

Praise for Communication Patterns

This book covers one of the most important aspects of software
development, the so-called “soft skills,” which ironically present the
biggest challenges for many developers. It is chock-full of patterns and
advice, some of which are obvious in hindsight, which are often the
hardest to see beforehand. Highly useful and recommended for
technologists at all levels.

—Neal Ford, Director/Software Architect/Meme
Wrangler, Thoughtworks, Inc.

Jacqui shows that the skill of communication is not black magic for the
lucky few: it can be learned, practiced and polished. This complete
overview full of practical insights will help anyone improve and be more
successful in achieving what they want.

—Kim van Wilgen, Customer Director, Schuberg Philis

Effectively communicating ideas and solutions is an essential skill for
software developers and architects. However, very few resources show
you how—until now. Communication Patterns is a masterful guide that
unlocks the intricate web of verbal, written, visual, and non-verbal
communications. Through patterns and practical techniques, Jacqui
untangles the complex world of communication and helps us better
understand the language behind human interaction. This book promises
to be one of the most important books of the decade, one that should be
on every technologist’s bookshelf.

—Mark Richards, Software Architect, Founder of
DeveloperToArchitect.com

Jacqui Read’s unique approach to communication is empowering,
insightful, and imbued with practical wisdom. Communication Patterns
is the definitive guide to enhancing communication skills in the tech
industry.

—David R. Oliver, Principal Architect, Actica Consulting

We could all be better at communicating our technical decisions, designs,
and architectures. This book covers all the aspects you need to improve
your communication, all the way from the high-level concepts down to
the practical details.

—Alistair Jones, Founder, nifdi.app

Communication Patterns is a great book that helps you communicate and
illustrate architecture better with anybody in so many ways. The patterns
described by Jacqui Read are helpful in improving communicative
collaboration in your teams.

—Jonah Andersson, DevOps Engineer Lead, Microsoft
MVP and MCT, Author of Learning Microsoft Azure

What we think and communicate is what we build. Our communication
skills define, for better or worse, our software architectures. This book
will improve both.

—Diana Montalion, Systems Architect, Founder, Mentrix

Practice alone does not make perfect. Communication Patterns covers
common mistakes and guides you toward more effective visual, verbal,
and written communication.

—Stefan Hofer, Author of Domain Storytelling,
Workplace Solutions (WPS)

Communication is a skill all possess, but very few master. Starting with
simple concepts and ramping up to advanced skills, Communication
Patterns is an invaluable aid for engineers to become master
communicators and wow the audience with crisp visuals, engaging
storytelling, and clear argumentation.

—Sonya Natanzon, Senior Director, Enterprise Software
Engineering

Jacqui gives us a treasure map in Communication Patterns. Her book
addresses the different layers, communication modes, and
communication nuances in our craft, no matter the formal position. She
describes and gives names to my unspoken challenges, and her
experience as an architect and developer is translated to this book, where
you can leverage her knowledge to create inclusive and effective
communication within your team, department, and organization.

—João Rosa, Independent Consultant and Team
Topologies Valued Practitioner, Impactfulness

The subtitle might say this book is for developers and architects, but
anyone, particularly in a leadership position, should read this book to
become more effective. And they might be called soft skills, but they’re
not easy to learn since they are so infrequently taught. This book
remedies that gap and helps demystify successful communication
approaches.

—Rebecca Parsons, Chief Technology Officer Emerita,
Thoughtworks

In this book author Jacqui Read has collected a set of small, surprisingly
sense-making patterns, that will often leave the reader with the “Why
didn’t I think of this before?” question. Communication Patterns is an
excellent read for architects, modelers, and developers. While reading
through the extensive set of patterns in this book, I often had a warm,
deja vu feeling. Jacqui puts her finger on the right spots and adds useful
details for architects, modelers, and developers.

—Sander Hoogendoorn, CTO at iBOOD.com,
International Keynote Speaker, and Author of Microteams,

This Is Agile, and Pragmatic Modeling with UML

Finally, a book about communication in the world of developers,
bridging the gap between complex code and meaningful conversations.

—Cecilia Wirén, Senior Developer, Microsoft MVP

In Communication Patterns, Jacqui Read doesn’t just lay out patterns for
effective communication with various stakeholders; she provides a
compass for every developer and architect. Each chapter reminds me that
merely designing software collaboratively with stakeholders isn’t enough;
the real power lies in how we present it. Every time I embark on a new
software project or collaborate with teams and stakeholders, I turn to
this book for guidance on the best approach and how to structure our
conversations.

—Kenny Baas-Schwegler, Software Consultant and
Software Architect, Weave IT b.v.

Communicating ideas effectively is not a skill that many developers and
architects are formally taught, so we go through our careers doing it
badly and learning via trial and error. What Jacqui has put together in
this book should be foundational knowledge for any aspiring software
developer and will fill in many gaps for seasoned practitioners.

—Nick Tune, Principal Consultant, Empathy Software

I got into programming because of computers. Then I learned that
programming is just as much about people as it is about bits and bytes.
Jacqui shows in this book how we programmers can communicate with
people—with each other and with domain experts—in a very
programmer-friendly way: by describing the patterns that lie behind it.

—Henning Schwentner, Coding Storyteller, WPS

Communication Patterns
A Guide for Developers and Architects

Jacqui Read

Communication Patterns
by Jacqui Read

Copyright © 2024 Read the Architecture, Ltd. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Louise Corrigan

Development Editor: Corbin Collins

Production Editor: Katherine Tozer

Copyeditor: Amnet Systems LLC, Sharon Wilkey

Proofreader: Sharon Wilkey

Indexer: BIM Creatives, LLC

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: Kate Dullea

October 2023: First Edition

http://oreilly.com/

Revision History for the First Edition

2023-10-06: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098140540 for release
details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.
Communication Patterns, the cover image, and related trade dress are
trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author and do not
represent the publisher’s views. While the publisher and the author have
used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the author disclaim all
responsibility for errors or omissions, including without limitation
responsibility for damages resulting from the use of or reliance on this
work. Use of the information and instructions contained in this work is at
your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property
rights of others, it is your responsibility to ensure that your use thereof
complies with such licenses and/or rights.

978-1-098-14054-0

[LSI]

http://oreilly.com/catalog/errata.csp?isbn=9781098140540

Preface

Communication underlies pretty much everything you do, from your facial
expression showing disapproval or enjoyment, to your email about the latest
project update, to what you say in a meeting or presentation. But what is
communication, and how do you make it successful?

The Oxford English Dictionary defines communication as “the activity or
process of expressing ideas and feelings or of giving people information.”
This encompasses many of the important aspects of communication but
doesn’t indicate what would make it successful. The same dictionary
defines communicate as “to share or exchange information, news, ideas,
feelings, etc.” This definition provides more detail, but we still need to go
further to work out how to make communication successful.

The Merriam-Webster Dictionary adds that communication is “through a
common system of symbols, signs, or behavior,” introducing the idea of
commonality and how the ideas or information is conveyed.

Here’s what we have so far:

Expresses ideas and feelings

Gives people information

Shares or exchanges information, news, and so on

Uses a common system of symbols, signs, or behavior

That gives a good idea of what communication is, but what makes
communication successful?

The polyglot linguist Michel Thomas put it simply when he said the aim of
communication is to “get the ball over the net.” None of the definitions
we’ve seen so far cover this critical element of understanding.

Let me take a stab, then:

https://oreil.ly/aoO-E

Successful communication is the art and science of sharing or
exchanging ideas and information, using a common set of symbols, signs,
or behaviors, resulting in shared understanding.

The cost of miscommunication is high, whether it’s cumulative wasted time
or the price of putting things right. So why is there not more emphasis on
making communication successful, or at least improving it? That is the
focus of this book.

Software development and architecture have patterns and antipatterns that
can be applied (or recognized) in writing code and architecting systems. A
pattern is a reusable solution that has been shown to be effective when used
to solve a problem. The biggest benefit is that someone else has done the
hard work for you, and you just need to apply the solution to your particular
situation and problem.

Antipatterns are not the direct opposite of patterns. They are solutions that
look like they solve a problem but have consequences that outweigh any
potential benefits. Learning about antipatterns means that you can recognize
them in designs or existing systems, or recognize situations where they
might occur so that you can avoid or mitigate them.

This book applies the concept of patterns and antipatterns to
communication.

People often quote Brian Foote and Joseph Yoder’s 1997 paper “Big Ball of
Mud” (and for good reason): “If you think good architecture is expensive,
try bad architecture.” It means that creating good architecture requires an
investment, but not investing will result in bad architecture that costs more
in the long run. The same thing should be said for communication: If you
think good communication is expensive, try bad communication. Investing
in good (successful) communication is less expensive than bearing the costs
of bad (unsuccessful) communication.

https://oreil.ly/LO2bq
https://oreil.ly/LO2bq

Why I Wrote This Book
Throughout my career in software development and software architecture, I
have frequently discovered that the principles and techniques I apply
naturally do not come naturally to others. In some cases, I have applied
knowledge I learned from somewhere else to the technology domain, and in
others, my approach just seemed to me the right way to do it.

I realized that I had built up many patterns and antipatterns in my toolbox,
and not all were the type that can be applied to code or architecture. Some
were applicable to what many would describe as soft skills, like creating
diagrams and documentation. Even some that were designed to be used in
code or architecture, I was applying outside of their intended use.

It turned out that these soft patterns and antipatterns could all be categorized
as communication patterns and, recognizing that my tool kit was not widely
accessible to others, I determined to make it available. The result is this
book and the training courses that I provide through O’Reilly and privately
(along with other architectural courses and consulting).

My intention in writing this book is to improve communication of teams
and organizations within the technology sector so that individuals can
increase their productivity and general happiness, and organizations see an
improvement in their return on investment (ROI) and even their bottom
line.

Investing in your soft skills will enhance your technical skills and make you
a stand-out technical star.

I consider myself to be a lifelong learner and would love to hear your
experiences of applying the patterns and antipatterns in this book, and of
any other methods you use to optimize the way you and your colleagues
communicate. You can contact me via O’Reilly (“How to Contact Us”), my
website, or social media.

https://jacquiread.com/
https://jacquiread.com/

Who Should Read This Book
This book is intended for developers, engineers, and all types of architects
(solution, software, data, enterprise, and so forth) at any point in their
careers. Because the skills this book presents are not formally or
traditionally taught, even the most seasoned technologist can benefit.

Applying this book’s patterns to your communication will set you apart as
someone who not only has the technical skills but also the soft skills to get
things done and be understood by technical and nontechnical audiences
alike. For those aspiring to move from development to architecture, or into
a senior or tech-lead role, improving your communication will remove at
least some of the hurdles between you and the role you desire.

Although principally tailored to developers and architects, the patterns in
this book can be applied by, and provide benefits to, anyone in the software
and technology industries (and other industries besides). The relevancy of
each pattern and antipattern will depend on your role.

For example, Part I will be useful to business analysts (BAs), and Part IV
will be useful to anyone working in a remote or hybrid environment, or
with customers in another time zone. Managers and leaders will greatly
benefit from Parts II, III, and IV, with the added benefit of being able to
disseminate the techniques and principles to their reports and teams.

Many patterns and principles in this book come from domains very
different from software, and I wouldn’t be surprised if they can be applied
in still more domains.

How to Read This Book
The book is structured into four parts, each covering one major aspect of
communication in the software and technology domain. You are free to start
wherever you feel would most benefit you, or with whatever piques your
interest the most. Otherwise, Part I is the place to start.

Part I covers patterns and antipatterns for diagrams and other visuals.
Chapter 1 lays the foundations that the other chapters in Part I build upon.
Ensure you understand and are applying the patterns in Chapter 1 before
you start adding the other patterns from Part I to your tool kit.

Part II includes patterns and techniques for written, verbal (spoken), and
nonverbal communication, which you can apply to remote and in-person
interactions. Part III contains principles, practices, and patterns to improve
knowledge management and sharing, including documentation. Part IV
offers many strategies and patterns for you to use when communicating
with people in other time zones and with different working hours,
particularly in hybrid and remote environments.

Images and Color
Some of the figures in this book need to be viewed in color. In the printed
version, all images are grayscale, so we’ve included links to color versions
of any images that need to be viewed in color. All images are available on
the accompanying website.

Software Tools
You do not need to use any specific software tools to put the patterns and
techniques in this book into practice, but I do mention various tools. When
citing tools that could be used for a particular purpose, I usually refer to
those that are well-known. The recommendations I make are mostly open
source options. Remember to check the license required for your situation
and ensure that the terms of service meet your needs.

To create my original diagrams and illustrations for this book, I used
draw.io, for a time known as Diagrams.net. I encourage participants to use
draw.io when completing exercises in the workshops I run. It is free, open
source, requires no login, and can be used as a desktop application or via a
web browser. Draw.io has many integrations for other applications, and the
desktop version is available for Windows, macOS, Linux, and ChromeOS.

https://communicationpatternsbook.com/
https://drawio.com/

Polyglot Media
Polyglot Media is a fictitious company used to create examples for this
book. The company has around 150 employees, who are spread across
several countries, and an international customer base. Polyglot Media
provides customers with access to various digital media (ebooks,
audiobooks, and videos) on a subscription and pay-as-you-go basis, and it
also offers hard copies of books. Some media is stored in-house, and some
is provided by partners. The Polyglot Media system is also used by authors
to update and create publications and by editors (employed by Polyglot
Media) to access and edit the authors’ publications.

EXAMPLE

POLYGLOT MEDIA EXAMPLES
Throughout the book, I used Polyglot Media in examples. You will see
that lots of the diagrams are based on Polyglot Media systems, and
other examples are presented in a box just like this one. All examples
are fictitious but based on my own or others’ experiences and learning.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, file
extensions, and pattern or antipattern names.

Constant width

Used for program listings, as well as within paragraphs to
refer to program elements such as variable or function
names, databases, data types, environment variables,
statements, and keywords.

TIP
This element signifies a tip or suggestion.

NOTE
This element signifies a general note.

WARNING
This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for
download at https://communicationpatternsbook.com.

If you have a technical question or a problem using the code examples,
please email bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code
is offered with this book, you may use it in your programs and
documentation. You do not need to contact us for permission unless you’re
reproducing a significant portion of the code. For example, writing a
program that uses several chunks of code from this book does not require
permission. Selling or distributing examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation
does require permission.

We appreciate, but generally do not require, attribution. An attribution
usually includes the title, author, publisher, and ISBN. For example:

https://communicationpatternsbook.com/
mailto:bookquestions@oreilly.com

“Communication Patterns by Jacqui Read (O’Reilly). Copyright 2024 Read
the Architecture, Ltd., 978-1-098-14054-0.”

If you feel your use of code examples falls outside fair use or the
permission given above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning

NOTE
For more than 40 years, O’Reilly Media has provided technology and business training,
knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and
expertise through books, articles, and our online learning platform.
O’Reilly’s online learning platform gives you on-demand access to live
training courses, in-depth learning paths, interactive coding environments,
and a vast collection of text and video from O’Reilly and 200+ other
publishers. For more information, visit https://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-889-8969 (in the United States or Canada)

mailto:permissions@oreilly.com
https://oreilly.com/
https://oreilly.com/

707-829-7019 (international or local)

707-829-0104 (fax)

support@oreilly.com

https://www.oreilly.com/about/contact.html

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at
https://oreil.ly/communication-patterns.

For news and information about our books and courses, visit
https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media.

Follow us on Twitter: https://twitter.com/oreillymedia.

Watch us on YouTube: https://youtube.com/oreillymedia.

Acknowledgments
This book would never have been written without the assistance and
enduring stamina of one person: my husband Steve. His unending support
enabled me to tackle the adventure that is writing a technical book. From
encouragement to technical proofreading, from making sure I ate real food
to taking on most of the jobs of running a house while working a full-time
job and parenting two neurodivergent children almost single-handedly, he
has allowed me the time and space to write this book. He has also
contributed a few good ideas himself. Thank you, Steve, for your belief,
backing, and back-breaking efforts.

This book has greatly benefited from my technical reviewers, who put so
much effort into reading my drafts and giving valuable feedback. My thanks
to Emily Bache, Ali Greene, Alistair Jones, David R. Oliver, and Steve
Read (yes, him again). I would also like to thank David J. Oliver for his

mailto:support@oreilly.com
https://www.oreilly.com/about/contact.html
https://oreil.ly/communication-patterns
https://oreilly.com/
https://linkedin.com/company/oreilly-media
https://twitter.com/oreillymedia
https://youtube.com/oreillymedia

input into Chapters 10 and 11. Any mistakes you may find in this book are
certainly my own.

Many people have contributed to this book indirectly, through
conversations, blog posts, talks at conferences, books, and other
interactions. Thank you to everyone who has shared my journey so far and
shared their experiences through events and publications. Thank you also to
those who have organized the conferences and events that I have spoken at
or attended, and to all my speaker and author friends who I have met at
these conferences and who have accepted me as one of their own.

Thank you to all those who have shown support and encouragement for this
book before it was even published. I have received many kind and
emboldening comments and responses via social media and at conferences
when I have talked about my upcoming book and the prerelease. These
messages have shown me that people do want to read what I write, which
has spurred me on when editing has been tough.

I also want to thank all those I have worked with at O’Reilly, particularly
Louise Corrigan and Melissa Duffield, for their encouragement and belief
in my proposal, writing, and courses. I would also like to thank Corbin
Collins for his sterling editing and for pointing out how many commas I had
missed. The production and illustration team also deserve my thanks,
including Katie Tozer and Kate Dullea, particularly for working patiently
with me on reproducing my diagrams for print.

My journey of working with O’Reilly started back in 2021, when I led a
team to win the autumn/fall 2021 Software Architecture Kata.1 I owe thanks
to Neal Ford and Mark Richards for that opportunity to practice my skills
and show what I could do, and particularly to Mark for his encouragement
to go further. He said it would change my career, and it did. Thank you,
Mark, for your encouragement then and your mentoring and friendship
since.

Finally, I would like to thank my children, Matilda and Hugo, for their
patience and support while Mummy has been hidden away in her office

writing some book that they have no interest in at their age. Sorry for all the
time Mummy had to “work.” We can go and play now.

1 You can see all the finalist entries (including mine, The Archangels) for all the past katas in
my GitHub repo.

https://oreil.ly/doiQ_

Part I. Visual Communication

Visual elements in software architecture and design communicate key
information. Your audience’s eyes are naturally drawn to these elements,
which may be the only thing they look at in any detail. Despite this, little
guidance or training is available on creating diagrams and visuals (except
notation-specific courses, such as ArchiMate), especially on how to
effectively and successfully communicate your message to your audience.

Visual literacy, the ability to understand and create visuals, is a skill
architecture and software training courses are missing. I wrote Part I to fill
that knowledge gap. These patterns and antipatterns guide you to create
diagrams that serve your audience’s needs and produce the outcomes you
want. You will learn to strike a balance between the need for information
and for accessibility.

For any diagram or visual you create, Part I offers many patterns that you
can apply to successfully convey your message to your audience and get
what you need in return.

Chapter 1. Communication
Essentials

This chapter provides the foundation that you will build upon with the other
patterns in Part I. When I refer to patterns and antipatterns, I mean the
following:

Pattern

A reusable solution known to be effective when used to solve
a specific or more general problem, which may otherwise be
known as techniques, practices, methods, or rules.

Antipattern

A solution that is not recommended. It looks like it is the
right way to solve a problem when in reality its
consequences outweigh any benefits.

I highly recommend making sure you are employing the patterns and
antipatterns in this chapter before building on them with all the others.
Think of it the same way as architecting a building: you need to get the
foundation right before you can build the walls, floors, and roof. Don’t start
building on sand, or your construction will sink. Get this groundwork right
first.

Know Your Audience
The know your audience pattern is also known as understanding your
customer. One of the essential factors to keep in mind when creating and
editing a diagram is who is going to be viewing and reading it. Your
diagram’s purpose is to communicate successfully with this audience.

Knowing who they are and designing the diagram to their needs are key to
this purpose.

People who view your diagram could have the following roles:

Developers (full-stack, frontend, backend…)

Architects (technical, solution, security…)

Business analysts

Product owners

Project managers

Customers

Support teams

TIP
Make a list of the roles that view your diagrams and then group the roles based on the
types of diagrams you create. You will likely find that you have a different audience mix
for different diagrams. Use these lists with the questions near the end of this section.

The following diagrams have been created for different audiences, and the
type of diagram and notation have been chosen to suit the audience.

Figure 1-1 shows a Unified Modeling Language (UML) class diagram
aimed at a technical audience, including developers, architects, and
database administrators. A product owner or project manager would be
unlikely to need the information in this diagram or be able to understand it
without help.

Figure 1-1. UML class diagram, aimed at a technical audience

Figure 1-2 is a C4 context diagram. This is a versatile diagram, useful for
both technical and business audiences to get an overview of a system. This
diagram is equally readable and useful to roles such as product owner,
project manager, architect, developer, and business analyst.

Figure 1-2. C4 context diagram, useful to most audiences

The domain story shown in Figure 1-3 is aimed more at business roles, but
also those technical roles that are involved in translating business needs into
technical solutions. Domain stories are created to improve communication
between business stakeholders and technical roles so that the solution meets
the needs of the business and users. Domain or subject matter experts
(SMEs) would be involved in creating and verifying a domain story, along
with roles such as product owner (if not the SME), business analyst, and
architect.

Figure 1-3. Domain story diagram, aimed at business roles and technical translator roles such as
architects and business analysts

After identifying your audience, ask yourself the following about them:

What do they want from you?

Consider your audience’s expectations and needs. Meeting
their needs is key to successful communication. Is your
audience looking for specific information so they can make a
decision or report back to someone else? Keep your
audience happy by sending them away with the information
and understanding they need to do their jobs.

What do you want from them?

This question is often missed: what you need from your
audience. Do you need agreement or sign-off on your design
decisions? Do you need them to make a decision based on
your diagrams? Make sure the audience understands what
you need from them and by when, and has all they need in
order to meet your expectations.

What is their technical understanding?

Your audience’s technical understanding will determine the
type of diagram they will benefit from. Consider how
technical your project manager is. Does your product owner
want to know about the selected technology, or just about
how well the selection meets the requirements?

What level of detail do they need?

Whether the content is technical or not, you need to
consider the appropriate level of detail. Is this diagram for
an architectural review board that will expect a lot of detail?
Does the development team need implementation details, or
is determining those details part of their job?1 Ask teams
what they want, rather than going by any written or
unwritten guides the company gives you. If there are rules
that don’t meet the team’s needs, bring it up with the
appropriate person.

Besides these questions, consider that members of your audience may not
be native speakers of the language you are using and may have a different
cultural background from you (see “Simple Language”).

Once you’ve identified your audience and their needs, you can begin your
diagram.

Mixing Levels of Abstraction
Mixing levels of abstraction is a communication antipattern that has a
counterpart in the coding world. If you have ever coded, you will likely
know mixing levels of abstraction as a sin or a code smell.2 Although
putting all the information someone could need into one diagram might
seem appropriate, this leads to clutter and confusion from the audience’s
perspective.

NOTE
Levels of abstraction refers to the granularity or generality of the information you
present in a diagram. Abstraction levels range from high-level views showing the major
components of a system and their relationships to one another down to low-level
diagrams detailing the code’s structure.

Using different levels of abstraction across multiple diagrams allows you to
communicate appropriately for the audience, while still ensuring that all relevant
information is captured.

All software is an abstraction, but in essence, levels of abstraction let you
hide low-level details from high-level concepts. Developers do not write
software using ones and zeros (binary or machine code); they develop by
writing in higher-level languages that abstract away the complexities of
machine code and all the levels between (interpreters, compilers, and so
forth).

Take a look at Figure 1-4. If you think of the process of going to work as
one level of abstraction, the next level could contain the concepts of getting
up, having a shower, getting dressed, having breakfast, leaving the house,
and so on. The next level for getting up would contain pushing back the
covers, sitting up, and standing up. There you have three levels of
abstraction (going to work, getting up, pushing back the covers), but in
software terms, these should all be separate (such as in different methods or
classes) to avoid confusion and unneeded complexity, and to aid readability.

Figure 1-4. Levels of abstraction in everyday life

Using levels of abstraction applies to software architecture and diagrams in
the same way. In code, you apply this principle to methods, classes, layers
in a layered application (such as a presentation layer, the business logic, a
persistence layer, and the data store), and more. In diagrams and software
architecture, you apply this principle to the content of diagrams and to the
structure of services, microservices, and so forth.

The C4 model is a hierarchy of abstractions. It uses an abstraction first
approach (prioritizing abstraction and building everything else around it).
Its four abstraction layers define its core diagrams:3

1. The system context shows an overview of the system and how it fits
into its environment, including interactions between the system and
other entities.

2. The container level zooms in on the software system in scope,
showing the high-level components or building blocks and how they
interact with each other and external entities.

3. The component level zooms in further on an individual container from
the previous level. It shows the components inside the container and
their interactions with each other and with external entities.

4. The code level zooms in still further on a component from the previous
level. It shows how the component is implemented. (This level is often
more detail than is necessary in your documentation).

You can think of these four levels as maps that you can zoom in on to reveal
increasing levels of detail. The C4 abstraction layers can illustrate the need
for varying levels of detail.

Figure 1-5 isn’t a context diagram and it isn’t a container diagram. It is a
mix of two levels of abstraction. If you look at the diagram closely, it
doesn’t make sense. The system in focus (Polyglot Media’s software
system) seems to have been partially divided into containers, and the
relationship between the software system and containers doesn’t make
sense. The software system and the containers belong in different

https://c4model.com/

conceptual levels. In reality, containers within the software system will be
interacting with the containers shown.

Figure 1-5. C4 diagram showing both context and container levels of abstraction (antipattern)

Figure 1-6 shows how the context diagram for Figure 1-5 should look. This
is where the software system in focus (Polyglot Media) belongs, with its

related external systems and actors.

Figure 1-6. C4 context diagram

Figure 1-7 shows how the container abstraction layer information in
Figure 1-5 should be shown in a C4 container diagram. The system in focus
(Polyglot Media) is shown as a dashed box with the containers inside it.

C4 models, based around a hierarchy of abstractions, are an excellent way
to illustrate the need to keep levels of abstraction separate in diagrams. This
separation rule applies to all types of diagrams. Apply it to your sequence
diagrams, data flow diagrams, diagrams with no formal notation, and all the
other types of diagrams you use. All your diagrams should follow this rule;
it is essential for communication.

Once you have split up any mixed diagrams so that each has only one level
of abstraction, read on to find out how to make them easily navigable.

Figure 1-7. C4 container diagram

Representational Consistency
Using the representational consistency pattern is the next step after
checking levels of abstraction: linking discrete diagrams together so that
your audience can navigate between them easily and see how they fit
together. Understanding how your diagrams relate to one another should be
easy for your audience. You risk unsuccessful communication if your
audience has to think too much, or remember a key or pivotal detail, to
understand relationships between diagrams (each an individual level of
abstraction).

Many notations, such as C4 and data flow diagrams, have formal and
explicit ways of communicating representational consistency. As noted
previously, C4 diagrams also have explicit levels of abstraction (context,
container, component, and code). Take a look at Figure 1-8, which shows
the system in scope (Polyglot Media) in the center of the diagram. This
context level is the highest in C4 diagrams.

Figure 1-8. C4 context diagram

The next level down is a C4 container diagram (Figure 1-9). The method of
connecting these diagrams is a dashed box in Figure 1-9, which is labeled
(in the bottom left) the same as the central box (Polyglot Media) in
Figure 1-8. This allows the audience to see the connection between these
two diagrams, whichever one they see first.

Figure 1-9. C4 container diagram for Polyglot Media (showing the high-level interactions within the
Polyglot Media system)

In a data flow diagram, you use numbers and letters to indicate the identity
of its elements, and then you can use those same numbers and letters to
guide your audience through different levels (shown in different diagrams).
For example, in Figure 1-10 the processes are numbered 1 through 3 to
indicate the order in which they occur, and if those processes are further
divided in another diagram, they can be identified by that number.

Figure 1-10. Level 1 data flow diagram

In Figure 1-11, process 2 from Figure 1-10 is divided into three
subprocesses. You can tell this because they are numbered 2.1 through 2.3.
The processes are again ordered, but relative to the higher-level diagram in
Figure 1-10.

Figure 1-11. Level 2 data flow diagram

If you compare the data stores in Figures 1-10 and 1-11, you will notice that
the data stores labeled A and B in Figure 1-10 also appear in Figure 1-11
with the same identities.4

If the notation you’re using doesn’t provide a formal way of connecting
diagrams, you will need to make the connection explicit yourself. For
example, Figure 1-12 shows another way to connect process 2 (Fetch
media) in Figure 1-10 and its subprocesses 2.1 through 2.3 in Figure 1-11
using a similar method to the one employed by C4 diagrams (shown
previously in Figure 1-9). You could use a similar technique in many types
of diagrams.

Figure 1-12. Level 2 data flow diagram with explicit representational consistency

TIP
When including diagrams in documentation, refer to them in the text of that
documentation. Use hyperlinks if possible, and label your diagrams (for example,
“Figure 1: System X context diagram”) and then reference that label explicitly.

Make representational consistency explicit in your diagrams and
documentation to reduce your audience’s cognitive load.5

Summary
This chapter covered the essentials of visual communication, giving you a
foundation on which to build with the remaining patterns and antipatterns in
Part I. As you continue through the book, think about how you could apply
these essentials along with the other patterns and antipatterns explored.

Having thought about what your audience needs from your diagram, it is
time to consider the amount of information that you are presenting in it.
Keeping this to the bare minimum needed to communicate your message
will improve your audience’s understanding.

1 The level of detail in designs for development teams can be controversial, leading to clashes
between development and those creating the designs.

2 A characteristic of the code that possibly indicates a deeper problem.

3 C4 also has some supplementary diagrams such as a deployment diagram.

4 Notice that the data store identities (A, B, and so on) are ordered in the same sequence as the
data stores are accessed in the flow of the diagram.

5 Cognitive load is the amount of effort a person has to exert to reason or think about
something.

Chapter 2. Clarify the Clutter

Your chances of communicating successfully are drastically reduced if an
audience has to work hard to understand your message. This chapter
explores the patterns and antipatterns that will help you reduce your
audience’s cognitive load. You will identify and eliminate elements of your
diagram that obscure your message, and split that message across multiple
diagrams where needed.

Color Overload
When talking about the color overload antipattern, I often refer to it as an
explosion of unicorns. In most cases, the colors used in diagrams are not
given much, if any, thought at all. When too many colors are used, the
audience may have difficulty matching them to their meaning without a lot
of mental effort (even if a legend is included). Even worse, colors that are
used without any meaning at all cause the audience to waste mental energy
deciphering a detail that’s irrelevant to your intended message.

This antipattern usually occurs because the diagram’s author had no
motivation to consider color or no idea that color is important in visual
communication. The author might use default colors or randomly selected
colors in a diagramming application because that is quicker than taking the
time to think about color selection or because that individual or business
has always used those colors.

TIP
Failing to consider color in a visual presentation is an example of being “penny-wise but
pound-foolish.” You may save time creating the diagram but will spend more time (and
therefore money) later by having to explain to audiences, redo the diagram, or even
clear up a mess resulting from miscommunication. Just as fixing bugs in code early
saves money and time in the long run, so does getting communication right early.

This antipattern applies not just to diagrams but to all visuals, except those
purely in black-and-white (that is black-and-white only, and not grayscale).
But don’t think the answer is to create all visuals in black-and-white. The
way to combat this antipattern is to consider color and use it to
communicate.

NOTE
If you’re reading this book in print, all the images are in grayscale. Where color is
important, the image caption includes a link to the book’s website, which contains all
color versions.

In Figure 2-1, an overpowering array of bright colors shows that each
component in the diagram is different, but without any consideration for
communicating any further details. Think about how you would fix this
before reading on.

https://communicationpatternsbook.com/

Figure 2-1. Rainbow sequence diagram (https://communicationpatternsbook.com)

To fix Figure 2-1, you must minimize the color palette, using only the
number of colors needed to convey your message. You don’t need a
different color for every component. When selecting colors, consider which
colors go well together (that is, they don’t clash) as well as the luminosity
of the colors; too many bright colors may overwhelm your audience.

Next you need to consider what you are trying to communicate to your
audience via these selected colors. You can use them to communicate
aspects of the components like function or type by using the same color for
each category. For example, Figure 2-2 uses four colors to differentiate the
UI, data store, APIs, and service, and a key communicates the meaning of
the colors.

https://communicationpatternsbook.com/

Figure 2-2. Colors used to group by type (https://communicationpatternsbook.com)

Grouping colors by type isn’t the only option for improving Figure 2-1, but
it implements the fixes just mentioned to minimize distraction from the
message of the diagram. Avoiding distractions from your message is key to
successful communication.

Boxes in Boxes in Boxes
Boxes are often used to communicate where a component in the diagram is
situated (conceptually, logically, physically…) as well as to group
components. When you have too many boxes, their many lines become
visually confusing, meaning the audience must spend precious attention and
brainpower working out which line belongs to which box. You need a lot of
whitespace to make a diagram with many boxes legible, leaving less space
for what you actually want to communicate.

The boxes in boxes in boxes antipattern emerges as the diagram author uses
the same form of delineation to represent different meanings in a diagram.
Maybe the author is unaware of other ways of expressing meaning or ends
up trapped in the this is the way it has always been done way of thinking.

https://communicationpatternsbook.com/

TIP
Whitespace is just as important as the content of your diagram. It gives the eye a place
to rest, reducing cognitive load, as well as making the diagram easier to scan and more
legible.

Whatever the reason, this antipattern disrupts communication and usually
wastes time or money. Your audience will not appreciate having to expend
effort on deciphering your diagram and will either not expend this effort or
do so but still not receive the message you are trying to communicate.

Many types of diagrams can fall prey to this antipattern, but structural
diagrams that convey situation or location (for example, logical location)
are the most common victims. Data flow or sequence diagrams can end up
with lines and boxes too close together, and the fixes discussed in this
section will still apply.

TIP
Keep your background color subtle compared to the colors used for borders and text.
You must create high contrast between elements in your diagram and the background so
that your audience can clearly differentiate everything in the diagram.

Figure 2-3 is a cloud resources diagram that uses dashed-line boxes to
indicate various logical constructs like virtual network boundaries, storage
accounts, and policy application. The difference in line type (dashed versus
solid) between boxes and relationships is good, but a lot more can be done
to make this diagram more readable. How could you improve Figure 2-3?

Figure 2-3. Boxes in boxes in boxes cloud resources diagram (antipattern)

When you create diagrams, consider alternatives to boxes.1 Labels on
components are a good alternative. If you do use boxes, differentiate
between them by using color and pattern of both the box outline and
background. Removing unnecessary detail and splitting the diagram into
multiple diagrams are also good techniques.

Figure 2-4 shows one example of how the diagram in Figure 2-3 can be
improved:

Some boxes have been replaced with labels or notes, reducing the
number of meanings boxes are used to communicate.

Other boxes have been merged because their separation was not
required to convey the message.

Those boxes that remain have been differentiated using color and
pattern (solid line and a shaded background).

Figure 2-4. Decluttered cloud resources diagram

Remember that boxes are just one way to communicate meaning in a
diagram, and the nesting of boxes is often visually confusing. Whitespace is
your friend, along with the other strategies discussed in this antipattern.

Relationship Spiderweb
Connections (or relationships) in diagrams are typically shown as lines, but
the way those lines are styled and arranged determines whether the
relationships are clear.

When relationships cross over each other or even cross over other
components in the diagram, you end up with a spiderweb of confusion. It is
not clear whether this crossing has meaning. If relationships are labeled, it
is not clear which line the label applies to as there are so many lines and
labels close together. A spider would feel at home and catch a good dinner if
it lived in a diagram suffering from this antipattern.

The relationship spiderweb antipattern often occurs when not much
thought, if any, has been given to the layout of the components in a diagram
or their relationships. Some diagramming applications provide unhelpful

defaults, such as arrows with unclear line crossings. However, as the saying
goes, “It’s a bad craftsperson who blames their tools.” Change those
defaults or change the tools you use.2

Any diagram that shows relationships can suffer from this antipattern, but
structural diagrams are more prone to it than behavioral ones. Even C4
diagrams, which promote many good practices in creating diagrams, can
fall foul of the relationship spiderweb antipattern.

In Figure 2-5, relationships cross each other and even over containers,
adding to the audience’s mental load. To add further burden, it is not clear
to which relationship some of the labels apply.

Figure 2-6 shows an example of how Figure 2-5 can be improved. The
arrows (relationships) have been made orthogonal (using right angles)
instead of straight. This allows the diagram’s author to manipulate the
relationship much more easily to ensure higher clarity. It is now obvious to
the audience which label applies to each relationship. If required for further
clarity, you can use pattern or color to distinguish between different types of
relationships.

TIP
The position of labels indicating relationships should be standardized in a diagram—for
example, close to the beginning of the relationship or in the middle of the line. Make
exceptions to this rule when moving the label would clarify the relationship or label,
such as away from a right angle or farther away from another label.

None of the components in Figure 2-5 had to be removed when creating
Figure 2-6, but if components such as a logging service were present, they
could be moved into a separate diagram so that its relationships would be
clear in that separate diagram.

When two lines cross in a diagram, it is ambiguous whether they are right
angled or straight. Make it clear that they do not intersect by using a line

jump (typically an arc that jumps the line it crosses). No line jumps are
required in Figure 2-6, but Figure 15-2 has one.

NOTE
Remember that diagrams are free; you should use as many as you need to successfully
communicate your message to the audience. Multiple diagrams, each with a single
purpose, are much more effective than one diagram with multiple purposes (as discussed
in “Mixing Levels of Abstraction”).

Figure 2-5. Spiderweb C4 container diagram for Polyglot Media (antipattern)

Figure 2-6. Untangled C4 diagram

Balance Text
Having too much information in a diagram obfuscates the intended message
but sometimes you really need to add extra information to completely
convey the message. In that case, you can apply the balance text pattern.
You are balancing having enough information for the audience to
understand the message against having so much clutter that the message is
lost or only partially understood.

TIP
Information that isn’t best displayed in a diagram should be moved to text or tabular
form alongside the diagram. Information written as sentences is a good candidate to
abridge or remove from a diagram into separate text. Relational data is a good candidate
to be displayed in table form.

Some notations and types of diagrams, such as flow diagrams, have built-in
ways of adding more information—a standard format to add extra text
without becoming visually confusing. For other diagrams, notes or
footnotes can add more information without cluttering the main content.

WARNING
If you do use notes, be wary of separating them entirely (for example, as text alongside
the diagram), because if the notes get lost or the diagram is viewed without them, the
diagram could be misunderstood.

The flow diagram in Figure 2-7 has too much text. The word customer,
which has been introduced through the subtitle, is repeated unnecessarily in
the diagram boxes. Note that some of the text doesn’t even fit within the
flowchart components.

TIP
In general, it is better to follow an existing convention for adding extra information to a
diagram, such as the annotation shown in Figure 2-8 (rather than separate notes). Using
a common or expected approach will aid the audience’s understanding, although
exceptions will exist.

Figure 2-7. Flow diagram with too much text (antipattern)

Look to Figure 2-8 for an example of how to apply this pattern and two
ways to include extra text in the diagram (one method is usually enough,
but two are illustrated here). Excess text, like the repetition of customer, has
been completely removed or shortened. Information that is required has
been placed into a flowchart annotation (explaining “Select consumer

mode”) and into four numbered notes (with superscript references in the
diagram), making the main flow much clearer.

Figure 2-8. Flow diagram with excess text removed or moved to annotations and references

Besides removing the repeated word customer, the text has been changed
from full sentences to short phrases. The subject, customer, can be inferred

from the title and context. You are not repeating information that can be
deduced from the structure of the diagram itself.

Deciding how to display information stripped from the main diagram will
depend on the type of diagram, your message, and the format of the
delivery (presentation, documentation, or other forms).

You may be tempted to move all excess information into notes or footnotes,
but this just moves the problem rather than solving it. The audience will still
suffer from having to wade through excess information. Make sure to
remove any information that is not required to convey your message. Move
it to another diagram if needed.

Summary
Your diagrams should now be free of clutter and have a single purpose.
Look out for scope-creep (where the scope of your diagram grows and
grows), which will likely make your diagram multipurpose and allow
clutter to creep back in. Don’t be afraid to split a diagram into multiple
diagrams to clarify your message.

Your next stop on this diagramming journey is accessibility. In the
following chapter, you will see how default or common practices can make
it much harder for some of your audience to understand your visuals. You
will find that what you have learned about decluttering your diagrams has
begun the process of making them more accessible.

1 Boxes hark back to the Windows 3.1 era when they are used by themselves. Far fewer colors
could be displayed on a screen.

2 Most diagramming applications will remember your updated default settings, so you should
need to set your defaults only once.

Chapter 3. Accessibility

When most people hear the word accessibility in the world of software, they
immediately think of screen readers (for those who are blind or have
reduced vision), but they don’t think much further than this. Accessibility in
the technology arena encompasses much more.

When you create a diagram, you should consider whether your audience
can fully access it. If a stakeholder doesn’t fully understand your message,
you both lose out.

Accessibility isn’t just for those with temporary or permanent disabilities or
special needs. Your diagrams and visuals need to be accessible to people
with different levels of knowledge, business functions, and familiarity with
your product or domain. Your audience’s environment also affects the level
to which they can access your diagram, including the screen size they are
using and amount of time they have to consume your information.

This chapter will help you consider accessibility beyond screen readers and
produce diagrams that can be accessed by a much wider audience.

NOTE
Anyone can be disabled. It is their environment that disables them. Your aim is to put
everyone on an equal footing.

Relying on Color to Communicate
You are relying on color to communicate when you use color alone to
represent meaning, such as different colored boxes to represent new or
changed items in a diagram. The most obvious and common form of the
relying on color to communicate antipattern is to use color to represent
positive and negative without providing any other indication of meaning

(such as a legend) for those who can’t distinguish the colors. For example,
green is used to show good or go, and red for bad or stop. A traffic light at
least uses position as an indicator of color meaning, but red and green are
often used in diagrams without even this sort of cue.

Having said that, there has been a movement away from using just the
colors red and green. For example, a diff in GitHub’s UI shows additions in
green with plus signs, and deletions in red with minus signs.1 That hasn’t
happened for other colors, though, and this is affecting the accessibility of
diagrams and other visuals.

NOTE
EventStorming (a collaborative modeling technique) uses colored sticky notes to
represent different elements. The notes also have different shapes to ensure that
everyone can see the difference between any two elements.

You cannot rely on color to be perceived the same way by everyone for
several reasons. Of the total population, 4.5% have some form of color
blindness (color vision deficiency). It is more prevalent in men (affecting 1
in 12 men) than women (1 in 200). So, sadly, as the tech industry is still
dominated by men, more than 4.5% of your audience likely cannot perceive
the difference between two or more colors in your visual.

Along with color vision deficiency, some people struggle to perceive low
contrast—for example, those who are partially sighted. Other conditions
that might affect how well your audience can view your diagram and its
colors include photophobia, keratoconus, and glaucoma.2 In addition to
color, you need to consider contrast to make your diagrams accessible.

CONTRAST
All of your audience needs to be able to easily perceive the content of
your diagram, and this doesn’t just include text. Arrows, icons, and
patterns also need to have adequate contrast.

You can calculate a contrast ratio, the perceived difference in
luminance between a foreground and background color; for example,
pure red (hex value #FF0000) on a white background has a contrast
ratio of 4:1. The ratio remains the same even if the foreground and
background colors are swapped. The ratio required changes depending
on the size of the text, icon, pattern, and so on (smaller requires a higher
ratio). WhoCanUse is one tool you can use to check the contrast ratio
between two colors.

The Web Content Accessibility Guidelines (WCAG) provide best
practices and requirements, along with success criteria, for making
digital content accessible to people with disabilities. For more
information see the WCAG website, and WebAIM specifically for
contrast.

Another factor that affects the perception of colors in a diagram is format.
The monitor or projector your audience is using may be calibrated very
differently from the monitor the diagram was prepared on. Similar colors
may end up fairly indistinguishable or unidentifiable. If a green color looks
yellow to the audience, but you refer to a “green” component, for example,
the audience will be confused.

TIP
When using diagrams in multiple mediums—for example, a wiki/web page or a
presentation using a projector—you should consider using different color palettes. This
is especially true if the background color will be different across mediums (for example,
white in a web page and black in a slide deck). Consider how the audience will perceive
the colors and how the background color will change the contrast ratio of elements and
labels.

https://www.whocanuse.com/
https://wcag.com/
https://oreil.ly/9agAc

Diagrams or visuals may be viewed in printed form, such as in a document
(paper, pamphlet, and so on) or a book, and could be printed in grayscale (a
book is likely to be printed in grayscale). All the colors are lost in grayscale,
and only the saturation (lightness/darkness) remains. In this case, all the
colors in a diagram could appear to be the same shade of gray.

If colors are indistinguishable, any meaning ascribed to them is lost. A
legend is meaningless if the audience cannot tell one color from another.
When presenting a diagram and referring to a component by color, part of
your audience is likely to be unable to tell which component you are
referring to, whether the diagram is in color or grayscale. Don’t think
because it looks good to you that your message will be successfully
communicated to the audience.

You have several options for avoiding the relying on color to communicate
antipattern and giving audiences a cue besides color. One method is to use
patterns. By using a suitably contrasting pattern, like the one shown in
Figure 3-1, colors that may look similar in grayscale or to someone with
color vision deficiency can still be differentiated easily. This is a valuable
technique when you can’t vary the color palette in your diagram.

Figure 3-1. Even in grayscale, pattern can differentiate two colors

Don’t refer to components of a diagram, either in speech or text, using only
color as a reference, such as “The red boxes in the diagram show…​” This is
the sort of situation that can be solved by using patterns: “The red boxes
with dashed borders show…​”

Symbols are another useful tool for distinguishing between components or
colors. You can use symbols on their own or with color to clarify your
message; for example, when using red, yellow, and green for status, you
could add a + (plus) to the green and a – (minus) to the red.

WARNING
Consider what colors and symbols mean, especially in cultural terms, before using them
in your diagram. Ensure that they communicate your intended message and do not cause
confusion or offense.

You can also create an accessible color palette. The easiest way to check
whether a color palette is accessible is to use a tool. Many free options
exist; you can install some as an extension in your internet browser, which
is particularly useful for checking website palettes.

DESIGN TOOLS FOR COLOR VISION DEFICIENCY
Here are some tools I recommended to help you create an accessible
color palette:

Color Oracle is a free application for Windows, Mac, and Linux
that can simulate four types of color vision deficiency (including
grayscale/monochromacy).

Coblis is a free online tool that allows you to upload an image and
simulate eight types of color vision deficiency.

Sim Daltonism is a better option than Color Oracle if you have a
Mac or iPhone because it simulates eight forms of color blindness
and on Mac has a draggable and resizable window.

Chromatic Vision Simulator is a free application for Android and
iOS, and also has a web version. It simulates up to three types of
color blindness live from a phone camera or by using a saved
photo or image.

Viz Palette is a free tool for selecting color palettes for data and
other visualizations. It produces a color report to highlight colors
which could be confused and is optimized for copying and pasting
in and out of JavaScript.

Figure 3-2 shows some of the standard colors from draw.io, a free
diagramming and drawing application. For those reading this book in print,
the elements in Figure 3-2 look like the same shade in grayscale. For those
reading a digital version, the colors are all pastel tones, which are the same
or similar luminosity. This indicates that the color palette is not accessible.
Draw.io offers several palettes, and you can select your own colors.
Assuming that a default palette is accessible could lead you to exclude
some of your audience.

https://colororacle.org/
https://oreil.ly/SFkO2
https://oreil.ly/3l4Iy
https://oreil.ly/UCeqZ
https://oreil.ly/j_H8U
https://drawio.com/

Figure 3-2. Flow diagram showing some of the standard colors from draw.io
(https://communicationpatternsbook.com)

Figure 3-3 is a simulation of Figure 3-2 for a person with deuteranopia, a
type of color blindness preventing the perception of green. Although the
original diagram has four colors, the simulation shown in Figure 3-3
appears to have only three (at least without looking closely). There is hardly
any difference between the color of Customer UI and Customer API in
Figure 3-3.

Figure 3-3. Deuteranopia (green-blind) simulation of Figure 3-2
(https://communicationpatternsbook.com)

https://communicationpatternsbook.com/
https://communicationpatternsbook.com/

When considering a color palette, in addition to checking it with a simulator
tool, look to include colors with different levels of saturation. Contrast
between colors will improve differentiation for someone who requires high
contrast or is color blind.

Don’t trust that a diagramming application’s palette or a corporate color
scheme has been checked for compatibility with grayscale or color
blindness. It would be nice to think that designers and companies
(especially larger ones with bigger budgets) have considered accessibility
when it comes to the colors they choose for an official palette or the default
colors in an app, but you cannot count on this. Test your corporate color
palette, or the default colors of the diagramming application you use most
often, using a color blindness simulator. Make sure you give feedback on
what you discover, whether good or bad!

TIP
Alternate text (alt text) offers a text description of an image or diagram. Especially for
public content (for example, documentation for users), you should consider carefully
crafting alt text for any diagrams or other visuals.

Ask for feedback on your diagrams, especially from those with color
blindness or a disability, and incorporate this feedback into the diagram and
your other future visuals.

Include a Legend
Including a legend, or a key, with your diagram is a valuable technique to
aid successful communication. Not including one assumes that the audience
has specific knowledge, be that a full understanding of the notation,
knowledge of all the terms and acronyms in a diagram, or knowledge of all
the symbols and icons contained in the diagram. Don’t rely on your
audience to have this knowledge unless you wish to risk how well your
diagram communicates its message.

It’s a balancing act: we all know that you cannot please everyone all of the
time. But you can put guides in for those who need them without getting in
the way of those who don’t. Getting this balance right results in successful
communication. Consider ramps and steps as a metaphor for a legend (see
Figure 3-4). People who need the ramp are enabled to get to where they
need to go, while those who don’t need it can choose to take the steps.

Figure 3-4. Ramps for those who need or want to use them, and steps for anyone who wants to take
them

You don’t always need a legend and, sometimes, including one can mean
you fall foul of clutter antipatterns. The intention of the legend is to clarify,
not obscure, the message of the diagram. To fight clutter, where a legend is
required, you can link to it and therefore save all the space it would have
taken up. For example, on a web page, your legend could have a hide or

show option (see Figure 3-5). But make sure the link is explicit and
obvious. You could also include a legend for one or more diagrams at the
top of a page.

TIP
Look out for cases where it would be simpler to use labels instead of a legend. For many
charts and graphs, reading a label for a column or line is much easier than referencing a
legend.

Figure 3-5. Including a link to a legend in a web page or document

A legend such as the one in Figure 3-6 can be particularly useful to an
audience faced with a UML diagram because many people do not know the
UML notation or cannot remember all its eccentricities. If a full legend like
this takes up too much space, you could include a partial legend, containing
just the parts relevant to the diagram it is explaining, or include a link to the
legend, as previously mentioned (See Figure 3-5).

TIP
Be explicit, not implicit. Most diagrams will benefit from a legend. If you aren’t
including one, have a good reason not to (for example, for a very simple diagram or
chart, labels are a better choice).

Figure 3-6. A UML legend showing the eccentricities of UML

Appropriate Labels
When creating a diagram, remember that what is written is as important as
what is not written. It is easy to include too much or too little information,
or the wrong information entirely. The appropriate labels pattern is about
making sure text and labels clearly communicate your message.

Besides the content of the text, you should consider its placement. Ensure
that your labels are close to the component or relationship you are labeling,
and balance the components and text with whitespace. The text should

make the message of the diagram explicit through clarity of content and
placement.

Interestingly, coders often put emphasis on writing code with thoughtful
naming and structuring so that it does not require comments (explanatory
text that is not part of the program). With diagrams, the emphasis is more
on making the message explicit via composition (arrangement), the chosen
components, and the carefully crafted labels and other text. You often need
to include explanation (like comments in code) to fully convey a message in
a diagram because its primary aim is to communicate.3

TIP
The art of creating a diagram involves balancing the competing factors of all the
information you need to communicate and the clarity you need to communicate
successfully.

Figure 3-7 shows a C4 context diagram with not enough labels or
descriptive text. This gives you some idea of how your audience may feel
when they see a diagram that doesn’t give them enough information to
understand the meaning. This context diagram doesn’t give enough context!

Figure 3-7. A C4 context diagram with few labels or text, providing little context (antipattern)

Figure 3-8 adds descriptive text to the diagram’s components and
descriptive labels to their relationships. The diagram now successfully
conveys the context of the illustrated system, without muddling the message
with too much information or badly placed labels.

Figure 3-8. A C4 context diagram with an appropriate level of information in labels and descriptions

With any diagram, it is important to clearly describe what each component
(system, person, and so forth) is or does, but also the relationships between
them. How you do this, and to what level of detail, will depend on your
audience and the overall goal of your diagram.

