleaner and more

organized! 😊

�Take Care of Your Commit Message
Referring to the chapter on commits is a valuable way to review how to write effective

commit messages. This may seem like a minor detail, but it’s crucial for maintaining a

clear and organized history log. Writing good commit messages will not only save you a

few minutes initially. But, it can also prevent countless hours of searching for the commit

that introduced bugs when the inevitable bugfix time arrives. Trust me, it’s worth

the effort!

Chapter 19 Git and GitHub Workflow

299

�Don’t Rewrite History
Just don’t. This is one of the worst things you can do when using Git within a team. If you

change a commit and force-push it to a remote branch, everything done to that branch is

overwritten by your changes. That means if somebody else worked on that branch, they

would have to discard everything they’ve done and reset their local branch. If you really

must do it, make sure that you are the only one working on that branch.

�Summary
Indeed, this chapter is short but packed with essential advice for a successful project.

The main thing to remember is that GitHub is much more than just a code hosting

service. You should use it to track your project’s evolution. By following this workflow,

you set yourself up for success and avoid most problems with Git and GitHub.

You now have all the tools you need to succeed with Git and GitHub! It all depends

on your imagination and courage. Use these tools properly to steer your project down

the right path. Good luck!

Chapter 19 Git and GitHub Workflow

301

CHAPTER 20

Making Git Yours
with Aliases
Git is a powerful version control system that offers a multitude of commands and

options. This flexibility is great but can lead to longer and more complex command

sequences. This is where Git aliases come in. Git aliases allow you to create shortcuts

or custom commands for frequently used Git actions, making your Git workflow more

efficient and personalized.

�What Are Git Aliases?
Git aliases are custom shortcuts for Git commands. They allow you to create your own

Git commands or abbreviations for commonly used sequences of Git operations. With

Git aliases, you can save time and keystrokes by creating shorter and more intuitive

commands.

�Using Git Aliases
Setting up Git aliases is straightforward and can be done by either using a git config file

or by editing the git config file directly.

�Using the Git Config File
You can define Git aliases in your global or local Git configuration file. Open your

terminal to set up a global alias and use the following command.

 git config --global alias.<alias-name> '<git-command>'

© Mariot Tsitoara 2024
M. Tsitoara, Beginning Git and GitHub, https://doi.org/10.1007/979-8-8688-0215-7_20

https://doi.org/10.1007/979-8-8688-0215-7_20

302

For example, you would use the following to create a global alias co for checkout.

 git config --global alias.co 'checkout'

To set up a local alias for a specific Git repository, navigate to the repository’s root

directory and use the same command without the --global flag.

�Editing the Git Config File Directly
You can manually edit your Git configuration file. The global configuration file is

typically located at ~/.gitconfig. You can add aliases directly under this file’s [alias]

section.

 [alias]

 co = checkout

�Examples of Useful Git Aliases
The following are some commonly used Git aliases to get you started.

�Common Command Shortcuts
–– co for checkout

–– ci for commit

–– st for status

–– br for branch

–– df for diff

[alias]

 co = checkout

 ci = commit

 st = status

 br = branch

 df = diff

Chapter 20 Making Git Yours with Aliases

303

�Listing Aliases
•	 List aliases

- aliases to list all configured aliases

[alias]

 aliases = config --get-regexp alias

•	 View the Git log

- lg for a nicely formatted log

- lga to include author information

[alias]

 lg = log --graph --oneline --abbrev-commit --all

 lga = log --graph --oneline --abbrev-commit --all --author

•	 Interactive rebase

- ri for an interactive rebase

- rif for an interactive rebase with autosquash

[alias]

 ri = rebase -i

 rif = rebase -i --autosquash

•	 Push and pull

- pl for pull

- pu for push

- puf for a forced push

[alias]

 pl = pull

 pu = push

 puf = push --force

Chapter 20 Making Git Yours with Aliases

304

•	 Create and switch branches

- cb for creating and checking out a new branch

- cof for checking out a branch by name (forces it)

[alias]

 cb = "!f() { git checkout -b $1; }; f"

 cof = checkout -f

•	 List commits with colors and annotations

- ls to list commits in short form, with colors and branch/tag

annotations

[alias]

 �ls = log --pretty=format:"%C(yellow)%h%Cred%d\\

%Creset%s%Cblue\\ [%cn]" --decorate

This alias provides a visually appealing and informative log of

commits.

•	 List oneline commits with relative dates

- ld to list oneline commits showing relative dates

[alias]

 �ld = log --pretty=format:"%C(yellow)%h\\ %ad%Cred%d\\

%Creset%s%Cblue\\ [%cn]" --decorate --date=relative

This alias displays commits with human-friendly relative dates.