NOTE
Take care to make your text legible to the widest audience possible when selecting a
font in your diagrams. Aim for no smaller than 12 pt. Atkinson Hyperlegible is a free
font the Braille Institute of America designed to be legible for low vision readers.

https://oreil.ly/2n9se

A diagram with insufficient text, too much text, or misplaced text and labels
will leave your audience struggling to understand. Do not make your
audience work to understand your diagram.

Summary
I did say it wasn’t all about screen readers! You have a lot to consider when
it comes to accessibility and won’t always get it right, but every little thing
you do to make your diagrams more accessible makes a bigger difference
than you think. Coping with inaccessibility is incredibly draining, especially
for those who have to do so continually on a daily basis. Reducing this
burden and making people who have disabilities and other conditions feel
seen offers a huge uplift.

The next chapter takes you on a journey and shows you how narrative can
improve accessible diagrams even further.

1 A diff is a visual of the differences between an original and an updated file or list of files.

2 Photophobia is light intolerance. Keratoconus is a disorder of the cornea. Glaucoma is
damage caused to the optical nerve, usually due to a buildup of fluid.

3 And that is not the primary aim of code, although good code does communicate.

Chapter 4. Narrative

After nourishment, shelter, and companionship, stories are the thing we
need most in the world.

—Philip Pullman

The term narrative may remind you of an English literature class, but
stories serve as a means for so much more, including social bonding,
problem-solving, and entertainment among others. As humans, we thrive on
stories.

The other chapters in this part are more about what to show your audience
to communicate successfully; this one is more about the how. This chapter
will help you tell your audience a story to get your message across.

The Big Picture Comes First
When you look at the cover of a box of LEGOs you don’t see a picture of
each individual brick that’s inside. Instead, you see the picture of an
exciting, fully assembled model…positioned in a life-like pirate’s bay
with cliffs and sharks.

—Gregor Hohpe, The Software Architect Elevator

Diagrams do not exist in isolation; they are part of a narrative, and the big
picture comes first pattern helps order that narrative. Most diagrams are not
the beginning of the story, and many are very much down in the nitty-gritty
details of design.

Even if your audience is interested in the fine details, that is not what you
should show them first. They need the context and to be engaged and
hooked into your narrative. Fine details are boring and confusing when you
don’t know the big picture. The levels of abstraction discussed in “Mixing
Levels of Abstraction” need to be ordered to make sense. When you’ve

been delving deep into the details of a project, it’s easy to forget that you
should first give your audience context and explain the big why.

Imagine creating a presentation or document about a customer viewing
media in an online system. Would you start with Figure 4-1 or 4-2?

Figure 4-1. Data flow diagram—level 2

Figure 4-2. Data flow diagram—level 1

Figure 4-1 shows the detailed process of viewing the media. That is where
you want to get to eventually, but it is not where the document or
presentation should start. Before going to a level 2 data flow diagram, you

need to give context and show the level 1 data flow diagram, such as
Figure 4-2.1

DATA FLOW DIAGRAMS
A level 1 data flow diagram is actually the second level of data flow
diagrams, after level 0, which is a very high level of an entire system,
possibly showing flows to and from external systems (a similar view to
a C4 context diagram). Level 1 then shows a more detailed view of the
system, breaking down significant processes. Level 2 provides an even
more detailed view, and level 3 is the most detailed level for data flow
diagrams.

At levels 2 and 3, you should have one diagram per process (from the
preceding level); otherwise, your one diagram will end up too large and
complex to be useful. Depending on your system’s size and complexity,
you may not need to use all four levels, but for a large or complex
system, you should consider creating multiple diagrams per level, even
at level 1.

Starting with level 1 is a move in the right direction but still doesn’t provide
context. A high-level architecture or context diagram, such as the one in
Figure 4-3, is where to start. You should also include other supporting
materials such as business context and benefits (or at least a summary and
links to the full versions in the document or presentation appendix).

TIP
You may not need to spend much time on the context and buildup to the main subject or
diagram you need to discuss. The amount of time and detail will depend on your
audience and what they already know.

You can then move on in the narrative to a diagram such as a C4 container
diagram, if needed, to explain the next conceptual link to the audience,

before moving on to the data flow diagrams. You are leading them through
a story via the diagrams, with each level adding more understanding.

When you don’t give any context, you lose your audience and are unlikely
to get your desired response. Your diagrams and supporting materials (such
as requirements, business context, and business benefits) need to be ordered
in such a way as to create a narrative, starting with the big picture (like
Gregor’s LEGO pirate bay with sharks).

TIP
Put all your diagrams into a narrative order. Are there any holes in your narrative? Fill in
those holes before you fall into them in front of others.

Figure 4-3. C4 context diagram

Match Diagram Flow to Expectations
The match diagram flow to expectations pattern enables you to create a
diagram that is easy for your audience to read from start to finish. Many
people create diagrams without thinking about how the audience will read
them. All diagrams have a flow of information, whether they communicate
structure or behavior, that you want to match as closely as possible to the
audience’s expectations. While other patterns have covered what to include
or exclude from a diagram, this pattern is about using those components to
order a story in a way that makes sense to your audience.

When you pick up a book, you expect the text to start in the top left and
finish in the bottom right (or top right to bottom left if you are reading a
right to left language). So why would this not be so with a diagram?
Successful communication breaks down as many barriers as possible
between you and your audience.

The flow isn’t quite as simple with a diagram as with a book, but having a
focus or the start of your diagram in or near the top left, or middle left,
makes a lot more sense than starting somewhere else on the canvas for
those using languages written from left to right. Follow this with a general
flow top to bottom and left to right to aid your audience in consuming the
diagram’s message.

TIP
To avoid confusion, especially in a diagram that you cannot edit and rearrange, you can
add a label or symbol to show where the audience should start reading. Start here, or a
symbol such as an arrow, pointing finger, or Play button are all options. You can also use
numbered labels to draw the audience through the diagram in the correct order.

Figure 4-4 illustrates how a data flow diagram could end up if you don’t
consider how the audience will read it. Where should they start? The top
left is the natural place, but the start is actually closer to the bottom right at
the Customer box. The flow is then right to left and bottom to top, going
against the audience’s expectation.

TIP
Like a story, your diagram should have a beginning (where the audience should start to
read), a middle (the rest of the content in an appropriate order), and an end (the
conclusions you want the audience to draw).

Figure 4-4. Data flow diagram with no consideration of how the audience will read it (antipattern)

Figure 4-5 rearranges Figure 4-4 to better indicate the direction of flow.
Read through to see how much easier this is to follow. The start of the
diagram is on the left (Customer) with requests flowing left to right and
responses flowing right to left. The numbered events acting on the data flow
top to bottom and left to right, along with the letter identifiers (A–C) of the
databases.

Figure 4-5. Data flow diagram matching the left-to-right, top-to-bottom flow of English text

Another aspect of a visual’s flow to consider is the interactions it depicts
(for example, labeled relationship arrows). A request should follow the
same direction as text (left to right in English), and a response should flow
in the opposite direction.

TIP
Ensure that a response from a component always flows in the opposite direction of any
requests. Visually differentiating types of interactions helps your audience understand
your diagram more easily.

Getting the flow correct is easy in sequence diagrams. The flow starts in the
top left and requests flow left to right and responses right to left. Figure 4-6
illustrates a sequence diagram with a flow that meets audience expectations.
The order of the components along the top is critical to allowing the flow
from left to right and then right to left.

Figure 4-6. Sequence diagram showing requests flowing left-to-right and responses flowing right-to-
left

TIP
Explain your diagram to someone (or even to a rubber duck) to check whether your
explanation flows across the diagram or jumps about.

Structural diagrams should have a similar flow of information, but require
additional considerations. When creating a diagram that includes
infrastructure, such as databases, the general expectation is that the
infrastructure elements will be placed at the bottom of the diagram, with
elements such as systems and containers above, and then elements such as

actors or users at the top. This is not a hard-and-fast rule, but it should be
followed unless doing so means you fall foul of antipatterns.

Logical diagrams showing, for example, a layered architecture should
follow the left-to-right and top-to-bottom flow but also take into account the
layers. Similar to other structural diagrams, layers should be arranged
logically from top to bottom, with the user-facing layer at the top (such as
the user interface or API layer). Within the layers, consider the most logical
way to lay out elements from left to right.

NOTE
Layout expectations differ a little for a hexagonal architecture diagrams. Think of the
diagram more like the face of a clock. The top left is still a good place to start because
this is where people’s eyes may naturally fall, but you could also draw their attention to
the center. Use color, bold/larger text, or thicker lines to draw their eyes to where you
want them to start and lay diagram elements out logically in a clockwise direction.

Clear Relationships
A diagram has two main elements: components (containers, processes, and
so on) and the relationships between them (arrows, groupings, and so on).
Both are critical to the message in a diagram, but relationships lead the
audience through a story, and that is why the clear relationships pattern is
important.

Without clear relationships, your message gets lost or confused, which
could lead to consequences such as:

The design you give developers is not implemented the way you
wanted it to be.

You don’t get budget approval for the changes you want to make to the
system because key stakeholders did not understand how those
changes would add value.

It is best to have unidirectional (one-direction) relationships, and the label
on any arrow between two components should describe the relationship in
the direction shown. A line with arrowheads at both ends should be used
only when the same process truly does happen in both directions. This is
fairly rare.

Relationships can also be made clearer using pattern and color—for
example, a dotted or dashed line for an arrow or a box.2 You’ll then need to
include a legend.3

Sequence diagrams, such as Figure 4-7, are a good example of
unidirectional relationships and flows. Don’t create a sequence diagram like
Figure 4-8, which combines each pair of unidirectional relationships into
one bidirectional relationship. Compare the labels in Figures 4-7 and 4-8 to
see how much information is lost. The message of the diagram is not clear
when bidirectional relationships are used, and adding more information to
the labels would reduce whitespace and clarity.

Figure 4-7. Sequence diagram showing unidirectional relationships

Figure 4-8. Sequence diagram showing ambiguous bidirectional relationships (antipattern)

ArchiMate, an open modeling language for enterprise architecture, defines
many types of relationship via various combinations of patterns and shapes.
This notation is good for communicating a large amount of information in a
small space, but it requires a legend because the audience might not be
familiar with the notation or remember every detail.

Figure 4-9 shows a key to the types of ArchiMate relationships. Including a
key (showing at least the types used in the displayed diagram) is needed
whenever you create an ArchiMate diagram, to ensure that your audience
understands the many types.

Figure 4-9. ArchiMate relationship key

ArchiMate is a perfectly valid notation to use, but consider your audience’s
needs. Another notation, such as C4, could communicate your message in a
much simpler way without a key (although including a key is nearly always

https://oreil.ly/AZlW0

a good idea). I’ll discuss trade-offs with regard to notation further in
Chapter 5. Make the story that your relationships tell clear and easy for
your audience to understand.

TYPES OF RELATIONSHIPS
You can convey many types of relationships via visuals. Here are five
relationship types to consider:

Hierarchical

Illustrates the parent-child connection between elements.
It often represents organizational structures or
classification systems. Examples include organizational
charts, family trees, and taxonomies.

Sequential

Shows a linear progression or a series of steps. It
indicates an order or a process that must be followed.
Examples include flowcharts, timelines, and step-by-step
guides.

Causal

Depicts cause and effect, as one element leads to or
influences another. This type of relationship is often seen
in flowcharts, system diagrams, and decision trees.

Proportional

Illustrates the relative size, quantity, or scale of elements
in comparison to one another. Examples include bar
graphs, pie charts, and treemaps.

Spatial

Shows the physical arrangement or relative position of
elements. This type of relationship can be seen in maps,
floor plans, and network diagrams.

Summary
Throughout this chapter, you have learned techniques for creating flow and
narrative in your diagrams to improve audience understanding and keep
their attention. Along with the patterns and antipatterns from previous
chapters, you now have a large toolbox to draw from when creating
diagrams, but there is still more to add.

In this chapter, I introduced notation, which is the system of symbols used
to create your diagram and convey your message. The next chapter dives
into some antipatterns to help you spot when, and when not, to apply some
of the common notations in use today.

1 See Figures 1-10, 1-11, and 1-12 in “Mixing Levels of Abstraction” for more on levels of
abstraction such as these.

2 Ensure you avoid the relying on color to communicate antipattern (see “Relying on Color to
Communicate”).

3 See “Include a Legend” for more on this.

Chapter 5. Notation

When you create diagrams, you might use a standard notation, such as
Unified Modeling Language (UML) or Business Process Model and
Notation (BPMN), or a nonstandard notation (for example, your own, or a
corporate standard of boxes and lines).1

You may not think much about the notation you use or, conversely, spend
far too long deciding on one. This chapter covers several antipatterns that
will guide you to see where a standard or nonstandard notation could reduce
the likelihood of successful communication with your audience.

Using Icons to Convey Meaning
Using icons to convey meaning is an antipattern that has arisen from cloud
provider icons becoming an almost formal notation. Before the cloud,
people rarely created diagrams using technology icons such as SQL Server,
Java, or Python and definitely did not do so without using labels. But now
cloud provider documentation is full of diagrams showing icons
representing their versions of data stores, serverless functions, and
platform-as-a-service (PaaS) offerings, among other things.

WARNING
Cloud provider icon sets are frequently updated for various reasons, including for new
services. Different versions are available to use directly in diagramming applications,
such as draw.io. Use clear labels and be explicit about the version or type of the service
to avoid confusion if the icon changes in the future.

Using technology icons in a diagram isn’t bad in itself, but using them as
the only form of communication (or alongside very little textual
information) can confuse your audience. Diagrams following this

antipattern could be seen as a test of the audience’s knowledge of cloud
provider icons. If they don’t know what the icon represents, they can’t
understand the message the diagram is trying to convey.

When considering icons for a diagram, ask yourself why you’d include
them. The answer should not be to convey information, because you cannot
trust that everyone in your audience has a perfect understanding of the icons
you use. It is like adding labels in another language and expecting everyone
in your audience to know this additional language, or using acronyms
without defining them.2

Use icons only in addition to the information you want to convey. Use
labels, and make sure the text you use is clear too. You should be able to
remove the icons and have the message remain understandable. If you have
a diagram containing icons without labels and you cannot (or don’t have
time to) edit it, then add a legend with definitions of each icon. Consider
whether your icons are cluttering your diagram and making it harder to
understand, rather than adding to the message.

TIP
To test whether your icons or logos are being used to communicate information, try
removing them completely from the diagram and check that the message is still
communicated effectively by labels and other methods.

If you are using icons to symbolize information, including descriptive text
as well is good practice. For example, to show a score or rating, you might
include 3.5/5 next to three and a half stars, to make the information explicit
and accessible.3

Figure 5-1 shows the difference between adding labels to both icons and
relationships (at the top of the diagram) and not adding them (at the bottom
of the diagram). You can see why internet traffic would be routed to the
Azure CDN, but why would it be routed to the component below that, and
what is that component? It is Azure Front Door, but you cannot assume

your audience knows this or that they would know that all the requests for
nonstatic content would be routed this way.

TIP
Cloud provider documentation is usually somewhere between the examples shown in
Figure 5-1 (top and bottom): better than no labels at all, but still assuming the audience
knows what the icons mean. Avoid using diagrams lifted straight from cloud
documentation for this reason.

Figure 5-1. Cloud provider diagram with labels (top) and without (bottom)

Using UML for UML’s Sake
UML is a useful notation when used appropriately, but many get into the
mindset that it should always be used, whatever the audience or reason for
the diagram. The key to deciding whether to use UML (or another standard)
is to define the goal or objective of the diagram and the audience. What are

you trying to communicate? Who are you communicating with? What
knowledge do they have?

UML has 14 diagram types, which are split evenly between structural and
behavioral categories. Only a few of these diagrams are used regularly, and
many professionals don’t use them at all, so many people have little to no
knowledge of the UML notation and would not understand a UML diagram
without help. Even a very technical audience will not reliably have the
knowledge needed to understand a UML diagram.

Another downside to UML is that creating and updating UML diagrams can
be a lengthy process and the content of a diagram can go out-of-date very
quickly (especially in an Agile environment). Although UML has gone
through many formal releases since the 1990s, its roots are in the time of
waterfall development—a time when releases, and therefore documentation
updates, happened in terms of months or years, not hours or days (or even
minutes), as they can now.

One big consideration for any formal notation is comprehension not only of
the audience but also of the author(s). The person who creates or updates
the diagram has to understand the notation very well. This limits who can
create or update a diagram if a formal notation is used or if a person cannot
get up to speed quickly, creating a bottleneck and increasing the likelihood
of out-of-date documentation.

TIP
Be consistent with symbols, colors, and fonts in your diagrams. This is important within
a diagram, but consistency between diagrams also reduces your audience’s cognitive
load; they won’t have to relearn how to read each new diagram.

Upon deciding that UML, or another notation such as BPMN, is not
appropriate for your audience, you need to decide what to use instead or
how to adapt to the audience. One alternative is to provide a legend, as I
have mentioned before. This is an especially useful technique if you cannot

edit the diagram (maybe you have only an exported image), but many
people may need more than this to fully understand what you are trying to
communicate. You could also use another notation, either a simple notation
such as C4 or simply lines and boxes (a legend is still a good idea with
either of these options).

Figure 5-2 is an example of a UML component diagram.

Figure 5-2. UML component diagram

A UML component diagram is not an easy diagram to create. Most people
would require a legend to understand all the symbols. Who would need this
type of technical interface detail in a diagram? Even developers, who would
be implementing this design, would not find this more useful than the C4
diagram in Figure 5-3.

Figure 5-3. C4 container diagram

The C4 container diagram in Figure 5-3 shows most of the same
information as Figure 5-2 but would be useful to both technical and
business audiences, and likely effective even without a legend. Throw in a
legend and you have given yourself a very high chance of successful
communication. The information conveyed by the symbols in Figure 5-2 is
replaced by labels on the relationships in Figure 5-3. The diagram is easier

to understand and needs less technical knowledge and time to create and
update.

Yet another option, which is often forgotten, is to simplify the UML
notation. You do not need to use UML exactly as specified if it does not
meet your needs. Adapt it to the audience, making sure they will understand
what you create.

The UML sequence diagram in Figure 5-4 contains a lot of information and
even includes method names in the calls (relationships) between
components. This kind of detail goes out-of-date very quickly, and an
audience is better served by a simplified version such as Figure 5-5.

Figure 5-4. UML sequence diagram

In this simplified version (Figure 5-5), details such as method names have
been replaced by much more descriptive labels, meaning the information
will remain current for longer but also be easier to understand by those who
are not familiar with the codebase itself.

Figure 5-5. Simplified sequence diagram

Carefully consider your choice of formal or informal notation and adapt to
your audience and the goals of your diagram.

Mixing Behavior and Structure
UML diagrams fall into two categories, structural and behavioral, and there
is logic to this separation. Including behavior and structure in the same
diagram can be confusing, but many diagrams end up trying to
communicate more than they should.

THE SINGLE RESPONSIBILITY PRINCIPLE
The single responsibility principle is the first of the SOLID principles
and common practice in object-oriented coding.4 It states that a piece of
code (such as a method or module) should have only one reason to
change. In other words, do one thing and only one thing.

Some of the benefits of abiding by this principle are easier-to-
understand and more maintainable code. These benefits also apply to
diagrams that follow the single-responsibility principle.

This rule of separating behavior and structure applies not just to UML, but
to all diagrams, whatever their notation. Apply the single responsibility
principle to a diagram to push the single message you aim to convey to the
forefront to increase the likelihood of successful communication with your
audience.

Structural diagrams communicate the what and the where, such as showing
systems and their relationships, or the physical location of hardware or
running software. Behavioral diagrams communicate the how and to whom,
such as the flow of data or state change within a system. If a diagram tries
to communicate a mix of these, the message will most likely be lost.

Figure 5-6 shows the mixing structure and behavior antipattern. It is
cluttered and conveys no clear message.

Figure 5-6. Don’t mix structure and behavior, as in this diagram (antipattern)

The information in Figure 5-6 can be split into a structural diagram
(Figure 5-7) and a behavioral diagram (Figure 5-8) so that each has one
clear message. Figure 5-7 communicates the conceptual structure of the
system, and Figure 5-8 communicates the data flow (the behavior of the
data) in the system.

Figure 5-7. Structural diagram at the conceptual level of abstraction

Figure 5-8. Behavioral data flow diagram

I have mentioned before that it is usually better to have more than just one
diagram. Splitting structure and behavior is another example of how to best
split up your diagrams.

Going Against Expectations
When communicating about software architecture, going against
expectations is best avoided. It can be effective in other situations, but this
is an antipattern for our purposes. We’re not trying to be Steve Jobs (well,
not every day).5 The unexpected can be a useful tool to get people’s
attention, but it detracts from your message when used without thought.

Throughout their lives, your audience has developed mental models:
internal representations of the way something works in the real world.
These mental models affect their interactions with the physical world (for
instance, understanding the meaning of traffic lights) but also with the
digital world (like knowing how website menus work). For example, the
burger menus used in interfaces on smaller screens are a newer mental
model. You must take care to not break any mental models in your
diagrams, presentations, and so on, or risk causing misunderstanding.

Color is used in many diagrams but often without thought as to how the
audience will perceive it, as I’ve mentioned. Colors can have different
meanings across cultures, such as red being a sign of danger or meaning
stop, but also a sign of luck (such as in Asia). Avoid the going against
expectations antipattern when it comes to color. It will confuse your
audience. Instead, use their expectations to your advantage, using the colors
in their mental model to communicate meaning. But be wary of using color
on its own when communicating (see “Relying on Color to Communicate”).

NOTE
Some colors that you know may not even be considered separate colors in some
cultures. For example, in Japan, the color green (midori) is often considered a shade of
blue (ao), and the name for green in Japanese has not existed very long compared to
other names for colors. Consider also that English words for shades of colors, such as
lilac, may not have equivalents in other languages or may refer to a different shade.

People have expectations about the meaning of shapes and symbols too,
which can vary from culture to culture. Be especially aware of those that
have a religious significance (such as some star shapes); you do not want to
offend or suggest any link with the significance of a religious symbol. But
even geometric shapes can have meaning; for example, a triangle can
represent action or dynamic tension, and a square or rectangle can represent
trust, order, or formality. You may recognize the symbols in Figure 5-9 from
remote controls or music and video streaming websites, among others.

Figure 5-9. An example of conventional symbols

Triangles are seen as dynamic and represent action. They are the symbol
used at the end of a line to create an arrow. The triangles in Figure 5-9 point
to the right, symbolizing play and fast-forward. The square and rectangles
in Figure 5-9 represent stop and pause. Although these symbols have not
been around for long historically, they have become ubiquitous.

Consider technology when avoiding this antipattern. There are conventions
in technology selection and how you implement them. Breaking these
conventions can be good and innovative, but you will need to have your
justifications ready if you are breaking convention for a reason. If you are

breaking technological conventions, make sure you have fully considered
all the implications. Why does everyone else follow these conventions?

Then there is conventional notation. You do not always have to use a formal
notation. As long as your audience understands it, you can create your own
notation, but that notation should meet the audience’s expectations rather
than clash with them.

Your audience may have expectations about the notation you will use in
your diagram(s). Maybe they expect UML, C4, or a nonstandard notation
that is used within a company. You may find that by applying the patterns
and avoiding the antipatterns in this book, you need to change or adapt the
notation that your audience expects to see. Changing your notation is not a
bad thing, but you may need to do so carefully. Introduce your audience to
the adapted or new notation you are using, rather than slipping it in and
hoping they don’t notice. Show them the benefits. Point out problems that
the notation you were using previously was creating.

When using a standard notation, make sure to stick to the expectations
about that notation, and clearly communicate any variations from those
expectations. Your audience needs to know if any assumptions they make,
because of the notation, are incorrect. It may be better to use another formal
notation or a custom one instead to avoid confusion.

TIP
Your audience has expectations of direction at more than one level. Meet those
expectations by following “Match Diagram Flow to Expectations” within your diagrams
and “The Big Picture Comes First” for multiple diagrams, documentation, and
presentations.

Don’t be afraid to be unconventional when you have a good reason, but
make sure you are consciously choosing to deviate from expectations.
There is always an exception to the rule.

Summary
You now have some understanding of what you need to consider before
selecting a notation for your diagrams. Applying what you have learned so
far, you can use these notations to their full effect.

The next and final chapter on visual communication will show you how to
arrange your carefully and thoughtfully constructed diagrams to take them
to the next level for your audience.

1 UML is a general-purpose modeling language originally developed in 1994 in an attempt to
standardize the diverse set of notational systems and approaches to software design of the time.
BPMN is a graphical notation for specifying business processes.

2 See “Acronym Hell” for more on acronyms.

3 See “Abstractions over Text” for more on using stars and other abstractions.

4 SOLID stands for the single-responsibility principle, open-closed principle, Liskov
substitution principle, interface segregation principle, and dependency inversion principle.

5 Steve Jobs was known for wowing audiences with the unexpected in his public presentations
for Apple.

https://uml.org/
https://bpmn.org/

Chapter 6. Composition

Visual composition is an essential aspect of software architecture diagrams;
it helps you convey the structure, relationships, and dependencies of the
system being documented. Effective visual composition ensures that
diagrams are legible and improves the ease with which the audience can
understand them.

In this chapter, you will explore how the composition of your diagrams can
increase audience comprehension, how to avoid misleading your audience,
and how to guide them through the narrative of your diagrams.

Illegible Diagrams
When you create a diagram, you need to consider how it will be consumed
and who will consume it. This section covers how to avoid the illegible
diagrams antipattern.

When creating a diagram in a tool such as draw.io or Visio, most people
accept the default canvas to work on. That default is typically something
like A4 or Letter paper size in portrait orientation. Is your audience going to
view your diagram on a printed piece of paper in portrait? These days, that
is unlikely.

Maybe your audience will consume the diagram within a document in
Microsoft Word or Apache OpenOffice Writer (where the defaults, again,
are A4 or Letter in portrait), but if your diagram is created on a portrait
canvas, the audience is unlikely to be able to view it in its entirety on a
computer screen (which is landscape) without having to zoom out and risk
not being able to read the text or other details.

The majority of diagramming tools, including draw.io and Visio, allow you
to select the canvas size, and draw.io specifically has options for a 16:9 or
16:10 ratio (along with many others, which may vary according to the

platform—see Figure 6-1).1 Selecting the appropriate canvas/page size and
ratio is the first thing you should do when creating a diagram from scratch.
Some tools, such as draw.io, will then remember your preferences.

Figure 6-1. Example canvas/page options in draw.io

TIP
Most diagrams are consumed on a computer or presentation screen, so unless you need
to adhere to a specific format (such as a printed book, poster, or document), you should
create your diagram for a viewing ratio of 16:9 or 16:10 (the typical ratio of most
screens).2

Designing your diagram to fit the audience’s viewing format, as well as
their needs, will mean your audience can read and understand your diagram
without having to zoom, move around, or squint. The data flow diagram in
Figure 6-2 is in portrait orientation and therefore will not display optimally
on monitors or projectors because roughly two-thirds of the screen will be
whitespace. This wastes expensive screen real estate and makes it highly
likely that text or other details in the diagram are illegible to at least some
of your audience.

Figure 6-2. A portrait version of a data flow diagram displayed on a 16:9 ratio screen

Figure 6-3 shows a landscape version of Figure 6-2 also displayed on a 16:9
ratio screen; you can see that the details are much easier to read.

NOTE
Legibility also applies to the text in your diagram. Ensure that you have selected easy-
to-read fonts and that they are readable when your audience views them. This might be
on a projector or large screen during a presentation, printed, on a small laptop screen,
and so on.

Figure 6-3. A landscape version of a data flow diagram displayed on a 16:9 ratio screen

Sometimes you will need to use an existing diagram that is oriented
incorrectly, and you won’t have time to edit or re-create it. There are
techniques you can use to help your audience in this scenario too.

When presenting a diagram, or any image, that isn’t oriented correctly (or is
just too ridiculously big to fit on a slide), you can show your audience an
overview, such as the one in Figure 6-4, and then zoom in on the elements
you are talking about by inserting cropped and enlarged versions of the
diagram on subsequent slides.

When cropping the diagram, make sure you include any required
information like a legend or repeat an element from a previous crop to give
the audience context. Figure 6-5 shows a cropped version of Figure 6-4.

The audience has all the information they need to read this part of the
diagram.

Figure 6-4. Portrait version of a flow diagram that will not display well on a landscape screen

Figure 6-5. Example crop of Figure 6-4

When you duplicate notes, as in Figures 6-5 and 6-4, you can differentiate
between labels shown in the complete diagram and those that are cropped.
One way to do this is to change black text to gray; for example, you can
place a white box over the top and reduce its opacity (but make sure the text
is still legible).

Figure 6-6 shows the second and final crop of Figure 6-4 (note you may
need more than two for some diagrams). The title is retained so that the
audience has all the information needed to understand this part of the
diagram.

TIP
In general, create diagrams in landscape format unless you know that only portrait
format is needed. Landscape can always be rotated to fit in a printed portrait document
if needed.

Figure 6-6. Second example crop of Figure 6-4 with caption and notes retained

During a presentation, the audience either looks or listens. Most people
can’t do both well at the same time, so you need to make the content as

clear as possible so that your audience can pay attention to you for longer
and take in your message.

Style Communicates
The style communicates pattern is also known as metastyle. You have likely
heard of metadata (data that provides information about other data, such as
image file dimensions, categories, or author names), but what about
metastyle?

You are bombarded with visual messages all the time through branding and
advertising. Think about your favorite drink. Its branding has been designed
to appeal to people—to make them feel a certain way and think of certain
things. The design of the packaging and the brand are communicating to
you without words.

Diagrams and visuals in software do exactly the same thing, whether you
consciously design them to or not, just as software architecture happens
whether someone with the title architect is working on the software or not.
Consider the top and bottom diagrams in Figure 6-7. What do the different
styles say about the stage of the project? Early, late? What do they make
you think about the design and thought processes? These visuals form part
of your marketing materials, which communicate to and influence your
audience.

Figure 6-7. Sketch and solid-line style comparison

The style of a diagram is typically a result of personal preference and the
application used to draw it, rather than any conscious choice about how the
audience will perceive the diagram. Open your preferred diagramming
application (such as draw.io or Visio) and create something similar using
the default settings. Now ask yourself the questions I asked before Figure 6-
7. In addition, what do the default settings communicate to your audience?
What do you truly want to communicate to your audience?

When it comes to metastyle, neither one of these styles is always better than
the other; in the same way, you can’t say that any particular style of
architecture is always the best choice for a project, or indeed any type of
diagram.

Style choice can be influenced by the domain or company you work in.
Consider which of the two styles in Figure 6-7 you might choose if you
were designing systems for a theme park. Would you select the same style if
you were designing systems for a hospital or bank?

You should consider what you are trying to communicate to your audience
and then style your diagram to support it.

EXAMPLE

STYLE OVER SUBSTANCE
Nikki, an architect at Polyglot Media, needs approval for an
architectural change and sets up a meeting with the decision maker,
Kaspar. It doesn’t go well. Nikki presents the proposal, supported by
diagrams, but Kaspar is having none of it. He pushes back on almost
every aspect of the proposed architecture. It is a hard “no.”

After the meeting, Kaspar asks if he can run through some ideas with
Nikki and pulls out some diagrams in a distinctive visual style. The next
day, Nikki redraws the proposal diagrams in the same distinctive style
and, a week later, presents the same proposal to Kaspar, with the same
diagrams but in Kaspar’s visual style. The response is completely
different—enthusiastic approval, even though the content is the same.

Could Kaspar understand the proposal better? Could he imagine the
proposed diagrams fitting well with his own? He sees what he wants to
see; he sees style over substance.

Misleading Composition
In software architecture, you of course don’t want to mislead your audience,
but you can create misleading visuals by accident. Many examples of
misleading diagrams and charts exist, and understanding how they have
been manipulated (intentionally or unintentionally) can help you avoid
misleading your audience in your own content.

Making changes to the baseline is one way to manipulate a chart. Figure 6-8
shows the number of votes cast in an election. Setting the baseline at 450
has enabled the Cool Party to exaggerate the difference in the numbers and
encourage its supporters to vote for it again. The manipulation especially
targets supporters of the Bloop Party, who may feel they have to vote for
one of the other parties for their vote to make a difference.

TIP
The general rule is to always leave the baseline at 0. Exceptions exist, and a different
type of visual might be better in those cases (such as a table, rather than a chart or
diagram).

Figure 6-8. Chart with baseline set at 450 (antipattern)

Now take a look at Figure 6-9. This shows the same numbers as Figure 6-8,
but the Cool Party lead doesn’t look as good now.

Figure 6-9. Chart with baseline set at 0

In fact, by manipulating the baseline, two opposing parties could use the
same statistics to show their own messages. Take a look at Figure 6-10,
which again uses the same numbers and same baseline as Figure 6-9 but has

now been changed to be used by an opposing political party. The Funky
Party could use this chart to persuade supporters of the Bloop Party and
unlikely voters to vote for the Funky Party so that the Cool Party doesn’t
win again.

Figure 6-10. Chart with the same baseline and figures as Figure 6-9 but rearranged to promote
another party’s message

Figure 6-11 shows an example of using comparison to mislead
(intentionally or unintentionally). By putting the two charts side by side, the
audience may be misled into thinking that the bars in each chart represent
the same scale, but they do not. The bars in the ANZ chart on the right
actually represent about half the value of those on the left. The audience
could end up with the mistaken belief that sales in Australia and New
Zealand are comparable to sales in the USA and Canada, but actually, sales
in New Zealand are about half those of the USA.

Figure 6-11. Charts showing how comparison can mislead the audience (antipattern)

When charts and diagrams are in close proximity, use the same scale or
make the different scales explicit and obvious to the audience. When
creating software diagrams, it is important to think about both the accuracy
of the information you include as well as how it could be read by the
audience.

TIP
Diagrams are an abstraction of reality because the reality is usually far too complex to
communicate. You need to balance abstraction with accuracy where it matters, accepting
the aphorism “all models are wrong, but some are useful” and aiming for the useful.3

Figure 6-12 shows a deployment diagram that doesn’t communicate the true
message to the audience. This C4 deployment diagram attempts to describe
the horizontal scaling of instances of each container or group of containers
(see the number in the top right of each of the three boxes inside the main
Polyglot Media cloud infrastructure box, such as x3), but if you look at
Figure 6-13, you will see the true reality of the scaling.

Figure 6-12. Misleading deployment diagram

In Figure 6-12, scaling was communicated for each group, and the
maximum number of containers is stated as if there will always be that
many instances. However, the reality, shown in Figure 6-13, is that either
there can be fewer instances or the elements of the group can have different
scaling.

Figure 6-13. True deployment diagram

An audience seeing Figure 6-14 could easily think that the enterprise
service bus in the diagram has more resources or hardware or has better
scalability or a larger capacity than other elements shown.

Figure 6-14. Easy-to-misinterpret service bus diagram

Changing the scale of the enterprise service bus to match other elements, as
in Figure 6-15, is less likely to mislead your audience. Keep elements the
same size in logical diagrams unless there is a reason not to, like showing
different capacities. The consistent sizing in Figure 6-15 does have trade-
offs, though; the arrows and lines are potentially harder to read because of
the smaller size of the box. If this were a problem, you could consider
splitting the diagram into different types of services, for example, or
addressing a particular concern.

Figure 6-15. Closer-to-reality service bus diagram

Create a Visual Balance
The create a visual balance pattern is often overlooked and can set your
diagram apart from others. Balance is a key element in visual design, and it
applies to diagrams as well as photography and other visuals. Balance is an
innate human expectation and therefore an expectation of your audience.
Giving your audience what they want is fundamental to successful
communication. (Of course, there is an exception to every rule; what your
audience thinks they want may not be what they really need.)

Balancing a diagram does not make a bad diagram good, but it will enhance
a good diagram. One element of balance is symmetry. The diagram in
Figure 6-16 is a perfectly valid C4 container diagram, but it doesn’t have
the satisfying effect of Figure 6-17. Compare the two and you will find
yourself drawn more to Figure 6-17.

Figure 6-16. Unbalanced C4 container diagram (antipattern)

Figure 6-17. Balanced C4 container diagram

Figures 6-16 and 6-17 contain all the same information and elements, but in
different places on the canvas. You do not need (and will not always be
able) to make something completely symmetrical (this is called bilateral
symmetry), but you should be able to apply another type of symmetry, such
as approximate symmetry (where there are small differences) as in Figure 6-
17.

Symmetry can be applied to part of a diagram instead of the whole to
improve readability. For example, when creating a diagram in which
elements fan out and/or reduce, you can use symmetry at those expansion
and contraction points when arranging elements.

If symmetry is not possible, you may be able to employ asymmetry to
achieve a similarly satisfying effect. In that case, you need to balance your
elements by using position, weight/size, and direction. Think of your canvas
as a seesaw and aim to get the balance correct for a given axis or fulcrum
on that canvas.

TIP
Diagrams do not have to be pretty, but consistency within a diagram and a set of
diagrams makes them easier on the eye.

Summary
This chapter has given you tools to create legible, honest, and balanced
diagrams that communicate via their style as well as the information
contained within them.

Now that you’re at the end of Part I, you should have a huge toolbox for
creating and using diagrams and other visuals. These last techniques of
composition add the gleaming tiles to the roof, whereas the essentials in the
first chapter provided a strong foundation.

But you know that diagrams alone don’t communicate everything you need
to share about software architecture and design. Technical writing is a skill
in itself, some of it separate from visual communication and some of it
overlapping. Verbal and nonverbal communication further complement
written and visual communication, whether you are speaking in person or
remotely.

Part II explores technical written, verbal, and nonverbal communication and
the techniques you can apply to all three, as well as techniques for getting

your audience to put their trust in you and what you say.

1 Ensure you choose the landscape option so that 16 is the horizontal ratio.

2 4:3 was the typical ratio of screens in years gone by.

3 An aphorism is a pithy observation which contains a general truth.

Part II. Multimodal
Communication

Part II covers patterns, antipatterns, techniques, and frameworks for written,
verbal (spoken), and nonverbal communication. Whether you work
remotely, in an office, or a mixture of the two, you use all these types of
communication regularly. Putting some extra thought into how you write,
speak, and use body language and other nonverbal communication will
make your message more understandable and increase your chances of
receiving your desired response.

The sections within the chapters in Part II are organized as collections of
patterns and antipatterns. You can apply the patterns for written
communication to whatever you write, including emails, documentation,
and instant messages. The verbal and nonverbal techniques can be applied
whether you are talking to someone (or a group) face-to-face or remotely.

Chapter 9, the final chapter in this part, contains patterns and techniques for
using rhetoric, which you can apply to all types of communication.
Originally developed by Aristotle over two millennia ago, you might not
think rhetoric would apply to communication in the modern technical
world, but the techniques of ethos, pathos, and logos have stood the test of
time for a good reason.

Apply all these patterns and techniques to strengthen your message,
whatever format (or multiple formats) it takes.

Chapter 7. Written
Communication

As a professional, you understand the importance of clear and effective
written communication. Whether you’re sending emails to colleagues,
documenting requirements, or creating reports, written communication is a
critical aspect of your job.

This chapter explores various tips and techniques to help you write clear,
concise, and impactful communications. You’ll look at patterns that will
help you improve your writing and antipatterns that will help you avoid
common pitfalls. Whether you’re a seasoned writer or just starting out, this
chapter provides practical guidance to help you take your writing skills to
the next level.

Simple Language
To make your language clear, you need to take many factors into account.
The simple language pattern can help you. It is easy to fall into the trap of
thinking everyone understands all the words you say or write. Trying to
sound clever by using complex vocabulary usually leads to confusion.
Rather than people thinking more of you, they are likely to think less of you
because they have not understood.

For those who struggle with visual processing, such as people with dyslexia
or attention deficit hyperactivity disorder (ADHD), complex words and
sentences may be an even larger hindrance than for a neurotypical person.
Large amounts of text, grouped together, can also cause problems,
especially if little whitespace remains. Those with autism often struggle to
understand sarcasm and idioms,1 so these are best kept out of your
diagrams and presentations.

NEURODIVERSITY
Here are some quick definitions concerning neurodiversity:

Neurodivergent

Describes someone whose brain processes, learns, or
behaves differently than what is considered typical.

Neurotypical

Describes someone whose cognitive functioning is
considered typical of the general population.

Nonnative speakers of a language have a smaller vocabulary than native
speakers, who typically have a vocabulary in that language of around
15,000–20,000 word families (groups of words with a common root).
According to a 2022 study, a vocabulary of around 4,000 word families is
required to understand around 95% of news stories written in English.
Particularly when communicating in a native language, you need to take
into account that some of your audience may not be native speakers,
especially in today’s international and online society.

TIP
Consider that some of your audience may use translation software to read your writing.
Using simple language without idioms will help them get a better translation.

Vocabularies vary from person to person, sometimes corresponding to
education, social standing, or age (older people having been exposed to
more vocabulary over the years, and different generations using different
jargon). Vocabulary still varies widely within these demographics because
of factors like interests, culture, and geography. Common vocabulary also
differs from business, domain, and technical vocabularies. Take into

https://oreil.ly/a8Uiq

account that your audience’s vocabulary will vary, even if their
demographic doesn’t.

As with acronyms,2 it is a good idea to include a glossary for business,
technical, and domain vocabulary in your diagrams and documentation. If
everyone knows the exact definition of order details, for example,
mismatches in meaning, where a name means something different in
different parts of the codebase, become far less likely. Naming is hard, and
a glossary and ubiquitous language helps with this.

Table 7-1 shows some options for simplifying your writing. Domain-driven
design (DDD), a software development approach, creates a ubiquitous
vocabulary that can be used within the domain you are modeling. As the
ubiquitous language originates from the business, and not your technical
team, you have only so much control over it. Create your own glossary to
add to as needed.

Table 7-1. Examples of simplified vocabulary and
phrases

Complex/less used Simple/regularly used

acquire buy

toward to

adopt use

dispatch send

locate find

patron customer

a majority of most

as a result of because of/due to

is able to can

determine the location of find

for the purpose of for

have a tendency to tend to

on two occasions twice

Complex/less used Simple/regularly used

make decisions about decide on

is of the opinion thinks/believes

in order to to

When speaking or presenting to an audience who is not familiar with your
domain vocabulary, you should explain the terms that your audience needs
to understand. You can do this by specifically defining a term, or by
providing a synonym they may understand (for example, a nonnative
speaker of English may not understand locate but may understand find).

TIP
Keep your language simple and define any necessary complex and domain vocabulary
to smooth the learning curve for your audience.

Acronym Hell
You enter the state of acronym hell when a diagram, table, or any
accompanying text contains acronyms that are not defined for the audience.
You cannot expect your audience to understand an acronym as you intend.
Acronyms can mean different things to different people, even if your
audience is aware of the context you are describing.

It’s easy to assume that others share your understanding. This is often called
the curse of knowledge. Your brain has a lot of information that you
reference without realizing it, and this information is not necessarily in the
brains of your audience.

THE CURSE OF KNOWLEDGE
The more of an expert you become on a subject, the harder it is to
remember what it is like to be inexperienced, making communication
with nonexperts more difficult.

Here is an example of the curse of knowledge: you mention a concept
to someone and they ask you to explain, but when you try to explain,
you realize that they don’t know other things you mention in your
explanation, and a tree of missing knowledge branches out. Explaining
your original concept is going to take more than a few minutes of
conversation.

Using idioms without realizing that some of your audience may not
understand them is another example of the curse of knowledge.

Not defining your acronyms leaves them open to interpretation, which is
not going to help you communicate successfully. You are aiming for your
audience to have the same understanding as you, which they can’t if they
don’t understand an acronym at all or believe it have an alternate definition.
Every industry or domain has its own versions of acronyms, and the
difference between business and technical people’s understanding of the
same acronym can vary widely even in the same domain.

NOTE
Some words have become so ubiquitous that people have forgotten they were originally
acronyms. Examples include RADAR (radio detection and ranging), LASER (light
amplification by stimulated emission of radiation), and self-contained underwater
breathing apparatus (SCUBA). The acronyms Joseph Cyril Bamford (JCB) and
Bayerische Motoren Werke (BMW) are ubiquitous in Europe.3

DDD provides a way of creating a ubiquitous language, which can be used
to enable successful communication. Even if you don’t employ DDD, you

can still help create a ubiquitous language by defining all the acronyms you
use.

The main way to avoid the acronym hell antipattern is to ensure that your
acronyms are defined, and you can do that in many ways. When speaking,
say the acronym and the full version (this helps people learn the acronym
for when others don’t include the definition). In text, you should typically
include the acronym in parentheses after the definition the first time you use
it, or vice versa (and, if needed, again after the first use in each section or
chapter).

TIP
Wherever you include definitions of your acronyms, make sure that they are easily
accessible to your audience.

Acronyms can be spelled out in a legend or footnote if they are used in a
diagram or other visual. You can also include them in a glossary in your
document, slide deck, or documentation, along with definitions of other
words (your ubiquitous language).

MANY POSSIBLE MEANINGS
If you think an acronym has only one possible information technology
meaning, consider these:

DFD

Data flow diagram, deployment flow diagram, Document
Freedom Day, disk failure diagnostic, Development
Finance Division, decision feedback detection, detailed
functional design, design for discard, design for
development…

SPA

Single-page application, single point of access, special
protocol assessment, serial port adapter, smart process
application, sales and purchase agreement, solution
provider agreement, software process assessment,
systems and process assurance, scalable processing
architecture, service provider architecture, simple
processing application, system performance analysis…

BLT

Business leadership team, basic language translator, bulk
loading tool, business liaison team, bottom line
technology, build load test, binary large object, bit-level
tracing…and even bacon, lettuce, and tomato!

Structured Writing
Many forms of writing work best when they are planned and structured,
including technical writing. You often need to communicate complex

concepts or show how various concepts fit together, and this cannot be done
effectively without considering the structure of your writing.

It can help to think about structuring technical writing as you would think
about structuring a computer program. Program structures often take the
form of a tree, or pyramid.

Graph data is now much more commonplace, but navigating a graph with
many possible routes and navigating a pyramid structure are very different.
In technical writing, the pyramid structure, is much more efficient (graph
structures are more efficient for other scenarios, such as searching highly
related data).

The Minto pyramid principle, developed by Barbara Minto in the 1960s as a
method for ordering and structuring information, is a useful tool for
technical writing. The principle became a standard at McKinsey &
Company, where Minto worked when she developed the principle.

The overall concept of the Minto pyramid principle is to start with what you
have identified as the key idea or message, break that into logical
arguments, and order those ideas logically, then break down each of those
ideas and order them logically until you have broken down all the elements
of what you need to say. In her own words:

The easiest order for a reader is to receive the major, more abstract ideas
before he is required to take in the minor supporting ones. And since the
major ideas are always derived from the minor ones, the ideal structure
of the ideas will always be a pyramid of groups of ideas tied together by
a single overall thought.

In this way, each idea or element of your writing is linked vertically to an
idea before it, which will always be a summary of the ideas that follow it,
and horizontally linked to other ideas making up the logical argument.

As you move down the pyramid, you end up with a pattern of stating a
major idea and then answering the reader’s questions about that idea as you
progress. Figure 7-1 is an example of this structure: traversing the pyramid
begins with the key message, followed by the first supporting arguments,

and then the supporting data or arguments for the first argument. The next
step in the traversal is supporting argument 2.

Figure 7-1. Minto pyramid principle example structure

A pyramid structure is useful for your everyday communication as well as
your technical writing. In Example 7-1, an email is structured as the
information came into the author’s head. Example 7-2 shows the same
information, but structured as a pyramid.

Example 7-1. Email structured as the ideas came into the author’s head
Dear all,

Our 3rd-party supplier has informed me that they can no longer make the planned

kick-off meeting and also cannot make Friday or before 3 p.m. on Monday. I have

checked the diary, and it seems that some development team members are on leave

from Wednesday.

What with school pick-up and drop-off affecting several of us, Tuesday at 10 a.m.

looks like the best time at the moment. Does that work for you? Please let me

know

ASAP.

Kind regards,

Example 7-2. Email structured as a pyramid
Dear all,

We need to reschedule the project kick-off meeting. Can you let me know ASAP if

Tuesday at 10 a.m. works for you?

The team from our 3rd-party supplier can no longer make the original date and

time,

and two of our developers are on leave from Wednesday until Friday. I also want

to

avoid school drop-off and collection times as I know this affects several people

involved.

Kind regards,

This comparison shows the power of the pyramid structure. In Example 7-2,
the intention of the email is clear from the start, as well as the desired
response of the reader, and further explanation follows. Some readers might
ignore the information after the first paragraph if they didn’t need it, and
simply follow the request.

Example 7-2 shows how you can apply this pyramid structure to a simple
email. Applying it to your technical writing (and the structure of slide
decks) will take practice but will pay dividends in the improvement of your
communication.

Consider Example 7-3, which introduces a project. Compare it to
Example 7-4 to see how applying the pyramid structure enhances the
readability and understandability of the introduction. Would you structure
this any differently to further improve its readability?

Example 7-3. Unstructured program introduction
To identify any problem areas or bottlenecks in the systems and processes within

Polyglot Media, collaborative modeling, such as EventStorming, will be used to

map

current systems and processes.

An initial cross-functional working group will create this map, with further

cross-functional groups assigned to break down problems identified and design

optimizations in an ongoing and iterative process.

This will all lead to better-optimized systems and processes to better meet the

needs of a rapidly growing customer base (including internal customers), with

Polyglot Media having seen better-than-expected growth in the last financial

year.

Example 7-4. Pyramid structured program introduction
Polyglot Media has seen better-than-expected growth in the last financial year,

leading to the need to optimize systems and processes to better meet the needs of

a

rapidly growing customer base.

To meet these needs, there is a requirement for a map of the current systems and

processes as they are, with any problem areas or bottlenecks identified. This

will

be the output of an initial cross-functional working group, which will assess the

current situation using techniques such as EventStorming and other types of

collaborative modeling.

The optimization process is expected to be ongoing and iterative, finding

solutions

to the current problem areas identified and continually optimizing for both

internal and external customers.

This section has given a very high-level overview of the pyramid structure,
which you can begin to apply to your writing, documentation, and
presentations. For more information, see The Minto Pyramid Principle by
Barbara Minto (Prentice Hall, 2010) and Barbara Minto’s official website.

TIP
The pyramid principle can be compared to headlines and the structure of articles in a
newspaper. The headline gives you an understanding of the whole story. Each sentence
and paragraph you read gives you more detail, but you can stop at any time and still
know the key points of the story.

Syntax of Technical Writing
Technical writing differs from creative types of writing. Technical writing is
intended for a specific audience (such as developers or customers of the
product), whereas creative writing usually has no particular audience in
mind, except possibly an age range or genre preference. The purpose of
technical writing is to inform or instruct, whereas creative writing exists to
entertain.

Because of these two main differences, technical and creative writing differ
significantly in format, style, and structure. The syntax of technical writing
is important to ensure that your writing is clear and informative. Clarity is
the most fundamental rule of technical writing.

https://www.barbaraminto.com/

Strong Verbs
Choose strong, precise, active verbs (words that describe actions, states, or
occurrences). Verbs such as be, was, and happen are examples of weak, or
inactive, verbs. Limiting these in your technical writing and using carefully
chosen strong verbs means your content is more specific and clear.

Balance the use of strong verbs with your audience’s familiarity with the
verbs you are choosing. Weaker verbs are appropriate when your audience
may not understand a stronger verb, and you do not need to eliminate all
weak verbs from your writing.

Here are some examples of changing a verb to create a more precise and
concise sentence:

The error notification happens when…​

The service generates the notification when…​

There are three things that have made us decide to…​

Three issues convinced us to decide to…​

I am very careful to ensure…​

I carefully ensure…​

Once the vector is entered, it is changed…​

Once the service receives the vector, it transforms…​

Examples of strong verbs include govern, amend, extract, realize, notify,
convince, inspect, guide, scan, serve, transform, raise, generate, and
ensure.

TIP
Avoid the phrases there is or there are. These can often be deleted with minor additional
changes to the sentence. Consider how You should know three critical things about
cloud computing is a lot clearer and more persuasive than There are three critical things
you should know about cloud computing.

Short Sentences
We read short sentences faster. Removing superfluous words reduces the
length of sentences and the document as a whole. Short documents are also
faster to read.

Just as with code, it is easier to maintain and avoid bugs (mistakes) in
shorter documentation.

Short sentences are also easier to read and deliver a more powerful
message. This is another application of the single responsibility principle.
Your sentences should have only one reason to exist.

Precise Paragraphs
The opening sentence of your paragraph is the most important. Your
audience may scan your content and choose which parts to read based on
the first sentence. The first sentence, therefore, needs to grab the reader’s
attention either by covering the central point of the paragraph (as discussed
in “Structured Writing”) or by using a tool such as a rhetorical question.