•	 List oneline commits with dates

- lds to list oneline commits showing dates

[alias]

 �lds = log --pretty=format:"%C(yellow)%h\\ %ad%Cred%d\\

%Creset%s%Cblue\\ [%cn]" --decorate --date=short

This alias includes precise commit dates.

Chapter 20 Making Git Yours with Aliases

305

•	 Show modified files in last commit

- dl to display modified files in the last commit

[alias]

 dl = "!git ll -1"

This alias provides a concise list of files changed in the most

recent commit.

•	 Show a diff of the last commit

- dlc to show a diff of the last commit

[alias]

 dlc = diff --cached HEAD^

This alias displays the changes made in the last commit.

•	 Find a file path in the codebase

- f to find a file path in the codebase

[alias]

 f = "!git ls-files | grep -i"

This alias allows you to search for file paths within your codebase.

•	 Search/grep your entire codebase for a string

- gr to search/grep your entire codebase for a string

[alias]

 gr = grep -Ii

This alias simplifies searching for text across your project.

•	 List all files with TODO or FIXME comments

- todo-list to list all files containing TODO or FIXME comments

[alias]

 �todo-list = "! git grep --extended-regexp -I --line-number

 --count 'TODO|FIXME'"

This alias helps you identify files with outstanding tasks or issues.

Chapter 20 Making Git Yours with Aliases

306

•	 View details of the last commit

- last to view details about the most recent commit

[alias]

 last = log -1 HEAD --stat

This alias provides information about the latest commit, including

the changed files.

These are just a few examples, and you can create aliases that suit your specific

workflow and preferences. Customizing your Git workflow with aliases can significantly

improve your productivity and make Git more intuitive and enjoyable.

�Summary
Git aliases are a powerful tool for customizing your Git workflow. Creating shortcuts for

commonly used Git commands and sequences can save time and make Git more user-

friendly. Don’t hesitate to experiment with aliases and tailor them to your needs. With

the right aliases, you can make Git yours and enhance your version control experience.

Chapter 20 Making Git Yours with Aliases

307

Index

A
Assignees, 137–138, 146, 178

B
BitKeeper SCM, 10, 11
Branches, 12, 25, 43, 45, 120, 169, 171, 172,

194, 237, 255–257, 261, 262,
292, 293

check out, 238
commit, 147
convention, 71
creation, 152, 153, 239
deletion, 156–159
differences, 229, 230
Git, 151
Git workflow, 150
location, 229
logic, 150
master, 272, 275
merging, 159–164
pushing, 246
pushing to remote, 164–166
separate-code-and-styles, 239
stashing, 89
switching, 153–155
types, 151

Browsing, 247–248
Businesses, 101, 106, 172

C
Centralized VCS (CVCS), 8–9, 18
cmd, 40
Code reviews

choices, 190
co-contributors’ code, 185
review comment, 186–190
section, 186

Collaboration, 11, 92, 199, 200, 231, 281
and code release, 96
online, 93
team, 93

Commit log, 62, 63, 213
Commits, 48–52, 63, 66, 94, 95, 122, 147,

148, 150, 151, 155, 159, 165, 204,
232, 233, 237, 255, 260–262

amending, 83, 84
branch, 196, 199
detached HEAD, 288, 289
error, 287
git-gui, 235
GitHub workflow, 170
and history, 93
linking issues, 138

closing, 144–147
referencing, 140–143
working, 139

messages, 85, 86, 298
modification, 77–84

© Mariot Tsitoara 2024
M. Tsitoara, Beginning Git and GitHub, https://doi.org/10.1007/979-8-8688-0215-7

https://doi.org/10.1007/979-8-8688-0215-7

308

origin/development, 214
remote branch, 170, 203
three states of Git, 67, 68
undo, 71–76, 287
wrong branch, 289, 290

Conflicts, 231, See also Merging conflicts
aborting, 232
reduction, 231
resolution, 227, 228
workflow, 232

D
Debian-based operating

systems, 236
Distributed VCS, 9–11, 37, 48, 93, 94

E
External SSH, 27

F
Fast-forward merge, 203–207, 227, 231

G
Git, 42, 43, 53

BitKeeper SCM, 11
capabilities, 11–13
checking logs, 61–64
checksum, 13
commands, 12, 13, 19
commits, 86–88
current changes reviewing, 64–66
default editor, 23
directory, 13, 14

features and workings, 11
GUI clients, 20
history, 61–64
ignoring files

exception, 61
gitignore lines, 59
personal configuration, 59
PRIVATE.txt file, 55, 56
status, 57
working directory, 58

Linux, 35–37
log output, 74
mistakes, 89
opportunities, 89
PATH environment, 26
practices, 88
principles, 52
repository, 91
setting up, 37–39
snapshots, 13
staging area, 91
steps, 92
straightforward process, 21
trees, 90
visual tool, 233
workflow, 14–17

Git aliases, 301
commands, 302, 303
Git Config File, 301, 302
listing aliases, 302–305

Git Bash, 26, 29, 40, 113, 236
Git command, 12, 19, 26, 40, 61, 143, 252,

263, 301
git-gui, 235–247
Git GUI interface, 237,

See also Graphical User
Interfaces (GUI)

Commits (cont.)