Paragraphs are another opportunity to apply the single responsibility
principle. Their content typically includes more than a single sentence, but
each paragraph should exist for one overall reason. You can compare a
sentence to a method, and a paragraph to a class, in code.

Your paragraphs should cover one topic and include what you are telling the
reader, why what you are saying is important, and how the reader can use
that knowledge or know it to be true. Sometimes these details may be
covered across more than one paragraph.

Whereas sentences should generally be short, paragraphs should not be too
short or too long. The sweet spot is at around three to five sentences. Go
over seven sentences, and your paragraph becomes a wall of text that your
audience is likely to avoid. Rearrange and split up longer paragraphs to
avoid reader fatigue. If you find that you have many short paragraphs in
your writing, you should consider reorganizing the content into coherent
three-to-five-sentence paragraphs or changing your paragraphs into a list.

Consistent Vocabulary
Use vocabulary consistently throughout the piece that you are writing.
Switching between different words when you have the same intended
meaning is the same as changing the name of a variable in the middle of a
method. Your code will not compile and, in writing, nor will your
audience’s understanding.

Many words are used interchangeably in technical writing (even if they
don’t really share the exact same definition: application, program, or
software; engineer or developer; user, client, or customer). Pick one and
stick to it when you mean the same thing, and explicitly call out the
difference if you use a similar word to refer to something different.

When you first mention a name for something quite long, you can also
introduce a shortened version or acronym and then continue to use the
shorter version. Once you have begun using the shorter version, do not
cycle back and forth between the long and short versions. Consistently use
one or the other.

If you will use the longer version only a few times, you may not want to
bother defining and then using the shorter version. You should consider
whether your audience would appreciate you using the opportunity to teach
them the connection between the long name and short or acronym version.

TIP
Make sure to always define any acronyms you use (see “Acronym Hell”).

Audience Empathy
Defining your audience is one of the fundamentals of communication (as
discussed in “Know Your Audience”). Your audience affects how you write
and how you structure your writing. Asking yourself these questions about
your audience’s knowledge will help you set a baseline that you will build
on in your writing:

How much does your audience know about what you are writing about?

Your audience may have some knowledge that you can build
on. Stating basic facts that your audience knows may put
them off reading.

Does your audience know of something similar?

If your audience already knows something similar, you can
make comparisons to help them understand your topic.

Does your audience have knowledge they haven’t used in a long time?

If your audience hasn’t used knowledge in a long time
(maybe they learned it at college over 10 years ago), you
should provide an overview with more detailed information
that they can choose to consume as needed.

Does your audience have out-of-date knowledge?

Technology moves incredibly fast. If information has
changed, provide comparisons of new and old and explain
the advantages and disadvantages of these changes.

In addition, asking yourself questions about what your audience needs will
help you plan and structure your article or documentation:

What is your audience trying to accomplish?

This is what you will enable them to do through your
writing. Are they developers needing to know how to
implement your architecture? Customers wanting to learn to
use a new feature in your software? You can structure your
answer to this question by completing this sentence: After
reading, the audience will be able to…​

What does your audience need to learn to accomplish their goal?

This is the difference between their current knowledge and
what they need to know to accomplish their goal (the
answer to the previous question). The answer to this
question is what you must teach in your writing. You can
structure your answer by completing this sentence: After
reading, the audience will have learned…​

Does your audience need to do this in a certain order?

Your answer will determine how you structure your writing.
If your audience needs to follow steps in a certain order, you
will need to use a numbered list and put instructions in that
order. If your audience needs to know one step before they
can be taught another, you should sequence your writing
with that in mind.

With these answers, you can decide what information to include in your
writing and how to structure it to meet the needs of your audience.

TIPS FOR TECHNICAL DOCUMENTS
Besides all the tips and techniques in this chapter that you can apply to
the writing of your documents, here are some tips about the content to
include in a technical document:

Begin with the key points

Put your key points or takeaways up front. Readers may
read only the first page or first few paragraphs but
should still leave knowing the most important
information.

State the scope

By stating the scope of the technical document, you set
the reader’s expectations of what will be included if they
read on. This can save the reader time by helping them to
find the document with the information they want and to
avoid reading a document that they are not interested in.

State the nonscope

If the reader might expect a topic to be included, but it
isn’t, telling them so right from the start will save them
time or disappointment later. If the topic not covered is
available somewhere else, you can link to it for
reference.

State the intended audience

This information helps the reader decide whether they
should be reading the document. Without this, some
intended readers may skip the document, and other
readers may waste time reading something that doesn’t
meet their needs.

State required prerequisite knowledge or reading

Tell the reader anything that is out of this document’s
scope that they will need to know or understand before
reading the document. Link to resources and required
reading if possible.

Summary
The techniques you have learned in this chapter can be applied to all your
writing, including emails and other communications, documentation, and
the labels and other text in your diagrams. Improving your writing affects a
lot more of your communication than you might think.

The other main ways that you communicate are verbally and nonverbally,
which complement each other and your written skills. In the next chapter,
you will discover techniques to improve verbal and nonverbal
communication, both in your understanding of others and others’
understanding of you.

1 An idiom is a group of words in a fixed order that has a particular meaning that is different
from the meanings of each word on its own.

2 See “Acronym Hell”.

3 Notice how I define acronyms I use.

Chapter 8. Verbal and
Nonverbal Communication

Verbal and nonverbal communication are important aspects of any technical
professional’s job, whether you are working onsite or remotely. Nonverbal
communication covers not just body language, gestures, and facial
expressions, but also eye contact, tone of voice, personal space, touch,
appearance, and the use of tools and props.

Communication is essentially encoding a message to send and decoding a
message received. Just like in a software system, the decoded message
needs to match the encoded one for communication to be considered
successful. The patterns in this chapter will improve your encoding and
decoding skills, along with your skills of persuasion and influence, which
are often the goals of your communication.

Encoding Messages
Communication can be one-way, when a response is not required, or two-
way, when the recipient responds to the initial message. In both cases, that
message must always be encoded, or packaged, so that the recipient can
then decode it. The trick is getting the encoding right so that your message
is understood as you want it to be.

Using the Acceptance Prophecy
Start thinking about how your message will be packaged up for your
recipient to understand before you begin communicating. The acceptance
prophecy is one of the first patterns you can put into practice. It states that
when you think others will like you, you behave more warmly toward them
and, therefore, they like you more. The opposite is also true: if you think

someone won’t like you, you will behave more coldly toward them, making
them less inclined to like you.

It’s a self-fulfilling prophecy, and it makes a lot of sense if you think about
how friends or enemies act toward each other. Some people care more about
others’ acceptance of them, and some are naturally more accepting, but
research has shown both that people respond better to others who are
genuinely warm toward them and that people anticipating others’
acceptance act more warmly toward them.1,2

Becoming a social optimist, as opposed to a social pessimist, is a technique
that can boost your credibility and the likelihood of you succeeding in your
communication goals. When presenting your architecture designs to
stakeholders, you should start by convincing yourself that the people in
your audience are your friends and will approve of your design (of course,
it is also important to plan for questions or misgivings they may have). If
you are talking to a customer in presales, you can follow the same pattern,
convincing yourself that they will like the product and want to buy it.

This won’t come naturally to many and won’t happen overnight, but you
can keep practicing until this self-fulfilling prophecy regularly comes true.

Giving Your Full Attention
Another way to connect with the person or people you are talking to is to
ensure you are giving your full attention. This has many benefits, including
making them feel more respected and appreciated, which boosts the
likelihood that they’ll agree with you, or do what you want them to. Your
audience is also more likely to reciprocate and give their full attention back
to you and what you are saying, making them more likely to understand
your message. You boost your credibility and build an emotional connection
with them. You can also benefit by picking up more of their body language
and other signals, and what they are saying themselves.

When you have a 1:1 meeting with your manager or direct report, this
technique is particularly useful. The goals of a 1:1 meeting may be to give
or receive support, or to convince your manager of the promotion you think

you are due. To show that you are giving someone your full attention, try
the following:

Give eye contact (unless it’s not appreciated, in which case, focus on
something like notes instead), and don’t let your gaze wander into the
distance.

Don’t use your phone or laptop while they are talking.

Take notes using a pen and paper.

If you have to take notes on a device such as a tablet or laptop, tell
them that this is what you are doing so they don’t think your attention
is elsewhere

Turn off notifications on your devices.

Don’t interrupt when they are speaking.

Ask clarifying questions when needed.

Repeat your understanding back to them to ensure you have
understood.

Other situations when these techniques are particularly useful include
talking to stakeholders or customers about their requirements, to potential
investors, or to customers about potential sales.

Using Body Language and Gestures
Body language plays a large part in communication when you are visible to
your audience. This includes facial expressions, posture, and gestures.
Keeping this in mind, you can use deliberate body language to add to the
message you are communicating.

Gestures, which are mostly made with your hands, are one of the easiest
aspects of body language to control and use to your advantage. Hand
gestures come naturally and are used even by blind people talking to other

blind people. Gestures can help you remember what you say and encourage
others to listen to you.

TIP
Besides using body language to express yourself, you should be monitoring others’ body
language and adapting to it. For example, if you see a nervous reaction, you can provide
reassurances and explain further.

Explanatory gestures (such as holding your hands out wide when
communicating that something is large) can help people better understand
what you say, whereas power gestures (such as stabbing a finger forward
for emphasis) express dominance and authority. It is important to use all
gestures carefully so that they work toward your goals and not against them.
Here are some tips for doing so:

Keep gestures within the rectangular space from the top of your chest
to your hips and about half your body width to either side of you (see
Figure 8-1). Gestures outside of this can be seen as over-the-top,
aggressive, or out of control.

Match your gestures to what you are saying and make them
purposeful.

Be wary of different cultural meanings of hand gestures.

Find a balance between being stiff and being too fast or gesturing too
often.

When using gestures remotely, consider the framing of your camera.
Make your gestures even smaller than you would in person; they can
look more exaggerated on a screen.

Figure 8-1. Keep gestures within the rectangular space from the top of your chest to your hips and
about half your body width to either side of you

Here are some gestures you can use and examples of when you might want
to use them. The first three are illustrated in Figure 8-2:

A clenched fist shows intensity. You may want to use this when
communicating the success of a project or pleasure at something going
well. Be careful to not use it when sounding irritated; that would
signify anger or aggression.

Using your index finger and thumb to indicate a small gap is a great
way to emphasize that something is small, has little effect, or was “so
close.” Use this to emphasize small problems or trade-offs, or when a
goal was nearly met or a disaster was close but averted.

As you are listing things, you can use your fingers to count them off.
This is particularly appropriate when you have said something like
“We found three important benefits…”

A sweeping motion with both hands, from one side of your body to the
other, can be used to indicate wiping the slate clean to start again. You

might want to use this when communicating the need to rearchitect a
product when moving to the cloud, for example.

Putting both your hands up can indicate concession or apology. This is
useful when you want to emphasize the sincerity of your verbal
concession or apology. When you are saying something sarcastically,
you can pair this gesture with wide eyes.

Figure 8-2. Examples of hand gestures

TIP
Use gestures even when others cannot see you, such as in a phone call or audio-only
meeting. Your body movement impacts the sound of your voice, so using gestures will
make you sound more natural and better convey your meaning.

Aim to implement these encoding techniques one or two at a time, and they
will become natural as you practice them more and more.

Decoding Messages
Receiving a message is not enough. To understand it, you need to decode it.
And to do that, you will use your senses and your brain.

In Thinking, Fast and Slow (Farrar, Straus and Giroux, 2011), Daniel
Kahneman explains that the brain has two systems, which he calls system 1
and system 2.3 Your system 1 does most of your thinking subconsciously,
driven by your experiences and instinct, and will act on and decode the
messages you receive and pass the results to your system 2. System 2 is the

rational and logical part of your brain, but it is influenced by the decisions
made in system 1.

You can end up acting on the decisions of system 1 without engaging
system 2 much, which happens more often when you are communicating in
real time and need to decode messages faster and respond. When you are
not communicating in real time, you have more time to engage system 2
and make a more reasoned response.

NOTE
Overreliance on system 1 can lead to biases and errors in judgment, while overuse of
system 2 can lead to analysis paralysis (overanalyzing or overthinking). We need both
systems to function well.

Battling Bias
Cognitive bias can affect your decision making and reasoning even if you
do engage your system 2, but it can have a profound effect if you use only
your system 1. Cognitive biases are unconscious errors in thinking,
essentially simplification errors, in the same way that you may find early
optimization of your code causes errors later. These biases can affect your
interactions with others, your judgments, and even your own safety.

It is unlikely you can ever be free of cognitive bias, but being aware of your
biases is the first step toward lessening their effects on your decision
making. You can train yourself to use new patterns of thinking by doing the
following:

Recognize and learn about your biases. Research the types of cognitive
bias and how they affect people.4

Slow down your decision making. For example, document important
decisions by using architecture decision records (ADRs) so that the
template forces you to think carefully and not make a rushed decision.5

Consider when biases might affect you and create prompts to remind
yourself to pause and consider how you are being affected (for
example, you could add prompts to an ADR template or interview
feedback form).

Minimize distractions when you are making decisions or decoding
messages; for example, don’t read an email while listening to a
podcast.

Ask for feedback and advice from others so that you can take other
perspectives into account.

WARNING
When considering feedback or advice from others, remember that they also have
cognitive biases. If they are the same as yours, you can both fall prey to confirmation
bias!

I encourage you to learn more about all the types of cognitive biases, but
let’s briefly look at three of the most common ones.

Confirmation bias
In confirmation bias, you interpret new information as confirmation of your
existing beliefs and opinions. Your brain is more likely to process
information that supports your beliefs and label it as true. You should be
very aware of this when you’re online because many search and social
media algorithms have developed to show you exactly what you want to
see, creating a search bubble or echo chamber in which you rarely, if ever,
see anything that challenges what you already believe. It is easy to see how
people can be fooled by misinformation when it is echoed back at them
from all sides.

TIP
Be aware of confirmation bias when researching new technology, creating an ADR, or
attending a conference. Just being aware that a conference could become an echo
chamber can help you to be more discerning about the information you take in. Look for
perspectives that you don’t agree with and make a note of them. They may turn into an
interesting new avenue for you.

Hindsight bias
Hindsight bias is the tendency to perceive past events as more predictable
than they were. This bias can affect you at the following different
intensities:

Predictability is a low-intensity hindsight bias. If you’re thinking “I
knew that upgrade would make things worse,” you might be exhibiting
this bias.

Inevitability is a mid-intensity hindsight bias. It could manifest in
thoughts like “That upgrade just had to make things worse.”

Memory distortion is a high-intensity hindsight bias. For example, “I
said applying that upgrade would make things worse” when no one
said anything of the sort indicates a distorted memory.

It can be easy to fall prey to this bias when things go horribly wrong or
incredibly well, or when a client changes their mind about something.

Groupthink
Groupthink occurs among a group of people in which the desire for
harmony or conformity results in a flawed or irrational decision making.
Members of the group may not express dissenting viewpoints, fail to
critically analyze alternatives, or ignore outside perspectives to reach a
consensus. Groupthink can hinder creativity and innovation and is often
associated with poor decision making.

NOTE
The training of large language models can be easily affected by bias. Consider that these
models know only what they have been trained on, and so any bias in the training data
will lead to bias in outputs from the model.

EXAMPLE

GINO EMBRACES DISAGREEMENT
When creating ADRs at Polyglot Media, Gino always adds the heading
“Consultation” and asks for input from a range of people on the rest of
the content of the ADR.

He selects a diverse group of people in hopes of recognizing more
biases, but who he selects varies depending on the type of decision. The
diversity covers role (such as architects, product owners, or developers)
but also demographic differences such as age, gender, experience, and
tenure in the organization.

Gino has seen how these factors, and others, can lead to new
perspectives on a technology or a decision that will affect a downstream
team. He says the worst thing that can happen is everyone agreeing with
him.

Being Present
To give yourself the best chance of decoding a message, stay present in the
moment and put your own views and biases aside (such as dislike of an
architectural style or cognitive biases). This is a skill you will need to
practice but is incredibly useful when you need to understand someone
(such as a customer, internal user, your report, or a colleague).

To be present in a situation, follow these tips:

Don’t assume you know what someone is going to say. This can mean
you miss what they actually say and figuratively “put words in their

mouth.”

Put aside any ideas about their intentions or judgments about them.
This can help avoid confirmation bias.

Use listening noises such as mmm and body language such as nodding,
smiling, or putting your head to one side to emphasize you are
listening closely.

Let go of your own viewpoint and ego to better focus on them and
their message.

Don’t interrupt or seek to challenge what they say, and instead use
clarification questions once they have finished to clear up anything
you don’t understand or think is missing. Asking questions and fully
exploring a person’s ideas can be a way of taking them through the
thought processes that support your own argument.

Pay attention to their body language to understand their message more
clearly. Look for mismatches between body language and their words
to identify anything that may not be true or the whole truth. This could
warn you when someone is being manipulative or when they are
scared of telling you something.

When they have finished, and you have asked any clarifying questions,
summarize what they have said to you to make sure you have
understood correctly.

Finally, decide the next steps to take, depending on the message you
have been given.

NOTE
Many of these techniques fall under the heading of active listening, where you go
beyond just hearing what is said. You become an active participant and seek to
understand what is said. Active listening can improve the comprehension of all
participants, not only your own.

Awareness of Cultural Differences
Cultural differences can disrupt the accurate decoding of verbal and
nonverbal communication. It can be hard to remember that not everyone is
like you and that even people from the same country can have very different
cultural backgrounds. Age, gender, gender identity, sexuality, and race are
among the factors that make us different from one another. Our
backgrounds influence how we communicate—how we encode and decode
messages. Differences in the interpretation of a word or gesture can make a
huge difference in whether communication is successful.

When you are communicating with people whose background differs from
yours, which is more and more likely as workforces become more
distributed and diverse, find out about important differences and things that
may inadvertently offend. You can do this by researching, but asking
questions of the people you are communicating with will often get you
there faster.

In some cultures, confrontation or expressing disagreement in public is seen
as rude or aggressive, whereas in others it is perfectly normal. Another
cultural business difference revolves around the boss; some people support
their manager at every step and never contradict them, whereas other
cultures support a much flatter hierarchy that encourages speaking your
view.

From this, you may think that diversity negatively affects a team or its
output, but research and analysis has shown that “contextual diversity can
positively affect task performance.”6 Taras et al. found that teams with
members who had been exposed to a diversity of institutions, politics, and
economics (termed contextual diversity) had advantages in problem solving,
decision making, and creativity.

In contrast, the same research showed that “personal diversity”—differing
characteristics like age, culture, and language—“can negatively affect team
climate.” This shows that culture and other personal diversity must be taken
into account for communication to be successful, but diversity of
experience is overall positive.

Aim to create relationships with offshore teams, colleagues in other
countries, and colleagues who differ from you to foster an environment of
understanding. Keep in mind that differences in culture can affect a team’s
success. Learning about each other and each other’s cultures will help to
mitigate this.

Diversity has been shown to improve creativity and even a company’s
bottom line, so avoiding miscommunication with others who have a
different personal background from you will help your company in the long
run by making it a place where diversity can thrive.

Influence and Persuasion
The art of influence and persuasion is useful not only to sales and
marketing. When you communicate with stakeholders, customers, and
colleagues, you are often trying to influence them or persuade them of
something. Maybe you think that something needs to be changed, that your
designs meet their requirements, or that their requirements need to change.
You need to persuade and influence others to gain support, implement your
ideas, and achieve your goals. You will also have others aiming to persuade
and influence you.

Although many techniques of persuasion exist, it is important to realize that
they must be used with a foundation of demonstrating value, listening to
people’s needs and feedback, and coming up with useful ideas and
compromises. Your ideas and solutions need to be aligned with your
audience’s goals to be persuasive. Aligning the goals of the project,
program, and so on to others’ goals will incline people to agree without the
need for many (if any) persuasive tactics.

TIP
Ideally, you should do as much discovery work in advance as possible so that you can
develop your ideas before being in a live situation with your audience.

People will generally resist your proposals and suggestions if they think you
haven’t understood their problems and needs. You must understand their
needs and concerns as well as communicate that you have this
understanding. Ask open-ended questions to get this information and be
explicit about how you will solve their problems. You need to show them
what they will gain (for example, a reduction in technical debt).

Remember that persuasion is a process rather than an event. Listening,
generating ideas, and demonstrating alignment of goals and value to your
audience all happen across conversations, meetings, presentations, and
other communications. Apply influence and persuasion techniques
throughout your communications with your audience to improve the
likelihood of gaining their approval or agreement.

Stating the most important message first in the form of a headline statement
is a good technique. You can think of it like a newspaper headline, and it
should be a similar length. Use this statement to begin your conversation or
meeting, or directly after the title slide of a talk or presentation. You can
also do this in writing—for example, as the subject of an email or at the top
of an agenda.

TIP
A startling statistic or fact can be used to create impact, such as “Every year our
software saves thousands of lives” or “This release increased transaction throughput by
150%.”

Another technique is to use bold words and statements. You need to make
an explicit commitment and demonstrate self-belief to get your audience to
also invest in that belief. To strengthen your language:

Begin statements with phrases like The plan is…​ and We will…​ that
contain strong verbs like influence and optimize. (See “Strong Verbs”.)

Avoid words such as try, maybe, and hopefully.

Use concise sentences and deliberate pauses while avoiding thinking
noises such as um and er.

To put these techniques into practice, say, “The plan is to see results by Q2
next year” rather than “We will hopefully see results by Q2 next year” when
explaining your designs to stakeholders.

Boost your credibility to gain your audience’s trust. One tool to do this is a
credibility statement or position, which is generally used to introduce
yourself and establish authority from the start. You can see written
examples in people’s profiles on sites such as LinkedIn or Mastodon. You
can also use a verbal credibility statement when networking or in an
external meeting or presentation.7

Include your name and role and then highlight your expertise. Use strong
words like specialist, experienced, or internationally recognized (see
Example 8-1). Aim for around 10 seconds in length when you are speaking
at a networking event or in a meeting and around 60 seconds for an event or
conference introduction.

Example 8-1. Start of a credibility statement
My name is Jacqui Read, and I am an internationally recognized consultant,

software

architect, and O'Reilly author with over 15 years of experience in software

architecture and development across a range of domains.

When you are communicating to persuade, it is good practice to identify
some likely audience questions or pushback and to plan responses. You will
inevitably get questions that you haven’t anticipated, so it is important to
plan for when that happens. Here are some things you can do to give
yourself time to think:

Pause and take a breath to give everyone time to process the question.

Show appreciation that the question was asked. “Thank you, that is an
important topic…​” (but don’t overdo this if there are lots of questions
—rehearse a few ways of saying this; for example, “I’m glad you
brought that up…​”).

Repeat the question to make sure that you and the rest of the audience
heard it.

Ask a clarifying question if you need to, such as “What recovery time
objective were you looking to achieve?” You can use the answer to
improve your response.

You can then give a concise answer, making sure not to show annoyance or
defensiveness. If you don’t have the answer, say that you will find out and
get back to them at a later time. Don’t forget to follow through on this
promise.

Here are some further techniques for influencing and persuading peers,
stakeholders, and customers:

Reciprocity

People often feel an internal need to reciprocate generous
gestures as well as an external need to be seen repaying a
debt. You can take advantage of the expectation of
reciprocity by being generous; for example, if you offer a
free trial of your software product, your customers might
feel like they should give something in return (subscribe or
pay). If you offer to help your peer or manager review their
presentation, you give them reason to do you a favor in the
future.

Thoughtful pauses

Many people feel uncomfortable with silence and will try to
fill it. Pause and you may find that silence filled either with
useful information or agreement with what you have said.
Silence also gives your audience time to digest what you
have said. You can also use it to emphasize a point.

Give options

Instead of a yes or no (all or nothing) question, give options
that will all benefit you so that you do not mind which
option is chosen. Many software licensing models offer
several tiers, giving options to customers. When getting buy-
in from stakeholders on your designs, you could offer two
options instead of one. This gives a sense of control to your
audience or recipient. Give only a few options; the more
options someone has, the less satisfied they are by their
choice.

Repetition

The more someone hears or thinks something, the more they
believe it to be true. This is related to confirmation bias. Keep
repeating what you want others to believe—for example,
about your abilities (to boost your credibility) or the benefits
of your software (to persuade customers). You can build
your position iteratively by introducing your position gently
and coming back to it again and again.

Cognitive reframing

Cognitive reframing means altering your mindset to look at
something from a different perspective in order to shift
thinking and behavior.8 Use cognitive reframing to take an
event or situation (that might be unpleasant or
unsatisfactory) and guide others to think about it differently
to move forward or generate new ideas. For example,
“We’ve found that serverless doesn’t meet our needs, and it’s
taken a long time to come to this conclusion, but what have
we learned that will help us to identify what does meet our
requirements?” Summarize the situation and encourage
your audience to think about potential next steps.

Redefining

This is similar to reframing but leads your audience from
what they are concerned with to what you want them to
focus on. For example, a stakeholder may say, “That option
will take a huge chunk of our budget,” and you can counter
with, “Yes, this option is costly, but that’s not the priority in
this situation. Our security and compliance requirements
are not fully met by the other options and would leave us
open to attack and possibly legal prosecution.”

NOTE
Sometimes your efforts to influence and persuade won’t work because of underlying
reasons that you cannot control. A marking scheme when bidding for a contract may
mean you don’t get the highest score, despite your efforts. The decision maker may have
set end-of-year objectives that conflict with your position. You may be suggesting the
right thing but at the wrong time.

It is possible to combine many of the techniques in this section to become a
more convincing and highly regarded communicator, enhancing your scope
of influence in your organization and beyond. The next chapter discusses
more patterns for increasing your influence in the context of Aristotle’s
rhetoric triangle.

Summary
Both verbal and nonverbal communication are important even in individual
contributor roles (those without management duties). Enhancing these skills
with the techniques in this chapter will help set you apart from others when
it comes to recruitment, promotion, and avoiding redundancy.

You should have a formidable tool set for written, verbal, and nonverbal
communication from Chapters 7 and 8. Chapter 9 adds further techniques
that apply to all of your communication.

1 Ambady et al. “Toward a Histology of Social Behavior: Judgmental Accuracy from Thin
Slices of the Behavioral Stream,” Advances in Experimental Social Psychology 32 (2000):
201–71, https://doi.org/10.1016/S0065-2601(00)80006-4.

2 Danu Stinson et al., “Deconstructing the Reign of Error: Interpersonal Warmth Explains the
Serl-Fulfilling prophecy of Anticipated Acceptance,” Personality and Social Psychology
Bulletin 35, no. 9 (July 2009), https://doi.org/10.1177/0146167209338629.

3 The two-system model is an abstraction of the more complex and nuanced human cognition
system.

4 I recommend reading these books on cognitive bias: Thinking, Fast and Slow by Daniel
Kahneman, The Art of Thinking Clearly by Rolf Dobelli (Harper Collins, 2013), and Nudge:
The Final Edition by Richard H. Thaler and Cass R. Sunstein (Penguin, 2021).

5 ADRs are a type of documentation for recording architectural decisions, which I will cover
more in Chapter 12. See “ADRs” for templates and examples.

6 Vasyl Taras et al. “Research: How Cultural Differences Can Impact Global Teams,” Harvard
Business Review, June 9, 2021, https://oreil.ly/5y22b.

7 Credibility statements are generally overkill in internal meetings or presentations, but a short
version may be useful when in meetings with senior people who don’t know you (such as C-
suite executives).

8 Cognitive reframing is also a technique used by some therapists.

https://doi.org/10.1016/S0065-2601(00)80006-4
https://doi.org/10.1177/0146167209338629
https://oreil.ly/5y22b

Chapter 9. The Rhetoric
Triangle

You may have heard of Aristotle’s rhetoric triangle or its constituent terms
ethos, pathos, and logos. The rhetoric triangle was central to Aristotle’s
teachings on the art of persuasion and was a fundamental tool for effective
communication in ancient Greece. But how is it relevant to an architect or
developer today?

At its core, the rhetoric triangle is a framework for understanding the three
key elements of persuasive communication: ethos, logos, and pathos (see
Figure 9-1). Ethos refers to the credibility and trustworthiness of the
speaker, pathos to the emotional appeal used to engage the audience, and
logos to the logical and rational argument presented. By mastering the
balance and interplay between these three elements, you effectively engage
your audience and achieve your desired outcome. Studying the rhetoric
triangle was considered essential for ancient Greek students and remains a
valuable tool nearly 2,500 years later for anyone looking to improve their
ability to communicate persuasively.

Figure 9-1. Aristotle’s rhetoric triangle

Ethos
Ethos refers to the credibility, reliability, and trustworthiness of the speaker
or author. In verbal and written communication, ethos can play a significant
role in how the audience perceives the speaker or author and the message
they are communicating.

Establish Your Credentials
One way to use ethos in your speaking and writing is to communicate your
credibility to your audience. This can be done in various ways but will

involve highlighting your relevant qualifications, experience, awards,
publications, and so forth.

Within your company, you typically do not need to communicate your
credibility directly—for example, with a credibility statement (as discussed
in “Influence and Persuasion”). Your job title communicates much of what
your coworkers need to know. Building credibility internally is more about
the actions you take and the more subtle things that you say, such as the
outcomes of projects you have worked on or the technologies or techniques
you have read about or seen at a conference.

It is important to avoid coming across as bragging or name-dropping.
Talking about approaches and outcomes is much more subtle than direct
statements about work on a product or at a company. The result of subtle
statements should be that colleagues form good opinions of you.

EXAMPLE

ESTABLISHING CREDENTIALS AT POLYGLOT MEDIA
When Nikki starts working at Polyglot Media as a software architect,
she doesn’t know any of her coworkers. Only her line manager knows
anything about her experience from her interview.

As she absorbs information from meetings and conversations, Nikki
makes relevant comments about her previous experience. For example,
in a meeting where a colleague mentions issues with scaling data stores,
Nikki shares a particular method she used to resolve something similar
in a previous role and offers to chat more. She also posts reading
recommendations in a virtual chat channel on other relevant topics.

As Nikki shares information, her new colleagues build a good
impression of her experience and knowledge. Nikki never has to
express her credibility formally.

When giving a presentation, you can establish your credentials with a
biography that you can deliver yourself or have someone use to introduce
you. If presenting at a conference or formal talk, the event’s website and

literature would likely also include this biography. You may want to repeat
some of this information when introducing yourself during the talk, if
someone else introduced you.

Whether you present publicly or not, it is a good idea to have a short
biography to use in your social media.1 This can be a headline about
yourself and a paragraph of information, a list of the things you do
(separated by pipes), and so on.

Credentials aren’t limited to academic qualifications. As a life-long learner
in the technology arena, you might also include the following credentials in
a biography:

Professional qualifications

Blog posts you have authored

User groups, meet-ups, or conferences you have spoken at

Mentorships you have participated in (as mentor or mentee)

Groups or events you run or organize

Open source projects you contribute to

Volunteer work you do

Recommendations and testimonials from others

Honors, awards, and competition wins

Publications you have contributed to

TIP
If you are networking, either 1:1 or in a small group, you can establish your credentials
with a short introduction you prepare and rehearse in advance. What impression do you
want to make? The answer will help you design an effective introduction.

You can also communicate credibility in some forms of writing. A blog post
or article typically has a short author biography. A book usually has an
author biography inside and on the back cover, establishing ethos as it is
perused in a bookshop. When browsing books online, the buyer is often
greeted by a short biography or introduction along with a description of the
book.

Use Trustworthy Sources
Another way to establish credibility is to use trustworthy sources for your
information and to cite those sources. This has the added benefit of enabling
your audience to find out more. Giving them more value can also improve
their impression of you.

WARNING
When citing sources, it is easy to come across as saying, “I have read and interpreted
these sources for you so you don’t need to bother,” which can sound patronizing. To
avoid this, you can tie in personal experiences or anecdotes with a sprinkling of quotes,
statistics, or references. You can also title your citations “Further Reading” rather than
“References.” Show you are open to challenge and collaboration.

Trustworthy sources include academic journals, reputable experts in the
field, government agencies, and more; for example:

Books (physical or ebooks) written by respected authors and published
by reputable publishers

News articles from well-established newspapers or news websites

Professional organizations, such as trade associations or professional
societies

Online databases of academic and scholarly articles, as well as
historical documents and data, such as ProQuest or JSTOR

https://proquest.com/
https://jstor.org/

Government agencies that publish reports and whitepapers, such as the
Office of National Statistics in the UK

Papers or slide presentations presented at conferences or academic
events

Blogs or articles written by reputable people

Your own experiences and those of credible people you know

TIP
Using a variety of sources to back up your message is another way to add credibility. If
more than one trustworthy source supports your message or argument, your audience
will have more confidence in what you say or write.

To cite your sources in presentations, you can add footnotes to the
appropriate slides and name your sources as you speak. This is preferable to
an appendix in a slide deck because you want your audience to sense your
credibility as you speak, not afterward (and they might not read slide
handouts).

In writing, you can also make citations in footnotes or, as with speaking, in
the text itself (whether in the main text or parentheses like these). If your
writing appears online, it is good practice to link directly to any online
sources.

TIP
When citing online sources, you are referencing content that can change, whereas a
published book or scientific paper will remain the same. To avoid outdated citations,
you can use tools such as the Wayback Machine. To cite a preserved version of your
source (as long as it allows crawlers), visit the Wayback Machine and enter the address
under Save Page Now. Update your citation with the address to your preserved web
page in the archive. Archive.is is a similar alternative service.

https://ons.gov.uk/
http://web.archive.org/
https://archive.is/

Anecdotes and real-life stories are effective ways to demonstrate your ideas,
designs, and warnings. People accept narratives much more easily than
facts and bullet points, so use stories as examples when you can to create a
bigger impact than you would with references to studies, books, and so on.2

Be Transparent
Being transparent about your motivations, biases, and conflicts of interest
can help build trust with the audience. You may think that you would need
to declare an interest only if you stand to gain from it, but transparency is
also about explaining your perspective to your audience so that they
understand where you are coming from. Transparency can enhance
credibility by, for example, revealing how you or someone close to you has
been affected by the subject you are talking about.

Transparency is more applicable when communicating with those outside
your company but can still be important within your company. For example,
you should make it clear if you worked for a company that you are now
recommending or marking in a procurement process.

When speaking or writing, you should communicate your motivations to
your audience. Once they know why you are trying to communicate
something to them, they can use this information to determine the amount
of trust to put in you and the credibility of your message.

Citations can also improve transparency. In addition to citing sources that
back up your views, cite sources that do not. Doing so communicates that
you think your audience is intelligent enough to form their own opinion and
reinforces your confidence in your position; you think the audience will still
agree with you even if they consume an opposing opinion.

Whether spoken or written, stating your motivations may be a good
introduction or attention-getter. They might also impress or further engage
your audience later as a dramatic reveal. Imagine revealing that the
protagonist or villain of your narrative is yourself or someone close to you.
That would dramatically reveal your motivations.

It is highly important to communicate any biases or conflicts of interest to
your audience. If they know or find out later that you have an incentive,
financial or otherwise, to argue a certain way, then they will lose trust in
you.

WARNING
Declaring a conflict of interest is often a legal requirement in business, finance, and
politics, so be very careful to abide by the law.

One way to declare a bias or conflict of interest is up front in your
introduction or early on. This is a good way to make sure that your audience
doesn’t get any incorrect ideas about how you fit in with your message or
argument before revealing your connection. Otherwise, they may feel they
have already been misled, and you will lose their trust.

TIP
Avoiding a conflict of interest may be better than having to declare it. The audience may
decide that you are too biased for them to accept what you say. Would someone else be
better placed to write this blog post or give this presentation?

If you have several topics or subsections in your writing or speaking, but
your bias or conflict of interest applies to only one or a group, you may
want to reveal this just before you speak or write about the relevant topic.
Your audience will then know exactly what your bias or conflict of interest
applies to. It is especially important in a written piece, as your audience
might skip to the topic and miss your declaration if it were at the beginning.

You could also communicate bias via a disclaimer or in your biography. A
disclaimer could appear in your content (such as a statement about earning
commission from clicks on product links in your blog posts) or in your
biography (for example, declaring who you or a close family member
works for).

BIAS AND CONFLICT OF INTEREST
You may need to declare a bias or conflict of interest about a wide
range of things, including the following:

Employment or employment relationship

If you have a current or former employment relationship
with an organization, company, or individual that is
relevant to the topic you are discussing, you need to
declare it. For example, if you are promoting a product
and work for the company that makes it, you need to
declare your employment relationship.

Financial interests

If you have financial interests that could be impacted by
the topic you are discussing, you need to declare them.
For example, if you own stocks in a company that is
involved in a bid you are working on, you need to
declare it.

Personal relationships

If you have a personal relationship with someone or an
organization that is relevant to the topic you are
discussing, you need to declare it. For example, if you are
presenting a topic that is relevant to a friend’s business,
you need to declare your relationship with them.

Ideological or political bias

If you have a strong ideological or political bias that
could impact the impartiality of your presentation or
writing, you need to declare it. For example, if you are
discussing a political topic and have a strong partisan
bias, you need to declare it.

Professional association

If you belong to a professional association that could be
relevant to the topic you are discussing, you need to
declare it. For example, if you are a member of an
association such as Sherwood Applied Business Security
Architecture (SABSA) and you are discussing security
frameworks, you need to declare it.

Demonstrate Your Knowledge
Demonstrating a deep understanding of the topic can help establish
credibility and show that you are an expert in the field. One way to
demonstrate knowledge is to use specific examples or case studies to
support your message or argument, showing how you have applied your
knowledge in practice. It is one thing to quote your theories to your
audience but quite another to show your theories working in the real world.

When using technical terms, make sure to use them correctly. A technical
review of your writing or slide deck could help make sure you haven’t
mixed up your frameworks and your libraries or written the wrong
abbreviation or acronym.

Explaining complex concepts on a level that your audience can understand
demonstrates your ability to translate technical information and shows that
you understand the topic deeply enough to break it into easy-to-understand
terms. Trying to make yourself look clever by bamboozling your audience
with technical terminology and concepts will only lead to
miscommunication, which could in turn lead to making the wrong
decisions.

As a technical professional, you know the importance of keeping your skills
and knowledge up-to-date to do your job well. Demonstrate that knowledge
to your audience by discussing developments in the field and the impacts on
your work. Showing a commitment to ongoing learning and professional

development reveals the type of person you are. Dropping references to,
and examples of, up-to-date information into your conversations, talks,
slide decks, and writing will show that you are keeping abreast of current
topics.

WARNING
If you have only a superficial knowledge of a topic, it will likely come across. When
you don’t have much knowledge of a subject, asking questions and making comparisons
may be better than trying to look like you know more.

Conferences and user groups aren’t just ways to keep your knowledge up-
to-date; they also improve your ethos and demonstrate knowledge. By
participating in relevant events and networking with others, you will absorb
more knowledge of new developments and trends and build your personal
brand. Other people who attend will see that you are improving yourself.
You can also refer to and cite talks you’ve attended or conversations you’ve
had. Events, both in person and online, can be a good source of anecdotes
for your speaking and writing. Online conferences and meetups are
examples (and can be great places to start presenting), as are sites such as
LinkedIn and Dribbble.

Pathos
Pathos refers to an emotional appeal, which can be used to connect with the
audience. In verbal and written communication, pathos can play a
significant role in making a message more memorable, relatable, and
persuasive.

Tell a Story
Telling a story can be an effective way to make a message more relatable
and memorable, while also connecting with the audience emotionally. You
may think that stories don’t fit in with your technical writing or speaking,

https://linkedin.com/
https://dribbble.com/

but they can capture your audience’s attention, keep that attention,
communicate concepts, and more (see Chapter 4 for more on narrative).
User stories often include personas, which provide a background story.

You can use stories to provide real-world examples that support your
message. Tell how another company has used the technology you are
proposing to create a successful product or improve its deployment
pipelines. Use the story to illustrate the benefits and show how
shortcomings have been overcome.

Stories can also help explain complex concepts. Like a longer version of an
analogy, a story can clarify and simplify an idea. A well-crafted story can
help the audience better understand the technical concepts by putting them
in a relatable and memorable context.

TIP
For good examples of using storytelling in presentations, watch some TED Talks. They
cover a huge variety of topics, including technical and software topics. Many are short
and easy to fit into a small gap in your busy day.

You can also use stories to give context and background to your message.
By setting the stage for the technical details with a narrative, the audience is
better able to understand the significance and relevance of those details.
Why are you communicating with your audience? Are you solving a
problem? How did that problem present itself? How does it affect your
audience or others? Once you have given your audience context, move on
to the technical details and how you will solve the problem.

Storytelling builds empathy. Share stories that highlight the challenges and
struggles of users, developers, and other stakeholders. In this way, you
humanize your technical information and make it more relatable to the
audience.

Your stories should engage and inspire. Illustrate your message’s affect on
the world and the business to motivate your audience to take the action that

https://ted.com/talks

you want them to take (such as signing off on a decision, approving a
request for funding, or buying your product). Stories are a valuable tool in
getting what you need from your audience.

Here are a few types of stories you can use:

Success stories can demonstrate how a particular solution or
technology was successfully implemented by another team or
company. These stories can build credibility by showing that your
recommendations are based on experience and a track record.

Failure stories might discuss how a project or solution failed and offer
lessons learned from the experience. You can use this type of story to
steer your audience away from a solution, or as the basis for a lessons-
learned session. Communicate why the failure happened so that your
audience is clear on this. See “Lessons Learned at Polyglot Media” for
an example of a failure story.

Use case scenarios describe a typical situation in which the technology
or solution would be used. You can use a use case scenario to help
your audience visualize how the technology would be applied in a real-
world situation (preferably the situation you want to apply it to, such
as within your business).

Clarity stories explain why a decision was made. You can structure
these in four parts:

a. What happened in the past

b. The turning point where change was needed

c. What will be done now

d. What will happen in the future

EXAMPLE

LESSONS LEARNED AT POLYGLOT MEDIA
The main software system at Polyglot Media was once a big ball of
mud: one monolithic system that had grown organically and sat on top
of one huge relational database. The Polyglot Media system was prone
to bottlenecks, and responsiveness was becoming an issue for
customers. Development teams struggled to squash all the bugs and get
new features into production within a reasonable time window.

The architects at the time, Vlad and Libby, had learned from reading
and conferences that jumping to a microservices architecture was not a
silver bullet. After a lot of research and prototyping, they decided
serverless would meet their needs, along with polyglot persistence
(multiple types of databases). It was a huge undertaking, but the
monolith was broken into many small functions, and the relational
database became eight smaller data stores of varying types.

To avoid having to pause the development of new functionality, they
used the strangler fig methodology to migrate to the new system. At
first, the development process seemed a lot easier; developers could
quickly identify where they needed to make changes and deploy only
code that had been changed. But teams started having problems
coordinating changes with one another, causing merge problems and
breaking changes between functions.

Although serverless yielded cost savings on resources, it turned out that
functions were talking to many other functions, creating a spiderweb of
dependencies (an antipattern known as serverless pinball). The system
was distributed, but still tightly coupled, and the problem with
responsiveness had not been solved either. Polyglot Media now had a
distributed ball of mud.

Libby and Vlad were already working on solving the new and
preexisting problems when Nikki joined Polyglot Media to bolster the
architecture team. She brought new ideas about team topologies and
agreed that reducing coupling as much as possible was a good idea.3

The transition is still an ongoing process, but the architecture team
realized that, like microservices, serverless was not a silver bullet.
Functions were too small and needed to talk to too many other
functions for it to work for the whole Polyglot Media system. The
development teams have become a prototype for applying team
topologies in Polyglot Media, and the inverse Conway maneuver has
been applied to support the composing of functions into larger services
that are maintained by one cross-functional team per service.4 Services
and data stores are being composed based on dependencies, the need for
scaling, and other integrators and disintegrators.

An event-based architecture using queues is being rolled out, to reduce
the level of coupling between services and increase responsiveness.5
The first responsiveness bottleneck tackled using this approach was
media activity logging, which was hogging required resources in the
media service.

Speak from the Heart
In verbal or written communication speaking from the heart means being
authentic and sincere. It involves connecting with your audience on an
emotional level and conveying your message with passion and conviction.

An effective method of connecting with your audience emotionally is one
we’ve already discussed: telling personal stories. Stories are important to
humans, and sharing one that is personal to you but also relevant to your
message will demonstrate your authenticity while connecting emotionally.
The story doesn’t need to have involved you directly but should have a
connection to you. Do not make something up and pass it off as true. That is
a sure way to lose credibility with your audience.

You can use your voice, body language, and writing to show emotion and
communicate vulnerability. By showing your audience how you feel about
your message or argument, or showing them how you have been affected,
they will feel a stronger connection to both you and your views. The

strongest messages are those that show a personal vulnerability or failure,
as opposed to those that make you feel or look good.

TIP
Some people put on a pretense and try to be someone they are not in an attempt to
convey their message. Audiences are likely to see through this and question your
authenticity. Be yourself, speak in your own voice, and avoid using scripted or rehearsed
lines that are not natural to you to make that connection with your audience.

Another method is to use concrete examples or anecdotes such as case
studies or interesting use cases. These bring your message to life and make
it easier for your audience to relate to what you are saying or writing. Use
this technique along with a display of emotion to really pack a punch.

You can practice active listening to help connect with your audience
emotionally during a conversation, meeting, or talk in front of an audience.
You must be fully present, not daydreaming, glancing at your phone, or
checking email on your laptop. When you show that you are actively
listening, you convey the sincerity of your message and show that you care
about what they are saying.

To show you are actively listening, try the following:

1. Listen in full, without interrupting.

2. Ask clarifying questions once they have finished.

3. Summarize their view to them, and let them correct anything you have
misunderstood.

4. Decide what you need to do and how to respond.

Consider implementing these additional active listening tips:

Make listening noises (uh huh, mmm, and so forth) and use listening
body language (head nods, eye contact, and so on).

Don’t fill their silence; wait for them to continue.

Read their body language.

Mirror (copy) their body language.

Spot inconsistencies, such as saying “yes” while frowning.

Use Vivid Language and Strong Imagery
Using vivid language and strong imagery can help paint a picture in the
audience’s mind and evoke emotions, adding to the emotional appeal of
your message or argument and also making it more memorable.

One technique is to use sensory language—language that appeals to the five
senses (sight, sound, smell, touch, and taste). As your audience experiences
your message through each of their senses, it becomes more real and far
more memorable. When presenting, you can use sound and visuals along
with sensory language.

Metaphors, similes, and analogies, which compare one thing to something
else, are also useful tools. When communicating with stakeholders, you
may wish to convey a strong idea, feeling, or complex concept, and using a
metaphor, simile, or analogy is an effective approach. Consider the context
and audience to make sure that your comparison makes sense and
communicates the idea that you intend.

METAPHORS, SIMILES, AND ANALOGIES
Metaphors compare something the audience doesn’t know with
something they do know by saying that something is something else.
For example, the development team is a well-oiled machine.

Similes compare two dissimilar things by saying that something is like
something else. For example, the connections between microservices
are like a spiderweb or are as tangled as a spiderweb.

Analogies compare two things to make a point, but also explain the
comparison. For example, maintaining software is like taking care of a
car. You need to keep up with regular maintenance tasks to keep the
software running smoothly and fix any problems that arise before they
become bigger issues.

Visual aids are another method you can employ. When speaking, you can
use visuals on slides, including videos and animations, but also physical
props to demonstrate a concept. Humans remember visuals better than
spoken or verbal ones, so using photos, videos, GIFs, or other visuals is
more effective than just words.

TIP
Physical props can be even more effective than animations or videos when presenting to
an audience. One of the most memorable talks I can think of, by Jules May, used
physical balls and sticks to explain how a quantum computer works.

Other useful tools for creating vivid language and strong imagery include
the following:

Personification

Giving human characteristics to nonhuman things can
increase empathy with your audience: the server was so
overloaded that it was begging for a break.

https://julesmay.co.uk/

Hyperbole

Exaggerated language can evoke strong emotions in your
audience: this code is older than the internet!

Strong action words

Strong active verbs engage your audience in many ways,
keeping attention but also communicating what you really
mean (for example, implement, build, test, debug, optimize,
integrate…) instead of weak action verbs (for example, work,
make, show, try…). See “Strong Verbs”.

Emotional words

Words that have strong emotional connotations can elicit
emotions in the audience and make them more likely to rise
to your call to action (such as life-changing, transformative,
innovative, cutting-edge, phenomenal, unmatched, and
unrivaled).

Logos
Logos refers to an appeal to reason and logic that makes a message more
convincing. In verbal and written communication, logos can play a
significant role in building a strong argument and making a message more
persuasive.

Use Data and Facts
When presenting your message or argument, you should use data or facts to
support your views. You could include concrete data from reliable research
studies, statistics published by trustworthy sources, or historical facts and
figures.

WARNING
Make sure that any data or facts that you base your views on are from credible and
reliable sources, or that you state any biases, limitations, or problems with your sources
(see “Establish Your Credentials”).

When stating facts or data, cite your sources. When speaking, you may
want to just state the facts or data, but showing the statement or an
illustration of the statement at the same time as stating it can add a huge
impact when using visuals such as slides.

In writing, you can state facts and data within text or slides, add data or
citations in footnotes (see Example 9-1), or refer to them in examples,
illustrations, or appendixes. If the amount of data is large, including an
appendix is a good way to avoid breaking the flow of the main text.

Example 9-1. Using footnotes to cite the source of data in the main text
A journal article published in 2020 proposes the creation of a "Phish Scale" to

rate the difficulty of phishing training exercises.¹ As a company, we can...

[1] Michelle Steves et. al, "Categorizing Human Phishing Difficulty: A Phish

Scale," Journal of Cybersecurity, 6, no. 1. 2020,

https://doi.org/10.1093/cybsec/tyaa009

Presenting data and facts can help support your argument and increase the
validity of your message.

Make Logical Connections
Making logical connections between points can help build a strong
argument and show that your message is reasoned. Besides using varied
sources of reliable information as a basis for your message or argument,
you should make connections between them, and between the topics or
points you’re describing. This is a similar concept to connecting data points
on a graph to show a pattern.

By making these connections, you show your thought processes and that the
basis for your message or argument is not just disparate data points, but a
network of supporting information. It’s like completing a dot-to-dot puzzle
for the audience so that they don’t have to.

The connections you offer must make logical sense to your audience;
otherwise, they will lose faith in your message or even in you. You can do
this in several ways:

Organize your content in a structured and logical manner to help your
audience understand the connection between ideas and how they relate
to each other.

Use transition words and phrases to connect ideas and show
relationships. For example, therefore, consequently, and in conclusion
can be used to show the logical connections between ideas.

Give examples to illustrate the logical connections between ideas and
make content more relatable. Narrative and storytelling can be
employed here.

Use visuals such as diagrams and flowcharts to illustrate logical
connections between ideas and make content easier to understand. In a
slide deck, you can add animations and transitions to show
connections, alongside other visuals.

Use Reasoning and Argumentation
Using clear reasoning and argumentation can show that your message is
rational. It is one thing to present your audience with the data to support
your views, but that data also requires explanation. Your audience needs to
understand your reasoning.

When justifying important choices such as architectural decisions, your
reasoning is important. A couple of techniques are particularly useful here:

Trade-off analysis

When comparing options for a solution, each always has
pros and con. By communicating these to your audience, you
can show the benefits of the choice made and the trade-offs
that have been accepted as a consequence. You also show
how the other options considered were not the best option.

ADRs

ADRs can be a good place to document your trade-off
analysis but also communicate more of your reasoning and
argumentation. ADRs allow you to document a decision with
its options and consequences and can be a method for
getting input before a decision is made. In writing, you can
include a link to the full ADR, and in speaking, you can talk
about the ADR or show it in parts in a slide deck. Example 9-
2 shows how to structure an ADR, created from personal
experience and the experiences of others passed on to me
(for a full example of an ADR, see “ADRs”).

Example 9-2. ADR structure
Identifier & Title - a statement of the decision made

Status

Draft/Decided/Superseded by ADR-XXX

Context

Why you need to make the decision. Assumptions, constraints, and decision

drivers.

Evaluation Criteria

What is important to you in making this decision?

Which of your architectural characteristics apply to making this decision?

Should any constraints or decision drivers become a criterion?

Options

Outlines of the options considered against the evaluation criteria (usually using

a

score or rating), and trade-offs outside of the evaluation criteria.

Decision

The choice that was made and why.

Implications

The positive and negative consequences of the decision made.

Consultation

If taking input from others, they should document it here. Details of those

invited

to give input can be recorded, whether they provide input or not. Although

consultation takes place before a decision is made, it is documented at the end

because it can become long and obscure the decision itself.

These techniques are also useful for addressing counterarguments and
responding to objections. By explaining your reasoning, you demonstrate a
thorough understanding of the topic and increase the credibility of your
message.

TIP
Consider objections and counterarguments that your audience may have and be prepared
to respond using reasoning and argumentation. You will not be able to predict all the
issues that are brought up, but being prepared for most of them will give you the
thinking space for any surprises.