INDEX

309

GitHub, 92, 96, 97, 147, 204, 209, 214, 215,
246, 295

actions, 172
businesses, 106
code hosting, 101
dashboard, 108
functionalities, 101
issue, 172
linking repositories, 119, 120
and open source, 102–104
pages, 270–274
personal use, 104–106
project management, 107–117
remote repositories, 118
wikis, 267–270
workflow, 148–150, 170

GitHub desktop, 251–252
gitk, 247, 248
GitLab, 97
Graphical User Interfaces (GUI), 254, 263

browsing, 247, 248
git-gui, 235–247

H
HEAD references, 152, 213, 262
Homebrew, 35
HTTPS key, 111

I, J, K
Installation, 235

Git commands, 20
GUI clients, 19

Integrated development environment
(IDE), 218, 233, 249–251, 296

Integrated development environment
(IDE) tools

Git integration, 249
Visual Studio

Code, 249–251
Issues, 125, 126, 138, 147,

148, 151, 169, 175,
195, 205, 207, 232, 240,
247, 256, 269, 277, 280, 281,
292, 294, See also Commits

bug tracking, 128
code section, 127
creation, 127
details, 129
GitHub project, 126
interaction

assignees, 137, 138
HTML5 app, 132
labels, 133–136
TODO app, 132

internet, 131
subscribe button, 130

L
Labels, 133–136, 178
Last-in, first-out (LIFO)

database, 255
Linux, 11, 35–37, 39
Listing aliases, 302–305
Log graph, 206, 298

M
macOS, 40

Git, 34
Homebrew, 35
setting up Git, 37–39
software development, 33

Memorization, 5

INDEX

310

Merging conflicts, 230, 231
branch, 207
branch differences, 229, 230
branch location, 229
contents, 208, 209
fast-forward merge, 203–207
Git, 199
GitHub, 208
principle, 199
pulling command, 200–203
pulling commits, 212–219
resolving, 219–225

MinTTY, 29, 30

N
Navigation, 68–71, 109, 117, 235, 236,

255, 256

O
Open Git Bash, 37, 40, 236
Open source, 7, 10, 96, 97, 101–104,

170, 295
OpenSSH, 27

P, Q
Parent branch, 230, 231, 290, 291
PowerShell, 40
Project boards, 277–281, 296
Project management, 263

GitHub, 107–117
issues, 125, 126
pull requests (see Pull requests)

Pulling command, 200–203
Pull requests, 204, 207, 230, 232, 235, 269,

280, 297

branch, 171, 172
creation, 172–185
description, 170, 171
issue, 170
updation, 191–196
workflow, 169

R
README files, 102, 103, 110, 159, 297
Releases, 274–277
Remote Git

backup, 94
distributed VCS, 94
repositories, 93
team collaboration, 93
working, 94, 95

Remote main branch, 298
Remote repositories, 118, 283

pushing, 120–122
Repositories, 39–43, 90, 101,

104, 105, 130, 148, 156,
164, 170, 171, 200, 204,
215, 235, 237, 245, 254–257,
283, 296

linking, 119, 120
origin, 284, 285
remote, 118

Resetting, 82, 260–262
Reverting, 5, 72, 76, 253, 254

S
Snapshots, 13, 41, 43, 46, 63, 67, 68,

75, 83, 151
Source code control

system (SCCS), 7, 10
SSH key, 111, 113, 115–117

INDEX

311

Staging area, 13, 16, 46–48, 68, 82, 91, 210
Stashing, 12, 89, 255–261
style.css, 240–243
Subversion (SVN), 9, 43

T, U
Text editor, 23, 55, 59, 69, 77, 218, 233
Track changes, 5, 11–13, 67, 91, 130
Tracked files, 67, 68, 250, 255

V
Version control system (VCS), 5, 37,

68, 169, See also Git
commits, 94
CVCS, 8
description, 3
distributed VCS, 9, 10
local, 7, 8
memorization, 5
repositories, 93
with suffixes, 4
teamwork, 3
tracking, 4, 5

Vim Tutor, 24
Visual Studio Code, 23, 26, 217,

218, 249–251

W, X, Y, Z
Wikis, 267–270, 297
Windows, 40, 62, 232, 236

Bash, 22
company policy, 28
confirmation page, 21
credential helper, 32
default editor selection, 23
default emulator, 29
default options, 22, 24, 29, 33
download, 21
Git installation, 31
HTTPS connections, 27
initial branch, 25
installation process, 31
license agreement, 21
line endings, 29
PATH environment, 25, 26

Workflow, 295
action, 296
GitHub, 296
project, 296
push, 297

Working directory, 44, 45, 55, 58, 65, 66,
68, 72, 81, 91, 92, 139, 200, 202,
236, 255, 257, 258, 286

git, 286
undo changes, 286

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Part I: Version Control with Git
	Chapter 1: Version Control Systems
	What Is Version Control?
	Why Do I Need One?
	What Are the Choices?
	Local Version Control Systems
	Centralized Version Control Systems
	Distributed Version Control Systems
	What Is Git?
	What Can Git Do?
	How Does Git Work?
	What Is the Typical Git Workflow?