ADRs and trade-off analyses highlight counterarguments or issues to your
audience before someone else can bring them up. Preempting
counterarguments strengthens your arguments by showing why alternative
solutions were discounted. ADRs have value long after the decision in
question is made. They are the story of the decision, which can be retold
however many times and to whoever needs to understand it.

In writing, you could respond to counterarguments by using the previously
mentioned trade-off analyses and ADRs. Another option is to include a
frequently asked questions (FAQ) list with your own counterarguments to
questions and objections that you predict. This has the added advantage of
not having readers ask the same question of you over and over again.

When speaking, you should script and rehearse answers to the objections
that you predict. How much preparation you put into this will depend on

how important the outcome is to you.

NOTE
Objections can be subjective. An objection such as “it is too slow to implement” may
prompt you to revisit your decision criteria, but it could also represent a difference of
opinion.

Summary
You now have techniques to increase your trustworthiness and the value of
what you communicate. Did you think, before you read this chapter, that
knowledge from over two thousand years ago could be so helpful to you
today? Recording and sharing knowledge has been key to developing
human civilization, and yet it is not given priority when it comes to
architecting and writing software.

The word documentation often causes people to involuntarily shudder or
show some similar form of body language (which you may pick up on
better now that you’ve read Part II). Part III will help you feel differently,
reduce this reaction in others, and curb anxiety over how to document, what
to document, and how to create a reserve of knowledge that is useful and
accessible.

1 You may want to disassociate any nonprofessional social media accounts from professional
ones. For example, add a professional biography to your LinkedIn account, but give your
Mastodon account (where you post about personal topics) a completely different biography.

2 See Chapter 4 for more on narrative.

3 See Team Topologies for further information.

4 Conway’s law states that “any organization that designs a system (defined broadly) will
produce a design whose structure is a copy of the organization’s communication structure.”
The idea of the inverse Conway maneuver is to create your team and communication structure
in the way you want to design your system so that the system the teams produce will be as
designed.

https://teamtopologies.com/

5 See Figure 12-3 for the ADR for this decision.

Part III. Communicating
Knowledge

Most people think that knowledge management in organizations and
technical teams means documentation, but that is only part of what you
need to communicate knowledge. Your team and organization’s collective
knowledge, including knowledge about your product or project, must be
managed and guided to remain up-to-date, available, and accessible to the
right people.

In Part III, you will learn the overarching principles of good knowledge
development and management. Properly capturing and maintaining
knowledge, and leveraging people, will enable you to get the best return on
your investment in knowledge and documentation.

Chapter 10 will take you through some high-level patterns and principles to
enhance your knowledge management and documentation. Chapter 11 gives
you patterns and techniques to leverage people to improve knowledge
development and management. Chapter 12 has patterns and methods for
making the architecture practices that you use for knowledge management
more effective so that you aren’t just going through the motions without
reaping the benefits.

Apply the patterns, principles, and practices in Part III to your team,
department, and organization to optimize your collective knowledge and
improve productivity and innovation.

Chapter 10. Knowledge
Management Principles

When creating software architecture, you adhere to principles both
explicitly and implicitly. Your company may have explicit principles that
you need to comply with, such as security and architecture principles or
coding patterns and principles, or you may be following a well-architected
framework such as those from Azure, Amazon Web Services (AWS), or
Google Cloud Platform (GCP).1 Other principles are implicit and may not
be adhered to uniformly or even well-known. These tend to be individuals’
lessons learned.

This chapter discusses principles for improving your knowledge
management and documentation, which I hope you will make explicit in
your work.

Products over Projects
You have probably noticed that many companies organize their people and
work around projects. Budgets are allocated to projects, and knowledge
management is based on projects as well. But projects are transitory—a lot
more transitory than products, which often have contributions from more
than one project.

What happens to all the knowledge associated with your project when it
ends? If documentation is organized by project, that knowledge is likely
difficult to find and easily forgotten or even lost. But if your documentation
is organized by product, you should be able to find the knowledge easily
and reference or reuse it in other projects. This is a major difference
between a project mindset and a product mindset.

Project Mindset
During the initial development of a product or capability, you will collect
many artifacts that contain key information, including high-level
requirements, domain analysis, ADRs, and other important knowledge.

Now imagine a new project is created for a new iteration of this product.
Then after that, another project. If your knowledge is stored by project, you
will have several problems:

Finding the documentation

At the very least, you will need to find the documentation for
the previous project(s). Depending on how documentation is
stored at your company, this could take anywhere from a
few minutes to several weeks.

Knowing whether prior documentation exists

The team working on the new project may not know if
documentation exists from the past project(s) or even if a
previous project existed. This is particularly common
beyond the second iteration of the product. How do you
know there is knowledge to be found?

Imagine your new project is changing your product, but the team has no
information as to why certain decisions were made, what the original
requirements were, how the CI/CD pipeline works, and so on. Because of
this lack of information, the new project will likely break something
without the team realizing, be that code- or requirement-based.

NOTE
Some knowledge and documentation are pertinent to only a particular project. This type
of information should still be stored in line with the product; you never know when it
may be relevant. You don’t want to be hunting around for it when needed.

Product Mindset
Switching to a product mindset and organizing knowledge by product
improves the discoverability of documentation. Teams working on new
projects can find all prior documentation about the product they are
working on.

Besides improved discoverability, organizing knowledge by product has
other advantages:

Long-term focus

A product-centric approach encourages thinking beyond the
immediate project and focusing on a long-term view. This
can mean the software is designed to better meet changing
needs. In a project mindset, the focus is more on meeting
deadlines. You may end up working on the next project, so
you can thank yourself later for planning for the long term.

Collaboration and reusability

Collaboration and reusability improve with a product
mindset, especially when there is more than one project or
team working concurrently on a product, but also across
sequential projects and product portfolios. People working
on other products or in other parts of the business can more
easily reference knowledge that is organized by product
rather than multiple projects.

Consistency across products and projects

Templates and standards can emerge from best practices
when everyone has visibility into products, including those
they are not directly working on. This leads to consistency
across products and projects, reducing both the learning
curve when people move between them and the costs
through solution and tool reuse.

Visibility

Organizing knowledge by product gives a holistic view of a
product, rather than blinkered snapshots (or duplication of
artifacts), which is what you get from a project-centered
approach. With a holistic view, you can better see the impact
of changes and identify areas for improvement.

Customer focus

Focusing on the product also lends focus to the customer
who uses the product. Knowledge of customer needs does
not get lost when a project ends; it gets picked up by all
projects or teams working on the product.

Continuous improvement

A product-centric approach encourages continuous
improvement and evolution of software over time because
of the holistic nature of the information. It is easier to
identify areas for improvement and make incremental
changes over time.

The way you go about organizing knowledge by product will depend on the
tools available to you, the size of your company, and other factors, but the
key is to have a consistent and easily accessible method so that all relevant
information is available, up-to-date, and easy to maintain.

Organizing knowledge artifacts by product doesn’t mean you lose the link
to projects. Take a look at Figure 10-1 to see some artifacts organized by
product. They are also referenced by projects and can be referenced by
more than one project where required to create a constellation of artifacts.
“Abstractions over Text” will go further into referencing and reuse.

Figure 10-1. Knowledge artifacts organized by product and referenced by projects

TIP
When considering the structure and classification of documentation, you should
integrate relevant concepts and standards used across your organization, such as internal
product IDs or terminology from an ISO accreditation.

Here are some suggestions for methods of organizing knowledge by
product:

Centralize documentation

Create a centralized documentation portal to ensure that all
knowledge is stored together, and organize this by product.
If any knowledge cannot be stored there,2 ensure that the
documentation portal links to it, and link to the portal from
the external documentation too, if possible.

Tag

Folders are an outdated system because they force an
artifact to belong in only one place. An artifact can have
multiple categories and therefore can have multiple tags.
You can add tags to group artifacts by product. You can then
add other tags, such as the project name or the artifact type,
to group artifacts in other ways. Tags can be used in many
knowledge management systems available at the moment.
Avoid systems that allow only folders and hierarchies.

Use folders and hierarchies strategically

If you are using folders, or don’t have the option to use tags,
organize by product at the highest level possible to gain the
most holistic view of your products. If you have to organize
your products under another level of folders, such as by
department, you lose that overview.

Use metadata

Metadata is information that describes other data, such as
the content of a web page, a document, or image. Tags are a
common type of metadata, but should be used along with
other types where possible. If you use tags to describe every
aspect related to your artifact (products, projects, type of
artifact, author, and so forth), it can become a big mess. If
you have metadata that specifically states these pieces of
information as keys and values, the information is much
clearer. Many knowledge management applications, wikis,
or file systems, such as Confluence, Microsoft SharePoint,
and Obsidian, either use metadata behind the scenes or
allow you to add and edit it. (See Example 10-1.)

Use a perspective-driven approach

Organize documentation into perspectives that address a
stakeholder concern (see “Perspective-Driven
Documentation” for more on perspectives).

Example 10-1. YAML metadata

product: "My Cool Product"

author: "Kate"

project: "Project Trilby"

type: "requirements"

tags:

 - tag1

 - tag2

TIP
If you are working on a project that spans products, you can still apply product over
project by using tags and/or a perspective-driven approach. At a basic level, you can
create a project dashboard that links to knowledge in each product involved. This could
be a page in Confluence, links in a Markdown document, a SharePoint page, or links to
files in a folder.

Abstractions over Text
When communicating about software architecture, presenting information
visually while abstracting some of the detail is usually more effective than
presenting paragraphs of text. Even if all your information could be text, it
isn’t the most effective way to communicate. Visuals cannot, and should
not, replace all textual information, but humans process visuals and text
very differently.

NOTE
Accommodating all of your audience’s needs in documentation can be hard. Even when
your audience is quite narrow, individuals can have different objectives (such as
learning from scratch or refreshing their knowledge). Making detailed content optional,
along with abstractions, can help. See “Tips for Technical Documents” for more tips on
documentation content.

Lists
Some information is most effectively presented in bullet points or an
ordered (numbered) list. List items are useful for summarizing information.
They can be short and to the point, pushing important ideas to the forefront.

Readers will often read lists even if they scan the rest of the content. Lists
can also persuade the reader to read the paragraphs around them. The space
around list items also provides readers with a visual break, encouraging
them to read on, which can be useful if you need to communicate a lot of
information (such as in a whitepaper) and keep your reader interested.

Here are some tips for using lists:

Start with your most important point. If your reader doesn’t finish
reading your list or is scanning it, they should still consume your most
important statement.

Begin each list item with the same part of speech for smooth reading
(such as all nouns, verbs, or adjectives). It doesn’t really matter which
part of speech as long as it is the same.

Use numbers only when order is important—for example, to indicate
steps in a process or recipe, or to count. The reader will ascribe
meaning to numbers even if there is none.

Aim for each list item to be around the same length as the others in the
list. Variation stands out as a distraction.

Emphasize the first statement or sentence when a list item is a few
sentences long or when the first statement is being expanded upon (for
example, by italicizing it) so it stands out for a reader who is scanning.

Limit each list item to a few sentences. Any more than that and you
should consider either summarizing to make it shorter or using
paragraphs instead.

Add extra space around list items if you have more than two. Negative
space is a visual break, which readers need more when a list is long.

Use consistent capitalization, punctuation, and grammar for list items.
Failure to do so will make it harder for your reader to consume the
information.

Use sublists carefully because they can become visually confusing.
Sublists should do the following:

Abide by the same rules as the main list

Use a different symbol or numbering system than the main list,
and/or be obviously indented

TIP
You may be thinking that it would be nice to see some examples of these tips on lists.
Look more carefully at the preceding list; it follows all the advice given, except for
emphasizing the first statement (which is done using italics with indentation elsewhere
in this book when the list items are more than a couple of sentences long).

Tables
Tables are a useful way to present information that would take a lot of
paragraph text to explain, isn’t appropriate to make into a diagram, or is
relational. They are also an alternative to including a chart or graph. You
may not be restricted to using a simple table with text and could highlight
data by using color and/or pattern to add to or emphasize your message.

NOTE
Tables are inappropriate when the information could be quickly summarized or when
the table would require too much explanation in accompanying text to be efficient.
Tables are good for displaying repeated information; use paragraphs for irregular
(nonrepetitive) content.

Tables are efficient in the following situations:

Presenting data with details that would be lost in a chart or graph

Showing exact values, which would not be seen on a chart or graph

Comparing data points, because your reader can do a side-by-side
analysis

Considering accessibility, when graphs and charts may not be readable
by some of your audience

Here are some examples of appropriate table use in software architecture:

Requirements traceability matrix

Connecting requirements to the component that satisfies
them

Component interface specification

Documenting the interfaces between design components

Performance metrics report

Showing data such as response time, resource utilization,
and so on

Testing matrix

Documenting testing scenarios and results for each
component or subsystem

Stakeholder analysis matrix

Documenting stakeholders along with their interests,
concerns, and so on

Communicating metrics

Displaying metrics in groups or multiple units

Here are some tips for creating tables:

Introduce the table with a sentence that gives the audience context,
ending with a colon.

Give columns meaningful and concise headers that visually contrast
with the table content (such as using bold or a larger font). Apply this
to row headers where needed.

Restrict each column to one type of data (such as price or country).

Limit table cells to two sentences (consider using a list instead if you
need to include more information).

WARNING
Remember that your audience may access your documentation in different ways. A table
that is easy to consume on a typical computer monitor may not work well on a tablet,
phone, or even laptop.

Visual Abstractions
One reason for using visuals is to abstract away information to make your
message easier to consume. You might use a star rating alongside a
numerical score, for example.

Stars are usually used to show an integer score of 0 to 5 (as in Figure 10-2)
but can be adapted to show a floating-point score (for example, 3.6/5) by

showing partial stars, or show a score out of 10 by representing each
number as half a star. Showing more than five stars isn’t effective as it is
hard to see the numerical meaning at a glance.

Figure 10-2. Star rating of four out of five

NOTE
The stars in Figure 10-2 are designed to meet WCAG guidelines for nontext contrast.
Notice that the border on the colored stars is thicker than on the empty (white) star. This
is to ensure that anyone who cannot see the difference between yellow (or gray) and
white can still see that four stars are highlighted. For more information, see the WCAG
Non-text Contrast guidelines.

Harvey balls (shown in Figure 10-3) are another method of visually
abstracting a score or five-point scale. They are commonly used to show the
degree to which something meets a criterion, so they can be a useful tool
when evaluating options (for example, in an ADR). An important benefit to
Harvey balls is that you use only one to communicate a value. This makes
them much easier to fit into a table or restricted space than five stars. Bear
in mind that determining which color is representing which data can be
confusing. To make the meaning less ambiguous, fill the ball in a clockwise
direction (as shown in Figure 10-3) and make sure that Harvey balls are
used consistently across your organization.

Figure 10-3. Harvey balls

https://oreil.ly/Cs_9V
https://oreil.ly/Cs_9V

Traffic lights are a common way of representing negative, neutral, and
positive information. When using red, amber, and green, ensure that you
either place them in the same position as an actual traffic light (in the UK
and US, this is red at the top and green at the bottom) or use another symbol
along with the color (such as a + on the green and a – on the red) so that the
meaning is still communicated if the reader is color vision deficient or the
colors are represented in grayscale.

Word Clouds
Word clouds are another method for presenting text and can be more
efficient at communicating your message than paragraphs of text or tables
of data. A word cloud is a collection of words drawn from a particular
source and depicted in different sizes (and usually colors). The larger (and
possibly bolder) the word, the more often it appears in the source text. The
source text is typically free text, such as open questions from market
research, but could also be answers to a multiple-choice question (in which
case a word’s prominence signifies the number of times an answer was
chosen).

In software architecture, the most common way to use word clouds is in a
presentation, but they can be embedded in other documents too. One
example might be to illustrate your chosen architectural characteristics and
emphasize the most important ones (see “Architecture Characteristics” for
more on these). Some interactive presentation software even allows for
creating word clouds on the fly, with your audience typing in answers and
seeing them almost instantly on your presentation screen. This can be
highly engaging, whether creating them spontaneously or beforehand. It is
easy to see trends and important words, and they are useful to a reader who
is scanning a document too.

Figure 10-4 was created using text from the Wikipedia entry on tag (word)
clouds. It is general practice to remove common words (such as the, a, as,
and if). Many generators offer display options like color, shape, and
spacing.3

https://oreil.ly/9qWFy
https://oreil.ly/9qWFy

Figure 10-4. A word cloud, generated at https://simplewordcloud.com

TIP
An interactive word cloud is a good way to make requirements solicitation more
engaging or to present open-ended data collected from users or stakeholders. If you
were aiming to get stakeholder buy-in for a change to a product, a word cloud that
illustrates rationale for the change (such as a summary of customer complaints) would
be a good persuasive tool.

Charts, Graphs, and Diagrams
You have likely heard the phrase a picture is worth a thousand words.
Charts, graphs, and diagrams are great ways to summarize information and
can often communicate a message without accompanying text at all (except
labels and titles). For example, a graph with an obvious trend and a headline
stating what you want your audience to take from the graph can speak for
itself. Although tables of data are useful for showing precise figures, a chart
or graph can give clarity quickly to patterns and trends.

Charts and graphs are also good choices for comparing data, particularly if
you are including all the comparative data in one chart, such as a line graph

https://simplewordcloud.com/

or a bar chart. They are also more engaging and generally quicker to read
and understand than a table of data.

Other Abstractions
Other ways to create engaging content that communicates efficiently
include the following:

Infographics

These are often used in reports, marketing, and digital
documentation for summarizing complex information in an
easy-to-consume format. Infographics can be particularly
useful for making user documentation more interesting and
consumable, but they should be accompanied by an
accessible text version.

Images, illustrations, and animations

Memes, comic strips, and cartoons are often used to
illustrate or emphasize a point or just create a visual break.

Video and audio

These can be used in digital content to present information
in a different way from text. Some in your audience may
absorb information better from a video than from reading,
and these formats can be good ways to communicate
emotion when needed.

Using a variety of methods to communicate generally improves
communication with your audience. It makes your message more
memorable and engaging and easier to understand.

WARNING
When creating graphical, video, and audio content, beware of accessibility. You may
need to create an alternative format or alternative text so that the information is
accessible to those with vision impairments, those who may need to translate the text,
those who may not be able to access content because of audio or firewall restrictions,
and so on. Ensure that the content is legible and understandable to all.

Perspective-Driven Documentation
Perspective-driven documentation is a pattern that focuses on who you are
communicating with and why. The word perspective, in the general sense,
can be defined as a particular way of looking at something. You put things
in perspective. In perspective-driven documentation, a perspective is a
collection of one or more artifacts that address one or more (typically
related) concerns of a particular stakeholder. Those perspectives could be
web pages, diagrams, or tables (more on this in “Implementing
Perspectives”).

HOW TO DEFINE A PERSPECTIVE
The process of defining a perspective is a collaboration between the
stakeholder and the perspective author (such as an architect or
developer). The perspective must address the stakeholder’s concerns,
but the stakeholder likely doesn’t know which artifacts or information
will address those concerns.

The perspective author should work with the stakeholder to identify the
artifacts (text, diagrams, tables, and so on) that must be created and
curated into a perspective to address a concern.

The definition process can be refined into templates, checklists, or
forms, which become an anticorruption layer between the stakeholder
and the documentation or artifact author, and the basis for creating
perspectives in documentation across the company.

Documentation exists for stakeholders (developers, architects, product
owners, project managers, a security team, DevOps, customers, and so
forth) to find the information they need when they need it. Stakeholders’
needs and concerns vary widely. A developer is going to need completely
different information (and likely need it at a different time) than a product
owner, who will also need completely different information than a customer
will.

Traditional documentation, which is stored in long word processing
documents and spreadsheets (or something similar), does not allow
stakeholders to easily access or maintain the information they need. It is
either hard to find the information or hard to maintain duplicated artifacts.
A wiki or other knowledge management application is an improvement on
traditional documentation but can be enhanced immensely using
perspectives.

DRY Perspectives
One of the key principles of perspective-driven documentation is don’t
repeat yourself (DRY). Although a particular artifact may be useful to more
than one stakeholder, and therefore used in multiple perspectives, you do
not want to duplicate artifacts because that impacts the maintainability of
the documentation.

This principle affects how you implement perspective-driven
documentation and which tools can be used. The tools and applications
must allow you to embed an artifact in more than one perspective and for
that artifact to automatically update everywhere when the original is
updated.

NOTE
Andy Hunt and Dave Thomas define the DRY principle in terms of knowledge even
though its application is for code: “every piece of knowledge must have a single,
unambiguous, authoritative representation within a system.”4 This principle discourages
duplication of information, for example, defining a commonly used string as a variable
and then referencing that variable when needed, instead of duplicating the string.

In documentation and knowledge management, you can avoid duplicating
any artifact (diagram, table of data, paragraphs of text, and so on) by
embedding it into a page or document (or referencing it, for example, using
a hyperlink, but this is less accessible).

WARNING
When linking to an artifact, be aware that some systems and applications can create
dynamic links but many create brittle links. A brittle link will break if the artifact you
have linked to is moved or the name is changed. A dynamic link will still work if the
artifact is updated within the system that created the link. Check whether your links are
brittle or dynamic and take this into account, especially when choosing a new
knowledge management system.

The trade-off to the DRY principle is that you do not always want all the
instances of your artifact to update automatically. You may want your
artifact to represent a frozen point in time, or you may need to make small
changes for a particular instance. Be aware of whether you prefer a static or
altered version of an artifact; then create an explicit copy, named in a way
that the reasons for its creation are obvious. Some examples include an
artifact related to a specific software release or a particular version of a
standard or license.

Fractal Perspectives
Another key principle of perspective-driven documentation is that
perspectives are fractal. This means that one perspective can be embedded

into another perspective, in the same way that an artifact (such as a
diagram) can be. Because of this, you can create a reusable grouping of
artifacts as a perspective, embed that perspective in another perspective,
and then embed that perspective in yet another perspective (see Figure 10-
5). Further, an artifact or perspective can be embedded in multiple other
perspectives. The DRY principle is adhered to because all the perspectives
and artifacts are not copies, but the same instance embedded in multiple
perspectives.

Figure 10-5. Fractal perspectives illustrated: multiple artifacts and two other perspectives embedded
in a perspective

Creating templates or checklists for perspectives is a good idea once you
have identified patterns and arrangements that work for you. Once you
know which artifacts are generally needed to address a particular concern
(for example, that a system be responsive) or that generally apply to a
particular stakeholder, you can document that knowledge in templates or
checklists. Those tools will speed up the creation of perspectives the next
time you need them.

Templates may be applicable across projects, products, programs, or even
across departments or organizational units within the larger company. They
can also be useful in determining which artifacts to create once you know
the stakeholders and concerns.

LAYERING DIAGRAMS
When creating diagrams, it is good practice to split the information into
layers. Many applications that are used to create diagrams, such as
draw.io or Visio, support layers.

Layers are useful for following the DRY and single responsibility
principles. You can create several artifacts from one layered master
diagram, with different combinations of layers visible in each. If you
need documentation to be available in more than one language, you can
create a layer for labels and other text in each language. This is good
practice and creates less-cluttered diagrams that follow the single
responsibility principle.

The single responsibility principle introduced in Chapter 5 states that a
class, in code, should have one (and only one) reason to change. When
your code needs modification, only the parts of the code that need to be
changed will be changed, and unrelated code will stay the same.
Following this principle reduces the risk of inadvertently introducing a
bug or regression into an unrelated part of the code, and testing can
focus on the code that has changed.

This principle can also be applied to the artifacts you create for
documentation. If the security of your architecture changes, you need to
find and update only security-related artifacts. That will save you a lot
of time, both for finding and updating those artifacts.

Implementing Perspectives
Now let’s discuss the practice of implementing these principles and ideas.
Support varies widely among knowledge management applications (such as

wikis, Notion, SharePoint, Confluence, Obsidian, Logseq, and so on), but
you can look out for a few key features in these and other supporting
applications (or a custom knowledge management app):

Tags and metadata

These are key features for organizing your artifacts,
especially when using one artifact in many perspectives.
Tags are also useful for maintaining artifacts, allowing you
to easily find a particular type of artifact, or artifacts
belonging to a particular product or project. Add metadata
and/or tags to artifacts to define them, the product they
belong to, and so on. Some applications may allow you to
add metadata to perspectives themselves (such as pages) to
define which artifacts should be shown and in what order,
rather than manually adding artifacts and perspectives to
the page.5

Embedding and referencing

To keep knowledge DRY and create perspectives, you need to
be able to embed artifacts. You could embed them into a wiki
or web page, or use a proprietary tool like Confluence or
SharePoint to create a page and then embed the artifact.
Ideally, you want the type of embedding that won’t require
your audience to leave the current page or context to view
the embedded artifact, rather than a link to click. If
embedding is not possible, linking to the artifact is a good
backup. Ideally, the link should be durable, but at a bare
minimum, the reference should allow the reader to find and
view that artifact.

Flat structure

When organizing artifacts, most people create some sort of
folder hierarchy, but in truth, many artifacts need to sit in
more than one folder. By using tags, you can use a flat

structure for your files. Everything is in one place, so you
always know where to find things. Tags should enable you to
find what you need, and when they don’t, you know where
to look.

Templates and checklists

At the very minimum, most tools should allow you to create
a page or something similar that contains definitions and
checklists for creating types of perspectives; the items in a
checklist or template would be artifacts (or perspectives)
included to address a concern of a particular stakeholder.
Some tools may allow you to create a template for a layout of
a perspective.

Layers

The tool you use to create diagrams or other visuals should
support layers so that you can separate different concerns
into different layers—for example, security protocols on one
layer and communication patterns, such as sync and async,
on another. This arrangement enables you to create several
assets from one diagram file and helps keep them in sync.

NOTE
Knowledge graphs improve the discoverability of information by linking it together.
Whereas storing information in folders creates a hierarchy, a graph allows a piece of
information to be linked to one or many other pieces of information. Backlinks make it
easy to traverse links in either direction. Obsidian is a fantastic tool for experimenting
with knowledge graphs.

https://obsidian.md/

PERSPECTIVES AND VIEWS IN ARCHITECTURE
You may have heard the term perspective or view in other areas of
architecture. Here are some places you may have heard these terms:

The Open Group Architecture Framework (TOGAF), an enterprise
architecture framework, contains the concept of viewpoints and
views, which are similar but more limited concepts compared to
perspective-driven documentation.

Both the SABSA and Zachman frameworks also contain the
concept of levels or perspectives, creating a matrix of models or
assets within each perspective across classifications of what, why,
how, who, where, and when. This is a much more rigid idea
compared to perspective-driven documentation.

The Diátaxis framework divides documentation into four
quadrants (tutorials, how-to guides, explanation, and reference)
based on the needs of the audience. These quadrants can be
considered higher-level perspectives.

The 4+1 Model also contains the concept of views—in this case,
the logical, process, development, physical, and scenarios views.
These views combine the concepts of addressing the needs of a
particular audience and levels of abstraction. The 4+1 views could
be considered high-level perspectives.

The perspectives in Software Systems Architecture, 2nd edition, by
Nick Rozanski and Eoin Woods (Addison-Wesley, 2011) are more
like architecture characteristics, such as security, performance and
scalability, and availability and resilience.

I chose the term perspective rather than view to name perspective-
driven documentation because the term view is overloaded with
multiple meanings in software development and architecture.

https://oreil.ly/IXn62
https://oreil.ly/agq_6
https://oreil.ly/S6A42
https://diataxis.fr/
https://oreil.ly/IStQP

Perspective also fits better with its intention; to address a stakeholder’s
wants and needs. A perspective is personal.

Summary
You now have a set of higher-level principles for recording,
communicating, and storing knowledge that you can apply to your
company’s knowledge and your personal knowledge. But applying these
principles to your knowledge processes and documentation is just one
aspect of knowledge management.

What underlies everything in software is people. You will discover in the
next chapter that people are a huge part of knowledge management and can
be an incredible aid to improving the development, communication, and
recording of your knowledge.

1 The frameworks from Azure, AWS, and GCP allow you to consistently evaluate your
architectures against cloud best practices and are maintained by cloud providers.

2 This might include a knowledge base, documentation of code that is stored in a repository, or
user documentation published online.

3 Search for word cloud generator online to find a selection.

4 Andrew Hunt and David Thomas, The Pragmatic Programmer, 1st edition (Reading, MA:
Addison-Wesley, 1999).

5 Using Obsidian with the DataView plug-in would allow you to add metadata to pages to
automate building of perspectives.

https://oreil.ly/DfBrq
https://oreil.ly/-1k0j
https://oreil.ly/V3tY3

Chapter 11. Knowledge and
People

Software and architecture ultimately come down to people. People use
software, software helps people, and people architect, design, and code
software. You should therefore not be surprised that some of these
knowledge patterns revolve around people.

Your peers, team members, and other colleagues are assets not just to the
company but also to you. Utilize them wisely, and they can help improve
your knowledge management, documentation, and software architecture
overall.

Get Feedback Early and Often
One mistake that many people make is putting a lot of time and effort into
their work before they get any feedback on it. This can waste effort and
money as well as impact the architectural design of a system. This applies
both to individuals and teams.

If you have experience with Agile and the reasons behind it, you probably
know that Agile is all about getting feedback early with the fastest feedback
loop you can get. Iterative and incremental changes. Fail fast or fail hard.
You should follow these same principles when creating artifacts and
documentation.

If you are not getting feedback on your ideas and designs, you are missing
out on changing requirements and that second pair of eyes to help you with
a sanity check. Consider the butterfly effect: one incorrect assumption early
on could steer the architecture in a completely wrong direction.

Not getting feedback can mean you play into the hands of your own
personal sunk cost fallacy: the longer you work on something, the less you

want to make changes to it. It’s your baby. If you haven’t gotten feedback
early on, you are less likely to seek it and may miss out on key input to your
design, diagram, and so on.

THE SUNK COST FALLACY
The sunk cost fallacy is a cognitive bias in which individuals continue
to invest resources (such as time, money, and effort) in a project or
decision, despite evidence that the investment is no longer justified or
that the project is unlikely to succeed. This bias is rooted in the belief
that, because resources have already been invested, continued
investment is necessary to ensure that the initial investment was not for
nothing. You have invested too much to quit.

In technical projects, the sunk cost fallacy can manifest in several ways.
For example, a company may continue to push forward with a project
that has already exceeded its original budget or timeline, even if
evidence indicates that the project is no longer feasible or that it will not
deliver the intended value. Alternatively, a team may continue (or be
forced) to use a technology or tool that is no longer effective or
efficient, simply because resources have already been invested in it.

Get feedback on small parts of your architecture design and the overall
design. Sometimes creating a diagram or set of diagrams for part of an
architecture can take a long time, maybe days. Imagine putting three days
of your effort into diagrams only to find out that an assumption you made
was wrong or an understanding you had was false. In the worst case, you
may have to start again from scratch, or even tell a development team to
stop work that is based on your diagrams. Even the best case means you
have to put more time and effort into changing your diagrams.

Consider these additional benefits to individuals and teams that get
feedback early and often:

Identify issues and errors early

The more time between a decision or action and the time it
is challenged, the higher the cost to make the change. You
want to identify issues before they become more costly to
fix.1 Figure 11-1 illustrates a situation that you can avoid by
getting feedback.

Identify potential improvements and optimizations

Involving more people with different backgrounds and
experiences means you get a more holistic and diverse
analysis of your designs, making it more likely that you spot
room for improvement with feedback than without.

Ensure alignment with business needs

Business stakeholders or others closer to the business can
provide you with feedback on the business needs to be met
by your design.

Establish a dialogue

Stakeholders will appreciate being involved and alerted to to
trade-offs and negatives that result from their requirements.
They may even change their requirements based on your
feedback, which you would want to happen earlier rather
than later.

Identify risks and challenges and take appropriate action

The earlier risks are identified, the better. These risks or
challenges can be proactively mitigated, and further
feedback can be sought to accept any residual risk (that
couldn’t be mitigated).

TIP
Getting feedback from peers who are not involved in your project is a good idea. They
can give you an outside perspective to help you avoid the curse of knowledge and break
down the walls of any echo chamber you may be stuck in.

Figure 11-1. Not getting feedback on decision 1 leads to costly changes later

So when should you get feedback? The overall answer is early and often,
but when exactly will depend on the situation. One key time to get feedback
is while documenting assumptions (to make sure you do document all
assumptions).

You need to get sign-off (confirmation) on your assumptions as soon as
possible, before those assumptions affect the design of your system or
product. This is not always possible, so if you cannot get sign-off on an
assumption, state that clearly in your documentation. Give your
assumptions IDs in your documentation to reference effectively so you will
know where changes may be needed if an assumption is found to be false.

If you are new to a product or role, I advise you to get feedback from
technical and business colleagues as often as you can. This will save you
time and improve your reputation in the long run. Consider any frustration
at your requests for input to be short-term, whereas the cost to your
reputation of producing something that is ultimately “wrong” or costly will
be more lasting.

But don’t think just because you are senior, or even in charge, that you
should not be seeking feedback from your peers, subordinates, and business
colleagues. Even the most junior member of your team is likely to know
something you do not or have a different perspective than you. Never let
rank get in the way of receiving wisdom.

NOTE
Playing back assumptions and your understanding of stakeholders’ needs builds
confidence in your designs and solutions by showing that you have been listening.
Rarely will a design become reality if there is a lack of confidence in it.

Now that you know why and when to get feedback, you also want to know
how. Keep in mind that you don’t explicitly have to ask for feedback. You
can just show people what you have been working on to allow them to give
feedback if they want to. Be aware that more junior members of the team,
or those junior to yourself, may need encouragement to give their opinion,
so it is best to explicitly ask for their input.

Lots of methods are available for getting feedback. Here are a few
examples:

The easiest approach is to simply ask or to show your work without
applying any pressure to provide feedback.

Feedback can be incorporated into formal processes, such as pull
requests or at checkpoints in your personal or team workflow.

ADRs are a great tool for getting feedback on proposed draft
decisions.2 Including a feedback or consultation section where others
can share advice and setting a deadline for input will enable others to
view the decision and reasoning and give their feedback.

Your existing meetings, stand-ups, and reviews are good opportunities
to bring up what you have been working on to get informal or formal
feedback.

If you have a request for change (RFC) process at your company, this
may be the expected method for getting feedback on your ideas for
changes to a product or system.

EXAMPLE

FEEDBACK IS PART OF THE PROCESS
In the development, architecture, and technical writing teams at
Polyglot Media, feedback is built into the workflows. Design and
documentation tasks are split into small and logical chunks, in the same
way that coding tasks or user stories are. As a result, the publishing and
feedback cycle for artifacts and documentation is quick and agile.

Each team member can ask for a review via a dedicated review channel
in their messaging system, and feedback is expected within a short time
frame. All are encouraged to seek feedback in this way before the task
is deemed finished.

Formal feedback is sought at the following checkpoints:

When a pull request is made for documentation in a repository, or
when an artifact is deemed to be ready, feedback is sought from
peers, and technical feedback is sought from developers and
architects if needed.

When documentation is in preview (for example, the
documentation website is published in a nonproduction
environment), feedback is sought from stakeholders, such as a
product owner.

Once documentation and artifacts have been published, feedback
comes from customers, the support team, and other colleagues.

At Polyglot Media, feedback is considered an ongoing and agile
process.

Share the Load
The creation and maintenance of documentation (and the general
communication of software architecture itself) should never fall to one
person alone (unless you truly are a one-person band). No role is solely

responsible; each role is usually responsible for different types or elements
of documentation. Both the creation and maintenance of documentation
must be shared for it to be effective and up-to-date. Let’s look at how you
can share the load.

Nonproprietary Formats
Using nonproprietary applications and file formats is a great way to expand
the number of people who can create and update (and even view) your
documentation. Using nonproprietary formats and applications results in the
following:

Fewer license woes

You don’t need to worry about licenses (as much)—for
example, who on the team needs a full Visio license or who
needs an Atlassian account and what permissions they need
(both of these licenses are very costly and come with further
costs for managing the licenses). But do make sure to check
the license of any product that is being used.

Higher editor accessability

It is easier to gain permission to use one of the many
possible editors, for anyone who needs to create or edit the
documentation. Many nonproprietary applications are free
to use, even commercially. There are often several options
for apps that can read and write a nonproprietary file
format. Some apps even work in the browser, like draw.io, so
they don’t need to be installed by the user.

Higher interoperability

As the file format is not owned by a company or person, and
is open and publicly documented, anyone can develop an
app that can read and write the format, meaning you can
use your artifacts in more than just one app.

Reduced vendor lock-in

Having all your documentation in Markdown (or another
plain-text format)3 means that anyone with a text editor can
create, read, and update it. Anyone who needs to has many
application options to read and write the nonproprietary
format. This is not true of documentation in Word, Notion,
or another proprietary format.

You do not need to avoid all proprietary software, and probably can’t, but it
should be a consideration for anything durable (for example, documentation
you will need in the future). Nonproprietary software is likely more future-
proof than proprietary would be. As with anything, trade-offs exist, such as
a lack of support for many nonproprietary and open source applications.
You need to weigh all the trade-offs when selecting your tools.

NONPROPRIETARY FORMATS
Nonproprietary software and file formats are not owned or controlled
by a specific company or individual. Nonproprietary software is
typically developed and distributed under an open source license.

Nonproprietary file formats are open and publicly documented,
allowing anyone to create software that can read and write the format.
Some examples of nonproprietary software and file formats include the
following:

Markdown

A plain-text format supported by many editors and build
tools

AsciiDoc

A plain-text format that can be built by tools such as
Asciidoctor and Antora into formatted documents

Git

A free and open source distributed version control
system

ODF (Open Document Format)

An open format for word processing documents,
spreadsheets, presentations, and graphics

draw.io

An open source application and file format for graphics

PNG (Portable Network Graphics)

An open raster graphics alternative to GIF (Graphics
Interchange Format)

PDF (Portable Document Format)

A file format for presenting text and graphics
independent of software and hardware

YAML (YAML Ain’t Markup Language)

An open human-readable data serialization language
often used for metadata and configuration files

HTML (Hypertext Markup Language)

The standard markup language for documents designed
to be viewed in a web browser

Accessibility
When choosing a format or notation for your documentation, you need to
take into account whether it can be used by all the people who need to read,
create, and update your artifacts. As well as selecting a nonproprietary
format, you should consider both the audience and the author’s
understanding.

A standard such as UML or ArchiMate may end up reducing access. The
number of people with a full understanding or qualification in these
standards is small.4 You would need to invest time and money into training
to increase the pool of people who can maintain your documentation and
repeat this every time someone new joins the team (see Figure 11-2).

Figure 11-2. Choosing a notation or format affects who can understand or maintain your
documentation

NOTE
Paying for proprietary tools, such as Microsoft Word and Google Docs, can easily melt
into the background in the same way as filling your vehicle with fuel. It’s the price of
utility, but it all adds up. Moving to a nonproprietary format that is widely supported,
like Markdown, means that you can stop paying and start using the myriad of free tools
available. You save money and gain many more benefits, such as better compatibility.5

A simple custom notation that you develop in-house would be simpler for
anyone to pick up. Some standards, such as the C4 Model, also are far
easier to understand without prior knowledge and are easy to learn to create
and update documentation. Using standards that are simple, such as flow
diagrams or simplified sequence diagrams, will increase your pool of
maintainers.

This selection of formats and standards applies to all your documentation.
Imagine if everyone who creates and maintains documentation had to be
able to write HTML and Cascading Style Sheets (CSS). That would be a tall
order, involving a lot of syntax and logic. Now consider writing your
documentation in Markdown or Asciidoc. Both formats allow a lot of
control over the appearance of text on-screen but are far simpler to
understand and learn how to use.

WARNING
Email is not a knowledge repository. It is accessible to only its sender and recipient. It is
hard to search. Email is usually deleted when someone leaves an organization, and many
organizations purge old email regularly. Move knowledge from email to a location it
will be safe, searchable, secure, and accessible to all who need it.

Collaboration
Another way to enhance the maintenance of documentation is to use
collaboration tools. Tools such as Google Docs, Microsoft Teams, Slack,
and online whiteboards allow you to easily share the creation and
maintenance of artifacts and documentation. Collaboration with tools like
these might be done synchronously (at the same time) or asynchronously (at
varying times). Both methods are useful in different circumstances.

By working together on creating or maintaining an artifact, you can lighten
the load by getting input from more than one person at a time and even
change who is driving (in control of the keyboard, mouse, or other input
device) in the same way developers do when pair or ensemble
programming. If no one wants to do a particular task, do it together.

Working together also means that you can coach or teach one another,
which can be especially useful for newer team members. If you are looking
to delegate a task that only you currently understand, using a collaborative
tool is an excellent option—especially if any participants are working
remotely.

Collaboration tools such as Slack and Microsoft Teams are also excellent
ways to notify or prompt people. It may be useful to have an automatic
notification for a channel or team when documentation has been updated or
created.6 If nothing else, this helps create expectations around maintaining
documentation. You may also want an automatic notification of changes
(whether for code, such as a new release, or a part of the documentation,
such as the requirements) that prompts the team to check for downstream
effects (for example, does a business analyst’s change to requirements
require changes to the architecture by an architect or developer?).

Roles and Responsibilities
Assigning specific documentation and communication roles to each
individual on your team can be useful, but don’t fall into the trap of creating
bottlenecks (for example, a few people being responsible for most of the
work), or single points of failure (for example, a team member is ill or
leaves). Ensure that you at least have an understudy for each role so that
someone could step in to take over or help when needed. Consider the
workload of any particular role and assign the appropriate number of people
to it.

One way to consider creating roles around documentation is by the type of
documentation, such as recording requirements or the output from an
EventStorming session. Another way is to assign the role of creating a type
of documentation to one person and the role of reviewing that type of
documentation to someone else. Some types of documentation will
naturally align to a role on your team, but some may be more aligned to
who has the skills or time.

WARNING
Never assume you will have a handover period with any of the members of your team.
Ensure you do not have a single point of failure (one person responsible for something)
when it comes to documentation and communication. You never know when someone
might go on long-term sick leave, be made redundant, or be put on gardening leave.7

Further Techniques
Knowledge sharing, or lunch-and-learn, sessions are a great way to spread
knowledge throughout the team or organization and should be based around
(or the preparation of such sessions should involve the creation of)
documentation or other resources from which the same information can be
learned. These sessions can be live or recorded, but if live, they should
create artifacts for future team members or employees to learn from. The
amount of preparation that goes into one of these sessions should not be
wasted by making it a one-off learning opportunity. Sessions such as these
don’t just share knowledge but also contribute to a culture of sharing and
learning.

It makes sense to use a template for a particular artifact that is created
multiple times for a product or project, or across multiple projects and
products. Templates are similar to patterns: a template is a reusable solution
that has been shown to be effective.

Using templates has many advantages. One is to make sharing the load
easier. Even someone new to a project has somewhere to start when a
template is available, and, if templates are shared across products or
projects, anyone switching products or projects will be off to a flying start
because of their prior experience with the template.

Whether you work in an Agile system or not, a documentation sprint or
simply a dedicated time block is another way to share the work of
documentation and communication. This dedicated time means that people
who may normally be too busy have no excuse to not be creating or
maintaining documentation. You can combine techniques such as
knowledge-sharing or collaboration sessions with dedicated time for extra
impact, especially if these sessions don’t typically happen outside of this
dedicated space.

TIP
If you ever hope to allow members of your team to share and delegate communicating
and documenting your software architecture and product, you need to be proactive in
your approach to documentation. Share the load and make documentation and
communication a collaborative effort.

Just-in-Time Architecture
You aren’t gonna need it (YAGNI) is a principle in coding that encourages
developing only functionality that is needed now and does not try to predict
future needs.8 This is another coding principle that should be applied to
knowledge management and documentation.

NOTE
YAGNI is based on the idea that predictions may not come true and you are therefore
wasting effort now and possibly creating problems in the future when changes need to
be made.

Another principle (of software architecture this time) that also fits in nicely
with YAGNI is that of deferring architectural decisions for as long as
possible. Combining this with YAGNI, you get just-in-time architecture and
documentation: don’t decide and document what you think you will need in
the future but only what you know you need now.

Following the just-in-time pattern has the following benefits, whether you
are working in a waterfall, Agile, or somewhere-in-between environment:

Reduction of waste

When you produce architecture or documentation just in
time, you are producing it for a reason and with all the
knowledge available at the time. If you produce an artifact
ahead of time, something will likely change that requires

you to revise it. If another decision, artifact, or actual
coding/designing is based on that revised artifact, you’ll have
a chain of artifacts, decisions, and code that needs to change
as well. That is a lot of wasted effort that becomes costly.

Greater agility and flexibility

Requirements change, and by using the just-in-time
architecture pattern, you can be highly responsive to these
changes. When doing the work, you have the latest
information on requirements and decisions. Also, having a
just-in-time system in place puts you in a good position to
respond to changes that may require updates to previous
artifacts because your planning is based on need rather than
prediction. You reduce the number of artifacts that will need
to be changed and are therefore more likely to have the
resources and ability to adapt.

Efficient use of resources

By focusing on what is needed now, not tomorrow, you
prioritize your team’s activities. All team members, technical
and business, are focused on the current most important
aspect of the product or project. Less time and effort are
wasted by all when artifacts are as up-to-date as they can be.
And because everyone’s time is used more efficiently, more
flexibility exists for research, proof-of-concept work, and
unexpected work.

Up-to-date information

Not only will you have the most up-to-date information and
feedback to make a decision or create an artifact, but your
artifact will also be used as soon as you produce it and
therefore be up-to-date when it is used. By deferring the
creation of an artifact or the making of a decision, you know
more than you did before. In general, you will be in a good

position to maintain any artifacts that do require change
with your just-in-time processes in place.

Improved time-to-market

Just-in-time means that all effort is being put into what is
most important right now, rather than what might be
important in the future. Therefore, the changes or features
that are important now can be tested and released more
quickly than if focus were diluted across other changes that
don’t matter now.

Improved fit with Agile practices

Although just-in-time architecture can be used in a waterfall
environment, it molds your architecture processes into
something a lot more Agile. It allows those involved in the
architecture and documentation to fit into the Agile
processes of the development team and improves the overall
Agile feedback cycle because the architecture is more
responsive to change. Just-in-time architecture even lends
itself to adding architecture tasks to a Kanban or Scrum
board.

Improved clarity

The phrase can’t see the forest for the trees could be applied
to many sets of documentation. When only what is
important now (or before now) is included in the
documentation, you have less to search through to find what
you need.

WARNING
When documentation is incorrect, or its maintenance costs much more than it delivers,
the net overall value of the documentation will be negative.

If you are working in a waterfall environment, or an environment that is not
suited to regular incremental changes, it is possible and beneficial to apply
just-in-time architecture. You may be in the position of needing to architect
the whole system before any code is written, but you can still prioritize and
order the decisions that need to be made and the artifacts that need to be
created. These can be interspersed with research or proof-of-concept
activities to get more up-to-date information. Defer as much as you can and
you may find everyone’s processes becoming a little more agile.

NOTE
You can combine just-in-time architecture with just-long-enough architecture: retire
documentation and artifacts that have served their purpose and make it obvious that
they’re no longer up-to-date. Just-long-enough architecture saves time you would have
spent maintaining content that is no longer useful and prevents readers from consuming
out-of-date information.

Of course, trade-offs always exist. Here are some to take into account when
producing just-in-time architecture:

People who want the information now

There will always be someone who wants all the
information as soon as possible. These are the people you
need to convince by doing. Tell them as well, but show them
the benefits by practicing just-in-time architecture as much
as possible. If they insist, you can give them an artifact that
is very obviously marked as a draft or pending and let them
decide whether to base any of their own work on draft or
pending information.

People who want you to predict the future

You are probably asked to make predictions all the time.
How long will this take? Will we have the information we
need by this date? Rally, an Agile software provider, has

shown that the teams who estimate the least produce the
most.9 Your project manager needs to create their budget
and report on their milestones, but it is all just guesswork.
Just-in-time architecture can help with things like resource
management in the long run because, in general, everyone is
more flexible to be able to take on unexpected work. Aim to
break down milestones into decisions and tasks to create
artifacts to help you determine if things are on track.

Losing important information because it isn’t relevant now

If you are focusing on making decisions and creating
artifacts that are needed now, you could easily lose
important ideas and information that could be relevant later.
Create a place to record information that could be relevant
in the future (such as a page in a wiki). This should be
checked when working on subsequent artifacts and
decisions.

WHY DEFER DECISIONS?
Deferring architecture decisions for as long as possible is good practice
for a few reasons:

Increased flexibility

By putting off a decision, you can more easily adapt to
changing requirements and circumstances.

Improved learning

Delaying a decision means more time for learning and
experimentation.

Reduced risk

You reduce the risk of making incorrect or suboptimal
decisions based on incomplete or inaccurate information.

Improved collaboration

Having more time to collect information and advice
means you are more likely to gain input from a diverse
set of people, and from people critical to the decision.

Reduced complexity

Deferring decisions generally reduces complexity
because you focus on only what is currently needed and
don’t have to rewrite things that need to be changed after
decisions have been made. Refactoring to add something
is easier than rewriting to remove or make a change.

Increased efficiency

Deferring decisions leads to a more streamlined process
and less wasted effort. When a decision is made earlier
than needed, it is more likely that changes will affect that

decision, meaning updates to code or designs based on
that decision. You may avoid needing to make some
decisions all together, when requirements or information
change.

Summary
Your colleagues and peers are essential resources when it comes to
managing knowledge and documentation, and the techniques and patterns
you have learned in this chapter will enable you to utilize one another.

Now that you have higher-level principles in your toolbox and can leverage
people to support you, it is time to look at some common practices for
knowledge management and documentation and how you can make them
effective practices in your work.

1 ADRs are a good technique to help identify issues before a big decision is made.

2 See “ADRs” for more information on ADRs.

3 For more on Markdown, see “All Documentation as Code”.

4 You will find the same problem when adopting a proprietary tool or standard for most
situations, not just for diagramming.

5 If you have ever been in a situation where one person is using Microsoft Word and another is
using an application such as LibreOffice Writer to edit the same document, you will understand
that the Word format docx does not have high compatibility.

6 The notification could be manual, but you want to automate everything you can.

7 Gardening leave is a widely used term in the UK meaning a time period where an employee is
suspended from work on full pay until the end of their notice period. A company typically does
this when it thinks the employee may negatively influence the organization or aid a competitor.

8 YAGNI is not an excuse not to follow best practices, though.

9 Jeff Sutherland, inventor and cocreator of Scrum, says “estimating tasks will slow you down.
Don’t do it. We gave it up over 10 years ago. Today we have good data from Rally on 60,000
teams. The slowest estimate tasks in hours. No estimation at all will improve team performance
over hour estimation.”

https://oreil.ly/43kV2

Chapter 12. Effective Practices

Many methods, techniques, and practices for architecting and designing
software exist, but it is not enough to just follow them, create the outputs,
and move on. The artifacts you create must be constructed and used
effectively to be of any use in the overall architecture. The patterns in this
chapter will enable you to put the techniques discussed into effective
practice.

ADRs
An architecture decision record (ADR) is a record of an architectural
decision and the reasoning behind it that can be used in the decision-making
process itself. ADRs are key to communicating architectural decisions made
and the outcome of the decision, not only to architects but to all
stakeholders. Many decisions are made throughout the life of a product or
project, but without documenting these decisions, they (and the reasoning
that supports them) are easily lost and forgotten.

NOTE
ADRs were originally envisioned by Michael Nygard in 2011, and his introductory blog
post is structured as an ADR. His original ADR template is now often extended to
record the decision-making process as well as the decision made.

Here are some situations that ADRs help you avoid:

A decision is made early in the life of a product. Later, an individual or
team decides to change that decision. Without knowing how and why
the initial decision was made, the change may cause huge problems.
Maybe a particular technology was chosen to meet one or more

https://oreil.ly/ZTjcC
https://oreil.ly/ZTjcC

requirements, and overriding that choice means those requirements are
no longer met. You may not realize this until a lot of time and money
have been wasted.

What Birgitta Böckeler of Thoughtworks calls “whack-a-mole”
decisions: a decision is regularly brought up again and again, wasting
time reinvestigating only to discover that the original decision was
made for good reasons.

When onboarding, a new team member should have lots of questions
about how your team has done things and why. Current team members
likely do not have all the answers in their heads or want to spend their
time explaining things over and over again.

Someone leaves the company and takes all the architectural decision
knowledge and reasoning with them because it’s all in their head.

WHICH DECISIONS NEED AN ADR?
Write an ADR for the decision you are making in the following
situations:

The decision will impact the way developers write the software.

The decision will be hard or expensive to change; therefore, it is
important to get the best option (and for everyone to understand
why it was made before it is possibly overturned in the future).

The decision keeps being revisited, wasting time working out that
there were good reasons for the original decision.

The decision keeps coming up in questions from new team
members.

You are adopting a decision made by another team or company
(yes, you should create your own ADR and reference the original
ADR).

The decision will have a long-lasting impact and/or affect multiple
components or systems.

The decision will have an effect outside of your team (in this case,
it is wise to use the Consultation section to gather advice—see
ADR Stucture).

The decision is complex or hard to understand.

You are proposing a change informally or using a request for
change (RFC). An ADR can be used to collect feedback (in the
Consultation section) and either replace a formal RFC or document
the decision made in an RFC (if the RFC is rejected, you can use
rejected as your status).

ADR Structure
A quick internet search will show you many opinions on how an ADR
should be structured. They are usually structured as individual files for each
decision and written in Markdown or Asciidoc, although you can use other
methods (such as a list in SharePoint or pages in a wiki). Adjust the style of
your ADR template to the storage method you are using.

My suggested structure for an ADR is shown in Example 12-1 (and was
also shown in Example 9-2 from “Use Reasoning and Argumentation”).
The headings in this structure are expanded upon in the following pages.
You can see examples of ADRs from Polyglot Media in “ADR Content”.

Example 12-1. ADR structure
Identifier and Title (a statement of the decision made)

Status

Draft/Decided/Superseded by ADR-XXX

Context

Why you need to make the decision. Assumptions, constraints, and decision

drivers.

Evaluation Criteria

What is important to you in making this decision?

Which of your architectural characteristics apply to making this decision?

Should any constraints or decision drivers become a criterion?

Options

Outlines of the options considered against the evaluation criteria (usually using

a

score or rating), and trade-offs outside of the evaluation criteria.

Decision

The choice that was made and why.

Implications

The positive and negative consequences of the decision made.

Consultation

If taking input from others, they should document it here. Details of those

invited

to give input can be recorded, whether they provide input or not. Although

consultation takes place before a decision is made, it is documented at the end

because it can become long and obscure the decision itself.

Title and filename
The title and filename should start with an identifier and then the decision
made (for example, 001 Use event-driven architecture). Naming the file and
top header with the actual decision means that someone can read through
the list of ADRs and know what decisions were made, then read the file if
they need more information.

Status
This section tells the reader the current condition of the decision. You can
define a set of statuses to fit your workflow, but I recommend keeping the
workflow simple (as in Figure 12-1). Figure 12-2 is not recommended; it is
unnecessarily complex.

Figure 12-1. A simple (recommended) set of statuses for ADRs

Figure 12-2. A complex (not recommended) set of statuses for ADRs

Use the Draft status when the decision has not been finalized. Decided is
the next status, once the decision has been finalized.

A decision can also be changed. The original ADR should be immutable
(not changed) except for the status because maintaining a history of the

decision-making process is important. If, for example, ADR 021 is given a
status like Decided, Supersedes ADR 001, then the status of ADR 001
should be changed to something like Superseded by ADR 021. You may also
want to include a date the status was last changed.

TIP
I recommend using Decided instead of Accepted and Rejected statuses for ADRs. The
decision is always made and, most of the time, it is about selecting one of multiple
options rather than a yes/no decision. Decided simplifies the set of statuses and can be
used for all types of decisions. The actual decision will be reflected in the name of the
ADR and under the Decision heading.

Context
This section is where many other templates expect you to add things like
the options considered and any criteria. Example 12-1 breaks those out into
their own sections explicitly to make sure they are not left out. I have seen
many ADRs missing this key information. So the Context section should
answer: why does this decision need to be made, and in what environment
is it being made? You should include any assumptions, constraints, or
decision drivers here as further context.

Evaluation Criteria
This section is often left out of ADRs, but this is important so the reader
understands how the options were analyzed and compared. What is
important to consider in this decision?

If you have selected architecture characteristics (and if you haven’t, see
“Architecture Characteristics”), the ones applicable to this decision can be
used here to help you and your stakeholders make the decision. Your
architecture characteristics are your priorities, so they are a sensible place to
start.

Other criteria you might consider are as follows:

Enterprise (or business) considerations (such as technological
alignment)

Constraints (such as applicable laws, General Data Protection
Regulation [GDPR], licenses, cost, and so on)

Particular security considerations or requirements (for example, data
residency and encryption at rest)

Other applicable functional requirements

Options
This section is fairly self-explanatory: which options are you considering
when making this decision? If this were a decision about the overall
architecture style, you might include modular monolith, event-driven, and
pure microservices as options. State these options and evaluate them using
the evaluation criteria (see “ADR Content” for an example of how to do this
with a table). Visual scoring, such as a star rating or Harvey balls, is a
useful abstraction of your decision-making process for quick reference later
on (see “Visual Abstractions”).

You should also state the trade-offs of each option and their pros and cons.
All trade-offs should be stated and considered, whether they apply to your
evaluation criteria or not. You may find something important that influences
the evaluation criteria during the decision-making process or affects a
revisit to this decision in the future.

Decision
A simple statement of the decision made and why should be included in the
Decision section. This doesn’t need to be long and complicated because
most details about the decision are included under the other headings.

Implications
This section is important; you will state here both the positive and negative
consequences of your decision. There are no silver bullets in software
architecture, so there will always be a downside to your decision. The

negatives are warnings to the reader about what to look out for, and they
show that you took negative consequences into account. The positives will
tell the reader why you are accepting the negative consequences. Trade-offs
will always be necessary.

Consultation
This section is optional, but architecture decisions are rarely made in
isolation. This is the place to note advice (not opinions). Either you or your
contributors can add it here. You can also add research and references here,
such as a blog post or article on the subject and the conclusion you drew
from it.

Having this record of consultation keeps you accountable for making an
informed decision. You do not have to follow all the advice you receive (of
course, some of it may be conflicting), but you should have reasons (and
state them in the Decision section).

NOTE
The Consultation section is used during the decision process despite it being last in the
template. It comes last because it can become quite long and would obscure other
information if placed earlier in the template.

ADR Content
When creating your ADR, it is important to remember what your teachers
always told you about showing your work. Don’t just state costs that you
have calculated, but include the figures you entered into the calculation and
how you calculated them (for example, the calculations themselves, or a
link to an online calculator and the date you used it—prices change).

The reader should not have to simply accept your calculated answer, and
you do not want to have to field questions about how you came to your
answers if you aren’t prepared. Remember that things can change over time,

so it is important that calculations can be repeated with new inputs or
changes in prices.

WARNING
The trade-off to showing your work is that your ADR can become long and noisy.
Mitigate this by linking to external data or calculations, or by using methods in the ADR
file format you have chosen to hide extra information (such as <details> and
<summary> tags in HTML or Markdown).

The amount of detail included in your ADR should match the ramifications
of the decision. More important decisions should require more effort, but
make sure that all ADRs contain the necessary information to understand
why an option was chosen. The amount of detail in your ADR also depends
on the purpose of the record. Is it being used simply as a record or as a
living document for collaboration, persuasion, and decision making?

TIP
You should reference ADRs from your code and other documentation, including
diagrams. Make it easy for someone reading your documentation or diagram to find the
ADR you reference. Use links or references to ADRs to explain the reasoning behind
the design or code choices you have made.

Figures 12-3 and 12-4 show an example of an ADR used to influence
stakeholders and make a decision. The ADR is detailed, showing the
reasoning behind the scoring, and contains input from people involved in
the consultation.

Figure 12-5 shows how the same decision might be recorded if the purpose
were to record the decision for future reference. You will need to decide
what to include based on the purpose of your ADR.1

WARNING
Not all decisions are made openly, although they should be in most cases. If you have a
problem with individuals or groups making decisions without consulting others, ADRs
can help. You will need to ensure ADRs are part of a process, such as not signing off on
a budget until an ADR with suitable consultation has been decided. But beware of
adding too much red tape to the process or it will be circumnavigated.

Figure 12-3. ADR-044 Use an Event-Driven Distributed Architecture, part 1

Figure 12-4. ADR-044 Use an Event-Driven Distributed Architecture, part 2

Figure 12-5. ADR-044 Change to Event-Driven Architecture

ADR Storage
The storage location of your ADRs is important because all stakeholders
need to have access, whether they are contributing to ADRs or reading
them. This access isn’t just for developers and architects.

Access needs to be permitted and easy. You may find it useful to have a
central place for all ADRs in the company. This approach allows everyone
access to learn from others’ decisions.

TIP
Your ADRs are related to, but should be kept separate from, any RAID log used for a
project or product.2 If D in your RAID log stands for decisions, you should link to
where ADRs are recorded from this part of your log. If D in your RAID log stands for
dependencies, I recommend adding a further D for decisions (turning it into a RAIDD
log) and linking to your ADRs. Keeping ADRs separate means they are easier to find
and access.

The storage location and mechanism (for example, written in Markdown in
a wiki) must fit within the workflow of those who need to write, edit, and
read ADRs. For those who normally access a code repository, consider
linking to the ADR storage space in the Readme file and referencing
specific ADRs from documentation stored with the code when appropriate.
Some people will never touch a code repository or documentation stored
there, and it should also be easy for them find and edit ADRs.

The other consideration for storing ADRs is maintaining the data. If you are
hyperlinking between ADRs or to ADRs from other documentation and
assets, these links should never be broken. Ensure that you have a process
in place to find and fix broken links if ADRs are moved or renamed. Better
still, use a tool that does this for you.

WARNING
Don’t lose your ADRs when a project ends. ADRs are specific to the product or system
they are made for, not a project that works on a product. Store ADRs against the
product, not a project (see “Products over Projects”).

ADR Culture
The final part of ADR creation and maintenance is to create a culture and
expectation of creating and reading ADRs. How do you get your team or
colleagues to start creating ADRs? As with everything in software, it always
comes down to people. The answer to this question has two parts: educate
them and make it easy.

The first part is education: show them the benefits by creating ADRs for
past and new decisions. Telling people is one thing; showing them is quite
another. It is important to show them that ADRs apply to them, even if they
are not architects themselves:

When others ask a question, you can direct them to an ADR you have
written to find the answer.

If a discussion starts about making a change, you can mention an ADR
of the original decision to support the discussion.

The second part is making it easy: create ADRs using the systems and
applications your colleagues are already using. If your colleagues are using
Visual Studio Code or another IDE, use that to create the ADRs. If everyone
uses Notion, use that. You need to make it as effortless as possible for
people to add writing, contributing, and referring to ADRs to their usual
processes. The ADR template should be easy to fill in and understand, and
everyone should understand which parts are mandatory and which are not.

To help ADRs become part of your team and company culture, try these
approaches:

Add discussion of decisions to your weekly review meeting so that an
ADR can be created for a decision if required.

Make reviewing ADRs related to the product part of the onboarding
process to bring new team members up to speed quickly.

When someone asks a question that isn’t answered by an existing
ADR, consider whether a new ADR is needed. (See “Which Decisions
Need an ADR?”.)

Bear in mind that behavior change takes time. Don’t give up early when
introducing ADRs to your team and company.

DECISION-MAKING MYTHS
Quashing some myths around decision making can lead to a clearer and
faster decision-making process.

Myth 1: Decision making is linear

Decision making should be an agile process, iterating
over the ADR or proposal until it is decided and revisiting
past decisions as needed.
The longer you put off a decision, the more information
you have to base that decision on, but decisions cannot
be put off forever. New information arises and
circumstances change, which may affect decisions in
progress or that have already been decided. This is a very
good reason to record decisions using ADRs. You want to
be able to revisit ADRs and reuse the information and
analysis in them, saving effort on new decisions.

Myth 2: Giving more choices is better for making decisions

Although you might think that presenting or gathering
more options improves your chances of finding the best
one, research shows that people are less likely to make a
decision when given lots of options and less likely to be
happy with the result.3 All options have pros and cons,
and evaluating many options, each with its own pros and
cons, is a much higher mental load than fewer options.
Where possible, create an ADR or proposal with no more
than three options and use abstractions such as star
ratings and tables to help readers compare them.

Myth 3: The decision should be made by the most senior person

The most senior person, or person with the most
authority, is not necessarily the best person to have the

final say. The person with the most expertise, or who will
be affected the most by the outcome, should be the
decision owner and own the decision and the process of
making it.
The decision owner should understand the problem
space and possible solutions and use research and
contributions from others to bolster their knowledge.
They will take the decision process through to a
conclusion.

Myth 4: All stakeholders should be involved in the feedback process

Each stakeholder will be affected differently by the
decision. The decision owner should ensure that
stakeholders who are important to the success of
implementing the decision have the chance to give input
and commit to whatever the outcome is.
Some stakeholders are useful to consult as you draft the
ADR, helping to identify concerns or holes in the
proposed options. You will find that some stakeholders
do not need to be involved in the decision-making
process but will need to be informed of the outcome.

Myth 5: You should ask for all kinds of feedback

Be specific and tailor your requests for feedback to each
stakeholder. Generic feedback is often not useful for
making a decision and can mean relevant feedback is
harder to find and use. Ask involved stakeholders to do
the following:

Let you know if anything in your ADR or proposal is
unclear.
Ask clarifying questions if they need to.

Provide feedback only when they are sure they
understand fully.

You can update the ADR (before it is decided) to answer
questions from stakeholders or to improve clarity. Once
the decision is made, communicate it to all stakeholders.

Myth 6: All stakeholders must agree on the outcome

Stakeholders need to commit to the outcome to make it
successful but do not all need to agree that the outcome
is the best solution.
Once all relevant stakeholders have been consulted, it is
the decision owner who will make the decision. The
decision owner must then ask all relevant stakeholders to
either commit or not. Any stakeholder who thinks the
outcome is unsafe needs to explain why, and the decision
owner must work with them to address their concerns.
Stakeholders can also indicate if they agree or disagree
with the decision, but commitment is key to success.
When all relevant stakeholders have committed to the
outcome, the decision can be finalized. Then the decision
will not be revisited unless new information emerges, at
which point a new decision process will start, the
outcome of which will override the original decision. In
this case, your original ADR’s status would change from
Decided to Superseded.

Myth 7: The decision owner can make a rational decision

In “Battling Bias”, I covered some of the biases that
everyone is subject to. The decision owner gets input
from relevant stakeholders in an attempt to mitigate at
least some of these biases. You must be aware of the

biases you and others involved hold. Keeping these in
mind will help, but you can never totally eliminate bias.
As mentioned, requiring that the stakeholders involved
commit rather than agree is a way to mitigate
groupthink. When members of the group are not
expecting full group consensus, they are more likely to
express dissenting viewpoints and critically analyze the
options in front of them.

Architecture Characteristics
Architecture characteristics, also known as system quality attributes or
quality characteristics, are the priorities for your system or product. Taking
the time to pull these characteristics out of your analysis can enable you to
design your architecture to meet your stakeholders’ priorities. Recording
them so they can be used effectively will put you on the road to actually
meeting these priorities.

NOTE
This section looks at how to create and record effective architecture characteristics. For a
deeper dive into architecture characteristics themselves, I recommend Chapter 4 of
Fundamentals of Software Architecture by Mark Richards and Neal Ford (O’Reilly,
2020).

Architecture characteristics can be created and applied whether you are
practicing an approach such as DDD or another formal or informal method
for analyzing the problem space and creating an architecture that solves that
problem. The documented requirements are a good place to start drawing
out the architectural characteristics, and this includes functional and
nonfunctional requirements. Architecture characteristics are often

https://learning.oreilly.com/library/view/fundamentals-of-software/9781492043447/

associated with nonfunctional requirements (requirements for the operation
of a system rather than the behavior) and are like high-level forms of
nonfunctional requirements.

Nonfunctional requirements can cause confusion and headaches for even
the most seasoned architect, business analyst, or project manager. They can
seem intangible, and it is hard to know where to start. Effective architecture
characteristics will become a compass when making project, architecture,
and design decisions. They communicate the priorities of the system or
product to all stakeholders and become the cornerstone of decision making.

Defining one ultimate list of architecture characteristics is impossible
because every situation is different; as with so many things in software
architecture, it depends. But although a definitive list doesn’t exist, you can
create a good enough list that fits your company and/or product. Here are
some examples that you can take and develop into a custom list of
characteristics for your situation:

Accessibility

The ability of users of all abilities to successfully use the
system

Availability

The ability of the system to be usable by users when they
need it

Configurability

The ability of the end user to make easy changes to elements
of the software

Continuity

The ability to recover from disaster

Extensibility

The ease of adding new functionality

Portability

The ability of the system to run on multiple platforms

Privacy

The ability of the system to hide data from internal and
external users

Scalability

The ability of the system to operate consistently as the
number of users increases

EXAMPLES OF ARCHITECTURE CHARACTERISTIC
LISTS

For more ideas on what to consider for your list of architecture
characteristics, the following define their own lists:

Wikipedia defines a list of system quality attributes.

ISO/IEC 25010 defines a list of quality characteristics.

Mark Richards defines a list of architecture characteristics in his
Architecture Characteristics Worksheet online.

Mark Richards and Neal Ford define a (partial) list of architecture
characteristics in Chapter 4 of Fundamentals of Software
Architecture.

Mark Richards and Neal Ford recommend choosing no more than seven
architecture characteristics for your product or system. Your product owner
would likely choose everything from a list presented to them, but your
design cannot meet every single architecture characteristic, so you need to
prioritize.

https://oreil.ly/HGqaw
https://oreil.ly/Bbl4o
https://oreil.ly/wlYHL
https://oreil.ly/wlYHL

TIP
When you list architecture characteristics for your company, make sure to define each
one so that everyone has a clear understanding of what each means.

The good news is that some architecture characteristics can be considered
implicit because they are always important. These do not need to be counted
toward your seven, but you can include them in your top seven if you think
they are critical enough to prioritize for your product or system.

Here are some architecture characteristics that you can consider implicit:

Feasibility

Whether the solution is possible given the constraints
present (money, time, resources, and so on)

Maintainability

The ability to efficiently maintain the system

Security

The ability of the system to remain inaccessible to those
without authorization

Simplicity

Whether the system is simple and uncomplicated

TIP
Cost can also be considered separately from feasibility as an implicit architecture
characteristic. Most businesses aim to save money in one way or another, so cost is
always going to be an important consideration, especially if shareholders are in the
equation.

Consider defining architecture characteristics to be an agile process. It is
important to note that they can change with time. Scalability may not make
the top seven priorities at the beginning of a product’s life, but it could
become more important as the user base grows. Security is not likely to
become less important, but it may become more important if the product
starts to store personally identifiable information or new legislation comes
into effect. In that case, security may need to be bumped from the implicit
characteristics into the top seven for design changes to be prioritized and
effective.

As the product or system moves through the phases of initial product,
growth, and optimization, you should revisit the architectural characteristics
and assess whether their importance has changed (see Figure 12-6). Defined
business milestones could trigger this review, or a review could be set for
every x months, depending on the timescales you are working within.

Figure 12-6. Using architecture characteristics as the product lifecycle progresses

TIP
Once you have defined architecture characteristics for the product or system, you should
use them to develop and back up the rest of your design for the system’s architecture.
One example of this is using architecture characteristics as criteria in decision making in
ADRs.

How you record your architecture characteristics, and the analysis that got
you there, will impact their effectiveness. Writing a list of your top seven
characteristics and any implicit characteristics is the bare minimum.
Table 12-1 shows an example of how to record effective architecture
characteristics in a table.

Table 12-1. Effective architecture characteristics sample from Polyglot
Media

ID Characteristic Applicable to Source

AC01 Auditability Media Service REQ 014 The
system will
record access
and use of all
media for
analysis

AC02 Fault-tolerance Payment
Interface,
External Media
Interface,
Customer API,
Customer UI

REQ 025 and
REQ 026

AC03 Extensibility External Media
Interface

REQ 029 It
should be simple
to add a new
external media
source to the
system

To record effective architecture characteristics, try the following:

Indicate which area(s) of the system the characteristics apply to

This might be all areas but is more likely a subset. This can
be a general statement initially and can be updated to
specific services, data stores, or components when these are
identified.

Record the source(s) of the architecture characteristic

This may be a requirement (it is good practice for
requirements to have an identity and for you to reference
this), or it might be a record of your analysis or reference to
the output of an EventStorming or domain storytelling
session. You can also document any reasoning for including
this characteristic that is not included in the sources you
have indicated.

Give each characteristic an identity

The identity can be used to refer to the characteristic in
other parts of your documentation. This includes ADRs,
where characteristics can be used as decision criteria, and
diagrams.

State all characteristics that were considered

List all the characteristics that were considered and/or link
to the master list of architecture characteristics. It is good
practice to document any characteristics that nearly entered
the top seven so that they can be considered easily when
reviewing the characteristics at a later date.

Record a history using dates

Include the original date, last updated date, and next review
date so that anyone referencing the characteristics knows
whether they are up-to-date and still valid.

Identify the top three priorities

It can help to identify a top three from your selected
architecture characteristics (not necessarily in order) to help
prioritize decisions made based on these characteristics. If
you do this, work with stakeholders to discuss and choose

the top three and document the chosen priorities and
reasoning.

TIP
An ADR is an effective structure for recording your decisions about architecture
characteristics.4 If you are using ADRs to record decisions, you could use one to record
your architecture characteristic selection. When reviewing your architectural
characteristics, you can supersede the original ADR with a new one if changes are made.

All Documentation as Code
Documentation as code as a set of principles can be applied to all
documentation, not just technical documentation. The standard definition of
documentation as code is to create your documentation in the same
environment or IDE that you use to create your code, using a markup
language such as Markdown, and store it in version control, automating
most processes. Documentation as code can also mean that your
documentation is automatically generated.

Technical Documentation
For documentation that naturally sits near the code, such as documentation
of the code that is written by the same people who write the code, using
documentation-as-code processes has many benefits:

A documentation culture

When documentation is easy and part of the standard
workflow, it is much more likely to be created and kept up-
to-date.

Improved accuracy

If you subject documentation to the same quality control
processes as code, such as pull requests, code reviews, and

tests, you reduce the risk of errors.

More efficient workflows

Integrating documentation as code into your workflows
streamlines your technical documentation process,
compared to writing it separately.

Easier maintenance

As long as you don’t add too much red tape to your
documentation process, such as over-the-top approvals, it is
easier to maintain technical documentation as code because
of simpler formats, like Markdown, and not having to
change tools.

Increased flexibility

Formats such as Markdown and Asciidoc can be easily and
automatically converted (either using a specialist tool or a
pipeline) into a range of formats (such as HTML or PDF) if
you need to publish the documentation.

Better documentation discoverability

When documentation is stored in the same place as the code,
or in a known repository, it is easy to find what you need.

Better collaboration

Storing documentation in version control makes it simple
for multiple people to make changes to a single file and
merge all the changes. An approval process adds more
automated collaboration.

NOTE
Why should you produce technical documentation? In addition to making upskilling any
developer on a part of your codebase much easier and more efficient, external users or
customers often need it. How well a software product or API is documented can be a
huge factor for those choosing vendors, even outweighing cost and performance factors.

The documentation process generally follows the steps shown in Figure 12-
7: authoring, conversion, and publishing. Authoring is done using your IDE
and the review process in your version control system. Verification can be a
part of the review process or be performed separately in your pipeline.
Conversion (for example, from Markdown to HTML) is performed either
automatically by your pipeline or manually, usually using a third-party tool.
Publishing is then handled, either automatically or manually, by your
pipeline.

Figure 12-7. Documentation-as-code overview

TIP
Consider whether you need to draft a version of the documentation for review before
deployment. The choice will depend on how rigorous your review and verification
process is, how well your conversion process works (for instance, does something look
bad or break if not formatted in a certain way?), and whether your documentation is
public. A static site generator, such as Hugo, can be useful for conversion and
deployment in this situation because you can take advantage of its draft status for pages
and the ability for a test build to include draft pages.

You can put documentation as code into practice in a way that suits your
processes and environment based on the following principles:

Documentation source files (like Markdown) are stored in a version
control system (like Git).

Documentation is reviewed by a trusted set of reviewers (such as
developers and technical writers).

Documentation is verified both by reviewers (for accuracy and sense)
and automatically (for syntax and similar), for example, using tests.

Documentation artifacts are built automatically (for example, an
HTML version of the documentation).

Artifacts are published without much human intervention.

Automate a documentation-as-code process with the same system(s) that
automate the testing, building, and deployment of code. This means that
you are not duplicating anything and are therefore saving time and effort.
Reviews should be handled in the same way as a code review for the same
reason.

The simplest form of documentation as code is to include documentation as
Markdown files in the same repository as the code. The documentation is
then available to anyone who clones the repository and can be viewed in a
text editor, browser, or any application that supports Markdown. If you use
GitHub to manage your Git repository, you can take advantage of GitHub

https://gohugo.io/
https://pages.github.com/

Pages, which displays your documentation in your chosen theme and makes
it easily accessible.

Treating your documentation as code means that you can write tests that
will run automatically in the same way as for your code (and you can
include these tests in the same place as your code tests for extra efficiency
and easier determination of build success). Two tests useful in most
documentation are checking for broken links and readability issues.

When adding diagrams in documentation as code, use a text-based diagram
tool, such as Mermaid or PlantUML. Creating diagrams using a text-based
tool makes it easier to use version control because the diagrams can be
compared in the same way as plain text.5 When deciding which tool to use,
bear in mind the types of output that can be produced, whether your
conversion and publishing tools support it, and how easy it is to write the
language required by the diagram tool.6

WARNING
When generating and deploying documentation along with code, consider the
automation you need to make it practical. If you support five versions of your product,
do you need to maintain five versions of documentation? Should a pull request
involving only documentation be automatically approved if it blocks the deployment
pipeline? Consider your unique situation to find the balance.

Automatically Generated Documentation
For code that changes regularly (and any documentation that refers to the
details of the code, like variable or method names), automatic generation is
the best way to handle documentation. Depending on your code language
and environment, you have many options for automatically generating code
documentation.

When deploying an API with automatically generated documentation, the
whole deployment process is much faster because the documentation
doesn’t have to be manually updated for end users, whether those are

https://pages.github.com/
https://mermaid.js.org/
https://plantuml.com/

customers or internal users. Autogeneration can also help developers
understand a part of the codebase that they are not familiar with (and maybe
no one currently on the team is familiar with).

Documentation generators do have trade-offs and limitations. They can tell
you only about the code. A documentation generator cannot tell you about
business requirements or why something was or wasn’t implemented in a
certain way. It cannot tell you why. Important code will be given the same
precedence as unimportant or boilerplate code. Depending on the generator,
some of these limitations can be minimized by using appropriate comments
or settings, but in general, you will need more than automatically generated
code for your technical documentation.

Some generators use static analysis of the code (examining the source code
without executing the program), and some require comments or inline
documentation in the code to generate the documentation. This is something
to bear in mind when selecting a tool. If you can find a tool that meets your
documentation needs and doesn’t require you to add anything to your code,
that is likely preferable to one that requires you to annotate all your current
and future code. If an annotation is missing, that code will be missing from
the documentation. Add checks to code reviews or pull requests to ensure
the annotations are present or write automatic fitness functions to catch this.

When choosing a tool, keep your audience in mind. What do they need?
Why are you creating this documentation? Your audience for automatically
generated code is going to be technical. If it isn’t, consider another way to
create documentation because automatically generated documentation is all
about the code. It will be optimized for developers who need to work with
the code or API that is being documented.

NOTE
As Kevlin Henney supposedly put it, “Six hours of debugging can save you five minutes
of reading documentation.”7 Let’s optimize that documentation and make it accessible
so that those hours are not wasted.

AI is one of the newest ways of generating documentation. If you use tools
such as Visual Studio Code, you can find extensions that use AI to add
documentation to code. GitHub Copilot is another tool that can generate
comment documentation in code.

WARNING
When using AI to generate documentation or anything else, you should check the output
carefully. AI tools are still in their infancy, even compared to standard automatic
documentation generation tools, and confidently produce convincing outputs that are
completely wrong.

Other Documentation
Much documentation is business related, or technical but not related
directly to the code, including requirements, architecture characteristics,
and ADRs. These types of documentation have many trade-offs when it
comes to documentation as code, but you can still get the benefits if you
apply the principles and bear these trade-offs in mind.

The people who write business-related documentation and artifacts don’t
necessarily know how to use the IDE the developers use and are unlikely to
know the ins and outs of version control. You want to make documentation
an easy process so it becomes part of the culture of your team and company,
and forcing people to upskill in areas not particularly connected to their job
does not accomplish that goal. You need to apply the principles without
forcing nondevelopers into the developer world.

WARNING
Don’t treat all documentation the same. It has different audiences, different authors, and
different reasons for existing. You can still apply the documentation-as-code principles,
but don’t make the documentation process harder for anyone.

All documentation can be written using plain text, and Markdown is an
excellent option for nontechnical writers to pick up easily. Many what you
see is what you get (WYSIWYG) editor options are available for
Markdown, giving a more Microsoft Word–like experience.

Nontechnical writers can be introduced to concepts such as writing in small
chunks, getting feedback, and then integrating the new work into their
current work. These processes can be applied even without version control
to content that is not plain text. If using Google Docs or Microsoft Word,
you can use comments to get feedback and accept or reject changes to a
document.

You can apply version control to all documentation if you use the
appropriate tools. Nontechnical authors won’t want to use the command
line, but it would likely not take much training to get them to use a tool
such as GitHub Desktop or a tool with Git or another form of versioning
built in, such as GitBook. Developers or technical writers could easily
create meta documentation on how to use a version control tool and your
documentation-as-code process.

Behind the scenes, without intervention from nontechnical authors, you can
apply the principle of building and publishing documentation. If version
control is used, it can be a pipeline similar to the one used for technical
documentation. If version control is not used, you can, for example, design
a batch process that runs on the files in a folder.

Diagrams in technical documentation-as-code would normally be created
using Mermaid or a similar text-to-diagram tool. Although text-based
diagrams lend themselves better to being stored in version control, they are
not the only way to version diagrams. For nontechnical writers, learning to
write diagrams as text is likely a step too far. Instead, you can include the
original diagram files with any generated files, such as PNGs, and the
documentation text files. Anyone with access to the files (be they in a
repository or just a folder) will be able to maintain those diagrams. Some
formats, such as draw.io, are stored as text so can even be compared in a
similar way to plain text.

https://desktop.github.com/
https://gitbook.com/
https://mermaid.js.org/

TIP
You should be able to integrate technical writers into the same system that your
developers are using if they are authoring documentation. Learning version control,
Asciidoc or Markdown, and Mermaid or a similar tool, has a smaller learning curve and
is much more relevant to a technical writer’s role than to a business analyst or project
manager, for example.

OPEN SOURCE TOOLS FOR DOCS AS CODE
I recommend the following open source tools for generating
documentation:

Docusaurus

Creates documentation sites from Markdown files.

MkDocs

Builds project documentation.

Docsify

Generates your documentation website on the fly from
Markdown files.

Backstage

Builds developer portals and was originally developed at
Spotify.

docToolchain

A collection of scripts that makes it easy to create and
maintain powerful technical documentation.

The following are automatic documentation generators:

Doxygen

Generates documentation from various popular coding
languages.

Swagger

An open source (and professional) tool set for developing
and documenting APIs.

https://docusaurus.io/
http://www.mkdocs.org/
https://docsify.js.org/
https://backstage.io/
http://doctoolchain.org/
https://doxygen.nl/
https://swagger.io/

docfx

Converts .Net assembly, XML code comments, REST API
Swagger files, and Markdown into HTML, JSON, or PDF
files.

phpDocumentor

Generates documentation automatically for PHP projects,
including UML class diagrams.

Slate

Generates responsive API documentation.

Magidoc

A static documentation website generator for GraphQL.

And these tools help you write diagrams as code:

Mermaid

A JavaScript-based diagramming and charting tool.

PlantUML

Creates UML diagrams with support for many non-UML
diagrams too.

GraphViz

Represents structural information as diagrams of
abstract graphs and networks.

Kroki

Creates diagrams from text descriptions.

https://dotnet.github.io/docfx
https://phpdoc.org/
https://github.com/slatedocs/slate
https://magidoc.js.org/introduction/welcome
https://mermaid.js.org/
https://plantuml.com/
https://graphviz.org/
https://kroki.io/

Summary
You may have already used the practices in this chapter, but now you know
how to use them effectively and get the best return on investment for your
time and energy. Others may be reticent to try what you have learned,
especially in this area of knowledge management and documentation,
which many people seem to dislike. Show (rather than tell) how things can
be better, and they should come around to this better way of working.

What you have learned about knowledge management in Part III applies to
in-person, hybrid, and fully remote methods of working. In Part IV, you will
find many patterns, antipatterns, and techniques that will enhance your
hybrid, fully remote, and in-person communication.

1 Templates for ADRs are available in the Appendix A and on the book’s website, where text
versions of Figures 12-3, 12-4, and 12-5 are also available.

2 RAID, sometimes called DAIR, can stand for different things depending on who is using the
log. R is usually risks, A can be actions or assumptions, I is usually issues, and D can be
decisions or dependencies. To include all of these, some people use a RAAIDD log.

3 This is often referred to as the paradox of choice, which is also the name of a book by Barry
Schwartz on the subject (Harper Perennial, 2004).

4 See “ADRs”.

5 Some diagramming applications also save data in a text-based format (for example, draw.io).

6 For example, PlantUML has its own domain-specific language whereas Mermaid uses
“Markdown-inspired text definitions.”

7 This quote is often attributed to Kevlin Henney, but the origin is unclear, and it may have
been said or written by others as well.

https://communicationpatternsbook.com/

Part IV. Communicating
Remotely

Many modern teams are distributed in nature, either fully remote or hybrid,
and can be spread across the globe. Creating software products in this
environment requires different communication patterns than for a group of
people sharing the same room and whiteboard. Whether you are
communicating with colleagues, customers, or other businesses, you need
to consider many factors, including time, work patterns, culture, inclusivity,
and the channels you use to communicate.

Distributed communication has advantages and disadvantages compared to
in-person. You can exploit or mitigate these to get the best outcomes for
your teams and organization by applying the patterns and techniques
presented in Part IV.

Before you dive in, I want to define synchronous and asynchronous
communication, which are covered in depth throughout the following
chapters:

Asynchronous communication does not assume or expect the recipient
to pick up or respond to the message as soon as it is received. This type
of communication usually completes within hours or days, as opposed
to seconds or minutes.1

Synchronous communication relies on all parties being available at the
same time and responding in real time. This type of communication
completes within seconds or minutes.

1 By completes, I mean that the message is received and understood, and any needed response
is sent, received, and understood.

Chapter 13. Remote Time

Taking both time and energy into consideration is necessary when
communicating with colleagues, other businesses, and customers. Whether
you are working remotely or in an office, you likely need to communicate
with someone in another time zone or who works different hours.

Working across time zones and with multiple working patterns has benefits
and downsides. For example, you could hand over work to a team in a time
zone behind yours at the end of your working day so that it does not sit idle
until you start work again. You will also find that you end up with a more
diverse set of ideas and practices from a more diverse group of colleagues,
escaping from local echo chambers to see things differently. On the other
hand, you may get frustrated when someone you need a response from has
already finished work for the day, or expend a lot of effort finding a time
that all required meeting attendees are available for a meeting, due to lack
of overlapping working hours.

TIP
Whether you are communicating asynchronously or synchronously, you should aim to
communicate regularly to keep everyone updated.

This chapter explores patterns that will help you overcome hurdles with
time, working patterns, and your and others’ energy and productivity so that
your remote and hybrid communication becomes more efficient.

Synchronize Time
For those who live in a country that falls completely within one time zone,
it is easy to forget that some countries have many time zones, and it is

therefore more common to need to consider time zones than you might
think. Companies are increasingly taking advantage of a global talent pool,
which results in ever-increasing differences in start and end times for people
working at the same company or on the same team.

TIP
Besides time-zone confusion, consider date confusion. In the US, it is most common to
specify dates as month-day-year, whereas the most common format globally is day-
month-year.1 Depending on your location, the date 10-11-2023 could be read as
November 10, 2023 or October 11, 2023. To avoid confusion, use a word or
abbreviation for the month (10-Nov 2023) or use the ISO 8601 year-month-day (2023-
11-10).2

Time Zone
If multiple time zones are involved, communicating clearly about time-zone
and working-hour boundaries becomes critical. These boundaries must be
respected for everyone, including the need for breaks. Encourage everyone
to communicate about issues with scheduling so that these can be
addressed. When everyone feels respected and listened to, you will have a
happier and more productive team.

When scheduling or discussing deadlines, all parties must understand
exactly when you are talking about. If you don’t specify a time zone, you
may end up with various assumptions. One person may think you mean
their time zone, another might think you mean the time zone you are
currently in, and another might think you mean UTC (coordinated universal
time).

TIP
In some countries, it is far less common to use the 24-hour clock. To avoid confusion,
specify a.m. and p.m. and only the hours 1–12 (for example, 1 p.m. UTC rather than
13:00 UTC).

For an idea of how much confusion not specifying a time zone could cause,
look at Figure 13-1. The world has many time zones, and the
implementation of zone borders varies immensely (a person’s longitude
can’t necessarily be used to work out which time zone they are in).

Figure 13-1. Map of current de facto time zones, courtesy of Wikimedia

Make sure you specify the time zone (and, conversely, ask for clarification
if someone else doesn’t specify the time zone). It is good practice to do this
even if you know everyone involved is in the same time zone as you. It
creates an expectation and means you are less likely to forget to do it when
needed. You also never know when someone in another time zone might
become involved in the discussion.

To improve communication across time zones, specify the recipient’s time
zone rather than your own (or include both). When communicating with a
group covering more than one time zone, you can either specify each time
zone (for example, 9 a.m. PST/12 p.m. EST/5 p.m. GMT) or use one
reference time zone (such as 5 p.m. UTC).

https://oreil.ly/YtkMs

TIP
You and your company should consider which reference time zone is the best standard
to use and review that decision as needed. UTC is a good option; it doesn’t change, and
other time zones are often expressed in terms of UTC (such as EST: UTC-5:00 and IST:
UTC+5:30). Some time zones observe summer time or daylight saving time, and don’t
necessarily switch over at the same time, adding to possible miscommunication twice
per year.

Keeping time zones in mind helps avoid accidents like scheduling a stand-
up meeting at 6:30 a.m. for your colleague that seems to be perfectly
reasonable at 9:30 a.m. in your time zone. Or scheduling a video call with a
colleague when it is 10 p.m. for them.

TIP
Identify your colleagues’ availability. You may think that 6:30 a.m. is not appropriate for
your colleague in another time zone, but they may have shifted their working hours and
therefore be working then and happy to meet. Don’t make assumptions.

Here are some useful techniques and tools for keeping time zones front-of-
mind:

Add others’ time zones to your calendar application. Google Calendar
allows you to add a secondary time zone and edit the labels of your
primary and secondary time zones. Outlook Calendar allows you to
add up to two additional time zones and change their labels.

World Time Buddy is a website and mobile app that allows you to add
multiple time zones and easily compare times or periods of time
between them. You can view specific dates, which is useful for
scheduling around times of the year when time zones are switching to
summer or back to standard time. You can add your Google Calendar
to see your events alongside time zones and use tabs to create groups
of time zones for easy reference.

https://worldtimebuddy.com/

World Clock Meeting Planner is a website with lots of features to help
you organize events across multiple time zones. It uses colors to show
morning, daytime, evening, and nighttime in each time zone, including
red to indicate weekends and public holidays. You can create calendar
invitations and polls so attendees can vote on their preference from the
times you select.

To avoid putting unintended pressure on colleagues to reply to emails
or accept meetings during nonworking hours, add a statement to your
email signature and the bottom of your meeting request indicating you
do not expect them to reply or accept the meeting outside of their
normal working hours. Ask for suggested times if they need to reject a
meeting.

Add your time zone(s), along with your working hours, to your email
signature so that others can use this information when communicating
and setting up meetings with you.

Set up office hours in any applications you use, such as Outlook,
Google Calendar, and Slack. Encourage colleagues to do the same.
This will make it less likely that you will try to schedule something
outside their working hours.

When looking for free time in a colleague’s calendar, check to make
sure it is an acceptable time in their time zone, in case they haven’t set
up office hours in their calendar, before sending the meeting request.

Instant messaging tools such as Teams or Slack show the status of each
user. Pay attention to these when sending messages to manage your
expectations, and state that you don’t expect a response outside of their
office hours if they are not online (as they still may be notified). Many
apps allow you to customize the status or message shown, so you can
help others manage their expectations when communicating with you.

Embrace and coordinate virtual tools for project management,
processes, and communication. Those working together should use the
same tools in these cases as far as possible. It is OK to use a different

https://oreil.ly/KEy72

IDE to code in, or a different app to draw diagrams, but for
communication and ticket or task management, it is critical to use the
same apps to coordinate.

TIP
When setting up automatic alerts or other notifications from applications or cloud
infrastructure, you can take both time zone and urgency of the notification into account.
If the notification doesn’t need immediate attention, it could be scheduled to be sent
during the receiver’s working hours to avoid unnecessary disturbance. Email
notifications could be sent to a shared mailbox so that those who are online at the time
can deal with the message.

If you commonly have meetings or calls in a particular time zone or group
of time zones, make a note of the best times to have those meetings. This
can be a reference for all those involved in scheduling and can prompt
negotiations if scheduling the meeting within everyone’s working hours is
not possible.

If time zones are far apart, communicate asynchronously as much as
possible, but bear in mind the pitfalls: this type of communication is not a
silver bullet (see “Async to Think”).

Empathy and Compromise
Empathy is hugely important when it comes to coordinating across time
zones. If a synchronous meeting is required and one or more people will be
inconvenienced, you can show empathy and increase fairness in the
following ways:

Compromise by taking turns. If one person or team ends up working
late for one meeting, another person or team could work early for the
next meeting.

Inconvenience should be compensated, especially for company-wide
or company-mandated meetings, but also for regular meetings. This

could be paid overtime, time off in lieu/comp time,3 expensed meal, or
another type of compensation. Giving people more than one option for
compensation is another way to show empathy and create goodwill.

Record the meeting so that those who cannot attend can catch up
during their working hours.

If one or more people cannot attend, make sure that they have input
into any decisions that come out of the meeting.

Use asynchronous communication before and after the meeting to keep
everyone in the loop.

TIP
Plan ahead for meetings that involve two or more time zones, particularly if the time
zones are far apart. Take extra care to make sure everyone has the authorization to
access any documents, tools, or other resources. If someone can’t gain access, they may
have to wait a long time for you to be available to fix the problem, possibly delaying the
meeting itself.

To show respect for others’ working hours, and to also protect your own,
automate messages and emails so that they arrive during the receivers’
office hours. This way you do not accidentally disturb your colleagues if
they have left their notifications on, or put pressure on them to reply outside
of their working hours.

Protect your own time by not logging in outside of your working hours to
send a message at a good time for your colleague, and set an example of
how others should respect your working hours. Outlook and Gmail both
offer a scheduling feature for email. Teams, Slack, Telegram, and Signal
allow you to schedule messages.

Split Shifts
Split shifts are an option to help with time-zone coverage. If you need
someone to be available for at least some of the time that others are
working in another time zone, a standard 9 a.m.–5 p.m. schedule may not
work.

For some employees, a split shift for either some or all workdays could help
overcome time-zone challenges. It is important to be inclusive and
remember that some people have other commitments, such as children. A
split shift might work well for someone with a commitment within standard
office hours for their time zone. For example, a parent may benefit from
working in the morning, then caring for children until their bedtime, and
then working their remaining hours in the evening, at the same time as
colleagues in another time zone.

A manager living and working on the US East Coast may have a team in
India, for example. Because of the 10.5-hour time difference, 5:30 p.m. for
the team in India is 7 a.m. for the manager in the US. Although most
communication could take place asynchronously, in this case, the manager
might choose to work one or two days per week beginning at 6 a.m. and
schedule meetings with the team in India from 6 to 7 a.m. US Eastern time.

When working a split shift, it is important to block out your nonworking
hours in your calendar on any split or shifted days. Then you won’t get
booked into meetings during your nonworking hours (which are working
hours for others in your time zone).

TIP
If you need a quick reply from someone in another time zone, aim to contact them as
early in their working hours as possible so that they have more opportunity to see your
message and respond. It is also a good idea to mark the urgency in the subject line if
sending an email, or early in the message if instant messaging.

Regardless of time zone, showing respect, empathy, and inclusiveness when
communicating with others is important. A lack of work-life balance
impairs health and risks burnout, potentially affecting your own work and
that of your colleagues. To get the best contribution from all, create
boundaries and establish etiquette. Your teams will be welcoming and more
diverse, and you and your company will benefit.

DAYLIGHT SAVING TIME/SUMMER TIME
Some countries observe daylight saving time (DST), also known as
summer time, which means that relative time differences change when
these observances come into effect. The switch can be especially
confusing because some countries, such as Canada and the US, don’t
uniformly observe DST; some states or provinces remain in the same
time zone year-round. Increasing the complexity, different countries
switch over on different dates.

The best way to avoid confusion is to check the regions that you work
with to identify any times of the year that might become confusing and
add a recurring event to your calendar (like “US DST starts”) that will
serve as a reminder to you. Ensure that reminder does not mark you as
unavailable or out of office. Adding time zones to your calendar and
using time-zone comparison tools will also help.

Suppose you have teams working in the US and European Union (EU).
Most US states observe DST from the second Sunday in March at 2
a.m. until the first Sunday in November at 2 a.m. The EU, UK, Norway,
and Switzerland observe DST from the last Sunday in March at 1 a.m.
UTC until the last Sunday in October at 1 a.m. UTC. Therefore, for
several weeks each year, the time difference between multiple time
zones in the US and multiple time zones in the EU varies.

For example, the Eastern US is four hours behind the UK when the UK
is not yet observing DST in March, but the Eastern US is five hours
behind when the UK starts observing DST as well. The time difference
between the two time zones changes by one hour for the week spanning
from the end of October to the beginning of November also.

And remember that you can’t just rely on the time zone to work out
whose time will change relative to yours. If your team in London works
with one team in Salt Lake City, Utah, and one team in Phoenix,
Arizona, the two US teams will have an hour’s time difference for

roughly half the year beacuse Arizona does not observe DST
(Figure 13-2).

Many countries that have observed DST in the past have since
abolished the observance, either settling for permanent standard time or
permanent DST. Countries that observe DST now could stop doing so
in the future too.

All these factors underscore why it is best practice to include the time
zone when storing time and date in a data store.

Figure 13-2. Relative time differences between London, Phoenix, and Salt Lake City when
London and Salt Lake City are observing DST (World Time Buddy)

Respect Working Patterns
Your colleagues, whatever time zone they work in, may have a different
working pattern than you. This may be their preference, to fit around family
commitments, to align with colleagues working in another time zone, or to
accommodate business and customer needs. Working patterns can change
daily and are affected by leave and public holidays. Resist assuming that
others are available at the same times as you.

You and your colleagues have various commitments outside of work that
may mean planned or unplanned changes to working hours. Picking up
children from school could mean a regular break in afternoon hours, or an
occasional need to take that break if a partner or regular childcare is not
available. Plan for schedules to change and you will not be disappointed.

Communicate Availability
As discussed earlier in this section, you should encourage everyone to block
out time in their calendars when they are not available and set office hours
in calendar and messaging apps. Simply marking the time as “Not
Available” rather than giving full details is perfectly acceptable and will
make everyone more comfortable.

Stating your working hours and days in the signature of your email, as
recommended, is extremely helpful if your working hours differ from the
norm. Example 13-1 shows how you can do this. Noting that you do not
expect replies outside of the recipient’s working hours implicitly
communicates that they should not expect a reply from you outside of your
working hours.

Example 13-1. Email signature indicating working hours

I understand that your working hours may differ from mine and I

do not expect a reply outside of your working hours.

My working hours (GMT/BST):

Mon-Thu 9 a.m. to 3 p.m. and 4.30 p.m. to 6.30 p.m.

Fri 10 a.m. to 2 p.m.

Think about key times in the day that could be hot spots for conflict and try
to avoid these for important synchronous meetings and events. Consider
when your colleagues might be dropping off or picking up from school,
when they may need to prepare lunch or dinner for a dependent, or when
religious activities may be happening (especially around religious holidays).
This reduces the likelihood that someone will decline a meeting because of
a time conflict.

Defend Part-Time Hours
You, or some of your colleagues, may work part-time hours. Part-time
workers can feel left out if important meetings and decisions happen when
they are not working or feel pressured to attend and work more hours than
they are paid for. Diversity (as well as nondiscrimination) is key to a

successful business. You need the input of part-time workers and must plan
to accommodate this.

Aim to schedule most, or at least important, events and meetings within the
working hours of part-time employees. When you need to schedule events
and meetings outside of this time, try the following:

Make it clear they are not expected to attend during nonworking hours.

If they are happy to attend and want to do so, give time-in-lieu (comp
time), overtime payments, or similar compensation without the part-
time worker having to ask.

Record the meeting so they can catch up during their working hours. If
recording is not possible, carefully document important points and
decisions and send them to nonattendees.

If a decision is being made or feedback sought, ensure that
nonattendees are informed and have time, within their working hours,
to respond.

Plan for Holidays
National holidays and observances vary from country to country, and even
between areas within a country. Knowing when your colleagues will not be
working, and informing them when you will not be working, will mean less
rescheduling and fewer no-shows at meetings and events. Encourage
everyone to put these days off into their calendar and consider having a
shared calendar with all holidays blocked out.

TIP
Don’t assume that people won’t be working on their national holidays or weekends.
Contractors in another country might work all or some of their national holidays to line
up with the national holidays of the main business. It is also common for customer-
facing or site reliability teams to supply some level of service during national holidays
or weekends. Check with your colleagues.

Remember, others may be working when you are not, so make sure they
have what they need from you as well as notice of your availability. You do
not want a development team in another country to be short of work or to
have unanswered questions, and then discover that their manager or an
architect in another country is not working.

PUBLIC HOLIDAYS AND OBSERVANCES
Some holidays are celebrated internationally, and others are national or
even regional. Here are a few examples of differences you may come
across:

Some regions within countries have extra or different holidays:

In the UK holidays may differ across regions. For example,
Scotland has a summer bank holiday on the first Monday in
August, which the rest of the UK observes on the last
Monday in August. Northern Ireland observes St. Patrick’s
Day and the Battle of the Boyne as public holidays.

In Spain many holidays are specific to autonomous
communities. For example, Shrove Tuesday is celebrated only
in Extremadura, and each autonomous community observes
its national day at different times of the year.

In Canada public holidays vary among provinces and
territories. For example, Good Friday is observed across
Canada, but Easter Monday is observed only in Quebec and
the Northwest Territories.

When a holiday lands on a weekend, the observance day is often,
but not always, moved to the Monday or Friday.

Some holidays are on set dates (such as December 25), some on
set days (for example, the last Monday in May), and some change
based on the moon or other calendars (including Good Friday and
Eid al-Fitr).

Plan ahead with all your colleagues so you know when everyone will be
available.

Besides public holidays, you and your colleagues are likely entitled to
personal leave or statutory leave. Some workers are entitled to a certain

amount of leave by law, and many companies contractually give more time
off. A total of 20 to 30 days of personal leave is typical in the EU, for
example.

Some companies specify unlimited leave but require the worker to put in
enough days to do their job. Some workers are entitled to statutory leave
such as maternity/paternity or adoption leave, which can last for more than
a year.

TIP
Block out any leave you are taking in your calendar as soon as you plan to take it. You
can mark it as pending or to be confirmed (TBC) if you need approval or are unsure for
some reason, but put in the dates to give your colleagues advance notice of your
unavailability.

Be aware of and plan around hot spots in the year where more people will
be taking leave (for example, around public holidays, school holidays, and
better weather). Also bear in mind regional patterns; for example, most
leave in Spain is typically taken in August.

Encourage everyone to put their leave into their calendar as far in advance
as possible and to discuss future plans openly, so that milestones, deadlines,
meetings, and events can be planned or adjusted.

TIP
Turn on out-of-office replies in your email, and set your status in chat applications to let
colleagues know you are unavailable, when you will be back, and who to contact in
your absence. You may also want to turn on this feature for people outside your
organization if you are customer-facing or work closely with business partners.

Account for Geography and Culture
Colleagues working in other countries or areas may also have different
standard working hours, which may also vary by industry. The actual times
worked and the number of hours worked per week may vary a little or a lot.
Although the number of working hours in a week may be specified by law,
the actual expectation of working hours may be different. In the EU,
workers are protected by the working time directive, which says they cannot
work more than 48 hours per week, although individuals can choose to opt
out.

In many parts of the world, a typical full-time work week is 40 hours (8
hours per day over five days), but many employers now see the benefit of a
good work-life balance to their business and expect 37.5 or even a 35-hour
week or less.4 In some areas, a four-day week is becoming popular. This
can look different depending on the company but is another factor to take
into account when considering others’ availability.

Start and finish times are another element of schedules that can vary by
country or region. In many places, the standard day is 9 a.m. to 5 p.m. But
in Spain, for example, a typical workday can be from 8:30 a.m. to 1:30
p.m., and then from 4:30 p.m. to 8 p.m., with a siesta break in between to
avoid the hottest part of the day. Those who work from home often vary
their hours more than those who work in an office.