	Summary

	Chapter 2: Installation and Setup
	Installation
	Windows
	macOS
	Linux
	Setting up Git
	Summary

	Chapter 3: Getting Started
	Repositories
	Working Directory
	Staging Area
	Commits
	Quick Start with Git
	Summary

	Chapter 4: Diving into Git
	Ignoring Files
	Checking Logs and History
	Viewing Previous Versions
	Reviewing the Current Changes
	Summary

	Chapter 5: Commits
	The Three States of Git
	Navigating Between Versions
	Undo a Commit
	Modifying a Commit
	Amending a Commit
	Summary

	Chapter 6: Git Best Practices
	Commit Messages
	Git Commit Best Practices
	What to Do
	What Not to Do
	How Git Works (Again)
	Summary

	Chapter 7: Remote Git
	Why Work in Remote Git
	How Does It Work?
	The Easy Way
	Summary

	Part II: Project Management with GitHub
	Chapter 8: GitHub Primer
	GitHub Overview
	GitHub and Open Source
	Personal Use
	GitHub for Businesses
	Summary

	Chapter 9: Quick Start with GitHub
	Project Management
	How Remote Repositories Work
	Linking Repositories
	Pushing to Remote Repositories
	Summary

	Chapter 10: Beginning Project Management: Issues
	Issues Overview
	Creating an Issue
	Interacting with an Issue
	Labels
	Assignees

	Linking Issues with Commits
	Working on the Commit
	Referencing an Issue
	Closing an Issue Using Keywords

	Summary

	Chapter 11: Diving into Project Management: Branches
	GitHub Workflow
	Branches
	Creating a Branch
	Switch to Another Branch
	Deleting a Branch
	Merging Branches
	Pushing a Branch to Remote

	Summary

	Chapter 12: Better Project Management: Pull Requests
	Why Use Pull Requests?
	Pull Requests Overview
	Pull
	What Does a Pull Request Do?
	Create a Pull Request

	Code Reviews
	Give a Code Review
	Leave a Review Comment

	Update a Pull Request
	Summary

	Part III: Teamwork with Git
	Chapter 13: Merge Conflicts
	How Does a Merge Work?
	Pulling
	Fast-Forward Merge

	Merge Conflicts
	Pulling Commits from origin
	Resolving Merge Conflicts

	Summary

	Chapter 14: More About Conflicts
	Pushing After a Conflict Resolution
	Review Changes Before Merging
	Check the Branch Location
	Review the Branch Differences

	Merging
	Reducing Conflicts
	Having a Good Workflow
	Aborting a Merge
	Using a Visual Git Tool

	Summary

	Chapter 15: Git GUI Tools
	Default Tools
	Committing: git-gui
	Browsing: gitk

	IDE Tools
	Visual Studio Code

	Specialized Tools
	GitHub Desktop

	Summary

	Chapter 16: Advanced Git
	Reverting
	Stashing
	Resetting
	Summary

	Part IV: More with GitHub
	Chapter 17: More with GitHub
	Wikis
	GitHub Pages
	Releases
	Project Boards
	Summary

	Chapter 18: Common Git Problems
	Repository
	Starting Over
	Change Origin

	Working Directory
	git diff Is Empty
	Undo Changes to a File

	Commits
	An Error in a Commit
	Undo Commits

	Branches
	Detached HEAD
	Working in the Wrong Branch
	Catch up with the Parent Branch
	Branches Have Diverged

	Summary

	Chapter 19: Git and GitHub Workflow
	How to Use This Workflow
	GitHub Workflow
	Every Project Starts with a Project
	Every Action Starts with an Issue
	No Direct Push to main
	Any Merge into the Main Branch Needs a Pull Request
	Use the Wiki to Document Your Code

	Git Workflow
	Always Know Where You Are
	Pull Remote Changes Before Any Action
	Take Care of Your Commit Message
	Don’t Rewrite History

	Summary

	Chapter 20: Making Git Yours with Aliases
	What Are Git Aliases?
	Using Git Aliases
	Using the Git Config File
	Editing the Git Config File Directly
	Examples of Useful Git Aliases
	Common Command Shortcuts
	Listing Aliases
	Summary

	Index