Understanding the working patterns of your colleagues is key to effective
scheduling and to setting appropriate expectations around asynchronous
communication. Take the time to develop this understanding—in part, by
learning about cultural differences—and use that knowledge to save time
and reduce frustration (even increase happiness) in the long run. You may
discover that you have more working hours in common than you thought.

WORKING WITH OTHER CULTURES
You should be very clear on expectations and processes when working
with teams or individuals from other countries and cultures. Besides
different working practices, cultural differences may affect the
implementation of these practices and techniques.

If you expect to use test-driven development (TDD) or have a certain
level of code coverage for tests, make this explicit from the beginning.
Make clear any other practices or patterns you expect to be adhered to,
such as factory methods, DRY, and so on.

If your local colleagues are expected to automatically adhere to laws
and standards, communicate this to remote colleagues who may not be
aware of the same regulations, such as GDPR, HIPPA, OWASP, and
NIST.

In some cultures, people will follow designs to the letter, which might
or might not be what you want. If you have included example or
prototype code, specify whether it should be followed exactly. People in
other cultures may use designs as a starting point and then do their own
thing. You need to communicate how much they need to stick to the
designs they have been given.

Make sure to document your practices and expectations and share these
with local and remote colleagues. Having to redo work or to work
around problems later can be costly.

Recognize Real Working Capacity
It is important to know how much time each person you work with is
available and to take into account that the entire workday will not be spent
on meaningful work (tasks like meetings, emailing, and filling in time
sheets have a larger impact on capacity than you might think).

If you estimate tasks in hours for your sprints, you need to know how many
productive hours are available from developers working in that sprint.

Don’t assume an 8-hour working day. Communicate to work out productive
hours per day and use that in your calculations.

BOOK MEETINGS EFFICIENTLY
When working with customers or partner businesses, use a service that
allows them to book a meeting with you based on your availability. This
eliminates the back-and-forth of trying to find a mutually convenient
time.

Many versions of this type of service are available—including Cal.com,
Easy!Appointments, and Microsoft Bookings—that allow you to
customize the meeting length, minimum buffer time before and after the
meeting, how far into the future they can book, and the time periods
they can book (for example, any time in your standard office hours, or
just Thursday mornings).

Give a link to the tech lead of a partner so that they can book up to an
hour with you to discuss an architecture query, or to a customer so they
can book an hour’s training session on your software or a 30-minute
initial consultation on a project.

To protect everyone’s personal time and mental health, you can set the
expectation that everyone will have notifications turned off outside of their
work hours (unless they’re on call or under a contractual requirement). This
expectation sets a precedent for a more healthy work-life balance and
respects everyone’s boundaries—including for breaks, such as lunchtime.

TIP
When you’re communicating with others who may not share the same first language as
you, being clear and concise is even more important than usual. Use plain language and
avoid idioms and cultural references to avoid misunderstandings and back-and-forth
clarifications (see “Simple Language” for more details).

https://cal.com/
https://easyappointments.org/
https://oreil.ly/7oWj3

Improve Energy and Productivity
In addition to considering time zones and working hours in your
communications, you should take energy and productivity into account.
These vary with a person’s circadian rhythm but are also affected by the
amount of time they have been working, work-life balance, and the
interruptions they receive.5

Control Notifications
Notifications are probably the most common form of communication
because you receive them to tell you about most other forms of
communication. But they are not necessarily useful or productive; they can
distract you.

Turning off notifications could be one of your most effective productivity
improvements. You may be worried you will miss something important, but
you can put processes in place to avoid this. Instead of switching your
attention to every email notification, schedule times throughout the day to
check for important emails and times to process and respond.

You can combine switching off notifications with listening to your circadian
rhythm and energy levels. Email is a relatively low-energy task, so
scheduling it for a time when you have low energy will mean you can do
high-energy tasks when you have higher levels of energy.

You can apply the same pattern to instant messages and other forms of
communication, such as tasks being assigned to you. If you do have specific
communications that need instant responses, most tools will allow you to
apply a filter to notifications. Microsoft Teams, for example, allows you to
still receive notifications from specific people when other notifications are
turned off, and it also lets you mute specific chats or teams.

Turning off and customizing notifications allows you to take control of your
communication tools rather than letting the tools control you.

TIP
Reducing the number of tools you use for communication and understanding which
tools to use for which type of communication will decrease the mental load of your
team. See “Remote Tools and Governance” for more on governing tools.

Automate Tasks
Automating repetitive communication tasks is another way to make your
communication more productive. Here are some ways to save time and
reduce distractions when communicating:

Set up auto-replies for common emails or messages (and for times that
you are out of the office or otherwise unavailable). Use the auto-reply
to direct people to other sources; for example, a FAQ page or point of
contact. Automating these replies enables people to help themselves or
at least stay informed of when you will be able to help them.

Many email programs allow you to set rules that can be applied to
emails when they arrive. Set these rules to make your life easier, such
as flagging emails that are important or moving newsletters to another
folder to look at later (making processing your inbox faster).

You may be able to automate many communication tasks by using a
service like IFTTT, Zapier, or Microsoft Power Automate. Examples
include being assigned a task in one app and automatically adding it to
your list of to-dos in another app, or automatically emailing a reminder
to colleagues who have yet to add their update to a team status page.

Messaging apps such as Teams and Slack allow you to set up bots to
automatically manage aspects of messaging. A bot could remind
everyone in a chat of an upcoming deadline or meeting. A bot could
also answer a query typed into the chat, such as “What is the app ID of
the service named Widget?”

Unsubscribe from all the emails that you don’t read. You’ve probably
signed up for many newsletters in good faith but never read them. You

https://ifttt.com/
https://zapier.com/
https://oreil.ly/pp-_o

may also end up on many email lists that you never really wanted to be
subscribed to. Unsubscribe via the link that should be in every email.
If you have trouble unsubscribing, set up a filter to send those emails
straight to junk or trash.

WARNING
Don’t be tempted to sort all your read email into folders. This makes it harder to find
what you need in the future. Most read emails can be sent straight to Archive, where you
know they will be if you need them. You might have a few types of important emails
that warrant their own folder, but this should be the rare exception. Also, bear in mind
that you should not use email as a storage system. If your company purges old email,
you will lose it all. Move important information to a wiki or personal notes.

Work with Others’ Rhythms
It can be hard to be patient when waiting on someone in another time zone
or with a working pattern different from yours. It can be even more
frustrating when waiting for a response from a person who works the same
hours as you. Keeping energy and productive times in mind can help. Many
people are most productive in the late morning, least productive around 3
p.m., and increasingly productive again until about 6 p.m.

If you know that the response you need will require a higher amount of
energy from your colleague, allow them to respond during their more
productive times or prompt them just before these times. Conversely, if the
response won’t take much thought, you can prompt them at a lower energy
time of day.

TIP
Synchronous remote communication requires more energy than asynchronous, so
replace meetings with asynchronous updates as much as possible. See Chapter 14 for
more on synchronous and asynchronous approaches.

Schedule for Energy
Another way you can use circadian rhythm to your advantage is when
scheduling meetings. Picking a low-energy time of day to discuss a problem
or generate ideas is going to be a disaster.

Time zones can put pressure on when you can schedule a meeting, but you
can focus on meeting at a higher energy time for key people or the majority
of people to improve your synchronous communication time.

Your and your colleagues’ energy levels are also affected by the amount of
time you have been doing a certain task. Consider this when planning
effective meetings and events. You should plan for a break if the meeting is
more than 60 minutes, ideally at least every 45 minutes. Breaking up the
time with different activities, a change in visual focus (for example, a blank
slide or something funny like a meme in a presentation), or some type of
movement will also improve your meeting outcomes.

As people approach the end of a meeting or the end of the day, they have
less energy. Plan to take this into account. Higher-energy activities should
be scheduled earlier in the agenda, or after a break, as much as possible.

Ensure that your agenda prioritizes time for eating (enough time for healthy
food rather than rushed fast food) and that your scheduling is not
detrimental to attendees’ sleep. All of these considerations put together
maximize your synchronous communication.

In addition, you can improve attendees’ concentration by providing a
comfortable and appropriately lit environment when meeting in-person.
Provide good equipment and encourage your colleagues to set up their
desks ergonomically and to move around during remote meetings.

COMMUNICATING FOCUS TIME
Focus time, time that you’ve blocked out in your calendar for
uninterrupted work, is an excellent tool for productivity. The best times
to block out are your most productive, high-energy times, but if that
isn’t possible, go for your least busy times. A two-hour block two or
three times per week is usually more doable than you think.

If you struggle to find time slots, block out one definite slot and others
that are marked as tentative and labeled “book over if necessary.” You
are then more available if need be, but most people will not book this
time. You can always swap your definite and tentative slots if
something urgent comes up.

Turn off all notifications during this time. Your computer’s operating
system may have a focus setting that does this automatically for you, or
you may be able to install an app to manage this (at the very least, you
can mute your computer). You should also close tabs and apps that you
aren’t using.

To communicate your focus time to others, try the following:

Block out the time in your calendar and mark it as busy or working
elsewhere.

Having your time blocked out as busy should mean that messaging
apps such as Teams show your status as busy as well, but if not, set
your status at the beginning of a focus session.

Communicate the reasons for your focus time (actually getting the
things done that others want from you) so that they understand
why you are unavailable.

Summary
Time is highly important to coordinating remote and hybrid work, and even
to people’s happiness. When you consider that time is the one resource you
can never get back or make more of, you can start to appreciate how
valuable it is.

These techniques around time lead neatly into the principles of
communication. In the next chapter, you will discover the appropriate use of
asynchronous and synchronous communications and how making the
correct choice can determine success.

1 See Wikipedia for a breakdown of date format by country.

2 The format year-day-month is not used anywhere, so if you see the year first, you can be sure
it is supposed to be year-month-day.

3 Time off in lieu and comp time refer to taking overtime accrued as extra holiday or vacation
time.

4 Working hours should not be reduced to avoid legislation, such as employee benefit
requirements. Don’t take advantage; give the better work-life balance along with the full-time
benefits, and you will have happier and more productive employees.

5 Circadian rhythms are the cycles of your internal body clock and run over a period of around
24 hours (such as the sleep-wake cycle). Not everyone’s rhythm is the same (for example,
some people prefer to work earlier in the day than others).

https://oreil.ly/cRv64

Chapter 14. Remote Principles

Knowing when to use different types of communication is essential to
achieve your goals efficiently and with the best chance of success. To
increase the effectiveness of remote communication in fully remote and
hybrid environments, you can apply some overarching principles and the
patterns within them.

This chapter explores how and when to use the various types of
synchronous and asynchronous communication to synchronize your
expectations and workflows and put all workers on an equal footing,
wherever you are working.

Meetings to Sync
Meetings are often seen as a time-sink, taking time away from your actual
work. The act of synchronously coming together can be extremely
productive for some types of work, but when the wrong people are
attending or the focus is on activities that could be done much better
asynchronously, it’s time to make changes to meetings.

TIP
If you struggle to optimize the number of people invited to a meeting, think about how
much an hour of their time is worth and how much you want to spend on the meeting.

Synchronous Versus Asynchronous
Remote synchronous communication takes more energy than in-person. You
have probably felt this yourself, but it is also backed up by research from
Stanford University (see “Why Do You Get Zoom Fatigue?”).

When you are in the same room with colleagues, you can more easily hear
their tones of voice and see their body language and facial expressions. You
subconsciously read all these cues without thinking and use them to
understand what others are saying (or not saying).

Remote meetings disrupt the normal flow of conversation and prevent you
from reading body language and facial expressions as easily, or at all. You
have to work much harder to understand one another.

In Thinking, Fast and Slow, Daniel Kahneman explores the idea that your
brain is split into system 1, which does 98% of your thinking and is
involved in reading body language and facial expressions, and system 2,
which does just 2% of your thinking and is used to make rational decisions.
In person, your system 1 makes fast and cheap decisions about body
language, tone of voice, and facial expressions (using heuristics).1 In a
remote situation, at least some decoding has to be done by your system 2,
which requires much more energy.

Synchronous meetings and events should occur only when needed,
communicating asynchronously as much as possible (see “Async to
Think”). This improves communication and productivity in several ways:

Finding a good time for everyone to meet can be difficult, especially
when attendees are in more than one time zone. With asynchronous
communication, everyone can process the message at a good time for
them.

A lot of time is wasted in meetings because not everyone is engaged or
needed for the whole session. Ten people in a meeting for one hour is
10 hours of work time used in just one hour.

Meetings and other synchronous events are interruptions in your
workday, meaning you waste time switching context at the beginning
of each meeting and when you go back to your other work.

It is harder to keep in-person and remote attendees of a hybrid
synchronous meeting on an equal footing, with in-person attendees
likely to dominate.

Unless a synchronous meeting is recorded, everything that is said can
be heard only once. Some discussion might be missed by all or some
attendees and is gone forever unless someone takes minutes.
Asynchronous communications are there for reference afterward.

Both synchronous and asynchronous approaches have benefits and
drawbacks, but which is best depends on the reason for your
communication (and to a degree, your team’s location).

TIP
It is a commonly held misconception that communication needs to be either
synchronous or asynchronous. Mixing both can be efficient. You may decide that a
synchronous meeting is the best way to make a final decision, but use asynchronous
communication to brief people on the context and the need to make the decision, to
brainstorm ideas, and to vote to narrow choices before the meeting starts. You are also
likely to use asynchronous communication after the meeting to document and
communicate the decision made.

Synchronous communication is typically better when communication aims
to do the following:

Build rapport, such as team-building or a project kickoff

Generate ideas, such as coming up with solutions to a problem, or new
ideas for a product

Asynchronous communication is typically better when communication aims
to accomplish one of these:

Report progress, such as a stand-up or project progress

Gather feedback, such as on a draft ADR

Disseminate information, such as announcing a change to team
structure

EXAMPLE

SYNCHRONOUS INTERRUPTIONS AT POLYGLOT
MEDIA

Sander, a product owner at Polyglot Media, has problems balancing the
expectations of the development team for his product with their actual
output. The development team responds that their working time is
constantly being interrupted and taken up by meetings. How are they
supposed to get any coding done?

When he looks at the team’s calendar, Sander can see they are right.
Synchronous meetings are dotted throughout their week, so they are
constantly switching between tasks and wasting time refocusing. Many
of these meetings are set by Sander and the project manager (PM). So
Sander and the PM remove, combine, or change nearly all the
synchronous meetings to asynchronous. They leave the Monday
morning stand-up meeting as synchronous, but change all other
progress reports to asynchronous updates in the team’s project
management software. The team is also given the power to schedule a
synchronous meeting if needed.

Retrospective meetings are changed to an asynchronous collection that
the team can add to as things arise and a shorter synchronous meeting.
Sander and the PM are notified when items are added so they can take
action if needed. If something urgent requires the team to come together
to discuss or fix, the team can schedule a synchronous meeting.

After a few weeks, the development team is a lot happier and a lot more
productive. Sander is happier because of their improved results and
starts to spread the word to other product owners and PMs at Polyglot
Media.

Enhance Meetings
Getting the most out of a meeting and improving the outcomes starts before
the meeting even begins. Here are some ways to organize and structure a

remote or hybrid meeting for the best experience for all attendees:

Choose and state the goal(s) for the meeting carefully to get the
outcomes you desire. The goals for a stand-up are to remove
roadblocks, receive help with issues, and understand if you are on
track. It is not just to hear everyone’s progress report, which is one of
the most common outcomes and could be done more easily
asynchronously.

Ensure that all meeting activities connect with these goals. You can
explain or point out the link between each activity and the goal(s) to
encourage interest and participation; for example, hearing everyone’s
input at a postmortem meeting connects to the goals of gaining a full
understanding of what went wrong, whether the event can be
prevented from happening again, and how disaster recovery from the
event can be improved.

Set an agenda, including timings, and keep to it as much as possible.
Your agenda will help you define how to accomplish the meeting
goal(s) and bring tangents to a close quickly. Use a method to put aside
items that need attention but aren’t relevant to the meeting goal(s) for a
later time, such as a car park or parking lot.2

Set expectations to support the meeting and create a safe space. Send
these out with the agenda so everyone is forewarned. If attendees
aren’t normally expected to have their video on, you may want to
specify that you would like everyone to turn on their video to support
goals like team-building or onboarding new members. Other
expectations could include not interrupting and keeping information
discussed confidential.

Make sure you invite only the correct attendees to achieve the meeting
goal(s). If a decision needs to be made in the meeting, a person with
authority to make it needs to be there. If a technical opinion is
required, someone with the appropriate technical background should
be there. Don’t invite people just in case; it is a waste of their time.

Instead, ask if they can be available to be called into the meeting on
short notice or to answer a question via messaging.

If someone is presenting or facilitating a part of the meeting, brief
them beforehand on how much time they have. Don’t rely on them to
check the timing in the agenda; specify the time period clearly so they
can prepare appropriately.

Plan and put in place any asynchronous communications needed for
before or after the meeting. If supporting documents are needed, send
links to these with the agenda and specify whether they should be
consumed before the meeting starts. Make sure that all attendees have
access to any documents or other reference material you link to by
asking them to check.

Document decisions and actions from the meeting and send them out
to all relevant stakeholders as well as attendees after the meeting. This
is a useful way to keep anyone who couldn’t attend in the loop, and it
makes sure everyone is aware of actions they need to take and any
other outcomes.

Manage attendees’ energy by planning breaks every 45–60 minutes
and planning tasks that require more energy early on or soon after a
break.

REDUCING SYNCHRONOUS MEETINGS
If you have too many synchronous meetings right now, you may be
thinking it will be impossible to get people to cancel their precious
meetings and change completely or partially to asynchronous
communication. Reducing synchronous and increasing asynchronous
communication is about behavior change. Don’t give up quickly; it will
take time.

Here are some ideas to help you convince others:

Meetings are often called because someone feels they don’t know
enough about what is happening. Put in place asynchronous
methods, such as status updates in a project or knowledge
management app or a dashboard for a project, and give the person
access. That person can then likely be persuaded to cancel or
reduce the duration of the meeting once they have the information
they want by other means.

Meetings are waterfall. If you hold a stand-up at 9 a.m. each day,
by 10 a.m. the situation could have changed. Introduce a place for
new updates, such as a project or knowledge management app.
Once this is being used, you can tackle reducing the stand-up
meetings themselves. The asynchronous updates fit much better
with Agile and happen as and when you have the information.
Your remaining meetings can then be used for what they are more
optimal for: bidirectional communication. You will likely need
more bidirectional communication in a team with less-experienced
members.

Asynchronous communication enables those who can’t attend a
synchronous meeting to add their update or information when they
are available. For example, when someone is going on leave, they
can make sure to contribute before they go. If updates and
information are added as and when they occur, it is more likely
that someone who has fallen sick has still contributed.

Trialing or implementing no-meeting blocks or days is a good way
to allow people to focus on their work. When the overall time
available for meetings is reduced, people are more likely to push
back on meetings they don’t think are productive and to reduce the
time a meeting runs. There will be enough time for the meetings
that are required. Block out nonmeeting periods on everyone’s
calendar to help everyone respect this focus time.

Even necessary meetings can be redesigned. The duration of the
meeting can often be shortened without other changes, or some of
the meeting content can be shifted to asynchronous
communication before or after the meeting. Try ending the
meeting early and telling attendees that this is the aim. When this
works, you can change the meeting length in everyone’s calendars
to make it official. You may find you can reduce the meeting
length even further.

Stress that the content is still important but that the synchronous
meeting format is not the best approach. Once people have been
shown they can get the same or better results from asynchronous
communication, they will be happier to move away from meetings.

You can employ the following practices during a remote or hybrid meeting
to improve it and its outcomes:

Prompt those who have not contributed as much by asking them open-ended
questions

This can help even up participation so that people who are
colocated (in the same room) don’t dominate the meeting,
and can result in a diversity of input from those who
otherwise may not feel they can speak up.

Encourage use of the chat feature

This is another way to foster equal contribution because
those who may not feel they can speak (or get a word in!)
can use the chat to give their input. Be aware that the chat
feature can also replace the side conversations that would
naturally happen if everyone were in the same room, which
may become a distraction.

Monitor the chat and Q&A

You, or someone on your behalf, should be monitoring the
chat and Q&A features to make sure that nothing pertinent
is missed.

Encourage everyone to interrupt if they cannot hear something

Set this expectation at the beginning of the meeting so that
everyone can hear all contributions and have their
contributions heard.

Use breakout rooms in larger meetings so that attendees can participate in
activities in smaller groups

In one large online group, some people’s opinions likely
won’t be heard. Break-out rooms could be used to
simultaneously work on the same task or different tasks
before coming back together to consolidate or report back
on outputs.

Use interactivity tools

Polls, votes, whiteboard activities, and other exercises will
encourage contribution and keep participants’ attention.

Keep to time as much as possible

Monitor time against your agenda and use tools such as a
parking lot to stop tangents before they go too far and

without upsetting anyone. On-screen countdown times are
another useful tool for managing time.

TIP
The time of day can affect how well an activity goes in your meeting. Because of
different time zones, you may not be able to optimize the time for everyone, but
thinking and decision-based activities are usually done best early in the day.

In addition, the following are ways you can improve your contribution to a
remote meeting while also boosting your credibility:

Put energy into your voice and make it bright. You are not trying to go
as far as a children’s TV presenter, but the way you speak will affect
the amount of attention your colleagues give you.

Turn on your camera and use purposeful and exaggerated gestures and
facial expressions. Make it as easy as possible for others to understand
you by emphasizing your body language, which is harder to
understand remotely compared to in person.

WHY DO YOU GET ZOOM FATIGUE?
Professor Jeremy Bailenson, founding director of the Stanford Virtual
Human Interaction Lab (VHIL), has been studying the effects of
spending hours on platforms like Zoom.3 Rather than say you shouldn’t
use video conferencing, he hopes his research will enable video
conferencing organizations to improve workflows and interfaces.

Bailenson summarizes four main reasons video conferencing drains
your energy more than in-person interaction:

The amount of close-up eye contact is intense and unnatural

Everyone is looking at everyone all the time, and a close
and large face is like having someone in your immediate
personal space.

Seeing yourself constantly is fatiguing

He cites a study that concludes that you are more critical
of yourself when you see your reflection.

Video calls drastically reduce your mobility

In person and on the phone, you move around, but the
narrow camera view limits your movement.

Cognitive load is much higher

Nonverbal communication is picked up easily and
subconsciously in person, but you have to work hard to
both send and receive signals online.

To counteract these challenges, Bailenson suggests the following:

Reducing the size of others’ faces by coming out of full-screen.

Increasing the space between you and the screen by, for example,
using an external keyboard and mouse when using a laptop.

Turning off the self-view after you have checked you are centered
and in focus.

Using an external camera, farther away when possible, to increase
the field of view and then aiming to move around.

Turning away from the screen for a break from sending and
receiving visual cues.

Async to Think
Asynchronous communication has many benefits, but you should also look
out for its pitfalls. Every type of communication has trade-offs.

Whether communication is asynchronous does not depend on the tool used
but rather on the expectations of the way the tool is used. Instant messaging
can be asynchronous, but if people are chatting back and forth or expect
that messages will be replied to right away, then it is synchronous.

Async Advantages
The most obvious benefit of asynchronous communication is that the
recipient chooses when to consume the message (and respond if required).
Related to this is the built-in silence, or time to think, before responding.
This can lead to a higher caliber of response, likely better thought through
or more researched.

Because the recipient chooses when to consume the message, they are not
interrupted at the time the message is received. This leads to higher levels
of focus on work and means the recipient can focus better on the response
to the message as well. During this focus time, the recipient can put all their
effort and attention into what they are working on, and focus can lead to
deep work.4

In addition, communicating with a colleague in a different time zone is
much easier with asynchronous communication. You do not need to worry
about what time it is for them or find mutual free time. However, it is
important to bear in mind time differences so that you don’t have
unreasonable expectations of when the recipient will act on your message.

TIP
When sending asynchronous communications, make it clear that you do not expect a
response right away, or outside of the recipient’s working hours. This can be done with
shared expectations or communication agreements (for example, notifications expected
to be off out of work hours), and via specific notices (such as a note in your email
signature).

Async Obstacles
Beware of jumping into asynchronous communication without knowing the
problems that can occur. Many people blame synchronous meetings for all
their productivity problems, but the cost of bad asynchronous
communication is harder to see.

As with synchronous communication, make sure that you are
communicating with the right people. It is still possible to include people
who should not be included in asynchronous communications, which can
add confusion and waste their time (and yours when they ask you
questions). Make sure to include the people required for the goal of your
communication.

Online tools can cause more friction than in-person communication. You
and your colleagues may now all be conversant in your choice of online
whiteboard, project management software, and instant messaging, but bear
in mind that these tools often take more mental energy than the equivalent
in-person communication.

A remote conversation in Slack or Teams would likely be a face-to-face
conversation in an office. In person, it is much simpler to speak and to read

each other’s body language. Over chat, you need to type (which can be
much more cumbersome than speech), and all the body language and tone
of voice are lost. It is easy to misunderstand a typed message, which
requires a lot more mental energy to decode.

The internet and instant messaging have been flooded with emojis for a
long time, but remote work has made emojis first-class citizens in business
communications too. One reason is the loss of body language and tone of
voice in written communication. Although emojis can help communicate,
be aware that not everyone will interpret them in the same way. If you
encounter problems with this, you may want to develop an emoji dictionary
together as a team. This will help avoid miscommunication and is also a
good team-building activity that can be done asynchronously.

Direction Matters
Communication can be classified into two general categories: one-way
(unidirectional) and two-way (bidirectional). Both of these can be from one
person or system to many, from one to one, from many to one, or from
many to many (see Figure 14-1).

Unidirectional communication includes personal or progress updates,
announcements, and other information sharing. Unidirectional
communication typically works well asynchronously and has problems
when done synchronously. A positive or neutral company-wide
announcement, for example, works well asynchronously. Bringing everyone
together at the same time to make this type of announcement can have huge
downsides, including people not having time to digest the information.

Progress updates from your team are often also best done asynchronously to
avoid interrupting everyone and trying to find time. Dedicate synchronous
time for getting instant feedback (bidirectional), like help with the task you
are working on.

Figure 14-1. Communication relationships

In bidirectional communication, you expect a response to a message,
whether that is a quick confirmation, a long-form answer, or an artifact.
Bidirectional communication varies more as to whether asynchronous,
synchronous, or a mixture works best. Here are some examples:

When you need feedback or comments on something, such as an ADR
or documentation, asynchronous works well. Many tools, such as
Google Docs, Microsoft Word, and wikis have a built-in commenting
features. Linking to the document and asking for feedback is easy.
Make sure contributors have access, the ability to comment or edit, and
reasonable deadlines based on working hours to ensure you get the
widest and most diverse set of feedback.

Getting an answer to a question is usually not a planned activity that
can be put off until later. If the person or people you need information
from are in another time zone or have a working pattern different from
your own, asynchronous is likely the best way to communicate. But
sometimes quick questions can balloon into many messages back and

forth, whereas a simple synchronous audio or video call would have
been much quicker.

Discussions are another form of bidirectional communication that can
get out of hand if not managed well asynchronously. When team
members cannot all be present at the same time, you may have no
choice, but consider whether a synchronous discussion, such as a
meeting, could work better for the goal and the content. A mixture of
gathering information and ideas asynchronously and then meeting
synchronously to discuss may work best.

Synchronous communication is the better option for a project kick-off
meeting if its goal is for team members to become familiar with one
another. That doesn’t mean that some of the communication involved
can’t be done asynchronously before or after the meeting. Creating
templates and standards that support the planning processes you use
can enable more of your planning activities to be done asynchronously.
Prework, such as adding ideas to an online whiteboard or reading a
document or spreadsheet, can be asynchronous so that time in the
meeting is not used waiting for people to complete these tasks.

WARNING
When using purely asynchronous communication, make sure to give everyone time to
contribute and encourage those who have not contributed as any deadline approaches. It
is easy to end up with the same people dominating asynchronous communication, which
lowers diversity and innovation. The highest paid person’s opinion (HiPPO) or the
loudest person’s opinion is not the only thing you want to hear.

Async Methods
You can communicate asynchronously in many ways. Here are some
examples:

Email

This is one of the most-used communication methods, often
used within companies and for business to business (B2B)
and business to customer (B2C) transactions. Use email
when you don’t have an alternative method for messages of
any length with suppliers or external teams. To
communicate with colleagues, it is generally best to use
email only for longer text-based messages. Meeting invites
are usually sent via email. See “Symmetrical Email” for more
on using email effectively.

Instant messaging

This comes in two main forms: walled-garden options, such
as Slack and Teams (which are often extensible and
integratable with other apps), and messaging apps based on
phone numbers, such as WhatsApp, Signal, and plain old
text messages (which are limited to—or started life as apps
on—mobile devices, used to contact anyone with the app or
a mobile phone number). Professionally, you are much more
likely to use a walled-garden option, which is useful for
communication within specific teams or on a 1:1 basis with
colleagues. Many also have the option of adding external
users, which is useful for adding external development
teams or other partners. The ability to create a channel or
team to communicate with multiple people makes it easy to
include only those who need to be included, but this feature
should be managed so that you don’t end up with an endless
proliferation of what are essentially multiple inboxes.5

Prerecorded video and audio

These can capture a live event, such as a meeting or training
session, and then be shared afterward, or created
specifically for sharing asynchronously. Podcasts, vlogs, and
prerecorded videos on platforms such as Vimeo and
YouTube are all asynchronous. These are great for sharing

an update or making an announcement, especially when
you want to convey things via your body language and tone
of voice in an asynchronous way. You can also create videos
or training material for colleagues or customers.

Forums and Q&A platforms

These can be internal and private to the company, external
with controlled access, or public. One of the most common
uses of forums is to ask for help or share tips on a particular
topic. Internally, you can use a tool like Microsoft Viva
Engage (formerly Yammer). This tool is often used as a more
informal method of communication within organizations,
usually on nonwork-related topics. These types of
environments help create a sense of belonging and alleviate
loneliness, which can be a problem with remote work. An
example of a Q&A platform is Stack Overflow, a public
platform for people to ask and answer technical questions.
You can also set up a private Q&A platform for your
company (other options are available, but Stack Overflow
offers a software as a service [SaaS] version), for content
including company and product-specific information, or
sensitive private information. The main advantage of these
platforms is that knowledge is preserved and searchable,
whereas the answer to a question in an email or chat is
easily lost.

Project management tools

These tools come in many forms, including open source
options like Redmine, Taiga, and WeKan, and proprietary
options like Asana and Jira. The best use for these tools is
managing communication of status updates, assignment of
tasks, and other project- or product-related communications.
If you use a Kanban or Scrum board, your team can update

https://oreil.ly/CVsXc
https://oreil.ly/CVsXc
https://stackoverflow.com/
https://redmine.org/
https://taiga.io/
https://wekan.github.io/
https://oreil.ly/uAmm8
https://oreil.ly/_OH49
https://redmine.org/
https://taiga.io/
https://wekan.github.io/
https://oreil.ly/uAmm8
https://oreil.ly/_OH49

items on these boards so that everyone can see the status of
each item at a time that suits them.

Wikis and knowledge management systems

Information needs to be accessible and searchable to those
with authority to read it and editable to those with
permission to add to or update it. Storing information in
digital documents (such as slide decks or word processor
documents) is not an efficient way to do this, but wikis and
knowledge management systems can provide the required
access and permissions. Policies and a technology radar
(discussed further in “Remote Tools and Governance”) can
be communicated in this way, so they are always accessible
when needed. Open source options include AppFlowy,
MediaWiki, XWiki, and BookStack. Proprietary options
include Notion, Confluence, and Nuclino. These tools are
good options for asynchronous status and progress updates.
Besides adding your update, often you can comment on or
react to an update, such as with an emoji.

Surveys and polls

An often overlooked form of communication, surveys and
polls are good for gaining information in a more structured
way. You can include open-ended questions (the answer will
be free-form text) as well as closed questions (the answer
will be a score, single choice, multiple choices, and so on).
These are particularly good for eliciting information from
those who may not speak up or contribute in a synchronous
discussion or even in an asynchronous chat, especially if the
answers are anonymous. You can use surveys and polls to
collect information from stakeholders or to ask customers
for feedback on an existing or proposed product.

Whiteboards and collaborative drawing tools

https://appflowy.io/
https://oreil.ly/XaiXK
https://xwiki.org/
https://bookstackapp.com/
https://notion.so/
https://oreil.ly/Wj8Fz
https://nuclino.com/

Digital versions of office whiteboards have benefits
compared to their physical counterparts: the digital versions
have effectively infinite space, allow many more people to
view them at the same time, and enable items to be moved
around easily. Once everyone is familiar with using the tool,
it can be used either synchronously or asynchronously.
Drawing tools such as draw.io and Excalidraw can be shared
and used similarly. These tools can be employed in many
ways, with the most common being to collect ideas or
information, create and get feedback on diagrams, and allow
voting and other interaction (such as collaborative
modeling).

Files, feedback, and comments

Collecting feedback and comments on a document or
diagram lends itself well to asynchronous communication.
The document or diagram itself can also be created
collaboratively, either synchronously or asynchronously.
Both Google and Microsoft provide these features in their
document tools and similar products.

TIP
To avoid wasting time on asynchronous communication that is going nowhere fast,
develop rules for switching to synchronous communication and then use these as a team.
For example, if an email or instant message has gone back and forth four or more times,
switch to a video or audio call to clarify.

Enhance Async
Asynchronous communication can be improved by automating as much as
possible. There are many ways to do this, including:

Automate access to documents and resources by using single-sign-on
options, security groups, or built-in permissions models in the software

https://drawio.com/
https://excalidraw.com/

you use.

Prepopulate a person’s status update with information from their last
update so that they can make changes rather than having to write it
from scratch.

Use tools such as Power Automate, Zapier, and IFTTT to
automatically populate information among your tools.

Many activities that need to be done synchronously can be improved by
moving some of the communication to asynchronous options before and
after the synchronous event. This creates an asynchronous sandwich: the
asynchronous activities are like the bread, and the synchronous activity is
the filling.6

https://oreil.ly/5StrA
https://zapier.com/
https://ifttt.com/

SETTING AND HANDLING EXPECTATIONS FOR ASYNC
COMMUNICATION

To avoid or minimize problems that occur with asynchronous
communication, it is important to set expectations. In their book Remote
Works (Berrett-Koehler, 2023), Ali Greene and Tamara Sanderson
describe a useful model to help with this: the 4 Ws. Here is an overview
of their 4 Ws:

Who?

Who should and shouldn’t be included in the
communication? Don’t overburden people with
unnecessary information or leave out the person who
has the authority to make the decision.
Who is responsible for responding? Is a response
needed, and if so, from whom? Explicitly state what
you need from each person involved.
Ensure that the discussion or decision doesn’t move
forward until the person or people you need a
response from have responded.

What?

What are you expecting in return? If you are
expecting a response, what form are you expecting
that response to take? Explicitly state this in your
communication.
What tool and workflow should be used? Do you have
a communication agreement that specifies this?
Ensure that the tool and workflow meet the goals of
the communication.

When?

https://learning.oreilly.com/library/view/remote-works/9781523003334/
https://learning.oreilly.com/library/view/remote-works/9781523003334/

Specify the date, time, and time zone every time.
Using statements such as end of day tomorrow or asap
is meaningless, especially when people have different
work hours or are in different time zones.
Set a deadline for responses that takes into account
recipients’ working hours and time zones. Hold
people accountable and make sure the
communication doesn’t stall.

Wah-wah!

What happens if you receive no response? State what
will happen if the deadline is missed.
Make the reasons for response clear. State the impact
on the team/solution/project, so that everyone knows
why they are putting effort into the response. For
example: “If I don’t hear back from you by the date
and time above, I will assume no changes need to be
made and send the document to the client as is.”

To these 4 Ws, I will add a 5th: Why? Why are you sending the
communication? What are the goals? Understanding why will help you
answer the other 4 Ws. Why will help you to do the following:

Select the people who are needed to meet the goals (who).

Work out what response you need (what).

Decide on an appropriate deadline (when).

Understand the effects of missing the deadline (wah-wah).

Remote-First Working
In this section, you’ll learn all about remote-first working, but first let’s
untangle some of the terminology. Although the terms remote-first and
remote-friendly are often used interchangeably, the outcomes of these
approaches differ significantly.

Remote-First Versus Remote-Friendly
Both remote-first and remote-friendly are hybrid approaches to working,
meaning an organization’s workforce may be working remotely or in the
organization’s offices. In a remote-first approach, processes and decisions
are based on optimizing remote work, and all workers are given the same
chance of success. It doesn’t mean remote-only or fully distributed but has
the same principles.

In a remote-friendly approach, the business allows remote work but does
not optimize for it. The organization is office-centric and sees remote
working as a benefit to workers.

NOTE
One of the key differences is that remote-first values outcomes over hours worked, and
remote-friendly values hours worked over outcomes.

The remote-first model is characterized by the following:

Remote work is not just supported but encouraged, with managers also
encouraged to work remotely.

Organizational processes and decisions are based on optimizing for
remote work, such as taking different time zones into account, with
everything designed around supporting remote working.

Asynchronous communication is emphasized, and key decisions are
made and communicated this way.

Synchronous meetings are kept to a minimum and recorded, with
attendance being optional (based on the assumption that some people
cannot attend).

Virtual team-building is given a high priority. The difficulty of bonding
virtually is taken into account, and more effort is put into this activity
to compensate.

All employee voices are equal, regardless of where they are working;
for example, all attendees of synchronous meetings are expected to
attend virtually, whether they are working remotely or happen to be
colocated in an office.

All employees have the same flexibility of schedule, whether working
remotely or in an office, which is supported by asynchronous
communication.

Praise and promotions are awarded based on contribution and not on
proximity to the office.

People, information, and resources are equally accessible whether
someone is working remotely or in an office.

Recruitment does not focus on where a potential employee lives, but
whether they are right for the role and company.

Output is valued over hours worked. Employees do not gain points
with management for being seen working late in the office. The output
of their work is what matters.

WARNING
Employees’ work-life balance must be maintained via explicit expectations from the
organization and managers, such as that notifications will be turned off outside working
hours. It is easy for work and home to blur when your office is in your home. Remote
workers need to be protected from burnout.

The remote-friendly model is quite different, being more of a supplement to
traditional office-based work, and brings with it more collaboration
challenges when it comes to remote workers:

Remote work is allowed, such as for certain roles or a specified
number of days per week, and is seen as an employee benefit rather
than the organization actively seeking to employ remote workers.

The organization is office-centric, with managers typically working in
the office full-time or rarely remotely.

The business relies heavily on synchronous communication, such as
team or project meetings, and attendance is expected.

When synchronous meetings take place, those who are colocated
attend together in a meeting room, while remote workers attend
virtually.

Key decisions are made synchronously and in person, without taking
remote working into account much, if at all.

The business usually provides little to no support for remote workers
in other time zones.

Remote workers end up on a lower tier than office-based employees,
with office-based employees praised and promoted over remote
employees.

Hours worked are valued over output. Value is given to those seen to
work overtime, whether they are recompensed for this or not.

Remote-First Benefits
Remote-first has many benefits, even to organizations that have a minority
of employees working remotely, with some benefits coming from the ability
to employ a workforce that is not dependent on the availability of office
space or location. Benefits of remote-first include the following:

Long-term flexibility

The organization can scale up or down without worrying
about having to also scale office space or physical
infrastructure.

Business continuity planning

A distributed workforce decreases the likelihood that a large
percentage of employees would be affected by an issue that
would stop them from working, such as a power cut, lost
internet access, weather conditions, or public transport
strikes.

People and productivity are put first

Irrespective of location, time zone, or work pattern, people
are enabled to do their best work via processes, tools, and so
on. Everyone is enabled to work effectively, without wasting
the potential of remote employees.

A larger talent pool is available

The organization is not restricted to people who live within
commuting distance of an office and can find the best person
for the job regardless of location.7 Many companies now
employ people who don’t live in a fixed location or country,
commonly known as digital nomads.

Costs are reduced

Less office space is needed, along with less lighting, heating,
and cooling. There is less need for a travel subsidy for
commuters, and employees also reduce or eliminate their
commuting costs.

A reduced carbon footprint

Less commuting, office space, lighting, heating, and cooling
mean lower emissions.

Increased employee productivity and engagement

All employees feel valued, enjoy a better work-life balance,
and experience fewer interruptions because they have less
synchronous communication and are not in an office
environment.

More and better documentation

Asynchronous communication promotes documentation by
default, which supports onboarding new people and enables
everyone to find the information they need independently.

Improved personal management skills

Because employees know they might not receive a response
to their asynchronous communication within a few minutes,
they become better at managing their work and planning
ahead.

NOTE
Some of the benefits of remote-first are similar to the benefits of moving from on-
premises servers to the cloud. Not having to worry about scaling office space up or
down is similar to moving servers and services onto the cloud provider. A distributed
workforce is similar to using multiregion or zonal options in the cloud for high
availability and business continuity.

In person work has some advantages over remote working, although these
benefits are only fully realized in a remote-first or fully in-person
environment. Some of the benefits of in person working can be adjusted for
remote working:

Building rapport or team-building is much easier in person. Remote-
first and fully remote organizations need to focus on virtual team-
building and/or fund retreats to support these activities.

Social accountability is built in when working in person. It needs to be
planned and built remotely.

Chance encounters and conversations can lead to new ideas or fixing
problems when working in person. This is very hard to replicate
remotely.

Some employees need or want to work in an office environment.
Remote-first or fully remote companies would need to have flexible
workspace near the employee or offer a stipend for coworking.

When working in person, collaborating and communicating requires
less reliance on technology. Coworkers can still communicate face-to-
face if there were a technology issue in an office (although they might
not be able to do their jobs without it).

TIP
Personal user manuals, or readme files, are an effective tool for remote team-building.
Each team member’s user manual, based on a template, is shared asynchronously among
the team and other colleagues. It should include how you like to work, a bit about
yourself, your goals, and so on.

Evolving to Remote-First
Becoming a remote-first organization (also known as an anywhere
organization) makes sense. It supports short- and long-term business goals,
such as scalability, business continuity, and reducing costs, while supporting
employee wellness and productivity. As with many adoptions, the hardest
part is often culture change and convincing people of the need for change.

The change required will be a mixture of business and technical aspects.
From your perspective as a technical professional, enterprise architecture
(EA) will play a key role (even if you don’t have anyone with the role of
enterprise architect). Approach the change from an enterprise architecture

perspective, considering both business and technology. Here are some ways
EA will support you in evolving to remote-first:

Impact analysis

Identifies potential impacts on the wide-ranging aspects of
the organization (for example, data, systems, HR, and
finance). You can use it to analyze the benefits and risks to
enable or mitigate them.

Business process modeling

Models the current processes to help identify the changes
needed and design the future state of these processes.

Gap analysis

Works out what needs to be implemented, migrated, and
deprecated when moving from the current state to the
planned future state or milestone.

Capability mapping

Helps you identify the capabilities that need to change or be
created to support remote working as a priority.

EventStorming

Facilitates assessing your current state, planning, and
moving toward remote-first using the process-modeling
level.

Domain storytelling

Elicits the high-level current state of processes and systems
and to design how these need to change.

The following are some business- and process-centered ways to implement
remote-first in your organization or team and can be applied to the

architecture techniques:

Consider every employee to be a remote worker

Those working in an office just happen to be colocated.

Plan and create support systems for remote work

You need to understand the challenges faced by remote
workers. Work with them (and their office-based colleagues)
to identify challenges and compensate for them. This might
involve changing expectations or providing software or
hardware tools.

Adopt asynchronous communication

Put in place expectations and agreements on how
communication will happen and the tools that will be used
(see “Async to Think”).

Make key decisions asynchronously

Allow time for everyone involved to contribute on an equal
footing. Underlay these decisions with a remote-first bias.8

Encourage those who work in offices to work remotely

When everyone works remotely, at least occasionally,
empathy is built for those who usually work remotely.

Give the same flexibility to all

Those working in an office should be given the same
flexibility as remote workers; for example, if remote
workers can choose their start and finish time, so should
office workers.

Treat all employees equally, but not the same

Take into account time zones, personal circumstances,
disabilities, and so forth, to put everyone on an equal
footing.

Tailor remuneration to whether the role is remote or not

Benefits offered to employees who work in an office are
often useless to a remote employee, such as free lunch, on-
site gym, or travel subsidies. Remote benefits could include a
stipend for coworking space, a gym membership, or a
certain amount of expensed groceries. Where it is difficult to
offer benefits such as healthcare and pensions to employees
in other countries, a stipend toward these can work well.

Embrace documentation by default and invest time and money into
knowledge management

Asynchronous communication means that many things are
documented automatically, but this documentation needs to
be managed so that it is accessible and efficient. See Part III
for more on knowledge management.

Consider creating a head of remote9

A head of remote or similar position within the company can
improve internal adoption of remote-first and/or promote
the practice outside of your company (marketing and
promotion).

Move away from traditional KPIs and OKRs

Key performance indicators (KPIs) and objectives and key
results (OKRs) typically measure performance over time and
value hours worked over output. Change to managing by
output and productivity.

Plan for and put into action digital team- and rapport-building activities

Those joining these activities from an office should join in
the same way as those joining remotely.

Remember that remote working can increase loneliness

Remind remote employees that camaraderie does not have
to come from colleagues alone and that they should take
social opportunities. You can help by paying for remote
employees to visit offices or each other, to attend retreats for
all employees, or to go to in-person conferences and
training.

TIP
SaaS tools support remote work well, as they can be accessed from anywhere and
usually via single sign-on (SSO). This simplifies access management and removes the
need to allow external access to an on-prem or cloud-based resource (reducing attack
vectors on your systems).

In Remote Works, Greene and Sanderson write, “In the future, we believe
the lines we draw today—in person, remote, or hybrid—will blur, and all
knowledge work will be digital-first.” The future does look to be moving
toward a digital-first, asynchronous, and global business world.

Summary
You have now seen that successful communication is, in part, about
accessibility and inclusion. Leveling the playing field for all colleagues, and
diagrams that don’t shut out part of your audience (see Chapter 3),
contribute to a better working environment and better communication
overall.

In this chapter, you saw how using asynchronous or synchronous
communication appropriately can make your colleagues happier by
improving their work life and helping them to communicate. In the previous

chapter, you saw how respecting people’s time also improves contentment
and work-life balance. I bet you didn’t think this was a book about
happiness.

To round out Part IV, you will now learn how to more effectively use email
and presentations (some of the most common channels of communication),
as well as govern remote communication and the tools your company uses.

1 Heuristics are practical methods that are not guaranteed to be optimal.

2 The car park or parking lot technique is an efficient tool to keep meetings on track, placing
topics that are not on the agenda aside so that they can be discussed later. Participants
interested in the topics should be content to go back to the meeting agenda, knowing their topic
will not be forgotten.

3 See “Nonverbal Overload: A Theoretical Argument for the Causes of Zoom Fatigue” by
Jeremy Bailenson.

4 For more on deep work, see Cal Newport’s Deep Work: Rules for Focused Success in a
Distracted World (Grand Central Publishing, 2016).

5 I know of one organization that had a greater number of Microsoft Teams teams than people
working in the whole organization.

6 This is similar to the async-sync-async sandwich in coding, but the second async element in
code is processing the response to the first async element, which may not be the case for
meetings and pre- and postwork.

7 Legal or other restrictions might limit where employees of a company can live.

8 Note this is a remote-first bias, not a bias toward remote workers.

9 A head-of-remote role was originally suggested by Andreas Klinger, who was Head of
Remote at AngelList.

https://doi.org/10.1037/tmb0000030

Chapter 15. Remote Channels

Methods of communication can be classified as asynchronous,
synchronous, or a combination of both. Identifying the best method in a
particular situation can be hard, especially if you don’t know the pros and
cons of each.

This chapter explores how to get the best out of email communication,
presenting and screen-sharing online, and communication tools you can use
with remote and hybrid teams.

Symmetrical Email
Many see email as a necessary evil, but it doesn’t have to be that way.
Symmetrical email is a pattern to help govern the process of sending and
responding to emails and address the problems and inequalities email can
cause. Here are the three main problems with email that this pattern
addresses:

Different people deal with and respond to emails in different ways.

When to use email and when to use another form of communication,
such as instant messaging, isn’t always clear.

Expectations and clarity are usually missing from the emails
themselves.

Your company or team may or may not have set expectations for email, but
some of your colleagues likely check their email constantly, while others
check it once a day or less. You also receive many types of communications
in email form: newsletters, notifications, requests, tasks, and so on.

Without shared and respected expectations and processes around email, no
one can reliably communicate. You need to know when to use email over

another method of communication, how quickly you are expected to
respond to different types of email, and how to communicate effectively via
email using shared standards.

You can solve these problems by structuring and augmenting email based
around the reasons for sending emails, setting expectations for how email is
used, and improving clarity in email messages and subjects.

Email Reasons
A shared communication agreement within your team, department, or
company is a good way to enact shared standards. You may find it useful to
set up agreements at all these levels. You can even share the agreement with
other businesses you work with so that they are aware and can hopefully
reciprocate, or create formal internal or external service level agreements.

Decide what email should be used for. Some uses might include sending
updates about projects to stakeholders or communicating with people
outside of your business. Your communication agreement should state
which types of communication should be emailed and which types should
be conveyed in another way.

TIP
To decide which types of communication to email, it is useful to first create a list of all
the typical types of (and reasons for) communication within your team, department, or
company. Then work out which are better suited to synchronous or asynchronous
methods and use that to help decide which channel of communication to use, such as
email, instant message, wiki page update, and so forth.

Email Expectations
Once you have decided the reasons for using email, create a shared standard
for efficiently communicating the urgency of a message and the response
you expect. The subject line of the email is the best place to communicate
this information so that it is front and center for the receiver.

For an urgent email, a subject line might be “[URGENT, response required
by 1 p.m. CET today, 24th July] Request for telemetry data.” If an email
requires no response and is only for information, you might use “[FYI]
Minor update to project budget,” and if a response is required by one
recipient only you might include something like “[Response required -
Libby] Architecture meeting update.”

WARNING
Don’t overuse phrases like urgent. If messages are marked urgent that are not urgent,
people will stop reacting quickly to messages that really are urgent. This is the same
advice as the fable “The Boy Who Cried Wolf”.

Add examples to your communication agreement and ensure that the
agreement is part of onboarding so that new team members understand
emails sent to them and can use the standard themselves. The examples just
mentioned are clear to anyone who reads them and so can be sent to people
outside of your communication agreement too.

It is a good idea to review your communication agreement around 2 to 4
weeks after it is first created, when issues arise, and regularly, for example,
every 6 to 12 months.

Email Clarity
Problems arise in email communication in part because email is easy to
send (even to multiple recipients) but is not always quick to read and
respond to.

NOTE
The symmetrical email pattern can be applied to automated emails and notifications to
ensure that recipients are clear about the urgency and response required from them.

https://oreil.ly/hXzgg

If it is not clear what is required of the recipient, they need to spend time
and mental energy working out what they need to do and on what time
scale. This happens every time there is a reply to the email thread, which
may happen many times, especially if more than two people are involved.
Part of this can be solved with the subject line examples mentioned earlier
in this chapter, but you can go further. Spending a little more time and
thought on the creation of an email can save hours for everyone involved,
including the original author.

It is good practice to include any specifics from the subject line in the email
body also, such as the time and date a response is required. Then the
recipient doesn’t need to refer back to the subject line at the top when they
finish reading, and you have made the response requirement obvious.

When you send an email to multiple recipients, explicitly state your
expectations for each one. Don’t expect recipients to work this out based on
whether they are in the To, Cc, or Bcc field. Indicate who you expect a
response from and who you don’t, and what you expect in the response, as
shown in Example 15-1.

Example 15-1. Email with clear expectations for all recipients
from: kim@polyglotmedia.com

to: gino@polyglotmedia.com

cc: sander@polyglotmedia.com, elissa@glidani.com

subject: [Response required by Friday - Gino] Change of plan for kick-off meeting

Hi Gino, Elissa, and Sander,

The kick-off meeting arranged for next Thursday needs to be moved. Elissa has

suggested Friday at 10 a.m.-12 p.m. CET or 2 p.m.-4 p.m. CET.

@Gino, can you please let me know by 4 p.m. (CET) this Friday which one of

Elissa's suggestions is preferred by you and your team, or any days and times

your

team can make it the following Monday or Tuesday if Friday is not possible.

@Sander, this is FYI but please let me know if you have any concerns.

@Elissa please let me know if the availability you gave me for the following

Monday

and Tuesday changes.

Kind regards,

Kim

Making your expectations of recipients clear is useful for helping you
decide who should be included and who shouldn’t be. Excluding people
who would not benefit from receiving the email will save you both time.

When you ask someone to spend time on something, you should specify the
amount of time or at least an estimate:

If you ask someone to meet with you, specify a duration. For example,
“Can we please meet for 30 minutes?”

If you are asking them to complete a survey or similar task, give them
an estimate. For example, “The form should take no longer than 5–7
mins to complete.”

Or when asking for a review of a document or something similar,
specify a limit on their time. For example, “Please spend no longer
than 30 minutes reviewing the draft architecture decision.”

TIP
Email is not the only option for communicating with customers and people outside of
your company. Many tools have B2B options for inviting external users, such as adding
them to a chat or team in a messaging app. Online forums and web-based chat are other
options for communicating with customers. Pick the communication channel that best
fits the purpose of your message.

Email Tips
Here are some extra tips to improve your email communication:

Start with your main point

This makes sure that all recipients see the most important
point, even if they don’t read the whole email (see
“Structured Writing” for more details).

Stick to one topic per email

Send separate emails for separate reasons or requirements
to avoid miscommunication.

Use hyperlinks

Link to any documents, web pages, or other resources you
reference; otherwise, your recipients will waste time trying
to find the content you are referring to.

Link to documents rather than attach copies

Every time you attach a document to an email, it creates a
copy for every recipient. Linking to a document as your
single source of truth can help avoid confusion and having
to merge copies with updates.

Default to Reply instead of Reply All

Change the default in your email program to Reply so that
you have to make a conscious effort to reply to everyone
included in an email. Typically, you need to reply only to the
sender.

Turn on Undo Send

Many email programs, including Gmail and Outlook, have a
feature that delays sending the email for 10 to 20 seconds so
that you can cancel the send and make changes if you
change your mind in that time frame.

Be polite and assume good intent

When writing an email to others, be polite. If an email you
receive seems to be impolite, assume that it was sent with
good intent and has come across wrong. It is easy to seem
brash or impolite in writing.

Be as concise as possible

Get to the point quickly.

Proofread before hitting Send

Get into the habit of at least scanning through your email
before sending to avoid the easy-to-spot errors.

AVOIDING ROBOTIC LANGUAGE
Emails written by humans often contain robotic and unnatural language,
which can be jarring to the recipient. Consider the following when
writing emails or crafting templates for automatic notifications in
emails and software:

Make it personal

Use you and I to make the message more personal and
easy to understand. Write “You should be proud of the
effort you put into the design” rather than “The design is
an effort to be proud of.”

Write as you speak

Imagine you are talking to someone you know and think
about the language you would use to express your
message: “Can you please give me feedback on the
context diagram by 4 p.m. IST?” rather than “Feedback on
the context diagram should be returned by 4 p.m. IST,
please.”

A good way to check your message is to read it aloud before clicking
Send.

Online Presentations
Presenting online, whether using a slide deck or sharing your screen, is
different from presenting in person and can be much harder. This section
covers patterns and techniques to enhance online presenting and
screensharing. It also shows how to update in-person presentations for an
online audience.

Audience Engagement
In a remote presentation, engaging with your audience is difficult. You
don’t tend to see them, which makes gauging their reactions and feelings
tricky. You also get the added complication of having to keep an eye on a
chat or Q&A feature for questions and possibly trying to spot a digitally
raised hand. Your audience is much less likely to call out a question than
they would in person if you had missed their raised hand.

You can use a few techniques to help with these challenges. First, ask your
audience to offer questions in the way you want to receive them. If you
want to control when you answer questions, using the Q&A or chat is the
best idea. If you are happy to answer questions as they come, raising virtual
hands may be more appropriate. If possible, ask someone else to keep an
eye out for questions and alert you or read them out so you can focus on
your presentation. Even if you ask your audience to use only the Q&A, it’s
a good idea to look for raised hands or other questions because someone
will miss or ignore your instruction.

TIP
You aren’t likely to impress or influence anyone as an icon on a screen. Turn on your
camera to better engage with your audience.

In addition to dealing with questions, you need to read audience reactions.
Many presenting tools have a feature that allows your audience to react to
you in real-time, usually with emojis. Ask your audience to use these

throughout and keep an eye out for them so that you can respond to them as
you would people’s facial expressions in a room. You can also ask your
audience to give a thumbs up or down, in answer to a question you ask
them, to gauge understanding or conduct a vote.

Getting and keeping your audience’s attention is more difficult because
online interactions take more of your audience’s energy and each audience
member has their own set of distractions. Here are some ways to help you
gain and keep your audience’s attention:

If you are using a slide deck, use more slides than you would in
person. Advancing through slides more quickly helps keep attention.
Spreading your information across more slides has other advantages as
well, such as allowing you to make content larger and clearer, and
more negative space is easier for your audience to look at (see
Figure 15-1 for an overview). Slides are free, so add as many as you
need.

Aim to split your message into shorter segments and add visual breaks.
These might be a blank slide or an image such as a photo, meme, or
cartoon. It is hard to sustain concentration on one subject for long (the
average attention span is no more than 20 minutes), so breaking up the
content gives your audience a rest, which they need for online
interaction.

Use a presenter mode (picture-in-picture), if available, when showing
slides or sharing your screen so that your audience can see you. Make
sure to use exaggerated facial expressions and gestures so they are
easier to see in the small view you will be providing. Seeing your
facial expressions and gestures will make it much easier for your
audience to understand you.

Besides visual breaks, give your audience actual breaks at least every
45 to 60 minutes. This will help them concentrate better afterward.

Enable your audience to participate by using polls and similar tools
such as creating a word cloud using live responses. Many third-party

options offer this functionality for a presentation, such as Claper and
Mentimeter, and simple polls are often built into the presentation tool,
such as Microsoft Teams or Zoom.

Try to minimize presentation time and maximize discussion, group
activities, and interactions. Asynchronous communication before the
presentation can provide some of the information to reduce the
presentation time during the event.

WARNING
Remember that your audience’s bandwidth and screen size will probably vary. Keep this
in mind if you are using media such as video. When designing your slides, remember
that many of your audience may be viewing them on a small laptop screen.

Figure 15-1. Improving a slide deck by splitting up slides

Presentation Content
A common fallacy of presenting is that an agenda slide is required. This
comes from the premise that you should tell your audience what you are
going to tell them, tell them, and then tell them what you told them. You can
follow this premise, but telling your audience what you are going to tell
them rarely translates to an agenda slide, which is usually boring and
unnecessary. You may want to include an overview if you are teaching a
training course or workshop, but you should not spend much time on this.
In most cases, you should focus on the challenge or pain point you are

https://claper.co/
https://mentimeter.com/

addressing and let your audience know that you are going to talk about
solving this for them.

Good ways to begin your presentation include showing an image, bold
statement or statistic, or starting with a story. Use these techniques to frame
your main message or takeaway. You can also end with that same main
message or takeaway for emphasis.

NOTE
You may think that you don’t need to use techniques like this when you are presenting
to your architecture review board, but you will find that you get your message across
much better by getting and keeping your audience’s attention and interest. An agenda
slide will not do that.

And finally, at the end of a presentation, consider the next steps or actions
that you want your audience to take. This is where a remote presentation
has some benefits as it is easy for you to share a link that you want the
audience to click, or ask for feedback or some sort of input via the chat or
poll feature.

You can send asynchronous communication afterward with more
information, follow-up actions, and so forth. Use these techniques to meet
the goals(s) of your presentation.

INFODECKS VERSUS SLIDE DECKS VERSUS
SLIDEUMENTS

When is a slide deck not a slide deck? When it contains all the
information that the presenter is going to say. This sort of slide deck,
when delivered by a presenter, is called a slideument. It is a cross
between a slide deck and a document. The audience spends most of the
presentation reading the slides rather than listening to the presenter and
not giving enough attention to either.

Slideuments often happen when the same deck is used for the slides and
as a hand-out to the audience, or when the presenter doesn’t know their
material and needs to read it off the slides. This never works as a
presentation.

Infodecks are slide decks that are created specifically to communicate
information and not to use alongside a presenter. They are stand-alone.
Infodecks can be more useful than a document, allowing diagrams to be
shown full-screen and in landscape and giving you more control over
layout. They also encourage a multimedia approach with less text and
so are easier to read than long paragraphs in a document. When
distributing an infodeck, it is best to convert it to a PDF document, or
distribute it within a web page, so that more people can easily access it.

The slide deck that you create to be used by a presenter should be
considered the visual element of your presentation. The presenter
provides the audio element. One doesn’t work without the other, and
together they make the presentation. The presenter controls time during
the presentation, using this to gain and keep attention, emphasize, and
allow the message to sink in.

Screen Shares
When collaborating with colleagues, you can share information visually by
sharing various applications on your screen, not just slides. For presenting

finished work, you will often share full-screen and in presentation mode so
that everyone is focused on your content and sees it at its largest.

When you want input and collaboration, a good technique is to share your
content in editing mode. This emphasizes that you are happy to make
changes. To make sure everyone can still see the content, you can hide
toolbars and fit the content to the window.

TIP
When sharing your screen, bear in mind that your audience may find it hard to see your
cursor. If you use your cursor to indicate anything on your screen, move it slowly and
keep it pointed at your focus for at least 5 seconds to help anyone experiencing lag. You
can also set your cursor to be larger and a bright color.

Remote Tools and Governance
The tools needed for remote work differ from those needed in person. You
must compensate for the lack of proximity with the tools you use in a
hybrid or remote environment.

Physical in-person tools and resources such as sticky notes and whiteboards
have online counterparts that can offer more benefits (such as the ability to
move an item around a digital whiteboard). It is important to understand
when tools for remote work may be a better alternative for in-person
working too.

In this section, you will find patterns and techniques to augment and
strengthen your use and governance of remote tools. By considering tool
selection, data, security, and efficiency, you can enhance your remote and
hybrid working practices.

Selection Techniques
When it comes to selecting tools, you have so many options offering so
many features that the choice can be overwhelming. Requirements are

generally used to assess whether a tool meets the business, technical, and
security needs (often using MoSCoW prioritization: must, should, could,
and won’t), along with initial and ongoing costs. Some software
architecture techniques are also useful in this situation.

Architectural characteristics are useful to help prioritize functional
requirements (such as assigning must, should, or could) and for forming
nonfunctional requirements for the tool (see “Architecture Characteristics”).
This prioritization can make the difference between selecting one tool over
another and getting the tool that fits best with the company’s priorities.

TIP
Functional and nonfunctional requirements that support your architectural
characteristics should generally be prioritized higher than those that don’t. If you have
selected a top 3 architecture characteristics, the requirements supporting these should be
given the highest priority.

ADRs enable you to structure the process of choosing a software tool.
Documenting the context along with the reasons you need the software, the
decision drivers, and any assumptions or constraints, all contribute to the
software requirements.

The Evaluation Criteria section of an ADR documents all the requirements
for the software, and the Options section contains each option’s scores
against that evaluation criteria. Also note any other trade-offs, pros, or cons
for each option that could significantly affect the final decision.

Some tools are like a Swiss army knife, offering lots of features. At the
other end of the spectrum, other tools do one thing (and hopefully do it
well). There is no clear-cut answer as to which will best fit your needs, but
when choosing a tool, it is prudent to consider all its features; some
functions might either overlap with other tools you use or fill a gap in your
tool set. Follow the YAGNI rule of coding (you aren’t gonna need it) for
features that you don’t need, but tools with overlapping features might be
best consolidated.

TIP
Just as the style of your diagram can affect how your audience perceives it (see “Style
Communicates”), so too can the tool you choose affect what your audience thinks of the
output. A shared digital whiteboard would likely be perceived as containing transitory
material, and the more heavyweight tools (such as Enterprise Architect) can put off a lot
of people even though the content may be valuable.

https://oreil.ly/tZ2ed

EXAMPLE

SELECTING FOR CULTURAL FIT
One of Gino’s development teams maintains a custom documentation
system (PolyDocs), that all the development teams and the architects at
Polyglot Media use. The team pours a lot of effort into PolyDocs, but it
causes a great deal of conflict. Other teams feel that the team
maintaining PolyDocs prioritizes its own needs for the tool over other
teams’ requests. It also takes more development time than Gino wants
to dedicate to it, with broken builds and deployment issues wasting
further time.

Gino asks the architect team members for their thoughts and finds he
and the team agree that PolyDocs is not the right fit for the company.
Overall it fulfilled its purpose, but the trade-off is unhappy developers.

The problem is cultural conflict, not technical disagreement, and so
Gino and the architecture team work with the developers and others to
define architectural characteristics for the documentation system. The
architectural characteristics are then used as evaluation criteria in an
ADR to assess commercial off-the-shelf options, with stakeholders
supplying input.

The replacement for PolyDocs increases happiness among the
development teams and other users. An open source option is selected,
and any developer can contribute to the project if they want to make a
change, subject to Gino’s approval for the time spent.

The architecture team adds cultural fit to its list of architecture
characteristics for assessing software procurement.

Remote Tools
Developers and architects use many types of tools when working or
collaborating remotely, including instant messaging, documents, and wikis.
Here is a fairly comprehensive list (including some of the less obvious) of

the types of tools and how they can be useful to you and the people you
work with:

Online diagramming

Digital diagramming tools have now moved toward a SaaS
or online approach, and offer collaboration options to fit
with remote work. Some offer built-in collaboration, and
others utilize file-sharing services such as OneDrive and
Google Drive. These tools are essential for getting feedback
on or collaboratively creating diagrams and other visuals for
your software architecture. Examples include draw.io,
Excalidraw, and Lucidchart.

Q&A platforms

Documentation is even more important when it comes to
remote working, and one version uses questions and
answers. By using a specific Q&A platform, useful answers
don’t get lost in chat or email conversations. Public versions
exist, but you will want a private version for Q&A related to
internal software and processes or containing sensitive
information. Examples include Codidact, Question2Answer,
and Stack Overflow.

Wikis and knowledge management

Wikis and similar forms of knowledge management are
particularly important for a distributed workforce.
Asynchronous communication creates documentation
naturally because the information is sent in durable forms
(unlike discussions in a synchronous meeting, unless
minutes are taken). Use these tools to organize the
information from asynchronous communication and make it
accessible. Document processes and synchronous meetings
so that everything is easy to find and in one place. Examples

https://drawio.com/
https://excalidraw.com/
https://lucidchart.co/
https://codidact.org/
https://question2answer.org/
https://stackoverflow.com/
https://appflowy.io/
https://tiddlywiki.com/
https://obsidian.md/
https://xwiki.org/
https://notion.so/
https://appflowy.io/
https://tiddlywiki.com/
https://obsidian.md/
https://xwiki.org/
https://notion.so/

include AppFlowy, TiddlyWiki, Obsidian, XWiki, Notion, and
Confluence.

Forums and social tools

Private social networks and forums are good ways to
encourage rapport building among colleagues who might
never see each other face-to-face. Topics are typically not
about work (such as sports, hobbies, and family), or focus on
professional subjects not necessarily related a work task or
project (for example, cloud technology, event sourcing, and
DDD). Examples of these tools include HumHub, Viva
Engage, and Whaller.

Video conferencing

These tools are often used daily for virtual face-to-face
conversations and meetings, presenting slides or sharing
your screen, and interactivity in virtual meetings (for
example, polls, and break-out rooms). Use these tools for
synchronous communication. Examples include Jitsi Meet,
Zoom, Google Meet, Skype, and Teams.

Instant messaging

Chat applications usually allow other media as well as plain
text, such as images or links to files, to be shared among
individuals and groups. Instant messaging can be
synchronous or asynchronous, so make sure to set and share
expectations for using these tools. Examples include
Mattermost, Slack, Teams, and Google Chat.

Email

Often used for external communication (with customers or
other businesses), long-form internal communication, and
publishing newsletters, email is flexible but also prone to

https://appflowy.io/
https://tiddlywiki.com/
https://obsidian.md/
https://xwiki.org/
https://notion.so/
https://oreil.ly/sNb8P
https://humhub.com/en
https://oreil.ly/REUrA
https://oreil.ly/REUrA
https://whaller.com/en
https://meet.jit.si/
https://zoom.us/
https://meet.google.com/
https://oreil.ly/1E5lu
https://oreil.ly/VAzAi
https://mattermost.com/
https://slack.com/intl/en-gb
https://oreil.ly/VAzAi
https://chat.google.com/

creating time sinks. Follow the advice in “Symmetrical
Email”. Examples include Mozilla Thunderbird, Mailspring,
Gmail, and Microsoft Outlook.

Digital whiteboards

Online whiteboards aren’t often used for free-hand drawing
(probably because drawing with a mouse is hard), but they
have many other features, including the ability to add sticky
notes, images, icons, and so on, and to move these about and
link them together with arrows or by drawing a box or other
shape around them. Another benefit compared to a standard
whiteboard is the size of the online canvas. It is much larger
or effectively infinite, with benefits such as being able to
include multiple EventStorming perspectives on one canvas
and show progression. Outcomes are also automatically
documented, rather than rubbed off a standard whiteboard.
Examples include OpenBoard, Mural, Miro, and Microsoft
Whiteboard.

Project management

Project management tools have come a long way since the
first days of products such as Microsoft Project. Waterfall
planning has been largely superseded by Agile methods,
with many offerings now being SaaS. These tools are great
for asynchronous communication, including assigning tasks
and project updates. Examples include Redmine, Taiga,
Basecamp, and Jira.

File sharing

Attaching a document to an email or other communication is
well known to be an antipattern, creating another version of
the file every time for every recipient. This makes updating
everyone with any changes a nightmare. Sharing a link to
the file, with appropriate access rights, is the pattern to

https://thunderbird.net/en-GB
https://getmailspring.com/
https://mail.google.com/
https://www.outlook.com/
https://oreil.ly/p8M_8
https://mural.co/
https://miro.com/
https://oreil.ly/qzbxA
https://oreil.ly/qzbxA
https://redmine.org/
https://taiga.io/
https://basecamp.com/
https://oreil.ly/VemBL
https://seafile.com/en/home
https://dropbox.com/
https://google.com/drive
https://seafile.com/en/home
https://dropbox.com/
https://google.com/drive

follow. Examples include Seafile, Dropbox, Google Drive, and
OneDrive.

Collaborative documents

Those working remotely may need to collaborate, or ask for
feedback, on documents, spreadsheets, slide decks, and so
on. Most online document applications offer live
collaboration features if you want to work synchronously on
a document and comments for asynchronous collaboration.
Examples include ONLYOFFICE; Microsoft 365, which was
formerly Office 365; and Google Drive, which offers Docs,
Sheets, and Slides.

Data Proliferation
For many, the move to remote working was sudden and unplanned. The
need to maintain business continuity, avoid working in silos, and give
people the authority to make purchasing decisions has led to a proliferation
of software tools for remote working. In addition, entropy has increased
applications used within businesses. Everything tends toward chaos if left
uncontrolled, so the use of software must be managed within a business to
avoid the problems that chaos causes.

One thing often forgotten is that the proliferation of software tools also
means the proliferation of data. Each tool contains its own unique data, but
also data that is shared with other tools, and data that is a copy of or similar
to data in other apps (for example, user accounts and metadata like a list of
departments in the business).

Figure 15-2 illustrates the proliferation of data as apps multiply. Some apps
share data, some store their own data, and some data may be duplicated.
Read on for an explanation of these situations and their advantages and
trade-offs.

Data that is similar or replicated can cause several issues. For each software
tool that manages its own users’ authentication and authorization, a user has

https://seafile.com/en/home
https://dropbox.com/
https://google.com/drive
https://onedrive.live.com/
https://onlyoffice.com/
https://office.com/
https://google.com/drive

to create a new user account and may not follow good practices for creating
a password. This creates a new attack vector.

If a user changes roles or leaves the company, the user accounts in all the
tools they use must be updated to remove or change their permissions. One
or more accounts can easily slip through the cracks in this process. One of
these accounts with an insecure password is an excellent opportunity for
hacking.

Figure 15-2. Proliferation and sharing of data

Copies of data can easily go out of sync. A list of departments in the
business could end up out-of-date if a new department is added or
departments merge. A list of current projects or tools would become out-of-
date even quicker.

Tools needing to use the same data often lead to several versions of that
data, which may need to be kept in sync somehow. As the number of tools

using data increases, synchronization and maintaining a golden copy (a
single authoritative source of truth, or master copy) becomes harder and
harder. Even when the synchronization of data is automated, such as using
APIs in the tools or a shared data store, more tools mean more complexity
and the likelihood of errors or other problems. Inconsistent or unreliable
data can cripple a company.

Then there is the consideration of security and compliance. Is the data
transferred securely? When and how is it encrypted? How is access to the
data controlled? Where is the data stored? These are all important questions
for protecting business intellectual property but also for complying with
laws and standards such as GDPR, HIPAA, PCI, and ISO.

Any personally identifiable information contained in the data adds a huge
amount of complexity to data storage. You’ll need to figure out whether the
storage of the data (including geographical location and encryption)
complies with laws around this type of data, or even if you are allowed to
use that data in a particular software tool at all.

Security
Remote teams need the ability to access tools and data from anywhere,
meaning a shift toward SaaS products (hosted by the vendor) and the need
to control access to on-premises or cloud-based resources. For all its
benefits, remote working introduces more attack vectors to an organization,
which need to be mitigated by security policies such as using SSO,
approving vendors, and checking licenses and terms of service, among
others.

Data security is not the only problem when managing software tools within
a company. An attacker could move laterally through company systems
once they have breached one software application. Organizations with 500
to 2,000 employees report using on average just over 800 cloud apps each
month, with 97% of those being shadow IT apps, according to the July 2021
Netskope cloud and threat report.

https://oreil.ly/WAoSI
https://oreil.ly/WAoSI

Shadow IT is the software in use that the company is not aware of or in
control of. Even the software that is known poses a risk, but having around
780 unknown apps that might be malware or have vulnerabilities is a
security nightmare.

Tool Efficiency
The proliferation of software tools often leads to two or more tools that
overlap or even provide exactly the same features. Departments or teams
that are working in silos may invest in different software to meet their
needs, when they could use something already in use in the company.

If software capabilities don’t overlap, incompatabilities could arise when
the systems need to communicate at a later date. This lack of oversight of
software tools leads to wasting money on buying duplicate tools or
migrating to another compatible system.

Costs can easily spiral with many SaaS and other remote working software
tools charging per user, per month. The cost looks innocent when viewed
individually, but having many users and many tools can easily lead to
thousands of wasted dollars per month.

NOTE
When tools are underutilized, either because they aren’t needed or because they are
duplicates, the company also misses out on cost savings from bulk discounts and cost-
effectiveness across the business.

The efficiency of users and processes is also hampered by having large
numbers of software tools. Employees need to know which software they
should use for each task or process and where to find information, but
having too many options can be confusing.

Each new tool an employee is exposed to also has a learning curve. If an
employee is used to using one whiteboard tool but joins a meeting to find a

different one is being used, they will need to learn this new tool and cope
with switching between the two.

When you identify a need for new software but don’t know whether the
business already has other software that meets this need, the business could
waste time and effort in acquiring the new software and training employees.
Identifying who is responsible for the software is also difficult when there
are so many software tools. When responsibility is known, it is easy for that
information to be lost as people leave the company or change roles.

At a certain threshold, the number of tools slows employees down rather
than helps or streamlines their work. This threshold will vary, but it is
probably lower than you think.

Tool Governance
Remote work has accelerated the increase in software tools used by
businesses, but governance and stewardship can steer the situation back and
away from chaos. Using asynchronous options to both communicate and
make decisions about this governance is key for a distributed workforce.

An audit of the current tool landscape is an important place to begin the
governance of software tools. Ask what apps are being used, what they are
being used for, who uses them, how many people use them, how many
licenses the company owns, what the initial and ongoing costs are, and
whether the ROI is known.

Then one important question remains, for which the answer is typically lost
to time: why is this particular tool being used? If you are lucky, the answer
will have been recorded. This information is useful when deciding whether
a tool should be kept.

Retaining information about tools is also useful, like the renewal dates for
licenses, especially when the renewal period is long, so that you don’t need
to make a rushed decision on whether to renew. If you know when the
vendor will stop supporting the tool, the date should also be recorded so
plans for a replacement or upgrade can be made.

Information about each tool can be used to create an application portfolio.
Tools in the portfolio should be assessed against business policies to make
sure they are compliant. This should include security and compliance, such
as HIPAA or GDPR, or with a policy such as all data being encrypted at rest
and in transit. See Table 15-1 for an extract from Polyglot Media’s
application portfolio summary (which can link to more detailed
information).

Table 15-1. Extract from Polyglot Media’s application portfolio summary

App name Owner Users Licenses
Lice
upta

Obsidian Gino (tech
lead)

Tech dept 50 98%
2023

draw.io Libby (lead
architect)

Architects,
developers

Free/open
source

25 us
2023

Matter​most TBD (by end
Q4 2023)

Polyglot
Media

Enterprise 148 u
2023

Inter-tool dependencies should also be added to the application portfolio.
These are important when working out which tools will be kept (creating an
impact analysis) and for determining data lineage and security. Business
data flows should be mapped for all tools, showing integrations and their
implementation (for example, an API).

All tools should be evaluated against policies, business objectives, and their
pros and cons (for example, pricing and pricing model, effort to use and
manage, training availability and learning curve, and so on). The other

criteria to evaluate against are the requirements of the tool, bearing in mind
that these may have changed over time (such as a platform now needing to
provide scalability for products built on top of it).

Once you have evaluated the tools in your portfolio, you can move on to
consolidation. You’ll use the results of your analysis to identify tools with
the following characteristics:

Duplicate features without good reason

For these, a decision should be made about which tool to
keep and which to migrate away from.

Can be consolidated into another tool you already use

Doing this will mean reducing the number of tools and
vendors, and therefore reducing your attack surface. You
may also save money and will have less management
overhead.

Don’t meet the needs and goals of the business

These tools may have met business needs when they were
originally licensed or may have not taken some business
needs into account. They should be marked for replacement
or phasing out.

Don’t comply with policies or laws

These tools should be marked for replacement or phasing
out as a priority, unless a change to the tool can be made so
that it does comply, such as changing where data is stored.

Have a negative ROI or are not used enough to justify managing

Mark these for phasing out and migrating users to other
options if needed.

Have too many licenses for the number of users

Change the licensing levels on these tools as soon as possible
to save money.

When making these decisions, you should also take the following into
account:

The cost of increasing the number of licenses

If you are consolidating users to use one tool, you should
take into account the new license numbers for each tool to
evaluate the price.

The license models for each tool

You may find that one tool is much more cost-effective
overall, because of its licensing model, or that using two
tools with different models is more cost-effective (for
example, one repository hosting service charges per
repository, and another service charges per user).

How and whether migration of data is possible

For tools that are being considered for phasing out, find out
how data can be migrated. If it is not possible, the migration
may need to be done manually.

The skill sets of your employees

Which tools do they know how to use already? What is the
learning curve for tools you are considering migrating users
to? What training is available for tools, and how much does
it cost?

Compatibility and integration requirements

Does the tool need to integrate or be compatible with
another tool? This could be a deal breaker when it comes to
selecting a new tool or choosing which tool to keep.

Further analysis can then be done on the tools that you plan to keep, and
tools available on the market, to identify tools with these characteristics:

Have a cheaper option available

This may mean changing the licensing tier that you pay for
or migrating to a new tool.

Could be consolidated by replacing several tools with one new tool

As with consolidating to a tool you already use, this will
reduce attack vectors, management overhead, and probably
costs as well.

Have a better option available

Assessing the current market may bring up options that
better fit business needs and goals, or are otherwise more
efficient. These can be investigated as replacements.

When it comes to implementing these changes, it is usually best to go for a
phased approach and something like the strangler fig pattern.

NOTE
The strangler fig pattern (sometimes known as the Ship of Theseus) is used to replace a
legacy system by gradually replacing legacy functionality with code in a new system.
The new system eventually replaces the legacy, which can then be decommissioned.
Think of the tools you are replacing or phasing out as features of the legacy system you
are deciding whether to migrate.

Migrating users and data in phases allows you to iron out any issues before
affecting large numbers of people. Select the people who will be most
happy to run into and report issues as your early adopters.

With a plan for how your software tool landscape will look when you are
done, you can also consider optimizations such as integrating both upstream

and downstream services and tools. Many tools have APIs that you can
exploit to get better value for money and increase efficiency.

Implementing oversight and governance of your application portfolio is an
important step that will keep you from falling back toward chaos. Processes
and policies need to be put in place to manage the lifecycle of the software
tools used in your company, whether they are used for remote work or not.
Training should complement these processes so that everyone knows where
to find information on the current tools and the process for requesting that a
new tool be added to the portfolio.

The processes you implement will feed back into your application portfolio,
reducing the need to perform audits (although it is good to perform these to
identify shadow IT). Processes and policies should also have a lifecycle and
be reviewed and updated as needed.

Your application portfolio, processes, and policies can be communicated in
various ways, including by the following:

Technology radar

A technology radar describes tools and technologies and
categorizes them for use in your organization. A typical
visualization looks like a target (or radar), with technology
near the center being targeted for use and technology at the
edges being on hold, banned, or retired. Technologies and
tools are categorized into quadrants on the target. It is good
to provide a text-based or searchable version, as well as the
visual, for easy access. Figures 15-3 and 15-4 show some
layouts from the Thoughtworks technology radar.

Technical/technology reference model

A technical reference model (TRM) is similar to a technology
radar but categorizes and displays tools differently. You can
implement your TRM as specified in the TOGAF standard or
in a way that better meets your needs. Technologies and

https://thoughtworks.com/radar
https://opengroup.org/togaf
https://opengroup.org/togaf

tools are classified into a taxonomy. This is a much heavier
option than a technology radar.

Searchable and accessible application catalog

Make sure that all those who should have access do have
access to the application catalog. Tagging tools by their
features and reasons for use will help those looking for
existing tools that meet their needs. Including feature
information that may not be currently used will allow you to
identify an existing tool for another use.

Existing wiki and knowledge management tools

Define and describe processes and policies in the same place
that other business and technical information is
documented. Link to any tools, such as a technology radar,
from here as well.

Bring your own device (BYOD) management

Use a tool like Microsoft Intune, so that company data and
security are controlled on devices that are not fully managed
by the company.

Figure 15-3. Thoughtworks technology radar overview1

When creating policies and processes, it is important to communicate
expectations and exceptions for the lifecycle handling of tools. In general,
when a new need is identified that is fulfilled by an existing tool, you
should expect existing tools to be used, but exceptions will arise and a
process should exist for granting these.

https://oreil.ly/lGru8

Figure 15-4. Techniques quadrant of the Thoughtworks technology radar2

TIP
If you see a pattern of exceptions being granted, it may be time to review the policies or
the use of software that is causing the exceptions to be requested.

When exceptions are granted, they should be documented as exceptions in
your application portfolio so that others know whether to use that tool or the
existing tool(s) that could not be used in the case of that exception. An
exception may need to be granted each time someone else wants to use any
tools added to the portfolio as an exception.

A balance needs to be reached between creating too much red tape and
making it too easy to add another tool to the application portfolio. Both
extremes will negatively affect the business. Make the process as quick and

https://oreil.ly/lGru8

efficient as possible, while still having checks for policy and process
compliance. Automate as much as possible and make everything else self-
service.

WARNING
If your processes for adding a new tool to the application portfolio are too restrictive,
you will find that shadow IT creeps in, with people circumnavigating the governance
around software tools.

The application portfolio can be used to track application ownership,
making one person responsible for the software tool. To make the process
of changing the owner as smooth as possible (for example, if the owner
leaves the company), assign the ownership to a role, such as Owner of App
X, and assign that role to a person. That way, reassigning that role to any
other person is easy, whatever their actual job role might be.

The whole governance and management process of software tools should be
agile. Auditing, analysis, evaluating, consolidating, and managing are all
ongoing processes that need to be repeated and reviewed regularly. In
addition to this ongoing loop, the processes and governance around the
application catalog need to feed back into the application catalog, such as
updating the number of licenses when it changes, or adding a new tool with
all the required information.

Overall, the processes you put in place should deliver pertinent information
to the people who are paying for the tools in the application portfolio. Only
then can they make the necessary informed decisions about the case for any
tool in the portfolio. Every tool should be proving itself, either directly or
indirectly, to be granted space in your portfolio and management processes.

Summary
Now that your email communication is improved (and will hopefully
improve that of others by example) and you are communicating more
effectively via remote presentations, you are well on your way to getting
your point across in whatever medium you are using.

The governance of your communication and other tools should be the glue
that holds together your new framework for communication in your team,
company, and beyond.

1 “Technology Radar,” Thoughtworks, volume 28, 2023, https://oreil.ly/lGru8.

2 Thoughtworks, “Technology Radar.”

https://oreil.ly/lGru8

Epilogue

Now we come to the end of this narrative. I hope that I have managed to
“get the ball over the net,” to borrow a phrase from Michel Thomas that I
quoted in the Preface, in conveying the true importance of successful
communication in the technology arena and beyond.

You have learned that communication is not simply about getting someone
to understand you. Communication is building relationships, fostering trust,
solving problems, motivating people, promoting efficiency, and (possibly
most important) making people feel seen and respected.

In this book, I have brought together teachings from many diverse areas,
mixed them with my own ideas and experience, and applied them to
software architecture and business communication. I mentioned that
diversity in people and teams has benefits. Learning from diverse areas also
has benefits, including finding new understanding and making connections
that others cannot see, and I have passed that on to you in this book.

Communication is a part of every job, and in the technology arena, we have
perhaps the most diverse set of tools and methods for communication. This
wide selection has advantages and disadvantages, and what you have
learned in this book will help you maximize the advantages and mitigate the
disadvantages.

As we close this book together, remember that communication is a
dynamic, ever-evolving process. Our journey here may be ending, but yours
is just beginning. Take the lessons from this book, apply them in your work,
and observe the transformation unfold in your professional and personal
life.

Put into practice the communication patterns discussed, remain mindful of
the antipatterns, and most important, don’t be afraid to experiment and
explore. Communication has no one-size-fits-all approach—your unique
experiences and context will dictate your path.

Share your knowledge and your journey with others. You have a unique
perspective and experience that can benefit those around you, and in
sharing, you strengthen your understanding and create a positive ripple
effect.

Remember to revisit the essentials in Chapter 1 whenever you need a
refresher or find yourself off track. The fundamentals are your guiding light
in the realm of effective communication.

I encourage you to reach out with your experiences, insights, and stories.
Your journey matters, and hearing about your progress and the changes
you’re fostering is genuinely exciting. Be part of the conversation,
contribute to the community, and let’s continue learning together.

Wishing you successful communication,

—Jacqui Read

Appendix A. ADR Templates

Use these templates to structure your architecture decision records (ADRs).
They are also available on the companion website.

ADR Structure
See “ADR Structure” for instructions on how to use each section. See
Figures 12-3, 12-4, and 12-5 for examples of how to use this template.

Identifier and Title: A Statement of the Decision Made

Status
Draft/Decided/Superseded by ADR-XXX

Context
Why you need to make the decision. Assumptions, constraints, and decision
drivers.

Evaluation Criteria
What is important to you in making this decision? Which of your
architectural characteristics apply to making this decision? Should any
constraints or decision drivers become a criterion?

Options
Outlines of the options considered against the evaluation criteria (usually
using a score or rating), and trade-offs outside of the evaluation criteria. See
“ADR Options” for a template.

https://communicationpatternsbook.com/

Decision
The choice that was made and why.

Implications
The positive and negative consequences of the decision made.

Consultation
If taking input from others, document it here. Although consultation takes
place before a decision is made, it is documented at the end because it can
become long and obscure the decision itself.

ADR Options
Use the ADR Options table (Table A-1) in the Options section of your
ADR. For an example of how this table can be used, see Figures 12-3 and
12-4. To use Table A-1:

Create one table per option considered.

Add a row for each of your evaluation criteria.

Give a score out of 5 and represent this visually using stars or a
Harvey ball.

Place notes justifying the score given in the Rationale column.

Total the score for comparison with other options.

Add other trade-offs, outside of the evaluation criteria, in the “Other
trade-offs” section.

Table A-1. ADR Options

Criteria Score Rationale

☆☆☆☆☆ 0/5

☆☆☆☆☆ 0/5

☆☆☆☆☆ 0/5

☆☆☆☆☆ 0/5

Total: 0/20 Other trade-offs:

Index

A

abstraction

keeping levels in order, The Big Picture Comes First-The Big Picture
Comes First

mixing levels of, Mixing Levels of Abstraction-Mixing Levels of
Abstraction

prioritizing over text, Abstractions over Text-Other Abstractions

academic journals, Use Trustworthy Sources

acceptance prophecy, Using the Acceptance Prophecy-Using the
Acceptance Prophecy

accessibility

ADR storage, ADR Storage

as architecture characteristic, Architecture Characteristics

color, Relying on Color to Communicate-Relying on Color to
Communicate

labels, Appropriate Labels-Appropriate Labels

legends, Include a Legend-Include a Legend

limitations of graphs and charts, Tables

providing textual information for icons, Using Icons to Convey
Meaning

sharing the load, Accessibility-Accessibility

when creating visual abstractions, Other Abstractions

acronyms, Simple Language, Acronym Hell-Acronym Hell, Consistent
Vocabulary

active listening, Being Present, Speak from the Heart

active verbs, Use Vivid Language and Strong Imagery

ADHD (attention deficit hyperactivity disorder), Simple Language

adoption leave, Plan for Holidays

ADRs (architecture decision records), ADRs-ADR Culture, Selection
Techniques

avoiding groupthink with, Groupthink

communicating reasoning and argumentation, Use Reasoning and
Argumentation-Use Reasoning and Argumentation

content of, ADR Content-ADR Content

culture of, ADR Culture

identifying issues early, Get Feedback Early and Often

including feedback section in, Get Feedback Early and Often

preventing rushed decisions by using, Battling Bias

storing, ADR Storage

structure of, ADR Structure-Consultation

templates for, ADR Templates-ADR Options

agenda slide, Presentation Content

aggression, Using Body Language and Gestures

Agile

feedback, Get Feedback Early and Often

fit of just-in-time architecture with, Just-in-Time Architecture

agile

decision making as, ADR Culture

defining architecture characteristics as, Architecture Characteristics

feedback, Get Feedback Early and Often

governance of software tools as, Tool Governance

meetings clashing with, Enhance Meetings

agreements, communication, Email Reasons

AI (artificial intelligence), Automatically Generated Documentation

aligning goals, Influence and Persuasion

alternate text (alt text), Relying on Color to Communicate

analogies, Use Vivid Language and Strong Imagery

analysis paralysis, Decoding Messages

anecdotes, Use Trustworthy Sources, Demonstrate Your Knowledge, Speak
from the Heart

anger, Using Body Language and Gestures

animations, Other Abstractions

annotations, Balance Text

antipatterns

acronym hell, Acronym Hell-Acronym Hell

balancing text, Balance Text-Balance Text

boxes in boxes, Boxes in Boxes in Boxes-Boxes in Boxes in Boxes

color overload, Color Overload-Color Overload

conveying meaning through icons, Using Icons to Convey Meaning-
Using Icons to Convey Meaning

defined, Communication Essentials

going against expectations, Going Against Expectations-Going Against
Expectations

illegible diagrams, Illegible Diagrams-Illegible Diagrams

misleading composition, Misleading Composition-Misleading
Composition

mixing behavior and structure, Mixing Behavior and Structure-Mixing
Behavior and Structure

mixing levels of abstraction, Mixing Levels of Abstraction-Mixing
Levels of Abstraction

relationship spiderweb, Relationship Spiderweb-Relationship
Spiderweb

relying on color to communicate, Relying on Color to Communicate-
Relying on Color to Communicate

serverless pinball, Tell a Story

using UML for UML’s sake, Using UML for UML’s Sake-Using UML
for UML’s Sake

anywhere organizations, Evolving to Remote-First

aphorism, Misleading Composition

APIs, Tool Governance

apologies, Using Body Language and Gestures

appendix, Use Trustworthy Sources, Use Data and Facts

AppFlowy, Async Methods, Remote Tools

application catalog, Tool Governance

application portfolio, Tool Governance, Tool Governance-Tool Governance

approximate symmetry, Create a Visual Balance

ArchiMate notation, Clear Relationships-Clear Relationships, Accessibility

architecture characteristics, Architecture Characteristics-Architecture
Characteristics, Selection Techniques

Architecture Characteristics Worksheet (Richards), Architecture
Characteristics

Architecture decision records (see ADRs)

Archive.is, Use Trustworthy Sources

arcs, Relationship Spiderweb

argumentation, Use Reasoning and Argumentation-Use Reasoning and
Argumentation

Aristotle (see rhetoric triangle)

arrows, Relationship Spiderweb

(see also relationships and connections)

describing relationship between components, Clear Relationships

indicating starting point for diagrams, Match Diagram Flow to
Expectations

orthogonal, Relationship Spiderweb

Art of Thinking Clearly, The (Dobelli), Battling Bias

artificial intelligence (AI), Automatically Generated Documentation

Asana, Async Methods

AsciiDoc, Nonproprietary Formats, Accessibility

assumptions, documenting, Get Feedback Early and Often

asymmetry, Create a Visual Balance

asynchronous communication

advantages of, Async Advantages

after online presentations, Presentation Content

before online presentations, Audience Engagement

for documentation, Collaboration, Remote Tools

improving, Enhance Async

methods of, Async Methods-Async Methods

obstacles to, Async Obstacles-Async Obstacles

overcoming time zone barriers, Time Zone

setting and handling expectations for, Enhance Async-Enhance Async

synchronous communication versus, Synchronous Versus
Asynchronous-Synchronous Versus Asynchronous

unidirectional versus bidirectional communication, Direction Matters-
Direction Matters

asynchronous sandwich, Enhance Async

attack vectors, Data Proliferation

attention, Giving Your Full Attention-Giving Your Full Attention

attention deficit hyperactivity disorder (ADHD), Simple Language

audience

accessibility considerations for, Accessibility

empathy for, Audience Empathy-Audience Empathy

engaging via online presentations, Audience Engagement-Audience
Engagement

knowing, Know Your Audience-Know Your Audience

audio, Other Abstractions

audio-only meetings, Using Body Language and Gestures

prerecorded, Async Methods

audit, of software tools used, Tool Governance, Tool Governance

authenticity, Speak from the Heart

authoring, Technical Documentation

auto-replies, Automate Tasks

automatically generated documentation, Automatically Generated
Documentation-Automatically Generated Documentation

automating tasks, Automate Tasks-Automate Tasks

availability

as architecture characteristic, Architecture Characteristics

communicating about, Communicate Availability

Azure, Knowledge Management Principles

B

background, diagram, Boxes in Boxes in Boxes-Boxes in Boxes in Boxes

contrast ratio for, Relying on Color to Communicate

differing across mediums, Relying on Color to Communicate

backlinks, Implementing Perspectives

Backstage, Other Documentation

Basecamp, Remote Tools

baseline manipulation, Misleading Composition

Battle of the Boyne, Plan for Holidays

behavioral diagrams, mixing structure into, Mixing Behavior and Structure-
Mixing Behavior and Structure

being present, Being Present

biases, Be Transparent

(see also cognitive biases)

decision owner mitigating, ADR Culture

ideological, declaring, Be Transparent

inevitability biases, Hindsight bias

in language models, Groupthink

political, declaring, Be Transparent

sunk cost fallacy, Get Feedback Early and Often

transparency about, Be Transparent-Be Transparent

bidirectional communication, Direction Matters-Direction Matters

bidirectional relationships, Clear Relationships-Clear Relationships

big picture, giving priority to, The Big Picture Comes First-The Big Picture
Comes First

bilateral symmetry, Create a Visual Balance

biographies, Establish Your Credentials-Establish Your Credentials, Be
Transparent

black-and-white visuals, Color Overload

blogs, Use Trustworthy Sources

blue, Going Against Expectations

Böckeler, Birgitta, ADRs

body language

as nonverbal listening cue, Being Present, Speak from the Heart

overview, Using Body Language and Gestures-Using Body Language
and Gestures

during remote meetings, Synchronous Versus Asynchronous, Enhance
Meetings

bold words and statements, Influence and Persuasion

BookStack, Async Methods

boxes

connecting diagrams with dashed-line boxes, Representational
Consistency

decluttering, Boxes in Boxes in Boxes-Boxes in Boxes in Boxes

BPMN (Business Process Model and Notation), Notation, Using UML for
UML’s Sake

breaks, during online presentations, Audience Engagement

bring your own device (BYOD), managing, Tool Governance

brittle links, DRY Perspectives

BST (British Summer Time), Split Shifts

built-in silence, Async Advantages

bullet points, Lists-Lists

business continuity planning, Remote-First Benefits

Business Process Model and Notation (BPMN), Notation, Using UML for
UML’s Sake

business process modeling, Evolving to Remote-First

business-related documentation, Other Documentation

butterfly effect, Get Feedback Early and Often

BYOD (bring your own device), managing, Tool Governance

C

C4 diagrams

context diagrams

balancing text and labels on, Appropriate Labels-Appropriate
Labels

versatility of, Know Your Audience-Know Your Audience

levels of abstraction in, Representational Consistency

overview, Mixing Levels of Abstraction-Mixing Levels of Abstraction

relationship spiderweb antipattern in, Relationship Spiderweb-
Relationship Spiderweb

simplicity of, Accessibility

Cal.com, Recognize Real Working Capacity

calculations, ADR Content

calendar applications, Time Zone

cameras, in online presentations, Audience Engagement

canvas size, Illegible Diagrams-Illegible Diagrams

capability mapping, Evolving to Remote-First

car park (parking lot) method, Enhance Meetings, Enhance Meetings

carbon footprint, Remote-First Benefits

cartoons, Other Abstractions

Cascading Style Sheets (CSS), Accessibility

causal relationships, Clear Relationships

cells, table, Tables

centralized documentation portal, Product Mindset

charts, Charts, Graphs, and Diagrams

chat, Remote Tools

checklists, Fractal Perspectives, Implementing Perspectives

checkpoints, Get Feedback Early and Often

Chromatic Vision Simulator, Relying on Color to Communicate

circadian rhythms, Improve Energy and Productivity, Schedule for Energy

citing sources

improving transparency by, Be Transparent

using trustworthy sources, Use Trustworthy Sources-Use Trustworthy
Sources

when using data and facts, Use Data and Facts

Claper tool, Audience Engagement

clarity stories, Tell a Story

clenched fist gesture, Using Body Language and Gestures

cloud provider documentation, Using Icons to Convey Meaning, Using
Icons to Convey Meaning

cloud provider icons, Using Icons to Convey Meaning-Using Icons to
Convey Meaning

cloud resources diagram, Boxes in Boxes in Boxes

clutter antipatterns, Include a Legend

balancing text, Balance Text

boxes in boxes, Boxes in Boxes in Boxes-Boxes in Boxes in Boxes

color overload, Color Overload-Color Overload

relationship spiderweb, Relationship Spiderweb-Relationship
Spiderweb

Coblis, Relying on Color to Communicate

code smell, Mixing Levels of Abstraction

Codidact platform, Remote Tools

coding

example of levels of abstraction in, Mixing Levels of Abstraction

single responsibility principle, Mixing Behavior and Structure, Fractal
Perspectives

writing code without comments, Appropriate Labels

cognitive biases

battling, Battling Bias-Groupthink

confirmation bias, Confirmation bias, Influence and Persuasion

curse of knowledge, Acronym Hell, Get Feedback Early and Often

groupthink, Groupthink, ADR Culture

hindsight bias, Hindsight bias

sunk cost fallacy, Get Feedback Early and Often

cognitive load reduction

avoiding color overload, Color Overload-Color Overload

avoiding relationship spiderweb, Relationship Spiderweb-Relationship
Spiderweb

balancing text, Balance Text-Balance Text

decluttering boxes, Boxes in Boxes in Boxes-Boxes in Boxes in Boxes

cognitive reframing, Influence and Persuasion

collaboration

deferring decisions for, Just-in-Time Architecture

improving with product mindset, Product Mindset

storing documentation in version control for, Technical Documentation

tools for, Collaboration, Async Methods

collaborative documents, Remote Tools

color

accessibility and, Relying on Color to Communicate-Relying on Color
to Communicate

cultural interpretation of, Going Against Expectations

overload of, Color Overload-Color Overload

color blindness, Relying on Color to Communicate, Relying on Color to
Communicate

Color Oracle, Relying on Color to Communicate

columns, table, Tables

comic strips, Other Abstractions

comments, Appropriate Labels

communication, Communication Essentials

(see also antipatterns; asynchronous communication; patterns;
synchronous communication)

bidirectional, Direction Matters-Direction Matters

controlling notifications, Control Notifications

deciding on channel of, Email Reasons

ess

representational consistency, Representational Consistency-
Representational Consistency

essentials of

knowing your audience, Know Your Audience-Know Your
Audience

successful, Preface

unidirectional, Direction Matters-Direction Matters

communication agreement, Email Reasons

communication antipattern, Mixing Levels of Abstraction

comp time, Empathy and Compromise

comparison, misleading with, Misleading Composition-Misleading
Composition

compatibility, Accessibility

composition

creating visual balance, Create a Visual Balance-Create a Visual
Balance

illegible diagrams, Illegible Diagrams-Illegible Diagrams

metastyle, Style Communicates

misleading composition, Misleading Composition-Misleading
Composition

solid line, Boxes in Boxes in Boxes, Style Communicates

compromise, Empathy and Compromise-Empathy and Compromise

conferences

becoming echo chamber, Confirmation bias

improving ethos, Demonstrate Your Knowledge

as trustworthy sources, Use Trustworthy Sources

configurability, Architecture Characteristics

confirmation bias, Confirmation bias, Influence and Persuasion

conflicts of interest, Be Transparent-Be Transparent

Confluence, Product Mindset, Async Methods, Remote Tools

connections (see relationships and connections)

consistency, Product Mindset

consolidation, of software, Tool Governance-Tool Governance

Consultation section, of ADRs, Consultation

context, The Big Picture Comes First-The Big Picture Comes First

Context section, of ADRs, Context

contextual diversity, Awareness of Cultural Differences

continuity, Architecture Characteristics

continuous improvement, Product Mindset

continuous learning, Demonstrate Your Knowledge

contrast, Relying on Color to Communicate-Relying on Color to
Communicate, Visual Abstractions

conversion, Technical Documentation

Conway’s law, Tell a Story

coordinated universal time (UTC), Time Zone, Time Zone

copies of data, Data Proliferation

corporate color scheme, Relying on Color to Communicate

cost

as architecture characteristic, Architecture Characteristics

following just-in-time pattern, Just-in-Time Architecture

of using nonproprietary formats, Nonproprietary Formats

showing method for, ADR Content

sunk cost fallacy, Get Feedback Early and Often-Get Feedback Early
and Often

counterarguments, Use Reasoning and Argumentation

creative writing, Syntax of Technical Writing

credentials, establishing, Establish Your Credentials-Establish Your
Credentials

credibility, Giving Your Full Attention, Influence and Persuasion, Ethos

(see also rhetoric triangle)

credibility statements, Influence and Persuasion

cropping diagrams, Illegible Diagrams-Illegible Diagrams

CSS (Cascading Style Sheets), Accessibility

cultural differences, awareness of, Awareness of Cultural Differences

cultural diversity

interpretations of hand gestures, Using Body Language and Gestures

knowing your audience, Know Your Audience

sensitivity in symbol usage, Relying on Color to Communicate, Going
Against Expectations

significance of colors, Going Against Expectations

cultural fit, Selection Techniques

culture, accounting for, Account for Geography and Culture

curse of knowledge, Acronym Hell, Get Feedback Early and Often

cursor, during screen sharing, Screen Shares

customer focus, Product Mindset

D

dashed lines, showing relationships with, Clear Relationships

dashed-line boxes

as method of connecting diagrams, Representational Consistency

avoiding boxes in boxes antipattern with, Boxes in Boxes in Boxes

data

citing sources of, Use Data and Facts

copies of, Email Tips, Remote Tools

migration of, Tool Governance, Tool Governance

proliferation of, Data Proliferation-Data Proliferation

relational, Balance Text

synchronization of, Data Proliferation

using to support views, Use Data and Facts

versions of, Data Proliferation

data flow diagrams

behavioral data flow diagram, Mixing Behavior and Structure

boxes in boxes in, Boxes in Boxes in Boxes

levels of abstraction in, Mixing Levels of Abstraction, The Big Picture
Comes First

using numbers and letters to guide navigation in, Representational
Consistency-Representational Consistency

databases, online, Use Trustworthy Sources

dates

confusion with recording, Synchronize Time

recording history of, Architecture Characteristics

daylight saving time (DST), Split Shifts-Split Shifts

DDD (domain-driven design), Simple Language, Acronym Hell

deadlines, Time Zone

Decided status, of ADRs, Use Reasoning and Argumentation, Status, ADR
Culture

decisions

deferring, Just-in-Time Architecture, Just-in-Time Architecture

making, myths about, ADR Culture-ADR Culture

whack-a-mole, ADRs

decoding messages

being present, Being Present

cognitive biases, Battling Bias-Groupthink

cultural differences, Awareness of Cultural Differences

demonstrating knowledge, Demonstrate Your Knowledge-Demonstrate
Your Knowledge

dependencies, inter-tool, Tool Governance

deuteranopia, Relying on Color to Communicate-Relying on Color to
Communicate

diagrams, Communication Essentials

(see also visual communication)

adding to documentation as code, Technical Documentation

cropping, Illegible Diagrams-Illegible Diagrams

good practices for, Fractal Perspectives

illustrating logical connections with, Make Logical Connections

linking ADRs to, ADR Content

online tools for, Remote Tools

prioritizing abstraction over text, Charts, Graphs, and Diagrams

in slides, Presentation Content

in technical documentation, Other Documentation

Diátaxis framework, Implementing Perspectives

diffs, Relying on Color to Communicate

digital nomads, Remote-First Benefits

digital whiteboards, Collaboration, Async Methods, Selection Techniques

disabilities, Accessibility

disclaimers, Be Transparent

discussion time, in online presentations, Audience Engagement

docfx, Other Documentation

Docs, Accessibility, Collaboration

Docsify, Other Documentation

docToolchain, Other Documentation

documentation, Perspective-Driven Documentation

(see also perspective-driven documentation)

of assumptions, Get Feedback Early and Often

as code, All Documentation as Code-Other Documentation

automatically generated documentation, Automatically Generated
Documentation-Automatically Generated Documentation

other documentation, Other Documentation-Other Documentation

technical documentation, Technical Documentation-Technical
Documentation

creation and maintenance of, Share the Load-Further Techniques

by default, Remote-First Benefits, Evolving to Remote-First

storing knowledge by product, Project Mindset-Product Mindset

storing knowledge by project, Project Mindset

structure and classification of, Product Mindset-Product Mindset

Docusaurus, Other Documentation

domain story diagrams, Know Your Audience-Know Your Audience

domain storytelling, Evolving to Remote-First

domain-driven design (DDD), Simple Language, Acronym Hell

don’t repeat yourself (DRY) principle, DRY Perspectives-DRY Perspectives

dotted lines, Clear Relationships

Doxygen, Other Documentation

Draft status, of ADRs, Status

drafts, Just-in-Time Architecture, Technical Documentation

draw.io, Relying on Color to Communicate, Nonproprietary Formats, Async
Methods, Remote Tools

canvas size on, Illegible Diagrams-Illegible Diagrams

icon versions, Using Icons to Convey Meaning

stored as text format, Other Documentation

Dribbble, Demonstrate Your Knowledge

Dropbox, Remote Tools

DRY (don’t repeat yourself) principle, DRY Perspectives-DRY Perspectives

DST (daylight saving time), Split Shifts-Split Shifts

dynamic links, DRY Perspectives

dyslexia, Simple Language

E

Easter Monday, Plan for Holidays

Easy!Appointments, Recognize Real Working Capacity

echo chamber, Confirmation bias, Get Feedback Early and Often

editing mode, for sharing content, Screen Shares

editor accessibility, Nonproprietary Formats

Eid al-Fitr, Plan for Holidays

email, Async Methods, Symmetrical Email-Email Tips

applying pyramid structure to, Structured Writing-Structured Writing

automating tasks for, Automate Tasks-Automate Tasks

clarity in, Email Clarity-Email Clarity

as low-energy task, Control Notifications

moving knowledge from, Accessibility

sharing time zone and working hours in, Time Zone, Communicate
Availability

standards for communicating expectations, Email Expectations

tips for, Email Tips-Email Tips

uses for, Email Reasons

embedding, Implementing Perspectives

emojis, Async Obstacles, Audience Engagement

emotional connection, Giving Your Full Attention

emotional words, Use Vivid Language and Strong Imagery

empathy, Audience Empathy-Audience Empathy

storytelling building, Tell a Story

time considerations, Empathy and Compromise-Empathy and
Compromise

employment relationship, declaring, Be Transparent

encoding messages

acceptance prophecy, Using the Acceptance Prophecy-Using the
Acceptance Prophecy

body language and gestures, Using Body Language and Gestures-
Using Body Language and Gestures

giving full attention, Giving Your Full Attention-Giving Your Full
Attention

energy and productivity improvements, Improve Energy and Productivity-
Schedule for Energy

automating tasks, Automate Tasks-Automate Tasks

by balancing asynchronous and asynchronous, Synchronous Versus
Asynchronous

controlling notifications, Control Notifications

remote-first, benefit of, Remote-First Versus Remote-Friendly-
Evolving to Remote-First

scheduling for energy, Schedule for Energy

working with rhythm of others, Work with Others’ Rhythms

Enterprise Architect, Evolving to Remote-First, Selection Techniques

estimates

of tasks, Recognize Real Working Capacity

of time to complete requests, Email Clarity

ethos

defined, The Rhetoric Triangle

demonstrating knowledge, Demonstrate Your Knowledge-Demonstrate
Your Knowledge

establishing credentials, Establish Your Credentials-Establish Your
Credentials

transparency, Be Transparent-Be Transparent

trustworthy sources, Use Trustworthy Sources-Use Trustworthy
Sources

Evaluation Criteria section, of ADRs, Evaluation Criteria

event-based architecture, Tell a Story

EventStorming, Relying on Color to Communicate, Evolving to Remote-
First

Excalidraw, Async Methods, Remote Tools

expectations

going against, Going Against Expectations-Going Against
Expectations

matching flow to, Match Diagram Flow to Expectations-Match
Diagram Flow to Expectations

shared, regarding asynchronous communication, Async Advantages,
Enhance Async-Enhance Async, Email Expectations

experts, reputable, Use Trustworthy Sources

explanatory gestures, Using Body Language and Gestures

explosion of unicorns (color overload), Color Overload-Color Overload

extensibility, Architecture Characteristics

eye contact, Giving Your Full Attention

F

facial expressions, Using Body Language and Gestures, Audience
Engagement

facts, using to support views, Use Data and Facts

failure stories, Tell a Story, Speak from the Heart

feasibility, Architecture Characteristics

feedback

collecting on documents or diagrams, Async Methods

getting early and often, Get Feedback Early and Often-Get Feedback
Early and Often

shared biases in, Battling Bias

file sharing, Remote Tools

file systems, Product Mindset

filenames, Title and filename

financial interests, declaring, Be Transparent

flagging emails, Automate Tasks

flat structure, Implementing Perspectives

flexibility, Technical Documentation

flow

left-to-right, Match Diagram Flow to Expectations-Match Diagram
Flow to Expectations

right-to-left, Match Diagram Flow to Expectations-Match Diagram
Flow to Expectations

top-to-bottom, Match Diagram Flow to Expectations-Match Diagram
Flow to Expectations

flow diagrams, Balance Text

focus time, Schedule for Energy, Async Advantages

focus, long-term, Product Mindset

folders, Product Mindset, Implementing Perspectives

footnotes, Balance Text, Use Trustworthy Sources, Use Data and Facts

Ford, Neal, Architecture Characteristics

foreground, Relying on Color to Communicate

forums, Async Methods, Remote Tools

4+1 Model, Implementing Perspectives

fractal perspectives, Fractal Perspectives

full-time benefits, Account for Geography and Culture

Fundamentals of Software Architecture (Richards and Ford), Architecture
Characteristics, Architecture Characteristics

G

gap analysis, Evolving to Remote-First

gardening leave, Roles and Responsibilities

GDPR, Account for Geography and Culture

geography, accounting for, Account for Geography and Culture

geometric shapes, Going Against Expectations

gestures, Using Body Language and Gestures-Using Body Language and
Gestures, Enhance Meetings, Audience Engagement

Git, Nonproprietary Formats, Technical Documentation

GitBook, Other Documentation

GitHub Copilot, Automatically Generated Documentation

GitHub Desktop, Other Documentation

GitHub Pages, Technical Documentation

GitHub, color accessibility in, Relying on Color to Communicate

glaucoma, Relying on Color to Communicate

global talent pool, Synchronize Time

glossaries, Simple Language-Simple Language

Good Friday, Plan for Holidays

Google Calendar, Time Zone

Google Chat, Remote Tools

Google Docs, Accessibility, Collaboration

Google Drive, Remote Tools

Google Gmail, Empathy and Compromise

Google Meet, Remote Tools

governance of tools, Tool Governance-Tool Governance

agile, Tool Governance

as application portfolio, Tool Governance-Tool Governance

as audit, Tool Governance

balancing, Tool Governance

communicating, Tool Governance-Tool Governance

implementing, Tool Governance-Tool Governance

government agencies, Use Trustworthy Sources

graphs, Charts, Graphs, and Diagrams

GraphViz, Other Documentation

grayscale, Color Overload, Relying on Color to Communicate

green, Relying on Color to Communicate, Going Against Expectations

groupthink, Groupthink, ADR Culture

H

hand gestures, Using Body Language and Gestures

Harvey balls, Visual Abstractions

head of remote position, Evolving to Remote-First

headers

table, Tables

headline statement, Influence and Persuasion

Henney, Kevlin, Automatically Generated Documentation

heuristics, Synchronous Versus Asynchronous

hexagonal architecture diagrams, Match Diagram Flow to Expectations

hierarchical relationships, Clear Relationships, Product Mindset

high-level architecture, The Big Picture Comes First

hindsight bias, Hindsight bias

HIPPA, Account for Geography and Culture

HiPPO (highest paid person’s opinion), Direction Matters

holidays, planning for, Plan for Holidays-Plan for Holidays

HTML (Hypertext Markup Language), Nonproprietary Formats,
Accessibility

Hugo static site generator, Technical Documentation

HumHub, Remote Tools

Hunt, Andy, DRY Perspectives

hyperbole, Use Vivid Language and Strong Imagery

hyperlinks

to artifacts, Implementing Perspectives

for diagrams, Representational Consistency

in email, Email Tips

for external calculations, ADR Content

to legends, Include a Legend

to supporting materials, The Big Picture Comes First

Hypertext Markup Language (HTML), Nonproprietary Formats,
Accessibility

I

icons, Using Icons to Convey Meaning-Using Icons to Convey Meaning

identifiers

of ADRs, Use Reasoning and Argumentation, ADR Structure, Status

for characteristics, Architecture Characteristics

for dataflow diagram elements, Representational Consistency

for requirements, Architecture Characteristics

letter, Match Diagram Flow to Expectations

ideological bias, declaring, Be Transparent

idioms, Simple Language, Acronym Hell

IFTTT, Automate Tasks

illegible diagrams, Illegible Diagrams-Illegible Diagrams

illustrations, Other Abstractions

images, Other Abstractions

impact analysis, Evolving to Remote-First

Implications section, of ADRs, Implications

implicit architecture characteristics, Architecture Characteristics

improvement, continuous, Product Mindset

indentation, Lists

inevitability bias, Hindsight bias

influence, Influence and Persuasion-Influence and Persuasion

infodecks, Presentation Content

infographics, Other Abstractions

infrastructure elements, Match Diagram Flow to Expectations

instant messaging, Time Zone, Control Notifications, Async Methods,
Remote Tools

inter-tool dependencies, Tool Governance

interactive word clouds, Word Clouds

internet browsers, adding color palette extensions to, Relying on Color to
Communicate

inverse Conway maneuver (see Conway’s law)

ISO/IEC 25010, Architecture Characteristics

J

Jira, Async Methods, Remote Tools

Jitsi Meet, Remote Tools

Jobs, Steve, Going Against Expectations

JSTOR, Use Trustworthy Sources

just-in-time architecture, Just-in-Time Architecture-Just-in-Time
Architecture

just-long-enough architecture, Just-in-Time Architecture

K

keratoconus, Relying on Color to Communicate

key performance indicators (KPIs), Evolving to Remote-First

keys (see legends)

knowledge graphs, Implementing Perspectives

knowledge management principles

abstractions over text, Abstractions over Text-Other Abstractions

perspective-driven documentation, Perspective-Driven
Documentation-Implementing Perspectives

products over projects, Products over Projects-Product Mindset

knowledge management systems, Async Methods

knowledge management tools, Tool Governance

knowledge, communication of

demonstrating knowledge, Demonstrate Your Knowledge-Demonstrate
Your Knowledge

effective practices, Effective Practices-Other Documentation

people and, Knowledge and People-Just-in-Time Architecture

principles of knowledge management, Knowledge Management
Principles-Implementing Perspectives

knowledge-sharing sessions, Further Techniques-Further Techniques

KPIs (key performance indicators), Evolving to Remote-First

Kroki, Other Documentation

L

labels

for accessibility, Appropriate Labels-Appropriate Labels

as alternative to boxes, Boxes in Boxes in Boxes

choosing between legends and, Include a Legend

for diagrams, Representational Consistency

for icons, Using Icons to Convey Meaning

indicating starting point for diagrams, Match Diagram Flow to
Expectations

numbered, Match Diagram Flow to Expectations

standardized positions on relationships, Relationship Spiderweb

landscape orientation, Illegible Diagrams, Illegible Diagrams-Illegible
Diagrams, Illegible Diagrams

language, Simple Language, Fractal Perspectives, Recognize Real Working
Capacity

language models, bias in, Groupthink

layered architecture, Match Diagram Flow to Expectations, Fractal
Perspectives, Implementing Perspectives

left-to-right flow, Match Diagram Flow to Expectations-Match Diagram
Flow to Expectations

legal obligations

communicating to remote colleagues, Account for Geography and
Culture

declaring conflict of interest, Be Transparent

legends

for accessibility, Include a Legend-Include a Legend

for ArchiMate relationships, Clear Relationships-Clear Relationships

clarifying relationships in, Clear Relationships

cropped diagrams including, Illegible Diagrams

defining icons in, Using Icons to Convey Meaning

for UML, Include a Legend

limitations of color, Relying on Color to Communicate

legibility, Illegible Diagrams

letter identifiers, Match Diagram Flow to Expectations

licenses, Nonproprietary Formats, Tool Governance, Tool Governance

lieu/comp time, Empathy and Compromise

line jumps, Relationship Spiderweb

line types, Boxes in Boxes in Boxes

dashed lines, Representational Consistency, Boxes in Boxes in Boxes,
Clear Relationships

dotted lines, Clear Relationships

LinkedIn, Demonstrate Your Knowledge

links (see hyperlinks)

listening, Being Present, Speak from the Heart

lists, Using Body Language and Gestures, Lists-Lists

logical connections, Make Logical Connections

logical diagrams, flow of information in, Match Diagram Flow to
Expectations

logos

data and facts, Use Data and Facts

defined, The Rhetoric Triangle

logical connections, Make Logical Connections

reasoning and argumentation, Use Reasoning and Argumentation-Use
Reasoning and Argumentation

long-term focus, Product Mindset

low contrast, Relying on Color to Communicate

Lucidchart, Remote Tools

luminance, Relying on Color to Communicate

luminosity, color, Color Overload

lunch-and-learn sessions, Further Techniques-Further Techniques

M

Magidoc, Other Documentation

maintainability, Architecture Characteristics

Markdown, Nonproprietary Formats, Accessibility, Other Documentation

maternity leave, Plan for Holidays

Mattermost, Remote Tools

MediaWiki, Async Methods

meetings

using gestures in audio-only, Using Body Language and Gestures

scheduling

accommodating part-time workers, Defend Part-Time Hours

using booking services for, Recognize Real Working Capacity

during high-energy time, Schedule for Energy

showing empathy and compromise when, Empathy and
Compromise-Empathy and Compromise

specifying time frame when, Email Clarity

synchronous versus asynchronous, Meetings to Sync-Enhance
Meetings

memes, Other Abstractions

memory distortion, Hindsight bias

mental health, Recognize Real Working Capacity

mental models, Going Against Expectations

Mentimeter tool, Audience Engagement

Mermaid, Technical Documentation, Other Documentation, Other
Documentation

messaging apps, Async Methods

metadata, Style Communicates, Product Mindset, Implementing
Perspectives

metaphors, Use Vivid Language and Strong Imagery

metastyle, Style Communicates

Microsoft 365, Remote Tools

Microsoft Azure, Knowledge Management Principles

Microsoft Bookings, Recognize Real Working Capacity

Microsoft Intune, Tool Governance

Microsoft OneDrive, Remote Tools

Microsoft Power Automate, Automate Tasks, Enhance Async

Microsoft Teams, Collaboration, Time Zone, Empathy and Compromise,
Automate Tasks, Remote Tools

Microsoft Visio, Illegible Diagrams-Illegible Diagrams

Microsoft Visual Studio Code, Automatically Generated Documentation

Microsoft Viva Engage, Async Methods, Remote Tools

Microsoft Whiteboard, Remote Tools

Microsoft Word, Accessibility

Microsoft Yammer, Remote Tools

migration, data, Tool Governance, Tool Governance

Minto pyramid principle, Structured Writing-Structured Writing

Minto, Barbara, Structured Writing

Miro, Remote Tools

misleading composition, Misleading Composition-Misleading Composition

MkDocs, Other Documentation

monitors, Relying on Color to Communicate, Illegible Diagrams

MoSCoW prioritization, Selection Techniques

multimodal communication

acronyms, Acronym Hell-Acronym Hell

decoding messages, Decoding Messages-Awareness of Cultural
Differences

encoding messages, Encoding Messages-Using Body Language and
Gestures

influence and persuasion, Influence and Persuasion-Influence and
Persuasion

rhetoric triangle, The Rhetoric Triangle-Use Reasoning and
Argumentation

simple language, Simple Language-Simple Language

structure of writing, Structured Writing-Structured Writing

syntax of technical writing, Syntax of Technical Writing-Audience
Empathy

Mural, Remote Tools

N

narrative

big picture, The Big Picture Comes First-The Big Picture Comes First

clear relationships, Clear Relationships-Clear Relationships

illustrating logical connections with, Make Logical Connections

matching flow to expectations, Match Diagram Flow to Expectations-
Match Diagram Flow to Expectations

native speakers, Simple Language

negative space (see whitespace)

nesting boxes, in diagrams, Boxes in Boxes in Boxes

networking, Establish Your Credentials

neurodiversity, Simple Language

neurotypicals, Simple Language

news articles, Use Trustworthy Sources

next steps, at end of online presentations, Presentation Content

NIST, Account for Geography and Culture

nonfunctional requirements, Architecture Characteristics

nonnative speakers, Simple Language

nonproprietary applications and file formats, Nonproprietary Formats

nontext contrast, Visual Abstractions

nonverbal communication (see verbal and nonverbal communication)

notations, Accessibility

(see also BPMN; data flow diagrams)

ArchiMate, Clear Relationships-Clear Relationships

C4, Clear Relationships

considering accessibility of, Accessibility-Accessibility

defined, Summary

going against expectations, Going Against Expectations-Going Against
Expectations

icons, Using Icons to Convey Meaning-Using Icons to Convey
Meaning

mixing behavior and structure, Mixing Behavior and Structure-Mixing
Behavior and Structure

UML, Using UML for UML’s Sake-Using UML for UML’s Sake

notes, in diagrams, Balance Text, Balance Text

notifications, Collaboration

controlling, Giving Your Full Attention, Control Notifications

creating culture of expectation with, Collaboration

time zone considerations for, Time Zone

Notion, Async Methods, Remote Tools

Nuclino, Async Methods

Nudge (Thaler and Sunstein), Battling Bias

numbered labels, Match Diagram Flow to Expectations

numbered lists, Lists

Nygard, Michael, ADRs

O

object-oriented coding, Mixing Behavior and Structure

objections, Use Reasoning and Argumentation-Use Reasoning and
Argumentation

Obsidian, Product Mindset, Implementing Perspectives, Implementing
Perspectives

ODF (Open Document Format), Nonproprietary Formats

office hours, Time Zone, Empathy and Compromise

OKRs (objectives and key results), Evolving to Remote-First

onboarding, communication agreement as part of, Email Expectations

one-direction relationships, Clear Relationships

OneDrive, Remote Tools

online databases, Use Trustworthy Sources

online presentations

audience engagement, Audience Engagement-Audience Engagement

content of, Presentation Content

screen shares, Screen Shares

online sources, Use Trustworthy Sources

online whiteboards, Collaboration, Async Methods, Selection Techniques

ONLYOFFICE, Remote Tools

opacity, Illegible Diagrams

Open Document Format (ODF), Nonproprietary Formats

open modeling language, Clear Relationships

open source license, Nonproprietary Formats

open source tools, Other Documentation-Other Documentation

OpenBoard, Remote Tools

Options section, of ADRs, Options

ordered lists, Lists

orientation

landscape, Illegible Diagrams, Illegible Diagrams-Illegible Diagrams,
Illegible Diagrams

portrait, Illegible Diagrams, Illegible Diagrams

orthogonal arrows, Relationship Spiderweb

out-of-date documentation, Using UML for UML’s Sake, Using UML for
UML’s Sake, Just-in-Time Architecture

out-of-office, Plan for Holidays

Outlook Calendar, Time Zone, Empathy and Compromise

overtime, Empathy and Compromise

OWASP, Account for Geography and Culture

P

palettes, accessible color, Relying on Color to Communicate-Relying on
Color to Communicate

Paradox of Choice, The (Schwartz), ADR Culture

paragraphs, precision in, Precise Paragraphs

parking lot (car park) method, Enhance Meetings, Enhance Meetings

part-time hours, Defend Part-Time Hours

paternity leave, Plan for Holidays

pathos

defined, The Rhetoric Triangle

speaking from the heart, Speak from the Heart-Speak from the Heart

storytelling, Tell a Story-Tell a Story

vivid language and strong imagery, Use Vivid Language and Strong
Imagery-Use Vivid Language and Strong Imagery

patterns

abstractions over text, Abstractions over Text-Other Abstractions

appropriate labels, Appropriate Labels-Appropriate Labels

architecture characteristics, Architecture Characteristics-Architecture
Characteristics

Architecture decision records, ADRs-ADR Culture

asynchronous communication, Async to Think-Enhance Async

balancing text, Balance Text-Balance Text

big picture comes first, The Big Picture Comes First-The Big Picture
Comes First

clear relationships, Clear Relationships-Clear Relationships

contrasting colors with, Relying on Color to Communicate-Relying on
Color to Communicate

creating visual balance, Create a Visual Balance-Create a Visual
Balance

decoding messages, Decoding Messages-Awareness of Cultural
Differences

defined, Communication Essentials

documentation as code, All Documentation as Code-Other
Documentation

encoding messages, Encoding Messages-Using Body Language and
Gestures

getting feedback early and often, Get Feedback Early and Often-Get
Feedback Early and Often

improving energy and productivity, Improve Energy and Productivity-
Schedule for Energy

including legends, Include a Legend-Include a Legend

influence and persuasion, Influence and Persuasion-Influence and
Persuasion

just-in-time architecture, Just-in-Time Architecture-Just-in-Time
Architecture

knowing your audience, Know Your Audience-Know Your Audience

matching flow to expectations, Match Diagram Flow to Expectations-
Match Diagram Flow to Expectations

online presentations, Audience Engagement-Screen Shares

perspective-driven documentation, Perspective-Driven
Documentation-Implementing Perspectives

products over projects, Products over Projects-Product Mindset

remote-first working approach, Remote-First Versus Remote-Friendly-
Evolving to Remote-First

representational consistency, Representational Consistency-
Representational Consistency

respecting working patterns, Respect Working Patterns-Recognize
Real Working Capacity

rhetoric triangle, The Rhetoric Triangle-Use Reasoning and
Argumentation

sharing the load, Share the Load-Roles and Responsibilities

simple language, Simple Language-Simple Language

strangler fig pattern (Ship of Theseus), Tell a Story, Tool Governance

structured writing, Structured Writing-Structured Writing

style communicates (metastyle), Style Communicates

symmetrical email, Symmetrical Email-Email Tips

synchronizing time, Synchronize Time-Split Shifts

synchronous meetings, Meetings to Sync-Enhance Meetings

syntax of technical writing, Syntax of Technical Writing-Audience
Empathy

pauses, Influence and Persuasion

PDF (Portable Document Format), Nonproprietary Formats

pending information, Just-in-Time Architecture

performance metrics report, Tables

personableness, in email, Email Tips

personal diversity, Awareness of Cultural Differences

personal leave, Plan for Holidays

personification, Use Vivid Language and Strong Imagery

perspective-driven documentation, Product Mindset, Perspective-Driven
Documentation-Implementing Perspectives

DRY principle, DRY Perspectives-DRY Perspectives

fractal perspectives, Fractal Perspectives

implementing perspectives, Implementing Perspectives-Implementing
Perspectives

perspectives, defined, Perspective-Driven Documentation

persuasion, Influence and Persuasion-Influence and Persuasion, Word
Clouds

photophobia, Relying on Color to Communicate

phpDocumentor, Other Documentation

physical props, Use Vivid Language and Strong Imagery

plain text format, Nonproprietary Formats, Other Documentation

PlantUML, Technical Documentation, Other Documentation

PNG (Portable Network Graphics), Nonproprietary Formats

politeness, in email, Email Tips

political bias, declaring, Be Transparent

polls, Async Methods, Audience Engagement

PolyDocs, Selection Techniques

portability, Architecture Characteristics

Portable Document Format (PDF), Nonproprietary Formats

Portable Network Graphics (PNG), Nonproprietary Formats

portrait orientation, Illegible Diagrams, Illegible Diagrams

posture, Using Body Language and Gestures

Power Automate, Enhance Async

power gestures, Using Body Language and Gestures

PR (pull request), Get Feedback Early and Often, Get Feedback Early and
Often, Automatically Generated Documentation

predictability, Hindsight bias

predictions (see estimates)

prerecorded audio/video, Async Methods

presentations, online (see online presentations)

presenter mode (picture-in-picture), Audience Engagement

printed format, Relying on Color to Communicate

priorities, Architecture Characteristics

privacy, Architecture Characteristics

productivity (see energy and productivity improvement)

products

prioritizing over projects, Products over Projects-Product Mindset

product mindset, Product Mindset

revisiting architecture characteristics of, Architecture Characteristics

storing ADRS against, ADR Storage

professional association, declaring, Be Transparent

professional development, Demonstrate Your Knowledge

project management tools, Async Methods, Remote Tools

projectors, Relying on Color to Communicate, Illegible Diagrams

projects

prioritizing products over, Products over Projects-Product Mindset

project mindset, Project Mindset

pronouns, using in email, Email Tips

proofreading, of email, Email Tips

proportional relationships, Clear Relationships

ProQuest, Use Trustworthy Sources

publishing, Technical Documentation

pull request (PR), Get Feedback Early and Often, Get Feedback Early and
Often, Automatically Generated Documentation

pyramid structure, Structured Writing-Structured Writing

Q

Q&A platforms, Async Methods, Remote Tools

quality characteristics (see architecture characteristics)

Question2Answer platform, Remote Tools

questions

being present by asking, Being Present

Q&A platforms, Remote Tools

received during online presentations, Audience Engagement

strategies for response preparation, Influence and Persuasion

R

RAID/RAAIDD log, ADR Storage

ramps and steps metaphor, Include a Legend

ratings

Harvey balls for, Visual Abstractions

icons for, Using Icons to Convey Meaning

stars for, Visual Abstractions-Visual Abstractions

ratio (see viewing ratio)

readme files, Remote-First Benefits

reasoning, Use Reasoning and Argumentation-Use Reasoning and
Argumentation

reciprocity, Influence and Persuasion

recording meetings, Defend Part-Time Hours

rectangles, Going Against Expectations

red, Relying on Color to Communicate, Going Against Expectations

Redmine, Async Methods, Remote Tools

referencing, Implementing Perspectives

regulations, Account for Geography and Culture

relational data, Balance Text

relationships and connections

avoiding spiderweb, Relationship Spiderweb-Relationship Spiderweb

bidirectional, Clear Relationships-Clear Relationships

clarity in, Clear Relationships-Clear Relationships

communication of, Direction Matters

labeling of, Clear Relationships

logical connections, Make Logical Connections

one-direction, Clear Relationships

with people, Awareness of Cultural Differences

personal, Be Transparent

spatial, Clear Relationships

as symbols, Using UML for UML’s Sake

types of, Clear Relationships

unidirectional, Clear Relationships

religious symbolism, Going Against Expectations

remote communication

adjusting gestures for, Using Body Language and Gestures

asynchronous communication, Async to Think-Enhance Async

improving energy and productivity, Improve Energy and Productivity-
Schedule for Energy

online presentations, Audience Engagement-Screen Shares

remote-first working approach, Remote-First Versus Remote-Friendly-
Evolving to Remote-First

respecting working patterns, Respect Working Patterns-Recognize
Real Working Capacity

symmetrical email, Symmetrical Email-Email Tips

synchronizing time, Synchronize Time-Split Shifts

synchronous meetings, Meetings to Sync-Enhance Meetings

tools for, Remote Tools and Governance-Tool Governance

remote presentations (see online presentations)

remote work tools

data proliferation, Data Proliferation-Data Proliferation

efficiency of, Tool Efficiency-Tool Efficiency

governance and stewardship, Tool Governance-Tool Governance

security, Security

selecting, Selection Techniques-Selection Techniques

types of, Remote Tools-Remote Tools

remote-first working approach

benefits of, Remote-First Benefits-Remote-First Benefits

defined, Remote-First Versus Remote-Friendly

developing, Evolving to Remote-First-Evolving to Remote-First

remote-friendly approach versus, Remote-First Versus Remote-
Friendly-Remote-First Versus Remote-Friendly

remote-friendly approach, Remote-First Versus Remote-Friendly-Remote-
First Versus Remote-Friendly

defined, Remote-First Versus Remote-Friendly

model, Remote-First Versus Remote-Friendly

remote-first working approach versus, Remote-First Versus Remote-
Friendly-Remote-First Versus Remote-Friendly

repetition

using tables for repetitive information, Tables

as technique for influencing and persuading, Influence and Persuasion

of text in diagrams, Balance Text-Balance Text

representational consistency, Representational Consistency-
Representational Consistency

request for change (RFC), Get Feedback Early and Often, ADRs

requirements traceability matrix, Tables

resource management, Just-in-Time Architecture

respect, Giving Your Full Attention

responses

asynchronous, Async Advantages, Enhance Async-Enhance Async

direction of flow, Match Diagram Flow to Expectations-Match
Diagram Flow to Expectations

email, expectations of, Email Expectations

not expecting outside of office hours, Empathy and Compromise,
Async Advantages

of live audience, Audience Engagement

strategies for preparation of, Decoding Messages-Influence and
Persuasion

reusability, Product Mindset

RFC (request for change), Get Feedback Early and Often, ADRs

rhetoric triangle, The Rhetoric Triangle-Use Reasoning and Argumentation

ethos, Ethos-Demonstrate Your Knowledge

logos, Logos-Use Reasoning and Argumentation

pathos, Pathos-Use Vivid Language and Strong Imagery

Richards, Mark, Architecture Characteristics

right-to-left flow, Match Diagram Flow to Expectations-Match Diagram
Flow to Expectations

risks, Get Feedback Early and Often, Just-in-Time Architecture

robotic language, Email Tips

roles

creating and assigning, Roles and Responsibilities

that can view diagrams, Know Your Audience

S

SaaS (Software as a Service) tools, Evolving to Remote-First, Tool
Efficiency

SABSA framework, Implementing Perspectives

sarcasm, Simple Language, Using Body Language and Gestures

saturation, Relying on Color to Communicate

scalability, Architecture Characteristics, Tool Governance

scaling, Misleading Composition-Misleading Composition

scheduling, Time Zone

Schwartz, Barry, ADR Culture

scope-creep, Summary

scores (see ratings)

screen share, Screen Shares

screen size, Accessibility, Audience Engagement

Scrum board, Just-in-Time Architecture

Seafile file sharing tool, Remote Tools

search bubble, Confirmation bias

security, Architecture Characteristics

as architecture characteristic, Architecture Characteristics

as criteria for ADRs, Evaluation Criteria

frameworks, Be Transparent

as policies in application portfolio, Tool Governance

of remote tools, Data Proliferation

as requirement for selecting tools, Selection Techniques

sensory language, Use Vivid Language and Strong Imagery

sentences, short, Short Sentences

sequence diagrams

boxes in boxes in, Boxes in Boxes in Boxes

flow of information in, Match Diagram Flow to Expectations-Match
Diagram Flow to Expectations

levels of abstraction in, Mixing Levels of Abstraction

showing unidirectional relationships, Clear Relationships-Clear
Relationships

sequential relationships, Clear Relationships

serverless pinball antipattern, Tell a Story

Shadow IT, Security, Tool Governance

shapes, Relying on Color to Communicate, Going Against Expectations

SharePoint, Product Mindset

Ship of Theseus (see strangler fig pattern)

siesta break, Account for Geography and Culture

Signal, Empathy and Compromise

Sim Daltonism, Relying on Color to Communicate

similes, Use Vivid Language and Strong Imagery

simple language, Simple Language-Simple Language

simplicity, Architecture Characteristics

sincerity, Speak from the Heart

single points of failure, Roles and Responsibilities

single responsibility principle, Precise Paragraphs

applying to diagrams, Mixing Behavior and Structure, Fractal
Perspectives

applying to paragraphs, Precise Paragraphs

defined, Mixing Behavior and Structure

16:9 screen ratio, Illegible Diagrams, Illegible Diagrams

Skype, Remote Tools

Slack, Collaboration, Time Zone, Empathy and Compromise, Automate
Tasks, Remote Tools

Slate, Other Documentation

sleep, Schedule for Energy

slides

citing sources in, Use Trustworthy Sources

containing presenter's words, Presentation Content

adding disclaimers to, Be Transparent

as infodecks, Presentation Content

in online presentations, Audience Engagement, Presentation Content

as slideuments, Presentation Content

technical review of, Demonstrate Your Knowledge

SMEs (subject matter experts), Know Your Audience

social media, Establish Your Credentials

social optimist, Using the Acceptance Prophecy

social pessimist, Using the Acceptance Prophecy

social tools, Remote Tools

software

as abstraction, Mixing Levels of Abstraction-Mixing Levels of
Abstraction

nonproprietary versus proprietary, Nonproprietary Formats-
Nonproprietary Formats

software architecture, Effective Practices

(see also ADRs; documentation, as code)

abstractions to communicate, Abstractions over Text

architecture characteristics, Architecture Characteristics-Architecture
Characteristics, Selection Techniques

benefits of tables in, Tables

effectiveness of using visual communication with, Abstractions over
Text

getting feedback on, Knowledge and People-Get Feedback Early and
Often

just-in-time, Just-in-Time Architecture-Just-in-Time Architecture

perspective-driven documentation to communicate, Perspective-Driven
Documentation

perspectives and views in, Implementing Perspectives

using word clouds in, Word Clouds

Software as a Service (SaaS) tools, Evolving to Remote-First, Tool
Efficiency

Software Systems Architecture (Rozanski and Woods), Implementing
Perspectives

SOLID principles, Mixing Behavior and Structure

solid-line boxes, Boxes in Boxes in Boxes

spatial relationships, Clear Relationships

speaking from the heart, Speak from the Heart-Speak from the Heart

split shifts, Split Shifts-Split Shifts

squares, Going Against Expectations

St. Patrick's Day, Plan for Holidays

Stack Overflow, Async Methods, Remote Tools

stakeholders, Using the Acceptance Prophecy

(see also audience)

ADR example used to influence, ADR Content

effective communication in influencing, Influence and Persuasion,
Influence and Persuasion

getting feedback from, Get Feedback Early and Often, Get Feedback
Early and Often

using interactive word clouds with, Word Clouds

involvement in decision-making, ADR Culture-ADR Culture

perspective-driven documentation for, Perspective-Driven
Documentation

star ratings, Visual Abstractions-Visual Abstractions

static analysis, Automatically Generated Documentation

static site generator, Technical Documentation

statuses

for ADRs, Status

on instant messaging tools, Time Zone

statutory leave, Plan for Holidays

storing knowledge

by product, Product Mindset-Product Mindset

by project, Project Mindset

storytelling, Use Trustworthy Sources, Tell a Story-Tell a Story

illustrating logical connections with, Make Logical Connections

sharing personal stories, Speak from the Heart

strangler fig pattern, Tell a Story, Tool Governance

strong and precise verbs, Strong Verbs

strong imagery, Use Vivid Language and Strong Imagery-Use Vivid
Language and Strong Imagery

structural diagrams

boxes in boxes in, Boxes in Boxes in Boxes

flow of information in, Match Diagram Flow to Expectations

mixing behavior into, Mixing Behavior and Structure-Mixing
Behavior and Structure

relationship spiderweb antipattern in, Relationship Spiderweb

structure of writing, Structured Writing-Structured Writing, Make Logical
Connections

style

of ADRs, ADR Structure

communicates, Style Communicates

over substance, Style Communicates

subject line, of email, Email Expectations, Email Clarity

subject matter experts (SMEs), Know Your Audience

sublists, Lists

success stories, Tell a Story

sunk cost fallacy, Get Feedback Early and Often-Get Feedback Early and
Often

superseded status, of ADRs, Status, ADR Culture

surveys, Async Methods

Sutherland, Jeff, Just-in-Time Architecture

Swagger, Other Documentation

sweeping motion gesture, Using Body Language and Gestures

symbols, Relying on Color to Communicate

cultural sensitivity with, Going Against Expectations

indicating starting point for diagrams, Match Diagram Flow to
Expectations

symmetry, Create a Visual Balance-Create a Visual Balance

synchronization of data, Data Proliferation

synchronous communication

asynchronous communication versus, Synchronous Versus
Asynchronous-Synchronous Versus Asynchronous

energy needed for, Work with Others’ Rhythms

for documentation, Collaboration

synchronous meetings

improving organization and structure of meetings, Enhance Meetings-
Enhance Meetings

interruptions caused by, Synchronous Versus Asynchronous-
Synchronous Versus Asynchronous

reducing, Enhance Meetings-Enhance Meetings

tools for, Remote Tools

Zoom fatigue, Enhance Meetings

syntax of technical writing

audience empathy, Audience Empathy-Audience Empathy

consistent vocabulary, Consistent Vocabulary

precise paragraphs, Precise Paragraphs

short sentences, Short Sentences

strong verbs, Strong Verbs

system 1 and system 2, Decoding Messages, Synchronous Versus
Asynchronous

system quality attributes (see architecture characteristics)

T

tables, Tables-Tables

tags, Product Mindset, Implementing Perspectives

Taiga, Async Methods, Remote Tools

TDD (test-driven development), Account for Geography and Culture

team topologies, Tell a Story

Teams, Collaboration, Time Zone, Empathy and Compromise, Automate
Tasks

technical documents, Audience Empathy

technical jargon, Demonstrate Your Knowledge

technical reference model (TRM), Tool Governance

technological conventions, Going Against Expectations

technology icons, Using Icons to Convey Meaning

technology radar, Async Methods, Tool Governance, Tool Governance-Tool
Governance

TED Talks, Tell a Story

Telegram, Empathy and Compromise

templates, Fractal Perspectives, Implementing Perspectives, Further
Techniques

testing documentation, Technical Documentation

testing matrix, Tables

text

balanced use of, Balance Text-Balance Text, Appropriate Labels-
Appropriate Labels

legibility of, Illegible Diagrams

prioritizing abstractions over, Abstractions over Text-Other
Abstractions

reducing opacity of, Illegible Diagrams

The Open Group Architecture Framework (TOGAF), Implementing
Perspectives, Tool Governance

thinking noises, Influence and Persuasion

Thinking, Fast and Slow (Kahneman), Decoding Messages, Battling Bias

Thomas, Dave, DRY Perspectives

Thoughtworks technology radar, ADRs, Tool Governance, Tool
Governance-Tool Governance

Tiddly‐Wiki, Remote Tools

time considerations, Synchronize Time-Split Shifts

accessibility and, Accessibility

empathy and compromise, Empathy and Compromise-Empathy and
Compromise

split shifts, Split Shifts-Split Shifts

time zones, Time Zone-Time Zone

time-off-in-lieu, Empathy and Compromise

titles

ADR, Title and filename

TOGAF (The Open Group Architecture Framework), Implementing
Perspectives, Tool Governance

tools (see governance of tools)

top-left flow, Match Diagram Flow to Expectations

top-to-bottom flow, Match Diagram Flow to Expectations-Match Diagram
Flow to Expectations

trade-off analysis, Use Reasoning and Argumentation

traffic lights, Visual Abstractions

training, Tool Governance

transition words and phrases, Make Logical Connections

translation software, Simple Language

transparency, Be Transparent-Be Transparent

triangles, Going Against Expectations

TRM (technical reference model), Tool Governance

trust, Be Transparent

trustworthy sources of information, Use Trustworthy Sources-Use
Trustworthy Sources

24-hour clock, Time Zone

U

ubiquitous language, Simple Language, Acronym Hell

UML (Unified Modeling Language), Know Your Audience

class diagram, Know Your Audience

component diagram, Using UML for UML’s Sake

deciding whether to use, Using UML for UML’s Sake-Using UML for
UML’s Sake, Accessibility

defined, Notation

legend for, Include a Legend

using legends with, Include a Legend

open source tools for, Other Documentation

sequence diagram, Using UML for UML’s Sake

simplifying, Using UML for UML’s Sake

for UML’s sake antipattern, Using UML for UML’s Sake-Using UML
for UML’s Sake

understanding your customer (knowing your audience), Know Your
Audience-Know Your Audience

unidirectional communication, Direction Matters-Direction Matters

unidirectional relationships, Clear Relationships

Unified Modeling Language (see UML)

unnatural language, in email, Email Tips

unsubscribing from emails, Automate Tasks

updates

cloud provider icons, Using Icons to Convey Meaning

UML diagrams, Using UML for UML’s Sake

urgent email, Email Expectations

use case scenarios, Tell a Story

user accounts, Data Proliferation

user manuals, Remote-First Benefits

UTC (coordinated universal time), Time Zone, Time Zone

V

vendor lock-in, Nonproprietary Formats

verbal and nonverbal communication

decoding messages, Decoding Messages-Awareness of Cultural
Differences

encoding messages, Encoding Messages-Using Body Language and
Gestures

influence and persuasion, Influence and Persuasion-Influence and
Persuasion

verbs, strong and precise, Strong Verbs, Use Vivid Language and Strong
Imagery

version control, Technical Documentation, Technical Documentation, Other
Documentation

versions of data, Data Proliferation

video, Other Abstractions, Async Methods

video conferencing (see synchronous meetings)

viewing ratios, Illegible Diagrams

visibility, Product Mindset

Visio, Illegible Diagrams-Illegible Diagrams

visual abstractions, Visual Abstractions-Visual Abstractions

visual balance, creating, Create a Visual Balance-Create a Visual Balance

visual communication, Color Overload

avoiding color overload, Color Overload-Color Overload

avoiding relationship spiderweb, Relationship Spiderweb-Relationship
Spiderweb

balanced use of text, Balance Text-Balance Text

big picture, The Big Picture Comes First-The Big Picture Comes First

clear relationships, Clear Relationships-Clear Relationships

conveying meaning through icons, Using Icons to Convey Meaning-
Using Icons to Convey Meaning

creating visual balance, Create a Visual Balance-Create a Visual
Balance

deciding whether to use UML, Using UML for UML’s Sake-Using
UML for UML’s Sake

decluttering boxes, Boxes in Boxes in Boxes-Boxes in Boxes in Boxes

going against expectations, Going Against Expectations-Going Against
Expectations

illegible diagrams, Illegible Diagrams-Illegible Diagrams

knowing your audience, Know Your Audience-Know Your Audience

labels, Appropriate Labels-Appropriate Labels

legends, Include a Legend-Include a Legend

matching flow to expectations, Match Diagram Flow to Expectations-
Match Diagram Flow to Expectations

metastyle, Style Communicates

misleading composition, Misleading Composition-Misleading
Composition

mixing behavior and structure, Mixing Behavior and Structure

mixing levels of abstraction, Mixing Levels of Abstraction-Mixing
Levels of Abstraction

prioritizing abstractions over text, Abstractions over Text-Other
Abstractions

relying on color to communicate, Relying on Color to Communicate-
Relying on Color to Communicate

representational consistency, Representational Consistency-
Representational Consistency

using strong imagery, Use Vivid Language and Strong Imagery

Visual Studio Code, Automatically Generated Documentation

Viva Engage, Async Methods, Remote Tools

vivid language, Use Vivid Language and Strong Imagery

Viz Palette, Relying on Color to Communicate

vocabulary

complex, problems with, Simple Language-Simple Language

consistency in, Consistent Vocabulary

nonnative, Simple Language

options to simplify, Simple Language

variability of, Simple Language

vulnerability, Speak from the Heart

W

walled-garden messaging options, Async Methods

waterfall environment, Just-in-Time Architecture-Just-in-Time Architecture

Wayback Machine, Use Trustworthy Sources

WCAG (Web Content Accessibility Guidelines), Relying on Color to
Communicate, Visual Abstractions

web pages

using different color palettes on, Relying on Color to Communicate

preserving versions of, Use Trustworthy Sources

showing and hiding legends on, Include a Legend

WebAIM website, Relying on Color to Communicate

WeKan, Async Methods

well-architected framework, Knowledge Management Principles

“whack-a-mole” decisions, ADRs

Whaller, Remote Tools

what you see is what you get (WYSIWYG), Other Documentation

white papers, Lists

whiteboards, digital, Collaboration, Async Methods, Selection Techniques

whitepapers, Use Trustworthy Sources

whitespace, Boxes in Boxes in Boxes

balancing labels with, Appropriate Labels

bidirectional relationships reducing, Clear Relationships

visual processing of text and, Simple Language

WhoCanUse website, Relying on Color to Communicate

Wikipedia, Architecture Characteristics

wikis, Product Mindset, Perspective-Driven Documentation, Async
Methods, Remote Tools, Tool Governance

Word, Accessibility

word clouds, Word Clouds-Word Clouds, Audience Engagement

word families, Simple Language

work-life balance, Account for Geography and Culture

working capacity, Recognize Real Working Capacity-Recognize Real
Working Capacity

working patterns, Respect Working Patterns-Recognize Real Working
Capacity

accounting for geography and culture, Account for Geography and
Culture

communicating availability, Communicate Availability

defending part-time hours, Defend Part-Time Hours

planning for holidays, Plan for Holidays-Plan for Holidays

recognizing real working capacity, Recognize Real Working Capacity-
Recognize Real Working Capacity

working time directive, Account for Geography and Culture

working-hour boundaries, Time Zone, Time Zone, Empathy and
Compromise

World Clock Meeting Planner, Time Zone

World Time Buddy, Time Zone

written communication

acronyms, Acronym Hell-Acronym Hell

citing sources in, Use Trustworthy Sources

simple language, Simple Language-Simple Language

structure of writing, Structured Writing-Structured Writing

syntax of technical writing, Syntax of Technical Writing-Audience
Empathy

technical review of, Demonstrate Your Knowledge

WYSIWYG (what you see is what you get), Other Documentation

X

XWiki, Async Methods, Remote Tools

Y

YAGNI (you aren’t gonna need it), Just-in-Time Architecture, Selection
Techniques

YAML (YAML Ain’t Markup Language), Nonproprietary Formats

Z

Zachman framework, Implementing Perspectives

Zapier, Automate Tasks, Enhance Async

Zoom, Enhance Meetings, Remote Tools

About the Author
Jacqui Read is an internationally recognized solution and enterprise
architect with hands-on experience and expertise coding and architecting
software systems. She specializes in assisting businesses to create and
enhance architecture practices, construct evolutionary architectures, and
untangle and extract value from data and knowledge. Alongside consulting,
Jacqui teaches public and private workshops and speaks at international
conferences on topics such as architecture practices, technical
communication, and architecture decisions. Her professional interests
include collaborative modeling, knowledge management, domain driven
design, sociotechnical architecture, and modernizing enterprise architecture
practices. Outside of work she enjoys gardening and attempting to strum
her ukulele and sing at the same time. Her website is jacquiread.com.

https://jacquiread.com/

Colophon
The animal on the cover of Communication Patterns is a cinnamon-headed
green pigeon (Treron fulvicollis). This rare bird can be found in subtropical
and tropical mangrove forests, swamps, and moist scrublands in Indonesia,
Malaysia, Myanmar, Singapore, and Thailand. You might also spot them in
rural gardens.

The male cinnamon-headed green pigeon gives the bird its name, sporting
green plumage with a pinkish-orange to chestnut colored head and breast.
The females have green heads and breasts. Both sexes have reddish and
white bills and white-fringed wing feathers.

The population of cinnamon-headed green pigeons is Vulnerable at the time
of this writing, according to the IUCN; their population is decreasing. Many
of the animals on O’Reilly covers are endangered; all of them are important
to the world.

The cover illustration is by Karen Montgomery, based on an antique line
engraving from Shaw’s General Zoology. The cover fonts are Gilroy
Semibold and Guardian Sans. The text font is Adobe Minion Pro; the
heading font is Adobe Myriad Condensed; and the code font is Dalton
Maag’s Ubuntu Mono.

	Preface
	Why I Wrote This Book
	Who Should Read This Book
	How to Read This Book
	Images and Color
	Software Tools
	Polyglot Media
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	I. Visual Communication
	1. Communication Essentials
	Know Your Audience
	Mixing Levels of Abstraction
	Representational Consistency
	Summary

	2. Clarify the Clutter
	Color Overload
	Boxes in Boxes in Boxes
	Relationship Spiderweb
	Balance Text
	Summary

	3. Accessibility
	Relying on Color to Communicate
	Include a Legend
	Appropriate Labels
	Summary

	4. Narrative
	The Big Picture Comes First
	Match Diagram Flow to Expectations
	Clear Relationships
	Summary

	5. Notation
	Using Icons to Convey Meaning
	Using UML for UML’s Sake
	Mixing Behavior and Structure
	Going Against Expectations
	Summary

	6. Composition
	Illegible Diagrams
	Style Communicates
	Misleading Composition
	Create a Visual Balance
	Summary

	II. Multimodal Communication
	7. Written Communication
	Simple Language
	Acronym Hell
	Structured Writing
	Syntax of Technical Writing
	Strong Verbs
	Short Sentences
	Precise Paragraphs
	Consistent Vocabulary
	Audience Empathy

	Summary

	8. Verbal and Nonverbal Communication
	Encoding Messages
	Using the Acceptance Prophecy
	Giving Your Full Attention
	Using Body Language and Gestures

	Decoding Messages
	Battling Bias
	Being Present
	Awareness of Cultural Differences

	Influence and Persuasion
	Summary

	9. The Rhetoric Triangle
	Ethos
	Establish Your Credentials
	Use Trustworthy Sources
	Be Transparent
	Demonstrate Your Knowledge

	Pathos
	Tell a Story
	Speak from the Heart
	Use Vivid Language and Strong Imagery

	Logos
	Use Data and Facts
	Make Logical Connections
	Use Reasoning and Argumentation

	Summary

	III. Communicating Knowledge
	10. Knowledge Management Principles
	Products over Projects
	Project Mindset
	Product Mindset

	Abstractions over Text
	Lists
	Tables
	Visual Abstractions
	Word Clouds
	Charts, Graphs, and Diagrams
	Other Abstractions

	Perspective-Driven Documentation
	DRY Perspectives
	Fractal Perspectives
	Implementing Perspectives

	Summary

	11. Knowledge and People
	Get Feedback Early and Often
	Share the Load
	Nonproprietary Formats
	Accessibility
	Collaboration
	Roles and Responsibilities
	Further Techniques

	Just-in-Time Architecture
	Summary

	12. Effective Practices
	ADRs
	ADR Structure
	ADR Content
	ADR Storage
	ADR Culture

	Architecture Characteristics
	All Documentation as Code
	Technical Documentation
	Automatically Generated Documentation
	Other Documentation

	Summary

	IV. Communicating Remotely
	13. Remote Time
	Synchronize Time
	Time Zone
	Empathy and Compromise
	Split Shifts

	Respect Working Patterns
	Communicate Availability
	Defend Part-Time Hours
	Plan for Holidays
	Account for Geography and Culture
	Recognize Real Working Capacity

	Improve Energy and Productivity
	Control Notifications
	Automate Tasks
	Work with Others’ Rhythms
	Schedule for Energy

	Summary

	14. Remote Principles
	Meetings to Sync
	Synchronous Versus Asynchronous
	Enhance Meetings

	Async to Think
	Async Advantages
	Async Obstacles
	Direction Matters
	Async Methods
	Enhance Async

	Remote-First Working
	Remote-First Versus Remote-Friendly
	Remote-First Benefits
	Evolving to Remote-First

	Summary

	15. Remote Channels
	Symmetrical Email
	Email Reasons
	Email Expectations
	Email Clarity
	Email Tips

	Online Presentations
	Audience Engagement
	Presentation Content
	Screen Shares

	Remote Tools and Governance
	Selection Techniques
	Remote Tools
	Data Proliferation
	Security
	Tool Efficiency
	Tool Governance

	Summary

	Epilogue
	A. ADR Templates
	ADR Structure
	Identifier and Title: A Statement of the Decision Made

	ADR Options

	Index
	About the Author

